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ABSTRACT

Acquiring and representing 3D shapes in motion from one or multiple views, coi-
ned 4D modeling, has been a topic of interest to computer vision and computer gra-
phics for several decades, for 3D content production, virtual reality, telepresence and
human motion analysis applications. In this time frame, the topic has gone from theore-
tical research subject to partial industrialisation, including nowadays many acquisition
studios from major world companies, and a successful Inria startup with 15 years of
activity. To achieve this, a set of hard problems had to be addressed, with advances
in what can be classified as three subfields of shape acquisition and representation,
motion retrieval and modeling, and appearance and texture estimation. This document
summarizes my journey and contributions toward these goals with the students I was
privileged to work with, with a particular focus on PhDs defended in the last five years.
First I will discuss our work with multi-view stereo and monocular shape estimation.
Second, I will present how weak but general priors on surface or volumetric rigidity,
and using the a priori of an underlying human shape space, can be leveraged for surface
tracking and alignment of human subjects in tight or loose clothing. Third, I will dis-
cuss the space-time statistical and representational models of appearance we proposed
to estimate and store color map information of acquired subjects.

RESUME

Acquérir et représenter des formes 3D en mouvement a partir d’une ou plusieurs
vues, aussi appellé modélisation 4D, a été€ un sujet d’intérét pour la vision par ordi-
nateur et I’infographie depuis plusieurs décennies, pour la production de contenu 3D,
les applications liées a la réalité virtuelle, la téléprésence et a I’analyse du mouvement
humain. Dans ce laps de temps, le sujet est passé de la recherche théorique a une in-
dustrialisation partielle, avec de nos jours de nombreux studios d’acquisition dans les
entreprises majeures du domaine de I’'informatique, et une startup Inria avec actuel-
lement a son actif 15 ans d’activité. Pour atteindre ce palier majeur, un ensemble de
problémes difficiles a dii étre résolu, avec des progres dans ce qui peut étre classé en
trois champs d’investigations, I’acquisition et la représentation de forme, la modélisa-
tion et I’estimation de mouvement, et I’estimation de 1’apparence et de la texture. Ce
document résume mon parcours et mes contributions dans le sens ces objectifs avec le
étudiants avec lesquels j’ai eu le privilege de travailler, avec un accent particulier sur les
theses soutenues ces cing dernieres années. J’aborderai tout d’abord notre travail avec
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la stéréo multi-vues et I’estimation monoculaire de forme monoculaire 3D. Deuxieme-
ment, je présenterai I’apport d’a prioris faibles mais tres généraux sur la rigidité des
surfaces ou en volume, et I’utilisation d’a priori d’un espace des formes humaines, et
comment les mettre a profit pour le suivi de surface et I’alignement de sujets humains
en vétements amples comme serrés. Troisiemement, je discuterai des modeles statis-
tiques spatio-temporelles et des représentation d’apparence que nous avons proposés
pour estimer et stocker des cartes de couleur pour les sujets acquis.
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Introduction

1.1 RESEARCH PROBLEM : 4D MODELING

The past decades have seen an ever increasing interest in automated 3D dynamic
content creation, for various applications such as 3D content production, advertizing,
entertainment, virtual reality, telepresence. It is also becoming a popular research topic
in the learning era, where works are increasingly showing that 3D constraints and
inference can be built on deep learning methods to increase result quality and scene
understanding.

This trend has been fueled by the increased availability of multi-camera systems,
such as our 68-camera capture plaftorm Kinovis [kin], sometimes comprised of do-
zens or hundreds of cameras, that can be used for performance capture (e.g. [SHO7,
dAST"08,LDX10, CCS™15,JLT"15]). Such systems can readily produce video streams
of the same subject from multiple viewpoints, allowing indirect and passive access to
the 3D geometry, motion, and appearance of filmed subjects. This technology offers
numerous promises with respect to rugged, but sparse previous generation motion cap-
ture techniques, where only a predefined set of points and no colorimetry was observed,
and relies on instrumentation of the captured subjects with active or passive markers.
Thanks to spatially and temporally dense color and sometimes depth observations now
offered with multi-view platforms, a much richer set of possibilities arise toward esti-
mation of full shapes in motion, with detailed surface reconstruction, motion tracking,
and access to the appearance through the acquired images. This is all with the advan-
tage of passive, non invasive protocols where the subject or actor can come in full clo-
thing and expect to be captured with all his apparel, props, and ultimately interaction
with other people or with the set and scenery. But with this richer data comes a vastly
increased complexity, and extracting these problems is still a very active research field
to this day.
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FI1GURE 1.1 - Visualization of the geometry of a 4D aligned template model.

This document is centered on the problem of 4D modeling, which is the process
of producing this 3D content and appearance representations from temporal sequences
obtained from a set of cameras. In most works in this topic, access to a controlled se-
tup with pre-calibrated cameras is assumed, such that the focus is on obtaining the 3D
model geometry, its motion and its appearance as texture map as opposed to egenral
scene structure. 4D modeling differs from simple, one shot reconstructions over each
frame of the sequence, by the main property that it exploits time continuity and redun-
dancy to enhance the quality of the models, or produces models that are aligned, e.g.
with identical surface topology and connectivity but deforming shape or, by means of
varying model parameters or vertex positions.

1.2 CHALLENGES

Our general goal is to produce highest quality possible and easy to use models,
and produce the best 4D modeling algorithms to this goal. This is a generally very
challenging topic because, in its most general form, we are observing a moving shape
or set of moving shapes with very indirect raw data, namely sets of image sequences

{It}fgﬁ obtained from a set of calibrated n cameras during m temporal
frames and how to extract the shape, motion and appearance of these single under-
lying objects, in some sense a large scale multi-variate and interdependent regression

problem. Some of the main obstacles to achieve these goals are the following :

Dimensionality

The key information is buried in several high frequency video streams that qui-
ckly comprise Terabytes of data. On a typical platform such as Kinovis, acquisitions
produce data at a rate of 40Gb/s.
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The dimensionality of the output is typically also very large, even if it exploits and
removes key input redundancies, but still comprises large representations, e.g. mesh
and textures, with full or partial updates that need to be periodically refreshed.

Representation

Finding the best intermediate and output representations for the 4D model is still
to this day an open problem. Exactly what granularity shall be stored for the geome-
try, temporal evolution and appearance can lead to compact results, but the desirable
properties of the representations may not be the same at different stages of the pipe-
line. Should we use surface meshes, or volumetric primitives for the inference ? How
exactly should the color information be stored, as a separate per-frame texture map,
or using a temporally refactored representation ? What is the best way of co-storing
shape, geometry, motion and appearance ? These are some of the questions examined
in this document.

Choosing Priors

The image set we observed is a noisy, partial observation of the quantities we wish
to estimate, and our problem is an inverse and ill-posed problem. Choosing the correct
priors and how to embed them in our method is going to be important and in fact we
have explored many different directions.

First the assumptions inherent to the model itself involve relying on regularizing
behaviors, and usually in their simplest form involve geometric, motion and appearance
continuity over the full shape. But choosing the correct prior is non-trivial. Typically
building the prior that the motion is from a human subject is a key tradeoff we examine
in this work, on one hand dealing with very basic motion hypothesis or at the opposite
of the spectrum having a strong constraining human model. One will favor generality
and the other will be more stable but may not account for out-of-model situations such
as object or multi-person interaction or loose clothing.

1.3 STRUCTURE AND CONTRIBUTIONS

As the previous challenges hint at, the 4D modeling problem requires examining
a collection of subproblems together to target a single goal. To break the complexity
of the algorithm, some kind of stratification is usually chosen. Throughout our works
during the years, the stratification that we opted for has been relatively uniform, first
extracting the shape at individual time frames, then performing motion analysis for tra-
cking and alignment on the individual reconstructed shapes directly in 3D, and finally
extracting appearance information. This is of course not the only possible stratification,
but to this day remains a very popular way to break down the problem, with variants
in how geometric and temporal tasks are connected, e.g. [CCS™ 15, MVK"20].
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This manuscript follows these three main stages in their logical order of application
in the pipeline, which in particular is quite different than the chronological order in
which these works were actually executed.

In Chapter 2, I describe how we approached the problem of 3D shape estimation with
one frame or small group of frames simultaneously :

— I first present two of our contributions toward designing a customized multi-
view stereo pipeline particularly suitable for the context of performance capture
and 4D modeling tasks. A careful analysis of our needs and acquisition scena-
rios lead us to build-in key features and exploit local temporal redundancy to
increase precision ; we also examine how deep learning can be used to optimize
the feature extraction and reconstruction decisions.

— Second, I present a method whereby we used an end-to-end deep learning to
extract a full 3D from one viewpoint, with the idea of testing the limits of
the monocular reconstruction setup, and as preliminary step to possible multi-
camera applications as well.

In Chapter 3, I present several works focused on temporal analysis and alignment of
the 3D models previously extracted
— I first summarize the works achieved on a series of models based on weak but
quite general, quasi-rigid patch-based priors, using adaptive versions of patch-
based constraints either at the surface or the volumetric level.
— Then I examine how a stronger human shape-space model can be used to
constrain the estimation of shapes in motion, and estimate the underlying body
shape of acquired subject under clothing.

In Chapter 4, the discussion is on two appearance estimation works we did to retrieve
an appearance map measuring dense radiance information observed :

— First, we present a principled method by which the appearance estimation of a
3D model under small motions can be treated as a specialized 3D version of
the well-known video superresolution problem

— Second, I discuss how this work can be extended to longer sequences by storing
long term appearance variations as a linear combination of 3D mapped Eigen
textures.

Before getting to the technical part of the presentation, I will describe some contextual
information, in particular about the people and contexts I worked with.

1.4 PEOPLE

This manuscript is intended to give an overview of my research work as an asso-
ciate professor ("maitre de conférences”) in computer science at Grenoble INP - En-
simag (part of the Université Grenoble Alpes, France) with a focus on PhDs defended
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in the last 5 years. During my career, I had the pleasure and privilege to work with a
wide range of colleagues and students on the aforementioned topics. I will give a brief
overview of these encounters in the following paragraphs.

1.4.1 Contexts

I obtained my PhD from the Institut National Polytechnique de Grenoble in 2005
with the INRIA MOVI team headed by Radu Horaud, supervized by Edmond Boyer.

I then joined UNC Chapel Hill as a post-doctoral research assistant to Marc Polle-
feys in 2006-2007, during which I co-supervized PhD students Li Guan and collabora-
ted with Sudipta Sinha on probabilistic visual hulls.

In 2007, I was appointed to my first associate professor position at Université
Bordeaux 1 with Pascal Guitton and the IPARLA team, Inria Bordeaux Sud-Ouest.
I co-supervized the PhDs of Yann Savoye and Robin Skowronski with Pascal Guitton,
working respectively on non-rigid human tracking and calibration for drones. I also
collaborated in the supervision of with PhD student Benjamin Petit with whom I inter-
acted a lot with for the Dalia ANR project on telepresence between two multi-camera
platforms Hemicyclia and Grlmage.

I then moved to the Ensimag (School of Computer Science and Applied Mathe-
matics, INP Grenoble University) as associate professor of Computer Science, and
as a researcher at the Inria Grenoble Rhone-Alpes, France, with the Morpheo team in
2011 and have been co-supervising many PhD students since then, Abdelaziz Djelouah
on multi-view segmentation with Patrick Perez and Francois LeClerc at Technicolor,
Vagia Tsiminaki and Adnane Boukhayma on multi-view appearance estimation and
superresolution, Benjamin Allain on shape tracking and temporal surface alignement,
Vincent Leroy on probabilistic Multi-View Stereo, with Edmond Boyer; and I have had
a non-official supervizing role throughout Jinlong Yang’s PhD on model-based human
body tracking under clothing, a collaboration with Morpheo team members Stefanie
Wuhrer and Franck Hetroy.

Out of the master students I supervized too numerous to enumerate here, one stands
out recently as it opened a collaboration cycle with Inria Thoth team members Gregory
Rogez and Cordelia Schmid, through the supervision of Valentin Gabeur. This colla-
boration would yield a major conference paper at ICCV 2019 and paved the way to
several Morpheo-Naver Labs Europe collaborations after Gregory Rogez and Vincent
Leroy joined Naver.

I am currently co-supervizing Mathieu Armando on mesh and appearance super-
resolution, Boyao Zhou on using deep learning for human space-time human shape
reconstruction, with Federica Bogo and Edmond Boyer, as part of a Microsoft Grant ;
I am also co-supervizing Abdullah Haroon Rasheed on learning based cloth physics
estimation with Florence Bertails, Stefanie Wuhrer, and Mathieu Marsot on learning
space-time human shape and motion generative models, with Stefanie Wuhrer, and
Anne-Hélene Olivier from Inria Rennes who is a ANR project collaborator. These
have all been exciting projects that are followups of the research projects described in
this document, and have benefited from these previous experiences.
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1.4.2 Student Supervision
PhD students

Current PhD students -

— Mathieu Marsot. ANR 3D MOVE, starting October 2019. Learning generative
models for 3D human motion. 50% supervision. Co-supervised with Stefanie
Wuhrerm, Anne-Hélene Olivier.

— Boyao Zhou. MS Research PhD grant, starting Decembre 2018. Motion and
trajectory analysis in an interactive environment. 30% supervision. Co-supervised
with Edmond Boyer, Marc Pollefeys, Federica Bogo, Bugra Tekin.

— Abdullah-Haroon Rasheed. ERC Grant Funding. Since November 2017. 3D
Deep Learning For Inference of Cloth Physical Parameters. Co-supervised with
Florence Bertails, Stefanie Wuhrer. 30% supervision.

— Mathieu Armando. MS Research PhD grant, starting November 2017. Mesh
and Texture superresolution. 50% supervision. Co-supervised with team leader
Edmond Boyer.

PhD students already defended :

— Vincent Leroy. ANR Achmov Project Grant, starting October 2015, defen-
ded October 17th 2019. 50% supervision. 4D stereo surface extraction. Co-
supervised with team leader Edmond Boyer. Publication in ICCV 2017, ECCV
2018. Now research scientist at Naver Labs Europe.

— Benjamin Allain. RE@QCT FP7 European Project Grant, starting October
2012, defended March 31st, 2017. Volumetric Tracking of 3D Deformable Shapes.
60% supervision. Co-supervised with team leader Edmond Boyer. Publications
in ECCV 2014, CVPR 2015, CVPR 2016. Now research scientist with startup
Smart Me Up.

— Vagia Tsiminaki. RE@CT FP7 European Project Grant, started June 2012,
defended December 14th, 2016. 3D model appearance extraction from multiple-
view sequences. 60% supervision. Co-supervised with team leader Edmond
Boyer. Publications in CVPR 2014, ECCV 2016. Now post-doc at ETH Zii-
rich with Marc Pollefeys.

— Abdelaziz Djelouah. CIFRE Doctoral Grant, industrial collaboration and co-
funding with Technicolor, Rennes, started April 2011, defended March 17th,
2015. Multi-view object segmentation with calibrated camera networks. Co-
supervised with Edmond Boyer, Francois Le Clerc, Patrick Perez. Publications
in ECCV 2012, ICCV 2013, PAMI 2015. 40% supervision. Formerly Post-Doc
at Inria Sophia Antipolis Méditerranée with George Drettakis, now research
scientist with Disney Research, Ziirich.



1.4. PEOPLE 7

— Yann Savoye. Ministry Doctoral Grant MNERT. Dynamic Reconstruction of
Human Shape and Motion. Since October 1st, 2008, mesh tracking for shape
modeling, 3D interaction and telepresence. 90% supervision, co-supervised
with team leader Pascal Guitton. Doctoral School EDMI Bordeaux. Now lec-
turer at Liverpool John Moores University, UK.

— Robin Skowronski. CIFRE Doctoral Grant, industrial collaboration and co-
funding with start-up Aérodrones, France. Environment Perception and Appli-
cation to Lightweight UAVs, from March 1st, 2008, defended on November
3rd, 2011, computer vision and calibration from a UAV-mounted camera. 90%
supervision, co-supervised with team leader Pascal Guitton. EDMI Bordeaux.
Currently full-time R&D engineer with Aérodrones.

— Li Guan. PhD at UNC Chapel Hill. Multi-view Dynamic Scene Modeling.
90% supervision. Co-supervised with Marc Pollefeys from February 2006, de-
fended on August 14th, 2009. Occlusion-robust shape modeling from multiple
silhouettes, motion analysis. Publications in 3DPVT 2006, 2008, CVPR 2007,
2008, 2010. Formerly Research Scientist (Computer Vision) with Amazon, now
with Zillow.

Significant participation in the following PhD supervision and collaborations :

— Jinlong Yang. ANR Achmov Project Grant, started October 2015, defended
March 28th 2019. Learning shape space of dressed 3D human models in mo-
tion. Collaboration with supervisers Stefanie Wuhrer and Franck Hetroy, es-
timated 30% supervision. ECCV 2016, ECCV 2018. Now with Facebook at
Occulus Research.

— Adnane Boukhayma, started October 2014, defended 6th December 2018. Sur-
face motion capture animation. Collaboration with superviser Edmond Boyer.
Estimated 20% supervision. ECCV ECCV 2016, CVPR 2017. Now Post-Doc
at University of Oxford, UK, with Phil Torr.

— Benjamin Petit, 2007-2011, Telepresence, immersion and interactions for real-
time 3D reconstruction, collaboration with supervisers Edmond Boyer and Bruno
Raffin. Publications at VMV 2011 & 2013, [JDMB journal 2010, Multimedia
2010, 3DTV 2009, VRST 2008. Now general manager at Beam’ Art. Estimated
20% supervision.

Master students

— Briac Toussaint. March to September, 2021. Multi-view calibration for the Ki-
novis Platform.

— Jiabin Chen. March to September, 2019. 4D Motion Analysis. Co-supervized
with Stefanie Wubhrer.

— Valentin Gabeur. February to September, 2018. Inference of 3D models from
monocular image input. Co-supervized with Grégory Rogez and Cordelia Schmid.
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Ivan Tudintsev. February to June, 2018. A comparison of NN-generative mo-
dels for 3D human shapes. Co-supervized with Stefanie Wuhrer and Abdullah-
Haroon Rasheed.

Abdullah-Haroon Rasheed. March to September, 2017. 3D Deep Learning For
Shape from Silhouettes in a Multi-Camera Setup.

Pau De-Jorge Aranda. March to August, 2017. Deep Neural Networks for 3D
body shape and pose prediction in real images. Co-supervized with Gregory
Rogez and Cordelia Schmidt.

Hamza Jaffali, March to August, 2017. Optimization for Cloth Motion Inver-
sion. Co-supervized with Florence Bertails.

Yannick Marion. March to August, 2015. Shape space model for multi-camera
3D tracking analysis. Co-supervised with Stephanie Wuhrer.

Antoine Fond. Centrale Nantes Masters. April Ist to September 30th 2014.
Spatio-temporal shape and point trajectory analysis. Co-supervised with Franck
Hetroy. Now PhD candidate at Inria Nancy Grand Est with Marie-Odile Berger.
Lienhoa Nguyen. Mosig Masters, Grenoble Universities. February to June 2014.
Optimal polyhedral boolean CSG. Co-supervised with Matthijs Douze and Bruno
Raffin.

Renato Oliveira. Mosig Masters, Grenoble Universities. February to June 2012.
3D shape tracking and refinement from multiple views. Now Software Develo-
per at Hewlett-Packard.

Hassan Kourad, Master Signal, Image, Parole et Telecom (SIPT), Grenoble
Universities. EM algorithm parallelization on GPU. March to September 2012.
Co-supervised with Dominique Houzet and Vincent Fristot (GIPSA lab).
Olivier Augereau. ENSEIRB Bordeaux school of engineering Master. A new
Multitouch Interface for 3D Interaction. February to June 2009. Hybrid multi-
touch and multi-camera systems. Co-supervised with Martin Hachet. Now re-
search assistant professor at Osaka Prefecture University.

Arash Kian. Bordeaux 1 University Master. Opportunistic Music Control, from
February to June 2009. Computer stereovision and gesture detection for musi-
cal interaction. Co-supervised with Martin Hachet. Publication at JVRC 2009.
Elric Delord. Bordeaux 1 University Master. 3D Immersive Interaction by Tem-

poral Reconstruction of Human Motion. February to June 2008. Bayesian mo-

deling of scene flow in a multi-view sequence.
Steven Gay. Occupancy Grids and Silhouette fusion on a GPU. June 18th to
August 18th, 2005. Co-supervised with Edmond Boyer.

1.4.3 Main projects and collaborations

Participant, ANR-3DMOVE project, JCJC from Stefanie Wubhrer, since Oc-
tober 2019. Generative models for 3D human Motion. Supervision of a docto-
ral student, Mathieu Marsot, starting in 2019.

Participant, Microsoft-Inria Joint-lab project, since 2017. Learning human
motion, surface geometry and appearance details. Co-supervision of two PhD
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students, Matthieu Armando and Boyao Zhou, starting in October 2017 and
January 2019 respectively.

— Participant, ANR-Achmov project, since November 2015. Shape space infe-
rence and tracking, generative-discrimative approaches, in collaboration with
IMAR, Romania. Supervision of a doctoral student, Vincent Leroy, starting
in 2015.

— Participant and scientific coordinator for Morpheo team, for the RE@CT
European project (FP7-ICT-2011.1.5), since September 2012. 4D performance
Capture, temporal sequence alignement and analysis, appearance and semantic
acquisition. Rigid structure detection. Collaboration with OMG/Vicon, BBC,
HHI, Artefacto, University of Surrey. Supervision of two doctoral students,
Vagia Tsiminaki and Benjamin Allain, starting in 2012.

— Participant in Equipex Kinovis (French national equipment of excellence grant),
since 2012. Participation in scientific panel and elaboration of the plateform,
dedicated to the high definition acquisition of subjects in motion (68 4Mega-
pixels cameras, 100m2 studio, 17 twelve-core PC cluster).

— Participant and scientific coordinator for IPARLA team, for the ANR-
DALIA project (French Ministry of Research Project Grant), from Septem-
ber 1st, 2007 to July 2010. 50% participation. Telepresence and collaborative
3D interaction, in collaboration with MOAIS and Perception teams (INRIA
Rhone-Alpes, France) and PRV (LIFO lab, Orléans, France). Supervision of
a research engineer Benoit Bossavit, and co-administration of the multimedia
platform Hémicyclia (10-node cluster and multi-camera platform) at LaBRI
lab, Bordeaux, France.

— ANR-SeARCH project, 10% participation, from 2009 to 2010. Acquisition,
modélisation et assemblage semi-automatique de modeles archéologiques des
pieces du phare d’Alexandrie. Collaboration with Ausonius, and the Center of
Alexandrine Studies.

— ANR-InSTINCT, 20% participation, from 2009 to 2010. 3D interaction using
a hybrid system, computer vision platform and multitouch surfaces.

— Punctual participation as doctoral student various technologic transfer projects
(2003-2006) : RNTL OCETRE, FP6-IST STREP HOLONICS (european com-
mission), ACI Jeune Chercheur Cyber I and ACI Masse de Données Cyber 11,
(mixed-reality projects) at INRIA Rhone-Alpes, France.

1.4.4 Manuscript Focus

It will be apparent to the reader at this point that this document is in no way meant
as an exhaustive review of works and student projects. The fact that I left them out of
this manuscript says nothing about those works, and everything about having to keep
this document contained in the interest of time and by focusing on key emblematic
stages and developments we had with the understanding of the problems in the last
five years.
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I have in particular left out the excellent work of Li Guan [GSFP06, GFP07,
GFP0O8a, GFP0O8b, GFBP10, GFP10], the first PhD student I co-supervized with Marc
Pollefeys during my post-doc, of Abdelaziz Djelouah [DFB* 12, DFB* 13, DFB" 15,
DFB™16], which have in common the fact that they are focused on earlier silhouette-
based extraction efforts.

I have also taken the stance of leaving out works that were not defended yet as
PhDs, leaving this discussion at the legacy stage at the end of this work, this includes
the excellent work of Mathieu Armando [AFB19, AFB20], Boyao Zhou [ZFB*20],
and Abdullah Haroon Rasheed (CVPR 2020 oral paper [RRBD*20]).

I did include Valentin Gabeur’s work on monocular reconstruction with Deep Lear-
ning [GFM " 19], defended as master student, since it so well represents the Deep Lear-
ning leap and transition we took these last years, in continuity with the work of Vincent
Leroy.



CHAPITRE 2

3D Shape Estimation

2.1 INTRODUCTION

Among the first problems we examine in this document, and one of the first pro-
blems to solve in stratified 4D Modeling, is that of 3D shape estimation from images.
This is in fact one of the fundamental problems of computer vision and has often been
treated in generic form in the geometric era of computer vision [HZ00]. Using a pre-
configured platform camera rig, we have been naturally strongly inclined to pursue
research in methods that assume calibration is available. This was notably the case
during my thesis and post-doc years where I pursued research in silhouette-based me-
thods [FB03, FMBRO04, FBOS, FB09, GFP08a, GFBP10].

While this push to enhance silhouette-based methods yields quite useful results and
has been the basis of many other works discussed in the other chapters, during the last
five years, we also pursued research on enhancing 3D modeling, first in the direction of
significantly improving model quality given the abundant input data acquired through
our 68-camera Kinovis platform, and second gaining better understanding of how deep
learning can contribute to improving 3D modeling methods, in particular toward any
of the common objectives of increasing model quality, precision, robustness to input
corruption and lack of texture detail routinely encountered in everyday, casual clothing.
Dealing with fast motions has also been a desirable target due to the presence of motion
blur when subjects execute fast movements typical to dancing or sports. This drive was
to open new research avenues in the team, as they have proven largely successful.

To illustrate the push in these directions, I will discuss in this chapter the two
most relevant efforts we pursued, first toward novel improving Multi-View Stereo in
the context of performance capture applications, and second toward the problem of
monocular 3D shape estimation, where Deep Learning has proven to be instrumental
for both.

11
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2.2 MULTI-VIEW STEREO EFFORTS

Innovation on the quality of the shape result was a major drive throughout the last
decade in the team ; and multi-view stereo had the potential to offer these benefits. But
multi-view stereo is both a widely studied and notoriously difficult subject to work with
on a technical level, which has stumped a number of students we attempted to tackle
this problem with. A testament to this is the endurance of several widely respected
benchmarks that have survived as beacon references to the community for the better
part of the last decades, such as the Middlebury, the DTU and more recently tanks
and temples datasets [SCD"06, SYHG"08, JDV 14, SSG*17, KPZK17], which all
have registered small-step but continuous improvements in the domain over large time
frames.

Also, the technical variety of the frameworks and representations devised to tackle
this problem is quite astounding spanning several decades, from level sets [FK98],
voxel carving [KS00], depth map sweeping [GFM07], Delaunay decomposition and
graph cut optimization [LPKO7], sparse points from image features [FP10] spatio-
temporal integration [GM04, MKGH16], model-based integration [SHO7, dAST*08],
convex grid optimization [CK11] or probabilistic inference [UGB15], to name only a
few.

It thus takes a special type of character to confront this problem, with perseve-
rance, heterogeneous literature comprehension, and large programming and technical
proficiency, which we found with PhD student Vincent Leroy. In this journey, we im-
plemented two state of the art MVS pipelines with a classic plane-sweeping articula-
tion but several key practical improvements, then substituted the photoconsistency core
with a Deep Learning replacement that considered local photoconsistency volumes to
compute a depth indicator function.

2.2.1 DAISY-Based Plane Sweep Stereo Pipeline with Local Tem-
poral Integration

Our first effort in this direction was to implement a classic pipeline based on what
stood out in the literature as desirable characteristics for our capture scenarios. First and
foremost, we wanted to be able to enhance the quality of the surface thanks to tempo-
ral smoothing and refinement, which has been a longstanding goal [GM04, APSKO07,
MKGH16] seldom achieved for centrimetric detail in performance capture scenarios.
Of particular inspiration both for the remarkable detail accumulation in dynamic cap-
ture environments and for the popularization of Truncated Signed Distance Functions
(TSDF) as depth map volumetric fusion representation, were methods of the Kinect
and Dynamic fusion family [NIH" 11, NFES15, IZN*16, DKD"16], a key difference
with our goals being that they process RGB-D streams instead of multi-RGB inputs.

Second, depth-map plane sweep methods have been notable for one very desirable
feature : their spatially dense, per-pixel monotonous depth parameterization of visible
surface geometry for every viewpoint, with first-point visibility built-in the paramete-
rization [Col96, MAW07]. This yields very efficient depth map extraction methods
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FIGURE 2.1 - Spatiotemporal refinement framework.

which are cast as extracting the first visible point at each pixel, gracefully dealing with
the visibility problem. Third, among the various classic photoconsistency characteriza-
tions based on normalized window correlation (e.g. ZNCC, SSD, SHD, etc) or gradient
feature correlation [Low04, BTG06, MS03], DAISY features [TLF10] was the state of
the art at the time for dense, wide-baseline stereo and computational efficiency, and as
such was a natural contender for our photoconsistency function and evaluation.

Method and Contribution

We proposed a pipeline illustrated in Fig. 2.1 implementing together these key cha-

racteristics, assuming images I, silhouettes €2;, and calibration matrices 7; are given.

— First we compute per-view depth maps based on line searches that maximize
a DAISY-based photoconsistency criterion, filtering correct matches using a
visual hull of the subject obtained from the silhouettes

— Second we provide an initial estimate of a multi-view merged shape based on
the fused multiple depth maps obtained at a single frame. Because of the detail
density, classic TSDF on regular grids is particularly inefficient and memory
heavy, so we proposed an implicit TSDF form which can be computed with
Sparse storage.

— Third, using this initial per-frame shape estimate for a time-window of neighbo-
ring frames, we construct sparse surface feature matches to neighboring frame
shapes using MeshHOG features [ZBH12], which we densify by propagating
them on the surface.

— We use these matches to fold the shape contributions to the center frame in each
temporal window using a simple locally rigid deformation model.

— These folded shapes bring new sparse implicit TSDF constraints to the central
frame, which can then be seamlessly integrated. The process is then iterated
between alternate steps of matching and reconstructing, leading to a refined
final shape.

— The final surface can be extracted from the implicit TSDF using Centroid Voro-
noi Tesselations [DFG99, LWL "09] of a carefully selected set of points samples
in the vicinity of the final surface as hinted by the TSDF induced occupancy
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FIGURE 2.2 — Obtained spatio-temporally refined results. (a) Detailed shapes obtai-
ned for complex, dynamic, multi-person performance captures scenes. (b) Comparison
of the method without, and with the temporal integration proposed.

function, and clipping the CVT tesselation to the zero level set of the implicit
TSDF function to extract surface polygon geometry, as illustrated in Fig. 2.2
Our results showed that the quality of the reconstructions, measured with the wi-
dely adopted Chamfer-based metrics of surface accuracy and completeness [SCD ™06,
JDV " 14], was significantly improved using the various components of our proposed
approach. The approach also demonstrated measurable improvements with respect to
state of the art methods in the context of performance capture. Details of the method
and results can be found in the ICCV 2017 publication [LEB17].

2.2.2 Volume Sweeping : Learned Photoconsistency

During the time frame of Vincent Leroy’s thesis, it became quite evident that the
benefits of Deep Learning could reach beyond 2D vision problems which were the
main focus in the early DNN years vision [KSH12]. As my personal and our team
expertise in the subject was initially limited, our approach has been largely progres-
sive and at first geared toward testing the contribution of learning techniques in well
identified stages of time-honored vision pipelines.

In this respect, the MVS work with Vincent was an ideal candidate. As illustrated
in Fig. 2.3 showing how we modified the classic MVS pipeline, the photoconsistency
function p used to characterize surface hits for every depth candidate along each pixel’s
viewing line surface depths has a well identified local support in the images at the pro-
jection of the candidate, which can be described with a small size network. The surface
hit decision is typically a per pixel decision in plane sweep algorithms with optional
image-domain regularization of the depth maps based on local per-pixel depth data
terms. The photoconsistency function was thus ripe for this kind of trial as it also clas-
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FIGURE 2.3 — Volume sweeping method overview. Depth maps, for all input image 1;,
are obtained by maximizing, along viewing lines, a learned function p that measures
photoconsistency at a given depth d along the viewing line of a given pixel p. Depth
maps are then fused into an implicit form from which the zero set surface is extracted.

sically relies on a hand-crafted measure and empirically selected image features. This
is typically where deep learning can contribute by automatically extracting relevant
features from example data.

In fact at the time several works had started pushing in the direction of short-
baseline MVS with symmetric combination of 2D learned features [HGH ™ 17], or wide
baseline sparse capture scenarios [HLC" 18, GVCH18] that followed learning research
on short baseline stereo [vL16, LSU16, ZK15, UZU"17].

Method and Contribution

While some learning methods for MVS were starting to emerge, at the time little
or none of them were particularly geared or tested for the specifics of the multi-camera
performance capture scenario, where in particular the attention is on moving subjects
that cover only a minority fraction of all frame pixels, which we informally referred
to as the "mid-range scenario". This use case is in particular very different to the case
where objects are fully framed in every view, for close static objects or full-views of
architectural scenes which are typical used as benchmark cases [SCD"06, DV 14,
SvHG'08].

Our feeling as well was that, in our case with known calibration, we would be
under-using the input data if we only used 2D patches to characterize matches in the
learned photoconsistency function, as several methods were proposing [vL.16, LSU16,



16 CHAPITRE 2. 3D SHAPE ESTIMATION

[ |

(rixgi’bi,rj:gj:bj] !‘—'—D—‘—'—U—‘—'—D

convl [r--mmeeeee| conv1 conv1

ReLU1 [-=--=-==- ReLU1 ReLU1

4 Conv2  |-==ssneeee| conv2 conv2

ReLU2 [====-=--1 ReLU2 ReLU2

T N

» conv3

ReLU3

conv4

Sigmoid

pi(ri(p!d))

i

FIGURE 2.4 — (left) The 3D volume used to estimate photoconsistency along rays from
the reference image I;. k3 samples within the volume are regularly distributed along
viewing rays and contain color pairs as back-projected from images I; and I;. At a
given depth along a ray from I; any image I;; can define such a pairwise comparison
volume. (right) CNN architecture. Each cube is a pairwise comparison volume with
k3 samples that contain 6 valued vectors of RGB pairs and over which 3D convolu-
tions are applied. The output score p;(r;(p,d)) € [0..1] encodes the photoconsistency
measure at depth d along the ray from pixel p in image I.

7ZK15, UZU"17]. Several methods were also starting to propose 3D inference in the
volume for these kind of reasons [CXG™16, JGZ"17, KHM17]. Reasoning only on
2D patches deprives the network from information on relative orientation of views and
the local geometric context that can be additionally useful to build a decision. This
intuition turned out to be correct and verified in our results, where we compared 2D
versus 3D volumetric support of the learning function.

To these goals, we proposed to formulate the inference on a small projective vo-
lume surrounding each query point of interest along a viewing line. Each voxel of this
volume is assigned two R,G,B triplets from the reference view whose depth map we
are computing, and another view used to check photoconsistency. The support region
of the network, and its architecture is illustrated in Fig. 2.4. The architecture is in-
tentionally simple and classically inspired [KSH12], with the main characteristic that
the contribution of all pairs of views needs to be merged using a symmetric function
computing a result independent of the number of views considered, with the mean
giving the best empirical results in practice. The network was trained on a large set
of samples built from the standard DTU dataset, which for this compact network can
provide thousands of training samples per set of multi-view input frames given the lo-
cal support of the learned function; we also notably used no view from our Kinovis
acquisition platform, a testament to the generalization ability of the method.

We obtained impressive results that, quite frankly, exceeded our expectations by a
large margin. As Fig. 2.5 illustrates, the method was able to infer more details and ex-
hibited less errors and more completeness even in color-ambiguous, partially reflective
regions (e.g. thigh, boots) than the classic version of our pipeline. More unexpected, the
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FIGURE 2.5 — Challenging scene captured with a passive RGB multi-camera setup
[kin]. (left) one input image, (center) reconstructions obtained with classical 2D fea-
tures [LFB17], (right) proposed solution. Our results validate the key improvement of
a CNN-learned disparity to MVS for performance capture scenarios. Results particu-
larly improve in noisy, very low contrast and low textured regions such as the arm, the
leg or even the black skirt folds.

method recovered fold details of the black dress in portions of the image with almost
zero contrast. The results were shown to outperform several off-the-shelf available
methods, including classic methods [FP10, TSF12, CVHCO08] and recently published
learning based methods [YLL" 18, JGZ"17]. Interestingly, the method also recovers
results of quality comparable to [CCS™15] who use two modalities RGB and infrared
pattern projections, despite the fact that we were using only the RGB inputs of their
datasets for our comparison.

Details are available in the ECCV 2018 publication [LFB 18] but the more thorough
comparisons and comments are published in IJCV 2021 [LFB21], which is the one I
am providing in the appendix A.8. We refer to the supplemental video for more results !

2.3 MOULDING HUMANS : LEARNING 3D SHAPE
ESTIMATION FROM A SINGLE IMAGE

The success of deep learning on a multi-view stereo pipeline naturally brought us
to another research question : can we transfer these benefits to the less data rich case
of monocular 3D shape estimation ?

The question of how much can be recovered from a single view has intrigued
researchers for quite a while. From a purely geometric standpoint, the fundamental

1. https://hal.archives—-ouvertes.fr/hal-01567758/file/1361-supp.mp4
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FIGURE 2.6 — Our non-parametric representation for human 3D shape : given a single
image, we estimate the “visible” and the “hidden” depth maps from the camera point
of view. The two depth maps can be seen as the two halves of a virtual “mould”. We
show this representation for one of the images of our new dataset.

projection ambiguity prohibits recovering absolute depths and scales in that situa-
tion [HZO00]. It has been however identified quite early that data-driven priors may
provide the possibility of finding a solution, e.g. for the problem of recovering a human
3D [ATO06]. In fact, estimating 3D poses is one of the key problems by which deep lear-
ning was thrown at monocular 3D estimation [CWL™" 16, RWS19] along with denser
monocular 3D estimation applications such as dense surface correspondance [WHC™ 16,
GNK18].

[RWS19] happens to be a Thoth team contribution down our corridor at Inria
Rhone-Alpes with Gregory Rogez and Cordelia Schmid. The Thoth team was get-
ting more and more interested in addressing 3D problems with human subjects, as
evidenced by various other collaborative publications to estimate 3D shapes from
images [VRM ™17, VCR"18]. So we came to join forces with Gregory and Cordelia
and co-supervized a master student together, Valentin Gabeur.

One of the issues with using DNNs for human 3D data is that straightforwardly ex-
tending CNNs from the 2D to the 3D domain, while relying on well defined extensions
of the usual CNNs convolution stages in the 3D domain such as with [VCR 18], are
subject to the curse of dimensionality as this creates a large memory and computatio-
nal burden in the training process. This limits the amount of training data which can
be processed in a single batch and also means a large number of training parameters,
with potential for overfitting.

For this reason, we set our main quest as one of finding a lean representation that
would allow us to retrieve human 3D models of comparable or better quality at a frac-
tion of the cost. In fact the lower parameter dimensionality would probably help us
achieve the quality goal. The idea emerged in the discussions of performing depth in-
ference in the image domain, but to output a surface, we need to regress not one but
two depth maps, one for the front view and one for the back view of the human subject,
a representation we informally coined a "mould", for the reason apparent in Fig. 2.6.
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Both depth maps assembled together create a point cloud which can yield a surface
reconstruction using standard techniques [KH13]. Although technically only having
two depth maps encoding doesn’t cover all possible situations (such as self-occlusion
which leads to four or more surface crossing and depth values along a given viewing
ray), this first dual-depth map encoding, with the advantage of a fixed output inference
representation, provided surprisingly good results already. The inference can then be
expressed in terms of an image-wide regression task, for which we proposed a sta-
cked hourglass architecture [NYD16], previously shown successful for human pose
regression - but not full surfaces. While generally successful, we did encounter one
significant issue in that the succession of reduced latent space at the bottlenecks of the
hourglass networks were not sufficiently regularizing for the network to fully encode
the "humanness" prior underlying the training set, yielding humans with additional
limbs or no limbs for example. For this reason, we additionally introduced a discrimi-
nator network, trained in adversarial fashion, to allow this to happen. This proposed
pipeline is illustrated in Fig. 2.7.

3D surface

/

Full body point

input image Ground-truth visible and hidden depth maps cloud

- 7
’ — dg — Visible point cloud
‘ 7
- Discriminator Real / Fake ?

FIGURE 2.7 — Overview. Given a single image, we estimate the “visible” and the
“hidden” depth maps. The 3D point clouds of these 2 depth maps are combined to form
a full-body 3D point cloud, as if lining up the 2 halves of a “mould”. The 3D shape is
then reconstructed using Poisson reconstruction [KH13]. An adversarial training with
a discriminator is employed to increase the humanness of the estimation.

We devised a training dataset, 3D HUMANS, with a large synthetic portion from
[VRM*17], complemented by real captures from the Kinovis platform to capture some
clothing and shape variability absent from the latter. We obtained very good to ex-
cellent results, improving over state of the art approaches, with shorter training and
inference times. This includes on test datasets that had nothing to do with the training
such as the DeepFashion dataset, with images of women in completely different clo-
thing or postures, as evidenced in Fig. 2.9, Fig. 2.8. The contribution of the GAN can
also be appreciated in these figures under severe input frame occlusion.
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(a)

FIGURE 2.8 — (a) Performance on 3D-HUMANS dataset in presence of severe oc-
clusions on three frames : (top) input images, (left) with GAN, (right) without GAN.
Errors above 15cm are shown in red. The GAN helps increase the “humanness” of
the predictions. (b) Generalisation to previously unobserved data. We apply our pipe-
line to images with 3D realistically rendered backgrounds (left), and with 3 real-world
images from the LSP dataset (right). These poses, in particular the baseball player
have not been seen at training time but our model still generalizes well.

More details and results can be found in the attached paper A.7 (Appendix A.7),
which was published at ICCV 2019 [GFM ™ 19] with the master student, and the sup-

plemental video 2.

2. https://hal.inria.fr/hal-02242795/file/Moulding-Humans-ICCV2019.
mp4
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https://hal.inria.fr/hal-02242795/file/Moulding-Humans-ICCV2019.mp4
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FIGURE 2.9 — Comparison between HMR [KBJMI18] (left), Bodynet [VCR" 18]
(middle) and our method (right). Unlike [KBJM 18, VCR" 18], we do not train on in-
the-wild images but estimate 3D shapes of clothed subjects.
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CHAPITRE 3

3D Motion Estimation

3.1 INTRODUCTION

In this chapter, we examine the problem of tracking shapes and estimating surface
alignments over complete temporal sequences of shapes seen from multiple calibrated
cameras.

When estimating 3D shapes per frame, one is left with a representation that has
no temporal consistency, meaning the geometric representations have no primitive cor-
respondence. In our case with the Kinovis platform multi-RGB video streams, and
applying the algorithms of the type described in chapter 2, that means we retrieve a
set of meshes per time frame that are all independent and possess completely different,
unmatched sets of vertices and triangles. !

These per-frame representations can be used as-is for some applications, such as
streaming and displaying the models in sequence, but this has a number of limitations.
The first one is that it is memory and bandwidth inefficient. All resources must be
transferred from scratch per frame, typically to the GPU for displaying or through the
network for streaming. Pre-loading the sequences doesn’t circumvent this bottleneck
as it introduces a transfer latency at the beginning of a sequence. Additionally, this may
not be possible on a GPU because each mesh can be several megabytes depending on
resolution and a sequence of meshes can saturate GPU memory quite fast. All of these
problems are drastically worse when one starts attaching attribute data to the mesh,
typically appearance texture data which allows to rendering perceived detail on the
surface of the shape.

1. Due to the chronology of this work, at the time we investigated the alignment methods descri-
bed in this chapter, we were using mostly polyhedral visual hulls obtained with algorithms from my
thesis [FB0O3, FB09], as these were fast, rugged, and implemented with the platform software suite we
were using with Kinovis; but this doesn’t alter the essence of this discussion.

23
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More generally, all temporal-related tasks requiring surface tracks or speed or a
motion representation, such as motion editing and motion-driven interactive setups,
are not possible with this inadequate frame-to-frame representation.

Fundamentally, throwing away the previous reconstructed shape information is
sub-optimal : in typical acquisition scenarios involving human or non-human subjects,
the underlying shape observed in motion has a fixed physical envelope and topology,
or a set of discrete geometric topologies, depending on whether self-contacts are consi-
dered as merges of the geometic envelope of the object [LB12]. Using the hypothesis
of a common underlying surface means recovering the sequence as a moving shape,
whose topology is at least temporarily stationary. In concrete terms one can then store
a single shape topology or sparse set of topologies for the whole sequence, often re-
ferred as template, and store frame updates as a set of relative or absolutes motions,
expressed as raw vertex displacements, local piecewise transforms using a shape de-
composition such as patches [CBI10b], or updates in a parametric or kinematic repre-
sentation [dATSS07].

This provides a wide set of benefits, notably reducing the memory and bandwidth
requirements of the representation, since only the motion updates need to be transfer-
red per frame. This is especially true when one attaches additional surface attribute
information, such as a appearance, to the fixed-topology templates rather than each
time frame [CCS™15], thus avoiding needless duplication. From a broader standpoint,
subject and human motion analysis then become possible, such as monitoring specific
attributes of motion, e.g. trajectories of specific landmarks, building motion statistics,
using the model to compute dynamic collisions with virtual objects in a immersive
digital world, with a wide range of applications for sports, medical, virtual reality, en-
tertainment and interactive systems. This type of representation is also a pre-requisite
to make the motion sequence editable [SAATS07, MT02], to use it in a content pro-
duction pipeline where artists or designers wish to use real-life full shape captures as
the starting point for 3D asset creation, in which modification and stylisation of the
motion are targeted.

3.1.1 Alignment Problem

The benefits are clear, but the problem itself is challenging due to various aspects.
Looking at it from a global perspective, it can be seen as retrieving from a set of image
sequences I = {If}fgﬁf}} a single, time-independent set of parameters of a shape
model S of the subject on one hand, and a set of (most often per-frame ¢) motion
parameters of a motion model © = {©'}*{1-™} on the other hand, such that {S,0}
optimally explain the full set of image sequences I. The shape representation S will
contain geometric attributes of the shape, describing its surface, volume, pose, etc., and
may also include non-geometric attributes such as appearance, or other features.

Although some methods do treat the problem this way as a single, global sequence
retrieval problem [GMO04], in particular in some recent publications [NMOG19], it is
very complex and technically challenging for a number of reasons. First the size of
the image sequence data I, and shape and motion parameter dimensionality, usually
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prohibits global optimization update steps relating directly all images I to all motion
parameters © and the shape S. Second because in several ways this is a chicken and
egg problem : updates to the shape require updates to the motion parameters, and
vice versa. Matching shape surface points to identified 2D projection in the viewpoints
in the different temporal frames requires updating the motion model, and vice versa.
Third it is intrinsically difficult to formulate spatio-temporal surfaces directly in terms
of multi-view and temporal image content variation, which this view of the problem
implies.

Interestingly some formulations close to the latter standpoint exist, e.g. [GM04]
where the moving shape is described as an spatiotemporal isosurface optimized from
image variations. While quite elegant, as in many methods, the formulation however
needs to make practical compromises, e.g. it forgoes describing the single underlying
shape &, and in practice makes partial updates in frame batches that are slow and
susceptible to local minima.

Because of these difficulties, the vast majority of estimation methods in the li-
terature propose stratified approaches, breaking the problem down into more trac-
table sub-problems, and this is still the case today with state of the art approaches,
e.g. [BHKHI13, MVK"20]. This can be done along various dimensions, e.g. Simon et
al. [SVMS14] consider spatiotemporal priors on point trajectories, putting more em-
phasis on temporal connections than shape connectivity. But a majority of techniques
first pre-process whole shapes in individual frames, yielding a set of independent
shapes {S?}*€tlmF qubstituted for inputs of the 3D temporal alignment stage, which
is the strategy we follow. This is also a natural path to tackle the problem by stepping
up from our expertise in 3D reconstruction techniques from a calibrated set of images.

3.1.2 Model-Based Approaches

In the stratified view of the problem relying on per-frame reconstructions, we must
first select and conceive shape and motion models. Various strategies exist to this end,
but in this document and in the work described in this chapter we took interest in
so-called model-based approaches. These adopt a further simplification to the gene-
ral paradigm described earlier in §3.1.1, by restricting the shape S either to a family
of parametric shapes [ASK 05, HAR"10, NH13, PWH"17] or to a single template
shape [SHO03, BC08, VBMPO08, GSAT09, LGS 13], to name only a few. In our work,
we explored both possibilities. This simplification thus trades the complexity of mat-
ching of spatio-temporal 4D representations to input images, for the problem of fitting
a model by optimizing its deformation parameters ©° such that it best explains per-time
step 3D reconstructions.

Examining the literature, one can see that most such approaches mostly share a
common general canvas : once the motion model is chosen, they all require defining a
3D matching cost or loss to provide a metric measuring the disparity between the de-
formation estimate and the 3D reconstructions used as input of the fitting. This loss can
be either directly minimized for certain forms of the loss function, e.g. Chamfer which
considers maximum surface to surface distances, or the minimization can be interlea-
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ved with an association step, where shape primitives are matched to the primitives of
per-frame reconstructions in ICP fashion [BM92, GP02, MCAO7].

I will here discuss various template-based approaches we explored based on mo-
tion expressed on detecting rigid parts for surface or volume patch decomposition of a
single template shape to track (§3.2), and an approach based on the human shape space
S-SCAPE which is equipped with a multi-linear deformation framework for identity
and kinematic motion (§3.3), all of which illustrate particularly well our research in-
terests and progress on this subject.

3.2 SURFACE AND VOLUME PATCH-BASED SHAPE
TEMPLATES

With the first model, our goal was to explore different improvements of a fixed tem-
plate object S that allow more robust and more precise fitting. A very popular strategy
which we follow in this work is to use a particular capture or scan of the exact subject to
be tracked as template shape, popularized by various works in the 2000s [dAST08].
With this simplification advantage of a fixed shape S, the essence of the alignment
approach is to define a deformation model and its motion parametrization ©°,

Many such parametrizations exist in prior works. One is to rig a generic human
model using kinematic chain which can be pre-fitted to the template [BCO8, VBMPOS,
GSA™09, LGS™13] or in some cases automatically extracted [BPO7]. Another is to re-
lax this strong kinematic prior by using local surface rigidity constraints, with the idea
that looser skin or clothing can then also be fitted by the model. Typically, the idea is to
preserve local intrinsic surface properties, e.g. isometric deformations [MS04, BBKO6,
OMMG10, SY 10, BPC13], conformal deformations [BGC*15], inextensibility of the
template mesh [SMNLF08], or general neighborhood preservation through functional
warps [DB11]. Others use properties related to local rigidities, e.g. as-rigid-as-possible
deformations or elasticity minimization in [WSSC11, ZWG™'13, BGC"15]. Among
the methods allowing to express rigid cohesion of the template surface, and a particu-
lar topic of interest to us, patch-based methods [CBI10a, CBI10b, BHH11] offer an
interesting compromise as they decorrelate the surface support of the deformation mo-
del from the geometry resolution, by formulating elasticity-like constraints between a
set of pre-computed surface patches.

To summarize, on one hand at the time we had a large set of methods with very
strong priors on human articulation, which couldn’t deal with non rigid surface aspects
such as clothing or objects held by the subject, on the other hand we have a set of
generic surface fitting methods that use weak rigidity constraints that can deal with
many kinds of surfaces but are completely agnostic to the underlying characteristics of
the shape, assuming instead uniformly distributed local cohesion properties.

This raised my curiosity and sparked a research effort aimed at finding a middle
ground between the two families, i.e. a deformation model that could be applied to
most situations, e.g. for humans with or without loose clothing or even holding objects,
able to model both rigid and non-ridid aspects in a single method. One question this
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FIGURE 3.1 - lllustration of the convergence of algorithm [FBI11] for a single frame
of the LOCK sequence, courtesy [SHO7]. Each rigid patch assignment is given by a
different color.

raised for me was whether an alignment inference method could become automatically
aware of the distribution of rigid regions on the template surface.

3.2.1 Preliminary Effort on Rigidity Learning

My first attempt toward this goal [FB11] was to devise a method that introdu-
ced rigid segmentation parameters K, € {0, 1..k} associated to every vertex v on the
template surface. Each of the k rigid components was assigned a set of rigid motion
parameters O per time step ¢ and rigid component k. An additional robustness outlier
class label () was included for every K, to allow for a vertex to also be drawn from
a free uniform motion component unexplained by the & rigid components. Each input
observed surface point o at time ¢ was also given an association variable V! basically
attaching a matched template vertex v to every observed point of the input reconstruc-
tions at time ¢.

A joint probability distribution p(K,, Vi ©') was then expressed on the full set
of statistical variables K, V! and O to allow for a Maximum A Posteriori (MAP)
to be computed, using Gaussian priors for the distribution of labels on the template
mesh, and Gaussian noise distributions on the difference between observed surface
points o, t and their deformed template associated vertex given by V. By treating K
and Vf) as hidden variable sets in the inference, one could then write a formal Expec-
tation Maximization algorithm akin to a specialized GMM, that basically extracted a
locally optimal point estimate of the rigid-component transforms, a set of per-vertex
probability tables over K, that amounted to fuzzy and automatic rigid-guided patch-
segmentation extension of [CBI10a], and sparse probability tables over V! for each
observed vertex o at time ¢, giving probabilistic associations to the data points at each
time frame, which essentially builds EM-ICP in the method. This was published in
CVPR 2011 [FB11].
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FIGURE 3.2 - Tracking excerpts from the DANCER dataset. Colors code patches.

The method had some excellent qualities, in simultaneously exhibiting a data-
driven solution to rigid segmentation of the template, rigid motion and closest point
assignments with closed form updates resembling those of a standard GMM, essen-
tially giving a principled solution to the template-based multi-rigid EM-ICP problem.
However, this initial attempt was also undermined by possible losses of tracking for
our practical data, with complete stretching and disconnection of the rigid patches.
This is because it had not built strong inter-vertex cohesion constraints in the method
and the general surface cohesion provided by the rigid components was too weak to
prevent a rigid component to go astray.

3.2.2 Detecting Rigidities on a Patched-Based Surface Template

We were still convinced that a more performance capture-suitable analysis was
possible and that it would yield improvements in results quality with respect to purely
agnostic models. So we included this as PhD topic in European Project React that was
aimed at creating new vision-driven workflows for 3D digital content creation, which
sparked a 4-year effort on this topic with PhD student Benjamin Allain. The first work
was also motivated by discussions with Tony Tung of Kyoto University at the time,
and the paper became a collaboration.

Our first effort was a better attempt to a surface-based template with patch-based
deformation. To this goal, we opted for a much simpler model than previously. First
we computed a fixed patch decomposition of the template surface into & uniformly
distributed patches (see Fig. 3.2), exactly as in the work of Cagniart et al. [CBI10a,
CBI10b]. However, where Cagniart opted for a uniform expression of the inter-patch
deformation energy - that is, regardless of the location on the template surface - we
introduced a set of binary-valued rigitidy deformation variables C = {C} ;}xnen
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FI1GURE 3.3 — (left) Input mesh, (middle) tracked mesh without rigidity inference -
Cagniart et al. [CBI10b] and (right) with rigidity inference. The absence of the head
on the top-left input mesh is imputable to the visual hull computation method, which
assumes full visibility for each camera. It can be observed that our method corrects
substantial artifacts.

with each C; ; € {0, 1}, for every pair &, [ in the set N of immediately adjacent patches
on the fixed template geometry. C; ; is meant as a time-independent inference variable
describing how rigidly correlated two neighboring patches are.

In some sense this can be seen as a simpler way to implement the initial idea of
§3.2.1 [FB11], first because the rigidity variables C; ; can together express arbitrary
rigid aggregations of the initial and smaller "primordial" k patches. Second, while the
number of rigid components were fixed in the previous effort [FB11], the arbitrary
rigid aggregations afforded by the C, ; variables allow support for any composed set of
k’-component patch aggregates by this method, as long as k' <= k. Third, the strong
surface cohesion previously missing is now built-in the inter patch distance prior in the
expression of a surface prior term which basically quadratically penalizes neighboring
patches that come apart. When C, ; = 0, that is when patches & and [ are non-rigidly
correlated, the surface term is chosen to allow neighboring patches to loosely hinge.
When C, ; = 1, that is when pacthes £ and [ belong to the same rigid group the surface
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FIGURE 3.4 — Tracking excerpts from GOALKEEPER, MARKER [LGS"13] and FREE
datasets showing a heatmap coded values of the C,, rigidity variables : red when very
likely non rigid, blue when very likely rigid. Note that the inference is performed on
a time window, i.e. the rigid inference corresponds to rigidities as observed in that
window.
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intrinsic penalty term penalized any non rigid movement between the two patches. The
probability assigned ot each C, ; is then expected to be estimated based on the data at
inference time thanks to these prior constraints.

An additional contribution of this model is in how it computes inter-patched dis-
tances. We had noticed a bias in how Cagniart computed inter-patch penalties [CBI10a]
that basically favored estimates close to the default template pose. For this reason, we
included a mean pose © as a point estimate to be retrieved during the optimization
for a full sequence, which allows the model to significantly deviate from the default
template pose, and also acts as a regularizer to stabilize estimates patch pose etsimates
in the sequence.

Similarly to §3.2.1, each (now constant) patch £ is again given a set of rigid trans-
form parameters O at each time frame ¢ of the processed sequence of reconstructions,
and each observed point o on the input 3D meshes at each time step ¢ is again given
a template vertex assignment index V. The inference can then again be expressed as
a MAP over the joint probability p(C,V,©,0), treating Cy, as hidden. Using Ex-
pectation Maximization, one then alternates between refining point estimates of the
patch transforms ©! and mean patch pose © in the maximization step, and computing
probabilities over each patch pair (k, )’s rigidity variable in C,, ; on one hand, and EM-
ICP-like template vertex assignment probabilities V¢ on the other hand, both as part of
the E-step.

The results obtained with this simple idea confirmed the expected regularizing be-
havior of sharing a common rigidity inter-patch property over all frames of a sequence
(see Fig. 3.2 and Fig. 3.4), leading to better temporal alignment and more robustness,
quite apparent in Fig. 3.3. The features we built in the method also acted as a form
of damping and stabilization in the inference when applied in sliding-window fashion
across longer sequences. Detailed results are available in the original ECCV 2014 pu-
blication [AFBT14a] (available as Appendix A.2) and supplemental video 2.

3.2.3 Volume-Patch Rigidity-Enforced Template

Although encouraging, it appeared from previous results that one of the remaining
limitations of the previous method was in fact a common limitation of the surface-
based family of methods : the method exhibits some stretching, squeezing and gene-
rally rubbery looking artifacts in non rigid zones.

As with LBS, this was prominent at kinematic joints, where a non smooth split bet-
ween two neighboring rigid or quasi-rigid is expected ; however the instrinsic surface
priors we chose, when weighted by an intermediate, undecided probability of rigid cor-
relation in the neighboring patches, tend to smoothen the energy required to follow the
limb joint across limbs rather than putting all the deformation at the joint location (see
which highlights these cases).

Our hope was in some sense that the rigidity inference and regularizing effect
would at least partially mitigate some aspects of the problem, which turned out to be

2. https://hal.inria.fr/hal-01016981/file/Allain_ECCV2014_On_Mean_
Pose_and_Variabiliy.mp4
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FIGURE 3.5 - Possible volumetric decompositions of the template and observed
shapes. (top) 2D schematic view. (bottom) 3D decomposition example. (a) Voxels on a
regular grid. (b) A sliced Constrained Delaunay tetrahedrization showing the elonga-
ted inner tetrahedra generated. (c) Voronoi cells with random centroids shown in red,
center of mass of each cell in green. (d) Centroidal Voronoi tesselation cells, where the
center of mass and cell centroid coincide.

correct, but we also sensed that this could be better enforced. One idea could have
been to use a different norm as support for the surface tension expression, which
in fact has later been explored at the time of this writing, e.g. [GXW™15] in the
case of depth camera streams. Another possible path which we ended up following
was to enforce rigidity constraints at the volumetric level, where volume preserva-
tion could then be built in the model to alleviate rubber and squeezing effects. A
source of inspiration was to observe what had been done in the graphics commu-
nity to express volumetric deformations and to mitigate problems of the LBS mo-
del [ACOLO00, ZHS"05, BPWGO07], which in fact had already been used for perfor-
mance capture applications [dATSS07, dAST 08, BH10].

As illustrated in Fig. 3.5(a), those approaches are however based on tesselations of
surface points of the input reconstructions and do not introduce any inner vertices. This
allows some volumetric constraints to be taken into account for the deformation energy,
but prevent a full volumetric treatment of the alignment problem. Other tesselations of
the volume are possible (Fig. 3.5(b) and (c)), such as a regular voxel grid, but it is non
isotropic and biased along the axis directions. Using Voronoi cells of points randomly
drawn inside the volume is insufficient as it yields irregular inner cells.

Instead we propose a fully dense an regular volumetric treatment of the volume
using a CVT of the volume (Fig. 3.5(d)). Informally CVT are a particular type of Vo-
ronoi tessellation where the samples are iteratively repositioned to coincide with the
center of mass of their cell, which achieves the desired properties [DFG99] : isotropy,
rotational invariance, uniform cells of compact and regular form factor, regular inter-
section of boundary cells and surface, independent cardinality and practical computa-
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(a) (b)

FIGURE 3.6 — Frames of the BALLET (top and middle) and GOALKEEPER datasets
(bottom). (a) Visual hull input. (b) Tracking result of Cagniart et al. [CBI10b]. (c)
Allain et al. [AFBTI14b]. (d) Our method. Note the improved angular shapes on the
dancer’s knee (top) and elbow (middle), and the improved robustness (bottom).

tion. On can also choose the number of final cells desired, thus adapting the complexity
to the desired problem granularity.

The tracking methodology and deformation model is then strictly analogous to
§3.2.2, the main initialization difference being that both the inputs and template shape
are now tesselated into a set of CVT cells, on which the whole algorithm operates.
Namely, the initial patch decomposition is now expressed on volumetric cell groupings
instead of surface vertices, and observation-to-template matches are also expressed
from input volumetric cells to template volumetric cells. We keep the rigidity inference
on C, ; variables based on pairs of adjacent volumetric patches in the template as a
complementary regularizer of rigid behavhior over each inferred sequence as in the
previous method.
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We observed significant qualitative and quantitative improvements on Kinovis and
BBC React acquired datasets >, as measured with both the silhouette reprojection er-
ror for template-fitted sequences and sparse ground truth marker RMS error for some
sequences which had been simultaneously captured with multi-RGB and sparse mar-
kers [LGS™13], as illustrated Fig. 3.6. One can notably observe the more natural folds
at kinematic joints, and the increase robustness even with truly nightmarish data, e.g.
GOALKEEPER has some frames where the subject gets up after leaning on the floor,
with a very messy visual hull reconstruction, and the volumetric approach does not lose
the main anatomic features. This paper, provided in appendix A.3 was presented as an
oral at CVPR 2015 [AFB15]. More results can be seen in the supplemental video *.

3.2.4 Volume-Based Tracking-by-Detection

For the record, I will briefly mention here an interesting ramification of this work
demonstrating the usefulness of a CVT-based volume approach. Previously, the defor-
mation model was the focus of our discussion and work, and associating observations
to the template was performed with EM-ICP type terms. We showed, with a collabo-
ration with Chun-Hao Huang, Federico Tombari, Slobodan Ilic and Nassir Navab, that
is also possible to use the volumetric CVT template decomposition as the basis for the
association component of the loop. For this, we directly took inspiration from work
on the Vitruvian Manifold [TSSF12], where the depth-anchored, learned data-driven
association model based on Random Forests [SFC " 11] was generalized to continuous
regression of depth points to a generic template surface, then applied as a one-shot
association component to drive a non-rigid human body model fitting scheme.

We proposed in [HAF" 16, HAB" 18] to substitute into a Vitruvian-like pipeline
CVT-based representations for the volumetric feature extraction and regression stages
with Random Forests, this time driving the volume-based deformation model of vo-
lumetric templates described in the previous section, with of course some technical
adjustments. The results showed drastically improved stability of the results and better
trainability for a CVT-decomposition of the shape versus a training based on a regu-
lar grid volumetric feature support. We show results where the alignment is recovered
even with truly challenging situations where the subject is a performing a full cartw-
heel, without any tracking loss. The PAMI version of this article explains the original
methods, as well as additional temporal stability improvements, is provided as appen-
dix A.6, with more results in the supplemental video>.
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FIGURE 3.7 — Overview of the proposed pipeline. From left to right : input frame, auto-
matically computed landmarks using [ZB15], result after estimation of initial identity
and posture, final result, and overlay of input and final result.

3.3 INFERRING SHAPE UNDER CLOTHING USING
SHAPE SPACES

In the work discussed above, we have used priors over rigidity but not complete
priors of observing humans, only using the template shape but no constraint on human
kinematics. This has both advantages and disadvantages. On one hand the generic na-
ture of the deformation and fitting model allows uniform treatment of a wide variety
of scenarios, such as people in clothing, people holding objects, and some hair detail,
as long as the geometry of these features are pre-observed as part of the template used
for tracking the sequence. Those added feature would elude methods purely based on
a generic human shape template with no clothing for example. On the other hand, one
can argue that, since we are observing humans, it only makes sense to use that prior in
some way.

Various methods have gone in the direction of either explicitly including a clothing
model, for example a specific skirt or type of clothing [RKP*08]. More recently more
and more layered models have been proposed that use the underlying body and kine-
matic structure as a shape and motion prior guiding an outer cloth layer [ZPBPM17].

Before these latest works, in 2016, we worked on model that estimates shape under
clothing, that is by only using the outer envelope over a fully observed sequence as a
guide constraining the underlying human shape possibilities and narrows them down
to the most plausible data given the indirect observations of it.

But this only works if we are given a low dimensional representation describing
the full set of plausible human body shapes. This is why we rely on S-SCAPE, a mul-

3. Video available at https://hal.inria.fr/hal-01141207

4. https://hal.inria.fr/hal-01141207/file/Allain_CVPR2015_
Volumetric_Tracking.avi

5. https://hal.inria.fr/hal-01300191/file/video.mp4
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tilinear variant of SCAPE that is easier to manipulate and optimize. This was an ideal
topic to start collaboration and PhD co-supervision of student Jinlong Yang, with then
newly arrived Inria Researcher Stefanie Wuhrer, who joind the team in 2015 and had
prior expertise in this field as a co-author of the S-SCAPE model. The well-known
SCAPE family of methods has been introduced in the 2000s as a means to encode
body shapes with two sets of parameters, a set of kinematic parameters governing the
body pose observed, and a set of intrinsic body shape parameters. The kinematic set is
the same controlling as other kinematic model based methods, but the body shape para-
meters are essentially a set of coordinates in a PCA-shape basis, which is learned from
a database of human shapes with different body characteristics, such as height, gender
and corpulence. The immense advantage of such a model is its ability to describe a
specific body shape instance, also called "identity", with a few dozen parameters, and
a description of shape and pose together only spanning around a hundred parameters.

We cast the fitting problem as a minimization procedure over the set of identity
parameters (3, which basically encode the estimated intrinsic shape S of the subject,
and the set of m per-frame poses {©'},c1.... ), Which in this case are the set of joint
parameter of the S-SCAPE LBS-based kinematic model. We define a loss to minimize
over the set of observed input 3D shapes over time {S }t€{1,~- ,m}» With

Esequence(67 @t7 8) - Z wl”dElnd(ﬁ7 G)t? S) + WdataEdam(By ®t7 8)

t=1

+ wclothEcloth (67 @ta 8)7 (31)

where E,,,,(3,0",S), E;;.(3,0",S) and E, (5,0, S) are energy terms weigh-
ted by scalars wy,a, Waata and weorn. The landmark term E, (3, ©F, S) measures the
distance between a set of automatically computed landmarks on & and their corres-
ponding anatomical points on ¢(3, ©). This energy allows to obtain a rough estimate
of the body shape and posture at each frame. The data term E,, (3, 0!, S) measures
the distance of points c(3,©") to the nearest neighbors on scan S and serves to pull
the estimate towards the observed scan surface. This term allows to obtain a good es-
timate for the identities /3. The clothing term £, (5, 0", S) accounts for the loose
clothing by encouraging c(3,©") to be located inside the observation S. Since the
cloth term is applied to all frames, it allows to take advantage of the motion cues ob-
served throughout the sequence ; as the clothing moves close to localized regions of the
body in different frames it restricts the underlying shape §encoded by /3 to essentially
lie inside the observed cloth for all frames.

To acquire our solution over full sequence which may span hundreds of frames,
as illustrated in Fig. 3.7, we begin by extracting the matching landmarks c¢(j, ©").
Second, we initialize the identity parameters 5 by minimizing (3.1) for a small sub-
sequence at the beginning of our full sequence. Third we solve (3.1) for the pose pa-
rameters ©' sequentially over the full sequence, while fixing 3. Fourth, we refine the
identity parameters /3.

To evaluate the proposed framework, we have captured a database of six subjects
(three male, three female) performing three different motions and wearing three clo-
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F1GURE 3.8 - Six representative examples of frames of our motion database. From left
to right, a female and male subject is shown for tight, layered, and wide clothing each.
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FIGURE 3.9 — Accuracy of posture estimation over the walking sequences of all sub-
jects in tight clothing. Left : cumulative landmark errors. Right : average landmark
error throughout each sequence. Figure from [YFHWWI6].
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Layered clothing

Wide clothing

Knees up Rotate body Walk

FIGURE 3.10 - Overlay of input data (grey) and our result (blue). Figure adapted
from [YFHWWI6].

thing styles each using the Kinovis platform, which has become popular with the com-
munity, (e.g. [ZPBPM17]), the conference paper [YFHWW16]. We make it available
as Appendix A.4 and refer to the supplemental video for more results °.

Figure 3.8 shows six representative frames of the database. Figure 3.9 evaluates
the posture estimation on manually placed markers for walking sequences captured
in tight clothing. Note that the use of S-SCAPE as statistical prior prevents drift. Fi-
gure 3.10 shows further qualitative results of our method. Due to these very interesting
results and originality of the work, the paper became quite popular inspiring for ins-
tance several great followups in other teams, e.g. [ZPBPM17]. We also had a followup
collaboration with Jinlong Yang and Stefanie Wuhrer examining the statistics of the
outer shape as a vertex displacement layer, which I'm not discussing here in detail in
the interest of space [YFHWW 18].

6. https://hal.inria.fr/hal-01344795/file/supplementaryVideo.mp4
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CHAPITRE 4

Appearance Estimation and Refinements

4.1 INTRODUCTION

Multi-camera capture platforms such as the 68-camera Kinovis produce a lot of
observations on the same scene and from the same surfaces. Thanks to the sequence
alignments described in the previous chapter, we have access to an additional source of
observation redundancy. A natural research goal that has been the focus of our attention
in the last decade, is how to best exploit this redundancy to enhance the quality of the
models produced. This is a particularly important aspect of our work since, as was
previously discussed, the subjects we acquire cover only a fraction of the input image
pixels, limiting the actual amount of appearance data present in each input frame.

We discussed several of our works toward this goal concerning geometry acquisi-
tion in chapter 2, but another aspect to enhance the perceived realism and appeal of
our output models is to acquire the fine-grain color appearance and texture of those
subjects. To this goal we can leverage the multiple RGB streams relating to the same
underlying surface.

We here discuss two families of works in this direction that we carried, to acquire
appearance data, first in the direction of multi-view superresolution (§4.2), second in
how to efficiently describe and estimate a temporally evolving appearance representa-
tion (§4.3).

4.2 HIGH RESOLUTION 3D SHAPE TEXTURE FROM
MULTIPLE VIDEOS

Retrieving appearance information from all views of the subject raises interesting
questions. In the case of a single video, a vast literature on 2D superresolution methods

39
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FIGURE 4.1 — Summary of image formation model and problem notation.

exists, which by analogy raises the possibility of retrieving appearance detail from the
multi-view streams, with a quality beyond that of any given input frame in isolation.

When we took on this project with PhD student Vagia Tsiminaki, co-supervized
with Edmond Boyer for the React European project on content production, the lite-
rature on the subject mostly looked at multi-view texture estimation without looking
at the temporal redundancy, by aligning the various contributing images onto a single
texture to avoid ghosting [TAL ™07, LHSO1], or building a texture patchwork of single-
view contributions optimized with graph cuts [LI07], extended to the temporal domain
as one of the rare methods addressing time redundancy in the multi-view case [JP09]
at the time. Only a handful of particularly relevant works has started to examine this
explicitly as a multi-view superresolution problem, but without considering temporal
frames [GC09, GAKC13].

The literature in the monocular video case is however abundant. An interesting
thing we learned from reviewing those works is that a well identified generative mo-
del of low resolution image formation had emerged, as a geometric warping, blurring
and sub-sampling process of the initial high-resolution image [BK02]. Of particular
interest to us are that this model can be represented by a stack of linear transforms and
that Bayesian noise models have been developed to explicit the noise dependencies
and statistical priors over the image and warps to estimate [FSGO07], some using the
L1-norm based priors and total variation (TV-)minimization popular for image resto-
ration tasks [LS11]. Notably, super-resolving multiple videos of a moving subject was
examined in a performance capture context, but only for the input viewpoints [Tun08].

Proposed Methodology and Contributions

Essentially no multi-view superresolution technique existed that used the time-
tested elements of 2D superresolution generative models to retrieve a common appea-
rance map for a 3D model, nor was the temporal aspect really examined in this context
either. Yet the building blocks for that were there, including for example papers such
as [EDM " 08], which hinted at how optical-flow-driven warps could be substituted for
the 2D optical flow driven warps in 2D superresolution pipelines.
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FIGURE 4.2 — Comparison on BUNNY, BEETHOVEN and BIRD datasets. Left co-
lumn : input images. Middle : output of [GAKCI13]. Right : our algorithm.

We looked at the problem as one of inferring a single appearance map T atta-
ched to a reconstructed geometry pre-aligned with [AFBT14a], from all input frames
{It}fgg . We proposed to generalize the linear generative pipeline of 2D
superresolutlon technlque [LS11], which explains the low resolution input views as
warped, blurred, subsampled versions of an underlying high resolution (HR) image;
by filling the gap in explaining the high resolution images as a projected version of the
high resolution common texture. This framework is illustrated in Fig. 4.1.

To generate an input image from each HR image H!, the HR image is first warped
according to the different sources of variability apparent in the image - calibration
error, distortion, model geometry error - using a dense warp field W!. This warp results
in a linear operator over the HR image, which we note Fwt The image then traverses
the optical system, where it is blurred and captured by the CCD which performs light
integration at every photosite. Following 2D super-resolution literature [BK02, FSG07]
this is generally modeled using a Point Spread Function (PSF) with the form of a
Gaussian blur kernel, followed by an image subsampling stage. Both operations can be
written as linear operators, the image-wide blur operator K and subsampling operator
S, which are applied to the HR image to obtain a view’s observed image I! = SKHZ.
Remarkably, in its noiseless form, the full image formation model can thus be noted as
a single, sparse linear operator A} = SKF P! for each view {1, t}, with 3 X wr x hr
rows and 3 X wy: X hy: columns, such that IZ? = A!T for each view {7,¢}. This linear
model is then used as the foundation to describe the noisy dependencies in the model
and ultimately make this a Bayesian generative model, whose MAP we estimate by
alternating the minimization of the common appearance map T and the warps W, in
analogous fashion to the original 2D algorithm.
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FIGURE 4.3 — Top : GOALKEEPER. Middle : BACKPACK. Bottom : ACTOR. The
figure illustrates various temporal improvements. Top : Input is compared to Frame 1
and Frame 3. Middle : Input on left, Frame 1 and Frame 3 comparisons. Details are
revived on the backpack, T-shirt and pants. Bottom : Input, Frame I and 2 comparisons.
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Results

We compared a static version of our algorithm to the then state of the art static
multi-view resolution technique of [GAKCI13], with results significantly improved,
with less noise and artifacts, as illustrated in Fig. 4.2. The method was also success-
fully tested on several datasets acquired with the Kinovis platform and with the BBC
React platform, shown in Fig. 4.3, on small temporal windows, in particular comparing
the results obtained with 1, 2 or 3 frames with each time a measurable improvement. A
more detailed version of the framework, which was published at CVPR 2014 [TFB14],
and additional results and comments are available as Appendix A.1 and the supplemen-
tal video !.

4.3 EIGEN APPEARANCE MAPS

In the latter work, we were able to retrieve high quality textures, by performing a
principled fusion of the appearance data present in the different views and the different
time frames. This however can only be valid over a relatively short temporal window
before the perceived appearance changes. This is because the images provide a rea-
ding of the radiance of the surface patches each pixel sees and not an intrinsic value;
and this radiance changes with the surface motion and orientation, and with significant
changes in the lighting conditions that may occur over a larger temporal window. Ap-
pearance changes may also encode desirable appearance variations, such as change in
lighting or personal expression of the subject, that have a negligible impact on geome-
try and could not be encoded at that level. One strategy is therefore to store estimated
textures for as long as the texture doesn’t significantly change, e.g. as in [CCST15].
But how to represent this information for longer sequences is still an open problem
and needs to account for all these different sources of variability. With PhD students
Vagia Tsiminaki and Adnane Boukhayma, and given previously encouraging results
described in the previous section, it came as a natural extension of their work to tackle
this challenge and examine how to retrieve and represent appearance maps over full
acquired 4D sequences.

We proposed to advance this aspect by providing a view-independent appearance
representation and estimation algorithm, to encode the appearance variability of a dy-
namic subject, observed over one or several temporal sequences. Compactly repre-
senting image data from all frames and viewpoints of the subject can be seen as a
non-linear dimensionality reduction problem in image space, where the main non-
linearities are due to the underlying scene geometry. Our strategy is to remove these
non-linearities with state-of-the-art geometric and image-space alignment techniques,
so as to reduce the problem to a single texture space, where the remaining image varia-
bilities can be straightforwardly identified with PCA and thus encoded as Eigen texture
combinations. To this goal, we identify two geometric alignment steps. First, we co-

1. https://hal.inria.fr/hal-00977755/file/CVPR2014-HR-3D-Shape-Texture-from-Videos.

mp4


https://hal.inria.fr/hal-00977755/file/CVPR2014-HR-3D-Shape-Texture-from-Videos.mp4
https://hal.inria.fr/hal-00977755/file/CVPR2014-HR-3D-Shape-Texture-from-Videos.mp4
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arsely register geometric shape models of all time frames to a single shape template,
for which we pre-computed a single reference surface-to-texture unwrapping. We use
the techniques of chapter 3 for this task. Second, to cope with remaining fine-scale
misalignments due to registration errors, we estimate realignment warps in the tex-
ture domain. Because they encode low-magnitude, residual geometric variations, they
are also advantageously decomposed using PCA, yielding Eigen warps. The full ap-
pearance information of all subject sequences can then be compactly stored as linear
combinations of Eigen textures and Eigen warps. Our strategy can be seen as a genera-
lization of the popular work of Nishino et. al. [NSI01], which introduces Eigen textures
to encode appearance variations of a static object under varying viewing conditions, to
the case of fully dynamic subjects with several viewpoints and motions.

The pipeline is shown to yield effective estimation performance. In addition, the
learned texture and warp manifolds allow for efficient generalizations, such as texture
interpolations to generate new unobserved content from blended input sequences, or
completions to cope with missing observations due to e.g. occlusions.

Method

To eliminate the main geometric non-linearity, we first align sequence geometries
to a single template shape and extract the texture maps of a subject over different
motion sequences in a common texture space using the previously described method
in §4.2 [TFB14]. From these subject specific textures, Eigen textures and Eigen warps
that span the appearance space are estimated. The main steps of the method below are
depicted in Fig. 4.5.

1. Texture deformation fields that map input textures to, and from, their aligned
versions are estimated using optical flows. Given the deformation fields, Pois-
son reconstruction is used to warp textures.

2. PCA is applied to the aligned maps and to the texture warps to generate the
Eigen textures and the Eigen warps that encode the appearance variations due
to, respectively, viewpoint, illumination, and geometric inaccuracies in the re-
ference model.

Hence, The main modes of variation of aligned textures and deformation fields,
namely Eigen textures and Eigen warps respectively, span the appearance space in our
representation.

Note that due to texture space discretization, the warps between textures are not
one-to-one and, in practice, two separate sets of warps are estimated. Forward warps
map the original texture maps to the reference map. Backward warps map the aligned
texture maps back to the corresponding input textures (see Fig. 4.5).

Given the Eigen textures and the Eigen warps, and as shown in Fig. 4.6, a texture
can be generated by first creating an aligned texture by linearly combining Eigen tex-
tures and second de-aligning this new texture using another linear combination of the
Eigen warps.
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FIGURE 4.6 — Texture map generation by linear combination.

Results

We evaluated the method on a number of Kinovis acquired datasets and measure
the quality using the SSIM metric [WBSS04] that is more tolerant to small shifts, both
in image space after reprojection and texture space before reprojection by comparing
it to the short term maps estimated with §4.2 [TFB14]. The sequences are previously
tracked using the method from §3.2.3 with a single template that is used as support
for the common texture space. The results show that our strategy successfully encodes
2048x2048 datasets of 200 or 300 frames with virtually no error (0.98 SSIM) with
50 PCA components. We also show that using an equivalent number of parameters, a
simple baseline PCA strategy without eigen warps achieves much lower performance,
substantiating that the eigen warps successfully correct small geometry induced tex-
ture slippage. We also show the applicability of our method for two tasks : interpolation
between two template poses, by interpolating in both eigen spaces (warp and texture)
and texture completion to correct artifacts in estimated textures e.g. due to poor visibi-
lity, by projecting the textures to a pre-established space of our eigen representation, in
both cases with encouraging results as illustrated in figures Fig. 4.7 and Fig. 4.8. More
details are available in the original ECCV 2016 publication [BTF*16] (Appendix A.5)
and with the supplemental video .

2. https://hal.inria.fr/hal-01348837/file/EigenAppearance.mpi


https://hal.inria.fr/hal-01348837/file/EigenAppearance.mp4
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FIGURE 4.7 - Interpolation examples using linear interpolation (left) and our pipeline
(right). From left to right : Input frames, Interpolated models, and a close-up on the
texture maps (top) and the rendered images (bottom).
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i

F1GURE 4.8 — Completion examples. From left to right : Input and completed models,
close-up on input and completed texture maps (top) and rendered images (bot- tom).




CHAPITRE 5

Conclusion

In this chapter, we give a short recap of the contributions, discuss some insights,
and mention some of the interesting followups related to this work that are happening
in the team or that are envisioned as future work.

5.1 SUMMARY AND INSIGHTS

This manuscript presents some of the prominent works with my students, for PhDs
defended in the last five years. With the general goal of advancing 4D modeling to
digitize captured subjects, in the form of high quality time evolving representations es-
timated from multi-viewpoint video, we advanced the field in the following directions.

In chapter 2, we first examined estimating 3D shapes in the static case, with several
simultaneous images inputs from one or several cameras. We have crafted a classic
MYVS pipeline tuned for performance capture applications, but also successful with
more general data, then successfully demonstrated the benefit of learning the photo-
consistency function and substituting it in this pipeline. We then extended our expe-
rience of learning-based approaches to end-to end monocular 3D models estimations,
which is currently the basis for new works in the team for monocular sequence analy-
sis and new multi-view reconstruction algorithms. All contributions presented became
state of the art in reconstruction quality at the time of their publication and to this day
serve as input to subsequent methods explored in the team. Some main limitations are
the relatively slow training and processing times for e.g. Vincent Leroy’s algorithms,
due to the very fine level of detail targeted and particular training procedure, and this
also drives are future research to improve efficiency.

In chapter 3, we have presented several principled motion models for 3D sequence
tracking and alignment, using surface and volume rigidity priors, and volume support
for improved data-driven shape matching, with state of the art results at the time of

49
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publication. We also presented human-prior driven tracking under wide clothing. They
are all grounded in the previous extraction of 3D models per time step discussed in the
previous chapter. While these have been great achievements and have definitely contri-
buted to advance understanding of motion models, improving the precision, robustness,
in particular breaking the centimetric error barrier in broad acquisition situations, are
still prominent challenges. Even better cooperation between the reconstruction, 3D se-
quence alignment and appearance modeling layers, over longer terms, are probably a
key to break this deadlock, as well as better accounting for clothing in our models.

In chapter 4, we presented a principled approach to estimate appearance maps from
multi-view sequences over small time windows, treating it as a generalized multi-
camera superresolution problem. We further show how this estimation can be used
a building block to build an Eigen space of varying textures to encode the appearance
of a 4D sequence. These contributions were made possible by the advances with the
surface reconstruction and alignment previously presented. One of the challenges fa-
cing us is to make the superresolution model more practical as it is currently very
compute-intensive. We believe finer detail is to be accessed with better cooperation
between the geometric and appearance stages as well. This has largely been the basis
for new work with PhD student Matthieu Armando on new encodings for appearance
on the shape [AFB19], and fine detail correction and restoration on the shape sur-
face [AFB20], for which we are obtaining very encouraging results.

5.2 FUTURE DIRECTIONS

The work has brought me to very different fields and was rich with new discoveries,
which helped forge some intuitions.

Breaking stratified assumption and representations.

Mostly one stratification approach was examined in this document, however others
are possible. For example, some works examine the 3D motion problem and priors in
trajectory space [AKSKO8, SVMS14]. I think there are powerful priors to be learned
by examining the problem in such orthogonal directions, not necessarily abandoning
the existing geometric priors in fact, but using those in complementary fashion.

Learning offers new paths to consider input data and output of shape, motion and
data jointly representation. Graph-convolution [MBM ™17, VBV 18] networks offer a
promising avenue of research that we have began exploiting in the team, e.g. [AFB20].
Some methods also of great interest to us that redefine shape representation based on
implicit networks [CAPM20] e.g. the recent occupancy flow works [NMOG19], which
echo some of our own works to a similar goal [GFBP10], or NERF [MST"20]. Thsi is
driving some of our current explorations, e.g. with PhDs student Mathieu Marsot and
Boyao Zhou [ZFB20].
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Better priors for motion and clothing.

Modeling clothing is definitely becoming a hot topic, because our research is has
hit the precision limits associated to body-only models. New models are increasin-
gly accounting for the actually observed surface layer which sits on top of the other
body and flesh layers. We have started examining this to some extent with Jinlong
Yang’s work, as presented in this document, with one of the team followups focused
on predicting a vertex deformation layer of a template based on the underlying human
motion parameters [YFHWW 18]. We’ve personally made a low level-oriented effort
in collaboration with Stefanie Wuhrer, and Physical and Structural Mechanics specia-
list Florence Bertails and Arnaud Lazarus, in co-supervizing PhD student Abdullah
Haroon Rasheed, to better understand how cloth simulations could be used in vision
systems to build new priors [RRBD20].

One can measure the growing popularity of the topic with the number of papers and
citations surrounding this work, and seeing interesting new work picking up where we
left off with Jinlong Yan’s thesis, e.g. [LPMGI17, PMPHB17]. And I believe much
more can be done in this direction.

From old make new.

It would be quite lame and self-evident to state that Deep Learning will continue
reshaping our field, 4D modeling being no exception. But our experience, and the
literature shows that one of the key limits fo Deep Learning models, explainability,
can be at least partially mitigated by focusing the learning method on well understood
sub-problems of time-tested classical pipelines, wit a well identified support domain,
which has guided some of our earlier works, notably with the MVS photoconsistency
function. While more and more methods are able to look at the whole problem end-to-
end, I think this is still a valid approach to gain understandings on new idea and new
problems.

Many times we can use the classic pipeline as a basis for a data-driven method
to build on. This is in some sense what we were doing with our volumetric tracking
by detection method in §3.2.4 [HAF"16] by alternating a data-driven discriminative
detection step with a classic generative model-based error minimization. Interestingly,
during her post-doc after her thesis with us in Morpheo, Vagia Tsiminaki demonstrated
another way to achieve this, by using a network to compute the fine detail residual
of appearance maps with respect to the generative appearance map model presented
here [RCO™ 19]. These are all useful alternative ways to look at our problems.

Another aspect I am noticing and increasingly interested in integrating in my future
learning approaches, is that some time time-tested pipeline structuring ideas that have
proven to be essential for classic vision algorithms to work in practice and achieve
top performance, such as coarse-to-fine processing, are finding their way in the way
deep learning pipelines are structured. It is not a coincidence that coarse-to-fine py-
ramid networks are top scorers in today’s benchmarks, such as PWC-net for optical
flow [SYLK18] or for the MVS problem [YMAILZ20]. This is exciting as it offers new
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opportunities to apply our classic vision knowledge and really put added value in how
we craft future neural-network driven architectures.
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Abstract

We examine the problem of retrieving high resolution tex-
tures of objects observed in multiple videos under small
object deformations. In the monocular case, the data re-
dundancy necessary to reconstruct a high-resolution image
stems from temporal accumulation. This has been vastly
explored and is known as image super-resolution. On the
other hand, a handful of methods have considered the tex-
ture of a static 3D object observed from several cameras,
where the data redundancy is obtained through the different
viewpoints. We introduce a unified framework to leverage
both possibilities for the estimation of an object’s high res-
olution texture. This framework uniformly deals with any
related geometric variability introduced by the acquisition
chain or by the evolution over time. To this goal we use
2D warps for all viewpoints and all temporal frames and a
linear image formation model from texture to image space.
Despite its simplicity, the method is able to successfully
handle different views over space and time. As shown ex-
perimentally, it demonstrates the interest of temporal infor-
mation to improve the texture quality. Additionally, we also
show that our method outperforms state of the art multi-
view super-resolution methods existing for the static case.

1. Introduction

Gathering appearance information of objects through
multi-camera observations is a challenging problem, of par-
ticular interest for multi-view capture systems. In such sys-
tems, typically, a geometric model is reconstructed, tracked
or refined to be as close as possible to reality. Adding
an appearance or texture layer to this geometric informa-
tion plays an essential part in the realism of the result,
and is often more important than geometric detail to con-
vey the object’s visual aspect. Applications of this acquisi-
tion pipeline, such as broadcast, special effects or entertain-
ment, among others, are very highly demanding in terms
of quality. Yet, even with state of the art multi-camera stu-
dio equipment, simply reprojecting texture from any one
of the high resolution video streams used in the acquisition

Figure 1. Input view 768 X 576 resolution with up-sampling by
factor of three, BEETHOVEN dataset. Super-resolved 2304 x 1728
output of our algorithm rendered from identical viewpoint.

process is not enough to guarantee good texture coverage
and high quality renderings or close-ups. Because several
such input video streams are available in this context, and
in order to take advantage of all the information they carry,
we naturally turn to the various sources of data redundancy
to boost texture quality. Following 2D monocular super-
resolution techniques that successfully regain details from
low resolution images, we consider here a similar frame-
work for multi-viewpoint videos.

Such a framework is however significantly different from
2D super-resolution. First, dealing with multiple video
streams is a different problem than using only one, where
little parallax is usually assumed to occur. In a multi-view
scenario, the intrinsic appearance of a single 3D object is
only partially visible in each view, and observed only after
being perspective projected, distorted by 3D geometry, and
self-occluded. The 3D geometry itself is subject to recon-
struction error and thus uncertain. Seamlessly blending and
super-resolving the different input contributions into one
single coherent texture space, while accounting for all such
sources of variability is thus quite challenging. In fact it has
only recently started to be addressed as such [10] for static
objects.



But to fully exploit data redundancy, temporal accumu-
lation of all views also needs to be examined. Not only is it
an additional source of data, but interestingly temporal ac-
cumulation might make it possible to obtain high quality re-
sults with a sparser set of viewpoints than in the static case.
This is not without its own source of difficulties. More often
than not the subjects of interest are of arbitrarily deformable
nature, such as human actors. This means that consistent
temporal accumulation of texture data can only be done by
realigning the relevant parts of the texture from one tem-
poral frame to another, and accounting for sources of geo-
metric variability. Fortunately, recent progress in non-rigid
surface tracking methods [3] offer a path to resolve such
issues, which we open with this work.

Overview. Generalizing existing multi-view appearance
super-resolution work to the temporal domain requires a ro-
bust model of variability. As the appearance of subjects may
drastically change over the long run, we focus in this paper
on small non-rigid motions of the subject around a stable
pose and observed appearance. We propose to deal with
the largest non-rigid motion component using a surface-
tracking method [3], and to compensate for any remain-
ing geometry perturbations with a per-view, per-time frame
warp. This per-view registration popularized in various ren-
dering techniques [20, 8] has the large advantage of uni-
formly dealing with all sources of error, calibration, recon-
struction, temporal misalignments and ghosting for our tex-
ture super-resolution, and is one of the major contributions
of the paper. This paper is also the first, to our knowledge,
to deal both with multiple viewpoints and temporal frames
to build one common super-resolved texture, as opposed
to [21] which enhance the input views directly, and [10]
which only deals with the static multi-view aspect. Warping
is done on an intermediate, high-resolution projected proxy
of the model texture, where variability can be appropriately
densely compensated (§3.1). We also expose a straightfor-
ward model and algorithm for this task, illustrated in Fig. 2.
We notably show that some linear models [ 7] of the image
formation can be generalized to the multi-view, multi-frame
case (§3), as well as the monocular noise models (§4). We
exhibit a two-stage iterative algorithm (§5), whose conver-
gence is illustrated in experiments (§6). Our validation pro-
tocol also includes favorable comparison with the closest
state of the art method [10], at the intersection of the valid-
ity domains of the methods (static, multi-view texture res-
olution case). Furthermore, we quantitatively demonstrate
the convergence and temporal improvement of our method
over using the same number of views in the static case.

2. Related Work

View-Dependent Texturing. Various strategies exist to
retrieve and render the appearance of objects from input

views and given a viewpoint, a geometric reconstruction
being assumed available in general. One of the first pro-
posed is to reproject and blend view contributions accord-
ing to visibility and viewpoint-to-surface angle [7]. View-
dependent techniques have been generalized to model and
approximate the plenoptic function for the scene object,
capturing view dependent shading effects [2] but this re-
quires many dense views. Imperfect proxies and other ge-
ometric errors create rendering misalignments (ghosting),
which various techniques correct with an additional image-
space registration step [8], building a local basis of appear-
ance variability [5], or refining the geometry proxy [19]. By
nature, these methods are not targeted to capture intrinsic,
view-independent texture properties and generally do not
exploit viewpoint redundancy to super-resolve visual qual-
ity, nor do they easily extend to the time domain for de-
formable objects as proposed.

Multi-View Texture Estimation. To store intrinsic de-
tails of the acquired object and later render them, numerous
methods build an image-based texture atlas to store appear-
ance information, where each texel blends contributions
from each view. Realignment is often proposed again to
avoid ghosting [20, 15], but a second strategy exists which
instead builds the texture as a mosaics of unique-view con-
tributions, whose seam locations are optimized to minimize
appearance change between fragments [14]. Interestingly,
this strategy was extended to the temporal domain [13].
Only a handful of particularly relevant works examine how
to super-resolve fine appearance detail from viewpoint re-
dundancy at a single time frame [12, 10]. We propose an
improved, unified model to deal with geometric variabil-
ity due to reconstruction error and small deformation across
time for multi-view super-resolution.

Video Super-Resolution While very few works exist
concerning super-resolution techniques applied in a multi-
view context, the problem has been extensively studied
in the monocular case. The image formation model is
well identified, as a geometric warping, blurring and sub-
sampling process of the initial high-resolution image [1].
Two features of particular interest to us are that this model
can be represented by a stack of linear transforms, and that
Bayesian models have been developed to explicit the noise
dependencies and priors over the target image and estimated
warps [9, 1 7]. L1-norm based priors and total variation (T V-
)minimization are increasingly popular [17] for their im-
age restoration qualities. Notably, super-resolving multiple
videos of a moving subject was examined in a performance
capture context, but only for the input viewpoints [21]. Our
model proposes temporal and multi-view super-resolution,
yet super-resolves a single, intrinsic appearance map which
can be re-used to render new viewpoints.
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Figure 2. Summary of image formation model and problem notation.

3. Image Formation Model

Our goal is to estimate an appearance map T of an ob-
ject of interest from a set of input color images {I¢}, where
i €{l,--+,n;}is the camera number and t € {1,--- ,n;}
the time. We assume a temporally coherent mesh model
of the object, i.e. whose connectivity is time independent
but of varying pose {M!}, obtained by tracking the surface
tracking [3].

3.1. High Resolution Projection

We project the texture to a high resolution (HR) image
{H!} for each viewpoint {i,¢}. Before reaching H!, the
texels of T undergo two geometric transformations.

Texture Mapping. For the appearance to be mapped to
the mesh, a geometric mapping function must map each
texel of T to the mesh surface. Thanks to fixed connec-
tivity of the mesh across time, only one such function 7
needs to be defined. Conformal mappings are preferred, be-
cause preservation of angles ensure low distortion during
the transfer, such that the texel density of T is kept homo-
geneous on the 3D surface. Note that due to potential cuts
and non-zero genus topology of the objects of interest, T
may not be continuous and may have a support region with
several connected components (or charts) in the texture do-
main. To obtain 7, we use [18], which yields large charts
with relatively few components, a useful feature for regu-
larization and to avoid continuity artifacts.

Projection to High Resolution Image. We assume pro-
jections {7} are known for each view 7 and time ¢. A texel
at texture location x is mapped to a geometric point 7(x)
on model M?, this point is then projected in view {i,t} at
point 7¢ o 7(x). This projection model is intended to pro-
vide a high resolution image space to be able to precisely
compute a correction warp, which remaps the texture con-

tributions with the matching content of input images I¢. In
particular we do not model any optical blur here; rather for
each HR pixel ¢ we collect all texel contributions project-
ing within. Because calibration and 3D models are avail-
able, we can use GPU z-rendering to filter out non-visible
texels [7]. Occasionally the density of projected texels is
insufficient (i.e. in high curvature regions of the surface) for
a pixel to receive any texture samples. In this situation we
assume the underlying surface appearance perceived by this
pixel is an interpolation of neighboring texels. For a uni-
form, continuous treatment of both cases, we combine all
texel contributions falling in the vicinity of ¢ by a spatial
Gaussian weight with small variance og, and normalize to
one the sum of texel contribution weights for a pixel g. The
continuity of this scheme ensures that no artificial disconti-
nuity is created as a result of a discrepancy in the treatment
of these cases. This insures that samples present at the pixel
contribute overwhelmingly when present at the center of the
pixel, and that the pixel is computed as a weighted sum of
texels further away otherwise.

Note that, with this formulation, HR pixels are a linear
combination of texels of T. Let P! be the resulting sparse
projection operator such that H? = P!T, appropriately col-
lecting the weights previously discussed after being mapped
and projected in view {i,¢}. Each P! can be stored as a
sparse matrix with wy: X hye rows and w X ht columns,
respectively HR imagle resolution and the chosen texture
resolution.

3.2. Inputs as Warped, Downsampled HR Images

To generate an input image from each HR image H!, the
HR image is first warped according to the different apparent
sources of variability impacting the input image - calibra-
tion error, distortion, model geometry error - using a dense
warp field W!. This warp results in a linear operator over
the HR image, which we note Fy;,. The image then tra-

verses the optical system, where it is blurred and captured



by the CCD which performs light integration at every pho-
tosite. Following 2D super-resolution literature [, 9] this
is generally modeled using a Point Spread Function (PSF)
with the form of a Gaussian blur kernel, followed by an
image subsampling stage. Both operations can be written
as linear operators, the image-wide blur operator K and
subsampling operator S, which are applied to the HR im-
age to obtain a view’s observed image I} = SKH!. Re-
markably, in its noiseless form, the full image formation
model can thus be noted as a single, sparse linear operator
Al = SKFWEP’Z? for each view {i, t}, with wye X hye rows
and wt X ht columns, such that It = AT for each view
{i,t}. This elegantly generalizes the linear formation mod-
els used in various 2D super-resolution models [17] to the
3D+t case.

4. Bayesian Generative Model

The linear model previously discussed describes how in-
put pixels are obtained through warping and blending of
texels in noiseless fashion. As in the 2D case, inverting
the problem to estimate T and the warps W} from I} is ill-
posed, non-convex, and noise ridden [1]. We thus introduce
a noise model and priors for better problem conditioning,
formulating the solution as a MAP estimation over T, and
the warps {W} for all views and temporal frames {i, ¢}:

{T{Wi}} = argmaxy jwey (T AWIH{ID), (D

where the posterior is a product of prior and likelihood:

p(TAWHHIY) = p(T) [Tp(WH [T p@IWE T). @

it it

Prior Terms. To ensure sparsity of variations of the esti-
mated texture and warp, we impose minimal Total Variation
(TV) constraints on appearance image T and each W:

_ L ey
Wty — L o (IVut vl

where V is the gradient operator, || VT | = >__[VT(q)[| =
> (ITe(@)[[+ 1T, (@)]]), the sum over pixel index g of the
L;-norm over spatial image derivatives of T(q). The same
definition holds for u} and v{, the x- and y- components
of the warp W!. Zr1 (M), Zw () denote the normalization
constants of both distributions.

The TV constraint ensures that T is treated as a natu-
ral image to be restored with sparse and preserved edges.
However, a discontinuity between some neighboring ob-
ject surface points can be created due to necessary cuts
in the mesh unwrapping algorithm, leading some mapped

texels to appear in different charts despite their proximity
on the surface [13]. For such texels, we carefully com-
pute gradients by computing the transform of axis direc-
tions as reprojected in the chart where surface neighbors
were mapped [10, 11]. This minimizes discontinuities in
treatment across chart boundaries in the estimation.

Data Term. Under the assumption that the noise is inde-
pendent per pixel given the information about the texture,
model and cameras, we impose a Gaussian prior for each
frame {4t} :

—(IL—A'T) DE(IE-ALT
e” AT Dili—AT) (5

1
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p( ’L| 2 ) Z(Df)

where D! is a diagonal covariance matrix introduced to al-
low different noise characteristics per pixel ¢, and Z(D}) a
normalization function of D. In 2D super-resolution mod-
els, a single variance per input image is usually used, with
the i.i.d. noise assumption [9]. However when acquiring
appearance in the 3D case it is well known that contribu-
tions need to be modulated according to the angle 6, be-
tween viewing vector and local surface normal [7]. This
can be purposely identified in the generative model, where
each diagonal element d(6,,) of D} materializes the breadth
of the underlying Gaussian predictive model and thus the
confidence in the pixel. We set this value as a robust, con-
servative function of 6, given in §6, which we assume fixed
for the purpose of estimation, under small warp perturba-
tions. Note that this is a valid assumption since visibility
and grazing angles are generally stable, as we assume given
the full poses of the model M for all frames.

5. Inference

Directly maximizing all variables in (1) is intrinsically
hard and seldom done in the literature. We opt for a coordi-
nate descent scheme, alternating between T and Wf

Appearance Map. We maximize (1) by minimizing its
negative log, dropping all terms independent of T

T=argmin Y _(I!=A!T) DI} -A!T) + A|VT|, (6)
T Tt

where the data term develops to a weighted sum of per-pixel
Lo-norms. Although not specifically using a robust data
term norm here as opposed to some works, we nevertheless
obtain excellent results enforcing robustness through the
constant covariance matrix D‘;, as will be shown. Optimiz-
ing a Lo data term with a TV-regularizer has been specif-
ically studied [4], yielding a family of forward-backward
splitting solvers whose implementation are available off-
the-shelf [6]. Let us note f;(T) and frv(T) the data and



the TV-term. Forward-backward splitting is an iterative al-
gorithm for estimating T, alternating between computing a
gradient update step and projection prox.,, . which com-
putes an implicit subgradient descent step for the TV-norm.

Tﬂ+1 = prOX"/,fTv (Tn - ﬂyvfd(Tn)) b (7)

where v is a step-size parameter. Our re-weighted func-
tional (6) only implies a modification of the gradient up-
date with respect to the standard case, with V f4(T,) =

2A ' DHALT, — ).

Warp Estimates. We independently estimate each W' for
an input view {4, t}. Minimizing the negative log of (1), and
dropping all terms independent of W yields:

Wi =arg miny: v (|| Vuf|l + | Vof]) (8)
+ (Il -SKF\, PiT) " D{(I{ -SKF\, P!T),

which can be interpreted as a modified optical flow equation
with a TV-regularizer, where the data term is re-weighted
by D!. The intuition here is that the minimization favors
the TV prior of sparse variation over the data term for un-
trustworthy pixels according to D, and puts more relative
importance on trying to follow data on reliable pixels. We
opt for a similar strategy to [17] for solving this equation,
and initialize the estimation of W with the result of a stan-
dard optical flow method [16], applied between H! and an
upsampled I! at each iteration.

6. Experiments

We exhibit results with a MATLAB prototype imple-
mentation, and run experiments on a 16-core 2.4 GHz PC
with 32GB RAM'. Our current implementation is mainly
mono-thread, with the exception of the optical flow which
we launch in 10 separate threads. To initialize the algo-
rithm, we first use a small C++/OpenGL program to render
visibility maps from texture to image space, then initialize
the texture map with a simple weighted average of visible
inputs. The visibility maps are also used to generate each
projection matrix operator Pf. We use the Optical Flow
package from Liu et al. [16] for per-iteration optical flow
initialization, and the UNLocBOX package [6] for the tex-
ture re-estimation in the loop. We use a threshold on the
relative norm of the objective function (6) as stopping cri-
terion, and observe convergence in 30 to 70 iterations for a
given \. The execution time of the algorithm is in the range
of 30 minutes to an hour per iteration depending on the
dataset, number of views and number of frames. These are
not a good indication of the final achievable performance
as many enhancements are possible, including making the

I'See video results at http://hal.inria.fr/hal-00977755

flow and image update estimations massively parallel on a
GPU, better inter-time flow bootstraps as suggested by [17],
more compact data-structures, C++ inner loop.

Parameter values. We set the Gaussian variances with
op = 0.25 and o}, = 0.1, respectively for the projection
weight and PSF kernel K, for all datasets. Although these
could be optimized alongside other parameters, we observe
low sensitivity to these parameters when set in the [0.1, 1]
range. Higher values introduce over-blurring, while lower
values tend to reveal the underlying discretization of the
texture map (o, < 0.1) or the input image (o, < 0.1).
We also fix the convergence parameters to v = 0.05 and
A = 5.10~* for all experiments, using a second and third
round of iterations with A = 5.107° and A = 5.107° to
down-weigh TV-regularization and thus reveal higher fre-
quency detail. We set d(6,) = ée_“"m % as a faster ap-
proximation of a normal distribution over the angles of the
perceived surface, and use C' to normalize these weight con-
tributions to 1 among all pixels that see a common texel x
to obtain homogeneous weights among pixels in the data
term Ziyq:mﬂ(x) d(¢,) = 1. Weuse s = 77/16 over
all experiments. This weight is more conservative than the
cos 6, weight usually used for blending in multi-view tex-
turing techniques [7], and yields improved results in our ex-
periments, as it downgrades unreliable contributions from
surface points at a grazing angle.

6.1. Static Multi-View Comparison

We compare our model with the latest state of the art
multi-view texture super-resolution technique of Goldliicke
et al. [10]. As the latter does not deal with temporal
sequences, the comparison is performed on the common
applicability domain, i.e. static images, as shown Fig. 3.
The authors provide a public dataset for three objects
BEETHOVEN, BUNNY and BIRD, and kindly provided ad-
ditional data on request, so we could reproduce the exper-
iment in the closest possible setup. This included a high
resolution output of their algorithm for the viewpoint origi-
nally reported per dataset in [10], to which we compare our
high resolution output. We use the same super-resolution ra-
tio of 3 x the input resolution for the texture and high resolu-
tion image domains. Respectively 108, 52 and 52 calibrated
viewpoints were originally used at resolution 768 x 576. We
have used identical views, and also use identical 3D models
except for the BIRD dataset, for which we observed large
reconstruction and silhouette reprojection artifacts on the
model provided. In fairness we thus only provide crops in
regions where the 3D model geometry is not significantly
different.

It can be generally observed that our outputs provide
lower noise levels and artifacts. This is particularly visi-
ble in the BUNNY dataset, in the ear region and shadow



S ’ ¥
-

Figure 3. Comparison on BUNNY, BEETHOVEN and BIRD datasets. Left column: input images. Middle: output of [10]. Right: our

algorithm. Best viewed magnified and in color.

region around the left eye. The BEETHOVEN exhibits some
visibility difficulties due to the face geometry and presence
of concave regions around the nose and hair, which gener-
ate artifacts for [10]. In contrast, our method is able to deal
with these situations efficiently. A single texture domain cut
is present on the nose but the discontinuity is barely visible
thanks to the inter-chart terms we introduced. More accu-
rate details and sharper pattern borders can be observed on
the BIRD wing and tail, notably in the feather textures.

6.2. Temporal Superresolution Validation

To evaluate our approach on the temporal aspect,
we introduce three synchronised datasets, GOALKEEPER,
BACKPACK and ACTOR, in Fig. 4. The datasets were ac-
quired with three different setups and camera models so as
to maximize testing variability. All 3D models were ob-
tained using silhouette-based reconstruction techniques and
thus yield largely imperfect models. GOALKEEPER con-
sists of 21 calibrated viewpoints at 1024 x 1024, which we
downsample to 512 x 512 for the purpose of evaluation.
BACKPACK consists of 15 viewpoints of a person, with res-
olution 1624 x 1224. ACTOR consists of 11 viewpoints in
resolution 1920 x 1080. The ACTOR dataset is arguably the
most difficult one, with lower views and higher noise lev-

els both in the images and the reconstruction. We focus on
small motions of the three subjects, and test the method for
2 to 7 frames. Significant improvements can be seen in the
figure through temporal accumulation.

There are several difficulties in designing an experiment
to quantify this improvement, such as the absence of ground
truth data in texture space for real datasets. Synthetic
datasets are less than ideal for image restoration and super-
resolution problems: a significant conclusion can only be
achieved if the different sources of variability are correctly
introduced and simulated: sensor noise, calibration er-
ror, local reconstruction errors, specularities, temporal mis-
alignments. Instead, we focus here on showing the temporal
improvement by running our algorithm on a 2x downsam-
pled version of the GOALKEEPER dataset, and comparing
our reprojected result with the higher resolution inputs us-
ing the mean squared error metric (MSE). Fig. 5 shows the
result of this experiment, with convergence curves from one
frame (static case) to three frames, and MSE’s evaluated on
the 21 input views. Several observations can be made from
these curves. First, they illustrate convergence of the iter-
ations toward the high resolution ground truth. Second the
temporal improvement leveraged by our algorithm is vali-
dated in two forms: acceleration of the rate of convergence
using more temporal frames, and improvement of the final
result quality over using only one temporal frame.
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Figure 5. Results from GOALKEEPER dataset. We computed the
mean value over frames of the Mean Square Error between our
output and high resolution ground truth image. The resolution of
input images is 512 x 512 and of the super-resolved output im-
ages is 1024 x 1024. We use a time step of 2 in experiments,
corresponding to an acquisition frequency of 15Hz.

7. Discussion

We have presented a novel method to retrieve a sin-
gle, coherent texture from several viewpoints and tempo-
ral frames of a deformable subject. The noiseless forma-
tion model introduced is linear from texture space to im-
age space, and noise and regularization are achieved using
a Bayesian framework. We have demonstrated the use-
fulness of this approach with respect to state of the art,
and quantified the convergence and temporal improvement.
The method opens several interesting research possibili-
ties. First, more of the parameters and variability could
be automatically learned, such as the projection parame-
ters and regularization weight. The framework proposed
enables this, with adapted convergence algorithms. Second,
the trade-off between using more views or more temporal
frames could be further explored to understand how each
modality contributes to the result. Third, longer term re-
silience could be explored as an extension of this model.
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Figure 4. This figure illustrates various temporal improvements and detail enhancements obtained with various acquired datasets, compar-
ing different convergence using one or several temporal frames. Top: GOALKEEPER dataset. Left: output of Frame 3. Input is compared
to Frame 1 and Frame 3 for each close-up. Middle: BACKPACK dataset. Input on left, Frame 1 and Frame 2 comparisons for close-ups.
Details are revived on the backpack, T-shirt and pants. Bottom: ACTOR; left to right: full result with three frames, close-up comparison
between input, against Frame 1 and Frame 3. Best viewed magnified and in color.
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Abstract. We present a novel methodology for the analysis of com-
plex object shapes in motion observed by multiple video cameras. In
particular, we propose to learn local surface rigidity probabilities (i.e.,
deformations), and to estimate a mean pose over a temporal sequence.
Local deformations can be used for rigidity-based dynamic surface seg-
mentation, while a mean pose can be used as a sequence keyframe or
a cluster prototype and has therefore numerous applications, such as
motion synthesis or sequential alignment for compression or morphing.
We take advantage of recent advances in surface tracking techniques to
formulate a generative model of 3D temporal sequences using a prob-
abilistic framework, which conditions shape fitting over all frames to a
simple set of intrinsic surface rigidity properties. Surface tracking and
rigidity variable estimation can then be formulated as an Expectation-
Maximization inference problem and solved by alternatively minimizing
two nested fixed point iterations. We show that this framework pro-
vides a new fundamental building block for various applications of shape
analysis, and achieves comparable tracking performance to state of the
art surface tracking techniques on real datasets, even compared to ap-
proaches using strong kinematic priors such as rigid skeletons.

Keywords: Shape dynamics, Motion analysis, Shape spaces

1 Introduction

Recent years have seen the emergence of many solutions for the capture of dy-
namic scenes, where a scene observed by several calibrated cameras is fully re-
constructed from acquired videos using multiview stereo algorithms [24,12,1,20].
These techniques have many applications for media content production, interac-
tive systems [2] and scene analysis [28] since they allow to recover both geometric
and photometric information of objects’ surface, and also their shape and evolu-
tion over time. Since these temporal evolutions were initially reconstructed as a
sequence of topologically inconsistent 3D models, significant research work has
been done for full 4D modeling and analysis of geometrically time-consistent 3D
sequences.

In particular, several techniques propose to deform and match a template to
either image data, or to intermediate 3D representations of the surface [25,17,9,26].
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These methods allow the recovery of both shape and motion information. How-
ever they usually do not consider the intrinsic dynamic properties of a surface.
These are either assumed, for instance through a kinematic structure (rigging)
or through the surface tension parameters, or are simply ignored. Hence, there is
a large interest in better understanding rigidity and motion properties of shapes,
with the prospect of improving dynamic models, extracting more useful informa-
tion, and better automation. In this work, we take the estimation a step further
and investigate how to infer dynamics or statistical properties of shapes given
temporal sequences.

Recovering this information is yet a largely open research topic with only
few exploratory representations proposed for dynamics characteristics of sur-
faces, e.g. [11,29]. We propose a novel inference framework for the analysis of
complex object shapes in motion that learns local surface rigidity probabilities
(i.e., deformations), and estimates a mean pose over a temporal sequence. Based
on recent advances in surface tracking techniques, we formulate a generative
model of 3D temporal sequences using a probabilistic framework, which condi-
tions shape fitting over all frames to a simple set of intrinsic surface rigidity
properties. Surface tracking and rigidity variables can then be obtained iter-
atively using Expectation-Maximization inference by alternatively minimizing
two nested fixed point iterations. Thus, our main contribution is a framework
that allows the simultaneous tracking and inference of dynamic properties of
object surfaces given temporal observations. We show how these properties con-
tribute to a better understanding of surface motion and how they can be used
for the dynamic analysis of 3D surface shapes through mean pose estimation
and rigidity-based segmentation, while achieving competitive surface tracking.

The remainder of the paper is organized as follows. The next section discusses
related work. Details on the mean pose inference model are given in Sect. 3. Sec-
tion 4 presents various applications and experimental results. Section 5 concludes
with a discussion on our contributions.

2 Related Work

The analysis of deformable surfaces captured by multi-video systems has gained
lot of interest during the last decade due to the rapid progression of computer
and image sensing technologies. We focus here on works that relate to dynamic
properties of shapes.

Kinematic structures. Many popular tracking methods propose to rigidly con-
strain a model using an articulated structure, for instance a skeleton or a cage,
which must be scaled and rigged to a 3D template, and optimally positioned
through a sequence of models representing the observed subjects [4,30,17,19)].
The template is usually deformed using a skinning technique, according to the
optimized structure across the sequence [5]. Such kinematic structures provide
intrinsic information on the associated shapes through their parameter evolu-
tions (e.g. their averages can define a mean pose). These approaches require a
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priori knowledge on the observed shapes, such as the topology and the rigid
parts, and cannot be applied to arbitrary object shapes. Moreover global tem-
plate deformation across time is subject to loss of local details such as cloth
wrinkles and folds.

Locally rigid structures. The literature also contains several methods that re-
lax the constraint on the shape structure using looser rigidity priors. A body
of works consider deformations that preserve local intrinsic surface properties,
e.g. isometric deformations [21,8,22,23]. Such properties relate to local rigidities,
for instance in [31,32] local surface distorsions are constrained, however they
are usually known priors. While efficient to register or match surfaces, intrinsic
surface properties are not necessarily sufficient to track complex shapes such
as human bodies. In that case, several approaches introduce local deformation
models to drive surface evolutions. For instance, in [9], the observed surface is
treated as a piece-wise body with locally rigid motions. We consider a similar
model to represent surface deformations which is used to learn local rigidities
as well as mean poses along with the tracking. Interestingly, recent approaches
also in this category were proposed to characterize local surface deformations.
In [11], the authors propose a probabilistic framework for rigid tracking and
segmentation of dynamic surfaces where the rigid kinematic structure is learned
along time sequences. Our framework does not assume such structure but learns
instead local rigidities and mean poses. In [29], the authors model complex local
deformation dynamics using linear dynamical systems by observing local curva-
ture variations, using a shape index, and perform rigidity-based surface patch
classification. The latter approach assumes surface alignment is given, in contrast
to our proposed generative model that simultaneously performs surface tracking
and local rigidity estimation.

Shape Spaces. Following the work of Kendall [18], a number of works consider
shape spaces that characterize the configurations of a given set of points, the
vertices of a mesh for instance. This has been used in medical imaging to esti-
mate mean shapes through Procrustes analysis, e.g. [16]. In this case, the shape
of the object is the geometrical information that remains when the pose (i.e.,
similarities) is filtered out. Thus Procrustes distances can be used to measure
shape similarities and to estimate shape averages with Fréchet means. We follow
here a different strategy where a shape space represents the poses of a single
shape and where we estimate a mean pose instead of a mean shape. This re-
lates to other works in this category that also consider shapes spaces to model
shape poses with mesh representations. They can either be learned, e.g. [3,15] or
defined a priori, e.g. [27] and are used to constrain mesh deformations when cre-
ating realistic animations [3,27] or estimating shape and poses from images[15].
While sharing similarities in the deformation model we consider, our objective is
not only to recover meaningful shape poses but also to measure pose similarities
and intrinsic shape properties. Unlike [3,15], we do not need a pose or shape
database and the associated hypothesis of its representativeness. Moreover, our
methodology specifically addresses robust temporal window integration.
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3 Mean Pose Inference Model

Fig. 1. Example of patch template used.

We assume given a temporal sequence of 3D reconstructions, incoherent
meshes or point clouds, obtained using a multi-view reconstruction approach,
e.g. [12,1,20]. We also assume that a template mesh model of the scene is avail-
able, e.g. a particular instance within the reconstructed sequence under consid-
eration. The problem of local surface rigidity and mean pose analysis is then
tackled through the simultaneous tracking and intrinsic parameter estimation of
the template model. We embed intrinsic motion parameters (e.g. rigidities) in
the model, which control the motion behavior of the object surface. This implies
that the estimation algorithm is necessarily performed over a sub-sequence of
frames, as opposed to most existing surface tracking methods which in effect im-
plement tracking through iterated single-frame pose estimation. We first describe
in details the geometric model (§3.1) illustrated with Fig. 1, and its associated
average deformation parameterization for the observed surface (§3.2). Second,
we describe how this surface generates noisy measurements with an appropriate
Bayesian generative model (§3.3). We then show how to perform estimation over
the sequence through Expectation-Maximization (§3.4).

3.1 Shape Space Parameterization

To express non-rigid deformability of shapes, while de-correlating the resolution
of deformation parameters from mesh resolution, we opt for a patch-based pa-
rameterization of the surface similar to [9]. The reference mesh is partitioned in
an overlapping set of patches, pre-computed by geodesic clustering of vertices.
Each patch P, is associated to a rigid transformation T% € SE(3) at every
time ¢. Each position x; , of a mesh vertex v as predicted by the transform of
P, can then be computed from its template position xY9 as follows:

KXo = Tk(xg)' (1)
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We thus define a pose of the shape space as the set of patch transforms T =
{T, }rex that express a given mesh deformation. Note here that a pose in the
shape space does not necessarily correspond to a proper geometric realization
of the reference mesh and, in practice, patch deformations are merged on the
template to preserve the mesh consistency.

3.2 Mean Pose

To retrieve the mean pose of a given sequence, we provide a definition suitable for
the analysis of complex temporal mesh sequences. Following Fréchet’s definition
of a mean [13], we introduce the mean pose T of a given set of poses {T*};c1
over the time sequence T as the pose minimizing the sum of squared distances
to all poses in the set:

T = arg min Z d*(T,TY), (2)
teT

where d() is a distance that measures the similarity of two poses. This distance
should evaluate the non-rigidity of the transformation between two poses of a
shape and hence should be independent of any global pose. Such a distance is
not easily defined in the non-Euclidean shape space spanned by the rigid motion
parameters of the patches. However using the Euclidean embedding provided
by the mesh representation, we can define a proper metric based on the vertex
positions. Inspired by the deformation energy proposed by Botsch et al. [7] our
distance is expressed as an internal deformation energy between two poses. Let
T? and T7 be two poses of the model, the distance can be written as a sum of
per patch pair squared distances:

(T, Ty = >~ diy(T, 1Y), (3)
(P, ,P))eN
with diy(T), T) = > [ Th_(x)) — TS, (x9)|%, (4)
vEP, UP,
where T}'Cil = Tfl o Ti is the relative transformation between patches P,

and P, for pose i, and N is the set of neighboring patch pairs on the surface.
The distance sums, for every pair of patches of the deformable model, its rigid
deviation from pose ¢ to j. This deviation is given by the sum over each vertex v
belonging to the patch pair, of the discrepancy of relative positions of the vertex
as displaced by P, and P,. It can be verified that d* defines a distance as it
inherits this property from the L2 norm used between vertices.

3.3 Generative Model

The expression (2) is useful to characterize the mean over a set of poses already
known. Our goal however is to estimate this mean in the context where such
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poses are indirectly observed through a set of noisy and sparse 3D point clouds
of the surface. Thus we cast the problem as the joint estimation of mean pose
and fitting of the model to each set of observations. For our purposes, we assume
the set of poses {T?};c7 are defined for a set T corresponding to observations in
a temporal sequence. The observed point clouds are noted Y ={Y'};c7, where
Y' ={yl}oco, is the set of point coordinates y!, for an observation o among the
set of observations O, at time ¢. Note that this set O, is different than V in
general as it is obtained from a 3D reconstruction or depth camera, without any
direct correspondence to the deformable shape surface model earlier defined.

To express the noisy predictions of observations, we follow the principle of
EM-ICP [14] by introducing a set of assignment variables k! indicating, for
each observation o, which patch this observation is assigned to. We are also
interested in retrieving information about the variations of the rigid deformation
with respect to the mean shape. To keep this information in its simplest form, we
express in the generative model that each pair of patches (k,1) € N is assigned
a binary rigidity variable c,; € {0,1}, which will condition the patch pair to
accordingly be rigid or flexible. This variable is an intrinsic parameter attached to
the original deformable model and is thus time-independent. We note the full set
of rigidity variables C = {c;,; }(,1yen- This in turn will allow during inference the
estimation of a rigid coupling probability for each patch pair (k,1). We express
the generative model through the following joint probability distribution:

p(T,T,Y,C.K,0)=p(T) [T (p(T*|T.C) ] pvi K T 0% |, (5)
teT o€,

with ¢ = {o'}4e7 the set of noise parameters of the observation prediction
model, and K = {k!} the set of all patch selection variables.

Observation prediction model. Each observation’s point measurement is pre-
dicted from the closest vertex v within patch P,_,,. Because the prediction is
noisy, this prediction is perturbed by Gaussian noise of variance ot?:

p(yo | ko T'o') = Ny | T (x),0%). (6)

Pose constraining model. We constrain the fitted poses to be close to the
mean pose, using the distance defined earlier (3). We embed the influence of
rigidity variables in this term, by computing two versions of the distance, biased
by rigidity variables C:

p(T" | T,C) x exp | — Z d2, (T, T cp) |, (7)
(k,l)eN

where dy (T, T", cy;) = Z Bri(v, ¢gy) | Th_y(x7) = Ti_l(xg)”2a (8)
vEP, UP,
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with Bii(v, cy;) a uniform function over all vertices of the patch pair if ¢, = 1,
which encourages common rigid behavior of the two patches, and a non-uniform
function encouraging more elasticity when c,; = 0:

Bra(v,0) o exp(— 1Y)y, (9)

where by (v) is the distance between the vertex v and the border between P, and
P, on the template, D is the average patch diameter and 7 is a global coefficient
controlling the flexibility. The Si;(-,0) has larger values on the border between
the patches, which allows more flexibility while enforcing continuity between the
patches. The coefficients Sy;(v,0) are normalized such that ZPkUPl Bri(v,0) =

ZPkuPl Bri(v,1) in order to make both modes as competitive.

Mean model prior. In the absence of any prior, the mean pose is unconstrained
and could theoretically have completely loose patches unrelated to each other.
To avoid this and give the mean pose a plausible deformation, we consider the
following a prior which expresses that the intrinsic mean pose should not sig-
nificantly deviate from the original reference pose (represented by the identity
transform Id):

p(T) o exp(~d*(T,1d)) ocexp| Y TR =TI )
(Py,P)EN veP UP,
(10)

3.4 Expectation-Maximization Inference

We apply Expectation-Maximization [10] to compute Maximum A Posteriori
(MAP) estimates of the tracking and average shape parameters given noisy 3D
measurements, using the joint probability described in (5) as described in [6]. The
assignment variables K and rigidity coupling variables C are treated as latent
variables, which we group by the name Z = {K,C}. For the purpose of clarity
let us also rename all parameters to estimate as © = {T,T,o}. Expectation-
Maximization consists in iteratively maximizing the following auxiliary function
Q@ given the knowledge of the previous parameter estimate @™:

O™+ = argmax Q(O|O™) = argmax » _p(Z[Y,0™)Inp(Y,Z|6).  (11)
e e 7z

The E-Step consists in computing the posterior distribution p(Z|Y,O™) of
latent variables given observations and the previous estimate. It can be noted
given the form of (5) that all latent variables are individually independent un-
der this posterior according to the D-separation criterion [6], thus following the



8 Benjamin Allain, Jean-Sébastien Franco, Edmond Boyer, and Tony Tung

factorization of the joint probability distribution:

p(y,zlo") =11 | II elcwle™ I] paily.0™) ).  (12)

teT \(k,)eN 0€0,
my\ __ 2 t,m mm
where p(c|0™) =a-exp | — Z —djg (T, T™, ¢py) (13)
vEP, UP,
and p(kj|Y,0™) =b- Ny, | Ty"(v),0"™), (14)

where a, b are normalization constants ensuring the respective distributions sum
to 1, and v is the closest vertex on patch k. Equations (13) and (14) are the E-step
updates that need to be computed at every iteration for every latent variable.
(13) corresponds to a reevaluation of probabilities of rigid coupling between
patches, based on the previous m-th estimates of temporal and mean poses. (14)
corresponds to the probability assignment table of time ¢’s observation o to each
patch in the model. This corresponds to the soft matching term commonly found
in EM-ICP methods [14].

The M-Step maximizes expression (11), which can be shown to factorize simi-
larly to (5) and (12), in a sum of three maximizable independent groups of terms,
leading to the following updates:

Ttm+l *argr;mn Z Zp cy|O™) di,(T™, T, cy;) (15)
(k,D)EN ¢y
+ > pY,0™)lyh — T (<)%,
o€, kit
e 1 Y00, Y pKY.O7) [y — T )2 o)
o” =- ,
3 >oco, 2o PKG[Y,0™)

Tm“—argmm (T, Id)+ > > Y pleylO™)diy (T, T ¢p).
teT (k,L)EN ¢y
(17)

Expression (15) corresponds to simultaneous updates of all patch transforma-
tions for a given time ¢, weighed by E-step probabilities. (16) updates the per-
time frame noise parameter with an E-step weighed contribution of each obser-
vation. (17) computes the mean pose, accounting for all poses in the time se-
quence. Note that, for ease of resolution, we decouple the estimation of T# ™!
and T™*+!, which is why (17) uses the result T*™*!. We solve both systems
with Gauss-Newton iterations, using a parametrization of the rigid transforms
as a rotation matrix and translation.

4 Experiments

We evaluate the proposed generative model using 3D sequences reconstructed
from real human performances captured by multiple view videos. We propose
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two datasets, GOALKEEPER and DANCER, which provide two different actions
and clothing situations with high resolution inputs. These were processed by
extracting visual hull reconstructions, and two neutral topology frames were
selected to provide the template model after smoothing and simplifying the ob-
tained mesh down to 5k vertices. Additionally, we also validate using two public
datasets made available by the community. The FREE [25] dataset consists of a
photocoherent mesh sequence of a dancer with approximately 135k vertices per
frame, exhibiting particularly fast and difficult dancing motion. The MARKER
dataset [19] provides another type of challenging situation with a two-person se-
quence of reconstructions, with martial art motions. It also provides markers on
one of the persons which we will use for quantitative evaluation. For both these
public sequences, we use the templates provided downsampled to 5k vertices.

In all visualizations, we render mesh poses by computing vertex position x!
at time ¢ as a linear blend of positions x! of expression (1), weighed by a set
of Gaussian weights o, (v) materializing the region of influence of patch P, on
the mesh. These weights are maximal at the center of mass of P, and their sum
over all non-zero patch influences are normalized to 1 for a given vertex v:

X, = ay(v) xj, . (18)
k

We visualize the rigidity coupling probabilities over the surface with heat-colored
probabilities, by diffusing this probability over vertices of influence of patch
pairs to obtain a smooth rendering. We provide a supplemental video® with the
processed results for these datasets.

4.1 Tracking Evaluation

We first evaluate the tracking performance of the algorithm. Full sequences may
be processed but because of the motion of subjects in the sequence, all poses
of the sequence cannot be initialized with a single static pose, as this would
surely be susceptible to local minima. We thus process the four datasets using a
sliding window strategy for T, where processing starts with a single pose, then
additional poses are introduced in the time window after the previous window
converges. We provide tracking results with sliding window size 20 which cor-
responds to approximately one second of video. We show the resulting poses
estimated by our algorithm on the four datasets in Fig. 4, Fig. 5a and Fig. 5b.
Runtime is approximately 15 seconds per time step on a recent workstation and
can be further improved.

We also provide a comparison with state of the art methods Liu et al. [19] and
with a purely patch-based strategy [9], on the MARKER dataset. We reproduce
[9] results by neutralizing mean updates and rigid coupling updates from our
method, which corresponds to removing these terms from the energy and closely
mimics [9]. Note that [19] is a kinematic tracking strategy, where both subjects
are rigged to a kinematic skeleton providing a strong, fixed and dataset specific

3 http://hal.inria.fr/hal-01016981
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rigidity prior. On the other hand, [9] only use patch rigidity and inter-patch
elasticity priors, that are weaker than [19] and our method. The MARKER dataset
provides sparse marker positions, at which we estimate geometric positional error
with respect to the surface. To this purpose we match the closest vertex on the
template model provided, and follow it with the different methods, computing
geometric errors in position with respect to the corresponding marker’s position
in these frames. The average errors are shown in Table 1. We also provide a
temporal error graph for our method and [9] in Fig. 2.

Table 1. Mean error and standard deviation over the sequence of the MARKER dataset.

method mean error (mm)|standard deviation (mm)
no coupling, no mean pose [9] 55.11 48.02
our method 43.22 29.58
Liu et al. [19] 20.61 25.50

Mean Error at Markers

T T T T T T T
250 - without coupling estimation, without mean pose
our method

Mean Error (mm)

0 50 100 150 200 250 300 350 400 450 500
Frame

Fig. 2. Mean error for temporal evolution over MARKER dataset.

Table 1 shows our method achieves comparable tracking performance to state
of the art surface tracking techniques. The slightly higher error with respect
to [19] is not unexpected given that they use a stronger kinematic skeleton
prior. Regarding [9], the graph and table show a small advantage in error for our
method along the sequence, as well as a smaller variance of the error, showing
the better constraining provided by our framework. The graph also shows signif-
icantly higher error values with [9] than with our method around frames 60, 250,
325, 390 and 460. These error peaks are imputable to difficult segments of the
input sequence where [9] loses track of limbs (see Fig. 3a and Fig. 3b) while our
method does not. The high error values around frame 390 are due to ambiguous
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input meshes where the head of the second character (not seen in Fig. 3b) is out
of the field of view. Around this frame, our method still outperforms [9] which
misaligns an arm (see Fig. 3b). These results substantiate stronger robustness
for our method over [9].

Regarding limitations, the model may fall into local minima when the noise
level of inputs is too high similarly to all patch-based methods but this was not
a strong limitation on the datasets. As the model favours rigidity and isometric
surface deformations, the surface sometimes overfolds in non-rigid sections (as
sometimes seen in video), which we will address in future work.

(a) Frame 325 (b) Frame 390

Fig. 3. Input mesh (left), tracked mesh with [9] (middle) and with our method (right).

4.2 Mean Pose and Rigidity Estimation

Fig. ba shows tracking results with color coded rigidity coupling probabilities
with sliding window size 20. The method accurately reports instantaneous rigid-
ity deviation, such as when the subject folds his elbows or shoulders. Blue regions
correspond to regions of the mesh that have no non-rigid distortion with respect
to the estimated mean pose. Fig. 5b shows estimates of mean poses for full
sequences, colored with the estimated rigidity coupling probabilities over full se-
quence (no sliding window). It can be noted that the method accurately reports
where the most common deviations occur.

The supplemental video shows mean pose sequences for several sliding win-
dow sizes. We observe a temporal smoothing of the initial deformation: fast
deformation is filtered out. This effect is stronger with wide windows. We in-
terpret this phenomenon as follows: when the temporal window slides along the
sequence, it produces a mean pose sequence analogous to the convolution of the
estimated pose sequence with a gate function, with the same size as the window
size. This process can be seen as a low-pass filtering of the sequence poses.

We also observe that the mean pose is not affected by global rigid motion
of the shape (noticeable with the DANCER dataset). This is an expected conse-
quence of using a pose distance that is invariant under global rigid transforms
in (2).
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¢

(a) Tracking Excerpts. (b) Mean poses computed on
full sequences.

Fig. 5. Tracking excerpts from GOALKEEPER, MARKER and FREE datasets. Best
viewed in color. Please watch supplemental video for more visualizations.
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5 Conclusions

We present a novel methodology for the analysis of complex object shapes in
motion observed by multiple cameras. In particular, we propose a generative
model of 3D temporal sequences using a probabilistic framework that simulta-
neously learns local surface rigidity probabilities and estimates a mean pose over
temporal sequence. Hence, rigidity-based surface segmentation can be achieved
using local deformation properties, while motion synthesis or surface alignment
for compression or morphing applications can be achieved using a mean pose as
a sequence keyframe or a cluster prototype.

Our model can also perform surface tracking with state of the art perfor-
mance, and does not require a priori rigid (kinematic) structure, nor prior model
learning from a database. Surface tracking and rigidity variable probabilities are
obtained by solving an Expectation-Maximization inference problem which al-
ternatively minimizes two nested fixed point iterations.

To our knowledge, this is the first model that achieves simultaneous estima-
tion of mean pose, local rigidity, and surface tracking. Experimental results on
real datasets show the numerous potential applications of the proposed frame-
work for complex shape analysis of 3D sequences.
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Abstract

Recovering 3D shape motion using visual information
is an important problem with many applications in com-
puter vision and computer graphics, among other domains.
Most existing approaches rely on surface-based strategies,
where surface models are fit to visual surface observations.
While numerically plausible, this paradigm ignores the fact
that the observed surfaces often delimit volumetric shapes,
for which deformations are constrained by the volume in-
side the shape. Consequently, surface-based strategies can
fail when the observations define several feasible surfaces,
whereas volumetric considerations are more restrictive with
respect to the admissible solutions. In this work, we in-
vestigate a novel volumetric shape parametrization to track
shapes over temporal sequences. In constrast to Eulerian
grid discretizations of the observation space, such as vox-
els, we consider general shape tesselations yielding more
convenient cell decompositions, in particular the Centroidal
Voronoi Tesselation. With this shape representation, we de-
vise a tracking method that exploits volumetric informa-
tion, both for the data term evaluating observation confor-
mity, and for expressing deformation constraints that en-
force prior assumptions on motion. Experiments on several
datasets demonstrate similar or improved precisions over
state-of-the-art methods, as well as improved robustness, a
critical issue when tracking sequentially over time frames.

1. Introduction

The capture of shapes and their evolutions has been a
very active research topic for the last decade, motivated by
many applications for which dynamic shape models are use-
ful. This ability is of interest for several fields of activity
such as computer-assisted design, virtual reality, entertain-
ment, medical imaging, gesture and sports analysis. Ever
since the initial promises of free viewpoint video [9], many
models of shape capture have been explored. Initially ex-
amined as a per-time reconstruction problem, e.g. [24, 14],

temporal integration and tracking of the shape in the time
domain have then been considered, e.g. [1 1, 3]. In any case,
however, surface-based models, such as meshes, have been
largely dominant to represent and track shapes. This is due
to several factors, primarily to the fact that visual obser-
vations generally lie on the shape surface, but also to the
popularity of surface-based representations in the vision and
graphics communities and the availability of efficient tools
to manipulate them. Yet it has been observed that certain
forms of volume-preserving deformations may be benefi-
cial to model shape deformations in graphics applications
such as [1, 5], or to enforce volumetric constraints, nev-
ertheless based on surface tesselations, in dynamic shape
capture [10].

While the idea has led to interesting preliminary results,
a full volumetric treatment of dynamic shape capture is still
to be investigated and its benefits evaluated. Among the
expected advantages of this approach are its ability to ex-
press volume conservation as well as its ability to enforce
local volumetric deformation constraints. In this paper, we
address this problem with a twofold contribution: we first
propose a dedicated volumetric deformation model based
on Centroidal Voronoi Tesselations (CVT) [13], which in-
tegrates the latest advances of recent tracking models, and
second we propose an evaluation of the method based on a
hybrid multi-camera and marker-based capture dataset [21].

1.1. Previous Work

A large set of techniques exist to capture moving shapes
as a time independent sequence of meshes representing the
object’s surface [24, 14]. For this process, many volumet-
ric parameterizations have also been devised, based on reg-
ular or hierarchical Eulerian grid discretizations [30, 20],
although they are mainly dedicated to single time occu-
pancy representation. Some approaches have taken these
representations a step further, by examining short term
motion characteristics of the shape using regular volume
grids [33, 17, 32], yet they do not retrieve long term mo-
tion information of the sequence, nor do they embed spe-



cific motion models in the volume.

Various methods attempt leveraging time consistency to
retrieve temporally coherent shape models, in the vast ma-
jority of cases manipulating a surface model. While in some
cases this process is purely data-driven, by aligning sur-
faces across frames using sparse matching and stereo re-
finement [29], in most cases a deformation prior is used
to drive the method toward the solution within a plausible
state space. In its weakest form and without further assump-
tions, pure spatio-temporal continuity of the observed sur-
face can be used [16]. At the other end of the spectrum a
full kinematic rigging of a template model can be assumed,
where the surface is expressed from kinematic parameters
using e.g. the linear blend skinning deformation frame-
work [23] popularized for 3D animation in the computer
graphics community. These parameters can then be esti-
mated for best fitting the model reprojections to image and
silhouette data [34, 3, 18, 21]. For tracking more general
subjects and situations, more generic surface deformation
frameworks have been explored to bypass the rigging stage
and allow for more general non-rigid motion components.
Central to these methods is the idea of enforcing a cohesive
behavior of the surface, such as locally rigid behavior [15],
Laplacian deformation [11, 10, 6], inextensibility [25], or
elasticity between piecewise-rigid surface patches [7, 6].

Among the existing surface capture methods, only a
handful use volumetric representations. Some methods
have proposed reparameterizing temporally aligned se-
quences using a volumetric cage embedding [26, 31] in-
spired from the animation community [27, 19]. However,
no volume deformation model strong enough to solve the
full tracking problem has yet emerged from these works.
Among the methods successfully using volume preserving
constraints, most use a Delaunay tetrahedrization of recon-
structed template surface points [11, 10, 6] to enforce as-
rigid-as-possible or Laplacian deformation constraints com-
mon to 3D animation techniques [1, 28]. It can be noted
that the proposed decomposition is not fully volumetric as
it only involves tesselating surfaces. In contrast, we propose
a fully volumetric treatment of the problem, using an intrin-
sically volumetric tesselation, deformation model and data
terms for rewarding volume alignment.

1.2. Approach Overview

We formulate the tracking problem as the MAP esti-
mation of multiple poses of a given geometric template
model, non-rigidly adjusted to a set of temporally incon-
sistent shape measurements. In multi-view camera systems,
these measurements typically take the form of time inde-
pendent 3D mesh reconstructions obtained from a visual
hull or multi-view stereo method, which is what we assume
here. To efficiently make use of volumetric information,
we need to express volume conservation and overlapping

constraints from the template to the observed shape vol-
umes. For representational and computational efficiency,
we thus need a proper discretization of the interior of the
shape. While uniformly located in the volume, regular
grids are inherently anisotropic and biased toward the axis
of the template basis. Furthermore, their intersection with
the object surface yields boundary voxels of irregular shape
(Fig. 1(a)). On the other hand, the Constrained Delaunay
tetrahedrization of the boundary vertices, previously used
in [11, 10, 6], yields a set of highly non-uniform tetrahe-
dra spanning the whole interior of the volume, whose car-
dinality is not controlled but imposed by the surface dis-
cretization (Fig. 1(b)). Taking instead the Voronoi diagram
of a uniform set of samples of the interior volume decorre-
lates the cardinality of the decomposition from the geome-
try, but still yields cells of irregular shape (Fig. 1(c)). Re-
jection sampling may statistically impose additional regu-
larity, but this would only come with asymptotic guaranties
attainable at high computational cost. We therefore pro-
pose to use CVT (Fig. 1(d)), informally a Voronoi tessela-
tion where the samples are iteratively repositioned to coin-
cide with the center of mass of their cell, which achieves
the desired properties [13]: isotropy, rotational invariance,
uniform cells of compact and regular form factor, regular
intersection of boundary cells and surface, independent car-
dinality and practical computation.

After introducing how to define and compute CVTs in
the context of our approach (§2), we show how this dis-
cretization can be used to define adequate volumetric de-
formation (§3) and observation (§4) models in the form of
Bayesian prior and likelihoods. The MAP estimation pro-
posed on this basis in §5 is evaluated in §6.

2. Centroidal Voronoi Tessellation (CVT)

Definitions. To tesselate the shape, we manipulate
Voronoi diagrams that are restricted, or clipped, to its inner
volume. More formally, let S be a set of 3D point sam-
ples of a volumetric domain {2, either the template to be
fitted or the observed shape for our purposes. The Clipped
Voronoi diagram of S in (2 is defined as the intersection of
the Voronoi diagram of S in R3 with the domain 2. Thus
the Voronoi cell €2, of a sample s is the set of points from
Q) that are closer to s than to any other sample:

O, ={xeQ[Vs'e S\{s} [x—x,]<lx—x,[}, (D

where cells {2 are mutually exclusive and define a partition
of Q:

Ua =2, @)
sES

where Q and Q denote topolgical set closures. If the border
0N of ) is a polyhedral surface, then each cell also has a
polyhedral border.
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Figure 1. Possible volumetric decompositions of the template and observed shapes. (top) 2D schematic view. (bottom) 3D decomposition
example. (a) Voxels on a regular grid. (b) A sliced Constrained Delaunay tetrahedrization showing the elongated inner tetrahedra generated.
(c) Voronoi cells with random centroids shown in red, center of mass of each cell in green. (d) Centroidal Voronoi tesselation cells, where

the center of mass and cell centroid coincide.

A Centroidal Voronoi tessellation is a clipped Voronoi
tessellation of €2 for which each sample s is the center of
mass of its (clipped) Voronoi cell 2. CVT cells are of reg-
ular size and shapes, and also define a regular connectivity
of the samples set, two samples being connected if and only
if their respective CVT cells share a face. This connectivity
thus encodes the shape volume and topology, a property we
will use in the following sections.

Computing a CVT. It has been proven [13] that local
minima of the energy

BES) =Y / | lx—xtPay 3)

seES

define CVTs on 2. Thus a CVT can be obtained by iter-
atively estimating the sample locations that minimize (3),
with a quasi-Newton method such as the L-BFGS algo-
rithm [22], for a sample population of desired size and uni-
form initial position.

3. Deformation Model
3.1. Principle

Once a regular, anisotropic volumetric decomposition of
the template shape is obtained, we can use it as a fundamen-
tal building block to build a volumetric deformation model
of the shape, which will constrain the estimation. Botsch et
al. [5] show that a non-linear elastic deformation energy can
be devised using small volumetric deformations, typically

voxels. While such a reasoning could be advantageously
transposed to the CVT discretization proposed, eliminating
the grid orientation bias, doing so comes at a high compu-
tational cost. Cagniart et al. [7] show that the complexity of
the deformation model is best decorrelated from the geom-
etry itself, in their case by using rigid surface patches in lieu
of the original surface vertices. Recent works have shown
a way to improve the quality and temporal stability using a
similar surface decomposition [2], by inferring a mean pose
and sequence rigidity behaviour.

We extend the latter ideas to the case of a complete vol-
umetric treatment of the deformation problem. In so do-
ing, we cluster together groups of CVT cells in rigid vol-
ume patches P, using a k-medoids algorithm. Note that
such patches can lie either on the surface or completely in-
side the template shape’s volume, which is of particular in-
terest to express non-rigid deformation of the model while
preserving the local volume and averting over-compression
or dilation. We associate to each patch a rigid transform
T}, € SE(3) at every time t. Each position x,; , of a
mesh vertex or inner sample is indiscriminately labeled as
a point ¢. Its position can be written as a transformed ver-
sion of its template position xg as follows, once the rigid
transform of its patch is applied:

Xp,q = Tp(xg). )

This makes it possible to define a pose of the shape as the
the set of patch transforms T = {T, } ,cx, which expresses
a given volumetric shape deformation.



3.2. Formulation

To prevent patch poses of the shape from being arbitrary,
we constrain the shape to be close to a sequence rest pose
T and to follow constant rigidity characteristics C over the
sequence. These rigid characteristics are defined for neigh-
boring patch pairs in the volume (P, ), as a binary val-
ued property c,,;, whose value in {0, 1} reflects wether the
relative motion between patches P, and P, is respectively
articulated or rigid. To define the rest pose T we rely on
the following measure [5, 2] of the relative deformation en-
ergy between two arbitrary poses T¢ and T7 of the template
shape, given a rigidity configuration C:

E(M,TIC) = > Eu(T, Tley), with (5)
(P,,,P)eN
E(T T |eg) = Br(a:c) | Ty (x9) =T, (x9)]%,
qGPkUPL
where T} , = Tzi_l o Ti is the relative transformation

between patches P, and P, for pose ¢, and N is the set of
neighboring patch pairs on the surface. The energy mea-
sures the rigid deviation from pose ¢ to j of every neighbor-
ing patch pair, as the sum over each of the samples s of the
pair, of the discrepancy in relative positions of the vertex as
displaced by P,. on one hand, and P, on the other. If the two
patches are rigidly linked (c;,; = 1), then the discrepancy of
all samples of the pair should be equally penalized, there-
fore Bri(s, 1) is chosen to be constant over all samples s of
the pair. On the other hand, if the patch pair is articulated
(ci; = 0), only samples that lie near the boundary between
the two patch volumes should be penalized for deviating rel-
ative positions: those samples materialize the locus of the
inter-patch articulation, whereas samples that aren’t close
the inter-patch boundary can move more freely. We express
this using Sx;(g,0) exp(—b’;’l#) where by (s) is the dis-
tance between the sample s and the boundary between P,
and P, on the template, D is the average patch diameter and
7 is a global coefficient controlling the flexibility.

3.3. Resulting Pose Likelihoods

The relative pose energy described in (5) makes it possi-
ble to express the expected behavior of the estimated models
as a prior and likelihood over the poses:

p(T) o exp(=€(T,1d)), ©)
p(T" | T,C) x exp (—E(T, T|C)). ™

p(T) is the prior over the rest pose, which should min-
imize the relative displacement energy to the default tem-
plate pose (transformed by identity Id). This terms ensures
minimal cohesion of the volume patches of the rest pose
model, as it enforces mutual patch elasticity.

p(T|T, C) is the likelihood of a given tracked pose at
time ¢, which should minimize the relative displacement en-
ergy with respect to the sequence rest pose T given a cur-
rent rigidity state C. This ensures the inter-patch cohesion
of pose T* as well as a general proximity to the rest pose,
which stabilizes the resulting pose estimates. In turn the rest
pose will be simultaneously estimated as the pose which
minimizes the relative deformation energy to all poses in
the sequence.

4. Observation Model
4.1. Probabilistic Shape Fitting

The observed shape Q' at time ¢ is described by the point
cloud Y* = {y!}oco,. To describe how a deformed tem-
plate can explain the observed shape, we propose a genera-
tive data term following EM-ICP, expressing how a given
deformed template point predicts the position of an ob-
served shape point 0. A set of cluster association variables
k¢ is therefore instantiated for every observed point in time,
indicating which cluster generates this point. For simplic-
ity, each observation o is associated to its cluster k! via the
best candidate q of cluster k. The best candidate is chosen
as the closest compatible sample in the cluster during itera-
tive resolution. We consider that each cluster P, generates
observations perturbed by a Gaussian noise with isotropic
variance o2

p(yl |5, Th,0) = Nyl | TL(x)),0).  (8)

Note that o indiscriminately refers to surface or volume
sample points of the observed shape, as the principles we
describe here apply to both, with the restriction that ob-
served surface points only associate to surface template
points, and volume samples are associated to volume sam-
ples of the template. As often proposed in ICP methods,
we additionally filter associations using a compatibility test,
described in the following sections. The compatibility test
is specific to the nature (surface or volume) of the observed
point and is detailed in the next paragraphs. If there is no
compatible candidate in the cluster, then we set conditional
probability density (8) to zero. We deal with outliers by
introducing an outlier class among values of k, which gen-
erate observations with a uniform probability density over
the scene.

4.2. Compatibility Tests

Compatibility tests are useful for pruning the association
graph for obvious mismatches that would perturb and oth-
erwise slow down convergence. We use two compatibilty
tests respectively designed for surface fitting and volumet-
ric fitting.



Surface Observations. While surface points may be
matched based on position only, obvious orientation incom-
patibilites can be filtered by detecting large discrepancies
between the normal of the deformed template candidate
point v, and the normal of surface observation vertex o:

il . Ry (1)) > cos(0,0y), )

where il is the surface normal of observation o, @i, is the
surface normal of the template at vertex v, R’,; is the rotation
component of T%, and 6, is an arbitrary threshold.

Volume Observations. We introduce a compatibility test
specific to volumetric fitting, by assuming that the distance
of inner surface points to the shape’s surface remains ap-
proximately constant under deformation. Let us define the
distance between an inner shape point z and the shape’s sur-
face by:

d(z,00) = prggglz d(z,p). (10)

In our observation model, this hypothesis can be lever-
aged by the following compatibility test: a volumetric ob-
servation o can be associated to a template point s only if

d(x?,00°) = d(y}, 090"). (11)

To account for small deviations to this assumption, which
might occur under e.g. slight compression or dilation of
the perceived shape, we relax the equality constraint up to
a precision €, where € accounts for the distance-to-surface
inconsistency caused by the discrete sampling of the tem-
plate. Using the triangular inequality, it can be shown that
this error is bounded by the maximum cell radius over the
set of the template’s CVT cells. This leads to the following
compatibility test:

d(yt, 00" — e < d(x%,00°) < d(y’, 009 +¢ (12)

For the particular case of silhouette-base observed
shapes, it can be noted that reconstruction algorithms based
on the visual hull inherently provides inflated estimates of
the true shape. This phenomenon results in an overestima-
tion of the distance to the surface when computed on the
reconstructed shape. Hence, we only impose a volumetric
inclusion constraint instead of complete depth correspon-
dance, i.e. we only keep the right inequality from expres-
sion (12) in this case:

d(x2,00%) < d(y!,00") + . (13)

Contrary to the surface compatibility test, this test does
not depend on pose parameters T, consequently it is robust
to convergence failures of inference algorithms.

5. Inference

The model proposed with (6), (7) and (8), defines a joint
likelihood over the rest pose, the rigidity configuration, all
temporal poses, the observed points and their selection vari-
ables, and prediction noise o:

p(T) I [p(TT,C) ] p(yh 1K, T6") |, (14)

teT 0€0,

It can be shown that this likelihood can be maximized using
an Expectation Maximization algorithm [2, 12, 4], yielding
maximum a posteriori estimates of the pose parameters T,
T and prediction noise o. This results in an algorithm iter-
ating between two steps.

Intuitively, The E-Step computes all observation clus-
ter assignment probabilities over K, based on the distance
to the predicted template positions under the currently esti-
mated poses. Compatibility rules are applied at this stage.
Probabilities over inter-cluster rigid links C are also esti-
mated based on the current deformation energy of the poses.
The M-Step updates the rest pose T, all poses T, and pre-
diction noise o, using the assignment and rigid link prob-
abilities to weigh individual observation contributions to
each cluster transform estimate.

6. Experiments
6.1. Datasets

We validate our framework using four synchronized and
calibrated multiple-camera datasets, labeled GOALKEEPER-
13, DANCER [2], MARKER [21], and the newly pro-
posed BALLET, whose content reflect a wide variety of
shape tracking situations. DANCER is a long sequence
(1362 frames, 2048 x 2048 resolution, 48 viewpoints)
showing slow and medium speed dance moves, and thus
offers good opportunity to verify the tracking stability.
GOALKEEPER-13 (2048 x 2048, 150 frames, 48 viewpoints)
illustrates a specific soccer goalie plunging move, of partic-
ular interest when the goalie is on the floor, where the re-
construction data is of poor quality due to grazing camera
angle and challenges the tracking performance. Both pre-
vious sequences otherwise have very high quality and de-
tailed reconstructions. BALLET is a more challenging full
HD (1920 x 1080) sequence we have acquired with fewer
cameras (9 viewpoints and 500 frames) and thus coarser re-
constructions, consisting in a number of ballet moves with
various levels of difficulty, including fast moves, spinning
and crossing legs. MARKER (1296 x 972, 500 frames,
12 viewpoints) is a sequence with two actors performing
karate moves, illustrating the robustness to several sub-
jects, and which was captured simultaneously with a set of
sparse markers offering a reference and comparison basis



method std. dev. (L)
MARKER | BALLET
Cagniart et al. 2010 [8] 3.85 1.22
Allain et al. 2014 [2] 4.32 1.20
our method 2.24 0.95

Table 1. Variation of the estimated volume over the sequence for
MARKER and BALLET datasets.

with [21]. The reconstructions are of coarser quality due
to relatively noisy inputs and occasional jumps where actor
heads get clipped.

6.2. Experimental Protocol

We first select a template among the better frames with
correct reconstruction topology, then compute a CVT us-
ing §2 with 5’000 samples per person (10’000 for the
two-person MARKER sequence) and 250 clusters per per-
son (500 for MARKER), as illustrated in Fig. 3. Each
shape reconstruction is obtained from a silhouette-based re-
construction algorithm [14] and CVTs are also extracted
(1 minute/frame). We then apply the algorithm described
using a sliding window strategy over a 10 frame window,
where the rest position is computed for each time slice
to locally stabilize the estimation. The sequences are ini-
tially solved for frames in the vicinity of the template pose,
then the solution is classically propagated to future win-
dows as initialization. Convergence has been achieved for
all frames, typically in a few hundred iterations, with a con-
vergence time per frame of the order of a minute to a few
minutes. The provided supplemental video' illustrates the
results obtained with these sequences.

6.3. Quantitive Analysis

Volume Stability. We verify here the assertion that the
volumetric parameterization of the tracking produces poses
with stable volumes. As we use silhouette based reconstruc-
tions, it is not relevant to compare the estimated volumes
with the observed shape volumes. Instead, we compute the
standard deviation to this volume, in Table 1 and provide a
comparison of these results with best runs of two state of
the art methods [8, 2]. This comparison supports the ini-
tial intuition of volumetric stability in the sequence, as the
standard deviation of the estimated volumes is significantly
lower for our method.

Silhouette reprojection error. We evaluate the silhou-
ette reprojection error as the symmetric pixel difference be-
tween the reprojected and the silhouette projection of the
reconstructions used as observed input shapes. We then ex-
press this value as a percentage of the area of the silhouette

Video available at https://hal.inria.fr/hal-01141207

method mean | stddev. | median | max

Cagniart et al. [8] 5.74 1.88 5.48 15.20
Allain et al. [2] 5.81 1.70 5.61 13.77
Ours, no vol. fitting | 4.62 1.94 4.28 17.20
Ours 4.56 1.21 4.43 11.00

Table 2. Mean and statistics of silhouette reprojection error over
BALLET dataset, expressed in percentage of silhouette area.

method mean | std. dev.
Cagniart et al. [8] 55.11 48.02
Allain et al. [2] 4322 | 29.58
Proposed, no surface fitting | 42.60 | 29.32
Proposed 38.41 | 26.70
Liu et al. [21] 29.61 | 25.50

Table 3. Mean marker error and std.dev. (mm), MARKER dataset.
Note that Liu et al. assume a rigged skeleton is associated to the
template, a stronger and more restrictive assumption.

region in each view. Table 2 shows favorable comparisons
to state of the art methods [8, 2]. In particular, the mean er-
ror and maximum error achieved by our method over the se-
quences is significantly lower, and exhibits lower variance.
Additionally we test the influence of the volumetric data
term by comparing the results with a run where it is dis-
abled (surface data-term only), all other parameters being
equal. Interestingly, the method still achieves better mean
error than state of the art, but with less stable behavior.

Marker reference error. We use the MARKER sequence
provided by Liu et al. [21] to sparsely compare the output
quality of our method against state of the art methods. This
comparison is illustrated in Table 3 and plotted against time
in the sequence in Fig. 2. Again we illustrate turning off the
surface data term, in which case the estimation is slightly
worse. The method proposed performs consistently better
than comparable surface-based state of the art. Note that
Liu et al. fully rig a skeleton to the template, which provides
slightly better mean results than ours thanks to the stronger
assumption. On the other hand, our method is generic and
can be applied to arbitrary objects.

6.4. Qualitative Assessment

To illustrate the benefits of the approach, in particular
where the improvements can be seen, we provide excerpts
of the datasets (see supplemental video for further exam-
ples). Fig. 4 shows the improvements of the method over
surface-based methods [8, 2] in poses of strong contortion,
such as an elbow or knee bending gesture. Because of their
use of the elastic energy on the surface, these methods tend
to dilute error compensation over a smooth and extended lo-
cation of the folds, yielding curvy elbow and knee shapes in
the tracking. A usual side effect here is the local decrease of
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Figure 2. Mean error for temporal evolution over MARKER
dataset.

the shape volume in the vicinity of the fold. In contrast, our
method being volumetrically constrained, it penalizes such
local volume changes and prefers to focus the bending en-
ergy on fewer volumetric patch articulations, yielding more
consistent and accurate pose estimates. The GOALKEEPER-
13 dataset illustrates the increased robustness in the pres-
ence of highly perturbed reconstructions thanks to the vol-
umetric constraints, where other methods yield random re-
sults. The reconstructed visual hull input is very ambiguous
on the shown frame because of the presence of concavities
and the strong topology mismatch creates errors for surface-
based methods.

7. Discussion

‘We have presented a novel volumetric approach to shape
tracking based on CVT volume decomposition. The ap-
proach leverages CVT desirable properties to build suitable
volumetric deformable constraints, while formulating a dis-
crete volume assignment scheme as data term through the
uniform cell centroid coverage of the volume. Currently, the
volumetric clustering proposed for volumes yields uniform
sizes over the entire template shape, which can be a limi-
tation for parts that are thinner than the cluster size, such
as arms. We will address this in future work with adaptive
cluster densities, ensuring the volumetric prior is equally
efficient regardless of thickness. Numerical analysis nev-
ertheless shows significant improvement over state of the
art tracking methods, both in terms of tracking error over
the surface and silhouette reprojection. The framework is
also shown to conform to initial intuition in being more sta-
ble in terms of the errors and volume measures of the fitted
template shapes. We believe the approach paves the way
for proper use of volumetric priors in any shape tracking
framework.
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Abstract. Estimating 3D human body shape in motion from a sequence
of unstructured oriented 3D point clouds is important for many applica-
tions. We propose the first automatic method to solve this problem that
works in the presence of loose clothing. The problem is formulated as an
optimization problem that solves for identity and posture parameters in
a shape space capturing likely body shape variations. The automation
is achieved by leveraging a recent robust pose detection method [1]. To
account for clothing, we take advantage of motion cues by encouraging
the estimated body shape to be inside the observations. The method is
evaluated on a new benchmark containing different subjects, motions,
and clothing styles that allows to quantitatively measure the accuracy
of body shape estimates. Furthermore, we compare our results to exist-
ing methods that require manual input and demonstrate that results of
similar visual quality can be obtained.

Keywords: human body modeling, shape and motion estimation, sta-
tistical shape space

1 Introduction

Estimating 3D human body shape in motion is important for applications rang-
ing from virtual change rooms to security. While it is currently possible to ef-
fectively track the surface of the clothing of dressed humans in motion [2] or to
accurately track body shape and posture of humans dressed in tight clothing [3],
it remains impossible to automatically estimate the 3D body shape in motion
for humans captured in loose clothing.

Given an input motion sequence of raw 3D meshes or oriented point clouds
(with unknown correspondence information) showing a dressed person, the goal
of this work is to estimate the body shape and motion of this person. Existing
techniques to solve this problem are either not designed to work in the presence of
loose clothing [4,5] or require manual initialization for the pose [6,7], which limits
their use in general scenarios. The reason is that wide clothing leads to strong
variations of the acquired surface that is challenging to handle automatically.
We propose an automatic framework that allows to estimate the human body
shape and motion that is robust to the presence of loose clothing.
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Existing methods that estimate human body shape based on an input motion
sequence of 3D meshes or oriented point clouds use a shape space that models
human body shape variations caused by different identities and postures as prior.
Such a prior allows to reduce the search space to likely body shapes and postures.
Prior works fall into two lines of work. On the one hand, there are human body
shape estimation methods specifically designed to work in the presence of loose
clothing [6,7]. These techniques take advantage of the fact that observations of
a dressed human in motion provides important cues about the underlying body
shape as different parts of the clothing are close to the body shape in different
frames. However, these methods require manually placed markers to initialize the
posture. On the other hand, there are human body shape estimation methods
designed to robustly and automatically compute the shape and posture estimate
over time [4,5]. However, these methods use strong priors of the true human
body shape to track the posture over time and to fit the shape to the input
point cloud, and may therefore fail in the presence of loose clothing.

In this work, we combine the advantages of these two lines of work by propos-
ing an automatic framework that is designed for body shape estimation under
loose clothing. Like previous works, our method restricts the shape estimate to
likely body shapes and postures, as defined by a shape space. We use a shape
space that models variations caused by different identities and variations caused
by different postures as linear factors [8]. This simple model allows for the de-
velopment of an efficient fitting approach. To develop an automatic method, we
employ a robust pose detection method that accounts for different identities [1]
and use the detected pose to guide our model fitting. To account for clothing,
we take advantage of motion cues by encouraging the estimated body shape to
be located inside the acquired observation at each frame. This constraint, which
is expressed as a simple energy that is optimized over all input frames jointly,
allows to account for clothing without the need to explicitly detect skin regions
on all frames as is the case for previous methods [7,9].

To the best of our knowledge, existing datasets in this research area do not
provide 3D sequences of both body shape as ground truth and dressed scans for
estimation. Therefore, visual quality is the only evaluation choice. To quantita-
tively evaluate our framework and allow for future comparisons, we propose the
first dataset consisting of synchronized acquisitions of dense unstructured geo-
metric motion data and sparse motion capture data of 6 subjects with 3 clothing
styles (tight, layered, wide) under 3 representative motions, where the capture
in tight clothing serves as ground truth body shape.

The main contributions of this work are the following.

— An automatic approach to estimate 3D human body shape in motion in the
presence of loose clothing.

— A new benchmark consisting of 6 subjects captured in 3 motions and 3
clothing styles each that allows to quantitatively compare human body shape
estimates.
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2 Related work

Many works estimate human posture without aiming to estimate body shape, or
track a known body shape over time. As our goal is to simultaneously estimate
body shape and motion automatically and in the presence of loose clothing, we
will focus our discussion on this scenario.

Statistical shape spaces. To model human body shape variations caused by
different identities, postures, and motions, statistical shape spaces are commonly
used. These shape spaces represent a single frame of a motion sequence using a
low-dimensional parameter space that typically models shape variations caused
by different identities and caused by different postures using separate sets of
parameters. Such shape spaces can be used as prior when the goal is to predict
a likely body shape under loose clothing.

Anguelov et al. [10] proposed a statistical shape space called SCAPE that
combines an identity model computed by performing principal component anal-
ysis (PCA) on a population of 3D models in standard posture with a posture
model computed by analyzing near-rigid body parts corresponding to bones. This
model performs statistics on triangle transformations, which allows to model
non-rigid deformations caused by posture changes. Achieving this accuracy re-
quires solving an optimization problem to reconstruct a 3D mesh from its repre-
sentation in shape space. To improve the accuracy of the SCAPE space, Chen et
al. [11] propose to combine the SCAPE model with localized multilinear models
for each body part. To model the correlation of the shape changes caused by iden-
tity and posture changes, Hasler et al. [12] perform PCA on a rotation-invariant
encoding of the model’s triangles. These models may be used as priors when
estimating human body shape in motion, but none of them allow to efficiently
reconstruct a 3D human model from the shape space.

To speed up the reconstruction time from the SCAPE representation, Jain et
al. [13] propose a simplified SCAPE model, denoted by S-SCAPE in the follow-
ing, that computes the body shape by performing PCA on the vertex coordinates
of a training set in standard posture and combines this with a linear blend skin-
ning (LBS) to model posture changes. Any posture variations present in the
training data cause posture variation to be modeled in identity space, which is
known to cause counter-intuitive deformations [8]. To remedy this, recently pro-
posed shape spaces start by normalizing the posture of the training data before
performing statistics and model shape changes caused by different factors such
as identity and posture as multilinear factors [14,8,15]. We use the normalized
S-SCAPE model [8] in this work; however, any of these shape spaces could be
used within our framework.

Recently, Pons-Moll et al. [16] proposed a statistical model that captures
fine-scale dynamic shape variation of the naked body shape. We do not model
dynamic geometry in this work, as detailed shape changes are typically not
observable under loose clothing.
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Estimation of static body shape under clothing. To estimate human body
shape based on a static acquisition in loose clothing and in arbitrary posture,
the following two approaches have been proposed. Balan et al. [9] use a SCAPE
model to estimate the body shape under clothing based on a set of calibrated
multi-view images. This work is evaluated on a static dataset of different subjects
captured in different postures and clothing styles. Our evaluation on 3D motion
sequences of different subjects captured in different motions and clothing styles
is inspired by this work. Hasler et al. [17] use a rotation-invariant encoding
to estimate the body shape under clothing based on a 3D input scan. While
this method leads to accurate results, it cannot easily be extended to motion
sequences, as identity and posture parameters are not separated in this encoding.

Both of these methods require manual input for posture initialization. In this
work, we propose an automatic method to estimate body shape in motion.

Estimation of body shape in motion. The static techniques have been
extended to motion sequences with the help of shape spaces that separate shape
changes caused by identity and posture. Several methods have been proposed
to fit a SCAPE or S-SCAPE model to Kinect data by fixing the parameters
controlling identity over the sequence [4,5]. These methods are not designed to
work with clothing, and it is assumed that only tight clothing is present.

Two more recent methods are designed to account for the presence of cloth-
ing. The key idea of these methods is to take advantage of temporal motion cues
to obtain a better identity estimate than would be possible based on a single
frame. Our method also takes advantage of motion cues.

Wuhrer et al. [6] use a shape space that learns local information around
each vertex to estimate human body shape for a 3D motion sequence. The final
identity estimate is obtained by averaging the identity estimates over all frames.
While this shape space leads to results of high quality, the fitting is computation-
ally expensive, as the reconstruction of a 3D model from shape space requires
solving an optimization problem. Our method uses a simpler shape space while
preserving a similar level of accuracy by using an S-SCAPE model that pre-
normalizes the training shapes with the help of localized information.

Neophytou and Hilton [7] propose a faster method based on a shape space
that models identity and posture as linear factors and learns shape variations
on a posture-normalized training database. To constrain the estimate to reliable
regions, the method detects areas that are close to the body surface. In contrast,
our method constrains the estimate to be located inside the observed clothing
at every input frame, which results in an optimization problem that does not
require a detection.

Both of these methods require manual input for posture initialization on the
first frame. Additionally, a temporal alignment is required by Neophytou and
Hilton. Computing temporal alignments is a difficult problem, and manual an-
notation is tedious when considering larger sets of motion sequences. In contrast,
our method is fully automatic and addresses both aspects.
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3 S-SCAPE model

In this work, we use the S-SCAPE model as prior for human body shape changes
caused by different identities and postures. While we choose this shape space,
any shape space that models identity and posture as multilinear factors could
be used [14,15]. Although such a simple shape space does not accurately model
correlated shape changes, such as muscle bulging, it allows to effectively separate
the different variations and can be fitted efficiently to input scans.

This section briefly reviews the S-SCAPE model introduced by Jain et al. [13]
that allows to separate the influence of parameters controlling identity and pa-
rameters controlling posture of a human body shape. In the following, we denote
by B and @ the parameter vectors that influence shape changes caused by iden-
tity and posture changes, respectively. In this work, we use the publicly available
posture-normalized S-SCAPE model [8], where each training shape was normal-
ized with the help of localized coordinates [18].

In the following, let N, denote the number of vertices on the S-SCAPE
model, let s (3,0) € R3Mv denote the vector containing the vertex coordinates
of identity 3 in posture @, and let 3 (3,©) € R*V+ denote the vector containing
the corresponding homogeneous vertex coordinates. For the fixed posture @,
that was used to train the identity space, S-SCAPE models the shape change
caused by identity using a PCA model as

where 1 € R*Vv contains the homogeneous coordinates of the mean body shape,

A € R*VoXdia ig the matrix found by PCA, and d,, is the dimensionality of the
identity shape space. For a fixed identity 3,, S-SCAPE models the shape change
caused by posture using LBS as

s;(B8y, @) = ZwijTj (©)35,(8¢:0,), (2)

where s, and s; denote the standard and homogenous coordinate vector of the
i-th vertex of s, N, denotes the number of bones used for LBS, T'; (@) € R3*4
denotes the transformation matrix applied to the j-th bone, and w;; denotes the
rigging weight binding the i-th vertex to the j-th bone.

Combining Eq. 1 and 2 in matrix notation leads to

5(8,0) =T (©)AB+T (O)p, (3)

where T (@) € R3No*4Ny ig a sparse matrix containing the per-vertex transfor-
mations. Using this notation, it is easy to see that S-SCAPE is linear in both 3
and T (@), which allows for a simple optimization w.r.t. 3 and ©.

4 Estimating model parameters for a motion sequence

We start by providing an overview of the proposed method. Fig. 1 shows the
different parts of the algorithm visually. Given as input a trained S-SCAPE
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Fig. 1. Overview of the proposed pipeline. From left to right: input frame, result of
Stitched Puppet [1] with annotated landmarks, result after estimation of initial identity
and posture, final result, and overlay of input and final result.

model and a motion sequence consisting of IV, frames F'; represented by triangle
meshes with unknown correspondence, we aim to compute a single parameter
vector (3 controlling the shape of the identity (as the identity of the person
is fixed during motion) along with N 7 parameter vectors @, controlling the
postures in each frame, such that s, (3,0,) is close to F',.

To fit the S-SCAPE model to a single frame F', we aim to minimize

E(Faﬁ7@):wlndElnd(F”6’@>+wdataEdata(F76’@)+wclothEcloth(F’IB’@) (4)

w.r.t. B8 and @ subject to constraints that keep B in the learned probability
distribution of parameter values. Here, w;,,;, Wy4tq: a0d W, are weights that
trade off the influence of the different energy terms. The energy E,,,, measures
the distance between a sparse set of provided landmarks, which correspond to
distinctive positions on the human body, to their corresponding locations on
s (3, 0). The provided landmarks are computed automatically in the following.
The energy E,_,, measures the distance between s (3, ®) and F using a nearest
neighbor cost. The energy E, ,; is designed to account for loose clothing by

encouraging s (3, @) to be located inside the observation F'.
For a motion sequence of N, frames, our goal is then to minimize

E(Flsz’ﬁ’elsz):Zi\rzflE(Fi"B’@i) (5)

w.r.t. 8 and @, N, subject to constraints that keep 3 in the learned probability
distribution of parameter values. Here, F'. N, = {F,,...,F Nf} is the set of
frames and @/, N, = {©,,...,6 Nf} is the set of posture parameters. The energy

E .1, allows to take advantage of motion cues in this formulation as it encourages
the body shape to lie inside all observed frames.

In the following sections, we detail the prior that is used to constrain 3 as
well as the different energy terms. Optimizing Eq. 5 w.r.t. all parameters jointly
results in a high-dimensional optimization problem that is inefficient to solve
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and prone to get stuck in undesirable local minima. After introducing all energy
terms, we discuss how this problem can be divided into smaller problems that
can be solved in order, thereby allowing to find a good minimum in practice.

4.1 Prior model for 3

A prior model is used to ensure that the body shape stays within the learned
shape space that represents plausible human shapes. The identity shape space is
learned using PCA, and has zero mean and standard deviation o, along the i-th
principal component. Similarly to previous work [9], we do not penalize values
of B that stay within 30, of the mean to avoid introducing a bias towards the
mean shape. However, rather than penalizing a larger distance from the mean,
we constrain the solution to lie inside the hyperbox £3¢, using a constrained
optimization framework. This constraint can be handled by standard constrained
optimizers since the hyperbox is axis-aligned, and using this hard constraint
removes the need to appropriately weigh a prior energy w.r.t. other energy terms.

4.2 Landmark energy

The landmark energy helps to guide the solution towards the desired local mini-
mum with the help of distinctive anatomical landmarks. This energy is especially
important during the early stages of the optimization as it allows to find a good
initialization for the identity and posture parameters. In the following, we con-
sider the use of N, ; landmarks and assume without loss of generality that the
vertices corresponding to landmarks are the first N, , vertices of s. The land-
mark term is defined as

Nlnd

Epq(F.8,0) =Y |ls,(8,0)—1,(F)|", (6)

1=1

where [, (F') denotes the i-th landmark of frame F', s, (3, @) denotes the vertex
corresponding to the i-th landmark of s (3, @), and ||-|| denotes the ¢? norm.
The landmarks I, (F') are computed automatically with the help of the state
of the art Stitched Puppet [1], which allows to robustly fit a human body model
to a single scan using a particle-based optimization. Specifically, we once manu-
ally select a set of vertex indices to be used as landmarks on the Stitched Puppet
model, which is then fixed for all experiments. To fit the Stitched Puppet to a
single frame, randomly distributed particles are used to avoid getting stuck in
undesirable local minima. We fit the Stitched Puppet model to frame F', and re-
port the 3D positions of the pre-selected indices after fitting as landmarks I, (F').
While the Stitched Puppet aims to fit the body shape and posture of F', only the
coordinates I (F') are used by our framework. Note that our method does not
require accurate I, (F"), since I,(F') are only used to initialize the optimization.
Using many particles on each frame of a motion sequence is inefficient. Fur-
thermore, since the Stitched Puppet is trained on a database of minimally
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dressed subjects, using many particles to fit to a frame in wide clothing may
lead to overfitting problems. This is illustrated in Fig. 2. To remedy this, we
choose to use a relatively small number of particles which is set to 30. Starting
at the second frame, we initialize the particle optimization to the result of the
previous frame to guide the optimization towards the desired optimum.

Fig. 2. Left: overfitting problem of Stitched Puppet in the presence of clothing. Input
frame, Stitched Puppet result with 160 particles, and Stitched Puppet result with
30 particles are shown in order. Right: the failure case from our database caused by
mismatching of Stitched Puppet.

4.3 Data energy

The data energy pulls the S-SCAPE model towards the observation F' using a
nearest neighbor term. This energy, which unlike the landmark energy considers
all vertices of s, is crucial to fit the identity and posture of s to the input F' as

N,

v

Euara (F.8,0) =) dnnlls; (8,0)— NN (s, (3,0),F)|°, (7

1=1

where N, denotes the number of vertices of s and NN (s, (3,0),F) denotes
the nearest neighbour of vertex s, (8,©) on F. To remove the influence of
outliers and reduce the possibility of nearest neighbour mismatching, we use a
binary weight 0 5, that is set to one if the distance between s; and its nearest
neighbor on F' is below 200mm and the angle between their outer normal vectors
is below 60°, and to zero otherwise.

4.4 Clothing energy

The clothing energy is designed to encourage the predicted body shape s to be
located entirely inside the observation F'. This energy is particularly important
when considering motion sequences acquired with loose clothing. In such cases,
merely using F,, ;, and E, , . leads to results that overestimate the circumferences
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of the body shape because 3 is estimated to fit to F' rather than to fit inside of
F', see Fig. 3. To remedy this, we define the clothing energy as

),

where 0, is used to identify vertices of s located outside of F'. This is achieved
by setting § _,,, to one if the angle between the outer normal of NN (s, (3,0), F)
and the vector s, (3,0) — NN (s,(3,0),F) is below 90°, and to zero other-
wise. Furthermore, w, is a weight used for the regularization term, and 3 is an
initialization of the identity parameters used to constrain 3.

When observing a human body dressed in loose clothing in motion, different
frames can provide valuable cues about the true body shape. The energy E .,
is designed to exploit motion cues when optimizing E, ,;, w.r.t. all available
observations F',. This allows to account for clothing using a simple optimization
without the need to find skin and non-skin regions as in previous work [9,19,7].

Eoion (F.8,0)=1" 6.5 nn||5:(8.0)~NN(s,(8,0),F)||*+w,||8-8,|

The regularization |3 — ,80H2 used in Eq. 8 is required to avoid excessive thin-
ning of limbs due to small misalignments in posture.

Fig. 3 shows the influence of E ,; on the result of a walking sequence in
layered clothing. The left side shows overlays of the input and the result for
Weoen = 0and w,, ., = 1. Note that while circumferences are overestimated when
W0, = 0, @ body shape located inside the input frame is found for w_,,, = 1.
The comparison to the ground truth body shape computed as discussed in Sec. 6
is visualized in the middle and the right of Fig. 3, and shows that E__,, leads
to a significant improvement of the accuracy of 3.
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Fig. 3. Influence of E . ,;, on walking sequence. Left: input data overlayed with result
with w0, = 0 (left) and wjp, = 1 (right). Middle: cumulative per-vertex error of
estimated body shape with w,;,;;, = 0 and w_;,;;, = 1. Right: color-coded per-vertex
error with wg;,., = 0 (left) and w o, = 1 (right).
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4.5 Optimization schedule

Minimizing E (Fl:NfHB? @1:Nf) defined in Eq. 5 over all Ny frames w.r.t. B
and @, jointly is not feasible when considering motion sequences containing
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hundreds of frames as this is a high-dimensional optimization problem. To solve
this problem without getting stuck in undesirable local minima, we optimize
three smaller problems in order.

Initial identity estimation. We start by computing an initial estimate 3,
based on the first NV, frames of the sequence by optimizing E <F1: N, 3,0, Nk)

w.r.t. 8 and @,. For increased efficiency, we start by computing optimal 3,
and @, for each frame using Eq. 4 by alternating the optimization of @, for
fixed B, with the optimization of 8, for fixed @,. This is repeated for N
iterations. Temporal consistency is achieved by initializing @, , as @, and 8, ,
as (3, starting at the second frame. As it suffices for the identity parameters to
roughly estimate the true body shape at this stage, we set w_,;, = 0. In the
first iterations, F, ,; is essential to guide the fitting towards the correct local
optimum, while in later iterations E, ,, gains in importance. We therefore set
Wygta = 1 —w;,q and initialize w,, ; to one. We linearly reduce w,,, ; to zero in the
last two iterations. We then initialize the posture parameters to the computed
©,, and the identity parameters to the mean of the computed 3, and iteratively

minimize F (Flsz , 3, @llNk> w.T.t. @lsz and 3. This leads to stable estimates
for @, N, and an initial estimate of the identity parameter, which we denote by
B, in the following.

Posture estimation. During the next stage of our framework, we compute the
posture parameters & N +LN, for all remaining frames by sequentially minimiz-

ing Eq. 4 w.r.t. ©,. As before, ©,_, is initialized to the result of @;. As the
identity parameters are not accurate at this stage, we set w, ., = 0. For each
frame, the energy is optimized NN,, times while reducing the influence of w;,,; in
each iteration, using the same weight schedule as before. This results in posture
parameters @ for each frame.

Identity refinement. In a final step, we refine the identity parameters to be
located inside all observed frames F';, N, To this end, we initialize the identity

parameters to 3, fix all posture parameters to the computed @, and minimize
E (F1; N, 3,0, Nf) w.r.t. 3. As the landmarks and observations are already

fitted adequately, we set w;,,; = w,,;, = 0 at this stage of the optimization.

5 Implementation details

The S-SCAPE model used in this work consists of N, = 6449 vertices, and uses
d;q = 100 parameters to control identity and d,,,;, = 30 parameters to control
posture by rotating the N, = 15 bones. The bones, posture parameters, and
rigging weights are set as in the published model [8].
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For the Stitched Puppet, we use 60 particles for the first frame, and 30
particles for subsequent frames. We use a total of N, , = 14 landmarks that
have been shown sufficient for the initialization of posture fitting [6], and are
located at forehead, shoulders, elbows, wrists, knees, toes, heels, and abdomen.
Fig. 1 shows the chosen landmarks on the Stitched Puppet model. During the
optimization, we set N;;, = 6 and N, = 25 . The optimization w.r.t. 3 uses
analytic gradients, and we use Matlab L-BFGS-B to optimize the energy. The
setting of the regularization weight w, depends on the clothing style. The looser
the clothing, the smaller w,., as this allows for more corrections of the identity
parameters. In our experiments, we use w, = 1 for all the sequences with layered
and wide clothing in our dataset.

6 Evaluation

6.1 Dataset

This section introduces the new dataset we acquired to allow quantitative evalu-
ation of human body shape estimation from dynamic data. The dataset consists
of synchronized acquisitions of dense unstructured geometric motion data and
sparse motion capture (MoCap) data of 6 subjects (3 female and 3 male) cap-
tured in 3 different motions and 3 clothing styles each. The geometric motion
data are sequences of meshes obtained by applying a visual hull reconstruction
to a 68-color-camera (4M pixels) system at 30FPS. The basic motions that were
captured are walk, rotating the body, and pulling the knees up. The captured
clothing styles are very tight, layered (long-sleeved layered clothing on upper
body), and wide (wide pants for men and dress for women). The body shapes of
6 subjects vary significantly. Fig. 4 shows some frames of the database.

To evaluate algorithms using this dataset, we can compare the body shapes
estimated under loose clothing with the tight clothing baseline. The comparison
is done per vertex on the two body shapes under the same normalized posture.
Cumulative plots are used to show the results.

3 RRE

Fig. 4. Six representative examples of frames of our motion database. From left to
right, a female and male subject is shown for tight, layered, and wide clothing each.
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6.2 Evaluation of posture and shape fitting

We applied our method to all sequences in the database. For one sequence of
a female subject captured while rotating the body in wide clothing, Stitched
Puppet fails to find the correct posture, which leads to a failure case of our
method (see Fig. 2). We exclude this sequence from the following evaluation.

100 <60
2 E 50
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o y
2 60 "c% ~ 40 MWW \ﬂj\.“//\/\\,/
g ~ & 30 :xWW»
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Fig. 5. Accuracy of posture estimation over the walking sequences in tight clothing.
Left: cumulative landmark errors. Right: average landmark error for each sequence.

To evaluate the accuracy of the posture parameters &, we compare the 3D
locations of a sparse set of landmarks captured using a MoCap system with the
corresponding model vertices of our estimate. This evaluation is performed in
very tight clothing, as no accurate MoCap markers are available for the remain-
ing clothing styles. Fig. 5 summarizes the per-marker errors over the walking
sequences of all subjects. The results show that most of the estimated land-
marks are within 35mm of the ground truth and that our method does not
suffer from drift for long sequences. As the markers on the Stitched Puppet and
the MoCap markers were placed by non-experts, the landmark placement is not
fully repeatable, and errors of up to 35mm are considered fairly accurate.
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Fig. 6. Summary of shape accuracy computed over the frames of all motion sequences
of all subjects captured in layered and wide clothing. Left: cumulative plots showing
the per-vertex error. Right: mean per-vertex error color-coded from blue to red.

To evaluate the accuracy of the identity parameters 3, we use for each subject
the walking sequence captured in very tight clothing to establish a ground truth
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identity 3, by applying our shape estimation method. Applying our method to
sequences in looser clothing styles of the same subject leads identity parameters
B, whose accuracy can be evaluated by comparing the 3D geometry of s (3, © )
and s (3,0 ,) for a standard posture @ .

Fig. 6 summarizes the per-vertex errors over all motion sequences captured in
layered and wide clothing, respectively. The left side shows the cumulative errors,
and the right side shows the color-coded mean per-vertex error. The color coding
is visualized on the mean identity of the training data. The result shows that
our method is robust to loose clothing with more than 50% of all the vertices
having less than 10mm error for both layered and wide clothing. The right side
shows that as expected, larger errors occur in areas where the shape variability
across different identities is high.

Layered clothing

Wide clothing

Knees up Rotate body Walk

Fig. 7. Overlay of input data and our result.

Fig. 7 shows some qualitative results for all three types of motions and two
clothing styles. Note that accurate body shape estimates are obtained for all
frames. Consider the frame that shows a female subject performing a rotating
motion in layered clothing. Computing a posture or shape estimate based on
this frame is extremely challenging as the geometry of the layered cloth locally
resembles the geometry of an arm, and as large portions of the body shape are
occluded. Our method successfully leverages temporal consistency and motion
cues to find reliable posture and body shape estimates.



14 Yang et al.

6.3 Comparative evaluation

As we do not have results on motion sequences with ground truth for existing
methods, this section presents visual comparisons, shown in Fig. 8. We compare
to Wuhrer et al. [6] on the dancer sequence [20] presented in their work. Note
that unlike the results of Wuhrer et al., our shape estimate does not suffer from
unrealistic bending at the legs even in the presence of wide clothing. Furthermore,
we compare to Neophytou and Hilton [7] on the swing sequence [21] presented in
their work. Note that we obtain results of similar visual quality without the need
for manual initializations and pre-aligned motion sequences. In summary, we
present the first fully automatic method for body shape and motion estimation,
and show that this method achieves state of the art results.

Comparison to Comparison to
Wuhrer et al. [6] Neophytou and Hilton [7]

y

Fig. 8. Per comparison from left to right: input, result of prior works, our result.

7 Conclusion

We presented an approach to automatically estimate the human body shape
under motion based on a 3D input sequence showing a dressed person in possibly
loose clothing. The accuracy of our method was evaluated on a newly developed
benchmark! containing 6 different subjects performing 3 motions in 3 different
styles each. We have shown that, although being fully automatic, our posture
and shape estimation achieves state of the art performance. In the future, the
body shape and motion estimated by our algorithm have the potential to aid in
a variety of tasks including virtual change rooms and security applications.
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Abstract. We address the problem of building efficient appearance rep-
resentations of shapes observed from multiple viewpoints and in sev-
eral movements. Multi-view systems now allow the acquisition of spatio-
temporal models of such moving objects. While efficient geometric rep-
resentations for these models have been widely studied, appearance in-
formation, as provided by the observed images, is mainly considered on
a per frame basis, and no global strategy yet addresses the case where
several temporal sequences of a shape are available. We propose a per
subject representation that builds on PCA to identify the underlying
manifold structure of the appearance information relative to a shape.
The resulting eigen representation encodes shape appearance variabili-
ties due to viewpoint and motion, with Eigen textures, and due to local
inaccuracies in the geometric model, with Eigen warps. In addition to
providing compact representations, such decompositions also allow for
appearance interpolation and appearance completion. We evaluate their
performances over different characters and with respect to their ability
to reproduce compelling appearances in a compact way.

1 Introduction

The last decade has seen the emergence of 3D dynamic shape models of mov-
ing objects, in particular humans, acquired from multiple videos. These spatio-
temporal models comprise geometric and appearance information extracted from
images, and they allow for subject motions to be recorded and reused. This is
of interest for applications that require real 3D contents for analysis, free view-
point and animation purposes and also for interactive experiences made possible
with new virtual reality devices. This ability to now record datasets of subject
motions bolsters the need for shape and appearance representations that make
optimal use of the massive amount of image information usually produced. While
dynamic shape representations have been extensively studied, from temporally
coherent representations over a single sequence, to shape spaces that can encode
both pose and subject variabilities over multiple sequences and multiple sub-
jects, appearance representations have received less attention in this context. In
this paper, we investigate this issue.

Currently, appearance information is still most often estimated and stored
once per frame, e.g. a texture map associated to a 3D model [1], and the leap to
an efficient temporal appearance representation is still a largely open problem.
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This is despite the obvious redundancy with which the appearance of subjects
is observed, across temporal frames, different viewpoints of the same scene, and
often several sequences of the same subject performing different actions or mo-
tions. At the opposite of the spectrum, and given registered geometries, one can
store only one texture for a sequence or even for a subject in several sequences,
hence dramatically reducing sizes, but in so doing would drop the ability to
represent, desirable appearance variations, such as change in lighting or personal
expression of the subject.

In this paper, we advance this aspect by providing a view-independent ap-
pearance representation and estimation algorithm, to encode the appearance
variability of a dynamic subject, observed over one or several temporal sequences.
Compactly representing image data from all frames and viewpoints of the sub-
ject can be seen as a non-linear dimensionality reduction problem in image space,
where the main non-linearities are due to the underlying scene geometry. Our
strategy is to remove these non-linearities with state-of-the-art geometric and
image-space alignment techniques, so as to reduce the problem to a single tex-
ture space, where the remaining image variabilities can be straightforwardly
identified with PCA and thus encoded as Eigen texture combinations. To this
goal, we identify two geometric alignment steps. First, we coarsely register geo-
metric shape models of all time frames to a single shape template, for which we
pre-computed a single reference surface-to-texture unwrapping. Second, to cope
with remaining fine-scale misalignments due to registration errors, we estimate
realignment warps in the texture domain. Because they encode low-magnitude,
residual geometric variations, they are also advantageously decomposed using
PCA, yielding Eigen warps. The full appearance information of all subject se-
quences can then be compactly stored as linear combinations of Eigen textures
and Eigen warps. Our strategy can be seen as a generalization of the popular
work of Nishino et. al. [2], which introduces Eigen textures to encode appearance
variations of a static object under varying viewing conditions, to the case of fully
dynamic subjects with several viewpoints and motions.

The pipeline is shown to yield effective estimation performance. In addition,
the learned texture and warp manifolds allow for efficient generalizations, such
as texture interpolations to generate new unobserved content from blended in-
put sequences, or completions to cope with missing observations due to e.g.
occlusions. To summarize our main contribution is to propose and evaluate a
new appearance model that specifically addresses dynamic scene modeling by
accounting for both appearance changes and local geometric inaccuracies.

2 Related work

Obtaining appearance of 3D models from images was first tackled from static
images for inanimate objects, e.g. [3,2], a case largely explored since e.g. [4, 5].
The task also gained interest for the case of subjects in motion, e.g. for human
faces [6]. With the advent of full body capture and 3D interaction systems [7,
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Fig.1: Overview: Time consistent shape modeling provides datasets of appear-
ance maps. Our proposed method exploits the manifold structure of these ap-
pearance information through PCA decomposition to generate the Eigen ap-
pearance maps relative to a shape.

1] the task of recovering appearance has become a key issue, as the appearance
vastly enhances the quality of restitution of acquired 3D models.

A central aspect of the problem is how to represent appearance, while achiev-
ing a proper trade-off between storage size and quality. 3D capture traditionally
generates full 3D reconstructions, albeit of inconsistent topology across time.
In this context the natural solution is to build a representation per time frame
which uses or maps to that instant’s 3D model. Such per instant representations
come in two main forms. View-dependent texturing stores and resamples from
each initial video frame [8], eventually with additional alignments to avoid ghost-
ing effects [9]. This strategy creates high quality restitutions managing visibility
issues on the fly, but is memory costly as it requires storing all images from all
viewpoints. On the other hand, one can compute a single appearance texture
map from the input views in an offline process [1], reducing storage but poten-
tially introducing sampling artifacts. These involve evaluating camera visibility
and surface viewing angles to patch and blend the view contributions in a single
common mapping space. To overcome the resolution and sampling limitations,
3D superresolution techniques have been devised that leverage the viewpoint
multiplicity to build such maps with enhanced density and quality [10-12].

In recent years, a leap has been made in the representation of 3D surfaces
captured, as they can now be estimated as a deformed surface of time-coherent
topology [13,14]. This in turns allows any surface unwrapping and mapping to
be consistently propagated in time, however in practice existing methods have
only started leveraging this aspect. Tsiminaki et. al. [11] examines small tempo-
ral segments for single texture resolution enhancement. Volino et. al. [15] uses a
view-based multi-layer texture map representation to favour view-dependant dy-
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namic appearance, using some adjacent neighbouring frames. Collet et. al. [1] use
tracked surfaces over small segments to improve compression rates of mesh and
texture sequences. Methods are intrinsically limited in considering longer seg-
ments because significant temporal variability then appears due to light change
and movement. While global geometry consistency has been studied [16-18],
most such works were primarily aimed at animation synthesis using mesh data,
and do not propose a global appearance model for sequences. In contrast, we
propose an analysis and representation spanning full sequences and multiples
sequences of a subject.

For this purpose, we build an Eigen texture and appearance representation
that extends concepts initially explored for faces and static objects [19, 6, 20, 2].
Eigenfaces [19] were initially used to represent the face variability of a population
for recognition purposes. The concept was broadened to built a 3D generative
model of human faces both in the geometry and texture domains, using the
fact that the appearance and geometry of faces are well suited to learning their
variability as linear subspaces [6]. Cootes et. al. [20] perform the linear PCA
analysis of appearance and geometry landmarks jointly in their active appear-
ance model. Nishino et. al. [2] instead use such linear subspaces to encode the
appearance variability of static objects under light and viewpoint changes at
the polygon level. We use linear subspaces for full body appearance and over
multiple sequences. Because the linear assumption doesn’t hold for whole body
pose variation, we use state of the art tracking techniques [21] to remove the
non-linear pose component by aligning a single subject-specific template to all
the subject’s sequence. This in turn allows to model the appearance in a sin-
gle mapping space associated to the subject template, where small geometric
variations and appearances changes can then be linearly modeled.

3 Method

To eliminate the main geometric non-linearity, we first align sequence geome-
tries to a single template shape and extract the texture maps of a subject over
different motion sequences in a common texture space using a state-of-the-art
method [11]. Other per-frame texture extractions may be considered. From these
subject specific textures, Eigen textures and Eigen warps that span the appear-
ance space are estimated. The main steps of the method below are depicted in
Figure 2 and detailed in the following sections.

1. Texture deformation fields that map input textures to, and from, their
aligned versions are estimated using optical flows. Given the deformation
fields, Poisson reconstruction is used to warp textures.

2. PCA is applied to the aligned maps and to the texture warps to generate the
Eigen textures and the Figen warps that encode the appearance variations
due to, respectively, viewpoint, illumination, and geometric inaccuracies in
the reference model.
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Fig.2: Method pipeline from input textures (left) to eigen maps (right).

Hence, The main modes of variation of aligned textures and deformation
fields, namely Eigen textures and Eigen warps respectively, span the appearance
space in our representation. The main steps of this method are depicted in Figure
2 and detailed in the following sections.

Note that due to texture space discretization, the warps between textures
are not one-to-one and, in practice, two separate sets of warps are estimated.
Forward warps map the original texture maps to the reference map. Backward
warps map the aligned texture maps back to the corresponding input textures
(see Figure 2).

3.1 Aligning texture maps

Appearance variations that are due to viewpoint and illumination changes are
captured through PCA under linearity assumption for these variations. To this
purpose, textures are first aligned in order to reduce geometric errors resulting
from calibration, reconstruction and tracking imprecisions. Such alignment is
performed using optical flow, as described below, and with respect to a reference
map taken from the input textures. An exhaustive search of the best reference
map with the least total alignment error over all input textures is prohibitive
since it requires N? alignments given N input textures. We follow instead a
medoid shift strategy over the alignment errors.

The alignment algorithm (see Algorithm 1) first initializes the reference map
as one texture from the input set. All texture maps are then aligned to this
reference map, and the alignment error is computed as the cumulative sum of
squared pixel differences between the reference and the aligned texture maps.
The medoid over the aligned texture maps, with respect to alignment error, then
identifies the new reference map. These two steps, alignment and medoid shift,
are iterated until the total alignment error stops decreasing.
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Data: Texture maps {/x }re[1..n]
Result: Reference map Ay, aligned textures Ay
Arcy, eo initializations;
while ¢; < e¢;_; do
Compute alignment warps: {wg }req1..n] 8:t. Arey = Ip(z + wi);
Align texture maps: Ax = Ix(x + wy);
Update alignment error: e; = >, ||Ax — Aref||2;
Set A,.r as the texture that gives the medoid of the aligned textures:
Apep = I, st ko = argmkinzl Ak — A%

end
Algorithm 1: Texture alignment with iterative reference map selection.

Dense texture correspondence with optical flow The warps {wy} in the
alignment algorithm, both forward and backward in practice, are estimated as
dense pixel correspondences with an optical flow method [22]. We mention here
that the optical flow assumptions: brightness consistency, spatial coherency and
temporal persistence, are not necessarily verified by the input textures. In partic-
ular, the brightness consistency does not hold if we assume appearance variations
with respect to viewpoint and illumination changes. To cope with this in the flow
estimation, we use histogram equalization as a preprocessing step, which presents
the benefit of enhancing contrast and edges within images. Additionally, local
changes in intensities are reduced using bilateral filtering, which smooths low
spatial-frequency details while preserving edges.

Texture warping Optical flows give dense correspondences {w} between the
reference map and the input textures. To estimate the aligned textures {A}, we
cast the problem as an optimization that seeks the texture map which, once
moved according to w, best aligns with the considered input texture both in
the color and gradient domains. Our experiments show that solving over both
color and gradient domains significantly improves results as it tends to better
preserve edges than with colors only. This is also demonstrated in works that
use the Poisson editing for image composition, e.g. [23,24] or interpolation, e.g.
[25, 26]. We follow here a similar strategy.

We are given an input texture map I, a dense flow w from A,.s to I, and
the gradient image VI. The aligned texture A of I with respect to A,s is then
the map that minimizes the following term:

E(A) = 5,|V2A(2) = V.VI(z + w)|| + MA@) — Iz + )2, (1)

where V? is the Laplacian operator, ? the divergence operator, and = denotes
pixel locations in texture maps. The weight A balances the influence of color and
gradient information. In our experiments, we found that the value 0.02 gives the
best results with our datasets.



Eigen Appearance Maps of Dynamic Shapes 7

Using a vector image representation, the above energy can be minimized by
solving, in the least-squares sense, the overdetermined 2N x N system below,
where N is the active region size of texture maps:

A Al(z+w) )’
where L is the linear Laplacian operator and A = diagy (\). A solution for A is
easily found by solving the associated normal equations:

(LTL+ A%) A = LTY VI(z + w) + 22I(z + w). (3)

Figure 3 shows an example where a texture map is warped, given a warp
field, using both direct pixel remapping and Poisson warping. The latter strategy
achieves visually more compelling and edge preserving results.

ki@ K7

Original Textrue Direct Warping

Poisson Warping

Fig. 3: Poisson versus direct texture warping.

3.2 Eigen Textures and Eigen Warps

Once the aligned textures and the warps are estimated, we can proceed with the
statistical analysis of appearances. Given the true geometry of shapes and their
motions, texture map pixels could be considered as shape appearance samples
over time and PCA applied directly to the textures would then capture appear-
ance variability. In practice, incorrect geometry causes distortions in the texture
space and textures must be first aligned before any statistical analysis. In turn,
de-alignment must be also estimated to map the aligned textures back to their
associated input textures (see Figure 2). And these backward warps must be part
of the appearance model to enable appearance reconstruction. In the following,
warps denote the backward warps. Also, we consider vector representations of
the aligned texture maps and of the warps. These representations include only
pixels that fall inside active regions within texture maps. We perform Principal
Component Analysis on the textures and on the warp data separately to find the
orthonormal bases that encode the main modes of variation in the texture space
and in the warp space independently. We refer to vectors spanning the texture
space as Eigen textures, and to vectors spanning the warp space as Eigen warps.
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Let us consider first texture maps. Assume N is the dimension of the vector-
ized representation of active texture elements, and F' the total number of frames
available for the subject under consideration. To give orders of magnitude for our
datasets, N = 22438995 and F' = 207 for the TOMAS dataset, and N = 25966476
and F' = 290 for the CATY dataset that will be presented in the next section.
We start by computing the mean image A and the centered data matrix M from
aligned texture maps {A4;};cn..

o o o
A:f%}%,JW: A — A Ap—A|. (4)

Traditionally, the PCA basis for this data is formed by the Eigen vectors
of the covariance matrix MM7", of size N x N, but finding such vectors can
easily become prohibitive as a consequence of the texture dimensions. However,
it appears that the non zero eigen values of MM” are equal to the non zero
Eigen values of MT M, of size (F x F) this time, and that they are at most:
min(F, N) — 1. Based on this observation, and since F' << N in our experi-
ments, we solve the characteristic equation det(MM7T —aly) = 0 by performing
Singular Value Decomposition on the matrix MT M, as explained in [27]:

| |
MT™™ =DxXD" | D= |V, .. Vp (5)

where D contains the (F' — 1) orthonormal Eigen vectors {V;} of M7 M, and
) = diag(ai)1§igF contains the eigen values {a; }1<i<p—1. We can then write:

MTMV;, = a;V; , i€[l.F—1] (6)
and hence:
MMT MV, =a; MV; , i€[l.F -1, (7)
A N
T; T;

where T; are the Eigen vectors of M M7 and therefore form the orthonormal basis
of the aligned texture space after normalization, namely the Eigen textures.

In a similar way, we obtain the mean warp w and the orthonormal basis of
the warp space {W; }1<i<r_1, the Eigen warps.

3.3 Texture generation

Given the Eigen textures and the Eigen warps, and as shown in Figure 4, a
texture can be generated by first creating an aligned texture by linearly combin-
ing Eigen textures and second de-aligning this new texture using another linear
combination of the Eigen warps.
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Fig. 4: Texture map generation by linear combination.

4 Performance Evaluation

To validate the estimation quality of our method, we apply our estimation
pipeline to several datasets, project and warp input data using the built eigen-
spaces, then evaluate the reconstruction error. To distinguish the different error
sources, we evaluate this error both in texture space before projection, and in
image domain by projecting into the input views, as compared to the original
views of the object and the texture before any reconstruction in texture space,
estimated in our pipeline using [11]. For the image error measurement, we use
the 3D model that was fitted to the sequence, as tracked to fit the test frames se-
lected [21], and render the model as textured with our reconstructed appearance
map, using a standard graphics pipeline. In both cases, we use the structural
similarity index (SSIM) [28] as metric to compare to the original. All of our
SSIM estimates are computed in the active regions of the texture and image
domains, that is on the set of texels actually mapped to the 3D model in the
texture domain, and only among actual silhouette pixels in the image domain.

We study in particular the compactness and generalization abilities of our
method, by examining the error response as a function of the number of eigen
components kept after constructing the linear subspaces, and the number of
training images selected. For all these evaluations, we also provide the results
for a naive PCA strategy, where only a set of eigen appearance maps are built
in texture space and use to project and reconstruct textures, to show the per-
formance contribution of including the Eigen warps.

For validation, we used two multi-sequence datasets: (1) the TOMAS dataset
which consists of 4 different sequences left, right, run and walk with 207 total
number of frames and 68 input views each captured at resolution 2048x2048
pixels per frame; and (2) the CATY dataset: low, close, high and far jumping
sequences with 290 total number of frames and 68 input views each captured at
resolution 2048x2048 pixels per frame.
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4.1 Estimation Quality and Compactness

We study the quality and compactness of the estimated representation by plot-
ting the SSIM errors of reconstructed texture and image estimates of our method
against naive PCA, for the two multi-sequence datasets (Figure 5). Note that all
texture domain variability could be trivially represented by retaining as many
Figen textures as there are input images, thus we particularly examine how the
quality degrades with the fraction of Eigen components kept. In the case of im-
age domain evaluations, we plot the average SSIM among all viewpoints. Our
method outperforms naive PCA in image and texture domains on both datasets,
achieving higher quality with a lower number of Eigen components, and only
marginally lower quality as the number of components grows, where the method
would be anyway less useful. Higher number of Eigen components marginally fa-
vors naive PCA, because naive PCA converges to input textures when increasing
the Eigen textures retained by construction, whereas our method hits a quality
plateau due to small errors introduced by texture warp estimation and decom-
position. For both datasets, virtually no error (0.98 SSIM) is introduced by our
method in the texture domain with as low as 50 components, a substantially low
fraction compared to the number of input frames (207 and 290). This illustrates
the validity of the linear variability hypothesis in texture domain. The error is
quite higher in the image domain (bounded by 0.7) for both our method and
naive PCA, because measurements are then subject to fixed upstream errors due
to geometric alignments, projections and image discretizations. Nevertheless, vi-
sually indistinguishable results are achieved with 50 Eigen components (images
and warps), with a significant compactness gain.

4.2 (Generalization ability

In the previous paragraph, we examined the performance of the method by con-
structing an Eigen space with all input frames. We here evaluate the ability of
the model to generalize, i.e. how well the method reconstructs textures from in-
put frames under a reduced number of examples that don’t span the whole input
set. For this purpose, we perform an experiment using a varying size training
set, and a test set from frames not in the training set. We use a training set
comprised of randomly selected frames spanning 0% to 60% of the total number
of frames, among all sequences and frames of all datasets, and plot the error of
projecting the complement frames on the corresponding Eigen space (Figure 6).
The experiment shows that our representation produces a better generalization
than naive PCA, i.e. less training frames need to be used to reconstruct a texture
and reprojections of equivalent quality. For the TOMAS dataset, one can observe
than less than half training images are needed to achieve similar performance in
texture space, and a quarter less with the CATY dataset.

5 Applications

We investigate below two applications of the appearance representation we pro-
pose. First, the interpolation between frames at different time instants and sec-
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Fig. 5: Reconstruction Error for TOMAS and CATY Dataset from top to down in

Texture and Image Domain from left to right.

ond, the completion of appearance maps at frames where some appearance in-
formation is lacking due to occlusions or missing observations during the acqui-
sition. Results are shown in the following section and the supplementary video.

5.1 Interpolation

In our framework, appearance interpolation benefits from the pre-computed
warps and the low dimensionality of our representation to efficiently synthe-
size compelling new appearances with reduced ghosting-artefacts. It also easily
enables extension of appearance interpolation from pairwise to multiple frames.
Assume that shapes between two given frames are interpolated using a standard
non-linear shape interpolation, for instance [29]. Consider then the associated
aligned textures and associated warps at the given frames. We perform a linear
interpolation in the Eigen texture and Eigen warp spaces respectively by blend-
ing the projection coefficients of the input appearance maps. Poisson warping, as
introduced in section 3.1 is used to build de-aligned interpolated texture with the
interpolated backward warp. Figure 7 compares interpolation using our pipeline
to a standard linear interpolation for 4 examples with the CATY and ToMAS
datasets. Note that our method is also linear but benefits from the alignment
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performed in the texture space to reduce interpolation artefacts, as well as from
the simplified computational aspects since interpolation applies to projection
coeflicients only.

5.2 Completion

As mentioned earlier, appearance maps can be incomplete due to acquisition
issues. For instance, as shown in Figure 8, during the running sequence the
actor TOMAS bends his knees in such a way that the upper parts of his left
and right shins become momentarily hidden to the acquisition system. This re-
sults in missing information for those body parts in the texture maps and over
a few frames. Such an issue can be solved with our texture representation by
omitting the incomplete frames when building our appearance representations,
and then projecting these incomplete appearance maps in the Eigen spaces and
reconstructing them using the projection coefficients and Poisson texture warp-
ing. Figure 8 shows two examples of this principle with occluded regions. Note
however, that while effectively filling gaps in the appearance map, this comple-
tion might yet loose appearance details in regions of the incomplete map where
information is not duplicated in the training set.
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Fig. 7: Interpolation examples using linear interpolation (left) and our pipeline
(right). From left to right: Input frames, Interpolated models, and a close-up on
the texture maps (top) and the rendered images (bottom).
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1
A

Fig. 8: Completion examples. From left to right: Input and completed models,
close-up on input and completed texture maps (top) and rendered images (bot-
tom).

-

6 Conclusion

We have presented a novel framework to efficiently represent the appearance of
a subject observed from multiple viewpoints and in different motions. We pro-
pose a straightforward representation which builds on PCA and decomposes into
Eigen textures and Eigen warps that encode, respectively, the appearance varia-
tions due to viewpoint and illumination changes and due to geometric modeling
imprecisions. The framework was evaluated on 2 datasets and with respect to:
(i) its ability to accurately reproduce appearances with compact representations;
(ii) its ability to resolve appearance interpolation and completion tasks. In both
cases, the interest of a global appearance model for a given subject was demon-
strated. Among the limitations, the representation performances are dependent
on the underlying geometries. Future strategies that combine both shape and ap-
pearance information would thus be of particular interest. The proposed model
could also be extended to global representations over populations of subjects.



Figen Appearance Maps of Dynamic Shapes 15

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe,
H., Kirk, A., Sullivan, S.: High-quality streamable free-viewpoint video. ACM
Trans. Graph. (2015)

. Nishino, K., Sato, Y., Ikeuchi, K.: Eigen-texture method: Appearance compression

and synthesis based on a 3d model. IEEE Trans. Pattern Anal. Mach. Intell. (2001)
Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach. In: ACM SIG-
GRAPH. (1996)

Lempitsky, V.S., Ivanov, D.V.: Seamless mosaicing of image-based texture maps.
In: CVPR. (2007)

Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing
of 3d reconstructions. In: ECCV. (2014)

Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: ACM
SIGGRAPH. (1999)

Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of
human actors. ACM Trans. Graph. (2003)

Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video
view interpolation using a layered representation. In: ACM SIGGRAPH. (2004)
Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., de Aguiar, E., Ahmed, N.,
Theobalt, C., Sellent, A.: Floating textures. Computer Graphics Forum (Proc. of
Eurographics) (2008)

Tung, T.: Simultaneous super-resolution and 3D video using graph-cuts. (2008)
Tsiminaki, V., Franco, J.S., Boyer, E.: High Resolution 3D Shape Texture from
Multiple Videos. In: CVPR. (2014)

Goldliicke, B., Aubry, M., Kolev, K., Cremers, D.: A super-resolution framework
for high-accuracy multiview reconstruction. International Journal of Computer
Vision (2014)

de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Perfor-
mance capture from sparse multi-view video. ACM Trans. Graph. (2008)
Cagniart, C., Boyer, E., Ilic, S.: Free-from mesh tracking: a patch-based approach.
In: CVPR. (2010)

Volino, M., Casas, D., Collomosse, J., Hilton, A.: Optimal representation of mul-
tiple view video. In: BMVC. (2014)

Boukhayma, A., Boyer, E.: Video based Animation Synthesis with the Essential
Graph. In: 3DV. (2015)

Casas, D., Tejera, M., Guillemaut, J.Y., Hilton, A.: 4D Parametric Motion Graphs
for Interactive Animation. In: ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. (2012)

Casas, D., Volino, M., Collomosse, J., Hilton, A.: 4D Video Textures for Interactive
Character Appearance. Computer Graphics Forum (Proc. of Eurographics) (2014)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience
(1991)

Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans.
Pattern Anal. Mach. Intell. (2001)

Allain, B., Franco, J.S., Boyer, E.: An efficient volumetric framework for shape
tracking. In: CVPR. (2015)

Snchez Prez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 Optical Flow Estima-
tion. Image Processing On Line (2013)



16

23.

24.

25.

26.

27.

28.

29.

Boukhayma, Tsiminaki, Franco, Boyer

Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph.
(2003)

Chen, T., Zhu, J.Y., Shamir, A., Hu, S.M.: Motion-aware gradient domain video
composition. IEEE Transactions on Image Processing (2013)

Linz, C., Lipski, C., Magnor, M.: Multi-image interpolation based on graph-cuts
and symmetric optical flow (2010)

Mahajan, D., Huang, F.C., Matusik, W., Ramamoorthi, R., Belhumeur, P.N.: Mov-
ing gradients: a path-based method for plausible image interpolation. ACM Trans.
Graph. (2009)

Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience
(1991)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Pro-
cessing (2004)

Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. In: ACM
Symposium on Solid and Physical Modeling. (2005)



132 ANNEXE A. SELECTED PAPERS




A.6. TRACKING-BY-DETECTION OF 3D HUMAN SHAPES : FROM SURFACES
TO VOLUMES 133

A.6 TRACKING-BY-DETECTION OF 3D HUMAN
SHAPES : FROM SURFACES TO VOLUMES

Chun-Hao Huang, Benjamin Allain, Jean-Sébastien Franco, Nassir Navab, Slobodan
Ilic, Edmond Boyer. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Institute of Electrical and Electronics Engineers, 2017,



134 ANNEXE A. SELECTED PAPERS




This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2017.2740308

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Tracking-by-Detection of 3D Human Shapes:
from Surfaces to Volumes

Chun-Hao Huang, Benjamin Allain, Edmond Boyer, Jean-Sébastien Franco, Federico Tombari,
Nassir Navab and Slobodan llic

Abstract—3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually
comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the
model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the
association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association
tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to
infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert
3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric
samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory
and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating
the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to
different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully
integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as ‘tracking-by-
detection of 3D human shapes. It allows for large deformations and prevents tracking errors from being accumulated. When combined
with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on

existing datasets demonstrate the benefits with respect to the state-of-the-art.

Index Terms—Shape tracking, random forest, centroidal Voronoi tessellation, 3D tracking-by-detection, discriminative associations.

4

1 INTRODUCTION

D shape tracking is the process of recovering temporal

evolutions of a template shape using visual information,
such as images or 3D points. It finds applications in several
domains including computer vision, graphics and medical
imaging. In particular, it has recently demonstrated a good
success in marker-less human motion capture (mocap). Nu-
merous approaches assume a user-specific reference surface,
with the objective to recover the skeletal poses [1], surface
shapes [2], or both simultaneously [3]. A standard tracking
process consists in an alternation of the following two steps.
First, finding associations between the observed data, e.g. 3D
points of the reconstructed visual hull, to the corresponding
3D template shape, typically based on the proximity in
Euclidean space or a feature space. Second, given such
associations, recovering the pose of the template under the
constraint of a deformation model, typically based on the
kinematic skeleton [1], [4], [5], [6], or the piecewise-rigid
surface [2] parameterization, among others.

Most of these model-based methods can be viewed as
extensions of Iterative-Closest-Point (ICP) framework [7],
[8] to deformable shapes, which attempts to explain newly
observed data using the previous outcomes. As long as the
initialization is close to the optimum solution, it is able
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(a) ref. (d) results

shape

(b) input data

N

(c) detected
associations

Fig. 1. Given a reference shape (a) and input data (b), our method dis-
covers reliable data-model correspondences by random forests, color-
coded in (c). This strategy detects user-specific shapes in a frame-wise
manner, resulting in better sustainability. In (d) the reference model (a)
is deformed with correspondences (c) to fit the input data (b).

to produce outstanding results. However, they also suffer
from inherent weaknesses of generative strategies, e.g. slow
convergence. Moreover, when large deformations or many
outliers occur, discovering associations becomes particularly
difficult. Unreliable correspondences result in ambiguous
situations that yield erroneous numerical solutions.
Recently, a number of alternatives and enhancements
have been explored for both association and deformation
stages independently. On one hand, improvements have
also been proposed for the association problem by discov-
ering them discriminatively [6], [9], [16], This in turn yields
the possibility for 3D tracking techniques that are robust
to failure. In contrast to those generative ICP variants,
these discriminative approaches that ‘detect’ rather than track
models have shown better robustness over the past decade,
for instance, in human pose estimation with 2.5D data from
Kinect [6], [10]. These approaches usually consider fore-
ground human subjects to be pre-segmented, which is not a
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favorable assumption in full 3D data that generally contains
substantial amount of outliers like Fig. 1(b). Including non-
human objects into the reference shape so that more points
are explained, i.e. less outliers, is one workaround adopted
by many existing multi-view methods [17], [18], with the
downside that further post-processing is required to analyze
only humans’ movements. There is a growing need to
facilitate robust frame-wise observation-model associations
for reconstructed complete 3D human shapes. Although
surface-based features are commonly used for this purpose
in the context of shape matching [9], volumetric features
have also proven to be a promising direction for 3D shape
description with surface-based templates [11].

On the other hand, progress has also been made in
the deformation stage by introducing volumetric deforma-
tion models instead of purely surface-based ones, mainly
motivated by the observation that human movements are
largely volume-preserving. It has shown significantly im-
proved robustness to various tracking situations, such as
shape folding and volume bias of observed shapes [12]. As
volumetric deformation models are gradually used in cap-
turing actors’ motions due to their inherent local volume-
preserving properties, facilitating volumetric discriminative
correspondences can be favorable. We investigate this direc-
tion and make the following two contributions in this paper.

First, two volumetric features are designed for human
shape correspondence detection, operating respectively on sur-
face and volumetric meshes. Inspired by Taylor et al. [6], we
apply regression forests to improve the associations, with
two learning strategies devised for different shape parame-
terizations. In the case of surface mesh representations, we
convert shapes to the volumetric Truncated Signed Distance
Field (TSDF) [13], where each surface vertex is fed into user-
specific forests to predict correspondences in one shot. Mean-
while, we also tessellate both the observed and template
shapes as a set of uniform and anisotropic cells (see Fig. 2)
from Centroidal Voronoi Tessellation (CVT) [14] and, again
leverage the similar distance-transform representations to
predict volumetric correspondences for all CVT cells.

Second, by integrating these one-shot associations into
the respective deformation models, we further present a
discriminative human mocap framework, as depicted in
Fig. 1, termed tracking-by-detection of 3D human shapes.
In contrast to the ICP-like methods [2], [3], [4], it does not
require close initializations from a nearby frame to estimate
correspondences and thus better handles large deforma-
tions. Experiments demonstrate that, when combined with a
generative tracking approach, this hybrid framework leads to
better or comparable results than purely generative ones, e.g.
[2], [15], reducing error accumulations and hence increasing
the stability. The regression entropy is also augmented with
the classification one to identify outliers. Very few prior arts
afford the tracking or matching situation where the input
describes mainly irrelevant outliers. Notably, in the case of
CVT, our method is a unified volumetric pipeline where the
shape representation, deformation model, feature descrip-
tion, and points association are all built on a single CVT rep-
resentation that brings benefits at all stages of the pipeline.
This fully volumetric tracking-by-detection method shows
improved accuracy and memory performance compared to
the surface-based counterpart [11].

http://dx.doi.org/10.1109/TPAMI.2017.2740308

observations

template

Fig. 2. Centroidal Voronoi tessellations yields volumetric cells of uniform
shape and connectivity with controllable complexity. The cells of the
observed shape are matched discriminatively to those of the template.

2 RELATED WORK

Among the vast literature on human motion analysis [19],
we focus on top-down approaches that assume a 3D tem-
plate and deform it according to input data, either directly
with pixels [4], [20], or with computed 3D points [2], [3],
[15]. These methods typically decompose into two major
steps: (1) data association, where observations are associated
to the model, and (2) deformation stage, where motion
parameters are estimated given the associations. As our
primary objective in this paper is to improve the first part,
existing approaches are discussed accordingly below.

2.1

Methods of this category follow the association strategy in
ICP while extending the motion model to more general
deformations than the one in the original method [7], [8].
Correspondences are addressed by searching for closest
points, with various distance measures such as point-to-
point [2], point-to-plane [21], or Mahalanobis distances [20].
This strategy heavily relies on the fact that observations
in consecutive frames are in vicinity. Klaudiny et al. [22],
Huang et al. [3] and Collet et al. [17] generalize the idea from
the previous frame to a certain key-frame in the considered
sequences, finding the best non-sequential order to track,
but the proximity assumption remains. On the other hand,
since 3D data such as reconstructed point clouds often con-
tain spurious fake geometries, another challenge consists in
identifying online and dynamically irrelevant observations
without any prior knowledge. Liu et al. [4] establish 3D-
2D correspondences by considering both texture in images
and contours in silhouettes and further include image seg-
mentation information to differentiate multiple interacting
subjects. Huang et al. [2], [3] relax the hard correspondence
constraint to soft assignments and introduce an additional
outlier class to reject noisy observations. Data is explained
by Gaussian Mixture Models (GMM) in an Expectation-
Maximization (EM) manner [23]. In [24], both source and
target points are similarly modeled as GMMs and the regis-
tration problem is cast as minimizing the distance between
two mixture models. Collet et al. [17] fuse information
from various modalities attentively to generate high-quality
textured meshes. Yet, to yield a temporal coherent mesh
tessellation, the underlying tracking component is still ICP-
based [25]. All these generative methods are highly likely
to fail in large deformations. Furthermore, they are prone
to error accumulations and, as a result of matching several
successive frames wrongly (whether sequentially or not),
they are prone to drift.

Generative approaches
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2.2 Discriminative approaches and 3D descriptors

Recently, discriminative approaches have demonstrated
their strengths in estimating human [6], [26] and hand [27]
poses from depth images. With the initial intention to
substitute ICP-based optimization, Taylor et al. [6] propose
a frame-wise strategy that yields decent dense correspon-
dences without iterative refinements. The method replaces
the step of proximity search in ICP-based tracking methods
by learning the mapping from input 3D points from depth
sensors, to the human template surface domain, termed the
Vitruvian manifold. Later, Pons-Moll et al. [5] train forests
with a new objective on surface manifolds, and increase the
precision by finishing convergence with an ICP-based loop
after the discriminative association stage. Both approaches
operate frame-independently and are generally drift free.
Following the same weak pair-wise features and random
forest framework, Dou et al. [18] learn to match two succes-
sive depth frames to avoid depending on a specific template.

More informative descriptors and matching strategies
have long been studied for shape recognition or retrieval
with meshes [28] and point clouds [29]. The well known
heat kernel signatures (HKS) [30] and wave kernel signa-
tures (WKS) [31] exploit the Laplacian-Beltrami operator, the
extension of the Laplacian operator to surface embeddings.
Rodola et al. [9] later apply forests to learn the parameters of
WKS during training. These features are nonetheless known
for their lack of resilience to significant topology changes, an
artifact frequently seen in noisy surface acquisitions. Mesh-
HoG [32] and SHOT [33] attach a local coordinate frame at
each point to achieve invariant representations and reach
better performance for noisy surfaces. To enforce consistent
matches over the whole shape, Chen and Koltun [34] and
Starck et al. [35] formulate the matching problem as the
inference of Markov random field (MRF).

Besides hand-crafted features, there is a recent trend that
applies Convolutional Neural Network (CNN) [36] to dis-
cover the deep representation of non-rigid human shapes.
Wei et al. [16] render depth images in several viewpoints,
where the CNN feature transformation takes place, and
average the descriptors from multiple views. Boscaini et
al. [37] stay in 3D space but define the convolution function
in the intrinsic manifold domain. While showing encour-
aging results in handling missing data, these methods do
not consider matching human shapes in the presence of
large amount of outliers, e.g. un-subtracted furniture in the
background, and thus do not fit to our ‘detection” purpose.

Another common trait of the aforementioned approaches
is that the computation involves only surface points. We
show in our early work [11] that surface features can be
built based on local coordinate frames in a regular-grid
volume. In this paper, we not only improve this feature
but also propose a new one to address the need of fully
volumetric correspondences. Both features, implicitly or
explicitly, leverage distance-transform volumes to describe
3D geometry. Taking only surface vertices into account, the
existing approaches rely on heterogeneous shape represen-
tations, deformation models, target primitives and feature
spaces. Instead, our CVT-based tracking-by-detection pro-
posal builds a unified framework for all these purposes and
takes advantage of volumetric tracking strategies.

http://dx.doi.org/10.1109/TPAMI.2017.2740308

3 OVERVIEW

We implement discriminative associations using two differ-
ent volumetric representations. In the first case, we convert
the triangular surface meshes to the Truncated Signed Dis-
tance Field (TSDF) constructed with the regular 3D volu-
metric grid. In the second case, we use CVT representation
which is not bound to the regular grids. As in Fig. 2, the
interior space of a triangular surface is tessellated into a set
of cells of uniform anisotropic shape whose seed location
coincides with its centers of mass. Such an optimal dis-
cretization yields lower memory footprint than regular-grid
volumes, in turn accommodating more training meshes.
Moreover, we also associate CVT cells discriminatively and
present volumetric correspondences.

Formally, a humanoid shape describes a continuous vol-
umetric domain in 3D  C R?® whose border 952 defines
a 2-manifold surface. The discretized mesh representation
M contains a set of 3D points M and their connectivity
T,ie. M = (M,T), where M is drawn from the surface
(M C 09) or the whole volume (M C € ). The goal of
3D shape tracking is to register a source reference' mesh
X = (X, Tx) to the observed target mesh YV = (Y, 7y),
such as fitting the shape in Fig. 1(a) to the one in Fig. 1(b).

Our method starts with surface meshes reconstructed by
shape-from-silhouette method [38]. We refer only to points
on surfaces as vertices v € V, where V is the set of their in-
dices. Suppose the reference surface X and the input visual
hull Y are located at X = {x,},.,, and Y = {Yi}ievyz
respectively, the registration typically boils down to two
steps: (1) association: matching each points in ) with those in
X to build the correspondence set C = {(i,v)} C Vy XV y;
and (2) optimization: estimating the motion parameter ® by
minimizing an energy E that describes the discrepancies
between pairs in C, i.e. © = argming E(©;C), such that
X (©) resembles Y as much as possible.

To discover the correspondences C discriminatively, we
adapt the Vitruvian strategy [6] from matching 2.5D against
3D to 3D against 3D. This amounts to warping the input
mesh ) to the reference one X, denoted as Y = (Y, Ty) =
(r(Y), 7y) where r is the warping function. A good r shall
lead to a clean warp Y asin Fig. 3. Incorrect warped points,
however, can still be told from huge edges. Specifically, this
R3 — R3 mapping r is learned by a regression forest [39].
We convert each surface into an implicit representation,
a distance field, which is usually defined volumetrically.
As stated above, we investigate two ways to define the
volumetric elements s. The first one is a voxel from a regular
axis-aligned volume, ie. s € N3, while the second one is
a cell from a volumetric mesh, i.e. s € S, where S is a
group of CVT cells that tessellate only the surface interiors.
Depending on the choice of s, our volumetric feature f is
hence also realized in two different forms. Taking the feature
f as input, multiple binary decision trees are trained with
previously observed meshes. In the online testing phase, a
input point obtains a prediction y, = r(y;) that indicates
the locations of potential matches since the warp Y is

1. Several terms are used interchangeably in this paper: reference and
template; correspondences and associations; point and primitive.

2. The observations are always indexed by i regardless of the param-
eterization.
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Fig. 3. The pipeline of our tracking-by-detection framework. Data-model associations are visualized in the same color. Upper row:
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learned to resemble X. Thus, C can be built swiftly by doing
nearest neighbor search between Y and X just once and
the deformation parameter ® that encodes the shape pose of
the template is estimated accordingly. Notably, in the case
of CVT, since cells comprise a volumetric mesh, the whole
pipeline (discovering C and estimating ®) can instead be
conducted in a fully volumetric fashion. Fig. 3 illustrates
this correspondence detection process. The details of training,
prediction and deformation models are provided in § 5.

4 VOLUMETRIC FEATURES

The two volumetric features are introduced in this section.
Although both taking a volumetric point s as input, the
first one actually aims to match surface vertices v, denoted
as f(v) = f(s,) while the second one matches s directly,
i.e. f(s). Both are designed to be incorporated into forest
training and prediction. A great advantage of decision trees
is to learn the most discerning attributes among a large
feature bank. One does not have to prepare the whole high-
dimensional vector f to draw predictions, because only a
few learned attributes x are needed to traverse the trees.
As a result, features can be computed on the fly during
testing. To make use of such property, the calculation of
each f. is assumed to independent. We hence avoid the
histogram-based descriptors that requires normalization,
such as MeshHOG [32] or SHOT [33], and resort to offset
comparison features used in [40] for f (s, ) and Haar feature
in [41] for f(s).

4.1

Our first approach to discriminative associations consid-
ers regular-grid volumes (upper row in Fig. 3, s € N?).
The warping function r is modeled as a composite one:
r: R? — N2 — R3, where the former is voxelization and the
regression trees account for only the latter. We first cast each
mesh M into a volumetric scalar field D : N3 ¢ R — R.

Regular-voxel-based features

4.1.1 Truncated signed distance transform (TSDT)

Voxelizing a surface in general comprises two parts: (1)
determining which voxel s that every vertex v maps to, and
(2) testing the overlap between triangles and voxels. The
first part can be viewed as a quantization mapping from

Euclidean space to a discretized space s : R® — N3. The
size of the volume is large enough to include all possible
pose variations, and its center is aligned with the barycenter
of the surfaces. The voxel size is chosen to be close to the
average edge length of meshes, so that a single voxel is not
mapped by too many vertices. To check the intersection of
triangles with voxels, we apply separating axis theorem which
is known to be efficient for collision detection [42].

Voxels occupied by the surface are referred to as s.
We further identify voxels located inside and outside the
surface, denoted respectively as s;, and s, Together they
define a directional truncated signed distance transform:

+e if s, and d(s, M) > e.

+d(s, M) if s, and d(s, M) <e.
D(s)=<0 if 5 1)

—d(s, M) ifs, and d(s, M) <e.

—€ if s, and d(s, M) > e.

d(s, M) denotes the shortest Euclidean distance from the
voxel center to the mesh, which can be computed efficiently
via AABB trees using CGAL library. If the distance is big-
ger than a threshold ¢, we store only +¢ to indicate the
inside/outside information. It is empirically set to be three
times the physical length of diagonal of voxels. In the earlier
version of this work [11], we store averaged surface normals
at each s_ ;. However, such representations yield high mem-
ory footprint and thus limit the amount of training meshes
we can incorporate later in § 5. The TSDT representation
naturally encodes the spatial occupancies of a mesh and the
required memory footprint is only one-third of the former
(each voxel stores now just a scalar, not a vector). It shares a
similar spirit with implicit surface representations, e.g. level-
set, and has been widely employed in RGBD-based tracking
or reconstruction [43], [44].

4.1.2 Pair-wise offset features

Next, we present the features f for describing TSDT, which
are later used to train the forests. Since we are interested in
predicting correspondences for vertices instead of triangles,
from now on we concentrate only on those surface voxels
54,¢ Occupied by mesh vertices v, denoted as s, . The feature
is thus defined as a function of s, i.e. f(v) == f(s,).
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(b) i (©)

Fig. 4. The intuition of adjusting offsets. (a) original offset pair . (b)
n = 0 results in ¢ without re-orientation, ie. R = 1. (c)n = 1. ¢ is
orientated by a rotation matrix R = [e1, e2, e3] characterized by a LCF.

As depicted in Fig. 4, for each surface voxel s, (blue),
we shoot two offsets (red vectors) 1 = (01,05) € N? x N3,
reaching two neighboring voxels (green). To describe the
local geometry, we take the TSDT values within a cuboid
around two respective voxels (yellow squares), perform
element-wise subtractions and sum them up. Let ¢ denotes
this sum-of-difference operation. By definition, ¢ from dif-
ferent offsets 1) can be evaluated independently and thus
fully parallelizable, which is an useful trait since this com-
putation will be carried out multiple times during training
with thousands of randomly generated v for the same s, .

The feature vector f consist of ¢ resulted from many
offset pairs 1. More precisely, it is a function of s, but
takes an offset pair 1), a binary variable 7 (whether to use
Local Coordinate Frame (LCF) or not), and a rotational matrix
R € SO(3) (the orientation of LCF) as parameters. Every
possible combination of offset pairs 1) and binary variables
7 results in one independent feature attribute x, in notations:
fr(s,) = &(s,; R"(¢)). The dimensionality of f is virtually
infinite. Binary variables 7) determines the alignment of the
offset 1) with respect to a LCF, whose transformation is
specified by R. The intuition behind this adjustment is to
make features f invariant to poses, c.f. Fig. 4(b) and (c).
Without re-orientations, 1) might land on different types of
voxel pairs, c.f. Fig. 4(a) and (b), and hence cause different
feature responses ¢, despite the fact that the current voxels
are located on the same position on the body. Both offset
pairs v and binary variables 7 are learned during forest
training, while the rotational matrix R is characterized by
a LCF obtained as follows.

4.1.3 Local coordinate frame

Defining local coordinate frames for 3D primitives (vox-
els, vertices, points) has long been studied and usually
comes with their 3D descriptor counterparts, see [45] for
a comprehensive review. An ideal LCF is supposed to fol-
low whatever transformations the meshes undergo, namely,
as co-variant as possible, such that the consequent feature
representations are as invariant as possible. Constructing a
LCF boils down to defining three orthonormal vectors as
[x,y, z] axes. To do that, the state-of-the-art methods in the
field of LCFs for rigid matching of 3D meshes and point
clouds mainly rely on the neighboring points within a local
support [33], [46], [47], [48]. The way they leverage spatial
distributions can in general be classified into two categories:
(1) EigenValue-Decomposition (EVD) [33], [47], [49], and (2)
signed distance (SignDist.) [46], [48]. Since it is impractical
to repeat EVD process for all surface voxels s,, in the
following, we propose an adaptation of SignDist. approach
to our volumetric representations [50]. This conclusion is
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Fig. 5. Our method leads to quasi pose-covariant LCFs.

drawn after an extensive study and comparison of three LCF
approaches presented in our early work [50].

Specifically, for each s, we consider its surface normals
n, as z axis, and obtain y axis by z x z. The task left is
to identify a repeatable x axis. To this end, the class of
SignDist. approaches look for a discerning point within the
support (yellow voxel in Fig. 5(b)). We first open an local
cuboid support (pink) around each s, (green) as visualized
in Fig. 5(a). The search involves only the peripheral voxels
5 (cyan) lying on the intersection of support borders and
the surface. The discernibility is defined as the maximum
signed distance to the tangent plane [46]:

§ = arg max ((§ — sv)Tnv) , )

where S is the intersection of support borders and the
surface. The x axis is the projection of the vector directed
from s, towards 5. Fig. 5(b) illustrates the full procedure.
Note that there is no guarantee that the discerning point
s from Eq. 2 is always repeatable: in particular, if different
directions yield similar values of the signed distance, the
x axis will be ambiguous, hence the resulting LCFs could
rotate about the z axis. Therefore, as shown in Fig. 5(c), this
approach produces LCFs quasi-covariant to pose changes,
and as a result, only quasi-pose-invariant features f. We
leave such noise for forests to take care of during learning.

4.2 CVT-based features

The feature f(s,) above describes surface geometries in
volumes but is devised to match only surface vertices v.
A more intriguing question is: can one match these points
s directly? In other words, instead of an auxiliary role
of matching surfaces, can they also be associated to the
template discriminatively and even participate in shape
deformations (bottom row of Fig. 3)? We investigate this
direction with a volumetric representation from centroidal
Voronoi tessellations that haven shown some recent success
in various applications [51], [52], i.e. s is a CVT cell.

We use it to sample a distance field where every cell s
stores the Euclidean distance from the centroid to the sur-
face 0€2: d(x5, 08?) = minyepq d(xs, ), yielding a distance-
transform like representation similar to the TSDT above.

4.2.1 Haar-like spherical feature

The offset feature f(s,) above is nevertheless not applicable
here since it relies on regular grids. We propose a new fea-
ture £ (s) with the following principles in mind. It should be
able to characterize the local neighborhood of any point of
the volumetric shape. This rules out the descriptors that rely
on surface normals such as MeshHOG [32] and SHOT [33].

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

~
L=5 3%+ 1 =244 channels

u, = sum of all distances within layer I.
if F=[-1,1,-1,1,-1]7,
fe = —uo+up —ug+ug —uy

Fig. 6. CVT-based feature. Left: CVT cells S sample a distance field,
where each cell stores the distance d(xs, 92). Blue to red colors means
from close to far. Red dot: cell s to be described. Right: a toy example
of our feature f, where L = 5. Shadowed and transparent layers have
coefficients ¢; = —1 and 1 respectively. See text for more explanations.

To be able to match any deformed pose with the template,
we would like our feature to be pose-invariant. Therefore,
we build it on the distance transform because it naturally
encodes the relative location with respect to the surface and
it is invariant to rotations, translations and quasi-invariant
to pose changes. Finally, our feature needs to be robust to
the topological noise present in the input data.

Given a distance field sampled by CVT cells S, our
feature is similar in spirit to Haar feature in the Viola-Jones
face detector [41], except that the rectangular neighborhood
is replaced with a sphere. As depicted in Fig. 6, we open
an L-layer spherical support region in the Euclidean space
around each cell. An L-dimensional vector u is defined ac-
cordingly, where each element v, is the sum of the distances
of all cells falling within layer [. The feature value is the
linear combination of all u;, with coefficients ¢; chosen from
asetY = {—1,0,1}. Formally, suppose c are L-dimensional
vectors whose elements are the bootstrap samples of T. Let
c” denote one particular instance of c, i.e. , c* € YL, The
feature value is then expressed as an inner product: u'c”,
corresponding to one feature attribute x. We consider all
possible ¢ and also take the distance d itself into account.
f is hence a vector of (3% + 1) dimensions, where 3" is the
cardinality of Y7 and each element f,; is defined as:

®)

e u'ct =3, cfw, k<3F ¢ €{-1,0,1}
") d(xs, 09), k=3 ’

Since each dimension f,, is computation-wise indepen-
dent, f is suitable for decision forests, which select feature
channels x randomly to split the data during training. Being
derived from d(x,,09), f inherits the invariance to rigid-
body motions. As opposed to the early version of this
work [53], we normalize the distances with respect to the
averaged edge length of cells, achieving invariance to the
body size to a certain extent. However, f is not invariant to
pose changes as the contained cells in each layer vary with
poses. Although considering geodesic spherical supports
instead of Euclidean ones would overcome this issue and
yield quasi-invariance to pose changes, the resulting feature
would be highly sensitive to topological noise. Thus, we
keep the Euclidean supports and let forests take care of the
variations caused by pose changes in learning.

5 CORRESPONDENCES INFERENCE

Now that the features for both surface and volumetric as-
sociations, f(v) and f(s), are defined, we proceed on using
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them to train a regression forest, an ensemble of 7' binary
decision trees, to learn the mapping r : R® — R? from
the observation domain to the template domain. During
training each tree learns the split functions that best separate
data recursively at branch nodes, while during testing the
input point is routed through each tree, reaching 7" leaves
that store statistics as predictions. We discuss in § 5.1 a
generic learning framework that applies to both shape pa-
rameterizations. A CVT-specific multi-template strategy is
presented in § 5.2 to generalize the Vitruvian framework
from single mesh connectivity to multiple ones.

5.1

Broadly speaking, training a regression forest amounts to
determining the following components: sample-label pairs,
split functions, learning objectives and leaf-node statistical
models. Readers are referred to [39] for a comprehensive
analysis on different choices of these components.

Training and prediction

5.1.1 Training data and split functions

First we elaborate the training scenario for surface repre-
sentations. Since forests aim to map an observed 3D vertex
back to the template domain Jf2y, usually chosen to be in
the rest (T or A) pose, it requires meshes in various poses
but with the same connectivity for training. To incorpo-
rate abundant training variations, we animate the template
X% = {x9} C 09y to a variety of poses with a method
similar to [54]. After voxelizing all animated meshes, we
associate each surface voxel to their locations at the rest
pose, obtaining a pool of sample-label pairs D = {(s,, x9)1}.
Each tree is trained with a randomly bootstrapped subset
of D. While the split function may be arbitrarily complex, a
typical choice is a stump where one single dimension & is
compared to a threshold 7, i.e. axis-aligned thresholding. Our
splitting candidate ¢ is hence the pair of testing channels
k and thresholds 7, ¢ = (k,7), where k is represented by
offset pairs 1) and binary variables 7 in § 4.1. Let D, denotes
the samples arriving at a certain branch node. The training
process is to partition D recursively into two subsets D,
and Dy, based on randomly generated ¢:

Dr(¢) = {s, € Dnlfx(s,) = e(s,; R"(¥)) = 7},
Dr(9) ={s, € Dylfa(s,) = (s,; R"(¢)) <7}

Similarly, given a set of CVTs corresponding to the tem-
plate volumes 2y deformed in various poses, we associate
each cell s € Sx to its locations in the rest pose, denoted
as x? € X° C Qy, forming a pool of sample-label pairs
D = {(s,x2)} as the dataset. The split candidate ¢ is again
the pair of thresholds and feature attributes, ¢ = (k,7),
where features are instead computed according to Eq. 3 but

the thresholding criteria in Eqs. 4a and 4b follows.

(4a)
(4b)

5.1.2 Learning objectives and leaf predictions

At branch nodes, many candidates ¢ are randomly gener-
ated and the one that maximizes the information gain I,
¢* = argmax, I(¢), is stored for the later prediction use.
We follow the classic definition of information gain:

10 =HDy - Y D

ic{L,R} Dl

H(Di(9)), )
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where H is the entropy, measured as the variance in Eu-
clidean space, ie. H = o2 for both parameterizations. The
tree recursively splits samples and grows until one of the
following stopping criteria is met: (1) it reaches the maxi-
mum depth, or (2) the number of samples |Dy| is too small.
A Mean-5Shift clustering [55] is performed in a leaf node
to represent the distributions of x¥ as a set of confidence-
weighted modes H = {(h,w)}. h € R? is the mode location
and w is a scalar weight.

In the prediction phase, a 3D input point i € Vy or i €
Sy traverses down the trees and lands on 7" leaves contain-
ing different collections of modes: {H; - - - H 1 }. The final re-
gression output r; is the cluster centroid with largest weight
obtained by performing Mean-Shift [55] on them. Each
observed point then gets a closest point p in the reference
shape X0, either in surfaces, p = argminvevx Hr, — xg{ os OF
in CVTs, p = argmin g, ||r; — xJ||,. The correspondence
pair (i,p) serves as input to the subsequent deformation
framework described in § 6.

Outliers such as false geometries, or un-removed back-
ground elements often exist in 3D data, drastically deteri-
orating tracking results. If their models are available, we
also include them in the training process, so that forests can
identify and reject them online. In this case, the goodness
of a split ¢ is evaluated in terms of both classification
and regression. We follow Fanelli et al. [56] and extend the
entropy to be:

H(D) =~ p(c|D)logp(c|D) + (1 — e=)a(D), (6)

where p(c|D) is the class probability of being foreground or
background. It is the weighted sum of the aforementioned
regression measure o2 and the classification entropy mea-
sure. Forests trained with Eq. 6 are often referred to as Hough
forests. During training it learns simultaneously (1) how to
distinguish between valid and invalid samples (outliers)
and (2) how to match valid samples to the template. The
regression part gets increasing emphasis when the current
depth § gets larger (i.e. the tree grows deeper), and the
steepness is controlled by the parameter a.

5.2 Learning across multiple volumetric templates

So far we know how to utilize Vitruvian-based learning
framework to match surface or volumetric data against the
template. For the training purposes, one has to deform the
reference mesh into various poses such that all meshes share
a consistent topology 7x and one can easily assign each
sample a continuous label which is its rest-pose position X°.
In this regards, the trained forest applies only to one mesh
connectivity 7x. Nevertheless, the amount of training data
for one single template is often limited. To avoid over-fitting,
the rule of thumb is to incorporate as much variation as pos-
sible into training. This motivates us to devise an alternative
that learns across different template connectivities 7x. Due
to the high memory footprint of regular voxel grids, this
strategy is unfortunately less practical for the surface feature
f(v) in § 4.1 and we implement it only with CVTs.

Given U distinct CVT templates: {S “}5113, whose tem-
poral evolutions are recovered with the method in [51],

3. The template suffix X is dropped to keep notations uncluttered.
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Fig. 7. The schematic flowchart of the multi-template learning frame-
work. Red arrows: mappings g* that associate the indices from each
subject-specific template S* to the common one S. XfL are the temporal
evolutions of each template. Blue: training; green: prediction.

resulting in a collection of different templates deformed in
various poses: {{X{}---{X}}} as our dataset. To include
all of them into training, we take one generic template S
as the reference. Intuitively, if there exists a mapping g that
brings each cell s € S* to a new cell g(s) = 3 € S, one
only needs to change the template-specific labels x? to the
corresponding x?, which are common to all templates, and
the training process above can again be applied. In other
words, we align topologies by matching every template S*
to S. Fig. 7 depicts this multi-template learning scheme.
Although various approaches for matching surface ver-
tices exist, only a handful of works discuss matching vox-
els/cells. Taking skinning weights [57] as an example, we
demonstrate in the following how to adapt a surface de-
scriptor to CVTs. Note that our goal is not to propose a
robust local 3D descriptor. With proper modifications, other
descriptors can be used as well for shape matching.

5.2.1

Skinning weights are originally used for skeleton-based an-
imations, aiming to blend the transformations of body parts
(bones). Usually coming as a side product of the skeleton-
rigging process [58], it is a vector w of B-dimensions, each
corresponding to a human bone b and B is the number
of bones. The non-negative weight w;, indicates the depen-
dency on that part and is normalized to sum up to one, i.e.
> » Ws = 1. As such, a skinning weight vector w is actually
a probability mass function of body parts, offering rich
information about vertex locations. To extend it from surface
vertices to CVT cells, we first relax the unity-summation
constraint as w is not used to average transformations of
bones but only as a descriptor here. The intuition behind the
adaptation is that, a CVT cell should have bone dependen-
cies similar to the closest surface point. Therefore, for a cell
whose normalized distance to the surface is d, its skinning
weight is simply the one of its closest surface point, scaled
by e?. We tackle scale changes by normalizing the distance
field with the averaged edge length of cells in the shape.
Since the shortest distance usually hits a triangle rather than
a single vertex, we use barycentric coordinates as the coeffi-
cients to linearly combine the skinning weights of the three
vertices. Note that this does not violate the unity-summation
constraint for surface vertices as their distance d is still zero.
We illustrate this concept in Fig. 8(a). The mapping g is
then determined by searching for the nearest neighbor in
the skinning weight space: g(s) = argmin, g [[ws — w||2.
In practice, we use Pinocchio [58] to computes skin-
ning weights, extend them from surface vertices to CVT

Generalized skinning weights.
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Fig. 8. (a): illustration of our strategy adapting skinning weights to CVT
cells. Distances to the surface d(xs, 92) are reflected in the normaliza-
tion constants e<. (b): result of matching two templates.

(a)

cells, and match all cells to those of the common template S.
The resulting skeletons are not used in our method. Fig. 8(b)
visualizes one example of matching results. Our approach
yields reasonable matches, regardless of the difference in
body sizes. Due to the descriptiveness of skinning weights,
symmetric limbs are not confused. Note that this computa-
tion is performed only between user-specific templates S*
and the generic one S off-line once. Input data Sy cannot
be matched this way, because rigging a skeleton for shapes
in arbitrary poses remains a challenging task.

6 TRACKING

Recall that our goal is not only to detect the associations
C but eventually to estimate the deformation parameter €)
via @ = argming E(©;C), such that the resulting X (©)
best explains Y. The choice of ® could be raw point
positions [59], [60], skeletal kinematic chains [4], [61] and
cage [62]. We opt for a patch-based deformation frame-
work [2] for surfaces and a CVT cluster-based method [51]
for volumetric meshes respectively. Both group the 3D
points into a higher-level structure, where shape deforma-
tions are represented as the ensemble of their rigid-body
motions 6. We briefly explain here the basic principles and
how to apply the predicted correspondences in § 5 to track
a sequence of temporally inconsistent observations.

6.1

In [2], the reference surface is decomposed into several
patches k. It serves as a intermediate deformation structure
between vertex positions and anatomical skeletons. Without
any prior knowledge of motion, patches are preferred to
be distributed uniformly over X'. Given correspondences C
from above, a data term is formulated as:

Edata(e;c) = Z wip”yi_xp(e)Hga
(i,p)ecC

Surface-based deformation

@)

which is a standard sum of weighted squared distances.

Since evolving a surface with discrete observations (even
with a good C) is ambiguous by nature, regularization
terms are usually introduced to exert soft constraints. Given
a vertex v, the rigidity constraint enforces the predicted
positions x,(6;,) and x,(8,;) from two adjacent patches P
and P, € N, to be consistent:

E(©)=3 > > wulx(0)-x,0)]5 ®

k=1 P,eN, vEPLUP,

where © is implicitly encoded in x,(0},) and x,(8;).
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Given a fixed input Y, the regression forest returns a
fixed response Y, and in turn a fixed C. We therefore apply
standard Gauss-Newton method directly to find the mini-
mizer of final energy: E(®;C) = AEyu1,(©;C) + E,.(9),
where )\ defines the softness of the template and is empir-
ically set to 10 throughout our experiments. Note anyway
that refining C like non-rigid ICP does is always possible.
In this case, our method provides better initializations than
using last frame results, reducing the needed ICP-iterations.

6.2 Volumetric deformation

On the other hand, a similar deformation framework can
be formulated for CVTs as well, only that surface patches
k are replaced by clusters of cells. We follow [51] which
is essentially a non-rigid ICP method. As opposed to the
extensive correspondence search, we again directly use the
association pairs (i,p) detected by the forest as initializa-
tions. This results in a faster pose estimation.

7 EXPERIMENTS

The presented method is evaluated extensively in this sec-
tion. We verify the merits of the discriminative associations
as well as the complete 3D tracking-by-detection pipeline,
in both surface and CVT parameterizations. As summarized
in Table 1 in the supplemental material, in total 15 datasets
are considered for various evaluation purposes. Due to the
availability of ground-truths, the input in § 7.1 is the non-
rigid registration, whereas in § 7.2 it is the reconstructed
visual hull from [38] or raw tessellated CVT from [63].

7.1 Discriminative associations

Recall that the goal of discriminative correspondences is to
guide the shape deformation not to match non-rigid 3D
shapes accurately. We aim only to show that (1) the pre-
sented features are more or at least equally informative for
matching humanoid surfaces than the existing state-of-the-
arts 3D descriptors, e.g. Heat Kernel Signature (HKS) [30],
[64] or Wave Kernel Signature (WKS) [31] and (2) CVT-
based associations are more reliable than the surface-based
counterparts. We describe every vertices with HKS, WKS,
and our pair-wise offset features f(v) in § 4.1. CVT cells
are, on the other hand, described by the Haar-like spherical
features f(s) in § 4.2. The forests learn to match these 3D
primitives against their own learning template, either a
generic reference surface (FAUST) or a subject-specific CVT
template (Goalkeeper, Ballet and Thomas).

7.1.1 Surface-based correspondences

Surface correspondences are validated on the publicly-
available dataset FAUST [65]. Following [16], [34], we use
only the training set because of the availability of ground-
truth vertex indices. It comprises 100 static 3D scans from
10 subjects in 10 poses. The accuracy on FAUST indicates
how well the proposed method deals with human shape
variations. Specifically, half the registrations (50 meshes) are
chosen to train 7" = 50 trees and the other half are left out
for testing. At branch nodes, 5000 splitting candidates ¢ are
randomly generated and the best one is stored. The error
measure is the geodesic distance between predicted vertices
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(b) unseen shapes

Fig. 9. Qualitative results of surface matching on FAUST. Best viewed in pdf.
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Fig. 10. Cumulative errors on FAUST [65].

and ground-truths. If the distance is smaller than a certain
threshold, we consider the point correctly matched. The
percentage of correct matches in varying thresholds charac-
terizes the performance of one algorithm and is commonly
used in many matching papers [16], [34].

The results are shown in Fig. 10, where z-axis is normal-
ized by the averaged edge length of the template. We parti-
tion the 100 meshes in two ways to test the generalization
to unseen shapes or poses. The keyword pose means that the
forest is trained with meshes in all 10 subjects but in only
5 poses, whereas shape represents the opposite. To compare
fairly with other existing methods, we keep the Vitruvian-
manifold label space unchanged (i.e. the same learning
template) while replacing the voxel-based features with 30-
dimensional scale-invariant HKS or WKS feature vectors.
The proposed TSDT-forest combination yields overall best
accuracy in Fig. 10, suggesting that the voxel-based TSDT
feature is indeed more informative than H/WKS in the
chosen parameter range. Comparing the blue solid curve
to the dashed one, we notice that our approach handles
unseen shapes better than unseen poses. This is due to the
fact that our feature relies mainly on 3D geometry, in which
pose variations cause more significant changes than shape
variations. Although this phenomenon is not observed in
the curves of H/WKS because they exploit the spectral
domain for better pose invariance, they suffer from the
confusion between symmetric parts as visualized in Fig. 9.

We further visualize in Fig. 11 the predicted associations
on noisy reconstructed visual hulls with outliers, where
no ground truths are available. Black colors means that

Fig. 11. Predicted data-model associations on noisy visual hulls with
Hough forests. Black color means that the points are either outliers, or
the inferred correspondences are rejected due to incompatible normals.

the predicted correspondences are either rejected by simple
normal compatibility check [2] like those on the body, or
rejected because they are recognized as the chair. In this
experiment, we include chair meshes into training data and
follow Eq. 6 as the entropy measure to grow the trees. As
a result, we can identify observations on the chair online
and remove them, so that they do not affect the subsequent
tracking stage. The task of trees here is throwing away the
points of known outlier classes and in the meanwhile also
predicting correspondences for the remaining points.

As one can see, our approach is capable of predicting
reasonable associations for noisy visual hulls while rejecting
outliers. This is of importance since they are the real input
data of the final tracking-by-detection pipeline. HKS and
WKS are known for their sensitivity to topological noises,
e.g. the merging of arms and torso. We however would like
to remark that, as oppose to our feature vector f (v) that has
a dimensionality virtually longer than 5000 from the ran-
domly generated splitting candidates at each branch node,
HKS and WKS are only 30-dimensional in our experiment.
To fully conclude that the presented voxel-based feature is
certainly better than HKS or WKS requires a more fair and
thorough comparison but is not the main goal of this paper.

7.1.2  Volumetric correspondences

The discriminative CVT-based correspondence in § 4.2 is
validated with 6 sequences from 3 subjects: Goalkeeper,
Ballet and Thomas. We register each template to the cor-
responding raw CVT sequences using a EM-ICP based
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Fig. 12. Qualitative results of volumetric matching on the raw CVTs. Best viewed in pdf.
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number of trees T is 20 in this experiment. Dashed and solid lines are
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method [51] to recover temporal coherent volumetric defor-
mations (tracked CVTs). For each subject, up to 250 tracked
CVTs are randomly chosen from the first sequence to form
the training set, while the second sequences are completely
left out for testing. We open L = 8 sphere layers for the
feature computation. Each tree is grown up to depth 20 with
30% bootstrap samples randomly chosen from the dataset.
The contributions of CVT on improving the correspon-
dences detection are evaluated in two aspects. First, we keep
using the Vitruvian manifold 0f2 as the regressing domain
but replace the voxel-based features f(v) with the spherical
feature £ (s), denoted as CVTfeature. Next, we further change
the label space from surfaces 02 to volumes (2, termed
SullCVT. We test on the tracked CVTs and report the results
on all frames of both training sequences (Tr) and testing
ones (Te). The drop between them indicates the ability to
generalize. The same error measure as in the previous sub-
section is applied, only the geodesic distances are replaced
by Euclidean ones. To yield a fair comparison with [11], here
the forests are subject-specific and consist of T' = 20 trees.
Fig. 13 shows the percentage of correct matches in
varying thresholds for Thomas and Ballet. Since CVTfeature
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Fig. 14. Cumulative matching accuracy on Goalkeeper.

and [11] are regressing to surfaces whereas fullCVT regresses
to volumes, we normalize the z-axis by the average edge
length of templates to yield fair comparisons. While the
results of CVTfeature are comparable to [11] (green vs. red
or orange), fullCVT attains the improved accuracies (blue
vs. red or green), demonstrating the advantages of our fully
volumetric framework. Some visual results of the fullCVT
approach on raw CVT input are shown in Fig. 12.

It is worth a closer analysis to highlight the advantages
of CVT-based feature f(s) against the voxel-based one f (v).
Our early work [11] applied f (v) that takes 150% voxels for
f(v) to describe a human shape, while CVT needs only 5k
cells*. Consequently, [11] is not able to include a sufficient
amount of training shapes, leading to a major drawback that
forests are limited to one single subject. To further decrease
the needed number of training meshes, [11] exploits skeletal
poses to cancel the global orientation. This in turn makes
every mesh in the training dataset face the same direction
and we learn merely pose variations. It follows that during
tracking the input data has to be re-oriented likewise using
the estimated skeletal poses from the last frame. The CVT-
based feature f(s), on the other hand, considers distance
fields of cells which is naturally invariant to rotations and
hence does not require re-orientations. We anyway compare
to [11] in both settings. Orange curves in Fig. 13 shows the
results with re-orientation, which is better than the proposed
strategy in Ballet. Nonetheless, without re-orienting data, the
accuracy drops substantially during testing (compare red to
orange). The efficiency on memory and the invariance of
our features are two determining reasons why the presented
method is better than [11]. With the multi-template learning
strategy in § 5.2, it takes just one forest for different subjects
in the tracking-by-detection experiment in § 7.2.

4. Further note that [11] stores a 3D vector in each voxel, whereas we
store a scalar in each CVT cell. So the ratio is 3 x 1503 to 5k.
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Fig. 15. Pixel overlap error of 8 sequences, averaged over all cameras. Image resolution: (a-d): 1920x 1080; (e-h): 1000x 1000. Best viewed in pdf.

Next, we use the sequences of Goalkeeper to verify the
merits of this multi-template learning framework, which
is unfeasible for voxel-based feature f(v) due to the high
memory footprint. It is a particularly difficult dataset be-
cause motions in the testing sequence UpJump have little
overlap with those in the training SideJump. We report
in Fig. 14 the correctness of correspondences for UpJump
(unseen during training) in fullCVT setting. Three situations
are taken into account: training with the tracked CVTs of all
three subjects (red), training only with those from Goalkeeper
(blue) and without Goalkeeper (green). For red and green
curves, we choose the Goalkeeper template as the common
one S and follow the strategy in § 5.2 to align distinct
CVT tessellations. Comparing the red curve to the blue
one confirms the advantage of this cross-template approach,
leading to a forest that applies to all three subjects without
trading off much accuracy. Nonetheless, the training data
of the testing subject is still indispensable, as the accuracy
drops when there is no tracked CVTs of Goalkeeper (green
vs. red or blue), even if the forest of green curve is trained
with twice the amount of CVTs compared to the blue curve.
This is partially due to the fact that template of Goalkeeper
has much smaller size than the other two and suggests that
the proposed Haar-like feature in Eq. 3 captures more shape
than pose information.

7.2 Tracking-by-detection

Now we move on to evaluate the full tracking-by-detection
pipeline. The predicted associations C of two parameter-
izations are fed into their respective shape deformation
frameworks in § 6 and the tracking is carried out on a frame-
by-frame basis. The fidelity of estimated shapes is verified
by the widely-used silhouette overlap error.

7.2.1 Surface-based

An individual forest is trained for each subject with up to
200 meshes, depending on the number of vertices in the
template. For Baran and Vlasic, we train standard regression
forest; for Lionel and Ben we apply the adaptation in Eq. 6
(o = 5) due to the un-properly segmented chairs and tables

TABLE 1
Average silhouette overlap error in pixels 4 sequences at low frame
rate. Image resolution: 1920x 1080.

Crane | Jumping | Bouncing | Handstand
ours 7746.40 9148.94 6847.72 9279.57
surIlCP [2] | 8295.58 | 16759.29 9400.76 11690.61

in input data. Growing T' = 20 trees to depth 25 with 5000
testing offset pairs 1) takes about 3 hours. Although it is
not the aim of this paper, we anyway augment the energies
in § 6.1 with the skeleton energy in [2] and validate the
estimated human poses in 2D.

For sequences without outliers, we compare with
surface-based ICP (surIlCP) [2] and articulated ICP (ar-
tICP) [15], both of which explain data with GMM using the
Expectation-Maximization algorithm. We run an additional
ICP step to reduce the errors (ours + ICP) for all testing se-
quences. The averaged overlap errors are shown in Fig. 15(a-
d). In general, our method performs much better than artICP
and attains comparable results with surICP. However, ICP-
based methods often fail when large deformation occurs
between consecutive frames, which is usually the case in
videos of low frame rates. We simulate this by tracking
only every three frames. As reported in Table 1, surICP now
yields higher errors because local proximity search fails to
estimate correspondences properly, while our approach is
able to handle large jumps between successive input.

Four of our testing sequences, Cutting, WalkChairl, Ham-
merTable, and WalkChair2 contain tables or chairs in observa-
tions, which play the roles as static outliers. We compare
with other outlier rejection strategies such as, fixed out-
lier proportion (fixOL) [2], removing outliers by body-part
classifications with SVM (bpSVM) [66], and modeling out-
lier likelihood dynamically by aggregating over all patches
(patchedOL) [3]. As shown in Fig. 15(e-h), conventional out-
lier strategy fixOL drifts quickly and soon fail to track (green
curves). ICP with robust outlier treatment, patchedOL, is
able to sustain noisy input to a certain extent. Once it starts
drifting, the error only gets higher due to its ICP nature
(yellow curves). When subjects and outliers are sperate
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components in visual hulls, we cast them into separately
TSDT, and feed them into the joint classification-regression
forest. If they are connected to each other, forests inevitably
associate some outliers to the humanoid template, leading
to undesirable deformations as suggested by the spike in
blue curves in Fig. 15(f). Nonetheless, since we rely less on
previous frames for data associations, the results can always
get recovered when they are separate again. In average, we
still yield low errors throughout the whole sequences. We
remark that such ability to recover is the essence of our dis-
criminative approach, which is the biggest advantages over
the existing generative methods. The recovered shapes and
poses, superimposed on original images, are also presented
in Fig. 2(c) in the supplementary material.

7.2.2 Fully volumetric tracking-by-detection

After evaluating the surface-based tracking-by-detection
framework, now we turn to evaluate the volumetric one.
We compare in two quantitative metrics against the whole
pipeline in [11], which is the early version of our surface-
based tracking-by-detection approach.

Unlike the matching experiment in the previous subsec-
tion, here we apply the multi-template strategy in § 5.2 to
train one universal regression forest, with Goalkeeper chosen
as the common template S. Training 7' = 50 trees up to
depth 20 where each one is grown with around 200 CVTs
(approximately one million samples) takes about 15 hours
on a 24-core Intel Xeon CPU machine. For each subject,
we track the testing sequence, which is not part of the
training set. Tracking inputs are raw CVTs that have no
temporal coherence. The number of clusters K is 250 for
Ballet and Goalkeeper and 150 for Thomas. We evaluate our
tracking approach with two different metrics. On one hand,
evaluation with marker-based motion capture evaluates the
correctness of the surface pose, but only for a sparse set of
surface points. On the other hand, the silhouette overlap
error evaluates the shape estimate but not the estimated
pose. Hence these metrics are complementary.

Some visual results are shown in Fig. 3 in the supplemen-
tal material and video®. Our approach is able to discover
volumetric associations even in challenging poses found in
Thomas and deform the templates successfully. As shown in
Table 2-4, we evaluate the results by computing the overlap
error between the ground truth silhouette and the projection
of the estimated surface. The metric we use is the pixel error
(number of pixels that differ). Statistics are computed on all
frames of all cameras. The Ballet/Seq2 sequence has marker-
based motion capture data: fifty markers were attached to
the body of the subject, providing a sparse ground truth
for surface tracking. First, each marker is associated to a
vertex of the template surface. Then, for each marker, we
measure the distance between its location and the estimated
vertex location. Statistics on the distance are reported on
Table 5. We observe that our approach attains slightly better
performances than a state of the art ICP-based approach [51]
and outperforms a surface-based tracking-by-detection [11]
which mostly fails to correctly register the legs of the subject.

5. https:/ /hal.inria.fr/hal-01300191
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TABLE 2
Silhouette pixel error on sequence Goalkeeper/UpJump. Image size is
2048x2048.
method mean | stddev. | median max
Proposed 15221 6843 14754 57748
Huang et al. [11] | 19838 14260 15607 | 109428
Allain et al. [51] | 14773 6378 14355 43359
TABLE 3
Silhouette pixel error on sequence Ballet/Seq2. Image size is
1920%1080.
method mean | stddev. | median max
Proposed 2620 1041 2557 8967
Huang et al. [11] 5427 2809 4863 | 39559
Allain et al. [51] 2606 1008 2571 7642
TABLE 4
Silhouette pixel error on sequence Thomas/Seq2. Image size is
2048x2048.
method mean | stddev. | median max
Proposed 9991 7089 7968 78242
Huang et al. [11] | 28731 23421 22991 | 354293
Allain et al. [51] | 10199 7379 8022 81649
TABLE 5
Statistics of surface registration error at marker locations, on the
Ballet/Seg2 sequence.
method mean (mm) | stddev. (mm)
Proposed 26.37 16.67
Huang et al. [11] 124.02 200.16
Allain et al. [51] 27.82 18.39

7.2.3 Discussion

Last but not lease, we make a short comparison between
the two presented features. As discussed above, voxel-based
volume in § 4.1 has the downside of high memory footprint,
which limits the allowed training variations. Aligning the
orientations is one way to reduce the training variation such
that forests only need to learn the pose variations of one
single subject. One has to repeat the same thing likewise
during the testing phase. In [11], we rely on the skeletal
poses of previous frames for this purpose and thus the
forest predictions are not fully frame-independent, exposing
tracking subject to the potential risk of drifting. To facilitate
a fully 3D tracking-by-detection framework, the information
of previous frames is preferred no to participate in the dis-
criminative correspondence estimation. On the other hand,
the spherical feature presented in § 4.2 attempts to incor-
porate rotational, pose, and even shape variations during
training, yielding completely frame-wise forest predictions.
As reported in Fig. 13, without aligning rotations, the
accuracies of correspondences drop substantially on the
testing sequences for the method in [11]. This means that
voxel-based framework and the corresponding features do
not generalize well to unseen rotations. When deployed in
tracking applications, such unreliable associations eventu-
ally result in failure. In particular, one can observe in Table 4
that [11] attains high silhouette overlap discrepancy, most
likely due to the fact that the subject rotates himself in
many orientations and thus confuses the forest. From these
observations, we conclude that the CVT-based Haar-like fea-
ture and the derived fully volumetric tracking-by-detection
framework is better than the voxel-based counterpart.
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Non-parametric 3D Human Shape Estimation from Single Images
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Abstract

In this paper, we tackle the problem of 3D human shape
estimation from single RGB images. While the recent
progress in convolutional neural networks has allowed im-
pressive results for 3D human pose estimation, estimat-
ing the full 3D shape of a person is still an open is-
sue. Model-based approaches can output precise meshes
of naked under-cloth human bodies but fail to estimate de-
tails and un-modelled elements such as hair or clothing. On
the other hand, non-parametric volumetric approaches can
potentially estimate complete shapes but, in practice, they
are limited by the resolution of the output grid and can-
not produce detailed estimates. In this work, we propose
a non-parametric approach that employs a double depth
map to represent the 3D shape of a person: a visible depth
map and a “hidden” depth map are estimated and com-
bined, to reconstruct the human 3D shape as done with a
“mould”. This representation through 2D depth maps al-
lows a higher resolution output with a much lower dimen-
sion than voxel-based volumetric representations. Addi-
tionally, our fully derivable depth-based model allows us
to efficiently incorporate a discriminator in an adversar-
ial fashion to improve the accuracy and “humanness” of
the 3D output. We train and quantitatively validate our ap-
proach on SURREAL and on 3D-HUMANS, a new photore-
alistic dataset made of semi-synthetic in-house images an-
notated with 3D ground truth surfaces.

1. Introduction

Recent works have shown the success of deep network
architectures for the problem of retrieving 3D features such
as kinematic joints [4, 33] or surface characterizations [43]
from single images, with extremely encouraging results.
Such successes, sometimes achieved with simple, stan-
dard network architectures [30], have naturally motivated

* Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000
Grenoble, France. T Most of the work was done while the last author was
a research scientist at Inria.

Figure 1. Our non-parametric representation for human 3D shape:
given a single image, we estimate the “visible” and the “hidden”
depth maps from the camera point of view. The two depth maps
can be seen as the two halves of a virtual “mould”. We show this
representation for one of the images of our new dataset.

the applicability of these methodologies for the more chal-
lenging problem of end-to-end full 3D human shape re-
trieval [2, 18]. The ability to retrieve such information from
single images or videos is relevant to a broad number of ap-
plications, from self-driving cars, where spatial understand-
ing of surrounding obstacles and pedestrians plays a key
role, to animation or augmented reality applications such as
virtual change rooms that can offer the E-commerce indus-
try a virtual fitting solution for clothing or bodywear.
Designing a deep architecture that produces full 3D
shapes of humans observed in an input image or a sequence
of input images raises several key challenges. First, there is
a representational issue. While the comfort zone of CNNs
is in dealing with regular 2D input and output grids, the gap
must be bridged between the 2D nature of inputs and the 3D
essence of the desired outputs. One solution is to follow a
parametric method and estimate the deformation parameters
of a predefined human 3D model [2, 18]. These methods are
limited to the level of details covered by the model. In con-
trast, non parametric approaches can potentially account for
shape surface details but are prone to produce physically-
impossible body shapes. This is the case of the recent vol-
umetric approach proposed in [38] that encodes the human
body as a voxel grid whose dimensionality directly impacts
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Figure 2. Overview. Given a single image, we estimate the “visible” and the “hidden” depth maps. The 3D point clouds of these 2 depth
maps are combined to form a full-body 3D point cloud, as if lining up the 2 halves of a “mould”. The 3D shape is then reconstructed using
Poisson reconstruction [19]. An adversarial training with a discriminator is employed to increase the humanness of the estimation.

the precision of the estimation. This highlights a second
challenge: the dimensionality of the problem is consider-
ably higher than what existing networks have been shown
to handle, because the parametrisation sought is no longer
restricted to a subset of the variability, e.g. kinematic pose
of humans or body shape parameters, but to an intrinsically
finer description of the body. Finally, the training data for
this problem, yet to be produced, requires a particularly de-
manding definition and acquisition effort. The large data
variability of 3D problems has motivated some initial ef-
forts to produce fully synthetic training sets [39], where
such variability can be partially scripted. Yet recent suc-
cessful methods underscore the necessity for realistic data,
for both the general applicability of the estimation, and to
keep the underlying network architecture simple, as devoid
as possible of any domain specific adaptations.

In order to overcome these difficulties, we propose a
non-parametric approach that employs a double depth map
representation to encode the 3D shape of a person: a “visi-
ble” depth map capturing the observable human shape and
a “hidden” depth map representing the occluded surface are
estimated and combined to reconstruct the full human 3D
shape. In this encoding of the 3D surface, the two depth
maps can be seen as the two halves of a virtual “mould”,
see Figure 1. This representation allows a higher resolu-
tion output, potentially the same as the image input, with a
much lower dimension than voxel-based volumetric repre-
sentations, i.e. O(N?) vs O(N?). We designed an encoder-
decoder architecture that takes as input a single image and
simultaneously produces an estimate for both depth maps.
These depth maps are then combined to obtain a point cloud
of the full 3D surface which can be readily reconstructed us-
ing Poisson reconstruction [19]. Importantly, our fully dif-
ferentiable depth-based model allows us to efficiently incor-
porate a discriminator in an adversarial fashion to improve

the accuracy and “humanness” of the 3D output, especially
in the case of strong occlusions. See Figure 2. To train
and quantitatively evaluate our network in near real-world
conditions, we captured a large-scale dataset of textured 3D
meshes that we augment with realistic backgrounds. To ac-
count for the large variability in human appearance, we took
special care in capturing data with enough variability in
movements, clothing and activities. Compared to paramet-
ric methods, our method can estimate detailed 3D human
shapes including hair, clothing and manipulated objects.

After reviewing the related work in Section 2, we present
our two-fold contribution: our new non-parametric 3D sur-
face estimation method is explained in Section 3 while our
large-scale dataset of real humans with ground-truth 3D
data is detailed in Section 4. Experiments are presented in
Section 5 and conclusions drawn in Section 6.

2. Related Work

3D object from single images. Various representations
have been adopted for 3D object shape estimation. Voxel-
based representations [5] consist in representing the 3D
shape as an occupancy map defined on a fixed resolution
voxel grid. Octree methods [36] improve the computabil-
ity of volumetric results by reducing the memory require-
ments. Point-clouds are another widely employed represen-
tation for 3D shapes. In [7], Fan et al. estimate sets of 1024
points from single images. Jiang et al. [15] build on this
idea and incorporate a geometric adversarial loss (GAL) to
improve the realism of the estimations. AtlasNet [10] di-
rectly estimates a collection of parametric surface elements
to represent a 3D shape. Our representation combines two
complementary depth maps aligned with the image, simi-
lar in spirit to the two halves of a “mould”, and shares the
resolution of the input image, capturing finer details while
keeping output dimensionality reasonable.



Similarly to the work of Tatarchenko et al. [35] on re-
constructing vehicle images from different viewpoints, we
combine the estimation of several depth maps to obtain a
3D shape. For human shape estimation, however, we work
on a deformable object. Also, we focus on the visible and
hidden depth maps rather than any other because of their
direct correspondence with the input image. Our two depth
maps being aligned with the image, details as well as con-
textual image information are directly exploited by the skip
connections to estimate the depth values. Multi-views [35]
do not necessarily have pixel-to-pixel correspondences with
the image making depth prediction less straightforward.

3D human body shape from images. Most existing meth-
ods for body shape estimation from single images rely
on a parametric model of the human body whose pose
and shape parameters are optimized to match image evi-
dence [2, 11, 20, 29]. This optimization process is usu-
ally initialised with an estimate of the human pose supplied
by the user [11] or automatically obtained through a detec-
tor [2, 20, 29] or inertial sensors [42]. Instead of optimizing
mesh and skeleton parameters, recent approaches proposed
to train neural networks that directly predict 3D shape and
skeleton configurations given a monocular RGB video [37],
multiple silhouettes [6] or a single image [18, 25, 28]. Re-
cently, BodyNet [38] was proposed to infer the volumetric
body shape through the generation of likelihoods on the 3D
occupancy grid of a person from a single image.

A large body of work exists to extract human representa-
tions from multiple input views or sensors, of which some
recently use deep learning to extract 3D human representa-
tions [8, 13, 21]. While they intrinsically aren’t designed to
deal with monocular input as proposed, multi-view methods
usually yield more complete and higher precision results as
soon as several viewpoints are available, a useful feature we
leverage for creating the 3D HUMANS dataset.

More similar to ours are the methods that estimate pro-
jections of the human body: in [39], an encoder-decoder
architecture predicts a quantized depth map of the human
body while in DensePose [12] a mapping is established
between the image and the 3D surface. Our method also
makes predictions aligned with the input image but the
combination of two complementary “visible”” and “hidden”
depth maps leads to the reconstruction of a full 3D volume.
In [24], the authors complete the 3D point cloud built from
the front facing depth map of a person in a canonical pose
by estimating a second depth map of the opposite viewpoint.
We instead predict both depth maps simultaneously from
a single RGB image and consider a much wider range of
body poses and camera views. All these methods rely on a
parametric 3D model [2, 18, 20] or on training data anno-
tated [12] or synthesised [39] using such a model. These
models of humans built from thousands of scans of naked
people such as the SMPL model [23] lack realism in terms

of appearance. We instead propose to tackle real-world situ-
ations, modeling and estimating the detailed 3D body shape
including clothes, hair and manipulated objects.
3D human datasets. Current approaches for human 3D
pose estimation are built on deep architectures trained and
evaluated on large datasets acquired in controlled environ-
ments with Motion Capture systems [, 14, 34]. However,
while the typology of human poses on these datasets cap-
tures the space of human motions very well, the visual ap-
pearance of the corresponding images is not representative
of the scenarios one may find in unconstrained real-world
images. There has been a recent effort to generate in-the-
wild data with ground truth pose annotation [26, 32]. All
these datasets provide accurate 3D annotation for a small
set of body keypoints and ignore 3D surface with the excep-
tion of [20] and [41] who annotate the SMPL parameters in
real-world images manually or using IMU. Although the re-
sulting dataset can be employed to evaluate under-cloth 3D
body shapes, its annotations are not detailed enough, and
importantly, its size is not sufficient to train deep networks.
To compensate for the lack of large scale training data
required to train CNNs, recent work has proposed to gener-
ate synthetic images of humans with associated ground truth
3D data [4, 31, 39]. In particular, the Surreal dataset [39],
produced by animating and rendering the SMPL model [23]
on real background images, has proven to be useful to train
CNN architectures for body parts parsing and 2.5D depth
prediction [39], 3D pose estimation [31, 33], or 3D shape
inference [38]. However, because it is based on the SMPL
model, this dataset is not realistic in terms of clothing, hair
or interactions with objects and cannot be used to train ar-
chitectures that target the estimation of a detailed 3D human
shape. We propose to bridge this gap by leveraging multi-
camera shape data capture techniques [3, 40], introducing
the first large scale dataset of images showing humans in
realistic scenes, i.e. wearing real clothes and manipulating
real objects, dedicated to training with full 3D mesh and
pose ground-truth data. Most similar to ours are the CMU
Panoptic dataset [17] that focus on social interactions and
the data of [45] that contains dense unstructured geometric
motion data for several dressed subjects.

3. Methodology

In this section, we present our new non-parametric 3D
human shape representation and detail the architecture that
we designed to estimate such 3D shape from a single image.

3.1. “Mould” representation

We propose to encode the 3D shape of a person through
a double 2.5D depth map representation: a “visible” depth
map that depicts the elements of the surface that are directly
observable in the image, and a “hidden” depth map that
characterises the occluded 3D surface. These two depth



maps can be estimated and combined to reconstruct the
complete human 3D shape as done when lining up the two
halves of a “mould”. See example in Figure 2.

Given a 3D mesh, obtained by animating a 3D human
model or by reconstructing a real person from multiple
views, and given a camera hypothesis, i.e. location and pa-
rameters, we define our two 2D depth maps z,;s and zp;q
by ray-tracing. Specifically, we cast a ray from the camera
origin, in the direction of each image pixel location (u, v)
and find the closest intersecting point on the mesh surface:

Zvis[u’v] = min ||pk||2 (l)

keRay(u,v)

for the visible map, and the furthest one for the hidden map:

Zhid[u,v] = max ||pxl2, 2)

keRay(u,v)

where 3D points {p;} = {(Pz,i,Dy.i>P-,:)} are expressed
in camera coordinate system and the L2-norm ||.||2 is the
distance to the camera center. Ray(u,v) denotes the set of
points p; on the ray passing through pixel (u, v) obtained by
hidden surface removal and visible surface determination.

To be independent from the distance of the person to the
camera, we center the depth values on the center of mass of
the mesh, i.e. Zorig © Zvis[U, V] = Zyis[U, V] — Zopig Y, v,
and similarly for zp;4[u, v]. Since they are defined with re-
spect to the same origin, the 2 depth maps z,;s[u,v] and
Znid|u, v] can be readily combined in 3D space by merging
their respective 3D point clouds into a global one:

{pi} = {pi}vis |J {Pi}nia 3

An example of such a point cloud is depicted in Figure 2,
where points corresponding to z,;s[u, v] and zp;q[u, v] are
respectively colored in red and blue. In practice, to keep the
depth values within a reasonable range and estimate them
more accurately, we place a flat background a distance L
behind the subject to define all pixels values in the depths
maps in the range [—Zopig ... L]. Points p; of the point
clouds are then selected as belonging to the human surface
ifp,; <L—e

As in volumetric representation through voxel grid, our
method also encodes 3D surfaces and point clouds of di-
verse sizes into a fixed size representation, making a 3D
surface easier to consider as a deep network target. How-
ever, in our case, we can work at the image resolution with a
much lower output dimensionality O(N?) than voxel-based
volumetric representations O(N?3), N being the size of the
bounding box framing the human in the input image.

We numerically validated the benefit of our representa-
tion compared to a voxel grid approach by encoding a ran-
dom set of 100 meshes (picked from our 3D HUMANS
dataset presented in Section 4) at different resolutions and
computing the 3D reconstruction error (average Chamfer

102 4

10! 4

Error (chamfer distance) (mm)
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—e— Voxel grid
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Figure 3. Reconstruction error for voxel grid and our “mould”
when augmenting the dimensionality D of the representation,
D=N? for voxels grid and D=2N? for ours.

distance) between ground-truth vertices and the resulting
point clouds. This comparison is shown in Figure 3. The
error obtained with our mould-representation decreases and
converges to a minimum value that corresponds to surface
details that cannot be correctly encoded even with high res-
olution depth maps, i.e. when some rays intersect more than
twice with the human surface for particular poses. In prac-
tice, we show in Section 5 that this can be solved by employ-
ing a Poisson reconstruction to obtain a smooth 3D surface,
including those areas. We can extrapolate from Figure 3
that voxel grids can reach perfect results with an infinity of
voxels, but for manageable sizes, our representation allows
to capture more details.

3.2. Architecture

We formulate the 3D shape estimation problem as a
pixel-wise depth prediction task for both visible and hidden
surfaces. Our framework builds on the stacked hourglass
network proposed by Newell et al. [27] that consists of a
sequence of modules shaped like an hourglass, each taking
as input the prediction from the previous module. Each of
these modules has a set of convolutional and pooling layers
that process features down to a low resolution and then up-
sample them until reaching the final output resolution. This
process, combined with intermediate supervision through
skip connections, implicitly captures the entire context of
the image. Originally introduced for the task of 2D pose
estimation and employed later for part segmentation and
depth prediction [39], this network is an appropriate choice
as it predicts a dense pixel-wise output while capturing spa-
tial relationships associated with the entire human body.

We designed a 2-stack hourglass architecture that takes
as input an RGB image I cropped around the human and
outputs the 2 depths maps z,;s and 2,4 aligned with 1. We



use a L1 loss function defined on all pixels of both depth
maps. The loss function to be minimized is thus the average
distance between the ground truth z,, and the estimation 2,

P

1 ~
21—l @

p=1

£L1 =

with P being the number of pixels in the batch and 2,
the network output for pixel p, including pixels in both
Zuis|t, v] and zp;q[u, v] maps.

We also experimented with an L5 loss but found that it
overly penalizes outliers, i.e. pixels incorrectly assigned to
background and vice versa, and therefore focuses only on
that task. By using the £,; norm, we force the network to
not only segment the image correctly, i.e discriminate the
subject from the background, but also provide an accurate
estimation of the depth at each pixel.

3.3. Adversarial training

As observed with other non-parametric methods [38] but
also with approaches relying on a model [18], our network
can sometimes produce implausible shapes that do not look
human, especially when a limb is entirely occluded by other
parts of the body. To improve the accuracy and the “hu-
manness” of our prediction, we follow an adversarial train-
ing procedure inspired by the Generative Adversarial Net-
works (GAN) [9]. Our fully derivable depth-based model
allows us to efficiently incorporate a discriminator in an ad-
versarial fashion, i.e., the goal for the discriminator will be
to correctly identify ground truth depth maps from gener-
ated ones. On the other hand, the generator objective will
be two-fold: fitting the training set distribution through the
minimization of the £ loss (Equation 4) and tricking the
discriminator into classifying the generated depth maps as
ground truth depth maps through the minimization of the
Laan loss:

Laan(G,D) = E; ,[log D(I, z)]+E[log(1-D(I,G(I))].

(%)
Our discriminator D will be trained to maximize the Lo an
loss by estimating 1 when provided with ground-truth depth
maps z and estimating 0 when provided with generated
depth maps G(I). In order to weigh the contribution of
each loss, we will use a factor A, our full objective being
modeled as a minimax game:

(G*,D*) = argménmgx([,GAN(G, D)+ M1 (G)).
(6)

The L1 loss will be used to learn the training set distribu-
tion by retrieving the low-frequency coefficients while the
Lcan loss will entice the generator into predicting realis-
tic and precise depth maps. It is important to note that the
discriminator is only used to guide the generator during the
learning. The discriminator is not used at test time.

The architecture employed as our discriminator is a 4
stack CNN. Each stack is composed of a convolutional layer
(kernel size 3, stride 1), a group normalization layer (32
groups), a ReLu activation function and a MaxPool 2x2 op-
eration. There are 64 channels for the first convolution and
the number of channels is multiplied by 2 at each stack un-
til reaching 512 for the 4th and last stack convolution. We
then connect our 8x8x512 ultimate feature map with 2 fully-
connected layers of size 1024 and 512 neurons and then our
final output neuron on which we apply a binary cross en-
tropy loss. We jointly trained our generator and discrimina-
tor on 50,000 images for 40 epochs. Training is performed
on batches of size 8 with the Adam optimizer. Given our
small training batch size, we found the use of group norm
[44] to be a great alternative to batch norm that was produc-
ing training instabilities. The learning rate is kept constant
at le-4 during the first 20 epochs and is then decreased lin-
early to zero during the following 20 epochs. In practice,
since our L1 loss is much smaller than the Lg 4 v loss, we
multiply the £,; loss by a A factor equal to 1e4. With this
adversarial training, we observed that the results are sharper
and more realistic. In cases of deformed or missing limb,
e.g. the legs in Figure 7 right, the use of a discriminator
forces the generator to produce a better prediction.

4. Dataset generation

We introduce 3D HUMANS (HUman Motion, Activities

aNd Shape), a realistic large-scale dataset of humans in ac-
tion with ground-truth 3D data (shape and pose). It consists
of semi-synthetic videos with 3D pose and 3D body shape
annotations, as well as 3D detailed surface including cloths
and manipulated objects. First, we captured 3D meshes
of humans in real-life situations using a multi-camera plat-
form. We then rendered these models on real-world back-
ground scenes. See examples in Figure 4a.
Capture. We employed a state of the art 3D capture
equipment with 68 color cameras to produce highly de-
tailed shape and appearance information with 3D textured
meshes. The meshes are reconstructed frame by frame in-
dependently. They are not temporally aligned and do not
share any common topology. We divided the capture into 2
different subsets: in the first one, 13 subjects (6 male and 7
female) were captured with 4 different types of garments
(bathing suit/tight clothing, short/skirt/dress, wide cloths
and jacket) while performing basic movements e.g., walk,
run, bend, squat, knees-up, spinning. In the second subset,
6 subjects, 4 male and 2 female, were captured while per-
forming 4 different activities (talking on the phone, taking
pictures, cleaning a window, mopping the floor) in 2 differ-
ent ways: standing/sitting for talking on the phone, stand-
ing/kneeling for taking picture, etc. More than 150k meshes
were reconstructed. The dataset was collected at Inria from
consenting and informed participants.
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Figure 4. Data generation. (a) We captured 3D meshes of humans, wearing real clothes, moving and manipulating objects using a multi-
camera platform. We then rendered these models on real-world background scenes and computed ground-truth visible and hidden depths
maps. (b) We also generated a test set by rendering our meshes on realistic 3D environments.

Rendering. We rendered all our videos at a 320 x 240 reso-
lution using a camera of sensor size 32mm and focal length
60mm. Our videos are 100 frames in length and start with
the subject at the center of the frame. For the first frame of
the sequence, the subject is positioned at a distance of 8 me-
ters of the camera, with a standard deviation of 1 meter. We
used the images of the LSUN dataset [46] for background.
Annotations. We augment our dataset with ground-truth
SMPL pose and body parameters. To do so, we use the Hu-
man3.6M [14] environment as a “virtual MoCap room”: we
render the 3D meshes for which we want to estimate the
3D pose within that environment, generate 4 views using
camera parameters and background images from the dataset
and estimate the 2D/3D poses by running LCR-Net++, an
off-the-shelf 3D pose detector particularly efficient on Hu-
man3.6M. An optimum 3D pose is then computed using
multi-view 3D reconstruction and used as initialization to
fit the SMPL model, estimating pose and shape parameters
that better match each mesh. The SMPL model is fitted to
the point clouds both for naked and dressed bodies. Keep-
ing the body parameters fixed (obtained from fits in minimal
clothing) resulted in a lower performance of the baseline
when evaluated against ground truth dressed bodies.

5. Experiments

We analyse quantitatively and compare our approach to
the state-of-the-art on two datasets. First, the SURREAL
dataset [39], a synthetic dataset obtained by animating tex-
tured human models using MoCap data and rendering them
on real background images, and our 3D HUMANS dataset
introduced in this paper. While SURREAL covers a wider
range of movements since it has been rendered using thou-
sands of sequences from [!], our data better covers shape
details such as hair and clothing. In the following exper-
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Figure 5. Comparaison with state-of-the-art on the SURREAL
dataset: (a) we first compare against the BodyNet [38] baseline.
(b) We analyse the impact of varying the size of the training set on
performance on our new 3D HUMANS dataset.

o
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iments, both training and test images are tightly cropped
around the person using subjects segmentation. The small-
est dimension of the image is extended to obtain a square
image that is then resized to 256x256 pixels to serve as
input for our network. Performance is computed on both
128x128 output depth maps as the distance between each
ground truth foreground pixel and its corresponding pixel
in the predicted depth map. Background depth L is set at
1.5m.

5.1. SURREAL

Recent methods [38, 39] evaluate their performance on
this dataset. First, we evaluated the performance of our ar-
chitecture when estimating quantized depth values (19+1
for background) through classification as in [39] and our
proposed regression method: with a maximum distance to
groundtruth of 30mm, the quantity of pixels with a correct
depth estimation increase by 5% when using regression in-
stead of classification. Then, we compare in Figure 5a our
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Figure 6. Evaluation on our 3D HUMANS dataset: we first analyze the influence of the training data on performance (a). Then, we
compare against the SMPL baseline (b). We compare the performance on visible and hidden depth map separately (c). Finally, we analyse
the training data on a dataset rendered in realistic backgrounds and observe that SURREAL data is important for generalisation (d).

performance against the recent BodyNet voxel grid-based
architecture from [38] who also reported numerical perfor-
mance on SURREAL. Although good 3D performances are
reported in the paper, we can see that when evaluating in
the image domain, i.e., comparing depth maps, the perfor-
mance of BodyNet drops. Our method makes 3D estima-
tions aligned with the image and better recover details, out-
performing BodyNet quite substantially.

Figure 7. Performance on 3D-HUMANS dataset in presence of
severe occlusions on three frames: (top) input images, (left) with
GAN, (right) without GAN. Errors above 15c¢m are shown in red.
The GAN helps increase the “humanness” of the predictions.

5.2. 3D HUMANS

We consider 14 subjects (8 male, 6 female) for training
and the remaining 5 subjects (2 male, 3 female) for test.
An interesting aspect of synthetic datasets is that they of-
fer an almost unlimited amount of training data. In our
case, the data generation relies on a capture process with a
non-negligible acquisition effort. It is therefore interesting
to analyze how adding more training data impacts the per-
formance. Our results in Figure 5b show that training our

architecture on 50,000 images is sufficient and that using
more training images does not improve much the perfor-
mance. The appearance of our images being quite different
from SURREAL data, we first compare the performance of
our method when considering different training strategies:
training on SURREAL, training on 3D HUMANS, or train-
ing on a mix of both datasets. In Figure 6a, we can see
that the best performances are obtained when SURREAL
images are not used. The appearance of the images is too
different and our architecture cannot recover details such
as clothes or hair when trained on data obtained by ren-
dering the SMPL model. This is verified by the result de-
picted in Figure 6b: we outperform, by a large margin, a
baseline obtained by fitting the SMPL model on the ground
truth meshes, effectively acting as an upper bound for all
methods estimating SMPL meshes [2, 18]. It shows the in-
efficiency of these methods to estimate clothed body shape
since clothes are not included in the SMPL model.

Finally, we analyse in Figure 6c how much our perfor-
mance varies between front and back depth maps. As ex-
pected, we better estimate the visible depth map, but our
hidden depth maps are usually acceptable. See examples
in Figure 7 and Figure 8. The quality of the 3D recon-
structions is remarkable given the low dimensionality of the
input. Main failures occur when a limb is completely oc-
cluded. In such cases, the network can create non-human
shapes. We proposed to tackle this issue by considering an
adversarial training that we analyse in the next section. We
note a higher performance on 3D HUMANS than on SUR-
REAL. We attribute that to several factors including the
higher pose variability in SURREAL (some subjects are in
horizontal position) and the absence of lighting in 3D HU-
MANS. We also analyzed the results on different subsets of
the evaluation set @50mm and obtained with/without cloth-
ing: 83.30% and 85.43% respectively and with/without ob-
ject: 79.11% and 84.55% respectively, confirming the nui-
sance introduced by these elements.



Figure 8. Generalisation to previously unobserved data. We apply
our pipeline to images with 3D realistically rendered backgrounds
(left), and with 3 real-world images from the LSP dataset (right).
These poses, in particular the baseball player, have not been seen
at training time but our model still generalizes well.

5.3. GAN

Severe occlusions (self- or by other elements of the
scene) are a limitation of our model that we address with
adversarial training. We carried out a dedicated experiment
where we artificially generated such occlusions in train/test
images to quantify improvements. We obtain a 7% cham-
fer distance error drop with adversarial training and a clear
qualitative improvement which we illustrate in Figure 7.
We highlight the differences by showing an error heat-map
over a Poisson reconstruction of the point cloud for better
visualization. The quantitative gain is limited due to the
network sometimes hallucinating plausible limbs far from
groundtruth (red hand in the left Figure 7), resulting in
higher error than a network without GAN that does not es-
timate any limb at all. This is because the metric does not
evaluate the overall plausibility of the produced estimation.

5.4. Generalisation

In order to quantitatively measure its generalisation ca-
pability, we have evaluated our network on an additional
dataset: instead of static background images, we have ren-
dered the meshes in realistic 3D environments obtained on
the internet (examples in Figure 4b). The results (Figure 6d)
show that a mix training on both SURREAL and 3D HU-
MANS is ideal for generalisation. We suspect that jointly
rendering the subject and the 3D background at the same
time creates a more realistic image where the subject is
more complicated to segment, hence the need for more vari-
ability in the training data. We also generated qualitative
results for LSP images [16], depicted in Figure 8, and for
the DeepFashion dataset [22], shown in Figure 9 where we
compare our approach with HMR [18] and BodyNet [38].
We can observe that our approach captures more details, in-
cluding hair, shirt and the belly of the pregnant woman (up),
hair, skirt and body pose (middle) and dress (bottom).

Figure 9. Comparison between HMR [18] (left), Bodynet [38]
(middle) and our method (right). Unlike [18, 38], we do not train
on in-the-wild images but estimate 3D shapes of clothed subjects.

6. Conclusion

‘We have proposed a new non-parametric approach to en-
code the 3D shape of a person through a double 2.5D depth
map representation: a “visible” depth map depicts the ele-
ments of the surface that are directly observable in the im-
age while a “hidden” depth map characterises the occluded
3D surface. We have designed an architecture that takes as
input a single image and simultaneously produces an esti-
mate for both depth maps resulting, once combined, in a
point cloud of the full 3D surface. Our method can recover
detailed surfaces while keeping the output to a reasonable
size. This makes the learning stage more efficient. Our ar-
chitecture can also efficiently incorporate a discriminator in
an adversarial fashion to improve the accuracy and “human-
ness” of the output. To train and evaluate our network, we
have captured a large-scale dataset of textured 3D meshes
that we rendered on real background images. This dataset
will be extended and released to spur further research.
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Annex

7. Architecture details
7.1. Generator

The main difference between our generator architecture
and the stacked hourglass by Newell et al. [27] is the out-
put dimension. Newell et al. estimate a 64x64 resolu-
tion heatmap for each body joint. In our case, we esti-
mate 2 depth maps and aim at a higher 128x128 resolution.
Our hourglass output dimension is 128x128x2. Because of
this difference in output resolution, we apply the following
modifications to the stacked hourglass [27] architecture: We
do not use a maxpooling operation after layerl, we increase
the depth of the hourglasses from 4 to 5 skipped connec-
tions, we project the hourglass result on 2 channels (one for
each depth map). Also, we use 2 stacked hourglasses and
we replace batch normalization by group normalization [44]
that performs better on small training batches. See architec-
ture details in Table 1.

10

Layer Layer type Output shape
Input Input 256x256x3
Convl Conv 7x7 stride=2, GroupNorm, Relu 128x128x64
Layerl | Residual module expanded 128x128x128
Layer2 | Residual module expanded 128x128x256
Layer3 | Residual module 128x128x256
Hgl Hourglass, skipped connections = 5 128x128x2
Hg2 Hourglass, skipped connections = 5 128x128x2

Table 1. Generator architecture.

7.2. Discriminator

For our discriminator, we employed a 4 stacks CNN. It
takes as input a set of 2 depth maps at resolution 128x128
and outputs a scalar: close to 1.0 if it believes they are sam-
pled from the ground truth depth maps and close to O if it
believes they have been generated by the generator. See Ta-
ble 2 for details.

Layer | Layer type Output shape
Input Input 128x128x2
Convl | Conv 3x3 stride=1, GroupNorm, Relu 128x128x64
MP1 MaxPool 2x2 64x64x64
Conv2 | Conv 3x3 stride=1, GroupNorm, Relu 64x64x128
MP2 MaxPool 2x2 32x32x128
Conv3 Conv 3x3 stride=1, GroupNorm, Relu 32x32x256
MP3 MaxPool 2x2 16x16x256
Conv4 | Conv 3x3 stride=1, GroupNorm, Relu 16x16x512
MP4 MaxPool 2x2 8x8x512
FC1 Fully connected layer 1024

FC2 Fully connected layer 512

FC3 Fully connected layer 1

Table 2. Discriminator architecture.
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Abstract We propose a full study and methodology
for multi-view stereo reconstruction with performance
capture data. Multi-view 3D reconstruction has largely
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ture content inputs, where classic low-level feature ex-
traction and matching are generally successful. However
in performance capture scenarios, texture content is
limited by wider angle shots resulting in smaller subject
projection areas, and intrinsically low image content of
casual clothing. We present a dedicated pipeline, based
on a per-camera depth map sweeping strategy, analyz-
ing in particular how recent deep network advances al-
low to replace classic multi-view photoconsistency func-
tions with one that is learned. We show that learning
based on a volumetric receptive field around a 3D depth
candidate improves over using per-view 2D windows,
giving the photoconsistency inference more visibility
over local 3D correlations in viewpoint color aggrega-
tion. Despite being trained on a standard dataset of
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1 Introduction

In this paper, we examine the problem of multi-
view shape reconstruction of production-realistic per-
formance capture sequences. Such sequences may con-
tain arbitrary casual clothing and motions, and have
specific capture set assumptions due to the particular
lighting and camera positioning of these setups. Multi-
view 3D reconstruction is a popular and mature field,
with numerous applications involving the recording and
replay of captured 3D scenes, such as 3D content cre-
ation for broadcast and mobile applications, or the in-
creasingly popular virtual and augmented reality ap-
plications with 3D user avatars. An essential and still
improvable aspect in this matter, in particular with per-
formance capture setups, is the fidelity and quality of
the recovered shapes, our goal in this work.
Multi-view stereo (MVS) based methods have at-
tained a good level of quality with pipelines that typi-
cally comprise feature extraction, matching stages and
3D shape extraction. Interestingly, very recent works
have re-examined stereo and MVS by introducing fea-
tures and similarity functions automatically inferred us-
ing deep learning. The main promise of this method-
ological shift is to include better data-driven priors, ei-
ther in 2D [1,2,3,4] as improvement over classic 2D fea-
tures, or in 3D to account for relative view placement
and local or global shape priors [5,6,7]. These novel
MVS methods have been shown to outperform classic
learning-free methods on static scene benchmarks [8].
Our main goal is to examine whether these data-
driven improvements transfer to the more complex case
of live performance capture, where a diverse set of ad-
ditional difficulties arise with respect to typical MVS
setups. Typical challenges for these capture situations
include smaller visual projection areas of objects of in-
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Fig. 1 Challenging scene captured with a passive RGB multi-camera setup [9]. (left) one input image, (center) reconstructions
obtained with classical 2D features [10], (right) proposed solution. Our results validate the key improvement of a CNN-learned
disparity to MVS for performance capture scenarios. Results particularly improve in noisy, very low contrast and low textured
regions such as the arm, the leg or even the black skirt folds, which can be better seen in a brightened version of the picture

in Figure 17.

terest, due to wider necessary fields of view for captur-
ing motion; occlusion and self-occlusion of several sub-
jects interacting together; lack of texture content typi-
cal of real-life subject appearance and clothing; or mo-
tion blur with fast moving subjects such as sport action
scenes (see Figure 14). To the best of our knowledge,
existing learning-based MVS schemes report results on
static datasets such as DTU [11] or ShapeNet [12] but
have not yet been demonstrated on performance cap-
ture data with the aforementioned typical issues.

We present a detailed framework for this purpose,
which casts the problem as a fusion of per view depth
maps as inspired by recent fusion methods [13], each
depth map extracted using a learned multi-view pho-
toconsistency function. Our approach performs multi-
view matching within local volumetric units of infer-
ence. Contrary to previous methods, our volumetric
unit is defined in a given view’s own reference, so as to
capture camera inherent 3D dependencies, specifically
for the purpose of per-view decision. Instead of inferring
occupancies, we infer disparity scores to ease training
and to focus the method more on photometric config-
urations than local shape patterns. We sweep viewing
rays with this volumetric receptive field, a process we
coin volume sweeping, and embed the algorithm in a
multi-view depth-map extraction and fusion pipeline

followed by a geometric surface reconstruction. With
this strategy, we validate that CNN-based MVS out-
performs classical MVS approaches in performance cap-
ture scenarios. In particular, we obtain high precision
geometric results on complex sequences, outperform-
ing both existing CNN-based and classic non-learning
methods on a large set of capture datasets. These di-
verse results are obtained using only a DTU subset as
training data, which evidences the generalization capa-
bilities of our network.

This article is an extended version of [14] that pro-
vides a complete and self-contained description of the
proposed method, with more details about the pipeline
from [10] along with the detailed volume sweeping and
surface extraction algorithms. Several supplementary
experiments were performed to give more insights on
the contribution and study the influence of the param-
eters. We finally challenged the generalization proper-
ties of our network on multiple dataset that were not
seen during training with competitive results compared
to both hand-crafted and learned state of the art.

2 Related Work

Multi-view stereo reconstruction is an active and
longstanding vision problem [15]. Stereo and MVS-
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based approaches are increasingly being used for high fi-
delity capture applications [16,17,18,19,11,20,21], pos-
sibly complementing other strategies such as depth-
based reconstruction [13,22,23,24] by addressing short-
comings that include limited range, sensitivity to high
contrast lighting, and interference when increasing the
number of viewpoints. While considering various shape
representations, for instance point clouds [16], fused
depth maps [25], meshes [26,27], or volumetric dis-
cretizations [28,29,30], most MVS methods infer 3D
shape information by relying on the photoconsistency
principle that rays observing the same scene point
should convey similar photometric information.

In it simplest form, such similarity can be mea-
sured by considering projected color variances among
views, as used in early works [28] with limited robust-
ness. In stereo and short baseline situations, simple
normalized forms of 2D window correlation are suffi-
cient to characterize similarity under simple lighting
and constrast changes, using e.g. ZNCC, SSD, SHD. For
broader geometric and photometric resilience, various
features based on scale-invariant gradient characteriza-
tions [31,32,33] have been designed, some specialized
for the dense matching required for the MVS problem
[34]. More recently, image features have been success-
fully applied to performance capture sequences in e.g.
[20,10]. Generally, MVS methods characterize photo-
consistency either with a symmetric, viewpoint agnos-
tic, combination of all pairwise similarities [35], or with
a per image depth map determination through sweeping
strategies [36,25]. The latter sweeping approaches have
the advantage of simplifying the scene parametrization
of occlusions [37,38], which we leverage for our ap-
proach and show to yield a robustness advantage over
other strategies in our experiments.

While classic MVS approaches have been generally
successful, recent works aimed at learning stereo photo-
consistency have underlined that additional priors and
more subtle variability co-dependencies are still discov-
erable in real world data. Several works leverage this by
learning how to match 2D patch pairs for short base-
line stereo, letting deep networks infer what features
are relevant [1,2,3,4]. More recent works extend this
principle to short baseline MVS, with symmetric com-
bination of 2D learned features [39], or wide baseline
sparse capture scenarios [40,41].

Most of these methods however use a 2D receptive
field for stereo matching. The intuition that volumet-
ric 3D receptive fields may be more informative and
ease CNN inference and has been explored by some re-
cent works [5,6,7,8], an assertion that the presented
approach further verifies. While casting correlations in
3D as well, our approach proposes several key differ-

ences. Contrary to the latter, our volumetric receptive
field is projective in the camera coordinate frame, simi-
lar to some binocular stereo [42] or image-based render-
ing [43] works. This allows for sweeping along viewing
rays, which was proven to be a robust search strategy
for binocular stereo plane sweeping [38]. It also enables
a per frame approach, with depth estimations, that ap-
pears to be more flexible than a global reasoning over all
frames. This scheme also avoids decorrelating camera
resolution and 3D receptive field resolution, as with e.g.
voxels, the volumetric receptive field being defined as a
backprojection along pixel rays. Additionally, this volu-
metric receptive field learns local pairwise correlations,
a lower level and easier task than learning occupancy
grid patterns. Our evaluation substantiates the afore-
mentioned robustness benefits on a number of qualita-
tive (7.3) and quantitative experiments (7.2) with chal-
lenging dynamic capture datasets, showing in particular
the improvements over 2D receptive fields (7.1).

3 Method Overview

Our main objective is to study multi-view photocon-
sistency within the context of multi-view stereo recon-
structions. We consider for that purpose the reconstruc-
tion framework, largely adopted over the last decade,
that consists in first estimating per camera depth maps,
followed by depth fusion and surface extraction. This
framework allows to reason at the pixel level, enabling
therefore each camera to provide local details on the
observed surface with local estimations. This is in con-
trast with global strategies that consider photoconsis-
tency at the shape level, with for instance voxels as
in [6]. Comparisons between strategies are provided in
the experiment section (see section 7.2).

Regarding depth map estimation, we propose to
replace the traditional handcrafted photoconsistency
measures used to estimate depths with a learned ver-
sion. This version is based on CNNs and exploits their
ability to learn local photometric configurations near
surfaces observed from multiple viewpoints. As de-
picted in Figure 2, our approach takes as input a set of
calibrated images and outputs a 3D mesh obtained by
fusing depth maps. Depths along pixel viewing rays are
obtained using a volume sweeping strategy that sam-
ples multi-view photoconsistency along rays and iden-
tifies the maxima. For a depth point candidate along
a viewing ray, the photoconsistency is estimated using
a discretized 3D volumetric projective grid centered on
that point. In such a 3D grid, color inputs from the pri-
mary camera are paired with color inputs from another
camera at each volume element of the grid around the
depth point candidate. For a given depth candidate, we
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Fig. 2 Method overview. Depth maps, for all input image I;, are obtained by maximizing, along viewing lines, a learned
function that measures photoconsistency at a given depth d along the viewing line of a given pixel p. Depth maps are then
fused into an implicit form from which the zero set surface is extracted.

collect all such paired color volume grids for every other
camera than the primary. A trained CNN is used to rec-
ognize the photoconsistent configurations given pairs of
color samples within the 3D grid. The key aspects of
this strategy are:

— The per camera approach, which, by construction,
samples the photoconsistency at a given location as
captured and thus enables more local details to be
revealed compared to a global approach, as shown
in Figure 17.

— The 3D receptive field for the photoconsistency eval-
uation, which resolves some 2D projection ambigu-
ities that hindered 2D based strategies.

— The learning based strategy using a convolutional
neural network, which outperforms traditional pho-
tometric features when evaluating the photoconsis-
tency in dynamic captured scenes, as demonstrated
by our experiments.

The following sections focus on our main contribu-
tions, namely the 3D volume sampling in section 4.1
and the learning based approach in sections 4.2,4.3 for
the photoconsistency evaluation. We then describe in
section 5 our depth map evaluation procedure, derived
from a winners-take-all strategy suitable to our capture
scenario. These depth maps are then fused into an im-
plicit form, from which, without loss of generality, we
extract the zero-level set using the surface extraction
technique described in section 6.

4 Learning Photoconsistency

Our reconstruction approach takes as input N images
{I;}X,, along with their projection operators {m;}¥,
and computes depth maps, for the input images, which
are subsequently fused into a 3D implicit form. This
section explains how these maps are estimated.
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Given a pixel p in an input image I;, the problem is
therefore to find the depth d at which its viewing ray in-
tersects the observed surface. The point along the ray
of pixel p at depth d is noted r;(p,d). Our approach
searches along viewing rays using a likelihood function
for a point to be on the surface given the input color
pairs in the evaluation volume. In contrast to tradi-
tional methods that consider handcrafted photoconsis-
tency measures, we learn this function from multiview
datasets with ground-truth surfaces. To this purpose
we build a convolutional neural network which, given a
reference camera i and a query point z € R, maps a
local volume of color pair samples around x to a scalar
photoconsistency score p;(z) € [0..1]. The photoconsis-
tency score accounts in practice for color information
from camera 7 at native resolution, and for other camera
colors in addition to their relative orientations as im-
plicitly encoded in the volume color pair construction.
These important features allow our method to adapt
to specific ray incidences. Its voluntarily asymmetric
nature also allows subsequent inferences to automati-
cally build visibility decisions, e.g. deciding for occlu-
sion when the primary camera i’s color is not confirmed
by other view’s colors. This would not have been pos-
sible with a symmetric photoconsistency function such
as [39].

We thus cast the photoconsistency estimation as
a binary classification problem from these color pairs
around the location x, with respect to the reference im-
age I; and the other images. In the following, we first
provide details about the 3D sampling regions before
describing the CNN architecture used for the classifi-
cation and its training. We then explain the volume
sweeping strategy that is subsequently applied to find
depths along rays.

4.1 Volume Sampling

In order to estimate photoconsistency along a viewing
ray, a 3D sampling region is moved along that ray at
regular distances. Within this region, pairs of colors
backprojected from the images are sampled. Each pair
contains a color from the reference image I; and its cor-
responding color in another image I;. Samples within
the 3D region are taken at regular depths along viewing
rays in the reference image (see Figure 3). The corre-
sponding volume is a truncated pyramid that projects
onto a 2D region of constant and given pixel dimension
in the reference image. This allows the 3D sampling
to adapt to the camera properties, e.g. pixel resolution
and focal length.

More precisely, we denote 7;(p,d) the 3D location
at depth d along the viewing line back-projected from

ri:gi)bi)rjygjsbj)

Ii —

Fig. 3 The 3D volume used to estimate photoconsistency
along rays from the reference image I;. k3 samples within
the volume are regularly distributed along viewing rays and
contain color pairs as back-projected from images I; and I;.
At a given depth along a ray from I; any image I; # i can
define such a pairwise comparison volume.

pixel p in the reference image I;. The k? input sam-
ple grid used to compare pairs of colors from im-
ages {i, j} ;i is then the set of back-projected rays in a
k? window centered on p, regularly sampled from depth
d — kX/2 to d + kX\/2 around r;(p,d), with A chosen
such that spacing in the depth direction is equal to the
inter-pixel distance from the reference camera at that
depth. Every sample contains the reference color of the
originating pixel in image I; and the color of the point
projected in image ;.

Volume sampling is always performed with the same
orientation and ordering with respect to the reference
camera. Convolutions are thus consistently oriented
with respect to the camera depth direction.

Volume Size In practice, we choose k = 8. Our strat-
egy is to learn pairwise photoconsistent configurations
along rays. This way, decisions for the surface presence
are conditioned to the observation viewpoints, which
implicitly enforce visibility rules since only one 3D point
per ray can be detected. This is in contrast to more
global strategies where such per viewpoint visibility is
less easy to impose, as with regular voxel grids, e.g. [6]
with 323 or 643 grids. In addition, by considering the
surface detection problem alone, and letting the sub-
sequent step of fusion integrate depth in a robust and
consistent way, we simplify the problem and require lit-
tle spatial coherence, hence allowing for small grids. We
provide a more detailed study of the performances of
the classifiers with various depth values in section 7.1.
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Fig. 4 CNN architecture. Each cube is a pairwise compar-
ison volume with k2 samples that contain 6 valued vectors
of RGB pairs and over which 3D convolutions are applied.
The output score p;(r;(p,d)) € [0..1] encodes the photocon-
sistency measure at depth d along the ray from pixel p in
image I;.

4.2 Multi-View Neural Network

As explained in the previous section, at a given point =
along a viewing ray from image I; we can build N — 1
color volumes with pairs of views (I, Ix;). Each vol-
ume is composed of k2 cells with pairs of RGB values. In
order to detect whether the surface is going through =z,
we use siamese encoders similar in spirit to [39], with
however 3D volumes instead of 2D patches. Each en-
coder considers as input a pairwise color volume and
provides a feature. Features from all color volumes at x
are then averaged and fed into a final decision layer.
Weight sharing and averaging are chosen to achieve
camera order invariance.

The network is depicted in Figure 4. The inputs are
the N — 1 color volumes of size k* x 6 where RGB pairs
are concatenated at each sample within the volume.
Convolutions are performed in 3D over the 6 valued
vectors of RGB pairs. The first layers (encoders) of the
network process every volume in parallel, with shared
weights. Every encoder is a sequence of two convolu-
tions followed by non-linearities, and max-pooling with
stride. Both convolutional layers consist of respectively
16 and 32 filters of kernel 4 x 4 x 4, followed by a Recti-
fied Linear Unit (ReLU) and a max-pooling with kernel
2 x 2 x 2 with stride 2. We then average the obtained
2 x 2 x 2 x 32 features and feed the result to a 128 filter
1 x 1 x 1 convolutional layer, followed by a ReLU and a

final 1 x 1 x 1 decision layer, for a total of 72K param-
eters . The network provides a score p;(r;(p,d)) € [0..1]
for the photoconsistency at depth d along the ray from
pixel p in image I;.

We experimented this network using different con-
figurations. In particular, instead of averaging pairwise
comparison features, we tried max-pooling which did
not yield better results. Compared to the volumetric
solution proposed by [6], the number of parameters is
an order of magnitude less. As mentioned earlier, we
believe that photoconsistency is a local property that
requires less spatial coherence than shape properties.

4.3 Network Training

The network was implemented using TensorFlow [44]
and trained from scratch using the DTU Robot Image
Dataset [11], which provides multiview data equipped
with ground-truth surfaces that present an accuracy of
0.5mm. From this dataset 11 million &% color volumes
were generated, from which we randomly chose 80 per-
cent for training, and the remaining part for evalua-
tion. Both positive and negative samples were equally
generated by randomly sampling volumes up to 20cm
away from ground truth points, where a volume is con-
sidered as positive when it contains at least p ground
truth points. In theory, the network could be trained
with any number of camera pairs, however, in practice,
we randomly choose from one up to 40 pairs. Training
was performed with the binary cross entropy function
as loss. Model weights are optimized by performing a
Stochastic Gradient Descent, using Adaptive Moment
Estimation [45] on 560,000 iterations with batch size
of 50 comparisons, and with a random number of com-
pared cameras (from 2 up to 40). Since our sampling
grids are relatively small and camera dependent, we are
able to generate enough sample variability for training,
without the need for data augmentation.

5 Depth Estimation

As previously noted, our main motivation is to recon-
struct live dynamic scenes, typically humans in motion.
In such cases, it is advantageous to focus on the fore-
ground objects in the observed scene rather than model-
ing the full scene. To this purpose, we limit the search
domain for depths along viewing rays to a region de-
fined by image silhouettes. In the following we explain
how such a region is defined and we detail then the
volume sweeping we adopt to identify image depths.
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Fig. 5 Left: the Confidence Volume with o = 8 = 54, equiv-
alent to the Visual hull with the 54 cameras that see the
subject; Right: the Confidence Volume with o = 8 = 10.

5.1 Confidence Volume

We assume we are given a set of N images {I;}¥; ob-
served with a set C' of calibrated cameras with known
projections {m; }I¥.; and centers {c;},. We assume we
are also given a set of silhouettes {(2;},, often avail-
able in multi-view scenarios by performing image seg-
mentation, for instance background subtraction with
constrained capture environments. The silhouettes are
generally imprecise, as a result of multiple causes, in-
cluding color ambiguities, that plague the segmenta-
tion. However, the redundant information they pro-
vide over several viewpoints can be used to restrict the
search domains along viewing rays to segments that are
likely to intersect the object surface. To this purpose we
define the confidence volume V as:

V={zeR®: 3% (m(zx) € I;)

AFPi(mi(x) € )}, M)

as the locus of points in R? which project in i > « im-
ages and § < i silhouettes to which they belong. When
B =i, V is simply the visual hull with ¢ images. «, 8
are two user defined constants that restrict weakly sup-
ported depth predictions with a and enable predictions
away from the exact visual hull when 8 < «. Intuitively,
V' is a dilated version of the visual hull in the space re-
gion seen by at least « images, as shown in fig 5. As
explained in the following section, the intersection of
a viewing ray with V defines the starting point of the
depth search interval along that ray.

5.2 Volume Sweeping

In order to estimate pixel depths, the sampling volume
introduced in section 4.1 is swept along their viewing
rays while computing multi-view photoconsistency us-
ing the network detailed in section 4.2. For every cam-
era, we sample therefore along viewing rays, test pos-
sible depth values, and choose the best candidate with
respect to the network score. In practice, a reference
view I; is only compared to the other views I; such
that cos(#;;) > 0.5, where 6;; is the angle between the
optical axes of camera ¢ and j. Then, we sample rays
from camera i through every pixel p and build colored
volumes at every candidate depth, starting at the in-
tersection with the confidence volume introduced in the
previous section. Once the probability of surface pres-
ence is computed for every candidate, we define the
estimated depth d; as:

di = argmax  (pi(ri(p,d))), (2)

d€[dmin,dmaz]

where p;(r;(p,d)) is the consistency measure along the
ray from p in image I;, as estimated by the network.
[dmin, dmaz] is the search range with: dpim = dv(p)
the intersection of the viewing ray at p with the con-
fidence volume; d,,q, such that the search is stopped
when the accumulated photoconsistency score reaches
a given value ppqz, in a winner-takes-all surface detec-
tion strategy.

dmazx
/ 4 pi(ri(pa m))dx < Pmazx (3)

Depths for all pixels and from all images are fur-
ther fused using a truncated signed distance function
(TSDF) [46]. The following section explains how we de-
fine and extract the zero level-set of the TSDF.

6 Surface Extraction

We explained in the previous section how to compute
depth maps for every viewpoint. We now have to fuse
them into an implicit form, namely the TSDF [46] from
which we can extract the zero-level set that corresponds
to the reconstructed surface, which appears in black in
Figure 6. Contrary to previous works [47,24,13,22], we
do not store TSDF values in a regular voxel grid but
we rather devise a simple yet efficient sampling proce-
dure derived from Voronoi Tesselation strategies, that
specifically accommodates multi-view capture scenar-
ios. It is worth mentioning that other works such as
[27] also make use of irregular sampling strategies for
MVS, but in a volumetric graph-cut framework.
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6.1 Implicit Form Definition

For a point € R3, the truncated signed distance
TD(z) € R to the surface is defined as the weighted
average of all camera contributions F;(z),i € C:

pia - {0z
n(x) = di(mi(x)) — [le; — x|,
and:
g(; pi(z)Fi(x)
TD(.I) = W7 (5)

where C,, = {i € C : F;(x) # 0} and p}(z) the photo-
consistency measure (4) of the estimated depth along
the ray from camera ¢ passing through z. If d; is un-
defined at x, e.g. = is outside the camera visibility do-
main, then camera ¢ does not contribute to the TSDF.
When no camera contributes at z but x is inside the
confidence volume V' then it is considered as inside, i.e.
TD(z) < 0. Note that contributions are weighted by
the normalized photoconsistency measure which means
that when cameras disagree about the photoconsistency
at x, cameras with higher measures have an increased
impact whereas cameras with low detection probability
measures only marginally impact the reconstruction.

6.2 Extraction Procedure

From the previously defined TSDF, we extract the sur-
face using a sampling strategy based on ray casting and
Voronoi Tessellation. Figure 6 provides a 2D example
of the main steps of the algorithm that are as follows:

1. (orange) Sample points inside the implicit form de-
fined by the TSDF. This is achieved by randomly se-
lecting pixels in all images and computing the point,
along each pixel rays, inside but close to the surface
according to the TSDF. The process is iterated until
a user defined number of 3D points is reached.

2. (blue) Determine the Voronoi diagram: given the
points inside the shape surface, a Voronoi diagram
of this set of points is computed.

3. (green) Clip the Voronoi diagram with the zero level
set of the TSDF. This operation extracts the inter-
section of the Voronoi cells with the surface to form
an oriented mesh.

In the above strategy, sampling points close to the
surface, and originating from image viewpoints, ensures
that the 3D discretization is denser on the surface than
inside the volume and also denser on surface regions

/

A

Fig. 6 Our surface extraction procedure. The zero-level set
of the implicit form (black) is observed by different cameras
(red). They are used to provide the inside samples (orange)
that will be used as the centroids for the Voronoi tessellation.
This tessellation is finally clipped at the zero-level set and
the final surface (green) can be extracted.

observed by more images. The latter enables more pre-
cision to be given to surface regions for which more
image observations are available.

We visualize in figure 7 an example of extracted sur-
face. We show 2 of the 40 input views in the top row,
and our reconstruction in the middle. The bottom side
of the bust is never seen by any camera. We show in the
bottom row the difference in sampling resulting from
the observation of the shape. The horizontal bottom
side of the model is never observed, yet still correctly
reconstructed. On the other hand, the triangles of the
mesh in that area are much larger than the ones in the
vertical upper part, which is observed by more cam-
eras. This strategy allows for complete reconstructions
of captured shapes with an adaptive sampling density
depending on the observations of the object, focusing
more samples in the regions where the details can be
recovered.

Runtime The full pipeline allows us to reconstruct
one time frame, i.e. 68 images (2048 x 2048), in approx-
imately 30 to 40 minutes using two NVIDIA Titan X
GPUs, depending on the number of pixels that observe
the shapes.

7 Experiments
Our main goals in this section are (i) to evaluate

whether and how our learned photoconsistency con-
tributes with respect to existing methods and (ii) to ver-
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Fig. 7 Two points of view of a synthetic model (top) and
the result of our reconstruction (middle). A close-up of the
extracted surface (bottomn) at the limit between well-observed
and unseen regions. The top part of the close-up is seen by
many cameras whereas the bottom part is never observed.

ify whether these transfer to the more complex case of
generic 3D capture scenes in practice, e.g. humans with
complex clothing. To this aim, we perform various eval-
uations to verify and quantify the benefit of our learned
multi-view similarity. We start by providing multiple
validation experiments to justify the choices for the
learning and reconstruction strategies in 7.1. Second,
for comparison purposes, we apply in 7.2 our depth esti-
mation approach in the static case using the [11] bench-
mark and compare it to state of the art MVS methods,
both handcrafted and learning based. We make use of
the standard accuracy and completeness metrics, both
averaged and median, for which the evaluation code is
provided by the authors.

Finally, we build experiments to test the main claim
of improvement with production capture data in 7.3. To
this goal we use several dynamic sequences captured on
different platforms, which exhibit typical difficulties of
such data. In particular, we mainly focus on the Kino-
vis acquisition platform [9], which consists of 68 RGB

cameras, of resolution 2048 x 2048 with focal lengths
varying from 8mm to 25mm. We achieve very signif-
icant qualitative improvements compared to the state
of the art approaches both learning-based [6,8], and
handcrafted [10], without fine-tunning and despite the
difference of capture setup used for training. We also
compare to [23] on an example provided by the authors
and achieve slightly better quality using only half the
available information.

7.1 Validation

We previously formulated the problem of surface detec-
tion along viewing rays as a binary classification prob-
lem, as explained in section 4. In order to assess the
benefit of our volumetric strategy, we first focus on dif-
ferent classifiers performances. We provide in 7.1.1 re-
ceptive field comparisons on the training dataset, this
to enhance the advantage of casting and learning cor-
relations in 3D. Additionally, section 7.1.2 provides a
study of the depth hyperparameter of the receptive field
of our network. Then, since preliminary results of [14]
seemed to show a better robustness to a larger base-
line, we design an experiment with cameras that are
further apart to better quantify this improvement in
section 7.1.3. We finally provide in 7.1.4 an ablation
study of the accumulator described in 3 to validate its
importance in the depth estimation procedure, in the
performance capture scenario.

Section 7.1.2 shows that a volume size of 8 x 8 x 8
is a preferred trade-off, thus will be used from now on,
when not specified.

7.1.1 Classifiers Study

In this paragraph, we compare performances of different
classifiers based on various receptive fields:

1. Zero-Mean Normalized Cross Correlation (ZNCC):
ZNCC is applied over the samples within the volu-
metric support region.

2. Learning (CNN) with a planar support: a planar
equivalent of our volumetric solution, with the same
architecture and number of weights, in a fronto-
facing plane sweeping fashion.

3. Learning (CNN) with a volumetric support: our so-
lution described in the previous sections.

Figure 8 shows, with the classifiers’” ROC curves,
that the most accurate results are obtained with a vol-
umetric support and learning. Intuitively, a volumetric
sampling region better accounts for the local non-planar
geometry of the surface than planar sampling regions.
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Fig. 8 ROC Curves of three different classifiers, ZNCC, pla-
nar and volumetric supports, on the DTU Dataset [11]. Cir-
cles represent thresholds that optimize sensitivity + speci-
ficity with the values 0.2, 0.5 and 0.5 respectively.

This graph also emphasizes the significantly higher dis-
criminative ability of learned correlations compared to
deterministic ones.

7.1.2 Volume Sampling

To further demonstrate this, we then proceed to a study
on the impact of the depth parameter of the sampling
volume. While keeping a 8 x 8 pixels reprojection on the
images, we study the performances on classifiers with
receptive fields varying in depth. Figure 9 shows clas-
sifiers performances with depth values ranging from 1
to 12. To perform this experiment, we had to diminish
the networks number of parameters to fit the 12 depth
training in memory and keep reasonable training and
testing times, explaining the worse performances com-
pared to previous ROC curves. This experiment demon-
strates that the more information the network gathers
along the ray the better the detection of the surface is.
We choose a depth of 8 as it gives the best trade-off
between computational complexity and performance.

7.1.8 Baseline Study

We now evaluate the robustness to various baselines by
accounting for a higher number of cameras and more
distant cameras in the classification. Table 1 shows the
accuracy of the classifiers with a varying number of
cameras and for the optimal threshold values in Fig-
ure 8. As already noticed in the literature, e.g. [16,
19], a planar receptive field gives better results with
a narrow baseline and the accuracy consistently de-
creases when the inter-camera space grows with addi-
tional cameras. In contrast the classifier based on a vol-
umetric support exhibits more robustness to the variety

. .
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Fig. 9 ROC Curves of four different classifiers using 8 x 8
receptive fields with various depths. Circles represent thresh-
olds that optimize sensitivity + specificity.

in the camera baselines. This appears to be an advan-
tage with large multi-camera setup as it enables more
cameras to contribute and reduces hence occlusion is-
sues.

Camera # 5 20 49

ZNCC 64.98 | 65.46 | 65.58
Ours Plan. | 80.67 | 77.87 | 75.92
Ours Vol. 82.95 | 84.84 | 83.45

Table 1 Classifier accuracy (%).

To push this experiment further, we design an ex-
periment to test the robustness of our approach on a
sparse capture platform, with lower scene coverage and
wider baseline. Since no ground truth exists for this
kind of performance capture scenario, we simulate it us-
ing of a realistic rendering engine to create a synthetic
dataset. Similar to [9] in terms of camera parameters
and capture volume, we chose to render only 10 ran-
domly placed cameras, evenly distributed on an hemi-
sphere around the capture volume. The average spacing
between a camera and its 10 closest neighbors is 8.03m
in this case, where it is 2.5m for the 68 POV kinovis
platform and 0.188m in the 49 POV DTU case. For this
experiment, we set the neighboring camera acceptation
threshold cos(;;) to 0.1, meaning that we accept almost
orthogonal cameras. The synthetic cameras render the
scene using Filmic Blender [48], a photorealistic con-
figuration for Blenders Cycles ray-tracing engine. The
images are generated with random parameters, i.e. the
cameras parameters vary, in terms of position, orien-
tation, focal length, and pixels number of samples, the
latter directly affecting sensor noise. With this plat-
form, we rendered a dozen of models such as procedu-
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Fig. 10 An example of sparse synthetic performance capture data generation. (top) Top and side view of the 10 cameras
positioned around a surface. (bottom) Four examples of generated points of view.

rally generated geometric shapes, real life reconstruc-
tions or CAD models with various appearances. The
multiview networks are trained from scratch on these
synthetic examples, and evaluated on unseen synthetic
data. Figure 10 shows an example of our synthetic plat-
form as well as the generated synthetic data. We show
in figure 11 the impact of a volumetric support: when
the baseline between the cameras becomes extreme, it
offers more robustness compared to a planar support,
which appears very slanted in the compared view. Even
though it is only a synthetic dataset, we believe that it
gives interesting insights on the versatility of our vol-
ume sweeping strategy for the performance capture sce-
nario. A qualitative result of this improved robustness
is shown in figure 12. The area of the face is highly oc-
cluded, and the volumetric support helps recovering a
smoother surface. Also note the details of the belt: the
volume allows a sharp reconstruction of finer details,
where a plane cannot handle finer geometry details.

7.1.4 Accumulation Term

We now provide a qualitative experiment to justify the
use of the accumulation term in equation 3 in figure 13.
This figure demonstrates the importance of the accu-
mulation scheme in the performance capture scenario.
The noisy photoconsistency in this case leads to a lot
of false positives, creating extreme holes in the recon-
structions when not using the accumulation scheme, i.e.

—Vol

o Vol Classif 0.5
—Planar

o Planar Classif 0.5

True Positive Ratio

0 L L L L L L L 1
[ 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9
False Positive Ratio

Fig. 11 ROC Curves of two different classifiers using pla-
nar and volumetric receptive fields, on the sparse synthetic
data. Circles represent thresholds that optimize sensitivity +
specificity.

Prmaz — 00. The addition of this term (pq, = 1.6) al-
lows for smooth and faithful reconstructions, still con-
taining most of the important geometric details.

7.2 Quantitative Comparisons

In this section, we compare our solution to various
state-of-the-art methods using the DTU Robot Image
Dataset [11]. We use the standard accuracy and com-
pleteness metrics to quantify the quality of the esti-
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Fig. 12 (Left) 3 input images, (middle) plane based classi-
fier, (right) volumetric classifier. The face is highly occluded
in many views (left) making the reconstruction noisy and in-
accurate when using a planar support whereas the volume
counterpart yields smoother and more accurate details.

Fig. 13 (top row) Input images of captured subjects. (mid-
dle row) Reconstructions without probability accumulation
along rays. (bottom row) Results with accumulation.

mated surface as described in [49], that is we define
accuracy for a point of the reconstructed shape as the
smallest Euclidean distance to the ground-truth, and
the completeness of a point of the ground-truth as the
smallest Euclidean distance to the reconstructed shape.
For both metrics, we compare the average and median
values over all the points of the shapes. To diminish
the impact of far outliers in the metrics, we make use
of the default thresholding parameter of [49]. We com-
pare to Furukawa et al. [16], Campbell et al. [50] and
Tola et al. [34], that are well-known handcrafted strate-
gies, as well as to additional learning-based results from
Ji et al. [6] and Hartmann et al. [39]. To conduct a
fair comparison with [39], that is a patch based ap-
proach building a depthmap with a network compara-
ble to ours, we use the result of our volume sweeping
approach on the same depth map. When performing
reconstructions on the DTU, we did not use the accu-
mulation scheme in 3, i.e. pmer — ©00. To speed up
computations, we limit the search along a viewing ray
to 5mm around a coarse depth estimation based on im-
age descriptors [51]. Depths are sampled every 0.5mm.
As a post processing step, we simply add a soft bilat-
eral filter, similarly to [39], accounting for color, spatial
neighborhood, and probability of the detection.

Reconstruction results are depicted in table 2. We
achieve quality on par with the best performing meth-
ods on this dataset, with a median accuracy and com-
pleteness in the range of the ground truth accuracy that
we measured around 0.5mm. It should be noticed that
the best accuracy is obtained by Tola et al. [49] which
tend to favor accuracy against completeness whereas
Campbell et al. [50], in a symmetric manner, tend to fa-
vor completeness against accuracy. We obtain more bal-
anced results on the 2 criteria, similarly to the widely
used approach by Furukawa et al. [16], with however
better performances. We also outperform the recent
learning based method Surfacenet [6] on most measures
in this experiment.

Compared to Hartmann et al. [39], and under sim-
ilar experimental conditions, our approach give bet-
ter results with 2 orders of magnitude less parameters,
thereby confirming the benefit of volumetric supports
over planar ones. Compared to Surfacenet. [6] (cube
size 64 x 64 x 64, sample step 0.4mm) we obtain re-
constructions of slightly better quality with an order of
magnitude less parameters.

7.3 Qualitative Evaluation and Generalization

One of our main goals is to verify whether a learning
based strategy generalizes to real life dynamic data and
how it compares to state-of-the-art approaches in this
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Acc. Compl.

Measure Mean | Med. Mean | Med.
Tola et al. [49] 0.448 | 0.205 | 0.754 0.425
Furukawa et al. [16] 0.678 0.325 0.597 0.375
Campbell et al. [50] 1.286 | 0.532 | 0.279 | 0.155
Ji et al. [6] 0.530 0.260 0.892 0.254
Ours (fused) 0.490 | 0.220 | 0.532 | 0.296
Hartmann et al. [39] 1.563 0.496 1.540 0.710
Ours (depthmap) 0.599 | 0.272 | 1.037 | 0.387

Table 2 Reconstruction accuracy and completeness.

case. To this purpose, we focus our qualitative evalu-
ation on two different dynamic capture datasets, both
drastically different from the training one. We first per-
form, in section 7.3.1, reconstructions of dynamic RGB
sequences captured by the Kinovis platform [9]. We
then test, in section 7.3.2, our reconstruction method on
a different real life dynamic dataset, captured with the
active setup of [23] and compare to their results. It is
important to note that the network previously trained
on the DTU Dataset [11] was kept as such without any
fine tuning at all times in this section.

7.8.1 Kinovis Data

We first focus on data captured by [9], that is a hemi-
spherical setup with 68 cameras of various focal lengths.
In this scenario, standard MVS assumptions are of-
ten violated, e.g. wide baseline, specular surfaces, mo-
tion blur and occlusions, challenging therefore the re-
construction methods. A video demonstrating our re-
sults and providing comparisons on dynamic sequences
is available online: https://hal.archives-ouvertes.
fr/hal-01849286.

Most general purpose MVS methods we tested tend
to fail in the performance capture scenario, either pro-
viding incomplete or low resolution results, or being
extremely noisy. Figure 16 illustrates the reconstruc-
tion obtained using COLMAP [52], which is a hand-
crafted general purpose MVS pipeline based on Patch-
Match Stereo [53]. Both methods perform overall cor-
rectly, as seen on the left side of the figure. However,
[52] (top-right) struggles to recover fine-grained details
while keeping the noise and artifacts level low, contrary
to our approach (bottom-right). This results demon-
strates the benefit of a dedicated method in the context
of performance capture.

In order to assess the performances of our learned
photoconsistency term, we compared in figure 1 to [10],
which is a patch based sweeping method using tradi-
tional image features and specifically designed for this
scenario. Both methods share a significant part of their
pipeline, except for the photoconsistency evaluation,
thus providing good insights about the benefits of the

Fig. 14 (top) Input images, (middle) result with [10], (bot-
tom) result with our method. Motion blur and low contrast
are visible in the input images . Best viewed magnified.

“ \ kY

Fig. 15 Close up view of the arm region in Figure 1. (left)
Results from [10], (right) our reconstruction
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Fig. 16 (top) Reconstruction using COLMAP [52], (bottom) our result.

proposed learned term. Even though [10] performs well
in contrasted regions, the patch based descriptors reach
their limits in image regions with low contrast or low
resolution. Figure 15 and 14 give such examples. They
show that our strategy helps recovering finer surface
details, while strongly decreasing noise in low contrast
regions. The results obtained also demonstrate strong
improvements in surface details, such as dress folds,
that were undetected by the deterministic approach. In
addition, they demonstrate lower levels of noise, partic-
ularly in self-occluded regions, and more robustness to
motion blur as with the toes or tongue-in-cheek details
that appear in Figure 14-bottom.

We then compare to the recent learning based ap-
proach [6] using the code available online (see Figure
17). Reconstructions with this approach were limited to
a tight bounding box and different values for the vol-
ume sampling step were tested. The best results were
obtained with a 2mm step. To conduct a fair compari-
son with our method, all points falling outside the visual
hull were removed from the reconstruction. In this sce-

S j.gé_?' %

Fig. 17 Qualitative comparison with [6]. (Left) input image
with the horizontal section in red, (middle) point cloud with
[6], (right-top) point cloud horizontal section with [6] (right-
bottom) point cloud horizontal section with our approach.

nario, the point cloud obtained using [6] appeared to
be very noisy and incomplete (see Figure 17-middle),
plaguing the subsequent surface extraction step. Fig-
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ure 17-left also shows a horizontal section of the model
in a poorly contrasted image region of the dress. The
global strategy used in [6] wrongly reconstruct many
surface points inside the shape volume (top figure), as
a result of the ambiguous appearance of the dress. In
contrast, our approach (bottom figure) correctly iden-
tify surface points by maximizing learned correlations
along viewing rays.

In addition to this, we also compare to results of [8]
provided by the authors in Figure 18. This method out-
puts a rather dense colored point cloud but similarly
to results from [6], extracting a smooth surface from
this point cloud remains a difficult task due to strong
noise and missing data. Since the method uses custom
and undocumented calibration parameters, it was not
straightforward to remove points lying outside the vi-
sual hull. Moreover, the precision of the point cloud
from [8] restricts its usage for performance capture and
realistic reconstructions rendering. Figure 19 provides
a close-up of the face of a subject. The level of detail
of the result from [8] is not fine enough to correctly
capture facial details, compared to the density of our
output surface.

7.8.2 Active Capture Platform

Finally, we compare our reconstructions of a scene cap-
tured with results from the active system of [23]. This
setup consists of 52 RGB cameras mounted as stereo
pairs but also differs from the previous dynamic cap-
ture scenario, as it also features an active system, pro-
jecting random infrared dots on the shape. 52 infrared
cameras, also paired on stereo rigs then capture the
reprojected spots on the shape, resulting in highly con-
trasted images, allowing to disambiguate the photocon-
sistency computation, especially in textureless regions
without interfering with the visible appearance of the
subject. In figure 20, we compare to results provided by
the authors. While [23] make use of all the data avail-
able, we restrict our method to work with RGB images
only. On the other hand, we allow cameras that are
far apart to participate in the computation of the pho-
toconsistency. Our results demonstrate the quality of
our method’s results, showing detailed reconstructions
competitive with the results of [23] even though we only
use the passive system, i.e. half of the available infor-
mation. Figure 21 displays a close-up of the face of the
subject. Our method allows to recover high-frequency
facial details, such as the shape of the nostrils or the
lips commissures, thus providing highly faithful recon-
structions.

Fig. 18 (top) Results provided by [8] on the kick 540 se-
quence. (middle) Poisson Reconstruction of the output point
cloud of [8]. (bottom) Our result.
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Fig. 19 Point clouds density comparison between results
provided by [8] (left) and our output (right). Best viewed
magnified.

Fig. 20 Two points of view of a subject from [23] (left).
(middle) Reconstruction provided by the authors. (right) Re-
sults using our learning strategy.

Fig. 21 Close up of the face of the subject from [23] (left).
The reconstruction provided by the authors (middle) is very
smooth compared to our result (right).

8 Conclusion and Future Works

We presented a learning framework for surface recon-
struction in passive multi-view scenarios. Our solution
consists in a N-view volume sweeping, trained on static
scenes from a small scale dataset equipped with ground
truth. Thanks to this new model, we validate the im-
provement of CNN-learned MVS photoconsistency in
the case of complex and dynamic performance capture,
with significant challenges typical of these datasets such
as low light areas and low texture content and per-
ceived resolution. This result is achieved with an or-
der of magnitude less training parameters than previ-
ous comparable learned MVS works, showing signifi-
cant network generalization from a training performed
only on static DTU inputs, fully leveraging the high
quality ground truth now available with these datasets.
Thanks to our local strategy, our method achieved sig-
nificantly improved detail recovery and noise reduction
in complex real life scenarios, outperforming all existing
approaches in this case.

The discretization of the volume around a query
point involves a lot of redundancy and is a compu-
tationally expensive step for both training and infer-
ence. Moreover, even when optimized to process several
neighboring depths in parallel, it remains rather mem-
ory inefficient. A possible future work could be to find a
continuous representation for colored rays crossing the
volume of interest, that could be used to infer surface
presence probability in a similar manner with a much
lighter computational cost.

Finally, we believe our approach is a first step to-
wards a data-driven method to unify shape from silhou-
ette and multi-view stereo inference, as made possible
by the wide baseline robustness and general volumet-
ric receptive field of our network, with the prospect of
increased automation and quality.
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