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Abstract

The present thesis constructs an alternative framework to online matching algorithms on

large graphs. Using the configuration model to mimic the degree distributions of large

networks, we are able to build algorithms based on local matching policies for nodes.

Thus, we are allowed to predict and approximate the performances of a class of matching

policies given the degree distributions of the initial network. Towards this goal, we use a

generalization of the differential equation method to measure valued processes. Through-

out the text, we provide simulations and a comparison to the seminal work of Karp,

Vazirani and Vazirani based on the prevailing viewpoint in online bipartite matching.

3



4



Dedication

To all the dearly beloved, lost. You will always be missed.
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Frequently used Notations and

Conventions

We introduce several of the notations and conventions later used in the text. All of the

notations introduced here will properly be reintroduced in context.

Graph related objects and sets are illustrated using the mathcal calligraphy. Thus,

G = (V , E) is a graph on the vertex set V with edge set V . For a node I, the notation

N (I) is also often used. It denotes the neighbors of node I apart from itself. Oftentimes,

objects will also be indexed by a time/iteration indicator. Thus, Nt(I) simply means the

neighbors of I at time/iteration t.

N and R are respectively the set of integers and that of real numbers. Both are endowed

with their natural topology.

Likewise, for any topological space E, Cb(E) (respectively Cc(E)) is the space of real

valued bounded (respectively compactly supported) functions on E endowed with the

uniform topology.

The Borel sigma-algebra B(E) on E is the sigma-algebra generated by the topological

open sets and we denoteMF (E) (resp. M) the space of finite measures on E (resp. the

finite measure with mass ≤ 1). Both the weak (induced by the duality with Cb(E)) and
vague (induced by Cc(E)) topology will be relevant to our work.

D(R+, E) is the space of right continuous, left limited functions from R+ to E.

A generic probability space
(
Ω,F,P

)
is also used to handle all the random variables.

An E valued random variable is a measurable function from
(
Ω,F,P

)
to (E,B(E)).

And we define a random process as D(R+, E) valued random variable. Sometimes, pro-

cesses are called ’dynamics’ or ’algorithms’.
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Chapter I

Introduction

I.1 The early days of matching theory

Considered as one of Leonhard Euler’s most notorious papers, 1735’s Solutio problematis

ad geometriam situs pertinentis presents the solution to a puzzle: Euler established that

there was no path which crossed all the seven bridges of Königsberg once and only once.

Today, this paper is viewed as the earliest work both in graph theory and in topology.

But, where topology broke free of its recreational roots and quickly expanded into its own

fundamental branch of mathematics, the history of graph theory is more peculiar. Most

of its early developments stayed rooted in recreational puzzles, consequently making it

thorny to paint an accurate picture (see [Mitsuko, 2010]). In fact, it took more than a

century and a half for matchings to become a definitive subject of study in graph theory.

The inception of graph theory as we know is widely attributed to Julius Petersen and

Dénes König. Matching theory, an earlier focus of their work, thus became a fundational

concept of graph theory. While Petersen worked mostly on regular graphs, he touched

matching theory in a oblique way. By Regular graphs, it is meant graphs where all the

vertex have the same degree. In 1891, [Petersen, 1891] Petersen reformulated an algebraic

factorization problem due to Hilbert as a graph factorization problem, already hinting at

deeper ties between algebra and the newborn graph theory. A k-factor of a graph G is a

subgraph F such that every vertex has exactly degree k in F . In particular, a matching

is a 1-factor: each vertex in a matching has exactly one neighbor and thus is matched to

it. In the same paper, Petersen remarkably proved that any regular graph of even degree

is in fact the reunion of two edge disjoint 2-factors, tying his results to the work of Euler

150 years earlier. More importantly (for matching theory), he noticed that odd degree

regular graphs having no more than two cutlines admitted a perfect matching, one that

covered all the vertices.
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Petersen then became interested in the Four Colors Theorem (1852), only a conjecture

at the time. A detailed account of the early research on the conjecture is given in [R.J.

et al., 1976]. In his pursuit of the conjecture, P. G Tait [Tait, 1880] in 1880 had claimed

that every polyhedral cubic graph could be factorised in three disjoint perfect matchings

(perfect means every vertex is covered in the matching). Petersen’s answer came 10

years later, in Sur le théorème de Tait [Petersen, 1898], and it came in the form of a

counterexample, perhaps the single most famous graph in graph theory rightly called The

Petersen graph.

Figure I.1: The Petersen Graph

In parallel to the early works of Petersen, another wing of important results had

sprouted under the father of graph theory, Dénes König. To this day, this branch stays

the most studied part of matching theory. Bipartite matching is a fundamental affectation

problem. As an illustration, we provide one of its formulations : the marriage problem.

Say n men and n women are to get married, where n is an arbitrary number. Since they

live in a conservative society, polyamorous and homosexual relationships are excluded and

each person needs to get married to someone they are acquainted with. The marriage

problem asks : When is it possible for each individual to get married? or reformulating

in graph theoretical terms : Under which conditions does a bipartite graph admit a perfect

matching?

M1

M2

M3

M4

W1

W2

W3

W4

Figure I.2: The marriage problem: When do such bipartite graphs admit a perfect match-
ing?
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Again, the study of bipartite matching would find new roots in an algebraic problem.

In 1912, Frobenius while working on the reducibility of determinants proved in [Frobenius,

1912] that if M is a n × n matrix with either zero or unique entries, then the det(M) is

a factorisable polynomial of the non zero entries if and only if there exists a permutation

of the rows and columns of M such that it exhibits a p × (n − p) sized zero block with

0 ≤ p ≤ n. Frobenius’ proof was hard to follow at the time and König, only 3 years

later in [König, 1915], observing the combinatorial aspect of the reasoning, gave a much

simpler proof using bipartite graphs by introducing a new representation today called

incidency matrices. In retrospect, this approach is only a natural path to take and again

a preface to the deep ties between linear algebra and graph theory. In the 1910s, König

only faced the unwillingness of Frobenius to acknowledge the theory of line systems as a

useful mathematical theory and his graph-theoretic proof was hence given little credence.

Nevertheless, only one year later the same method of using incidency matrices proved

fruitful in establishing the first formal result directly addressing matching theory.

Theorem I.1.1 ([König, 1916]). Every regular bipartite graph of degree k ∈ N is the (edge)

disjoint union of k perfect matchings.

In algebraic terms, this theorem meant every bi-stochastic square matrix (where each

row and each column have the same sum) with non negative entries had to have a non

zero term in its determinant. In particular, it implies that bi-stochastic square matrices

are the convex sum of permutation matrices. This is the Birkhoff-Von Neumann theorem

and it was rediscovered almost half a decade later by Von Neumann [von Neumann, 1953]

and Birkhoff [Birkhoff, 1946].

A few months later in 1917, Frobenius published his own follow up result. In [Frobe-

nius, 1917], he provided a simpler proof of his first lemma using a stronger theorem on

determinants that were identically zero. Perhaps ironically, this theorem came to be

known mostly in its combinatorial form as the Marriage Theorem and it is predominantly

used in graph theory and in optimization. The marriage theorem stipulates that the mar-

riage problem admits a solution if and only if each subgroup of k men collectively know

at least k women.
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M1

M2

M3

M4

W1

W2

W3

W4

Figure I.3: The marriage problem: A solution

It was also the precursor (in fact, it was discovered to be equivalent to) the single most

important characterization theorem for perfect matchings on bipartite graphs:

Theorem I.1.2 (Theorem on Distinct Representatives [Hall, 1935]). Let S1, ..., Sn be a

finite collection of sets, there exists a collection of distinct elements x1, ..., xn such that

xi ∈ Si if and only if every union of k sets contains at least k elements.

During the same time frame, through König’s Theorem (1931), König [König, 1931]

established the duality between the maximum matching problem and the minimal edge

cover on bipartite graphs (generalized the same year to weighted graphs by Egervàry

[Egerváry, 1931]). König’s theorem inscribes itself in the line of minmax theorems which

paved the way to the algorithmic paradigm not only in graph theory, but also in several

other combinatorial domains such as linear programming or convex optimization. In

fact, in the first graph theory textbook [König, 1936], König showed that both marriage

theorems (by Hall and Frobenius) and Menger’s graph connectivity theorem [Karl, 1927]

were direct consequences of his minmax theorem.

I.2 Birth of an algorithmic approach

After König’s book, matching theory stagnated until post world war II. Most results

were still characterization theorems focused on regular and bipartite graphs. Then the

first breakthrough for general graphs happened in 1947 with [Tutte, 1947], where Tutte

generalized Hall’s theorem to all graphs :

Theorem I.2.1 (Tutte). Let G = (V , E) a graph. G has a perfect matching if and only if

for every subset U of V, the subgraph G \ U has at most |U| odd components (connected

components having an odd number of vertices).

It then took Ore eight years [Ore, 1955] to follow Tutte’s result by a ”defect” version

of Hall’s theorem. Ore’s is called a defect version of Hall’s theorem because it identifies

16
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maximum (cardinality) matchings on bipartite graphs instead of perfect matchings. And

then, where it took Hall’s theorem decades to be generalized to all graphs, Berge [Berge,

1957] was able to produce a general defect version of Ore’s theorem only one year later:

Theorem I.2.2 (Berge). A matching M in a graph G is of maximum cardinality if and

only if there is no augmenting path withM (a path where endpoint vertices are unmatched

and that alternates between edges in and out the matching).

Figure I.4: Augmentation of a path

More than the identification of maximum matchings, Berge rightfully noticed that his

theorem yielded a naive algorithm for finding maximum matchings. He pointed that to

build a maximum matching, one simply had to start from any maximal matching M
then search for augmenting paths between any two pairs of edges. Once an augmenting

path P was found, (M\P) ∪ (P \M) was a larger matching: the procedure is called an

augmentation (see figure I.4) of the matching and it was to be repeated until a maximum

matching was reached. To this day, most maximum matching algorithms are based either

around augmentation or the use of equivalent objects to matchings (Maximum Flow for

example).

Berge’s observation appends the question that has been looming over matching theory

for decades. The existence of maximum/perfect matchings could be fully characterized,

yet a way to exhibit such objects was still to be explicited. Incidentally, these questions

overlapped with the invention of computers immediately after World War II and were

followed by a surge of interest in algorithms. It was simpler to build matching algorithms

on bipartite graphs, since the basic steps had already been laid in the 1930s by König

and Egervàry. Thus, when Kuhn [1955] and Hall [1956] built the first bipartite matching

algorithm, Kuhn named it The Hungarian Method as an homage to both König and

Egervary. The hungarian method also provided a way to cast bipartite matching as a

linear programming question in the light of a primal-dual setting which could be solved

by the simplex method (Dantzig [1951]), producing another equivalence for maximum

bipartite matching. Almost simultaneously, Ford and Fulkerson published the first papers

on The Theory of Network Flows [Ford and Fulkerson, 1956], [Ford and Fulkerson, 1957]

17
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[Ford and Fulkerson, 1958] which again permitted another formulation of the already rich

maximum matching problem with the use of the Max Flow Min Cut theorem.

As milestones were being set on bipartite graphs, matching on general graphs turned

out to be a considerably more difficult problem. Almost a decade elapsed before Gallai

published [Gallai, 1964] in 1964. Using another existence theorem, Gallai established that

every graph admitted a canonical decomposition in terms of its maximum matchings. The

Gallai-Edmonds Structure Theorem proved to be the much needed breakthrough because

the next year, Edmonds [1965] was headlining BLOSSOM. BLOSSOM was the first non

trivial algorithm for maximum matching on general graphs, and it settled as a staple

not only in graph theory but also in the burgeoning algorithmic complexity theory. Its

complexity set up polynomial as a criteria for performance and efficiency for algorithms.

After 1965, the classical theory of maximum matching mostly settled on using Berge’s

Theorem in the most way efficient possible like BLOSSOM did. Research is still about

improving the search for augmenting paths or attacking matchings using the ever ex-

panding multitude of equivalent formulations (an example is given in Lovász Grötschel

et al. [1981]). We defer to Dua and Pettie [2014] for an up to date survey of the modern

techniques in the theory.

I.3 Modern days

Even as the classical matching theory was settling and computers were being commercial-

ized to the public, the newborn computer science faced its first obstacles. Computers were

severely limited by their hardware. In theory, a multitude of algorithms had been devised

to solve problems. In practice, only a few were usable because the first computers simply

could not handle them. This led to the emergence of newer techniques whose prime focus

would be viability.

The first of such techniques that is relevant to our work is randomization (eg. Karp

[Karp, 1991]). Random algorithms had existed alongside the deterministic ones from the

early days of the theory. However, randomization as an important technique to drive

down the cost of algorithms really started getting traction only after the fifties. In 1946,

after a review of the performances of the ENIAC, the first computer, Ulam and later by

Von Neumann saw the potential of the use of statistical sampling to simplify calculations.

Later, as they needed a codename for their new method, they would rebrand it as the

”‘Monte-Carlo”’ method 1 [Metropolis and Ulam, 1949; Metropolis, 1987]. The Monte

Carlo method is today a staple in almost all domains that require complicated calculations,

but at its beginnings, the technique only gave a starting push to the use of randomization

1Referring to the Monte Carlo Casino, where Ulam’s uncle would gamble.
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in algorithms. Its importance as a central tool in algorithms would only get traction later,

after both Solovay [Solovay and Strassen, 1977] in 1977 and Rabin [Rabin, 1980] in 1980

published randomized primality tests.

The second relevant technique is the use of online algorithms. The online setup is

defined by the need for algorithms to process their input progressively without total

knowledge of the data. It models situations where the resources are limited (for example

the first computers were very limited in memory). The performance of online algorithms

is then tested against that of offline optimal algorithms, algorithms to which the totality

of the input is made available from the start. This is manifested by the competitive ratio,

a ratio between the worst case result for the online algorithm and the optimal offline one.

Competitive analysis for online algorithms had been first introduced in 1985 by Sleator

and Tarjan [1985] for list updates and paging rules and after the paper of Manasse in 1986

Manasse et al. [1988], it is, to this day the main approach to the performance analysis

of online algorithms. In the 1990s, the theory of online algorithms exploded with its

use on various topics Borodin et al. [1996]; Karp [1992]. In particular, it resulted in the

seminal paper for online bipartite matching: An Optimal Algorithm for On-Line Bipartite

Matching [Karp et al., 1990] by Karp, Vazirani and Vazirani in 1990.

Karp et al. [1990] presented RANKING an optimal2 algorithm for Online bipartite

matching. In the paradigm they studied, the graph is split into customers and items.

Customers arrive one by one, and it is the role of the matching algorithm to pick one of

the items for a match. The use of RANKING led to the now classical 1− 1/e bound for

the matching coverage, namely, the ratio of matched items out of the total set.

Theorem I.3.1. The performance of any on-line bipartite matching algorithm is < n(1−
1
e
) + o(n).

Since then, applications in online advertising prompted the construction of algorithms

that are able to beat this benchmark under various conditions. Such algorithms are the

the subject of an important line of research, see e.g. Goel and Mehta [2008]; Feldman

et al. [2009] and references therein. More recently, various extensions of the online bipar-

tite matching problem have been proposed among which, stochastic matching by Borodin

et al. [2020] (meaning that each edge emanating from the online nodes exists with a given

probability), random customer arrivals by Mahdian and Yan [2011], or models with pa-

tience times by Brubach et al. [2021]. Because of the importance of online advertisement,

online bipartite matching is today, in terms of volume the most used aspect of matching

theory (Mehta [2013]).

2In the competitive ratio sense
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In computer science, online algorithms went through a rebranding. Streaming algo-

rithms are algorithms that only process a stream of the data. This line of research mainly

focuses on the type of input for the stream (either dynamic or enter only), its randomness

or its relative size to the whole graph. Thus several authors have worked to apply them

to the matching problem (see e.g. Chen et al. [2021], Farhadi et al. [2019] and Tirodkar

[2018], and references therein).

Meanwhile, newer mathematical techniques introduced newer bounds for matching

sizes on certain classes of graphs. These bounds furthered the computations of the com-

petitive ratio of matching algorithms despite being overall graph dependent. The first

model of random graph was popularized in the sixties by Erdös and Rényi (reprinted

for example in Erdös and Rényi [2006]) and Erdös used it for the Probabilistic Method.

The probabilistic method is a technique for proving the existence of a graph with certain

properties (say a perfect matching) by constructing an appropriate probability space and

showing that a randomly chosen element in this space had the desired properties with

positive probability. This probability is viewed as a proportion of graphs with the given

property on the space. Thus a non zero probability implied the existence of the desired

object. In matching theory, the probabilistic method was used by Erdös and Rényi in

[Erdös, 1965] to exhibit a size transition for the appearance of a perfect matching on the

Erdös-Rényi random graph, almost surely characterizing the parameters at which a per-

fect matching appeared. The book of Lovász and Plummer [2009] contains a more precise

account of the relevant techniques and how they relate to matching theory.

The usage of random graphs brought the necessary second shift in perspective lead-

ing to our work. Coming in the 20th century, Watts and Strogatz had introduced the

small world model (Watts and Strogatz [1998]) and it was followed by the preferential

attachment model of Albert and Barabási [2002]. These two models led to an explosion in

the research because they exhibited properties observed in real world complex networks.

Internet, social networks or protein chains all shared the property that they were diffi-

cult to describe because of their sheer size. As a consequence, their complete description

was utterly impossible both in theory, because there was no unifying definition of limits

for graphs, and in practice because it would cost an unfathomable amount of resources

to have a complete and precise map of say the internet. This naturally led to a more

statistical and local approach to networks : the theory would study the rules by which

vertices were locally connected to one another and how those rules were to change when

the graph size grew arbitrarily large. This is the so called local limit of graphs (in the

Benjamini-Schramm sense). And, oftentimes the edge defining rules were defined through

probabilistic means.

Thus, random graphs became the perfect tool for mimicking properties of real networks
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since they naturally integrate a layer of randomness in their structure, akin to how the

structure of complex networks is often studied only through sampling. The chosen random

graph model (in our case the configuration model) is then to be viewed as the underlying

model producing the complex network under study, similarly to statistics where samples

are assumed to be generated from a given law3.

I.4 Motivation

In this thesis, we present an alternative to online algorithms using the local construction

of maximal matchings provided by random graphs. Over the structural randomness of

the configuration model, we construct local matching algorithms that are built around

the choice of a matching criterion (a preferential choice of edges to add to the matching

for every node).

Afterward, we will manage to predict the performance of chosen criteria given a graph

(or at least its degree distribution). Moreover, our results apply directly to general graphs

instead of being restricted to the usual bipartite matching problem. In the traditional

online bipartite matching, there is a layer of randomness that comes from the order of

arrivals, from the exploration of the graph. Our goal is to add a second layer, representing

the exploration, to the first layer of randomness already acknowledging an uncertainty in

the structure of large networks. To capture the randomness of the structure, we use the

configuration model. Even for large networks, characteristics like degree distributions are

more accessible than the whole topology and have huge effects on the networked systems.

Because it emulates such an important characteristic, the configuration model is one of

the most important theoretical models in the study of networks. In particular, since it

can emulate a uniformly drawn graph from a degree sequence, it strikes an ideal balance

between realism and simplicity. Hence, given a matching criterion, we approximate the

matching size as a function of the degree sequence of the graph. This is done through a

deterministic approximation of a stochastic process representing the matching procedure
4, in the large graph asymptotic. The general idea is as follows: rather than precisely

defining and keeping track of the whole geometry of the graph, we generate a graph

from the configuration model (Bollobás and Béla [2001] and Hofstad [2016]). To this

end, we use a classical uniform pairing procedure of the half-edges of the nodes (a more

precise description is given in the next chapter). This construction leads a uniformly

drawn realization of a graph having the prescribed degree distribution. In parallel, we

simultaneously construct an online matching (meaning in this context, that each edge

3We are very grateful to Ms Olvera-Cravioto for her ideas on the subject
4given the chosen criterion
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that is added to the matching cannot be erased afterward) on the resulting graph. This

can be viewed as using simultaneously the two layers of randomness: the structure of the

graph (1st layer) is discovered alongside the exploration process (2nd layer) associated to

the matching criterion.

The whole procedure can be viewed as an exploration of the configuration model, where

the edges to be added to the matching are marked following the designated criterion.

Our idea of viewing the matching algorithms as exploration processes originate from the

course Limites d’échelles de graphes aléatoires Broutin [2021] by N. Broutin at Sorbonne

Universités. In an adjacent paper Broutin and Marckert [2014] to the course, an encoding

for the exploration of trees with prescribed degree distributions is provided. In our case,

the interest lied more in the number of marked edges than in the structure of the explored

graph. Thus, the marking process is encoded in a different manner.

The simultaneous construction leads to a simple Markov representation, keeping track

of the remaining degrees of the nodes that are not yet fully attached to the graph (a

definition that will be made precise hereafter), provided that the matching algorithm

depends only on these remaining degrees. This will be our preferred encoding of the

exploration. We say in that case that the matching algorithm is local. The underlying

Markov process is then measure-valued, where each measure is a sum of Dirac masses

marking the remaining degrees of the nodes. By doing so, we do not need to keep track

of the precise form of the constructed graph, and in fact, we do not need to have ac-

cess to it. Then, using usual approximation tools for Markov processes, one can identify

the approximation of the considered process as the solution of an ordinary differential

equation. This results in a generalization, for measure-valued processes, of the celebrated

Differential Equation Method, introduced by Kurtz [1970, 1969] and later popularized in

the random graphs community by Wormald [1999]. By doing so, we retrieve an estimate

of the resulting matching coverage as a simple function of the latter (deterministic) solu-

tion, without knowledge of the precise geometry of the graph at hand. Remarkably, we

show hereafter that the resulting matching coverage has the same distribution as the one

obtained when applying the corresponding online and local matching algorithm on a pre-

viously constructed graph G̊, conditional on the fact that the resulting graph constructed

by the CM is precisely G̊. As a consequence, our estimate of the matching coverage by the

differential equation method, provides a remarkably accurate estimation of the matching

coverage of the considered local algorithm on a given graph, a result that we support with

simulations.

In fact, at the same moment the present thesis was being written Noiry et al. [2021]

wrote a paper constructing a greedy algorithm on the bipartite configuration model. Their

work focused on the bipartite case using a representation of the matching process leaning
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on generating functions. Despite using an overall different approach, the empirical results

obtained are similar to those obtained in restricting our version to the greedy matching

(Aoudi et al. [2022]). Hence, our aim in this thesis is a generalization of this approach to

general graphs and to broader matching criteria. In any case, both the author and Noiry

et al. [2021] go even deeper in the comparison of this alternative technique to existing

methods in online bipartite matching.

The extension of the differential equation method to measure-valued processes, result-

ing from a simultaneous construction of the CM and an exploration algorithm on the

latter, first appeared in a paper by Decreusefond et al. [2012] to describe the propagation

of an SIR epidemics on an heterogeneous graph. A closely related idea was then applied

in Bermolen et al. [2017] to approximate the size of maximal independent sets on graphs

with given degree distributions (for a more direct use of the differential equation method

on the same topic, see also Brightwell et al. [2015]). This led to various extensions, for

example to address various coverage problems in CSMA-type algorithms for radio-mobile

and ad-hoc communication networks, see Bermolen et al. [2016].

Before that, measure-valued processes Markov processes were first introduced in the

queueing literature. Space of measures are amenable to showing weak convergence of

sequences of processes under an appropriate scaling, and the exhaustive representation

of queuing systems by point measures, in which each Dirac mass typically represents

the characteristic of a customer in line, led to fruitful developments in fluid and diffusion

approximations of the systems at hand, see e.g. Gromoll et al. [2002] for processor sharing

queues, Doytchinov et al. [2001]; Decreusefond and Moyal [2008a] for queueing systems

with impatient customers, Decreusefond and Moyal [2008b] for infinite-server queues, or

Kaspi and Ramanan [2011] for many-server queues.

I.5 Layout of the document

This thesis is organized in three main chapters.

In Chapter II, we introduce the framework for the rest of the work. At first, the local

marking process is provided for finite deterministic graphs. Here, we build an intuition

for the behavior of matching criteria on finite graphs before transposing said criteria to

the configuration model. The chapter ends with our first batch of simulations, illustrating

the definitions given in the chapter for practical cases.

Chapter III is devoted to the representation of the matching process as a measure

valued Markov process. It starts with a theorem linking the exploration of given graphs

to that of the configuration model. Then, the properties of the associated process are

studied in preparation for Chapter IV. The chapter is closed with a section dedicated to
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a proper normalization of the dynamic.

Chapter IV presents the main result of our thesis. We are able to prove the convergence

of the matching process to a deterministic function. By studying this function, we show

that the matching coverage for given criteria converges to a value we are able to compute

by solving an ordinary differential equation. This value serves as a predictor for the

performance of the given matching criteria. The convergence is also illustrated empirically

through a second batch of simulations.
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Chapter II

Local Matching Algorithms

The naive algorithm for building a maximal matching consists of the repetition of the

following iteration: 1. an edge is added to the matching 2. its neighboring edges are

blocked. Maximum matching algorithms would then proceed to progessively augment

the resulting maximal matching 1. The present thesis studies local matching criteria and

their influence on the size of the first maximal matching produced without augmentation.

A matching criterion is a procedure selecting the edge added to the matching at each

iteration. And it is local when it depends only on the neighborhood of an edge.

In this chapter, the general formula for the local matching algorithms studied hereafter

is provided. Section II.1 defines the local approach on given graphs as a prelude(the graph

is considered a realization of the CM that is simple). The context of given graphs can be

viewed as conditioning the model by a given structure. Thus, the structure of the graph

is known and available, so the edges locally explored and added to matching already exist

and are only to be discovered. In II.2, the process is transposed to the configuration

model where instead of discovering the graph, it is built alongside the matching, using

the uniform pairing procedure (which symbolizes the randomness in structure). Thus, the

configuration model serves as a placeholder for large complex networks where complete

information is often inaccessible. Finally, we provide a batch of simulations illustration

the whole approach and comparing it to the optimal traditional online algorithm.

II.1 Local Matching Algorithms on Given Graphs

For the entirety of this section, G̊ = (V̊ , E̊) represents a graph with vertex set V̊ and

edge set E̊ . We differentiate given graphs in this section from the configuration model

generated ones later by using the˚symbol. Those graphs will be later addressed without

1see Introduction/I.2.2
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superscripts.

II.1.1 Matching criteria

Definition II.1.1. Let Ů ⊂ V̊ a collection of nodes, define the following core objects:

� A choice function Φ on Ů is a probability law on Ů . A choice following the

function ΦI̊ is a random variable I̊ whose law is ΦI̊ . For u ∈ Ů , we write :

P(I̊ = u) := ΦI̊(Ů)(u) (II.1)

� A matching criterion Φ := (ΦI̊(V̊),ΦI̊′(N̊ (I̊))) is a pair of choice functions such

that ΦI̊(V̊) chooses a node I̊ among all vertex and ΦI̊′(N̊ (I̊)) chooses its match

among its neighbors.

A matching criterion defines a method for picking an edge (I̊ , I̊ ′) which is later explored

and added to the matching. The choice of I̊ fixes a priority order to the exploration of

the graph since it dictates the first vertex seen at each iteration, it is then followed by the

choice of I̊ ′ functionally completing the selection of the edge added to the matching.

Example II.1.1. � The uniform choice on Ů is the choice function where every node

is picked with the same probability:

PŮ(I̊ = u) := unifI̊(Ů)(u) =
1Ů(u)

|Ů |
(II.2)

� The maximal (degree) choice selects uniformly amongst the maximal degree

nodes:

PŮ(I̊ = u) := maxI̊(Ů)(u) = unifI̊(Ůmax)(u) =
1Ůmax

(u)

|Ůmax|
. (II.3)

If we define the dmax(Ů) = maxu∈Ů d(u) as the maximal degree in Ů , we write

Ůmax := {u ∈ Ů | d(u) = dmax(Ů)}

� Likewise the minimal (degree) choice is a uniform choice amongst the minimal

degree nodes:

PŮ(I̊ = u) := minI̊(Ů)(u) = unifI̊(Ůmin)(u) =
1Ůmin

(u)

|Ůmin|
. (II.4)

where dmin(Ů) = maxu∈Ů d(u) is the minimal degree in Ů , we write Ůmin := {u ∈
Ů | d(u) = dmin(Ů)}
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Remark II.1.1. It is important to stress that we do not count a node among its own

neighbors, even when there is a loop. This is to avoid adding loops to the matching. As

we will later see, loops will occur in the configuration model and whenever they are marked,

the algorithms would no longer produce a matching. Asymptotically, it will be irrelevant

since the total number of loops will be negligible compared to the number of marked edges.

Nevertheless we have to mention it, since loops appear with positive probability.

Another way to circumvent the problem and produce a matching is to allow loops to

be included but to later erase them whenever they are marked.

II.1.2 Local matching through exploration

We now construct the local matching algorithms later considered in this work. Fix a

(non-oriented) graph G̊ = (V̊ , E̊), where V̊ is the set of nodes and E̊ ⊂ V̊ × V̊ is the set of

edges and a matching criterion Φ := (ΦI̊(V̊),ΦI̊′(N̊ (I̊)). Fix the size of V̊ as |V̊| = n for

n ∈ N.
At any iteration t, are given two disjoint subgraphs of G̊:

� G̊t = (Ůt, E̊t) is the undiscovered part of the graph for our procedure at time t. The

nodes of Ůt are said to be available at t. Those are the nodes whose fate still is to

be determined.

� G̊ ′t = (M̊t, G̊ ′t) is the matching at time t. It is a 1−factor, a subgraph of G̊ in which

all nodes have only one neighbor with M̊t containing all the matched nodes.

I̊t is also defined as isolated nodes at t, that is nodes which will not be matched at all,

because all of their neighbors have been matched. Thus,

V̊ = Ůt ∪ M̊t ∪ I̊t. (II.5)

At first, the whole graph is available to be matched, meaning Ů0 = V̊ , M̊0 = ∅ and
I̊0 = ∅. The matching process has yet to start, we also set E̊0 = E̊ and E̊ ′0 = ∅, in a

way that G̊0 = G̊ and G̊ ′0 = (∅, ∅). The matching algorithm then proceeds by induction,

repeating the following procedure:

At any time t ∈ J0, n− 1K,

Step 1̊. A vertex I̊ is chosen following ΦI̊(Ůt)

Step 2̊. A match for I̊ is selected among the neighbors of I̊, it is a choice I̊ ′ following

ΦI̊′(N̊ (I̊)). Note that this procedure is local. It only depends on the current degree of

the neighbors of I̊. The next figure illustrates two criteria, the match is represented

in red for greedy and minres, properly defined in Definition II.1.2.
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I̊

Figure II.1: Exploring a vertex

I̊

I̊ ′

(a) greedy criterion

I̊

I̊ ′

(b) minres criterion

Figure II.2: Choice of an edge

Step 3̊. The matched nodes I̊ and I̊ ′ as well as their neighboring edges are explored. Those

are removed from the unexplored graph (in grey). Specifically, we set
Ůt+1 = Ůt \ {I̊ , I̊ ′}, G̊t+1 = Induced subgraph of Ůt+1 in G̊t,
M̊t+1 = M̊t ∪ {I̊ , I̊ ′}, E̊ ′t+1 = E̊ ′t ∪ {(I̊ , I̊ ′)},
I̊t+1 = I̊t ∪ {v ∈ G̊t+1|dt+1(v) = 0}.

I̊

I̊ ′

(a) greedy: End of iteration

I̊

I̊ ′

(b) minres: End of iteration

Figure II.3: Explored part of the graph after an iteration

Step 4̊. We set t := t+ 1 and go back to step 1.
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At the terminating point t = n, all the nodes are either matched or isolated, begetting

|I̊n|+ |M̊n| = |V̊|.

The matching coverage M̊n
Φ(G̊), the proportion of initial nodes that ended up in the

matching at the termination time n is expressed as a simple function of the sets we

tracked during the matching dynamic.

M̊n
Φ(G̊) =

|M̊n|
n

= 1− |I̊n|
n
∈ [0, 1]. (II.6)

Such expression is crucial in the remainder of this work. It expresses the matching pro-

portion as a function of the matching dynamic. Later on, concentration results will allow

us to establish the convergence of the matching coverage given any criterion.

We can now introduce the main criteria that have been the focus of our simulations :

Definition II.1.2. � Φ is greedy, denoted Φ = greedy, if both choices of I̊ and I̊ ′

are uniform. We can write

greedy =
(
unifI̊(V̊),unifI̊′(N̊ (I̊))

)
. (II.7)

� Φ is minimal residual, denoted Φ = minres if I̊ is matched to its lower degree

neighbor. The goal here is to obtain a better matching by decreasing the probability

of augmenting paths. Since minres matches I̊ to its lowest degree neighbor, it has

a better chance of being matched to leaves2, thus decreasing the chance of creating

a situation where both leaves are left out of the matching, creating an augmenting

path.

minres =
(
unifI(V̊),minI̊′(N̊ (I̊))

)
. (II.8)

2By leaf, it is meant a degree one node
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Algorithm 1 General local matching algorithm for a choice criterion Φ

Require: Non-empty graph G̊ = (Ů , E̊)
Matching← ∅;
for t < n do
Pick I̊ following ΦI̊(V̊);
Discover its neighborhood N̊ (I̊) in Ů ;
Ů ← Ů \

{
I̊
}
;

if N̊ (I̊) is empty then
Do not do anything more

else
Pick I̊ ′ following ΦI̊′(N̊ (I̊));

Ů ← Ů \
{
I̊ ′
}
;

Matching← Matching ∪ (I̊ , I̊ ′);
end if t← t+ 1;

end for

II.2 Local matching on the configuration model

The main feature of complex networks is their size. The larger they get, the more compli-

cated it becomes to access their exact topology. This has prompted researchers to turn to

other viewpoints. The local approach to large graphs is one such viewpoint: Even without

full information, are there ways to describe the relationships between vertices?

One answer to this question is statistical. If we have access to a descriptor of the

graph, for example its degree sequence, it can be used to pick uniformly a similar graph

in some sense. If the degree distribution is known for example, one reasonable assumption

to make is that typical vertex of the network and their neighborhoods should follow such

distribution. From that assumption, concentration techniques can be used to obtain global

properties on any procedure that is local. This led to random graph models being used

as substitutes for complex networks.

The configuration model (Bollobás [1980]), also known as the uniform pairing model,

is one of the most important theoretical models in the study of networks. Because, when

conditioned on being simple, it represents a uniform drawing of a graph given its degree

sequence, it is both realistic and simple enough to be used in a myriad of situations

(Decreusefond et al. [2012] for the spread of an epidemic based on the SIR model or

Bermolen et al. [2017] for a study of the jamming constant of general graphs). Moreover,

the sequential nature of the construction of the configuration model makes the model at

hand amenable to the fabrication of local algorithms (Appendix A.1), especially like we

intended to do in the first section of the present chapter. This section uses this sequential
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procedure to transpose the local matching algorithms to the configuration model. The

algorithms are now built on a model with both layers of randomness.

Set ξ a probability measure on N. Set n be a positive integer and d := (d(1), ..., d(n))

a n-sample of the probability distribution ξ. We intend d to model the degree sequences

of a given graph so it has to be graphic3.

Alternatively, we call µ :=
∑

i≤n δd(i) the measure valued representation of d.

Thus, we let V = {v1, ..., vn} be the set of nodes of the graph and for all i ∈ J1, nK, d(i)
being the degree of node vi. A realization of the configuration model consists of giving

every vertex v, d(v) half-edges which are to be completed into edges through uniform

pairing (see Appendix A.1).

II.2.1 Matching criteria on the CM

Definition II.2.1 (Matching criteria on degree sequences). Let d a degree sequence, we can

redefine matching criteria for degree sequences (or equivalently on their measure valued

representation) as follows:

� A choice function Φ on d is again a probability law on d. A random variable

K = d(I) is called choice following the function ΦK when its law is ΦK. Again, let

k ∈ d we write :

P(K = k) := ΦK(d)(k). (II.9)

abusing notations, for µ =
∑

d∈d δd, Φ can be written as a measure on MF (N) :

ΦK(µ) := ΦK(d) =
∑
k

ΦK(d)(k)δk. (II.10)

� Let µ′ :=
∑

v∈N (I) δd(v) the degree sequence of the neighbors of I. A matching

criterion Φ := (ΦK(µ),ΦK′(µ′)) is again a pair of choice functions such that a

node ΦK(µ) chooses a vertices I of degree K among all vertices and ΦK′(µ′) chooses

the degree of its match among the degree of its neighbors.

This time, the matching criterion defines the degrees (K,K ′) of the edge (I, I ′) added

to the matching.

Example II.2.1. � The uniform choice on d is the choice function where every de-

gree is picked with the same probability. For k ∈ d, we use d and µ interchangeabily:

3Graphicality of degree sequence has been extensively studied in the literature, we quickly present a
characterization result and a drawing procedure in appendix A.1.4
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Figure II.4: A running example: Initial state for d = (3, 2, 1, 4, 2, 2)

v1

v2

v3

v4

v5

v6

unifK(µ)(k) := Pµ (Kunif = k) =
⟨µ, 1k⟩
⟨µ,1⟩

. (II.11)

� The maximal (degree) choice selects uniformly amongst the maximal degrees:

maxK(µ)(k) := Pµ (Kmax = k) = 1dmax(k). (II.12)

where dmax := max d = maxi di with di ∈ d

� Again, the minimal (degree) choice selects uniformly amongst the minimal de-

grees:

minK(µ)(k) := Pµ (Kmin = k) = 1dmin
(k). (II.13)

where dmin := min d = mini di with di ∈ d

II.2.2 The matching process on the CM

We can now set the trackers for the number of available stubs. Stubs (or half edges) are

to be paired sequentially uniformly into edges, for all i we set a0(vi) = d(i) and define the

following set of initial availabilities :

A0 =
{(
v1, a0(v1)

)
, · · · ,

(
vn, a0(n)

)}
.

At first, all stubs are available and the G0 has no edges. We get G0 := (V , ∅). The

matching is empty, and all the edges have to be discovered, hence we also set M0 =
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∅, U0 = V and G ′0 is the empty graph, i.e. G ′0 = (∅, ∅). To define the tempo of our

construction, set t as an iteration count. In a similar fashion to the first section, we shall

proceed by induction. At iteration t, we are given

� A multi-graph Gt = (V , Et) = (Mt∪Ut∪It, Et) representing the partially constructed

connections between elements of V , where we denote by:

– Mt the set of matched nodes at t which are nodes that are fully attached to

the graph at t (no available stubs), and belong to the matching at t;

– Ut the set of unexplored nodes at t, that is, nodes that do not belong to the

matching at t, but can still be attached to it (it means they are unmatched but

they have available stubs which can yet become edges added to the matching);

– It, the set of isolated nodes at t, that is, nodes that are already fully attached

to the graph at t, but do not belong to the matching at t (unmatched and no

more stubs to connect them to an eventual match).

By our very construction, all nodes ofMt (if any) will have degree at least 1 in Gt,
and we let Ut = {vi1 , ..., vip} ⊂ V . (We skip the dependance in t in the parameters

vjl , for short.)

� A maximum matching G ′t = (Mt, E ′t) on the induced subgraph of Mt in Gt. In

particular, E ′t is a set of subsets of pairs ofMt of the form {vi, vj} for vi, vj ∈ Mt

such that any element ofMt appears in exactly one pair of E ′t.

� Two sets of pairs, where all active nodes, nodes that have yet to be visited, are in

At =
{(
vi1 , at(vi1)

)
, · · · ,

(
vip , at(vip)

)}
and active nodes with stubs available are in

A∗
t =

{(
vil1 , at(vil1)

)
, · · · ,

(
vilm , at(vilm)

)}
with ∀(v, at(v)) ∈ A∗

t , at(v) > 0. For any l ∈ J1, pK, at(vil) is interpreted as the

availability of node vil at t, that is, the number of available stubs.

The next iteration is then triggered :

Step 1. An unexplored node I of positive availability K is selected following

ΦK({at(vil1 ), · · · , at(vilm )}), this defines (I,K) = (viq , at(viq)) ∈ A∗
t for some q.

The uniform pairing procedure is used to complete the K stubs of I into edges
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more specifically : We draw, without repetition, K elements uniformly at random

among lm bunches of elements of respective sizes at (vil), l ∈ J1, lmK to construct

the emanating edges of node I (recall that lm = |A∗
t | is the number of nodes with

available half edges). Then, we let Nt(I) := {I ′1, ..., I ′u} ⊂
{
vil1 , ..., vilm

}
, where

u ≤ K is the set of the u neighbors of I, i.e., the indexes of the bunches containing

the chosen half-edges. Note that this operation may lead to parallel edges or loops

whenever several elements of the same bunch of half-edges are chosen. In this case,

u < K. However, is a well known fact that baring some restrictions on the initial

degree sequence, the number of loops/multiple edges is O(1) (see for example Angel

et al. [2017]) so it does not affect the large graph matching coverage.

For all l ∈ J1, lmK, we let DI′l
be the number of edges shared by I ′l with I, that is,

the number of elements in the bunch I ′l chosen in the uniform pairing procedure.

v1

v2

v3

v4

v5

v6

(a) greedy

v1

v2

v3

v4

v5

v6

(b) minres

Figure II.5: Chosing I = v1 and discovering its neighbors Nt(I) := {v2, v3, v6}. We also
have that K = 3 and at(v2) = 2, at(v3) = 1, at(v6) = 2.

Step 2. The match of I is chosen within the set {I ′1, ..., I ′k}. Call it I ′ = I ′m, with availability

K ′, where K ′ is drawn following the law ΦK′({at(I ′1), ..., at(I ′u)}). Henceforth, both
nodes I and I ′ together with the edge {I, I ′} can be added to the matching G ′t, that
is, we set

Mt+1 =Mt ∪ {I, I ′} and E ′t+1 = Et ∪
{
{I, I ′}

}
.

Step 3. Finally, we determine the neighboring edges on the I ′ side.

� If K ′ > DI′ , I
′ still has K ′ − DI′ uncompleted half-edges. The procedure in

Step 1. is reiterated. We draw at random the indexes I1, ..., Iℓ of the neighbors

of I ′ other than I using the same uniform pairing procedure. Namely, we

draw at (I
′) −DI′ elements uniformly at random among the lm − 1 “bunches”
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v1

v2

v3

v4

v5

v6

(a) greedy chooses the match ran-
domly

v1

v2

v3

v4

v5

v6

(b) minres only has one choice

Figure II.6: Matching I with I ′

(recall that lm is the number of available bunches) of elements of respective

sizes at (vil) −Dil , l ∈ J1, lmK \ {q} (that is, all unexplored elements now that

I = viq has been matched), to determine the other neighbors of I ′.

We let {I1, ..., Iℓ} ⊂
{
vi1 , ..., vilm

}
\ {iq} (for ℓ ≤ at (I

′) − DI′) be the set of

the ℓ neighbors of I, i.e., the indexes of the bunches containing the chosen

half-edges. For all l ∈ J1, ℓK, we let FIl be the number of edges shared by Il

with I ′, that is, the number of elements in the bunch Il chosen in the uniform

pairing procedure.

� If K ′ = DI′ (which for example the case if u = 1), then I ′ has no more open

half-edges to complete. In this case we do not do anything at this stage, and

just set ℓ = 0.

v1

v2

v3

v4

v5

v6

(a) For greedy, I ′ = v2 has a neigh-
bor

v1

v2

v3

v4

v5

v6

(b) minres has no operations at this
step

Figure II.7: Matching I with I ′
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After all those operations, in the illustrative example for greedy we have that

At+1 = {(v3, 0), (v4, 3), (v5, 1), (v6, 1)} and A∗
t+1 = {(v4, 3), (v5, 1), (v6, 1)}. The

other relevant sets are easily deduced as well.

In all cases, the neighboring edges of (I,I ′) are now complete, and we can summarize

the operations

Et+1 = Et ∪
{
{I, I ′1}, ..., {I, I ′k}

}
∪
{
{I1, I ′}, ..., {Iℓ, I ′}

}
,

where the second set on the right-hand side above is understood as empty if ℓ = 0.

We also update the sets of availabilites At by deleting the pairs corresponding to

the newly matched nodes I and I ′, and by updating the remaining number of stubs

of the unmatched nodes connected to the two newly matched ones, if any. In other

words, we set for the edges on both sides

At+1 = At ∪{(I1, at (I1)− FI1) , · · · , (Iℓ, at (IIl)− FIℓ)}
\ {(I, at(I)), (I1, at (I1)) , · · · (Iℓ, at (Iℓ))} ;

At+1 = At+1 ∪{(I ′1, at (I ′1)−D1) , · · · (I ′u, at (I ′u)−Du)}
\ {(I ′, at(I ′)), (I ′1, at (I ′1)) , · · · (I ′u, at (I ′u))} .

(II.14)

The procedure terminates at most at time n, when Un becomes empty. One last operation

is needed to complete the process. All the active nodes become isolated :

In = In ∪ An, .

An = ∅. (II.15)

At that time, we end up with a multi-graph G := Gn = (V , En), since all stubs have been

completed. Moreover all the nodes are either matched or isolated.

The matching coverage is reexpressed the same way:

Mn
Φ(G̊) =

|Mn|
n

= 1− |In|
n
∈ [0, 1]. (II.16)

II.3 Simulations

To motivate the remainder of our work we provide some early simulation results. (Aoudi

et al. [2022]) gives a more detailed account of the technical aspects. We chose to focus on

bipartite graphs since it is the most relevant framework for practical uses. We test the
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empirical convergence of the matching coverage under both Greedy and Minres. This

section serves also as a prelude for testing the robustness of our method. For the entirety of

this section, the work presented is restricted to the bipartite configuration model. Hence,

the empirical degree sequence is divided accordingly in {+} and {−} sides, representing
the bipartition. We write

d = (d+, d−), (II.17)

where d is the initial degree sequence. The criteria are also lined accordingly: ΦI is

restricted to d+.

II.3.1 Convergence of the Matching Size : a case study on 3-regular

graphs

In this section, we use 3-regular graphs to test the convergence of Mn
Φ(G)/n, for G a 3-

regular graph and the initial degree sequence d+ = d− = 3⊗n, for n the number of vertices

on both sides.

To illustrate the convergence of Mn
Φ(G)/n, we proceed as follows: for each value of n

from 10 to 10 000, we use the bipartite configuration model to draw a 3-regular graph as

a realization of the CM. For various graph sizes, we ran N = 50 iterations of the previous

procedure.

As the graph gets larger, the fluctuations get smaller and smaller, heuristically showing

the concentration of the matching coverage Mn
Φ(G)/n for both algorithms. Means and

standard deviations of the corresponding statistical distributions for Mn
Φ(G)/n, are given

in the table (II.1).

Graph Size n 200 500 1000 3000 5000

Mn
Greedy(G)/n Mean 0.8904 0.8916 0.8911 0.8897 0.8898

Std Dev 0.0198 0.0109 0.009 0.0041 0.00311
Mn

Minres(G)/n Mean 0.9356 0.9365 0.9396 0.9378 0.9385
Std Dev 0.0148 0.0096 0.0052 0.0040 0.0025

Table II.1: Recap. of Average Matching Size

Table II.1 hints at the convergence results we later establish in Chapter 3 and 4. The

shrinking of the standard deviations confirm the heuristic convergence to a deterministic

value. It also stresses on the better performances of Minres with respect to Greedy

for this particular degree distribution. In the next part, we develop this comparison for a

larger range of degree distributions.

37



II.3. SIMULATIONS CHAPTER II. LOCAL
MATCHING ALGORITHMS

II.3.2 An Array of Degree Distributions

Here, we study the evolution of the performances of the two algorithms Greedy and

Minres under varying parameters of the configuration model. We empirically identify

the convergence along various degree distributions and various parameters. Our procedure

is the following: for each degree distribution, we use still the bipartite CM to generate a

large graph (of size n = 104 nodes), in which the degrees of the nodes form a n-sample

of the prescribed degree distribution, after testing the graphicality of the latter degree

distribution (i.e., the feasibility of the generation of the graph). For each distribution,

again we ran 50 iterations of both algorithms, following the first construction of Section

II.1. Each dot on the figure represents the matching coverage of a single run.

Poisson distributions. We first address the class of Poisson distributions, which are well

known to be the asymptotic degree distributions of Erdös-Rényi graphs. Distributions

of the matching coverage for the Greedy (respectively, Minres) algorithm are given

in Figure II.8a (resp., Figure II.8b), for Poisson distributions of various parameters. To

achieve the comparison of the two algorithms, these distributions are gathered in Figure

II.8c.

38



II.3. SIMULATIONS CHAPTER II. LOCAL
MATCHING ALGORITHMS

(a) Greedy on Poisson Laws (b) Minres on Poisson Laws

(c) Comparison on Poisson Law

Figure II.8: Performance on Poisson Degree Distribution

Regular bipartite graphs. We now address various degree distributions that correspond

to regular bipartite graphs: each node has the same degree, in other words we have

d+ = d− = p⊗n, for some p ∈ N∗, thereby generalizing the study of Sub-section II.3.1.

Notice that such bipartite graphs always admit a perfect matching. The distributions of

matching coverage are given in Figures II.9a, II.9b and II.9c.
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(a) Greedy on Regular Degree Distr. (b) Minres on Regular Degree Distr.

(c) Comparison on Regular Distribution

Figure II.9: Performance on Regular Degree Distr.

These results illustrate perfectly the growth of the performance of both algorithms as

the average degree grows. For each designated distribution, we can also confirm that the

matching coverage of Minres is consistently larger than that of Greedy.

Comparing the sub-figures of Figure II.8 with the corresponding sub-figures of Fig-

ure II.9 for the same average degree, we make the two following observations: First,

both algorithms consistently perform better on regular graphs than on graphs with Pois-

son degree distributions. Regular graphs can be written as the disjoint union of perfect

matchings so their structure might drastically increase the chance of building one. We
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also conjecture that this phenomena is due to the variance of Poisson degrees in the first

panel: by restricting choices, the optimal partners for certain nodes (which we are trying

to reach) might get blocked, while regular distributions provide more latitude to chose a

match without missing an optimal one 4. Second, for both algorithms, the distribution of

matching coverages has higher variance on regular graphs than on graphs having Poisson

degrees. It seems that a uniform initial degree distribution provides more opportunities to

deflect from typical runs, while the variance of degrees often restricts the choices, creating

a disparity between nodes.

II.3.3 The Influence of Topology and Another Approach To Online Bi-

partite Matching: Optimal Algorithm by Karp, Vazirani and

Vazirani

In [Karp et al., 1990], Karp, Vazirani and Vazirani present a different approach for online

bipartite matchings on graphs. The authors define online algorithms as a way of picking

the matches of “girls” (i.e., nodes on the ‘+’ side) that arrive one by one, based only on the

identity of their neighbors on the ‘boys’ side (i.e., the ‘-’ side). On the adjacency matrix of

the graph, it translates to the fact that the columns are revealed one by one and the match

is processed upon knowing the information of the current column. Our approach based

on local algorithms has slight differences and actually uses more information. Indeed, we

also consider the degree of each neighbor, of the incoming ‘girl’, and the neighbors of its

match, of her ’boy’ neighbor.

Second, the performance metric considered in [Karp et al., 1990] is the so-called ad-

versary approach. It allows to get a lower bound on the performance of online algorithms,

as defined above. Namely, Theorem 2 in [Karp et al., 1990] states that in that context,

the matching coverage is at least 1 − 1/e − o(n)/n on average. This average happens to

be the expected matching coverage attained by the Random algorithm defined therein

(which is roughly equivalent to our Greedy). In our paper, a different metric is used: we

establish convergence to a deterministic value of the average matching ratio, rather than

a lower bound.

Therefore, it is clear that our framework differs from that of [Karp et al., 1990]. How-

ever, to gain some insights on how much our algorithms based on the degree distribution

stand up against their counterparts on real graphs, we conducted the following study: we

let G be a randomly generated graph with 5000 nodes, from an upper triangular adja-

cency matrix that is specified as follows: all diagonal elements are 1, thereby insuring the

4Konig’s theorem states that regular graphs can in fact be viewed as a union of p perfect matchings,
thus the margin of error can be approximately known at each step
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existence of a perfect matching, and all upper elements are Bernoulli(p) random variables,

where p is so that the graph has average degree, say, 5. Such graphs provide the worst

case scenarios for the framework in Karp et al. [1990]. Then, the exploration algorithms

are run on G (Section II.1 of both Greedy and Minres). In parallel, we extract (d+,d−)

the degree distributions of the graph under consideration, on which we run both Greedy

and Minres (the CM version of Section II.2), thereby constructing another (multi-)graph

having the same degree distribution. Our results can be summarized in Figure II.10.

Figure II.10: Exploration Vs Conf Model

Figure II.10 shows that matching algorithms that are jointly constructed with the CM

achieve a better matching coverage than on this given realization. In other words, match-

ing algorithms typically perform badly on this particular graph, with respect to a graph

that is obtained as a uniform draw amongst graphs having the same degree distribution,

unsurprisingly hinting at the influence of the graph topology on the considered match-

ing algorithms. Simulations seem to indicate that this influence is more so enhanced in

Greedy. Finally, we also observe that Minres produces a better matching coverage

than Greedy anyway.

Notes II.3.1 (Choice of the Configuration Model). In the introduction, we mentioned that

random graphs were analogous to statistical models for complex networks. And statistical
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models are picked accordingly to the populations under study. Hence, the choice of the

underlying random graph model should also depend on the network at hand. This means

our approach has more legitimacy on networks that are well described by the CM.

We chose the CM mostly because of its local description of the neighborhood of nodes

which ends up being convenient for building local algorithms. Our algorithms could be

transposed to other asymptotic graph models with local descriptors, although it would per-

haps require a different set of mathematical tools to study their performances.

Another observation to be made is that the matching problem we are studying is defined

on simple graphs. This restricts the use cases for our model. For the CM to produce and

asymptotically be ’close’ to a simple graph, it is a well known fact that some moments

restrictions have to be imposed on the degree distribution van der Hofstad [2016] which

we will explore later. This is the reason why most of the distributionx we picked for

simulations admit at least moments of order 4.

II.3.4 Notes

In the next chapters, we will develop the procedure used to approximate and predict the

matching coverage of local matching algorithms on graphs. Representing the matching

algorithms as a dynamic on the degree distribution will allow us to predict the results

of the considered algorithms with remarkable accuracy. In particular, the next chapter

will delve into such representation. Notice that this results in a dramatic reduction of the

problem complexity: as long as one is interested in the matching coverage of the algorithm

under consideration, one only needs to keep track of the unexplored part of the graph.

As our simulations indicate, two natural and interesting problems already arise from

this chapter: The first (and probably the harder) one is to quantify the influence of the

graph topology on the average matching coverage for a given algorithm. How much does

the structure of the network influence the performance of algorithms?

The second concerns the potential optimality of Minres as a criterion. Among all the

criteria we addressed, Minres always seemed to give the better matching coverages in

average. An interested follow up to this work could be the establishment of a (stochastic?)

order on all the matching criteria.
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Chapter III

Local Matching Algorithms as Markov

processes

Chapter II described the algorithms we consider as local. Chapter III extends the rep-

resentation of the latter algorithms as operations on empirical measures. Each iteration

is written as a sequence of calculations on the current degree distribution of the graph.

Random dynamics on spaces of measures are an immensely prominent wing in the study of

stochastic processes. Being the prime representation for point processes, their uses range

from the study of population processes in biology (Fournier and Méléard [2004]; Cham-

pagnat et al. [2008]) to statistical physics and interacting particle systems (Liggett [2012]).

Likewise, a series of important results comes from the queuing literature, noticeably with

the concept of fluid limits and its applications to several related problems (Gromoll et al.

[2002]; Decreusefond and Moyal [2008b,a]). We intend to follow the works of Bermolen

et al. [2017] and use the vast variety of tools for measure spaces on the particular study

of local algorithms as we previously defined them.

Chapter III is comprised of two sections. The first section is an examination of match-

ing algorithms as measure valued processes. The intent is to find a representation of the

local algorithms as defined in the last chapter. It is as much an alternative representa-

tion as it is a simplification. We can then rewrite the matching coverage as a continuous

function of the process describing the algorithm and we can proceed to the study of its

properties. The section starts by proving a theorem that bridges the first two sections of

chapter II as hinted by the simulations. An equivalence of sorts is established between

the behavior of criteria on the finite given graphs and their behavior on the configuration

model. The tendencies a given criteria exhibits on defined graphs stays the same when

extended to the configuration model. The second section then concludes the chapter with

the establishment of a proper scaling of the measure valued representation. It can be seen

as a normalization, used to study and predict the behavior of matching criteria based
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algorithms when the graphs get arbitrarily large. In the section, we mostly define the nor-

malized version of the measure valued processes in prevision of the next chapter, where

we prove its convergence to a deterministic function.

III.1 Notations and Hypotheses

For the rest of this work, the superscript n will be used to represent the size of the empirical

distributions/measures. As the number of vertices, it will also be the scaling parameter

of our study. Recall that,MF (N) is the space of finite valued measures on N. We shorten

it to MF . Likewise, we define Mn
F as the subset of MF whose elements are counting

measures with total mass ≤ n. Mn is then the space or normalised space associated to

Mn
F . We write Mn := 1

n
Mn

F = { 1
n
µ |µ ∈ Mn

F}. Finally, M is the space of N valued

measures with total mass ≤ 1. Usually, those measure spaces are endowed with their

weak topology (resp. vague topology):

µn
MF−−→ µ ⇐⇒ ⟨µn, f⟩ :=

∫
fdµn −→

∫
fdµ := ⟨µ, f⟩ (III.1)

for all bounded continuous function f ∈ Cb(N) (resp. compactly supported functions

f ∈ Cc(N)). Again Cb(N) (resp. f ∈ Cc(N)) is endowed with its usual topology, ∥f∥ =

supx∈N |f(x)|.
Moreover, we reintroduce some functions and notations of interest :

� χ(x) = x the identity function

� ∇f(x) = f(x)− f(x− 1) the discrete gradient

� For two real valued functions f and g, we say that f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0.

� Likewise f(n) = O(g(n)) if lim supn→∞ |
f(n)
g(n)
| < C for some positive constant C.

Finally, unless the criterion is specified µnt , n ∈ N, t ≥ 0 designates the process affiliated

with a generic matching criterion Φ.

III.1.1 Main Hypotheses

Let {µ̄n; n ∈ N∗} be a sequence of D[(0, T ),MF (N)] valued processes, let ν in MF ,

⟨ν, χp⟩ < ∞ and p ≤ 3. We say that {µ̄n; n ∈ N∗} satisfies H0 if, for some ν ∈ M
the following conditions on the initial states hold :
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Hypothese H0

1. Weak convergence of the initial degree distributions:

⟨µ̄n0 , f⟩
n−→ ⟨ν, f⟩ <∞, f ∈ Cb(N) (III.2)

2. Convergence of the first three initial moments:

⟨µ̄n0 , χp⟩
n−→ ⟨ν, χp⟩ <∞ (III.3)

for 1 ≤ p ≤ 3.

As we will later see, these conditions guarantee a bound on the moments of the empir-

ical degree distribution throughout all the dynamic. However, their interest is not limited

to the technical aspect. The average number of second neighbors1 of a typical node in

the configuration model CM(ν) is shown to be (Newman [2018]; van der Hofstad [2016];

Angel et al. [2017]) ⟨ν, χ2⟩ − ⟨ν, χ⟩ and each one of those second neighbors have a de-

gree that again follows the size-biased degree distribution. H0 warrants that this number

of neighbors is (almost surely) finite, thus one can define a dynamic depending on sec-

ond neighbors of a given node. And since second neighbors characterize the neighboring

edges of any given edge, this allows us to transpose the construction of local algorithms

asymptotically to the configuration model. Moreover, it is a way to ensure that loops and

parallel edges do not disturb our construction since their number becomes O(1) (Angel

et al. [2017]) meaning their influence on the proportion of matched nodes vanishes as n

goes to infinity.

Notice that H0 is an hypothesis on the initial degree distribution and it does not impact

the dynamic yet. It does however affect the properties of the CM.

Notes III.1.1. Those restrictions on the moments of the degree distribution are standard

for the configuration model. The whole premise of our work rests on the fact that real-

izations of our models are close to that of simple graphs (in the sense that multiple edges

are asymptotically negligible). On the configuration model, this is guaranteed by a second

moment on the normalized degree sequence Janson [2013]. As will be seen later, this

is also the reason why we have a crucial o(
√
n) estimate for the degree of the first node

selected I.

Now I ′ is chosen amongst the neighbors of I who all follow a distribution that is very

close to a size biased version of the initial degree distribution. But, for the size biased

version of a measure to admit a variance, the original version needs to have at least 3

1Second neighbors are simply neighbors of neighbors
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moments, justifying our hypothesis. A finite variance on our dynamic will prove to be

essential in establishing most of the useful properties in the present chapter and even later

(tightness, maximum degree control and cancellation of the martingale part for example).

In fact, the moment requirement will have to be increased to 3.5 to prove the main

theorem for greedy.

III.2 Discrete time Markov chain

We can properly instigate the study of the process induced by the matching dynamic on

degree sequences. Unless stated otherwise, in this section the graph size is considered

constant and the iteration count is the variable.

III.2.1 Measure valued representation and Markov Chain dynamic

Let µn0 :
∑

i δd(i) :=
∑

i δa0(vi) be an initial degree sequence and µnk , k ∈ J0, nK be the

measure that tracks the availability of nodes over the course of a matching algorithm as

set in chapter II (II.2). Going forward, the performance of the algorithms is tracked using

measures. Specifically, let Φ be a matching criterion. First, we will initiate a comparison

between the local algorithms on defined graphs to their extension when the structural

layer of randomness is added by the configuration model. For all 0 ≤ k ≤ n:

� We let µ̊k be the empirical degree distribution of all unexplored nodes at k in the

remaining graph G̊k associated to the construction in Section II.1, that is

µ̊k =
∑
v∈Ůk

δdk(v), (III.4)

where dk(v) is the degree of of v in G̊k. Recall that the˚notation designates given

deterministic graphs.

� Likewise µk will be the analogous empirical distribution representing the availabili-

ties of all unexplored nodes at k when the configuration model is used (Section II.2):

µk =
∑
v∈Uk

δak(v). (III.5)

The following theorem links the two constructions. It is a formalization of the fact that

conditioning by a given structure first before applying the algorithms does not influence
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the final law of the dynamic. The matching criteria behave ”as expected” when ran on

the CM.

Theorem III.2.1. Let n be a positive integer, G̊ is a graph of size n, and let d its degree

sequence. Let µ̊t be the measure-valued stochastic process defined by (III.4) with initial

value

µ̊0 =
n∑
i=1

δd(i).

Let G be the resulting multigraph of the second construction. Then for any t ∈ J0, nK and

any measure ν ∈Mn
F (N). Mn

F (N) is the space of finite point measures such that ν(i) ∈ N,∑
i≤n ν(i) ≤ n and ν(i) = 0 if i ≥ n. We get that

P
[
µt = ν | G = G̊

]
= P [̊µt = ν] .

Proof. Suppose that G = G̊, that is, the final result of the second construction produces

the graph G̊. We index the nodes of V consistently in the two constructions.Take µ̊0 = µ0,

the result is obtained by induction on t.

Suppose that, at some time t ∈ J0, n− 1K we have

G̊t = Ut and at(v) = dt(v) for all v in Ůt = Ut. (III.6)

We exhibit a coupling such that (III.6) holds also at time t + 1, so that the empirical

measures stay the same. Notice first that as G̊t = Gt, at Step 1̊ and 1 respectively, we can

set a common realization of the draw on J1, |Ut|K, leading to the same values for I̊ and I.

As described in the first chapter, the reader is reminded that DIl is the number of edges

going from I ′ to Il, and that FI′j is likewise the number of edges going from I to I ′j.

Since at(I) > 0, at step 1), as we have to produce the same graph, the uniform pairing

procedure leads to the same set of neighbors for I as in G̊, namely I ′1 = I̊ ′1, ..., I
′
u = I̊ ′u

because the same indexes can be picked in the two constructions. Then, as dt(I̊) = at(I) >

0, at steps 2̊) and 2) again we can align the draws so that I̊ ′ = I ′ in Ůt = Ut, using the

matching criterion Φ. Finally, as G = G̃ the uniform pairing procedure leads again to the

same set of neighbors for I ′ too as in G̃, namely I1 = I̊1, ..., Iℓ = I̊ℓ, again using the fact

that we can use the same indexing. We then follow up with

Ůt+1 = Ůt \ {I̊ , I̊ ′} = Ut \ {I, I ′} = Ut+1.

G does not have multiple edges, so u = dt(I̊) = K and ℓ = dt(I̊
′) = K ′. Moreover, for
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any l ∈ J1, kK \ {m}, at step 1a) we obtain that

at+1(I
′
l) = at(I

′
l)−DIl = at(I

′
l)− 1 = dt(I

′
l)− 1 = at+1(I

′
l),

And applying the same argument to the neighbors of I ′, l ∈ J1, ℓK \ {σ(m)},

at+1(Il) = at(Il)− FIl = at(Il)− 1 = dt(Il)− 1 = at+1(Il).

Last, for any v ∈ Ut+1 \ {I1, ..., Iℓ, I ′1, ..., I ′k} we get that

at+1(v) = at(v) = dt(v) = dt+1(v).

In all cases, expression (III.6) holds at step t+ 1.

Thus, we can conclude that (III.6) holds in fact for all t ∈ J0, nK. (III.4) and (III.5)

imply in particular that µ̊t = µt for all t ∈ J0, nK, concluding the proof. ■

This theorem establishes that whenever the configuration model produces a given

graph, the local criterion based matching algorithm simply behaves like an exploration

algorithm on the given graph (as given is the first section of chapter II).

We can finally tend to the study of the dynamic induced on the degree distribution.

Proposition III.2.1. Fix n ∈ N, n > 0, the matching algorithms on the CM induce aMn
F

valued Markov chain, (µnk)k≥0 with transition kernel

LnF (µ) := Eµ

(
F (µ+ ϑ(µ))− F (µ)

)
, (III.7)

for µ ∈Mn
F and F a continuous bounded functionMn

F → R. ϑ(µnk) is defined as

ϑ(µnk) = −

δK + δK′ +
∑

I′l∈N (I)

(
δak(I′l) − δak(I′l)−DI′

l

)
+

∑
Il∈N (I′)

(
δak(Il) − δak(Il)−FIl

) .

(III.8)

In particular, for Πf (µ) = ⟨µ, f⟩ , f ∈ Cb(N), equation (III.7) is expressed as

LnΠf (µ
n
k) = Eµnk

(
⟨ϑ(µnk), f⟩

)
. (III.9)

Moreover, the associated matching coverage can be rewritten as

Mn
Φ(µ

n
0 ) = 1− I

n
n

n
= 1− µnn({0})

n
· (III.10)
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All the quantities used in the definition of ϑ depend on the current state of the measure.

We do not write the dependance to simplify notations.

Remark III.2.1. From this point forward, all the results are enunciated only on the cylin-

drical functions Πf (µ) := ⟨µ, f⟩ (Dawson [1993]) for f : R 7→ R, in our case in partic-

ular f would mostly be continuous and bounded. Theorem 3.2.6 shows that to characterize

the convergence in law of measure valued process, it is enough to display the convergence

over such functions. They are convergence determining.

Proof. Proposition III.2.1

First, we bring back equation (II.14) for iteration number k ≤ n :

Ak+1 = Ak ∪{(I1, ak (I1)− FI1) , · · · , (Iℓ, ak (IIl)− FIℓ)}
\ {(I, ak(I)), (I1, ak (I1)) , · · · (Iℓ, ak (Iℓ))} ;

Ak+1 = Ak+1 ∪{(I ′1, ak (I ′1)−D1) , · · · (I ′u, ak (I ′u)−Du)}
\ {(I ′, ak(I ′)), (I ′1, ak (I ′1)) , · · · (I ′u, ak (I ′u))} .

Now for k ≥ 0, we recall that µk represent the availabilities at iteration k. We can inspect

the variations of the availabilities using the operations in equation (II.14). The couples

associated to the matched nodes I and I ′ (or to their degrees K and K ′) are subtracted

from the availability set while all the other couples involved only have theirs updated.

Equation (III.8) is only a matter of writing the empirical measures associated to µk and

µk+1.

ϑ(µk) = −

δK + δK′ +
∑

I′l∈N (I)

(
δak(I′l) − δak(I′l)−DI′

l

)
+

∑
Il∈N (I′)

(
δak(Il) − δak(Il)−FIl

) .

(III.11)

If we establish that ϑ(µnk) is independent of (µ
n
s )s≤k−1, it is immediate to write its kernel

as :

LnF (µ) = E
(
F (µnk+1)− F (µnk) | µnk = µ

)
(III.12)

But given the matching criterion Φ, Φ(µ) can be chosen to be independent of the pro-

cess (µnk)k≥0 when µ is deterministic, so that the randomness in the choices is independent

from that of the process. For example, the independence is achieved if (Ω1,F1) is chosen

as a sub sigma algebra of (Ω,F) so that Φ(µ) is F1 measurable and that F1 is indepen-

dent from σ(µnk,k≥0). When such a sigma field does not exist, one can for example extend
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(Ω,F) into (Ω ∪ Ω1, σ(F,F1)). This ensures that Φ(µnk) only depends on µnk . Moreover,

it is immediate that the next steps of the uniform pairing procedure depend only on the

current availabilities. Hence, all the operations that define ϑ depend only on the current

state of the process, showing that (µnk)k≥0 is a Markov chain.

At last, we can revisit the definition of ϑ to obtain the matching coverage as in (III.10) .

Ending every iteration, the points associated to the degrees of matched nodes are removed

from the measure (those are δK and δK′) while their neighbors lose mass. Only matched

nodes are removed from the availability set so that at time n, when all the edges are

created, the only remaining points in the measure are those affiliated with isolated nodes

with no availability (recall thatAn consists of all the non matched nodes whose availability

is now 0). Thus, equation (III.10) is a direct consequence of equation(II.15). ■

Characterizing the matching dynamic as a Markov chain will later allow us to use

scaling and the powerful theory of Markov processes. The rest of this document will be

dedicated to the examination of the large scale behavior of dynamics (Wormald [1999];

Kurtz [1970]) and their concentration around a deterministic function serving as a predic-

tion of their performance. Given a criteria, we will often be able to compute said function,

predicting the matching coverage. The convergence will be fully established in chapter

IV. For now, the next sections are devoted to tailoring the given Markov chain into a

scalable process and to establishing its useful properties.

III.2.2 Moment estimates and properties

For any n, the sequence of measures (µnk)k≥0 loses mass (half edges). We formulate this

fact in the next proposition:

Proposition III.2.2. Let f : N → R be a positive and increasing function, and k ≥ 0.

Then,

⟨µnk , f⟩ ≥
〈
µnk+1, f

〉
. (III.13)

Specifically, for all p > 1, if ⟨µn0 , χp⟩ <∞ then ⟨µnk , χp⟩ <∞ for all k.

Proof. For all such k and f , notice that

〈
µnk+1, f

〉
− ⟨µnk , f⟩ = ⟨ϑ(µnk), f⟩ , (III.14)
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making it so that (III.13) is directly implied by ⟨ϑ(µnk), f⟩ < 0. But

⟨ϑ(µnk), f⟩ = −

f(K) + f(K ′) +
∑

I′l∈N (I)

(
f(ak(I

′
l))− f

(
ak(I

′
l)−DI′l

) )

+
∑

Il∈N (I′)

(
f(ak(Il))− f (ak(Il)− FIl)

) .

Both f(K) and f(K ′) are positive because f is so. And for any l,
(
f(ak(I

′
l))− f(ak(I ′l)−

DI′l
)
)

and
(
f(ak(Il)) − f(ak(Il) − FIl)

)
are positive because f is increasing. Hence〈

µnk+1, f
〉
− ⟨µnk , f⟩ = ⟨ϑ(µnk), f⟩ < 0, proving (III.13). Then, applying (III.13) k times

yields

∞ > ⟨µn0 , f⟩ ≥ ⟨µnk , f⟩ , (III.15)

concluding the proof. ■

The preceding result actually yields an universal bound over the moments of the tra-

jectories under H0. Almost all of the results in the next chapter rest on this universal

bound.

Corollary III.2.1 (Universal bound). Suppose that the sequence of Markov chains ( 1
n
µn. )n≥1

satisfies H0. Then,

sup
n,k

1

n
⟨µnk , χp⟩ ≤M <∞ (III.16)

for some M > 0.

Proof. For any k, n, (III.13) brings forth 1
n
⟨µnk , χp⟩ ≤ 1

n
⟨µn0 , χp⟩. But since 1

n
µn0 satisfies

H0, 1
n
⟨µn0 , χp⟩ is convergent and therefore bounded by some finite M . We write

1

n
⟨µnk , χp⟩ ≤

1

n

〈
µ0
k, χ

p
〉
≤M, (III.17)

which concludes the proof. ■

We conclude this section by providing yet another estimate. We assess the scale of

the typical degrees in the local matching dynamic. This result of capital importance will

be useful all around for bounds on the amplitude of matching criteria2. We start with a

general preliminary result,

2By amplitude, we mean the number of half-edges created per iteration
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Lemma III.2.1. Let a degree sequence {dn = (dn(1), ..., dn(i)); n ∈ N∗} and the corre-

sponding point measures {µn; n ∈ N∗} =
{∑

1≤i≤n δd(i); n ∈ N∗}. Suppose that for all

f ∈ Cb(N) ∪ {χ2},

lim
n→∞

∑
i

f(dn(i))

n
= lim

n→∞

⟨µn, f⟩
n

= ⟨ν, f⟩ <∞ (III.18)

for some ν inMF , and define the maximal degree

dnmax = max
i
dn(i).

Then we have that

lim
n→∞

dnmax√
n

= 0. (III.19)

Proof. Take ϵ > 0. Since ⟨ν, χ2⟩ <∞, we gather the existence of M such that

〈
ν, χ2

〉
−
〈
ν, χ21J0,

√
MK

〉
< ϵ.

But as χ21J0,
√
MK ∈ Cb(N) we also have that

lim
n→∞

〈
µn, χ21J0,

√
MK

〉
n

=
〈
ν, χ21J0,

√
MK

〉
.

Thus,

lim
n→∞

〈
µn, χ21J

√
M+1,∞)

〉
n

= lim
n→∞

(
⟨µn, χ2⟩

n
−
〈
µn, χ21J0,

√
MK

〉)
=
〈
ν, χ2

〉
−
〈
ν, χ21J0,

√
MK

〉
< ϵ. (III.20)

Now, assuming that there exists n such that (dnmax)
2

n
≥ ϵ ∨M/n would imply that〈

µn, χ21J
√
M+1,∞)

〉
n

≥ ϵ,

a contradiction to (III.20). Therefore (dnmax)
2

n
is either upper-bounded by ϵ or M/n. In

any case we get that

lim sup
n→∞

(dnmax)
2

n
< ϵ,
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and we conclude the proof by letting ϵ be arbitrarily small. ■

Proposition III.2.3 (Order for the availability of nodes). Let {µn; n ∈ N∗} be a sequence

of processes satisfying H0. For all k ∈ J0, nK, let Kµnk
and K ′

µnk
be the degree choices under

a generic choice criterion Φ. Then the following relation holds

lim
n→∞

Kµnk√
n

= lim
n→∞

K ′
µnk√
n

= 0. (III.21)

Proof. The result is proven in two steps. First, we prove that for k ∈ J0, nK, it is clear

that if Mn
k = maxi a

n
k(vi) then Mn

k is decreasing in k. The procedure is essentially the

same as in the proof of (III.13). By definition, ∀l > Mn
k , µk(l) > 0. As a consequence,

µnk+1(M
n
k )− µnk(Mn

k ) =
〈
ϑ(µnk), 1Mn

k

〉
= −

1Mn
k
(K) + 1Mn

k
(K ′) +

∑
I′l∈N (I)

(
1Mn

k
(ak(I

′
l))− 1Mn

k
(ak(I

′
l)−DI′l

)
)

+
∑

Il∈N (I′)

(
1Mn

k
(ak(Il))− 1Mn

k
(ak(Il)− FIl)

) . (III.22)

But, 1Mn
k
(ak(I

′
l)−DI′l

) = 1 would mean that ak(I
′
l) > Mn

k , which is impossible by definition

of Mn
k . Therefore, for all l, 1Mn

k
(ak(I

′
l) − DI′l

) = 0 and likewise, 1Mn
k
(ak(Il) − FIl) = 0.

Ultimately,
〈
ϑ(µnk), 1Mn

k

〉
≤ 0 and µnk(M

n
k ) is decreasing in k.

But under H0, 1
n
µn0 satisfies the conditions of Lemma III.2.1 because

lim
n→∞

〈
1

n
µn0 , χ

2

〉
=
〈
ν, χ2

〉
and limn→∞

〈
1
n
µn0 , f

〉
= ⟨ν, f⟩ for f ∈ Cb. It means that dnmax(µ

n
0 ) = Mn

0 is o(
√
n). The

assertion is proved by noticing that for all k,

Kµnk
≤Mn

k ≤Mn
0 . (III.23)

Proving the estimate for K ′
µnk

is more subtle. The neighbors of a vertex do not have

µnk as their degree distribution. Since they are discovered following an edge, they follow a

size biaised version of µnk − δKµn
k
:

〈 (

µnk − δKµn
k
, f
〉
:=

〈
µnk − δKµn

k
, χf

〉
〈
µnk − δKµn

k
, χ
〉 , (III.24)
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in other words the chances that some half-edge is linked to a node is proportional to the

nodes’ number of stubs. After replacing ⟨µnk , f⟩ by
〈 (

µnk − δKµn
k
, f
〉
, the proof is the same.

Only, we do have to show that if 1
n
µn0 satisfies H0, 1

n
(

(

µnk − δKµn
k
) still verifies the conditions

of Lemma III.2.1. And it does, since for all bounded f ,

lim
n→∞

〈 (

µnk − δKµn
k
, f
〉

n
= lim

n→∞

〈
µn0 − δKµn0

, χf
〉

〈
µn0 − δKµn0

, χ
〉 = lim

n→∞

〈
µ̆nk − δKµn

k
, f
〉

n
=
⟨ν, χf⟩
⟨ν, χ⟩

by dominated convergence, and again

lim
n→∞

⟨µ̆nk , χ2⟩
n

= lim
n→∞

⟨µn0 , χ3⟩
⟨µn0 , χ⟩

=
⟨ν, χ3⟩
⟨ν, χ⟩

·

■

Remark III.2.2. For the final part of this proof, we used the fact that the neighbors asymp-

totically follow a size-biased version of µnk . Otherwise, using exact laws causes small de-

viations from the perfect size biased version of µnk (for example, in the case of the proof,

a term in δKµn
k
appeared). This deviation makes the exact generator of the matching algo-

rithms inconvenient to use. Thankfully, we will see in the next chapter that the deviation

term vanishes when n gets large and that we can approximate the exact generator by that

of a much simpler dynamic.

Notes III.2.1. It is seen here that the existence of at least a third moment guarantees a

convenient order for the law of the maximum degree, further justifying our hypothesis.

III.3 Normalization and scaling

Finally, we aim to provide a suitable normalization for the Markov chain dynamic. In

fact, the scaled process provided here will be the real object of our study. Later, it is used

to study the asymptotic properties of the criteria.

III.3.1 Normalization

Fix n ∈ N∗. Towards that purpose, we recall

Mn :=
1

n
Mn

F ,

whereMn
F is the space of point measures with integer masses and with total mass smaller

than n.
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The bar ¯notation is used to signal normalized objects.

Naturally, the process µn can be extended to a rescaled right-continuous with left-

hand limits (RCLL) semimartingale. As is often the case, the limiting behavior of the

normalized process will be a continuous process (Kurtz [1971]). This is why we extend the

Markov chain into a process on D([0, 1],MF ), giving us access to the Skorokhod topology

(Méléard and Roelly [1993]; Joffe and Metivier [1986]) for that space. For 0 ≤ t ≤ 1 we

denote

µ̄nt =
1

n
µn⌊nt⌋,

where ⌊x⌋ = e ∈ N, e ≤ x < e + 1. We then accelerate time allowing the matching

coverage to conveniently become

Mn
Φ(µ

n
0 ) = 1− µ̄n1 ({0})· (III.25)

This goes to show that the rescaled process converges directly in tune with the match-

ing coverage. One immediate downside is that µ̄n is no more a Markov process on

D([0, 1],MF ). After all, its jump times are deterministic. Moreover, we still have no

guarantee on the behavior of the criteria through normalization.

Since choice functions are defined on (∪n≥1Mn
F ), they can naturally be extended to

functions on normalized degree sequences: (∪n≥1Mn). Again for a normalized degree

sequence µ̄n ∈Mn, we will use the superscript¯and we designate the choice functions on

normalized sequences as:

Φ̄(µ̄n) = Φ(nµ̄n)· (III.26)

On one hand, since the space (∪n≥1Mn) is dense inM (recall thatM is the subpace

of MF with total masses ≤ 1) 3, a natural assumption to make about choice functions

would be that, if µ̄n → µ̄ for some adequate topology stronger than the weak topology,

then it should also be true that Φ̄(µ̄n)→ Φ̄(µ̄) .

On the other hand however, even though some criteria are well defined on Mn for

every n, sometimes they can not trivially be extended to the whole space M. As an

example, take µ̄ to be a measure with unbounded support, the truncations of µ̄ on Mn

would admit a maximal degree while max(µ̄) is obviously not defined. As a consequence,

we have to impose some further restrictions (that would be either on the criteria under

consideration or on the domains considered).

3For µ̄ ∈M, take µ̄n =
∑

i≤n
⌈nµ({i})⌉

n δi
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Definition III.3.1. 1. A criterion is (asymptotically) well behaved on a (closed) sub-

spaceMΦ ofM, when for all n ≥ 1, µ̄n ∈Mn and µ̄ ∈MΦ such that µ̄n → µ̄, we

have Φ̄(µ̄n)→ Φ̄(µ̄) for a topology that is stronger than the weak topology.

2. A criterion preserves the moments of order up to p ≥ 1 if, for all µ̄ ∈MΦ and

v < p, ⟨µ̄, χv⟩ <∞ implies
〈
Φ̄(µ̄), χv

〉
<∞

The order of the moment preservation is the important part. For example, if the

base measure µ has moments up to an order p + 1, the uniform choice on its size biased

version only preserves the moments up to p. This means the properties we can prove on

our algorithms should also be true only up to order p. Moreover, take µ as any measure

with exponential moments, technically Φ(µ) could be any probability law, especially one

admitting no moments of higher order thus failing to preserve all the moments of the

initial distribution.

Proposition III.3.1. Let p ≥ 1, n ≥ 1 and µn. a sequence of Markov chains under the

criterion Φ, such that :

1. Φ is well behaved and it preserves the moments of order p

2. 1
n
⟨µn0 , χp⟩

n−→ ⟨µ̄, χp⟩ for some µ̄ ∈M

Then, there exists 0 < M <∞

sup
n>0,t>0

〈
Φ̄(µ̄n), χp

〉
< M (III.27)

Proof. Since Φ preserves moments, this is a direct consequence of III.16. ■

III.3.2 Continuous time Markov chain

We finally undertake the restoration of the Markov property for the normalized continuous

processes. To extend the discrete time Markov chain into a continuous one, assume

θ1, θ2, ... is a sequence of independent identically distributed exponential random variables

with parameter 1. Moreover, assume that (θi)i>0 is independent from µ̄nt . Define the

following sequence of random times

τ0 = 0, τi+1 = τi + θi/n.

The associated continuous time Markov chain to µ̄n. is the following process :

t 7−→ µ̃nt := µ̄nl/n for τl ≤ t < τl+1, l ∈ N. (III.28)
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From now on, the tilde˜superscript is used for the objects related to the continuous

Markov extension.

Proposition III.3.2. For all n ∈ N∗, µ̃n. is a continuous time Markov extension in the

sense that

1. µ̃n is a Feller Markov process with generator L̃n:

L̃nF (µ̄) := nEµ̄

(
F

(
µ̄+

1

n
ϑ(nµ̄)

)
− F (µ)

)
,

for µ̄ in M̄n, in particular,

L̃nΠf (µ̄) := Eµ̄ ⟨ϑ(nµ̄), f⟩ .

2. For f ∈ Cb,∣∣Eµ̃n0 ⟨µ̃nt , f⟩ − Eµ̃n0 ⟨µ̄nt , f⟩∣∣ ≤ ∥LnΠf∥|1/n+ (t/n)1/2|.

Proof. Fix n ∈ N∗. Since µ̃nt is a pure jump markov process with bounded intensities, it

is Feller continuous (see Theorem 12.18 of Kallenberg [2002], or Ethier and Kurtz [1986]

p. 163). Thus it admits a strongly defined generator: For all F ∈ Cb(Mn) and h > 0,

Eµ̃n0 (F (µ̃
n
h)− F (µ̃n0 )) =P(τ1 > h)× 0

+ P(τ1 < h, τ2 > h)Eµ̃n0 (F (µ̃
n
τ1
)− F (µ̃n0 ) | τ1 < h, τ2 > h)

+ P(τ1 < h, τ2 < h)Eµ̃n0 (F (µ̃
n
h)− F (µ̃n0 ) | τ1 < h, τ2 < h)

Notice that P(τ1 < h, τ2 > h) = P(θ1/n < h, θ1/n + θ2/n > h) = (hn + o(nh)) and

P(τ1 < h, τ2 < h) = (o(nh)) because θ1 and θ2 are independent exponential r.v.’s. We

then write

Eµ̃n0 (F (µ̃
n
h)− F (µ̃n0 )) = nhEµ̃n0 (F (µ̃

n
τ1
)− F (µ̃n0 ) | τ1 < h, τ2 > h) + o(nh)

= nhEµ̃n0 (F (µ̄
n
0 + (1/n)ϑ(nµ̄n0 ))− F (µ̄n0 )) + o(nh),

proving that

lim
h→0

1

h
Eµ̃n0 (F (µ̃

n
h)− F (µ̃n0 )) = L̃nF (µ̃n0 ).
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As for the second assertion, we first introduce

γt :=

⌊nt⌋−1∑
i=0

θi+1/n. (III.29)

By definition, for all t we have that µ̄nt = µ̃nγt . Assertion 1 showed that µ̃n is Markov,

whence the expression

Eµ̃n0 ⟨µ̃
n
t , f⟩ = Eµ̃n0

(
⟨µ̃n0 , f⟩+

∫ t

0

Ln ⟨µ̃ns , f⟩ ds
)
, (III.30)

Plus, because γt is a stopping time

Eµ̃n0 ⟨µ̄
n
t , f⟩ =

(
Eµ̃n0 ⟨µ̃

n
0 , f⟩+

∫ γt

0

Ln ⟨µ̃ns , f⟩ ds
)

(III.31)

Which we follow up with

|Eµ̃n0 ⟨µ̄
n
t , f⟩ − Eµ̃n0 ⟨µ̃

n
t , f⟩ | =

∣∣∣∣Eµ̃n0 ∫ t

γt

Ln ⟨µ̃ns , f⟩
∣∣∣∣
≤ sup

s
|Ln ⟨µ̃ns , f⟩ |Eµ̃n0 |γt − t| (III.32)

But

Eµ̃n0 |γt − t| = Eµ̃n0

∣∣∣∣γt − ⌊nt⌋+ nt− ⌊nt⌋
n

∣∣∣∣
≤ 1/n+ Eµ̃n0

∣∣∣∣∣∣
⌊nt⌋−1∑
i=0

θi+1 − 1

n

∣∣∣∣∣∣ ≤ 1/n+

⌊nt⌋−1∑
i=0

1

n2

1/2

≤ 1/n+ (t/n)1/2 (III.33)

where we used the fact that Eθ2i = 2. ■

As for now, this means the convergence of µ̄n. can be estimated by that of a measure

valued Markov process. The last key component for outlining the convergence is exhibiting

the characteristic martingale. We tend to its study in the final part of chapter III.

III.3.3 Semi-martingale representation

We have just proven that for all n, µ̃n. is a Feller process having generator L̃n. For any f

and n ≥ 1, the martingale problem for µ̃n. yields that:
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Proposition III.3.3. The process defined for all t ∈ [0, 1] and f ∈ Cb by

M f,n
t = ⟨µ̃nt , f⟩ − ⟨µ̃n0 , f⟩ −

∫ t

0

L̃nΠf (µ̄)ds (III.34)

is a square integrable martingale. Moreover, its predictable quadratic variation is equal to

:

⟪M f,n⟫t = 1

n

∫ t

0

Eµ̃ns

(
⟨ϑ(µ̃ns ), f⟩

2) ds. (III.35)

For a R valued semi-martingale X., we designate by [X]. its quadratic variation. Thus,

if 0 = t0 < t1 < ... ≤ tk = t (k ∈ N) is a subdivision of the time interval, [X]. is defineed

by the following expression when it exist:

[X]t = lim
max ti−ti−1→0, 1≤i≤k

∑
1≤j≤k

(
Xtj −Xtj−1

)2
,

where the limit is taken in probability.

We also designate by ≪ X ≫. the predictable quadratic variation of X., the unique

predictable compensator of [X]..

Proof. It is a characteristic property of Markov processes that M f,n
t is martingale (e.g

5.1.2 in Dawson [1993], or the chapter 4 of Ethier and Kurtz [1986]). We simply need to

compute the quadratic variation.

The book of Decreusefond and Moyal [2012] gives an explicit form for the quadratic

variation of measure valued pure jump processes in its Theorem 7.15. Here we adapt the

proof to the particular case of the matching process previously defined. Fix t ≥ 0 and

recall that if Π2
f (µ̃

n
t ) = ⟨µ̃nt , f⟩

2,

LnΠ2
f (µ̃

n
t ) = nEµ̃nt

(
Π2
f (µ̃

n
t +

1

n
ϑ(nµ̃nt ))− Π2

f (µ̃
n
t )

)
= nEµ̃nt

(
⟨µ̃nt , f⟩

2 + 2
1

n
⟨ϑ(nµ̃nt ), f⟩ ⟨µ̃nt , f⟩+

1

n2
⟨ϑ(nµ̃nt ), f⟩

2 − ⟨µ̃nt , f⟩
2

)
= nEµ̃nt

(
2
1

n
⟨ϑ(µ̃nt ), f⟩ ⟨µ̃nt , f⟩+

1

n2
⟨ϑ(µ̃nt ), f⟩

2

)
.

On one hand, the martingale problem for Π2
f gives that

Π2
f (µ̃

n
t )− Π2

f (µ̃
n
0 )−

∫ t

0

LnΠ2
f (µ̃

n
s )ds (III.36)

is a martingale. On the other side, since Xt := ⟨µ̃nt , f⟩ is a finite variation pure jump
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process, it is in particular a semi-martingale. For g ∈ C2(R), where C2(R) is the space

of doubly differentiable functions with continuous second derivatives, Itô’s formula (See

Jacod and Shiryaev [2013] theorem 4.57 p57) yields :

g(Xt)− g(X0) =

∫ t

0

g′(Xs−)dXs +
1

2

∫ t

0

g”(Xs−)d[Xs]
c

+
∑
s≤t

(
g(Xs)− g(Xs−)− g′(Xs−)∆Xs −

1

2
g”(Xs−)(∆Xs)

2

)
.

In our particular case, taking g(x) = x2 gives

⟨µ̃nt , f⟩
2 − ⟨µ̃n0 , f⟩

2 = 2

∫ t

0

〈
µ̃ns−, f

〉
d ⟨µ̃ns , f⟩+

∑
s≤t

(⟨µ̃ns , f⟩ − ⟨µ̃ns− , f⟩)
2 . (III.37)

Noticing that the martingale problem for ⟨µ̃ns , f⟩ is equivalent, in its differential form,

to d ⟨µ̃ns , f⟩ = dM f,n
t + LnΠf (µ̃

n
s )ds and also that

∑
s≤t
(
⟨µ̃ns , f⟩ −

〈
µ̃ns− , f

〉)2
=
[
M f,n

]
t

because ⟨µs, f⟩ et M f,n
s have the same jumps. The last expression easily implies that

⟨µ̃nt , f⟩
2−⟨µ̃n0 , f⟩

2 = 2

∫ t

0

⟨µ̃ns− , f⟩ dM
f,n
t +2

∫ t

0

⟨µ̃ns− , f⟩ L̃nΠf (µ̃
n
s )ds+

[
M f,n

]
t
(III.38)

But a difference of (local) martingales is a (local) martingale, and (III.36) is compared to

(III.38) yielding that

[
M f,n

]
t
−
(∫ t

0

(
L̃nΠ2

f (µ̃
n
s )− 2 ⟨µ̃ns− , f⟩ L̃nΠf (µ̃

n
s )
)
ds

)
(III.39)

is a martingale. By uniqueness of the predictable compensator of
[
M f,n

]
, we can conclude

that

≪M f,n ≫t =

∫ t

0

(
LnΠ2

f (µ̃
n
s )− 2 ⟨µ̃ns− , f⟩ L̃nΠf (µ̃

n
s )
)
ds = nEµ̃nt

(
(
1

n
⟨ϑ(µ̃nt ), f⟩)2

)
.

Finally, we prove that M f,n is square integrable. For all t ∈ [0, 1], considering that
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f(at) ≤ ∥f∥ and at < n, we beget

≪M f,n ≫t=
1

n
Eµ̃nt (⟨ϑ(µ̃

n
t ), f⟩

2)

=
1

n
Eµ̃nt

f(K) + f(K ′) +
∑

I′l∈N (I)

(
f(ak(I

′
l))− f(ak(I ′l)−DI′l

)
)

+
∑

Il∈N (I′)

(
f(ak(Il))− f(ak(Il)− FIl)

)2

≤ ∥f∥2(2 + 4n)2 <∞,

which implies that M f,n is indeed a square integrable martingale. ■
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Chapter IV

Performance Prediction and

Concentration Results

In this final chapter, we enunciate and we prove the main convergence result. As the

number of nodes n becomes large, the matching coverage is concentrated around a deter-

ministic value. In a similar fashion to the law of large numbers, this value will be used

as a predictor for the performance of any given criterion. Subsequently, those predictors

offer a framework for the comparison of matching criteria. Our work here closely follows

that of Bermolen et al. [2017] on the jamming constant and can be seen in the context of

the differential equation method (eg. Wormald [1999]). Pioneered by Kurtz [1971], this

method consists of approaching random dynamics (especially on networks) by a limiting

deterministic function solution of an Ordinary Differential Equation. Our particular pro-

cedure is an extension of the method in turn introduced by (Decreusefond et al. [2012])

where the Differential Equation Method was extended to measure valued processes. It is

closely tied to Noiry et al. [2021] where the same approach is applied to online bipartite

matching, only the degree distribution is viewed in the light of its generating functions

instead of using a measure valued approach.

The chapter is comprised of three main sections. In the first section, the main result of

our research is established: the stochastic matching dynamic converges to a deterministic

continuous function. A direct implication of this result is that the matching coverage

also converges to a deterministic value. Evermore, we support this result by updating

the simulations given in chapter II with the predicted values. Afterward, the following

section is devoted to the proof of the main convergence result. The proof works as a

typical convergence result in the Skorokhod topology. First, the existence of several limits

is established via tightness, before the limits are characterized as unique with the use of

the martingale property. The final section of the chapter is devoted to an application of

the main result on the greedy criterion.
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IV.1 Main theorem

In this first section, we enunciate the main result of the thesis. Under properly defined

criteria, the (random) dynamic defined by the algorithms, and by extension their matching

coverage, converges to deterministic values.

First, we have to establish the asymptotic behavior of any given algorithm. Remark

III.2.2 hinted that the exact law of our processes is inconvenient to deal with. We pro-

vide an alternative dynamic whose generator encodes the asymptotic behavior of criteria

despite being simpler to use.

Definition IV.1.1 (Alternative dynamic). Fix a counting measure µ ∈ MF (N). To each

i ∈ N∗ are associated µ(i) buckets of i items. (Buckets and items correspond to nodes and

half-edges in the original construction.) So there are b := ⟨µ,1N∗⟩ buckets and a total of

c = ⟨µ, χ⟩ items. We label the buckets arbitrarily, as 1, ..., b. Denote for any j = 1, ..., b,

a(j) the cardinality of bucket j. We also label the items from 1 to c as follows: items 1 to

a(1) are the elements of bucket 1, labeled arbitrarily, items a(1)+1, ..., a(1)+ a(2) are the

elements of bucket 2, and so on... For any i = 1, ..., c, we let B(i) be the bucket of item i.

We perform the following random experiment, which mimics the original dynamics

when the sampling is performed with replacement:

(i) We draw an element, say j, of J1, bK, following ΦK(B(1), ..., B(b)) and set Î := j,

the corresponding bucket. We denote by K̂ = a(Î), its cardinality. To differentiate

this choice from the one without replacement, we denote its law ΦK̂
1.

(ii) Then we draw uniformly at random, and with replacement, K̂ items among c,

denoted by i1, ..., iK̂. For all ℓ ∈ J1, K̂K we denote by B̂ℓ = B(iℓ), the bucket iℓ

belongs to.

(iii) Following ΦK′(B1, ..., Bℓ), one item iK̂ is drawn among c. We also denote by Î ′ =

B(iK̂), the match of Î, and by K̂ ′ = a(Î ′), the cardinality of that bucket. Again, to

differentiate this choice from the one without replacement, we denote its law ΦK̂′

(iv) If K̂ ′ > 1, we draw uniformly at random, and with replacement, K̂ ′−1 items among

c, denoted by i′1, ..., i
′
K̂′−1

. Then, for all ℓ ∈ J1, K̂ ′ − 1K we denote by B̂′
ℓ = B(i′ℓ),

the bucket i′ℓ belongs to.

1In reality, K and K̂ have the same law
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Finally, we can exhibit the measure representation induced by that procedure,

ϑ̂(µ) = −

(
δK̂ + δK̂′

+
∑

ℓ∈J1,K̂−1K

(
δa(B̂ℓ)

− δa(B̂ℓ)−1

)
+

∑
ℓ∈J1,K̂′−1K

(
δa(B̂′

ℓ)
− δa(B̂′

ℓ)−1

))
. (IV.1)

Thus, the approximated dynamic is written as follows,

Lemma IV.1.1. For any counting measure µ such that ⟨µ, χ⟩ > 0 and any f ∈ Cb, we have

Eµ

[〈
ϑ̂(µ), f

〉]
= LΠf (µ),

where,

LΠf (µ) := −

(〈
ΦK̂(µ), f

〉
+
〈
Φ′
K̂′(µ), f

〉
+
⟨µ, χ∇f⟩
⟨µ, χ⟩

(〈
ΦK̂(µ), χ− 1

〉
+
〈
Φ′
K̂′(µ), χ− 1

〉))
, (IV.2)

or recalling from equation (III.26) that Φ̄ defines the matching criterion adapted to nor-

malized (instead of counting) measures:

L̄Πf (µ̄) := −

(〈
Φ̄K̂(µ̄), f

〉
+
〈
Φ̄′
K̂′(µ̄), f

〉
+
⟨µ̄, χ∇f⟩
⟨µ̄, χ⟩

(〈
ΦK̂(µ̄), χ− 1

〉
+
〈
Φ′
K̂′(µ̄), χ− 1

〉))
, (IV.3)

where µ̄ is a normalized measure.

Proof. From its very construction above K̂ follows ΦK(µ):

Pµ

(
K̂ = k

)
= ΦK(µ)(k). (IV.4)

And, as the bucket Î ′ is drawn following ΦK′(µ′) where µ′ =
∑

ℓ∈J1,K̂K δa(B̂ℓ)
the size K̂ ′

of that bucket follows ΦK′ applied to a K sized sample of the size-biased distribution

associated to µ. Hence,

Φ′
K′(µ)(k′) = EµPµ′

(
K̂ ′ = k′

)
(IV.5)
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Likewise, all r.v.’s a(B̂ℓ), ℓ ∈ J1, K̂ − 1K and a(B̂′
ℓ), ℓ ∈ J1, K̂ − 1K, follow the size-biased

distribution associated to µ: conditionally on K̂ = k and K̂ ′ = k′ > 0, for any l ∈ J1, kK
and any ℓ ∈ J1, k′ − 1K we clearly have that

Pµ

(
a
(
B̂l

)
= x

)
=
xµ (x)

⟨µ, χ⟩
, x ∈ N; (IV.6)

Pµ

(
a(B̂′

ℓ) = y
)
=
yµ (y)

⟨µ, χ⟩
, y ∈ N.

Giving us the desired expression:

Eµ

[〈
ϑ̂(µ), f

〉]
= −

+∞∑
k=1

{
f(k)ΦK̂(µ)(k) + (k − 1)ΦK̂(µ)

+∞∑
y=1

yµ(y)

⟨µ, χ⟩
(f(y)− f(y − 1))

}

−
∞∑
k′=0

{
f(k′)Φ′

K̂′(µ)(k
′) + (k′ − 1)Φ′

K̂′(µ)
+∞∑
y=1

yµ(y)

⟨µ, χ⟩
(f(y)− f(y − 1))

}
= −

{〈
ΦK̂(µ), f

〉
+
〈
Φ′
K̂′(µ), f

〉
+
⟨µ, χ∇f⟩
⟨µ, χ⟩

(〈
ΦK̂(µ), χ

〉
+
〈
Φ′
K̂′(µ), χ

〉)}
= LΠf (µ).

■

Remark IV.1.1. We draw attention to the fact the alternative construction allows us to

essentially make every choice with replacement this time. Hence, every choice function

is directly applied either to the base measure or to its perfectly size biased version. Later,

we will show that this alternative dynamic stays arbitrarily close to the ’real’ dynamic

when the graphs get large. For now, it is used to state the main theorem.

But before that, one last definition is needed.

Definition IV.1.2. LetMΦ a (closed) subspace ofM, L a linear operator on Cb(M), and

µ. : [0, 1] → M. The operator L characterizes µ. on MΦ if, for all t ∈ [0, 1], f ∈ Cb
and η. such that

⟨ηt, f⟩ = ⟨µ0, f⟩+
∫ t

0

LΠf (ηs)ds, (IV.7)

we have η. = µ..

The preceding definition is a placeholder for the fact that the limiting system, char-

acterized by the operator L, has a unique solution. Oftentimes, a Cauchy-Lipschitz type
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condition on the operator L is used (See for example Kurtz [1970]). Uniqueness of the

limiting process in our case is harder to identify, thus we have to enclose it in a definition

and allow it to become criteria dependent.

IV.1.1 Convergence of local matching algorithms

The main convergence result is finally stated.

Theorem IV.1.1. Assume that Φ̄ := (Φ̄K(.), Φ̄
′
K′(.))2 is a well behaved and moment

preserving matching criterion that is defined on a subspace MΦ of M. Assume that

(Φ̄K̂(.), Φ̄
′
K̂′(.)) is the alternative dynamic associated to Φ̄. Recall the operator

L̄Πf (µ̄) := −

(〈
Φ̄K̂(µ̄), f

〉
+
〈
Φ̄′
K̂′(µ̄), f

〉
+
⟨µ̄, χ∇f⟩
⟨µ̄, χ⟩

(〈
ΦK̂(µ̄), χ− 1

〉
+
〈
Φ′
K̂′(µ̄), χ− 1

〉))
. (IV.8)

If the sequence of processes (µ̄n. )n≥1 is under H0, and L̄ characterizes a measure valued

function µ̄., then for all f ∈ Cb we have the convergence in probability

sup
t≤1
| ⟨µ̄nt , f⟩ − ⟨µ̄t, f⟩ |

(n,P)−−−→ 0. (IV.9)

Corollary IV.1.1 (Convergence of the matching coverage). Under the above assumptions,

for µ̄n0 → ν ∈MΦ, we get

Mn
Φ(µ̄

n
0 )

(n,P)−−−→MΦ(ν) := 1− µ̄1({0}). (IV.10)

Proof. Equation (III.25) provides the matching coverage as a function of the normalized

matching process :

Mn
Φ(µ

n
0 ) = 1− I

n
n

n
= 1− µ̄n1 ({0})·

The result is obtained by merely taking the limit in n.

■

The main convergence result can be viewed as a law of large numbers for the match-

ing coverage. At worst, it is an asymptotic result specific to the configuration model

restricted to some constrained degree distributions. However, the constraints make it so

2Recall that K and K ′ are the degrees of the vertices picked as extremities of the edge added to the
matching
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the configuration model, and the associated algorithms produce matching coverages that

are asymptotically equal to that of simple graphs. Hence, we interpret the main result as

a prediction of the matching coverage produced by a criterion on a graph drawn uniformly

following a given degree distribution.

IV.1.2 Further simulations

We finally complement the simulations given in Chapter II. In this section, we go back

to 3-regular graphs, this time using the measure valued representation for the degree

sequences. In this case, we readily obtain the degree distributions :

µ̄+
0 = δ3 and µ̄−

0 = δ3. (IV.11)
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(a) µ̄+
s (k) for k = 0, . . . , 3 and s ∈ [0, 1].
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(b) µ̄−
s (k) for k = 0, . . . , 3 and s ∈ [0, 1].

Figure IV.1: greedy-EDO results for µ̄+
0 = µ̄−

0 = δ3

By a numerical resolution, we predict the final value µ̄−
1 (0) = 0.1098 (which is the final

value of the red curve in Figure IV.1). From this, we deduce the approximate matching

coverage which is a very similar to the one obtained for the greedy algorithm in Noiry

et al. [2021].

Mgreedy(δ3, δ3) = 1− µ̄−
1 (0) = 0.8902. (IV.12)

Regarding minres, similarly to greedy we deduce the approximate matching cover-
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age

Mminres(δ3, δ3) = 1− µ̄−
1 (0) = 0.9378. (IV.13)

Again, we compile the evolution of the simulated matching coverage as the graph size

n grows but this time we also add the matching coverage predicted by (IV.10).
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Figure IV.2: Matching coverage of greedy as the graph size tends to ∞
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ODE predicted matching coverage = 0.93783

Figure IV.3: Matching coverage of minres as the graph size tends to ∞

As the figures show, the prediction given by the ODE is fairly accurate. In fact, the

exact numbers are more striking when we update table (II.1).

Graph Size n 200 500 1000 3000 5000 MΦ(δ3, δ3)

M̃n
greedy(G) Mean 0.8904 0.8916 0.8911 0.8897 0.8898 0.8902

Std Dev 0.0198 0.0109 0.009 0.0041 0.00311

M̃n
minres(G) Mean 0.9356 0.9365 0.9396 0.9378 0.9385 0.9378

Std Dev 0.0148 0.0096 0.0052 0.0040 0.0025

Table IV.1: Recap. of Average Matching Size updated with predictions

Thus, having heuristically confirmed the predictions of the main theorem, we dedicate
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the next section to the formal proof of the main theorem.

IV.2 Proof of the main convergence theorem

The proof of the main theorem is a typical proof of convergence for a Markov process: it is

shown that the law of the sequence µ̄n. is tight (thus relatively compact) in the Skorokhod

topology, then it is shown that all the limits are in fact characterized by the given operator

L̄, and finally it follows that since the ODE resulting from L̄ identifies a unique function

µ̄., the sequence of processes converges to µ̄.. In summary, for any t ≤ 1 we will establish

bounds on each of the terms of

|⟨µ̄nt , f⟩ − ⟨µ̄t, f⟩| = |⟨µ̄nt , f⟩ − ⟨µ̃nt , f⟩+ ⟨µ̃nt , f⟩ − ⟨µ̄t, f⟩|

≤ | ⟨µ̄nt , f⟩−⟨µ̃nt , f⟩ |+
∣∣∣∣⟨µ̄n0 , f⟩+ M f,n

t +

∫ t

0

L̃nΠf (µ̄
n
s )ds− ⟨µ̄0, f⟩ −

∫ t

0

L̄Πf (µ̄s)ds

∣∣∣∣
≤ | ⟨µ̄nt , f⟩ − ⟨µ̃nt , f⟩ |+ | ⟨µ̄n0 , f⟩ − ⟨µ̄0, f⟩ |+ |M f,n

t |

+

∣∣∣∣∫ t

0

L̃nΠf (µ̃
n
s )−

∫ t

0

L̄Πf (µ̄s)ds

∣∣∣∣ , (IV.14)

where we used the fact that

⟨µ̄nt , f⟩ = ⟨µ̄n0 , f⟩+ M f,n
t +

∫ t

0

L̃nΠf (µ̄
n
s ), (IV.15)

and that µ̄. is a solution of

⟨µ̄t, f⟩ = ⟨µ̄0, f⟩+
∫ t

0

L̄Πf (µ̄s)ds, 0 ≤ t ≤ 1. (IV.16)

The convergence is established if the right-hand term of (IV.14) goes to 0.

Proof. The first step of the proof is to establish the existence of sub-sequential limits for

the sequence of processes.

Part 1: Tightness

First, the relative compactness of the laws of the processes (µ̃n. )n≥1 is proven in D([0, 1], (M, τv)),

where τv denotes here the vague topology. The relative compactness is simpler to prove in

the vague topology. Recalling that the tilde process µ̃n. is the continuous time Markov ap-

proximation (with exponential inbetween jumps), we use Prohorov’s theorem (Parthasarathy

[1967]; Billingsley [1999]) which equates the relative compactness of (µ̃n. )n≥1 with its tigh-

ness. Thus, we have to prove the tightness,
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Lemma IV.2.1. Under the conditions of IV.1.1, the sequence (µ̃n. )n≥1 is tight in

D([0, 1], (M, τv)).

Proof. Méleard and Roelly (Méléard and Roelly [1993]) have shown that for (µ̃n. )n≥1 to

be tight in D([0, 1], (M, τv)), it is enough that, for any f ∈ Cc, the sequence of processes

(⟨µ̃n. , f⟩)n≥1 is tight on D([0, 1],R). Roelly’s tightness criterion (Roelly-Coppoletta [1986])

is used to prove the latter:

1. Fix t ≥ 0, for all n we write | ⟨µ̃nt , f⟩ | ≤ ∥f∥| ⟨µ̃nt , 1⟩ | ≤ ∥f∥. Hence, (⟨µ̃nt , f⟩)n≥1 is a

bounded sequence on R, which means that it is tight (since it is relatively compact).

2. Fix n ≥ 1. Recalling (III.34), for t ∈ [0, 1], ⟨µ̃nt , f⟩ is rewritten as

⟨µ̃nt , f⟩ = M f,n
t + V f,n

t .

Let δ > 0 and two stopping times Sn and Tn such that Sn ≤ Tn ≤ Sn + δ. On the

one hand, for ϵ > 0 using the Markov inequality we have

P
(
|⟪M f,n⟫Tn − ⟪M f,n⟫Sn| > ϵ

)
≤ 1

ϵ
E
(
|⟪M f,n⟫Tn − ⟪M f,n⟫Sn|

)
.

Remembering the definition IV.34, we write

∣∣⟪M f,n⟫Tn − ⟪M f,n⟫Sn

∣∣ = ∣∣∣∣ 1n
∫ Tn

Sn

Eµ̃ns (⟨ϑ(µ̃
n
s ), f⟩

2)ds

∣∣∣∣
=

∣∣∣∣∣∣ 1n
∫ Tn

Sn

Eµ̃ns

f(K) + f(K ′) +
∑

I′l∈N (I)

(
f(ak(I

′
l))− f(ak(I ′l)−DI′l

)
)

+
∑

Il∈N (I′)

(
f(ak(Il))− f(ak(Il)− FIl)

)
2 ds

∣∣∣∣∣∣
≤ δ

n
(∥f∥(2 + 4 × o(

√
n))2. (IV.17)

But, under H0 (III.21) is verified, and since max dn = o(
√
n) and Tn − Sn ≤ δ, it

follows that

P
(
|⟪M f,n⟫Tn − ⟪M f,n⟫Sn| > ϵ

)
n−→ 0. (IV.18)

On the other hand, since Φ preserves the first moments and we are under H0 ,
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(III.27) yields that both E(K) < M and E(K ′) < M . We follow with

|V f,n
Tn
− V f,n

Sn
| =

∣∣∣∣∫ Tn

Sn

Eµ̃ns (⟨ϑµ̃
n
s , f⟩)ds

∣∣∣∣ ≤ δ∥f∥(2 + 4M). (IV.19)

Thus,

P
(
|V f,n
Tn
− V f,n

Sn
| > ϵ

)
≤ δ

ϵ
∥f∥(2 + 4M), (IV.20)

proving the tightness in D([0, 1], (M, τv)).

■

As said at the start of this part, the vague convergence is not enough. Noticing that the

processes characterized by L̄ are continuous in time and that continuity of the limiting

processes is required, we need a further characterization of the eventual sub-sequential

limits.

Lemma IV.2.2. The sequence (⟨µ̃n. , f⟩)n≥1 is C-tight3.

Proof. For all n and t ∈ [0, 1], let (∆ ⟨µ̃nt , f⟩) be the jump of ⟨µ̃nt , f⟩ at t. ∆ ⟨µ̃nt , f⟩ is
either 0 or 1

n
⟨ϑ(nµ̃nt )⟩. But

1

n
| ⟨ϑ(nµ̃nt ), f⟩ | ≤

1

n
∥f∥(2 + 4o(

√
n)). (IV.21)

This goes to show that, supt∆ ⟨µ̃nt , f⟩
n−→ 0, proving that limits are indeed continuous. ■

Hence, we can finally write the tightness in D([0, 1], (M, τw)) where τw denotes the weak

topology. We stress that the weak tightness is needed since the matching coverage depends

on
〈
µ̄.,1{0}

〉
and whence 1{0} is a compactly supported function, the associated mass is〈

µ̄t,1{0}
〉
= ⟨µ̄t,1⟩−

〈
µ̄t,1{R+

∗ }

〉
and it depends on the non compactly supported function

1{R+
∗ } .

Corollary IV.2.1. The sequence of processes (µ̃n. )n≥1 is tight in D([0, 1], (M, τw)).

Proof. Following (Méléard and Roelly [1993]), (µ̃n. )n≥1 is weakly tight if it is vaguely

C-tight and the mass process (⟨µ̃n. , 1⟩)n≥1 is tight in D([0, 1],R).

We have yet to prove the tightness of (⟨µ̃n. , 1⟩)n≥1 in D([0, 1],R). But we can notice

that the proof is exactly the same as Lemma IV.2.1 for f ≡ 1. ■

3C-tight means the sub-sequential limits are continuous in time
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So far, we have proven that the sequence of normalized processes admit subsequen-

tial limits. We also know that the eventual limits are continuous. Since the processes

themselves are described (following Doob) by the equation

⟨µ̄nt , f⟩ = ⟨µ̄n0 , f⟩+ M f,n
t +

∫ t

0

L̃nΠf (µ̄
n
s ),

for them to be deterministic, we need the martingale part of the description to cancel

itself.

Part 2: Cancellation of the martingale part

It is straightforward to write that for all n and t,

E
(
(M f,n

t )2
)
= E⟪M f,n⟫t ≤ t

n
(∥f∥(2 + 4× o(

√
n))2.

And, since the rightmost term goes to 0, Doob’s martingale inequality then yields that

P(sup
t≤1
|M f,n

t | > ϵ) ≤ 1

ϵ2
t

n
(∥f∥(2 + 4× o(

√
n))2

goes again to 0. Thus M f,n
. converges in probability to 0.

Hence, the convergence in probability implies following equation (IV.15) that when n

gets large enough, the behavior of the dynamic is close to that of ⟨µ̄n0 , f⟩+
∫ t
0
L̃nΠf (µ̄

n
s ).

Going forward, the sequence of processes µ̄n. have been shown to have continuous limits

and we have just established that those limits are described by a deterministic equation of

the tilde operators. But, the L̃n operators do not have an explicit form and, as was shown

in section III.3.1 they are not guaranteed to converge themselves. Henceforth, the goal of

the next part of the proof to set up L̄ operator as the limit of the tilde operators. We prove

that well-behaved, moment preserving matching criteria induce convergent operators.

The identification of the limit is done through a coupling with the alternative dynamic

which induces L̄ as a generator.

Part 3: Identifying the Limit

Remark IV.2.1. Throughout this section and all the thesis, it is important to remember

that the bars¯are associated with normalized objects and that tildes˜are for the continuous

time Markov Chain. When there is no accent, we are working directly with counting

measures. For example, LΠf (µ) is a generator associated to counting measures and is

MF valued, while L̃nΠf (µ̄
n
t ) is the generator of the continuous Markov extension and is

thusMn valued and L̄Πf (µ̄
n
t ) is the limiting generator of both the normalized process and

its Markov extension. Technically, it is associated with the alternative construction but

since it is the limit, we chose not to add the hat superscript.
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We quantify the error when replacing the real dynamic by the alternative one.

First, let us define the following event in the alternate construction,

T̂ (µ) =
{
The buckets Î , Î ′, B̂1, ..., B̂K̂−1, B̂

′
1, ..., B̂

′
K̂′−1

are all distinct
}
.

The event T̂ simply means the local neighborhood under study is tree-like. We deduce

the following result :

Lemma IV.2.3. For all µ ∈MF (N) having finite third moment, we have that

Pµ

(
T̂ (µ)

)
≥ 1− ⟨µ, χ

2⟩
⟨µ, χ⟩2

(〈
ΦK(µ), χ

2
〉
+ 2 ⟨ΦK(µ), χ⟩+ 2

〈
ΦK′(µ), χ2

〉)
. (IV.22)

Proof. The event T̂ (µ)c is included in

(
B̂j = B̂l for some j ̸= l ∈ J1, K̂K

)
∪
(
B̂′
j = B̂′

l for some j ̸= l ∈ J1, K̂ ′ − 1K
)

∪
(
B̂′
j ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} for some j ∈ J1, K̂ ′ − 1K

)
∪
(
B̂′
j ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} for some j ∈ J1, K̂ ′ − 1K

)
.

Consequently,

Pµ

(
T̂ (µ)c

)
≤ Pµ

(
B̂j = B̂l for some j ̸= l ∈ J1, K̂K

)
+Pµ

(
B̂′
j = B̂′

l for some j ̸= l ∈ J1, K̂ ′ − 1K
)

+ Pµ

(
B̂′
j ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} for some j ∈ J1, K̂ ′ − 1K

)
=

∞∑
k=2

∑
j ̸=l∈J1,kK

Pµ

(
B̂j = B̂l | K̂ = k

)
Pµ

(
K̂ = k

)
+

∞∑
k′=3

∑
j ̸=l∈J1,k′−1K

Pµ

(
B̂′
j = B̂′

l | K̂ ′ = k′
)
Pµ

(
K̂ ′ = k′

)

+
∞∑
k=2

∞∑
k′=2

k′−1∑
j=1

Pµ

(
B̂′
j ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} | K̂ = k, K̂ ′ = k′

)
Pµ

(
K̂ = k, K̂ ′ = k′

)
.
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Because the B̂j’s have the same law, we deduce that

Pµ

(
T̂ (µ)c

)
≤

∞∑
k=2

(
k

2

)
Pµ

(
B̂1 = B̂2 | K̂ = k

)
ΦK(µ)(k)

+
∞∑
k′=3

(
k′ − 1

2

)
Pµ

(
B̂′

1 = B̂′
2 | K̂ ′ = k′

)
Φ′
K′(µ)(k′)

+
∞∑
k=2

∞∑
k′=2

(k′−1)Pµ
(
B̂′

1 ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} | K̂ = k, K̂ ′ = k′
)
ΦK(µ)(k)Φ

′
K′(µ)(k′)·

(IV.23)

But, for the first term, for all k ≥ 2 conditioning on the size of B1, it follows that

Pµ

(
B̂1 = B̂2 | K̂ = k

)
=

∞∑
l=1

Pµ

(
B̂1 = B̂2 | K̂ = k, a(B̂1) = l

)
Pµ

(
a(B̂1) = l | K̂ = k

)
=

∞∑
l=1

l

⟨µ, χ⟩
lµ(l)

⟨µ, χ⟩
=
⟨µ, χ2⟩
⟨µ, χ⟩2

(IV.24)

Likewise, for the second term, for all k′ ≥ 3 we obtain that

Pµ

(
B̂′

1 = B̂′
2 | K̂ ′ = k′

)
=
⟨µ, χ2⟩
⟨µ, χ⟩2

· (IV.25)

For the final term, observe that

D̂ =
K̂−1∑
i=1

a(B̂i).

Then, for all k ≥ 2, k′ ≥ 2 and d ≥ 1 we get that

Pµ

(
B̂′

1 ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} | K̂ = k, K̂ ′ = k′
)

=
∞∑
d=0

Pµ(B̂
′
1 ∈ {Î} ∪ {B̂1, ..., B̂K̂−1} | K̂ = k, K̂ ′ = k′, D̂ = d)

× Pµ
(
D̂ = d | K̂ = k, K̂ ′ = k′

)
≤

∞∑
d=0

k + k′ + d

⟨µ, χ⟩
Pµ

(
D̂ = d | K̂ = k, K̂ ′ = k′

)

=
k + k′ + Eµ

[
D̂ | K̂ = k, K̂ ′ = k′

]
⟨µ, χ⟩

=
k + k′ + (k − 1)

⟨µ,χ2⟩
⟨µ,χ⟩

⟨µ, χ⟩
,
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because Î has K̂ neighbors again following the size-biased distribution associated to µ.

This, combined with (IV.24) and (IV.25) in (IV.23), yields that

Pµ(T̂
c) ≤ ⟨µ, χ

2⟩
⟨µ, χ⟩2

〈
ΦK(µ), χ

2
〉
+
⟨µ, χ2⟩
⟨µ, χ⟩2

〈
ΦK′(µ), χ2

〉
+

∞∑
k=2

∞∑
k′=2

k + k′ + k
⟨µ,χ2⟩
⟨µ,χ⟩

⟨µ, χ⟩
ΦK(µ)(k)(k

′Φ′
K′(µ)(k′)).

Ultimately noticing that
⟨µ,χ2⟩
⟨µ,χ⟩ ≥ 1, we obtain that

Pµ(T̂
c) ≤ ⟨µ, χ

2⟩
⟨µ, χ⟩2

(〈
ΦK(µ), χ

2
〉
+ 2 ⟨ΦK(µ), χ⟩+ 2

〈
ΦK′(µ), χ2

〉)
.

■

We follow with the intermediary approximation of the generator:

Proposition IV.2.1. Let µ inMn
F , the following is true for some constant C > 0:

|LΠf (µ)− LnΠf (µ)| ≤ C∥f∥⟨µ, χ
2⟩

⟨µ, χ⟩2
(〈
ΦK(µ), χ

2
〉
+ ⟨ΦK(µ), χ⟩+

〈
ΦK′(µ), χ2

〉)
.

Proof. Fix a measure µ, and denote the event

T (µ) =
{
I and I ′ do not have any self-loops/multiple edges,

given that the degree measure is µ
}
.

Throughout this proof, for notational simplicity let us skip the dependence in µ of ϑ, ϑ̂,

T and T̂ . First, as uniform sampling with replacement and conditioned on not drawing

twice the same element amounts in law to a uniform sampling without replacement, we

get that for any point measure ν,

Pµ

(
ϑ̂ = ν | T̂

)
= Pµ (ϑ = ν |T ) . (IV.26)

Also, it is immediate to observe that self-loops and multiple edges occur with a larger

probability if draws of half-edges are performed with replacement, with respect to draws
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without replacement. Thus we get that Pµ (T ) ≥ Pµ

(
T̂
)
, and set

qµ :=
Pµ (T )− Pµ

(
T̂
)

1− Pµ
(
T̂
) ∈ (0, 1).

Let the MF (N)-valued r.v. ϑ̆ be drawn from the distribution Pµ (ϑ = . |T ) with proba-

bility qµ, and independently, from the distribution Pµ (ϑ = . |T c) with probability 1− qµ,
and let us set

ϑ̃ = ϑ̂1lT̂ + ϑ̆1lT̂ c .

So defined, ϑ̃ is aMF (N)-valued r.v. that coincides with ϑ̂ on T̂ , and that has the same

distribution as ϑ. To see this, observe that for all v ∈Mp(N),

Pµ

(
ϑ̃ = v

)
= Pµ

(
ϑ̃ = v | T̂

)
Pµ

(
T̂
)
+ Pµ

(
ϑ̃ | T̂ c

)
Pµ

(
T̂ c
)

= Pµ

(
ϑ̂ = v | T̂

)
Pµ

(
T̂
)
+

(
Pµ (ϑ = v |T ) qµ + Pµ (ϑ = v |T c) (1− qµ)

)
Pµ

(
T̂ c
)

= Pµ (ϑ = v |T )Pµ
(
T̂
)

+ Pµ (ϑ = v |T )
(
Pµ (T )− Pµ

(
T̂
))

+ Pµ (ϑ = v |T c)Pµ (T c)

= Pµ (ϑ = v) ,

where we used (IV.26) in the third equality. Therefore, as T̂ ⊂ {ϑ̂ = ϑ̂′}, we obtain from

the definition of the generator and Lemma IV.1.1 that :

|LΠf (µ)− LnΠf (µ)| =
∣∣∣Eµ [⟨ϑ, f⟩]− Eµ [〈ϑ̂, f〉]∣∣∣

=
∣∣∣Eµ [〈ϑ̃− ϑ̂, f〉 1lT̂ c

]∣∣∣
≤ Eµ

[〈
ϑ̃− ϑ̂, f

〉2]1/2
Pµ

(
T̂ c
)1/2

≤
(
2Eµ

[〈
ϑ̃, f

〉2]
+ 2Eµ

[〈
ϑ̂, f

〉2])1/2

Pµ

(
T̂ c
)1/2

=

(
2Eµ

[
⟨ϑ, f⟩2

]
+ 2Eµ

[〈
ϑ̂, f

〉2])1/2

Pµ

(
T̂ c
)1/2

. (IV.27)
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But, first, it follows from (IV.1) that

Eµ

[〈
ϑ̂, f

〉2]
≤∥ f ∥2 Eµ

[〈
ϑ̂,1
〉2]

=∥ f ∥2 Eµ
[(

2 + 2K̂ + 2K̂ ′
)2]

≤ 12 ∥ f ∥2
(
1 + Eµ

[
K̂2
]
+ Eµ

[
(K̂ ′)2

])
.

Also, by the same arguments we obtain that

Eµ
[
⟨ϑ, f⟩2

]
≤ 12 ∥ f ∥2

(
1 + Eµ

[
K2
]
+ Eµ

[
(K ′)2

])
which concludes the proof using (IV.27) and Lemma IV.2.3. ■

At last, this provides the large graph approximation,

Corollary IV.2.2. Let µ̃n. a sequence ofMn valued processes associated to a well behaved

and moment preserving criterion Φ. Moreover, assume that its initial conditions are

under H0. For any bounded f , and any t ≤ 1, we have∣∣∣L̄Πf (µ̄
n
t )− L̃nΠf (µ̄

n
t )
∣∣∣ = o(

1√
n
). (IV.28)

Proof. First, we rewrite the definitions of the scaled counterparts of Ln and of the match-

ing criteria :

L̃nΠf (µ̄
n
t ) := LnΠf (nµ̄

n
t ) Φ̄(µ̄nt ) := Φ(nµ̄nt )

Proposition IV.2.1 yields that∣∣∣L̄Πf (µ̄
n
t )− L̃nΠf (µ̄

n
t )
∣∣∣ ≤ C∥f∥⟨µ̄

n
t , χ

2⟩
⟨µ̄nt , χ⟩

2

(〈
ΦK(µ̄

n
t ), χ

2
〉
+ ⟨ΦK(µ̄

n
t ), χ⟩+

〈
ΦK′(µ̄nt ), χ

2
〉)
.

Since the initial moments up to p = 3 are bounded, and the criterion is moment preserving,

it follows easily from proposition III.3.1 that, for some C ′ > 0 :

∣∣∣L̄Πf (µ̄
n
t )− L̃nΠf (µ̄

n
t )
∣∣∣ ≤ C ′∥f∥

(
⟨µ̄nt , χ2⟩
⟨µ̄nt , χ⟩

2

)1/2

.

Again using H0 and the fact that the moments are non increasing, we write ⟨µ̄nt , χ⟩ = O(n)

and also ⟨µ̄nt , χ2⟩ = O(n). Finally, the approximation is complete :∣∣∣L̄Πf (µ̄
n
t )− L̃nΠf (µ̄

n
t )
∣∣∣ ≤ C ′∥f∥O( 1√

n
) = O(

1√
n
). (IV.29)
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■

In summary, we have just now proven that the operator driving the large graph be-

havior of the limits get arbitrarily close to L̄. The only thing left is to link all the eventual

limits to the solution of the ODE driven by the bar operator. In the final part of the

proof, we can finally establish the main theorem.

Part 4: Convergence to the unique solution

To complete the proof, one needs to remember the equation (IV.14) : For all n, t and f

as above,

|⟨µ̄nt , f⟩ − ⟨µ̄t, f⟩| ≤ | ⟨µ̄nt , f⟩ − ⟨µ̃nt , f⟩ |+ | ⟨µ̄n0 , f⟩ − ⟨µ̄0, f⟩ |+ |M f,n
t |

+

∣∣∣∣∫ t

0

L̃nΠf (µ̃
n
s )−

∫ t

0

L̄Πf (µ̄s)ds

∣∣∣∣ ,
where µ̄. is characterized by L̄ in the sense that µ̄. is the unique deterministic function

such that for any suitable initial state ν,

⟨µ̄t, f⟩ = ⟨ν, f⟩+
∫ t

0

L̄Πf (µ̄s)ds.

Ultimately, we can use the results we established earlier to show that every term on

the right hand side tends to zero and that every converging sub sequence converges to µ̄.

� First, under our premise, for some positive M :∣∣∣L̃nΠf (µ̄nt )
∣∣∣ ≤ ∥f∥(2 + 4M). (IV.30)

Hence, using proposition III.3.2 which characterizes the Markov approximation

| ⟨µ̄nt , f⟩ − ⟨µ̃nt , f⟩ |
n,P−−→ 0 and we can use the tilde processes.

� The convergence of | ⟨µ̄n0 , f⟩ − ⟨ν, f⟩ | to 0 is again immediate since it is required in

H0.

� As seen in the part 2 of the proof, the martingale part also converges to 0.

� For the last term, suppose µ̃ϕ(n). converges in law to µ̄. along a subsequence ϕ.

Skorokhod’s representation theorem gives the existence of a common probability

space (Ω′,F′,P′) where Xϕ(n)
. are D([0, 1],MΦ) valued random variables, each Xϕ(n)

.

has the same law as µ̃ϕ(n). and Xϕ(n)
. converges a.s to X. and X. again has the same
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law as µ̄.. To start off, write∣∣∣∣∫ t

0

L̃nΠf (µ̃
n
s )−

∫ t

0

L̄Πf (µ̄s)ds

∣∣∣∣
≤
∫ t

0

|L̃nΠf (µ̃
n
s )− L̄Πf (µ̄

n
s )|ds +

∣∣∣∣∫ t

0

L̄Πf (µ̄s)− L̄Πf (µ̄
n
s )ds

∣∣∣∣ .
The first term on the RHS goes to zero by the large graph approximation of the

semigroup (IV.2.2). For the second term, consider a convergent subsequence µ̄ψ(n).

and let it converge almost surely to some µ∗
. (by placing ourselves directly in the

common probability space). Using the hypothesis that the matching criterion is well

behaved and the continuous mapping theorem, we have that L̄Πf (µ̄
n
s )

n,P−−→ L̄Πf (µ̄
∗
s).

Moreover, again by our premises, L̄Πf (µ̄
n
s ) is bounded. We use the dominated

convergence theorem to next assert that
∫ t
0
L̄Πf (µ̄

n
s )ds

n−→
∫ t
0
L̄Πf (µ̄

∗
s)ds. Scaling

(IV.15) alongside ψ(n) yields that

⟨µ∗
t , f⟩ = ⟨ν, f⟩+

∫ t

0

L̄Πf (µ̄
∗
s)ds.

But L̄ characterizes only µ̄. and we finally conclude that all the subsequential limits

of µ̄n. are in fact equal to µ̄..

We have therefore shown that

sup
t∈[0,1]

|⟨µ̄nt , f⟩ − ⟨µ̄t, f⟩|
n,P−−→ 0, (IV.31)

effectively proving the convergence of µ̄nt to µ̄t, the unique solution of the ODE driven by

L̄. ■

Remark IV.2.2. Our proof uses the same ideas upon which the differential equation method

is based (Kurtz [1969] or Ethier and Kurtz [1986]). In both these works, the conditions for

a convergence to a deterministic differential equation are given. In our proof, we adapted

those arguments and expanded them to abstract matching criteria when required. Similarly

to the work of Kurtz [1969] :

� The fact that the generator L̄ is the limit of the generators L̃n in the sense of Kurtz

is ensured by corollary IV.2.2. This corollary depends on the assumption that a

chosen criterion is well behaved and moment preserving.

� The fact that the limiting generator L̄ defines a semigroup is ensured by the fact that

it is simply the generator associated to an alternative Markov construction. Thus,

it has to be under the conditions of the Hille Yosida theorem.
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� Finally, in Kurtz [1969] a condition of Lipschitzity was used to ensure that the

deterministic differential equation born from L̄ uniquely defined its solutions. In

our case, even though Lipschitzity is sufficient, it will prove difficult to establish,

especially on measure spaces. For this reason, we reframed that condition in a more

abstract formulation.

At long last, we provide an example for the main result using the greedy criterion.

It is demonstrated that the greedy algorithm verifies all the hypotheses of the main

theorem and thus we are allowed to predict its matching coverage by solving the ODE (as

is done in the simulations).

IV.3 Illustrative example : greedy

For this section, we recall that greedy uses a double uniform criterion, where the uniform

choice is made over the positive activity vertices. We also set f as a generic function in

Cb. It is important to remember that the limiting behavior is given by the alternative,

simpler dynamic. The greedy algorithm makes its first choice straight on the degree

distribution:

〈
Φgreedy
K̂

(µ), f
〉
=
⟨µ, f1N∗⟩
⟨µ,1N∗⟩

, (IV.32)

whilst the second choice is made over the K neighbors which each follow a size biased

distribution. We use the computations from (IV.5) apply :

〈
Φgreedy
K̂′ (µ), f

〉
=
∑
k′

f(k′)Pµ(K̂
′ = k′)

=
∑
k

∑
k′

f(k′)Pµ(K̂
′ = k′|K = k)Pµ(K̂ = k)

=
∑
k

∑
k′

f(k′)
k′µ(k′)

⟨µ, χ⟩
k1N∗(k)µ(k)

⟨µ,1N∗⟩

=
⟨µ, χf⟩
⟨µ, χ⟩

· (IV.33)
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Hence, the operator L̄ is explicited for greedy. Plugging (IV.32) and (IV.33) into (IV.3)

we immediately get that

L̄Πf (µ) = −

{
⟨µ, f1N∗⟩
⟨µ,1N∗⟩

+
⟨µ, (χ− 1N∗)⟩
⟨µ,1N∗⟩

⟨µ, χ∇f⟩
⟨µ, χ⟩

+
⟨µ, χf⟩
⟨µ, χ⟩

+
⟨µ, χ2 − χ⟩
⟨µ, χ⟩

⟨µ, χ∇f⟩
⟨µ, χ⟩

}
. (IV.34)

Ultimately, the main theorem for the greedy criterion is expressed:

Theorem IV.3.1. Assuming that the graphs are under the greedy criterion, if the se-

quence of processes (µ̄n. )n≥1 is under H0 and ⟨ν, ξ3.5⟩ ≤M , then for f ∈ Cb

sup
t≤1
| ⟨µ̄nt , f⟩ − ⟨µ̄t, f⟩ |

(n,P)−−−→ 0, (IV.35)

where µ̄. is characterized by the operator L̄ defined by (IV.34) when ⟨µ,1N∗⟩ > 0, and

L̄Πf (µ) = 0 for all f ∈ Cb,

whenever ⟨µ,1N∗⟩ = 0.

The convergence for greedy is proven by verifying that both the uniform choice

function and the operator it produces verify the conditions of Theorem IV.1.1. To do so,

we use the two following sections.

IV.3.1 Proof of Theorem IV.3.1: Well behavedness and moment prop-

erties

Lemma IV.3.1 (greedy: Well-behavedness and moment preservation). Let µ ∈ M such

that ⟨µ, χ⟩ > 0, then the uniform choice function is well behaved in the sense given by

Definition III.3.1. Moreover, the greedy criterion preserves moments up to p− 1 when

p ≥ 2 and ⟨µ, χp⟩ ≤M for some M > 0.

Proof. First, we prove the well behavedness. By definition, the weak topology is the

weakest topology such that the functions (Πf (.), f ∈ Cb) are continuous. Notice that f1N∗

is still in Cb so that

Φgreedy
K̂

(µ) =
Πf1N∗ (µ)

Π1N∗ (µ)

is a continuous function onM when Π1N∗ (µ) is non zero : The uniform choice function

is well behaved.
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For the moment preservation property, assume that Πf (µ
n)→ Πf (µ) and that ⟨µ, χp⟩ ≤

M , we can write for any positive K

|Πχp(µn)− Πχp(µ)| ≤ |Πχp1[0,K]
(µn − µ)|+ |Πχp1[K,∞)

(µ)|+ |Πχp1[K,∞)
(µn)|.

Using the weak convergence and the boundedness of ⟨µ, χp⟩, the right hand side can be

as small as we wish and we can conclude that the uniform choice function conserves the

moments up to order p.

Thus, the first uniform choice Φgreedy
K (µ) conserves conserves all the moments of µ.

Next, we will apply the same argument to the size biaised of version µ. Recall the size

biaised version is written

⟨µ̌, f⟩ = ⟨µ, χf⟩
⟨µ, χ⟩

.

Since the moments of µ are preserved to order p, it follows that Φgreedy
K′ (µ) preserves the

moments of the size biaised version of µ up to p− 1. ■

Before proceeding to the next step, we enounce the asymptotic version of Proposition

III.2.2, which means the moments of the greedy dynamic stay non increasing.

Corollary IV.3.1 (Boundedness of moments). Let µ̄. a solution characterized by a gener-

ator L̄ with initial distribution ν ∈ M. If for some p > 1 and some M > 0, ⟨ν, χp⟩ < M

then for all t ≤ 1, ⟨µ̄t, χp−1⟩ is non increasing. In particular, ⟨µ̄t, χp−1⟩ < M .

Proof. The proof is immediate by noticing that the function t 7→ L̄Πχp−1(µ̄t), which is the

derivative of the p− 1th moment is well defined and negative. ■

We can now prove that the operator given by the greedy criterion characterizes the

solution of the induced ODE.

IV.3.2 Proof of Theorem IV.3.1: Characterization of the solutions

For this section, assume ν ∈M is an initial degree distribution with ⟨ν, χ3.5⟩ < M . Using

corollary IV.3.1, for any solution µ̄., we observe that

sup
t∈[0,1]

(mµ̄t ,Mµ̄t , Vµ̄t) < M.

Lemma IV.3.2 (Uniqueness of the solution characterized by L̄). Let x. and y. two solutions

under the greedy criterion, and characterized by the generator L̄ with x0 = y0 = ν.

Then, for all t ≤ 1 we have that xt = yt.
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Proof. The proof is split in two parts. We first get rid of the obvious case. When

⟨x0, 1N∗⟩ = ⟨y0, 1N∗⟩ = 0, then L̄Πf (x0) = L̄Πf (y0). It follows that the solutions are

both constant, namely xt = yt = ν for all t.

Else, given β > 0 small, both ⟨xt, 1N∗⟩ and ⟨yt, 1N∗⟩ are non increasing in t, hence we

define

Tβ = sup(t > 0| ⟨xt, 1N∗⟩ ∧ ⟨yt, 1N∗⟩ > β),

and we show that any solution is unique for t ≤ Tβ. Then, we set

z. = x. − y.

and, for some α > 3.5,

Γt =
∑
i>0

iαz2t ({i}).

We will show that

(Γt)
′ ≤ (C1 + C2)Γt, 0 ≤ t ≤ Tβ. (IV.36)

Using Gronwall’s lemma, this would imply that

Γt ≤ Γ0e
(C1+C2)t, 0 ≤ t ≤ Tβ.

But Γ(0) = 0 because of the same initial conditions for x. and y., so this would imply that

Γt = 0 for all 0 ≤ t ≤ Tβ, which would immediately imply in turn that zt = 0 for all such

t, and thereby conclude the proof of uniqueness until Tβ.

So we are rendered to show (IV.36). For notational simplicity, we drop the dependency

in time for all processes. Moreover, for any measure µ, we introduce the following :

� mµ = ⟨µ,1N∗⟩;

� Mµ = ⟨µ, χ⟩;

� Vµ = ⟨µ, χ2⟩;

� Aµ = ⟨µ, χf⟩+ ⟨µ, χ2 − χ⟩ ⟨µ,χ∆f⟩⟨µ,χ⟩ .

The proof amounts to upper-bounding

Γ′ = 2
∑

iαz({i})z′({i}).
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For this, we start by finding a convenient expression for z′({i}). By the very definition of

L̄ any f ∈ Cb ⟨z, f⟩′ can be rewritten as

⟨z, f⟩′ = L̄Πf (x)− L̄Πf (y)

=

[
⟨y, f1N∗⟩
my

− ⟨x, f1N
∗⟩

mx

]
+

[
(My −my)

⟨y, χ∆f⟩
myMy

− (Mx −mx)
⟨x, χ∆f⟩
mxMx

]
+

[
1

My

Ay −
1

Mx

Ax

]
=: D0(x, y, f) +D1(x, y, f) +D2(x, y, f). (IV.37)

� First, expanding the expression of D1(x, y, f) we get that

D1(x, y, f)

=
⟨x, χ∆f⟩
mxMx

⟨y − x, χ− 1N∗⟩+ ⟨y, χ− 1N∗⟩
[
⟨y, χ∆f⟩
myMy

− ⟨x, χ∆f⟩
mxMx

]
=
⟨x, χ∆f⟩
mxMx

⟨y − x, χ− 1N∗⟩

+ ⟨y, χ− 1N∗⟩
[
⟨y, χ∆f⟩mxMx − ⟨x, χ∆f⟩myMy

myMymxMx

]
=
⟨x, χ∆f⟩
mxMx

⟨y − x, χ− 1N∗⟩

+ ⟨y, χ− 1N∗⟩ ⟨y − x, χ∆f⟩myMy − ⟨y, χ∆f⟩ (myMy −mxMx)

myMymxMx

· (IV.38)

� The same technique is used for evaluating D2(x, y, f) :=
[
my

My
Ay − mx

Mx
Ax

]
:

D2(x, y, f) = Ay

[
my

My

− mx

Mx

]
+
mx

Mx

[Ay − Ax] . (IV.39)

First off : [
my

My

− mx

Mx

]
=
Mxmy−x +Mx−ymx

MxMy

.

Remembering the definition of A., we also have that

Ay − Ax = ⟨y − x, χf⟩+
〈
y − x, χ2 − χ

〉 ⟨y, χ∆f⟩
My

+
〈
x, χ2 − χ

〉 ⟨y − x, χ∆f⟩My + ⟨y, χ∆f⟩ ⟨y − x, χ⟩
MyMx

.
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Henceforth, D2(x, y, f) is rewritten :

D2(x, y, f) = Ay

[
Mxmy−x +Mx−ymx

MxMy

]
+
mx

Mx

[

⟨y − x, χf⟩+
〈
y − x, χ2 − χ

〉 ⟨y, χ∆f⟩
My

+
〈
x, χ2 − χ

〉 ⟨y − x, χ∆f⟩My + ⟨y, χ∆f⟩ ⟨y − x, χ⟩
MyMx

]
(IV.40)

In particular, using f = 1i, we have z({i}) := ⟨z, 1i⟩ and :

z′({i}) = (i+ 1)

[
My −my

Mx

+
mx(Vx −Mx)

M2
x

]
z({i+ 1})

−
[
1 + i

(
My −my

Mx

+
mx(Vx −Mx

M2
x

+
mx

Mx

)]
− Mz −mz

Mx

(ix({i})− (i+ 1)x({i+ 1}))

− My −my

MyMx

(iy({i})− (i+ 1)y({i+ 1}))Mz + Ay({i})
mxMz −Mxmz

MyMx

− mx

Mx

Vz −Mz

My

(iy({i})− (i+ 1)y({i+ 1}))

− mx

Mx

Vx −Mx

MxMy

(iy({i})− (i+ 1)y({i+ 1}))mz.

One last time, we simplify using Ex,y =
My−my

Mx
+ mx(Vx−Mx)

M2
x

:

dzi =

[
(i+ 1)Ex,yz({i+ 1})−

(
1 + i(Ex,y +

mx

Mx

)

)
z({i})

]
−

Mz −mz

Mx

(ix({i})− (i+ 1)x({i+ 1}))− My −my

MyMx

(iy({i})− (i+ 1)y({i+ 1}))Mz

+ Ay({i})
mxMz −Mxmz

MyMx

− mx

Mx

Vz −Mz

My

(iy({i})− (i+ 1)y({i+ 1}))−

mx

Mx

Vx −Mx

MxMy

(iy({i})− (i+ 1)y({i+ 1}))mz. (IV.41)

To start off, we are interested in

Γ′
1 :=

∑
i

iα
[
(i+ 1)Ex,yz({i+ 1})z({i})−

(
1 + i(Ex,y +

mx

Mx

)

)
z({i})2

]
. (IV.42)

Using the fact that 2z({i+1})z({i}) = z({i+1})2+ z({i})2− (z({i+1})− z({i}))2, then
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that 2z({i+ 1})z({i}) ≤ z({i+ 1})2 + z({i})2, we write

Γ′
1 ≤

1

2
Ex,y

∑
i

iα(i+ 1)z({i+ 1})2 + 1

2
Ex,y

∑
i

iα(i+ 1)z({i})2 (IV.43)

−
∑
i

iα
(
1 + i(Ex,y +

mx

Mx

)

)
z({i})2

≤ Ex,y
∑
i

iα+1z({i})2 + 1

2
Ex,y

∑
i

iαz({i})2 −
∑
i

iαz({i})2 − (Ex,y +
mx

Mx

)
∑
i

iα+1z({i})2

≤ 1

2
Ex,y

∑
i

iαz({i})2 −
∑
i

iαz({i})2.

The first majoration is ended considering that |Ex,y| ≤ 2M
β

+ M2

β2 + M
β

:

|Γ′
1| ≤

(
M2 + 3Mβ

2β2
+ 1

)
Γ,

or

|Γ′
1| ≤ C1Γ (IV.44)

Afterwards, we have to find a similar majoration for Γ′
2 := 1

2
Γ′ − Γ′

1. First notice for

z that :

� For the mass mz:

mz ≤
∑
k

zk =
∑
k

kα/2zkk
−α/2.

Using Cauchy-Schwartz yields

mz ≤ (
∑
k

kαz2k)
1/2(
∑
k

k−α)1/2.

Since α > 3.5, it follows that

mz ≤ Γ1/2Cm. (IV.45)

where Cm > 0

� In a similar fashion :

Mz =
∑
k

kzk =
∑
k

kα/2zkk
1−α/2
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yields that

Mz ≤ Γ1/2CM . (IV.46)

with α > 1.5

� Finally,

Vz ≤ Γ1/2CV . (IV.47)

since α > 3.5

Thus, we write

Γ′
2 =

[
Mz −mz

Mx

∑
i

iαz({i}) (ix({i})− (i+ 1)x({i+ 1}))−

Mz
My −my

MyMx

∑
i

iαz({i}) (iy({i})− (i+ 1)y({i+ 1}))+

mxMz −Mxmz

MyMx

∑
i

iαz({i})Ay({i})−

mx

Mx

Vz −Mz

My

∑
i

iαz({i}) (iy({i})− (i+ 1)y({i+ 1}))−

mz
mx

Mx

Vx −Mx

MxMy

∑
i

iαz({i}) (iy({i})− (i+ 1)y({i+ 1}))

]
. (IV.48)

Since the terms outside the sums are multiples of the moments of z, they are to be bounded

by Γ1/2 multiplied by some constant, we can also find bounds for the other terms :

� Starting with ∑
i

iαz({i})(i+ 1)y({i+ 1}),

Cauchy-Schwartz yields again∑
i

iαz({i})(i+ 1)y({i+ 1}) =
∑
i

iα/2z({i})(i+ 1)iα/2y({i+ 1})

≤ Γ1/2

(∑
i

(i+ 1)2iαy({i+ 1})2
)1/2

.

But ∑
i

(i+ 1)2iαy({i+ 1})2 ≤

(∑
i

(i+ 1)iα/2yi+1

)2

,
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So that ∑
i

(i+ 1)2iαy2i+1 ≤
∑
i

i1+α/2yi ≤M.

We obtain∑
i

iαzi(i+ 1)yi+1 ≤MΓ1/2 (IV.49)

� The same argument yields∑
i

iαziiyi ≤MΓ1/2. (IV.50)

We finally beget :

|Γ′
2| ≤

CM + Cm
β

Γ1/22MΓ1/2 + CMΓ1/22M

β2
2MΓ1/2+

M
CM + Cm

β2
Γ1/2

(
CM +

2M

β
2M

)
Γ1/2+

M

β

CV + CM
β

Γ1/22MΓ1/2 + CmΓ
1/22M

2

β3
2MΓ1/2,

or

|Γ′
2| ≤ C2Γ (IV.51)

Together with IV.44, IV.51 is equivalent to IV.36 ending the proof of the the uniqueness

up to Tβ.

Since β is arbitrary and Π1N∗ (µt) is continuous in t. We can define :

T0 = sup
β>0

Tβ (IV.52)

and extend the uniqueness to t ≤ T0. But, we have already proven the uniqueness after

T0. Because for any t > T0, the generator is null and the argument at the beginning of

this proof applies : µt = µT0 .

Hence, the generator associated to the greedy criterion globally characterizes the solu-

tions of the associated differential equation and the main theorem is true for the greedy

criterion. ■

Remark IV.3.1. The well behavedness and the moment preservation are fairly easy to

assess for most matching criteria. As an illustrative example, for minres the first choice
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function is the same as that of greedy :

〈
Φminres
K̂

(µ), f
〉
=
〈
Φgreedy
K̂

(µ), f
〉
=

Πf1N∗ (µ)

Π1N∗ (µ)
.

As for the second choice function Φminres
K̂′ (µ), it is obtained by taking the minimum of

K̂ − 1 iid degrees each following the size biaised degree distribution. We write :

Φminres
K̂′ (µ)({i}) = EµP(K̂

′ = i|K̂) = Eµ(P(K̂
′ ≥ i|K̂)− P(K̂ ′ ≥ i+ 1|K̂)),

Φminres
K̂′ (µ)({i}) = Eµ

(
(
χΠ1[i,∞)(µ)

Πχ(µ)
)K̂−1 − (

Πχ1[i,∞)(µ)

Πχ(µ)
)K̂−1

)
.

And then,

Φminres
K̂′ (µ)({i}) =

∑
k≥1

Π1k(µ)

Π1N∗ (µ)

(
(
χΠ1[i,∞)(µ)

Πχ(µ)
)k−1 − (

Πχ1[i,∞)(µ)

Πχ(µ)
)k−1

)
.

Restricting the space toMΦminres makes this sum finite and well behavedness (and moment

conservation) ensues by the same continuity argument we used for greedy.

The complicated part for most criteria is uniqueness. Although it is suggested by the

simulations, we were only able to prove it in trivial cases, or by severely restricting the

space of measures under consideration. The authors are currently working on a paper

expanding the proof of the uniqueness for other choice functions such as minres.
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Chapter V

Notes and conclusion

Ultimately, the purpose of our work was to present an alternative framework to the study

of online matching algorithms. In a world where large networks are gaining more and

more prominence, our goal was to use the relatively recent tools offered by stochastic

processes, queuing networks and random graphs to build efficient matching algorithms.

From a practical perspective, this work offers a way to predict the performances of

specific matching policies given a population distribution, simply by (numerically for

example) solving an ODE1. For example, our results can be used to test how well individual

matching policies would fare globally into a given population without having to go through

extensive surveys. Independently of the population, our work can be extended to the

comparison of given policies in a general framework. A relevant question for example

would be which policies are better than total randomness? What would be the cost of

applying such policies? In any case, The algorithms built in this framework are efficient

by themselves. As shown by Aoudi et al. [2022] or alternatively by Noiry et al. [2021])

the present method, when adapted to bipartite networks already produces better results

than the prevailing approach for online matching, even for mere greedy algorithms.

From a theoretical perspective, the present work falls within the scope of the methods

that use random networks to emulate large networks and their limiting properties. Specifi-

cally, we studied exploration/marking processes on the configuration which we transposed

to their measure valued representation. The ’choice functions ’ used here can be viewed

as marking processes as well as favored directions guiding the exploration. Henceforth,

the techniques provided here can easily be generalized to problems other than matching

on graphs. The properties proved on matching policies are easily applicable to several

other questions involving marking. In fact, our work itself follows directly from that of

Bermolen et al. [2017] on the jamming constant.

1Our code for general/bipartite matching algorithms is available upon request
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As for the extensions of our work, the most important challenges are twofold. First,

we still have to establish a consistent framework for the study of the uniqueness in an

abstract policy. Even for the greedy criterion, the usual Cauchy-Lipschitz type conditions

for the limits were insufficient. Second, thus far the comparison of given policies is only

possible numerically. A theoretical comparison between abstract criteria seems very much

out of reach. And even though we suspect a coupling argument to be sufficient, our work

has not lead us to the adequate coupling and the optimal criteria we found, we only found

numerically. To date, minres is the policy that produces the best matching coverage and

a legitimate question to ask is that of the global optimality of minres amongst all criteria.

All things considered, we believe that the present work opens a promising line of

research.
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Appendix

A.1 The Configuration Model and Degree Sequences

The goal of this section is a brief presentation of the configuration model and a survey

of its relevant properties to local matching. We include it for the sake of completeness,

although we refer the interested reader to Newman [2018] or van der Hofstad [2016] for

more thorough presentations of both its theoretical properties and its practical uses.

Let d := (d(1), ..., d(n)) be a degree sequence associated to a graph (V , E) and let

µ :=
∑n

1 δd(i) be its representation as a measure onMF (N). The configuration model is

the construction of a (multi-)graph with degree sequence d through the uniform pairing

procedure. Any vertex v is given a number of half-edges (also called stubs) equivalent to

its degree d(v). So that

mµ = ⟨µ, 1⟩ :=
∫

1dµ = n (A.1)

is the number of nodes.

Mµ = ⟨µ, χ⟩ :=
∑

d(i) (A.2)

is the number of half-edges. The construction of the graph is then done through pairing

uniformly stubs into edges.

Definition A.1.1. A configuration c is an involution without any fixed points on the set

of half edges m := {1, ...,Mµ}: c(i) = j and c(j) = i for any stub i. (i, c(i)) is called

an edge. The configuration model CM(d) or CM(µ) is the uniform drawing of one

among any (M − 1)!! := (M − 1)(M − 3)...3.1 configurations.

It is immediate that any given configuration is also a representation of a (multi-)graph.

Thus, the configuration model can in fact also be viewed as an uniform drawing of a given
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graph weighted by the number of underlying configurations representing it.

A.1.1 Algorithmic Construction of a Configuration

(For this section, we are thankful to P. Moyal for his course at IECL - Nancy Graphes

Aléatoires et Applications)

Let d ∈ J1, n − 1Kn a degree sequence. Usually, uniformly drawing a full involution

proves to be complicated. Instead, configurations are build sequentially using one of the

two following equivalent algorithms.

Definition A.1.2. The configuration model CMn(d) is the realization of a random graph

on J1, nK with degree distribution d, obtained by the algorithm 2.

Algorithm 2 Configuration Model: Focus on Edges

Require: Degree sequence d := (d(1), ..., d(n)).
Take n buckets of stubs, whose sizes are d(1), ..., d(n). At first, the stubs are said to be
‘available’.
while Available stubs remain do
Pick a first stub.
Pair it to another available stub chosen uniformly at random and delete both from
the available stubs.

end while

Or equivalently,

Algorithm 3 Configuration Model: Focus on Nodes

Require: Degree sequence d := (d(1), ..., d(n)).
Take n buckets of stubs, which sizes are d(1), ..., d(n). At first, the stubs are said to be
‘available’.
N0 = n
while Nk > 0 do
Pick a first bucket/node ik between J1, NkK,
Pair one by one each of the remaining dk(ik) stubs of ik by sequentially choosing
another stub uniformly at random between remaining available half-edges.
Set as dk+1(j) the amount of remaining stubs for the j-th node after pairing, and as
Nk+1 the number of nodes with remaining stubs.
k + 1→ k.

end while

A.1.2 The CM as an approximation for large simple graphs

Here we provide two propositions that justify the use of the CM as a model for large

networks.
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Although the underlying configurations are uniformly drawn on the CM, the same can

not be said of the resulting graphs. For example, when there are parallel edges, swapping

their ending stubs gives rise to different equiprobable configurations while the generated

graph is the same. Hence, the same graph would have more weight than any other simple

graph (generated by a single configuration). This flaw can be circumvented by noticing

that, conditioned on producing a simple graph, the configuration model is an uniform

drawing (For example Proposition 7.4 in van der Hofstad [2016]).

Proposition A.1.1 (The CM is a uniform drawing when conditioned to produce sim-

ple graphs). Let G a multi-graph with adjacency matrix A and degree distribution d =

(d(1), ..., d(n)) (and µ the associated measure). The probability for the CM to produce any

given graph

P (CMn(d) = G) =
1

Mµ!!

∏
i∈J1,nK d(i)!∏

i∈J1,nK 2
Aii
∏

1≤i≤j≤nAij!
· (A.3)

When we restrict the graphs produced to be simple, this probability becomes a uniform

drawing on simple graphs G ;

P [CMn(d) = G |CMn(d) is simple ] =
1

Card {G ∈ G (n) : G follows d}
·

This property is powerful on its own, but it remains conditional. To justify the use of

the CM as an approximation for real networks, we have to complement it with yet another

property that guarantees the happening of the condition.

Proposition A.1.2 (CM and simple graphs). Let G a multi-graph with adjacency matrix

A and degree distribution d = (d(1), ..., d(n)) (and µ the associated measure). Let ν =
⟨µ,χ2−χ⟩

⟨µ,χ⟩ , we have:

P [CMn(d) produces a simple graph ] ≥ exp

(
−ν
2
− ν2

4

)
.

Both those propositions in conjunction ensure that the CM can be conditioned to

mimic simple graphs. Afterwards, the graph produced is uniformly drawn.

A.1.3 The Independence Property

In this section, we explore the central property that allows us to build matching algorithms

on the configuration. On the CM, the order in which we explore the edges (for example

the first edges/nodes in the algorithm) does not influence the final law of the CM.
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Proposition A.1.3 (Independence Property). Recall that m is the set of stubs. The order in

which the stubs are completed into edges does not influence the final law of the configuration

model. In particular, edges can be created in any order regardless of the vertex they come

from as long as the uniform pairing procedure is conserved.

Proof. Let o be an arbitrary reordering of m. We show that any configuration c built

using the sequential uniform pairing is uniformly drawn.

For this, notice that c(o(1)) is still chosen among M − 1 other stubs. Then c(o(2)) is

chosen among M − 3 choices and so on. All in all, the process still produces (Mµ − 1)!!

configurations which have the same uniform probability 1
Mµ−1

. ■

It is also said the uniform pairing process is exchangeable. Exchangeability allows us to

build the exact number of edges needed at each step without influencing the macroscopic

properties of the CM. Moreover these edges can be built in any order. Effectively, this

means that the order in which the graph is built/explored does not bear any influence on

its law.

At last, we provide one last macroscopic property of the configuration model which is

abundantly used throughout our work

Proposition A.1.4 (Neighboring Degree Distribution). Pick a random node I, the neighbor

degree distribution is the degree distribution of a neighbor I ′. We will call this distribution

pµ :

pµ(k) = P(d(I ′) = k) =
kµ(k)

⟨µ, χ⟩
(A.4)

It is a uniform law on all nodes size-biaised by their available stubs oftentimes we simply

denote it µ̌.

Proof. There are kµ(k)− 1d(I)=k stubs coming from degree k nodes over ⟨µ, χ⟩ − 1 total

stubs to be matched. The distribution above is a reasonable approximation when the

number of nodes is large. ■

A.1.4 Graphicality of degree sequences

So far, we have assumed that the sequences of degrees used are graphic, meaning they

represent the degrees of a graph. One way to have graphic sequences is to directly take the

degrees of a given network. For example, this will be the case for the networks under our

study or for surveyed networks. However, one legitimate question to ask when simulating

networks is how do to produce graphic sequences (for example from a given probability
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distribution). In this section, we provide the main characterization result for graphic

sequences discovered by Erdos and Gallai which is used to construct graphical sequences.

Theorem A.1.1 (Erdos and Gallai on the characterization of graphic number sequences

(1960)). A sequence of non-negative integers d(1) ≥ · · · ≥ d(n) can be represented as the

degree sequence of a finite simple graph on n vertices if and only if d(1) + · · · + d(n) is

even and

k∑
i=1

d(i) ≤ k(k − 1) +
n∑

i=k+1

min(d(i), k)

holds for every 1 ≤ k ≤ n.

This test is used on randomly generated degree sequence. Mostly, when the sequence

is close to a graphical sequencce, it is ’truncated’. Furthermore, this approach to testing

can be perfected using a generalization of the Erdos-Gallai theorem.

Theorem A.1.2 (Aigner and Triesch on the characterization of graphic number sequences).

A finite sequences of nonnegative integers (d(1), · · · , d(n)) with d(1) ≥ · · · ≥ d(n) is

graphic if
∑n

i=1 d(i) is even and there exists a sequence (c(1), · · · , c(n)) that is graphic

and majorizes (d(1), · · · , d(n)).

In some contexts such as the truncation of degree sequences, this second result is

simpler to use. The idea is to generate a random sequence of numbers (following a given

distribution) and then to lower degrees until it becomes graphic.

A.2 Tools for the convergence of processes

This section of the annex is dedicated to the tools used in proving the convergence of pro-

cesses. Most of the results are stated without proof and can be found in Parthasarathy’s

book [Parthasarathy, 1967]. Again for the sake of completeness, we give structural prop-

erties ofMF (N)
1 as a reminder.

A.2.1 Topological Properties

Most of our work pertains to subspaces ofMF (N). To allege notations, we will only refer

to it space asMF . First, we introduce the topologies under study.

Definition A.2.1. Let Cb(R) be the space of continuous bounded functions on R and let

Cc(R) of continuous compactly supported functions. All of those spaces are endowed with

1
N is of course endowed with its discrete topology

99



A.2. TOOLS FOR THE CON-
VERGENCE OF PROCESSES

APPENDIX A. APPENDIX

the supremum norm. The weak topology denoted τw is the topology induced on MF by

its duality with Cb(R). For µ ∈ MF , it the weakest topology such that the functions

µ 7→ ⟨µ, f⟩ , f ∈ Cb(R) are continuous. The vague topology denoted τv is the topology

induced by the duality with Cc(R).

Since Cc(R) ⊂ Cb(R), it is immediate that the weak topology is stronger than the

vague topology.

Proposition A.2.1. When endowed with the weak topology MF is not separable, while

(MF , τv) is a complete separable space.

This proposition is the reason the vague topology is used. Separable spaces are more

convenient to use when proving convergence. Moreover, as will be shown hereafter, the

weak convergence can easily follow from a vague convergence under sufficent restrictions.

We state yet another important result pertaining to the characterisation of sequences.

Theorem A.2.1 (Prohorov). Let Π be a family of probability measures on a measured space

(S,S). If Π is tight, then it is relatively compact

Usually, Prohorov’s theorem is stated as an equivalence. Here we only state one side

of the equivalence since the sufficiency is conditional to completeness and separability.

A.2.2 Characterizing Convergence

We remind the reader that the measures are considered on the Borel sigma algebra.

Any time a measure is mentioned on some space E, it is considered on (E,B(E)) where
B(E) the sigma algebra generated by the topological open sets. Let D((0, T ),MF )

(resp.C((0, T ),MF ) be the space of right continuous, limited on the left functions (resp.

continuous) from (0, T ) toMF endowed with the Skorokhod topology.

The main result of this thesis is a convergence proof for the law of sequence of processes

D((0, T ),MF ). Essentially, it boils down to establishing relative compactness (the exis-

tence of several sub sequential limits) followed by the identification of the sub sequential

limits as one and only process.

Relative compactness of the laws is proven via tightness using Prohorov’s theorem.

First, vague tightness is proven then it is extended to the weak topology. The following

theorem characterizes weak convergence in terms of vague convergence :

Theorem A.2.2 (Convergence, Méléard and Roelly). Let µn. a sequence of processes in

D((0, T ), (MF , τw)) and µ. a process in C((0, T ), (MF , τw)). Then µ
n
. ⇒ µ. in D((0, T ), (MF , τw))

if and only if µn. ⇒ µ. in D((0, T ), (MF , τv)) and ⟨µn. , 1⟩ ⇒ ⟨µ., 1⟩ in D((0, T ),N), where

we let the ⇒ designate the convergence in law.
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With this convergence result, we can prove the simpler vague tightness and then

generalize it. To do so, we are provided with the following tightness criteria:

Theorem A.2.3 (Roelly’s tightness criteria [Roelly-Coppoletta, 1986]). Let µn. a sequence

of processes in D((0, T ), (MF , τv)). Assume that for any f ∈ Cc(R), ⟨µn. , f⟩ is decompos-

able in a way that ⟨µn. , f⟩ =M f,n
. + V f,n

. where M f,n
. is a local martingale and V f,n

. has a

finite variation. If

1. For f ∈ Cc(R) and for each t ≥ 0, the law of ⟨µn. , f⟩ is tight.

2. The quadratic variation of ≪ M f,n ≫. and V f,n
. satisfy : for each n ∈ N, ϵ, η

positive, there exists δ > 0 such that for each stopping time Tn bounded by n:

lim sup
n

sup
0≤θ≤δ

P
(
|V f,n
Tn+θ

− V f,n
Tn
|
)
≤ ϵ

lim sup
n

sup
0≤θ≤δ

P
(
|⟪M f,n⟫Tn+θ − ⟪M f,n⟫Tn|) ≤ ϵ

Then the laws of µn. are tight.

This tightness criteria makes use of the separability of Cc(R) and by extension of that

of (MF , τv) (See [Roelly-Coppoletta, 1986]). Thus, it forces us to characterize vague

convergence first.

As for the identification of the limit, most of the techniques used are pretty straight-

forward and directly detailed in the manuscript.
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Erdös, P. and Rényi, A. (2006). On the evolution of random graphs, pages 38–82. Princeton

University Press, Princeton.

Ethier, S. N. and Kurtz, T. G. (1986). Generators and Markov Processes, chapter 4, pages

155–274. John Wiley & Sons, Ltd.

105



BIBLIOGRAPHY BIBLIOGRAPHY

Farhadi, A., Hajiaghayi, M., Mai, T., Rao, A., and Rossi, R. A. (2019). Approximate

maximum matching in random streams.

Feldman, J., Mehta, A., Mirrokni, V., and Muthukrishnan, S. (2009). Online stochastic

matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foundations of

Computer Science, pages 117–126. IEEE.

Ford, L. R. and Fulkerson, D. R. (1956). Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404.

Ford, L. R. and Fulkerson, D. R. (1957). A simple algorithm for finding maximal network

flows and an application to the hitchcock problem. Canadian Journal of Mathematics,

9:210–218.

Ford, L. R. and Fulkerson, D. R. (1958). Network flow and systems of representatives.

Canadian Journal of Mathematics, 10:78–84.
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valeurs mesures.

108



BIBLIOGRAPHY BIBLIOGRAPHY

Metropolis, N. (1987). The beginning of the monte carlo method.

Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American

Statistical Association, 44(247):335–341.

Mitsuko, W. M. (2010). The works of KONIG Dénes (1884–1944) in the domain of
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