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Abstract

Machine Learning predictive models have been applied to many fields and applications

so far. The majority of these learning algorithms rely on labeled training data which

may be expensive to obtain as they require labeling by an expert. Additionally, with

the new storage capabilities, large amounts of unlabeled data exist in abundance.

In this context, the development of new frameworks to learn efficient models from a

small set of labeled data, together with a large amount of unlabeled data, is a crucial

emphasis of the current research community. Achieving this goal would significantly

elevate the state-of-the-art machine intelligence to be comparable to or surpass the

human capability of learning to generalize concepts from very few labeled examples.

Semi-supervised learning and active learning are two ongoing active research sub-

domains that aim to achieve this goal.

In this thesis, we investigate two directions in machine learning theory for semi-

supervised and active learning. First, We are interested in the generalization proper-

ties of a self-training algorithm using halfspaces with explicit mislabel modeling. We

propose an iterative algorithm to learn a list of halfspaces from labeled and unlabeled

training data, in which each iteration consists of two steps, exploration and pruning.

We derive a generalization bound for the proposed algorithm under a Massart noise

mislabeling model. Second, we propose a meta-approach for pool-based active learn-

ing strategies in the context of multi-class classification tasks, which relies on the

proposed concept of learning on Proper Topological Regions (PTR) with an under-

lying smoothness assumption on the metric space. PTR allows the pool-based active

learning strategies to obtain a better initial training set than random selection and

increase the training sample size during the rounds while operating in a low-budget

regime scenario. Experiments carried out on various benchmarks demonstrate the ef-

ficiency of our proposed approaches for semi-supervised and active learning compared

to state-of-the-art methods.

A third contribution of the thesis concerns the development of practical deep-

learning solutions in the challenging domain of Transmission Electron Microscopy
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(TEM) for material design. In the context of orientation microscopy, ML-based ap-

proaches still need to catch up to traditional techniques, such as template matching

or the Kikuchi technique, when it comes to generalization performance over unseen

orientations and phases during training. This is due mainly to the limited experi-

mental data about the studied phenomena for training the models. Nevertheless, it is

a realistic and practical constraint, especially for narrow-domain applications where

actual data are not widely available. Some successful attempts have been made to

use unsupervised learning techniques to gain more insight into the data, but cluster-

ing information does not solve the orientation microscopy problem. To this end, we

propose a multi-task learning framework based on neural architecture search for fast

automation of phase and orientation determination in TEM images.

ii



Résumé

Les modèles prédictifs d’apprentissage automatique ont été appliqués à de nom-

breux domaines et applications jusqu’à présent. La majorité de ces algorithmes

d’apprentissage reposent sur des données d’apprentissage étiquetées qui peuvent être

coûteuses à obtenir car elles nécessitent l’étiquetage par un expert. De plus, avec

les nouvelles capacités de stockage, une grande quantité de données non étiquetées

existe en abondance. Dans ce contexte, le développement de nouveaux cadres pour

apprendre des modèles efficaces à partir d’un petit ensemble de données étiquetées,

ainsi qu’une grande quantité de données non étiquetées est un accent crucial de la

communauté de recherche actuelle. Atteindre cet objectif élèverait considérablement

l’état de l’art de l’intelligence artificielle pour être comparable ou surpasser la ca-

pacité humaine sur comment apprendre à généraliser des concepts à partir de très

peu d’exemples étiquetés. L’apprentissage semi-supervisé et l’apprentissage actif sont

deux sous-domaines de recherche actifs en cours qui visent à atteindre cet objectif.

Dans cette thèse, nous étudions deux directions de la théorie de l’apprentissage

automatique pour l’apprentissage semi-supervisé et actif. Premièrement, nous nous

intéressons aux propriétés de généralisation d’un algorithme d’auto-apprentissage

utilisant des demi-espaces avec une modélisation explicite des erreurs d’étiquetage.

Nous proposons un algorithme itératif pour apprendre une liste de demi-espaces à

partir de données d’apprentissage étiquetées et non étiquetées, dans lequel chaque

itération consiste en deux étapes, l’exploration et l’élagage. Nous dérivons une borne

de généralisation pour l’algorithme proposé sous un modèle d’étiquetage de bruit

de Massart. Deuxièmement, nous proposons une méta-approche pour les stratégies

d’apprentissage actif basées sur des pools dans le contexte de tâches de classifica-

tion multi-classes, qui s’appuie sur le concept proposé d’apprentissage sur les régions

topologiques propres (RTP) avec une hypothèse sous-jacente de lissage sur l’espace

métrique. Le TRP permet aux stratégies d’apprentissage actif basées sur le pool

d’obtenir un meilleur ensemble d’entrâınement initial que la sélection aléatoire et

d’augmenter la taille de l’échantillon d’entrâınement pendant les tours tout en fonc-
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tionnant dans un scénario de régime à petit budget. Des expérimentations menées

sur différents benchmarks démontrent l’efficacité de nos approches proposées pour

l’apprentissage semi-supervisé et actif par rapport aux méthodes de l’état de l’art.

Une troisième contribution de la thèse concerne le développement de solutions

pratiques d’apprentissage en profondeur dans le domaine difficile de la microscopie

électronique à transmission (TEM) pour la conception de matériaux. Dans le con-

texte de la microscopie d’orientation, les approches basées sur ML doivent encore

rattraper les techniques traditionnelles, telles que l’appariement de modèles ou la

technique de Kikuchi, en ce qui concerne les performances de généralisation sur des

orientations et des phases inconnu lors de l’apprentissage. Cela est dû principalement

au peu de données expérimentales sur les phénomènes étudiés pour l’entrâınement

des modèles. Néanmoins, il s’agit d’une contrainte réaliste et pratique, en particulier

pour les applications à domaine étroit où les données réelles ne sont pas largement

disponibles. Certaines tentatives réussies ont été faites pour utiliser des techniques

d’apprentissage non supervisées pour mieux comprendre les données, mais le regroupe-

ment des informations ne résout pas le problème de la microscopie d’orientation. À

cette fin, nous proposons un cadre d’apprentissage multi-tâches basé sur la recherche

d’architecture neuronale pour l’automatisation rapide de la détermination de la phase

et de l’orientation dans les images TEM.
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Chapter 1

Introduction

In this chapter, we will introduce our study by first presenting its context in Section

1.1; then by describing the main application we considered in Material Science that

is the Transmission Electron Microscopy in Section 1.2, and the motivation of using

Machine Learning for this task in Section 1.3. We will finally present the structure

of this thesis in Section 1.4 and give our personal publications and those that have

been submitted for this work.

1.1 Context

This thesis is being written as part of the “Multidisciplinary Institute in Artificial

Intelligence’s” (MIAI)1 Magnet chair. MIAI’s mission is to establish a center of excel-

lence in AI for research in Grenoble, where scientists from different research domains

may meet and form new alliances. Magnet Chair’s purpose is to create new learning

frameworks that incorporate contextual knowledge in training models that explore

the multidimensional design space of materials. The development of new materi-

als is at the heart of any technological transition, many of which are on the horizon:

lighter transportation (more efficient structures), energy production (renewable mate-

rials), circular economy (recyclable materials), resource crisis (substitution of critical

chemical species), gas capture and release (CO2, toxic gases). The vastness of the

materials design space presents a critical opportunity to combine high-throughput

materials exploration tactics based on experimental and simulation strategies with

powerful artificial intelligence capabilities. In this regard, the objective is to cre-

ate novel materials with optimum functionality to address the industrial difficulties

posed by future societal restrictions. The functions that are being sought include

1https://miai.univ-grenoble-alpes.fr
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structural, chemical, and physical qualities, as well as those linked to safety, ecology,

recycling, low cost, and accessibility. The quest for novel materials with specified

qualities remains highly empirical, typically directed by intuition and trial and error.

Beyond that, data-to-knowledge methodologies in materials research are particularly

promising. The chair has used novel Machine Learning (ML) methodologies to pro-

duce genuine materials based on specified attributes (local structure, microstructure,

thermodynamic and mechanical properties), anticipate new phases, and the atomic

structure of materials.

The goal of my thesis is to use context to increase the effectiveness of learning

models in two ways: first, by utilizing the structure of the data by using unlabeled

instances in the training of the models, and secondly, by considering related tasks to

the primary one in the training phase.

In this way the learning paradigms that we are taking into consideration; are

self-training, active-learning, and multi-task learning. The next section gives a quick

introduction to these frameworks.

1.1.1 Self-training

Self-training is a Semi-Supervised Learning (SSL) technique where we have a small

set of labeled training data together with a large set of unlabeled set with a goal to

Figure 1.1: Self-learning algorithm.
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learn a more efficient prediction model than by only utilizing the labeled training set.

First introduced in [102], the self-training algorithm augments iteratively the training

set with pseudo-labels obtained by labeling a selection of unlabeled examples with the

current model iteration. Then retrain a new model on the augmented training set,

and the iterations continue until a convergence criterion is verified. This criterion can

be the use of all available unlabeled examples or derived from the current model’s

performance. In our work, we investigate in Chapter 2, the learnability of a self-

training algorithm using halfspaces [72] for binary classification.

1.1.2 Active learning

In this framework, the learning algorithm is presented with unlabeled examples and

an oracle, which can interactively be prompted to label unlabeled examples with the

true outputs. The fundamental notion behind active learning is the idea of giving the

ability to a learning algorithm to choose the data samples it desires to learn from,

allowing it to possibly achieve better performance while requiring a fewer number

of training examples than by training the same model in a supervised fashion. We

identify in the literature two different active learning settings. In the pool-based

Figure 1.2: Active learning compared to traditional passive learning.
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setting, the learning algorithm is presented with all the unlabeled examples at once

in a pool. In the stream-based setting, the unlabelled examples are presented in a

stream, where each example is sent individually to the learning algorithm [103]. In

Chapter 3, we propose a study on pool-based active learning algorithms.

1.1.3 Transfer learning

In transfer learning, the knowledge of an already trained ML model is applied to a

different but related problem. For example, suppose we trained a model to solve a

classification problem on simulated data. In that case, we could use the knowledge

gained during its training to solve a new classification problem on real data. The

advantage of this technique is here to uses the knowledge a model has learned from

a source task with a lot of available labeled training data in a new task that does

not have much data. Instead of starting the learning process from scratch, we start

with already some patterns learned from solving a related task [123]. In Chapter 4,

we show how to use TL in our applicative contributions to material science.

1.1.4 Multi-task learning

Multi-task learning (MTL) is another subfield of ML in which multiple learning tasks

are solved at the same time by the learning algorithm. It has many denominations,

such as joint learning, learning to learn, and learning with auxiliary tasks, etc., but

they all share the same principle, improving the performance of multiple tasks by

learning them jointly rather than solving them separately [127]. In Chapter 4, we

design a use case for MTL and show its benefits for our applicative contributions to

material science.

Figure 1.3: Multi-task learning framework in ML.
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1.2 Application to Material Design: Transmission

Electron Microscopy (TEM)

Transmission Electron Microscopy (TEM) is a particular type of microscopy that uses

an electron beam traversing a thin sample (of the order of 100 nm) to characterize its

microstructure (nature, orientation and spatial distribution of phases) at high mag-

nification (down to the nanometer resolution or less). TEM has many applications

and observation modes in a number of different fields, such as life sciences, nanotech-

nology, biological and material research, industry, etc. In Figure 1.4, we depict the

general process of a TEM experiment under the particular observation mode consid-

ered in the present work, namely scanning transmission electron microscopy (STEM)

accompanied by Automated Crystal Orientation Mapping (ACOM). In this mode, the

sample is scanned (in 2D) by a small electron beam, generating a 2D map of typically

10 × 10 µm2 ; on each point of the map the diffraction diagram is acquired, which

results in a 4D dataset [27]. Further analysis of the diffraction diagrams allows to

generate many different information. For example, a virtual brightfield image (VBF)

of the scanned area can be drawn by plotting the intensity of the transmitted spot

(central spot in the diffraction diagram), see micrograph in Figure 1.4.

Figure 1.4: Transmission Electron Microscopy (TEM) analysis workflow.
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More advanced interpretation requires the analysis of all the diffraction diagrams.

Because it is resource intensive, this is performed in an offline fashion after the ex-

periment’s end. The algorithms designed to analyze these data are versions of the

template matching algorithm [23], where the objective is to find the best match to each

diffraction diagram from a predefined set of banks of different crystals (Section 4.1

of Chapter 4 details the literature). The resulting match provides information about

the type of crystal (phase detection) and its orientation in the specimen (orientation

detection) at the coordinate of the queried diffraction diagram. The analysis result

is presented as two different maps, the phases map and the orientation map, shown

on the right-hand side of Figure 1.4.

1.3 Motivation

As previously mentioned, effectively reducing the training cost of learning algorithms

in terms of labeled examples for ML is of utmost importance. It will contribute

directly to the spread of ML in narrow-domain applications where publicly available

data collections are in their premise growth and other applications where the cost of

labeling is such that having extensive training collections for Deep-Learning (DL) is

simply unrealistic. Therefore, the main aspect of this thesis was not only to implement

well-known strategies from the previously mentioned sub-fields of ML, which aim

to solve this problem but also to contribute to these subdomains by proposing in

Chapter 2, and Chapter 3 novel approaches and algorithms with solid theoretical

foundations.

TEM is a good example of a narrow-domain application with relatively scarce pub-

licly available datasets. Most of the matching algorithms designed to analyze TEM

data, with millions of image to retrieve, have a high time complexity by definition,

which implies that in the standard TEM workflow, the data analysis is performed

offline after the experiment’s end. ML approaches have a clear advantage over these

algorithms because the model’s prediction time is instantaneous, which enables online

solutions during the TEM experiment. However, there are practical challenges and

constraints to take into consideration for the development of ML solutions in this

application:

� The limited amount of available data to train ML models.

� The algorithms should generalize to unseen orientations during training.

� The TEM data is dependent on the experiment’s setting and microscope.

6



� TEM data exhibits a high frequency of duplicates, reducing the training data

size even further.

Chapter 4 presents a detailed investigation of what DL has to offer in order to solve

these challenges and proposes a DL model for the real-time analysis of TEM data.

1.4 Thesis structure

The rest of the thesis consists of the following:

� In Chapter 2, we investigate a new self-training algorithm for binary classi-

fication with halfspaces under the assumption the training set is corrupted by

label noise. We use a Massart noise model to describe label corruption and

examine the generalization properties of the classifier found by the self-training

algorithm.

� Chapter 3 uses topological clustering to provide a meta-approach for pool-

based active learning algorithms in low-budget regime scenarios. We demon-

strate how different active-learning algorithms might profit from this technique

in order to operate on limited budgets and handle the cold-start problem in a

cohesive manner.

� In Chapter 4 shows how we can successfully use DL to automate the anal-

ysis of TEM data collections to achieve real-time prediction during the TEM

experiment.

� Finally, Chapter 5 concludes our study in general and offers some future

prospects.
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Chapter 2

Self-Training of Halfspaces with
Generalization Guarantees under
Massart Mislabeling Noise Model

We investigate the generalization properties of a self-training algorithm with halfs-

paces. The approach learns a list of halfspaces iteratively from labeled and unlabeled

training data, in which each iteration consists of two steps: exploration and prun-

ing. In the exploration phase, the halfspace is found sequentially by maximizing

the unsigned-margin among unlabeled examples and then assigning pseudo-labels to

those that have a distance higher than the current threshold. The pseudo-labeled

examples are then added to the training set, and a new classifier is learned. This

process is repeated until no more unlabeled examples remain for pseudo-labeling. In

the pruning phase, pseudo-labeled samples that have a distance to the last halfs-

pace greater than the associated unsigned-margin are then discarded. We prove that

the misclassification error of the resulting sequence of classifiers is bounded and show

that the resulting semi-supervised approach never degrades performance compared to

the classifier learned using only the initial labeled training set. Experiments carried

out on a variety of benchmarks demonstrate the efficiency of the proposed approach

compared to state-of-the-art methods. This chapter is based on the following papers

[HALD22? ].

2.1 Introduction

In recent years, several attempts have been made to establish a theoretical foundation

for semi-supervised learning. These studies are mainly interested in the generalization

ability of semi-supervised learning techniques [99, 87] and the utility of unlabeled
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data in the training process [28, 107, 81]. The majority of these works are based on

the concept called compatibility in [12], and try to exploit the connection between

the marginal data distribution and the target function to be learned. The common

conclusion of these studies is that unlabeled data will only be useful for training if

such a relationship exists.

The three key types of relations considered in the literature are cluster assumption,

manifold assumption, and low-density separation [130, 30]. The cluster assumption

states that data contains homogeneous labeled clusters, and unlabeled training exam-

ples allow to recognize these clusters. In this case, the marginal distribution is viewed

as a mixture of class conditional distributions, and semi-supervised learning has been

shown to be superior to supervised learning in terms of achieving smaller finite-

sample error bounds in some general cases, and in some others, it provides a faster

rate of error convergence [28, 99, 87, 107]. In this line, [15] showed that the access to

the marginal distribution over unlabeled training data would not provide sample size

guarantees better than those obtained by supervised learning unless one assumes very

strong assumptions about the conditional distribution over the class labels. Manifold

assumption stipulates that the target function is in a low-dimensional manifold. [91]

establishes a context through which such algorithms can be analyzed and potentially

justified; the main result of this study is that unlabeled data may help the learning

task in certain cases by defining the manifold. Finally, low-density separation states

that the decision boundary lies in low-density regions. A principal way, in this case, is

to employ a margin maximization strategy which results in pushing away the decision

boundary from the unlabeled data [30, ch. 6]. Semi-supervised approaches based on

this paradigm mainly assign pseudo-labels to high-confident unlabeled training ex-

amples with respect to the predictions and include these pseudo-labeled samples in

the learning process [114]. However, [31] investigated empirically the problem of label

noise bias introduced during the pseudo-labeling process in this case and showed that

the use of unlabeled examples could have a minimal gain or even degraded perfor-

mance, depending on the generalization ability of the initial classifier trained over the

labeled training data.

In this chapter, we study the generalization ability of a self-training algorithm

with halfspaces that operates in two steps. In the first step, halfspaces are found

iteratively over the set of labeled and unlabeled training data by maximizing the

unsigned margin of unlabeled examples and then assigning pseudo-labels to those with

a distance greater than a found threshold. The pseudo-labeled unlabeled examples

are then added to the training set, and a new classifier is learned. This process is
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repeated until there are no more unlabeled examples to pseudo-label. In the second

step, pseudo-labeled examples with an unsigned margin greater than the last found

threshold are removed from the training set.

Our contribution is twofold: (a) we present a first generalization bound for self-

training with halfspaces in the case where class labels of examples are supposed to

be corrupted by a Massart noise model; (b) we show that the use of unlabeled data

in the proposed self-training algorithm does not degrade the performance of the first

halfspace trained over the labeled training data.

In the remainder of the chapter, Section 2.2 presents the definitions and the learn-

ing objective. In Section 2.3, we present in detail the adaptation of the self-training

algorithm for halfspaces. Section 2.4 presents a bound over the misclassification er-

ror of the classifier outputted by the proposed algorithm and demonstrates that this

misclassification error is upper-bounded by the misclassification error of the fully su-

pervised halfspace. In Section 2.5, we present experimental results, and we conclude

this work in Section 2.6.

2.2 Framework and Notations

We consider binary classification problems where the input space X is a subset of Rd,

and the output space is Y = {−1,+1}. We study learning algorithms that operate

in hypothesis space Hd = {hw : X → Y} of centered halfspaces, where each hw ∈ Hd

is a Boolean function of the form hw(x) = sign(⟨w,x⟩), with w ∈ Rd such that

∥w∥2 ≤ 1.

Our analysis succeeds the recent theoretical advances in robust supervised learn-

ing of polynomial algorithms for training halfspaces under large margin assumption

[41, 89, 42], where the label distribution has been corrupted with the Massart noise

model [86]. These studies derive a PAC bound for generalization error for supervised

classifiers that depends on the corruption rate of the labeled training set and shed

light on a new perspective for analyzing the self-training algorithm. Similarly, in our

analysis, we suppose that self-training can be seen as learning with an imperfect ex-

pert. Whereat at each iteration, labels of the pseudo-labeled set have been corrupted

with a Massart noise [86] oracle defined as:

Definition 2.1 ([86] noise oracle). Let C = {f : X → Y} be a class of Boolean

functions over X ⊆ Rd, with f an unknown target function in C, and 0 ≤ η < 1/2.

Let η be an unknown parameter function such that Ex∼Dx [η(x)] ≤ η, with Dx any

marginal distribution over X . The corruption oracle O(f,Dx, η) works as follow: each
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time O(f,Dx, η) is invoked, it returns a pair (x, y) where x is generated i.i.d. from

Dx; y = −f(x) with probability η(x) and y = f(x) with probability 1− η(x).

Let D denote the joint distribution over X × Y generated by the above oracle

with an unknown parameter function η such that Ex∼Dx [η(x)] ≤ η. We suppose that

the training set is composed of ℓ labeled samples Sℓ = (xi, yi)1≤i≤ℓ ∈ (X × Y)ℓ

and u unlabeled samples Xu = (xi)ℓ+1≤i≤ℓ+u ∈ X u, where ℓ << u. Furthermore,

we suppose that each pair (x, y) ∈ X × Y is i.i.d. with respect to the probability

distribution D, we denote by Dx the marginal of D on x, and Dy(x) the distribution

of y conditional on x. Finally, for any integer d, let [d] = {0, ..., d}.

2.2.1 Learning objective

Given Sℓ and Xu, our goal is to find a learning algorithm that outputs a hypothesis

hw ∈ Hd such that with high probability, the misclassification error P(x,y)∼D[hw(x) ̸= y]

is minimized and to show with high probability that the performance of such algo-

rithm is better or equal to any hypothesis in Hd obtained from Sℓ only. Here we

denote by ηw(x) = Py∼Dy(x)[hw(x) ̸= y] the conditional misclassification error of a

hypothesis hw ∈ Hd with respect to D and w∗ the normal vector of hw∗ ∈ Hd that

achieves the optimal misclassification error; ηηη∗ = min
w,∥w∥2≤1

P(x,y)∼D[hw(x) ̸= y].

By considering the indicator function 1π defined as 1π = 1 if the predicate π

is true and 0 otherwise, we prove in the following lemma that the probability of

misclassification of halfspaces over examples with an unsigned-margin greater than a

threshold γ > 0 is bounded by the same quantity 1 > ηηη > 0 that upper-bounds the

misclassification error of these examples.

Lemma 2.1. For all hw ∈ Hd , if there exist ηηη ∈]0, 1[ and γ > 0 such that

Px∼Dx [|⟨w,x⟩| ≥ γ] > 0 and that Ex∼Dx [(ηw(x)− ηηη)1|⟨w,x⟩|≥γ] ≤ 0, then

P(x,y)∼D[hw(x) ̸= y
∣∣|⟨w,x⟩| ≥ γ] ≤ ηηη.

Proof. For all hypotheses hw in Hd, we know that the error achieved by hw in the

region of margin γ from w satisfies Ex∼Dx [(ηw(x)− ηηη)1|⟨w,x⟩|≥γ] ≤ 0; by rewriting the

expectation, we obtain the following Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ]− ηηηPx∼Dx [|⟨w,x⟩| ≥ γ] ≤ 0.

We have then
Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]

Px∼Dx [|⟨w,x⟩|≥γ]
≤ ηηη and the result follows from the equality:

P(x,y)∼D[hw(x) ̸= y
∣∣|⟨w,x⟩| ≥ γ] =

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ]

Px∼Dx [|⟨w,x⟩| ≥ γ]
.
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Suppose that there exists a pair (w̃, γ̃) minimizing:

(w̃, γ̃) ∈ argmin
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ]

Px∼Dx [|⟨w,x⟩| ≥ γ]
. (2.1)

By defining η̃ as:

η̃ = inf
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ]

Px∼Dx [|⟨w,x⟩| ≥ γ]
.

The following inequality holds:

η̃ ≤ inf
w∈Rd

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥0]

Px∼Dx [|⟨w,x⟩| ≥ 0]
= ηηη∗.

This inequality paves the way for the following claim, which is central to the self-

training strategy described in the next section.

Claim 2.2. Suppose that there exists a pair (w̃, γ̃) satisfying the minimization prob-

lem (2.1) with Px∼Dx [|⟨w̃,x⟩| ≥ γ̃] > 0 , then P(x,y)∼D[hw̃(x) ̸= y
∣∣|⟨w̃,x⟩| ≥ γ̃] ≤ ηηη∗.

Proof. The requirements of Lemma 2.1 are satisfied with (w, γ) = (w̃, γ̃) and η = η̃.

This claim is then proved using the conclusion of Lemma 2.1 together with the fact

that η̃ ≤ η∗.

The claim above demonstrates that for examples generated by the probability

distribution D, there exists a region in X on either side of a margin γ̃ to the decision

boundary defined by w̃ solution of (Eq. 2.1); where the probability of misclassification

error of the corresponding halfspace in this region is upper-bounded by the optimal

misclassification error η∗. This result is consistent with semi-supervised learning

studies that consider the margin as an indicator of confidence and search the decision

boundary on low-density regions [69, 55, 9, 51, 112].

2.2.2 Problem resolution

We use a block coordinate minimization method for solving the optimization prob-

lem (2.1). This strategy consists in first finding a halfspace with parameters w̃

that minimizes Eq. (2.1) with a threshold γ = 0, and then by fixing w̃, finds the

threshold γ̃ for which Eq. (2.1) is minimum. We resolve this problem using the

following claim, which links the misclassification error ηw and the perceptron loss

ℓp(y, hw(x)) : Y × Y → R+; ℓp(y, hw(x)) = −y⟨w,x⟩1y⟨w,x⟩≤0.

Claim 2.3. For a given weight vector w, we have:

Ex∼Dx [|⟨w,x⟩|ηw(x)] = E(x,y)∼D[ℓp(y, hw(x))] (2.2)
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Proof. For a fixed weight vector w, we have that:

E(x,y)∼D[ℓp(y, hw(x))] = E(x,y)∼D[−y⟨w,x⟩1y⟨w,x⟩≤0].

As we are considering misclassification errors, i.e., −y⟨w,x⟩1y⟨w,x⟩≤0 = 1y⟨w,x⟩≤0|⟨w,x⟩|,
it comes that E(x,y)∼D[ℓp(y, hw(x))] = E(x,y)∼D[|⟨w,x⟩|Py∼Dy(x)

[−y⟨w,x⟩ > 0]]. The

result then follows from the definition of the misclassification error, i.e., ηw(x) =

Py∼Dy(x)
[−y⟨w,x⟩ > 0].

This claim shows that the minimization of the generalization error with ℓp is equiv-

alent to minimizing Ex∼Dx [|⟨w,x⟩|ηw(x)]. Hence, the minimization of Ex∼Dx [ℓp(y, hw(x))]

cannot result in bounded misclassification error, as the distribution of margins |⟨w,x⟩|
might vary widely between samples in X . In the following lemma, we show that it

is possible to achieve bounded misclassification error under margin condition and

L2-norm constraint.

Lemma 2.4. For a fixed distribution D, let R = max
x∼Dx

∥x∥2 and γ > 0, let w̃ and w̄

be defined as follows:

w̃ = argmin
w,||w||2≤1

Ex∼Dx [|⟨w,x⟩|ηw(x)
∣∣|⟨w,x⟩| ≥ γ]

w = argmin
w,||w||2≤1

Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ].

We then have:
γ

R
Ex∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ] ≤

Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ]

≤ Ex∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ].

Proof. From the condition |⟨w̃,x⟩| ≥ γ in the expectation, we have:

γEx∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ] ≤ Ex∼Dx [|⟨w̃,x⟩|ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ]

Applying the definition of w̃ to the right-hand side of the above inequality gives:

γEx∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ] ≤ Ex∼Dx [|⟨w,x⟩|ηw(x)

∣∣|⟨w,x⟩| ≥ γ]

Using the Cauchy–Schwarz inequality and the definition of R, we get:

γEx∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ] ≤ R Ex∼Dx [ηw(x)

∣∣|⟨w,x⟩| ≥ γ]

Then from the definition of w, we know:

R Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ] ≤ R Ex∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ]

Dividing the two inequalities above by R gives the result.

14



Algorithm 1 Self-Training with Halfspaces

1: Input : Sℓ = (xi, yi)1≤i≤l, Xu = (xi)l+1≤i≤n, p = 5 number of threshold tests.

2: Set k ← 0, S(k) = Sℓ, U
(k) = Xu, w = |S(k)|

p
, L = [].

3: while |S(k)| ≥ ℓ do
4: Let R̂S(k)(w) = 1

|S(k)|
∑

(x,y)∈S(k) [ℓp(y, hw(x))]

5: Run projected SGD on R̂S(k)(w) to obtain w(k) such that ∥w(k)∥2 ≤ 1.
6: Order S(k) by decreasing order of margin from w(k).
7: Set a window of indices I = [w, 2w, ..., pw],
8: find t = argmini∈I

1

|S(k)
≥i |

∑
(x,y)∈S(k)

≥i

1h
w(k) (x)̸=y.

9: Set γ(k) to the margin of the sample at position I[t].
10: Let U(k) = {x ∈ Xu

∣∣|⟨w(k),x⟩| ≥ γ(k)}.
11: if |U(k)| > 0 then

12: S
(k)
u = {(x, y)

∣∣x ∈ U(k) ∧ y = sign(⟨w(k),x⟩)}
13: S(k+1) ← S(k) ∪ S

(k)
u

14: Xu ← Xu \U(k)

15: else
16: L = L ∪ [(w(k), γ(k))]
17: S(k+1) = {(x, y) ∈ S(k)

∣∣|⟨w(k),x⟩| < γ(k)}
18: end if
19: Set k ← k + 1, w = |S(k)|

p

20: end while
21: Output : Lm = [(w(1), γ(1)), ..., (w(m), γ(m))]

Lemma 2.4 guarantees that the approximation of the perceptron loss to the mis-

classification error is more accurate for examples that have a comparable distance to

the halfspace. This result paves the way for our implementation of the self-learning

algorithm.

2.3 Self-Training with Halfspaces

Given Sℓ and Xu drawn i.i.d. from a distribution D corrupted with O(f,Dx, η
(0)). Al-

gorithm 1 learns iteratively a list of halfspaces Lm = [(w(1), γ(1)), ..., (w(m), γ(m))] with

each round consisting of exploration and pruning steps. The goal of the exploration

phase is to discover the halfspace with the highest margin on the set of unlabeled

samples that are not still pseudo-labeled. This is done by first, learning a halfspace

that minimizes the empirical surrogate loss of RD(w) = E(x,y)∼D[ℓp(y, hw(x))] over a
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set of labeled and already pseudo-labeled examples S(k) from Sℓ and Xu:

min
w
R̂S(k)(w) =

1

|S(k)|
∑

(x,y)∈S(k)

ℓp(y, hw(x)) (2.3)

s.t. ||w||2 ≤ 1

At round k = 0, we have S(0) = Sℓ. Once the halfspace with parameters w(k) is found,

a threshold γ(k), defined as the highest unsigned margin in S(k), is set such that the

empirical loss over the set of examples in S(k) with unsigned-margin above γ(k), is

the lowest. In the pseudo-code of the algorithm, S
(k)
≥i refers to the subset of examples

in S(k) having an unsigned margin greater or equal to ω × i. Unlabeled examples

x ∈ Xu that are not pseudo-labeled are assigned labels, i.e., y = sign(⟨w(k),x⟩) iff

|⟨w(k),x⟩| ≥ γ(k). These pseudo-labeled examples are added to S(k) and removed

from Xu, and a new halfspace minimizing Eq. (2.3) is found. Examples in S(k) are

supposed to be misclassified by the oracle O(f,Dx, η
(k)) following Definition 2.1 with

the parameter function η(k) that refers to the conditional probability of corruption in

S(k) defined as η(k)(x) = P
y∼S

(k)
y (x)

[f(x) ̸= y] ≤ η(k).

Once the halfspace with parameters w(k) and threshold γ(k) are found such that

there are no more unlabeled samples having an unsigned-margin larger than γ(k), the

pair (w(k), γ(k)) is added to the list Lm, and samples from S(k) having an unsigned-

margin above γ(k) are removed (pruning phase). Remind that γ(k) is the largest

threshold above which the misclassification error over S(k) increases.

In detail. The self-training algorithm takes as input the labeled set Sℓ, the

unlabeled set Xu and p, which refers to the number of tests for threshold estimation,

set to 5. After finding the weight vector w(k) at round k, with projected SGD (step

5), we order the labeled set S(k) (with S(0) = Sℓ) by decreasing order of unsigned-

margin to w(k). The threshold γ(k) is defined as the largest margin such that the

error of examples in S(k) with an unsigned margin higher than γ(k) increases (step

9). At this stage, observations x ∈ Xu with an unsigned margin greater than γ(k)

(step 12 − 13) are pseudo-labeled and added to the labeled set S(k) and they are

removed from the unlabeled set. This exploration phase of finding a halfspace with

the largest threshold γ(k) is repeated until there are no more unlabeled samples with

an unsigned margin larger than this threshold. After this phase, the pruning phase

begins by removing examples in S(k) with an unsigned margin strictly less than γ(k)

(step 17). The parameters of the halfspace and the corresponding threshold are added

to the list of selected classifiers Lm, and the procedure is repeated until the size of

the labeled set becomes less than ℓ.
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To classify an unknown example x, the prediction of the first halfspace with normal

vector w(i) in the list Lm, such that the unsigned-margin |⟨w(i),x⟩| of x is higher or

equal to the corresponding threshold γ(i), is returned. By abuse of notation, we

note that the prediction for x is Lm(x) = hw(i)(x). From Claim 2.2, we know that

the misclassification error of this halfspace on the region where x lies is bounded by

the optimal misclassification error η∗. If no such halfspace exists, the observation is

classified using the prediction of the first classifier hw(1) that was trained over all the

labeled and the pseudo-labeled samples without pruning; i.e., Lm(x) = hw(1)(x).

Lm(x) =

{
hw(i)(x) if ∃i : i = argmin1≤k≤m:|⟨w(k),x⟩|≥γ(k)

(
|⟨w(k),x⟩| − γ(k)

)
,

hw(1)(x) otherwise.

2.4 Corruption noise modeling and Generalization

guarantees

In the following, we relate the process of pseudo-labeling to the corruption noise model

O(f,Dx, η
(k)) for all pseudo-labeling iterations k in Algorithm 1, then we present a

bound over the misclassification error of the classifier Lm outputted by the algorithm

and demonstrate that this misclassification error is upper-bounded by the misclassi-

fication error of the fully supervised halfspace.

Claim 2.5. Let S(0) = Sℓ be a labeled set drawn i.i.d. from D = O(f,Dx, η
(0)) and

U(0) = Xu an initial unlabeled set drawn i.i.d. from Dx. For all iterations k ∈ [K] of

Algorithm 1; the active labeled set S(k) is drawn i.i.d. from D = O(f,Dx, η
(k)) where

the corruption noise distribution η(k) is bounded by:

∀k ∈ [K], Ex∼Dx [η
(k)(x)

∣∣x ∈ S(k)] ≤ max
j∈[K]

η(j)

Proof. We know that ∀k ∈ [K],S(k) ⊆ S(0) ∪
⋃k−1
i=0 S

(i)
u , where S

(i)
u is the set of

pseudo-labeled pairs of examples x from U(i), S
(i)
u = ∅ for the iterations i ∈ [K]

when no examples are pseudo-labeled. Then the noise distribution η(k) satisfies for

all k ∈ [K]:

Ex∼Dx [η
(k)(x)1x∈S(k) ] = Ex∼Dx [η

(k)(x)1x∈S(k)∩S(0) ] +
k−1∑
i=0

Ex∼Dx [η
(k)(x)1

x∈S(k)∩S(i)
u
]
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If we condition on x ∈ S(k), we obtain for all k ∈ [K]:

Ex∼Dx [η
(k)(x)

∣∣x ∈ S(k)] = P[x ∈ S(0)
∣∣x ∈ S(k)]Ex∼Dx [η

(0)(x)
∣∣x ∈ S(k) ∩ S(0)]+

k−1∑
i=0

P[x ∈ S(i)
u

∣∣x ∈ S(k)]Ex∼Dx [ηw(i)(x)
∣∣x ∈ S(k) ∩ S(i)

u ],

this equation includes the initial corruption of the labeled set S(0) = Sℓ in addition to

the noise injected by each classifier hw(k) at each round k when pseudo-labeling occurs.

Now that we have modeled the process of pseudo-labeling, the result is straightforward

considering the fact that Ex∼Dx [η
(0)(x)] ≤ η(0); ∀k ∈ [K],Ex∼Dx [ηw(k)(x)] ≤ η(k); and,

Px∼Dx [x ∈ S(0)
∣∣x ∈ S(k)] +

k−1∑
i=0

Px∼Dx [x ∈ S(i)
u

∣∣x ∈ S(k)]

= Px∼Dx [x ∈ S(0) ∪
k−1⋃
i=0

S(k)
u

∣∣x ∈ S(k)] ≤ 1. □

We can now state our main contribution that bounds the generalization error of the

classifier Lm outputted by Algorithm 1 with respect to the optimal misclassification

error η∗ in the case where projected SGD is used for the minimization of Eq. (2.3).

Note that in this case the time complexity of the algorithm is polynomial with respect

to the dimension d, the upper bound on the bit complexity of examples, the total

number of iterations, and the upper bound on SGD steps.

Theorem 2.6. Let Sℓ be a set of i.i.d. samples of size ℓ drawn from a distribution

D = O(f,Dx, η
(0)) on Rd × {−1,+1}, where f is an unknown concept function and

η(0) an unknown parameter function bounded by 1/2, let Xu be an unlabeled set of

size u drawn i.i.d. from Dx. Algorithm 1 terminates after K iterations, and outputs

a non-proper classifier Lm of m halfspaces such that with high probability:

P(x,y)∼D[Lm(x) ̸= y] ≤ η∗ +max
k∈I

ϵ(k) + πK+1,

where I is the set of rounds k ∈ [K] at which the halfspaces were added to Lm,

ϵ(k) is the projected SGD convergence error rate at round k, and πK+1 a negligible

not-accounted mass of Dx.

The proof of Theorem 2.6 is based on the following property of projected SGD.

Lemma 2.7 (From [45]). Let R̂ be a convex function of any type. Consider the pro-

jected SGD iteration, which starts with w(0) and computes for each step. w(t+ 1
2
) =
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w(t)−α(t)g(t);w(t+1) = argminw:||w||2≤1 ||w−w(t+ 1
2
)||2. Where g(t) is a stochastic sub-

gradient such that Ex∼Dx [g(w,x)] ∈ ∂R̂(w) = {g : R̂(w′) ≥ R̂(w) + ⟨E[g],w′ −
w⟩ for all w′} and Ex∼Dx [||g(w,x)||22] ≤M2. For any ϵ, δ > 0; if the projected

SGD is executed T = Ω(log(1/δ)/ϵ2) times with a step size α(t) = 1
M

√
t
, then for

w̄ = 1
T

∑T
t=1w

(t), we have with probability at least 1− δ that:

Ex∼Dx [R̂(w̄)] ≤ min
w,∥w∥2≤1

Ex∼Dx [R̂(w)] + ϵ.

Proof of Theorem 2.6. We consider the steps of Algorithm1. At iteration k of the

while loop, we consider the active training set S(k) consisting of examples not handled

in previous iterations.

We first note that the algorithm terminates after at most K iterations. From the

fact that at every iteration k, we discard a non-empty set from S(k) when we do not

pseudo-label or from U(k) when we pseudo-label, and that the empirical distributions

Sℓ and Xu are finite sets. By the guarantees of Lemma 2.7, running SGD (step 4)

on R̂S(k) for T = Ω(log(1/δ)/ϵ2) steps, we obtain a weight vector w(k) such that with

probability at least 1− δ:

Ex∼Dx [R̂S(k)(w(k))] ≤ min
w,∥w∥2≤1

Ex∼Dx [R̂S(k)(w)] + ϵ(k),

from Claim 2.3, we derive with high probability:

Ex∼Dx [|⟨w(k),x⟩|ηw(k)(x)] ≤ min
w,∥w∥2≤1

Ex∼Dx [|⟨w,x⟩|ηw(x)] + ϵ(k).

Then the margin γ(k) is estimated minimizing Eq. (2.1) givenw(k), following Lemma 2.4

with R(k) = max
x∼Dx

∥x∥2 the radius of the truncated support of the marginal distri-

bution Dx at iteration k, we can assume that γ(k)

R(k) ≈ 1, ∀k ∈ [K], one may argue

that the assumption is unrealistic knowing that the sequence of (γ(k))mk=1 decreases

overall, but as we show in the supplementary, we prove in Theorem B.1 that under

some convergence guarantees of the pairs {(w(k),w(k+1))}m−1
k=1 , one can show that the

sequence {R(k)}mk=1 decreases as a function of γ(k) respectively to k. As a result, we

can derive with high probability:

Ex∼Dx [ηw(k)(x)
∣∣|⟨w(k),x⟩| ≥ γ(k)] ≤ min

w,∥w∥2≤1
Ex∼Dx [ηw(x)

∣∣|⟨w,x⟩| ≥ γ(k)] + ϵ(k).

and the fact that for each round k only points with comparable large margins

are considered, we can assume that the conditional covariance for these examples
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with an unsigned margin greater than γ(k) satisfy Covx∼Dx(|⟨w(k),x⟩|, ηw(k)(x)) ≈
Covx∼Dx(|⟨w∗,x⟩|, ηw∗(x)), which implies that at round k:

Ex∼Dx [ηw(k)(x)
∣∣|⟨w(k),x⟩| ≥ γ(k)] − Ex∼Dx [ηw∗(x)

∣∣|⟨w(k),x⟩| ≥ γ(k)] ≤ ϵ(k)

where ϵ(k) = 3R(k)

2
√
P (k)Ex∼Dx [|⟨w∗,x⟩|

∣∣|⟨w(k),x⟩|≥γ(k)]
, ∀k ∈ [K].

From the statement of Claim 2.2 and giving the pair (w(k), γ(k)), we obtain with

high probability that at round k:

P(x,y)∼D[hw(k)(x) ̸= y
∣∣|⟨w(k),x⟩| ≥ γ(k)] ≤ ηηη∗ + ϵ(k). (2.4)

When the while loop terminates, we have accounted m ≤ K halfspaces in the list

Lm satisfying Eq. (2.4). For all k ∈ I, every classifier hw(k) in Lm has guarantees

on an empirical distribution mass of at least κ̃ = min
k∈I

Px∼S(k) [|⟨w(k),x⟩| ≥ γ(k)]; the

DKW (Dvoretzky-Kiefer-Wolfowitz) inequality [46] implies that the true probability

mass κ = min
k∈I

Px∼Dx [|⟨w(k),x⟩| ≥ γ(k)] of this region is at least κ̃ −
√

log 2
δ

2|S(n)| with

probability 1− δ, where n = argmin
k∈I

Px∼S(k) [|⟨w(k),x⟩| ≥ γ(k)].

The pruning phase in the algorithm ensures that these regions are disjoint for all

halfspaces in Lm, it follows that using the Boole–Fréchet inequality [21] on the con-

junctions of Eq. (2.4) overall rounds k ∈ [I], implies that Lm classifies at least a

(1 − mκ)-fraction of the total probability mass of D with guarantees of Eq. (2.4)

with high probability, let πK+1 = Px∼Dx [x ∈ S(K+1)] be the probability mass of the

region not accounted by Lm. We argue that this region is negligible from the fact

that |S(K+1)| < ℓ and ℓ ≪ u, such that setting ϵ = max
k∈I

ϵ(k) + πK+1 provides the

result. □

In the following, we show that the misclassification error of the classifier Lm out-

put of Algorithm 1 is at most equal to the error of the supervised classifier obtained

over the labeled training set Sℓ, when using the same learning procedure. This re-

sult suggests that the use of unlabeled data in Algorithm 1 does not degrade the

performance of the initially supervised classifier.

Theorem 2.8. Let Sℓ be a set of i.i.d. samples of size ℓ drawn from a distribution

D = O(f,Dx, η
(0)) on Rd × {−1,+1}, where f is an unknown concept function and

η(0) an unknown parameter function bounded by 1/2, let Xu be an unlabeled set of size

u drawn i.i.d. from Dx. Let Lm be the output of Algorithm 1 on input Sℓ and Xu, and

let hw(0) be the halfspace of the first iteration obtained from the empirical distribution

S(0) = Sℓ, there is a high probability that:
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P(x,y)∼D[Lm(x) ̸= y] ≤ P(x,y)∼D[hw(0)(x) ̸= y]

Proof. By the guarantees of Lemma 2.7, the classifier hw(0) obtained on running SGD

on R̂S(0) with projection to the unit l2-ball for P
(0) steps satisfies :

E(x,y)∼D[Relu(−y⟨w(0),x⟩)] − E(x,y)∼D[Relu(−y⟨w∗,x⟩)] ≤ 3maxx∈Sℓ
∥x∥

2
√
P (0)

Let k be the iteration at which the first pair (w(1), γ(1)) is added to Lm. The first

pruning phase in Algorithm 1 results in a set S(k) ⊆ Sℓ∪
⋃k−1
i=1 S

(i)
u . Claim 2.5 ensures

that the probability of corruption in the pseudo-labeled set
⋃k−1
i=1 S

(i)
u is bounded by

max
j∈[k]

η(j) ≤ η∗ + ϵ.

In other words, the weight vector w(1) is obtained from an empirical distribution that

includes both the initial labeled set Sℓ and a pseudo-labeled set fromXu. Particularly,

if this pseudo-labeled set is not empty, then its pseudo-labeling error is nearly optimal,

which implies that P(x,y)∼D[hw(1)(x) ̸= y] ≤ P(x,y)∼D[hw(0)(x) ̸= y].

Ultimately, Lm classifies a large fraction of the probability mass of D with nearly

optimal guarantees (e.i., Eq. (2.4) in proof of Theorem 2.6) and the rest using hw(1)

with an error of misclassification at most equal to P(x,y)∼D[hw(0)(x) ̸= y].

We show the assumption admitted for the proof of Theorem 4.5 in the following

Theorem.

Theorem 2.9. Let Sℓ be a set of i.i.d. samples of size ℓ drawn from a distribution

D = O(f,Dx, η
(0)) on Bd×{−1,+1}, where f is an unknown concept function and η(0)

an unknown parameter function bounded by 1/2, let Xu be an unlabeled set of size u

drawn i.i.d. from Dx, let Lm = [(w(i), γ(i))]mi=1 be the outputted list by Algorithm 1 on

input Sℓ and Xu, and let α(k) be the smallest angle between two consecutive halfspaces

(w(k),w(k+1)) in Lm for all k ∈ [m − 1]. We define (R(k))mi=1 the sequence of bounds

where each R(k) is the bound of the margin |⟨w(k),x⟩| over Dx when the pair (w(k), γ(k))

is obtained, we have for all k in [m]:

R(1) = 1 ; R(k+1) =

{
sin
(
α(k) + arcsin

(
γ(k)
))

if α(k) ∈
[
0, arccos

(
γ(k)
)]
,

1 otherwise.

Proof. For k = 1, it is trivial to say that R(1) is the upper-bound for the margin

distribution of w(1) using Cauchy-Schwarz inequality and given ∥w(1)∥2 ≤ 1. Next,

we suppose that the definition is true for k, and we will show in the following that

the definition holds for k + 1, for that we will distinguish two different cases:
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� Case when α(k) ∈
[
0, arccos

(
γ(k)
)]

In Figure 2.1, left, we show that if the halfspace with weight vector w(k+1) does

not extremely deviates from w(k), then we can express its upper-bound R(k+1)

of the margin distribution on the truncated space of Dx as a function of γ(k) and

the angle deviation α(k). Note that if α(k) = 0, then we have that R(k+1) = γ(k).

� Case when α(k) ∈
]
arccos

(
γ(k)
)
, π
2

[
In Figure 2.1, right, we show that if the halfspace with weight vector w(k+1)

extremely deviates from w(k), then its upper-bound R(k+1) of the margin distri-

bution on the truncated space of Dx is equal to the radius of the unit ball.

w(k)

γ(k)

γ(k)

α(k)

w(k+1)

R(k+1)

w(k)

γ(k)

γ(k)

α(k)

w(k+1)

R(k+1)

Figure 2.1: Case when α(k) ∈
[
0, arccos

(
γ(k)
)]

(left) and α(k) ∈
]
arccos

(
γ(k)
)
, π
2

[
(right) for a pair

(
w(k),w(k+1)

)
in Lm.

For a pair (w(k), γ(k)) estimated in Algorithm 1 at iteration k ∈ [K], the con-

ditional covariance Covx∼Dx(|⟨w(k),x⟩|, ηw(k)(x) | |⟨w(k),x⟩| ≥ γ(k)) for examples in

D with an unsigned margin greater or equal than γ(k) to w(k) is comparable to the

conditional covariance Covx∼Dx(|⟨w∗,x⟩|, ηw∗(x) | |⟨w(k),x⟩| ≥ γ(k)) for these same

examples. Similarly, the unsigned margin average of these examples to w(k) denoted

as Ex∼Dx(|⟨w(k),x⟩| | |⟨w(k),x⟩| ≥ γ(k)) is also comparable to the unsigned margin

average to w∗ denoted as Ex∼Dx(|⟨w∗,x⟩| | |⟨w(k),x⟩| ≥ γ(k)).

In the following, we relate the process of pseudo-labeling to the corruption noise

model O(f,Dx, η
(k)) for all pseudo-labeling iterations k in Algorithm 1, then we

present a bound over the misclassification error of the classifier Lm outputted by

the algorithm and demonstrate that this misclassification error is upper-bounded by

the misclassification error of the fully supervised halfspace.
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Claim 2.10. Let S(0) = Sℓ be a labeled set drawn i.i.d. from D = O(f,Dx, η
(0)) and

U(0) = Xu an initial unlabeled set drawn i.i.d. from Dx. For all iterations k ∈ [K] of

Algorithm 1; the active labeled set S(k) is drawn i.i.d. from D = O(f,Dx, η
(k)) where

the corruption noise distribution η(k) is bounded by:

∀k ∈ [K], Ex∼Dx [η
(k)(x)

∣∣x ∈ S(k)] ≤ max
j∈[K]

η(j)

Proof. We know that ∀k ∈ [K],S(k) ⊆ S(0) ∪
⋃k−1
i=0 S

(i)
u , where S

(i)
u is the set of

pseudo-labeled pairs of examples x from U(i), S
(i)
u = ∅ for the iterations i ∈ [K]

when no examples are pseudo-labeled. Then the noise distribution η(k) satisfies for

all k ∈ [K]:

Ex∼Dx [η
(k)(x)1x∈S(k) ] = Ex∼Dx [η

(k)(x)1x∈S(k)∩S(0) ] +
k−1∑
i=0

Ex∼Dx [η
(k)(x)1

x∈S(k)∩S(i)
u
]

= Px∼Dx [x ∈ S(k) ∩ S(0)]Ex∼Dx [η
(0)(x)

∣∣x ∈ S(k) ∩ S(0)]+

k−1∑
i=1

Px∼Dx [x ∈ S(k) ∩ S(i)
u ]Ex∼Dx [ηw(i)(x)

∣∣x ∈ S(k) ∩ S(i)
u ]

If we condition on x ∈ S(k), we obtain for all k ∈ [K]:

Ex∼Dx [η
(k)(x)

∣∣x ∈ S(k)] = P[x ∈ S(0)
∣∣x ∈ S(k)]Ex∼Dx [η

(0)(x)
∣∣x ∈ S(k) ∩ S(0)]+

k−1∑
i=0

P[x ∈ S(i)
u

∣∣x ∈ S(k)]Ex∼Dx [ηw(i)(x)
∣∣x ∈ S(k) ∩ S(i)

u ],

this equation includes the initial corruption of the labeled set S(0) = Sℓ in addition to

the noise injected by each classifier hw(k) at each round k when pseudo-labeling occurs.

Now that we have modeled the process of pseudo-labeling, the result is straightforward

considering the fact that Ex∼Dx [η
(0)(x)] ≤ η(0);∀k ∈ [K],Ex∼Dx [ηw(k)(x)] ≤ η(k); and,

Px∼Dx [x ∈ S(0)
∣∣x ∈ S(k)]+

k−1∑
i=0

Px∼Dx [x ∈ S(i)
u

∣∣x ∈ S(k)]

= Px∼Dx [x ∈ S(0) ∪
k−1⋃
i=0

S(k)
u

∣∣x ∈ S(k)] ≤ 1. □

2.5 Empirical Results

We compare the proposed approach to state-of-the-art strategies developed over the

three fundamental working assumptions in semi-supervised learning over ten publicly

available datasets. We shall now describe the corpora and methodology.
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Datasets. We mainly consider benchmark data sets from [30]. Some of these col-

lections such as baseball-hockey, pc-mac and religion-atheism are binary classification

tasks extracted from the 20-newsgroups data set.

data set d −1 +1 ℓ+ u test
one-two 64 177 182 251 108
banknote 4 762 610 919 453
odd-even 64 906 891 1257 540
pc-mac 3868 982 963 1361 584

baseball-hockey 5724 994 999 1395 598
religion-atheism 7829 1796 628 1696 728

spambase 57 2788 1813 3082 1519
weather 17 43993 12427 37801 18619
delicious2 500 9610 6495 12920 3185
mediamill2 120 15969 27938 30993 12914

Table 2.1: data set statistics, −1 and +1 refer to the size of negative and positive
class respectively, and test is the size of test set.

We used tf-idf representation for all textual data sets above. spambase is a collec-

tion of spam e-mails from the UCI repository [43]. one-two, odd-even are handwrit-

ten digits recognition tasks originally from optical recognition of handwritten digits

database also from UCI repository, one-two is digits ”1” versus ”2”; odd-even is the

artificial task of classifying odd ”1, 3, 5, 7, 9” versus even ”0, 2, 4, 6, 8” digits.

weather is a data set from Kaggle which contains about ten years of daily weather

observations from many locations across Australia, and the objective is to classify

the next-day rain target variable. We have also included data sets from extreme

classification repository [18] mediamill2 and delicious2 by selecting the label which

gives the best ratio in class distribution. The statistics of these data sets are given in

Table 2.1.

Baseline methods. We implemented the halfspace or Linear Threshold Function

(LTF) using TensorFlow 2.0 in python aside from Algorithm 11 (Lm), we ran a Sup-

port Vector Machine (SVM) [39] with a linear kernel from the LIBLINEAR library

[49] as another supervised classifier. We compared results with a semi-supervised

Gaussian naive Bayes model (GM) [30] from the scikit-learn library. The working

hypothesis behind (GM) is the cluster assumption stipulating that data contains ho-

mogeneous labeled clusters, which can be detected using unlabeled training samples.

1For research purposes, the code will be freely available.
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We also compared results with label propagation (LP) [131] which is a semi-supervised

graph-based technique. We used the implementation of LP from the scikit-learn li-

brary. This approach follows the manifold assumption that the decision boundary is

located on a low-dimensional manifold and that unlabeled data may be utilized to

identify it. We also included entropy regularized logistic regression (ERLR) proposed

by [55] from [76]. This approach is based on low-density separation that stipulates

that the decision boundary lies on low-density regions. In the implementation of [76],

the initially supervised classifier is a logistic regression that has a similar performance

to the SVM classifier. We tested these approaches with relatively small labeled train-

ing sets ℓ ∈ {10, 50, 100}, and because labeled information is scarce, we used the

default hyper-parameters for all approaches.

Experimental setup. In our experiments, we have randomly chosen 70% of each

data collection for training and the remaining 30% for testing. We randomly selected

sets of different sizes (i.e., ℓ ∈ {10, 50, 100}) from the training set as labeled examples;

the remaining was considered as unlabeled training samples. Results are evaluated

over the test set using the accuracy measure. Each reported performance value is the

average over the 20 random (labeled/unlabeled/test) sets of the initial collection. All

experiments are carried out on a machine with an Intel Core i7 processor, 2.2GhZ

quad-core, and 16Go 1600 MHz of RAM memory.

Analysis of results. Table 2.2 summarizes the results. We used boldface (resp.

underline) to indicate the highest (resp. the second-highest) performance rate, and

the symbol ↓ indicates that performance is significantly worse than the best result,

according to a Wilcoxon rank-sum test with a p-value threshold of 0.01 [117]. From

these results, it comes out that the proposed approach (Lm) consistently outperforms

the supervised halfspace (LTF). This finding is in line with the result of Theorem 2.8.

Furthermore, compared to other techniques, Lm generally performs the best or the

second best. We also notice that in some cases, LP, GM, and ERLR outperform the

supervised approaches, SVM and LTF (i.e., GM on spambase for ℓ ∈ {10, 50}), but
in other cases, they are outperformed by both SVM and LTF (i.e., GM on religion-

atheism). These results suggest that unlabeled data contain useful information for

classification and that existing semi-supervised techniques may use it to some extent.

They also highlight that developing semi-supervised algorithms following the given

assumptions are necessary for learning with labeled and unlabeled training data but

not sufficient. The importance of developing theoretically founded semi-supervised
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Table 2.2: Mean and standard deviations of accuracy on test sets over the 20 trials
for each data set. The best and the second-best performance are respectively in bold
and underlined. ↓ indicates statistically significantly worse performance than the best
result, according to a Wilcoxon rank-sum test (p < 0.01) [117].

Dataset ℓ SVM LTF LP GM ERLR Lm

one-two
10 61.38± 13.71↓ 70.87± 13.24↓ 48.61± 3.98↓ 75.09± 1.30 53.65± 10.65↓ 77.77± 1.75
50 92.77± 3.05 88.00± 3.24↓ 49.35± 4.20↓ 84.67± 4.98↓ 75.78± 8.74↓ 91.34± 3.21
100 96.15± 1.38 92.50± 1.43↓ 67.82± 12.99↓ 86.52± 3.26↓ 79.25± 6.87↓ 94.62± 2.46

banknote
10 57.50± 7.21↓ 69.40± 5.53↓ 55.98± 2.00↓ 69.04± 4.60↓ 56.71± 4.53↓ 77.24± 3.81
50 61.67± 4.86↓ 82.31± 2.13↓ 56.28± 1.89↓ 75.48± 5.30↓ 65.95± 2.01↓ 85.64± 5.36
100 71.65± 6.24↓ 89.38± 3.24 57.20± 2.19↓ 77.56± 4.34↓ 70.95± 3.24↓ 90.82± 3.31

odd-even
10 53.45± 4.80↓ 58.20± 4.71↓ 50.37± 1.95↓ 60.69± 7.48 50.40± 2.21↓ 63.21± 7.51
50 64.75± 5.65↓ 76.84± 2.99↓ 50.37± 1.95↓ 62.67± 5.82↓ 53.17± 4.80↓ 80.61± 3.10
100 75.89± 6.25↓ 77.68± 4.56↓ 53.37± 1.95↓ 64.25± 8.18↓ 59.23± 6.28↓ 84.58± 2.12

pc-mac
10 51.00± 3.22↓ 54.92± 2.00↓ 50.93± 1.59↓ 54.76± 3.42↓ 50.14± 2.06↓ 57.75± 3.19
50 58.85± 5.09↓ 61.78± 2.86↓ 50.83± 2.08↓ 58.78± 4.31↓ 49.71± 1.99↓ 64.31± 3.55
100 64.57± 4.42↓ 67.98± 2.37 50.76± 2.26↓ 62.49± 1.88↓ 50.36± 2.19↓ 68.15± 5.66

baseball-hockey
10 51.57± 2.98↓ 55.41± 3.16↓ 56.53± 5.18 49.86± 1.77↓ 49.88± 1.89↓ 56.47± 5.50
50 58.66± 6.90↓ 69.29± 4.32 50.11± 1.84↓ 66.76± 5.40↓ 50.16± 1.90↓ 72.85± 6.52
100 68.40± 4.65↓ 76.25± 2.41↓ 49.97± 1.82↓ 71.12± 5.06↓ 50.35± 1.89↓ 79.48± 4.36

religion-atheism
10 67.30± 6.95 57.30± 4.89↓ 67.59± 6.36 60.67± 16.37↓ 71.95± 5.03 64.25± 7.24↓

50 74.61± 1.62 71.79± 1.98↓ 67.43± 6.05↓ 69.16± 7.88 74.16± 1.88 72.47± 2.00
100 74.66± 1.59 73.67± 1.76 62.84± 19.33↓ 70.45± 4.39↓ 73.21± 1.75 73.77± 1.82

spambase
10 61.20± 5.15↓ 57.80± 5.29↓ 60.82± 0.84↓ 74.41± 6.64 53.38± 11.23↓ 68.92± 5.83↓

50 62.59± 9.42↓ 74.99± 6.04 61.15± 0.86↓ 78.25± 2.62 53.63± 9.86↓ 76.13± 3.08
100 69.43± 10.19↓ 80.07± 4.08 61.24± 10.26↓ 79.08± 2.83↓ 58.21± 6.34↓ 81.93± 2.46

weather
10 74.85± 0.51 68.09± 1.73↓ 75.49± 0.34 75.02± 2.79 40.35± 17.29↓ 75.08± 4.18
50 75.79± 0.28 75.30± 3.85 77.99± 0.31 75.68± 2.78 41.55± 27.39↓ 75.34± 3.80
100 77.99± 0.25 76.27± 3.64 77.99± 0.25 74.92± 1.92 46.00± 24.87↓ 77.28± 2.99

delicious2
10 51.83± 9.88 50.59± 2.65↓ 60.02± 0.61 49.41± 3.83↓ 51.83± 10.42↓ 51.08± 1.80↓

50 60.04± 0.62 54.78± 2.57↓ 60.00± 0.59 48.35± 1.31↓ 53.48± 8.66↓ 55.37± 3.33↓

100 58.88± 3.70 56.04± 1.83↓ 59.87± 0.67 48.92± 0.94↓ 54.43± 7.27↓ 56.54± 1.87↓

mediamill2
10 62.54± 2.62↓ 60.98± 6.85↓ 36.35± 0.15↓ 63.92± 1.71 47.24± 14.08↓ 64.31± 3.14
50 63.64± 0.15↓ 60.88± 7.45↓ 36.36± 0.15↓ 65.98± 3.32 58.58± 11.88↓ 65.41± 4.83
100 63.64± 0.15↓ 64.26± 4.79 36.37± 0.15↓ 67.34± 0.73 63.64± 0.16↓ 67.80± 2.21

algorithms exhibiting the generalization ability of the method can provide a better

understanding of the usefulness of unlabeled training data in the learning process.

2.6 Conclusion

In this chapter, we presented a first bound over the misclassification error of a self-

training algorithm that iteratively finds a list of halfspaces from partially labeled

training data. Each round consists of two steps: exploration and pruning. The ex-

ploration phase aims to determine the halfspace with the largest margin and assign

pseudo-labels to unlabeled observations with an unsigned margin larger than the dis-

covered threshold. The pseudo-labeled instances are then added to the training set,

and the procedure is repeated until there are no more unlabeled instances to pseudo-

label. In the pruning phase, the last halfspace with the largest threshold is preserved,

ensuring that there are no more unlabeled samples with an unsigned margin greater
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than this threshold and pseudo-labeled samples with an unsigned margin greater than

the specified threshold are removed. Our findings are based on recent theoretical ad-

vances in robust supervised learning of polynomial algorithms for training halfspaces

under large margin assumptions with a corrupted label distribution using the Mas-

sart noise model. We ultimately show that the use of unlabeled data in the proposed

self-training algorithm does not degrade the performance of the initially supervised

classifier. As future work, we are interested in quantifying the real gain of learning

with unlabeled and labeled training data compared to a fully supervised scheme.
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Chapter 3

Pool-Based Active Learning with
Proper Topological Regions

Pool-based active learning methods are one of the most promising paradigms of active

learning in solving the problem of annotation efficiency. One of the main criticism

of these approaches is that they are supposed to operate under low-budget regimes

where they can have an advantage over semi-supervised or self-supervised methods.

However, most of these approaches rely on the underlying trained estimator accuracy,

which often has a higher sample complexity than the low-budget regime scenario.

Secondly, they commonly share the initial training set selection drawback, namely

the cold-start problem. This chapter presents a meta-approach for pool-based active

learning strategies in the context of multi-class classification tasks. Our approach

relies on the proposed concept of learning on proper topological regions with an

underlying smoothness assumption on the metric space. This allows us to increase

the training sample size during the rounds while operating in a low-budget regime

scenario. We show empirically on various real benchmark datasets that our approach

dramatically improves the performance of uncertainty-based sampling strategies over

the random selection, not only for the cold-start problem but overall the iterations in

a low-budget regime. Furthermore, comparisons on the same benchmarks show that

the performance of our approach is competitive to the state-of-the-art methods from

the literature that address the cold-start problem in active learning. This chapter is

based on the following paper [HDMA22].

3.1 Introduction

In recent years, machine learning has found gainful application in diverse domains.

However, it still has a heavy dependence on expensive labeled data: advances in
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cheap computing and storage have made it easier to store and process large amounts

of unlabeled data, but labeling needs often to be done by humans or using costly

tools. Therefore, there is a need to develop general domain-independent methods to

learn models effectively from a large amount of unlabeled data at the disposal, along

with a minimal amount of labeled data. Active learning specifically aims to detect

the observations to be labeled to optimize the learning process and efficiently reduce

the labeling cost. In this setting, learning occurs iteratively. At each round, the

algorithms can interactively query a ground truth oracle to label unlabeled examples.

Then, after training, the algorithms proactively select the subset of examples to be

labeled next from the pool of unlabeled data. The primary assumption behind the

active learner algorithm concept is that machine learning algorithms could reach a

higher level of performance while using a smaller number of training labels if they

were allowed to choose the training data set [103]. Most common and straightforward

active learning approaches are iterative, also known as pool-based methods [80, 38],

where we first derive a model trained on a small random labeled subsample. Then,

at each iteration, we choose unlabeled examples to query based on the predictions

of the current model and a predefined priority score. These approaches show their

limitations in low-budget regime scenarios from their need for a sufficient budget to

learn a weak model [95]. The literature has shown that for active learning to operate

in a low-budget regime successfully, we need to introduce a form of regularization in

training [56] usually found in other sub-domains, such as semi-supervised learning or

self-learning [29]. Another line of work shows that the choice of the initial seed set in

these approaches significantly impacts the end performance of their models [63, 34],

also known as the cold-start problem in active learning. Our work is a step further

in this direction. We propose a unified meta-approach for pool-based active learning

methods to efficiently resolve these previously mentioned drawbacks and to enhance

even further the performance of these methods while reducing the amount of queried

examples.

Topological data analysis (TDA) [48, 6] has been successful in various fields

[118, 98, 67, 77], including machine learning. A critical insight in TDA, a widely

accepted assumption, is that data sets often have nontrivial topologies that should

be exploited in their analysis [25]. TDA provides mathematically well-founded and

flexible tools based on the algebraic topology to recover topological information from

data to get insights from this hidden information. Many of these tools use persistent

homology which allows studying the underlying topological information of a wide va-

riety data types, even in high-dimension. To understand the underlying topology, we
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can construct Vietoris-Rips complexes [58] from the data which are then inspected

through persistent homology, topological information is then encoded with persis-

tence modules and diagrams [47]. These topological insights can then be exploited to

enhance the study of the structure of the data [108, 84, 26].

3.2 Related literature

Different attempts have been made to reduce the annotation burden of machine learn-

ing algorithms. We can refer to the remarkable advances made in semi-supervised

learning [131, 55, 14, 10, 126, 17], these methods take as input a small set of labeled

training data together with a large number of unlabeled examples. They introduce

a form of consistency regularization to the supervised loss function by applying data

augmentation using unlabeled observations [29]. Similarly, pool-based active learning

methods also take as input a large number of unlabeled examples together with an

expert in which they iteratively query to annotate data samples in order to maximize

the model knowledge while minimizing the number of queries. Most commonly known

pool-based strategies are uncertainty sampling [80, 129], margin sampling and entropy

sampling strategies [103]. Some proposed strategies rely on the query-by-committee

approach [128, 120, 78], which learns an ensemble of models at each round. Query by

bagging and query by boosting are two practical implementations of this approach

that use bagging and boosting to build the committees [5]. There has been exhaustive

research on how to derive efficient disagreement measures and query strategies from

a committee, including vote entropy, consensus entropy, and maximum disagreement

[103], whereas [8] introduces model selection for a committee. Some research focuses

on solving a derived optimization problem for optimal query selection, in [101] they

use Monte Carlo estimation of the expected error reduction on test examples. In

contrast, other strategies employ Bayesian optimization on acquisition functions such

as the probability of improvement or the expected improvement [53], and in [11], the

authors propose to cast the problem of selecting the most relevant active learning cri-

terion as an instance of the multi-armed bandit problem. Aside from the pool-based

setting, we also find the stream-based setting for active learning in the literature

[83, 13]. In this case, the learner has no access to any unlabeled examples. Instead,

each unlabeled sample is given to him individually, and he queries its label if he finds

it helpful. For instance, an example can be marked as valuable if the prediction is

uncertain, and acquiring its label would remove this uncertainty.
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Recent advances in active learning propose enhancing the pool-based methods by

extracting knowledge from the distribution of unlabeled examples [20]. [93] propose

to use clustering of unlabeled examples to boost the performance of pool-based ac-

tive learners, with the expert annotating at each iteration cluster rather than single

examples. Such strategy allows to reduce the annotation effort under the assump-

tion that the cost of cluster annotation is comparable to single example labeling.

Similarly, [74, 75] propose to combine clustering with Bayesian optimization in the

stream-based setting. In [111]authors propose a procedure for binary domain fea-

ture sets to recover the labeling of a set of examples while minimizing the number of

queries. They show that this routine reduces label complexity for training learners,

[124] propose a two-stage clustering constraint in the active learning algorithm, a

first exploration phase to discover representative clusters of all classes, and a post-

clustering reassignment phase where the learner is constrained on the initial clusters

found at the first stage. Finally, unsupervised algorithms such as clustering showed

promising results for addressing the cold-start problem in pool-based active learning

strategies [63, 34].

The meta-method that we propose for pool-based active learning relies on notions

from topological data analysis (TDA), which has recently brought exciting new ideas

to the machine learning community. Primarily, topological clustering has been used

in unsupervised learning [19, 24]. Among these studies, ToMATo [52] is a mode-seeking

clustering algorithm with a cluster merging phase guided by topological persistence

[94].

3.3 Framework and topological considerations

3.3.1 Framework and notations

We consider multi-class classification problems such that the input space X is a subset

of Rm, the output space Y = {1, . . . , c} is a set of unknown classes of cardinal c ∈
N, c ≥ 2, the pair (X , d) is a metric space, and d : X×X → [0,∞) is a fixed and known

distance metric. Let S = {(xi, yi)}ni=1 be the data sample of size n generated by some

unknown distribution over X ×Y with unknown labels yi, and let P be the unknown

marginal distribution over X . An active learner will have access to the unlabeled

sample set Sx = {xi}ni=1 and the conditional concept function O : X → Y . We denote

CR : {1, . . . , n} → {1, . . . , k} the partition function induced by a graph R = (Sx, E) of
k connected components with k ∈ N∗, where CR(xi) = {∀xj ∈ Sx, CR(i) = CR(j)} is
the connected component of graph R that includes the node xi. For all i ∈ {1, . . . , n},
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we define CP
R : Sx → Y as the labeling function that propagates the label of the sample

with the highest density in the connected component CR(xi) to all the examples of

the same connected component in graph R :

CP
R(xi) = O

(
argmax
xj∈CR(xi)

P(xj)

)
,∀i ∈ {1, . . . , n},

note that CP
R(.) is a crucial notion in our proposed meta-approach to allow pool-based

active learning strategies to operate in a low-budget regime.

Definition 3.1 (Rips graph). Given a finite point cloud Sx = {xi}ni=1 from a metric

space (X , d) and a real number δ ≥ 0, the Rips graph Rδ(Sx) is the graph of vertex set

Sx whose edges correspond to the pairs of points xi,xj ∈ Sx such that d(xi,xj) ≤ δ:

Rδ(Sx) = (V,E) : V = Sx, E = {(xi,xj) ∈ V 2, i ̸= j, d(xi,xj) < δ},

let the hypothesis class of Rips graphs over Sx be HR = {Rδ(Sx),∀δ ∈ R+}.

Definition 3.2 (σ-Rips graph). Given a finite point cloud Sx = {xi}ni=1 from a metric

space (X , d), a real-valued function σδ : X 2 → R∗
+ with parameters δ, the σ-Rips graph

Rσ
δ (Sx) is the graph of vertex set Sx whose edges correspond to the pairs of points

xi,xj ∈ Sx such that d(xi,xj) ≤ σδ(xi,xj):

Rσ
δ (Sx) = (V,E) : V = Sx, E = {(xi,xj) ∈ V 2, i ̸= j, d(xi,xj) < σδ(xi,xj)},

let the hypothesis class of σ-Rips graphs over Sx be HRσ = {Rσ
δ (Sx),∀δ ∈ dom(σ)}.

Classification algorithms in machine learning generally assume (often implicitly)

that close samples in the considered metric space (X , d) are associated with similar

labels, also known as the smoothness assumption. Given a data sample S, the Rips

graph Rδ(Sx) encodes this notion to some extent with an appropriate threshold δ.

However, class similarity might be different over the metric space. For example,

samples in high-density regions should be closer to being associated with similar labels

than those in low-density regions. Consequently, we need to generalize the definition

of the Rips graph to account for such cases, namely the σ-Rips graph Rσ
δ (Sx) with

an appropriate threshold function σδ, and parameters δ. In this work, we choose the

following threshold function:

σ(a,r,t) : X × X −→ R∗
+

(x,x′) −→ a(r −max (P(x),P(x′)))
1
t ,

(3.1)

with t ∈ (0, 1], and a, r ∈ R∗
+ such that r > maxx P(x), note that the Rips graph is a

special case of the σ-Rips graph when σδ is a constant function. Next, we compare

the persistence between the Rips and the σ-Rips graphs.
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3.3.2 Persistence on superlevel sets

We refer to [48] for an introduction to topological persistence and its applications.

Let X be a Riemannian manifold, and P be a K-Lipschitz-continuous probability

density function with respect to the Hausdorff measure for a real constant K ≥ 0.

A persistence module is a sequence of vector spaces X = (Xα)α∈R where R = R ∪
{−∞,+∞} together with linear maps Xβ → Xα whenever α ≤ β (setting Xα → Xα

as the identity). The persistence diagram DX of this persistence module is then a

multi-set of points in R2
containing the diagonal ∆ = {(x, x) | x ∈ R} and points

(i, j) corresponding to the lifespan of some generator appearing at time i and dying

at time j < i (here, according to the way our spaces are connected, we see alpha

starting from +∞ and at −∞). The multiplicity of a point of D0X is +∞ for the

points of ∆, and a finite alternating sums of ranks of composed linear maps (see for

example [133] for more details).

Persistence is often used with homology, and we refer the reader to [57] for more

details. Here we will only use the 0-dimensional homology, which detects connected

components. More precisely, if X is a topological space or a graph, H0(X) will

be the vector space spanned by the (path) connected components of X. Moreover,

if g : X → Y is a continuous map between spaces or a graph homomorphism be-

tween graphs, it induces a natural linear application f∗ : H0(X) → H0(Y ). Let us

now look at meaningful examples for the rest of the chapter. The first is the 0-

dimensional persistence homology induced by P. More precisely, for α ∈ R, we set

Fα = P−1([α,+∞]). If α ≤ β are two reals, then there is an inclusion F β ⊆ Fα, and

this induces linear maps H0(F
β)→ H0(F

α). We will denote by D0P the correspond-

ing persistence diagram (the 0 is there to remind us that we are working with the

0-dimensional homology). Another persistence diagram we will consider is the one

induced by the Rips graph.

Definition 3.3 (upper-star Rips filtration). Given a finite point cloud Sx from a

metric space (X , d) with the probability density function P, a real value δ ∈ R+, The

upper-star Rips filtration of P, denoted Rδ(Sx,P), is the nested family of subgraphs

of the Rips graph Rδ(Sx) defined as Rδ(Sx,P) = (Rδ(Sx ∩ P−1([α,+∞]))α∈R.

Such a nested family of graphs give rise to, after applying the 0-dimensional ho-

mology, a persistent module Rδ(Sx,P) and a persistence diagram D0Rδ(Sx,P). A

word of caution might be necessary. Technical difficulties can occur when there are

infinitely many points (counted with multiplicity) away from the diagonal in a per-

sistent diagram. Fortunately, with an upper-star Rips filtration, it is not an issue
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if the point cloud Sx is finite since only a finite number of changes appear in the

nested family of graphs. When considering the persistence diagram D0P induced by

a function P which is continuous, one can for example require that P has finitely many

critical points to avoid problems. The bottleneck distance is an effective and natural

proximity measure for these objects to compare persistence diagrams:

Definition 3.4 (bottleneck distance). Given two multi-subsets A1, A2 of R̄2, a multi-

bijection γ between A1 and A2 is a bijection:

γ :
⋃

p∈|A1|

⨿µ(p)i=1 p→
⋃

q∈|A2|

⨿µ(q)i=1 q,

where, for i ∈ {1, 2}, |Ai| denotes the support of Ai and µ(p) denotes the multiplicities

of point p ∈ |Ai|. The bottleneck distance d∞B (A1, A2) between A1 and A2 is the

quantity:

d∞B (A1, A2) = min
γ

max
p∈A1

∥p− γ(p)∥∞

To show that two persistence diagrams are close to one another with respect to

the bottleneck distance, one can use the following notion introduced in [32].

Definition 3.5 (ε-interleaved). Let X = (Xα)α∈R and Y = (Yα)α∈R be two persis-

tence modules and let D0X and D0Y be there associated persistence diagrams. We

say that X and Y are strongly ε-interleaved if there exists two families of linear ap-

plication {φα : Xα → Yα−ε}α∈R and {ψα : Yα → Xα−ε}α∈R, such that for all α, β ∈ R,
if α ≤ β, then the following diagrams, whenever they make sens, are commutative:

Xβ+ε
//

φβ+ε

��

Xα−ε

Yβ // Yα

ψα

WW
Xβ

//

φβ

��

Xα

φα

��
Yβ−ε // Yα−ε

Xβ
// Xα

φα

��
Yβ+ε

ψβ+ε

WW

// Yα−ε

Xβ−ε // Xα−ε

Yβ //

ψβ

WW

Yα

ψα

WW

The idea behind these diagrams is that every component appearing (resp. dying)

in X at some time α must appear (resp. die) in Y within [α−ε, α+ε], and vice-versa.

The following lemma highlights how important this notion is.
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Lemma 3.1. Let X and Y be two persistence modules such that D0X and D0Y have

only finitely many points away from the diagonal, and let ε > 0. If X and Y are

strongly ε-interleaved, then D0X and D0Y are at a distance at most ε with respect to

the bottleneck distance.

Proof. This is a direct consequence of [32, Theorem 4.4] where the result is proven

for every homological dimension.

For example, in [33, Theorem 5], it is proven that given the density function P on a

point cloud Sx with sufficient sampling density, the persistence diagram D0Rδ(Sx,P)
built upon the Rips graph Rδ(Sx) with an appropriate δ is a good approximation

of D0P the persistence diagram of P. Consequently, D0Rδ(Sx,P) encodes the 0th

homology groups of the underlying space of Sx, this is a crucial ingredient in the

proof of the theoretical guarantees of ToMATo.

3.3.3 Persistence of Rips graph and σ-Rips graph

ToMATo is a clustering method that uses the hill climbing algorithm on the Rips graph

along with a merging rule on the Rips graph’s persistence, it comes with theoretical

guarantees under the manifold assumption, we would like to derive similar guarantees

for our proposed approach. As previously mentioned, ToMATo guarantees are deduced

from a careful comparison (with respect to the bottleneck distance) between D0P and

D0Rδ(Sx,P), one way to get similar guarantees for our procedure is to control the

bottleneck distance between D0Rδ(Sx,P) and the persistence diagram of the σ-Rips

graph. To do so, we need to introduce the following.

Lemma 3.2. Given a finite point cloud Sx from a metric space (X , d), for all σ-Rips
graphs Rσ

δ (Sx) with real-valued function σδ : X 2 → R∗
+ and parameters δ, there exist

a non-metric space (X , d̂) such that Rσ
δ (Sx) is the Rips graph R1(Sx).

Proof. The proof is trivial by the following definition of d̂:

d̂ : X × X −→ R+

(x,x′) −→ d(x,x′)

σδ(x,x′)
.

Given a graph R(Sx), we will denote by PR(xi,xj) the set of all paths in R(Sx)
from the vertex xi to the vertex xj, where a path p is a sequence of vertices of R(Sx)
where two consecutive vertices of p are adjacent in R(Sx).
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Definition 3.6 (appearance level). Given a finite point cloud Sx = {xi}ni=1 from a

metric space (X , d) with the probability density function P, and a graph R(Sx). We

define fR(xi,xj) as the level α at which the first connection between the vertices xi,xj

appearances in the upper-star Rips filtration Rδ(Sx,P), ∀i, j ∈ {1, . . . , n}, i ̸= j:

fR(xi,xj) =

{
maxp∈PR(xi,xj) minx∈p P(x) if PR(xi,xj) ̸= ∅,
0 otherwise.

Now we can for example prove that the persistent module Rδ(Sx,P) of the Rips

graph Rδ(Sx) over the metric space (X , d) and the persistent module R1(Sx,P) of the
σ-Rips graph Rσ

δ (Sx) over the non-metric space (X , d̂) of Lemma 3.2 are ϵ-interleaved.

Theorem 3.3. Given a finite point cloud Sx = {xi}ni=1 from a metric space (X , d)
with the probability density function P. Let the Rips graph Rδ′(Sx) with parameter

δ′, and the σ-Rips graph Rσ
δ (Sx) with a threshold function σ of parameter set δ. Let

denote by R = Rδ′(Sx,P), Rσ = R1(Sx,P), R = Rδ′(Sx), and Rσ = Rσ
δ (Sx). For

α ∈ R, we set:

Rα = Rδ′
(
Sx ∩ P−1([α,+∞])

)
and Rσ

α = Rσ
δ

(
Sx ∩ P−1([α,+∞])

)
.

Concretely, for all i, j ∈ {1, . . . , n} such that i ̸= j, xi and xj appear in R

and Rσ at α = P(xi) and P(xj), respectively. They are then merged in R, resp.

Rσ, at α = fR(xi,xj), resp. α = fRσ(xi,xj). Finally, by choosing ε as ε =

maxxi,xj∈Sxi ̸=j|fR(xi,xj)−fRσ(xi,xj)|, we have that R andRσ are strongly ε-interleaved.

Proof. For α ∈ R, let C1, . . . , Ck be the connected components of Rα. For every

i ∈ {1, . . . , k}, and each vertices x,x′ ∈ Ci, we have that fRα(x,x
′) ≥ α and thus, by

definition of ε, fRσ
α
(x,x′) ≥ α − ε. Hence Ci is contained in a connected component

of Rσ
α−ε. This gives a linear map:

φα : H0(Rα)→ H0(R
σ
α−ε).

By a similar argument, we get a linear map:

ψα : H0(R
σ
α)→ H0(R

σ
α−ε).

By construction, the following diagrams are commutative (inclusions on connected
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components induce the linear maps involved).

H0(Rβ+ε) //

φβ+ε

��

H0(Rα−ε)

H0(R
σ
β)

// H0(R
σ
α)

ψα

WW
H0(Rβ) //

φβ

��

H0(Rα)

φα

��
H0(R

σ
β−ε)

// H0(R
σ
α−ε)

H0(Rβ) // H0(Rα)

φα

��
H0(R

σ
β+ε)

ψβ+ε

WW

// H0(R
σ
α−ε)

H0(Rβ−ε) // H0(Rα−ε)

H0(R
σ
β)

//

ψβ

WW

H0(R
σ
α)

ψα

WW

Consequently, R and Rσ are strongly ε-interleaved.

In other words, when switching from the metric distance d to the non-metric

distance d̂, if the dendrogram induced by the upper star Rips graph is mostly the same

during the persistence process, our procedure enjoys the same theoretical guarantees

as the ToMATo method.

3.4 Learning with proper topological regions

In the following, we will first clarify our proposed notion of proper topological regions

in the context of our framework, and then derive our meta-approach for pool-based

active learning strategies.

3.4.1 Proper topological regions

The proper topological regions of a sample set S = {(xi, yi)}ni=1 is the σ-Rips graph

Rσ
δ∗(Sx), with an appropriate threshold function σ, resulting from solving the following

optimization problem:

minimize
R∈HRσ

PuritySize(Rσ
δ (Sx)) =

[
k

n
+

1

n

n∑
i=1

1CP
R(xi )̸=yi

]
∈ [0, 1]

subject to d∞B (Rσ, D0P) ≤ ε.

(3.2)

Similarly, we can define the optimal Rips graph Rδ∗(Sx) that encodes the proper

topological regions of S. The PuritySize is an objective function that penalizes the

labeling error when propagating the labels inside the connected components of the

graph with CP
R, and the coverage with k, the number of connected components in the
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graph R. However, there is a need to derive an unsupervised objective function in

the context of our approach. To this end, we empirically investigated the following

score functions, typically used to assess clustering quality.

For a given graph R(Sx), let C1, . . . , Ck be the connected components of this graph,

µi =
1

|Ci|
∑

x∈Ci x,∀i ∈ {1, . . . , k}, and µ = 1
n

∑n
i=1 xi are the mean-sample per con-

nected component Ci, and the mean-sample of Sx, respectively:

� Calinski-Harabasz score

Sch(R(Sx)) =

[
(n− k)B

(k − 1)
∑k

i=1Wi

]
∈ [0,+∞),

with B =
∑k

i=1|Ci|∥µi − µ∥2 is the inter-group variance, and Wi =
∑

x∈Ci ∥x−
µi∥2 is the intra-group variance, for all i ∈ {1, . . . , k}. It translates that good

partitioning should maximize the average inter-group variance and minimize

the average intra-group variance; some well known clustering algorithms, such

as K-means [82], maximize this criterion by construction.

� Davies-Bouldin score

Sdb(R(Sx)) =

[
1

k

k∑
i=1

max
j ̸=i

(
δ̄i + δ̄j
d(µi, µj)

)]
∈ (+∞, 0],

with δ̄i =
1

|Ci|
∑

x∈Ci d(x, µi) is the average distance of all samples in the group

to their mean-sample group, for all i ∈ {1, . . . , n}.

� Dunn score

Sd(R(Sx)) =
[
mini,j d(µi, µj)

maxi∆i

]
∈ [0,+∞),

with ∆i = max
x,x′∈Ci

d(x,x′) being the diameter of group Ci, similar to the Calinski-

Harbasz score, we aim to maximize the minimum distance between the mean-

sample groups and minimize the maximum group diameter.

� Silhouette score

Ssil(R(Sx)) =

[
1

k

k∑
i=1

1

|Ci|
∑
x∈Ci

sil(x)

]
∈ [−1, 1],
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this score affects sil(x) =
b(x)−a(x)

max(a(x),b(x))
, the silhouette coefficient to every sample,

with a(x) = 1
|CR(x)|−1

∑
x′∈CR(x),x ̸=x′ d(x,x′) being the average distance of sam-

ple x to his group and b(x) = minj ̸=i,x∈Ci
1

|Cj |
∑

x′∈Cj d(x,x
′) being the average

distance of sample x to his neighbor group.

We observed promising empirical evidence that the Silhouette score is the best

candidate among the above scores to substitute the propagation error term in the

PuritySize cost function in (3.2). Therefore, we define the unsupervised cost function

SilSize(R,Sx) that we use in solving the unsupervised setting of problem (3.2).

SilSizeα(R(Sx)) = SSil(R(Sx))− α
k

n
, with α ∈ R+. (3.3)

Given our choice of the threshold function σδ in (3.1), and the new objective func-

tion (3.3), our problem (3.2) becomes:

maximize
δ=(a,r,t)∈dom(σ)

SilSizeα(R
σ
δ (Sx)) =

[
SSil(R

σ
δ (Sx))− α

k

n

]
∈
[
−1− α, 1− α

n

]
subject to d∞B (Rσ, D0P) ≤ ε.

(3.4)

Theorem 3.3 tells us that one way to ensure the bottleneck constraint in (3.4) is

to apply the same post-processing phase used in the ToMATo algorithm on the σ-

Rips graph. It consists of applying a merging rule along the hill-climbing method on

the graph with P. This merging rule compares the topological persistence of groups

to an additional merging parameter τ ∈ [0,maxx∈Sx P(x)] [52]. We will refer to this

procedure as ToMAToτ (R(Sx),P), which returns the partition function CR that encodes

the proper topological regions of Sx. We describe in Algorithm 2 a two-stage black-box

optimization scheme to uncover the σ-graph parameters δ, and the merging parameter

τ , solution to our optimization problem 3.4, for the proper topological regions of S.
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Algorithm 2 Optimization procedure for PTR

Require: Sx := {xi}ni=1, d : X × X → [0,∞), s the step size for the linear search,
and l the number of trials for the optimization strategy.

1: Set α = s.
2: Compute density estimator P̃ with (3.5).
3: Optimize the unconstrained problem (3.4) for l trials, and return δ̃ = (ã, r̃, t̃).
4: Build the σ-Rips graph Rσ

δ̃
(Sx).

5: while Rσ
δ̃
(Sx) is not a degenerate graph do

6: Save the current graph parameters δ̃.
7: Update α←− α + s.
8: Optimize the unconstrained problem (3.4) for l trials.
9: Build the σ-Rips graph Rσ

δ̃
(Sx), with new parameters δ̃.

10: end while
11: Update α←− α− s.
12: Optimize problem (3.4) with ToMAToτ (R

σ
δ̃
(Sx), P̃) for l trials, on merging param-

eter τ , given the fixed parameters δ̃ of line 6, and return τ̃ .
13: Output : parameters δ̃ = (ã, r̃, t̃), and τ̃ .

Remark 1. Note that the trade-off parameter α in (3.3) is key in uncovering the

proper topological regions of the sample set S. Higher α values penalize the coverage

compactness, resulting in partitions with a high degree of agglomeration, meaning

fewer groups with large cardinals, which is typically the case in clustering methods, for

example. However, an additional way to control the labeling propagation error term of

the PuritySize objective in an unsupervised setting is to control the size distribution

of groups in the resulting partition. Put differently, minimizing the group size is

an excellent proxy for minimizing the labeling propagation error. Inversely, lower α

values results in highly fragmented partitions with many groups with small cardinals,

such setting is sub-optimal to our purpose of increasing the training sample size,

additionally, the Silhouette is a score metric used to evaluate clustering quality and

defined for non-singleton groups. Using it solely as an objective function in (3.4) often

converges to graphs with a single non-singleton connected component. Accordingly,

there should be a middle ground for α values that we find with a line search method

and a stopping criterion on the size distribution of groups. We will clarify other

technical details and choices in the next subsection.
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Algorithm 3 Pool-based active learning on PTR

Require: Sx := {xi}ni=1, oracle O, budget B and d : X ×X → [0,∞), graph parame-
ters δ and merging parameter τ , active learner agent hst(Sx,B) with an underlying
pool-based strategy st, and r the active training rounds.

1: Compute density estimator P̃ with (3.5).
2: Build the σ-Rips graph Rσ

δ (Sx).
3: Apply ToMAToτ (R

σ
δ (Sx), P̃) to get CRσ

δ
, the partition function that encodes the

proper topological regions of Sx.
4: S0 = {B largest connected components (ccs) of Rσ

δ (Sx) labeled with C P̃
Rσ

δ
}.

5: for i = 0, . . . , r do
6: Train the learning agent hst(Si,B).
7: Ask a set Sr from hst of size B.
8: Si+1 = Si ∪ {label ccs containing Sr with C P̃

Rσ
δ
}.

9: if extra budget then

10: Si+1 = Si+1 ∪ {label largest ccs of Rσ
δ (Sx) with C P̃

Rσ
δ
}.

11: end if
12: end for
13: Output : trained agent hst

Algorithm 3 presents the main contribution of this work, our meta-approach for

training pool-based active learning strategies on proper topological regions of a sample

set Sx. In addition to standard inputs in active learning methods such as the unlabeled

sample set Sx, the oracle O, the budget B, and the number of rounds r. It also takes

as input the metric distance d, a given pool-based active learning method hst(Sx,B),
the parameters δ and τ tuned by Algorithm 2. The proper topological regions of Sx
are encoded in the partition function CRσ

δ
, we typically obtain a much higher number

of regions than the number of classes c, or what we expect to have with clustering

methods. Initially, we aim to maximize the initial training set size by labeling the

largest regions. Then the underlying active learner strategy consumes the rest of

the regions during the rounds of active training. We might receive queries during

these rounds which contain samples from the same region; in that case, we use the

extra budget to label the largest regions. After r rounds, we return the trained

estimator of the strategy. Note that we also can have cases where all the regions are

consumed before the end of rounds of active training. Next, we shall discuss practical

considerations and technical details related to implementing this approach.
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3.4.2 Practical considerations

We consider for d, the Euclidean distance overall experiments. Furthermore, we

use l-nearest neighbors for the estimation of the distance matrix D as follows: Let

D = (di,j) ∈ Rn×n be a sparse distance matrix, with only ℓ non zero values in each

row:

di,j =

{
d(xi,xj) if xj is one of the ℓ-nearest neighbors of xi,

0 otherwise.

The density estimation P̃ : Sx → R+ is calculated as follows:

P̃(xi) =

(
1

l

n∑
j=1

m2
i,j

)−1/2

, for all i ∈ {1, . . . , n}. (3.5)

We consider ℓ = 2000, for all datasets of greater size. We choose the Tree-structured

Parzen Estimator (TPE) [16] for the optimization procedure of Algorithm 2, with a

number of trials l = 1000, and a step size s of 0.1 for the line search procedure.

3.5 Empirical results

In this section, we will describe the corpora and methodology.

Datasets We conduct experiments on benchmark datasets for classification prob-

lems also often used in active learning: coil-20 [121], isolet [50], protein [60], banknote,

pendigits, nursery, and adult [100]. Table 3.1 presents statistics of the datasets.

dataset n p c imbalance test
protein 756 77 8 0.70 324

banknote 943 4 2 0.83 405

coil-20 1008 1024 20 1.00 432

isolet 4366 617 26 0.99 1872

pendigits 7694 16 10 0.92 3298

nursery 9070 8 4 0.09 3888

adult 34.2k 14 2 0.31 14.7k

Table 3.1: dataset statistics, n is the size of training set, test is the size of test set
and imbalance corresponds to class imbalance ratio. The third column corresponds
to the dimension of the feature space Rp.
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Baseline methods For the cold-start experiments, we consider the following ap-

proaches from the literature:

� K-Means clustering

The K-Means algorithm [82] partitions a collection of examples into K clusters

by minimizing the sum of squared distances to the cluster centers. It has been

used for active learning in [129], to generate the initial training set by labeling

the closest sample to each centroid. Another variation proposed in [70] adds

artificial samples from the centroids, named model examples, to the initial train-

ing set. This approach is named K-Means+ME and leads to an initial training

set twice as large as the one created using K-Means.

� K-Medoids clustering

The K-Medoids algorithm [71] is very similar to K-Means except that it uses

the actual samples for centers, namely medoids, as the center of each cluster.

These medoids are then used to form the initial training set in active learning.

� Agglomerative Hierarchical Clustering (AHC)

Agglomerative hierarchical clustering [116] is a bottom-up clustering approach

that builds a hierarchy of clusters. Initially, each sample represents a singleton

cluster. Then the algorithm recursively merges the closest clusters using a

linkage function until until only one cluster is left. This process is usually

presented in a dendogram, where each level refers to a merge in the algorithm.

AHC has been used for active learning in [40] by pruning the dendogram at a

certain level to obtain clusters, then similar to K-Means, selecting the closest

samples to the centroid clusters to generate the initial training set.

� Furthest-First-Traversal (FFT)

The farthest-first traversal of a sample set is a sequence of a selected sample,

where the first sample in the sequence is selected arbitrarily, and each successive

sample in the sequence is located the furthest away from the set of previously-

selected samples. The resulting sequence is then used as the initial training set

for active learning. The FFT algorithm has been used for active learning in

[13].

� Affinity Propagation Clustering (APC)

Affinity propagation is a clustering algorithm designed to find exemplars of the

sample set which are representative of clusters. It simultaneously considers all
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the sample set as possible exemplars and uses the message-passing procedure

to converge to a relevant set of exemplars. The exemplars found are then used

as an initial training set for active learning [63].

For the active learning experiments, and following results from [106], we only consider

the comparison against the random labeling strategy, as it outperforms many recent

strategies in active learning in small budget scenarios.

In all our experiments, we use the random forest classifier [61] as base estimator

for the different strategies with default parameters, we also consider several budgets

B ∈ [3, 10, 20], and 20 stratified random splits, with 70% of the data in the training

set and 30% in the test set.

3.5.1 Rips graph vs σ-Rips graph

To validate our hypothesis of a density-aware threshold (3.1) for class similarity, and

to motivate our generalization of the Rips graph to express this notion, we present

a comparison study in Figure 3.1 between the Rips and the σ-Rips graphs overall

considered datasets. Each plot presents the threshold of the best Rips graph and

σ-Rips graph in minimizing the PuritySize cost function on all the datasets with

the same practical considerations of Subsection 3.4.2. Note that the Rips graph’s

threshold is a constant presented as a horizontal line in the plots. We also show two

additional side plots. The x-axis plot shows the distribution of the density estimation

P̃ in the dataset. In contrast, the y-axis plot shows the distribution of the Euclidean

distances in the dataset’s distance matrix D. We are interested in comparing the

threshold rules within these intervals because, from Definition 3.1 of the Rips graph,

and Definition 3.2 of the σ-Rips graph, threshold values greater than the maximum

distance will result in a clique graph.

For all the datasets, we observe that the optimal threshold rule’s values found

in the hypothesis class of the σ-Rips graph with our proposed threshold function σδ

in (3.1) are negatively correlated to the estimation density P̃. We also observe that

the best σ-Rips graph achieves better PuritySize scores overall datasets, except for

coil-20 and nursery datasets, where it has similar scores to the best Rips graph found.

Particularly for the coil-20 dataset where the optimal threshold seems to be a constant,

we notice that, in this case, both graphs converge to the same threshold function, this

shows that our proposed threshold function (3.1) can effectively approximate constant

threshold functions. These findings confirm our hypothesis that class similarity is a
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density-aware measure. It also supports our choice of σδ in (3.1) as an appropriate

threshold function to generalize the Rips graph.
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Figure 3.1: Comparison study between Rips graph and σ-Rips graph overall datasets,
the PuritySize score is reported for each minimizer.
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3.5.2 Cold-start results

Table 3.2 presents the cold-start results of our meta-approach for pool-based active

learning strategies, denoted TPR(USRG) where USRG is refering to the unsuper-

vised setting of our optimization procedure for solving Problem (3.4) using the σ-Rips

graph, next to the Random Selection (RS), and other considered baseline methods

overall the datasets. In all cases, TPR(USRG) provides significantly better results

than the random selection approach except for the imbalanced dataset nursery with

the largest budget. This shows that using the largest proper topological regions found

by Algorithm 2 as an initial training set (Line 4 of Algorithm 3) provides a better

starting point for pool-based active learning strategies than random selection. Fur-

thermore, our meta-approach shows very competitive results overall datasets, when

compared to the baseline methods that are solely designed to tackle the cold-start

problem in active learning.

Table 3.2: Average balanced classification accuracy (in %) and standard deviation of
random forest classifier with the initial training set obtained from different methods
over 20 stratified random splits for different budgets B. ↑/↓ indicate statistically
significantly better/worse performance than Random Selection RS, according to a
Wilcoxon rank sum test (p < 0.05) [117].

Dataset B RS K-Means K-Means+ME K-Medoids AHC FFT APC TPR(USRG)

protein
3 16.91± 3.98 21.21± 1.80↑ 23.87± 2.16↑ 21.24± 4.36↑ 22.74± 2.54↑ 17.35± 3.33 16.72± 3.32 22.07± 6.20↑

10 28.20± 3.21 30.61± 4.56↑ 31.40± 4.53↑ 29.28± 4.35 31.58± 3.67↑ 21.78± 3.80↓ 28.79± 3.43 40.49± 3.92↑

20 36.42± 3.76 42.07± 3.90↑ 45.53± 2.52↑ 39.16± 4.84 43.43± 3.40↑ 26.11± 3.37↓ 39.18± 3.70 53.99± 3.39↑

banknote
3 55.48± 7.22 73.98± 4.59↑ 84.32± 5.58↑ 62.48± 3.32↑ 63.69± 4.49↑ 58.22± 7.30↑ 58.74± 7.96 70.21± 14.73↑

10 79.88± 9.91 85.23± 5.68↑ 86.80± 4.75↑ 87.59± 3.33↑ 85.59± 5.08↑ 70.58± 5.30↓ 82.40± 6.92 88.68± 4.43↑

20 87.58± 2.91 90.74± 2.40↑ 92.43± 2.00↑ 92.34± 2.44↑ 92.58± 2.86↑ 71.89± 7.16↓ 90.92± 3.18↑ 93.88± 3.44↑

coil-20
3 12.35± 2.62 14.99± 0.00↑ 14.99± 0.00↑ 14.99± .00↑ 14.99± 0.00↑ 10.83± 1.98↓ 11.70± 2.26 13.59± 1.66
10 28.97± 5.66 36.68± 4.24↑ 38.15± 2.70↑ 32.85± 5.14↑ 36.00± 3.66↑ 18.56± 3.38↓ 27.21± 4.80 44.18± 2.43↑

20 42.02± 5.83 56.69± 3.74↑ 62.99± 2.78↑ 42.30± 3.47 58.10± 4.07↑ 25.61± 2.46↓ 41.40± 4.74 71.05± 3.78↑

isolet
3 07.64± 1.54 08.69± 0.85↑ 09.68± 0.63↑ 07.81± 1.63 09.05± 1.86↑ 09.24± 0.96↑ 07.51± 1.84 10.82± 1.05↑

10 13.78± 2.97 22.30± 1.55↑ 27.61± 1.59↑ 07.06± 1.85↓ 23.26± 1.76↑ 16.47± 1.67↑ 15.41± 3.18 27.53± 2.84↑

20 19.20± 2.69 27.88± 2.46↑ 40.37± 3.22↑ 10.73± 1.98↓ 28.19± 2.14↑ 18.79± 2.42 21.14± 3.13↑ 38.63± 3.17↑

pendigits
3 21.45± 3.49 21.27± 1.93 22.53± 2.09 26.57± 2.55↑ 19.42± 1.79↓ 17.26± 3.72↓ 17.81± 4.86↓ 29.89± 0.04↑

10 37.35± 7.19 62.54± 3.46↑ 65.63± 2.25↑ 53.90± 5.21↑ 61.39± 1.86↑ 27.17± 4.87↓ 38.33± 8.20 80.11± 2.60↑

20 54.25± 5.86 72.26± 2.72↑ 75.80± 2.31↑ 64.00± 3.64↑ 72.34± 2.45↑ 34.78± 4.49↓ 52.24± 5.93 87.68± 4.10↑

nursery
3 30.71± 4.00 29.20± 5.19 30.23± 6.50 25.04± 0.15↓ 28.33± 3.86↓ 29.97± 3.24 29.99± 3.74 35.07± 5.57↑

10 42.74± 7.20 44.45± 5.71 49.26± 4.01↑ 28.43± 1.30↓ 44.92± 7.22 39.06± 3.52 45.12± 6.70 46.47± 5.98
20 55.33± 2.77 52.78± 3.27↓ 54.42± 2.99 32.91± 1.10↓ 53.82± 2.71 39.79± 1.07↓ 52.52± 4.90↓ 54.08± 4.51

3.5.3 Active learning results

Lastly, we present the results of our meta-approach for pool-based active learning

strategies. We consider the strategies mentioned above, namely the uncertainty sam-

pling query strategy, the entropy sampling query strategy, and the margin sampling

query strategy. When using our meta-approach presented in Algorithm 3 with USRG
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as described in the previous subsection. Compared to RS, the vanilla training ap-

proach in pool-based active learning, when using random selection to initiate the

active learning strategies. We also show SSRG to illustrate the difference of perfor-

mance, when we minimize the supervised setting for TPR (Problem(3.2)), compared

to the unsupervised setting (Problem(3.4)). We present one figure per each dataset,

and each figure is constituted of six error bars plots, referring to the average balanced

accuracy and standard deviation over the splits, for all the active learning rounds,

plus the initial round. The plots are indexed to show a specific budget per row, and

a specific active learning strategy per column.

We can see from the results that all the considered pool-based active learning

strategies clearly benefit from our approach in comparison to the vanilla setting. The

only instance where we don’t see such advantage is for nursery dataset. The reason

being that nursery has a high class imbalance ratio. We choose in Algorithm 3 to

prioritize the gain in the training sample size, regardless of class discovery, or class

ratio, which may empathizes the class imbalance in such case. This shows that we need

to introduce other sampling criterion of TPR in Algorithm 3, than simply selecting

the largest ones, when training with highly class-imbalanced datasets.
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Figure 3.2: Average balanced classification accuracy and standard deviation of dif-
ferent pool-based active learning strategies and budgets on protein dataset, using
random forest estimator over 20 stratified random splits.
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Figure 3.3: Average balanced classification accuracy and standard deviation of dif-
ferent pool-based active learning strategies and budgets on banknote dataset, using
random forest estimator over 20 stratified random splits.
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Figure 3.4: Average balanced classification accuracy and standard deviation of differ-
ent pool-based active learning strategies and budgets on coil-20 dataset, using random
forest estimator over 20 stratified random splits.
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Figure 3.5: Average balanced classification accuracy and standard deviation of differ-
ent pool-based active learning strategies and budgets on isolet dataset, using random
forest estimator over 20 stratified random splits.
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Figure 3.6: Average balanced classification accuracy and standard deviation of dif-
ferent pool-based active learning strategies and budgets on pendigits dataset, using
random forest estimator over 20 stratified random splits.
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Figure 3.7: Average balanced classification accuracy and standard deviation of dif-
ferent pool-based active learning strategies and budgets on nursery dataset, using
random forest estimator over 20 stratified random splits.

3.6 Conclusion

In this chapter, we proposed a data driven meta-approach for pool-based active learn-

ing strategies for multi-class classification problems. Our approach is based on an

introduced notion of Topological Proper Regions (TPR) of a given sample set, we

showed the theoretical foundations of this notion, and derived a black-box optimiza-

tion problem to uncover the TPR. Our empirical study validates our meta-approach

on different benchmarks, in low budget scenario, for various pool-based active learning

strategies. Challenging open questions are left, a theoretical analysis that guarantee

good performance in active learning, such as, generalization bounds. The use of semi-

supervised approaches to conclude the analysis with a model dependent approach, by

having a regularization term derived from the TPR.
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Chapter 4

Deep Learning for Rapid
Automation of Transmission
Electron Microscopy Analysis

Deep learning is revolutionizing many areas of science and technology, including the

analysis of data obtained by Transmission Electron Microscopy (TEM). This chapter

presents our practical contributions aimed at automating the analysis of phase and

orientation mapping from scanning diffraction data obtained during TEM analysis.

More precisely, we aim to derive a DL approach capable of accurately predicting a

crystal’s phase and orientation, given its diffraction diagram. These contributions aim

to achieve real-time orientation and phase determination maps during the acquisition

experiments. This chapter is based on the following paper [HDR+22, HDAL22].

4.1 Introduction

Transmission Electron Microscopy (TEM) has expanded the type of information ob-

tained on nanocrystalline microstructures, such as phase and orientation [27]. Ori-

entation microscopy is a technique that enables spatially resolved measurements of

crystal phases and orientations in a sample and reconstructs the microstructure from

this information. Using a scanning mode and acquiring on each scanning data point a

full diffraction diagram, orientation mapping TEM experiments, alternatively called

ACOM (Automated Crystal Orientation Mapping) or SPED (Scanning Precession

Electron Diffraction) are producing large collections of datasets, which are often im-

possible to process manually. As a result, extensive research [96, 125] has proposed

semi-automated approaches to analyze these datasets. These deterministic methods

rely on classical computer vision techniques (e.g., Hough transform, Fourier filtering,
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segmentation, and cross-correlation for similarity measure), which typically require

manual hyperparameter tunning and a computation cost for each experiment. Deep

neural networks (DNNs) have shown superior performance compared to classical com-

puter vision techniques in most benchmark tasks. This led to the emergence of fully

automated approaches [132, 7] and tools [119, 90] for various TEM tasks. In the

context of orientation microscopy, ML-based approaches are still falling behind tra-

ditional techniques such as template matching [96] or Kikuchi technique [73] when it

comes to generalization performance to unseen crystal orientations and phases dur-

ing training. This is due mainly to the limited experimental data about the studied

phenomena for training the models. It is a realistic and practical constraint, espe-

cially for narrow-domain applications where real data is not widely available. Some

successful attempts have been made to use unsupervised learning techniques to gain

more insight into the data [85, 104], but clustering information does not directly solve

the orientation microscopy problem.

Early Deep learning breakthroughs were primarily in the computer vision domain,

mainly due to the increased availability of new big data benchmarks and organized

competitions such as ImageNet [66] since 2009. This dynamic resulted in many so-

phisticated models for image classification [59, 105, 64, 36]. There is a clear potential

for automated image analysis tools using state- of-the-art machine learning techniques

for phase and orientation determination to complement the existing relatively slow,

complex, and hyperparameter-dependent approaches. To this end, we investigate

multi-task DL solutions with the purpose of boosting the existing slow phase and

orientation determination techniques by replacing them with DL models for fast real-

time prediction during data acquisition but with lower generalization accuracy to be

used as a less accurate but real-time analysis for TEM experiments.

4.2 Experimental

We conduct our experiments using two batches of maps from two different studies.

The first batch is constituted of three different experimental Micrographs presented

in (a),(b), and (c) of Figure 4.1. Each collected map consists of 500× 500 diffraction

images of size 144 × 144 pixels each. The three micrographs contain four phases,

namely the alpha iron (α-Fe), the gamma iron (γ-Fe), the niobium carbide (NbC),

and the cementite (Fe3C).

The second batch of TEM data was collected in a study investigating the structural

and mechanical properties of different ultrafine-grained (UFG) structures obtained
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from aluminum alloys [44].The study investigated a specimen of an Al-2wt%Fe alloy

after severe plastic deformation (SPD) by high-pressure torsion (HPT) at strain levels

(10 turns 10T and 100 turns 100T) resulting in sub-micrometer grain refinement.

These specimens correspond to the micrographs (d) and (f) presented in Figure 4.1

respectively and contain the phases α-Al and Al6Fe. The last micrograph (e) in the

figure corresponds to the as-cast material microstructure used in the study, meaning

the microstructure of the studied alloy in the as-cast conditions with no further SPD.

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 10T (e) Map as-cast (f) Map 100T

Figure 4.1: Collected micrographs of size 500× 500.

4.2.1 Labeling strategy

Transmission Electron Microscopy (TEM) was performed using a JEOL 2100F mi-

croscope using a Stingray camera recording the phosphorus screen and equipped with

automated crystal orientation mapping using the (ASTAR) package [96, 97, 113]. The

ASTAR template matching package was used to analyze the phase and orientation

distribution maps, which will be considered as the ground truth for the following.

Figure 4.2 shows the phase determination maps provided by ASTAR analysis of

TEM data. We have the following microstructure composition:
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α-Fe
NbC
Fe3C

(a) Map 1

α-Fe
NbC
Fe3C
γ-Fe

(b) Map 2

α-Fe
NbC
Fe3C

(c) Map 3

Al
Al6Fe

(d) Map 10T

Al
Al6Fe

(e) Map as-cast

Al
Al6Fe

(f) Map 100T

Figure 4.2: ASTAR phase determination maps for all considered micrographs.

� (a) Map 1 : 93.0% alpha iron (α-Fe), 0.2% niobium carbide (NbC), and 6.8%

cementite (Fe3C).

� (b) Map 2 : 86.5% alpha iron (α-Fe), 1.1% gamma iron (γ-Fe), 1.4% niobium

carbide (NbC), and 11.0% cementite (Fe3C).

� (c) Map 3 : 97.4% alpha iron (α-Fe), 0.3% niobium carbide (NbC), and 2.3%

cementite (Fe3C).

� (d) Map 10T : 98.0% aluminium (Al), and 2.0% aluminium-iron (Al6Fe).

� (e) Map as-cast : 89.6% aluminium (Al), and 10.4% aluminium-iron (Al6Fe).

� (f) Map 100T : 99.1% aluminium (Al), and 0.9% aluminium-iron (Al6Fe).

The crystal orientations in the specimen are also provided from the template

matching analysis. The Euler angles [54] usually denoted as (ϕ1,Φ, ϕ2) can fully

describe these crystal orientations. A compact approach for representing these ori-

entations is to map them to the RGB channels to create an image showing a given

micrograph’s orientation map. Figure 4.3 presents the resulting Euler’s orientation
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images of this type of mapping. For better visual quality, we apply a brightness

adjustment to the resulting mappings for each orientation image.

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 10T (e) Map as-cast (f) Map 100T

Figure 4.3: ASTAR Euler’s orientation determination maps for all considered micro-
graphs.

Additionally, we have access to template diffraction diagrams where the diffrac-

tion patterns are simulated using the crystal information and the TEM experimental

settings, Figure 4.4 shows a simulated diffraction pattern of alpha iron at a given

orientation with Euler’s angles. Each simulated template is provided as a set of co-

ordinates with the corresponding intensities which is the radius at these spots. We

draw simulated DPs using OpenCV [65], and we cover the Euler space of each crys-

tal by simulating the fundamental zone corresponding to the class symmetry of each

considered phase.

As mentioned previously, the objective of this study is to retrieve information

about the crystal phase and orientation from the collected data during TEM exper-

iments. Ultimately, we want to investigate Deep learning methods to infer Euler’s

orientation and phase determination maps from real diffraction images. From the

descriptions provided in this section, we can already identify important challenges to

take into consideration when designing such approaches:
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Figure 4.4: Simulation of diffraction patterns for TEM experiments.

� TEM data exhibits a high frequency of duplicates: the lack of diversification

drastically reduces the relevant sample size for training DL models, directly

impacting the quality of these models on analyzing new micrographs.

� TEM data is highly heterogeneous: the experimental settings in which the

data is collected are often different from one TEM experiment to another for

practical reasons. This adds another difficulty for DL approaches to adapt to

new experimental settings when analyzing new micrographs.

4.2.2 Data preprocessing for ML

A lot of effort has been made into researching and developing new ways of prepro-

cessing real diffraction patterns or DPs and simulated DPs to improve the prediction

accuracy of ML-based approaches [132, 90]. Nowadays, computer vision models rely

on the End-to-End approach with minimal feature engineering. Nonetheless, such an

approach has some underlying assumptions that cannot be met in our case, namely

a highly favorable signal-to-noise ratio which is usually the case in standard high-

resolution RGB images in datasets such as ImageNet [66], and a tremendous amount

of relevant training data to allow the underlying algorithm to model and adapt to the

noise distribution. Initial End-to-End experiments for phase classification with out-

of-the-shelf DL models showed that these models indeed fail to generalize to DPs from

unseen micrographs, confirming our belief in the need for an appropriate preprocess-

ing to alleviate this phenomenon. Additionally, traditional normalization techniques

are not adapted to our use case. In figure 4.5, we present the mean experimental

diffraction diagram for each map (calculated on all map’s datapoints). These spots

are present in the mean images because of the high frequency of duplicates in TEM
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data from the major grains. It is relevant information in frequent DPs, and subtract-

ing it in a normalization scheme would result in a signal loss. However, the mean

images present statistical noise intrinsic to the TEM experiment, which should be

subtracted.

gσ(i, j) =
1

2πσ2
e−(i2+j2)/(2σ2) (4.1)

In our study, after standardizing the images, we propose to filter out the statistical

noise by fitting a centered Gaussian filter in Eq (4.1), where i is the distance from

the center in the horizontal axis, j is the distance from the center in the vertical axis,

and σ is the standard deviation, to the mean images of each micrograph (map) and

subtracting the resulted filter from all the DPs of that map. After subtraction, all

negative points on the image are assigned a value of 0. Concretely, For each mean

image m of a given micrograph, we solve:

σ∗ = argmin
σ

[
144∑
i=1

144∑
j=1

|m(i, j)− gσ(i, j)|

]

Figure 4.5 shows the gaussian filters gσ∗ estimated from each micrograph, and

Figure 4.6 shows the effect of our approach on random DPs from each micrograph

before and after applying our preprocessing. On the other hand, we employ a similar

preprocessing introduced in [125] to preprocess simulated DPs or templates. The

simulation is parametrized by the number of spot diffractions and their size tuned

to best fit the real DPs. Next we apply a blurring filter to smooth the intensities,

then we extract intensity descriptors from their polar representation to obtain similar

descriptors to those extracted from real diffraction diagrams.
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(a) Mean DP of map 1 (b) Mean DP of map 2 (c) Mean DP of map 3

(d) Mean DP of map 10T (e) Mean DP of as-cast (f) Mean DP of map 100T

(g) σ∗ = 0.756 (h) σ∗ = 0.780 (i) σ∗ = 0.824

(j) σ∗ = 0.863 (k) σ∗ = 0.824 (l) σ∗ = 0.809

Figure 4.5: The two first rows coorespond to the mean diffraction diagram of DPs
from each micrograph, and thier resulting Gaussian filters in the next rows.

58



Figure 4.6: Preprocessing result on random sampled DPs. The first and second rows
from the top are the raw DPs from each specimen, whereas the second and last rows
are the resulting DPs after preprocessing.
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Descriptors are often used for template matching techniques, and their compact

size allows us to efficiently simulate the Euler’s orientation space of a given phase.

Once the Euler’s orientation space is simulated for a given phase, the last step of

preprocessing is to filter out the symmetries and keep only the descriptors of angles in

the fundamental zone of each phase. This last step is dependent on the symmetry class

of each phase since for different classes’ symmetries, different fundamental zones need

to be considered [92]). Figure 4.7 illustrates the overall preprocessing for simulated

DPs and real diffraction diagrams.

Figure 4.7: Preprocessing steps of real diffraction diagrams vs template simulated
real diffraction diagrams.
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4.3 Deep learning for TEM data analysis

This section considers two different research directions, the first direction was to

investigate the capability of DL approaches to train with simulated TEM data, and

to evaluate how well it translates to our problem of real TEM data analysis. The

second direction of this work was to focus on the performance of SOTA DL models in

predicting accurate unseen maps while relying directly on real TEM data for training.

4.3.1 Training on simulated TEM data

To solve our objective of analyzing TEM data using DL models, we address two

known tasks in ML, a classification task to identify phases and be able to predict the

phase determination map of a micrograph (see Figure 4.2) given its diffraction data,

and a regression task to predict the Euler’s orientation map given the diffraction

data of the considered datapoint (see Figure 4.3). In the following, we will only

consider the first batch of micrographs, namely, the maps 1, 2, and 3 of Figure 4.1.

Additionally, we consider the desciptors extracted following the procedure detailed in

the preprocessing section, of the fundamental zone of the phases alpha iron, niobium

carbide, and cementite described in Table 4.1.

phase signature size nbr of signatures proportion label

α-Fe 667 898904 27.5% 1

NbC 667 898901 27.5% 2

Fe3C 667 1465334 45.0% 3

Table 4.1: Statistics of signatures extracted from simulated DPs of three phases: the
alpha iron, the niobium carbide, and the cementite.

We consider the task of classifying the considered phases with their code label

described in Table 4.1, and the regression task of Euler’s angle prediction, such that

for the angles of all signatures we apply the following transformation in order to map

the cyclical angle space [0, 2ϕ] to a continuous space:

f(ϕ1,Φ, ϕ2) = (sin(ϕ1), cos(ϕ1), sin(Φ), cos(Φ), sin(ϕ2), cos(ϕ2))

f−1(x1, x2, x3, x4, x5, x6) = (arctan2(x1, x2), arctan2(x3, x4), arctan2(x5, x6))
(4.2)

We reserved 20% of the total simulated data as a separate test set to estimate

the performance of the trained DL models using two metrics: the balanced accuracy
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score for the classification task evaluation, and to evaluate the quality of the regression

predictions we introduce the mean absolute angle error defined between a 1D vector

A of true angles and 1D vector Â of angle predictions both of size n as:

maae(A, Â) =
1

n

n∑
i=1

min(|Ai − Âi|, 360− |Ai − Âi|) (4.3)

The rest of the simulated data is used for training and validating the considered

DL models, in a 80%, 20% split sizes, we consider three DL architectures in this

experiment:

� MLP: a full Multi-Layer Perceptron [115], with three first dense layers of size

500 with gelu activations, and two last dense layers with sizes 100, 50 with also

gelu activations.

� CNN: a Convolutional Neural Network [79], with four consecutive 1D convo-

lutions of size 128, kernel size 7, and relu activations, followed by a 1d max

pooling layer of kernel size 3, a flatten operation and a final dense layer of size

64 with relu activation.

� LSTM: Long Short-Term Memory model [62], with a first CNN layer of size 128,

kernel size 7, and relu activation, followed by a 1d max pooling layer of kernel

size 3, the LSTM layer with 256 units, a flatten layer output the full sequence

of the LSTM layer.

The CNN and MLP models were retrieved using a Neural Architecture Search

(NAS) procedure with AutoKeras [68], the LSTM model was manually handcrafted

based on the architecture presented in [88]. In this experiment, we compare these

models in two different settings. The first setting where a first instance of a model is

trained to classify the signatures, and three other dedicated instances for the regres-

sion task for each class. The second setting is the multi-task approach (MT) where

we trained a single instance of each model with two heads one for the regression task

and the other for the classification task, the classification head has an output of size

3 as the number of classes, and the regression head has an output of size 6 to predict

the angle transformation f of Eq (4.2) of the signature’s angles. All the models were

trained with a batch size of 1024 for 500 epochs, and with an early stopping on the

validation loss. The nuances between these two settings of predicting phase and angle

information from DP descriptors are depicted in Figure 4.8.
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Figure 4.8: Multi-Task Learning approach compared to hierarchical learning approach
for training DL models in analyzing TEM data.

From Table 4.1, we show that the classification task on the descriptors extracted

from simulated DPs is a relatively simple task compared to angle prediction, even

during training, all the models reached a perfect accuracy score in training and vali-

dation after a few epochs. Each model is compared in the two settings described above

in Multi Task MT, or in a hierarchical way with a model instance per each class for

the regression and another anstance for classification only, the MT setting has the

advantage of being less complex, having a single model handling both predictions

simplify greatly the approach, and as we can see in Table 4.1 it can provide

models balanced accuracy
maae (degrees)

ϕ1 Φ ϕ2

LSTM 100% 1.178 0.776 1.226
MT/LSTM 100% 0.735 0.503 0.820

MLP 100% 1.030 0.140 0.424
MT/MLP 100% 1.842 0.263 0.765

CNN 100% 2.933 0.525 1.595
MT/CNN 100% 2.543 0.370 1.089

Table 4.2: Balanced accuracy score and mean absolute angle error of the models
LSTM, CNN, and MLP trained on hierarchy or in MT with simulated DPs.

the models with a better accuracy by letting a single model ingest all available
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training data and take advantage of the implicit knowledge between the two tasks to

enhance the accuracy of each one of them.

Next, we investigate the capabilities of these models to adapt from simulated

descriptors to the descriptors extract from real DPs, transfert learning has become a

common technique used in ML, from NLP to computer vision, pretrained models are

widely used in various applications to enhance model performance [122]. In the next

set of experiments, we will investigate if the trained models from the previous step can

transfer their knowledge from simulated TEM data to successfully analyze real TEM

diffraction data. For this experiment, we consider the first batch of maps, where map

2 and map 3 are used for fine-tuning the models, and the map 1 for the performance

evaluation. Table 4.3 presents the results of our experiments, for each MT model we

report performance results for the prediction of angles with maae metric, and phases

with accuracy and balanced accuracy metrics. The results are reported with and

without fine-tuning for the models MT/LSTM, MT/MLP, and MT/CNN, fine-tuned

models are prefixed with FT, best performance are in bold. * refers to the best overall

performance for each metric.

models accuracy balanced accuracy
maae (degrees)
ϕ1 Φ ϕ2

MT/LSTM 98.6%∗ 34.5% 92.6 8.9 18.8
FT/MT/LSTM 98.1% 37.8%∗ 46.0 6.2 7.5∗

MT/MLP 83.7% 31.5% 101.4 6.5 17.1
FT/MT/MLP 97.8% 34.4% 39.9∗ 5.9∗ 8.9

MT/CNN 93.9% 35.0% 78.0 9.6 26.0
FT/MT/CNN 93.2% 36.1% 40.6 6.37 8.2

Table 4.3: Balanced accuracy score and mean absolute angle error of the pretrained
models MT/LSTM, MT/CNN, and MT/MLP on map 1, each model is compared
with and without fine-tuning using maps 2 and 3.

From Table 4.3, we note that the classification accuracy of all pre-trained models

is high. It indicates a benefit in transferring from training on simulated DP sig-

natures. All the models can successfully apply the learned knowledge of classifying

extracted signatures from simulated diffractions to classify extracted signatures from

real diffraction images correctly. The preprocessing adopted in the previous section

has played a critical role in facilitating this transfer. Secondly, fine-tuning shows

superior performance compared to using the pre-trained models without fine-tuning,

especially for the angle’s predictions. This result is expected, there are an intrinsic
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difference between real TEM data, and simulations. Allowing DL models to fine-tune

thier acquired knowledge on real data will naturally lead to better predictions. We

also note that the balanced accuracy is relatively low, it is a consequence of the highly

class imbalanced distribution in TEM micrographs (we refer the reader to Table 4.4).

Lastly, fine-tuning increased the overall prediction accuracy of Euler’s angles for map

1. However, the accuracy is still not comparable to the level of precision that we

obtained with simulated TEM data. In Figure 4.9, we depict the predicted maps

for the orientation determination and the phases determination of map 1, by all the

fine-tunned models. As expected from the classification accuracy, the phase maps are

well predicted by the predictor. Concerning the orientation map, the situation is of

course less favorable. However, regardless of the relatively high maae error reported

in the previous table by these models on map 1, the predicted Euler’s orientation

map highlights the main grain boundary in the micrograph of map 1, although some

other boundaries are not so clearly visible. the FT/MT/LSTM model achieved the

best balanced accuracy metric, and it is visually validated by its predicted phases de-

termination map, compared to the two other maps, from models FT/MT/CNN, and

FT/MT/MLP. Finally, we can notice in the predicted orientation maps the presence

of noise in the predictions compared to the ground truth map provided by ASTAR.

The lack of relevant real DPs data covering the Euler space has a consequence in the

robustness of these estimators.

In summary, the quality of the similarity between the simulated and real descrip-

tors heavily depends on the preprocessing steps, which has a direct implication on the

final model performance. Fine-tuning, multi-task learning, and an efficient prepro-

cessing procedure allow us to reduce this bias when training with real descriptors. We

successfully analyzed TEM experimental data by combining all these tools. The qual-

itative and quantitative promising results show that DL approaches can successfully

be used for real-time TEM data analysis, especially for phase identification.
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(a) Phases and Euler’s orientation maps of micrograph of map 1.

α-Fe
NbC
Fe3C

(b) Phases and Euler’s orientation maps predicted by FT/MT/LSTM model.

α-Fe
NbC
Fe3C

(c) Phases and Euler’s orientation maps predicted by FT/MT/MLP model.

α-Fe
NbC
Fe3C

(d) Phases and Euler’s orientation maps predicted by FT/MT/CNN model.

Figure 4.9: Predicted Euler’s orientation maps, and phase determination maps of all
fine-tunned DL models for the micrograph of map 1.
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The approach presented in this section has however some limitations. First, it

requires the simulation of all DPs in the fundamental zone of each considered phase.

This simulation might be expensive depending on the symmetry class of the considered

crystals. Our choice of using compact descriptors rather than raw 2D images reduce

this cost significantly at the expense of an information loss regarding the experimental

DPs. Finally, even if the orientation maps present relevant information, the high noise

rate in the predictions made by this initial DL analysis of the data much less efficient

than the deterministic algorithms such as template matching.

Alternatively, in the next section, we will investigate the potential of the state-

of-the-art DL models in analyzing experimental TEM data, relying solely on real

diffraction diagrams, and using the images as inputs.

4.3.2 Training on real TEM data

We are interested in the following in the task of analyzing TEM data by relying solely

on experimental DPs. For this purpose, we will use all the diffraction data available

to us from the considered micrographs of Figure 4.1 to train and evaluate SOTA DL

models from computer vision, next we will first show the potential of these models and

their limitations in solving the TEM data analysis task. The aggregated diffraction

data is presented in Table 4.4.

phase size proportion label

Al 818260 56.1% 1

Al6Fe 35246 2.4% 2

α-Fe 557322 38.2% 3

NbC 3943 0.3% 4

Fe3C 40390 2.8% 5

γ-Fe 2252 0.2% 6

Table 4.4: Raw TEM data statistics overall micrographs.

The majority of traditional ML experimental protocols include the filtering of

sample duplicates in their feature engineering steps. Sample duplicates are, in our

case, all DP images that share the same class label and the same Euler’s angles.

Thus, dropping sample duplicates is a crucial step in learning efficient models. Yet,

when analyzing TEM data, sample duplicates may be essential for training DL mod-

els. First, as previously mentioned, TEM data exhibits a high volume of duplicates.
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Therefore, discarding the duplicates will drastically reduce the data for training DL

models. Additionally, for experimental TEM data, DP duplicates do not contain the

same signal, depending on the detailed electron beam diffraction, the superposition of

grains, each diffraction pattern is slightly different and results in a different signal in

the duplicates. Hence, trained models should be able to correctly predict these DPs

in experimental conditions, to consider a realistic evaluation for TEM data analysis

by DL approaches.

To this end, we design the following experimental protocol to evaluate the potential

of DL models to analyze TEM data. We used all available diffraction data from

Table 4.4, to constitute two datasets, the first dataset contains only unique DPs,

and the second dataset, contains DPs dupliactes up to 100 duplicates. To sample

this dataset, we undersampled all DPs images that have more than 100 duplicates,

Table 4.5 resumes the statistics of this two sampled datasets.

unique DPs dataset 100 dup. DPs dataset

phase size proportion size proportion

Al 13669 59.8% 254642 66.0%

Al6Fe 2839 12.5% 24838 6.5%

α-Fe 2271 10.0% 72024 18.6%

NbC 611 2.7% 3447 0.9%

Fe3C 3075 13.5% 28682 7.4%

γ-Fe 351 1.5% 2166 0.6%

Table 4.5: Sampled TEM data statistics from all available diffraction data.

We consider for this set of experiments the SOTA models in computer vision

tasks, the ResNet model [59] and its variations, ResNet50, ResNet50V2, ResNet101,

InceptionResNetV2, and ResNet152. The EfficientNet model [110] and its variations

from B0 to B7. The DenseNet architecture [64] and its variations, the Xception model

[36], the Inception model [109], VGG16 and VGG19 [105]. The barplot in Figure 4.10

presents the results for this SOTA models in phases classification with the unique

DPs dataset in blue, and the 100 duplicate DPs dataset in orange. All models were

trained on diffraction data from all the maps except for map 1 (from steel sample)

and 100T (from Aluminum sample) which were kept for test set evaluation.

From the results depicted in Figure 4.10, we first notice that most of the DL mod-

els achieve a high classification accuracy in the unique DPs dataset. Conversely, we
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Figure 4.10: Classification results of SOTA DL models, accuracy scores are on ex-
periments with two datasets, the unique DPs dataset and the 100 DPs duplicates
dataset.

observe a significant drop of performance when the models are trained and evaluated

on the dataset with 100 DP duplicates at most. The class label distribution does not

significantly shift between these two dataset as shown in Table 4.5, our interpretation

of this phenomenon relies on the fact that the SOTA DL models fail to learn mean-

ingful representations of TEM data when trained with limited diffraction TEM data

containing noisy duplicated DPs, thus, making them inadequate to be used for TEM

data analysis. To remediate to this inefficiency we introduce in the following a new

DL model, designed in the spirit of analyzing TEM diffraction data in experimental

conditions. But first, we introduce the segmentation map of a micrograph as the re-

sult of a deterministic function that maps unique DPs with a unique label and Euler

angles, to a unique identification. Figure 4.11 presents the segmentation maps of all

considered micrographs. We implement the encoding function that maps the angles

and phase label to a unique identifier using label encoder, these identifier are then

used are indices for the XKCD color list1 to retrieve the segmentation map.

By definition of the mapping function, a segmentation map aggregates the infor-

mation of both phase determination and Euler’s orientation maps. Therefore, it is

essential to facilitate the interaction between DL models and existing software for

TEM data analysis, correctly predicted segmentation maps will significantly reduce

the cost of post-processing analysis of the data with deterministic approaches such as

template matching.

1https://blog.xkcd.com/2010/05/03/color-survey-results/
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(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 10T (e) Map as-cast (f) Map 100T

Figure 4.11: Encoded segmentation maps for all considered micrographs.

The accurate prediction of a segmentation map requires a DL model to learn

to distinguish between real DPs. Intuitively, differentiating DP images seems more

accessible than the orientation prediction and has a better chance to generalize to un-

seen DP orientations. Consequently, we will focus on a specifically designed DL model

for solving the segmentation map prediction problem for the rest of this study. This

model is denoted as Multi-task Pairwise Siamese Network (MPSN). Siamese networks

[22] are a particular class of DL models that internally have a twin or more identical

subnetworks. Siamese architecture is used in many applications, from anomaly de-

tection and classification to similarity and representation learning, etc.[37, 35]. The

subnetworks in the siamese architecture are trained by mirroring the gradients during

the backpropagation, they can take pairs or triplets as inputs, a rich literature exists

on different training algorithms and losses, such as the contrastive loss or the triplet

loss (for more details regarding siamese networks, please refer to [35]). Furthermore,

siamese networks are known to be more robust to class imbalance by implementing

a particular sampling strategy for the inputs during training, and they were also

successfully applied in representation learning algorithms; they focus on learning a

latent representation with a semantic similarity, encoded in the similarity measure
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used during training.

Figure 4.12: Multi Pairwise Siamese Network (MPSN) architecture.

For the MPSN architecture, we make use of the siamese idea in order to train our
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DL model to learn to distinguish between DP image pairs of the same phase class.

Figure 4.12 illustrates the architecture of the Multi-task Pairwise Siamese Network.

The MPSN model takes as input DP image pairs (x0,x1) from the same phase and

a binary label vector y of size 7, the first coefficient of y corresponds to the label

pair, which takes one for positive pairs and zero for negative pairs. A positive pair,

in our case, is a pair of PD images of the same class with the same Euler orientation,

meaning DP duplicates. Negative pairs, on the other hand, are PD image pairs of the

same phase but at different Euler orientations. the latter 6 coefficients correspond

to the one hot encoding of phase labels. The image pairs are sequentially forwarded

through an image encoder. In our case, we chose the ResNet50 DL model [59] as

the encoder by removing the dense top layer of the classifier and flattening the latent

representation of the model as the image embedding space. This architecture is

depicted in Figure 4.12.

This embedding is then connected to two separate heads. The siamese head is

composed of a dense layer with relu activation for feature extraction. The feature

vectors are used to estimate the distance metric. Then the result is mapped to the 0-

1 space with the sigmoid function S(x) = 1/(1+ e−x). The second head is a standard

classification architecture, composed of a dense layer with the same number of units as

the number of classes and a softmax activation function defined as σ(x)i = exi/(
∑

j xj)

for each coordinate i of x, to map the logits to a probability distribution vector. The

image pairs are also forwarded sequentially to obtain the probability vectors for phase

prediction of each DP image.

The MPSN model is trained in an MTL fashion with a composite loss function

balanced by a hyperparameter λ, constituted of a binary cross-entropy for the siamese

head and another cross-entropy loss for the classification head:

ℓλ(x0,x1, y) =− λ[(y0 log(f s(x0,x1; θ
e, θs)) + (1− y0) log(1− f s(x0,x1; θ

e, θs)))]

− (1− λ)
1∑
i=0

6∑
k=1

yk log(f
c(xi; θ

e, θc)).

(4.4)

Where f s(.; θe, θs) is the siamese parametric function, with the shared encoder

parameters θe, and the task-specific parameters θs, and f c(.; θe, θc) the classification

parametric function with the shared encoder parameters θe, and the task-specific

parameters θc. MPSN is trained to optimize the following minimization formulation:

72



minimize
θe
θs,θc

∑
t

ℓλ(x
(t)
0 ,x

(t)
1 , y

(t)) (4.5)

Where t refers to the t th pair in the created sample set of pairs. The strategy

for sampling image pairs is crucial for standard siamese models as same as for MPSN

model. Algorithm 4 details the sampling strategy designed to train this model with

TEM diffraction data, it takes as input the TEM diffraction data S of size n composed

of DP images xi, their corresponding phase label pi, and segment id ci output of the

segmentation mapping function. It returns a pair generator G(S) which will be used

as source of training data for training the MPSN model. With the generator at hand,

the model is trained like any other standard DL model by specifying the number of

gradient steps per epoch. As mentioned previously, we utilize all the micrographs for

training the model except for map 1 and 100T, which are kept for the final evaluation.

The same optimization routine was carried out for all SOTA models and the Multi-

task Pairwise Siamese Network.

Algorithm 4 Pair sampling generator for MPSN training

Require: S = {(xi, pi, ci)}ni=1 a set of labeled TEM DP images, with pi ∈ [1, . . . , 6]
and ci ∈ C, where C is the set of all code ids in S.
Partition the set S in a hierarchical partition P(p, c).
Set a boolean variable pos to True.
Create a generator G on S with the following internal routine:

When next sample is asked:
Randomly sample p from [1, . . . , 6].
if pos is True then

Randomly sample c from Cp the subset of C of all id codes of phase p.
Randomly sample an image pair (x,x′) from the partition P(p, c).
Return the labeled positive pair (x,x′, pos, p).
Set pos to False.

else
Randomly sample c and c′ from Cp, such that c ̸= c′.
Randomly sample x from P(p, c) and x′ from P(p, c′).
Return the labeled negative pair (x,x′, pos, p).
Set pos to True.

Output : pair sampling generator G(S)

After training the model, we can predict the class label for the phase determination

map and the segmentation map from preprocessed DPs using the algorithm below,

which takes as input the TEM diffraction data of a micrograph and return, phase

labels and segmentation ids to construct the maps.

73



Algorithm 5 MPSN prediction of a segmentation map

Require: S = {xi}ni=1 a set of unlabeled TEM DP images, mpsn a trained MPSN
model, and κ = 0.8 a confidence threshold.
Predict the phase label of all images in S with the classification head of mpsn.
Group the images in S by their phase prediction in S[p].
Set L = [] and c = 0.
for each group g in S[p] do

while there are images in g do
Randomly sample x from g.
Predict pair labels on pairs (g, duplicate(x)) with the classification
head of mpsn using the confidence level κ.
Add set of the positive pairs from the prediction to L with labels (p, c).
Remove this set from g.
Set c = c+ 1

end while
end for
Output : L the set of labeled TEM DP images, given unlabeled as input in S.

The algorithm above takes advantage of both predictions in the MPSN model to

retrieve the segmentation map of a given micrograph, the parameter κ determines the

precision of the retrieved map, higher values will result in a segmentation map with

a high number of segments, whereas values close to 0.5 will produce segmentations

with fewer and larger segments. The figure below shows the predicted segmentation

maps of the micrographs 1 and 100T by the MPSN model.

Figure 4.13 shows the segmentation maps of map 1 and 100T, predicted by the

trained MPSN model using the algorithms described above. For the purpose of vi-

sualization clarity we fixed κ to 0.7 rather than the default value of 0.8. We observe

that the predicted are visually similar to the ground truth maps, note that for the

segmentation maps, we are interested in the segment shapes and not there color.

The color id is just a code to differentiate between different segment. In our case,

we suppose that each segment contains a unique DP with a given phase label and

orientation. Especially for the micrograph of map 100T, the MPSN model is able to

retrieved the mosaic patterns in the Euler’s angle map, this confirms our intuition

that using DL to differentiate between DP pairs may leads to better results than by

addressing the regression task of angles, in particular when generalizing to unseen

orientations.
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(a) Map 1 (b) Map 100T

(c) Predicted map 1 (d) Predicted map 100T

Figure 4.13: First row corresponds to the segmentation maps of the micrographs 1
and 100T, in the second row are the ones predicted by the MPSN model with κ = 0.7.

Given the predicted segmentation maps by the MPSN model, we can recover

Euler’s orientation map and the phase map by querying a deterministic approach,

such as template matching to label a single DP from each segment and propagate

the labels of this DP through all the segments. Table 4.6 and Table 4.7 present the

precision of these retrieved maps with respect to the ground truth maps provided

by ASTAR. In addition to the metrics used in the previous section, we introduce the

reduction metric as the proportion of queries saved when relying on label propagation

with the predicted segmentation maps rather than querying all DPs of the micrograph.

Note that with smaller κ, we obtain segmentation maps with fewer segments, which

significantly reduces the number of queries needed to retrieve the Euler’s orientation

and phase’s maps, as shown in the tables. On the other hand, high κ values ensure

better precision in predicting the phases and angles.

Figure 4.14 and Figure 4.15 show the predicted orientation and phase maps by

label propagation, given the segmentation map predicted by the MPSN model with

a confidence level κ = 0.8, for the micrographs of map 1 and map 100T respectively.
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κ reduction accuracy balanced accuracy
maae (degrees)
ϕ1 Φ ϕ2

0.6 99.58% 95.7% 55.9% 10.0 5.3 7.2
0.7 98.59% 97.5% 63.5% 5.7 3.2 4.7
0.8 94.70% 98.4% 75.7% 3.6 2.1 3.2
0.9 66.54% 99.4% 88.8% 1.3 0.8 1.2

Table 4.6: Accuracy, balanced accuracy and mean absolute angle error of the MPSN
model predictions on map 1, the reduction is in terms of number of queries.

κ reduction accuracy balanced accuracy
maae (degrees)
ϕ1 Φ ϕ2

0.6 99.50% 99.2% 66.6% 50.9 39.3 51.0
0.7 97.84% 99.3% 73.3% 22.4 18.1 24.3
0.8 92.37% 99.6% 87.9% 11.3 9.0 12.8
0.9 65.67% 99.9% 95.2% 4.8 3.9 5.8

Table 4.7: Accuracy, balanced accuracy and mean absolute angle error of the MPSN
model predictions on map 100T, the reduction is in terms of number of queries.

These results show that the MPSN model architecture can drastically reduce the cost

of analyzing TEM data with deterministic approaches by over 90%, while providing a

high accuracy on the resulted MAPS after the analysis. Furthermore, we show from

our experimental protocol that the model can generalize to new experimental TEM

data without the need of training on simulated data or fine-tuning. These arguments

support the realistic deployment of such a DL approach in an interactive setting with

an existing deterministic method to significantly speed up The TEM data analysis

for a real-time use case.
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α-Fe
NbC
Fe3C

(a) Phases and Euler’s orientation maps of micrograph of map 1.

α-Fe
NbC
Fe3C

(b) Predicted phases and Euler’s orientation maps using the MPSN model with κ = 0.8.

Figure 4.14: Phases and Euler’s orientation maps found using the segmentation map
predicted by the MPSN model on map 1.
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Al6Fe

(a) Phases and Euler’s orientation maps of micrograph of map 100T.

Al
Al6Fe

(b) Predicted phases and Euler’s orientation maps using the MPSN model with κ = 0.8.

Figure 4.15: Phases and Euler’s orientation maps found using the segmentation map
predicted by the MPSN model on map 100T.
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4.4 Conclusion

In this work, we investigated the potential of deep learning for the rapid automation of

TEM data analysis. We proposed a preprocessing of simulated and experimental DPs

with descriptors. We demonstrated the value of multi-task learning for the regres-

sion task of orientation prediction and the classification task of phase determination

and transfer learning by successfully learning to analyze simulated TEM diffraction

data and applying it to experimental diffraction data. In parallel, we performed an

extensive comparative study of SOTA DL models to analyze diffraction data with a

realistic experimental protocol. Furthermore, we introduced the segmentation map

a new visualization support to allow DL-based solutions to interact in an interactive

way with existing deterministic approaches for TEM data analysis. In this context,

we address the problem of TEM data analysis for DL as the task of differentiating

between experimental DPs, in order to predict the corresponding segmentation map.

We proposed a new DL model, namely the Multi-task Pairwise Siamese Network with

dedicated training and inference procedures. The model is able to drastically reduce

labeling cost in terms of the number of queries of traditional deterministic algorithms

for TEM analysis while showing favorable results in the prediction of maps using

label propagation on the predicted segmentation map with promising performance in

generalizing to unseen micrographs.

In the current state of the presented methods, it appears that accurate phase

determination can be reached both based on training on simulated images and directly

on experimental data. In the latter case, the main ussie is obviously the amount of

data available and the diversity of data, since experimental maps contain a large

proportion of duplicates. As for the simulated data strategy, in order to become

more user-friendly, future work should also address how a pre-trained model could be

easily transferred to different experimental configurations (camera length, precession

conditions, etc.). Concerning the prediction of orientation angle, promising precision

has been obtained on some Euler angles but not all, and further research is need

to improve this precision to a degree where the noise on experimental maps can

be reduced to observe relevant features in most microstructures. The possibility to

implement a real time approximation of the phase and orientation map during TEM

acquisition is not out of reach given the results presented here, and would be a valuable

asset for more useful data collection by the experimentalists.
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Chapter 5

Conclusions and Future
Perspectives

The work in this thesis has concentrated on demonstrating the relevance of implicit

information in the design of machine learning algorithms. This study direction has

been extensively investigated by the community, with its different subdomains in

semi-supervised learning, active learning, and transfer learning. We demonstrated

that implicit information may take numerous forms and is especially useful in learn-

ing circumstances where labeled information is sparse and expensive. This implicit

information can also come from a variety of sources, such as data distribution, a learn-

ing algorithm’s knowledge model, or simulations. We studied these many sources of

implicit information by developing tailored learning algorithms to recognize and ex-

ploit this knowledge to improve learning efficiency.

Further research into new approaches to develop learning algorithms to recognize

and apply implicit information is critical. To solve our daily activities, we create

effective ways of combining contextual knowledge and prior experiences. However,

without enough labeled data, these activities remain beyond the capabilities of ma-

chine intelligence.

Future goals should be to achieve human intelligence not by completing a specific

set of problems, as was previously regarded to be a milestone for artificial intelligence,

but rather by developing learning models and algorithms that better blend memory,

experience, and perception. With developing study paths such as few-shot learning

or self-learning, the research community has already set its course to move in this

direction. In my opinion, the research done in this area will be important in advancing

AI to the next level.
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[106] Oriane Siméoni, Mateusz Budnik, Yannis Avrithis, and Guillaume Gravier.

Rethinking deep active learning: Using unlabeled data at model training. ICPR,

2019.

90



[107] Aarti Singh, Robert Nowak, and Jerry Zhu. Unlabeled data: Now it helps,

now it doesn’t. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, edi-

tors, Advances in Neural Information Processing Systems, volume 21. Curran

Associates, Inc., 2009.

[108] Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological methods

for the analysis of high dimensional data sets and 3d object recognition. pages

91–100, 01 2007.

[109] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

2818–2826, 2016.

[110] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. CoRR, abs/1905.11946, 2019.

[111] Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-based active

learning. In Shai Shalev-Shwartz and Ingo Steinwart, editors, Proceedings of

the 26th Annual Conference on Learning Theory, volume 30 of Proceedings of

Machine Learning Research, pages 376–397, Princeton, NJ, USA, 12–14 Jun

2013. PMLR.

[112] Nicolas Usunier, Massih-Reza Amini, and Cyril Goutte. Multiview semi-

supervised learning for ranking multilingual documents. In Machine Learning

and Knowledge Discovery in Databases - European Conference, ECML PKDD,

pages 443–458, 2011.
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