
HAL Id: tel-04117542
https://hal.science/tel-04117542v1

Submitted on 22 May 2023 (v1), last revised 5 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recurrent Neural Networks models: inference,
representations, and the role of regularization

Arnaud Fanthomme

To cite this version:
Arnaud Fanthomme. Recurrent Neural Networks models: inference, representations, and the role
of regularization. Mathematical Physics [math-ph]. Ecole normale supérieure - ENS PARIS, 2021.
English. �NNT : �. �tel-04117542v1�

https://hal.science/tel-04117542v1
https://hal.archives-ouvertes.fr

Préparée à Ecole Normale Supérieure

Recurrent Neural Networks models:
inference, representations,

and the role of regularization

Soutenue par

Arnaud Fanthomme
Le 08 12 2021

École doctorale no564
EDPIF

Spécialité
Physique

Composition du jury :

Sara Solla
Northwestern University Présidente du Jury

David Saad
Aston University Rapporteur

Omri Barak
Israel Institute of Technology Examinateur

Surya Ganguli
Stanford University Examinateur

Andrew Saxe
Oxford University Examinateur

Rémi Monasson
LPENS Directeur de thèse

Contents

Résumé en français de la thèse 8

Outline of the contents 13

1 Statistical Inference 15
1.1 Usual distributions . 16
1.2 Bayesian statistics, Maximum A Posteriori inference 17
1.3 Conditional probabilities and Graphical Models 17
1.4 Gaussian Vectors . 17
1.5 The Ising and Potts models . 18
1.6 Restricted Boltzmann Machines . 20
1.7 Markov Chains . 21
1.8 Hidden Markov Models . 23
1.9 Overfitting and regularization . 25

2 Regularization in Gaussian Model inference 29
2.1 Introduction . 30
2.2 Gaussian Vectors Model and Regularization 31

2.2.1 Expression of likelihood in the large–size limit 31
2.2.2 Maximum A Posteriori estimator of the interaction matrix 32
2.2.3 Likelihoods of the training, test, and generated sets 33
2.2.4 Generic dependence of the likelihoods upon regularization strength . 34

2.3 Numerical experiments . 35
2.3.1 Gaussian Vectors Model . 35
2.3.2 Numerical estimation of the regularization strengths 37
2.3.3 Potts Model . 41

2.4 Analytical calculations at low and high sampling ratios 45
2.4.1 Asymptotic behavior of the crossing regularization 45
2.4.2 Asymptotic behavior of γopt for α→ 0 48

2.5 Conclusion . 50

3 Computational models of neurobiology 53
3.1 Individual neuron models . 54
3.2 Neural circuits models . 57
3.3 Neural integrators and stable manifolds dynamics 58
3.4 Examples of biological neural circuits . 60

3.4.1 Visual Pathway . 60
3.4.2 Sound . 61
3.4.3 Spatial navigation . 62
3.4.4 Abstract reasoning . 63

4 Deep Learning I: the Multi-Layer Perceptron 65
4.1 The McCulloch-Pitts Neuron . 66
4.2 The Perceptron learning rule . 67
4.3 Support Vector Machines . 68

3

4 CONTENTS

4.4 Fully-connected Neural Networks . 69
4.5 Linear head vs. Softmax head . 70
4.6 Parametric families of functions and Gradient Descent 72
4.7 Some examples of Loss function . 76
4.8 Transfer learning . 76

5 Deep Learning II: beyond the MLP 79
5.1 Convolutional and pooling layers . 80
5.2 Towards deeper architectures: Residual blocks 82
5.3 Recurrent neural networks . 83

5.3.1 The Ising model, link with Statistical Physics 83
5.3.2 Subsequent developments . 85

5.4 Differentiable Neural Computers . 87
5.5 Auto-encoders . 88
5.6 Generative Adversarial Networks . 89

6 Deep Learning III: Reinforcement Learning 91
6.1 Link with Optimal Control Theory . 92
6.2 The Multi-Armed Bandit problem . 92
6.3 Markov Decision Processes . 94
6.4 Solving MDPs through dynamic programming 95
6.5 The Q-learning algorithm . 96
6.6 Approximate Reinforcement Learning . 98

6.6.1 Policy Gradient methods . 98
6.6.2 Value Function methods . 99

6.7 State-of-the-art methods . 100
6.8 Examples of environment . 101

7 Low-Dimensional manifolds in RNNs 103
7.1 Introduction . 104
7.2 Definitions and model . 105
7.3 Case of linear activation . 107

7.3.1 Conditions for generalizing integrators 107
7.3.2 Special case of null-weight initialization 108
7.3.3 Initialization with full rank connection matrices 110
7.3.4 Case of multiple channels . 110

7.4 Non-linear activation: case of a single channel 111
7.4.1 Empirical study of neural representations in a ReLU network 112
7.4.2 Theoretical analysis of the ReLU integrators 113
7.4.3 Case of generic non-linear activation. 115

7.5 Non-linear activation: case of multiple channels 117
7.6 Conclusion and perspectives . 123

8 Cognitive maps for Path Integration 127
8.1 Context . 128
8.2 Direct-inverse environment models . 131
8.3 Resetting Path Integrator from direct-inverse models 132
8.4 Results . 133

8.4.1 Performance of path integrators and nature of representations 134
8.4.2 Disambiguation of ambiguous environment by RPI representations . 134

CONTENTS 5

8.5 Conclusion . 136

9 General conclusion and perspectives 139

References 144

A Recurrent Neural Integrators 166
A.1 Fully averaged loss for linear single-channel integrators 166
A.2 Gradient and Hessian of the linear single channel loss 167
A.3 Two special cases of null initialization . 168
A.4 Moments in the low-rank parametrization 168
A.5 Generalizing Integrators in null initialization space 169
A.6 Gradients and Hessian in the low-rank parametrization 172
A.7 Minimum convergence time . 173
A.8 Algebraic convergence for specific scale value 174
A.9 Single-channel ReLU proxy loss gradients and Hessian 176
A.10 Analysis of rank-1 ReLU generalizing integrators 178
A.11 Transfer learning: context-dependent selectivity 179

B Cognitive maps for Path Integration 181
B.1 The Continuous GridWorld environment 181
B.2 Retina . 182
B.3 Network architectures and training hyperparameters 183

B.3.1 Architectures . 183
B.3.2 Training . 185

B.4 Interactions between direct and inverse losses 186
B.5 LSTM variants . 187
B.6 Curriculum Learning and catastrophic forgetting 188
B.7 Errors and spatial correlations on the DoubleDonut environment 189
B.8 Representations in absolute and relative coordinates 190
B.9 Gating strength in a Resetting Path Integrator 190
B.10 Internal gates in an LSTM network . 191
B.11 Resetting in the case of Ambiguous DoubleDonut 191

List of Figures

1.1 The multi-variate Gaussian distribution . 19
1.2 Restricted Boltzmann Machine . 21
1.3 Samples of a Hidden Markov model . 23
1.4 Conditional dependency graph of a Hidden Markov Model 24
1.5 The overfitting phenomenon . 27

2.1 Definition of the noticeable gammas . 35
2.2 Typical evolution of the likelihoods . 37
2.3 Evolution of the likelihoods . 39
2.4 Influence of structured interactions . 40
2.5 Extension to L1 regularization . 41
2.6 Log-likelihoods evolution for different values of γ. 43
2.7 KL divergence as a function of γ for different values of p, n 44
2.8 KL divergence as a function of γ for different values of p, q 44
2.9 KL divergence as a function of γ for different values of p, d 44
2.10 Inference from a single pattern . 48
2.11 Finite temperature . 51

3.1 Illustration of a neuron . 55
3.2 Leaky Integrate-and-Fire neurons . 56
3.3 From synapses to weight-matrix . 57
3.4 Two examples of attractor manifolds . 59
3.5 The ring attractor model . 60
3.6 Waveforms and cochleograms . 62
3.7 Place cells and grid cells . 64

4.1 General artificial neuron . 66
4.2 Linear separability . 67
4.3 The perceptron learning algorithm . 68
4.4 Support Vector Machines . 69
4.5 The Multi-Layer Perceptron . 70
4.6 Disentangling representations via a Multi-Layer Perceptron 71
4.7 Three possible activation functions . 71
4.8 Linear and softmax output heads . 72
4.9 Gradient Descent optimization . 75

5.1 Convolutional layers for image processing 81
5.2 Residual blocks . 82
5.3 General structure of a Recurrent Neural Network 83
5.4 Examples of Ising model dynamics . 84
5.5 The Long-Short Term Memory network architecture 85
5.6 Auto-encoder neural network for dimensionality reduction 88
5.7 Generative Adversarial Network models . 90

6.1 The Upper-Confidence bound algorithm . 94

6

LIST OF FIGURES 7

6.2 Example of a Markov Decision Process . 95
6.3 General Reinforcement Learning procedure 97
6.4 Deep Q Network learning . 100

7.1 Multiplexed Recurrent Neural Network and decaying integral task 105
7.2 Manifolds of linear Generalizing Integrators 110
7.3 Two populations encoding of an integral in a ReLU network 112
7.4 Pre-activation currents in a ReLU network (D=1) 113
7.5 Contributions to pre-activation currents in a ReLU network (D=1) 114
7.6 Pre-activation currents in a sigmoidal network (D=1) 117
7.7 Distribution of singular values in a ReLU network (D=3) 118
7.8 Pre-activation currents in a ReLU network (D=2) 119
7.9 Individual neuron activity in a sigmoidal network (D=2) 120
7.10 Distribution of slectivity angles in networks performing two integrals 121
7.11 Influence of structured encoders/decoders on the connectivity matrix 122
7.12 Influence of Dale’s Law on the eigenvectors of the connectivity matrix . . . 123

8.1 Virtual environment . 130
8.2 General structure for bimodal Path Integrators 130
8.3 Illustration of the direct-inverse environment models 132
8.4 Proposed architecture for a Resetting Path Integrator 133
8.5 Example of Path Integration trajectory . 135
8.6 Path Integration errors . 136
8.7 Ambiguity lifting through Path Integration 137

9.1 Low-dimensional representation . 140
9.2 Representation of an operator . 142

A.1 Slow manifold in the null initialization subspace 171
A.2 Minimum convergence time as a function of scale 174
A.3 Dynamics of convergence to the slow manifold 175
A.4 Empirical estimation of the highest eigenvalues of the loss Hessian 178
A.5 Singular Value Decomposition of rank 1 generalizing integrators 178
A.6 Visualization of the weight-matrix in the s� 1 and s� 1 regimes 179
A.7 Application to real-time context-dependent evidence integration 180

B.1 Illustration of the model retina . 182
B.2 Optimal linear decoding of position error patterns 184
B.3 Computation diagram for a LSTM cell . 184
B.4 Representations with and without environment model losses 186
B.5 Computation diagram for the hybrid path integrator structure. 188
B.6 Catastrophic forgetting of environment models 189
B.7 Representations as a function of absolute position 190
B.8 Representations as a function of relative displacement 191
B.9 Resetting strength dependance on noise levels 192
B.10 Internal gates in a LSTM network . 193
B.11 Path Integration in the ambiguous environment 194
B.12 Resetting strength heatmap in the ambiguous environment 195

Résumé en français de la thèse
et remerciements

Les travaux présentés dans le cadre de cette thèse se situent à l’interface entre trois grands
domaines des sciences : la physique, les neurosciences et l’informatique. Si les objets
étudiés sont, à l’exception des systèmes de spins en interaction du Chapitre 2, assez
éloignés de ceux habituellement considérés en Physique, même théorique, la démarche
fondamentale reste identique : observer les phénomènes, les décrire à l’aide de concepts
mathématiques et utiliser les résultats obtenus sur ces modèles pour mieux comprendre la
physique des systèmes étudiés.

Au Chapitre 1, nous présentons quelques rappels d’inférence statistique. Après des
rappels succincts sur les différentes distributions ”usuelles” de statistiques, nous intro-
duisons le concept d’inférence Bayésienne et de ”Maximum a Posteriori”. Nous intro-
duisons ensuite les modèles graphiques probabilistes, outil versatile pour la représentation
des dépendances conditionnelles entre variables aléatoires et indispensable à l’élaboration
d’algorithmes d’inférence efficaces par l’introduction d’hypothèses simplificatrices. Nous
introduisons ensuite plusieurs familles de distributions, leurs descriptions en tant que
modèles graphiques, les procédures d’inférence associées et leurs applications pratiques en
modélisation statistique : Vecteurs Gaussiens, modèles de Potts, et machines de Boltzmann
restreintes, particulièrement utiles pour la compréhension du Chapitre 2 ; les Chaines de
Markov et de Markov Cachées (ainsi que l’algorithme Monte-Carlo), à la base de la théorie
de l’Apprentissage par Renforcement présentée au Chapitre 6.

Dans le Chapitre 2, qui présente des résultats de recherche originaux, nous considérons
un cas particulier de régularisation dans une procédure d’inférence. La question du rôle de
la régularisation est centrale en Apprentissage Machine : empiriquement, l’utilisation ju-
dicieuse de régularisation permet d’atteindre de bien meilleurs résultats que ceux obtenus
sans contrainte ; théoriquement, l’addition de termes de régularisation dans la ”vraisem-
blance” utilisée pour l’inférence correspond à un biais statistique, dont on s’attend à ce
qu’il détériore le modèle obtenu finalement et non à ce qu’il l’améliore. Ce résultat contre-
intuitif se comprend mieux lorsque l’on considère séparément la qualité de l’inférence sur
les données d’entrâınement, qui diminue effectivement dès lors qu’une régularisation est
appliquée, et celle sur les données de test, qui présente une évolution non monotone :
une régularisation optimale existe. Ce phénomène est souvent qualifié d’équilibre biais-
variance : la régularisation empêche le modèle de s’adapter parfaitement aux données
d’entrâınement, limitant ainsi le phénomène de sur-apprentissage et permettant au modèle
de mieux généraliser à de nouveaux exemples. Une question importante en biologie est
de comprendre et prédire, la valeur de cette régularisation optimale. Dans le cadre d’un
modèle simpliste de spins en interaction, et d’une régularisation par la norme L2 de la ma-
trice d’interaction inférée, nous avons montré que la régularisation optimale correspond à
un croisement entre la vraisemblance des données générées par le modèle inféré et celle des
données de test ; forts de ce constat, une estimation de la régularisation optimale dans le
régime où le nombre de données excède fortement la dimension des données en question,
valide indépendamment de la structure des interactions utilisées pour la génération des
données. Nous montrons également empiriquement qu’une régularisation optimale existe
dans le cadre d’une pénalité L1 sur la norme de la matrice d’interaction, la prédiction de
sa valeur restant une question ouverte à ce jour.

8

Afin de mieux situer les travaux présentés par la suite dans leur contexte, ce manuscrit
contient au Chapitre 3 une introduction aux neurosciences. Nous commençons par un bref
historique de l’étude des neurones individuels, expliquant comment l’évolution du poten-
tiel membranaire constitue le support principal de la représentation d’information dans le
cerveau. Nous nous focalisons ensuite sur l’échelle mésoscopique des neurosciences, celle où
l’interaction entre de nombreux neurones individuels permet l’émergence de phénomènes
collectifs, analogues à ceux que l’on rencontre en Physique Statistique, dont l’une des
caractéristiques notables de neurones étant effectivement observé au cours du comporte-
ment, un concept central pour la théorie des réseaux de neurones récurrents que nous
développons par la suite. Enfin, nous présentons quelques exemples de circuits neuronaux
importants non seulement en biologie comportementale, mais aussi en sciences cognitives
et par la suite en Apprentissage Machine : le système visuel, le système auditif, la navi-
gation spatiale et le raisonnement abstrait.

Les Chapitres 4 à 6 présentent quant à eux les domaine de l’Apprentissage par Réseaux
de Neurones Profonds, en partant d’une perspective proche de celle des Neurosciences.
Au Chapitre 4, nous introduisons les neurones de McCulloch-Pitts, exemple historique des
premières tentatives de modélisation du traitement d’information par le cerveau, ainsi que
la règle d’apprentissage Perceptron permettant de régler les connections entre neurones
pour réaliser une tâche de séparation linéaire. Nous généralisons ensuite ce concept afin
d’introduire le Perceptron Multi-Couches, prototype des systèmes d’Apprentissage Pro-
fond utilisés aujourd’hui, et détaillons le formalisme mathématique associé en introduisant
les notions de jeu de données, de modèle différentiable et d’apprentissage par descente de
gradient. Au Chapitre 5, nous étendons ce concept à d’autres architectures, notamment les
réseaux convolutionnels et récurrents, et établissons le lien entre ces derniers et les modèles
d’Ising étudiés en Physique Statistique. Au Chapitre 6, nous présentons le cadre historique
et les avancées récentes de l’Apprentissage par Renforcement. Ce paradigme complète les
algorithmes d’apprentissage supervisés, nécessitant l’accès à un jeu de données, en au-
torisant l’apprentissage à partir de ”tentatives et échecs”. De telles méthodes sont parti-
culièrement utiles dans le cas où un réseau cherche à établir une ”politique” reliant, par
exemple, l’image affichée par l’écran d’une console de jeu Atari à la commande que le
joueur doit fournir à sa manette pour gagner : il est souvent impossible d’écrire de telles
politiques ”à la main”, et il est alors intéressant d’utiliser le Renforcement pour trouver
de telles politiques. Un autre avantage majeur de ces méthodes est qu’elles permettent de
comparer les solutions ”intuitives” pour un humain ou observées biologiquement, à celles
trouvées par l’algorithme.

Le Chapitre 7 présente les résultats de nos travaux, publiés dans le journal Neural
Computation sous le titre ”Low-dimensional Manifolds support Multiplexed Integra-
tions in Recurrent Neural Networks”, dans lesquels nous étudions le problème de calculer
la somme des termes de D (d’ordre 1) séries temporelles en utilisant ces séries comme
entrées d’un réseau de neurones récurrent. Nous considérons dans un premier temps le cas
d’un réseau récurrent linéaire, pour lequel des résultats analytiques peuvent être obtenus ;
nous exhibons des conditions nécessaires et suffisantes sur la matrice de connectivité du
réseau qui garantissent que le système correspondant est capable d’intégrer des séries
temporelles de durée arbitraire, montrons que de telles solutions sont obtenues de façon
garantie dès lors que la durée des séquences d’entrâınement est supérieure à la taille du
réseau, et qu’en pratique elles sont aussi obtenues dès que les séquences d’entrâınement sont
de longueur supérieure à 3 ; enfin, nous analysons en détail la dynamique de convergence de
la Descente de Gradient vers ces minima de la fonction de coût. Nous considérons dans un
second temps le cas de réseaux récurrents non-linéaires, pour lesquels il n’a pas été possible

9

d’obtenir de résultats analytiques. Nous adoptons donc une démarche phénoménologique
d’observation des solutions obtenues par Descente de Gradient, et observons que les ma-
trices de connectivité de ces solutions ont un spectre de valeurs singulières correspondant
à une ”masse” proche de 0 et dont la densité décroit exponentiellement, accompagnée de
D valeurs singulières grandes devant les autres. Nous notons également que l’état interne
du réseau vit dans un voisinage proche d’une variété de dimension D, et que la position
dans cette variété est en bijection avec la valeur des intégrales. De plus, cette variété
s’interprète également comme l’image par la non-linéarité du réseau d’un hyperplan de
dimension D et la position dans cet hyperplan est une fonction linéaire des intégrales.
Nous qualifions ce codage de ”courant-linéaire”, et proposons une fonction de coût, définie
indépendamment de données, qui lorsque optimisée génère des intégrateurs parfaits avec
une non-linéarité arbitraire et satisfaisant le codage ”courant-linéaire”.

Le Chapitre 8 présente lui aussi des résultats originaux, soumis pour publication à
l’International Conference on Learning and Representations. Nous y présentons une nou-
velle approche au problème de ”fusion de capteurs”, dans notre cas un capteur simulant une
image et l’autre simulant un signal proprioceptif de vitesse, en utilisant ces deux signaux
comme entrées d’un réseau de neurone récurrent entrâıné à déterminer son déplacement
total au cours d’une série de mouvements. Ce problème, appelé en anglais ”Path In-
tegration”, a été étudié en détail depuis de nombreuses années par les neurobiologistes,
car cette tâche est supposée être à l’origine du développement de ”cartes mentales”, des
représentations internes qu’un agent (par exemple un rat) se fait de son environnement,
et plus particulièrement de sa structure spatiale. Nous montrons qu’une approche partic-
ulièrement efficace pour obtenir des réseaux récurrents capables de créer des cartes men-
tales est d’entrâıner ce réseau à fournir, simultanément, un modèle de la dynamique directe
de son environnement (le prochain état visuel, état donné l’état visuel actuel et une action)
et de sa dynamique inverse (quelle action sépare deux états visuels de l’environnement) ;
ces deux modèles sont intégrés dans une structure plus large, capable d’effectuer une
”remise à zéro” de son état interne (obtenu en itérant le modèle direct le long de la trajec-
toire) en utilisant le signal visuel de l’environnement. Cette structure permet de générer
des représentations non ambiguës d’espaces partiellement observables, qui peuvent ensuite
servir de base pour des algorithmes de Renforcement (permettant par exemple de faire de
la navigation spatiale vers un objectif donné) dans un environnement où les capteurs sont
peu fiables.

Enfin, le Chapitre 9 présente une conclusion générale reliant nos différents travaux
originaux. Nous insistons notamment sur le fait que les réseaux de neurones que nous
avons étudié fournissent des représentations de basse dimension des données qui leur sont
fournies en entrée. La dimension de ces représentations est, comme attendu, égale au
nombre de variables indépendantes nécessaire pour quantifier exactement l’état du système
représenté (par exemple, une image d’un environnement planaire est représentée comme
un vecteur de dimension 2, représentant les coordonnées x et y dans ce plan). Nous notons
également que de telles représentations n’ont d’intérêt que conjointement avec un certain
nombre d’opérateurs agissant dessus (tels que ceux représentant l’évolution des intégrales à
l’arrivée d’une nouvelle entrée, ou de la position lors d’un mouvement), et que représenter
correctement l’action des opérateurs constitue une étape importante dans l’élaboration de
fonctions de coût permettant d’apprendre de nouvelles tâches.

10

Remerciements

Tout d’abord, merci à mes parents qui m’ont toujours soutenu, même si je n’ai pas
forcément rendu ça facile. Merci à Rémi pour tout ce qu’il m’a appris ces trois dernières
années, cette thèse n’aurait jamais pu aboutir à un tel résultat sans ses conseils et sug-
gestions. Merci aux membres du Jury, Sara, David, Andrew, Omri et Surya qui ont pris
le temps de s’intéresser à mes travaux, et ont aidé à rendre ma soutenance encore plus
mémorable. Merci à Hugo, Thibault et Vincent pour tous les déjeuners, d̂ıners et autres
moments qu’on a partagé. Merci à Damien et Hugo pour tous les week-ends à Montgé, à
Gigaro, et pour nous avoir réunis avec tant de personnes formidables qu’on ne voit pas as-
sez sans vous. Merci à Victor et Clément, qui ont partagé mon quotidien au labo pendant
toute cette thèse. Merci à Victor, Marine, Wyatt et Marlowe, qui me rappellent qu’il y a
autre chose dans la vie que la recherche. Merci à mes colocs, Alexandre et Roxane, avec
qui nous avons partagé une année de télétravail, et toutes les joies qui vont avec. Merci
à tous les membres du labo, Sébastien (merci pour le petit concert entre thésards, des
comme ça on en fait pas tous les jours!), Simona, Aldo, Marco, Cyril, Eugenio, Andrea,
Max, Jorge, Tobias, Mariia, Lorenzo, Jérôme, le groupe n’aurait pas été le même sans
vous. Merci à Nataniel et Giulio pour Les Houches, les meilleures vacances ”studieuses”
que j’ai passé depuis bien longtemps, et une occasion unique de créer un esprit de labo.
Merci à tous mes cobureaux, Tristan, Clément, Cathelijne, Augustin, Andrea, Francesco,
Meriem, pour les bons moments qu’on a partagés pour faire retomber la pression de la
recherche. Merci à tous les personnels supports de l’ENS, sans qui la recherche ne serait
tout simplement pas possible. Merci aux restaurants de la rue mouffetard, pour m’avoir
si souvent rempli de joie.

Merci à toutes celles et ceux qui ont cru en moi.

11

Outline of the contents

Chapter 1 presents some useful reminders about Statistical Inference.

Chapter 2 presents original research we led on regularization in Gaussian model inference,
from our upcoming paper:

• Fanthomme, A., Rizzato, F., Cocco, S. and Monasson, R. (2021). Optimal regu-
larizations for data generation with probabilistic graphical models, Arxiv preprint
2112.01292.

Chapter 3 to 6 are reminders on the theory of Deep Learning, and its relationship to
computational neuroscience and physics.

Chapter 7 is a reproduction of our Neural Computation article on low-dimensional mani-
folds in Recurrent Neural Networks integrators:

• Fanthomme, A. and Monasson, R. (2021). Low-Dimensional Manifolds Support
Multiplexed Integrations in Recurrent Neural Networks, Neural Computation 33 (4):
1063–1112.

Chapter 8 is a reproduction of our submission to the 2022 International Conference on
Learning Representations:

• Fanthomme, A. and Monasson, R. (2021). Stable cognitive maps for Path Integration
emerge from fusing visual and proprioceptive sensors. Submission to ICLR 2022.

Chapter 9 provides a unified perspective on the different original results we presented in
the rest of the manuscript.

Appendices present additional details on Chapter 7 and Chapter 8.

13

https://arxiv.org/abs/2112.01292
https://arxiv.org/abs/2112.01292
https://direct.mit.edu/neco/article/33/4/1063/97474/Low-Dimensional-Manifolds-Support-Multiplexed
https://direct.mit.edu/neco/article/33/4/1063/97474/Low-Dimensional-Manifolds-Support-Multiplexed
https://hal.archives-ouvertes.fr/view/index/docid/3368182
https://hal.archives-ouvertes.fr/view/index/docid/3368182

Chapter 1

Statistical Inference

Abstract
In this first introductory Chapter, we present some reminders on Statistical
Inference. After a brief summary of usual random variable distributions, we
introduce the concepts of Bayesian and ”Maximum A Posteriori” inference. We
then present ”Probabilistic Graphical Models” as a versatile tool to represent
conditional dependencies between random variable, indispensable to the for-
mulation of efficient inference algorithms by allowing the introduction of sim-
plifying hypothesis (most notably of conditional independence). We consider
several families of distributions, together with their formulation as Graphical
Models, inference procedure, and practical applications in statistical model-
ing: Gaussian Vectors, Potts models and Restricted Boltzmann Machines,
which will be particularly relevant for Chapter 1; Markov Chains and Hid-
den Markov Models, together with the Monte Carlo algorithm, which form the
foundation of the Reinforcement Learning theory presented in Chapter 6.

15

16 Statistical Inference

1.1 Usual distributions

First, let us introduce the concept of a random variable X as an object that can take
values (referred to as samples or observations) in an ensemble called the universe Ω, which
can be either discrete (e.g. the values on the faces of a die, the words in the dictionary,
the set of amino acids in a protein) or continuous (the resting position of the dice on the
table, the height of an individual, the electric potential on an electrode).

In both cases, we define the probability distribution p of the random variable X
as a function from Ω to R that is normalized: in the case of a discrete variable, this is
a discrete set of probabilities, one for each event, which sums to 1; in the case of a
continuous variable, it is a function over the universe called the probability density,
whose integral is equal to 1. In the following, by abuse of notation, we use the term
”probability” for both the probability of a discrete event, or the value of the probability
density function at a certain point in the universe.

In practice, it is often useful to consider parametrized families of distributions, so
that to each value of the parameters θ is associated a probability distribution pθ. Examples
of such families of distributions are:

• Bernoulli distributions, which take values b ∈ Ω = {0, 1}, and are parametrized by
the probability θ ∈ [0, 1] of drawing a 1:

pθ(b) = θb (1− θ)1−b. (1.1)

• Binomial distributions, corresponding to the sum of n samples from a Bernoulli
distribution, can take values k ∈ Ω = {0, 1, . . . , n} and are parametrized by the
same parameter θ ∈ [0, 1] as the underlying Bernoulli distribution:

pθ(k) =
(
n

k

)
θk (1− θ)n−k. (1.2)

• Multinomial distributions, which extend the concept of a binomial distribution to
the case of n draws from a distribution which can take K discrete values with
probabilities π1, . . . , πK . The probability distribution is then:

pπ(x) = n!∏K
k=1 xk

K∏
k=1

πxkk , (1.3)

where, for all k ∈ 0, . . . , k, xk is the number of times output k has been obtained.

• Gaussian distributions, parametrized by their means µ and standard deviation σ,
which take value in R and such that the probability distribution can be written:

pµ,σ(x) = 1
σ
√

2π
e−

1
2

(x−µ)2

σ2 . (1.4)

These distributions are extremely relevant in Statistical Physics because of a prop-
erty known as the central limit theorem: the distribution of the sum of a large
number of random variables converges towards a Gaussian.

Statistical Inference 17

1.2 Bayesian statistics, Maximum A Posteriori inference

In the following, we will be interested in the concept of Statistical Inference, i.e. the
problem of determining the ”best” parameter θ given a set of observations from the dis-
tribution. To do so, we define the Likelihood L1 of parameter θ given observations x as:

L : Θ→ R+ ,

θ 7→ p(x|θ)
(1.5)

where p(x|θ) is the probability of observations x conditioned on the parameters θ.
Now adopting the Bayesian point of view that considers θ itself as a random variable,

one can define a prior distribution p(θ), and make use of Bayes rule to compute the
posterior distribution p(θ|x) as:

p(θ|x) = p(x|θ) p(θ)
p(x) . (1.6)

The maximum of this function with respect to θ is called the Maximum A Posteriori
(MAP) estimation θMAP of the parameter θ. In the special case where the prior p(θ)
is uniform, i.e. does not depend on θ, the MAP estimator cöıncides with the Maximum
Likelihood Estimator θMLE which maximizes p(x|θ).

1.3 Conditional probabilities and Graphical Models

In this dissertation, we will often consider the problem of performing inference on the joint
distribution of numerous variables, for example the activity of all neurons in a certain
area of the brain, the sequence of amino acids in a given protein, or all phonemes in a
spoken sentence. Since those objects live in very high-dimensional spaces, estimating their
distributions without any prior information is practically impossible, and hypotheses must
be made that will simplify the likelihood.

The most relevant type of hypothesis is one of conditional independence: given
three random variables, A, B, and C, we say that A is conditionally independent of C
given B if:

p(a|b, c) = p(a|b). (1.7)
This concept extends the one of independence of variables p(a, b) = p(a) p(b), and

can be interpreted as meaning that the influence of the random variable C on the random
variable A is due only to the influence of C on B.

From there, one can derive the concept of Graphical Model Wainwright and Jordan
(2008), which allows for an intuitive representation of the dependencies between random
variables, and efficient inference algorithms such as Message-Passing to be defined. While
we do not attempt a rigorous presentation of those concepts, we give in the following some
examples of practical relevance.

1.4 Gaussian Vectors

One example of high-dimensional distribution in which no conditional independence exists
a priori is the one of the Multivariate Gaussian, often referred to as Gaussian Vectors.

1Unfortunately, the standard notations for likelihoods and losses, which will be the topics of interest
respectively in Chapter 2 and Chapters (7,8) are identical.

18 Statistical Inference

This model describes the joint distribution of n scalar variables x = (x1, . . . , xn) with a
probability density function:

p(x) = 1√
(2π)n det(Σ)

e−
1
2 (x−µ)T Σ−1 (x−µ), (1.8)

where the vector µ is equal to the average value of the random vectors, and the positive-
definite symmetric matrix Σ is equal to their covariance:

µ = E[x]. (1.9)
Σ = E

[
(x− µ)(x− µ)T

]
. (1.10)

Because of this, lines of equiprobability are ellipses, whose axes coincide with the eigenvec-
tors of Σ, see Figure 1.1. It is interesting to note the deep connection between the model
of Gaussian Vectors and the dimensionality reduction (Maaten et al., 2009) method known
as Principal Components Analysis, introduced by Pearson (1901). The objective of dimen-
sionality reduction is to take data points living in Rn, and map them to a low-dimensional
manifold in such a way that ”not too much information is lost during the mapping”. While
different meanings can be assigned to that statement, PCA considers the case where the
mapping is a projection into a d–dimensional vector space, and the ”information loss” is
quantified by the sum of the square distances between each data-point and their projec-
tion. In that case, the optimal subspace is exactly the span of the largest d eigenvectors
of the empirical covariance matrix, as these correspond to the directions in which data is
most widely spread. This result is true for any random variable living in Rn, not only
Gaussian Vectors, but the intuition of the link between the covariance spectrum and the
spread of data is more easily illustrated on these distributions.

It can be shown that the Maximum-Likelihood Estimator for the µ and Σ parameters
are, respectively, the empirical average and covariance, computed on the set of available
samples (s(1), . . . , s(p)):

µMLE = 1
p

∑
k

s(k). (1.11)

ΣMLE = 1
p

∑
k

(
s(k) − µMLE

) (
s(k) − µMLE

)T
. (1.12)

In Chapter 2, we show that this estimation, while unbiased, can lead to uncontrolled
overfitting in cases where the number of samples is much smaller than the number of
dimensions of the vector, in which case an optimal regularization exists that biases the
estimate in a way that improves performance.

1.5 The Ising and Potts models

One of the main families of distributions in Statistical Physics, and in biological data
analysis, is the one of Potts models (Potts, 1952), of which the extensively studied Ising
model is a particular case. These distributions are defined on an ensemble of n ”sites”,
which each take value in a discrete set {s1, . . . , sq}. In protein analysis, each site is a po-
sition along the protein sequence, and the discrete values are the different ”proteinogenic”
amino acids that make up natural proteins (in which case, q = 22); in the Ising model,
each site is a position in a lattice at which a spin–1/2 particle is present, and the q = 2
states correspond to the two possible orientations of the spin, up and down.

Statistical Inference 19

Figure 1.1: Schematic representation of the probability density function 1.8 of a 2–
dimensional Multivariate Gaussian distribution (A) and random samples from that dis-
tribution (B). The eigenvectors of the covariance matrix e1 and e2 correspond to the
orientation of the axes of the equiprobability ellipsoids, and the associated eigenvalues
λ1 > λ2 correspond to the widths in those directions.

An interaction tensor J is then defined such that, for any two sites (i, j) and any two
possible states (a, b), J [i, j, a, b] corresponds to the energy associated with having states
a and b at sites i and j respectively (for i = j, the interaction matrix is diagonal and
corresponds to local fields). The energy of configuration σ = (σ1, . . . , σn) is therefore
obtained as:

H(σ) = −
n∑
i=1

n∑
j=1
J [i, j, si, sj], (1.13)

which corresponds to summing over all pair of sites the interaction energy between the two
corresponding states. It should be noted that in Physics, this tensor is usually assumed to
depend only on whether the states a and b are identical or different (in the original Potts
model, the state corresponded to three possible orientations of the spin along the (x, y, z)
axes, and by symmetry interactions depended only on whether the spins were aligned); in
protein analysis, this is not the case, as the interaction strength is allowed to depend on
the exact amino-acids, and even to be asymmetric, see Cocco et al. (2018) for a review of
those techniques.

Finally, the probability distribution over configurations is given by:

p(σ) = 1
Z
e−H(σ), (1.14)

where the partition function Z is used to ensure that this distribution is normalized and
is defined as:

Z =
∑
σ

e−H(σ). (1.15)

Similarly to how a Gaussian Vectors model is the maximum-entropy (least biased)
model of a set of n scalars that reproduces one and two–points correlations (mean and
covariance), Potts models are the least-constrained models of n discrete variables that

20 Statistical Inference

reproduce frequencies and correlations between each sites, defined as:

fi(a) =
∑
σ

p(σ) δ(σi = a). (1.16)

fi,j(a, b) =
∑
σ

p(σ) δ(σi = a)δ(σj = b). (1.17)

While theoretical results on this model, including phase transitions (see Wu (1982) for
a review), have been obtained, the question of the inference of the interaction tensor J
from data remains difficult. In particular, computing the partition function Z involves a
sum over all possible states, whose number grows exponentially with the number of sites
and possible states in such a way that it becomes impossible to compute exactly as soon
as those numbers become relevant for practical applications. To overcome this limitation,
approximations to the exact inference problem have been proposed, and refining those
methods remains an open problem (Morcos et al. (2011), Cocco et al. (2013), Ekeberg
et al. (2013) to cite a few).

1.6 Restricted Boltzmann Machines

Restricted Boltzmann Machine models are defined by separating the sites in two groups,
one ”visible” layer v of n units and one hidden layer h of m units, and allowing connectivity
only between neurons of different layers, as shown in Figure 1.2A. The probabilities and
energy function in these models have the same form as the ones of an Ising model, that is:

p(v,h) = 1
Z
e−H(v,h). (1.18)

Z =
∑
v,h

e−H(v,h). (1.19)

H(v,h) = −
∑
i

vib
(v)
i −

∑
j

hjb
(h)
i −

∑
i,j

viWijhj . (1.20)

One of the main benefits of Restricted Boltzmann Machines is that they can be used
as generative models: conditioned on the state of the visible layer, the energy 1.20 can
be used to define a probability distribution on the hidden layer states which can then be
sampled. Afterwards, a similar strategy can be used to obtain a new visible state, and
this procedure, called Alternating Gibbs Sampling and illustrated in Figure 1.2B, defines
a dynamics on the space of visible layer configurations.

While this structure (and the related Boltzmann Machines, which allow interactions
within a given layer) has been considered for cognitive science as early as 1985 (see Ackley
et al. (1985), and Rumelhart et al. (1986), Chapter 6), the inference procedure (more
generally referred to as the training algorithm in the context of Machine Learning) was
too complex for practical applications. After it was subsequently refined in Hinton (2002)
and Tieleman (2008), it was met with major empirical success (see Larochelle and Bengio
(2008), Salakhutdinov and Hinton (2009), Lee et al. (2009), Nair and Hinton (2010), Hinton
(2012), Mohamed et al. (2012)). Numerous theoretical results have also been obtained on
these models, a recent review of which can be found in Decelle and Furtlehner (2021). In
particular, phase diagrams can be constructed that show the existence of a compositional
phase, see Tubiana and Monasson (2017), in which each neuron in the hidden layer is
associated with ”intermediate level” features, such as strokes in the case of MNIST digit

Statistical Inference 21

...

... ...

Figure 1.2: Illustration of the structure and sampling procedure for a Restricted Boltzmann
Machine. A: The RBM presents itself as a special case of Ising model, in which the neurons
are separated into two non-overlapping populations called the ”visible” and ”hidden” layer,
and connections are allowed only between neurons of different layers. B: The Alternating
Gibbs Sampling procedure allows to generate a dynamics on the visible layer configurations
by, first, fixing the visible layer state to obtain a probability distribution on the hidden
layer, then sampling from this new distribution a new hidden state, and finally using the
newly sampled hidden state to define a probability distribution over visible states from
which to sample, finishing one step of the AGS dynamics. Figure adapted from Roussel
et al. (2021) with permission from the authors.

recognition (other typical behaviors are that each hidden unit encodes a single example
from the dataset, or an ”averaged” version of many similar examples).

These models are often used in practice as they are generative, i.e. can be used
to output data such as images, protein sequences or sentences, following a distribution
that was inferred from examples. Unfortunately, despite the elegance of the AGS sam-
pling procedure, it often fails to exit local minima of the energy landscape (for example,
outputting only slight variations around one of the training images); proposed solutions
to this issue include stacking several RBMs (Bengio et al., 2013b), and introducing more
involved dynamics in the hidden space (Roussel et al., 2021). Because of these limitations,
new models such as Generative Adversarial Networks and Variational Autoencoders have
been proposed as more flexible and powerful alternatives, which we present in more details
in Chapter 5.

1.7 Markov Chains

A Markov Chain is a statistical model in which a system evolves in discrete time, and such
that its state at time t+ 1 depends only on its state at time t2. This characteristic, often
referred to as the Markov property, can be thought of as making the system memory-
less: the past history of the system has no direct impact on its future, and the conditional
dependency graph of such models is a chain.

If we further restrict the states s ∈ S of the system to be discrete, all information
about the dynamics of the system can be represented using a single matrix T , containing
in position (i, j) the transition probability from state j to state i, and a vector p0 whose

2It is also possible to consider continuous-time models in which the future evolution of the system only
depends on its current state, or systems evolving in discrete-time but whose states live in a continuous
space; we will not consider such processes in any of the following.

22 Statistical Inference

i–th component contains the probability that the system is in state i at the first time-step.
It is then possible to compute the probability of all states at any time as:

pt = T tp0. (1.21)

Under certain conditions of irreducibility and aperiodicity of the transition matrix T ,
the probability distribution vector is guaranteed to converge towards a stationary value
p∗ which is a fixed-point of the dynamics:

Tp∗ = p∗.

If the number of possible states |S| of the system remains reasonably large, finding
the stationary distribution is an easy task and can be accomplished either by iteratively
multiplying p0 by T (each time, requiring |S|2 operations), or by directly computing
the eigendecomposition of T (requiring O|S|3 operations). Since the time of convergence
towards the stationary distribution depends on the value of the eigenvectors, either method
can be faster, depending on the exact values of the transition probabilities. However, both
methods have memory space requirement of order |S|2, as they need to store at a given
time the transition matrix, which might be unreasonable when the state space becomes
large.

One example in which this is the case is the one of the PageRank algorithm, used by
Larry Page and Sergey Brin as the basis for the Google search engine. The system which
they were trying to model is the one of a ”random surfer”, who starts on a random page
somewhere on the internet, then randomly moves to one of the pages that are linked from
its current page; the stationary probability vector of this Markov Chain would be used to
assess the relevance of each page in the World Wide Web graph. Since the number of web
pages is so large that no computer could hold the transition matrix in memory, the natural
solution to estimate this probability distribution was to rely on Monte-Carlo estimation,
described in the following paragraph, and simulate the random-surfer process.

Monte Carlo method In practice, computing probabilities in high-dimension, might
be too complicated to be done analytically. In those cases, one might exploit the deep
relationship between integration and probabilities: the probability of an event E is simply
the fraction of the volume of the universe Ω in which E is true: this is the Monte Carlo
method.

An historic ”application” of this idea is the one of Buffon’s needle, in which a needle is
dropped on a plane, marked with parallel lines, and one tries to estimate the probability
that the needle does not lie across any of the bands. From direct analytical integration,
one can derive this probability as a function of the length of the needle and the distance
between the lines. This expression can then be used to obtain an approximation of π by
performing that experiment of needle tossing in the real world. Nowadays, this kind of
experiment is often performed through simulations, relying on the use of pseudo-random
number generators such as the Mersenne Twister (Matsumoto and Nishimura, 1998) to
generate the random draws necessary for the estimation process much more efficiently
(and with less possible biases) than through a physical experiment. One example in which
Monte Carlo methods allow for results that could not be obtained otherwise is the one
of estimating the stationary probability vector of large Markov Chains, for which the
connectivity matrix cannot be stored on physical memory while the probability vector
itself can (since it scales linearly in the number of states instead of quadratically).

In some cases, even Monte-Carlo estimation remains impractical, and instead analytical
approximation methods must be used, such as mean-field theory (Negele, 1982; Barabási
et al., 1999; Opper and Saad, 2001).

Statistical Inference 23

Figure 1.3: Example of a Hidden Markov Model with two hidden states (a communication
line being either active or inactive), and two observable states (the current bit transmitted
on the line being 0 or 1). When the line is inactive, the line transmits mostly 0, except on
rare occasions where a fluctuation of the line potential accidentally transmits a 1. When
the line is active, it transmits a signal which contains half of 0 and half of 1.

1.8 Hidden Markov Models

We now consider an extension of Markov Chains, called the Hidden Markov Models,
in which a system has both a hidden state, evolving through a Markov process, and an
observable state, conditioned only on the current value of the hidden state. For example,
one could consider the case of a telecommunication line, able to transmit discrete binary
sequences from the value of electrical tension in a copper wire; the current value of that
binary signal constitutes the observable state. This communication line can be either
active, when someone is using it to transmit a message, or inactive when no one is using
it. In a period where the line is active, the observable state has equal probabilities of
being 0 or 1, assuming the message was coded efficiently; when the line is inactive, the
observable state will almost certainly be 0, but fluctuations in ground potential and other
external factors might result in a small probability, e.g. 1% of a 1 being observed even
if the line is inactive; this situation is represented in Figure 1.3. Hidden Markov Models
have also been used in a wide range of other applications, from speech recognition (Varga
and Moore, 1990) to analysis of molecular sequences in biology (Felsenstein and Churchill,
1996). The conditional dependency graph of a Hidden Markov Model is presented in
Figure 1.4, and three quantities are needed to characterize the probability distribution:
the initial hidden state distribution π, the hidden state transition probabilities T , and the
emission probabilities of the observable states given the hidden state E.

We will use this model in order to illustrate some of the questions that can be ad-
dressed using the formalism of Probabilistic Graphical Models, most notably detailing
the procedure used to infer the hidden state sequence knowing the transition and emis-
sion probabilities, called Viterbi Decoding and a particular case of the Belief Propagation
algorithm (Pearl, 1982; Kabashima and Saad, 1998), and the Baum-Welch algorithm, a
particular case of Expectation Maximization (Dempster et al., 1977), used to infer the
value of the probabilities.

Viterbi decoding An interesting, and practically important, problem concerning Hid-
den Markov Models consists in determining from a sequence of observed states which
periods correspond to an active transmission, and which correspond to idle time, i.e. infer

24 Statistical Inference

Figure 1.4: Graph of conditional dependencies in a Hidden Markov Model. The internal
state h evolves according to a Markov Chain, i.e. the distribution of ht is conditioned
only on the previous internal state ht−1; the observable state ot is conditioned only on the
internal state at the same time ht.

the sequence of hidden states ht from a sequence of observed states ot.
To do so, let us begin by considering the probability of a particular hidden state ht,

conditioned on the sequence of observed states o = {ot, t = 1, . . . , T}. From the Bayes
rule and the conditional independences of our graphical model, we have:

p(ht|o) = p(o|ht) p(ht)
p(o)

= p(o0, . . . , ot|ht) p(ot+1, . . . , oT |ht) p(ht)
p(o)

= p(o0, . . . , ot, ht) p(ot+1, . . . , oT |ht)
p(o)

:= αt(ht)βt(ht)
p(o)

= αt(ht)βt(ht)∑
ht αt(ht)βt(ht)

,

(1.22)

where αt(ht) = p(o0, . . . , ot, ht) is the probability of obtaining hidden state ht at time t
while emitting observable states (o0, . . . , ot), and βt(ht) = p(ot+1, . . . , oT |ht) is the prob-
ability of emitting observable states (ot+1, . . . , oT) given that the system is in state ht
at time t3. The last equality comes from the normalization of conditional probabilities∑
ht p(ht|o) = 1.

Using once again the conditional independences expressed in the graphical model of
Figure 1.4, one can show that these two quantities can be computed iteratively as:

αt(ht+1) =
∑
ht

αt(ht)Tht+1,ht Eot+1,ht+1 . (1.23)

βt(ht) =
∑
ht+1

βt+1(ht+1)Tht+1,ht Eot+1,ht+1 . (1.24)

The computation of the α quantities requires a forward recursion, while the com-
putation of β quantities requires a backwards recursion; the corresponding initialization
conditions are α0(h0) = p(o0|h0)πh0 and βT (qT) = 1. Having computed both of these
quantities, one can deduce the conditional probabilities p(ht|o), and therefore deduce the
most likely value of ht by finding the value of ht that maximizes that probability.

3We explicitly introduce the underscript t to underline that both α and β are defined at each time t,
for all possible values H0, . . . , Hn of the internal state ht.

Statistical Inference 25

Baum-Welch algorithm Viterbi decoding made the major assumption that all pa-
rameters E,T ,π of the model were known a priori and not inferred from examples. In
practice, the transition probabilities are usually unknown, and they can be determined
by using an Expectation Maximization procedure, known in the case of Hidden Markov
Models as the Baum-Welch algorithm.

Doing so requires the computation of co-occurrence probabilities

ξt(ht, ht+1) = p(ht, ht+1|o), (1.25)

which can be obtained using the previously derived recursions as:

ξt(ht, ht+1) =
αt(ht)Eot+1,ht+1 βt+1(ht+1)Tht+1,ht

p(o) . (1.26)

Denoting as γt(ht) = p(ht|o) the probability of hidden state ht conditioned on the entire
sequence of observed states, we can write the EM algorithm as the alternance between
two phases:

• Expectation phase: the α, β and γ quantities are computed, as well as the most likely
sequence of hidden states h∗ given the current estimation of the HMM parameters
T̂ , Ê and π̂.

• Maximization phase: update the estimates for the parameters as:

T̂Hi,Hj =
∑T
t=0 ξt(Hj , Hi)∑T
t=0 γt(Hi)

. (1.27)

ÊOi,Hj =
∑T
t=0 γt(Hi) 1ot=Oj∑T

t=0 γt(Hi)
. (1.28)

π̂(Hi) = γ0(Hi). (1.29)

Formally, the Baum-Welch algorithm as described here works on a single sequence
of observable states. It is however straightforward to extend it to the case of multiple
sequences, assumed to follow a common underlying distribution (i.e. sharing the same
values of the T , E and π parameters). The recursions of the Expectation phase are
performed independently for each sequence in the batch, and the sums over time indices
during the maximization phase are replaced by sum over both time, and sequence index.

1.9 Overfitting and regularization

Until now, we have only considered the ideal case in which we were able to compute the
true expected values of all quantities required for the inference process. In practice, this is
often an unrealistic constraint, and the amount of samples that are available for learning
is finite, introducing non-zero variance in the expectations, and therefore in the inferred
models. Because of this, one might observe the so-called overfitting phenomenon, in
which the model very accurately fits the training data but generalizes poorly to previously
unseen examples. To illustrate this idea, we consider in Figure 1.5 the case of a Neural
Network classifier (more details on those in Chapter 4) which constructs an overly complex
decision boundary in order to fit every single training data point; when new examples are
added, it turns out that some of those points were outliers, which do not accurately
represent the distribution that they were drawn from, and the inferred model does not
achieve nearly as good results on these new points.

26 Statistical Inference

In order to address overfitting, a common solution is to add a regularization penalty
in the likelihood used for the inference. Two very common choices for this penalty are
the L1 and L2 norm of the parameters being inferred; intuitively, L1 penalties are used
to encourage sparsity in the solutions, but usually lead to MAP equations that cannot
be solved analytically, while L2 penalties are usually easier to analyze theoretically and
encourage smoothness of the energy landscape, which is usually a desirable property to
avoid overfitting (in the analogy of Figure 1.5, the L2 norm of the weight-vector would
correspond to the total curvature of the boundary).

The addition of this regularization loss can be seen as a form of prior on the possible
values of the parameters. Let us illustrate this idea in the simple case of inference of the
meanµ of a one-dimensional Gaussian variable: p samples (s1, . . . , sp) are drawn from the
true underlying distribution. The likelihood of these samples for a given underlying mean
µ (assuming a variance σ equal to 1) is:

p(s1, . . . , sp|µ) = 1
(2π)p/2

e−
1
2
∑p

k=1(sk−µ)2
. (1.30)

If we now introduce a Gaussian prior on the value of the mean µ:

p(µ) =
√

γ

(2π) e
− γ2µ

2
, (1.31)

where γ determines the magnitude of µ that we expect (or, conversely, the strength of the
regularization that forces µ towards 0), we can obtain the joint probability of s and µ.
Finally, we can also derive the posterior probability:

p(µ|s) =
√

1
(2πσ̃2) e

− 1
2σ̃2 (µ−µ̃)2

, (1.32)

where we introduced the following quantities:

σ̃ = (p+ γ)−1. (1.33)

µ̃ = p

p+ γ
s. (1.34)

s = 1
p

p∑
k=1

sk. (1.35)

The Maximum A Posteriori inference can then be formulated as finding the maximum
(with respect to µ) of the log-likelihood per sample:

`(µ) = 1
2(µ2 − sµ)︸ ︷︷ ︸

Unconstrained likelihood

+ γ

2p µ
2

︸ ︷︷ ︸
L2 regularization

, (1.36)

so that the Gaussian prior imposed on the value of µ manifests itself as an additional L2
penalty in the log-likelihood. Since the prior is of the same family distribution as the
conditional probability, a situation referred to as a conjugate prior, it has the same effect
as introducing a new (specially weighted) sample in the dataset (in this case, equal to 0),
and therefore has the effect of biasing the inference towards µ = 0.

In Chapter 2, we consider an extension of this computation, the problem of regular-
ization in Maximum a Posteriori Inference of multivariate Gaussian Models, and show
the existence of an optimal regularization in this setting. In Chapter 4, we present the

Statistical Inference 27

Figure 1.5: Illustration of the overfitting phenomenon. In the case of weak regularization,
the model is able to fit perfectly the training set by constructing a very irregular decision
boundary. However, the underlying data distribution was more regular, and when addi-
tional examples are added, they are incorrectly classified. On the other hand, a strongly
regularized network performed poorly on the training set, but finds a very regular decision
boundary which generalizes better to the new examples of the test set than the weakly
regularized model.

SVM model, which can be seen as an L2–regularized version of the Perceptron, which we
present in the same Chapter. Finally, we note that more meaningful regularization terms
can be chosen to enforce specific characteristics of the solutions, such as invariances, that
are known from high-level knowledge about the task; this is the approach we took for the
elaboration of the model we study in Chapter 8, where the ”direct” and ”inverse” model
losses impose a specific structure on the visual representation which makes it easier for
the recurrent part of the model to learn a resetting behavior.

Chapter 2

Regularization in
Gaussian Model inference

Abstract
Understanding the role of regularization is a central question in Statistical
Inference. Empirically, well-chosen regularization schemes often dramatically
improve the quality of the inferred models by avoiding overfitting of the train-
ing data. We consider here the particular case of L2 and L1 regularizations in
the Maximum A Posteriori (MAP) inference of generative pairwise graphical
models. Based on analytical calculations on Gaussian multivariate distribu-
tions and numerical experiments on Gaussian and Potts models we study the
likelihoods of the training, test, and ‘generated data’ (with the inferred mod-
els) sets as functions of the regularization strengths. We show in particular
that, at its maximum, the test likelihood and the ‘generated’ likelihood, which
quantifies the quality of the generated samples, have remarkably close values.
The optimal value for the regularization strength is found to be approximately
equal to the inverse sum of the squared couplings incoming on sites on the
underlying network of interactions. Our results seem largely independent of
the structure of the true underlying interactions that generated the data, of
the regularization scheme considered, and are valid when small fluctuations of
the posterior distribution around the MAP estimator are taken into account.
Connections with empirical works on protein models learned from homologous
sequences are discussed.

29

30 Regularization in Gaussian Model inference

2.1 Introduction

Data-driven modeling is now routinely used to address hard challenges in an increasing
number of fields of science and engineering for which first-principle approaches have lim-
ited success. Applications include the characterization and design of complex materials
(Schmidt et al., 2019), shaped by the pattern of strong and heterogeneous interactions be-
tween their microscopic components. Performance of data-driven models strongly depends
on the choice of their hyperparameters, such as the architecture, and the strengths of the
regularization penalties. These parameters are generally set through empirical procedures,
such as cross-validation with respect to a goodness-of-fit estimator. Unfortunately, this
common approach often offers no insight about why these values of the parameters are
optimal, and may not guarantee that the obtained models are well-behaved with respect
to other estimators. This paper reports some efforts to address these issues for the specific
case of Lp-norm regularization and probabilistic graphical models.

Probabilistic graphical models rely on the inference of the set of conditional depen-
dencies between the variables under study, which, in turn, may be used to generate new
configurations of these variables (MacKay, 2003). Regularization allows the graph of pair-
wise conditional dependence to satisfy some properties of interests, such as to be sparse
or to have dependence factors bounded from above. Among the huge variety of appli-
cations of those models, substantial efforts have been devoted over the past decades to
applications to the modeling of proteins based on homologous, i.e. evolutionary related
sequence data. Unveiling the relations between the functional or structural properties of
a protein and the sequence of its amino acids is a difficult task. Graphical model-based
modeling consists of inferring a graph of effective interactions between the amino acids,
which reproduce the low-order (1- and 2-point) statistics in the sequence data; for reviews,
see (Cocco et al., 2018) for protein modelling and (Chau Nguyen et al., 2017) for general
inference of graphical models with discrete variables. In practice, for proteins with few
hundreds of amino acids, tens of millions of interaction parameters have to be inferred.
To avoid overfitting, regularization of those interactions, often based on pseudocounts, or
L1- and L2–norms are generally introduced, with intensities varying with the optimality
criteria chosen by the authors (Barton et al., 2014; Haldane and Levy, 2019). For instance,
Ekeberg et al. chose regularization strength scaling linearly with the number of data (se-
quences) (Ekeberg et al., 2013, 2014) to maximize the quality of structural predictions.
Hopf et al. chose linear scaling with the dimension of the data (sequence length) and
with the number of possible amino-acid types (generally, q = 20) for predicting the fitness
effects resulting from mutations along the sequence (Hopf et al., 2017). The rationale for
these scalings and what they tell us about the underlying properties of the protein system
remains unclear. In addition, whether these scalings are appropriate for generating new
data points, i.e. for the design of new protein sequences having putative properties is
not known, and other regularization schemes have been proposed (Barrat-Charlaix et al.,
2021)

In the following, we propose to study the role of regularization in the inference process,
replacing Potts models by Multivariate Gaussian models in order to make the problem
analytically tractable in some limiting cases. We show that two natural definitions for the
optimal values of the regularization strength are in practice very close to one another, and
that their common value can be related to the amplitude of the ground-truth interactions,
in agreement with experimental observations. Our paper is organized as follows. In Section
2, we introduce the Gaussian model and the regularizations of interest. Numerical results
are reported in Section 3. Section 4 is devoted to the analytical studies of the poor and

Regularization in Gaussian Model inference 31

excellent sampling limits. Last of all, some conclusions and perspectives are drawn in
Section 5.

2.2 Gaussian Vectors Model and Regularization

2.2.1 Expression of likelihood in the large–size limit

In order to be able to model distributions over n–dimensional vectors, we consider first the
multidimensional Gaussian distribution, often referred to as Gaussian Vectors or Spherical
Model. In the following, we will only consider the case of centered Gaussian Vectors, for
which the mean value of each component vanishes and the probability density is given by:

p(x) = 1√
(2π)n det(Ctr)

e−
1
2x

T (Ctr)−1x , (2.1)

where Ctr is the n × n–dimensional covariance matrix. Alternatively we may define the
underlying data distribution through an interaction matrix J tr, which represents the in-
teraction strength between the variables (vector components). This interaction matrix J tr
is related to the true covariance matrix Ctr of the data through

Ctr = (µtrI − J tr)−1 , (2.2)

where µtr was introduced to impose the spherical normalization constraint Tr(Ctr) =
n. Denoting as (jtr1 , . . . , jtrn) the eigenvalues of J tr, the normalization condition can be
written, in the large n limit, as

1− 1
n

n∑
k=1

1
µtr − jtrk

= 0. (2.3)

As the covariance matrix is non-negative we are looking for the unique value of µtr in
[maxk{jtrk },+∞[that satisfies this equation.

In the following, we will be interested in inferring the interaction matrix J tr from an
empirical approximation Cemp of the correlation matrix obtained using p = αn samples
(x1, . . . ,xp) as:

∀(i, j) ∈ [1, n]2, Cemp
i,j = 1

p

p∑
k=1

xki x
k
j . (2.4)

We define the posterior likelihood of any interaction matrix J given the empirical covari-
ance matrix Cemp,

p(J |Cemp) = e−nE(J) , (2.5)

where the energy function E(J) reads

E(J) = −α2 Tr(JC
emp) + α logZ(J) + γ

4Tr(J
2). (2.6)

In the expression above the first two terms correspond to the standard likelihood of a given
Gaussian Model given the empirical covariance, while the last term expresses a penalty
on the L2 norm of the inferred interaction matrix. The strength of this regularization is
controlled by the parameter γ.

32 Regularization in Gaussian Model inference

Symbol Quantity
I The identity matrix
n Dimension of the Gaussian Vectors
p Number of samples
α Sampling ratio p/n
γ The strength of the L2 penalty
J Dummy variable standing for an interaction matrix
C Dummy variable standing for a covariance matrix
J tr True interaction matrix of the underlying model
Ctr True covariance matrix of the underlying model
Ctr,rot True covariance matrix, in the diagonalizing basis of Cemp

ctr An eigenvalue of the true covariance matrix
µtr Lagrange multiplier imposing the spherical constraint on J tr
Cemp Empirical covariance matrix obtained from p = αn samples
cemp Eigenvalue of the empirical covariance matrix
J∗ Interaction matrix obtained from Maximum A Posteriori inference
j∗ Eigenvalue of the MAP inferred interaction matrix
µ∗ Lagrange multiplier imposing the spherical constraint on J∗

Table 2.1: All quantities used in the inference procedure. Please note that the empirical
covariance matrix Cemp and its eigenvalues are stochastic quantities for a given underlying
interaction model J tr (since they depend on the exact samples drawn). Additionally, we
will assume the eigenvalues c to be ordered from largest to smallest, and denote with a
lower–index k both cempk (the k–th largest eigenvalue of Cemp) and j∗k the corresponding
eigenvalue of J∗ (see eqn. 2.10).

The partition function Z(J) of the so-called spherical spin model reads

logZ(J) =
∫
x∈Rn

δ(x2 = n) e
1
2
∑

i6=j xiJijxj

= nmin
µ

(
µ

2 −
1

2n log(det(µI − J))
) (2.7)

to the dominant order in n. The parameter µ can be interpreted as a Lagrange multiplier,
introduced to impose the spherical constraint Tr(C) = n, which corresponds exactly to
the normalization condition (2.3) but with the eigenvalues of the true interaction matrix
jtr replaced by the ones of J .

Our goal will be to minimize the energy (2.6) with respect to the interaction matrix
J ; the matrix J∗ minimizing the energy will be called inferred matrix and will be our
primary object of study. We also define µ∗ the Lagrange multiplier imposing the spherical
constraint on this inferred model, and C∗ the covariance matrix of the inferred model.
For reference, we define in Table 2.1 all the different quantities that we will be considering
and their associated notations.

2.2.2 Maximum A Posteriori estimator of the interaction matrix

When γ is equal to 0, the regularization disappears and the Maximum Likelihood estima-
tion of J∗ is exactly equal to the one computed from the empirical covariance Cemp; when
γ goes to infinity, the regularization becomes so strong that the inferred interaction matrix
is exactly equal to 0; in the general case of finite γ, we find J∗ by computing ∂E

∂J (J∗),

Regularization in Gaussian Model inference 33

which yields the Maximum A Posteriori (MAP) equation:

γJ∗ − αCemp + α(µ∗I − J∗)−1 = 0. (2.8)

According to equation (2.8) the inferred interaction matrix J∗ is diagonal in the same
vector basis as the empirical covariance matrix Cemp. It is therefore possible to rewrite
this equation in terms of the eigenvalues (respectively, j∗, cemp) of those matrices1:

γ j∗2 − (γµ∗ + αcemp) j∗ + α(µ∗cemp − 1) = 0. (2.9)

Since the discriminant ∆ = (αcemp − γµ∗)2 + 4αγ ≥ 0, the eigenvalue j∗(cemp) always
exists in R and is found to be equal to:

j∗(cemp) = 1
2γ

(
αcemp + γµ∗ −

√
(αcemp − γµ∗)2 + 4αγ

)
. (2.10)

It should be noted here that this is in fact an auto-consistent equation: µ∗ is used to
compute the eigenvalues j∗, which in turn are used to compute µ∗. In order to solve it,
we consider µ∗ to be a free parameter and make the expression of the inferred eigenvalues
depend on two variables j∗(cemp, µ∗). Introducing the corresponding expression into the
normalization condition 2.3, we find that µ∗ is the only root2 of the residual function:

Resnorm(µ) = 1− 1
n

∑
k

1
µ− 1

2γ

(
αcempk + γµ−

√
(αcempk − γµ)2 + 4αγ

) . (2.11)

In practice, the optimization of this residual is performed numerically in Python using
the Van Wijngaarden-Dekker-Brent method Brent (2013), implemented within the SciPy
package Virtanen et al. (2020). After obtaining the value of µ∗, the inferred interaction
matrix J∗ is obtained by computing its spectrum through equation 2.10 and changing the
basis back from the inference basis (which diagonalizes the empirical covariance Cemp) to
the original basis (in which the true interaction J∗ was defined).

2.2.3 Likelihoods of the training, test, and generated sets

In order to be able to compare the quality of the inferred interaction matrix J∗ as a
function of the different parameters of the system (namely, α, γ and the true interaction
matrix J tr) the first interesting quantity to define is the training likelihood:

Ltrain = 1
p

p∑
k=1

1
2
∑
i,j

J∗ij x
k
i x

k
j − logZ(J∗)

 , (2.12)

which directly quantifies how well the examples of the training set are fit by the MAP
estimator J∗. By performing the summation over the sample index k, the likelihood can
be rewritten as a function of the empirical covariance matrix Cemp:

Ltrain = 1
2
∑
i,j

J∗ijC
emp
ij − logZ(J∗). (2.13)

1Because of equation 2.8, we know that to each eigenvalue of the empirical covariance matrix corre-
sponds exactly one eigenvalue of the inferred interaction matrix.

2It can easily be shown that ∂j∗(cemp)/∂µ∗ is always positive; since j∗(cemp, µ) < µ, we have that
Res(µ) is well-defined for all values of µ; ∂Res(µ)/∂µ is always positive and therefore Res(µ) is monoton-
ically increasing from −∞ when µ→ −∞ to 1 when µ→ +∞, ensuring the unicity of the root.

34 Regularization in Gaussian Model inference

A similar reasoning can be performed, this time considering the case where an infinite
number of samples are drawn from the true underlying distribution (meaning that Cemp
is replaced by Ctr), corresponding to the average test error on samples independent of the
training ones. This leads to the definition of the test likelihood:

Ltest = 1
2
∑
i,j

J∗ijC
tr
ij − logZ(J∗). (2.14)

Finally, one can also consider the likelihoods of a ‘generated set’ of examples drawn
using the inferred interaction matrix, with respect to this same inferred interaction matrix
J∗:

Lgen = 1
2
∑
i,j

J∗ijC
∗
ij − logZ(J∗). (2.15)

It is possible to rewrite the ”generated” likelihood using the MAP equation:

Lgen = 1
2
∑
i,j

J∗ijC
∗
ij − logZ(J∗) = 1

2
∑
i,j

J∗ij
1

µI − J∗
∣∣∣
ij
− logZ(J∗)

(2.8)= 1
2
∑
i,j

J∗ij(C
emp
ij − γ

α
J∗ij)− logZ(J∗) = Ltrain −

γ

2α
∑
i,j

J∗ij
2.

(2.16)

This form of the generated likelihood can be interpreted as a form of bias-variance trade-
off: if an increase in the magnitude of the couplings is necessary to better fit the training
set, it will increase the variance of the generated data and consequently decrease the
generated set likelihood.

2.2.4 Generic dependence of the likelihoods upon regularization strength

Figure 2.1 is a sketch of the typical behaviours expected for the three log-likelihoods
defined above as the regularization strength γ is varied:

• For weak regularization i.e. γ close to zero MAP inference is unconstrained, and
the inferred covariance coincides with the empirical one. The value of the training
likelihood is large, as the details of the training set are fitted. Consequently, the
inferred model has poor generalization capability, and the test log-likelihood has a
low value. This is a situation of overfitting. Generated data look like training data,
so the generated likelihood is large.

• For strong regularization, i.e. large γ the regularization term in the energy becomes
more important than the likelihood term, so that the MAP estimator J∗ tends to
zero; this is a case of under fitting, as the training, test, and generated likelihoods
will be low. When γ goes to infinity, the three likelihoods converge to a common
value,

L(γ →∞) = −n2 . (2.17)

• In-between those two regimes, i.e. for intermediate values of γ the training like-
lihood is monotonically decreasing with γ, reflecting the increasing bias towards
small couplings, and so is the generated likelihood. The test likelihood displays a
non-monotonic evolution, and reaches a maximum for some regularization penalty
γopt. While the presence of γ biases the inference, it also reduces its variance, and

Regularization in Gaussian Model inference 35

Figure 2.1: Sketch of the expected behaviours of the likelihoods vs. regularization γ,
and definitions of the three values of interest: γhalf , for which the generated likelihood
is exactly in-between the train and test ones; γcross, for which the test and generated
likelihoods are equal; γopt, for which the test likelihood is maximal. The difference between
optimal and crossing likelihoods is strongly exaggerated for illustration purposes, as in
practice they are found to be extremely close to each other in almost all circumstances.

hence allows for better generalization of the model to unseen examples. While the
test likelihood always remains smaller than the training likelihood (as should be ex-
pected, the model cannot generalize better than it fits the available data), the test
and generated likelihoods may cross at a certain value γcross, Figure 2.1. We also
define the regularization γhalf for which the generated likelihood is half way between
the train and test ones.

In the following we will study, through numerical experiments and analytical calculations
the behaviour of these three regularization strengths of interest, and their dependence on
the model defining parameters (number p of samples compared to the size n, structure of
the coupling matrix, ...).

2.3 Numerical experiments

2.3.1 Gaussian Vectors Model

In order to study the dependence of γopt, γcross, γhalf with the different parameters, we
implemented the MAP inference procedure in Python (the code is available on GitHub).

The general procedure is as follows: first, an interaction matrix J tr is randomly gen-
erated, according to an underlying distribution (see next subsections for details on the
distributions we considered); then, a certain number p = αn samples are drawn from
the Gaussian Vectors model with interactions J tr, and from those samples an empirical
covariance matrix Cemp is derived; this matrix is then diagonalized, and the spectrum
of the MAP interaction estimator J∗ is computed through eqn. (2.10); the training and
generated set likelihoods are computed directly using those eigenvalues, while the test
likelihood requires the inversion of the diagonalization basis change in order to obtain the
expression of J∗ in the same basis as Ctr.3

3Those two basis a priori coincide if and only if α→∞.

https://github.com/AFanthomme/Gaussian-Model-Likelihoods

36 Regularization in Gaussian Model inference

Case of random quenched couplings

The condensation phase transition. We assume that the underlying interaction ma-
trix is drawn from the Gaussian Orthogonal Ensemble, i.e. all its components are drawn
at random and independently from a centered Gaussian distribution:

∀ i, j , J trij ∼ G
(
0, σ√

n

)
. (2.18)

The presence of this 1/
√
n normalization ensures that the energy is extensive with n.

The model is ”infinite range” because all spins are interacting with all other spins with
similar strengths, controlled by the parameter σ. As shown in Kosterlitz et al. (1976)
the model exhibits a condensation phase transition when σ crosses the critical value σc =
1. For σ > σc one eigenvalue of the covariance matrix scales linearly with n, while all
others remain finite. This transition can be intuitively understood as follows. Since the
interaction matrix J tr has Gaussian entries, its eigenvalue distribution follows Wigner’s
semi-circle law, and ranges from −2σ and 2σ. As σ increases from small values, the value
of the Lagrange multiplier µ imposing the spherical constraint becomes closer and closer
to its lower-bound 2σ, and the gaps closes (in the infinite n limit) when σ = σc. For
σ > σc µ remains equal to 2σ, and the corresponding top eigenvector of J tr gives rise
to an extensively large eigenvalue in Ctr. More precisely, when σ is larger than σc, the
maximum eigenvalue of Ctr is equal to

ctrmax = n×
(

1− 1
2πσ2

∫ 2σ

−2σ

√
4σ2 − j2

2σ − j dj

)
= n

(
1− 1

σ

)
. (2.19)

In this situation, the model generates configurations that are effectively constrained close
to a subspace of dimension 1.

Evolution of the log-likelihoods with γ. Figure 2.2 shows the behaviours of the
log-likelihoods with varying γ, for different regimes of low and high sampling fractions α.
Vertical lines locate the three values of γ of interest. The overall shape of the curves agree
with the expected behaviours sketched in Figure 2.1.

For small γ (overfitting regime), the value of the training likelihood is very large,
irrespective of the value of α as the weak regularization allows the inference procedure
to fit the training set without bias. The test loss, however, strongly varies α. For low
sampling (small α) Cemp is essentially uncorrelated with Ctr, and the test likelihood will
be very low. If α is large, Cemp is almost equal to Ctr, and the test likelihood will be very
close to its training counterpart, both being very high. In all cases the generated and the
training log-likelihoods coincides.

When γ is very large, the regularization term in the energy pushes the MAP estimator
J∗ towards 0. In this underfitting regime, all log-likelihoods tend to the same limit value,
see eqn. (2.17).

For intermediate γ, we observe that the location of the maximum of the test likelihood,
γopt, is very close to the value of the regularization strength γcross for which it crosses the
generated log-likelihood. This unexpected results holds in most circumstances as reported
in Figure 2.3, but small discrepancies can be observed at low sampling ratio α. Detailed
analytical calculations for the Gaussian Vectors Model in Section 2.4 will allow us to
confirm this numerical observation, and, in addition, to approximate their common value
as a function of the sampling ratio α and of the ”true” interaction matrix J tr:

γopt ' γcross ' n∑
i,j(J trij)2 . (2.20)

Regularization in Gaussian Model inference 37

Figure 2.2: Evolution of the four likelihoods (normalized by n) as functions of the regu-
larization strength γ for four different values of the sampling ratio α. In all cases, both
training and generated likelihoods are monotonically decreasing, while the test likelihood
is first increasing then decreasing; the training and test likelihoods never cross, while the
generated and test likelihoods cross for a value of the regularization extremely close to the
optimum of Ltest.

Let us notice that γhalf , the regularization penalty at which the generated likelihood is
the mean of the train and test ones, seems to approximately fullfill the following equality∑

i,j

J∗ij(γhalf)Ctrij =
∑
i,j

J trij C
∗
ij(γhalf) . (2.21)

2.3.2 Numerical estimation of the regularization strengths

In order to compute the values of γopt and γcross as precisely as possible, we derived two
residuals, i.e. functions of γ which are equal to 0 respectively when the test likelihood
is optimal, or when the test and generated likelihoods are equal. Similarly to how µ∗

was determined when solving the MAP equation, the roots of those residuals will be
minimized using standard convex optimization routines to obtain high precision estimates
of the optimal and crossing regularizations.

This approach is easilly illustrated in the case of the crossing regularization γcross.
According to eqn. (2.42) the following function Rescross(γ) has its root equal to γcross:

Rescross(γ) := α
〈J∗(γ) (Cemp −Ctr)〉

〈J∗(γ)2〉
− γ. (2.22)

For the estimation of the optimal regularization, the computation is more involved and
relies on finding the derivative of Ltest with respect to γ. Indeed, γ is equal to γopt when

Resopt(γ) := ∂Ltest
∂γ

(2.23)

is equal to 0.

38 Regularization in Gaussian Model inference

This derivative can be computed as:
∂Ltest
∂γ

= 1
2
∑
i,j

∂J∗ij
∂γ

Ctrij −
∂ logZ(J∗)

∂γ

= 1
2
∑
k

∂j∗k
∂γ

Ctr,rotk,k − ∂ logZ(J∗)
∂γ

,

(2.24)

where Ctr,rot is the true correlation matrix after changing the basis to the inference basis
in which Cemp is diagonal.
We begin by computing

∂γj
∗
k = ∂γ

[1
2γαck + γµ∗ −Dk

]
= Ak∂γµ

∗ +Bk −
j∗k
γ
,

(2.25)

where we introduced

Dk =
√

(αcempk − γµ∗)2 + 4αγ, (2.26)

Ak = 1
2

(
1− γµ∗ − αcempk

Dk

)
, (2.27)

Bk = 1
γ

(
µ∗Ak −

α

Dk

)
. (2.28)

Then, we have that

∂γ logZ = n∂γµ
∗ − 1

2
∑
k

∂γµ
∗ − ∂γj∗k
µ∗ − j∗k

. (2.29)

Finally, we can compute ∂γµ by first noting that:
1
2
∑
k

1
µ∗ − j∗k

= 1, (2.30)

hence ∑
k

∂γµ
∗ − ∂γj∗k

(µ∗ − j∗k)2 = 0, (2.31)

and therefore

∂γµ =
[∑
k

∂γj
∗
k

(µ∗ − j∗k)2

]
/

[∑
k

1
(µ∗ − j∗k)2

]
(2.32)

∂γµ
∗ =

[∑
k

Ak∂γµ
∗ +Bk − j∗k/γ

(µ∗ − j∗k)2

]
/

[∑
k

1
(µ∗ − j∗k)2

]
(2.33)

∂γµ
∗
[∑
k

1−Ak
(µ∗ − j∗k)2

]
=

[∑
k

Bk − j∗kγ
(µ∗ − j∗k)2

]
(2.34)

which finally yields:

∂γµ
∗ =

[∑
k

Bk − j∗k/γ
(µ∗ − j∗k)2

]
/

[∑
k

1−Ak
(µ∗ − j∗k)2

]
. (2.35)

Putting together eqns. (2.24) to (2.35) yields an explicit expression for the derivative
of Ltest with respect to γ, which is exactly the residual Resopt(γ) whose root gives the
value of γopt.

Regularization in Gaussian Model inference 39

Figure 2.3: Gaussian Vectors Model with L2 regularization. A: Evolution of the regu-
larizations γopt and γcross as functions of the sampling ratio α for different values of the
interaction dispersion σ, see eqn. (2.18). The theoretical prediction for γcross, represented
here as a dashed line for each value of σ, is given in eqn. (2.20) and derived in Section 2.4.
B: Evolution of the likelihood gap ∆L = Ltest(α, γopt(α)) − Ltrain(α = ∞, γ = 0) as a
function of α for the same values of σ as panel A. As expected, this gap vanishes as α goes
to infinity, meaning that the optimal inferred model (obtained with non-zero regulariza-
tion) fits the data perfectly in the limit of infinite samples. While the gaps are identical
between different values of the interaction strength, we were not able to determine the
expression for this evolution.

Other types of underlying interactions

The empirical coincidence between γopt and γcross reported above extends to other choices
of the coupling matrices. As an illustration we consider the case where the underlying
interaction matrix J tr is structured, instead of being randomly drawn. In particular, we
present in Figure 2.4 two examples, and show that the presence of structure does not
significantly alter our previous observations:

• in panel A, the interaction matrix is band-diagonal, meaning that the coefficients
are given by

∀ (i, j) s.t. |(i− j) mod n| < w

2 , J trij ∼ G
(

0, σ√
w

)
, (2.36)

where w is the width of the non-zero band, G is the Gaussian distribution, and [n]
represents the ’modulo n’ operation. This means that sites are arranged on a ring,
with interactions only between w nearest neighbors, and the value of those non-zero
interactions are drawn randomly from a Gaussian distribution.
This model can be related to the random Schrödinger operator in dimension 1, an
object extensively studied in the context of Anderson localization, see Anderson
(1958). As observed numerically by Casati et al. (1990) and later rigorously proved
(see Bourgade (2018) for an overview), a phase transition can be observed when
w ∼

√
n between a regime (small w) where the eigenvectors of J tr are localized i.e.

decay exponentially with distance, and another where they are extended (large w).
Our particular choice of scaling of the individual entries of those band matrices is such

40 Regularization in Gaussian Model inference

Figure 2.4: Evolution of the regularizations of interest for two different cases of structured
interaction matrices J tr. A: case of a random band matrix. B: case of a deterministic,
uniform 1-dimensional chain. In both cases, the observation that the crossing and optimal
regularizations are of the same order of magnitude remains true, and so does the prediction
for their value in the α→∞ regime.

that
∑

i,j
(Jtrij)2

n remains constant, and so do the expected values of the regularizations
of interest.

• in panel B, J tr is a deterministic matrix corresponding to a unidimensional chain:

∀ (i, j) , J trij =
{

0 if i = j or |(i− j) mod n| > 1
σ if |(i− j) mod n| = 1

, (2.37)

meaning that sites are again arranged on a ring, this time with fixed positive in-
teractions between direct neighbors only. This particularly simple model does not
exhibit any phase transition.

We find that changing the underlying model of interaction does not significantly impact
the phenomenology that we previously observed for infinite-range Gaussian interactions:
an optimal regularization still exists for all values of the sampling ratio α.

L1 regularization

While the L2 penalty is often used in practice, and encourages smoothness of the energy
landscape, it is not the only possible choice. In many cases, it can be interesting to infer
sparse interactions models, which is usually done by using an L1 regularization: in a
protein, amino acids which are very distant in the sequence can end up close in the folded
structure, and therefore interact strongly so that one has to a priori allow interactions
between all sites along the sequence; however, in three-dimensional space, each site is close
only to a very small fractions, so that the inferred interaction matrix should be sparse.
The inference procedure in this case is less straight-forward than for the L2 case, and
analytical solutions cannot be obtained in the general case. Instead, one relies on the
so-called ”Graphical Lasso” method Friedman et al. (2008), which iteratively solves Lasso
problems for each column of the interaction matrix using coordinate descent Wright (2015)
until convergence, implemented in Scikit-learn Pedregosa et al. (2011).

We show in Figure 2.5 that the behavior of the likelihoods remains qualitatively similar
to what we observed in the case of L2 regularization, despite the difference between the
two noticeable regularizations being much higher than previously; similarly, the equality

Regularization in Gaussian Model inference 41

Figure 2.5: A: Typical evolution of the likelihoods as a function of the strength of the
L1 regularization. The existence of a finite optimal regularization, as well as the crossing
between test and generated likelihoods, remains true as in the L2 case. B: Evolution of
the crossing and optimal regularizations as a function of the sampling ratio α. While
the two noticeable regularizations are no longer equal, they remain of a similar order of
magnitude.

(2.21) that was observed at γhalf remains close to being true, albeit less closely followed
than in the L2 case. A detailed analysis of this inference procedure could both shed light
on the difference between the two, and give us a theoretical prediction for the optimal
regularization in this regime, but this remains to be done in future work.

2.3.3 Potts Model

Generation of synthetic data and energy model

We now consider a discrete-valued graphical model, in which each (categorical) variables
may take one out of q values. The energy of a configuration x is given by

E(x;h,J) = −
∑
i<j

Jij(xi, xj)−
∑
i

hi(xi) , (2.38)

The local fields h and the couplings J are, respectively, q–dimensional vectors and (q×q)–
dimensional matrices. The corresponding partition function is

Z(h,J) =
∑

{xi=1,2,...,q}
e−E(x;h,J) (2.39)

We start by drawing the components of htr and J tr that from Gaussian distributions
of zero mean and standard deviations σ2

h and σ2
J . All components of the h vectors and J

matrices are chosen at random and independently from each other.
Next, each element of the Gaussian matrix J trij is multiplied by a connectivity indica-

tor equal to 0 or 1, which identifies, respectively, the absence or the presence of an edge
between the variables i and j in the coupling network. In practice, we choose this con-
nectivity at random, following the prescription of the so-called Erdös-Rényi (ER) random
graph ensemble. For each pair i, j of variables we chose to insert an edge in the inter-
action graph with probability d/n, and to have no connection with probability 1 − d/n;
d/n× (n− 1) is therefore the average degree of each variable in the connectivity graph.

In our simulations, we vary

42 Regularization in Gaussian Model inference

• the size (number of variables), n; here n = 25, 50, 100, 150;

• the number of Potts states, q (here q = 10, 20);

• the probability d/n to include edges in the ER graph. Different values of d were
tested only for n = 25, for which the computation were faster: d = 1.25, 2.5, 7, 10.

For each system, a number p of data point, ranging from 102 to 105 were generated by
Markov Chain Monte Carlo sampling. Intuition about the sampling level can be obtained
by comparing p with the number of parameters to infer from the data, n×q+ 1

2n(n−1)×q2.
The parameters defining the Gaussian distribution to generate fields and coupling are here
kept constant as n varies: σ2

h = 5, σ2
J = 1.

Behaviours of the train, test, and generated log-likelihoods

Once the data are generated through Monte Carlo sampling of the Gibbs distribution
associated to the energy (2.38) we infer the model parameters hi(x), Jij(x, x′) using two
methods. The first one is the Pseudo-Likelihood Method (PLM), a non-Bayesian inference
method that bypass the (intractable) computation of the partition function Z (Ravikumar
et al., 2010; Ekeberg et al., 2013). The second one is the so-called Adaptive Cluster
Expansion (ACE) algorithm, which recursively computes better and better approximations
for the cross-entropy of the data (and logZ) (Cocco and Monasson, 2011; Barton et al.,
2016), combined with color compression (Rizzato et al., 2020).

The inference is done with a L2-norm regularization on the couplings (intensity γ)
and on the fields (intensity γh). We expect regularization to be much less needed for the
fields, because single-site frequencies are much better sampled than pairwise frequencies.
We therefore fix the ratio between the regularization of fields and couplings, setting γh =
γ/(10n), and vary γ.

In Figure 2.6, we show the average log-likelihoods (normalized by n) of the data in
the training set, in the test set (same size as the training set) and the generated data set.
Model parameters were inferred with the PLM procedure, and log-likelihoods (and the
log partition function) were computed with the Annealed Importance Sampling method.
For small regularization γ we observe a strong overfitting effect as expected, with similar
values for Ltrain and Lgen, much above Ltest. For intermediate regularization values, the
test and generated log-likelihoods are similar as the number p of samples available for the
inference increases, while the size n is kept fixed. This result is compatible with a weak
dependence of γcross upon α, as found for the Gaussian Vectors Model. For large γ, Lgen
may get smaller than Ltest, a signature of very strong underfitting.

Dependence of optimal regularizations on system and data set sizes

We assess the quality of the inference through the Kullback-Leibler (KL) divergence of
the inferred probability distribution from the ground-truth probability distribution,

DKL =
∑
x

e−E(x;h∗,J∗)

Z(h∗,J∗) log
[
e−E(x;h∗,J∗)

Z(h∗,J∗)

/
e−E(x;htr,Jtr)

Z(htr,J tr)

]
. (2.40)

Again, we estimate the partition functions entering the definition above with Annealed
Importance Sampling.

Regularization in Gaussian Model inference 43

Figure 2.6: Average log-likelihoods of test (circular markers), train (cross markers) and
generated (square markers) data vs. number p of samples for different regularization
strengths γ (one color and line style for each). Results were averaged over 20,000 sequences
for each reported value of γ and p. Parameters: n = 50, q = 10.

Dependence on the size n. We first study if and how the optimal regularization
parameter γ changes when we the system size n is increased, while the average connectivity
in the graph is fixed by choosing p = 2.5/n; we also fix the number of Potts states to
q = 10. In Figure 2.7 we show the KL divergence for models inferred at different γ for
various n and p. The optimal regularization γopt seems to be roughly equal to 0.5 in all
the considered cases, independently of p (with some inaccuracy for very poor sampling,
i.e. p = 100). We have also checked that this optimal value of γ does not seem to depend
on q, by repeating the same numerical experiments for q = 20 Potts states with similar
results, see Figure 2.8.

These two results are in very good agreement with the theoretical prediction reported
in eqn. (2.20), that is, γopt ' γcross ' 1

d = 0.4 for the parameters chosen in Figures 2.7 and
2.8. Indeed, in ER graphs, the average number of interacting neighbours is equal to d (on
average), independently of n (and p). In addition, since each variable can take one out q
symbol values, the number of variables j interacting with i in the sum at the denominator
in eqn. (2.20) is independent of q.

Dependence on the structural connectivity of the interaction graph. We then
study how the optimal regularization depends on the connectivity of the graph. For
this reason we keep the graph size fixed (n = 25), and build different ER models with
different densities varying d, see section 2.3.3. Once data are generated we infer the
model parameters h∗,J∗ for different γ and sample sizes p. Results are reported in Figure
2.9, and show a clear dependence on the structural parameter d. We observe that the
scaling factor is approximately inversely proportional to the number of neighbors on the
interacting graph. This result is in excellent agreement with the outcome of the expected
theoretical scaling reported in eqn. (2.20).

44 Regularization in Gaussian Model inference

Figure 2.7: Kullback-Leibler (KL) divergence between the inferred models and the ground
truth for different graph (n) and sampling (p) sizes as a function of the regularization on
the couplings (γ). The y-axis was arbitrarily rescaled between the different curves to allow
for easier comparison. Parameters: d = 2.5, q = 10.

Figure 2.8: Kullback-Leibler (KL) divergence between the inferred models and the ground
truth for different numbers q of Potts states and p of data points, as a function of the reg-
ularization on the couplings (γ). The y-axis was arbitrarily rescaled between the different
curves to allow for easier comparison. Parameters: d = 2.5, n = 50.

Figure 2.9: Kullback-Leibler (KL) divergence between the inferred models and the ground
truth for different average number of edge per site (numbers reported in the panels, ob-
tained by varying d), as a function of the regularization (γ) used during inference. The
y-axis was arbitrarily rescaled between the different curves to allow for easier comparison.
Parameters: n = 25, q = 10.

Regularization in Gaussian Model inference 45

2.4 Analytical calculations at low and high sampling ratios

While finding the exact value for the regularization strengths of interest as functions of the
model parameters is out of reach we show in this section how this calculation can be done
in the case of the Gaussian Vectors Model for very low and high values of the sampling
ratios.

2.4.1 Asymptotic behavior of γcross

The crossing regularization γcross is defined through

Ltest(γcross) = Lgen(γcross) . (2.41)

Replacing Lgen in the equation above with its expression in eqn. (2.16) and using the
definitions (2.13,2.14) of the train and test log–likelihoods we obtain

γcross = α
Ltrain(γcross)− Ltest(γcross)∑

i,j J
∗
ij

2 = α

∑
i,j J

∗
ij

(
Cempij − Ctrij

)∑
i,j J

∗
ij

2 . (2.42)

α→∞ regime

We derive below an asymptotic prediction for γcross in the large sampling regime α→∞.
We begin by considering the α� 1 limit of the matrix-form MAP eqn. (2.8):

J∗ = µI −
(
Cemp)−1

. (2.43)

We consider the distribution of the empirical covariance matrix Cemp conditioned to the
”true” correlation matrix Ctr = (µtr−J tr)−1, known as the Wishart distribution Wishart
(1928), and defined for p > n as

pJtr(C) ∝ en
α
2F(C) , F(C) = α− 1

2 log det(C)− α

2 Tr
(
(µtr − J tr)C

)
(2.44)

where we omit C-independent normalization factor. For large α, we can perform a saddle-
point approximation of this density around its maximum Ctr:

pJtr(C = Ctr + ∆C) ∝ en
α
2 ∆C† ∂2F

∂C∂C
(Ctr)∆C . (2.45)

A straightforward calculation leads to

∂2F
∂Ci,j∂Ca,b

(Ctr) = ∂2 log detC
∂Ci,j∂Ca,b

(Ctr) = −
(
Ctr

)−1
a,i

(
Ctr

)−1
b,j

. (2.46)

We deduce from eqn. (2.45) that
(
Ctr

)−1 ×∆C = U/
√
nα, where U is distributed as an

uncorrelated Gaussian matrix, whose entries have zero means and unit standard deviation.
Therefore, using eqn. (2.43), we have

J∗ ' µI −
(
Ctr + ∆C

)−1 = µI −
(
I − U√

αn

)
Ctr−1

. (2.47)

This expression for the inferred coupling matrix can be inserted in eqn. (2.42) for γcross.
Carrying out the averages over U appearing in J∗ and Cemp we obtain

γcross = n∑
i,j(J∗ij)2

α→∞' n∑
i,j(J trij)2 . (2.48)

46 Regularization in Gaussian Model inference

The stronger the interactions in our underlying model, the weaker the regularization that
needs to be applied during inference. One way of intuitively understanding this statement
is that stronger interactions will a priori generate samples (and therefore MAP estimates)
with less undesirable variance, and therefore require less smoothing from the regulariza-
tion.

α→ 0 regime

We now consider the case of very poor sampling. The lowest value of the sampling ratio,
α = 1

n , is reached with a single sample s (p = 1). The empirical covariance matrix is then
easily written as

Cemp = ss† := nuu†. (2.49)

One eigenvalue of Cemp is non-zero, and is fixed to n to enforce the spherical constraint4.
In other words, the normalized vector u = s/

√
n is the unique non-zero eigenvector of

Cemp.

Eigenvalues of J∗. The inferred coupling matrix reads, according to eqns. (2.8) and
(2.49),

J∗ = [j∗(n)− j∗(0)]uu† + j∗(0) I , (2.50)

where the eigenvalues j∗(cemp) are given by eqn. (2.10). Using α = 1
n and expanding in

powers of 1
n , we find

j∗(0) = − 1
nγµ∗

+ 2
n2γ2µ∗3

+O(n−3). (2.51)

j∗(n) = 1
2γ

[
1 + γµ∗ −

√
(γµ∗ − 1)2 + 4γ

n

]
+O(n−3). (2.52)

The latter expression can be divided into two cases, depending on whether γµ is larger or
smaller than 1:

j∗(n) =


µ∗ − 1

n(1− γµ∗) + γ

n2(1− γµ∗)3 +O(n−3) if γµ < 1

1
γ
− 1
n(γµ∗ − 1) + γ

n2(γµ∗ − 1)3 +O(n−3) if γµ > 1.
(2.53)

which, together with the normalization condition

n− 1
µ∗ − j∗(0) + 1

µ∗ − j∗(n) = n, (2.54)

yields that:

µ∗(γ) =
{
γ−1/2 if γ < 1
1 if γµ∗ > 1.

(2.55)

4In numerical experiments on finite size n, this constraint is enforced by hand, by rescaling the empirical
covariance Cemp to have a trace exactly equal to n. Note that, in the n → ∞ limit and for σ < 1, this
rescaling is not necessary. For σ larger than 1, however, the norm of s fluctuates strongly, as |s|2 follows
a chi-square distribution.

Regularization in Gaussian Model inference 47

Expression for γcross. We then express the terms appearing in the expression of γcross,
see eqn. (2.42), in terms of the eigenvalues j∗(0), j∗(n):∑

i,j

(J∗ij)2 = j∗(n)2 + (n− 1) j∗(0)2 , (2.56)

∑
i,j

J∗ij C
emp
ij = n [j∗(n)− j∗(0)] + n j∗(0) , (2.57)

∑
i,j

J∗ij C
tr
ij = n [j∗(n)− j∗(0)] θ + n j∗(0) , (2.58)

where we introduced the matrix element

θ = 1
n

∑
i,j

uiC
tr
ijuj . (2.59)

Let us consider this quantity in more details. On average over the sample s(=
√
nu), we

have:
〈uiuj〉 = 1

n
Ctr
ij , (2.60)

and thus
〈θ〉 = 1

n2

∑
i,j

Ctr
ij

2 = 1
n2

∑
k

ctrk
2
. (2.61)

Generally, due to the constraint that ∑k c
tr
k = n, we find that 〈θ〉 is bounded from below

by 1/n (when all eigenvalues of Ctr are equal to 1), and from above by 1 (when a single
eigenvalue of Ctr is equal to n, and all the other eigenvalues are equal to 0). It should be
noted that, while the result 〈θ〉 > 1/n is true on average, the value of θ for an individual
sample can be arbitrarily close to 0. This possibility will be discussed below.

Analytical expressions for the average value of θ can be obtained in the case of random
quenched interactions considered in Section 2.3.1 by explicitly integrating over the semi-
circle eigenvalue distribution, with the results

〈θ〉 =


1

n(1−σ2) if σ < σc = 1 ,(
1− 1

σ

)2
if σ > σc ,

(2.62)

see Figure 2.10A. The last equation comes from the fact that, when σ is larger than
1, the sum in eqn. (2.61) is dominated by the single macroscopic eigenvalue of Ctr, see
eqn. (2.19). For the rescaled samples we used in practice, the average value of θ still goes
to 1 as σ increases, but with a gap closer to ∼ σ−1/2.

Let us now summarize the different cases that can be met, see Figure 2.10B:

• If σ is below 1, the system is in a disordered phase, and strong regularization is
needed. We find that

– if θ > 1/n, the crossing regularization is

γcross = nθ

nθ − 1 , (2.63)

which is larger than 1. This corresponds to a situation where the sample is
slightly informative, and strong regularization is necessary to avoid overfitting.

48 Regularization in Gaussian Model inference

Figure 2.10: Properties of the inference in the low sampling regime α = 1/n and for the
random quenched coupling model. A: Value of the overlap θ as a function of the scale σ
of the interactions in the ferromagnetic regime σ > 1, see theoretical prediction for 〈θ〉 for
non rescaled samples in eq. (2.62). For normalized samples the overlap converges towards
1 more slowly. B: Comparison between the values of γopt and γcross found numerically and
the predictions in eqns, (2.63) and (2.64), applied to the empirical distribution of ”rescaled
samples” overlaps. In both panels error bars represent the variations across 10 choices of
the true underlying interaction matrix of the θ, and γ is averaged over 100 random draws
from the Gaussian model distributioh.

– if θ < 1/n, the two likelihoods never cross, and the optimal regularization
appears to be infinite. This corresponds to a situation in which the randomly
drawn sample is counter-informative, so that the null answer is better than
taking it into account.

• If σ is above 1, the system is in the ferromagnetic phase, so that a single sample
conveys significant information about the entire distribution. In that case, we find
that for a given (rescaled) sample the crossing regularization is given by

γcross = (1− θ)2, (2.64)

which vanishes when σ →∞.

In all cases where σ is either very small or very large, the optimal regularization varies
strongly from sample to sample.

2.4.2 Asymptotic behavior of γopt for α→ 0
While the α → ∞ limit of the optimal regularization is hard to obtain (in particular,
because the test likelihood’s derivative with respect to γ vanishes uniformly), the compu-
tation of γcross can be carried out in the low ratio regime, α = 1/n.

We start from the definition of γopt:

∂Ltest

∂γ
(γopt) = 0 = ∂

∂γ

1
2
∑
i,j

J∗ijC
tr
ij − log Z(J∗)

 (2.65)

From eqns. (2.7) and (2.50), we have

logZ(J∗) = n

2µ
∗ − 1

2 [(n− 1) log(µ∗ − j∗(0)) + log(µ∗ − j∗(n))] (2.66)

Regularization in Gaussian Model inference 49

so that

∂ log Z(J∗)
∂γ

= n− 1
2

∂γj
∗(0)

µ∗ − j∗(0) + 1
2

∂γj
∗(n)

µ∗ − j∗(n) . (2.67)

In addition, differentiating eqn. (2.58) we get

∂

∂γ

∑
i,j

J∗ijC
tr
ij = n

[
∂j∗(n)
∂γ

− ∂j∗(0)
∂γ

]
θ + n

∂j∗(0)
∂γ (2.68)

We now need to evaluate the derivatives ∂γj∗(0) and ∂γj
∗(n). From eqns. (2.51) and

(2.55), at the first order in n, we have

∂j∗(0)
∂γ

= 1
nγ2µ∗

+ ∂γµ
∗

nγµ∗2
=
{ 1

nγ2 if γ > 1 ,
1

2nγ3/2 if γ < 1 . (2.69)

Similarly, eqns. (2.52) and (2.55) yield

∂j∗(n)
∂γ

=


− 1
γ2 if γ > 1 , (2.70a)

− 1
2γ3/2 if γ < 1 . (2.70b)

We may now conclude our calculation of γopt:

• If γ > 1,
∂Ltest

∂γ
= 1

2γ2 (1− nθ) + 1
2γ2(γ − 1) . (2.71)

and therefore this derivative vanishes for

γopt = nθ

nθ − 1 , (2.72)

which is the same result as found from the γcross computation in equation (2.63).

• If γ < 1,
∂Ltest

∂γ
= n

4γ3/2 [(1− θ)−√γ] , (2.73)

whose root is given by
γopt = (1− θ)2 , (2.74)

in full agreement with the result shown in eqn. (2.64).

Therefore, the analytical expressions of γopt and γcross coincide in the undersampled
regime (single sample), which provides further support to our conjecture that the values of
those two regularizations are equal or very close, as suggested by numerical experiments.
Unfortunately, the computation of γopt in the oversampled regime (α → ∞) is more
complicated, and we were not able to prove that its value converges to the limit found for
γcross in eqn. (2.48).

50 Regularization in Gaussian Model inference

2.5 Conclusion

In this work we provided both analytical and numerical evidence for the optimal value of
a L2 penalty term in the likelihood used for Maximum A Posteriori inference of graphical
models. In addition to showing that a non-zero optimal regularization always exists, we
find a remarkable empirical coincidence between two optimality criteria: the maximization
of the test log-likelihood, and the condition that test and generated likelihoods are equal,
a natural requirement for a generative model, see Figure 2.1. This equality suggests
that, while weaker regularizations might give the impression of higher quality generated
data (through higher generated likelihoods), stronger regularizations should actually be
employed to achieve the best possible model, and the perceived increase in generated
likelihood is actually a form of overfitting.

Analytical expressions for the crossing and optimal regularizations could be obtained
in the limiting regimes of poor or good sampling. In the latter case, we obtain an explicit
expression for the optimal regularization strengths in terms of the average inverse squared
couplings between the variables, see eqn. (2.20). This prediction remains remarkably
accurate over a wide range of parameter value, and even for case of categorical variables
(Potts model), while it was established analytically in the case of the Gaussian multivariate
model. This result suggest that our study could also be applied to other interesting classes
of models, such as Restricted Boltzmann Machines, an extension of Ising/Potts models
in which multi-body interactions can be introduced. More generally, it has been known
for a long time that Neural Networks benefit from regularization, with extensive research
being led on the exact regularization scheme to apply for different tasks (see for example
Wan et al. (2013); Zaremba et al. (2015); Louizos et al. (2018); Haarnoja et al. (2018);
Bartlett et al. (2021)); all approaches exhibit some form of ”bias-variance trade off”, i.e.
a phenomenon in which increasing the strength of the regularization reduces the variance
of the estimator (e.g. by increasing the smoothness of the solutions) but in doing so biases
the inference towards a particular subset of solutions; because of this, an optimal value of
the regularization exists that balances those two effects, very similarly to what we observed
in our simplistic model.

In terms of modeling protein from sequence data our results suggest that the optimal γ
should neither be proportional to p

n nor to q, as proposed in previous works (Ekeberg et al.,
2014; Hopf et al., 2017), but is related to the inverse sum of the squared couplings incoming
onto residues, see eqn. (2.20). In particular, our prediction is that the optimal value for
γ scales inversely proportional to the number of interacting neighbors on the dependency
graph. However, some caution must be brought to this conclusion. The sample size p is
not clearly defined for real proteins. The presence of phylogenetic correlations between
sequences make the assumption of independent data points only approximate at best. In
practice the choices γ = 0.01 pn (Ekeberg et al., 2014) and γ = 0.01 q (Hopf et al., 2017) are
qualitatively similar when the number of sequences exceed the protein length by a factor
20, which is not unreasonable for a substantial number of protein families.

Last of all, let us recall that we focused in this work only on Maximum A Posteriori
inference, which can be seen as the null temperature limit of Bayesian inference. It is
natural to wonder whether our result hold for when sampling the posterior probability at
inverse temperature β:

pβ(J) ∝ e−β[
γ
4 Tr(J

2)−α2 Tr(JC
emp)+α logZ(J)] . (2.75)

While an in-depth study of the different sampling strategies is out of the scope of this work
(see Rubinstein and Kroese (2016) for a general overview), we report below numerical and
analytical preliminary steps aiming at characterizing this posterior distributions.

Regularization in Gaussian Model inference 51

Figure 2.11: Evolution of the train energy, distance to MAP estimator and test energy
as a function of the number of Metropolis steps for different values of the temperature.
The energies are given relative to the ones of the MAP. For low temperatures and long
enough times, the sampled solutions have very close energies to the MAP estimator. At
intermediate times, the test energy of the sampled solutions can get lower than the one of
the MAP. Higher temperature allow the system to stay in states of higher energy, which
are further from the MAP. Figure obtained with n = 20, α = 5, σ = 0.5, γ = 5 (larger
than the optimal regularization γopt = 1/σ2 = 4).

We performed some preliminary experiments using a simple Metropolis-Hastings algo-
rithm Metropolis and S. Ulam (1949) which consists in starting from a random point
in the distribution, proposing a small modification and accepting it with probability
p = min(1, exp(−β∆E)) depending on the associated change in energy, ∆E. In our
case, we start from a symmetric Gaussian matrix in which all the entries above the di-
agonal are independent and have the same mean and variance as the MAP estimator5,
and the modifications we propose are the addition of small amplitude, sparse, Gaussian
matrices. Since increasing the temperature (hence decreasing β) can be seen as a way of
letting the system explore areas of higher energy, the matrices sampled at higher temper-
atures will be further away from the MAP solution, which we illustrate in Figure 2.11A
and B respectively. While the energy used for sampling is computed using the empirical
covariance matrix Cemp, it is also interesting to consider the evolution of a ”test” energy,
computed using the true covariance matrix Ctr, which will help quantify the generaliza-
tion property of these solutions. While at long time scales the test energy converges to a
value very close to the one of the MAP estimator, there exists an intermediate regime in
which the sampled matrices achieve better test energy than the MAP estimator, as seen
in Figure 2.11C. Notice, however, that the values of the inverse temperature β considered
in the simulations are large compared to the canonical inverse temperature, n, defined
in the posterior probability over J , see eqn. (2.5). The results reported above therefore
imply that weak fluctuations of the posterior do not modify the properties of the MAP
estimator.

5This initial choice only affects convergence time, as the Metropolis sampling procedure loses informa-
tion on the initial conditions after a transient regime.

Chapter 3

Computational models of
neurobiology

Abstract
In order to better situate the following work within its broader context, we
present here an introduction to computational neuroscience. After a brief his-
tory of the study of individual neurons, detailing how the evolution of the
membrane potential constitutes the main support for information representa-
tion within the brain. We then focus on the ”mesoscopic” scale of neuroscience,
at which the interactions between a large number of neurons allows for the
emergence of collective phenomena, similar to the ones studied in the field of
Statistical Physics, which in particular are used to process information. We
define the concept of ”cognitive manifold”, a subset of the possible states of
the neural population (usually of low dimension) which are effectively observed
during behavior, which will be central to the theory of Recurrent Neural Inte-
grators we consider in Chapter 7. Finally, we present a few examples of neural
circuit models which are relevant not only to behavioral neuroscience, but also
to cognitive science and consequently to Machine Learning: vision, hearing,
spatial navigation and abstract reasoning.

53

54 Computational models of neurobiology

3.1 Individual neuron models

One of the first major results in modern Neuroscience was the discovery of the neurons
as the basic building blocks of nervous systems, made possible by the invention of a novel
tissue staining technique by Camillo Golgi and its further refinement by Santiago Ramon
y Cajal, which allowed staining of cells in their entirety. This particularity proved to be
critical to the analysis of the connectivity within the brain, as it allowed visualization of the
filamentary extensions of neurons, which were not observable using previously developed
techniques due to their small size and relative transparency. Both scientists were awarded
in 1906 the Nobel Prize in Physiology and Medicine for their work.

Although many families of neurons exist, with different physiological and information
processing properties, most neurons are comprised of three parts: the cell body or soma,
which contains the nucleus and therefore most of the RNA material and protein synthesis
activity; the dendrites, which receive information from neighboring neurons and relay it to
the soma; the axon, which allows for passing information to downstream neurons through
the synapses that can be found at its termination and connect to the dendrites of other
neurons. Those synaptic terminals contain vesicles, which respond to the arrival of an
electrical signal from the soma (such as the action potentials, see next paragraphs) by
fusing with the membrane of the axon and releasing the neurotransmitters they contain in
the synaptic cleft, which will then bind to specific receptors on the dendritic membrane
of the downstream neurons. Some neurotransmitters, such as glutamate, will increase
activity of the downstream neuron, creating an excitatory synapse), while others such as
GABA will decrease it and create an inhibitory synapse.

The way information is represented at the level of a single neuron is through the
value of the membrane potential: at any given time, the concentrations of positive and
negative ions inside the neuron and in the extracellular fluid that surrounds it are a priori
different. This difference in concentration is made possible by the fact that the neuron
membrane is a bilayer lipidic film that is mostly impermeable to charged molecules, and in
practice acts as a capacitor. The conductance of this capacitor can be modulated through
a wide variety of mechanisms, mostly related to the presence of ion channels that allow
ionic flow through the lipid membrane in certain conditions: the channels can be opened
or closed based on a number of different variables such as the value of the membrane
potential, or the concentration of neurotransmitters in the extracellular cleft (e.g. for
channels in the dendritic receptors, allowing the flow of information between neurons via
electrical to chemical transduction).

The interplay between these different mechanisms has been studied in great details,
most notably by Hodgkin and Huxley (1952), who performed experiments on the giant
axon of Doryteuthis pealeii squids, an axon so large that it allowed easy experimentation
with voltage clamp electrodes and whose function had already been characterized by Young
(1938). Their study provides a detailed account of how the presence of a wide variety of
different membrane conductances allows for the apparition of action potentials, brief
and transient depolarization of the membrane followed by a period of hyper-polarization,
whose shape is highly stereotyped for a given neuron.

While conductance models are extremely precise and predict individual neuron prop-
erties with great accuracy, the large number of parameters to infer and of differential equa-
tions to solve make them ill-adapted to many practical situations. In that case, simpler
models have to be used, such as the Integrate-and-Fire models, originally introduced
by Lapicque (1907) and further refined by Brette and Gerstner (2005). This model was
developed very early in the history of modern Neuroscience, only a few decades after the

Computational models of neurobiology 55

Figure 3.1: Illustration of the different components of a neuron. The body of the neuron,
or soma, centralizes most of the metabolic functions; the lipidic membrane separating the
intra and extracellular media can act as a capacitor, and acquire a potential; by opening
or closing ion channels on the surface of the membrane, the potential acquires non-trivial
dynamics, responsible for information propagation along the axons as ”action potentials”,
short and highly stereo-typical shapes of membrane potential evolution; when the action
potentials reach the axon terminal, neurotransmitters are released in the synaptic cleft
in-between the axon of the upstream neuron and the dendrites of the downstream neu-
ron; depending on the type of synapse, these neurotransmitters will impact differently
the electrochemical properties of the downstream neuron, allowing information transmis-
sion between neurons; combining a large number of neurons, and tuning their synapses
correctly, many computations can be realized. This diagram is part of the public domain.

56 Computational models of neurobiology

Figure 3.2: Summary of the properties of a Leaky Integrate and Fire neuron model. A:
transfer function mapping the input current i to the firing-rate, as computed in equa-
tion 3.3. When the input current is below a certain value ith, the neuron never fires,
as the membrane potential never reaches the threshold for emitting an action potential.
Above that threshold, the firing-rate is an almost linear function of i, so that this transfer
function can be approximated by max(i− ith, 0). B: response of the membrane potential
to a constant input current, showing a regular firing pattern where action potentials are
emitted at frequency r(i) (dashed vertical lines). C: response of the membrane potential
to a varying input current i(t). The input is chosen to model the arrival of different action
potentials from afferent neurons, resulting in different responses (no firing, firing of one or
several action potentials in response).

discovery of neurons, and far before the precise mechanisms of action potential generation
were uncovered; whenever those details are not critical to the phenomenology, Integrate-
and-fire models provide an easy to simulate and analytically tractable alternative to the
Hodgkin model. The assumption of this model is that the membrane potential v evolves
continuously below a certain firing threshold Vth; when the threshold is reached, the
neuron will fire an action potential (represented as a Dirac delta), and the potential will
be reset to a lower value Ereset; finally, the sub-threshold evolution of the potential is
modeled as an exponential decay at rate τ , which depends on the membrane conductance,
towards a resting potential E0 and subject to a forcing by an external current i:

τ
dv

dt
= (E0 − v) +R i. (3.1)

In that model, one can easily compute a transfer function, mapping the value of
the external current i to the frequency at which the neuron emits an action potential:
assuming i is constant1, and v(t = 0) = Ereset, we can solve the sub-threshold dynamics
as:

v(t) = E0 +R i+ (Ereset − E0 −R i) e(−t/τ), (3.2)

1In the following, we will consider varying input currents i(t); for simplicity, however, we can assume
this input current to be constant for a short duration, equal to it from t to t + 1, so that r(t) is also
constant on this short duration.

Computational models of neurobiology 57

Figure 3.3: Illustration of the mapping between a network of neurons, connected through
synapses of different strengths, and the corresponding weight-matrix W .

which reaches the firing threshold in a time tisi, the interspike interval, equal to:

tisi(i) = τ ln
(
R i+ E0 − Ereset
R i+ E0 − Eth

)
, (3.3)

so that action potentials are emitted at a rate r(i) = 1/tisi(i).
In practice, even this simplified model can become too complex to simulate when

considering large numbers of neurons; in that case, one can make use of rate-based
models, which will be the basis of most of the work in this dissertation. Rate models are
defined in discrete time, and assume that the state of the neuron at each time-step is the
firing-rate, in Hertz, at which it emits action potentials. These rates can be thought of
either as the average across a mesoscopic timescale, justifying the move from continuous
to discrete time in the model, or across a large enough assembly of neurons. The dynamics
of the neuron state can then be summarized by defining only its transfer function r(i),
which will allow for a very succinct and computationally efficient description of dynamics
at the macroscopic scale (see Equation 3.4). Unfortunately, the use of such models entails
a loss of detail with respect to the conductance-based models described previously, and
some subtle phenomena such as Spike-Timing Dependent plasticity (Markram et al., 1997)
can not be reproduced. Another approach consists in switching to the McCulloch-Pitts
model, described in more details in Section 4.1, which considers the neuron to always be
in a binary state, active or inactive, which also evolves in discrete time.

3.2 Neural circuits models

Until now, we have assumed that our individual neurons received input currents i, but
did not give any details on how such a current is provided to the cell. The simplest way
possible, which was historically used to establish the models we described earlier, was to
consider neurons isolated from the rest of the brain and provide the input current through
an electrode, controlled by the experiment. In practice, however, this current comes
from other neurons through synapses, and those connections are extremely important to
understand the function being implemented by an assembly of neurons. In practice, we will
describe the couplings between neurons through a weight-matrix W , whose components
at index (i, j) describes the strength of synaptic coupling from neuron j to neuron i, as
illustrated in Figure 3.3.

If we now consider the state of a population of n rate-based neurons as a vector r, the
dynamics of evolution of this vector can be written as:

rt+1 = f(Wrt), (3.4)

58 Computational models of neurobiology

where f is the transfer function of the neurons in the assembly2. Such a structure of
alternating a linear mapping with a pointwise non-linearity is the basis of Deep Learning,
and in the following we will investigate numerous special cases of such structures.

Constraints on the weight-matrix Without any additional assumption, this frame-
work of representing the synaptic couplings through a n–dimensional matrix allows for
arbitrary, not biologically relevant connectivity graphs. First, each neuron is allowed to
project synapses onto all neurons, which is not realistic since all of those have to be lo-
cated near the extremity of the (unique) axon; to better represent this constraint, limits
on the number of non-zero weights per column of W , or even realistic models of axon
growth and synapse creation such as the small-world networks (Bassett and Bullmore,
2006) could be introduced. Second, neurons are allowed to have outgoing connections of
both signs, meaning that they can act as excitatory towards some neurons and inhibitory
towards others; such a behavior is in contradiction with the so-called Dale’s Law, which
states that all outgoing synapses from a given neuron must be of the same type, resulting
in fixed-sign columns in the weight-matrix W . Finally, in order to be able to perform
certain computations and analogies with Statistical Physics, most notably when trying to
reproduce the spike correlations by using an Ising model, W is assumed to be symmetric.
In our analysis of Recurrent Neural Integrators of Chapter 7, we will relax the hypothesis
of symmetry, which as we will see introduces some theoretical complications which can be
solved by considering the Singular Value Decomposition of W ; we will also show that
the introduction of Dale’s Law into a Gradient Descent procedure can be done straight-
forwardly, and only marginally modifies the behavior of the system, an approach similar
to the one of Song et al. (2016). We will not consider additional structural constraints.

3.3 Neural integrators and stable manifolds dynamics

In Chapter 7, we will consider models of non-linear Recurrent Neural Networks tasked with
performing the integral of several input signals in parallel. The motivation for this study
lies in the fact that such networks have been found to be associated with several important
cognitive tasks, such as eye fixation in-between saccades (Cannon et al., 1983; Cannon and
Robinson, 1987; Arnold and Robinson, 1991; Seung, 1996; Arnold and Robinson, 1997),
evidence integration (Wong and Wang, 2006; Wong et al., 2007; Ganguli et al., 2008), and
motor control (Gallego et al., 2017; Feulner and Clopath, 2021).

Let us for now focus on the case of oculomotor control. In order to be able to hold a
memory of the current value of eye position, the associated neural circuit has to construct
a continuous manifold of fixed-points, within which each position corresponds to a value
of the angular position of the eye. Additionally, one could expect this manifold of fixed-
points to be stable with respect to the dynamics of the network, so that small perturbation
in the state of the network will be corrected; such a manifold is often referred to as a line
attractor in the case where the network stores the value of a single variable. Seung
(1996) showed that in the case of a linear recurrent network, the existence of this line
attractor is related to the existence of an eigenvector with eigenvalue 1 in the weight-
matrix (in which case the stable manifold is given by that eigenvector) and proposed a
solution for approximating this dynamics in non-linear networks. In Chapter 7, we extend
this approach to stable manifolds of arbitrary dimension, allowing for integration of any
number of input signals within a single network, and provide an abstract energy function
whose minima implement this dynamic for arbitrary non-linearities.

2This function could be different for each neuron without any major consequences.

Computational models of neurobiology 59

Figure 3.4: Two examples of attractor manifolds. In both cases, we represent in gray
the manifolds M of all possible network states (defined by the weight-matrix W , the
neuron non-linearities, and the initial state), and as a bold line the manifold of stable
fixed-points S. The arrows represent the direction of evolution of the system under the
network dynamics. A represents the case of a line attractor, in which all states converge
to a 1–dimensional line; such an attractor can be used to store the value of a single scalar
x as the position of the system along the line S. B represents the case in which the
manifold S forms a closed loop; such an attractor naturally exhibits a periodicity, making
it particularly suitable for storing an angle θ.

While for oculomotor stabilization it is desirable to have all points in the line attractor
be fixed-points of the dynamics, in other cases (for example, when evidence integration is
required) it might be interesting to impose a particular dynamics within this line attractor:
if the input to the network corresponds to the current ”evidence” towards a particular
decision, it might be interesting to introduce a form of decay γ < 1 in the integral, so
that the evidence is integrated only within a finite time-window. If the position x along the
line attractor corresponds to the current value of the integral, we expect that the network
will be at position xt+1 = γxt after one step of the network dynamics. In the case γ = 1,
this corresponds to a fixed-point, but any γ between 0 and 1 will correspond to a relaxation
towards a fixed-point at coordinate x = 0, meaning that in the absence of evidence, the
network comes back to its default state. This idea is a special case of the ”computation
through latent variable dynamics” framework (Sussillo, 2014), which postulates that the
brain performs computations, and more generally cognitive tasks, through the temporal
dynamics of firing; considering the brain as a Recurrent Neural Network (see Section 5.3),
the dynamical system that describes the evolution of the internal state under the influence
of the external inputs entirely characterizes the function of the network. This idea is deeply
related to the work presented in Chapter 7.

This idea of dynamics within a stable manifold can be further extended to accom-
modate more exotic dynamics. One such example is the one of ring integrators (Kim
et al., 2017), hypothesized to represent the orientation of the head in behaving animals.
Assuming that the head rotation is constrained to a plane, which is usually behaviorally
relevant, and that angular velocity can be obtained from sensory neurons (e.g. through
vestibular or visual inputs), one could be interested to construct a neural network in which
the stable manifold has a ring structure, so that states corresponding to angles close to
−π and +π are close in that manifold, and angles are integrated with a periodicity of 2π
as two angles differing by 2π correspond to the same position in space. One way to con-

60 Computational models of neurobiology

Figure 3.5: Schematic representation of a ring attractor (A) and its connectivity matrix
W (B). The neurons in the network are regularly organized on a circle, with excitatory
connections (red) towards their closest neighbors, and inhibitory (blue) towards others;
we represent the weight-matrix as translation invariant, since such a solution ensures
the existence of periodic solutions. The stable states sθ of the associated dynamics are
”bumps” of activity centered on each neuron (the neuron θ is maximally activated, and its
neighbors are less and less activated the further from θ they are. These bumps of activity
can be translated into the corresponding angle by a single layer network, and external
inputs (not represented here) from a velocity sensor δθ can be projected to all neurons in
the network in such a way that the next internal state at which the network stabilizes is
sθ+δθ.

struct such a model is presented in Figure 3.5, where neurons are arranged in a circle, and
connections between neighboring neurons are excitatory while connections towards more
distant neurons are inhibitory. In this connectivity structure, fixed-points of the dynamics
correspond to a localized ”bump” of activity (a few consecutive neurons along the ring are
active), and the coordinate along the manifold of stable point is simply the location of the
center of that bump3. Given the circular organization of neurons, that position naturally
exhibits a periodicity, and assuming that connections toward the head-velocity neurons
are correctly tuned the position within the attractor will faithfully encode the position of
the head in physical space.

3.4 Examples of biological neural circuits

While the microscopic behavior of individual neurons has been studied and mostly under-
stood for a relatively long time, their organization into macroscopic ”circuits”, responsible
for performing specific information processing tasks, remains an active area of research
to this day. This section will aim at giving a brief overview of the different domains of
investigation, and providing reference to some relevant literature.

3.4.1 Visual Pathway

We will begin this introduction by introducing the Visual information processing system,
as it was one of the main motivations for the emergence of Artificial Neural Networks, both
the Perceptron 4.1 algorithm and the more recent Convolutional Neural Networks 5.1. This

3This is a special case of a cyclic matrix W , in which each row is obtained by a lateral translation of
the previous one; the eigenvectors of these matrices are linear combinations of the discrete sine and cosine
function, and the particular value of the weights used here is such that the eigenstates are localized (i.e.
are non-zero only on a subset of all neurons).

Computational models of neurobiology 61

system has been extensively studied since the 1930s, with Nobel Prizes in Physiology and
Medicine awarded to Haldan K. Hartline, Ragnar Granit and George Wald in 1967, and
to David H. Hubel and Torsten Wiesel in 1981.

The first step in the visual system is the retina, which has been shown to contain two
main types of photo-receptors: the rods, which are sensitive to light intensity starting
at a few individual photons (Baylor et al., 1979) and show little sensitivity to the wave-
lengths of those photons, are useful primarily for black-and-white vision, in particular at
low luminosity; the cones, which require a much higher number of incoming photons to
activate, are much more sensitive to wave-length, and in the humans are divided into three
populations, which respond maximally to red, green and blue light respectively (Brown
and Wald, 1964), and are especially important for color vision. Both types of photo-
receptors translate light into membrane potentials using ion channels that can be opened
or closed by specific proteins, called opsins, which change configuration upon interaction
with incoming photons. The axons of those receptors then connect to horizontal and
bipolar retinal cells, which in turn project to retinal ganglion cells. Those ganglion cells
are the first in the visual pathway to encode information through action potentials instead
of continuous membrane potentials, and some of them have been shown to have easily
characterizable receptive fields consisting of two concentric circles, one in which the
neuron is excited and one where it is inhibited; depending on which circle is the smallest,
the neuron is classified as ”on-center” or ”off-center”. Those ganglion cells then project
to the central nervous system, more precisely the Visual Cortex, an area organized in
several layers denoted V1 to V64, which has been studied by Hubel and Wiesel (1962)
in anesthetized cats. They found that the receptive field of these neurons were different
from those of the ganglion neurons, reacting to either ”simple” or ”complex” features of
the visual signals, such as orientation or movement, and proposed the hypothesis that
cortical neurons integrated information from their afferent neurons to construct more
complex representations, a hypothesis which has profoundly shaped the understanding of
information processing in nervous systems.

3.4.2 Sound

The first step in the audio processing pathway relies on sensory neurons, the hair cells,
located within the organ of Corti in the cochlea of mammals. Those neurons contain
mechanically gated ion channels, allowing them to transform information about movement
of the basilar membrane, caused by incoming sound waves, into variations of electric
potential. We show in Figure 3.6 an example of cochleogram, i.e. a visual representation
of the membrane potential of an assembly of hair cells in response to an incoming sound.
Each of the neurons is sensitive to a particular range of frequencies, which is used to
organize the neurons in the plot.

The electrical outputs of the hair cells are then projected onto the Auditory Cortex, in
which a wide range of functions is performed, such as pitch perception, sound localization
and speech recognition. The study of these topics, broadly referred to as psychoacoustics,
remains particularly challenging, in particular from the point of view of Artificial Intelli-
gence. Systems to analyze and produce sound remain experimentally difficult to construct,
despite recent advances in practical implementations (see Ling et al. (2015) for a review)
as well as theoretical understanding (Eggermont, 2001; McDermott and Simoncelli, 2011;
Kell et al., 2018).

4Although the nomenclature suggests a purely feedforward system in which one area provides inputs
to the following, which is usually how this system is modeled in Artificial Neural Networks, backward
connections are also present.

62 Computational models of neurobiology

Figure 3.6: Illustration of the preprocessing step used to transform the raw displacement
signal obtained from a microphone, see panel A, into its cochleogram, see panel B. This
illustration was realized using a self-recorded waveform of the word ”Hello”, processed into
human-perception tuned cochleograms using the python implementation of Josh McDer-
mott’s Matlab code, available on GitHub.

Another example worth mentioning here is the one of the zebra finch songbird, in
particular its ability to communicate via learned vocalizations (Zeigler and Marler, 2004)
through a well-identified and thoroughly studied ”song-circuit” (Hahnloser et al., 2002;
Hamaguchi and Mooney, 2012; Markowitz et al., 2015; Okubo et al., 2015; Ono et al.,
2016). While this organism has seen its genome entirely sequenced (Warren et al., 2010),
understanding the precise mechanisms at play in this circuit remains extremely challeng-
ing. It should be noted that song-generation mechanisms are relevant far beyond the
domain of psychoacoustics as they are an example of sequence generation and storage,
two concepts that can be applied for example to spatial navigation (generating the se-
quence of muscle inputs necessary to walk, or storing the optimal trajectory between two
positions in an environment).

3.4.3 Spatial navigation

Cognitive maps Tolman (1948) introduced a fundamental concept for the understand-
ing of spatial navigation, the one of a cognitive map, mental representation of the
spatial structure of an environment. Such a representation is thought to be the basis for
”wayfinding” behaviors in both mammals and humans (Prescott, 1996; Golledge, 2003),
most notably Path Integration (McNaughton et al., 2006; Etienne and Jeffery, 2004), the
task of keeping track of displacement across a sequence of movements which will be the
focus of our work presented in Chapter 8. By design, this definition of cognitive maps
is extremely loose, and makes no assumption about the structure of the representation
(first-person or top-down view, euclidean or topological metric, goal-specific or ”general”).

The question of how such maps can be constructed remains relevant to this day (Ep-
stein et al., 2017), as it is known that their elaboration relies on the merging of many,
qualitatively different modalities (Maaswinkel and Whishaw, 1999): some of them are
proprioceptive (e.g.head-direction signal (Taube et al., 1990), velocity signal coming
from speed cells (Kropff et al., 2015), reafferent copies of performed actions (Iacoboni
et al., 2001), memories of past trajectories (Cooper et al., 2001)), in the sense that they

https://github.com/mcdermottLab/pycochleagram

Computational models of neurobiology 63

are generated by the agent itself, while others are allocentric and instead correspond to
measurements performed on the environment (e.g.visual (Etienne et al., 1996), auditory
(Rossier et al., 2000), olfactory (Deschênes et al., 2012)), and ”fusing” these sensors is not
a trivial task. Understanding the contributions of those two types of information is a major
challenge in psychology, as it is a priori impossible to decouple them in real world experi-
ments (a movement in physical space always has the same impact on environmental cues).
However, developments in Virtual Reality techniques (Campbell et al., 2018) have recently
made it possible, and Chen et al. (2019) have performed such an experiment: a mouse is
moving on a rotating ball, and a screen projects a movie of a virtual environment in which
the mouse’s position is updated by its movement on the ball; the experimenters are then
able to control how the real movement impacts the virtual one (in particular, making it so
that a real movement produces either a larger or smaller than expected virtual displace-
ment), and to assess the influence of such changes on both place and grid cells (by plotting
the firing fields in the ”real-world” and ”virtual world” coordinates, which are no longer
identical). Their results suggest that some cells are mostly constructed from visual cues as
changes in the movement gains do not impact them, while other rely more on self-motion
cues (respectively, place and grid cells, see next paragraph for details). In Chapter 8,
we argue that constructing direct-inverse models of the environment (predicting the next
state of allocentric sensors given their current state and the proprioceptive signals) yields
a promising approach to performing this fusion, in particular when combined with Path
Integration as an incentive to propagate information between time-steps.

Place and grid cells A widely accepted possible neural substrate for cognitive maps is
the Hippocampus (O’Keefe and Nadel, 1978), as it has been found to contain a specific type
of neurons, referred to as place cells, which become active when an agent is located at a
specific position in the environment (Humphreys et al., 1998). One particularly interesting
property of place cells is that, in different environments, the same neuron can encode for
different positions, a phenomenon known as remapping (Fyhn et al., 2007), and inferring
the environment from neuronal activity is a relevant task (Posani et al., 2017). Recently,
Battista and Monasson (2020) derived a theoretical analysis of the capacity-resolution
trade off in the storage of multiple semi-continuous maps with continuous attractors.

On top of place cells, Moser et al. (2008) found evidence for another type of neurons
displaying spatially-structured firing fields, which are called the grid cells. For those
cells, instead of observing spikes only in a specific region of space, firing happens at
numerous, regularly spaced positions, arranged in a regular triangular lattice. Such an
organization could be beneficial to represent distance, without any particular relationship
to orientation. Another interpretation for the properties of grid cells, coming from studies
on the ”Successor Representation” of Reinforcement Learning, (see Gershman et al. (2012),
Stachenfeld et al. (2014), Momennejad et al. (2017), Gershman (2018)), is that they could
allow for efficient hierarchical representations of policies used for spatial navigation. We
illustrate the spatial structure of firing of those two types of neurons in Figure 3.7.

3.4.4 Abstract reasoning

One of the theorized advantages of using grid cells for Spatial Navigation is that such pat-
terns could provide a transferable model: if such firing fields are indeed constructed mostly
from self-motion signals, they will a priori function in a never-before-seen environment,
and allow very efficient ”few-shots” learning. In other words, the underlying structure of
euclidean space has been represented by the Hippocampus, and can be used to efficiently
understand a new instance of that structure. It has been experimentally shown that the

64 Computational models of neurobiology

Figure 3.7: Schematic representation of the firing fields for a place cell (A) and a grid
cell (B). The black square represents the boundaries of the environment, and each dot
represents the position at which a spike was emitted. Both firing fields are spatially
structured, but the grid cell firing fields additionally present spatial periodicity.

Hippocampus is indeed relevant for high-level cognition tasks (Aronov et al., 2017; Doeller
et al., 2010), and theoretical models have been proposed that show how to generalize this
form of structure abstraction to relational memory (Whittington et al., 2020).

Another brain region heavily involved in decision-making is the Prefrontal Cortex
(PFC), which has been shown by Romo et al. (1999) to be involved in working memory,
i.e. allows information to be conserved on a short time-scale relevant to performing an
action. The PFC is also involved in the processing of external rewards (Liu et al., 2007),
making it a likely candidate for the neural substrate of Reinforcement Learning (more
details in Chapter 6), as well as in the processing of behaviorally relevant contextual cues
(Mante et al., 2013; Freedman et al., 2003). Finally, PFC is also related to behavioral
adaptation (Passingham, 1993; Wise and Murray, 2000; Feulner and Clopath, 2021) and
the so-called ”learning-to-learn” phenomenon (Yang et al., 2019), in which an agent is able
to learn a new task faster if it has already been trained to perform similar tasks, an idea
related to the one of Multi-Goal Reinforcement Learning in which the agent is expected
to construct a Universal Value Function Approximator (Schaul et al., 2015), allowing
generalization of learned behaviors to new contexts (e.g. navigating towards states that
were never used as goals during training).

Chapter 4

Deep Learning I:
the Multi-Layer Perceptron

Abstract
Now that the basics of computational modeling of neurobiological processes
were introduced in Chapter 3, we will focus on a particularly simple but his-
torically relevant model, the Perceptron, introduced in the 1950s by Rosenblatt
(1958) for the study of the salamander retina. Notably, an algorithm exists for
”training” such a model in order to represent a given ”binary predicate” on a
set of data, under certain hypothesis, which we present in the following. We
then explain how to relax the hypotheses of this model, and extend it until
we arrive to a general mathematical definition of Machine Learning, before
providing an example of back-propagation for optimization of a 2–layers net-
work. We introduce the concept of overfitting in the context of Deep Learning,
and finally consider the idea of transfer learning as a way to benefit from
high-quality representations.

65

66 Deep Learning I: the Multi-Layer Perceptron

Figure 4.1: Schematic representation of a general artificial neuron. In all generality, the
inputs to the neuron are represented as a vector x; these inputs are then mapped to a
scalar current through an affine transformation, parametrized by a vector w and a scalar
b (which will be omitted in the following, see footnote 3); the state is finally obtained from
the pre-activation current through application of a non-linearity. This type of input-state
mapping is designed to mimic rate-based models of neurons mentioned in Chapter 3, and
MCP neuron corresponds to a special case where the activation function is the ”sign”
function.

4.1 The McCulloch-Pitts Neuron

The objects that we are going to consider in this section were originally constructed in an
effort to understand the salamander retina, and more precisely how an input image (i.e. a
matrix of ”gray-levels” between 0 and 1) could be processed into a logical statement (e.g.
the image has at least one black pixel, the image contains a dog, etc...).

The McCulloch-Pitts (MCP) neurons, first proposal to tackle this task, take a vector
as input, requiring to flatten the image before being able to process it1. Therefore, the
most general setting consists not in image predicates, but in predicates over an observation
space2.

The computation of an MCP neuron can be summarized as follows:

• the input vector x is affinely mapped to a scalar current ν = w · x+ b;3

• the sign of the current is returned, making the output being ±1.

The MCP neurons are therefore a predicate on images, parametrized by a set θ = (w, b)
of parameters. An important question to ask is the following: what is the set of predicates
that can be represented, i.e. have the same value at any point of the observation space,
by a McCulloch Pitts neuron? A simple geometric consideration will prove useful here:
the predicate for a given point in the observation vector space is exactly its position
with respect to the so-called Decision Hyperplane Hθ. Therefore, the set of representable
predicates is exactly the ”linearly separable” ones, such that there exists a hyperplane
separating all ”True” observations from the ”False” ones.

1This particular point, although irrelevant in non-spatially structured problems, is crucial when it
comes to understanding the dramatic improvements that Convolutional Networks (see Chapter 5.1) brought
to Computer Vision.

2Strictly speaking, this space would need to be an Inner Product Space. However, in practice, any
subset of Rn with either the canonical dot product or any Kernel function will do.

3In practice, the bias b is often omitted through the following experimental trick: one dimension is
added to the vectors x and w, so that x̃ = (x0, . . . , xn, 1) and w̃ = (w0, . . . , wn, b). Since the additional
component is the same for all inputs x and equal to 1, we have w̃ · x̃ = w · x + b, and with this rewriting
we only have one vector parameter to consider.

Deep Learning I: the Multi-Layer Perceptron 67

Figure 4.2: Illustration of linear separability on a two-dimensional input space. A: A
non-empty set of affine hyperplanes separate the red and green points: the MCP neurons
with these decision hyperplanes correctly represent the predicate ”the point belongs in
the green set”. B: No hyperplane exists that separates the two sets: a non-linear decision
boundary is necessary.

4.2 The Perceptron learning rule

For now, we have only discussed the representation properties of the MCP neurons, but we
did not consider the problem of learning: how does one set the parameters θ of a neuron
to encode a specific predicate?

With a single binary neuron, the only possible problem is binary classification, and
it is solved by the perceptron algorithm. This algorithm has a very natural geometric
interpretation, which we illustrate in Figure 4.3: starting from w0 = 0, the decision
boundary of the neuron is iteratively moved by choosing one example (x, y) in the training
set, computing the output of the neuron with its current weights y = wt ·x and updating
the boundary as

wt+1 = wt + 1
2(y − y)x (4.1)

until all the examples are correctly classified. Variants of the training algorithm might
choose the example at random from the entire training set, or make sure that all exam-
ples are used at least once before using any example a second time. Alternatively, the
Perceptron algorithm (and its multi-layer extensions) can be used in an online setting,
in which the network sequentially updates itself based on incoming samples (Saad and
Solla, 1995; Saad, 1999). These modifications have little to no impact on the solutions
and convergence in the general case.

One important property of this algorithm is that in the case of linearly separable
inputs, it is guaranteed to converge in finite time. To prove this, let us first denote as w∗
a vector of Rn, that we choose of unit norm, that separates the two classes, and γ the
associated margin, i.e. a strictly positive number such that:

∀ (x, y) ∈ Training set, y(w∗ · x) > γ. (4.2)

We can then show that, at any step:

wt+1 ·w∗ = (wt + 1
2(y − y)x) ·w∗

= wt ·w ∗+1
2(y − y)x ·w∗

> wt ·w ∗+γ if y 6= y

(4.3)

68 Deep Learning I: the Multi-Layer Perceptron

Figure 4.3: Illustration of the Perceptron learning algorithm. At each step, one of the
incorrectly classified examples is chosen, and the decision boundary is moved in the ap-
propriate direction to better classify it. Training stops when all examples are correctly
classified, which is guaranteed to happen in finite time.

By induction, after k updates of the weight vector, we have wk · w∗ > kγ. Since
||w∗|| = 1, we obtain a lower bound on the norm of wk:

||wk|| = ||wk|| ||w∗|| ≥ wk ·w∗ > kγ. (4.4)

Then, we have that

||wk||2 = ||(wk−1 + 1
2(y − y)x)||2

= ||wk−1||2 + ||x||2 + (y − y)x ·wk︸ ︷︷ ︸
≤0 since y 6=y

≤ ||wk−1||2 + ||x||2

≤ ||wk−1||2 +R2,

(4.5)

where R = max ||x||. Therefore, through another simple inductive proof, we find that

kR2 ≥ ||wk||2 > k2γ2. (4.6)

These two equalities can only be satisfied as long as k < R2γ2 = K, meaning that
the algorithm will perform at most K updates before all points are correctly classified.
Interestingly, this bound is independent of the choice of w∗ at the beginning of the proof,
and only the value of γ remains. Therefore, one can choose w∗ in order to maximize the
margin γ to obtain the tightest convergence bound possible. The largest this margin, the
faster the convergence, but as long as it remains positive the convergence time will remain
finite. If the margin becomes negative, i.e. the problem becomes non-linearly separable,
other methods can be adopted, such as the Support Vector Machines that we will now
describe.

4.3 Support Vector Machines

While it is reasonable that an algorithm such as the Perceptron does not achieve good
performance on non-linearly separable data, the absence of guarantees on its convergence
is a major practical limitation. One way to understand this phenomenon is that the Per-
ceptron updates are only concerned with correctly classifying the current example they are

Deep Learning I: the Multi-Layer Perceptron 69

Figure 4.4: Illustration of the SVM classification in two different situations: A: the two
categories are linearly separable, in which case perfect classification is possible and SVM
returns the hyperplane that maximizes the classification margin, i.e. the distance between
the points and the hyperplane. B: if the two categories are not linearly separable, SVM is
still guaranteed to converge to a solution, but the resulting classifier will make errors and
might not perform very well.

presented with, which can lead to instabilities in the case where correct classification of all
examples simultaneously is impossible. The Support Vector Machines algorithm operates
in a slightly different setting, by maximizing the classification margin, i.e. the signed dis-
tance between the hyperplane and the samples. While the corresponding problem can be
exactly solved through Quadratic Linear Programming, in order to preserve consistency
with the rest of this introduction, we chose to focus on the update procedure as defined
on the weights w, which is a Gradient Descent on the loss

L = λ||w||2 + C
〈

max(0, 1− y(w · x))
〉
. (4.7)

This loss introduces a L2–regularization term in order to avoid that the loss could
be made arbitrarily small by increasing the norm of w without changing its orientation.
As illustrated in Figure 4.4, this new algorithm is guaranteed to converge to a solution
even if the dataset is not linearly separable. However, the solution is only guaranteed
to minimize the margin, not to correctly classify the examples. In that case, the use of
Kernel functions to map the data to a new space in which they are closer to being linearly
separable is highly recommended; since the SVM algorithm is guaranteed to converge
anyway, it becomes possible to train SVM on large numbers of randomly generated kernels
and select the ones that yield the best results.

4.4 Fully-connected Neural Networks

What happens if we now want to consider non-linearly separable predicates? Two direc-
tions exist, and as we shall see, are tightly related:

• Combine several layers of MCP neurons to make the decision boundaries non-linear.
A layer is simply a set of independent MCP neurons taking the same inputs but
representing different predicates. The state of a layer can be used as input to another
layer, allowing the construction of so-called ”deep” architectures.

• Switch to a probabilistic version of MCP neurons. Instead of using a Heaviside
function to output a binary predicate, one can use any smooth strictly increasing

70 Deep Learning I: the Multi-Layer Perceptron

Figure 4.5: Example of Multi Layer Perceptron architecture. The input constitutes the
first layer of the network; a set of artificial neurons, acting on the input, constitutes the
first hidden layer, and the parameter vectors for each of those neurons are grouped into
a weight-matrix W ; additional layers can be added, each time acting on the neurons of the
previous one, until the network output. The non-linearity between each layer is primordial,
as otherwise all intermediate layers act as a single linear transformation. Adding more
layers can be seen as allowing to construct more and more complex decision boundaries,
or to map the inputs to simpler and simpler spaces (see Figure 4.6).

function of a real parameter that takes values in [0, 1] to represent a probability
estimate of the predicate being true.

First, let us note that the mapping from the input to the state of the so-called ”first hid-
den layer” is effectively done to allow for linear separation by the second hidden layer (that
takes the first hidden layer state as input). The main advantage of this ”reparametriza-
tion” of the input space is that learning algorithms can be adapted to train several layers
at once, hence removing the need for hand-crafting (or brute grid-searching) a mapping
that make the examples linearly separable. As more layers are added, more complicated
decision boundaries can be created, increasing the set of representable predicates (Raghu
et al., 2017). However, this increase in expressivity comes at the price of a higher chance
of overfitting (see Section 1.9), and Lecun et al. (1989) show that removing unnecessary
neurons in overparametrized networks can lead to better performance.

It should also be noted that neurons with activation functions different from the Heav-
iside can also be used in the hidden layers of a Deep Neural Network. In that case, it is
usually preferred to use activations that are not necessarily confined in [0, 1], such as the
Rectified Linear Units (ReLU), as they allow to represent both linear and logical behaviors
in the same neuron.

4.5 Linear head vs. Softmax head

Until now, we have only been concerned with the question of representing one binary
predicate on an input. However, using more than one neuron and more complicated
activation functions, more complicated questions can be answered.

The simplest example is that of regression, e.g. retrieving the mean color of an image.
In that case, the expected output of the network would be a vector of length three, each
component indicating the state of the corresponding RGB channel, which can easily be
represented by a layer of 3 linear neurons, i.e. neurons in which the activation function
is the identity. We should mention here that neural networks perform best if they work
with input and outputs centered and of or order of magnitude 1. Therefore, since RGB

Deep Learning I: the Multi-Layer Perceptron 71

Figure 4.6: Illustration of Multi-Layer Perceptron as a procedure for generating disentan-
gled representations. In the input space, here the space of images, data points lie close
to a low-dimensional manifold (Goldt et al., 2020), and points corresponding to different
categories are not linearly separable; a single-layer perceptron would not be able to per-
form the classification. However, performing a succession of non-linear mappings, it is
possible to map all example to a new space in which they are linearly separable, so that
a perceptron acting on this new representation can perform the classification.

Figure 4.7: Three different activation functions. Due to the fact that they will always be
preceded by a parametrizable affine transformation, the horizontal scale and position are
irrelevant. A: Heaviside unit-step function, equal to the indicator of positive numbers. It
can only encode binary information. B: The logistic function (1+e−x)−1, that transforms
an arbitrary input into a number between 0 and 1. C: The Rectified Linear Unit activation,
equal to the identity for positive number and zero for negative ones. This kind of activation
functions, able to represent both linear and logical behaviors, have proved extremely useful
for Deep Learning.

72 Deep Learning I: the Multi-Layer Perceptron

Figure 4.8: Two possible output heads. The linear head simply returns an unconstrained
vector, it is perfectly adapted for regression tasks where the output is continuous in nature.
The softmax head returns a probability vector over a discrete set, which is more useful in
situations where the expected output is categorical.

components are usually in [0, 256], it is recommended to perform a rescaling before using
the network.

Another important class of problems is that of multi-class classification, e.g. predicting
the category of an image from the MNIST handwritten digits dataset. If the state of one
neuron is able to represent the probability of a statement being true, it is now possible to
use several neurons in parallel to answer tasks of finding ”the most likely true predicate”
among a given list. Therefore, on a problem with N categories, one can train a layer
of N neurons, one for each category, and simply use a ”max” over the response of these
neurons to output the right category. However, as we shall soon see, differentiability of
computations is of paramount importance, therefore making the max function unsuitable
for use in deep networks. A widely used solution is to use a so-called ”Softmax Layer”:
instead of forcing the activation of each neuron in the output layer to be in [0, 1], we let
them be any real number, and normalize the layer as a whole through

∀i, ai ←
exp ai∑
k exp ak

. (4.8)

This global parametrization forces the sum of outputs to be equal to 1, making a
probabilistic interpretation in terms of ”one-versus-all” probabilities possible.

It should be noted that although neural networks can output only either a vector
or a vector of probabilities, these outputs can be used for much more interesting tasks
than categorization and regression when incorporated in a suitable setup. For example,
the probability vector could be used to represent a stochastic policy in Reinforcement
Learning, subsequent outputs of a categorical layer could be used to represent a sentence
(each categorical symbol being a word), etc...

4.6 Parametric families of functions and Gradient Descent

Now that we have introduced the first class of Deep Neural Network architectures, the
Multi Layer Perceptron, it is time to for us to introduce a more general mathematical
framework, largely inspired by Denker et al. (1987). A Machine Learning problem is
usually described in terms of the following elements:

• A dataset
{
(xk,yk); k ∈ [1, p],∀k, x ∈ X, y ∈ Y

}
of inputs and corresponding out-

puts. The simplest example, to which most problems can formally be mapped, is
the one where both the input and output spaces are finite-dimensional vector spaces
X = Rdx , Y = Rdy , but in some circumstances these spaces can have additional

Deep Learning I: the Multi-Layer Perceptron 73

structure (images have a spatial organization and live in a low-dimensional subman-
ifolds of the space of possible pixels (Goldt et al., 2020); time-series, such as the
value of temperature as a function of time, have causality in the temporal direction;
words can be mapped to numeric, unambiguous, ”tokens”, but the values of those
numbers, in particular their ordering, is arbitrary).

• A model, i.e. parametrized family of functions F =
{
fθ; θ ∈ Θ}, such that for any

value of the parameters θ, fθ is a function that goes from the input space X to the
output space Y . Similarly to the input and output spaces, the parameter space Θ
can formally be considered to be Rn. This does not make any restrictions on the
family of functions F : they could be F = Mdx,dy(R) the linear mappings from X
to Y ; a group of dy perceptrons, each characterized by a vector of size (dx + 1);
or even more advanced neural network structures such as the ones described in
Section 5. The choice of the family of functions F has to be guided by the structure
of the data: if the family does not contain any function that faithfully represents
the input-output relationships of the dataset, the results at the end of the training
procedure will not be satisfying; on the other hand, if the family is too large and
contains many functions that can perfectly reproduce the dataset, for example if the
number of parameters n becomes much larger than the size of the dataset p, the
learning procedure might result in overfitting (see Figure 1.5).

• A criterion C, that maps two elements of the output space Y to a scalar, and which
is used to quantify how similar those two elements are4. This criterion is then used
to derive a loss function:

L(θ) = 1
p

p∑
k=1
C (yk, fθ(Xk)) . (4.9)

The objective of the training procedure is then to tune the values of the parameters
θ in order to minimize the loss function L, which can be thought of as the equivalent
of maximizing a likelihood, and is usually done through some variant of Gradient
Descent procedure5. Although many algorithms exist (SGD (Bottou, 2010; Ruder,
2017), Newton (Battiti, 1992), Adam (Kingma and Ba, 2017), etc...), they all serve
a common purpose: minimizing a function with access only to local evaluations of
its gradient and possibly its Hessian6. It should be noted that these procedures have
theoretical guarantees only in the case where the function to minimize is convex; this
is not the case for Neural Networks loss functions, which are often riddled with either
local minima or local saddle-points (Dauphin et al., 2014), which will either make
training unreliable or slow, as the second-order properties of the energy surfaces are
crucial for the speed of convergence (LeCun et al., 1991a,b). In practice the choice
of the algorithm and its parameters is often crucial for the success of the training.
Interestingly, despite the obvious numerical limitations of such methods, they are
also thought to bring increased resistance to overfitting (Advani and Saxe, 2017),
possibly by encouraging convergence to solutions of small spectral norms (Arora

4Once again, a standard choice for the criterion is the euclidean distance between two vectors of Rdy ,
but other criteria might be more adapted to specific cases.

5Some particular cases exist, for example linear regression, in which the optimization can be performed
analytically; they are exceptions in the field of Deep Learning.

6Optimization schemes relying on Hessian information, also called second-order optimizers, are often
impractical for Deep Learning as the number of parameters can reach millions, so that the Hessian cannot
be represented on the physical memory of a computer.

74 Deep Learning I: the Multi-Layer Perceptron

et al., 2019). It should also be noted that Gradient Descent will, in the general case,
not converge to the global minima of the loss function; instead, it should rather be
thought of as defining a distribution over parameter space, with higher probabilities
associated to regions of low error (Levin et al., 1990).

The backpropagation algorithm Because most computations used for processing in-
formation inside a neural network use linear algebra, and because of the underlying hard-
ware implementations, it is extremely efficient to compute both the output and its gradient
with respect to all parameters of the network in a single forward-backward pass using the
chain-rule of multi-variate analysis, commonly referred to as the ”backpropagation” al-
gorithm in the context of Deep Learning. Let us illustrate this idea by considering a
two-layers binary classifier, whose equations can be written as:{

h = ReLU(Wx)
p = σ(d · h)

, (4.10)

where σ(x) = (1+exp−x)−1 and ReLU maps each component of a vector to the maximum
of said element and 0. The parameters of this network are the components of W and d,
so that our Gradient Descent training will require us to compute the derivatives of the
loss function L with respect to these parameters. Since we are training a classifier, we will
use the Negative Log-Likelihood loss, which for a single example (x, y) reads:

L = − [yk ∗ log(pk) + (1.− yk) ∗ log(1− pk)] . (4.11)

The back-propagation algorithm computes the derivatives as follows:

• Compute the derivative of L with respect to p:

∂L
∂p

= −
(
y

p
− 1− y

1− p

)
. (4.12)

• Compute the derivative of p with respect to d, and apply the chain rule:

∂L
∂di

= ∂L
∂p
∗ ∂p
∂di

= −hi
(
y

p
− 1− y

1− p

)
σ′(d · h). (4.13)

• Finally, compute the derivative of p with respect to h and of h with respect to W
to obtain the last required derivative:

∂L
∂hi

= ∂L
∂p
∗ ∂p
∂hi

= −di
(
y

p
− 1− y

1− p

)
σ′(d · h). (4.14)

∂L
∂Wij

= ∂L
∂di
∗ ∂di
∂Wij

= −xjH(Wx)|idi
(
y

p
− 1− y

1− p

)
σ′(d · h), (4.15)

where H is the Heaviside function, equal to 1 if and only if its input is positive.

It is then possible to perform the Gradient Descent updates using the derivatives we
computed: W

(t+1)
ij = W

(t)
ij − η ∂L

∂Wij

d
(t+1)
i = d

(t)
i − η ∂L∂di

(4.16)

Deep Learning I: the Multi-Layer Perceptron 75

Figure 4.9: Visual illustration of the concept of Gradient Descent. The coordinates (x, y)
in the 2–dimensional plane represent the value of the parameters θ that we try to optimize.
The altitude z at a given position is given by the value of the cost function C that we are
trying to minimize. The aim of any Gradient Descent algorithm is to change the value of
θ in order to minimize C(θ), i.e. to move downhill in the energy landscape.

While in this simple case the back-propagation could be performed by hand, the com-
putation will become intractable when the number of layers becomes too large or when
the computation graph becomes more complicated. In those cases, it becomes impor-
tant to make use of an automatic differentiation framework, which will both compute the
equations of the derivatives with respect to all parameters of the network, and make their
computation during the backward pass efficient (e.g. by leveraging parallel computing, or
keeping track of intermediate results of the forward pass to avoid redundant operations).
Different approaches to this problem exist, and two main families can be distinguished:

• compiled frameworks, such as TensorFlow (Abadi et al., 2016), take as input a high-
level description of the network’s computation graph, and generate the machine code
for forward and backward passes from it. These static functions are then used at
runtime to perform the inference and training of the network.

• tape-based differentiation frameworks, such as the Autograd component of Py-
Torch (Paszke et al., 2019) and the newly introduced interface for TensorFlow, in-
stead keep track of the operations applied during the forward pass (thus, filling the
nominal ”tape”), and compute the gradients by reading that tape in reverse order.

Both methods have their advantages: tape-based models are typically slower to execute
than their compiled counterparts, but allow more flexibility and are easier to prototype
and experiment with. All the experiments presented in this Thesis have been lead using
the PyTorch framework.

Additionally, a fairly large improvement in performance (both from computer runtime
and final results quality points of view) can be obtained by processing several inputs at
once in what is referred to as a ”batch” and applying Gradient Descent algorithms that
exploit this simultaneous evaluation. These improvements have been made even more
substantial in the last decade by the use of massively parallel hardware, in the form of
Graphical Processing Units, or even more recently of Tensor Processing Units.

76 Deep Learning I: the Multi-Layer Perceptron

4.7 Some examples of Loss function

The freedom in neural network design resides in the choice of the surrogate function, which
can be any differentiable mapping from the output space to real numbers. The guiding
principle for choosing this function is that its absolute minima (or, much preferably, an
overwhelming fraction of its local minima) must correspond to the desired behavior of the
network.

Let us now give some examples:

• for the case of image color regression, an appropriate function is the mean-square
error between the predicted RGB code and the actual one, since the minimum of
this function is unique, and corresponds to perfect predictions. In practice however,
if the objective is to obtain results which are meant to be presented to humans, it
might be useful to compute the distance between colors in perceptual space, more
closely related to the values of Hue, Saturation and Brightness.

• for binary image classification, the natural choice would be the fraction of correctly
categorized samples. However, this is not a suitable surrogate as it is not differen-
tiable7. Therefore, the negative log-likelihood surrogate is used:

L = − 1
N

N∑
k=1

[yk ∗ log(pk) + (1.− yk) ∗ log(1− pk)]. (4.17)

The minimum of this function corresponds to a case where all examples have prob-
ability 1 assigned to the correct class. This Loss function is defined for binary
classification, and can straightforwardly be extended to the multi-class case by con-
sidering the problem as a ”one-versus-rest” classification, in which case, denoting
the probabilities for sample k as pk,j :

L = − 1
N

N∑
k=1

[log(pk,yk) +
∑
j 6=yk

log(1− pk,j)]. (4.18)

• if we wanted a single network, with two heads, to predict both the mean color of
an image and the category of an object it represents, one could have one categorical
head and one linear head, and use as a surrogate a positively weighted sum of the
regression loss and multi-class log loss. Once again, the minimum of the surrogate
corresponds to a network where both heads perform their tasks perfectly.

4.8 Transfer learning

As of now, we only considered the case where one had at its disposition a dataset and
wished to train a neural network from scratch. However, training even a simple convolu-
tional network requires a fairly large amount of data, which is sometimes not available.
Let us take an example: one wants to train a network to recognize bees in an image, but
only has, say, 100 images of bees. Obviously, this is far from enough to train a network

7More precisely, this loss function has a null derivative everywhere, except at certain points at which
the derivative is infinite. Less pathological situations, such as the one of having a ReLU activation in
the network (which is non-differentiable at certain points, but such that the derivatives have finite, non-
vanishing limits from both directions) can however be accommodated.

Deep Learning I: the Multi-Layer Perceptron 77

with several dozen layers, as those used for state-of-the-art image classification, and a
network trained from scratch on such a small dataset would overfit very badly.

This is where transfer Learning comes into play: the low-level features used for any
image classification tasks are very similar (edges, color contrasts, uniform regions, etc...),
so one could easily learn those on a very large, non-specific, dataset before refining them
for the exact task at hand. The main advantage in doing so is that generic networks
pretrained on very large image databases can be found very easily at almost no cost
(whereas training such networks could take weeks, even on powerful computers).

Two main ways of using a pretrained network for a new task exist:

• fine-tuning: all the weights of the network are modified, with a very low learning
rate.

• feature extraction: the first layers of the pretrained model are frozen, and one simply
uses the network as a fixed transformation to map images to a more relevant set of
features, before feeding the results to another Neural Network whose weights are
then trained from scratch.

These two methods can obviously be combined easily, fixing the earliest layers and
fine-tuning the last ones, for example. It should be noted that the feature extraction
method is much more efficient, as in that case the large pretrained network is only used
in forward mode and no gradients have to be computed, which reduces drastically the
complexity of calculations. The efficiency of transfer learning relies heavily on a proper
identification of the relevant features that should be encoded in the feature extractor: if
the feature maps contain too much information, the network could overfit; if some critical
low-level information is missing (e.g. we train a model on a color-insensitive task, then
try to reuse it for color regression), the network placed after the extractor has no way of
reconstructing it and therefore will perform very poorly.

Another way of looking at transfer learning, which is highly related to the one that
we adopt in Chapter 8, is that it relies on the feature extractor to obtain a simpler, more
structured representation of the input data, making training of the second network
easier. For example, training a network to perform Path Integration could lead to the
emergence of a cognitive map, which can then be used for more involved cognitive tasks
such as goal-oriented navigation.

Chapter 5

Deep Learning II: beyond the
fully-connected architecture

Abstract
In Chapter 4, we worked our way to a generic mathematical description of Deep
Learning: the use of Gradient Descent on a well-chosen surrogate function, rep-
resented by a ”Neural Network” graph of computations. For now, the graph
of computations involved only ”dense” connections, meaning that each neuron
of a given layer receives input from all neurons of the previous layer. While
this is the right way to go for a problem without any exploitable symmetries,
it might make the number of tunable parameters so huge that the Gradient
Descent procedure will either never converge or find an optimal solution that
”overfits” the data: this is the (in)famous ”Curse of Dimensionality” (Ganguli
and Sompolinsky, 2012). The following section will be devoted to specific ar-
chitectures that allow for much more efficient representation of specific input
symmetries, therefore reducing the number of tunable parameters and neces-
sary training examples. We will begin with the Convolutional Networks, and
their extension to Residual Blocks, which are known to be particularly useful
in Computer Vision and were inspired by the organization of the visual sys-
tem observed by neurobiologists. We then consider the models of Recurrent
Neural Networks, providing a link with the Ising models of Statistical Physics
and a brief history of the major results that were obtained via this analogy,
before presenting some refinements of these models (such as the Long Short
Term Memory networks) and their applications. Finally, we present some more
exotic architectures, such as Differentiable Neural Computers and Adversarial
networks

79

80 Deep Learning II: beyond the MLP

5.1 Convolutional and pooling layers

The need for invariances For Computer Vision tasks, using a Fully Connected net-
work usually yields very poor results, because one could never hope to have enough data
to correctly tune all parameters of the network, which usually results in the overfitting
phenomenon described in Figure 1.5. Fortunately, the features that are of interest for
Computer Vision tasks share two important properties: they are, approximately, transla-
tion and scale invariant. Using this information, it becomes possible to create networks
that will more faithfully reproduce the underlying structure of the data in their internal
representations (Goodfellow et al., 2009), and should therefore yield better results.

Extracting local features: filters In the case of an image input, it is clear that a
two-pixels shift to the right or to the left does not meaningfully change the information
content. A good way to encode this principle is to make use of convolutional layers
(LeCun et al., 1989): the activation of the (n+1)th layer is the convolution product of the
n − th one with a group of parametrized filters. Each filter acting on the previous layer
input generates a so-called ”feature map”, so that the output of a convolutional layer is a
collection of feature maps, that is fed to the next layer1. The filters are chosen as having
the same number of dimensions as the input (1D for invariance along a sequence, 2D for
invariance on an image, etc...) plus one to account for the fact that there are several
feature maps for a given layer (and that convolution must be done on all of them at once).
The size of the filter is usually chosen very small with respect to the one of the input,
allowing the network to extract local features that are invariant under translations (for
example, finding high-contrast or locally uniform regions), using only a small number of
parameters. It should be noted that Convolutional Networks are strictly less expressive
than their fully-connected counterparts, in the sense that the computation graph of any
convolution layer can be represented by a dense one, but not the other way around: the
improvements in performance come only from the reduction in number of parameters and
increased regularity of the represented functions.

Integer vs. fractional stride After choosing the size of the filters to apply to our
image, a second parameter has to be chosen: the stride, which describes by how many
pixels the center of the filter gets translated before being applied again. If the stride
is larger than 1, usually an integer, the resulting feature map will be smaller than the
previous one; if the stride is smaller than one, the CNN is said to be fractional, and
the output feature map will be bigger than the input one. In most applications, CNNs
are expected to produce condensed representations (mapping an image to smaller and
smaller representations), and the loss of spatial resolution due to integer-stride CNNs is
actually desirable as it helps consider more global features of the image; however, in some
specific applications (such as super-resolution, or autoencoders, see Section5.5), one is
often interested in mapping a low-resolution feature-map to a higher-resolution image, in
which case a fractional-stride CNN is desirable.

Changing scale: pooling After the convolution has been applied to the previous layer’s
feature maps, a pointwise non-linear activation function is applied. In order to progres-
sively construct global features of an image from the result of local convolutions, one has
to make use of downsampling operations, most commonly called pooling layers. The goal

1Each filter is referred to as a ”channel” in analogy to the three ”RGB” channels that an image is
usually constituted of (which makes an image a 3D tensor for practical purposes)

Deep Learning II: beyond the MLP 81

Figure 5.1: Principle of a Convolutional layer. Assuming we start from an RGB image, our
input is a 3D tensor of shape (h,w, cin) where cin = 3 is the number of input ”channels”,
here the color channels. A convolution is computed across the first two dimensions by
computing the dot product of a sliding input volume with a 3D filter. The filter size is
usually chosen small with respect to h and w but covers all channels at once, e.g. (3, 3, cin).
The convolution of the input with a given filter produces a single ”feature map”, and using
several filters in parallel one may construct a collection of feature maps of size (h̃, w̃, cout)
which can then be used to feed another convolutional layer.

of these layers is to reduce the size of the feature maps, usually by a factor of two. The
state of the ”pixel” in the new downsampled feature map has to ”condense” the state of
the (usually 4) pixels of the initial feature map that correspond to it. This could be done
either by taking the mean or the maximum in that region, and the latter is often preferred.
As a practical trick, in some situations, downsampling can also be performed crudely by
computing the result of the convolution filtering only on a subset of all possible positions,
for example every other row and column.

Link with biology It is also of interest to emphasize the link between these networks
and our understanding of the mammalian visual cortex. The analogy between an RGB
image and the signal generated by the three types of cones in the outer-layer of the retina is
self-explanatory, the only simplification between the two being that the image ”cones” are
uniformly spread, which has no major consequence on the following. The idea of having
each neuron connected only to a spatially restricted set of neurons in the previous layer
can be thought of as a way of enforcing limits on the spatial spread of the receptive fields
of neurons. Then, through successive integration of the information from previous layers,
more and more complex representations are generated, in compliance with the hypothesis
of Hubel and Wiesel (1962), and McIntosh et al. (2016) have shown that these networks
adequately capture the characteristics of neural response to natural scene images. This
analogy is however limited because of the choice of using translation invariant filters can
be thought of as imposing that different synapses keep exactly identical strengths, which
is not biologically plausible. This ”weight sharing” is essential to the practical relevance of
CNNs, as it provides a drastic decrease in the number of trainable parameters and hence
helps prevent overfitting; it is however not the only reason for improvement, as Saxe et al.
(2011) note that CNNs with random weights perform surprisingly well, suggesting an
intrinsic role of the connectivity structure independently of any training considerations.

82 Deep Learning II: beyond the MLP

+

Figure 5.2: Simplest case of a residual block. The information pathway is divided in two,
with one part going through a ReLU transformation while the other is left unchanged.
The addition performed to reunite the two pathways makes it much easier for the network
to represent mappings close to the identity. One could put several ResBlocks instead of a
single ReLU, as long as input and output are correctly padded to be of the same size.

5.2 Towards deeper architectures: Residual blocks

A natural idea after introducing convolutional and pooling layers is to try and find ways to
reasonably arrange these layers. The most straightforward idea is to construct functional
blocks of the type {conv2D → maxpool2D}, chaining (possibly several) convolutional
layers into a downsampling layer. Stacking such blocks provides more and more complex
representations of the input image, at the cost of lower and lower spatial resolution of
the feature maps. The output of the series of blocks, a collection of features maps, is the
flattened into a vector then fed to a Fully Connected Network with the correct head for
the current task2

However, experience showed that networks constructed using this kind of blocks ran
into overfitting issues: as the number of layers increased, the final performance decreased.
This was mostly attributed to the vanishing gradient issue: when computing the gradients
of the loss function, one has to apply the chain rule across all layers starting from the
output. Each step of the chain multiplies the average amplitude of the gradients by a
factor smaller than 1, making the gradient amplitude exponentially small as one moves to
deeper and deeper layers.

A series of experiments on skip-connections (He et al., 2015, 2016) lead to a new type of
layers, called Residual Blocks: by dividing the information path in two, one going through
convolutional layers and the other through a simple linear activation, then combining
this information through a simple addition 3, one effectively forces the factors accumu-
lated across the backpropagation to be close to one, thus reducing the effect of Vanishing
Gradient.

An intuitive explanation of this architecture is the following: some features (e.g. pres-
ence of a cat) need to be calculated by combining information in very complex manners,
requiring a deep network; others in contrast can be calculated using very shallow networks
(e.g. edges). The existence of skip connections allow for encoding of both shallow and
deep features in the same network. That way, the addition of more layers simply allows
the computation of more complex features without making it impossible to propagate the
gradients of the simple ones.

2For some specific tasks, e.g. visual segmentation, the spatial information about the image cannot
be lost; in that case, the output head will be a convolutional layer with a single filter, and the need for
flattening disappears.

3This assumes that the feature maps are of the same size in the two information paths just before the
sum, which is practically achieved by padding the images with zeros where the convolution filter cannot
be applied.

Deep Learning II: beyond the MLP 83

Figure 5.3: Schematic representation of a Recurrent Neural Network (RNN). The inputs
and outputs to such networks are, in all generality, time-series of vectors (xt)t=1,...,Tmax and
(yt)t=1,...,Tmax . The network can a priori keep track of the previous inputs (x0, . . . ,xt−1),
through an internal state ht−1, which is used together with the current input xt to
generate the new internal state ht, from which the output yt is obtained through a fully-
connected network. It should be noted that in this diagram, the ”recurrent cell” function
that is applied to (ht,xt) is the same at all time-steps, and similarly for the ”dense network
function”. Finally, an initial internal state h−1 has to be provided, which can be set to
the null vector if there is no better candidate.

5.3 Recurrent neural networks

Until now, the only kind of underlying structure that we considered for our data was
translational invariance, particularly useful for images. This kind of models are obviously
not adapted to modeling dynamics of a variable, where one of the data dimensions is
a time index. In that case, one usually needs to properly integrate information along
this dimension, sometimes with a more refined method than successive downscaling. The
architecture of choice in that case is the one of a recurrent layer: the examples are fed
successively to the network, and at time t the recurrent hidden layer receives as an input
both the output of the previous hidden layer and its hidden state at time t− 1.

5.3.1 The Ising model, link with Statistical Physics

A single layer of N independent, recurrently-connected, McCulloch-Pitts neurons can be
considered as a spin glass system: a vector s represents the spin states4, its product with
the connectivity matrix J gives the local fields at all sites, and the sign of this field is used
to update the state, so that it is possible to apply results on the dynamics of the Ising
model (Ising (1925), Onsager (1944), etc...).

One example concerns the use of recurrent perceptrons as models of associative
memory. The paradigm is the following: we define as a memory a configuration s of

4Formally, there is a factor two between the ±1 states of MCP neurons and the spin 1/2 states, which
we will forget in the following.

84 Deep Learning II: beyond the MLP

Figure 5.4: Schematic representation of the dynamics in the Ising model, considered as
an example of Recurrent Neural Network. Some configurations of the network (A) are
stable under the application of the state update procedure, while others (B) go through
a transient regime before converging to a fixed point. Finally, if couplings are allowed to
be asymmetric, stable periodic orbits (C) can also exist, in which the network will never
converge to a stable state, but instead keeps oscillating between a finite number of states.

the system that is stable under the Ising dynamics st+1 = Sign(Jst). Such a definition
has the benefit of allowing for a simple model of memory retrieval: each stable configura-
tion of the system is a priori surrounded by a basin of attraction, in which all states
will lead to said memory when repeatedly applying the Ising dynamics; it is then theoret-
ically possible to retrieve that memory starting from a noisy or incomplete version of it.
A schematic representation of possible trajectories under Ising dynamics, relevant for the
memory analogy, is presented in Figure 5.4.

This approach was popularized by Little (1974) and Hopfield (1982), which proposed
a simple prescription to tune the value of the couplings in order to make given patterns
stable, based on the idea of ”Hebbian Learning” that ”neurons that fire together wire
together”. The expression of the weight-matrix W for a set {ξ(1), ξ(2), . . . , ξ(p)} is:

Wij = 1
p

p∑
k=1

ξ
(k)
i ξ

(k)
j , (5.1)

which is exactly the expression of the auto-correlation matrix of the stored patterns. A
natural question that arises is the one of the memory capacity α = p/n, i.e. the ratio
between the maximum number of patterns p that can be stored and the number n of
neurons in the network, in the limit n→∞. Amit et al. (1985) show that the capacity of
the Hopfield model is equal to αhopfield ' .14n.

Gardner and Derrida (1988) provide a general estimation of the optimal storage ca-
pacity, independently of the choice of training procedure, and show that it grows as
pmax = 2N . This result is obtained by considering directly the volume, in the space
of coupling matrices, that satisfies the stability constraints of all patterns simultaneously.
Gardner (1988) also proposes a learning rule that achieves this optimal capacity, obtained
by applying the perceptron learning rule to all neurons in the population; despite its high
storage capacity and guaranteed convergence, this algorithm has the disadvantage that
no explicit expression of a coupling matrix W satisfying all constraints can be obtained.
Additionally error signals are necessary at the level of each individual neuron, which is
thought to be plausible in the cerebellum (Marr, 1969; Albus, 1971) but not necessarily in
all cortical regions. Optimizing the learning rule to achieve near-optimal capacities while
remaining biologically plausible remains a topic of research to this day, see for example
Alemi et al. (2015).

Deep Learning II: beyond the MLP 85



it = σ(Wiixt + bii +Whiht−1 + bhi)
ft = σ(Wifxt + bif +Whfht−1 + bhf)
gt = tanh(Wigxt + big +Whght−1 + bhg)
ot = σ(Wioxt + bio +Whoht−1 + bho)
ct = ft

⊙
ct−1 + it

⊙
gt

ht = ot
⊙ tanh(ct)

(5.2)

Figure 5.5: Left: schematic representation of a LSTM layer. Right: computation graph
for the corresponding LSTM model. This diagram does not correspond to the original
LSTM model introduced in Hochreiter and Schmidhuber (1997), but instead to a more
recent version implemented in PyTorch (Paszke et al., 2019) and used in many practical
instances. The ⊙ symbol represents the Hadamard operator, taking the product of two
vectors component by component.

5.3.2 Subsequent developments

During the 1990s, the idea of Recurrent Neural Networks gained considerable attention,
in thanks notably to the work of Elman (1990) and Jordan (1997). However, training of
those networks requires performing back-propagation through time (Pearlmutter, 1995), a
technique consisting in ”unfolding” the recurrent network into a deep feedforward network
with shared weights across layers, which is subject to the vanishing/exploding gradient
problems, making it impossible to train networks on very long time-scales.

During the 2000s, another type of approach gained traction, broadly referred to as
Reservoir Computing. These methods rely on the use of a chaotic system called a reser-
voir (for example, a non-linear recurrent network with random connection matrix) to
generate complex dynamics, which are used to perform computation by tuning only the
parameter of an input layer connecting the external inputs to the chaotic system, an out-
put layer, used to read the expected output from the state of the chaotic system, and,
optionally, a feedback layer that maps the outputs of the reservoir back to the inputs.
Since the dynamics of the reservoir are not modified during training, methods that do
not use feedback connections bypass the need for backpropagation through time, and are
therefore much easier to train than other Recurrent Neural Networks. Among the differ-
ent Reservoir Computer approaches, some such as the Echo State Network (Jaeger, 2001;
Jaeger and Haas, 2004) and FORCE algorithm (Sussillo and Abbott, 2009) are based on
continuous state neurons, while others such as Liquid State Machines (Maass et al., 2002,
2007) instead consider spiking neurons.

While the Reservoir Computing approaches remain relevant to this day, in particu-
lar since their mathematical properties are well established, another type of approach
that has enjoyed major empirical success in the last decade is the one of gated recurrent
networks, pioneered by the Long Short Term Memory (LSTM) of Hochreiter and Schmid-
huber (1997), and more recently the Gated Recurrent Units of Cho et al. (2014). In those
networks, the flow of information through the network from one time-step to the next is
controlled by a gate, partially alleviating the issues of vanishing and exploding gradients.
A major limitation of those networks is their mathematical complexity, which makes it
almost impossible to derive any analytical result (see Figure 5.5).

We will now present some results that have been achieved using RNNs.

86 Deep Learning II: beyond the MLP

Dynamical system modeling One of the most generic applications of Recurrent Neu-
ral Networks, to which all others can at least formally be identified, consists in producing
approximations of Dynamical Systems (Funahashi and Nakamura, 1993), either for pur-
poses of forecasting the future evolution of a quantity given its past history (Connor et al.,
1994) or for use in Dynamical Control Systems, see Narendra and Parthasarathy (1990)
and Kosmatopoulos et al. (1995).

This problem is closely related to the idea of using a neural network to represent a
Markov Decision process, a subclass of discrete-time Dynamical Systems in which the
evolution of the system is conditioned by the choice at each time-step of an action by
one component of the system, referred to as the agent. Such models are central in the
field of Reinforcement Learning, presented in more details in Section 6, and the study of
environment dynamics representation will be the topic of Chapter 8 in which we show how
such a model can be used to achieve state-of-the-art performance on the Path Integration
task.

Natural Language Processing A particularly tricky example of input space is the one
of natural sentences that can be generated in a given language. As theorized by Chomsky
(1959), those sequences of words are governed by strong formal structures, known as
grammars, cannot be represented by combinatorial circuits, i.e. systems that process
information without any memory of past activity the way a purely feedforward network
does. Recurrent Neural Networks augment feedforward networks by allowing them to
produce joint representations of symbols presented at different times, a necessary condition
for Turing completeness (the ability to express any computational task), making them
appear as prime candidates for grammar understanding as demonstrated by Cleeremans
et al. (1989); Elman (1991). These methods have enjoyed unprecedented empirical success
in the last decade, see Cho et al. (2014), and studies have been led to explain why these
methods outperform the previous state-of-the-art (Karpathy et al., 2015) using notably
Hidden Markov Models.

An interesting subtopic of Natural Language processing is the one of word embeddings:
in order to be able to use Neural Networks on sentences, one must first transform them
into time-series by finding an appropriate mapping from words to vectors. A very näıve
solution consists in building a ”one-hot” encoding of words by using vectors of length
equal to the number of possible words, each word being represented as a vector of zeros
and a single one. Even if such an encoding was not impossible to put in practice due to
the sheer size of the resulting vectors, the space of possible words would be represented
without any consideration for the semantic relationships between words. A much more
elegant solution consists in trying to map words to vectors in such a way that related words
(such as ”apple” and ”orange”) are more ”similar” than unrelated ones (e.g. ”apple” and
”neuron”); some approaches, such as GloVE embeddings claim to represent even stronger
relationships (e.g. asking that in embedding space, ”king-man+woman=queen”). Those
embeddings are usually constructed from statistical analysis of large text corpora, such
as co-occurence of words, and techniques have recently been proposed to improve them
further by pretraining Deep Recurrent Networks for specific Natural Language Processing
tasks (for example, prediction of each word in a sentence given both its predecessor and
successor, see Devlin et al. (2019)).

Sound analysis One notable example in which RNNs do not perform nearly as well as
one could expect is the one of direct sound analysis. Physically, sounds are transmitted
through acoustic waves, which can be fully characterized by the value of the local pressure

Deep Learning II: beyond the MLP 87

as a function of time; this wave-form can be recorded through a microphone, yielding
a 1-dimensional time-series (pt)t=1,...,T which can be used as direct input to an RNN
to try and perform e.g. instrument classification or phoneme detection. One way to
understand why these time-series might not be adapted to RNNs is that the time-scales
on which information has to propagate are much longer than those that can be achieved
by standard RNNs: typical wave-form recordings are generated at 8kHz, and the duration
of an individual phoneme is around 100ms, meaning that the number of time-steps in the
waveform is around 1000.

A much more common and successful approach to Machine Learning on sound relies on
prior knowledge about the human auditory system, which was already mentioned in Sec-
tion 3.4.2: the wave-form is first mapped to MEL Frequency Cepstrum Coefficients,
a time-series where each time-step is an energy density histogram, across the audible fre-
quency domain, computed in a sliding window across the waveform and sometimes referred
to as a cochleogram due to its similarity with the way sound is perceived at the level of
the human cochlea. An example of such mapping was presented in Figure 3.6. The time-
series obtained in this way are much denser in information, and the time-scales on which
information has to be integrated becomes short enough to allow for meaningful tasks to
be performed (Graves and Schmidhuber, 2005; Amodei et al., 2016). It should however
be noted that Convolutional Networks are also often used to analyze cochleograms, see
Abdel-Hamid et al. (2014), with convolutions being applied both in the time and in the
energy dimensions, the latter being much less intuitively relevant as invariance of audio
patterns across the energy spectrum is not well established.

5.4 Differentiable Neural Computers

In specific contexts, one might want to consider is called the ”Differentiable Neural Com-
puter” (Graves et al., 2016), constructed as an extension of the Neural Turing Machines
(Graves et al., 2014). As the name suggests, this particular architecture was not developed
in analogy with neuroscience, but with computer hardware design.

In a traditional computer, the Core Process Unit which executes the computations
stores data on an external static memory that can be accessed without interfering with
the computations. In a feedforward neural network, the only form of memory is the value
of the weights at the end of the training procedure, which can be seen as a memory of the
history of training examples, and no information can be stored at the time of inference
when the network is provided with new examples: from a computation theory point of
view, these are ”combinatorial circuits” and not fully-capable Turing Machines. In a
recurrent network, the situation is different as a persistent internal state exists, allowing
to propagate information between time-steps. However, this ”memory” is a priori affecting
and affected by the computation currently performed, so that keeping information stable
for a large number of updates might be difficult, requiring fine-tuning of the weights. This
type of memory could be compared to the Cache of a CPU: a small, very efficient memory
that is not made to hold information for a long time.

A Differentiable Neural Computer aims at introducing a much more robust form of
information storage: a neural network, the Controller is used to manage an external
memory array, in a very similar way as a CPU accessing its RAM. The controller is used
to manage read and write heads that can affect the memory matrix, and these heads
benefit from three forms of attention mechanisms:

• content lookup: a ”key” vector is used to find memory addresses with similar content,
assigning a weight to each address. This can be used for associative recall, where

88 Deep Learning II: beyond the MLP

Figure 5.6: General structure of an auto-encoder network for images. The initial image
is mapped to a low-dimensional vector, through an encoder CNN whose parameters (in
particular, an integer stride) are chosen to reduce the size of the feature map (represen-
tation) at each layer. This vector can then be used as the input to a decoder, whose
connectivity pattern can be thought of as ”symmetric” to the one of the encoder in the
sense that it uses ”fractional” stride to increase the size of the representation at each layer.
The final output of the encoder-decoder system has the same shape as the original image,
and the parameters of both networks are tuned simultaneously to minimize the distance
between the input and output.

the key is a noisy or incomplete version of the desired information.

• temporal link mapping: by recording the matrix of sites that were consecutively
written to, one can define an operator that transforms an attention vector w into
a time-shifted version (for example, the sites that were written to just before the
name ”dog” was put in the memory)

• usage evaluation: the controller can access the state of usage of all addresses, in
order to know which ones are important and which ones can be overwritten.

As such, a DNC can be seen as a differentiable analog to a fully Turing-Complete
computer. Experiments suggest that Gradient Descent can be used to accommodate both
supervised and unsupervised learning tasks that are otherwise considered impossible for
LSTM networks.

5.5 Auto-encoders

In Chapter 1, we briefly introduced the concept of dimensionality reduction through Prin-
cipal Component Analysis, a technique in which information about a set of n–dimensional
vectors is condensed by projecting each vector on a low-dimensional manifold, chosen to
maximize the variance of the projected points. Similarly to Multi Layer Perceptrons, this
method makes the assumption that no particular structure exist on the space of input
data; therefore, when trying to compress structured data such as images, it might be
interesting to use specialized architectures, usually referred to as auto-encoders.

While many architectures are possible depending on the type of input data and the goal
of the auto-encoder, they usually rely on an hourglass shape in the computation graph, see
Figure 5.6, and we will focus on the example of image data: an input image with N pixels,
is mapped to a n–dimensional vector (n� N) by a Convolutional Neural Network; then,
a ”fractional” Convolutional Network is used to map this condensed representation back
to the original image shape. The parameters of both networks are initialized randomly,
and trained jointly in a supervised way on the distance between initial and reconstructed

Deep Learning II: beyond the MLP 89

images5. Depending on the context, it might be useful to impose additional constraints
on the compressed representation obtained after the encoder: in the case of MNIST digit
images, one could try to impose that this encoding retains information on the category of
the image by simultaneously training a classifier taking the encoding as input; conversely,
one could be interested in creating a model which does not retain that information, so
that the intermediate representation will be as unstructured as possible, making it more
suitable for image generation (see next section).

It should be noted that these techniques are not yet a viable replacement for wavelet
transforms (Mallat, 1996) in the context of image compression, but rather provide a more
anatomically plausible alternative for explaining this type of compression in biological
information processing systems.

5.6 Generative Adversarial Networks

A natural question that arises from the definition of auto-encoders is whether those net-
works could be used as generative models: for example, one could train a Boltzmann
Machine to reproduce the statistics of the compressed representations, and use the de-
coder as a generative model to obtain a distribution on images. While this approach is
of course possible, an empirically much more successful approach consists in introducing a
second network, called the discriminator, whose role is to predict if the images it receives
are real or were artificially generated, see Figure 5.7. The training procedure for these two
networks is said to be adversarial, as one network is trained to maximize the error of the
other: two gradient descent optimizations have to be performed in parallel, each working
on the parameters of one of the subnetworks.

If we denote as G the parameters of the generator network and D the ones of the
discriminator, the optimization problem has the form:

max
D

min
G

〈
log(D(x))

〉
x∼pdata

+
〈

log(1−D(x))
〉
x∼pgen

. (5.3)

It can easily be shown that the optimal discriminator satisfies

D∗(x) ≡ pdata(x)
pdata(x) + pgen(x) , (5.4)

and that the optimal generator satisfies pgen(x) ≡ pdata(x), so that when the generator is
optimal the discriminator is maximally confused and answers 1/2 for every sample.

The question of how to improve the performance of these networks, usually through
the use of meaningful regularization terms in the loss function (an approach similar to
the one we explore in Chapters 2 and 8) or more involved optimization schemes, remains
mostly open and has given rise to a wide variety of different models, see Creswell et al.
(2018) for a review.

5This type of dimensionality reduction method is still generally considered unsupervised, as no label
is attached to the input images.

90 Deep Learning II: beyond the MLP

Figure 5.7: Architecture for a Generative Adversarial Network. A generator is used to
map an initial probability distribution, usually a n–dimensional Gaussian with no correla-
tion between variables, to a distribution of images; a discriminator is used to determine if
the images it receives come from the initial dataset, or from the generator. Those networks
are trained in an adversarial manner: the network is optimized to fool the discriminator,
and the discriminator is optimized for the exact opposite.

Chapter 6

Deep Learning III: the
Reinforcement Learning paradigm

Abstract
In this Chapter, we present some history and recent advances in Reinforcement
Learning. This paradigm completes the one of supervised learning algorithms,
which require the data scientist to establish a set of ”ground-truth” labeled
examples, by allowing the agent to learn from trial-and-error. Such meth-
ods, initially developed in the field of Statistics to find optimal exploration
strategies in Multi-Armed Bandits, are now formulated in the framework of
Markov Decision Processes, and have been applied with huge practical success
in the field of video game AI. In those problems, it is often impossible to write
optimal policies ”by hand”, but the Deep Reinforcement Learning algorithms
(combining the ideas of Markov Decision Processes with neural network ap-
proximation techniques) allow agents to learn such policies. From the point
of view of behavioral neuroscience, these experiments can bring valuable in-
sights by allowing comparison between the policies of biological agents and of
artificial ones.

91

92 Deep Learning III: Reinforcement Learning

6.1 Link with Optimal Control Theory

Reinforcement Learning is closely related to the field of Optimal Control theory (Kirk,
2004), in which an exact model of a physical dynamical system is explicitly given to a
”planner”, for example as a set of differential equations, along with an objective (e.g.
maximize the yield of a chemical reaction, stabilize the generated power in a nuclear
plant to its nominal value, etc...); the planner then has to determine how to interact
with the system (resp. increase or decrease the temperature of the solution and the
concentration of products, increase or decrease the interaction rate) to obtain the expected
result. It has been found by Lillicrap et al. (2019) that model-free Reinforcement Learning
procedures can achieve similar results to those procedures, despite lacking explicit access
to the information about the system dynamics. This is very similar to the deduction of an
optimal policy from the inference of a Q-function through Bellman equations and Monte-
Carlo exploration of an environment that we explain in this Chapter: the Q-function is
a model of the action-reward relationship; its evaluation relies on the computation of the
transition matrix as an intermediate step, which is a model of the state evolution under
the influence of the ”agent”; the extraction of the optimal policy from the Q-function,
albeit trivial, constitutes the planning procedure.

While it is rarely incorporated directly in training procedures, it is often implicitly
expected from Deep Reinforcement Learning algorithms to construct meaningful repre-
sentations of their environments, and perform some form of planning on those. It has
been shown that learning of representations is a limiting step in many Machine Learning
contexts (see Bengio et al. (2013a) for a review), and we argue that one way to facilitate
this emergence is to explicitly train the representation layers, usually the first ones in the
information processing pathway, as part of an environment model. In Chapter 8, we will
consider the application of this idea to a spatial navigation task. The internal model,
which will feature both a direct and inverse component, will be implemented through
a Neural Network, trained from random interactions with the environment, and we show
that these models can be used for efficient learning of spatially organized tasks.

6.2 The Multi-Armed Bandit problem

As a way to fix intuition, let us consider for a moment a bee, who every day has to leave its
hive in order to collect pollen; at the beginning, the bee has no choice but to explore the
surroundings, more or less randomly; after some time, it has learned the path to a nearby
flower patch, to which it could return every day to exploit its current knowledge of the
environment; however, if it were to continue to explore a bit longer, it might find a bigger,
much more rewarding field just a few miles further, which would be more beneficial in the
long run. This situation, often referred to as the exploration-exploitation dilemma, is a
major point of interest in Reinforcement Learning. One of the first practical applications
of this dilemma comes from the field of medical trials (Stoyan, 1987): how should a
researcher choose which subjects do and do not receive a candidate treatment in order to
maximize the information collected about the treatment’s efficiency, while also helping as
many patients as possible to recover? in recent years, with the apparition of the World
Wide Web, similar questions of ”regret minimization” arose for recommendation systems,
such as the ones used for news article (Li et al., 2010), advertisement, and audio-visual
content on platforms such as Youtube, Spotify or Netflix.

The resulting model, called the Multi-Armed Bandit, is described as follows: an agent
is placed in front of a slot machine, which has N different arms that it can pull; at each

Deep Learning III: Reinforcement Learning 93

time-step, the agent chooses one arm to pull, and receives a certain amount of money,
positive or negative, which we call a reward; the distribution of possible rewards at a
given step is determined by which arm the agent pulls; the objective of the agent is to
obtain a sum of rewards as high as possible on sessions of T ' ∞ pulls, averaged over the
randomness of the rewards at each time-step.

Just to fix the ideas, consider a very simple case in which there are two arms, and
the distributions of rewards for arm i is a Bernoulli with probability pi of outputting 0,
with p1 > p2. If we consider an omniscient agent that knows those two distributions, in
particular the values of p1 and p2, the optimal strategy π∗ to maximize the rewards is to
always pull the first arm, wince it has the highest chance of actually outputting a reward,
and the expected cumulated reward in that case is given by:

〈 T∑
t=1

rπ
∗〉 = p1 T. (6.1)

A more realistic scenario has the agent begin its session without knowing the values
of p = (p1, p2), which it has to infer at the same time as it is collecting rewards. A
possible strategy πIE when faced with this situation is the one of Initial Exploration: at
the beginning, choose each arm k times, then always pull the arm which yielded the highest
average reward during this initial exploration phase. While this strategy can be useful in
practice, it is far from being optimal in the case where T = ∞: in all non-degenerate
cases (i.e. both pi are different from 0, 1 and each other), there is probability ε that after
k draws of both arms, the arm with the lowest pi gave a larger reward than the other.
Therefore, the expected cumulated reward in that case is given by:

〈 T∑
t=1

rπ
IE
〉

= (1− ε) p1 T + ε p2 T. (6.2)

It is then possible to define the regret of a policy π as the difference between the
average expected reward when choosing the arms according to π, and the average expected
reward under the optimal policy π∗. In our case, the regret of the Initial Exploration
strategy grows linearly with time:

R(πIE) = ε (p2 − p1)T. (6.3)

A more involved strategy called Upper Confidence Bound πUCB was defined in Lai
and Robbins (1985) and achives a logarithmic scaling of regret, which the authors show
is the optimal possible scaling in the general case. This algorithm proceeds by keeping
an estimation of the average reward r̂i of all arms, as well as the uncertainty σi on this
average; the arm that is chosen is not the one that currently has the highest average, but
the highest ”upper confidence bound”

p̂opti (t) = 1
Ni,t

∑
t,at=i

rt︸ ︷︷ ︸
MAP estimate: mean p

+ c

√
ln(t)
Ni,t︸ ︷︷ ︸

Uncertainty penalty σpi

, (6.4)

where Ni,t is the number of times the arm i has been chosen up to time t, and c controls
how much emphasis the algorithm puts on exploration. Intuitively, this algorithm can be
formulated as optimism in the face of uncertainty: the agent will sometimes choose an
arm that has a suboptimal average reward in order to improve its knowledge about it,
and make sure that the one it uses is truly optimal. It should be noted that the second

94 Deep Learning III: Reinforcement Learning

Figure 6.1: Example of Upper Confidence Bound for the Multi-Armed Bandit problem.
After a certain number of draws, the agent has constructed confidence intervals on the
values of the parameters of the two Bernoulli arms, p1 and p2. The Maximum A Posteriori
estimates, i.e. the centers of those intervals, seem to indicate that arm 1 has the higher
reward probability of the two; however, the uncertainty on p2 is larger since that arm has
been drawn less often, so that the ”optimistic” estimation (top of the confidence interval)
is larger for arm 2. The agent therefore chooses to draw from arm 2, in order to decrease
the uncertainty in its estimation of p2. At the next step, the uncertainty on arm 2 has
decreased enough that the Upper Bound on p2 is now below the one of arm 1, and the
agent will now choose it. To achieve log-scaling regret, the confidence level is increased as
a function of time, encouraging the agent to always keep exploring all states, albeit less
frequently.

term in 6.4 will diverge if t increases, ensuring that exploration steps are still taken even
at large times (hence the logarithmic regret).

It should however be noted that the theoretical asymptotics of the UCB algorithm are
only valid after a very large number of trials, often much more than the typical use case,
and simpler algorithms might significantly outperform it in realistic settings (Kuleshov
and Precup, 2014). Finite-time results are however much harder to derive, and remain an
active topic of research to this day (Auer et al., 2002).

6.3 Markov Decision Processes

One of the major limitations of the classical Multi-Armed Bandit framework is that it
assumes that the distribution of rewards attached to each arm is independent of the arms
chosen by the agent at previous time-steps. Going back to our bee analogy of the previous
section, we would want to be able to take into account the fact that if our bee collects
all the pollen in a given area, then the next time it will visit it there will be no pollen
left, and the whole trip will yield no reward. The way we incorporate this subtlety is by
introducing the concept of environment states, e.g. the quantity of pollen remaining in
each patch of flower. When the agent performs a given action (the generalization of the
arms in the bandit case), the state undergoes a transition, which might be stochastic or
deterministic, and a reward is given to the agent, conditioned on the previous state and
the action.

The resulting mathematical object is called a Markov Decision Process (MDP) (Sutton
and Barto, 1998), and is characterized by the following elements:

• a state space S

Deep Learning III: Reinforcement Learning 95

Blue action
transition matrix

− 0.5 1 −
− 0 0 −
− 0 0 −
− 0.5 0 −



Red action
transition matrix


0 0 1 0
0.9 0 0 0
0 0 0 1

0.1 1 0 0



Figure 6.2: Example of an MDP with two actions (blue or red) and four states. The
transition probability matrices P are such that Pi,j = p(st+1 = i|st = j) when choosing
the corresponding action. The rewards are not included for clarity, as each of the arrows
could be associated with its own reward distribution. The blue action is not available in
all states, which is not a problem for later algorithms. A situation not represented here
would be transition probabilities from a state to itself, which once again requires only
minor adjustments.

• an observation space O

• an action space A

• For each state s ∈ S and action a ∈ A:

– a distribution of rewards r(s, a).

– a transition probability distribution p(s̃|s, a).

Those two distributions, which we will mostly consider to be deterministic in the
following, are used so that every time the action a is taken while in state s, a reward is
drawn from r(s, a) and a new state is sampled from p(s̃|s, a). In the bee analogy, the state
transition could be that once the bee has collected pollen 3 times from the same location,
subsequent attempts to collect at that same location will yield no reward; we provide in
Figure 6.2 an example of abstract MDP for reference.

6.4 Exact solution of an MDP: Bellman equations and Dy-
namic Programming

Similarly to the case of Multi-Armed Bandits, one might be interested in deriving policies
π : S → A that map environment states to agent actions, in such a way that following
that policy yields, averaged on transitions and reward randomness, the highest possible
cumulated reward. Such policies can a priori be chosen deterministic or stochastic, but
it can be shown that at least one deterministic policy exists that maximizes the expected
reward (see Sutton and Barto (1998) for a full mathematical proof).

To derive such an optimal policy, it is useful to introduce the State-Action Value
Function, often referred to as the Q–function, especially in the context of Deep Rein-

96 Deep Learning III: Reinforcement Learning

forcement Learning. It is formally defined for any policy π as:

Q(s, a) =
〈
r(s, a) +

∞∑
t=1

γt r(st, π(st))
〉

rewards, transitions
, (6.5)

where (st)t=1..∞ is the trajectory followed by the agent when starting from state s, taking
initial action a, and subsequently following the policy π. The randomness of the MDP can
be found both in the value of the reward and the exact trajectory followed. The discount
factor γ is a real number between 0 and 1, quantifying how much the future rewards are
weighted with respect to immediate ones1. From the Q–function of a given policy, one can
also define its value function V (s) = Q(s, π(s)), which is simply the expected discounted
sum of rewards following the policy π at every step starting in state s.

Let us now introduce Richard Bellman’s Principle of Optimality (Bellman, 1954):
An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

Mathematically, the Value Function of the optimal policy, V ∗, must be maximal at
any state, from which one can deduce the unicity of the optimal value function as well as
the Optimal Bellman Equation:

∀s, V ∗(s) = max
a

{
r(s, a) + γ

∑
s̃

V ∗(s̃) p(s̃|s, a)
}
. (6.6)

Since this is a non-linear system of equations, one for each possible state, analytical
resolution is not possible. However, one may introduce the Optimal Bellman Operator
B acting on the space of Value Functions (since we only consider discrete state-spaces, this
space is formally identifiable to RN where N is the number of states):

∀u ∈ RN , Bu = max
a

{
r(s, a) + γ

∑
s̃

us̃ p(s̃|s, a)
}
, (6.7)

which can easily be shown to be L∞-contractive2. From the Banach Fixed Point Theorem,
B admits a single fixed point, which satisfies the Bellman Optimality Principle: the fixed
point is the optimal value function V ∗.

Using the aforementioned properties, one can derive the so-called Value Iteration algo-
rithm, which allows for iterative numerical solving of the non-linear system 6.6: starting
from any value function V0 and applying B an infinite number of times, one recovers the
optimal value function V ∗, from which the optimal policy is computed greedily as

π∗(s) = arg max
a

{
r(s, a) + γ

∑
s̃

V ∗(s̃) p(s̃|s, a)
}
. (6.8)

6.5 The Q-learning algorithm

Many variants of the Bellman algorithm exist, depending on the particular situation at
hand, but they rely both on access to all the information about the MDP, and the ability
to exactly represent this information. These are very restrictive hypotheses, in particu-
lar the second one, and we will show in a later section that recent empirical successes
of Reinforcement Learning can at least partially be attributed to the emergence of new

1It is not obvious how exactly to fix γ, but a good rule of thumb is to chose is so that γT vanishes in
a time comparable to the time on which the agent should try to plan its moves.

2For any couple (u, v), |Bu− Bv|∞ < |u− v|∞.

Deep Learning III: Reinforcement Learning 97

Figure 6.3: Generic Reinforcement Learning scheme. The agent interacts with its en-
vironment by ”observing” the environment state st; using its policy π, it acts on the
environment through an action at = π(st); given this action, the environment updates its
state, and the agent observes both the new environment state st+1 and the reward rt it
obtained when performing its action. The resulting transition tuple τ = (st, at, st+1, rt)
is then transmitted to the Reinforcement Learning algorithm, which updates the policy π
accordingly in order to maximize the obtained rewards.

approximation techniques for high-dimensional functions, namely Deep Neural Networks.
However, if the spaces of actions A and states S are discrete, all the probability distribu-
tions involved are finite-sized matrices, whose components can a priori be estimated to
an arbitrary level of precision in finite-time by using a suitable exploration strategy (for
example, at every step choose the action which was used the least when in the current
state). This approach is often described as a particular case of Monte-Carlo method, and
can be seen as an analogue of the ”Initial Exploration” strategy of Multi-Armed Bandits.
While this approach is far from optimal to minimize the regret during learning, it allows
the agent to construct a perfect model of the environment (i.e. the MDP) which it can
then exploit to compute a policy that will yield optimal regret at test time.

We will now switch to an episodic framework: the agent has access to a simulator of the
MDP, that we will call the environment. The agent can interact with the environment
in order to generate trajectories along which it gathers information and, at the same time,
optimizes its policy. This ”trial-and-error”, or ”unsupervised learning”, is much more
closely related to what living organisms experience than the standard classification or
regression tasks of supervised learning.

Let us now present the Q-Learning algorithm (Watkins and Dayan, 1992), used to solve
this problem. It relies on a bootstrap estimation of the Q–function from many trajectories.
At each step of each trajectory, we apply the following procedure:

• Choose an action a according to a suitable exploration policy

• Observe the new state and reward (s̃, r)

• Update the current estimate Qt using this new information

We will not enter the details of the different policy updates and their convergence
guarantees, as they are fairly mathematically involved and will not be important in the
following. We once again refer to (Sutton and Barto, 1998) for more details, and will focus
on the particular case of Approximate Reinforcement Learning, which will allow use to
make a link towards Deep Learning.

An important detail however is the following: what is a suitable exploration policy?
This is an example of the famous Exploration / Exploitation dilemma: if the agent
only acts according to its current estimation of the best policy, it will fail to find more
hidden but better performing strategies; on the other hand, if it tries all actions at random,
it will explore all possible trajectories but with such a low probability that it will never
get enough information to find the optimal solution. A good compromise between the

98 Deep Learning III: Reinforcement Learning

two is the so-called ε–greedy exploration scheme: at each time-step, the agent chooses his
current optimal action with probability 1− ε, and a random action with probability ε. In
particular, one may start with ε close to one and slowly decrease it towards 0 so that the
agent begins by pure trial-and-error and acts with more confidence over time, while still
collecting information about small deviations from its optimal policy.

6.6 Approximate Reinforcement Learning

In the following, we will stop considering the case of discrete observation spaces (i.e. where
the input to the network could be represented simply by an integer in [0, Nstates])), but
almost always remain in the case of discrete action space.

The fact that both states and actions are discrete was a major advantage: the Q–
function could then be represented by a matrix with dimensions corresponding to state
and action. When the states are no-longer discrete3, this is not possible anymore, and one
has to use approximation techniques to allow efficient representation of the policy. The
approximation techniques that we will consider, and which proved extremely successful
for Reinforcement Learning applied to video games, is simple: use a neural network to
represent the policy. The advantage is that, as was the case for classical Deep Learning,
the right choice of architecture allows to drastically reduce the number of parameters to
tune in the approximator by exploiting intrinsic symmetries of the data. For example,
when the observation is an image, it seems reasonable to expect that a Residual Network
should be able to correctly encode the optimal policy4.

Two main families of algorithms exist: Policy Gradient and Deep Q Learning. As we
shall see, they are very similar in their implementation but correspond to complementary
points of view on the problem.

6.6.1 Policy Gradient methods

For these methods, the output of the Neural Network is the parameter vector of a pre-
defined probability distribution. In the following, we only consider the case where the
distribution is the multinomial over a discrete set of actions [1, N], so that the output
layer will simply be a softmax over N neurons.

A policy π represented in that way is parametrized by the set θ of its network weights,
which makes it possible to tune by the following gradient descent procedure, known as the
Reinforce algorithm (Williams, 1992):

1. Perform a certain number of trajectories (epochs) by drawing the actions from the
probability distribution outputted by the network for the current state. During this
step, conserve a history of the log-probabilities of each action and of the obtained
rewards r. This step can be thought of as a form of Monte-Carlo evaluation of the
average rewards.

2. Along each trajectory, compute the discounted rewards:

Rt =
∞∑
k=0

γkrt+k. (6.9)

3More precisely, when the cardinality of the input space is too large: the space of (256, 256) images is
indeed discrete, however constructing a matrix of 2563 entries is unreasonable.

4While reasonable, it is not completely obvious that a network used for image classification and one
used for image-based reinforcement learning could share their weights.

Deep Learning III: Reinforcement Learning 99

For stability reasons, these rewards are often normalized within each batch of tra-
jectories to mean zero and variance one.

3. Minimize the loss
L =

∑
trajs

∑
t

−Rt log pt (6.10)

using any kind of Gradient Descent update. This encourages the network to increase
the probability of actions that yield positive rewards. An additional entropy term
εHt can be added, where Ht = ∑N

i=1 pi,t log pi,t, in order to penalize convergence to
deterministic solutions and encourage exploration.

4. Repeat steps 1 to 3 until convergence.

Such methods are often referred to as being on-policy, meaning that the transitions
used to compute the loss must have been collected with the policy currently represented by
the network. This limitation makes them less sample efficient than their Value Function
counterparts, which can reuse multiple times the same transitions, and even transitions
obtained using a different strategy than the one represented by the network, for example
random actions: these methods are called off-policy, and we will study them in more
details in the next Section. However, Policy Gradient methods are not necessarily much
harder computationally as a single step of update is much simpler and quicker, making
them comparable in terms of wall clock time to convergence.

6.6.2 Value Function methods

Policy Gradient methods are designed to increase the likelihood of actions that yield
high-rewards, but do not actually build any model of the Markov Decision Process. Value
function methods such as Deep Q Learning, on the other hand, do one step in that direction
by trying to approximate the Q–function of this policy via Monte Carlo, and using that
Q–function to deduce the optimal action in any given state, a very similar procedure to
the one described in Section 6.5.

Since the functions are now represented by Neural Networks instead of tables, updates
can no longer be done exactly, but instead correspond to one step of Gradient Descent;
for additional stability, which is known to be a limiting factor in Deep Reinforcement
Learning, the Gradients are not computed on a single transition tuple but rather on a
large number of them. To do so, transitions that are observed from the environment are
stored in a replay buffer (Mnih et al., 2013, 2015), from which a batch of transitions is
randomly selected at each step, as illustrated in Figure 6.4; alternatively, some methods
instead rely on maintaining several copies of the agents, and letting them interact with the
environment and update their policies independently (Mnih et al., 2016). Importantly, and
contrary to Policy Gradient methods, the transitions that are used to fill the replay buffer
do not need to be obtained ”on-policy”: Value Function methods can learn from observing
other agents, for example humans, interacting with their environment, a field known as
imitation learning (Hussein et al., 2017). This also makes them a priori more sample
efficient, by allowing samples to be reused multiple times, which can be a major benefit
in cases where the environment is expensive to run (either because of long computation
time, or because actual data has to be collected).

Another influential algorithm which models the value function adopts the Actor-Critic
idea (Konda and Tsitsiklis, 2000) of having two different networks, one that is used to
predict the Value Function at a given state (the critic), while another (the actor) actually
represents the policy. This architecture can be seen as an intermediate situation between

100 Deep Learning III: Reinforcement Learning

Figure 6.4: Deep Q Network learning scheme. At each time-step, the agent interacts with
its environment using an action at drawn from an exploration policy πexploration, which
can be arbitrary (for example, with random exploration moves, or incorporating expert
supervision); this is in contrast with Policy Gradient methods which requires action be
drawn from the policy being currently optimized πRLt . From this action, a transition
tuple is obtained, which is stored in a ”first-in, first-out” (meaning that oldest entries get
discarded first) replay buffer (Mnih et al., 2015). Then, a subset of the currently buffered
transitions are randomly selected and used to perform one step of optimization of the Q
function, from which the new policy πRLt+1 is obtained.

on and off-policy algorithms, and aims at bringing the added stability of Deep Q Learning
to the basic Reinforce algorithm.

6.7 State-of-the-art methods

Despite their major empirical successes, all aforementioned methods can be significantly
improved. We will now present some recent developments in the field, providing reference
to the relevant literature without entering details.

One major limitation of all algorithms described until now is that they do not allow
the action space to be continuous. This is an important feature for real-world applications,
most notably robotics in which the different motors can be moved to continuous angles;
while it is a priori always possible to discretize the action space (e.g. by the minimum an-
gular displacement of the motor), each of those actions will be considered as ”categorically”
different from the others, and the relation between the different actions (in particular the
fact that one action can often be reconstructed as the sum of two other actions) will a
priori not be exploited. Many methods have been developed specifically for continuous
action tasks, both on-policy (Trust-Region Policy Optimization (Kakade and Langford,
2002; Schulman et al., 2017a, 2018) and Proximal Policy Optimization (Schulman et al.,
2017b; Heess et al., 2017)) and off-policy (Deep Deterministic Policy Gradient and its
more stable variant TD3 (Lillicrap et al., 2019; Fujimoto et al., 2018), Soft Actor-Critic
(Haarnoja et al., 2018, 2019)).

Deep Learning III: Reinforcement Learning 101

Another topic of research is the one of accommodating multiple tasks in a single Neu-
ral Network, creating what Schaul et al. (2015) refer to as ”Universal Value Function
Approximators”. This is often reformulated as stating that a given environment can have
different ”rules” or ”goals”, which the agent is made aware of as part of the observation
space, which impact the policy that the agent must adopt; one example that we will con-
sider in Chapter 8 is a spatial navigation task in which the goal is a position within the
environment that the agent must reach. In that case, similarly to the problem of learning
continuous actions, one could learn one policy for each goal, without taking into consid-
eration the structure relating the different goals. Andrychowicz et al. (2018) propose a
new type of experience replay, called the Hindsight Experience Replay, which can be used
in combination with any off-policy method to exploit the fact that the agent might be
achieving a goal, which is not the one it currently pursues. We used the implementations
of TD3 and HER found in Raffin et al. (2021) to train an agent to reach an arbitrary
position in a continuous visual environment in Chapter 8 with great success, despite lack
of extensive hyperparameter optimization.

Finally, it should be noted that there is no ”be all, end all” argument in favor of
any particular algorithms in any given situation; instead, it is more often than not a
choice based on heuristics and personal preference, or if computing budget allows, another
hyperparameter to optimize.

6.8 Examples of environment

Now that we have discussed the different methods used for learning, we will describe some
environments on which this can be applied.

First, we introduce a very important toy model, whose simplicity and modularity make
it a perfect test bench for Reinforcement Learning: the Grid World. The base of a Grid
World is, as suggested by the name, a discrete set of possible states, which can be thought
of as tiles on a chess board. An agent is placed in this grid world, and is allowed to
interact with it by moving from one tile to another, sometimes with restrictions or special
properties. The typical task in this type of environment is that the agent is spawned
randomly somewhere on the grid, and has to navigate until it finds an exit.

This model can easily be extended to accommodate a wide variety of tasks, for example:

• optimal path in a cluttered environment: not all movements are allowed, and the
agent receives a reward only when exiting.

• planning: the agent is allowed to exit and receive its reward only if it performed
a specific action, like going through a specific tile, forcing the agent to adopt a
”two-parts” strategy.

• continuous environment simulation: by assigning a ”continuous” property to each
tile, for example a random image taken in a given room, one can use Grid Worlds
to simulate coarse-grain behavior on a non-discrete environment.

The main advantage of these environments is that they are extremely fast to simulate,
and require little computational power. Example of such environments are the Mini-Grid
(Chevalier-Boisvert et al., 2018) and Gym-Maze projects.

More involved environments usually rely on the use of existing video game engines,
such as the one of Atari (Bellemare et al., 2013), Minecraft (Johnson et al., 2016), Doom
(Wydmuch et al., 2018) or Starcraft (Vinyals et al., 2017). More general-purpose engines

https://github.com/MattChanTK/gym-maze

102 Deep Learning III: Reinforcement Learning

have also been made accessible for Machine Learning research, such as the Unity frame-
work (Ward et al., 2020) which has recently been used by OpenAI to create the XLand
environment (Team et al., 2021), which combines procedural world and rules generation to
generate a wide variety of different ”games” on which a single network is trained to try and
generate reusable behaviors. Others instead rely on actual physical simulations, for exam-
ple using the MuJoCo control suite (Todorov et al., 2012). It should be noted that most
environments published now follow the specifications laid out by OpenAI’s Gym software
(Brockman et al., 2016), allowing for the development of projects such as Stable-Baselines
(Raffin et al., 2021) that regroup implementations for many state-of-the-art algorithms,
allowing for fast and easy prototyping on new problems. The environment we developed
for Chapter 8 follows the Gym specification.

Finally, some real-world applications of Reinforcement Learning, not relying on soft-
ware environments but rather on a set of actuators and sensors also exist. One of the
earliest examples came from the field of robotics in the 1950s, with Marvin Minsky’s
Stochastic Neural Analog Reinforcement Calculator, a physical implementation of Heb-
bian Learning with 40 synapses, and more recently similar projects have been focusing on
autonomous driving of miniature cars (Balaji et al., 2019).

Chapter 7

Low-Dimensional manifolds in
Recurrent Neural Networks

Abstract
We study the learning dynamics and the representations emerging in Recur-
rent Neural Networks trained to integrate one or multiple temporal signals.
Combining analytical and numerical investigations, we characterize the condi-
tions under which an RNN with n neurons learns to integrate D(� n) scalar
signals of arbitrary duration. We show, for linear, ReLU and sigmoidal neu-
rons, that the internal state lives close to a D-dimensional manifold, whose
shape is related to the activation function. Each neuron therefore carries, to
various degrees, information about the value of all integrals. We discuss the
deep analogy between our results and the concept of mixed selectivity forged
by computational neuroscientists to interpret cortical recordings. Finally, we
introduce a general loss function, adaptable to any non-linearity in the neural
activation, that can be used to train networks without evaluating the network
on any input data.
This Chapter is a reproduction of the original manuscript of the article ”Low-
Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural
Networks” by Arnaud Fanthomme and Rémi Monasson, published in Neural
Computation and available here.

103

https://doi.org/10.1162/neco_a_01366

104 Low-Dimensional manifolds in RNNs

7.1 Introduction

Recurrent neural networks (RNNs) have emerged over the past years as a versatile and
powerful architecture for supervised learning of complex tasks from examples, involving
in particular dynamical processing of temporal signals (Chung et al., 2014). Applications
of RNNs or of their variants designed to capture very long-term dependencies in input
sequences through gating mechanisms, such as GRU or LSTM, are numerous and range
from state-of-the-art speech recognition networks (Amodei et al., 2016) to protein sequence
analysis (Almagro Armenteros et al., 2017).

How these tasks are actually learned and performed has been extensively studied in
the Reservoir Computing setup where the recurrent part of the dynamics is fixed, see
(Tanaka et al., 2019) for a review, while the general case of RNNs remains mostly an
open question. Understanding of those networks would bring valuable advantages to both
neuroscience and machine learning, as suggested in (Barak, 2017; Richards et al., 2019).
Some results have been recently obtained, when the representations and the dynamics are
low dimensional (Sussillo and Barak, 2012; Mastrogiuseppe and Ostojic, 2018; Schuessler
et al., 2020a,b), a prominent feature of the Neural Integrators that are the focus of the
present study. Neural integrators, whose function is to perform integration of time-series,
have been studied for several decades in neuroscience, both experimentally (Robinson,
1989, 1968; Wong and Wang, 2006; Aksay et al., 2007) and theoretically (Elman, 1990,
1991; Seung, 1996; Lee et al., 1997), and more recently, numerically, in the context of
machine learning (Song et al., 2016).

The goal of our study is three-fold. First, we want to study how exactly the task
of integration is learned from examples by RNNs. We derive rigorous results for linear
RNNs and approximate ones for non-linear RNNs, which can be compared to numerical
simulations. This approach is similar to the one adopted by (Saxe et al., 2014) for the case
of deep networks, and more recently by (Schuessler et al., 2020b) in the case of recurrent
networks. Second, we seek to understand the nature of the internal representations built
during learning, an issue of general interest in neural network-based learning (Li et al.,
2017; Zhang and Zhu, 2018; Montavon et al., 2018; Olah et al., 2018). It is, in particular,
tempting to compare representations emerging in artificial neural networks to their nat-
ural counterparts in computational neuroscience. Third, we do not limit ourselves to a
single integration, but consider the issue of learning multiple integrators within a unique
network. While we do not expect an increase in performance for each individual task,
as was observed in the case of Natural Language Processing by (Luong et al., 2016), we
are interested in finding representations adequate for parallel computations within a sin-
gle network, allowing for considerations on the topic of ”mixed selectivity” developed in
computational neuroscience and studied by (Rigotti et al., 2013). The issue of network
capacity, the maximum number of tasks that can be performed in parallel, has been pre-
viously studied numerically by (Collins et al., 2017), but remains out of the scope of this
study, which will focus on a number D of integrals small compared to the network size.

Our paper is organized as follows. We define the RNNs we consider in this work, the
integration task and the training procedure in Section 7.2. The case of linear activation
function is studied in detail in Section 7.3. RNNs with non-linear activation functions are
studied in Section 7.4 in the case of a single channel (D = 1), while our results for the
general situation of multiple channels (D ≥ 2) are presented in Section 7.5. Conclusions
and perspectives can be found in Section 7.6. The paper is complemented by a series of
Appendices containing details about the calculations, simulations and further figures. The
source code for the simulations can be found on GitHub.

https://github.com/AFanthomme/ManifoldsSupportRNI

Low-Dimensional manifolds in RNNs 105

Figure 7.1: A: Multiplexed Recurrent Neural Network, with D input channels (left) and
the same number of output channels (right). The internal state of the RNN, ht, is a
vector of dimension n. The inputs are encoded by the vectors ec and decoded from the
internal state through the decoder weights dc. B: Illustration of the decaying integral
mapping that we want networks to approximate, on a sparse input sequence. At each
time-step t, if the input time-series xt is non-zero, the integral is increased by s xt; then,
it is multiplied by γ < 1, which produces the exponential decay in absence of inputs. In
practice, sequences used for experiments were Gaussian noise, and these sparse sequences
are used only for visualization.

7.2 Definitions and model

Description of the network. We consider a single-layer RNN of size n, without any
gating mechanism; while such refinements are found to improve performance, as reviewed
by (Lipton et al., 2015), we omit them as they are not necessary for such a simple task.
The computation diagram presented in Figure 7.1A can be summed up as follows: at
time t, the scalar inputs along all channels c = 1..D, denoted xc,t, are multiplied by their
respective encoder vectors ec; these vectors are summed to the previous internal state
ht−1

1, and multiplied by the weight matrix W before a componentwise activation f is
applied to get the new internal state ht. The update equation for h is therefore

ht = f (νt) , (7.1)

where the current2 νt is defined through

νt = W ·
[
ht−1 +

D∑
c=1

xc,t ec

]
. (7.2)

The output units are linear: their values yc,t are simply obtained by taking the scalar
product of ht and the decoder vectors dc,

yc,t = dc · ht . (7.3)

Most of this study will be focused on two different activation functions f : the ”lin-
ear” activation, which is simply the identity, and the ReLU non-linearity, which takes
component-wise maximum of a vector and zero. Linear activation allows for exact results
to be derived on both the learning dynamics and the structure of solutions, while the choice

1We initialize the internal state before any input to h−1 = 0.
2This name is chosen in analogy with computational neuroscience, where Wij is a synaptic weight from

neuron j to neuron i, and the image of the activity vector, νi =
∑

j
Wijhj , represents the total current

from the recurrent population coming onto neuron i.

106 Low-Dimensional manifolds in RNNs

of ReLU will serve as an example of non-linear activation that can be used to create per-
fectly generalizing integrators (at least in the D = 1 case), and show that the conclusions
of the linear network study remain relevant. Finally, we propose a generic procedure to
train an RNN with arbitrary non-linearity f to perform multiplexed integrations, which
we illustrate with success in the case of sigmoidal activation.

Description of the task. The networks will be trained to map D input time-series
(xc,t)t∈N to D output ones (yc,t)t∈N: for all channels c = 1, ..., D, the c-th output should
match the γc-discounted sum of the c-th channel inputs, times the scale factor sc:

yc,t = sc

t∑
k=0

γk+1
c xc,t−k , (7.4)

see Figure 7.1B. The values of the decay constants γc are chosen in [0, 1] to restrict memory
to recent events and avoid instabilities3.

We quantify the performance of the network through the mean square error between the
actual and target outputs, across the D channels, computed on training input sequences
of length (duration) T :

L =
〈

D∑
c=1

T−1∑
t=0

(
yc,t − yc,t

)2〉
X

. (7.5)

Description of the learning procedure. Except when otherwise specified, the en-
coder e and decoder d will be considered as randomly fixed at network initialization, and
forced to be of unit norm. The reason for this hypothesis is two-fold. First, our focus of
interest is how the network of connections between neurons evolves during training and
the nature of the solutions and representations obtained. The simplified setup allows for
deeper mathematical analysis of the dynamics of the W than the general case, where
all parameters of the network evolve simultaneously during training. Second, while the
speed of convergence is positively impacted by relaxing the constraint of fixing the de-
coder, numerical experiments indicate that the nature of the W network is qualitatively
unchanged if e and d are also trained, in particular when it comes to the way the integrals
are represented.

For theoretical analysis, we train the recurrent weights W using Gradient Descent
(GD) updates at learning rate η:

W
(τ+1)
ij = W

(τ)
ij − η

∂L
∂Wij

(W (τ)) , (7.6)

where τ is the discrete learning time. We also performed experiments using the non-linear
Adam optimizer (Kingma and Ba, 2017) to ensure robustness of our results with respect
to the specific choice of optimization procedure. Numerical implementations were per-
formed in Python, making extensive use of the SciPy (Virtanen et al., 2020) and PyTorch
(Paszke et al., 2019) packages respectively for scientific computing and implementation of
Automatic Differentiation and Gradient Descent optimization.

3If γ is chosen too close to 1, the network might during training have an effective ”decay” larger than
1; in that case, the values of the outputs and the associated gradients become large (in particular when
training on long input sequences), which can then be overcompensated and make the training divergent.

Low-Dimensional manifolds in RNNs 107

7.3 Case of linear activation

Throughout this section, we assume that the activation function f is linear. We start with
the simplest case of a single channel (D = 1), and will omit the subscript c = 1 below for
simplicity; the case of multiple channels D ≥ 2 will be studied in Section 7.3.4.

As the network dynamics ht → ht+1 is linear, the loss (7.5) can be analytically averaged
over the input data distribution. The computation is presented in Appendix A.1, and
yields:

L(W) =
T∑

q,p=1
χqp(µq − sγq)(µp − sγp), (7.7)

where
µq = d†W qe (7.8)

will be hereafter referred to as the q-th moment of W , and χ is a positive-definite matrix,
related to the covariance matrix of the inputs xt.

The average loss implicitly depends on γ, T , s, e, d and input correlations χ, which
do not evolve during training and are therefore omitted from the argument. Since χ is
positive-definite, the global minimum of the loss is reached when the moments of W fulfill

µq = sγq , (7.9)

for all q = 1, . . . , T . The same conditions are obtained for uncorrelated inputs, so we will
restrict to this case for numerical investigations in the following.

The gradient of the averaged loss with respect to the weight matrixW can be computed
(see Appendix A.2), with the result

∂L
∂Wij

= 2
T∑

q,p=1
χqp (µq−sγq)

p−1∑
m=0

n∑
α=1

dα(Wm)αi
n∑
β=1

(W p−1−m)jβ eβ . (7.10)

We emphasize that, while the network update dynamics is linear, the training dynamics
over W defined by (7.6) and (7.10) is highly non-linear.

7.3.1 Conditions for generalizing integrators

Conditions (7.9) over the moments µq, with q = 1, ..., T , ensure that the RNN will perfectly
integrate input sequences of length up to the epoch duration T . We call generalizing
integrator (GI) an RNN such that these conditions are satisfied for all integer-valued
q, ensuring perfect integration of input sequences of arbitrary length.

We will now derive a set of sufficient and necessary conditions for a diagonalizable
matrix W to be a GI4. Let us assume W is diagonalized as PΛP−1, where the spectral
matrix Λ = diag(λ) is diagonal and P is invertible, of inverse P−1. The moments of W
can be expressed from the eigenvalues as follows:

µq = d†PΛqP−1e =
n∑
i=1

giλ
q
i with gi = (P †d)i(P−1e)i . (7.11)

4As the set of diagonalizable matrices is dense in the space of matrices, any non-diagonalizable matrix
W can be made diagonalizable through the addition of an infinitesimal matrix; the moments of the resulting
matrix are arbitrarily close to the ones of W , which makes our results for diagonalizable matrices directly
applicable to W , see Section 7.3.3.

108 Low-Dimensional manifolds in RNNs

Obviously, a null eigenvalue does not contribute to the above sum, hence the conditions
that we obtain in the following will only apply to non-zero eigenvalues. Our condition for
null loss is that all the aforementioned moments µq are equal to s γq.

The above set of conditions can be rewritten as follows. For any real-valued polynomial
Q(z) of degree less than, or equal to T in z, such that Q(0) = 0, we have∑

i

giQ(λi) = sQ(γ) . (7.12)

We can evaluate the previous equality for well-chosen polynomials. Let us consider
one eigenvalue, say, λκ assumed to be different from γ, and the Lagrange Polynomial Q(z)
equal to one for z = λκ and to 0 for z = 0, z = λi 6= λκ and z = γ. Such a polynomial
exists as soon as T ≥ n+ 1 in the general case where all eigenvalues are distinct from each
other, 0, γ, and as soon as T ≥ r + 1 if n − r eigenvalues are equal e.g. to 0. Equality
(7.12) gives: ∑

i

gi δλi,λκ = 0 , (7.13)

where δ·,· denotes the Kronecker delta. Therefore, any eigenvalue different from γ must
satisfy an exact cancellation condition for the associated g coefficients, ensuring that it
does not contribute to the network output. Similarly, a condition for the γ eigenvalue can
be written, to ensure that an input of magnitude 1 entails a change of magnitude s in the
output.

The necessary and sufficient conditions for a diagonalizable matrix W to be a global
minimum of the loss defined with T ≥ n+ 1 therefore read{ ∑

i gi δλi,γ = s

∀κ s.t. λκ /∈ {γ, 0},
∑
i gi δλi,λκ = 0

(7.14)

These conditions are in turn enough to guarantee that W is a global minimum of the
loss for any value of T , hence the Generalizing Integrators and the minima of the losses
defined with T ≥ n+ 1 are equal.

Clearly, any global minimum of the averaged loss L experimentally obtained when
using training sequences of length T ≥ n+ 1 is a GI. Networks trained with much shorter
epochs can also be GIs if the rank of W remains small enough throughout the training
dynamics. More precisely, if we assume we have found a minimum of the loss of rank
r ≤ n, it will be a GI as soon as T ≥ r + 1. An important illustration is provided by the
null initialization of the weights (W (τ=0) = 0), which ensures that W remains of rank
r = 2 at all times τ , see (7.10) and next subsection.

7.3.2 Special case of null-weight initialization

We now assume that the weight matrix W is initially set to zero, and characterize all the
GIs accessible through GD, as well as the local convergence to those solutions. A study
of the full training dynamics for two special cases (T = 1 and e = d) can be found in
Appendix A.3.

Low-rank parametrization. From the expression of the gradients (7.10) and the lin-
earity of the weight updates (7.6), it is clear that starting from W = 0, the weight ma-
trix will remain at all times τ in the subspace generated by the four rank-1 matrices
dd†,de†, ed†, ee†. We introduce an orthonormal basis for the v1 ≡ e,v2 ≡ d space,

va =
2∑
b=1

(Σ−1/2)ab vb, with Σab = v†avb , (7.15)

Low-Dimensional manifolds in RNNs 109

and the corresponding parametrization of the subspace spanned by W :

W (τ) =
2∑

a,b=1
ω

(τ)
ab va vb

† , (7.16)

where ω(τ) is a 2× 2-matrix.

Generalizing integrators. Conditions (7.14) for W to be a GI can be turned into
conditions over ω, see Appendix A.4. Let us assume that ω is diagonalized through
ω = PωΛωP

−1
ω with Λω = diag(λ1, λ2), and define

gi = (P †ω
√

Σ)i,1(P−1
ω

√
Σ)i,2.

The conditions for ω to define a GI through (7.16) are:

• λi = γ for i = 1 or 2,

• ∑
i δγ,λigi = s,

• gi = 0 if λi /∈ {0, γ}.

Taking into account the constraint g1 + g2 = Σ1,2 = d†e, we find that the set of GIs is
spanned by the following three manifolds in the 4-dimensional space of ω matrices, see
Appendix A.5 for details:

• The first manifold is of dimension 2, and contains rank-1 integrators W at all scales.
These weight matrices have one eigenvalue equal to γ, and the other to 0 so that
one of the g coefficients remains unconstrained:

ω = γ

β − α

(
β −1
αβ −α

)
, (7.17)

where (α, β) ∈ R2. Fixing the scale s to any value different from d†e introduces
exactly one relation between α and β, making the set of rank-1 perfect integrators
at scale s a 1–dimensional manifold, see Appendix A.5.

• The other two manifolds contain rank-2 integrators, operating at the scale s∗ = d†e
only. For generic independent encoder and decoder vectors, the scale s∗ = d†e is
of the order of n−1/2 and vanishes in the large size limit. We will discard these
solutions, and focus on rank-1 solutions given by (7.17) at finite scale s (6= d†e).

The structure of the GI manifolds is sketched in Figure 7.2.
In Appendix A.6, we compute the gradient and Hessian of the loss in the subspace

of weight matrices reachable from null initialization. In the case of fixed encoder and
decoder, the convergence towards a GI is generically exponentially fast; the corresponding
decay time can be minimized by appropriately choosing the value s of the scale s, see
Appendix A.7. For some specific choices of the scale s, convergence can be much slower
and exhibit an algebraic behavior, see Appendix A.8.

110 Low-Dimensional manifolds in RNNs

Figure 7.2: Illustration of the three GI manifolds in the space of 2 × 2–matrices with
one eigenvalue equal to γ, the second to λ, and the remaining two degrees of freedom
being labeled α and β. In one manifold (red), the second eigenvalue is zero, so that all of
those matrices are GIs with decay γ, and any scale s. The other two manifolds contain
integrators at the particular scale s∗ = d†e only, and are of rank 2. The values of α0 and
β0 are computed in Appendix A.5, where details on the parametrization used here can
also be found.

7.3.3 Initialization with full rank connection matrices

The results above assumed that training started from a null weight matrix, in order to
constrain the dynamics of W to a very low-dimensional space. Training RNNs on very
short epochs (T = 3) was then sufficient to obtain rank-1 GIs capable of integrating
arbitrary long input sequences.

In practice, we observe that initializing the network with a matrix W of small spectral
norm (instead of being strictly equal to zero) does not change the fact that only one of the
eigenvalues of W is significantly altered during training, and a GI is obtained as soon as
T ≥ 3. The use of a non-linear optimization scheme such as Adam rather than GD does
not change this observation.

To gain insights about this empirical result, we consider a perturbation ε = ∑
i εiuivi,

with singular values bounded by 1, around a generalizing integrator of rank 1, W = σlr†.
Under the assumption that the u and v vectors are drawn randomly on the unit sphere
of dimension n, their dot products with e, d and each other are realizations of a centered
Gaussian distribution of variance 1/n. We can then consider the image of e by our
perturbed matrix:

(W + ε)e = (σr†e)l+
n∑
i=1

εi(v†ie)ui. (7.18)

The second term, originating from the perturbation, is a vector whose components
are sums of n terms of unfixed signs and magnitudes 1/n, and is, hence, of the order of
1/
√
n. Accordingly, the dot product of this perturbation vector with d, which is exactly

the perturbation to the first moment µ1, will be of the order of 1/
√
n too. Under similar

hypotheses of independence of Gaussian vectors, all moments µq will be perturbed by
terms of that same order.

Since unstructured eigenvectors do not contribute to the network output at first order,
the gradients with respect to those parameters will also be subleading and this perturbation
will remain mostly unchanged during training, in agreement with numerical simulations.

7.3.4 Case of multiple channels

We have seen that GD is generally able to train a linear RNN exponentially fast towards
a rank–1 single-channel GI with associated eigenvalue γ and singular vectors tuned to
ensure the correct scale of integration. The state of the corresponding network is easily
interpretable: it is, at all times, proportional to the output integral. Due to the linearity of

Low-Dimensional manifolds in RNNs 111

the network, this result can be straightforwardly extended to the case of D > 1 integration
channels, as we show below.

Interpretation of rank–1 solutions in the single channel case. We write the rank–
1 GI as W = σlr†, where l and r are normalized to 1, and σ is positive. Since W must
have γ as its eigenvalue, we need σr†l = γ. Additionally, to ensure that the first non-zero
input gives the correct output, we require that σ(d†l)(r†e) = sγ. It is easy to check that
these conditions are sufficient to ensure that the state of the network is

ht = a yt l with a = 1
d†l

, (7.19)

at all times t, which in turn ensures perfect integration (yt = yt). In other words, rank–1
GIs rely on a linear, one-dimensional representation of the target integral: the internal
state is, at all times, proportional to yt.

Representation of integrals with multiple channels. The above discussion of the
single-channel case generalizes to multiple channels. Through training a weight matrix
W of rank D is constructed, which has (γ1, ..., γD) as its eigenvalues, and singular vectors
compatible with the (fixed) encoder and decoder weight vectors. The GI conditions are
as follows: 

∀c ∈ J1, DK, σcr
†
clc = γc

∀c ∈ J1, DK, σc (d†clc) (r†cec) = sc γc

∀(c, c′) ∈ J1, DK2, c 6= c′, r†cec′ = 0
∀(c, c′) ∈ J1, DK2, c 6= c′, d†clc′ = 0
∀(c, c′) ∈ J1, DK2, c 6= c′, r†clc′ = 0

(7.20)

The first two conditions are exactly the same as in the single channel case, while the
last three ensure that the modes of the weight matrix coding for the different integration
channels c do not interfere, and can independently update the values of their outputs to
match the targets yc,t.

Assuming these conditions are satisfied, the network state is at time t equal to

ht =
D∑
c=1

ac yc,t lc , (7.21)

where the ac’s are structural coefficients, which generalizes expression (7.19) to the case
D ≥ 2. The state of any neuron i is therefore a linear combination of the D integrals
across the multiple channels. Multiplexing is here possible as long as D ≤ n, and encoders
and decoders each form free families of Rn.

7.4 Non-linear activation: case of a single channel

We now turn to the case of non-linear activation. The computation of the averaged loss
is not analytically feasible any longer. However, by investigating RNNs trained with
Gradient Descent on the mean square error (7.5) computed on batches of inputs, hereafter
referred to as batch–SGD, we have identified structural and dynamical properties, from
which sufficient conditions for generalization can be constructed.

112 Low-Dimensional manifolds in RNNs

Figure 7.3: Internal encoding of the integral yt by a single-channel ReLU network using
two populations. A: Experimentally observed distributions of the components of L±,
determined by fitting the activity of each neuron with (7.22). Results are aggregated
across 10 realizations of batch–SGD training n = 1000, s = 1. B: Illustration of the
activity shift from the + to the − population at arrival of an input that changes the sign
of the target. Mutual inhibition between the two sub-networks guarantees only one can
be active at a given time, and an external input is required to perform the shift.

7.4.1 Empirical study of neural representations in a ReLU network

We start by considering the case of the ReLU activation, where f = b·c+ = max(·, 0)
is a non-linear component-wise operator. The simple encoding (7.19) adopted by linear-
activation networks relied on the fact that the activity of each neuron could change sign
with yt. This is not possible with ReLU activation anymore since activities are forced to
remain non-negative, and a novel encoding is obtained after training of the RNNs that we
expose below.

Behavior of neuron activities. Based on numerical simulations reported in Fig-
ure 7.3A, we argue that the population activity in ReLU networks depends on two vectors,
referred to as L+ and L−, with non-negative components and dot products with d equal to,
respectively, +1 and −1. More precisely, these vectors determine how the neural activities
vary with the integral yt, depending on its sign:

ht = bytc+L+ + b−ytc+L− . (7.22)

Hence, in the space of possible internal states Rn+, the state h of the RNN lies in the
union of the two half lines along L+ and L−, a 1-dimensional piecewise linear manifold
whose geometry is imposed by the non-linear activation b·c+.

The n components of L+,L− define a priori four sub–populations: if (L+)i > 0 and
(L−)i > 0 neuron i is active at all times t (”shared” population); if (L+)i > 0 and (L−)i = 0
(respectively, (L+)i = 0 and (L−)i > 0), the neuron is only active when the integral is
positive (resp. negative), defining the ”+” (resp. ”-”) population; if (L+)i = (L−)i = 0 ,
the neuron is never active and belongs to the ”null” population. In numerical experiments,
the shared and null populations account for a small fraction of the neurons (around 5%,
see Figure 7.3A) when training is performed using batch–SGD; in addition, shared neurons
never have strong activities and their contributions to the output integral seem irrelevant.
We introduce in equation (7.31) a new loss function, which allows for training of perfect
integrators that do not exhibit any shared or null neurons.

Low-Dimensional manifolds in RNNs 113

Figure 7.4: Behavior of currents in a ReLU network trained using the batch–SGD loss,
s = 2, γ = 0.995. A: Parametric plot of the currents (νt)i incoming on two representative
neurons i (red, blue) vs. target integral yt across time t. We observe a linear relation, with
a slope that varies both in sign and magnitude from neuron to neuron. B: Normalized
dot product between the vector of currents ν and the image of the encoder We vs. value
of the integral, illustrating eqns. (7.23) and (7.26).

Behavior of neuron currents. Numerical experiments furthermore indicate that the
dependence of the current νt (7.2) on the integral yt is simpler than the one shown by the
activity ht. We observe that the current vector is proportional to the integral,

νt = ytL, (7.23)

where the components Li of the vector L vary from neuron to neuron, both in amplitude
and in sign, see Figure 7.4A.

The representation of the integral based on two non-overlapping populations reported
above may be seen as a straightforward consequence of the linear encoding at the level of
pre-activation currents expressed by (7.23):

ht = bνtc+ = byt Lc+ = bytc+ bLc+ + b−ytc+ b−Lc+, (7.24)

from which we deduce that the population vectors L+ and L− defined in (7.22) are equal
to, respectively, bLc+ and b−Lc+. In other words, neurons i encode positive or negative
values of the integral depending on the signs of the components Li.

Hence, while the neural state ht = f(νt) of a ReLU RNN is not proportional to the
integral value, see (7.22), as was the case for linear RNNs in Section 7.3.3, proportionality
is recovered at the level of the pre-activation currents νt. We will see below that the
linearity of the currents with respect to the integrals extends to the case of multi-channel
integrators.

7.4.2 Theoretical analysis of the ReLU integrators

We now explain the origin of the linear relationship between current and integral values
(7.23), and how the vector L defining the current direction is related to the connection
matrix W , the encoder e, and the parameters s, γ.

Sufficient conditions for integration. Let us first consider the network at time t = 0,
with all activities set to zero (h0 = 0). As the first input x1 is read by the encoder, the
current vector at time t = 1 takes value

ν1 = W (0 + x1 e) = x1 We = ȳ1
sγ
We . (7.25)

114 Low-Dimensional manifolds in RNNs

Figure 7.5: Contributions to the currents in a ReLU integrator trained with batch–SGD.
Left: scatter plot of WL− vs. WL+. Right: WL+ vs. We. Colors refer to the neural
populations, see Figure 7.3A. For both panels, we show on the sides the histograms of
current components. Results were obtained with T = 10, γ = 0.995, s = 2, n = 1000.
Numerical findings confirm that WL+ = −WL− and We = sWL+.

The above equality agrees with the linear relationship (7.23) provided we have

L = 1
sγ
We . (7.26)

This identity is in excellent agreement with numerical findings, as shown in Figure 7.4B.
We now assume that the current linearly expresses the target integral ȳt at time t, and

look for sufficient conditions for relationship (7.23) to hold at time t + 1 after the new
input xt+1 is received by the network. The current at time t+ 1 reads

νt+1 = W (ht + xt+1 e) = W (bνtc+ + xt+1 e)
= W (bȳtLc+ + xt+1 e) = W (bȳtc+L+ + b−ȳtc+L−) + xt+1We

= bȳtc+WL+ + b−ȳtc+WL− + xt+1We ,

(7.27)

and should match
νt+1 = ȳt+1

sγ
We =

(ȳt
s

+ xt+1
)
We (7.28)

according to (7.23) and (7.26). We deduce that WL+ and WL− have to be aligned along
We, see (7.26). Furthermore, based on the identity y = byc+ − b−yc+, we readily obtain
that

WL+ = −WL− = s−1We . (7.29)
These relations are in very good agreement with numerics, see Figure 7.5.

Proxy loss for integration by a network of ReLU units. Conditions (7.26) and
(7.29), as well as the relations between L+,L−,L ensure perfect generalization. They can
be summarized into the set of four equalities{

d†b±Wec+ = ±sγ
W b±Wec+ = ±γWe

(7.30)

linking the matrix of connections, the encoder and decoder vectors, as well as the scale
and decay parameters.

Low-Dimensional manifolds in RNNs 115

We now introduce a proxy loss for W , whose global minimum is achieved when con-
ditions (7.30) above are fulfilled,

Lproxy =
∑
z=±1

(d†bzWec+ − zsγ)2 +
∑
z=±1

|W bzWec+ − zγWe|2 . (7.31)

Experimentally, training on this proxy loss is extremely effective and as expected leads to
perfect integrators satisfying the relations between currents shown in Figure 7.5. Similarly
to the linear case, if the encoder and decoder are fixed during training, the convergence
time of GD is strongly dependent on s with a preferred scale around |e||d|, see study of
dynamics of learning with Lproxy in Appendix A.9,

While the batch-SGD loss is by definition based on actual computation of the net-
work output for sample input sequences, the proxy loss imposes strict conditions on the
dynamical behavior of the network that, in turn, ensure that the batch-SGD loss will be
zero. While there is no a priori reason to believe that all global minima of (7.5) are global
minima of (7.31), we empirically observed that the solutions W found by minimizing the
batch–SGD seemed to also be approximate minima of the proxy loss (see Figure 7.5 for
the ReLU case).

Properties of the connection matrix. Training integrators with either batch–SGD
or the proxy loss yields solutions with one dominant singular value, of the form

W ' σ l r†.

We report some properties of these solutions in Appendix A.10. In particular, the
singular value σ is, in the case of fixed encoder and decoder with unit norms, bounded
from below by 2 max(1, s), where s is the scale. In practice, except for scales close to 1, this
lower bound seems to be tight, i.e. σ = 2 max(1, s), see Appendix A.10, Figure A.5. We
interpret this saturation as a manifestation of the conjecture by (Arora et al., 2019) that
gradient descent implicitly favors solutions with small matrix norm, as rank–1 matrices
have a Frobenius norm equal to their singular value.

7.4.3 Case of generic non-linear activation.

We now turn to the generic case of non-linear activation function f , showing how the idea
of proxy loss developed in the ReLU case can be naturally extended to any f .

Generic proxy loss. We start by writing, for an arbitrary activation function f , the
dynamical equation for the current, rather than for the activity state,

νt+1 = W
(
f(νt) + xt+1e

)
. (7.32)

At the first time-step, since h−1 = 0 the current will be equal to ν0 = x0We =
y0/(sγ)We. The error will thus vanish if and only if, for all y in the range of values of
the target integral,

d†f

(
y

sγ
We

)
= y. (7.33)

These relations generalize the first two conditions in (7.30) for ReLU activation. Fur-
thermore, imposing that We is an ‘eigenvector’ of the non-linear operator W f(·) with
eigenvalue γ, i.e.

W · f
(
y

sγ
We

)
= y

s
We, (7.34)

116 Low-Dimensional manifolds in RNNs

for any y, will force the current to remain at any time aligned along We. A simple induc-
tive proof similar to (7.27) shows that in these idealized conditions the coordinate along
that line will evolve proportionally to the output, similarly to eqn. (7.23). Combined with
the condition derived for the first input, this is enough to guarantee perfectly generalizing
integration.

For arbitrary f , conditions (7.33) and (7.34) can generally not be exactly satisfied for
y varying over a continuous domain, i.e. for an infinite number of values of y. However,
these conditions can be fulfilled for a discrete and finite subset, which will provide sufficient
accuracy for good integration in practice, and we observe that the error on the integral of
a time series of T inputs to scale as ε ∼ n−1/2, irrespectively of T (as long as the integral
values remains below ymax).

Based on these considerations, we propose a proxy loss for integration of a single scalar
signal using an RNN with arbitrary non-linearity:

Lproxy,f,D=1(W) =
∫
z∈Z

[
d†f(zWe)− s γ z

]2
+ [W · f(zWe)− z γWe]2 . (7.35)

This integral can be estimated via Monte-Carlo, and the choice of integration domain
Z = [−zmax, zmax] will restrict the maximum value ymax = s γ zmax of y that can be
represented through our network. It is still possible to obtain generalization to infinite
number of integration steps, but the choice of γ has to be tuned so that the integral never
exceeds the range the network was trained for.

Application to sigmoidal activation. We tested this new loss with a sigmoidal acti-
vation function5

f : x→ 1
1 + e−50(x−0.1) .

Trained with a decay γ = 0.8, scale s = 1, Z = [−5, 5] 6, those networks converge
to a solution with a single dominant singular value and manage to integrate signals of
arbitrary length, despite their inability to generalize to larger values of the integral. We
observe that some neurons in the network exhibit a saturated behavior when the integral
is above (resp. below) a neuron-specific threshold θi, while other neurons never reach
that saturation. This results in a behavior where, during the monotonous evolution of
the integral starting from 0, an increasing number of neurons get activated to support the
integral, see Figure 7.6. While these networks have a very different phenomenology from
the ReLU ones in state space, the integration is still performed through linear currents. We
also confirmed that sigmoidal networks could be trained on the batch-SGD loss, yielding
integrators with a single dominant singular value; training with γ too close to 1 results
in poor performance, suggesting that the issues of generalization to large values of y is
not entirely due to the choice of proxy loss, but could hint at intrinsic limitations of the
network, related to the activation function.

The proxy loss (7.35) will be extended below to the general case D > 1. It should
be noted that all non-linear integrators need not be absolute minima of the proxy loss

5The choice of the slope and bias, here 50 and 0.1 respectively, is not critical to the results. We chose
the slope so that the transition from 0 to 1 of the sigmoid happens on a scale of 1/50, close to the expected
magnitude of the currents n−1/2 ' 1/30 for n = 1000. The bias was then chosen so that x = 0 is not in the
linear portion of the sigmoid, nor in a fully saturated portion to avoid the null weight-matrix W (0) = 0 to
be a fixed point of the learning dynamics.

6For γ = 0.8, s = 1, and inputs of magnitude bounded by 1, the integral evolves in [−4, 4] as ymax
is solution of ymax = γ(ymax + s), hence zmax = ymax/(sγ) = 5. In practice, to observe the regimes
|y| ' ymax more easily, we test the network using sequences alternating between bursts of ±1 inputs and
long periods with no external input, see Figure 7.9.

Low-Dimensional manifolds in RNNs 117

Figure 7.6: A: Value of the pre-activation current νi as a function of the integral for two
representative neurons. B: Activity-integral characteristic curve for the neurons of panel
A. One of them (blue, right scale) saturates for low enough values of yt, while the other
(orange, left scale) never saturates. C: Histogram of the mean activity of neurons for
different values of the integrals, aggregated across 8 realizations of the training on the
proxy loss (7.35). The range of integral values [−4, 4] was divided in 100 bins to select
the time-steps in the test sequences that corresponded to the values of y indicated in
the legend. As the value of the integral increases, more neurons get strongly activated,
and eventually saturate. The same evolution could be observed for integrals yt decreasing
below the zero value. Those networks were trained using the batch–SGD loss, γ = 0.8,
s = 1, n = 1000, and the same results are found using the proxy loss.

and follow the linear current representation. We only show here that it is one possible
representation scheme, which can be adapted to any non-linearity and could therefore
help bridge the gap between idealized ReLU activation and more complex examples, e.g.
inspired from real neurons.

7.5 Non-linear activation: case of multiple channels

We now consider the case of a multiplexed integrator with D input-output channels,
performing D integrals in parallel. In practice, numerical experiments were carried out
for D = 2, 3, 4.

Batch and proxy losses for multiple integrators. To train our RNN to carry out
multiple integrations, we followed two different strategies. First, we used the batch loss
defined in (7.5) from a set of input data, combined with a learning algorithm, e.g. SGD.

Second, drawing our inspiration from the detailed analysis of the single-channel case
studied in the previous section, we introduced an extension of the proxy loss (7.35) to an
arbitrary number D > 1 of input signals,

Lproxy,f,D(W) =
∫
z1∈Z1

· · ·
∫
zD∈ZD

{∑
c

[
d†cf

(∑
c

zcWec
)
− sc γc zc

]2

+
[
W · f

(∑
c

zcWec
)
−
∑
c

γc zcWec

]2 }
,

(7.36)

where the integral runs overs the D-dimensional range of values of the integrals, Z1×Z2×
...×ZD. As we shall see below, training with this loss allowed us to obtain networks with

118 Low-Dimensional manifolds in RNNs

Figure 7.7: Histograms of the singular values of W in a ReLU (A) and sigmoidal (B)
network across 4 realizations (one color each) of batch–SGD with D = 3, T = 10, n = 1000.
The ReLU networks were trained with γ1 = γ2 = .995, γ3 = .992, while the sigmoidal
ones were trained with γ1 = γ2 = .8, γ3 = .75. In both cases, a bulk of eigenvalues are
found close to 0, while exactly 3 of them become substantially larger. A fair amount of
variability can be observed in the exact value of those large eigenvalues, even using the
same values of the decays.

arbitrary non-linearity that represent the integral values linearly in the space of currents, as
we shall see below. Note that different activation functions, varying from neuron to neuron,
could be also considered, e.g. through the introduction of a distribution of thresholds for
the sigmoidal function.

Characterization of currents for ReLU networks. We start with the ReLU case. As
in the linear case, training ReLU networks with Stochastic Gradient Descent of the batch
loss yields networks that perform multiple integrations with excellent accuracy. Inspection
of the connection matrices W reveals that they have D dominant singular values, as
illustrated in Figure 7.7A for D = 3 channels. Such a spectral structure, consisting of a
large number of ”bulk” values and a few ”outliers” that perform a computational task, is
reminiscent of the setting investigated in (Schuessler et al., 2020a,b).

The D corresponding left eigenvectors lc of the W matrix define a D–dimensional
linear manifold for the current vector νt,

νt '
D∑
c=1

αc,t lc, (α1,t, .., αD,t) ∈ RD , (7.37)

while the activity state ht of the network lives on a non-linear version of this manifold,
shaped by the ReLU activation function:

ht = bνtc+ . (7.38)

Investigating the relation between the α coordinates in the current manifold and the
values of the different integrals y, we empirically find that they are related by a linear
mapping. More precisely, there exists a D × D–matrix R such that the coordinates αt
along the current-manifold can be written at all times as:

αc,t =
D∑
c′=1

Rc,c′ yc′,t . (7.39)

Low-Dimensional manifolds in RNNs 119

Figure 7.8: Value of the coordinates α1 and α2 in the current manifold as a function of the
value of the target outputs ȳ. Both coordinates depend linearly on the value of the two
integrals (y1, y2), so that the position in the current manifolds is a linear representation of
the integrals. The points were aggregated across 256 trajectories of length T test = 200, for
networks trained using batch–SGD on the mean square error (7.5) with training epochs
duration T train = 10, γ1 = 0.995, γ2 = 0.992.

In Figure 7.8, we illustrate this mapping in the D = 2 case. The methodology adopted is
the following. While the network is performing integration, at each time-step t, we infer the
αc,t coordinates from the values of the currents through (7.37). The panels of Figure 7.8
show the coordinate αc (left: c = 1; right: c = 2), see color code in the figure, as a function
of the two integrals y1, y2. Aggregating those results across many long trajectories, we find
that the value of the currents as a function of the targets is independent of the exact input
sequence and linearly depends on the value of the integrals. Hence, the linear dependence
of the current on the integrals, empirically found for D = 1 in (7.23), also holds in the
multi-channel case.

We emphasize that the presence of a bulk of small, but not negligible, singular values
of W (in addition to the D dominant ones) is not in contradiction with the fact that
the current lives in a D–dimensional manifold. The corresponding singular vectors may
be orthogonal to the encoders, and therefore never contribute to the internal state. To
illustrate this point, we provide a quantitative evaluation of the distance between the
currents νt and the D–dimensional vector space D spanned by the D largest singular
vectors lc on the right-hand side of eqn. (7.37) as follows. After collecting the currents ν
at all time-steps during 128 trajectories of duration T = 200, we compute the projection
ν
‖
t of those currents on D using least-squares, and the orthogonal projection, ν⊥t . The

ratio of their norms

r =

〈
|ν⊥t |

〉
t〈

|ν‖t |
〉
t

, (7.40)

where 〈·〉t denotes the average over time, estimates how much of the current lies out of the
D-dimensional manifold. Results for the ratios are reported in the first line of Table 7.1 for
networks obtained from the batch and the proxy losses, and are very small, r < 0.5. These
values are significantly smaller than what would be expected by chance in a null model in
which all directions in the n-dimensional space of currents would be equally significant,

rnull =
√
n

D
− 1 , (7.41)

120 Low-Dimensional manifolds in RNNs

Batch Proxy
×10−2 D = 1 D = 2 D = 1 D = 2 D = 3 D = 5
ReLU 1.3± 0.2 1.3± 0.1 1.63± 0.1 4.9± 0.5 3.3± 0.5 2.5± 0.1

Sigmoid 5.6± 1.5 33.4± 1.9 3.22± 0.2 11.3± 1.4 10.0± 0.4 5.9± 0.3

Table 7.1: Average ratios r of the projections of the current outside and inside the best
D–dimensional subspace, see eqn. (7.40), for different activation functions and values of
D, and n = 1000. Errors were estimated from 8 realizations of the training in the same
conditions, and all values reported in the table are 102 × r for readability.

Figure 7.9: Learning of D-dimensional integrators with sigmoidal networks. A: Compar-
ison between expected and measured output on structured test sequences, designed to
alternate between bursts of ±1 inputs and long periods with no external input to allow
for visual discrimination of the origin of errors between scale and decay. B: Activity of a
representative neuron in the (y1, y2) plane, measured on white-noise inputs. The decays
are equal to 0.8 and 0.75, n = 1000, and the sigmoidal networks were trained using the
proxy loss (7.36).

whose value is larger than 20 for n = 1000 and D = 1, 2.

Case of sigmoidal units. We have repeated the above analysis on networks with sig-
moidal units, trained both from the batch and proxy losses. Results for a representative
networks trained with the proxy loss to integrate D = 2 channels are shown in Figure 7.9A.
We observe an excellent match between the output integrals and their target values. Sim-
ilar results, albeit less accurate, are obtained with the batch loss.

As in the ReLU case, the connectivity matrix W is characterized by D large singular
values, and a bulk of smaller ones. This bulk is influenced by several factors, including the
initial condition over the matrix W and the choice of the learning algorithm. Despite the
presence of these small singular values, the D-dimensional nature of the current can be
assessed, see ratios r reported in Table 7.1. The values of r are much smaller than what
would be expected from a null model, and confirm the low-dimensionality of the current
manifold. Unsurprisingly, the values of the ratios for sigmoidal networks are 2 to 10 times
larger than for their ReLU counterparts (for the same size n), as expected from the higher
difficulty to solve conditions (7.33,7.34), see discussion in Section 7.4.3.

Low-Dimensional manifolds in RNNs 121

Figure 7.10: Mixed selectivity in bichannel integrators. A: Activity hi of a representative
neuron i in a ReLU network as a function of the two integrals, aggregated across 512
epochs of T test = 200 time-steps. This activity is of the form max(s†iy, 0), meaning that
the neuron will only ever be active in half of the (y1, y2) plane. B: Distribution of the
angle of the boundary plane between zero and non-zero activity across the n = 1000
neurons of a ReLU network. C: Distribution of the angle in the case of a Sigmoidal
network. Horizontal dotted lines represent the uniform distribution. Same parameters as
in Figure 7.9; histograms were aggregated across 16 repetitions of the training.

Nature of single neuron activity and mixed selectivity. The above findings allow
us to determine how the state hi of a neuron depends on the integrals ȳ = (ȳ1, ȳ2, ..., ȳD)
in a ReLU network:

hi = bs†i ȳc+ , with si,c =
∑
c′

Rc′,c lc′,i . (7.42)

From a geometrical point of view, as illustrated in Figure 7.10A in the D = 2 case, each
neuron activity hi is the image through the ReLU non-linearity of the dot product between
an associated direction si and the set of integrals ȳ. The same feature is encountered for
sigmoidal units, as shown in Figure 7.9B. We have then characterized the distribution of
the angular direction of si across the n neurons, and find that it is equally distributed on
[0, 2π] when the network activation is ReLU, while it shows clear peaks for multiples of
π/2 in the case of sigmoidal activation, see Figure 7.10B&C.

In the solutions empirically obtained through Gradient Descent, either on the batch
loss or the proxy loss and for any number D of channels, we found that the network
jointly encodes information about all integrals in the state of all neurons, a phenomenon
similar to the one of ”mixed selectivity” used to interpret cortical recordings in the field of
computational neuroscience (Rigotti et al., 2013), and closely related to the issue of class
selectivity in computer vision, see (Leavitt and Morcos, 2020a).

Mixed selectivity can be seen here as being deeply connected to the choice of the
input and output layers of the network: in our experiments, all encoders and decoders
have non-zero components on all neurons of the internal state. Therefore, during training,
the connectivity matrix will be optimized in such a way that each of those neurons will
extract and represent information about all integrals. If we instead constrain the encoder
and decoder for each channel to have the same support, spanning only n/D neurons and
non-overlapping with the support for any other channel, we find that the obtained solutions
do not exhibit mixed selectivity anymore: the connection matrices W are block-diagonal,
indicating that the network subdivided into D independent populations, each responsible
for the coding of one integral. Relaxing the support constraint on either the encoders

122 Low-Dimensional manifolds in RNNs

Figure 7.11: Visualization of the elements of the weight matrix W after training a ReLU
network to integrate D = 2 signals through batch–SGD in three different cases of initial-
ization: (left) the encoders and decoders are independent Gaussian vectors without any
restriction; (middle) the population is divided in two: the first half of the neurons have
non-zero encoder and decoder only on channel 1, and similarly the other half on channel
2; (right) starting from the non-overlapping case, we allow a small fraction of the neurons
(middle portion) to have non-zero components on all e,d vectors. We find that the use of
disjoint supports produces block-diagonal solutions where one population is in charge of
one integral and isolated from the others, thus exhibiting single selectivity.

or the decoders causes mixed specificity to reappear. Last of all, allowing the support
of the channels to overlap causes the corresponding neurons to exhibit mixed selectivity,
while the rest of the network remains simply selective. Those findings are illustrated in
Figure 7.11.

We interpret this difference in behavior by the fact that the heavy constraints imposed
between the encoders and decoders through their supports are enough to modify the energy
landscape in such a way that the entropically favored connectivity matrices do not exhibit
mixed selectivity anymore. None of these support constraints significantly impacts the
final performance, nor the learning dynamics, and only the topology of the connectivity
matrix is affected. Finally, we note that the choice of activation function also influences
the distribution of selectivity angle, a fact that can not easily be understood from entropic
considerations and could potentially be related to learning.

Learning with sign-constrained connections. So far, the only biological constraint
we have considered regarded the states of neurons, which were forced to remain positive
through the use of the ReLU activation function in order to represent firing rates. We now
introduce a constraint on the weight matrix W itself, corresponding to the observed divi-
sion between excitatory and inhibitory neurons known as Dale’s Law (Dayan and Abbott,
2001): at initialization, we fix a certain fraction of the columns of W , corresponding to
the outgoing connections from a subpopulation of neurons, to have only negative entries,
while the rest of the columns will have only positive entries. In order to maintain these
constraints satisfied during training, after each step of optimization, we fix to 0 all the
elements of W that changed sign.

At the end of the training the weight matrices exhibit one additional relevant singular
value compared to their unconstrained counterparts:

W ' σ0 l0 r
†
0 +

D∑
c=1

σc lc r
†
c .

The rank-1 contribution coming from this additional mode has the correct signs to

Low-Dimensional manifolds in RNNs 123

Figure 7.12: Distribution of the components of the left and right singular vectors for
the largest singular value (left) and the following D ones (right). These histograms were
obtained with 16 realizations of the batch–SGD training, using n = 1000, D = 2, and
25% of inhibitory neurons. While the signs of the components of the 2nd and 3rd singular
vectors appear random, they have a particular structure in the first singular vector : the
left singular vector is always positive, while the right is positive (resp. negative) if the
neuron is in the excitatory (resp. inhibitory) population; the corresponding rank-1 matrix
has columns of fixed signs corresponding to the ones of Dale’s constraints.

satisfy Dale’s constraint, as illustrated in Figure 7.12. Additionally, the left singular vector
l0 is almost orthogonal to all decoding vectors dc, suggesting that this mode is not used for
the computation of the integrals, but only as a way to satisfy the sign constraints over W .
It should be noted that our empirical result does not rule out the existence of networks
of rank D performing D multiplexed integrals while satisfying Dale’s Law. However, such
solutions, if they exist, are not obtained through a simple Gradient Descent procedure
from a zero or small W .

7.6 Conclusion and perspectives

Summary of results and open questions. We have studied in this work how an
RNN with n neurons learns to perform one or more integrations of temporal inputs; each
integration was characterized by the target values of the scale factor s and of the decay
coefficient γ (generally, slightly below 1).

In the case of an RNN with linear activation performing a single integral, we have
precisely characterized the length of the temporal input necessary for perfect generalization
(integration of any temporal signal), the optimal learning rate and the convergence time
of the training procedure when the weight matrix is initially set to zero (or is small enough
in norm). The coding of the integral is realized in a simple way: the activity vector of
the entire neural population varies along a 1-dimensional direction in the n-dimensional
space, with a proportionality factor equal to the integral.

In the case of ReLU activation, very accurate integration was obtained at the end of
the training too. While a full mathematical analysis seemed much harder than for linear
activation, we showed empirical evidence for the fact that the activity vector belongs to
a piecewise 1-dimensional manifold. Coding of the positive and negative values of the
integrals is done by two essentially non-overlapping populations of neurons, switching on
and off when the integral value crosses zero. Remarkably, the pre-activation current of
the ReLU units shows a simple behavior: it is proportional to the integral. We have
derived sufficient conditions over the weight matrix for such a coding to take place, and

124 Low-Dimensional manifolds in RNNs

characterized the nature (directions of left and right eigenvectors, amplitude of singular
value as a function of s, γ) of the corresponding rank-1 integrator.

In the case of a multiplexed network with D input/output channels, we have found that
the weight matrix is of rank D; this statement is exact for linear activation and approxi-
mately true for ReLU activation RNNs, whose weight matrix has D large singular values
compared to the n−D remaining ones. Consequently, the network activity is restricted to
a D–dimensional manifold in Rn, whose geometry is imposed by the activation function of
the neurons. For ReLU activation, as in the single-integral case, strong empirical evidence
suggests that the pre-activation currents are linear combinations of the D integrals and
span a D-dimensional linear subspace.

It is important to stress that the above results are not mere consequences of the
threshold-linear nature of ReLU units. We have repeated our analysis with saturating
units, obeying a sigmoidal activation function, with essentially the same results. Interest-
ingly, some units never saturate for all possible values of the integral(s), other do, and all
participate to produce the right outputs. To elucidate the reason for the D-dimensional
nature of the coding of integrals by the currents, we have introduced a proxy loss reflecting
sufficient conditions for such a coding. The networks trained from data (and the batch
loss) behave similarly to the networks minimizing this proxy loss, both from the point of
view of performance and representations.

From a purely machine-learning point of view, our work shows the versatility of RNNs
to achieve simultaneously several computational tasks. The variety of representations
supporting these computations could then be harnessed for transfer learning, see (Pan and
Yang, 2010) for a review, by using our trained RNN as a (possibly fixed) feature extractor.
One example of such a task is the one of context-dependent integration, studied in the
prefrontal cortex of monkeys by (Mante et al., 2013), and which we adapt to our setup
in Appendix A.11. The proxy loss we derived could also a priori be used as part of a
full-task loss, following a similar reasoning to (Haviv et al., 2019), where one term in the
loss is used to encourage internal dynamics that are known to be relevant for the task at
hand and facilitate training.

Empirical analysis shows that very accurate multi-integrators with non-trivial activa-
tion functions can be obtained through Gradient Descent, and the representation scheme
they adapt is linear in the space of currents. Three main limitations in this observation
have to be noted. First, we do not show that this is the only representation scheme pos-
sible, and different solutions could possibly be found from pure mathematical reasoning.
Second, rigorous analysis of the proxy loss remains necessary to understand in which con-
ditions these representations are achievable, and to which accuracy. Finally, our study has
focused on the case where the number of integrals D is small and the number of neurons n
is large, and the question of how the optimal computational capacity (maximal sustainable
value of D) precisely increases with n remains to be understood in the case of RNNs with
non-linear activation.

Nature of representations and connection with computational neuroscience.
While scalar integration using a single-layer recurrent network is far from state-of-the-art
Machine Learning, the abundance of studies in the field of neuroscience (often motivated by
the oculomotor system in fish) and the absence of a comprehensive theory of representation
in such networks make it a worthwhile case study. Our theoretical analysis provides new
evidence for the relevance of low-dimensional representations, and this result is robust to
changes in the training method, the initial conditions of the weight matrix, as well as the
choice of activation function. Our work therefore provides additional motivation for the

Low-Dimensional manifolds in RNNs 125

theoretical study of the properties of RNNs with low-rank coupling matrix initiated in
the contexts of statistical physics (Mastrogiuseppe and Ostojic, 2018) and computational
neuroscience, see (Barak, 2017) for a review.

As far as neuroscience is concerned, we believe that our result about the encoding of
multiple integrals by each neuron, expressed by (7.42), is of particular interest. There is,
indeed, a very striking analogy between our findings and the concept of mixed selectivity
used to interpret cortical recordings in the field of computational neuroscience (Rigotti
et al., 2013). For a long time, neuroscientists have focused on neurons whose activities
depended on a single sensory relevant variable, such as the orientation of a bar in the
visual cortex area V1 or the animal’s head direction in the subiculum (in our case, the
value of one particular integral yc). Such neurons are, obviously, easier to identify from
activity recordings. However, there is growing recognition that most cells display mixed
sensitivity, that is, have activities varying non-linearly with several relevant variables,
and that the relative degree of importance of each variable in determining the activity
may considerably vary from neuron to neuron (as we find in Figure 7.10). Such mixed
representations could be useful for decision-making based on multisensorial streams of
information, a possibility sometimes put forward to explain their relevance in neuroscience.
It is, from this point of view, remarkable that mixed representations spontaneously emerge
in our study, where the RNN lacks any explicit incentive to exploit them, simply because
they are much more likely than pure representations when the encoders and decoders
have no intrinsic structure (Figure 7.10). The computational advantages of such mixed
representations have been studied in (Leavitt and Morcos, 2020a,b), and suggest that
they could improve both generalization and robustness of the performed computations.
Other studies have focused on the emergence of disentangled representations, which have
been shown to be relevant in both Natural Language Processing (Radford et al., 2017)
and Computer Vision (Denton and Birodkar, 2017; Lee et al., 2018), suggesting that the
optimal type of representation might depend on the specific task it supports. Studying
the representations of computational tasks in artificial neural networks could therefore be
a valuable tool to understand their biological counterparts, an approach already proposed
in the domain of spatial navigation (Banino et al., 2018).

Chapter 8

Stable cognitive maps for Path
Integration from bimodal inputs

Abstract
Spatial navigation in biological agents relies on the interplay between allothetic
(visual, olfactory, auditory, . . .) and idiothetic (proprioception, linear and an-
gular velocity, . . .) signals. How to combine and exploit these two streams
of information, which vastly differ in terms of availability and reliability, is a
crucial issue. In the context of a new two–dimensional continuous environment
we developed, we propose a direct-inverse model of environment dynamics to
fuse image and action related signals, allowing reconstruction of the action
relating the two successive images, as well as prediction of the new image from
its current value and the action. The definition of those models naturally leads
to the proposal of a minimalistic recurrent architecture, called Resetting Path
Integrator (RPI), that can easily and reliably be trained to keep track of its
position relative to its starting point during a sequence of movements. RPI
updates its internal state using the (possibly noisy) self-motion signal, and
occasionally resets it when the image signal is present. Notably, the internal
state of this minimal model exhibits strong correlation with position in the
environment due to the direct-inverse models, is stable across long trajectories
through resetting, and allows for disambiguation of visually confusing positions
in the environment through integration of past movement, making it a prime
candidate for a cognitive map. Our architecture is compared to off-the-shelf
LSTM networks on identical tasks, and consistently shows better performance
while also offering more interpretable internal dynamics and higher-quality
representations.

127

128 Cognitive maps for Path Integration

8.1 Context

The Path Integration task. Path Integration (PI), a task in which an agent has to
integrate information about a sequence of movements to keep track of the distance between
its current and initial positions, has been extensively studied both in rodents (Etienne and
Jeffery, 2004; McNaughton et al., 2006), and in artificial systems (Arleo et al., 2000; Banino
et al., 2018; Zhao et al., 2020), and is thought by many to be an essential ingredient in
the elaboration of cognitive maps (Tolman, 1948; Redish and Touretzky, 1997), that is,
internal representations of the spatial structure of an environment capable of supporting
navigation tasks (Golledge, 2003). Path Integration is particularly relevant from the point
of view of representation learning as it relies on the interplay between qualitatively different
inputs, a subject known as multi-modal learning and recently reviewed by Summaira et al.
(2021). Those inputs can be broadly categorized into two groups. On the one hand,
idiothetic signals, such as velocity (Kropff et al., 2015), head direction (Taube et al.,
1990), memory of past trajectories (Cooper et al., 2001) or reafferent copies of motor
signals (Iacoboni et al., 2001), which are generated by the agent itself. On the other hand,
allothetic cues, e.g. provided by vision (Etienne et al., 1996), olfaction or ”whisking” in
mice (Deschênes et al., 2012) are intrinsically related to the external environment.

The simplest solution to implement PI would be an integrator network that takes as
inputs proprioception signals, or, equivalently, the agent’s time-dependent velocity. While
the theory of integrator networks and the representations that emerge have been well
studied (Seung, 1996; Fanthomme and Monasson, 2021), such a solution suffers from two
major limitations. First, the accumulation of errors across the trajectory, either coming
from imperfect sensor information or from imperfect integration, would make it unsuitable
to represent Path Integration on arbitrarily long trajectories. Second, even if integration
could be done without any error, representations constructed from proprioceptive informa-
tion only would depend on the sequence of relative movements, and would be inadequate
to the establishment of allocentric cognitive maps.

It is therefore crucial to understand how allothetic cues can be fused with self-motion
information to achieve accurate PI, and to provide appropriate support for representations
informative about the absolute position of the animal in its environment. This question has
already been addressed in several works. Uria et al. (2020) introduced multiple recurrent
neural networks (RNN) to build sophisticated 3D cognitive maps, with a variety of neurons
displaying sensory-correlate features analogous to the ones encountered in cortical and
hippocampal cell populations. Bicanski and Burgess (2018) proposed a model for the
interactions between multiple brain areas concurring to the production of high-level spatial
representations. In the field of robotics, Simultaneous Localization And Mapping systems
based on Deep Learning are an active topic of research and show promising performance
in key benchmarks of 3D navigation (Gupta et al., 2019; Zhang et al., 2020; Chaplot et al.,
2020).

The objective of the present work is to address the issue of PI in the simplest possible
setup, from the environment and network points of view, allowing for both good perfor-
mance and interpretability. While our goal is not to provide a state-of-the-art method,
e.g. directly applicable to robotics, we believe that such conceptual and (over)simplified
approaches are valuable to help answer open questions about PI, such as its supervised
or unsupervised nature, and its relevance to RL. In addition, the discrepancies between
the representations built by our network and its natural biological counterparts may shed
light on the additional functional and structural constraints acting on the latter.

Cognitive maps for Path Integration 129

The environment, associated sensors, and PI loss. In order to study PI in a sim-
ple and controlled setting, we developed a continuous 2–dimensional environment, which
follows the basis of the OpenAI Gym specification (Brockman et al., 2016) to allow other
researchers to reuse it in their experiments. This environment, detailed in Appendix B.1
and Figure 8.1 includes a certain number of colored markers, which will act as landmarks
to allow the agent to determine its absolute position. It also includes walls, which will
impede some movements and restrict visibility. Movement and perception in this environ-
ment corresponds to a top-down perspective, similar to what could be found in a Pac-Man
game, centered on the current position of the agent. This setup is limited compared to
real three-dimensional environments, such as the ones based on Minecraft (Johnson et al.,
2016) or Doom (Wydmuch et al., 2018). However, the resulting simulations are much
faster and easier to run, and our framework is convenient for the study of sensor fusion. In
addition, primates could be trained and monitored while performing a similar task, with
eyes fixated on a screen displaying the environment and moving via a joystick; this would
provide a direct comparison between artificial agents and biological ones and allow for a
better understanding of both (Yang and Wang, 2020).

The two sensors that we want our agent to combine are: 1) a noisy copy of the action
are ≡ atr+εu, where u is a unit Gaussian vector, and ε the level of noise. This reafferent
action represents the proprioceptive signal, in that it does not depend on the state of
the environment; 2) a retinal signal s, which represents the allocentric information, and
depends on the position of the agent (Figure 1, Right).

This retinal state mimics, to some degree, the activity of a biological retina such as
the one of our hypothetical monkey: an array1 of Difference of Gaussians retinal cells is
centered on the position of the agent; the activity of each cell is computed by summing
over the currently visible landmarks the activity they each elicit, which depends on their
distances to the center of the cell receptive field. More details on the retina, notably on
the optimal linear decoding of position from the activity can be found in Appendix B.2.
For this sensor, we consider two possible types of errors: (1) the retina receives no infor-
mation, similar to what would happen if the screen flickers or the animal closes its eyes;
(2) the retinal state is correct, but at some point along the visual processing pipeline the
obtained representation is ”shuffled” between neurons. This second type of errors is meant
to represent a form of temporal multiplexing (Akam and Kullmann, 2014) in the corre-
sponding population. Depending on time steps, cells participate in the visual processing
pipeline, or in other cognitive tasks; in the latter case, we would expect the population
activity to have similar distribution across neurons, but no correlation with the visual
representation, which is here achieved through reshuffling.

Based on these sensory signals, the agent has to estimate the displacements ∆rt from
its starting point at all times t, see output of the PI network in Figure 8.2. We quantify
the PI error along a trajectory of T steps through the loss

LPI =
T∑
t=1

〈(
∆rt −

t∑
k=1

atrk

)2〉
, (8.1)

where 〈·〉 represents the average over trajectories.

Network architectures. Since our PI task requires propagation of information from
one time step to the next, it is not suitable for Multi-Layer Perceptron types of networks,
which hold no memory of the previously received inputs, but can be handled with a

1In practice, we use three superimposed arrays, one for each RGB color channel, see Appendix B.2.

130 Cognitive maps for Path Integration

Figure 8.1: Presentation of our top-down perspective, two–dimensional continuous envi-
ronment. Left: At each time step, the agent moves between positions rt and rt+1 by
performing an action atrt . The image it perceives through its retina, now centered on
the new position rt+1, is modified accordingly, as the ”landmarks” now occupy different
positions with respect to the center of the retinal array. Right: Each neuron in the retinal
array has an associated receptive field of the ”Difference of Gaussians” type (for clarity,
we represent only two); depending on the position of the landmark with respect to its
receptive field, each neuron will be more or less activated, generating the ”retinal state”
that we will consider in the following as the ”observation” received from the environment

Figure 8.2: Shared structure of the models of Path Integration. The signals coming from
the allocentric and proprioceptive sensors (respectively, the retinal activity and the reaffer-
ent action) are encoded through a first set of Neural Networks, before being used as inputs
to a Recurrent Neural Network, whose output will be the predicted total displacement.

Recurrent Neural Network (RNN). In the following we will consider two broad categories
of RNNs, with variable architectures and training procedures: (1) off-the-shelf Long Short-
Term Memory modules (Hochreiter and Schmidhuber, 1997); (2) a minimal RNN based
on the idea of direct-inverse environment models defined in Section 2, which we call the
Resetting Path Integrator (RPI) and introduce in Section 8.3. Precise architectures are
presented in Appendix B.3, and a sketch of the common structure shared by all our
networks is presented in Figure 8.2.

A natural approach to multimodal PI consists in simply concatenating non-recurrent
encodings of action and visual inputs, and feeding the resulting joint representation to a
Recurrent Neural Network trained on the PI loss (1). However, as reported in the following,
these initial attempts yielded unsatisfying solutions that 1) failed to perform ”resetting”
(see Section 3) when an image was available, and 2) had internal states in the RNN that
were correlated only with displacement from the start of the trajectory, and not with
the absolute position in the environment. In order to foster the emergence of allocentric
representations of the environment, we now introduce the concept of direct–inverse models,
and their associated losses. Direct–inverse models impose strong relationships between
proprioceptive and visual signals, and as we shall see, lead to a natural approach to
performing PI using those two qualitatively distinct streams of information.

Cognitive maps for Path Integration 131

8.2 Direct-inverse environment models

Evidence for internal models of environments has been found both in mammals (Ito,
2018) and in humans (Wolpert et al., 1998), notably within the Purkinje Cells of the
Cerebellum, and have been hypothesized to be relevant for a wide range of motor (Wolpert
and Miall, 1996; Kawato, 1999) and reasoning (Merfeld et al., 1999) behaviors. They have
also been studied in the field of Reinforcement Learning, notably by Anderson et al. (2015),
who showed that prediction of environment dynamics is an efficient pretraining step, by
Pathak et al. (2017), who used the error in this model as a form of ”curiosity” signal to
encourage exploration, Corneil et al. (2018), who built a tabular model of an environment
for use in an explicitly model-based planning algorithm, and Ha and Schmidhuber (2018),
who used an internal model to allow the agent to learn from trajectories it ”dreams”
rather than from direct interaction with the environment, a formalism that could explain
the observed coordinated replays of place and grid cells in rats (Ólafsdóttir et al., 2016).

These models can be formalized using the vocabulary of Partially Observable Markov
Decision Processes (Sutton and Barto, 1998) used in Reinforcement Learning: the ”hidden”
state of the environment is the agent’s absolute position; the observation is the retinal
signal s (see Section 8.1 for details), the ”action” atrt at time t is the displacement in the
environment from time t to t+ 12. Models of the environment are defined on transition
tuples τ = (st,atrt , st+1)3 and aim at predicting one of its components from the other
two:

• the direct model D estimates the next state from the current one and the action:

D : (st,at) 7→ st+1. (8.2)

• the inverse model I estimates the action that relates two states:

I : (st, st+1) 7→ at, (8.3)

where 〈·〉 represents the average over transition tuples. In practice, this approach would
be highly inefficient and noise-sensitive in the case where the observed states are of high
dimension but contain little relevant information (e.g. images). It is often preferable to
construct these models on representations, obtained for example via a Convolutional
Network V; similarly, we introduce a Multi-Layer Perceptron (MLP) P that will map the
two-dimensional action at to a vector of the same dimension as the representation V(st);
the resulting computation graph is presented in Figure 8.3, and the detailed architecture
of the individual modules can be found in Appendix B.3.

To train these models we introduce two loss functions, computed from transition tuples:

LD(V,P,D) =
〈[
V(st+1)−D

(
V(st),P(at)

)]2〉
, (8.4)

LI(V, I) =
〈[
at − I

(
V(st+1),V(st)

)]2〉
. (8.5)

It should be noted that training the direct model D alone using the loss LD of eqn (8.4)
results in a trivial representation scheme in which all observations are mapped to the null

2The action could be considered a part of the observation, and the ”partial observability” comes from
the noise on these two as described in Section 8.1

3We do not include a reward signal as these experiments aim at mimicking ”free foraging”, in which
the agent randomly explores an environment without explicit incentive to do so. The influence of a reward
on representations will be the subject of a follow-up study.

132 Cognitive maps for Path Integration

Figure 8.3: Overview of the direct-inverse model architecture, in which operators acting
on internal representations aim at reproducing the dynamics of an environment. Dotted
arrows indicate that the module they come from is trained to output the quantity they
point towards (eqs. 8.4, 8.5).

vector 0. The inverse model I can be independently trained, but will generate irregular
representations. When training D and I all together, the direct loss acts as a regular-
ization, while the inverse loss breaks the symmetry required to converge to the trivial
direct model. This yields a spatially structured representation of states, on which the
direct operator acts non-trivially. More details on these representations can be found in
Appendix B.4.

8.3 Resetting Path Integrator from direct-inverse models

The direct and inverse models can straightforwardly be combined to create a RNN capable
of Path Integration, which we will call Resetting Path Integrator (RPI) in the following,
and which is summarized in Figure 8.4. The internal state H is initialized with two
concatenated copies of the initial observation 4:

H0 =
(
V(s0) ; V(s0)

)
. (8.6)

Then, at each time step, the internal state is updated using the direct model D

Ht+1 ≡
(
ht+1 ; V(s0)

)
=
(
D(ht,P(at)) ; V(s0)

)
, (8.7)

and the displacement ∆rt is computed by applying the inverse model I between the
updated and non-updated versions of the initial observation:

∆rt = I(ht,V(s0)). (8.8)

While this approach suffers a priori from the same accumulation of errors as the direct
movement integration, it also allows for an additional resetting mechanism, which was
hypothesized by Prescott (1996) as a sufficient mechanism for spatial navigation: at any
time-step, the agent could use the current visual observation to ”correct” its internal state
by disregarding the result of the direct model D. To allow for this, as well as partial
resetting5, we introduce a gating network G that maps the current visual observation

4The second copy, which will not be modified by the network dynamics, is used as explicit ”memory” of
the starting point and is essential to observe resetting (see Section 8.4 and Appendix B.5 for more details).

5Another possible approach could have been to enforce total resetting by using G as a probability to
choose the visual state, and to train this gate with a Reinforce-like algorithm. This setting seems less
biologically relevant than ours and we did not investigate it further.

Cognitive maps for Path Integration 133

Figure 8.4: Minimal model for a Resetting Path Integrator, based on a Direct-Inverse
model of environment dynamics. We assume that the agent is able to see correctly on the
first step of the trajectory, and to keep a stable memory of this initial observation; this
initial state is then updated by either using the direct model and the encoded reafferent
action, or the new visual representation (resetting); the choice between those two behaviors
is determined by the gating module G.

st
6 to a scalar between 0 (no resetting) and 1 (full resetting) that is used to interpolate

between the proposed new state and the representation of the current observation, yielding
the revised version of the update eqn (8.7):

Ht+1 =
(
G ◦ V(st)D(ht,P(at)) + [1− G ◦ V(st)]V(st+1) ; V(s0)

)
. (8.9)

Of course, if reliable images were always available, the optimal solution would corre-
spond to G = 0 at all times, that is, to resetting at every time step and never using the
direct model. In standard situations, where reliable visual information may be lacking,
the recurrent nature of the network will allow for correct performance in-between reset-
ting steps by keeping the internal state close to what the agent would observe from the
environment. We therefore expect the internal state of the network to strongly depend on
the current value of the position, but not on the trajectory used to get there7, hence being
a valid candidate for a cognitive map. More subtly, if the visual information received is
ambiguous, e.g. the local set of landmarks seen by the retina is the same as in another
part of the environment, see Section 8.4.2, we expect that the internal state should be able
to lift the ambiguity in the observations through integration of previous motion, bridging
the gap between regions of reliable visual information, a phenomenon which we actually
observe in experiments.

To combine the direct-inverse and PI losses, training is done on their weighted sum

Ltot(V,P,D, I,G) = αPILPI(V,P,D, I,G) + αDLD(V,P,D) + αILI(V, I) (8.10)

computed on random trajectories (see Appendix B.3 for more details on the parameters).

8.4 Results

In this section, we will analyze both the performance and the representations that emerge
in networks trained on Path Integration loss of eqn. (8.1), using the environment layout
represented in Figure 8.5, by looking at five different metrics. First, the average path

6Formally, this network could also take the current state Ht as input, but in practice this made the
training more unstable without any noticeable improvement in performance.

7In time steps where strong resetting occurs (G ∼ 0), this statement is true since the state is exactly
the representation of the current observation.

134 Cognitive maps for Path Integration

integration error, computed (1) on short trajectories (T = 5), during which no image is
presented to the network and (2) on long trajectories (T = 100) with images available every
five steps. We expect short and long-term errors to be of the same order of magnitude in
the case of a network that can perform resetting, while the latter will be much larger than
the former if no resetting behavior has been learned. Then, the average (over neurons) of
the coefficient of determinations R2

i for the linear regression of the absolute the activity
of individual neurons i participating to (3) the visual representation or (4) the internal
state from the absolute position, and (5) of the (internal-state) neuron i from the relative
displacement within the trajectory. These individual R2

i scores are found to be close to
1, either for the absolute or the relative positions, indicating whether neuron i is carrying
allocentric or egocentric representation. Notice that R2 ∼ 0 would not mean that the
neuron state would not convey any positional information, but that the latter would not
be accessible to a linear decoder.

We will compare these five metrics under different training conditions: a ”vanilla”
LSTM model and our RPI model, trained on the PI loss in eqn. (8.1) only; an ”improved”
LSTM model8 and our RPI model, trained end-to-end with the direct/inverse losses9.

8.4.1 Performance of path integrators and nature of representations

The results on the five metrics obtained in the snake-path environment of Figure 5 are
reported in Table 8.1; a similar experiment carried out in a more complicated layout is
presented in Appendix B.7. Four conclusions can be drawn from those results: (1) Both
recurrent structures (LSTM and RPI) are able to learn resetting behaviors, yielding similar
short and long-term errors, see Figures 8.5 and 8.6; (2) Training with Direct and Inverse
losses (as regularization) is necessary for the emergence of resetting; (3) Our RPI model
yields internal states with much higher positional tuning than LSTMs; (4) Representations
depend on absolute position in networks that perform resetting, and on relative position
along the trajectory in networks that do not (see Appendix B.8 for details).

Despite RPIs being less expressive than their LSTM counterparts, they do not seem
to achieve significantly worse performance (although more hyperparameter optimization
would be required to confirm this statement). In addition, RPIs converge to solutions that
are more easily interpretable, both in terms of tuning to the absolute position (illustrated
by the higher R2 scores), and of gating dynamics, see Figure 8.5. In Appendix B.9, we show
that the value of the gate in a trained RPI is directly related to the cognitive mechanism of
resetting, with the strength of resetting increasing when the training conditions incorporate
more noise in the proprioceptive signals, as well as when the visual representations are
more and more perturbed. In LSTMs, however, the reset and input gates are only weakly
correlated with resetting, and instead might contribute to the computation of the direct
model, see Appendix B.10 for details.

8.4.2 Disambiguation of ambiguous environment by RPI representa-
tions

Next, we considered a highly ambiguous situation where two rooms, located at the opposite
ends of the environment, are designed to provide strictly identical visual cues. In that case,

8Several variants of LSTM were considered with varying degrees of success, see Appendix B.5 for
details.

9Using these losses only for pretraining is possible, but leads to catastrophic forgetting, see Ap-
pendix B.6.

Cognitive maps for Path Integration 135

Resetting Path Integrator Long Short Term Memory
All losses No model losses Vanilla Improved

Error (short) 0.021 ± 0.017 0.033 ± 0.025 0.014 ± 0.011 0.027 ± 0.018
Error (long) 0.026 ± 0.022 0.43 ± 0.36 0.16 ± 0.15 0.056 ± 0.038
R2 (visual) 0.99 ± 0.048 0.11 ± 0.091 0.33 ± 0.18 0.96 ± 0.085

R2 (PI, absolute) 0.98 ± 0.053 0.33 ± 0.08 0.3 ± 0.097 0.57 ± 0.22
R2 (PI, relative) 0.35 ± 0.077 0.82 ± 0.11 0.77 ± 0.21 0.34 ± 0.14

Table 8.1: Comparison between our Resetting Path Integrator model and standard LSTM
in the SnakePath environment. When trained without the model losses, both architectures
fail to establish a proper resetting strategy, leading to higher error rates when tested on
long trajectories (T = 100) than on short ones (T = 5), and the internal state during PI is
a linear function of displacement along the trajectory, rather than of absolute position in
the environment as is the case when model losses are used. Errors bars were estimated from
20 realizations of the training which differ both by initialization of the network weights,
and drawn training trajectories.

Recovered positions

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

10−2

10−1

100

Value of the gating

0 10 20 30 40 50 60 70

10−2

10−1

Value of the error

Figure 8.5: Example of Path Integration trajectory Left: Crosses represent the true posi-
tion of the agent, while stars represent the one evaluated through Path Integration; black
circles are placed around the positions at which an image was provided; time along the
trajectory is represented by the color of the symbols. Top right: logarithm of the value of
the resetting gate as a function of time along the trajectory. Bottom right: error between
the true and reconstructed position. Vertical dashed lines indicate the time-steps at which
the image was available to the network and not corrupted. In this example, actions are not
drawn from the ”free foraging” random policy but chosen to force exploration of the entire
environment to better evaluate generalization at long distances, and reafferent actions are
exact, so that errors are due only to the network itself.

136 Cognitive maps for Path Integration

Figure 8.6: Path Integration errors achieved by our Resetting Path Integrator, with oc-
casionally available retinal images (orange) and without images (blue). A: the reafferent
action (proprioceptive signal) is exactly equal to the true one. B: a small amplitude Gaus-
sian noise ε is added to the reafferent action. Dashed vertical lines indicate steps at which
images were presented, kept equal across 512 trajectories for each of the 8 networks used
in the averaging. The qualitative agreement between those two plots, as well as results
from Appendix B.9, suggest that our procedure is robust to small reafference errors, which
have the same effect as direct model errors.

inverse models of the full environment give very large reconstruction errors when either of
the images are located within one of these rooms.10

However, training a Resetting Path Integrator on this environment in an end-to-end
fashion remains possible, as shown in Appendix B.11. The resulting networks exhibit
three important properties: 1) the internal states observed during Path Integration are
different in the two ambiguous rooms, as illustrated in Figure 8.7; 2) the PI error does
not show any noticeable increase when the agent enters one of the ambiguous rooms, see
Supplementary Figure B.11; 3) the resetting mechanism is not triggered for images coming
from the ambiguous rooms, as illustrated in Supplementary Figure B.12.

The last observation was to be expected: as visual representations are identical be-
tween the two rooms, performing a resetting would, on average, result in a loss of spatial
information with respect to keeping the state updated through the direct model. The first
and second observations are non-trivial. To correctly perform Path Integration in the am-
biguous rooms, our RPI network created new states, differing from those coming from the
visual cues, that aim at bridging the gaps between ”visually informative” regions. These
networks have therefore managed to construct a representation of absolute position in the
environment that does not rely only on local landmarks, but also draws from propriocep-
tive information and effectively fuses these sensors; intuitively, the Path Integrator is able
to differentiate between two visually identical rooms by remembering how it got there, a
highly desirable property for cognitive maps.

8.5 Conclusion

Results. In this study, we have demonstrated how a Recurrent Neural Network can be
used to construct a cognitive map of a continuous spatial environment, by fusing unreli-

10If we train and test only on images coming from adjacent rooms, an inverse model can perform well as
there is no couple of images that would correspond to two different reconstructed positions. The resulting
direct–inverse models are however not suitable for Path Integration without retraining, as their long-range
performance is severely limited by the ambiguous rooms.

Cognitive maps for Path Integration 137

Figure 8.7: Comparison between representative neurons in the visual module V (top row)
and the internal state h observed during Path Integration (bottom row) as a function of
position within our ambiguous environment. The ”dynamic” representation constructed
during PI lifts the ambiguity between the two opposite rooms of the middle row, which
contain the same landmark and are surrounded by identical rooms. Each column represents
the normalized activation of a single neuron.

able proprioceptive and intermittently available external inputs through the task of Path
Integration. We examined several ways of performing this fusion, using either off-the-shelf
LSTM networks, or our proposed Resetting Path Integrator model, based on direct-inverse
models of the environment dynamics, and including a single, scalar gating mechanism al-
lowing for resetting (clearing) the internal state of the network and replacing it with an
external signal. While all studied architectures and training procedures manage to per-
form Path Integration on short trajectories, only those regularized through the addition
of the direct-inverse losses learned to efficiently use resetting and achieved similar error
levels on very long and on short trajectories, thus overcoming error accumulation. The
idea of incorporating high-level knowledge about desirable aspects of the internal states
dynamics through regularization is close to the one of Haviv et al. (2019). We observe that
the internal neural states are qualitatively different between path-integrator networks that
learn resetting and those that do not: while the former are very close to linear functions
of the absolute position in the environment, the latter are closer to linear functions of
the displacement along the trajectory, see Table 1. This subtle difference is crucial, and
implies that only networks capable of resetting have learned a ”cognitive map” (Tolman,
1948; Spiers and Barry, 2015), which could a priori be transferred towards other spatially
structured tasks.

Future directions. Contrary to previous works on PI in artificial agents that used
highly spatially-structured inputs, relying on hypothesis about the existence of either
place cells (for example in Arleo et al. (2000); Banino et al. (2018)) or grid cells (Zhao
et al., 2020), our approach does not make such assumptions, and is, to our knowledge, the
first one to allow for study of the emergence of these representations during training. Our
simplistic environment setup did not result in emergence of either of those types of cells,
but instead on a ”top-down” map, which accurately depicts the Euclidean (by opposition
to topological) structure of the environment. In other words, positions that are close in the
layout (viewed from above) are close also in the map, though they could be far from each
other in terms of ”minimum number of steps”, e.g. when separated by a wall that would
need to be walked around. It is then a logical next step to move towards more realistic
environments, using real first-person view, and allowing for rotations and translations, e.g.

138 Cognitive maps for Path Integration

Malmo (Johnson et al., 2016) or VizDoom (Wydmuch et al., 2018), whose interplay might
be responsible for the particular coding scheme of place and grid cells (Harsh et al., 2020;
Benna and Fusi, 2020).

Another major direction of research concerns the role of Path Integration as an end-
goal: while it is assumed that such a task can be used to generate high-quality cognitive
maps (as confirmed by our study), there is no evidence that this task is ever performed ”in-
tentionally”. Preliminary experiments show that the recurrent representations constructed
by the networks can be used for Reinforcement Learning tasks, such as goal-oriented navi-
gation (moving towards a specific position in the environment), much more efficiently than
through direct training. This result was to be expected, since representation learning is
known to be a limiting factor in RL (Anderson et al., 2015). In a follow-up study, we will
focus on incorporating the Path Integration loss (as well as the direct and inverse losses)
as regularization terms in the policy learning algorithm; this approach is similar to the
Intrinsic Curiosity Module of Pathak et al. (2017), in which the model errors were used as
an exploration incentive, as well as zero-shot learning through environment models (Ha
and Schmidhuber, 2018). All those methods can a priori be used at the same time.

Combining those two directions of research, making both tasks and environments more
realistic, in particular close to what can be studied in live animals, will be key to under-
standing the intricacies of cognitive maps and of their relation to behavior.

Chapter 9

General conclusion and
perspectives

Cognitive manifolds As we mentioned in Chapter 3, one of the major questions in the
fields of Deep Learning and Neurobiology is to understand how and why certain represen-
tations emerge in the information processing systems of agents trying to perform specific
tasks. Such studies are motivated by the discovery within the brain of behaving animals
of specialized neurons, whose activity faithfully encodes the value of certain sensory or
cognitive variables (e.g. place cells (O’Keefe and Nadel, 1978), speed cells (Kropff et al.,
2015)). More recently, the development of new imaging (Helmchen and Denk, 2005) and
electrophysiology (Jun et al., 2017) techniques have allowed computational neuroscientists
to look at population-level coding, in which neurons represent information collectively
rather than individually (e.g. the head-direction population (Turner-Evans et al., 2017)).

Considering, for simplicity, that the activity of each of the n neurons in the population
is an unconstrained scalar, the set of all possible population states is a priori Rn. However,
in practice, the connectivity between neurons is such that not all of these states are prac-
tically observed; it is often observed that the states live close to a low-dimensional man-
ifold, of dimension d � n (Mastrogiuseppe and Ostojic (2018); Schuessler et al. (2020a);
Schuessler et al. (2020b); Feulner and Clopath (2021)). Such structures also emerge natu-
rally from ”black-box” training of Artificial Neural Networks (Sussillo and Barak (2012);
Fanthomme and Monasson (2021)), prompting the question of the relation between bi-
ological and artificial models. One qualitative argument for low-dimensionality is that
within a high-dimensional stimulus such as an image, only a few independent variables
are actually relevant for the task that the agent is trying to perform; for example, in
the case of Path Integration (see Figure 9.1), only the position within the planar map,
a 2–dimensional quantity, matters and most of the visual information can be discarded
without any consequence on the quality of the behavior

Studying representations in animals ensures that said representations are behaviorally
relevant; however, the experimental setups required to do such analysis are both expensive
and hard to operate, making direct study difficult. To avoid this pitfall, a widely adopted
and successful approach that emerged in the last few years consists in training Artificial
Neural Networks on biology-inspired tasks, leveraging the strength of black-box training
via Gradient Descent, and to study representations in those trained networks (see Yang and
Wang (2020) for a review). This approach allows infinite precision in the analysis of the
representations, but relies on the ability to train the networks and makes the assumption
that obtained representations are biologically relevant. Both of those hypotheses have to
be challenged through extensive comparison with experiments, but can at least serve as a

139

140 General conclusion and perspectives

Figure 9.1: Example of a low-dimensional representation, in which a high-dimensional
input (left, the image sensed when the agent is located at the position indicated by the
gray circle) is represented as a point in a low-dimensional ”cognitive” manifold of neuron
firing-rates (right, the cross in the blue 2D plane). Most importantly, this mapping is done
while preserving all information about the location of the agent within the environment,
which is the only relevant information for a simple spatial navigation task.

guide to orient neuroscience research.
In our work on Neural Integration, the task we trained the networks on is very ab-

stract, which allowed a deep theoretical understanding of the representations and the link
between the internal dynamics of an RNN and the evolution operator of the external
system it represents. Such analysis revealed the relevance of low-dimensional cognitive
manifolds, and yielded insights on the link between the activation function of the network
and the geometry of the cognitive manifolds. In our work on Path Integration, we studied
how an RNN can be used to integrate both proprioceptive and visual signals into a single
cognitive map of its environment. This approach to sensor fusion proved successful in
generating meaningful representations of partially observable environments, which could
be leveraged for more involved tasks such as goal-oriented navigation. However, nothing
resembling grid cells (Moser et al., 2008) could be found in our trained networks; one
possible explanation for this is that such representations could be relevant only within a
particular motor control scheme: our agents were sensing their environment through a top-
down perspective, and controlling their movements accordingly; this scheme is obviously
very different from the one of an agent evolving in a real environment, where movement is
divided into two degrees of freedom (rotation and forward velocity). While studying such
control schemes would a priori be possible within our framework of direct-inverse modeling
and integration, it would require a massive increase in computational resources necessary
for simulation. Notably, such experiments would require a first-person rendering engine,
and a physics engine allowing two-dimensional movement within a three-dimensional en-
vironment, such as the ones developed as part of the VizDoom (Wydmuch et al., 2018) or
Malmö (Johnson et al., 2016) projects (implementing interfaces respectively to the Doom
and Minecraft video games).

Representations of operators In the previous section, we considered representations
mostly as static objects, obtained by mapping the state st ∈ S (e.g. an image, a physical
quantity, the current value of a computation) of an external system to an internal state

General conclusion and perspectives 141

h = R(s) ∈ C ⊂ Rn in the cognitive manifold. We will now focus on adding structure
to this cognitive manifold, by creating operators acting on it coherently with operators
acting on the external system. This idea is very related to the one of ”computation through
latent dynamics” suggested by Sussillo (2014) in RNNs, although it can be adapted to non-
recurrent networks and to situations in which the representation network and the evolution
operators are implemented by different networks and possibly trained separately (as is the
case in our approach to Path Integration).

We assume that a discrete evolution operator τ extx : S → S is defined that describes
the evolution of the system from one step to the next1; this operator will, in all generality,
be parametric, i.e. depend on external quantities, the inputs xt. In the case of integration,
τ ext described the evolution of the vector of integrals after the arrival of the new inputs; in
the case of the environment models, it described the evolution of the visual signal sensed
by the agent after taking a new action; an extreme example could be the evolution of a
qubit after applying a pulse of a given amplitude, duration and frequency. It is important
to note that this operator does not need to have an exact, known mathematical expression;
for all intents and purposes, it is enough to be able to simulate it, either numerically or
even through real-world experimentation.

We are then interested in using an Artificial Neural Network to generate as faithful
an approximation as possible of τ extx . More precisely, we define the architecture of this
network so that it can accept both a state in the cognitive manifold C and an external
input x (the simplest solution being concatenating the two), and return a vector of the
same dimension as the state; we denote as τANNx : C → Rn the corresponding parametric
operator. The training of this model consists in tuning the parameters θ of the ANN so
that for all states and all external inputs, the effect of first mapping the external system
to the cognitive manifold and then applying the internal evolution operator (i.e. doing
τANNx ◦ R) is the same as applying the external evolution operator and then performing
the mapping to the internal state (i.e. doing R ◦ τ extx). This is represented in Figure 9.2.

If all operators acting on the external system are correctly approximated by their
counterparts on the representations, then a complete internal model of the system has
been generated by the networks. Such a model could then be used for abstract reasoning,
planning or zero-shot learning, and intuitively corresponds to what we as humans consider
as ”understanding a phenomenon”. The question of performing numerous tasks with a
single neural network is being actively investigated, from Yang et al. (2019) who focuses
biologically inspired tasks, to Team et al. (2021) who trained agents for multiple rule-based
games in tridimensional environments, and the representations that emerge can be related
to Universal Value Function Approximators (Schaul et al., 2015). These experiments are
also deeply related to the problem of ”learning-to-learn”, in which knowledge of a previous
problem can be used to improve learning speed on a new, related task, a form of transfer
learning.

Imposing the covariance conditions Based on the ideas of the previous section, we
introduced in Fanthomme and Monasson (2021) a new loss function for Recurrent Neural
Networks that allowed ex nihilo training of perfect, generalizing integrators by forcing
their internal dynamics (more precisely, their evolution operator) to correspond exactly to
the one prescribed by computation of a decaying integral. To express the faithful operator
representation conditions, one must be able to sample the states of the cognitive manifold
C; doing so requires the choice of an ansatz for the form of this manifold, and the one

1Continuous temporal evolution could be recovered, at least formally, by taking infinitesimal duration
steps.

142 General conclusion and perspectives

Figure 9.2: Illustration of the concept of representation of an operator. A parametric
operator τ ext, dependent on inputs x, acts on the external system state s (top row, red);
this external state can be mapped to an internal state h by a representation networkR (see
Figure 9.1), and another parametric operator τANN can be defined on those states. The
internal operator is a representation of the external one if and only if the two paths joining
the top-left and bottom-right corners of this diagram are identical (i.e. representing the
state after applying the external operator is the same as first representing the state, and
then applying the internal operator).

we chose is the ”current-linear representation”, which corresponds exactly to what we
observed during our analysis of trained Neural Integrators. This ansatz assumes that the
internal state of the network is given by:

ht = f(Ry),

where R is a n × d matrix, y the d–dimensional vector of outputs, and f the non-linear
activation function of the network. In practice, R can be expressed easily using the
weight-matrix W , allowing us to parametrize the cognitive manifold.

In addition to this loss enforcing correct internal dynamics to the internal representa-
tions, one often has to impose conditions on the output of a ”decoding” network given the
current value of the representation, which is particularly useful in avoiding that training
generates trivial representations. For example, in the case of the forward environment
models, a particularly simple solution consists in mapping all external images to the null
vector, and have the forward operator do nothing. The introduction of the backward op-
erator can be seen as a form of decoding of the representation, which makes this trivial
solution invalid.

The full expression of the proxy loss, including both the internal evolution term and
the decoding conditions, can be found in equation 7.36. Interestingly, this proxy loss
could a priori easily be modified to accommodate other internal dynamics or decoding
schemes, and even stochastic activations of the neurons, e.g. by grouping neurons into
subpopulations and defining our proxy loss on the ”averaged” neurons.

Bounding errors: resetting vs finite memory When considering deep or recurrent
representations, the question of error accumulation (respectively, across layers or across
time) becomes of paramount importance (Von Neumann, 2016; Mozeika et al., 2010). For
instance, when performing integrals with decay constant γ, an input (or an error in the

General conclusion and perspectives 143

integration) contributes to the value of the output for a time of order − ln(γ)−1, which
diverges when γ goes to 1. Because of this, in practice training of Recurrent Neural
Integrators with decays close to 1 requires additional precautions (avoiding too long input
trajectories, using low learning-rates) and is often unstable. In some circumstances, such
as evidence accumulation (Wong et al., 2007), this can be a desirable feature: arrival of
a certain stimulus raises the confidence level of the agent in performing a given action; if
the threshold is not met, and no additional ”evidence” signal arrives for a certain time, it
is important that the confidence decreases back to its original level to avoid ”hair-trigger”
reaction the next time evidence signal arrives. This would a priori be a major limitation
when it comes to performing Path Integration, since in that case it is not acceptable to
forget previous movements. The solution we proposed, and which naturally arises in state-
of-the-art architecture, is to perform resetting operations whenever possible. In the case
of Path Integration, resetting is performed using visual inputs, which are considered as
ground-truth for the position of the agent, and this mechanism results in networks for
which errors accumulate only on a finite duration (related to the frequency of availability
of visual inputs), despite the integration taking place in the non-decaying regime γ = 1.
Coming back to our example of decision-making, such resetting also could be relevant after
the reaction threshold has been reached, e.g. to enforce a refractory period by resetting the
confidence level lower than its initial value. Therefore, both error-bounding mechanisms
that we studied can be relevant in a biological context, and the interplay between the two
has to be taken into account.

Future directions Despite our best efforts, a lot of work remains to be done to bet-
ter understand the physics of Recurrent Neural Networks, both artificial and biological.
As a fundamental research direction, testing the limits of our ”data-free” approach to
training RNNs would be important, introducing more biological considerations such as
stochasticity of firing and structural connectivity constraints. More empirically, introduc-
ing Reinforcement Learning procedures into our experiments on spatial navigation is both
feasible and particularly interesting, as those results could shed light on whether Path
Integration is a biologically relevant goal, or merely a by-product of agents learning other
spatially structured behaviors such as foraging or predator escape. For example, one could
perform experiments using real animals (either mice or primates) navigating our virtual
environment, recording neurons during reward-free exploration and when training the ani-
mals on a particular task, using the results on artificial systems as a compass to help make
sense of these extremely complicated datasets. Additionally, making our virtual environ-
ment closer to what biological agents might experiment (a 3–dimensional world, in which
both rotations and translations can exist) could allow for different types of cognitive maps
than the ones we observed here, and help understand the relevance of place and grid cells.

Bibliography

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., and Zheng, X. (2016). TensorFlow: A system for large-scale machine learning.
arXiv:1605.08695 [cs].

2. Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014).
Convolutional Neural Networks for Speech Recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 22(10):1533–1545.

3. Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm
for boltzmann machines. Cognitive Science, 9(1):147–169.

4. Advani, M. S. and Saxe, A. M. (2017). High-dimensional dynamics of generalization
error in neural networks. arXiv:1710.03667 [physics, q-bio, stat].

5. Akam, T. and Kullmann, D. M. (2014). Oscillatory multiplexing of population
codes for selective communication in the mammalian brain. Nature Reviews Neu-
roscience, 15(2):111–122.

6. Aksay, E., Olasagasti, I., Mensh, B. D., Baker, R., Goldman, M. S., and Tank,
D. W. (2007). Functional dissection of circuitry in a neural integrator. Nature
Neuroscience, 10(4):494–504.

7. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences,
10(1):25–61.

8. Alemi, A., Baldassi, C., Brunel, N., and Zecchina, R. (2015). A Three-Threshold
Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
PLOS Computational Biology, 11(8):e1004439.

9. Almagro Armenteros, J. J., Sonderby, C. K., Sonderby, S. K., Nielsen, H., and
Winther, O. (2017). DeepLoc: Prediction of protein subcellular localization using
deep learning. Bioinformatics, 33(21):3387–3395.

10. Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985). Storing Infinite Numbers
of Patterns in a Spin-Glass Model of Neural Networks. Physical Review Letters,
55(14):1530–1533.

11. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case,
C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., Chen, J., Chen, J., Chen, Z.,
Chrzanowski, M., Coates, A., Diamos, G., Ding, K., Du, N., Elsen, E., Engel, J.,
Fang, W., Fan, L., Fougner, C., Gao, L., Gong, C., Hannun, A., Han, T., Johannes,

145

http://arxiv.org/abs/1605.08695
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1016/S0364-0213(85)80012-4
http://dx.doi.org/10.1016/S0364-0213(85)80012-4
http://arxiv.org/abs/1710.03667
http://arxiv.org/abs/1710.03667
http://dx.doi.org/10.1038/nrn3668
http://dx.doi.org/10.1038/nrn3668
http://dx.doi.org/10.1038/nn1877
http://dx.doi.org/10.1016/0025-5564(71)90051-4
http://dx.doi.org/10.1371/journal.pcbi.1004439
http://dx.doi.org/10.1371/journal.pcbi.1004439
http://dx.doi.org/10.1093/bioinformatics/btx431
http://dx.doi.org/10.1093/bioinformatics/btx431
http://dx.doi.org/10.1103/PhysRevLett.55.1530
http://dx.doi.org/10.1103/PhysRevLett.55.1530

146 BIBLIOGRAPHY

L., Jiang, B., Ju, C., Jun, B., LeGresley, P., Lin, L., Liu, J., Liu, Y., Li, W., Li, X.,
Ma, D., Narang, S., Ng, A., Ozair, S., Peng, Y., Prenger, R., Qian, S., Quan, Z.,
Raiman, J., Rao, V., Satheesh, S., Seetapun, D., Sengupta, S., Srinet, K., Sriram,
A., Tang, H., Tang, L., Wang, C., Wang, J., Wang, K., Wang, Y., Wang, Z., Wang,
Z., Wu, S., Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan, B., Zhan, J.,
and Zhu, Z. (2016). Deep Speech 2 : End-to-End Speech Recognition in English
and Mandarin. In International Conference on Machine Learning, pages 173–182.
PMLR.

12. Anderson, C. W., Lee, M., and Elliott, D. L. (2015). Faster reinforcement learning
after pretraining deep networks to predict state dynamics. In 2015 International
Joint Conference on Neural Networks (IJCNN), pages 1–7.

13. Anderson, P. W. (1958). Absence of Diffusion in Certain Random Lattices. Physical
Review, 109(5):1492–1505.

14. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
McGrew, B., Tobin, J., Abbeel, P., and Zaremba, W. (2018). Hindsight Experience
Replay. arXiv:1707.01495 [cs].

15. Arleo, A., Smeraldi, F., Hug, S., and Gerstner, W. (2000). Place Cells and Spatial
Navigation Based on 2D Visual Feature Extraction, Path Integration, and Rein-
forcement Learning. Advances in Neural Information Processing Systems, 13.

16. Arnold, D. B. and Robinson, D. A. (1991). A learning network model of the neural
integrator of the oculomotor system. Biological Cybernetics, 64(6):447–454.

17. Arnold, D. B. and Robinson, D. A. (1997). The oculomotor integrator: Testing of
a neural network model. Experimental Brain Research, 113(1):57–74.

18. Aronov, D., Nevers, R., and Tank, D. W. (2017). Mapping of a non-spatial dimen-
sion by the hippocampal–entorhinal circuit. Nature, 543(7647):719–722.

19. Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit Regularization in Deep
Matrix Factorization. arXiv:1905.13655 [cs, stat].

20. Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, 47(2):235–256.

21. Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G., Sun, T.,
Tao, Y., Townsend, B., Calleja, E., Muralidhara, S., and Karuppasamy, D. (2019).
DeepRacer: Educational Autonomous Racing Platform for Experimentation with
Sim2Real Reinforcement Learning. arXiv:1911.01562 [cs].

22. Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel,
A., Chadwick, M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F.,
Zhang, B., Goroshin, R., Rabinowitz, N., Pascanu, R., Beattie, C., Petersen, S.,
Sadik, A., Gaffney, S., King, H., Kavukcuoglu, K., Hassabis, D., Hadsell, R., and
Kumaran, D. (2018). Vector-based navigation using grid-like representations in
artificial agents. Nature, 557(7705):429.

23. Barabási, A.-L., Albert, R., and Jeong, H. (1999). Mean-field theory for scale-free
random networks. Physica A: Statistical Mechanics and its Applications, 272(1-
2):173–187.

http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
http://dx.doi.org/10.1109/IJCNN.2015.7280824
http://dx.doi.org/10.1109/IJCNN.2015.7280824
http://dx.doi.org/10.1103/PhysRev.109.1492
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://proceedings.neurips.cc/paper/2000/hash/cd14821dab219ea06e2fd1a2df2e3582-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/cd14821dab219ea06e2fd1a2df2e3582-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/cd14821dab219ea06e2fd1a2df2e3582-Abstract.html
http://dx.doi.org/10.1007/BF00202608
http://dx.doi.org/10.1007/BF00202608
http://dx.doi.org/10.1007/BF02454142
http://dx.doi.org/10.1007/BF02454142
http://dx.doi.org/10.1038/nature21692
http://dx.doi.org/10.1038/nature21692
http://arxiv.org/abs/1905.13655
http://arxiv.org/abs/1905.13655
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1023/A:1013689704352
http://arxiv.org/abs/1911.01562
http://arxiv.org/abs/1911.01562
http://dx.doi.org/10.1038/s41586-018-0102-6
http://dx.doi.org/10.1038/s41586-018-0102-6
http://dx.doi.org/10.1016/S0378-4371(99)00291-5
http://dx.doi.org/10.1016/S0378-4371(99)00291-5

BIBLIOGRAPHY 147

24. Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience
research. Current Opinion in Neurobiology, 46:1–6.

25. Barrat-Charlaix, P., Muntoni, A., Shimagaki, K., Weigt, M., and Zamponi, F.
(2021). Sparse generative modeling via parameter-reduction of boltzmann ma-
chines: application to protein-sequence families. Physical Review E, 104.

26. Bartlett, P. L., Montanari, A., and Rakhlin, A. (2021). Deep learning: A statistical
viewpoint. arXiv:2103.09177 [cs, math, stat].

27. Barton, J., Cocco, S., De Leonardis, E., and Monasson, R. (2014). Large pseudo-
counts and l2-norm penalties are necessary for the mean-field inference of ising and
potts models. Physical Review E, 90.

28. Barton, J., De Leonardis, E., Coucke, A., and Cocco, S. (2016). Ace: adaptive
cluster expansion for maximum entropy graphical model inference. Bioinformatics,
32.

29. Bassett, D. S. and Bullmore, E. (2006). Small-World Brain Networks. The Neuro-
scientist, 12(6):512–523.

30. Battista, A. and Monasson, R. (2020). Capacity-Resolution Trade-Off in the Op-
timal Learning of Multiple Low-Dimensional Manifolds by Attractor Neural Net-
works. Physical Review Letters, 124(4):048302.

31. Battiti, R. (1992). First- and Second-Order Methods for Learning: Between Steep-
est Descent and Newton’s Method. Neural Computation, 4(2):141–166.

32. Baylor, D. A., Lamb, T. D., and Yau, K. W. (1979). Responses of retinal rods to
single photons. The Journal of Physiology, 288:613–634.

33. Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The Arcade
Learning Environment: An Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research, 47:253–279.

34. Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515.

35. Bengio, Y., Courville, A., and Vincent, P. (2013a). Representation Learning: A Re-
view and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828.

36. Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013b). Better Mixing via
Deep Representations. In International Conference on Machine Learning, pages
552–560. PMLR.

37. Benna, M. K. and Fusi, S. (2020). Are place cells just memory cells? memory
compression leads to spatial tuning and history dependence.

38. Bicanski, A. and Burgess, N. (2018). A neural-level model of spatial memory and
imagery. eLife, 7:e33752.

39. Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.
In Lechevallier, Y. and Saporta, G., editors, Proceedings of COMPSTAT’2010,
pages 177–186, Heidelberg. Physica-Verlag HD.

http://dx.doi.org/10.1016/j.conb.2017.06.003
http://dx.doi.org/10.1016/j.conb.2017.06.003
http://arxiv.org/abs/2103.09177
http://arxiv.org/abs/2103.09177
http://dx.doi.org/10.1177/1073858406293182
http://dx.doi.org/10.1103/PhysRevLett.124.048302
http://dx.doi.org/10.1103/PhysRevLett.124.048302
http://dx.doi.org/10.1103/PhysRevLett.124.048302
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://dx.doi.org/10.1162/neco.1992.4.2.141
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1281447/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1281447/
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1090/S0002-9904-1954-09848-8
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
https://proceedings.mlr.press/v28/bengio13.html
https://proceedings.mlr.press/v28/bengio13.html
http://dx.doi.org/10.1101/624239
http://dx.doi.org/10.1101/624239
http://dx.doi.org/10.7554/eLife.33752
http://dx.doi.org/10.7554/eLife.33752
http://dx.doi.org/10.1007/978-3-7908-2604-3_16

148 BIBLIOGRAPHY

40. Bourgade, P. (2018). Random band matrices. arXiv:1807.03031 [math-ph].

41. Brent, R. P. (2013). Algorithms for Minimization Without Derivatives. Courier
Corporation.

42. Brette, R. and Gerstner, W. (2005). Adaptive Exponential Integrate-and-Fire
Model as an Effective Description of Neuronal Activity. Journal of Neurophysi-
ology, 94(5):3637–3642.

43. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
and Zaremba, W. (2016). OpenAI Gym. arXiv:1606.01540 [cs].

44. Brown, P. K. and Wald, G. (1964). Visual Pigments in Single Rods and Cones of
the Human Retina. Science, 144(3614):45–52.

45. Campbell, M. G., Ocko, S. A., Mallory, C. S., Low, I. I., Ganguli, S., and Giocomo,
L. M. (2018). Principles governing the integration of landmark and self-motion cues
in entorhinal cortical codes for navigation. Nature neuroscience, 21(8):1096–1106.

46. Cannon, S. C. and Robinson, D. A. (1987). Loss of the neural integrator of the
oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology,
57(5):1383–1409.

47. Cannon, S. C., Robinson, D. A., and Shamma, S. (1983). A proposed neural net-
work for the integrator of the oculomotor system. Biological Cybernetics, 49(2):127–
136.

48. Casati, G., Molinari, L., and Izrailev, F. (1990). Scaling properties of band random
matrices. Physical Review Letters, 64(16):1851–1854.

49. Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., and Salakhutdinov, R. (2020).
Learning to Explore using Active Neural SLAM. arXiv:2004.05155 [cs].

50. Chau Nguyen, H., Zecchina, R., and Berg, J. (2017). Inverse statistical problems:
from the inverse ising problem to data science. Advances in Physics, 66.

51. Chen, G., Lu, Y., King, J. A., Cacucci, F., and Burgess, N. (2019). Differential
influences of environment and self-motion on place and grid cell firing. Nature
Communications, 10(1):630.

52. Chevalier-Boisvert, M., Willems, L., and Pal, S. (2018). Minimalistic Gridworld
Environment for OpenAI Gym.

53. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv:1406.1078 [cs, stat].

54. Chomsky, N. (1959). On certain formal properties of grammars. Information and
Control, 2(2):137–167.

55. Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555 [cs].

56. Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L. (1989). Finite State
Automata and Simple Recurrent Networks. Neural Computation, 1(3):372–381.

http://arxiv.org/abs/1807.03031
http://dx.doi.org/10.1152/jn.00686.2005
http://dx.doi.org/10.1152/jn.00686.2005
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1126/science.144.3614.45
http://dx.doi.org/10.1126/science.144.3614.45
http://dx.doi.org/10.1038/s41593-018-0189-y
http://dx.doi.org/10.1038/s41593-018-0189-y
http://dx.doi.org/10.1152/jn.1987.57.5.1383
http://dx.doi.org/10.1152/jn.1987.57.5.1383
http://dx.doi.org/10.1007/BF00320393
http://dx.doi.org/10.1007/BF00320393
http://dx.doi.org/10.1103/PhysRevLett.64.1851
http://dx.doi.org/10.1103/PhysRevLett.64.1851
http://arxiv.org/abs/2004.05155
http://dx.doi.org/10.1038/s41467-019-08550-1
http://dx.doi.org/10.1038/s41467-019-08550-1
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1162/neco.1989.1.3.372
http://dx.doi.org/10.1162/neco.1989.1.3.372

BIBLIOGRAPHY 149

57. Cocco, S., Feinauer, C., Figliuzzi, M., Monasson, R., and Weigt, M. (2018). Inverse
statistical physics of protein sequences: A key issues review. Reports on Progress
in Physics, 81(3):032601.

58. Cocco, S. and Monasson, R. (2011). Adaptive Cluster Expansion for Inferring
Boltzmann Machines with Noisy Data. Physical Review Letters, 106(9):090601.

59. Cocco, S., Monasson, R., and Weigt, M. (2013). From Principal Component to
Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are
Needed for Structure Prediction. PLOS Computational Biology, 9(8):e1003176.

60. Collins, J., Sohl-Dickstein, J., and Sussillo, D. (2017). Capacity and Trainability
in Recurrent Neural Networks. arXiv:1611.09913 [cs, stat].

61. Connor, J., Martin, R., and Atlas, L. (1994). Recurrent neural networks and robust
time series prediction. IEEE Transactions on Neural Networks, 5(2):240–254.

62. Cooper, B. G., Manka, T. F., and Mizumori, S. J. (2001). Finding your way in
the dark: The retrosplenial cortex contributes to spatial memory and navigation
without visual cues. Behavioral neuroscience, 115(5):1012.

63. Corneil, D., Gerstner, W., and Brea, J. (2018). Efficient Model-Based Deep Re-
inforcement Learning with Variational State Tabulation. arXiv:1802.04325 [cs,
stat].

64. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and
Bharath, A. A. (2018). Generative Adversarial Networks: An Overview. IEEE
Signal Processing Magazine, 35(1):53–65.

65. Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.
(2014). Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. arXiv:1406.2572 [cs, math, stat].

66. Dayan, P. and Abbott, L. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems, volume 15 of Computational Neuro-
science Series. MIT press,.

67. Decelle, A. and Furtlehner, C. (2021). Restricted Boltzmann machine: Recent
advances and mean-field theory. Chinese Physics B, 30(4):040202.

68. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38.

69. Denker, J., Schwartz, D. B., Wittner, B., Solla, S., Howard, R., Jackel, L., and Hop-
field, J. (1987). Large Automatic Learning, Rule Extraction, and Generalization.
Complex Syst.

70. Denton, E. L. and Birodkar, v. (2017). Unsupervised Learning of Disentangled
Representations from Video. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 4414–4423. Curran Associates, Inc.

71. Deschênes, M., Moore, J., and Kleinfeld, D. (2012). Sniffing and whisking in
rodents. Current Opinion in Neurobiology, 22(2):243–250.

http://dx.doi.org/10.1088/1361-6633/aa9965
http://dx.doi.org/10.1088/1361-6633/aa9965
http://dx.doi.org/10/cdxm2t
http://dx.doi.org/10/cdxm2t
http://dx.doi.org/10.1371/journal.pcbi.1003176
http://dx.doi.org/10.1371/journal.pcbi.1003176
http://dx.doi.org/10.1371/journal.pcbi.1003176
http://arxiv.org/abs/1611.09913
http://arxiv.org/abs/1611.09913
http://dx.doi.org/10.1109/72.279188
http://dx.doi.org/10.1109/72.279188
http://dx.doi.org/10.1037/0735-7044.115.5.1012
http://dx.doi.org/10.1037/0735-7044.115.5.1012
http://dx.doi.org/10.1037/0735-7044.115.5.1012
http://arxiv.org/abs/1802.04325
http://arxiv.org/abs/1802.04325
http://dx.doi.org/10.1109/MSP.2017.2765202
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://dx.doi.org/10.1088/1674-1056/abd160
http://dx.doi.org/10.1088/1674-1056/abd160
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.complex-systems.com/abstracts/v01_i05_a02/
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://dx.doi.org/10.1016/j.conb.2011.11.013
http://dx.doi.org/10.1016/j.conb.2011.11.013

150 BIBLIOGRAPHY

72. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
[cs].

73. Doeller, C. F., Barry, C., and Burgess, N. (2010). Evidence for grid cells in a
human memory network. Nature, 463(7281):657–661.

74. Eggermont, J. J. (2001). Between sound and perception: Reviewing the search for
a neural code. Hearing Research, 157(1):1–42.

75. Ekeberg, M., Hartonen, T., and Aurell, E. (2014). Fast pseudolikelihood maxi-
mization for direct-coupling analysis of protein structure from many homologous
amino-acid sequences. Journal of Computational Physics, 276:341–356.

76. Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M., and Aurell, E. (2013). Improved
contact prediction in proteins: Using pseudolikelihoods to infer Potts models. Phys-
ical Review E, 87(1):012707.

77. Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2):179–211.

78. Elman, J. L. (1991). Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7(2):195–225.

79. Epstein, R. A., Patai, E. Z., Julian, J. B., and Spiers, H. J. (2017). The cognitive
map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11):1504–
1513.

80. Etienne, A. S. and Jeffery, K. J. (2004). Path integration in mammals. Hippocam-
pus, 14(2):180–192.

81. Etienne, A. S., Maurer, R., and Séguinot, V. (1996). Path integration in mam-
mals and its interaction with visual landmarks. Journal of Experimental Biology,
199(1):201–209.

82. Fanthomme, A. and Monasson, R. (2021). Low-Dimensional Manifolds Support
Multiplexed Integrations in Recurrent Neural Networks. Neural Computation,
pages 1–50.

83. Felsenstein, J. and Churchill, G. A. (1996). A Hidden Markov Model approach
to variation among sites in rate of evolution. Molecular Biology and Evolution,
13(1):93–104.

84. Feulner, B. and Clopath, C. (2021). Neural manifold under plasticity in a goal
driven learning behaviour. PLOS Computational Biology, 17(2):e1008621.

85. Freedman, D. J., Riesenhuber, M., Poggio, T., and Miller, E. K. (2003). A Com-
parison of Primate Prefrontal and Inferior Temporal Cortices during Visual Cate-
gorization. Journal of Neuroscience, 23(12):5235–5246.

86. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics (Oxford, England), 9(3):432–441.

87. Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing Function Approxi-
mation Error in Actor-Critic Methods. arXiv:1802.09477 [cs, stat].

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1038/nature08704
http://dx.doi.org/10.1038/nature08704
http://dx.doi.org/10.1016/S0378-5955(01)00259-3
http://dx.doi.org/10.1016/S0378-5955(01)00259-3
http://dx.doi.org/10/f25bf9
http://dx.doi.org/10/f25bf9
http://dx.doi.org/10/f25bf9
http://dx.doi.org/10.1103/PhysRevE.87.012707
http://dx.doi.org/10.1103/PhysRevE.87.012707
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1007/BF00114844
http://dx.doi.org/10.1007/BF00114844
http://dx.doi.org/10.1038/nn.4656
http://dx.doi.org/10.1038/nn.4656
http://dx.doi.org/10.1002/hipo.10173
http://dx.doi.org/10.1242/jeb.199.1.201
http://dx.doi.org/10.1242/jeb.199.1.201
http://dx.doi.org/10.1162/neco_a_01366
http://dx.doi.org/10.1162/neco_a_01366
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025575
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025575
http://dx.doi.org/10.1371/journal.pcbi.1008621
http://dx.doi.org/10.1371/journal.pcbi.1008621
http://dx.doi.org/10.1523/JNEUROSCI.23-12-05235.2003
http://dx.doi.org/10.1523/JNEUROSCI.23-12-05235.2003
http://dx.doi.org/10.1523/JNEUROSCI.23-12-05235.2003
http://dx.doi.org/10.1093/biostatistics/kxm045
http://dx.doi.org/10.1093/biostatistics/kxm045
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477

BIBLIOGRAPHY 151

88. Funahashi, K.-i. and Nakamura, Y. (1993). Approximation of dynamical systems
by continuous time recurrent neural networks. Neural Networks, 6(6):801–806.

89. Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., and Moser, E. I. (2007).
Hippocampal remapping and grid realignment in entorhinal cortex. Nature,
446(7132):190–194.

90. Gallego, J. A., Perich, M. G., Miller, L. E., and Solla, S. A. (2017). Neural Manifolds
for the Control of Movement. Neuron, 94(5):978–984.

91. Ganguli, S., Bisley, J., Roitman, J., Shadlen, M., Goldberg, M. E., and Miller,
K. D. (2008). One-Dimensional Dynamics of Attention and Decision Making in
LIP. Neuron.

92. Ganguli, S. and Sompolinsky, H. (2012). Compressed Sensing, Sparsity, and Dimen-
sionality in Neuronal Information Processing and Data Analysis. Annual Review
of Neuroscience, 35(1):485–508.

93. Gardner, E. (1988). The space of interactions in neural network models. Journal
of Physics A: Mathematical and General, 21(1):257–270.

94. Gardner, E. and Derrida, B. (1988). Optimal storage properties of neural network
models. Journal of Physics A: Mathematical and General, 21(1):271–284.

95. Gershman, S. J. (2018). The Successor Representation: Its Computational Logic
and Neural Substrates. Journal of Neuroscience, 38(33):7193–7200.

96. Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A., and Sederberg, P. B.
(2012). The Successor Representation and Temporal Context. Neural Computation,
24(6):1553–1568.

97. Goldt, S., Mézard, M., Krzakala, F., and Zdeborová, L. (2020). Modelling the
influence of data structure on learning in neural networks: The hidden manifold
model. Physical Review X, 10(4):041044.

98. Golledge, G., R. (2003). Human wayfinding and cognitive maps. In The Coloniza-
tion of Unfamiliar Landscapes, pages 49–54. Routledge edition.

99. Goodfellow, I., Lee, H., Le, Q., Saxe, A., and Ng, A. (2009). Measuring Invari-
ances in Deep Networks. In Advances in Neural Information Processing Systems,
volume 22. Curran Associates, Inc.

100. Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18(5):602–610.

101. Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing Machines.
arXiv:1410.5401 [cs].

102. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-
Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J.,
Badia, A. P., Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H.,
Summerfield, C., Blunsom, P., Kavukcuoglu, K., and Hassabis, D. (2016). Hy-
brid computing using a neural network with dynamic external memory. Nature,
538(7626):471–476.

http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1038/nature05601
http://dx.doi.org/10.1016/j.neuron.2017.05.025
http://dx.doi.org/10.1016/j.neuron.2017.05.025
http://dx.doi.org/10.1016/j.neuron.2008.01.038
http://dx.doi.org/10.1016/j.neuron.2008.01.038
http://dx.doi.org/10.1146/annurev-neuro-062111-150410
http://dx.doi.org/10.1146/annurev-neuro-062111-150410
http://dx.doi.org/10.1088/0305-4470/21/1/030
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1523/JNEUROSCI.0151-18.2018
http://dx.doi.org/10.1523/JNEUROSCI.0151-18.2018
http://dx.doi.org/10.1162/NECO_a_00282
http://dx.doi.org/10.1103/PhysRevX.10.041044
http://dx.doi.org/10.1103/PhysRevX.10.041044
http://dx.doi.org/10.1103/PhysRevX.10.041044
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203422908-13/human-wayfinding-cognitive-maps-reginald-golledge
https://papers.nips.cc/paper/2009/hash/428fca9bc1921c25c5121f9da7815cde-Abstract.html
https://papers.nips.cc/paper/2009/hash/428fca9bc1921c25c5121f9da7815cde-Abstract.html
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://arxiv.org/abs/1410.5401
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1038/nature20101

152 BIBLIOGRAPHY

103. Gupta, S., Tolani, V., Davidson, J., Levine, S., Sukthankar, R., and Malik, J.
(2019). Cognitive Mapping and Planning for Visual Navigation. arXiv:1702.03920
[cs].

104. Ha, D. and Schmidhuber, J. (2018). World Models. arXiv:1803.10122 [cs, stat].

105. Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
In International Conference on Machine Learning, pages 1861–1870. PMLR.

106. Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V.,
Zhu, H., Gupta, A., Abbeel, P., and Levine, S. (2019). Soft Actor-Critic Algorithms
and Applications. arXiv:1812.05905 [cs, stat].

107. Hahnloser, R. H. R., Kozhevnikov, A. A., and Fee, M. S. (2002). An ultra-
sparse code underliesthe generation of neural sequences in a songbird. Nature,
419(6902):65–70.

108. Haldane, A. and Levy, R. M. (2019). Influence of multiple-sequence-alignment
depth on potts statistical models of protein covariation. Phys. Rev. E, 99:032405.

109. Hamaguchi, K. and Mooney, R. (2012). Recurrent Interactions between the Input
and Output of a Songbird Cortico-Basal Ganglia Pathway Are Implicated in Vocal
Sequence Variability. Journal of Neuroscience, 32(34):11671–11687.

110. Harsh, M., Tubiana, J., Cocco, S., and Monasson, R. (2020). ‘Place-cell’ emergence
and learning of invariant data with restricted Boltzmann machines: Breaking and
dynamical restoration of continuous symmetries in the weight space. Journal of
Physics A: Mathematical and Theoretical, 53(17):174002.

111. Haviv, D., Rivkind, A., and Barak, O. (2019). Understanding and Controlling
Memory in Recurrent Neural Networks. In International Conference on Machine
Learning, pages 2663–2671. PMLR.

112. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image
Recognition. arXiv:1512.03385 [cs].

113. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity Mappings in Deep Residual
Networks. arXiv:1603.05027 [cs].

114. Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez,
T., Wang, Z., Eslami, S. M. A., Riedmiller, M., and Silver, D. (2017). Emergence
of Locomotion Behaviours in Rich Environments. arXiv:1707.02286 [cs].

115. Helmchen, F. and Denk, W. (2005). Deep tissue two-photon microscopy. Nature
Methods, 2(12):932–940.

116. Hinton, G. E. (2002). Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 14(8):1771–1800.

117. Hinton, G. E. (2012). A Practical Guide to Training Restricted Boltzmann Ma-
chines. In Montavon, G., Orr, G. B., and Müller, K.-R., editors, Neural Networks:
Tricks of the Trade: Second Edition, Lecture Notes in Computer Science, pages
599–619. Springer, Berlin, Heidelberg.

http://arxiv.org/abs/1702.03920
http://dx.doi.org/10.5281/zenodo.1207631
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://dx.doi.org/10.1038/nature00974
http://dx.doi.org/10.1038/nature00974
http://dx.doi.org/10.1103/PhysRevE.99.032405
http://dx.doi.org/10.1103/PhysRevE.99.032405
http://dx.doi.org/10.1523/JNEUROSCI.1666-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.1666-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.1666-12.2012
http://dx.doi.org/10.1088/1751-8121/ab7d00
http://dx.doi.org/10.1088/1751-8121/ab7d00
http://dx.doi.org/10.1088/1751-8121/ab7d00
http://proceedings.mlr.press/v97/haviv19a.html
http://proceedings.mlr.press/v97/haviv19a.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://dx.doi.org/10.1038/nmeth818
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1007/978-3-642-35289-8_32

BIBLIOGRAPHY 153

118. Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735–1780.

119. Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
Physiology, 117(4):500–544.

120. Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P., Springer, M., Sander,
C., and Marks, D. S. (2017). Mutation effects predicted from sequence co-variation.
Nature biotechnology, 35(2):128–135.

121. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences of
the United States of America, 79(8):2554–2558.

122. Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106–154.

123. Humphreys, G. W., Duncan, J., Treisman, A., O’Keefe, J., Burgess, N., Donnett,
J. G., Jeffery, K. J., and Maguire, E. A. (1998). Place cells, navigational accuracy,
and the human hippocampus. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 353(1373):1333–1340.

124. Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35.

125. Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau,
M.-C., Mazziotta, J. C., and Rizzolatti, G. (2001). Reafferent copies of imitated
actions in the right superior temporal cortex. Proceedings of the National Academy
of Sciences, 98(24):13995–13999.

126. Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik,
31(1):253–258.

127. Ito, H. T. (2018). Prefrontal–hippocampal interactions for spatial navigation. Neu-
roscience Research, 129:2–7.

128. Jaeger, H. (2001). The” echo state” approach to analysing and training recur-
rent neural networks-with an erratum note’. Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report, 148.

129. Jaeger, H. and Haas, H. (2004). Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication. Science, 304(5667):78–
80.

130. Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The Malmo plat-
form for artificial intelligence experimentation. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI’16, pages 4246–
4247, New York, New York, USA. AAAI Press.

131. Jordan, M. I. (1997). Chapter 25 - Serial Order: A Parallel Distributed Process-
ing Approach. In Donahoe, J. W. and Packard Dorsel, V., editors, Advances in
Psychology, volume 121 of Neural-Network Models of Cognition, pages 471–495.
North-Holland.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10/gf92hq
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.1098/rstb.1998.0287
http://dx.doi.org/10.1098/rstb.1998.0287
http://dx.doi.org/10.1145/3054912
http://dx.doi.org/10.1145/3054912
http://dx.doi.org/10.1073/pnas.241474598
http://dx.doi.org/10.1073/pnas.241474598
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1016/j.neures.2017.04.016
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1016/S0166-4115(97)80111-2

154 BIBLIOGRAPHY

132. Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits,
B., Lee, A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., Barbic, M., Blanche,
T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L., Gutnisky, D. A., Häusser,
M., Karsh, B., Ledochowitsch, P., Lopez, C. M., Mitelut, C., Musa, S., Okun,
M., Pachitariu, M., Putzeys, J., Rich, P. D., Rossant, C., Sun, W.-l., Svoboda,
K., Carandini, M., Harris, K. D., Koch, C., O’Keefe, J., and Harris, T. D. (2017).
Fully integrated silicon probes for high-density recording of neural activity. Nature,
551(7679):232–236.

133. Kabashima, Y. and Saad, D. (1998). Belief propagation vs. TAP for decoding
corrupted messages. Europhysics Letters (EPL), 44(5):668–674.

134. Kakade, S. and Langford, J. (2002). Approximately Optimal Approximate Rein-
forcement Learning. In Proceedings of the Nineteenth International Conference on
Machine Learning, ICML ’02, pages 267–274, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

135. Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). Visualizing and Understanding
Recurrent Networks. arXiv:1506.02078 [cs].

136. Kawato, M. (1999). Internal models for motor control and trajectory planning.
Current Opinion in Neurobiology, 9(6):718–727.

137. Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Haignere, S. V., and
McDermott, J. H. (2018). A Task-Optimized Neural Network Replicates Human
Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing
Hierarchy. Neuron, 98(3):630–644.e16.

138. Kim, S. S., Rouault, H., Druckmann, S., and Jayaraman, V. (2017). Ring attractor
dynamics in the Drosophila central brain. Science, 356(6340):849–853.

139. Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs].

140. Kirk, E., D. (2004). Optimal Control Theory: An Introduction. Courier Corpora-
tion.

141. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526.

142. Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in
Neural Information Processing Systems, pages 1008–1014.

143. Kosmatopoulos, E., Polycarpou, M., Christodoulou, M., and Ioannou, P. (1995).
High-order neural network structures for identification of dynamical systems. IEEE
Transactions on Neural Networks, 6(2):422–431.

144. Kosterlitz, J. M., Thouless, D. J., and Jones, R. C. (1976). Spherical Model of a
Spin-Glass. Physical Review Letters, 36(20):1217–1220.

145. Kropff, E., Carmichael, J. E., Moser, M.-B., and Moser, E. I. (2015). Speed cells
in the medial entorhinal cortex. Nature, 523(7561):419–424.

http://dx.doi.org/10.1038/nature24636
http://dx.doi.org/10.1209/epl/i1998-00524-7
http://dx.doi.org/10.1209/epl/i1998-00524-7
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1506.02078
http://dx.doi.org/10.1016/s0959-4388(99)00028-8
http://dx.doi.org/10.1016/j.neuron.2018.03.044
http://dx.doi.org/10.1016/j.neuron.2018.03.044
http://dx.doi.org/10.1016/j.neuron.2018.03.044
http://dx.doi.org/10.1126/science.aal4835
http://dx.doi.org/10.1126/science.aal4835
http://arxiv.org/abs/1412.6980
https://store.doverpublications.com/0486434842.html
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://dx.doi.org/10.1109/72.363477
http://dx.doi.org/10.1103/PhysRevLett.36.1217
http://dx.doi.org/10.1103/PhysRevLett.36.1217
http://dx.doi.org/10.1038/nature14622
http://dx.doi.org/10.1038/nature14622

BIBLIOGRAPHY 155

146. Kuleshov, V. and Precup, D. (2014). Algorithms for multi-armed bandit problems.
arXiv:1402.6028 [cs].

147. Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22.

148. Lapicque, L. (1907). L’excitation électrique des nerfs considérée comme une polar-
isation. Journal de Physiologie et Pathologie Générale, 9.

149. Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted
Boltzmann machines. In Proceedings of the 25th International Conference on Ma-
chine Learning, ICML ’08, pages 536–543, New York, NY, USA. Association for
Computing Machinery.

150. Leavitt, M. L. and Morcos, A. (2020a). Selectivity considered harmful: Evaluating
the causal impact of class selectivity in DNNs. arXiv:2003.01262 [cs, q-bio, stat].

151. Leavitt, M. L. and Morcos, A. S. (2020b). On the relationship between class
selectivity, dimensionality, and robustness. arXiv:2007.04440 [cs, stat].

152. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code
Recognition. Neural Computation, 1(4):541–551.

153. Lecun, Y., Denker, J., and Solla, S. (1989). Optimal Brain Damage, volume 2.

154. LeCun, Y., Kanter, I., and Solla, S. (1991a). Second Order Properties of Error
Surfaces: Learning Time and Generalization. In Advances in Neural Information
Processing Systems, volume 3. Morgan-Kaufmann.

155. LeCun, Y., Kanter, I., and Solla, S. A. (1991b). Eigenvalues of covariance matrices:
Application to neural-network learning. Physical Review Letters, 66(18):2396–2399.

156. Lee, D. D., Reis, B. Y., Seung, H. S., and Tank, D. W. (1997). Nonlinear Network
Models of the Oculomotor Integrator. In Bower, J. M., editor, Computational
Neuroscience, pages 371–377. Springer US, Boston, MA.

157. Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML ’09, pages 609–616, New York, NY, USA. Association for Computing
Machinery.

158. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., and Yang, M.-H. (2018). Diverse
Image-to-Image Translation via Disentangled Representations. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 35–51.

159. Levin, E., Tishby, N., and Solla, S. (1990). A statistical approach to learning and
generalization in layered neural networks. Proceedings of the IEEE, 78(10):1568–
1574.

160. Li, J., Monroe, W., and Jurafsky, D. (2017). Understanding Neural Networks
through Representation Erasure. arXiv:1612.08220 [cs].

http://arxiv.org/abs/1402.6028
http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.1145/1390156.1390224
http://dx.doi.org/10.1145/1390156.1390224
http://arxiv.org/abs/2003.01262
http://arxiv.org/abs/2003.01262
http://arxiv.org/abs/2007.04440
http://arxiv.org/abs/2007.04440
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://proceedings.neurips.cc/paper/1990/hash/758874998f5bd0c393da094e1967a72b-Abstract.html
https://proceedings.neurips.cc/paper/1990/hash/758874998f5bd0c393da094e1967a72b-Abstract.html
http://dx.doi.org/10.1103/PhysRevLett.66.2396
http://dx.doi.org/10.1103/PhysRevLett.66.2396
http://dx.doi.org/10.1007/978-1-4757-9800-5_60
http://dx.doi.org/10.1007/978-1-4757-9800-5_60
http://dx.doi.org/10.1145/1553374.1553453
http://dx.doi.org/10.1145/1553374.1553453
https://openaccess.thecvf.com/content_ECCV_2018/html/Hsin-Ying_Lee_Diverse_Image-to-Image_Translation_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Hsin-Ying_Lee_Diverse_Image-to-Image_Translation_ECCV_2018_paper.html
http://dx.doi.org/10.1109/5.58339
http://dx.doi.org/10.1109/5.58339
http://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1612.08220

156 BIBLIOGRAPHY

161. Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit
approach to personalized news article recommendation. In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, pages 661–670, New
York, NY, USA. Association for Computing Machinery.

162. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2019). Continuous control with deep reinforcement learning.
arXiv:1509.02971 [cs, stat].

163. Ling, Z.-H., Kang, S.-Y., Zen, H., Senior, A., Schuster, M., Qian, X.-J., Meng,
H. M., and Deng, L. (2015). Deep Learning for Acoustic Modeling in Parametric
Speech Generation: A systematic review of existing techniques and future trends.
IEEE Signal Processing Magazine, 32(3):35–52.

164. Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A Critical Review of Recurrent
Neural Networks for Sequence Learning. arXiv:1506.00019 [cs].

165. Little, W. A. (1974). The existence of persistent states in the brain. Mathematical
Biosciences, 19(1):101–120.

166. Liu, X., Powell, D. K., Wang, H., Gold, B. T., Corbly, C. R., and Joseph, J. E.
(2007). Functional Dissociation in Frontal and Striatal Areas for Processing of
Positive and Negative Reward Information. Journal of Neuroscience, 27(17):4587–
4597.

167. Louizos, C., Welling, M., and Kingma, D. P. (2018). Learning Sparse Neural
Networks through $L 0$ Regularization. arXiv:1712.01312 [cs, stat].

168. Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016). Multi-
task Sequence to Sequence Learning. arXiv:1511.06114 [cs, stat].

169. Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational Aspects of Feedback
in Neural Circuits. PLOS Computational Biology, 3(1):e165.

170. Maass, W., Natschläger, T., and Markram, H. (2002). Real-Time Computing
Without Stable States: A New Framework for Neural Computation Based on Per-
turbations. Neural Computation, 14(11):2531–2560.

171. Maaswinkel, H. and Whishaw, I. Q. (1999). Homing with locale, taxon, and dead
reckoning strategies by foraging rats: Sensory hierarchy in spatial navigation. Be-
havioural Brain Research, 99(2):143–152.

172. Maaten, L. V. D., Postma, E., and Herik, J. (2009). Dimensionality Reduction: A
Comparative Review. undefined.

173. MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cam-
bridge university press.

174. Mallat, S. (1996). Wavelets for a vision. Proceedings of the IEEE, 84(4):604–614.

175. Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-
dependent computation by recurrent dynamics in prefrontal cortex. Nature,
503(7474):78–84.

http://dx.doi.org/10.1145/1772690.1772758
http://dx.doi.org/10.1145/1772690.1772758
http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1109/MSP.2014.2359987
http://dx.doi.org/10.1109/MSP.2014.2359987
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://dx.doi.org/10.1016/0025-5564(74)90031-5
http://dx.doi.org/10.1523/JNEUROSCI.5227-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.5227-06.2007
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://dx.doi.org/10.1371/journal.pcbi.0020165
http://dx.doi.org/10.1371/journal.pcbi.0020165
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1016/S0166-4328(98)00100-4
http://dx.doi.org/10.1016/S0166-4328(98)00100-4
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
http://dx.doi.org/10.1109/5.488702
http://dx.doi.org/10.1038/nature12742
http://dx.doi.org/10.1038/nature12742

BIBLIOGRAPHY 157

176. Markowitz, J. E., Iii, W. A. L., Guitchounts, G., Velho, T., Lois, C., and Gardner,
T. J. (2015). Mesoscopic Patterns of Neural Activity Support Songbird Cortical
Sequences. PLOS Biology, 13(6):e1002158.

177. Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation
of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science,
275(5297):213–215.

178. Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology,
202(2):437–470.

179. Mastrogiuseppe, F. and Ostojic, S. (2018). Linking connectivity, dynamics and
computations in low-rank recurrent neural networks. Neuron, 99(3):609–623.e29.

180. Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30.

181. McDermott, J. H. and Simoncelli, E. P. (2011). Sound Texture Perception via
Statistics of the Auditory Periphery: Evidence from Sound Synthesis. Neuron,
71(5):926–940.

182. McIntosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus, S.
(2016). Deep Learning Models of the Retinal Response to Natural Scenes. In Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc.

183. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., and Moser, M.-
B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature
Reviews Neuroscience, 7(8):663–678.

184. Merfeld, D. M., Zupan, L., and Peterka, R. J. (1999). Humans use internal models
to estimate gravity and linear acceleration. Nature, 398(6728):615–618.

185. Metropolis, N. and S. Ulam (1949). The monte carlo method. Journal of the
American Statistical Association, 44(247):335–341.

186. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver,
D., and Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement
Learning. arXiv:1602.01783 [cs].

187. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs].

188. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

189. Mohamed, A.-r., Dahl, G. E., and Hinton, G. (2012). Acoustic Modeling Using Deep
Belief Networks. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):14–22.

http://dx.doi.org/10.1371/journal.pbio.1002158
http://dx.doi.org/10.1371/journal.pbio.1002158
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1113/jphysiol.1969.sp008820
http://dx.doi.org/10.1016/j.neuron.2018.07.003
http://dx.doi.org/10.1016/j.neuron.2018.07.003
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1016/j.neuron.2011.06.032
http://dx.doi.org/10.1016/j.neuron.2011.06.032
https://papers.nips.cc/paper/2016/hash/a1d33d0dfec820b41b54430b50e96b5c-Abstract.html
http://dx.doi.org/10.1038/nrn1932
http://dx.doi.org/10.1038/19303
http://dx.doi.org/10.1038/19303
http://dx.doi.org/10.1080/01621459.1949.10483310
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TASL.2011.2109382
http://dx.doi.org/10.1109/TASL.2011.2109382

158 BIBLIOGRAPHY

190. Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D.,
and Gershman, S. J. (2017). The successor representation in human reinforcement
learning. Nature Human Behaviour, 1(9):680–692.

191. Montavon, G., Samek, W., and Müller, K.-R. (2018). Methods for interpreting and
understanding deep neural networks. Digital Signal Processing, 73:1–15.

192. Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C.,
Zecchina, R., Onuchic, J. N., Hwa, T., and Weigt, M. (2011). Direct-coupling
analysis of residue coevolution captures native contacts across many protein fami-
lies. Proceedings of the National Academy of Sciences, 108(49):E1293–E1301.

193. Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place Cells, Grid Cells, and the
Brain’s Spatial Representation System. Annual Review of Neuroscience, 31(1):69–
89.

194. Mozeika, A., Saad, D., and Raymond, J. (2010). Noisy random Boolean formulae:
A statistical physics perspective. Physical Review E, 82(4):041112.

195. Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML’10, pages 807–814, Madison, WI,
USA. Omnipress.

196. Narendra, K. and Parthasarathy, K. (1990). Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks, 1(1):4–27.

197. Negele, J. W. (1982). The mean-field theory of nuclear structure and dynamics.
Reviews of Modern Physics, 54(4):913–1015.

198. O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford:
Clarendon Press.

199. Okubo, T. S., Mackevicius, E. L., Payne, H. L., Lynch, G. F., and Fee, M. S.
(2015). Growth and splitting of neural sequences in songbird vocal development.
Nature, 528(7582):352–357.

200. Ólafsdóttir, H. F., Carpenter, F., and Barry, C. (2016). Coordinated grid and place
cell replay during rest. Nature Neuroscience, 19(6):792–794.

201. Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., and
Mordvintsev, A. (2018). The Building Blocks of Interpretability. Distill, 3(3):e10.

202. Ono, S., Okanoya, K., and Seki, Y. (2016). Hierarchical emergence of sequence
sensitivity in the songbird auditory forebrain. Journal of Comparative Physiology
A, 202(3):163–183.

203. Onsager, L. (1944). Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition. Physical Review, 65(3-4):117–149.

204. Opper, M. and Saad, D. (2001). Advanced mean field methods: Theory and prac-
tice. MIT press.

205. Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359.

http://dx.doi.org/10.1038/s41562-017-0180-8
http://dx.doi.org/10.1038/s41562-017-0180-8
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1073/pnas.1111471108
http://dx.doi.org/10.1073/pnas.1111471108
http://dx.doi.org/10.1073/pnas.1111471108
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1103/PhysRevE.82.041112
http://dx.doi.org/10.1103/PhysRevE.82.041112
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1103/RevModPhys.54.913
https://repository.arizona.edu/handle/10150/620894
http://dx.doi.org/10.1038/nature15741
http://dx.doi.org/10.1038/nn.4291
http://dx.doi.org/10.1038/nn.4291
http://dx.doi.org/10.23915/distill.00010
http://dx.doi.org/10.1007/s00359-016-1070-7
http://dx.doi.org/10.1007/s00359-016-1070-7
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1109/TKDE.2009.191

BIBLIOGRAPHY 159

206. Passingham, R. E. (1993). The frontal lobes and voluntary action. The Frontal
Lobes and Voluntary Action. Oxford University Press, New York, NY, US.

207. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chin-
tala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs, stat].

208. Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven
Exploration by Self-supervised Prediction. arXiv:1705.05363 [cs, stat].

209. Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchi-
cal approach. Cognitive Systems Laboratory, School of Engineering and Applied
Science

210. Pearlmutter, B. (1995). Gradient calculations for dynamic recurrent neural net-
works: A survey. IEEE Transactions on Neural Networks, 6(5):1212–1228.

211. Pearson, K. (1901). On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572.

212. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12(85):2825–
2830.

213. Posani, L., Cocco, S., Ježek, K., and Monasson, R. (2017). Functional connectivity
models for decoding of spatial representations from hippocampal CA1 recordings.
Journal of Computational Neuroscience, 43(1):17–33.

214. Potts, R. B. (1952). Some generalized order-disorder transformations. Mathematical
Proceedings of the Cambridge Philosophical Society, 48(1):106–109.

215. Prescott, T. J. (1996). Spatial Representation for Navigation in Animats. Adaptive
Behavior, 4(2):85–123.

216. Radford, A., Jozefowicz, R., and Sutskever, I. (2017). Learning to Generate Reviews
and Discovering Sentiment. arXiv:1704.01444 [cs].

217. Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., and Dormann, N.
(2021). Stable-baselines3. DLR-RM.

218. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). On
the Expressive Power of Deep Neural Networks. In International Conference on
Machine Learning, pages 2847–2854. PMLR.

219. Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional
Ising model selection using l1-regularized logistic regression. The Annals of Statis-
tics, 38(3):1287–1319.

220. Redish, A. D. and Touretzky, D. S. (1997). Cognitive maps beyond the hippocam-
pus. Hippocampus, 7(1):15–35.

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363
http://dx.doi.org/10.1109/72.410363
http://dx.doi.org/10.1109/72.410363
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://dx.doi.org/10.1007/s10827-017-0645-9
http://dx.doi.org/10.1007/s10827-017-0645-9
http://dx.doi.org/10.1017/S0305004100027419
http://dx.doi.org/10.1177/105971239600400201
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1704.01444
https://github.com/DLR-RM/stable-baselines3
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
http://dx.doi.org/10/fdq6hd
http://dx.doi.org/10/fdq6hd
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:1<15::AID-HIPO3>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:1<15::AID-HIPO3>3.0.CO;2-6

160 BIBLIOGRAPHY

221. Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,
A., Clopath, C., Costa, R. P., de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D.,
Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G. W., Miller, K. D., Naud,
R., Pack, C. C., Poirazi, P., Roelfsema, P., Sacramento, J., Saxe, A., Scellier, B.,
Schapiro, A. C., Senn, W., Wayne, G., Yamins, D., Zenke, F., Zylberberg, J., The-
rien, D., and Kording, K. P. (2019). A deep learning framework for neuroscience.
Nature Neuroscience, 22(11):1761–1770.

222. Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., and
Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks.
Nature, 497(7451):585–590.

223. Rizzato, F., Coucke, A., de Leonardis, E., Barton, J. P., Tubiana, J., Monasson,
R., and Cocco, S. (2020). Inference of compressed potts graphical models. Phys.
Rev. E, 101:012309.

224. Robinson, D. (1968). The oculomotor control system: A review. Proceedings of the
IEEE, 56(6):1032–1049.

225. Robinson, D. A. (1989). Integrating with Neurons. Annual Review of Neuroscience,
12(1):33–45.

226. Romo, R., Brody, C. D., Hernández, A., and Lemus, L. (1999). Neuronal correlates
of parametric working memory in the prefrontal cortex. Nature, 399(6735):470–473.

227. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–408.

228. Rossier, J., Haeberli, C., and Schenk, F. (2000). Auditory cues support place
navigation in rats when associated with a visual cue. Behavioural Brain Research,
117(1-2):209–214.

229. Roussel, C., Cocco, S., and Monasson, R. (2021). Barriers and Dynamical Paths in
Alternating Gibbs Sampling of Restricted Boltzmann Machines. arXiv:2107.06013
[cond-mat].

230. Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the monte carlo
method, volume 10. John Wiley & Sons.

231. Ruder, S. (2017). An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs].

232. Rumelhart, D. E., McClelland, J. L., and Group, P. R. (1986). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition: Foundations, vol-
ume 1. A Bradford Book, Cambridge, MA, USA.

233. Saad, D., editor (1999). On-Line Learning in Neural Networks. Publications of the
Newton Institute. Cambridge University Press, Cambridge.

234. Saad, D. and Solla, S. A. (1995). Exact solution for on-line learning in multilayer
neural networks. Physical Review Letters, 74(21):4337.

235. Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann Machines. In Artificial
Intelligence and Statistics, pages 448–455. PMLR.

http://dx.doi.org/10.1038/s41593-019-0520-2
http://dx.doi.org/10.1038/nature12160
http://dx.doi.org/10.1103/PhysRevE.101.012309
http://dx.doi.org/10.1109/PROC.1968.6455
http://dx.doi.org/10.1146/annurev.ne.12.030189.000341
http://dx.doi.org/10.1038/20939
http://dx.doi.org/10.1038/20939
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1016/s0166-4328(00)00293-x
http://dx.doi.org/10.1016/s0166-4328(00)00293-x
http://arxiv.org/abs/2107.06013
http://arxiv.org/abs/2107.06013
http://arxiv.org/abs/1609.04747
https://www.cambridge.org/core/books/online-learning-in-neural-networks/7D901F98C2A4F1CF69648FDAEF6877CD
http://dx.doi.org/10.1103/PhysRevLett.74.4337
http://dx.doi.org/10.1103/PhysRevLett.74.4337
https://proceedings.mlr.press/v5/salakhutdinov09a.html

BIBLIOGRAPHY 161

236. Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. Y. (2011). On
random weights and unsupervised feature learning. In Proceedings of the 28th Inter-
national Conference on International Conference on Machine Learning, ICML’11,
pages 1089–1096, Madison, WI, USA. Omnipress.

237. Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv:1312.6120
[cond-mat, q-bio, stat].

238. Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal Value Function
Approximators. In International Conference on Machine Learning, pages 1312–
1320. PMLR.

239. Schmidt, J., Marques, M. R. G., Botti, S., and Marques, M. A. L. (2019). Recent
advances and applications of machine learning in solid-state materials science. npj
Computational Materials, 5(1):1–36.

240. Schuessler, F., Dubreuil, A., Mastrogiuseppe, F., Ostojic, S., and Barak, O.
(2020a). Dynamics of random recurrent networks with correlated low-rank struc-
ture. Physical Review Research, 2(1):013111.

241. Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Ostojic, S., and Barak, O.
(2020b). The interplay between randomness and structure during learning in RNNs.
arXiv:2006.11036 [q-bio].

242. Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2017a). Trust
Region Policy Optimization. arXiv:1502.05477 [cs].

243. Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2018).
High-Dimensional Continuous Control Using Generalized Advantage Estimation.
arXiv:1506.02438 [cs].

244. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017b).
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs].

245. Seung, H. S. (1996). How the brain keeps the eyes still. Proceedings of the National
Academy of Sciences, 93(23):13339–13344.

246. Song, H. F., Yang, G. R., and Wang, X.-J. (2016). Training Excitatory-Inhibitory
Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
PLOS Computational Biology, 12(2):e1004792.

247. Spiers, H. J. and Barry, C. (2015). Neural systems supporting navigation. Current
Opinion in Behavioral Sciences, 1:47–55.

248. Stachenfeld, K. L., Botvinick, M., and Gershman, S. J. (2014). Design Principles
of the Hippocampal Cognitive Map. Advances in Neural Information Processing
Systems, 27.

249. Stoyan, D. (1987). Berry, D. A. and B. Fristedt: Bandit Problems. Sequential Al-
location of Experiments. Monographs on Statistics and Applied Probability. Chap-
man and Hall, London/New York 1985, 275 S. Biometrical Journal, 29(1):20–20.

250. Summaira, J., Li, X., Shoib, A. M., Li, S., and Abdul, J. (2021). Recent Advances
and Trends in Multimodal Deep Learning: A Review. arXiv:2105.11087 [cs].

http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://proceedings.mlr.press/v37/schaul15.html
http://proceedings.mlr.press/v37/schaul15.html
http://dx.doi.org/10/gf6mdt
http://dx.doi.org/10/gf6mdt
http://dx.doi.org/10.1103/PhysRevResearch.2.013111
http://dx.doi.org/10.1103/PhysRevResearch.2.013111
http://arxiv.org/abs/2006.11036
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1073/pnas.93.23.13339
http://dx.doi.org/10.1371/journal.pcbi.1004792
http://dx.doi.org/10.1371/journal.pcbi.1004792
http://dx.doi.org/10.1016/j.cobeha.2014.08.005
https://proceedings.neurips.cc/paper/2014/hash/dfd7468ac613286cdbb40872c8ef3b06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/dfd7468ac613286cdbb40872c8ef3b06-Abstract.html
http://dx.doi.org/10.1002/bimj.4710290105
http://dx.doi.org/10.1002/bimj.4710290105
http://dx.doi.org/10.1002/bimj.4710290105
http://arxiv.org/abs/2105.11087
http://arxiv.org/abs/2105.11087

162 BIBLIOGRAPHY

251. Sussillo, D. (2014). Neural circuits as computational dynamical systems. Current
Opinion in Neurobiology, 25:156–163.

252. Sussillo, D. and Abbott, L. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4):544–557.

253. Sussillo, D. and Barak, O. (2012). Opening the Black Box: Low-Dimensional
Dynamics in High-Dimensional Recurrent Neural Networks. Neural Computation,
25(3):626–649.

254. Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: an introduc-
tion. Adaptive Computation and Machine Learning series. MIT press,, Cambridge
(Mass.), Etats-Unis d’Amérique, Royaume-Uni de Grande-Bretagne et d’Irlande
du Nord.

255. Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S.,
Numata, H., Nakano, D., and Hirose, A. (2019). Recent advances in physical
reservoir computing: A review. Neural Networks, 115:100–123.

256. Taube, J. S., Muller, R. U., and Ranck, J. B. (1990). Head-direction cells recorded
from the postsubiculum in freely moving rats. I. Description and quantitative anal-
ysis. Journal of Neuroscience, 10(2):420–435.

257. Team, O. E. L., Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., Syg-
nowski, J., Trebacz, M., Jaderberg, M., Mathieu, M., McAleese, N., Bradley-
Schmieg, N., Wong, N., Porcel, N., Raileanu, R., Hughes-Fitt, S., Dalibard, V.,
and Czarnecki, W. M. (2021). Open-Ended Learning Leads to Generally Capable
Agents. arXiv:2107.12808 [cs].

258. Tieleman, T. (2008). Training restricted Boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 1064–1071, New York, NY, USA. Association
for Computing Machinery.

259. Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033.

260. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review,
55(4):189–208.

261. Tubiana, J. and Monasson, R. (2017). Emergence of Compositional Representations
in Restricted Boltzmann Machines. Physical Review Letters, 118(13):138301.

262. Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig,
J. D., Druckmann, S., and Jayaraman, V. (2017). Angular velocity integration in
a fly heading circuit. eLife, 6:e23496.

263. Uria, B., Ibarz, B., Banino, A., Zambaldi, V., Kumaran, D., Hassabis, D., Barry,
C., and Blundell, C. (2020). The Spatial Memory Pipeline: A model of egocentric
to allocentric understanding in mammalian brains. Preprint, Neuroscience.

264. Varga, A. and Moore, R. (1990). Hidden Markov model decomposition of speech
and noise. In International Conference on Acoustics, Speech, and Signal Processing,
pages 845–848 vol.2.

http://dx.doi.org/10.1016/j.conb.2014.01.008
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1016/j.neunet.2019.03.005
http://dx.doi.org/10.1016/j.neunet.2019.03.005
http://dx.doi.org/10.1523/JNEUROSCI.10-02-00420.1990
http://dx.doi.org/10.1523/JNEUROSCI.10-02-00420.1990
http://dx.doi.org/10.1523/JNEUROSCI.10-02-00420.1990
http://arxiv.org/abs/2107.12808
http://arxiv.org/abs/2107.12808
http://dx.doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.1037/h0061626
http://dx.doi.org/10.1103/PhysRevLett.118.138301
http://dx.doi.org/10.1103/PhysRevLett.118.138301
http://dx.doi.org/10.7554/eLife.23496
http://dx.doi.org/10.7554/eLife.23496
http://dx.doi.org/10.1101/2020.11.11.378141
http://dx.doi.org/10.1101/2020.11.11.378141
http://dx.doi.org/10.1109/ICASSP.1990.115970
http://dx.doi.org/10.1109/ICASSP.1990.115970

BIBLIOGRAPHY 163

265. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M.,
Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S.,
Petersen, S., Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T.,
Calderone, K., Keet, P., Brunasso, A., Lawrence, D., Ekermo, A., Repp, J., and
Tsing, R. (2017). StarCraft II: A New Challenge for Reinforcement Learning.
arXiv:1708.04782 [cs].

266. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,
Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E.,
Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt,
P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nature Methods, 17(3):261–272.

267. Von Neumann, J. (2016). Probabilistic logics and the synthesis of reliable organisms
from unreliable components. In Automata Studies.(AM-34), Volume 34, pages 43–
98. Princeton University Press.

268. Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Fam-
ilies, and Variational Inference. Foundations and Trends® in Machine Learning,
1(1-2):1–305.

269. Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization
of Neural Networks using DropConnect. In International Conference on Machine
Learning, pages 1058–1066. PMLR.

270. Ward, T., Bolt, A., Hemmings, N., Carter, S., Sanchez, M., Barreira, R., Noury,
S., Anderson, K., Lemmon, J., Coe, J., Trochim, P., Handley, T., and Bolton, A.
(2020). Using Unity to Help Solve Intelligence. arXiv:2011.09294 [cs].

271. Warren, W. C., Clayton, D. F., Ellegren, H., Arnold, A. P., Hillier, L. W., Künstner,
A., Searle, S., White, S., Vilella, A. J., Fairley, S., Heger, A., Kong, L., Ponting,
C. P., Jarvis, E. D., Mello, C. V., Minx, P., Lovell, P., Velho, T. A. F., Ferris, M.,
Balakrishnan, C. N., Sinha, S., Blatti, C., London, S. E., Li, Y., Lin, Y.-C., George,
J., Sweedler, J., Southey, B., Gunaratne, P., Watson, M., Nam, K., Backstrom, N.,
Smeds, L., Nabholz, B., Itoh, Y., Whitney, O., Pfenning, A. R., Howard, J., Volker,
M., Skinner, B. M., Griffin, D. K., Ye, L., McLaren, W. M., Flicek, P., Quesada, V.,
Velasco, G., Lopez-Otin, C., Puente, X. S., Olender, T., Lancet, D., Smit, A. F. A.,
Hubley, R., Konkel, M. K., Walker, J. A., Batzer, M. A., Gu, W., Pollock, D. D.,
Chen, L., Cheng, Z., Eichler, E. E., Stapley, J., Slate, J., Ekblom, R., Birkhead,
T., Burke, T., Burt, D., Scharff, C., Adam, I., Richard, H., Sultan, M., Soldatov,
A., Lehrach, H., Edwards, S. V., Yang, S.-P., Li, X., Graves, T., Fulton, L., Nelson,
J., Chinwalla, A., Hou, S., Mardis, E. R., and Wilson, R. K. (2010). The genome
of a songbird. Nature, 464(7289):757–762.

272. Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning,
8(3):279–292.

273. Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N.,
and Behrens, T. E. J. (2020). The Tolman-Eichenbaum Machine: Unifying Space

http://arxiv.org/abs/1708.04782
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
http://proceedings.mlr.press/v28/wan13.html
http://proceedings.mlr.press/v28/wan13.html
http://arxiv.org/abs/2011.09294
http://dx.doi.org/10.1038/nature08819
http://dx.doi.org/10.1038/nature08819
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1016/j.cell.2020.10.024
http://dx.doi.org/10.1016/j.cell.2020.10.024

164 BIBLIOGRAPHY

and Relational Memory through Generalization in the Hippocampal Formation.
Cell, 183(5):1249–1263.e23.

274. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256.

275. Wise, S. P. and Murray, E. A. (2000). Arbitrary associations between antecedents
and actions. Trends in Neurosciences, 23(6):271–276.

276. Wishart, J. (1928). The generalised product moment distribution in samples from
a normal multivariate population. Biometrika, 20A(1-2):32–52.

277. Wolpert, D. M. and Miall, R. C. (1996). Forward Models for Physiological Mo-
tor Control. Neural Networks: The Official Journal of the International Neural
Network Society, 9(8):1265–1279.

278. Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in the
cerebellum. Trends in Cognitive Sciences, 2(9):338–347.

279. Wong, K.-F., Huk, A. C., Shadlen, M. N., and Wang, X.-J. (2007). Neural cir-
cuit dynamics underlying accumulation of time-varying evidence during perceptual
decision making. Frontiers in Computational Neuroscience, 1.

280. Wong, K.-F. and Wang, X.-J. (2006). A Recurrent Network Mechanism of Time
Integration in Perceptual Decisions. Journal of Neuroscience, 26(4):1314–1328.

281. Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming,
151(1):3–34.

282. Wu, F. Y. (1982). The Potts model. Reviews of Modern Physics, 54(1):235–268.

283. Wydmuch, M., Kempka, M., and Jaśkowski, W. (2018). ViZDoom Competitions:
Playing Doom from Pixels. arXiv:1809.03470 [cs, stat].

284. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., and Wang, X.-J.
(2019). Task representations in neural networks trained to perform many cognitive
tasks. Nature Neuroscience, 22(2):297–306.

285. Yang, G. R. and Wang, X.-J. (2020). Artificial Neural Networks for Neuroscientists:
A Primer. Neuron, 107(6):1048–1070.

286. Young, J. Z. (1938). The Functioning of the Giant Nerve Fibres of the Squid.
Journal of Experimental Biology, 15(2):170–185.

287. Zaremba, W., Sutskever, I., and Vinyals, O. (2015). Recurrent Neural Network
Regularization. arXiv:1409.2329 [cs].

288. Zeigler, H. P. and Marler, P., editors (2004). Behavioral neurobiology of birdsong.
Behavioral Neurobiology of Birdsong. New York Academy of Sciences, New York,
NY, US.

289. Zhang, J., Tai, L., Liu, M., Boedecker, J., and Burgard, W. (2020). Neural SLAM:
Learning to Explore with External Memory. arXiv:1706.09520 [cs].

http://dx.doi.org/10.1016/j.cell.2020.10.024
http://dx.doi.org/10.1016/j.cell.2020.10.024
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1016/S0166-2236(00)01570-8
http://dx.doi.org/10.1016/S0166-2236(00)01570-8
http://dx.doi.org/10.1093/biomet/20A.1-2.32
http://dx.doi.org/10.1093/biomet/20A.1-2.32
http://dx.doi.org/10.1016/s0893-6080(96)00035-4
http://dx.doi.org/10.1016/s0893-6080(96)00035-4
http://dx.doi.org/10.1016/S1364-6613(98)01221-2
http://dx.doi.org/10.1016/S1364-6613(98)01221-2
http://dx.doi.org/10.3389/neuro.10.006.2007
http://dx.doi.org/10.3389/neuro.10.006.2007
http://dx.doi.org/10.3389/neuro.10.006.2007
http://dx.doi.org/10.1523/JNEUROSCI.3733-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.3733-05.2006
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1103/RevModPhys.54.235
http://arxiv.org/abs/1809.03470
http://arxiv.org/abs/1809.03470
http://dx.doi.org/10.1038/s41593-018-0310-2
http://dx.doi.org/10.1038/s41593-018-0310-2
http://dx.doi.org/10.1016/j.neuron.2020.09.005
http://dx.doi.org/10.1016/j.neuron.2020.09.005
http://dx.doi.org/10.1242/jeb.15.2.170
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1706.09520
http://arxiv.org/abs/1706.09520

BIBLIOGRAPHY 165

290. Zhang, Q.-s. and Zhu, S.-c. (2018). Visual interpretability for deep learning: A
survey. Frontiers of Information Technology & Electronic Engineering, 19(1):27–
39.

291. Zhao, D., Zhang, Z., Lu, H., Cheng, S., Si, B., and Feng, X. (2020). Learning
Cognitive Map Representations for Navigation by Sensory-Motor Integration. IEEE
transactions on cybernetics.

http://dx.doi.org/10.1631/FITEE.1700808
http://dx.doi.org/10.1631/FITEE.1700808
http://dx.doi.org/10.1109/TCYB.2020.2977999
http://dx.doi.org/10.1109/TCYB.2020.2977999

Appendix A

Recurrent Neural Integrators

A.1 Fully averaged loss for linear single-channel integrators

For an arbitrary input sequence (xt)0≤t≤T−1, we compute through induction the value of
the output at any time t as:

∀t ∈ N, yt =
t∑

q=0
xt−qd

TW q+1e :=
t∑

q=0
xt−qµq+1 (A.1)

The target output is yt = s
∑t
q=0 xt−qγ

q+1, so that the square error is:

ε2t = (yt − yt)2

= [
t∑

q=0
xt−q(µq+1 − sγq+1)]2

=
t∑

q,p=0
xt−qxt−p(µq+1 − sγq+1)(µp+1 − sγp+1)

(A.2)

The loss to minimize is the average of the sum of those errors along input sequences of
length T :

L(W) =
〈
T−1∑
t=0

ε2t

〉
=
〈
T−1∑
t=0

t∑
p,q=0

xt−qxt−p(µq+1 − sγq+1)(µp+1 − sγp+1)
〉

=
〈
T−1∑
t=0

T−1∑
p,q=0

xt−qxt−p1q≤t1p≤t

〉
(µq+1 − sγq+1)(µp+1 − sγp+1)

=
T−1∑
p,q=0

〈
T−1∑
t=0

xt−qxt−p1q≤t1p≤t

〉
(µq+1 − sγq+1)(µp+1 − sγp+1)

:=
T∑

p,q=1
χqp(µq − sγq)(µp − sγp)

(A.3)

where we introduced the time-integrated correlation matrix χ.

166

Recurrent Neural Integrators 167

χ is symmetric, and it is easily shown that:

∀v ∈ RT ,v†χv =
T−1∑
p,q=0

vqχqpvp =
T−1∑
p,q=0

〈
T−1∑
t=0

vqxt−qxt−p1q≤t1p≤tvp

〉

=
〈
T−1∑
t=0

(
T−1∑
q=0

vqxt−q1q≤t)(
T−1∑
p=0

xt−p1p≤tvp)
〉

=
T−1∑
t=0

〈 t∑
p=0

xt−p vp

2〉
.

(A.4)

Therefore, χ is non-negative. Assuming now that v is such that the quadratic form
above vanishes, the term corresponding to t = 0, equal to v2

0〈x2
0〉 vanishes, entailing that

v0 = 0 as soon as the input is assumed to have positive probability to be non-zero at this
first time-step. Then, the t = 1 contribution, 〈(x0 v1 + x1 v0)2〉 = 〈(x0 v1)2〉 also vanishes,
which implies that v1 = 0. By recursion over t, all the components of v must vanish,
which shows that χ is definite positive.

A.2 Gradient and Hessian of the linear single channel loss

We have:

∇WijL =
T∑

q,p=1
χqp

[
(µq − sγq)

∂µp
∂Wij

+ (µp − sγp)
∂µq
∂Wij

]

= 2
T∑

q,p=1
χqp(µq − sγq)

∂µp
∂Wij

.

(A.5)

We compute through induction:

∂W p
ij

∂Wkl
=

p−1∑
m=0

Wm
ikW

p−1−m
lj hence ∂µp

∂Wkl
=

n∑
i,j=1

p−1∑
m=0

diW
m
ikW

p−1−m
lj ej (A.6)

So that the gradient of L with respect to W is:

∇WijL = 2
T∑

q,p=1
χqp(µq − sγq)

p−1∑
m=0

∑
α,β

(dαWm
αi)(W

p−1−m
jβ eβ) (A.7)

We now want to compute the Hessian H of this loss:

Hij,kl = ∂L
∂Wij∂Wkl

= 2
T∑

q,p=1
χqp(µq − sγq)

∂

∂Wkl

 p−1∑
m=0

∑
α,β

(dαWm
αi)(W

p−1−m
jβ eβ)


+ 2

T∑
q,p=1

χqp
∂µq
∂Wkl

p−1∑
m=0

∑
α,β

(dαWm
αi)(W

p−1−m
jβ eβ)

(A.8)

We will only be interested in the value of the Hessian at global minima of L, so that
the first term in this equation will not contribute. In that case, we find:

Hij,kl = 2
T∑

q,p=1
χqp

 p−1∑
m=0

∑
α,β

(dαWm
αi)(W

p−1−m
jβ eβ)

 n∑
α̃,β̃=1

q−1∑
m̃=0

dα̃W
m̃
α̃kW

q−1−m̃
lβ̃

eβ̃

 (A.9)

168 Recurrent Neural Integrators

A.3 Two special cases of null initialization

Exact solution for T = 1. We begin by the simplest case possible, when the epochs
are of length 1. The gradient descent updates become in that case:

∆Wij = −2η(d†We− sγ)diej (A.10)

Hence, we have at any time W = ωdeT , so that we can study the optimization
dynamics on the scalar ω only :

∆ω = −2η(ω||e||2||d||2 − sγ) (A.11)

Therefore, after τ steps of optimization, the coefficient ω is equal to

ω(τ) = sγ

||e||2||d||2
[1− (1− 2η||e||2||d||2)τ] (A.12)

This dynamics is stable if and only if η < ||e||−2||d||−2. When it is, the network
converges exponentially fast to W = γs

||e||2||d||2de
T , which gives the following moments :

∀k ≥ 1, µk = γs(γs e · d
||e||2||d||2

)k−1 (A.13)

Therefore, in that case, we converge towards a solution that achieves the desired scaling
s, but has a decay constant that is fixed by the initial choice of s, e and d.

Same encoder and decoder, T > 1, uncorrelated inputs. For this part, we assume
that e = d. Considering that the first update in that case is proportional to eeT , all
subsequent ones are too, so we know that W (t) = ω(t)ee† and the dynamics can be
studied on the scalar ω only.

Because of this, all moments are given by µk = ωk||e||2k+2 = ||e||2(ω||e||2)k. The
corresponding scale and decay are respectively ||e||2 and ω||e||2, and because of this it is
only possible to obtain a Generalizing Integrator at scale s = ||e||2.

The fixed points of the gradient descent dynamics are the real roots of the following
polynomial P :

∆ω
η

= 2
T∑
k=1

k(T + 1− k)(ωk||e||2k+2 − sγk)ωk−1||e||2k−2 := P (ω) (A.14)

Choosing s = ||e||2, we can check with Mathematica that for any value of T larger
than 2, this polynomial has a single real root at ω = γ/||e||2, which is a generalizable
minimum. Since the leading order term in this polynomial is of odd degree, we know that
limw→±∞ P (ω) = ±∞, and therefore the derivative of P at ω = γ/||e||2 is positive, so
that this value of ω is an attractive fixed-point of the dynamics. As before, the dynamics
is convergent only if the learning rate is smaller than P ′(γ/||e||2)−1.

A.4 Moments in the low-rank parametrization

We have defined ω so that

W =
2∑

a,b=1
ωa,bva vb

†. (A.15)

Recurrent Neural Integrators 169

Because of the orthogonality conditions va†vb = δa,b, we can easily compute the powers
of W as:

W k =
2∑

a,b=1
(ωk)a,bva vb†, (A.16)

which yields the following moments:

µk = d†W ke = d†
2∑

a,b=1
ωka,bva vb

†e

=
2∑

a,b=1

√
Σ1,aω

k
a,b

√
Σb,2 = (

√
Σωk
√

Σ)1,2

(A.17)

We now assume ω to be diagonalizable as ω = PωΛωP
−1
ω , so that:

µk = (
√

Σωk
√

Σ)1,2 = (
√

ΣPωΛk
ωP
−1
ω

√
Σ)1,2

=
2∑
i=1

λki (
√

ΣPω)1,i(P−1
ω

√
Σ)i,2 =

2∑
i=1

λki (P †ω
√

Σ)i,1(P−1
ω

√
Σ)i,2

:=
2∑
i=1

giλ
k
i

(A.18)

Using a reasoning similar to the one of Section 7.3.1, we find the same conditions (7.14)
for Generalizing Integrators, but with a new expression of the g coefficients.

A.5 Generalizing Integrators in null initialization space

In this section, we seek to determine all matrices ω that correspond to Generalizing Inte-
grators at decay γ. A first, obvious condition is that at least one of the eigenvalues of ω
has to be equal to γ. Without loss of generality, we will consider this eigenvalue to be the
first one, and we will denote the other λ.

The matrix Pω that diagonalizes ω can be parametrized as:

Pω =
(
u1 v1
u2 v2

)
(A.19)

Each column of Pω can be independently multiplied by a non-zero scalar and yield the
same ω. There are therefore three cases: either u1 or v1 is null (but not both, since P
would then not be invertible), or both are non-zero.

We also recall that

g1 + g2 =
2∑
i=1

[(
√

ΣPω)1,i(P−1
ω

√
Σ)i,2] = Σ1,2 = d†e (A.20)

Case u1 6= 0 and v1 6= 0.

In that case, the modal matrix Pω of ω⊥ will be parametrized as follows, with α 6= β to
ensure invertibility:

Pω =
(

1 1
α β

)
(A.21)

170 Recurrent Neural Integrators

This results in the following parametrization of the space Eγ of two by two matrices
with at least one eigenvalue equal to γ :

Eγ =

Γ(λ, α, β) =
(

1 1
α β

)(
γ 0
0 λ

)(
1 1
α β

)−1

; (λ, α, β) ∈ R3, α 6= β


=
{

1
α− β

(
αλ− βγ γ − λ
αβ(λ− γ) αγ − βλ

)
; (λ, α, β) ∈ R3, α 6= β

} (A.22)

If λ = γ : All values of α and β correspond to γ1, a perfect integrator at scale s∗ = d†e.

If λ 6= γ and λ 6= 0 : In that case, we need to impose g2(α, β) = 0, otherwise the sec-
ond eigenvalue will contribute to the output and the system will not be a Generalizing
Integrator. This will in turn impose that g1 = d†e, and hence these will be integrators at
scale s = d†e/γ. We find that:

g2[α, β] = Z
(α− β0)(β − α0)

α− β
(A.23)

where: 

α0 = −(κ− l−)r− + (κ+ l−)r+
2d†e(r+ − r−)

β0 = (κ+ l−)r− + (κ− l−)r+
2d†e(r+ − r−)

Z = [d†e(r+ − r−)]2
2κ2

l± = ||d||2 ± ||e||2

κ =
√
l2− + 4(d†e)2 ∈]0, l+[

r± =
√
l+ ± κ

(A.24)

Hence, there are two manifolds of points satisfying g2(α, β) = 0:{
Mα = {Γ(λ, α, α0), (λ, α) ∈ R2}
Mβ = {Γ(λ, β0, β), (λ, β) ∈ R2}

(A.25)

where Γ is defined in equation (A.22). These two manifolds intersect along a 1-
Dimensional manifold:

Mα ∩Mβ = {Γ(λ, β0, α0), λ ∈ R} (A.26)

If λ = 0 : The system will always be a perfect integrator at decay γ, since no other
eigenvalue can contribute to the output. Its scale is determined by :

s = g1(α, β) = Z
(α− α0)(β − β0)

β − α
(A.27)

From this result, we deduce the following:

• For any given value of s /∈ {0,d†e}, the set of values of α, β that give c1[α, β] = s
is a one-dimensional manifold, as can be seen in Figure A.1. A parametrization of

Recurrent Neural Integrators 171

Figure A.1: Structure of the minima in the null initialization subspace. On the left, we
present the structure of the manifolds of 2× 2–matrices with exactly one eigenvalue equal
to γ, and both eigenvectors with non-zero first components. The coefficients α and β
parametrize the eigenvectors, and λ is the second eigenvalue. The ”slow minima”, which
are located at the intersections of our manifolds, are the ones towards which convergence
of Gradient Descent can be algebraically slow, see Section A.8. On the right, we detail
the structure of the isoscale manifolds in the λ = 0 submanifold, and show that they are
indeed one-dimensional as long as s /∈ {0,d†e}. While the lines appear to cross, they
do so only on the α = β line which is a singularity of our parametrization and therefore
non-physical.

this manifold can be obtained by inverting equation (A.27) as the set Γ(0, α, βs(α))
where Γ is defined in equation (A.22) and:

βs(α) = Z(α− α0)β0 − αs
Z(α− α0)− s . (A.28)

• When s = 0, the two solutions are α = α0 or β = β0, no matter the value of the
other parameter.

• When s = d†e, equation (A.27) is not invertible and the condition g1 = s is satisfied
if and only if β = α0 or α = β0, which are exactly the intersection of the Mα (resp.
Mβ) manifolds of equation (A.25) with the λ = 0 subspace.

From ω to W

We have shown that in the generic case s /∈ {0,d†e}, the Generalizing Integrators at scale
s correspond to ω of rank 1 and form a 1–dimensional manifold.

Such matrices ω can be parametrized as:

Mλ=0 =
{

γ

β − α

(
β −1
αβ −α

)
; (α, β) ∈ R2, α 6= β

}

=
{
σωxy

†; σω = γ
√

(α2 + 1)(β2 + 1)
β − α

,

x = 1√
α2 + 1

(
1
α

)
, y = 1√

β2 + 1

(
β
−1

)
,

(α, β) ∈ R2, α 6= β

}
(A.29)

172 Recurrent Neural Integrators

where x and y are respectively the left and right eigenvector of the corresponding rank 1
matrix. When ω is of that form, we have:

W = σω
∑
a,b

xaybva vb
† = σω(

∑
a

xava)(
∑
b

ybvb
†) := σlr†, (A.30)

so that W (ω) is of rank 1 too.

Case u1 = 0
The matrix Pω that diagonalizes ω will be parametrized as:

Pω =
(

0 1
1 v

)
(A.31)

and is always invertible no matter the value of v 6= 0.
Now, there are two degrees of freedom λ and v, and the corresponding matrices are:

ω =
(

λ 0
(γ − λ)v γ

)
(A.32)

As before, the scale s is determined by cγ , which depends linearly on v. Hence, the
choice of scale fixes v, and either λ has to be chosen either equal to 0 when s is different
from d†e (yielding a single solution) or it remains free if the choice of scale imposes cλ = 0
(yielding a 1D manifold).

A perfectly analogous reasoning can be applied when v1 = 0 and u1 6= 0, and in both
cases the manifolds of solution are of lower dimension than their counterparts which have
non-zero u1 and u2; we discard those solutions as we expect them to be smooth limits of
the generic case.

A.6 Gradients and Hessian in the low-rank parametrization

We will now explicitly compute the derivative of the loss with respect to the 2× 2–matrix
ω. We previously found that:

µq = d†W qe = (
√

Σωq
√

Σ)12

=
2∑

a,b=1

√
Σ1aω

q
ab

√
Σb2

(A.33)

and we have that:
∂ωqa,b
∂ωij

=
q−1∑
m=0

ωmaiω
q−1−m
jb (A.34)

so that:
∂µq
∂ωij

=
q−1∑
m=0

(
√

Σωm)1i(ωq−1−m√Σ)j2 (A.35)

which allows us to compute the gradient of the loss with respect to the coefficients of
ω through:

∂L
∂ωij

= 2
T∑

q,p=1
χq,p(µq − sγq)

∂µp
∂ωij

(A.36)

Recurrent Neural Integrators 173

We can now compute the Hessian of the loss, which will allow us to derive formulas for
stability and speed of convergence of Gradient Descent. This Hessian can be decomposed
as follows:

Hij,kl = ∂L
∂ωij∂ωkl

=
T∑

q,p=1
χq,p

[
∂µq
∂ωij

∂µp
∂ωkl

+ (µq − sγq)
∂µp

∂ωij∂ωkl

]
(A.37)

We want to estimate this Hessian at rank 1 generalizing integrators, so that the second
part will always be zero. Therefore, the Hessian is simply:

Hij,kl =
T∑

q,p=1
χq,p

 q−1∑
m=0

(
√

Σωm)1i(ωq−1−m√Σ)j2


×

 p−1∑
m̃=0

(
√

Σωm̃)1k(ωp−1−m̃√Σ)l2

 (A.38)

A.7 Minimum convergence time

We are now interested in studying the dynamics of convergence towards the GIs W ∗ in
the null initialization subspace. To do so, we use a Taylor expansion of the loss around
one of its minima:

L(W ∗ + δW) =
n∑

i,j,k,l=1
δWij Hij,kl(W ∗) δWkl (A.39)

Seeing δW as a vector and H as a (symmetric) matrix, we can diagonalize H with
real eigenvalues λI and normalized eigenvectors uI , and express δW = ∑n2

I=1 δIuI in that
basis so that:

L(W ∗ + δW) =
n2∑
I=1

λI δ
2
I (A.40)

Since our loss is positive for any weight-matrixW , we expect that all eigenvalues of the
Hessian computed at a GI be positive. We also expect that (in the generic case s 6= d†e)
one of them is 0, corresponding to the local tangent to the 1–dimensional manifold of GIs.

Writing the GD dynamics on the perturbation δ, we find that:

δ
(τ+1)
I = (1− ηλI)δ(τ)

I , (A.41)

hence δ will see each of its components either be conserved (if it corresponds to a null
eigenvalue) or evolve exponentially. This exponential evolution is convergent as long as
|1− ηλI | < 1, and monotonic as long as η < 1/λI . Choosing the optimal learning rate for
the full system η∗ = 1/λmax, the slowest component of δ evolves as

(1− η∗λmin)τ = (1− λmin/λmax)τ ' eτ ln (1−C−1) ' e−τ/C ,

hence the characteristic convergence time will be C = λmax/λmin
1

Since in the null initialization case the weights are parametrized by a 2×2–matrix, the
Hessian is 4 × 4 and its spectrum can easily be computed numerically by using equation

1λmin is the minimum non-zero eigenvalue.

174 Recurrent Neural Integrators

10−3 10−2 10−1 100 101

Scale s

101

102

103

104

105

106

107

C
o
n

d
it

io
n

n
u

m
b

er
C

Changing d scale

|d|=1.0

|d|=0.3

10−3 10−2 10−1 100 101

Scale s

101

102

103

104

105

106

107

C
o
n

d
it

io
n

n
u

m
b

er
C

Changing e scale

|e|=1.0

|e|=0.3

10−3 10−2 10−1 100 101

Scale s

102

104

106

108

C
o
n

d
it

io
n

n
u

m
b

er
C

Changing overlap

o=0.0

o=0.8

10−3 10−2 10−1 100 101

Scale s

101

102

103

104

105

106

107

C
o
n

d
it

io
n

n
u

m
b

er
C

Changing both scales

|e|=0.5, |d|=2.0

|e|=2.0, |d|=0.5

d · e
|d||e|

Figure A.2: Evolution of the minimum convergence time as a function of the scale.

(A.38). We therefore performed the following study: fixing the L2 norm of the encoder
and decoder as well as their dot product2, we evaluate the spectrum of H and deduce
from it the condition number C along each manifold of rank 1 s–scaled GIs; we find that
a minimum exists for α, β (see Appendix A.5) of order 1, and this value will be a lower
bound for the convergence time to any GI at scale s using Gradient Descent. We plot
the value of this bound as a function of s for different initial choices of i/o–vectors in
Figure A.2.

A.8 Algebraic convergence for specific scale value

From the previous analysis, it seems that when s = d†e the λ = 0 manifold of solutions
is hard to reach. Numerically, we see that Gradient Descent converges to a solution that
lies in the union of the two 2D manifolds described earlier, corresponding to W of rank a
priori 2. If we initialize with a random, non-zero, W in the null initialization subspace, we
converge exponentially; if we start from W = 0, the convergence is algebraic as a power
law τ−2 instead of exponential (see Figure A.3).

To understand this phenomenon, we will consider the continuous-time, non-linear dif-
ferential equation on the coefficients of ω: ω̇ = −∂ωL. Let us also introduce the two

2In order to generate e and d with macroscopic overlaps (larger than n−1/2), we first draw them
independently, normalize them to 1, then modify the decoder as d = oe + (1− o)d where o is the overlap;
for large enough n, the dot product d†e will be close to this overlap. We then independently rescale them
to the desired norm.

Recurrent Neural Integrators 175

Figure A.3: Explanation of the dynamics of convergence towards a minimum at s = d†e.
(Left) Informal representation of GD trajectories. Two types of trajectories converging
to GIs exist: starting from a random W in the null initialization subspace (middle), we
usually converge outside the intersection of the two manifolds exponentially fast, with a
fairly wide range of times of convergence depending on the precise starting point; in rare
cases, that random starting point lies on (or close enough to) the slow manifold on which
convergence is as a power law τ−2. We illustrate this algebraic convergence by starting
from W = 0 (right), which is experimentally found to be on the slow manifold. Both
experimental curves show 8 different realizations of the training, with same learning rate,
norms of vectors and overlap (but scale chosen exactly to d†e after e and d have been
drawn for that particular realization of the experiment).

manifolds of GIs at scale s = d†e:

Mα0(α, λ) = 1
α− α0

(
αλ− α0γ γ − λ
αα0(λ− γ) αγ − α0λ

)

Mβ0(β, λ) = 1
β − β0

(
βγ − β0λ λ− γ
ββ0(γ − λ) βλ− α0γ

) (A.42)

In the following, we refer respectively to the union and the intersection of those mani-
folds as U and I. If we consider any GI M in U \I, numerical experiments show that the
Hessian has exactly two null and two strictly positive eigenvalues; the two null directions,
which give us the linearized center space Ec around M in which convergence is at most as
a power law, correspond to the local tangent of the manifold of minima and are therefore
not relevant: convergence of the loss is exponential.

On the other hand, if M ∈ I, the Hessian exhibits three null eigenvalues (because
the manifolds of minima intersect non-tangentially), so that the center space Ec is now
of dimension 3. Since the GIs are only two 2D planes, there exists an invariant manifold
along which convergence is not exponential. Denoting as x the coordinate along that slow
direction, the Center Manifold Theorem ensures that the evolution of x is given by:

ẋ = g(x), (A.43)

where g is a polynomial of order at least 2 with neither constant nor first order term.
Assuming that the order two term is non-zero, we get that locally, for x close to 0,

ẋ = ax2. Integrating over time, we get that x evolves as τ−1. We then look at the value
of the loss when ω is equal to a generalizing minimum M plus a small perturbation X of

176 Recurrent Neural Integrators

order x:

L =
T∑

q,p=1
χqp(µq − sγq)(µp − sγp)

=
T∑

q,p=1
χqp

[√
Σ (M +X)q

√
Σ)12 − sγq

] [√
Σ (M +X)p

√
Σ)12 − sγp

]

=
T∑

q,p=1
χqp

[
(
√

ΣM q
√

Σ)12 − sγq +O(x)
] [

(
√

ΣMp
√

Σ)12 − sγp +O(x)
]

= O(x2)

(A.44)

Therefore, if the quadratic term of g is non-zero, x scales as τ−1 and the loss as τ−2

when τ is large, as is observed experimentally. It should be noted that this result does not
depend on the value of T nor on the choice of e and d, as observed experimentally too.

Therefore, algebraic convergence is observed only when very strict conditions are met:

• the gradient descent starts from a very specific subspace, the pre-image of the inter-
section, which we will refer to as a ”slow manifold”. It is of lower dimension than the
initial space of weight-matrices, so that random initial conditions will almost never
satisfy this criterion.

• the system always remains on the trajectory of GD. In particular, this means that η
and the noise on the computed updates need to be small enough that we don’t acci-
dentally leave the slow manifold, which would then lead to exponential convergence.

A.9 Single-channel ReLU proxy loss gradients and Hessian

We have shown in Section 7.4.2 that the two following pairs of conditions are enough to
guarantee perfect integration of arbitrary signals:{

d†b±Wec+ = ±sγ
W b±Wec+ = ±γWe

(A.45)

We define the proxy loss as the sum of four terms corresponding to the residuals of
those equalities:

Lproxy = L1
+ + L1

− + L2
+ + L2

− (A.46)
where L1

± = (d†b±Wec+ − ±sγ)2 and L2
± = |W b±Wec+ − ±γWe|2.

The gradients of these quantities are computed as :

∂L1
±

∂Wij
= 2(d†b±Wec+ − ±sγ)(±diH(±We)iej)

∂L2
±

∂Wij
= 2(W b±Wec+ − ±γWe)|i(b±Wec+ −±sγ)|j

±2ej
∑
a

(W b±Wec+ − ±γWe)|aWaiH(±We)|i

(A.47)

where H is the elementwise Heaviside function, that takes a vector as input and
returns a vector whose k-th component is 0 if the k-th component of the input was strictly
negative, 1 if it was strictly positive, and .5 if it is exactly 0.

Recurrent Neural Integrators 177

The Hessian of the L1 terms is readily computed as :

∂L1
±

∂Wij∂Wkl
=2diH(±We)|iejdkH(±We)|kel)

+ 2(d†b±Wec+ − ±sγ)δikdiejelδ(±We)|i
(A.48)

where δ is the discrete Dirac distribution δik which is one if i = k and 0 otherwise,
and δ the componentwise Dirac distribution such that δ(v) is a vector of same shape as v
whose components are 1 if the corresponding component of v is 0, and 0 otherwise. This
part of the Hessian is indeed symmetric by exchange of ij and kl because of the δik in the
second term.

The Hessian of the L2 terms is more complicated, but can be found to be :

1
2

∂L2
±

∂Wij∂Wkl
=
∑
a

WaiWakejelH(±We)iH(±We)k

+
∑
a

(W b±Wec+ − ±γWe)|aWaiδikδ(±We)|iejel

+ δik(b±Wec+ − ±γe)|j (b±Wec+ − ±γe)|l
+±[δjk(W b±Wec+ − ±γWe)|ielH(±We) + ij ⇔ kl]
+±[(b±Wec+ − ±γe)|jWikelH(±We)|k + ij ⇔ kl]

(A.49)

Combining those four terms, we get the Hessian of our full proxy loss:

1
2

∂Lproxy±
∂Wij∂Wkl

= diejdkel[H(We)|iH(We)|k +H(−We)|iH(−We)|k]

+ ejel
∑
a

WaiWak[H(We)|iH(We)|k +H(−We)|iH(−We)|k]

+ δik [(bWec+ − γe)|j(bWec+ − γe)|l]
+ δik [(b−Wec+ + γe)|j(b−Wec+ + γe)|j]

+
[
δjk(W 2e− 2γWe)|iel + ij ⇔ kl

]
+ [Wik(We− 2γe)|jel + ij ⇔ kl]
+ δikdiejeld

†|We|δ(We)|i
+ δikejeld

†|We|
∑
a

Wai(W |We|)|aδ(We)|i

(A.50)

Contrary to the linear null initialization case where the Hessian was a 4 × 4–matrix,
we have no way to a priori reduce the number of degrees of freedom, and H is a n2 × n2–
matrix. We are therefore restricted to a very low number of neurons (around 50 in our
case) for the diagonalization to remain computationally tractable. Another major obstacle
is that we do not have an analytical expression of the GI manifolds at which we want to
evaluate the Hessian. We adopted the following methodology: first, we train networks on
the proxy loss using Gradient Descent at low learning rate and wait for convergence; we
evaluate the largest eigenvalue λ+ of H at the obtained weight-matrix, but do not compute
the lowest ones as they are both prone to numerical errors, and not necessarily positive
as some small negative eigenvalues will exist when we are only close to a GI; we compute
an ”effective” lowest eigenvalue by fitting the decay of the loss during GD at learning rate

178 Recurrent Neural Integrators

10 1 100 101
100

101

102

103

104

10 1 100 101

101

102

103

Figure A.4: Experimentally determined values of the highest eigenvalue of the Hessian
around the GI manifold, determining the optimal stable learning rate for GD, and of the
empirical convergence time as a function of the scale. Numerical experiments carried out
with n = 50 neurons, independent encoder and decoder of norm 1.

Figure A.5: Behavior of the singular value σ and dot products of the singular vectors l, r
with e,d as functions of s. The figure was obtained with n = 1000, independently drawn
encoder and decoder, and aggregated across 6 realizations of GD on the proxy loss. Error
bars are not reported as they are not distinguishable from the line width.

η < 1/λ+, and deduce the corresponding minimum convergence time. The results of these
numerical simulations are presented in Figure A.4. We performed tests on larger networks
to verify if the inferred maximum stable learning rate remained valid, as well as the order
of magnitude of the convergence time, yielding the expected results.

A.10 Analysis of rank-1 ReLU generalizing integrators

Training of the ReLU RNNs, either on real data or on the proxy loss (7.31), leads to GIs
exhibiting one dominant singular value. As in the linear case, we write W = σlr†; with
no loss of generality, we can impose r†e > 0 by multiplying r and l by −1. Conditions
(7.30) become {

σ r†l± = ±γ
σ(r†e)(d†l±) = ±sγ

where l± = b±lc+. (A.51)

Using Cauchy-Schwarz inequality, and denoting as 1± the vector whose component i is
equal to 1 if li is of the corresponding sign and 0 otherwise, we have:

|d†l±| = |(d1±)†(±l1±)| ≤ |d1±||l1±|. (A.52)

Recurrent Neural Integrators 179

Figure A.6: Weight-matrix W of a single-channel ReLU network, visualized as a discrete
heatmap. Neurons were reordered so that the indices of the ”+” population are from 0 to
n/2, while the ”-” population goes from n/2 to n. When s = 0.1, the sign of Wij is fully
determined by whether i and j are in the same cluster; when s = 10, this observation is
no longer true. We also note that, as expected, the coefficients of W are larger when s
increases as the norm of W scales as max(1, s). This figure was obtained for independent
encoder and decoder of scale 1, n = 1000.

Assuming half of the components of l are positive and half are negative, as confirmed by
numerical studies, and given that |d| = |l| = 1, both norms on the right-hand side are
equal to 2−1/2 in the large n limit, yielding |d†l±| ≤ 1/2. Since 0 ≤ r†e ≤ 1, we conclude
that σ ≥ 2sγ. Similarly, we have that |r†l±| ≤ 1/2, implying σ ≥ 2γ. These conditions
can then be summarized into σ ≥ 2γmax(s, 1).

Experimentally, we find that this lower bound is closely followed when s is either large
or small. Since W is of rank 1, its Frobenius norm is equal to σ, and we argue that the
saturation of this lower-bound on σ is a manifestation of the conjecture of (Arora et al.,
2019) that gradient descent implicitly favors solutions with small matrix norm. Therefore,
we have for any scale s significantly different from 1:

σ = 2γmax(s, 1). (A.53)

Numerical experiments show that, for a wide range of scales, l and d are almost
equal. Hence, d†l± = ±|db±dc+|2 ' ±1/2, entailing r†e ' min(s, 1) . For s � 1,
r is almost aligned with d, while for s > 1 we have r ' e (This statement holds for
uncorrelated encoder and decoder). Our theoretical predictions are in very good agreement
with numerical experiments, as shown in Figure A.5. Notice that the change of direction
of r with s has consequences on the signs of the couplings: Wij is positive for pairs of
neurons within the ”+” and ”-” populations and negative in between at small s, but is
essentially random at large s, see Figure A.6.

A.11 Transfer learning: context-dependent selectivity

In order to illustrate the versatility of the current-linear representations described in the
main text, we implement a simple example of transfer learning to context-dependent selec-
tivity, inspired by (Mante et al., 2013). The idea is the following: a pretrained 3–channels
integrator is used to integrate 3 time-series x0, x1, x2 (respectively, the motion evidence,
color evidence and contextual cue in the experiment described by (Mante et al., 2013))

180 Recurrent Neural Integrators

Figure A.7: Output of an online context-dependent classifier. The task is the following:
the network receives D = 3 input channels; when the integral y2 is negative, the network
must output 0 if y0 < 0 and 1 if y0 > 0; when the integral y2 is positive, the network must
output 0 if y1 < 0, and 1 if y1 > 0. This result is obtained by training a sigmoidal decoding
layer on the internal states of a fixed sigmoidal network pretrained through batch–SGD.

into their decaying integrals y0, y1, y2, potentially with different decay constants. The cue
integral y2 is used to determine to which integral, y0 or y1, the network must be sensitive:
when y2 is negative, the network must output 0 if y0 < 0 and 1 if y0 > 0; when the integral
y2 is positive, the network must output 0 if y1 < 0, and 1 if y1 > 0.

To train this network, we first train the 3–channels integrator using any of the methods
described in the main text. We then use it as a fixed input transformer, mapping a 3–
dimensional time-series to a n–dimensional one (the state ht at any time-step). For each
time-step, the value of the expected output is determined using the aforementioned rules
on y, and the classification output is obtained as outt = (1 + e−50(u†ht−0.1))−1. The
trainable parameter of this new decoding layer is the vector u. It is easy to learn the value
of u through batch–SGD using the supervised learning procedure described here, and the
resulting networks behave as shown in Figure A.7.

Appendix B

Cognitive maps for Path
Integration

B.1 The Continuous GridWorld environment

All experiments presented in this article were performed using the GridWorld environment
class, defined in the environment.py file. While this environment is neither particularly
efficient to run, as it is coded in pure python, nor very expressive, it still allows for a
wide variety of interesting situations and is performant enough to not be an unreasonable
bottleneck in most situations. It also follows the basic specifications of the OpenAi Gym
framework, which makes it easy to extend it and test basic Reinforcement Learning tasks
such as goal-driven navigation.

While we do not provide level editors or tools to procedurally generate new layouts,
they can be added by hand in the environment register, under a new key corresponding
to the map name, as a dictionary containing the following attributes:

• the number of rooms in the environment;

• a list containing the position of the room centers in the surrounding environment
(the environment can be rescaled as a whole when instantiated, so it is easier to
assume all rooms to be of size 1× 1);1

• a list of room exits, such that the i-th component is a list containing all exits from
room i. An exit is defined as a room edge (either vertical or horizontal) that is
connected to another room edge, and the link between coordinates in the two rooms
is established by giving the coordinates of the same physical point in the two rooms
(the center of the common room edge);

• a list of possible item layouts, detailing what items are visible (and at which position
from the room center) within each room, allowing us to simulate visual occlusion, or
even special effects (such as switching the light off when the agent is in a particular
room). All items are point-like light emitters, and only differ through their color.

1While this environment is designed to be used for 2–dimensional spatial navigation, we consider the
room centers to have three components; the first two are the (x, y) coordinates which can be modified by
our two-dimensional actions, while the third one can be used to lift ambiguity between two rooms that
would be located at the same position but would differ in another way meaningful for the environment
(for example, to change the environment after the agent visits a particular room). This functionality is
not used in the experiments presented in this study.

181

182 Cognitive maps for Path Integration

Figure B.1: Example of retina: a regular square lattice of Difference of Gaussians fields.
We describe as the ”area of effect” of the retina the zone in which an object would con-
tribute to the activity vector of the retina as a whole above some arbitrary threshold, e.g.
10−2.

Given the connection graph of the rooms and the item layout, the GridWorld class
can be used to generate trajectories from sequences of actions, as well as to generate a
human-interpretable rendering of the arrangement of rooms and items which can be used
as a basis for more involved plots (most notably, trajectories and value of neuron activity
as a function of position in the environment).

The inputs to the network, which we refer to simply as images, are obtained from a
list of rooms and positions within these rooms, by using a retina of the type described in
Appendix B.2.

We provide several environments and layouts, some of which were used only for pre-
liminary tests but which we retain for the sake of completeness.

B.2 Retina

Individual retinal fields We begin by introducing the Difference of Gaussians retinal
neurons (Dayan and Abbott, 2001): their receptive fields have a center c, two widths
(σ+, σ−), and their activity g when a single visual cue is present at distance δr from the
center is a difference of Gaussians:

g(r = c+ δr) = A√2πσ+
exp
− δr2

2σ2
+ − B√2πσ−

exp
− δr2

2σ2
− (B.1)

When two or more visual cues are presented in the image, the activation of the neurons
will be the sum of the activations for each individual object.

Retinal array We will consider as retina a square array of these retinal fields (see
Figure B.1), all with A = B for simplicity. The value of A is determined so that, on
average over the position of a single object within a square room of width 1, the average
norm of the retina activity vector is equal to 1. For experiments, we will use an array of
642 = 4096 cells; for the values of the two widths, we choose (σ+ = 0.4, σ− = 0.5).

Color retina In order to be able to differentiate between two objects, we associate
to each a ”color”, i.e. a vector in [0, 1]3. This color is perceived by the retina in the
following way: there are three ”copies” of our retina, one for each color ”channel”; the
object activates each ”channel” proportionately to the object’s value in that color. This
makes it so that each position r in the environments corresponds to one image i of size
(3, 64, 64) for the 64× 64–retinas that we use.

Cognitive maps for Path Integration 183

Optimal linear reconstruction of an arbitrary function of position Let us con-
sider the family of functions {(g1(r), g2(r), . . . gn(r)}, where gi(r) describes the activation
of neuron i when a cue is located at position r. A linear model of an arbitrary function f
(of the cue position) from the state of our retina can be written as a linear combination
of those functions:

f̂(r) =
∑
i

αf,igi(r) (B.2)

The associated reconstruction error on a domain D ⊂ R2 can then be written:

E(αf) =
∫
D

[∑
i

αf,igi(r)− f(r)
]2

=
∫
D

∑
i,j

αf,iαf,jgi(r)gj(r)− 2f(r)
∑
i

αf,igi(r) + f(r)2


=
∑
i,j

αf,iαf,j

∫
D
gi(r)gj(r)− 2

∑
i

αf,i

∫
D
f(r)gi(r) +

∫
D
f(r)2

:=
∑
i,j

αf,iαf,jIij − 2
∑
i

αf,ihf,i + C

(B.3)

The minimum of this loss with respect to the parameters αf satisfy:

∀i, ∂E
∂αf,i

= 2

∑
j

Iijαf,j − hf,i

 = 0 (B.4)

and therefore the optimal linear decoder is obtained as αf = I−1
f hf .

Numerical approximation of the integrals over D are easily obtained by averaging over
measures on a grid lattice, up to some numerical precision limitations. This decoding is
not particularly fast, since determining I is computationally expensive.

Expected optimal performance When the environment consists of a single room,
containing a single object, we can easily reconstruct the relative position of the object
with respect to the center of the retina using either the direct linear solving of the pre-
vious paragraph or gradient descent on a more parametrized structure, e.g. a dense or
convolutional neural network. This experiment gives us an idea of the maximum perfor-
mance that can be expected from any inverse model based on our retina.

When using a 642 array spanning [−0.5, 0.5] and reconstructing the position of an
object placed arbitrarily in [−1, 1], the Root Mean Square error for the optimal linear
reconstruction is around 10−2, with clear geometric patterns in the errors, while the 3-
Layers ReLU network achieves a performance closer to 10−3 by seemingly ”smoothing”
the aforementioned error patterns. These results are presented in Figure B.2.

B.3 Network architectures and training hyperparameters

B.3.1 Architectures

The exact architectures used in our implementations are as follows:

• the convolutional networks V used to obtain the visual representations are:

1. Input image with 3 channels, size 64× 64 (from the retina)

184 Cognitive maps for Path Integration

Figure B.2: Reconstruction error on a grid with 100 subdivisions on x and y as a function
of position, represented as a heatmap. On the left, the reconstruction error of the optimal
linear decoder shows clear geometric patterns related to the geometry of the underlying
array of cells. On the right, the reconstruction error for a ”deep” 3-layer ReLU network.
While the highest observed error is higher for this deep network, the error on all points
except the corners is much lower than for the linear network. Additionally, the geometric
patterns are not observed in that case.

Figure B.3: Computation diagram for a LSTM cell, as implemented in Paszke et al. (2019).

Cognitive maps for Path Integration 185

2. Convolution with 16 filters, kernel size of 5, stride of 3, padding of 2
3. Convolution with 32 filters, kernel size of 5, stride of 5, padding of 2
4. Flatten layer
5. Dense layer with 512 outputs
6. Dense layer with 512 outputs

• the action encoding networks P are:

1. Input layer of size 2
2. ReLU layer with 256 outputs
3. Linear layer with 512 outputs

• the direct model networks D are:

1. Input layer of size 1024 (concatenation of representation and action encoding)
2. ReLU layer with 512 outputs
3. Linear layer with 512 outputs

• the inverse model networks D are:

1. Input layer of size 1024 (concatenation of two representations)
2. ReLU layer with 256 outputs
3. Linear layer with 2 outputs

• the gating networks G are:

1. Input layer of size 512 (visual representation)
2. ReLU layer with 128 outputs
3. ReLU layer with 64 outputs
4. Sigmoid layer with 1 output

It should be noted that our Recurrent Path Integrator models have a number of pa-
rameters of the same order of magnitude as the off-the-shelf implementations of LSTM
that we used (see Figure B.3).

B.3.2 Training

In all experiments we present, the PI losses are computed on batches of 32 trajectories of
length 40, with actions drawn from a two-dimensional uncorrelated Gaussian of standard
deviation 1/2 and starting points chosen randomly at any position in any non-ambiguous
room. The direct and inverse losses are computed on batches of 512 transitions, for which
starting points and actions are chosen in the same way as for PI.

The relative weights in the total loss are 10 times higher for the direct inverse losses
than for the PI loss, as the former are smaller (these hyperparameters have not been
optimized)

Training consists of 4000 steps of computing the losses, and performing one step of
Adam optimization with uniform learning rates of 10−3 except for the forward model which
is at 10−4 (no hyperparameter optimization was lead on these either). In most cases, losses
only evolve marginally after the first hundreds of epochs.

186 Cognitive maps for Path Integration

Figure B.4: Comparison between representations obtained after training the Direct-Inverse
Model module in our environment. Each panel represents the normalized activation of a
single neuron in the visual representation V(s), obtained at the end of the visual processing
module, represented as a function of position within the environment through a color code
presented on the right scale. The activities are of the same order of magnitude in all cases.
When optimizing only the inverse loss (eq. 8.5), see panel (a), the representations can be
spatially irregular; the introduction of the direct loss (eq. 8.4) smooths out the activities,
see panel (b). This effect is quantified in Table B.1.

We emphasize that since the environment, starting positions and actions are both
continuous and random, no trajectory is ever seen twice by the network, so overfitting is
not a concern (rather, we hope that the network meaningfully interpolates between what
it has previously seen). However, we train the networks on a single environment, and
the question of the capacity–resolution tradeoff (how the precision of PI is modified when
several environments are learned at the same time) remains unaddressed in the present
study and a meaningful future direction.

B.4 Interactions between direct and inverse losses

As mentioned in the main text, training the inverse model without the direct one is
possible, but the other way around is not, as training in that case converges to a trivial
solution where the representation module V and the direct model D always output 0.
When training with both losses, we observe a slight but noticeable smoothing of the
representations, as illustrated in Figure B.4 and Table B.1. This improvement in regularity
does not however translate into any measurable difference in performance of the inverse
model: the representations are made simpler by the direct loss (as expected when adding
a regularization term), but they do not carry any more positional information. It should
be noted that while ”generalization” errors (computed on any couple of images, even if
they can not be reached in a single transition and hence were never part of a transition
tuple used in training) are large, the difference in position predicted remains qualitatively
relevant (just with a lower precision).

Cognitive maps for Path Integration 187

Table B.1: Comparison of the inverse model performance and the representation regularity
between models trained with or without the direct loss. The addition of the direct loss
shifts the distribution of R2 scores between neuron activities and spatial position towards
one, meaning it made some neuron activities closer to linear functions of position, which
we argue is a desirable property in order to obtain transferable representations. While
this shift is noticeable, it does not come with any appreciable change in inverse model
performance. Means and deviations computed across 8 realizations.

Error (training) Error (generalization) R2 (visual)
Without direct 0.017 ± 0.01 1.6 ± 0.77 0.95 ± 0.089

With direct 0.015 ± 0.0091 1.6 ± 0.75 0.83 ± 0.19

B.5 LSTM variants

In this section, we present our attempts at improving the performance of the ”vanilla”
LSTM architecture. Beyond basic hyperparameter tuning (no extensive optimization has
been led due to prohibitive computational costs), we mostly considered modifications on
initialization, and architecture:

• the standard architecture corresponds to simply using a LSTM (see Figure B.3) as
the RNN in the computational graph of Figure 8.2. We considered two training
schemes with this architecture:

– the ”vanilla” scheme trains this network from scratch on the PI loss. It yields
good integration properties, but fails to learn resetting behaviors (results pre-
sented in main paper).

– the ”pretrained” scheme initializes the ”encoders” (both for the image and the
action) using the ones of a Resetting Path Integrator trained with all losses
(since they exhibit the cleanest representations). The results are very similar
to the ”vanilla” scheme.

• the ”hybrid” solutions have the computation diagram of Figure B.5, which corre-
sponds to using the LSTM only to update the internal state, replacing the com-
bination of the direct model D and gating module G. This architecture has the
advantage of explicitly using the initial representation as a form of ”anchor”, which
seems in practice to help training converge to resetting behaviors. We considered
several training schemes using this architecture:

– the ”default” scheme trains this network from scratch on the PI loss, yields
similar result to vanilla LSTM.

– the ”pretrained” initializes the ”encoders” (both for the image and the action)
using the ones of a Resetting Path Integrator trained with all losses; it reliably
achieves resetting, but also has lower precision on short trajectories.

– the ”scratch” scheme does not do any initialization, but adds a ”direct” module
(same architecture as the ones of our Resetting Path Integrator), defines the
direct and inverse losses using it and the I module that outputs the displace-
ment, and uses those losses as regularization. This scheme often manages to

188 Cognitive maps for Path Integration

Figure B.5: Computation diagram for the hybrid path integrator structure.

Table B.2: Comparison between the different LSTM variants we considered on the
SnakePath environment, in terms of both errors and representation correlation with posi-
tion, see main text for details. Means and errors computed on 8 realizations.

Standard Hybrid
Pretrained Default Pretrained Scratch

Error (short) 0.01 ± 0.0064 0.013 ± 0.0086 0.034 ± 0.02 0.022 ± 0.014
Error (long) 0.091 ± 0.088 0.11 ± 0.099 0.043 ± 0.026 0.042 ± 0.03
R2 (visual) 0.46 ± 0.2 0.63 ± 0.24 0.91 ± 0.14 0.94 ± 0.11

R2 (PI, absolute) 0.27 ± 0.11 0.29 ± 0.11 0.63 ± 0.19 0.58 ± 0.21
R2 (PI, relative) 0.69 ± 0.26 0.72 ± 0.24 0.24 ± 0.092 0.34 ± 0.14

find resetting solutions, but requires more care in hyperparameter tuning to
converge properly to a resetting solution.

– the ”improved” scheme is similar to scratch, but also initializes the encoders.
This scheme is included in the main text, and it reliably achieves resetting.

In Table B.2, we present results for the aforementioned architecture that were not
included in the main text, Table 8.1. It should be noted that even schemes that yield
solutions that exhibit resetting do not necessarily have higher levels of positional tuning,
which we argue still makes them less convincing candidates for transferable cognitive maps
than our Resetting Path Integrator model.

B.6 Curriculum Learning and catastrophic forgetting

In this section, we consider the case in which the direct-inverse model of the environment
is trained first, using transition tuples, without any consideration of Path Integration.

After this initial pretraining, we introduce those weights into the full Resetting Path
Integrator network, and consider three different ways of training the PI task:

• A: we optimize only the weights of the resetting gate G, and use only the Path
Integration Loss.

• B: we optimize all weights in the network, including those that were initialized from
the pretraining, still using only the Path Integration Loss.

• C: we optimize all weights in the network, but do Gradient Descent on a sum of all
losses (Path Integration, direct and inverse), as we would in end-to-end training.

Cognitive maps for Path Integration 189

Figure B.6: Evolution of the different losses when training a Resetting Path Integrator,
whose visual, direct and inverse modules were pretrained using transition tuples from the
environment, in the three different protocols described in the text.

Table B.3: Comparison between our Resetting Path Integrator model and standard LSTM
in the DoubleDonut environment. As was the case in the SnakePath environment, models
trained without the direct-inverse losses fail to learn how to perform resetting and show
lower levels of spatial structure in their representations.

Resetting Path Integrator Long Short Term Memory
All losses No model losses Vanilla Improved

Error (short) 0.026 ± 0.019 0.035 ± 0.026 0.015 ± 0.0086 0.032 ± 0.019
Error (long) 0.032 ± 0.023 0.46 ± 0.41 0.15 ± 0.14 0.051 ± 0.033
R2 (visual) 0.97 ± 0.068 0.16 ± 0.12 0.36 ± 0.16 0.91 ± 0.13

R2 (PI, absolute) 0.96 ± 0.073 0.29 ± 0.063 0.27 ± 0.086 0.68 ± 0.19
R2 (PI, relative) 0.34 ± 0.058 0.85 ± 0.14 0.74 ± 0.22 0.26 ± 0.083

The results are presented in Figure B.6, and show that while the final level of Path
Integration error is close between the different protocols, retraining all parameters of the
model on the Path Integration loss only (protocol B) produces noticeable deterioration
in the quality of the Direct-Inverse model, an example of the catastrophic forgetting phe-
nomenon (Kirkpatrick et al., 2017). Independently of the choice of loss on which Gradient
Descent is performed, optimizing on the parameters of the Direct-Inverse model produces
much more chaotic evolution of the loss.

B.7 Errors and spatial correlations on the DoubleDonut en-
vironment

We present in Table 8.1 the values of errors and spatial correlations measured in networks
trained on a second environment layout, slightly different from the one used in the main
text, and which we call DoubleDonut. This environment has the general structure of its
ambiguous variant (represented in Figure B.11), except that the objects in the left- and
right-most rooms of the middle row are different in the case of the non-ambiguous version
that we consider here. The conclusions of this study are identical to the ones presented in
the main text.

190 Cognitive maps for Path Integration

Figure B.7: Activity of four representative neurons in the internal state population of
an RPI trained with (left) or without (right) the model losses, as a function of absolute
position in the environment. Only the ones trained with those losses (and performing
resetting) are close to a linear function of absolute position.

B.8 Representations in absolute and relative coordinates

In order to complement the R2 values presented in main text Table 8.1, we report the
value of neuron activations (in the internal state, observed during Path Integration) as a
function of absolute position in the environment (Figure B.7) and as a function of position
within the trajectory (Figure B.8) for our Resetting Path Integrator model, trained with
or without the direct–inverse losses (and consequently, respectively displaying resetting
or not). We find that non-resetting representations are linear functions of displacement,
as expected from an integrator network (see Fanthomme and Monasson (2021)), while
resetting representations are linear functions of absolute position, which makes them much
more relevant as cognitive maps. Interestingly, we note that (for the resetting network
on the left of Figure B.8), points that correspond to ”extreme” displacements seem more
correlated with trajectory coordinate than points with small trajectory coordinates; this
is to be expected since extreme displacement points necessarily lie on the edge of our
environment (to get a displacement of −3 in the x direction, the agent necessarily started
on the right side of the environment and finished on the left side), so that for those points
trajectory coordinates and absolute coordinates are correlated.

B.9 Gating strength in a Resetting Path Integrator

While all training conditions we investigated lead to resetting behaviors, the mean value
of the gating obtained from images of the environment was observed to vary drastically,
from 10−1 to 10−3, while the level of Path Integration errors remained mostly unchanged.
Our understanding for this phenomenon is the following: the minimum level of achievable
error is the same for all training conditions, and related to the limitations of the retinal
array detailed in Appendix B.2; therefore, the network can accumulate errors (coming
either from imperfect reafference or imperfect integration) for a certain number of time-
steps without any noticeable effect. In the limit case where the direct model performs

Cognitive maps for Path Integration 191

Figure B.8: Activity of four representative neurons in the internal state population of an
RPI trained with (left) or without (right) the model losses, as a function of position along
the trajectories. Only the ones trained without those losses (and not performing resetting)
are close to a linear function of position within the trajectory.

perfectly and reafference is exact, no resetting is ever necessary. A direct way to limit
the accuracy of the direct model is to add noise to the reafferent action during training,
and our hypothesis is that as this noise increases the value of the resetting gate will get
closer to 0, meaning that the resettings will be stronger and ”keep less memory” of the
state before resetting. This hypothesis is confirmed by Figure B.9A. Additionally, we
expect that if, at test time, we present the gating module G with increasingly perturbed
representations, the value of the reset gate will increase until no resetting happens (g = 1)
if the image is completely shuffled.2 This situation is represented in Figure B.9B.

B.10 Internal gates in an LSTM network

Averaged across a large number of trajectories, the values of the input and reset internal
gates at each neuron show, to a varying extent, the behavior that was to be expected
from the gate names: the reset gate neurons are inhibited when an image is presented
(meaning that the previous internal state is suppressed), while the input gate neurons are
activated (meaning that the current input contributes more to the internal state update).
We present in Figure B.10 a few representative neurons in both populations. Given the
high variability that is observed in the reset and input gates, we expect that those two
subnetworks contribute not only to the resetting, but also to the computation of the direct
model.

B.11 Resetting in the case of Ambiguous DoubleDonut

In this section, we consider the same end-to-end training procedure as in the main article,
but apply it to a more complex environment comprised of 16 rooms, two of which (the

2We did not present the networks with partial shufflings of the representations at any stage in the
training, only unperturbed or fully shuffled.

192 Cognitive maps for Path Integration

Figure B.9: Cumulative distribution function of the natural logarithm of the reset gate
g across the environment in different conditions. A: Varying the level of noise ε in the
reafferent action during training. As expected, high levels of noise favor strong resettings,
hence lower values of g. B: Varying the level of perturbation p, defined as the fraction of
neurons in the representation that were randomly reshuffled, at test time. As represen-
tations are increasingly perturbed, they become less similar to ones that come from the
environment, and we expect the network to reset its state less strongly as the expected
benefit from such a resetting decreases. Both panels present results aggregated across 16
different realizations of the PI training.

left-most and right-most of the middle row) provide the agent with identical visual cues,
creating an ambiguity where two different positions in the global environment correspond
to the same images. This ambiguity is still such that the inverse model is unambiguously
defined (since there are no positions in the environment that could be reached in a single
transition from both ambiguous rooms), and the forward model too as long as we choose
the start position in any non-ambiguous rooms (because otherwise, the same initial state
and the same action could lead to two different new states, one for each room). As shown
in Figure B.11, the Resetting Path Integrator models still manage to perform reasonably
well despite this ambiguity by creating new representations, distinct from the visual ones,
as shown in Figure 8.7, and not performing resetting when the image comes from one of
the ambiguous rooms, see Figure B.12.

Cognitive maps for Path Integration 193

Figure B.10: Activity of four representative neurons in the ”reset” and ”input” gates, as a
function of time, aggregated across 128 trajectories in which images are always presented
at the same time-steps.

194 Cognitive maps for Path Integration

Recovered positions

0

20

40

60

80

100

0 20 40 60 80 100

−5

−4

−3

−2

−1

0

Value of the gating

0 20 40 60 80 100

10−2

10−1

Value of the error

Figure B.11: Example of Path Integration trajectory on the Ambiguous DoubleDonut
environment. The network does not exhibit any particular drop in performance upon
entering either of the ambiguous rooms, suggesting that the internal state it constructed
during Path Integration lifted the ambiguity that is present in the visual cues. It still
remains notable that no resetting is performed if the visual cue, even unperturbed, comes
from an ambiguous room, a phenomenon further illustrated in Figure B.12.

Cognitive maps for Path Integration 195

Value of the gating (loge)

−6

−5

−4

−3

−2

−1

Figure B.12: Value of the natural logarithm of the resetting gate g as a function of
position, averaged across 8 realizations of the training. As expected, resetting happens
at least partially at every position in the environment, except within the two rooms that
have ambiguous visual cues.

MOTS CLÉS

Réseaux de Neurones Récurrents, Apprentissage Machine, Inférence Statistique, Neurosciences
Théoriques.

RÉSUMÉ

Au cours de la dernière décennie, les méthodes d’apprentissage par réseaux de neurones profonds ont connu un essor
sans précédent, fournissant de nouveaux états de l’art dans de nombreux domaines de l’Intelligence Artificielle (vision,
analyse de séries temporelles, contrôle continu, etc...). Malgré leur succés empirique évident, beaucoup reste à faire pour
comprendre comment ces systèmes se comportent, de leur entraı̂nement aux représentations qui émergent lorsqu’ils
performent la tâche qui leur est confiée.
Au cours de cette thèse, nous avons abordé ces questions en étudiant des réseaux récurrents de n � 1 neurones,
entraı̂nés sur le problème de l’intégration en parallèle de D ' 1 signaux scalaires. Nous observons que, dans le cas de
réseaux linéaires comme non-linéarires, l’état interne de la population récurrente évolue dans une variété de dimension
D, faible devant la dimension de l’espace des états internes possibles n, et établissons un lien entre la forme de cette
variété et la fonction d’activation des neurones. Ces observations nous permettent de proposer une fonction de coût qui,
en imposant un ensemble continu de conditions sur la dynamique de l’état interne, permet d’entraı̂ner des réseaux sur
une tâche d’intégration arbitraire sans utiliser de données.
Nous étudions également le problème de intégration multimodale du déplacement d’un agent dans un environnement
à partir d’images et de signaux proprioceptifs. En particulier, nous cherchons à étudier comment un réseau récurrent
parvient à combiner ces deux sources d’information imparfaites (les images étant souvent indisponibles, le signal de
vitesse étant bruité) en une représentation commune, qui peut ensuite être transférée vers d’autres tâches impliquant
une compréhension de la structure spatiale de l’environnement (par exemple, de la navigation vers un objectif).
Tout au long de ce manuscrit, nous établissons des analogies entre nos résultats et les concepts développés en neuro-
sciences théoriques pour expliquer des comportements similaires observés sur des organismes vivants.

ABSTRACT

In the last decade, Deep Neural Networks–based methods for Machine Learning have enjoyed un precedented growth,
yielding new state-of-the-art results in many domains of Artificial Intelligence (vision, time-series analysis, continuous
control, etc...). Despite their undeniable empirical success, a lot of work remains to be done to understand how these
systems behave, from their training to the internal representations that emerge while they perform a given task.
During this thesis, we studied these questions through the lens of recurrent neural networks of n � 1 neurons, trained
to perform integration of D ' 1 scalar signals in parallel. We observe that, for linear as well as non-linear networks, the
internal state of the recurrent population evolves within a manifold of dimension D, small compared to the dimension n of
the space of possible internal states, and we make a connection between the shape of this manifold and the activation
function of the neurons. These observations allow us to propose a cost function which, by imposing a continuous set of
conditions on the internal state dynamics, allows training of networks on arbitrary integration tasks, without requiring any
data.
We also study the problem of multimodal integration of agent movement within its environment, through visual and propri-
oceptive signals. In particular, we study how a recurrent neural network manages to combine those two imperfect sources
of information (images being often unavailable, and speed signal being noisy) into a joint representation which can then
be transfered towards other tasks which require an understanding of the environment’s spatial structure (for example,
navigation towards a given objective).
All along this manuscript, we establish analogies between our results and concepts developed in theoretical neuroscience
to explain similar behaviors observed in living organisms.

KEYWORDS

Recurrent Neural Networks, Machine Learning, Statistical Inference, Computational Neuroscience.

	Résumé en français de la thèse
	Outline of the contents
	Statistical Inference
	Usual distributions
	Bayesian statistics, Maximum A Posteriori inference
	Conditional probabilities and Graphical Models
	Gaussian Vectors
	The Ising and Potts models
	Restricted Boltzmann Machines
	Markov Chains
	Hidden Markov Models
	Overfitting and regularization

	Regularization in Gaussian Model inference
	Introduction
	Gaussian Vectors Model and Regularization
	Expression of likelihood in the large–size limit
	Maximum A Posteriori estimator of the interaction matrix
	Likelihoods of the training, test, and generated sets
	Generic dependence of the likelihoods upon regularization strength

	Numerical experiments
	Gaussian Vectors Model
	Numerical estimation of the regularization strengths
	Potts Model

	Analytical calculations at low and high sampling ratios
	Asymptotic behavior of the crossing regularization
	Asymptotic behavior of opt for 0

	Conclusion

	Computational models of neurobiology
	Individual neuron models
	Neural circuits models
	Neural integrators and stable manifolds dynamics
	Examples of biological neural circuits
	Visual Pathway
	Sound
	Spatial navigation
	Abstract reasoning

	Deep Learning I: the Multi-Layer Perceptron
	The McCulloch-Pitts Neuron
	The Perceptron learning rule
	Support Vector Machines
	Fully-connected Neural Networks
	Linear head vs. Softmax head
	Parametric families of functions and Gradient Descent
	Some examples of Loss function
	Transfer learning

	Deep Learning II: beyond the MLP
	Convolutional and pooling layers
	Towards deeper architectures: Residual blocks
	Recurrent neural networks
	The Ising model, link with Statistical Physics
	Subsequent developments

	Differentiable Neural Computers
	Auto-encoders
	Generative Adversarial Networks

	Deep Learning III: Reinforcement Learning
	Link with Optimal Control Theory
	The Multi-Armed Bandit problem
	Markov Decision Processes
	Solving MDPs through dynamic programming
	The Q-learning algorithm
	Approximate Reinforcement Learning
	Policy Gradient methods
	Value Function methods

	State-of-the-art methods
	Examples of environment

	Low-Dimensional manifolds in RNNs
	Introduction
	Definitions and model
	Case of linear activation
	Conditions for generalizing integrators
	Special case of null-weight initialization
	Initialization with full rank connection matrices
	Case of multiple channels

	Non-linear activation: case of a single channel
	Empirical study of neural representations in a ReLU network
	Theoretical analysis of the ReLU integrators
	Case of generic non-linear activation.

	Non-linear activation: case of multiple channels
	Conclusion and perspectives

	Cognitive maps for Path Integration
	Context
	Direct-inverse environment models
	Resetting Path Integrator from direct-inverse models
	Results
	Performance of path integrators and nature of representations
	Disambiguation of ambiguous environment by RPI representations

	Conclusion

	General conclusion and perspectives
	References
	Recurrent Neural Integrators
	Fully averaged loss for linear single-channel integrators
	Gradient and Hessian of the linear single channel loss
	Two special cases of null initialization
	Moments in the low-rank parametrization
	Generalizing Integrators in null initialization space
	Gradients and Hessian in the low-rank parametrization
	Minimum convergence time
	Algebraic convergence for specific scale value
	Single-channel ReLU proxy loss gradients and Hessian
	Analysis of rank-1 ReLU generalizing integrators
	Transfer learning: context-dependent selectivity

	Cognitive maps for Path Integration
	The Continuous GridWorld environment
	Retina
	Network architectures and training hyperparameters
	Architectures
	Training

	Interactions between direct and inverse losses
	LSTM variants
	Curriculum Learning and catastrophic forgetting
	Errors and spatial correlations on the DoubleDonut environment
	Representations in absolute and relative coordinates
	Gating strength in a Resetting Path Integrator
	Internal gates in an LSTM network
	Resetting in the case of Ambiguous DoubleDonut

