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Abstract

Space manipulators allow to respond to a variety of problems in future space exploitation
and exploration such as on-orbit deployment, active debris removal or servicing operations.
However, a difficulty to autonomously control space manipulator systems arise with large and
light structures presenting flexible behavior. Flexible dynamics remain a challenging topic
as its modeling may present a first difficulty while the different coupling with the manipu-
lator may deteriorate the control quality. This thesis addresses design and control problems
related to autonomous space manipulator equipped with kinetic moment exchange devices
for spacecraft rotation control when dealing with system internal disturbances, model uncer-
tainties and measurement errors. The modeling of rigid-flexible dynamics of a multi-body
system remains a challenging task, and a first contribution of this work is a generic modeling
tool to derive kinematic and dynamic of a rotation-free-floating Space Manipulator System
(SMS) with flexible appendages. This analysis led to the main contribution of this thesis,
namely the implementation and the design of such control scheme for On-Orbit Servicing
operations. Thanks to the model, proposed control include the non-measurable states (i.e
flexibility) in the system decoupling and linearization, and the steering laws established are
based on Nonlinear Dynamic Inversion (NDI) framework where observers are introduced to
improve the quality of linearization. In a first implementation an Extended State Observer
(ESO) have been involved to estimate flexible dynamics. Then, in a second time, the modeling
uncertainties and measurement errors have been handled by the addition of a Nonlinear Dis-
turbance Observer (NDO). Inter-dependencies between observers and control dynamics have
motivated a simultaneous computation of their gains to improve system stability and control
performances. This point has been achieved by the resolution of Linear Matrix Inequalities
(LMI) to guarantee stability with an appropriate Lyapunov function. In order to highlight
the interest of the proposed scheme and validate our approach in a realistic environment,
extensive tests of an on-orbit space telescope assembly use-case have been performed on a
high-fidelity simulator.
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Résumé

Les manipulateurs spatiaux permettent de répondre à une variété de problèmes dans les
futures exploitations et explorations spatiales, tels que le déploiement en orbite, l’élimination
active des débris ou les opérations de maintenance. Toutefois, il est difficile de contrôler de
manière autonome les systèmes de manipulateurs spatiaux dans le cas de structures légères et
de grande taille présentant alors un comportement flexible. La dynamique flexible représente
un défi, premièrement par sa modélisation et secondement les couplages avec le manipulateur
peuvent détériorer la qualité du contrôle. Cette thèse aborde les problèmes de conception et
de contrôle d’un manipulateur spatial autonome équipé de dispositifs d’échange de moment
cinétique pour le contrôle de la rotation d’un vaisseau spatial lorsqu’il est confronté à des
perturbations internes au système, des incertitudes de modèle et des erreurs de mesure. La
modélisation de la dynamique rigide-flexible d’un système multi-corps reste une tâche difficile,
et une première contribution de ce travail est un outil de modélisation générique pour dériver
la cinématique et la dynamique d’un manipulateur spatial flottant dont les rotations sont
contrôlées et en présence d’appendices flexibles. Cette analyse a conduit à la contribution
principale de cette thèse, à savoir l’implémentation et la conception d’une loi de contrôle pour
les opérations de maintenance en orbite. Grâce au modèle, la commande proposée inclut
les états non mesurables (i.e. les modes flexibles) dans le découplage et la linéarisation du
système, et les lois de pilotage établies sont basées sur l’inversion dynamique non linéaire
où des observateurs sont introduits pour améliorer la qualité de la linéarisation. Dans une
première mise en œuvre, un observateur d’état étendu a été utilisé pour estimer la dynamique
flexible. Puis, dans un deuxième temps, les incertitudes de modélisation et les erreurs de
mesure ont été traitées par l’ajout d’un observateur de perturbations non linéaires. Les
interdépendances entre les observateurs et la dynamique de contrôle ont motivé un calcul
simultané de leurs gains afin d’améliorer la stabilité du système et les performances de contrôle.
Ce point a été atteint par la résolution d’inégalités matricielles linéaires pour garantir la
stabilité obtenue à l’aide d’une fonction de Lyapunov appropriée. Afin de mettre en évidence
l’intérêt du schéma proposé et de valider notre approche dans un environnement réaliste, des
tests approfondis d’un cas d’utilisation de l’assemblage d’un télescope spatial en orbite ont
été réalisés sur un simulateur haute-fidélité.
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Introduction

Robotic systems are predicted to a bright future in the variety of applications in the space
exploitation and exploration. Notably, space manipulator systems provide advantageous so-
lutions to reduce humanized flight missions. Refueling or more generally servicing a satellite,
on-orbit deployment and active debris removal are few examples of applications that could
benefit from the use of space manipulators. However, the need of developing autonomous
control of the robotic systems arises as one of the main challenge.

For space exploitation and exploration, structures too large to be self-deployed are more
and more common such as space stations and telescopes. The ISS13 is the principal example
of robotic systems key role in the expansion of a space structure. The Canadian space agency
(CSA14) has wildly contributed to the improvement of robotic technologies through the years.
In terms of in-space assembly, the first version of the Canadarm on the space shuttle helped
for the installation of the docking module of the MIR space station in 1995 [Hil+01] and the
second version of the Canardarm is still used for assembly purposes and extended the scope
of robotic utilizations. Besides assembly, assisting astronauts in extra-vehicular activities as
well as inspecting, maintaining and repairing are the current applications of the Canadarm
2. Moreover, the increase number of space objects, in activity or not, has raised a concern
as it threatens the future launches. Two approaches are considered to improve the actual
situations. First the de-orbiting of space debris, for which manipulator systems provide
safest and sustainable solutions over the different methods considered (e.g. harpoon capture,
drag augmentation, propulsion de-orbiting removal method) [ZLW20]; [Bie+21]. The second
approach aims at extending the lifespan of a defective satellite. The Hubble Space Telescope
is the most iconic servicing mission in which robotic manipulator were assisting astronauts in
four successful missions in 1993, 1997, 1999 and 2002 [Tat98]. Through the aforementioned
examples of SMS15 use, one main advantage proposed by space robots is the versatility.

Nevertheless, space manipulators have been mostly tele-operated either from the ground,
the space shuttle or the space station. However, time-delay communications represent one
major problem to safely and precisely operate a manipulator for deployment, servicing or cap-
ture scenarios [Pen02]. Early studies have started to develop autonomous control technologies
to perform challenging operations. The first demonstration mission without a crew was the
Engineering Test Satellite No. 7 (ETS VII) in 1997, which allowed to experimentally validate
technologies to proceed to both tele-operated and autonomous manipulator’s tasks [Oda00].
From the promising results, improving autonomous control technologies has remained an open
study subject to fulfill the full potential of space robotics used in space exploitation.

13International Space Station
14Canadian Space Agency
15Space Manipulator System
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2 Introduction

Figure 1 – Engineering Test Satellite VII
"KIKU-7" (ETS-VII), (credit: JAXA)

Figure 2 – Astronaut Stephen K. Robinson
attached to the Canadarm 2 from its feet
(credit: NASA)

Figure 3 – Astronaut Leroy Chiao operating the
Canadarm 2 from the ISS in the Destiny module (credit:
NASA)

The main remaining difficulties identified to improve the autonomous technologies are the
following [FA+14]:

• The safe and reliable docking with a target presenting unknown physical properties (i.e.
mass, inertia, velocities). Concerning the ADR16, tumbling objects are to be captured
and means to first estimate the target’s states in the approach phase are one area to
be improved [PMK12]. Secondly, stabilizing the uncontrolled malfunctioning satellite
offers considerable challenges to safely absorb the grasping contact forces, as illustrated
with the studies developed for the ENVISAT spacecraft de-orbiting effort [Est+20].
The methods that were developed to reduce the undesired motions from the capture
impact are mainly based on path-planning strategies, MPC17 or impedance control.

16Active Debris Removal
17Model Predictive Control
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Rybus and al. [RSS16] established a control scheme of the manipulator system based
on a path-planning that optimizes the use of actuators while restraining the end-effector
velocity in the capture phase. This preliminary work has later been extended with the
introduction of a nonlinear MPC [RSS17]. Such methods rely on the modeling of the
SMS and a relative knowledge of the target states and physical properties which make
them challenging to be developed.

• To make space more sustainable, extension of mission lifespan not only can be provided
by OOS18 missions but also with a reduced use of fuel-consuming actuators. The use of
electrical actuators are now mostly considered and could offer new control possibilities
for SMS applications [Wil+18]. One difficulty of the control of a robotic manipulator
installed on a mobile base is to consider all the couplings. Actively controlling the base
during a manipulator task is essential to insure the precision of its motions as well as
maintaining a fixed spacecraft orientation for communication purposes. Colmenarejo
and al. [Col+18] established a robust control scheme, based on an H∞ synthesis for a
separate manipulator and base’s thrusters in order to cancel undesired couplings in the
system.

• An additional difficulty is related to the large and light structure, notably considering in-
space assembled spacecraft. With elements such as antennas, solar arrays or sun-shields,
flexible behaviors are nearly unavoidable. Meng and al. [Men+17] studied the coupling
between the end-effector motions and the flexible appendages after developing a model to
describe the equations of motions of an SMS with flexible solar arrays. They established
a coupling factor to adapt path-planning and control strategies. With a following study,
these coupling factors are considered to reduce the influence of the end-effector on the
vibrations during the pre-capture phase [Men+18]. However, these studies carry strong
hypothesis to include the flexible dynamics. For this reason, the consideration of flexible
appendages in an SMS have been made for simple applications. Hirano and al. [Hir+13]
developed a simple dynamics model to develop active vibrations control. Such methods
are viable for small satellites but extendable with difficulty for current spacecraft too
large to be self-deployed. To compensate for the challenging modeling, robust control
strategies have been considered. Wu and al [Wu+18a] established an H∞ synthesis for
a control coupled with a nonlinear observer in order to deal with unknown external
disturbances and evaluate their influence on the manipulator.

• Another area of improvement concerns the possibility of performing different tasks dur-
ing a mission of an SMS. The concept of space-tug has raised interest as it fully benefits
of the robotic systems to fulfill different needs of OOS [Ale+16]. Nonetheless, perform-
ing tasks that significantly differ will require robust control strategies to consider system
variations.

To summarize, this last years the interest to develop autonomous control of SMS and
improve the technologies to use robotic systems in the space exploitation have not ceased to
increased. Since the experimental tests of the ETS VII mission, new challenges have appeared.

18On-Orbit Servicing
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Rotation-free-floating SMS, which corresponds to a robotic manipulator system with a base
actuated with moment exchange devices, have yet to be widely studied to develop their
potentially interesting features. Moreover, with light elements constituting the large space
structure, the needs of introducing modeling tools is required to describe the equations of
motions of a rotation-free-floating SMS with flexible appendages. In addition, a need of high
fidelity simulation tools is required to develop and validate the control laws proposed as well
as deeply analyzing robotic systems.

In that matter, this study aims at providing the necessary tools for the control of a
rotation-free-floating SMS with flexible appendages to perform OOS operations.

In order to develop control schemes, the methodology followed is resumed as:

1. Chapter 1 provides an overview of the use of SMS through the years and the control
challenges with a literature review. This chapter aims at establishing the scope of this
study and identifying the improvement areas.

2. Prior to introducing control schemes, chapter 2 establishes kinematic and dynamic mod-
els to describe the equations of motions of a rotation-free-floating SMS with flexible
appendages. Two contributions result from this chapter. First, a formalism to integrate
the flexible dynamics of appendages and secondly a Matlab-Simulink simulation tools
that allows to perform analysis and time-domain simulations of a studied robot.

3. In chapter 3, a common control of the base and manipulator is discussed. With novel
kinematic indices, it becomes possible to quantify the different actuators’ influences to
perform a given task. Besides allowing to pre-design an SMS or develop path-planning
methods, such indices motivate and justify the interest to introduce a common base-
manipulator control. Then, for OOS operations, based on an NDI19 scheme a steering
law for an SMS with flexible appendages is developed. To insure high performances,
an ESO20 is additionally designed such that un-measured states are included in the
system linearization. A simultaneous control and observer gains synthesis is proposed
through an LMI21 resolution to satisfy a precise velocity control and insure stability of
the closed-loop system.

4. With the promising results obtained in chapter 3, the following chapter extends the
proposed control scheme with robustness criteria, such as variations of the system’s
mass distribution, modeling uncertainties, measurement errors. Thus, the joint-space
control law developed in chapter 4, is based on the similar NDI-ESO structure with
an additional NDO22 to take into account modeling and measurement errors. A new
common observers and control gains synthesis is proposed and performed with an LMI
resolution to satisfy the robustness of the method. Then the control is validated through
extensive simulations performed on an actual in-orbit deployment scenario of a space
telescope.

19Nonlinear Dynamic Inversion
20Extended State Observer
21Linear Matrix Inequality
22Nonlinear Disturbance Observer
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Space manipulator systems (SMS1) refer in this chapter to one or multiple DoF2 robotic
arm(s) that operate from a spacecraft base to perform a wild range of orbital applications.
After providing a general review of SMS’ evolution through the last forty years, modeling and
control methods are enumerated to highlight current limitations and sources of improvements.
This chapter aims at introducing the motivations of this research study and introduces the
contributions to future SMS applications.

1Space Manipulator System
2Degree of Freedom
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6 Chapter 1. Literature overview

1.1 Overview of Space Manipulator Systems through the years

1.1.1 Background

Since November 13th 1981 and the second mission of the space-shuttle Colombia, the Shuttle
Remote Manipulator System, also known as Canadarm, has inaugurated forty years of space
manipulator missions. This 6-DoF robotic manipulator with a deployed length of 15.2m
has been developed by the Canadian Space Agency (CSA3) to fulfill over its thirty years
of exploitation ninety missions. Among the most famous ones, the servicing of the Hubble
space telescope [Lyn+07] or the installation of the docking module of the MIR space station
in 1995 [Hil+01]. Canada has notably contributed over the years to the development of
technologies that diversify the scope of space manipulators’ possibilities. Beside the Space
Shuttle, Canadian manipulators have been made to perform satellite rendez-vous and servicing
missions [Sal+05] but their main contribution is the Space Station Mobile Servicing System
(MSS) that provides the assets to assemble, transport, inspect and repair payloads in orbit.
The MSS’ main elements are the Space Station Remote Manipulator System (SSRMS), the
Mobile Base System (MBS) and the Special Purpose Dexterous Manipulator (SPDM). The
SSRMS is a longer and more performing version of the Canadarm entitling it Canadarm 2
and present on the ISS4 since 2001. Thanks to the mobile platform it can be deployed along
the entirety of the ISS and with the SPDM a number of tasks requiring precision are made
possible. Improvement of mobility are obtained with the different grasping points that permit
a relocation of the manipulator.

Both Canadarms are perfect illustrations of the usefulness of SMS to improve and facilitate
space exploitation and exploration. Human risk factor is one of the first reasons for the
development of SMS. From the tragic loss of Columbia in 2003, the Canadarm has allowed
to reduce risks by performing inspections of the Space Shuttle before proceeding to re-entry.
From a general stand point, Canadarms have assisted astronauts in their extra-vehicular
missions and also reduced their numbers by performing the repetitive maintenance tasks
of the ISS. Likewise, Canadarms have largely contributed to in-space assemblies of space
stations. On-orbit assembly is a major aspect of space exploitation for which SMS has proven
its efficiency and feasibility. An other asset of SMS is the capture of spacecraft or payloads.
For instance, Canadarm 2 is regularly used for the berthing of the different transfer vehicles.

3Canadian Space Agency
4International Space Station
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Figure 1.1 – Astronaut Thomas Pesquet
during a solar array installation spacewalk
(credits: NASA)

Figure 1.2 – Astronauts Musgrave and
Hoffman install corrective optics during
the first servicing mission of HST (cred-
its: NASA)

Figure 1.3 – Three ISS crew members cap-
turing Intelsat VI (credits: NASA)

Figure 1.4 – Photography of the deployed
SRMS (credits: usspaceshuttle)

The interest in SMS have gone beyond Canadian frontiers, in particular, for the ISS
expansion. The Japanese spatial agency, JAXA5, and the European one, ESA6, have added
their own manipulator system to the space station. The European Robotic Arm (ERA) has
allowed the assembly of the Russian module and remains used for inspection and maintenance
operations in addition to assist astronauts in extra-vehicular missions [Did+01]. Regarding
the Japanese Experiment Module Remote Manipulator System (JEMRMS), its first purpose

5Japan Aerospace Exploration Agency
6European Space Agency
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was to assist during experiments on the Japanese module, Kibo [SW01].

To emphasize on the purpose of reducing human risks and humanized flight, robotic
systems have been studied and considered to perform tasks instead or with astronauts. In
that respect, humanoid robots have been made such as DLR7’s Justin or NASA8-DARPA9’s
Robonaut I and II. They are aiming at assisting astronauts during extra-vehicular operations
and more generally perform highly repetitive tasks instead of astronauts. In that regard they
are equipped with two manipulators disposed on their torso 10 [Blu+03]; [Dif+12].

Figure 1.5 – Robonaut 1A et 1B (credits:
NASA)

Figure 1.6 – Thomas Marshburn teleoperat-
ing Robonaut with virtual reality equipment
(credits: NASA)

The various uses for robotic systems gathered on the ISS illustrate three major fields
of space exploitation and exploration, namely capture of payloads, on-orbit assembly and
maintenance or servicing [Acq09]. To highlight the importance and usefulness of SMS in
these fields, further examples are presented within this section.

1.1.2 Active Debris Removal

Beside capturing payloads or transfer vehicles, SMS have widely been though of to answer the
space debris mitigation objectives. Since 1957 and the beginning of space exploitation with
the launch of the Sputnik telescope, space debris are more present than satellites in activity.
In 1978, Donald J. Kessler raised an alarm bell, with the "Kessler syndrom" on the risk of
exponential rise of space debris in LEO11 caused by a chain reaction of collisions [KCP78]. To
give an idea of the current situation, the following figures may help. During approximately
more than sixty years of space activity, more than 5.300 launches for 42.000 orbiting objects,

7Deutsches Zentrum für Luft- und Raumfahrt, German Center for Air and Space-flight
8National Aeronautics and Space Administration
9Defense Advanced Research Projects Agency

10http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Driving_a_robot_from_
Space_Station

11Low-Earth Orbits

http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Driving_a_robot_from_Space_Station
http://www.esa.int/Enabling_Support/Space_Engineering_Technology/Driving_a_robot_from_Space_Station
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which half are regularly tracked by the US Space Surveillance Network in GEO12, only 1.200
correspond to active satellites. The size of those objects varies from millimeters to the size of
a bus as for instance the ENVISAT spacecraft. According to NASA removing 1% of the space
debris or five moderate risk debris per year would be sufficient to stabilize their numbers in
LEO [Lew+12]. Different solutions have arisen such as the use of tether-based methods, drag
sail or laser-based methods [Cas11]; [Bra+13]; [MK19]; [SGG16], however space manipulators
present the safest solution [Bie+21] and versatility [Bon18].

Figure 1.7 – Replica of the first artificial
Earth’ satellite, Sputnik 1 exposed in Wash-
ington,D.C (credit NASA)

Figure 1.8 – Illustration of the space de-
bris distribution orbiting around the Earth,
(credit ESA)

Early studies and experiments have shown feasibility of capturing cooperative targets to
initiate active debris removal technology development. In 1997, the Engineering Test Satellite
VII (ETS-VII) was launched by JAXA, formerly the National Space Development Agency of
Japan (NASDA), in order to perform demonstration experiments to illustrate docking ma-
neuvers with a robotic manipulator [Oda00]. Those experiments aimed at evaluating the
improvement made since the SRMS as well as studying different tele-operation solutions and
possibility of autonomous capture. Those seminal works have been followed by the study of
tumbling targets management. A possible origin for a space debris large enough to be de-
orbited may be a loss of actuators control or a collision leading to the tumbling of the space
debris. An experimental mission planned for 2025 aiming at demonstrating technologies for
autonomously removing Ariane rocket bodies, entitled Active Grabbing & Orbital Removal
for Ariane (AGORA) mission [Kum+15] will allow to reach an important step in space ma-
nipulator technology. Indeed the grasping of non-cooperative debris require high performing
visual technologies to safely proceed at the capture phase, as not only no grasping feature
are available but also an estimation of the relative dynamics is needed. Adapted stabilization
strategies can then be based on adapting the target dynamics and ensure stability and safety
[Jan+15]. Moreover the robotic manipulator and the servicer’s base control need to be com-
plementary for the target to be captured which presents some dynamics that may differ from

12Geostationary-Earth Orbits
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what is expected in the mission analysis [Ell19]. The Control and Management of Robotics
Active Debris Removal (COMRADE) project has been developed by ESA with, in particular,
the functionality of stabilizing both the servicer and the malfunctioning satellite to safely
realize ADR13 [Col+20].

Figure 1.9 – Illustration of the ETS-VII
spacecraft (credit NASDA)

Figure 1.10 – Illustration of the ENVISAT
spacecraft capture by a space-tug (credit
ESA)

1.1.3 On-Orbit Servicing

Before reaching the necessity of removing spacecraft from orbits of interest, maintenance
solutions and repairing operations have been proposed. Indeed, satellites may observe a
shortening of their lifespan simply because of a malfunctioning device or an obsolete payload.
The concept of space-tug, which consists of a spacecraft along with the help of an SMS,
performs orbit transfers and servicing tasks, has appeared as an interesting alternative to
the different ADR solutions as it gives possibility of servicing or repairing a satellite instead
of de-orbiting it [Bon18]. The DLR has been developing such a concept to deal with near
end-life satellites and has planned a demonstration mission, the Deutshe Orbitale Servicing
Mission (DEOS). It will perform first the capture of a non-cooperative satellite with the
servicer’s manipulator. Then after a servicing application, the satellite will be finally de-
orbited [Rei+11]. The de-orbiting of ENVISAT has been studied by Airbus and their partners
to be performed with a similar concept. Dealing with large and tumbling satellites, the
detumbling phase of the client satellite remains challenging and space-tug allows to use the
servicer’s actuators to carry out maneuvers in that matter [Est+20]. Space robots have a
key future and a role to play in the lifespan extension and enhancement of on-orbit space
structures.

After the five servicing missions of the Hubble space telescope to extend its lifespan where
SMS were used as an assistance of astronauts [Tat98] and the experimental tests of capturing
cooperative targets with the ETS-VII mission or even the assembly of the ISS, studies have
been pursed to improve capturing and servicing technologies [Li+19b]. In 2007, the Orbital

13Active Debris Removal
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Express mission established by DARPA and NASA aimed at developing a safe and cost-
effective approach to autonomously service satellites in orbit. This demonstration mission
allowed to illustrate progress obtained to autonomously capture the client satellite with the
help of vision based technologies [Fri08]. Predefined tasks were defined and supervised from
the ground to complete the realization of the refueling mission. DARPA is also contributing
on the improvement of servicing technologies for instance with the Spacecraft for the Uni-
versal Modification of Orbits (SUMO), a low-cost flight demonstration to help demonstrate
autonomous servicing operations with a robotic manipulator [Bos+04]. One other DARPA
project is the Robotic Servicing of Geosynchronous Satellites (RSGS) program, they expect to
demonstrate the reliability, feasibility and usefulness of a robotic servicing in GEO over several
years. As illustrated with the DEXTRE, SMS with appropriate end-effector offer sufficient
versatility to successfully perform different missions and adapt to the servicing operations
required.

Figure 1.11 – Illustration of the Orbital
Express mission

Figure 1.12 – Illustration of the experi-
mental satellite mission Restore-L, (cred-
its: NASA)

Figure 1.13 – Illustration of the Robotic Servicing of Geosyn-
chronous Satellites (RSGS) mission, (credits: DARPA)
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On-orbit servicing also consists in refueling missions. In that purpose, the ISS manipulator
has been updated for refueling missions and expand servicing possibilities [Gef+15]. This
Robotic Refueling Mission has tested different technologies of hardware for different kind of
satellites with some success in the two first phases while the third phase has encountered loss
of methane. Currently, NASA is preparing the launch of the OSAM-114, previously known
as Restore-L, with the ambition of autonomously refueling a US government satellite. The
success of such a mission would be one giant leap for domestic servicing industries.

Another side of the servicing aspect is the inspection of the space structures. Beside
the Canadarms and the safety inspection procedures before re-entry [Gil+04], mobile ma-
nipulators have been considered [Xu+94]. For instance, the Skyworker prototype aimed at
performing inspections for structures assembly [Sta+01].

Servicing missions are various which require versatile solutions. It thus highlights the
growing interest of SMS to efficiently and durably pursue space exploitation and exploration
[Li+19b].

1.1.4 On-Orbit Deployment

Recent and future of space exploitation is writing itself with large infrastructures and space-
crafts. In the past, space stations have benefited from the use of SMS to constantly expand
and upgrade on-board technologies [FA+14]. Now space structures could also benefit from
SMS to reduce the launch constraints. The difference between on-orbit assembly/deployment
and on-orbit servicing can be summed up in either the mission’s purpose. The objective of
assembly/deployment missions are to expand the space structure while servicing operations
will aim at increasing a satellite’s lifespan or modify its use. Different SMS strategies are
considered to deploy space structures on-orbit, either using an embedded manipulator or the
one on a servicer satellite. However the generalization of using robotic methods to deploy or
expand space infrastructures reside in the standardization of SMS features [PJ18]. The DLR
is developing the Compliant Assistance and Exploration SpAce Robot (CAESAR) in that
way. It is a manipulator system that provides the necessary flexibility to perform different
manufacturing and human assistance missions [Bey+18].

Besides space stations, space telescopes are perfect examples of future structures in need
of means to deploy in their working orbit. For instance, the PULSAR telescope15 allows
to illustrate the benefit of using a robotic manipulator to deploy the mirror too large to be
self-deployed [Rog+19]. The deployment of space antennas with the help of the satellite’s
manipulator system have likewise been studied [Li+19a] as it offers more versatility in the
launch configuration options. In the ambition of facilitating and diversifying launches packing
options, the Archinaut in-space manufacturing technology has been proposed. It will allow to
extend on-orbit structure deployment possibilities. Archinaut aims at deploying a wild range
of space structures in order to simplify on-orbit assemblies [Kug+17].

14 On-orbit Servicing, Assembly, and Manufacturing 1
15https://www.h2020-pulsar.eu

https://www.h2020-pulsar.eu
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Through the DARPA Phoenix program, cellularized satellite architectural unit, or satlet,
have been put in place in order to improve the degree of modularity in space structure assembly
[Mel+15]. With the help of SMS, those modular systems can provide low-cost solutions to
satellite construction and deployment as well as versatility for redefining mission objectives
[Hen14].

Figure 1.14 – Distinction between on-orbit assembly and servicing paradigms, [PJ18]

1.1.5 Next steps of improvements

Space manipulators’ interest has ceased to increase through the years as they offer versatility
and allow to answer the current turnovers in space exploitation and exploration. However,
SMS technologies still require to be improved in order to be viable solutions. One major
improvement needed is the autonomous control of systems to perform capture and servicing
tasks. Most of the SMS presented have been tele-operated from ground stations or remotely
controlled from the Space Shuttle or the ISS. The main issue is the communication delays that
can be observed, as it can be illustrated with the Robot Technology Experiment (ROTEX)
that took flight in 1993 with the Shuttle Columbia. The ROTEX consisted in experimentally
demonstrating tele-operation technologies from both the Shuttle and from ground stations
[Hir+94]. With regard to the ground control, delay compensations of up to 7 seconds have
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been a key to the success of the predefined demonstrating tasks [HLF94]. In most cases for
LEO applications, delays between five and ten seconds have to be taken into account [Pen02]
which may be critical for capture missions or to manipulate payload through restrained manip-
ulator workspaces. Furthermore, with large and light structures, internal flexible vibrations
may occur with the manipulation of a payload in a servicing or deployment mission.

These undesired disturbances negatively impact the control performances of the manip-
ulator. To ensure stability and mission success, improvements in autonomous control are
mandatory. A first requirement to develop such control strategies is to have an accurate
modeling of the SMS to describe the behaviors of robots evolving on-orbit. As further ex-
panded upon in the following sections, the modeling difficulties are in the integration of the
flexible elements that are subject to numerous hypotheses. Another point of consideration is
the coordinate control of both satellite’s base and manipulator to perform on-orbit tasks. It
could bring efficiency in capture or deployment scenario as well as insuring safe operations
[Li+19b].

1.2 Modeling of Space Manipulator System

Space manipulator are evolving in free-falling mode which means that, at the opposite of a
ground-based manipulator, every motion has an immediate opposite reaction on the floating
satellite base. In this section, we try to review the different modeling methods that allow to
obtain the kinematics and dynamics of such systems in function of their control mode. In
space robotics, the kinematics refer to velocities while the dynamics are employed for system’s
accelerations.

1.2.1 Control classification

Umetani and al.[UY89] and Dubowski and al. [DP93] have proposed to distinguish space
manipulator control whether the satellite base is controlled or not. The choice is justified
and based by the consideration of linear and angular momentum in the system. When the
satellite’s base is actively controlled with reaction-jets, the SMS control mode is then referred
as free-flying. It corresponds to a control mode in which the momentum is by definition not
preserved as base actuators induce an external torque/force to the overall system. On the
other hand, if the base is let free of any control, the system is then considered as free-floating
which defines a control mode that ensure momentum conservation if in addition no external
forces/torques are applied on the system.

A deeper analysis on the control modes has been proposed by Wilde and al. [Wil+18]
according on the choice of actuators to control spacecraft’s base motions. The discussion,
based on the momentum, separates actuators that generate external forces/torques (i.e. typ-
ically reaction-jet thrusters) and the ones that does not (i.e. control-moment gyroscopes,
reaction-wheels).
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Conserved momentum: When space manipulator are composed of rigid links and are
neither subject to external forces or torques, the total momentum remains conserved. By
decomposing the kinematic momentum into a linear and an angular contribution, two sub-
modes of free-floating control can be derived [Wil+18]: the floating and the rotation-free-
floating.

The floating mode will define an under-actuated control mode for which the 6-DoFs of the
base spacecraft are let free of any control and only the manipulator’s DoFs are actuated. In
that case, each manipulator motions have a direct impact on the base motions. It is a straight
interpretation of the conservation of the overall system momentum conservation. For some
applications it will lead to the main difficulty of the manipulator’s control and in some cases
it is the basis of strategies to adjust base attitude/pose controlling the manipulator’s joints.
Spacecraft orientations are modified or impacted in presence of torque driven actuators in the
manipulator which often correspond to revolute joints. The 3 spacecraft linear DoFs may be
controlled with a manipulator’s prismatic joints that will modify the system center-of-mass
in consequence of the changes obtained with the revolute joints.

The second sub-mode is the rotation-free-floating. In this mode, the spacecraft base’s
rotations are controlled with actuators providing internal torques. Typically, using momentum
exchange devices, such as reaction-wheels or control-moment gyroscopes, will maintain the
momentum conservation by only affecting the angular kinematic moment. The three linear
DoFs remain uncontrolled in this sub-mode.

In the continuation of this document free-floating and floating modes will be comparable
while rotation-free-floating and free-floating will designate the same control mode. Likewise
no distinction between kinematic momentum and system’s momentum is made, as for such
system its expression is obtained in function of the system’s velocities.

Unconserved momentum: Momentum conservation holds as long as no external forces/-
torques are being applied on the system. Similarly to the floating mode, a division of the
free-flying control mode can be made in function of the actuators that are present and that
will affect or not the angular and/or linear momentum of the system.

One can define as rotation-free-flying, or rotation-flying, a space manipulator that is ac-
tively controlled and for which the base has its three linear DoFs controlled by external
torques while the three angular DoFs are either activated by intern torques or let free of
any control. The control of rotations by external torques can be obtained with reaction-jet
thrusters that produce a total null force. In that control mode, only the linear kinematic
moment is conserved.

When the linear DoFs of the spacecraft are, in addition to the manipulator, actuated
by external forces, the SMS is said to be translation-free-flying controlled. Reaction jet-
thrusters may be used at the condition that they provide a total null torque. Moreover, if
momentum exchange devices are used to control the angular spacecraft DoFs, the system
remains translation-free-flying or translation-flying. This control sub-mode thus refers to a
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system for which only the angular kinematic moment is conserved.

A last sub-mode can be defined as flying in order to refer to SMS with a base fully actuated
by external forces and torques. With this last mode, system momentum is time-varying.

Precision on the external disturbances As those considerations are made for rigid SMS
and subject to no external forces/torques, it is worth noting the control mode classification
holds with the usual approximations developed in space manipulator control literature. For a
space manipulator evolving in a free-fall environment, it will be assumed that the gravitation
attraction, the environmental forces (solar radiation-pressure) and atmospheric actions are
neglected allowing to study the system as an isolated one. This discussion allows to define an
oriented frame centered in the CoM16 of the spacecraft in respect to an inertial coordinate
system [Wil+18].

1.2.2 Modeling of a rigid Space Manipulator System

The modeling of an SMS consists of developing the dynamics and kinematics of a system
composed of one or multiple kinematic chains sharing a common moving base. In terms of
space robotics the dynamic model of the system defines the equations of motions expressed in
function of the accelerations, forces and torques. In addition a kinematic model refers to the
relation of the manipulator joint state and end-effector expressed in the Cartesian space, which
corresponds to the satellite frame (Rsat17). Moreover, evaluating the system from the acceler-
ations and forces/torques is defined as the forward kinematics/dynamics and reciprocally the
evaluation of the system inertia and moment is referred as the inverse kinematics/dynamics.
In the contrary of Earth manipulators, the end-effector position in the inertial frame (Rine18)
not only depends on the manipulator’s geometry and the joints’ configurations but also on
the system’s inertia distribution. These results to the inverse and forward kinematic problem
being also a dynamic one [FA+14].

In a general way, the recursive Newton-Euler and the Lagrangian methods are the two
main solutions to derive the equation of motions for a multi-body system [Wit07]; [XK12].
The Newton-Euler formulation is derived by an interpretation of the Newton’s Second law of
Motion. With a recursive approach, each forces and moments acting on each bodies are enu-
merated to obtain the equations of motions. As elaborated by Lindberg and al. [LLZ93], the
expression of the dynamic model is obtained in function of the joints’ forces/torques displace-
ments by eliminating the constraint forces acting between adjacent bodies with geometric
properties. The Lagrangian approach bases itself on a work and energy description of the
system’s bodies using a set of generalized coordinates. It presents the advantage of providing
a simpler and systematic computation method. Moreover, the resulting dynamic model ex-
pression is established in a more compact form as work-less forces and constraint forces are

16Center of Mass
17Satellite frame
18Inertial frame
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not taken into account but only kinetic and potential energies are [Bru+10]. Though, the
dynamics model is similarly expressed in function of the manipulator’s joints torques/forces
displacements. In comparison the Newton-Euler method presents a more complex way of
deriving the equations of motions, however its main advantage relies in the recursivity of its
approach. By expressing for each body all the forces/torques applied, in particular the ones
between adjacent bodies, the Newton-Euler formulation provides the possibility of elaborating
plug-in methods to derive a multi-body system forward dynamic model [ACT08]. Likewise,
this method is well suited when all the forces/torques are known to describe the system’s
motions in both an inertial frame and a Cartesian coordinate system.

In the contrary of ground-base manipulator, an SMS presents the particularity of de-
veloping dynamic singularities in addition to kinematic ones. A dynamic singularity occurs
when the base is deprived of an attitude control system (i.e. a free-floating SMS) and the
lack of a means to compensate for the manipulator’s motions will lead to the impossibility
of moving its end-effector in some directions [PD93]. This free-floating common constraint
is a direct consequence of the conservation of momentum from which the system dynamics
are obtained. Both linear and angular momentum equations are expressed in function of the
system’s velocities, however only the linear one presents a holonomic constraint. Such a con-
straint can be described by an equation relating the coordinates (and time) of the system. As
the linear momentum equation corresponds to the motion of the CoM of the system, it can
also be represented with the CoM’s positions instead of its velocities. Therefore, it implies its
integrability and thus yields to a holonomic constraint. On another hand, the angular momen-
tum cannot be represented by an integrable equation leading to a non-holonomic constraint
[NM90]. Those constraints transpose the fact that for free-floating manipulators, the dynamic
couplings between the manipulator and the base make the end-effector pose dependent on
the manipulator’s trajectory and likewise on its velocities.

An overview of methods to apprehend and take into account the dynamic coupling between
orientation and position of the manipulator’s end-effector and the spacecraft’s base of a free-
floating SMS has been detailed by Flores-Abad and al. [FA+14]. Additionally, as developed
in Siciliano and al. [Sic+09] a manipulator placed on a mobile platform can be modeled as
a terrestrial robotic manipulator which as motivated original studies. In the pioneer work of
Longman and al. [Lon90], methods to solve the kinematics and dynamics problem have been
proposed. With the time function of the joint’s history for a fixed base, the end-effector’s
relative position to the spacecraft is firstly established. Secondly, with the angular momentum
conservation the angular and inertial position of the satellite are asserted. With this method,
they were able to obtain a feasible solution for the inverse kinematics problem of both end-
effector and spacecraft’s base attitude. It has also provided an important analysis result, the
manipulator’s workspace is a sphere which its radius is monotonically decreasing in function
of the manipulator’s mass. Beside this work, other methods have been later developed to
tackle the inverse kinematics/dynamics problem whose difficulty resides in the addition of
inertial parameter resolutions. From the different existing methods developed to obtain the
equations of motions for a free-floating manipulator, the focus is placed on three major ones:

• The first one, proposed by Vafa and Dubowsky [VD87], is the Virtual Manipulator
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method. It consists of an idealized mass-less kinematic chain whose base is fixed in
the inertial frame and whose end-effector coincide with the studied manipulator one.
When no external forces/torques apply on the system, the CoM is fixed in the inertial
frame and the VM19 and space manipulator share the same kinematics and dynamics
properties. Thus, the VM is employed to develop the kinematics/dynamics model of
the space manipulator without describing the equations of motions of the three DoFs
of the base. This idealized mass-less model allows to analyze the system in simulation
but cannot be physically built.

• To overcome the possibility of experimentally developed equivalent ground-base manip-
ulator, Liang and al. [LXB97] introduced the DEM20 approach. Similarly to the VM,
the first joint is a passive revolute one, the orientation of each joint is similar to the
studied manipulator and the links have the same lengths. In addition to modeling or
solving the inverse kinematics/dynamics problem, the VM and DEM approaches are
employed for workspace analysis [FA+14].

• As the study of kinematics model without any external forces/torques corresponds to
the study of the end-effector motions in an inertial frame, the Jacobian matrix is used to
describe the translation and rotation of the manipulator in function of the joint angular
positions. Umetani and al. [UY89] have then proposed a GJM21 to solve the inverse
kinematic problem. In addition to the joint’s angles, the GJM includes the inertia pa-
rameters and therefore depends not only on the manipulator kinematics but likewise
on the dynamics. The GJM allows to consider the dynamic singularities of a free-
floating space manipulator which makes this approach interesting for non-holonomic
path-planing [NM90] or to develop control strategies when base and manipulator cou-
pling are a concern [Nen+99].

Figure 1.15 – Two-link manipulator and its
end-effector VM, [VD87]

Figure 1.16 – A three-link space manipulator
and its DEM, [LXB98]

19Virtual Manipulator
20Dynamically Equivalent Manipulator
21Generalised Jacobian Matrix
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Extension with Multi-kinematic chains: The presence of a second manipulator pro-
vides more flexibility in the control and stabilization of the global SMS. Beside the classical
Lagrangian and Newton-Euler approaches, two modeling methods have been developed to
synthesized the kinematics model of a multi-arm SMS [FA+14]. The two methods are the
Barycentric Vector Approach and the Direct Path Method whose implementation have been
compared by Moosavian and Papadopoulos [MP98].

The Barycentric Vector Approach is based on the study of the overall system’s CoM and
a set of body-fixed vectors. The CoM is used as a representative point for the system linear
motions and the vectors are used to obtain the geometric configuration of the system and its
mass distribution. This approach leads to the decoupling of the linear and angular motions
from the dynamics equations when no external forces/torques apply to the system.

The Direct Path Method, likewise considered a representative point for the system linear
motions, however it can be chosen differently from the CoM. The Direct Path Method is
better suited for modeling multi-manipulator systems in presence of external forces/torques
(i.e. free-flying SMS). In comparison of the two methods, it provides simpler term equations
and less computation are required [MP98].

Multiple manipulators have the particularity and the possibility of presenting closed and
open kinematic chains. The computation of the dynamics may change from the open to the
closed kinematic chain and reciprocally. With such considerations, Nakamura and Yamane
[NY00] have proposed a general algorithm to compute the dynamics of both closed and open
kinematics without switching modeling methods. In addition, Newton-Euler approaches allow
to easily connect and close kinematic chains as such based modeling methods develop for each
body the forces/torques applied [ACT08].

1.2.3 Modeling of flexible appendages

Flexible appendages are and will be nearly present in all spacecrafts and satellite structures.
Solar arrays, sun-shields or even antennas are sources of flexible behaviors and more generally
all light and large elements may exhibit flexible dynamics. An appropriate modeling of these
dynamics is required to develop control strategies as illustrated by the Hubble telescope atti-
tude control which has suffered from a poor flexible modeling [Fos+95]. Space robots systems
and from a general standing, dynamic couplings between the different elements composing
the spacecraft need to be considered in a control strategy such that stability is insured. If
there is no means to cancel vibrations resulting from a maneuver of the manipulator or envi-
ronmental disturbances [ZCG17] then the loss of system controllability may be unavoidable
as the problem is an under-actuated one. For this reason, flexible dynamics modeling is a key
to SMS control improvements and remains a challenging task with the complexity of space
structures.

With a manipulator control purpose, first modeling approaches have been considering
simple model. As a first approach, the flexible beam model has been considered in a planar
problem [ZM10] and later developed to integrate coupling with the rest of the system with
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Hamilton’s principle [Hir+13]; [Liu+18]. These models are suitable for small satellites and
appendages for basic control applications. Moreover, as most of flexible modeling methods,
the appendages dynamics are based on generalized damped spring/masses systems. These
formulations are written as a second order state representation involving mass, damping and
stiffness matrices of the coupled rigid-flexible system [Hen+16]; [HAS19].

In order to consider several flexible appendages connected to a rigid hub, multi-body
modeling approach have been developed. Those approaches offer the possibility of developing
independent model of each bodies and then connect them to the rest of the structure. Recur-
sive formulations have been introduced early based on variational and vector calculus [BH87];
[KH88]. Deformation modes are employed to represent the relative elastic deformation of
each body, then adding the positions, velocities and accelerations of each joints, equation
motions are recursively obtained with the system graph definition. In most cases, the flexible
properties of a body is obtained from a Finite Element Method (FEM) [Lik72].

A first finite element based approach to establish multi-body models is with the Finite
Element-Transfer Matrix method [LP60]. Associating a transfer function for each body of
the system to describe its state on both connection point, the system model is obtained by
the multiplication of these transfer functions. This approach is limited to tree-like structures
modeling [RZZ14]. However, one drawback of FEM is the important number of flexible DoF
with which a method can be developed in order to reduce DoF [Dok72]. Moreover considering
restraining assumptions the studies on the spacecraft rotations or the amplitude of vibrations,
a reduction of the overall number of flexible DoF can be obtained. With a Rayleigh–Ritz
discretization the system’s impedance matrix can be evaluated [SA08] and according to the
considered deformations, suitable discretization methods apply [JL21].

A second finite element modeling method is the Component Modes Synthesis [Hin75]
that provides the advantage of condensing the matrix representation of each body [Yu+16].
Similarly, from effective mass/inertia matrix [Imb79] or impedance matrix [Pas87] model-
ing method, the construction of a spacecraft model can be obtained with individual body
properties and parameters and constructed body-by-body [ACT08]. With a similar model-
ing technique, Guy and al. [Guy+14] have proposed a generic and systematic multi-body
modeling method to obtain with a Linear Fractional Transformation a spacecraft model that
considers system uncertainties suitable for simulation and control validation. Likewise with
the dual quaternion formalism, a Linear Fractional Transformation of the COMRADE satel-
lite and its flexible solar arrays and the precense of propellant sloshing have been developed
for similar control purposes [Hen+21]. An extension of these works to consider complex and
multiple interconnections between the bodies composing the structure have been developed
[San+18]. In a context of ADR, a recursive multi-body modeling approach has the advan-
tage of including the target dynamics as a new manipulator link with respect to the existing
topology [Xu+14].

In addition to the rigid coupling existing between the different SMS elements, studying the
influence of flexible appendages may benefit to the control strategies. A coupling index has
been proposed by Meng and al. [Men+17] to relate mutual effects and indirect ones between
the end-effector and flexible appendages. Adapted manipulator motions can then be defined
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to reduce vibrations before the capture of flexible targets [Men+18]. Studying the influence
of a flexible target to be served by an SMS likewise with flexible appendages, allow pre-sizing
of the mission spacecraft. Under restrictive motion assumptions, the Lagrangian formalism
can be developed to obtain the servicer and the towed satellite with their respective flexible
elements such that criterion on target’s mass allow to dimension the servicer [AY15].

1.3 Control methods of Space Manipulator Systems

1.3.1 Early studies

With the diversity of OOS22 missions, SMS control requires to overpass different challenges
to perform autonomous tasks. A first control difficulty resides in the effects of coupling be-
tween manipulator’s end-effector and its base. Early control methods have been developed to
move the manipulator while minimizing its impact on the base motions. For a free-floating
satellite, the objective is to maintain system’s controllability while for a free-flying robot it
allows to avoid an overuse of base actuators. Longman and al. [LLZ87] have introduced
SMS kinematics to develop joint adjustment to account for base motions in the manipulator’s
control. A trajectory planing was introduced by Dubowsky and Torres [DT91], based on
an Enhanced Disturbance Map that provides manipulator motions with relatively low space-
craft disturbances. With the GJM introduced by Umetani and Yoshida and based on the
angular conservation momentum [UY87], resolved motion rate and acceleration control based
method have been developed to take into account the dynamic interaction between manipu-
lator and satellite base [UY89]; [Par+93]. When momentum conservation hypotheses are not
applicable, the GJM approach has been extended to compute a manipulator trajectory to
capture a tumbling satellite [SB08]. From the manipulator Jacobian expression Nenchev and
al. [NYU96] have proposed a reaction-null space control method to decouple a free-floating
manipulator and its base dynamics, and later extended the proposed method decoupling con-
trol tasks to simplify dynamics expressions in the control law [Nen+99]. An adaptive version
of reaction null-space control has been studied to include dynamic modeling uncertainties for
a free-floating SMS [Xu+13]. Likewise, with the fixed-base model of the manipulator, DEM,
adaptive control approaches can be assessed to perform joint space control [PO04].

1.3.2 Control method to reduce manipulator coupling disturbances on the
base

Later studies have pursued the development of control laws to reduce undesired manipulator
impacts on its base which will be operating on-orbit. In particular for ADR applications, the
impact caused by the capture of a target creates a disturbance torque on the manipulator with
a direct influence on the servicer base. In that way ADR studies have improved manipulator
control methods resulting in lowering the influence of end-effector contact dynamics and

22On-Orbit Servicing
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minimizing the target momentum. An extension of the reaction-null space control method
has been proposed by Jin and al. [Jin+17] with the introduction of a reaction torque to create
a base reaction-less and dynamic singularity-free control of a free-floating manipulator.

Momentum accumulation: Most of the proposed Jacobian based approaches consider
an initial system linear and angular momentum null. If initially the overall momentum is
non-null, it will accumulate during the servicing mission and will affect the manipulator’s
dynamics as a Centrifugal/Coriolis force. The direct consequence of this additional force/-
torque is the end-effector that cannot remain in a given position. A reaction-null space
control method with a bias momentum approach has been put in place by Dimitrov and
Yoshida [DY04] to benefit of the initial angular momentum in the pre-impact capture phase.
Moreover, for multi-arms SMS, a momentum redistribution approach offers efficient moment
reduction during the capture of a target presenting an unknown angular momentum [Zha+17].
Another approach, proposed by Nanos and al. [NP17], consists in tackling the non-zero an-
gular momentum of a free-floating spacecraft as a fixed-base terrestrial robot that requires
gravitational compensation. However these approaches constrain the manipulator workspace.
A workspace adjustment has been proposed by Nanos and Papadopoulos [NP11] to immunize
the end-effector of the accumulating angular momentum of the free-floating SMS. Likewise,
impedance control can include the momentum in the feedback linearization similarly to an
external force [NY06]. Nevertheless, to avoid the exact feedback linearization of a torque con-
trol law of a free-floating SMS, an appropriate coordinate transformation allows to remove the
disturbances induced by the momentum [Gio+16]. Additionally to avoid the computation of
the Jacobian and globally solving the inverse kinematic problematic, a dynamic formulation
of the SMS has been proposed by Zhou and al [ZLW19] in which the end-effector is considered
as a virtual base. The Lagrange multipliers method is employed to analytically obtain the
joint’s control torque such as the end-effector follows a desired trajectory while minimizing
its base perturbations.

Free-flying robots benefit from a minimization of base disturbances as their rejection are
done with fuel-consuming actuators which consequently impacts the missions’ lifespan. In that
purpose, fuel efficient control methods have been proposed. An early study has established an
optimal control algorithm based on the Pontryagin’s maximum principle to minimize the fuel
consumption of a free-flying spacecraft equipped with jet thrust mechanism [Sak99]. Giordano
and al. [GGAS17] came forth with an extraction of the accumulated momentum with the
base actuators by decomposing external and internal forces to let the end-effector deal with
only internal ones. The momentum of a grasped object causes a manipulator’s workspace
shift which can be tackled with a control of the system CoM, which corresponds to the
center of the maximum reachable workspace. Giordano and al. have proposed simultaneous
control methods of the system CoM and end-effector to efficiently use the thrusters [GCAS18];
[GOAS19].

Detumbling strategies: Docking maneuver remains a challenging control task and in
particular when the manipulator and the target present a non-null differential energy. Con-
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sidering tumbling, or non-cooperative, targets have raised interests in ADR applications. A
first strategy developed to reduce the impact of grasping is the impedance control of the end-
effector. Nakanishi and al. [NY06] proposed such a method to limit the contact force impact
on the free-floating manipulator and avoid both spacecrafts to push each other. Impedance
control is equivalent to a mass-damper-spring system fixed at a point in space. Yoshida and
al. [Yos+04] emphasized on the dynamic conditions to satisfy a safe grasping that depend
on the inertial property of the chaser spacecraft or the impedance control. The main ob-
jective of an impedance control is to obtain smaller inertial characteristics of the servicer
compared to the target’s one. It results on the chaser that will not significantly deflect the
target. However impedance control may present two main difficulties. Firstly, the drift of
the chaser is relatively fast and switching from a base control to the manipulator may be fre-
quent [GCAS18]. In consequence, approaches considering the accumulated momentum may
be more appropriated [GGAS17]. Secondly, these approaches require dynamics estimations
of the target properties to be properly developed, as established in [CUFA20]; [FA+20].

Adaptive control may present a solution to the estimation difficulties. As proposed by
Nguyen and al. [NHS11], during and after the capture of an unknown target adaptive algo-
rithm may provide reaction-less motion of the chaser’s base. Without target dynamics infor-
mation, their proposed method, based on a recursive least square algorithm, allows to adapt
the unknown parameters to safely capture the target. The detumbling of a non-cooperative
object, or the operation to bring it at a state of rest, has been studied by Aghili [Agh09b] who
suggested a first optimal control that aims at minimizing the detumbling time while ensuring
the interaction torque between the manipulator and target under a defined value. From the
Pontryagin’s principle, an optimal path-planning problem is solved to ensure the condition
on the interaction torque. The detumbling, during the post-grasping phase, is obtained with
a coordination control for a combined system of the space robot and the target satellite. It
aims at dumping the initial velocity of the tumbling satellite. In a more recent study from
the same author, the optimal detumbling control strategy has been extended to achieve mo-
mentum dissipation of the grasped non-cooperative target in time and/or energy efficiency
way while considering forces/torques limitations [Agh20]. It was also improved by Dubanchet
and al. [Dub+15], who proposed H∞ to compute a manipulator and base controllers suitable
for on-board processors.

Moreover, to deal with the model’s uncertainties of the target, Gangapersaud and al.
[GLR19] preferred the use of force control to detumble the target without requiring target
inertial parameters. Wang and al. [Wan+18a] developed the dynamics of the target and
the SMS so that a coordination controller can be put forward. Optimal detumbling and
path-planning are obtained with quartic Bézier curves and an adaptive differential evolution
algorithm with detumbling time constraints. As proposed by Aghili [Agh09a], a coordination
control allows the manipulator to track a defined path while dumping the initial velocity
of the target and synchronously control the chaser’s base attitude. Likewise, in the debris
removal mission e.Deorbit the chaser’s rotational and linear DoFs and the manipulator are
simultaneously controlled with a robust H∞ control solution to safely detumble a large debris
[Col+20]; [Fau+22].
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Path-planning approaches: Without considering a specific SMS application or an OOS
task, path-planning approaches allows in a general way to develop methods for: reducing
a manipulator’s influence on its base, optimizing the workspace with collision avoidance
considerations, efficiently using actuators. Papadopoulos and al. [Pap92] have studied the
non-holonomic property of free-floating manipulators to obtain singularity-free paths, as the
dynamic singularities are path dependent. A reachable workspace is defined such that a
Cartesian space planning method allows to obtain manipulator’s motions to control the base
orientation. This work has later been extended to develop a path planning method that simul-
taneously provides end-effector and spacecraft attitude control only with the manipulator’s
joints control [PTN05]. Path-planning methods aiming at reducing the manipulator’s impact
on the rest of the SMS have been studied for various applications. In capture scenarios, adap-
tive reaction null space methods have been widely developed for free-floating manipulators as
it avoids the use of base actuators [YDH19]. More generally, methods based on the GJM have
allowed to reduce the free-floating base disturbances during the capture contact. As proposed
by Hu and al. [HW18] the impacts are considered in their developed generalized mass Jaco-
bian matrix. Then it allows to introduce a base attitude disturbance ellipsoid used to define
the impact direction and minimizing the base attitude disturbances in the control strategy.
Moreover, developing path-planning methods allow to reduce the impact of the grasping. As
established by Zhang and al. [Zha+20], the manipulator’s path is obtained with a particle
swarm optimization so that the contact has low influence on the base. Similarly, Yang and
al. [Yan+19] developed a strategy to synchronize the manipulator’s end-effector of the ser-
vicer and the target that reduces the relative motions. Likewise, optimizations with multiple
constraints have been developed to include a reduction of coupling influences actuators limits
or the system’s velocities. These optimizations result in appropriate manipulator trajectories
that can be adapted according to the servicing application [LY20]. Trajectory optimizations
also provide the advantage of a reduce use of available actuators, as developed in [RSS17].

Furthermore, momentum accumulation or external forces may impose an unwanted end-
effector motion. Therefore it may require a solution for the inverse kinematic when the
manipulator is in a near singularity configuration as it could saturate its actuators. In order
to avoid dynamic singularities, Nanos and al. [NP15] studied Cartesian trajectory planning
of free-floating SMS such as for a given end-effector trajectory an initial manipulator config-
uration is defined resulting in non-singular configurations during end-effector motion. The
proposed method advantageously allows to consider initial angular momentum. Wang and
al. [Wan+18b] benefit of the manipulator’s redundancy which offers infinite solutions for the
inverse kinematics problem to optimize trajectories. With null-space vectors, they use Bézier
curves to represent the joints’ trajectories while minimizing their range and rate or consider
singular-free trajectories. Likewise, additional constraints as adding minimizing base distur-
bance and collision avoidance criteria can be included. A more recent study proposed by Shao
[Sha+21] tackles the singular avoidance problem introducing a nonsingular terminal sliding
surface with a terminal sliding mode controller. It also provides quick convergence time. Con-
sidering free-flying robots, Seddaoui and al. [SS19] proposed a common trajectory planning
for collision-free and singularity-free paths with fuel-consumption optimization constraints.
Fuel consumption, that also goes hand in hand with the mission’s lifespan of a free-flying SMS,
can be tackled by adding additional constraints in the path-planning optimization problem



1.3. Control methods of Space Manipulator Systems 25

as proposed by Breger and al. [BH08]. Their solution is to solve a non-convex problem for-
mulation to reduce by two the fuel consumption of the satellite from a convex formulation of
the problem. Similarly, adding constraints on actuator capacity and end-effector in the opti-
mization allows to compute manipulator’s trajectories such that the impact with the target
to be captured can be done in an energy-efficiently way and without collision [Lam10].

1.3.3 Base disturbances control

In-space robots are affected by multiple disturbances that mainly impact the spacecraft base
attitude control. Two categories of perturbations can be identified. The external ones such as
atmospheric drags, gravitational fields and solar radiations that induce external torques and
forces on the global system. And the internal ones such as flexible vibrations and perturbations
from couplings in the system. They either extend the modeling formulation or transposes
physical constraints as the kinetic momentum expression. In this section the emphasis will be
placed on the internal disturbances which is a rising problematic with the current and future
space structures that mostly exhibit flexible behaviors. Moreover, the study is restrained to
flexible elements outside the manipulator’s kinematic chain.

Active control: As illustrated with the Hubble space telescope attitude control degrada-
tion due to the flexible solar arrays[Fos+95], early studies have shown interest in flexible
disturbances control. When the application is enabling the possibility of active vibration
suppressions, different actuators have been studied and proposed. A first approach is the
use of an active joint between the flexible appendage and the rigid hub. Hirano and al.
[Hir+13] proposed a virtual joint model to actively control the flexible appendage and reject
the vibrations due to the coupling with the manipulator. As flexible deformation are gener-
ally not-measurable, an estimation of the flexible states is included in the control law with a
force/torque sensor between the hub and the appendage. Likewise, Ataei and al. [Ata+20]
studied the use of elastic connection between the flexible appendage and the rigid satellite
base. Boundary controllers are then designed to ensure asymptotic stability of the satellite
attitude control without accurate system modeling. In a second study, in which no manip-
ulator is considered, permanent magnet synchronous motors are used to actively reduce the
flexible modes during the assembly of solar arrays [Guo+20].

Another method to actively reject flexible disturbances is the use of piezoelectric actuators
positioned on the appendage [HM05]. Such methods assume available sensors to measure
deformations. However, when flexible modes are not measurable, state observers are developed
in the control law structure [CYL17]. Otherwise the placement of piezoelectric actuators and
sensors has been studied by Angeletti [Ang+21] in order to perform precise pointing of the
base attitude without reaching flexible deformation thresholds.

Different strategies have considered the use of control moment gyroscopes distributed
on the flexible structures. Hu and Zhang [HZ16] have developed an adaptive controller for
vibration suppression in addition to a nonlinear controller that provides desired control input
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for large angles of the three-axis attitude maneuvers. Likewise, Jia and al. [Jia+17] have
proposed a two controller strategy for a flexible manipulator with control moment gyroscopes.
They first decouples the system dynamics as a slow and fast subsystem in order that the
flexible displacement correspond to the fast subsystem and the manipulator’s rigid motion to
the slow one. Moreover, decomposing the flexible dynamics in a fast subsystem also aims at
reducing the not-measurable states, as developed in the singular perturbation method detailed
in [YGC19].

Passive control: Active control offers answers to simple systems exhibiting flexible behav-
iors, however they remain hardly implementable considering the large structures in future
SMS applications. As a first approach to avoid the excitation of the flexible modes, input
control torque can be filtered. Chu and al. [CC12] proposed an adaptive disturbance re-
jection filter combined with an optimal input shaping control law to identify and adapt the
disturbance rejection. An adaptive notch filter is additionally developed with the closed-loop
system dynamics.

As the main difficulty to control free-floating robot lies in the couplings, different studies
have developed control strategies based on the quantification of the undesired system cou-
plings. For instance, the relation between manipulator and sloshing of a fuel-tank has been
studied by Rackl and al. [RGL18] while Meng and al. [Men+17] proposed coupling indices
between flexible appendages and manipulator motions. With these last coupling indices,
a hybrid control method for vibration rejection has been formulated by the same authors
[Men+18].

Furthermore, other disturbances may apply on SMS which require different control strate-
gies. As discussed in [Cao+20] external disturbances also impact the system such that system
modeling becomes difficult to deploy active control methods. Besides the unknown external
perturbations, modeling of the SMS with or without flexible appendages may be challenging.
For those reasons, robust control methods have been employed to perform accurate manip-
ulator and base control. Studies have tackled model uncertainties with H∞ controllers. As
established in [FTST06], additionally to the nonlinear H∞ a complementary neural network
has been developed to compensate for model inaccuracies as well as rejecting external distur-
bances. Zhongyi and al. [ZFJ08] developed a disturbance observer in the system decoupling.
The observer is developed with the VM approach in order to include model uncertainties which
are considered as lumped disturbances in the joint space. Likewise, Qiao and al [QWY19]
proposed the use of a disturbance observer to deal with vibrations of flexible appendages
while a H∞ controller is defined as such to compensate for SMS’s modeling uncertainties.
Moreover, H∞ synthesis allows to consider parametric variations with LFT23 representation.
Colmenarejo and al. [Col+20] tackled flexible uncertainties with such methods as in order
to perform capture tasks in presence of flexible appendages. Zhang and al. [Zha+15] de-
veloped an adaptive trajectory tracking control for free-floating SMS. The proposed control
method, allows to consider both parametric and non-parametric uncertainties as well as un-

23Linear Fractionated Transfer
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known bounded external torques. Chu and al. [CCS12] extended the combined DO24 and
a feedback control method with a fuzzy logic system to tune parameters online to improve
perturbation rejections. Zhou and al. [ZZZ17] incorporated a linear switching surface in
the controller design to deal with dynamic uncertainties in their proposed tracking control
method for free-floating robots.

Use of base actuators: The lifespan of a mission is one criterion for future spacecrafts
and in that purpose alternative to jet-thrusters are studied. Electrical actuators are then
favored for the spacecraft attitude control. Giordano and al. [Gio+20] proposed a common
control of thrusters and reaction-wheels such that only the critical moment of the capture of a
non-cooperative target are tackled with the thrusters. Reaction-wheels are also considered as
electrical kinetic moment exchange devices allowing to control the spacecraft base during ma-
nipulator motions without affecting the mission lifespan. Shi and al [SKK16] have developed
the dynamic model of an SMS with reaction-wheels to propose a controller robust to model
uncertainties in order to maintain the spacecraft attitude. To overcome reaction-wheel torque
limitations, Li and al. [LLW13] have discussed the interest of single gimbal control moment
gyroscopes during manipulator motions as they provide higher control torques than reaction-
wheels. Likewise, Wu and al. [Wu+18b] have considered the combination of reaction-wheels
and control moment gyroscopes to maintain the satellite platform fixed during manipula-
tor operations. Developing a null-motion between actuators allows to deal with saturation
of reaction-wheels and the inherent geometric singularity of gyroscopes. Antonello and al.
[AVT19] have discussed the different coordinate control methods to control both manipula-
tor and its base. With the recursive Newton-Euler approach control moment gyroscopes are
incorporated in the SMS dynamics and discussion are made based on the additional use of
thrusters or not.

1.4 Summary and identified area of improvements

SMS have shown an increasing interest in space exploitation and exploration during these
last decades, however remaining substantial improvements are required to consider them
as serious solutions. A first improvement consists in developing autonomous space robots to
perform highly repetitive tasks and allowing to reduce manned-missions. However, difficulties
to develop control laws arise with the complex modeling of space structures. Indeed, flexible
appendages are frequent in satellites and space structures which required to be taken into
account in SMS studies. As space manipulators operate in free-falling environments, the
different coupling between each elements that composed the system have to be considered
in the control applications. Besides coupling between manipulator and its base that either
is controlled or let free of rotation and drift, the manipulator system motions are inducing
flexible vibrations for which it is difficult to implement active control.

With the literature review, we identified the following axis of improvement:
24Disturbance Observer
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• Development of analysis and simulation tools in order to represent and study the be-
havior of SMS with flexible appendages.

• Defining SMS control laws such that a manipulator can precisely perform on-orbit ser-
vicing tasks in presence of disturbances induced by flexible appendages. Include base
actuators to attenuate the base disturbances due to different system couplings and ex-
ternal perturbations.

• Consideration of a first robustness criterion due to modeling uncertainties and sensors’
measurement errors.

• Consideration of a second robustness criterion on the inertia distribution changes. SMS
are inclined to proceed to different operations which leads to system variations. These
variations are mostly inertia ones and according to system’s velocities couplings of the
different SMS’s elements may required to be considered.
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2.1 Developing analysis and simulation tools for SMS with
flexible appendages

2.1.1 Problem statement and challenges

2.1.1.1 Problematic of the study

The objective of the study is to develop steering laws for space manipulator systems perform-
ing OOS2 operations. An SMS defines a system composed of at least one satellite base and
one robotic manipulator. The study will put the focus on rotation-free-floating SMS with a
unique manipulator. Such robotic systems have shown growing interest to perform multiple
and various tasks. As defined in the previous chapter, rotation-free-floating or free-floating
system refers to an SMS from which the satellite’s three rotational DoF3s are actively actuated
by electrical actuators. In this work, reaction-wheels are selected. Moreover, in an objective
of not impacting the mission’s lifespan the three linear DoFs of the base, often controlled
with reaction-jet actuators, will not be actively actuated in this study. Therefore, adapting
multi-body modeling formalism to integrate and describe space manipulators dynamics with
reaction-wheels in the satellite base is a first concern of the study.

As identified in the previous literature overview, flexible appendages will be systematically
present in application involving SMS. The flexible modeling raises a second focus on the study
as it remains challenging. As active control is difficult to conceive, the flexible modeling could
bring significant advantages in the control design process. Thus, deriving the dynamics model
of a rotation-free-floating SMS with flexible appendages would provide new control approaches
adapted to intern disturbances.

An SMS evolves in a free-falling environment leading to multiple coupling within the
overall system. Studying and evaluating those couplings is necessary to ensure stability and
feasibility of manipulator motions to perform a given task. Developing means to analyze
couplings and more generally to evaluate and study feasible motions and configurations that
can possibly achieve an SMS is another focus of development in this work. Besides, the
tools are introduced such that control laws can be developed and validated with time-domain
simulations.

To summarize, tools of analysis and simulations for rotation-free-floating SMS with flexible
appendages have been elaborated and are described in this chapter so that control and analysis
problematics can be introduced.

2On-Orbit Servicing
3Degree of Freedom
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2.1.1.2 Modeling of rigid SMS

SMS modeling refers to the derivation of both a dynamic and kinematic model of the robot. A
kinematic model gives the relations between the manipulator’s joint state and the end-effector
in the satellite frame. A dynamic model provides the system’s equations of motions in terms
of accelerations, forces and torques. A particularity of space robots is the inverse/forward
kinematic problem that likewise is a dynamic one [FA+14]. In that matter, different modeling
strategies have been developed in function of the SMS applications.

Early studies have focused on performing manipulator maneuvers without moving the
satellite base. Additionally to that objective, path-planning approaches have considered
singular-free motions. Another particularity of space robots is the possibility of reaching
dynamic singularities. A dynamic singularity corresponds to a configuration where the sys-
tem controllability is lost. Therefore, initial modeling approaches have been established such
as the focus was on developing a feasible manipulator motion resulting in a low impact on
the base rotations. The VM4 and DEM5 modeling methods respectively introduced by Vafa
and Dubowsky [VD87] and Liang and al. [LXB97], provided modeling methods inspired by
ground-base manipulators. In both approaches, a fixed satellite base is considered to develop a
kinematic/dynamic model for control purposes and workspace analysis. A third approach, in-
troduced by Umenati [UY89], is the GJM6. Based on a conservation of the kinetic momentum
initially null, the GJM allows to express the relation between the manipulator’s end-effector
and the joints in the Cartesian space. Such expressions are employed for workspace analysis,
path-planning and end-effector control for free-floating SMS.

Nevertheless, these first approaches are advantageous for simple manipulator systems
and are less adapted to provide solutions to actual robots for which multiple kinematic-
chains may be considered. Two main modeling methods are then developed to obtain a
kinematic/dynamic model of SMS: the Newton-Euler and the Lagrangian formalism. The
Newton-Euler approach, which is a direct interpretation of Newton’s second law, formulates
that the dynamic model by considering for each body of the system the force and moment
applied. The recursivity of the method is a first advantage for its implementation [VL+16].
Moreover, the independent consideration of each body allows more flexibility in the modeling
process and leads to the possibility of developing plug-in approaches [ACT08]. Thus, for
instance closed-kinematic chains and additional elements connected to the end-effector can
be studied. The Lagrangian formalism provides a simpler and systematic modeling method
based on the energies and works present in the system. Regarding energies of a space robot,
only the kinetic ones are considered which allows by developing a Lagrangian approach to
obtain an easier method to derive a dynamic model [Wil+18]. It provides as well a discussion
on the system momentum which may be used as a control development start. With rigid
systems and assuming no external interactions, the momentum conservation is a means of
state parameters estimation to retrieve the physical properties of the SMS [CLNP17].

4Virtual Manipulator
5Dynamically Equivalent Manipulator
6Generalised Jacobian Matrix
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In this way, it is a common strategy to model a rigid multi-body system evolving in a
free fall environment by initiating a Lagrangian formalism. In this chapter, the integration of
base actuators is based on the consideration of additional kinematic chains. In that matter,
the energetic approach of the Lagrangian formalism provides a simple method to include
additional elements to the overall SMS.

2.1.1.3 Modeling of flexible appendages

To take an analogy with ground-base robotic manipulators, usual control methods are based
on an accurate modeling to linearize and decouple actuators from each other. In that phi-
losophy, integrating the flexible dynamics onto the rigid one developed with a Lagrangian
approach would be a notable starting point to develop efficient SMS steering laws.

Nonetheless, flexible modeling represents a challenging task considering the complexity of
space structures. From a finite element method, flexible displacement DoFs can be described
with a second order transfer function corresponding to a generalized damped spring/masses
system. This representation often involves a large number of DoFs which is a primary concern
when modeling a spacecraft with flexible elements. Multiple methods have been established
to reduce the number of flexible DoFs [LP60]; [Dok72]; [SA08]; [JL21].

With a reduced flexible model for the appendages, integration to the overall rigid SMS is
the main challenge. Studies have considered simplistic models based on a flexible beam with
a mass at its end such as couplings between the appendage and the satellite base [Hir+13];
[Liu+18]. Newton-Euler approaches are adapted to integrate flexible dynamics as for each
body a force/moment is listed so that a connection between two bodies is made with summing
forces and torques on the junction. Such methods have been put forward by different authors
[RZZ14]; [San+18]. Nevertheless, a drawback of the methods developed in the literature
is the consideration of linearized model. Such modeling allows the elaborations of control
laws, however it may reduce analysis and simulation applications as linearization are mainly
assumed with base velocity limitations.

2.1.2 Modeling objectives

Regarding the new needs in SMS uses, different improvements of existing modeling tools
are required. A first area of improvements is the need of new control methods of SMS to
perform various and longer operations during their exploitation time. In this study, the
focus is made on rotation-free-floating spacecrafts on which base rotations are controlled with
reaction-wheels. With a preferred Lagrangian formalism, these actuators are included in a
multi-body and multi-kinematic chains of a rigid system to describe kinematics/dynamics of
rotation-free-floating SMS.

Furthermore integrating flexible bodies raises the main challenges. For control purposes,
linear models have been used to synthesized control gains. However, such modeling techniques
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lead to develop robust control strategies as hypothesis and uncertainties may be numerous.
To be able to limit modeling constraints and hypothesis, in this present work a Lagrangian
approach is developed to include SMS’s flexible appendages dynamics onto the multi-body
rigid ones.

The developed modeling tools should firstly give the possibility of creating fine analysis of
a rotation-free-floating SMS with flexible appendages. For this matter, the formalism to derive
a kinematic/dynamic model is first detailed based on a Lagrangian approach and with the help
of the DH7 parameters. At the conclusion of this first non-trivial contribution tools to analyze
and study the behavior of flying and floating SMS with flexible appendages are introduced.
Developed on Matlab-Simulink kinematic and dynamic functions are established to obtain
respective direct and inverse models. With Simulink models, time-domain simulations are
possible. Discussions on the uses and performances of this tools are provided in the following
chapter. The chapter concludes on an illustration of the possible analysis that can be formed
with the present tools.

2.2 Modeling of a rigid multi-body free-floating SMS

In this section, the rigid multi-body kinematics and dynamics are developed with the objective
of describing the behavior of free-floating and free-flying space robots. As previously defined, a
kinematic model is the expression of a manipulator’s end-effector angular and linear velocities
in function of its joints’ pose expressed in the robot’s frame. The Differential kinematics,
or system’s dynamic model, is the expression of the relations between accelerations, forces
and torques of the system’s states. As the Lagrangian formalism provides a simpler and
systematic method to derive an SMS dynamic model, in this section the study of a rigid
multi-body system with multiple kinematic chains is developed with this approach. Then an
extension of the Lagrangian formalism is developed to integrate the flexible dynamics of the
SMS appendages. First a general formalism is detailed, based on the Denavit-Hartenberg
convention [KK86], to obtain a recursive computation method to derive the dynamics of the
multi-kinematic chains robot with a common base. As established by Rocha and al. [RTD11],
one of the advantages of the DH convention is the use of a minimal number of the kinematic
chain parameter to fully describe its kinematic model.

From the obtained general kinematic/dynamic modeling method, a discussion is developed
to adapt it for rotation-free-floating SMS. More particularly for a one-manipulator robot with
reaction-wheels to control the spacecraft base rotations.

7Denavit-Hartenberg
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2.2.1 Introduction of Denavit-Hartenberg notations

Figure 2.1 – Denavit-Hartenberg parameters

Reference frames and coordinate transformations As illustrated with Figure 2.1, a
kinematic chain is a series of rigid bodies inter-connected by a joint with one or less DoF. For
that reason the DH convention is well suited to develop a kinematic model with a reduced
number of four parameters. These parameters are defined for each body with a specific frame
that is associated with it, as visualized with Figure 2.1. Therefore a recursive formulation of
the kinematic model can be established. Before introducing the DH parameters’ identifica-
tion method, one will define the construction of the multi-kinematic chain system with the
following notations. The base is defined as the first rigid solid of the system and referred
as S0. From the robot’s base, nq more solids (or links) are considered, with nq ∈ N. It is
assumed that the last solid of a unique kinematic chain system is the nthEE . In particular, for a
single kinematic chain nq = nEE . To ease the reading such notations are abusively conserved
for multiple kinematic chains with more than one link, the subscript EE will refer to the last
solid of a kinematic chain with more than one DoF. The notation Si is used to refer at the ith
solid such that i ∈ [1, nq]. Between the bodies Si−1 and Si a connecting joint, denoted Ai, is
either considered fixed, prismatic or revolute. Moreover, for each joint and solid, a Cartesian
body frame, Ri−1 = (Oi−1, ~xi−1, ~yi−1, ~zi−1), is associated in respect to the following steps:

• The axis ~zi−1 is defined along the axis of joint Ai
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• The origin Oi−1 corresponds to the intersection between zi−1 and the normal to zi−2
and zi−1 that carries ~xi−1

• The vector ~yi−1 is deduced from the following cross product ~xi−1 = ~zi−1 × ~xi−1

• The first Cartesian frame R0 = (O0, ~x0, ~y0, ~z0) = Rsat is defined such that ~z0 is along
the axis of A1, ~x0 and ~y0 are arbitrarily chosen

• The last frame RnEE = (OnEE , ~xnEE , ~ynEE , ~znEE ) is defined such that ~xnEE is normal
to the axis of AnEE , ~znEE and ~ynEE are arbitrarily chosen

Then the four DH parameters are defined with these referential frames such as:

• di is the distance between xi−1 and xi along axis ~zi−1, it corresponds to a prismatic
DoF

• θi is the rotation around ~zi between ~xi−1 et ~xi, it corresponds to a rotational DoF

• ai is the distance between zi−1 and zi along axis ~xi, it corresponds to the common
normal of ~zi and ~zi−1

• αi is the rotation around ~xi between ~zi−1 and ~zi

Moreover, the geometry of the SMS with respect to an inertial frame, Rine8, can be described
with the position vector, rAi ∈ R3×1, of each joint Ai and the position vector of each CoM9,
rSi ∈ R3×1, of link Si (i ∈ [0, nq]). One will note that the choice of considering CoM
simplifies the derivation of the kinematic model. With the DH parameters, homogeneous
transformations can be defined to recursively express the pose and orientation of the ith link
or joint. For that purpose, the matrix TAi−1,Ai is introduced as a homogeneous transformation
matrix between the frames Ri−1 and Ri which applies a rotation and a translation from the
first frame to the second. Denoting Tx

trans(d) a translation matrix along axis ~x of a distance
d and Tx

rot(θ) a rotational matrix around axis ~x of an angle θ, the matrix TAi−1,Ai is then
defined with the DH parameters as:

TAi−1,Ai = Tzi−1
trans(di)T

zi−1
rot (θi)Txi

trans(ai)Txi
rot(αi) (2.1)

8Inertial frame
9Center of Mass
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with the details of translation and rotational matrices given by:

Tzi−1
trans(di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



Tzi−1
rot (θi) =


cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1



Txi
trans(ai) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1



Txi
rot(αi) =


1 0 0 0
0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1



(2.2a)

(2.2b)

(2.2c)

(2.2d)

Thus, the homogeneous transformation matrix between Ai−1 and Ai is given by:

TAi−1,i =


cos(θi) −cos(αi)sin(θi) sin(αi)sin(θi) aicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1


=
[
RAi

(
rAi − rAi−1

)
01×3 1

] (2.3)

where one can distinguish the rotation and translation. The translation is defined by the
position, rAi , of the joint Ai in Rine and the rotation is given by the DCM10, RAi ∈ R3×3,
between Ai−1 and Ai that gives the direction of the rotation of Ai according to the previous
joint.

A similar operation can be defined to describe the homogeneous transformation between
the links Si−1 and Si. The frame RSi−1 attached to the solid Si−1 is defined such as its origin
OSi−1 corresponds to the CoM of Si−1, rSi , and its axis are collinear to the ones defining the
frame RAi . In particular, the origin of the Cartesian base frame Rsat11 is chosen such as
rSi = rA0 . Therefore, the homogeneous transformation matrix between the links Si−1 and Si
is given with the DH parameters and (2.3) as:

TSi−1,Si =
[

RSi
(
rSi − rSi−1

)
01×3 1

]
=
[
RAi+1

(
rSi − rSi−1

)
01×3 1

]
(2.4)

10Direction cosine-matrix
11Satellite frame
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The rotations of the link Si and the joint Ai+1 are identical, as visualized with Figure 2.1,
which leads to the equality RSi = RAi+1 .

Finally, a homogeneous transformation matrix from Si to Ai+1, TSi,Ai+1 , is given by:

TSi,Ai+1 =
[
RAi+1

(
rAi+1 − rSi

)
01×3 1

]
(2.5)

Moreover, to express in the decreasing recursive order the homogeneous transformation from
Ai to Ai−1, the following relation is given by:

TAi,Ai−1 = T−1
Ai−1,Ai =

[
RT
Ai −RT

Ai
(
rAi − rAi−1

)
01×3 1

]
(2.6)

For some control purposes, it may be interesting to express the base DCM in function
of Euler angles,

[
φ θ ψ

]T
(roll φ, pitch θ, yaw ψ). With the following rotation sequence

z − y − x, the base DCM is given as:

RS0 = RA0 =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)


1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


=

cos(ψ)cos(θ) cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ) sin(ψ)sin(θ) + cos(ψ)sin(θ)cos(φ)
sin(ψ)cos(θ) cos(ψ)sin(φ) + sin(ψ)sin(θ)sin(φ) −cos(ψ)sin(φ) + sin(ψ)sin(θ)cos(φ)
−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)


(2.7)

Moreover, the interest of using the DH formalism relies in the recursivity to express a
body state. Denoting TAi,Rine and TSi,Rine respectively the transformation of joint Ai and
body Si expressed in Rine, with the DCM a recursive overall transformation is obtained as:



TA0,Rine = TS0,Rine

TA1,Rine = TS0,RineTA1,S0 = TA0,RineTA1,A0

TAi,Rine = TAi−1,RineTAi−1,Ai = TA1,Rine

i∏
j=2

TAj−1,Aj , ∀i ∈ [2, nq]

TSi,Rine = TAi,RineTAi,Si , ∀i ∈ [2, nq]

(2.8a)
(2.8b)

(2.8c)

(2.8d)

One will note that the transformation TAi,Rine is composed of the overall DCM of the joint
Ai expressed in the Rine, RAi,Rine , and its position given in Rine. This DCM is used to derive
the direction of the joint rotation, ki, in the inertial frame as:

ki = RAi,Rine

0
0
1

 = RA0

i∏
j=1

RAj

0
0
1

 (2.9)
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To produce the kinematic model, for each body a mass mi (i ∈ [0, nq]) and an associated
inertia ISi (i ∈ [0, nq]) expressed in the corresponding body frame are defined. With (2.9),
the inertias can be expressed in Rine, denoted Ii such that:

Ii = RSi,RineISiRT
Si,Rine (2.10)

Denoting mtot the total mass of the system, the CoM position in Rine is expressed in
function of each body CoM poses, rSi , such as:

rCoM =

nq∑
i=0

mirSi
nq∑
i=0

mi

=

nq∑
i=0

mirSi

mtot
(2.11)

Additionally, a recursive expression of the links CoM can be developed as:

rSi = rS0 +
i∑

j=1
(rSi − rSi−1), ∀i ∈ [0, nq] (2.12)

With the DH formalism introduced in this section, expressions of pose and orientation
of each element composing a multi-body system with one or more kinematic chain can be
obtained with recursivity. The homogeneous transformations between two solids/joints are
given in function of the system’s DoFs and more generally in function of the nature of the
junctions.

2.2.2 Velocities and accelerations

In order to describe system velocities, twist vectors are introduced. The twist vector, ti, of
the ith body gathers the angular and linear velocity both expressed in Rine and respectively
denoted ωi ∈ R3×1 and ṙSi ∈ R3×1. Therefore, ∀i ∈ [0, nq] the twist of Si is expressed as:

ti =
[
ωi
ṙSi

]
,∀i ∈ [0, nq] (2.13)

To develop the kinematic model, the twist expression is given in function of the joint-space
velocities. In that matter a generalized joint rate-variables vector, q̇ =

[
q̇T0 . . . q̇nq

]T
∈

R(6+nq)×1, is introduced such as q̇0 ∈ R6×1 is the base linear and angular velocity joint state
and ∀i ∈ [1, nq], q̇i ∈ R is the velocity state of the ith DoF in the kinematic chain(s). In
addition, with the DH parameters, one can define ∀i ∈ [1, nq], q̇i as:

• q̇i = θ̇i if Ai is a rotational joint
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• q̇i = ḋi if Ai is a prismatic joint

The joint-space is defined in function of the nature of the junctions and thus the system’s
DoFs.

One will note, motivated by control purposes, that the spacecraft angular velocity is
preferably expressed in its body frame, Rsat. Defining q̇0 such as q̇0 =

[
ωsat

T

0 ṙTS0

]T
, with

the angular velocity expressed in Rsat and linear velocity in Rine. Its expression allows to
obtain the base’s twist, t0, expressed in Rine operating a base transformation with the matrix
P0 as:

t0 =
[
ω0
ṙS0

]
=
[
RS0 03
03 I3

] [
ωsat0
ṙS0

]
= P0q̇0 (2.14)

One will note that if not specified, all velocities and pose are expressed in Rine.

Furthermore, to distinguish a DoF of a kinematic chain from the base’s, the joint rate-
variables are gathered in another joint-rate-variables vector q̇m ∈ Rnq×1 such as q̇m =[
q̇1 q̇nq

]T
.

Defining t =
[
tT0 . . . tTnq

]T
∈ Rnq×1, the generalized twist vector, a velocity transformation

between the task space and the joint space is defined as [AL88]:

t =


I6 06 . . . 06

B10 I6 . . . 06
...

... . . . ...
Bnq0 Bnq1 . . . I6



P0 06 . . . 06
06 pm1 . . . 06
...

... . . . ...
06 06 . . . pmnq

 q̇ = NBNpq̇ = N(q)q̇ (2.15)

with:

• Bkj =

 I3 03(
rSk − rSj

)×
I3

 ∈ R6×6, if Sk and Sj are in the same kinematic chain

• Bkj = 06, if Sk and Sj are in different kinematic chains

• pmk =
[

kk
kk × (rSk − rAk)

]
∈ R6×1, if Ak is a revolute joint

• pmk =
[
03×1
kk

]
∈ R6×1, if Ak is a prismatic joint

• pmk = 06×1, if Ak is a fixed joint

where x× refers to the skew-symmetric matrix 12 of vector x ∈ R3×1, pmk is the twist

12x× =

[
x1
x2
x3

]×
=

[ 0 −x3 x2
x3 0 −x1

−x2 x1 0

]
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propagation vector, Bij is the twist propagation matrix and N is the velocity transformation
matrix. Its expression is function of the geometry and configuration of the system.

The matrix N can be decoupled into a lower and an upper triangular block matrix
[VL+16]. Moreover, one will put the attention on the proposed formalism that allows to
consider multiple kinematic chains with a common base thanks to vectors pmk and matrices
Bkj . Furthermore, to benefit from the recursivity offered by the formalism, from (2.15) the
twist expression can be expressed as:


t0 = P0q̇0

ti = Bi0P0q̇0 +
i−1∑
k=1

(Bikpmk q̇k) + pmi q̇i

(2.16a)

(2.16b)

In space robotics, and more largely for robots that involve multi-body kinematic chains,
the term Jacobian is employed to refer the transformation matrix between a body twist, or
the twist of a point in the kinematic chain considered, and the generalized joint rate-variables
vector. With the rows of N, the twist of the ith body in the kinematic chain is given in
function of the Jacobian matrix, Ji ∈ R6×(6+nq), by:

ti =
[
Bi0P0 Bi1pm1 . . . Bi(i−1)pmi−1 pmi

]
q̇ = Jiq̇ (2.17)

Likewise, Ji can be decomposed into a Jacobian, J0i ∈ R6×6, for the base contribution on
ti and a second Jacobian, Jmi ∈ R6×nq , for the kinematic chain(s) DoF contributions. This
allows to re-write (2.17), ∀i ∈ [1, nq − 1]:

ti = Bi0P0q̇0 +
[
Bi1pm1 . . . Bi(i−1)pmi−1 pmi06×(nq−i)

] 
q̇1
...
q̇nq


= J0i q̇0 + Jmi q̇m

(2.18)

and for i = nq, the Jacobian Jmnq =
[
Bnq1pm1 . . . Bnq(nq−1)pmnq−1 pmnq

]
.

For the particular case of a single kinematic chain, the twist tEE associated to the end-
effector (or the last body of the kinematic chain) can be expressed in function of the base and
actuators states adapting (2.18). In case of a single kinematic chain, the twist, tEE , of the
last body in the chain which is referred as the end-effector, is given as:

tEE =
[
ωEE
ṙEE

]
= BnEE0P0q̇0 +

[
BnEE1pm1 . . . BnEE(nEE−1)pmnEE−1 pmnEE

] 
q̇1
...

q̇nEE


= J0EE q̇0 + JmEE q̇m

(2.19)

Accelerations of the system are recursively obtained with the time-derivative of the twist
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vector (2.18) such that ∀i ∈ [1, nq]:

ṫi = J̇0i q̇0 + J0i q̈0 + J̇mi q̇m + Jmi q̈m (2.20)

where: 

J̇0i =
[

I3 03
(rS0 − rSi)× I3

]
Ω0P0 + Ḃi0P0

Ω0 =
[
ω×0 03
03 03

]

Ḃkj =

 03 03(
ṙSk − ṙSj

)×
03


J̇mi =

[
J̇mi,1 . . . J̇mi,k . . . J̇mi,nq

]
J̇mi,k =

[
I3 03

(rSk − rSi)× I3

]
Ωkpmk + Ḃkipmk

Ωk =
[
ω×k 03
03 ω×k

]

(2.21a)

(2.21b)

(2.21c)

(2.21d)

(2.21e)

2.2.3 Multi-body system dynamics

After expressing the system’s velocities and accelerations in the previous section with a re-
cursive formalism developed thanks to the DH parameters, a dynamic model is derived in
this section. With a Lagrange approach, the recursivity is taken advantage of associating for
each body an energy and then to derive the equations of motions of a rigid multi-body with
multi-kinematic chains and a common base evolving on-orbit.

The Lagrangian, L, expresses the difference of the system’s kinetic energy, T , and its
potential energy, V, as:

L = T − V (2.22)

In this study and commonly in such context [Wil+18], it is assumed that the effect of
Earth (gravity gradient and free-fall environment) on the robotic system are neglected which
leads to no potential energy (i.e. V = 0). Thus the evaluation of the Lagrangian (2.22) is
reduced to the evaluation of the system’s kinetic energy. For each body, the kinetic energy
expressed in Rine is the sum of a rotational energy and a translation one such as:

L = T = 1
2

nq∑
i=0

(
ωTi Iiωi +miṙTSi ṙSi

)

= 1
2tT0

[
I0 03
03 m0I3

]
t0 + 1

2

nq∑
i=1

(
tTi

[
Ii 03
03 miI3

]
ti

) (2.23)
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With the twist expression (2.18), (2.23) is re-written as:

L = 1
2tT0

[
I0 03
03 m0I3

]
t0 + 1

2

nq∑
i=1

(
tTi

[
Ii 03
03 miI3

]
ti

)

= 1
2tT0

([
I0 03
03 m0I3

]
+
( nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Bi0

))
t0

+ 1
2

(
tT0

( nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Jmi

)
q̇m + q̇m

( nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
Bi0

)
t0

)

+ 1
2 q̇m

( nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
Jmi

)
q̇m

(2.24)

which can be expressed in a compact form as:

L = 1
2
[
tT0 q̇Tm

] [ M0 M0m
MT

0m Mm

] [
t0
q̇m

]
= 1

2
[
tT0 q̇Tm

]
M(x0,qm)

[
t0
q̇m

]
(2.25)

with x0 the state vector composed of the base rotation DoF, θ0, and position in the inertial
frame such that x0 =

[
θ0 rTS0

]T
. The detail of matrices composing M is given as:



M0 =
[
I0 03
03 m0I3

]
+

nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Bi0

M0m =
nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Jmi

Mm =
nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
Jmi

(2.26a)

(2.26b)

(2.26c)

The matrix M(x0,qm) corresponds to the system’s inertia matrix expressed inRine, which
by construction is defined positive and symmetric. Its evaluation depends on the configuration
of the system as well as the base orientation and position in Rine. It is composed of the base’s
inertia, M0 ∈ R6×6, the links’ inertia Mm ∈ Rnq×nq and coupling inertia matrix between the
kinematic chain(s) and the base M0m ∈ R6×nq .

From a general stand point, one can introduce for the 6-DoFs base a control force/torque
vector, τ 0 ∈ R6×1, as well as an external force/torque vector, τ ext0 ∈ R6×1, that applies
on the base. Similarly for the nq joints, a control force/torque vector, τ qm ∈ Rnq×1, and
en external force/torque vector, τ extm ∈ Rnq×1, can be introduced. The system equation of
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motions are obtained by evaluating the Euler-Lagrange equation on each DoF as:
d

dt

(
∂T
∂t0

)
− ∂T
∂x0

= τ 0 + τ ext0
d

dt

(
∂T
∂q̇m

)
− ∂T
∂qm

= τ qm + τ extm

(2.27a)

(2.27b)

With (2.25) and the symmetric properties of M(x0,qm), the partial derivative expressions
are given as:

∂T
∂t0

= 1
2
(
MT

0 + M0
)

t0 + M0mq̇m = M0t0 + M0mq̇m

∂T
∂q̇m

= 1
2
(
MT

m + Mm

)
q̇m + 1

2
(
tT0 M0m

)T
+ 1

2
(
MT

0mt0
)

= Mmq̇m + MT
0mt0

(2.28a)

(2.28b)

Then the time-derivation of (2.28) gives:
d

dt

(
∂T
∂t0

)
= Ṁ0t0 + Ṁ0mq̇m + M0ṫ0 + M0mq̈m

d

dt

(
∂T
∂q̇m

)
= Ṁmq̇m + ṀT

0mt0 + Mmq̈m + MT
0mṫ0

(2.29a)

(2.29b)

with the expression of the time-derivative inertia matrices detailed with (2.21) as:

Ṁ0 = Ω0

[
I0 03
03 m0I3

]
+

nq∑
i=1

ḂT
i0

[
Ii 03
03 miI3

]
Bi0+

nq∑
i=1

BT
i0

[
İi 03
03 miI3

]
Bi0 +

nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Ḃi0

Ṁ0m =
nq∑
i=1

ḂT
i0

[
Ii 03
03 miI3

]
Jmi +

nq∑
i=1

BT
i0

[
İi 03
03 miI3

]
Jmi

+
nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
J̇mi

Ṁm =
nq∑
i=1

J̇Tmi

[
Ii 03
03 miI3

]
Jmi +

nq∑
i=1

JTmi

[
İi 03
03 miI3

]
Jmi

+
nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
J̇mi

(2.30a)

(2.30b)

(2.30c)

Additionally, the time-derivative of the inertia Ii (2.10) in the Rine, is given by:

İi = ω×i ISiR
T
Si,Rine + RSi,RineISiω

×T
i

(2.31)

The derivation of the Lagrangian (2.25) in function of x0 and qm to evaluate the Euler-
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Lagrange equation (2.27) is detailed in appendix A. In that purpose, one introduces c0 ∈ R6×6,
cm0 ∈ Rnm×6,c0m ∈ R6×nm and cm ∈ Rnm×nm as:

c0 = −1
2
∂

∂x0

(
tT0 M0 + q̇mMT

0m

)
c0m = −1

2
∂

∂x0

(
q̇TmMm + tT0 M0m

)
cm0 = −1

2
∂

∂qm

(
tT0 M0 + q̇mMT

0m

)
cm = −1

2
∂

∂qm

(
q̇TmMm + tT0 M0m

)

(2.32a)

(2.32b)

(2.32c)

(2.32d)

The final evaluation of the Lagrangian (2.25) with (2.27) allows to derive the dynamic
model for a rigid multi-body and multi-kinematic chains system as [Wil+18]:[

M0 M0m
MT

0m Mm

]
︸ ︷︷ ︸

M(x0,qm)

[
ṫ0
q̈m

]
+
[

Ṁ0 + c0 Ṁ0m + c0m
ṀT

0m + cm0 Ṁm + cm

]
︸ ︷︷ ︸

D(x0,qm,q̇0,q̇m)

[
t0
q̇m

]
=
[
τ 0
τ qm

]
+
[
τ ext0
τ extm

]
(2.33)

The matrix M(x0,qm) is an inertia matrix evaluated from the spacecraft configuration and
position in the Rine (i.e. q). The matrix D(x0,qm, q̇0, q̇m) is a convective matrix correspond-
ing to centrifugal and Coriolis terms. Its evaluation depends on the system configuration and
velocities such that it traduces the influence of each body’s motions on the rest of the system.

As for control purposes, the base rotations are preferably expressed in the body frame
Rsat, the general formulation of the dynamic model (2.33) is modified to express the base
angular dynamics in Rsat. With the transformation (2.14), the equation of motions (2.33)
are modified as:

[
H0 H0m

HT
0m Hm

]
︸ ︷︷ ︸

H(x0,qm)

[
q̈0
q̈m

]
+

PT
0

(
Ṁ0 + c0

)
P0 PT

0

(
Ṁ0m + c0m

)(
ṀT

0m + cm0
)

P0 Ṁm + cm


︸ ︷︷ ︸

C(x0,qm,q̇0,q̇m)

[
q̇0
q̇m

]
=
[
PT

0 (τ 0 + τ ext0)
τ qm + τ extm

]

(2.34)
One will observe that the base’s transformation does not change the properties of the inertia
matrix H(x0,qm), and thus of the convective matrix C(x0,qm, q̇0, q̇m).

where: 

H0 = PT
0 M0P0

H0m = PT
0 M0m =

nq∑
i=1

[
RT
S0
Ii −miRT

S0
(rS0 − rSi)

×

03 miI3

]
Jmi

Hm = Mm

(2.35a)

(2.35b)
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With this modeling effort, based on the DH formalism to develop a kinematic model
used to derive a dynamic model with a Lagrangian approach, the equations of motions for
an on-orbit robot with multiple-kinematic chains with a common base are given as (2.34).
The general formalism can later be modified according to the SMS studied. One will note
that this formalism as written with (2.34) corresponds to a flying robot for which external
forces/torques (i.e. τ ext0 and τ extm) are applied. Although, a floating robot will observe a
null control torque τ 0.

2.2.4 Dynamics of a rotation-free-floating SMS

Figure 2.2 – Illustration of a SMS with nr reaction-wheels and a nm-DoFs manipulator

The present study put the focus on rotation-free-floating manipulators with reaction-wheels
to control base orientations. Capitalizing on the general and recursive formalism previously
developed to derive the equations of motions of a space robot as (2.34), an adaptation is
presented in this section for a free-floating SMS adding reaction-wheels. The multi-kinematic
chains formalism is here put to use such that each reaction-wheel, Ari , corresponds to one
kinematic chain, Sri , composed of one-DoF joint, kri , as illustrated with Figure 2.2. This ad-
vantageously allows to distinguish the different contributions on the system of each actuators.
As one can observe with (2.15), between two kinematic chains their are no direct interactions,
the influence of a chain on the other occurs through the base. In that matter of distinguishing
reaction-wheels from manipulator’s actuators, the subscripts m and r are respectively used
to indicate manipulator quantities and reaction-wheel ones. Thus, the rotation-free-floating
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SMS considered has nr reaction-wheels and a nm DoFs manipulator.

To emphasize on the reaction-wheels’ integration and impact on the system, one will first
consider the twist vector by adapting notation from (2.15) such as:

tri = J0ri q̇0 + Jri q̇ri , ∀i ∈ [1, nr] (2.36)

where the Jacobian matrices are expressed as:
Jri = pmi =

[
ki

ki × (rSi − rAi)

]
=
[

ki
03×1

]

J0ri =
[

I3 03
(rS0 − rSi)

× I3

] [
RS0 03
03 I3

]
= Bi0P0

(2.37a)

(2.37b)

considering these expressions, one can highlight that the reaction-wheels affect the angular
velocity of the system in Rsat and the system’s base displacement in Rine.

Similarly, adapting (2.15) and (2.16), the twist of a manipulator joint is expressed as:

tmi = Bi0P0q̇0 +
i−1∑
k=1

(Bikpmk q̇k) + pmi q̇i

= J0mi q̇0 + Jmi q̇m, ∀i ∈ [1, nm]
(2.38)

where the expression of the Jacobian matrices given for a single kinematic chain are obtained
with: 

Bkj =

 I3 03(
rSk − rSj

)×
I3


pmk =

[
kk

kk × (rSk − rAk)

]
(2.39a)

(2.39b)

It allows to highlight that the manipulator’s joints also impact the linear dynamic of the
overall system in addition to its rotations.

From the twist expressions, a kinematic model can be defined as developed in the previous
section. Adding reaction-wheels to the system only modifies the kinetic energy expression
without providing any potential energies. Therefore, the Lagrangian expression (2.23) is
adapted to distinguish the contribution of base and manipulator actuators in the system
energy as:

L = T = 1
2tT0

[
I0 03
03 m0I3

]
t0 + 1

2

nm∑
i=1

(
tTmi

[
Ii 03
03 miI3

]
tmi

)
+ 1

2

nr∑
i=1

(
tTri

[
Ii 03
03 miI3

]
tri

)
(2.40)

Then introducing respectively the reaction-wheels and manipulator joint rate-variables gener-
alized vector q̇r =

[
q̇Tr1 . . . q̇Trnr

]T
and q̇m =

[
q̇Tm1 . . . q̇Tmnm

]T
, the kinetic energy (2.40)
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can be expressed in a compact form by developing the twist expressions with (2.36) and (2.38)
as:

L = 1
2
[
tT0 q̇Tr q̇Tm

]  M0 M0r M0m
MT

0r Mr 0nr×nm
MT

0m 0nm×nr Mm


 t0

q̇r
q̇m


= 1

2
[
tT0 q̇Tr q̇Tm

]
M(x0,qm,qr)

 t0
q̇m
q̇r


(2.41)

where the inertia matrix M(x0,qm,qr) is detailed as:

M0 =
[
I0 03
03 m0I3

]
+

nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Bi0

M0m =
nm∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Jmi

M0r =
nr∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Jri

Mm =
nm∑
i=1

JTmi

[
Ii 03
03 miI3

]
Jmi

Mr =
nr∑
i=1

JTri

[
Ii 03
03 miI3

]
Jri

(2.42a)

(2.42b)

(2.42c)

(2.42d)

(2.42e)

The inertia matrix M(x0,qm,qr) remains symmetric and defined strictly positive. One will
note that developing the expression of inertia matrix Mr allows to highlight that reaction-
wheels only affect the angular dynamics of the overall SMS.

In order to alleviate further notations and expressions, reaction wheels and manipulator’s
actuators state are gathered into the vector q ∈ Rnq×1 (with nq = nr+nm) as q =

[
qTr qTm

]T
and subscript q denotes the association of reaction-wheels and manipulator quantities, such

that M0q =
[
M0r M0m

]
and Mq =

[
Mr 0
0 Mm

]
. Thus, adapting notations of the previous

section and observing a similar base transformation (i.e. with 2.14) to express the spacecraft
base angular dynamics in Rsat, the equations of motions of a rigid rotation-free-floating SMS
are obtained as [Wil+18]:

[
H0 H0q
HT

0q Hq

]
︸ ︷︷ ︸

H(x0,q)

[
q̈0
q̈

]
+

PT
0

(
Ṁ0 + c0

)
P0 PT

0

(
Ṁ0q + c0q

)(
ṀT

0q + cq0
)

P0 Ṁq + cq


︸ ︷︷ ︸

C(x0,q,q̇0,q̇)

[
q̇0
q̇

]
=
[
PT

0 (τ 0 + τ ext0)
τ q + τ extq

]

(2.43)

with τ q =
[
τTr τTm

]T
∈ Rnq×1 the actuators control torque composed of the reaction-wheels’
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control torques, τ r, and manipulator’s control torques, τm, and τ extq ∈ Rnq×1 the vector of
the external torques/forces applying on the system’s actuators equal to zeros with the previous
assumptions of not disturbances. One will emphasize on the rotation-free-floating nature of
the SMS considered and on the hypothesis of no external perturbations which leads to the
torques/forces applying and controlling the base equal to zeros (i.e. τ 0 = τ ext0 = 06×1).

2.3 Modeling of flexible rotation-free-floating SMS

2.3.1 Modeling hypothesis

Figure 2.3 – Example of a flexible satellite

In this study, a flexible element is attached to
the spacecraft’s base, or on a body fixed on
the base, with a unique rigid junction. The
case of flexible element in a kinematic chain
is not developed here. The ith flexible ap-
pendage is linked to the rest of the satellite
with a fixed joint which pose in Rine is de-
noted rPfi as illustrated with figure 2.3. As
proposed in the literature [Lik72], a flexible
modeling of appendages is obtained in two
steps, first a finite element study is devel-
oped to obtain the flexible DoF and then a
modal reduction method is employed [Dok72]. The present work does not detail the finite
element approach but the DoF reduction is developed with the formalism used in Girard and
al. [GR10] and Sanfedino and al. [San+18]. The modal approach consists in a first system
studied without excitation sources, corresponding to the finite element approach, to obtain
the motion equation and the normal modes, then a second step is the superposition of the
flexible modes to reduce their number.

From a finite element analysis, each node is associated to a modal linear and angular
displacement denoted u. The distinction between an internal mode (or DoF) and the ones on
the unique junction is made using respectively the subscript i and j . Adopting the Lagrangian
formalism from the finite element method, the motion equations of the total set of DoFs are
a second order involving mass, damping and stiffness matrices as in [San+18]:[

Mii Mij

MT
ij Mjj

]
︸ ︷︷ ︸

Mflex

[
üi
üj

]
+
[
Cii Cij

CT
ij Cjj

]
︸ ︷︷ ︸

Cflex

[
u̇i
u̇j

]
+
[
Kii Kij

KT
ij Kjj

]
︸ ︷︷ ︸

Kflex

[
ui
uj

]
=
[
Fi

Fj

]
(2.44)

where Mflex, Cflex and Kflex are constant symmetric matrices. Fi are forces/torques apply-
ing on the internal DoFs and Fj are reaction forces/torques imposed by the junction on the
flexible appendage. This equation traduces that for any external forces/torques, correspond-
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ing to an excitation, the internal DoFs will present a linear and/or angular displacement with
a given velocity and acceleration and reciprocally for any mode displacement a force/torque is
applied on the junction. Moreover, this equation may present an important number of DoFs
which some may be neglected considering their physical properties and the application.

In order to reduce the number of flexible DoFs, the normal modes are considered. By
definition, it corresponds to the solutions of the equation of motion without any excitation
(i.e. Fi = 0ni×1 and uj = 0nj×1). Thus, from (2.44) and neglecting the damping terms,
Cflex, the normal modes are the solutions of [San+18]:

Miiüi + Kiiui = 0ni×1 (2.45)

These solutions are the ni eigenvalues, λk (with k ∈ [1, ni]), associated to kth eigenvectors,
Φik, given by [Cra00]: (

−λ2
kMii + Kii

)
Φik = 0ni×1 (2.46)

Then the DoF reduction is obtained by solving (2.44) with a projection of system physical
properties in the base composed of the eigenvectors Φik and the junction mode matrix Ψ. Ψ is
computed by successively imposing a unit displacement uj while blocking the other junction
displacements. In the case of a single junction, Ψ is defined as [GR10]:

Ψjj = Ij (2.47)

and the terms coupled with internal DoFs are obtained as:

KiiΨij + Kij = 0ni×nj ⇒ Ψij = K−1
ii Kij (2.48)

The projection in the normal mode base allows to use the Craig-Bampton transformation
[Cra00]: [

ui
uj

]
=
[

Φik Ψij

0nj×nk Ij

] [
ηk
uj

]
(2.49)

with ηk ∈ Rnk×1 the modal displacement vector. From this transformation, (2.44) is re-
written as [San+18]:[

mkk Lkj
LTkj M̄jj

] [
η̈k
üj

]
+
[

ckk 0nk×nj
0nj×nk 0nj

] [
η̇k
u̇j

]
+
[

kkk 0nk×nj
0nj×nk K̄jj

] [
ηk
uj

]
=
[

ΦkiFi

ΨjiFi + Fj

]
(2.50)

where:

• ηk is the modal displacement vector

• uj is the junction pose and orientation states

• mkk = ΦT
ikMiiΦik is a diagonal equivalent mass matrix which can be expressed in a

normalized modal base as mkk = Ik
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• ckk = ΦT
ikCiiΦik is a damping equivalent matrix. Neglecting the damping terms between

two modes, its expression is reduced to a diagonal matrix as ckk = diag(2ζkωkmk) where
ζk, ωk and mk are respectively the damping, the natural frequency and the generalized
mass of the kth mode.

• kkk = ΦT
ikKiiΦik = diag(mkλ

2
k) is the stiffness equivalent matrix

• Lkj = ΦT
ik (MiiΨij + Mij) is the matrix of the participation factors

• M̄jj = ΨjiMii Ψij + ΨjiMij + MjiΨij + Mjj is the condensed mass matrix. With a
rigid junction M̄jj is equal to the rigid body mass matrix. It includes the information
about mass, inertia and CoM of the structure with respect to the junction.

• K̄jj = Kjj − KjiK−1
ii Kij is the condensed stiffness matrix equal to 0nj for a rigid

junction

• Fη = ΦkiFi is the forces/torques imposed on the internal normal modes

• FP = ΨjiFi + Fj is the forces/torques imposed on the appendage by the junction

An adaptation of the Craig-Bampton transformation with a rigid junction, Ψij = 0ni×nj ,

2.3.2 Modeling of a rigid-flexible multi-body system

Modeling of a rigid hub and np flexible appendages Similarly to the method formu-
lated in section 2.2.4, a Lagrangian approach is adopted to include the flexible appendage
dynamics into the rigid ones of the base. First the twist vector of the ith junction is expressed
adapting (2.15) with a rigid junction as:

tPfi =
[
ωPfi
ṙPfi

]
= BPfi0t0 = BPfi0P0q̇0 = J0Pfi

q̇0

=

 I3 03(
rS0 − rPfi

)×
I3

 t0

(2.51)

and its time-derivative is given as:

ṫPfi = J0Pfi
q̈0 + J̇0Pfi

q̇0 (2.52)

with the expression of the time-derivative of the Jacobian matrix J0Pfi
developed as:

J̇0Pfi
=

 I3 03(
rS0 − rPfi

)×
I3

Ω0P0 +

 03 03(
ṙS0 − ṙPfi

)×
03

P0 (2.53)
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Associating the modal displacement vector ηi ∈ Rnηi×1 to the ith appendage composed
of the nηi flexible DoFs, the motion equations (2.50) is adapted with an appropriate flexible
base change and expressed in Rine as: Inηi LPfiBPfi0

BT
Pfi0

LTPfi BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

[η̈iṫ0

]
+
[

cηi 0nηi×6
06×nηi 06

] [
η̇i
t0

]

+
[
knηiηi
06×1

]
=
[

τ extηi
τ 0 + τ ext0

]
,∀i ∈ [1, np]

(2.54)

with τ extηi ∈ Rnηi×1 the external torques/forces applying on the ith flexible appendage, LPfi
expressed in Rsat, cηi = diag(2ζjωj) and kηi = diag(ω2

j ) (with j ∈ [1, nηi ]).

A drawback of the dynamics expressed as given in (2.54) is that it neglects existing
coupling factors between η̇i and t0. In order to derive those factors, c0ηi and cηi0, such that
no restriction or hypothesis are required on the base velocities, the Lagrangian approach is
chosen. From (2.54) the appendages kinetic energy, Tappendage, the hub composed of the base
and payloads kinetic energy, Thub, the flexible potential energy, Vη, and dissipative forces, Fη,
are expressed for a satellite with only the ith appendage rigidly attached as:

Tappendage = 1
2
[
η̇Ti tT0

]  Inηi LPfiBPfi0

BT
Pfi0

LTPfi BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

[η̇it0

]

Thub = 1
2tT0

[
I0 03
03 m0I3

]
t0

Vη = −1
2η

T
i kηiηi

Fη = −cηi η̇i

(2.55a)

(2.55b)

(2.55c)

(2.55d)

Then (2.55) is generalized to the np appendages with the introduction of the generalized

modal vector η =
[
ηT1 . . . ηTnp

]T
∈ Rnη×1 and nη =

np∑
i=1

nηi , the generalized forces/torques

applying on appendages τ extη =
[
τTextη1

. . . τTextηnp

]T
, the matrix of participation factor

Lηp =
[
LPf1

BPf10 . . . LPfnpBPfnp 0
]
and Cη = diag(cηj ), Kη = diag(kηj ) with j ∈ [1, np].

Thus, the listing of energies and forces present in the system composed of np flexible ap-
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pendages rigidly attached to the spacecraft’s base is:

Tappendages = 1
2
[
η̇T tT0

]  Inη Lηp

LTηp

np∑
i=1

(
BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

)[ η̇t0

]

Thub = 1
2tT0

[
I0 03
03 m0I3

]
t0

Vη = −1
2η

TKηη

Fη = −Cηη̇

(2.56a)

(2.56b)

(2.56c)

(2.56d)

Flexible appendages induce a variation of the potential energy Vη, the Lagrangian expres-
sion (2.23) then becomes:

Lflex = Thub + Tappendages − Vη (2.57)

The dynamics of such systems are derived from the evaluation of (2.57) with the following
Euler-Lagrange equations: 

d

dt

(
∂Lflex
∂η̇

)
− ∂Lflex

∂η
= τ extη + Fη

d

dt

(
∂Lflex
∂t0

)
− ∂Lflex

∂x0
= τ 0 + τ ext0

(2.58a)

(2.58b)

Developing expressions in (2.58) allows to express the system dynamics under a compact
form as: [

H0 H0η
HT

0η Hη

] [
q̈0
η̈

]
+
[

C0 C0η
Cη0 Cη

] [
q̇0
η̇

]
+
[
06×nη
Kηη

]
=
[

06×1
0nη×1

]
(2.59)

where inertia matrices are projected in the base such that the angular dynamics of the base
are expressed in Rsat as:

Hη = Iη
H0η = PT

0 LTηp

M0 =
[
I0 03
03 m0I3

]
+

np∑
i=1

BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

H0 = PT
0 M0P0

(2.60a)
(2.60b)

(2.60c)

(2.60d)
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convective terms as: 

C0 = PT
0

(
Ṁ0 −

1
2
∂

∂x0

(
η̇TLηp + tT0 M0

))
P0

C0η = PT
0

(
L̇Tηp −

1
2
∂

∂x0

(
tT0 LTηp

))
Cη0 = L̇ηpP0

(2.61a)

(2.61b)

(2.61c)

where the differentiation of Lηp according to x0, as detailed in appendix A, is the differenti-
ation of matrices BPfi0:

∂

∂x0

(
η̇TLηp

)
= η̇T

[
LPf1

∂

∂x0
BPf10 . . . LPfnp

∂

∂x0
BPfnp 0

]
(2.62)

and similarly for the time-derivative:

L̇ηp = η̇T
[
LPf1

ḂPf10 . . . LPfnp ḂPfnp 0
]

(2.63)

Integration of flexible appendages onto a rotation-free-floating dynamics In order
to study rotation-free-floating SMS with flexible appendages, illustrated with figure 2.4, the
equations of motions are derived from the previous sections capitalizing on the established
formalism. It is assumed that flexible bodies are rigidly attached to the base or on the end of
a kinematic chain that has no DoF. Then the rigid multi-body dynamics described by (2.43)
can be extended onto a coupled flexible-rigid dynamics to include those flexible elements.
Based on a Lagrangian formalism, as the actuated rigid kinematic chains only modifies the
overall kinetic energy, the Lagrangian expression (2.57) can be extended with the actuators’
kinetic energies. As developed in section 2.2.4 for the reaction-wheels integration, with the
proposed modeling formalism, separating the kinematic chains allows to naturally decouple
the different elements of the system and converge all of each element impacts on the common
satellite base.
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Figure 2.4 – Illustration of a rotation-free-floating SMS equipped with nr reaction-wheels, a
nm-DoFs manipulator and np flexible appendages

Therefore, the Lagrangian expression (2.57) is augmented with the nq system’s actuators
kinetic energy, Tq, as:

L = Lflex + Tq

= Lflex + 1
2

nq∑
i=1

(
tTi

[
Ii 03
03 miI3

]
ti

)
(2.64)

The Euler-Lagrange equations are given in respect to the base and actuator DoFs (i.e. q
and x0), introduced in (2.27), and the flexible DoFs (i.e. η) detailed in (2.58). Remaining
as general as possible, the Euler-Lagrange equations are given for a flying SMS with flexible
appendages and subject to external forces/torques as:

d

dt

(
∂L
∂η̇

)
− ∂L
∂η

= τ extη + Fη

d

dt

(
∂L
∂t0

)
− ∂L
∂x0

= τ 0 + τ ext0
d

dt

(
∂L
∂q̇

)
− ∂L
∂q = τ q + τ ext

(2.65a)

(2.65b)

(2.65c)

By evaluating the Lagrangian expression (2.64) with these Euler-Lagrange equations, the
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equations of motions for a flying SMS with flexible appendages and subject to external forces/-
torques are detailed in its most generic form as:M0 M0q M0η

MT
0q Mq 0nq×nη

MT
0η 0nη×nq Mη


︸ ︷︷ ︸

M(x0,q)

ṫ0
q̈
η̈

+

D0 D0q D0η
Dq0 Dq 0nq×nη
Dη0 0nη×nq Dη


︸ ︷︷ ︸

D(q0,q,q̇0,q̇)

t0
q̇
η̇

+

 06×nη
0nq×nη
Kηη

 =

τ 0 + τ ext0
τ q + τ extq
τ extη


(2.66)

with the expressions of the inertia terms detailed as:

M0 =
[
I0 03
03 m0I3

]
+

nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Bi0 +

np∑
i=1

BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

M0q =
nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
Jmi

Mq =
nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
Jmi

Mη = Iη
M0η = LTηp

(2.67a)

(2.67b)

(2.67c)

(2.67d)
(2.67e)

and the convective terms expressions given as:

D0 = Ṁ0 −
1
2
∂

∂x0

(
tT0 M0 + q̇MT

0q + η̇MT
0η

)
D0q = Ṁ0q −

1
2
∂

∂x0

(
q̇TMq + tT0 M0q

)
Dq0 = ṀT

0q −
1
2
∂

∂q

(
tT0 M0 + q̇MT

0q

)
Dq = Ṁq −

1
2
∂

∂q

(
q̇TMq + tT0 M0q

)
D0η = L̇Tηp −

1
2
∂

∂x0

(
tT0 LTηp

)
Dη0 = L̇ηp

(2.68a)

(2.68b)

(2.68c)

(2.68d)

(2.68e)

(2.68f)

The expressions of the time-derivative matrices are given in (2.30) and differentiations ac-
cording to x0 and q are detailed in appendix A.

The addition of the flexible dynamics leads to a second order dynamic model describing the
behavior of a flying SMS with flexible appendages. One will note that the actuators have an
impact only through the motions of the base and reciprocally the flexible vibrations induce
disturbances on the rest of the system by affecting first the base. With such model, no
assumption on the angular velocities of the base are made. The only hypothesis is made
on the finite element method to obtain the flexible DoFs and the following base reduction
to consider a smaller number of DoFs. Moreover, to preserve the expression of matrices of
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the participation factors, the junction between a flexible body and the rigid hub should be
punctual.

To preferably expressed the dynamic model (2.66) with the base angular dynamics ex-
pressed in their body frame (i.e. q̇0 =

[
ωsat

T

0 ṙTS0

]T
), the base transformation (2.14) is once

again detailed here. The reaction-wheels’ velocities, q̇r, and manipulator’s joints’ ones, q̇m,
are expressed in a generalized vector q̇ =

[
q̇Tr q̇Tm

]T
. Furthermore, to express the equations

of motions for a rotation-free-floating SMS with flexible appendages, only the actuator’s con-
trol torques are considered and external torques and forces are neglected. Then the overall
dynamics are given adapting (2.66) with the appropriate changes as:H0 H0q H0η

HT
0q Hq 0nq×nη

HT
0η 0nη×nq Hη


︸ ︷︷ ︸

H(x0,q)

q̈0
q̈
η̈

+

C0 C0q C0η
Cq0 Cq 0nq×nη
Cη0 0nη×nq Cη


︸ ︷︷ ︸

C(q0,q,q̇0,q̇)

q̇0
q̇
η̇

+

 06×nη
0nq×nη
Kηη

 =

 06×1
τ q

0nη×1


(2.69)

with the inertia matrix, H(x0,q), expression detailed such that the base angular velocities
are expressed in the base body frame, Rsat, as:

H0 = PT
0 M0P0

H0q = PT
0 M0q

Hq = Mq

Hη = Mη

H0η = PT
0 LTηp

(2.70a)
(2.70b)
(2.70c)
(2.70d)
(2.70e)

and the convective matrix, C(q0,q, q̇0, q̇), detailed as:

C0 = PT
0 D0P0

C0q = PT
0 D0q

Cq0 = Dq0P0

Cq = Dq

C0η = PT
0 D0η

Cη0 = Dη0P0

(2.71a)
(2.71b)
(2.71c)
(2.71d)
(2.71e)
(2.71f)

The free-floating mode define the control torques/forces τ 0 is null and only the controlled
reaction-wheels’ torque, τ r, and the manipulator’s joints control torques apply a torque on
the base.
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2.4 Matlab-Simulink simulation and analysis tools

Deriving the dynamics of a rigid multi-body system with different kinematic-chains and flex-
ible elements rigidly fixed to the system’s base has been a first contribution of this work.
Capitalizing on this modeling effort that provides recursive computation of the kinematics/-
dynamics of such systems, a Matlab-Simulink tool is developed. This section aims at detailing
the functionalities and potential uses of the tools.

2.4.1 Simulator functionalities

Figure 2.5 – Description of the Simulink model

Developing the kinematics/dynamics of a multi-body and multi-kinematic chains system with
a common base from the DH and Lagrangian formalisms advantageously provide a recursive
description of the system states. Based on SPART13 [VL+16], Matlab functions are developed
to obtain both direct and inverse kinematic/dynamic models for flying and floating SMS (the
difference is in the choice of actuators and control torques). SPART is an open-source software
toolkit for modeling kinematic and dynamic of a 6-DoFs actuated spacecraft with different
rigid kinematic-chains. Thus, both flying and floating SMS can be modeled and simulated.
A robot is described in a standardized XML14 description which is thus an input of the
simulation and analysis tool. Each elements are individually described (dimension, inertia,
mass) with the parent and child joints as detailed in appendix B.

From the descriptive functions of SPART that provides a tree mapping of SMS, kine-
matics/dynamics functions are adapted with our proposed Lagrangian approach developed in
sections 2.2 and 2.3 to obtain the dynamics of a rotation-free-floating with flexible appendages

13Spacecraft Robotics Toolkit
14eXtensible Markup Language
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as given by equations (2.66) and (2.69). Moreover, to guarantee computation efficiency, the
rigid dynamics as been derived with a Newton-Euler modeling approach [VL+18]. Then as
a first input of our elaborated Matlab-Simulink toolbox the studied robot is described in an
XML description link by link with the following required informations:

• Physical properties: mass, inertia, size for a rigid body-link and additionally for a
flexible appendage the number of flexible modes, their natural frequencies, dampings
and the matrix of participation factors

• Position in the kinematic chains: the attached links (one parent-link and for an element
other than end-effector a child-link), the initial position according to the referential
frame of the parent-link

• Joint nature: either fixed, prismatic or revolute

One will note that actuators’ dynamics and effort limits are not considered, however can
be easily added in a Simulink model.

Thanks to the overall functions established to compute both direct and inverse kine-
matics/dynamics time-domain simulations are obtained with Simulink models. For a given
spacecraft configuration (joints positions/orientations, base attitude and position in Rine)
and joints/links velocities the inverse kinematics/dynamics functions allows to compute iner-
tia and convective matrices. Respectively, the direct kinematics/dynamics functions provide
spacecraft configuration and system velocities in function of actuators’ torques, base external
actuating torques and system’s external forces/torques applying on the robot. Thus, from a
general standpoint, one can introduce the state vector x composed of the 6-DoFs base states,
the actuators states and the flexible ones. Then for a flying SMS with flexible appendages its
equations of motions are given by a general second order equation (2.72). Such a system can
be studied and analyzed with these tools for a given configuration or a manipulator motion.

Hẍ + Cẋ + Kx = τ base + τ actuators + τ ext (2.72)

A description of what is latter referred to as the main Simulink function is given in Figure
2.5. In order to obtain the direct dynamics of a system which behaviors is described with
(2.72), first an initialization step is established. In this initial step the XML description is
converted onto a Matlab structure taking into account the tree topology of the SMS and
an initial pose is given. Then for every time step, the overall velocities and Jacobians are
computed from the measure of the current state. Therefore equation (2.15) can be evaluated.
Then, the inertia, convective and stiffness matrices as developed according to (2.69) are
computed with the joints states and the physical properties in the XML description. Finally,
for the considered forces/torques (i.e. the base control forces/torques τ base, the actuators
control forces/torques τ actuators or any external forces/torques τ ext) the new state of the
SMS is obtained by integration of the system’s accelerations.

Furthermore, as one can visualize with Figure 2.6 visualization tools are available. Besides
providing a visual of a manipulator motion, it allows to verify in a first step the appropriate
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construction of the XML description and likewise visually verify the feasibility of a motion. In
Figure 2.6, two SMS examples are provided for which the base is represented as a red cylinder.
In both cases, gray cylinders inside the base correspond to the reaction-wheels. Smaller red
cylinders correspond to the different junctions/actuators positions. It is likewise illustrated
with SMS on the right side of Figure 2.6 that flexible elements can be positioned on a body
rigidly fixed to the base. In this case four flexible beams are attached to the first payload.

Figure 2.6 – Examples of SMS modeled with the proposed Matlab tools, on the left a SMS
composed of a 3-DoFs manipulator, 3 reaction-wheels and 2 flexible solar arrays, on the right
a modeled version of the PULSAR telescope use-case https://www.h2020-pulsar.eu/

To put it concisely, from a robot description, a pre-analysis can be developed to identify the
manipulator’s feasible motions and configurations without reaching conflict with the rest of the
system’s elements. Secondly, time-domain simulations can be obtained with Simulink models
such that for forces/torques and a given robot structure provided as inputs, an actualized
SMS state can be computed at any time.

2.4.2 Validation and performances of the developed simulation tools

The modeling formalism has been adapted to first integrate reaction-wheels and secondly
an extension of the kinematic/dynamic with flexible behaviors to the pre-existing SPART.
Therefore, a validation step is essential to raise the numerous potential coding errors and
highlight the limits due to the choice of solver, sampling and other numerical integration
induced errors.

We present in this section the validation process divided into two steps. First the correct
integration of the base’s actuators is proceeded upon with a system momentum discussion

https://www.h2020-pulsar.eu/
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similarly proposed in [Wil+18] considering a rigid SMS. Secondly, the flexible integration
is verified with existing tools that develop kinematic/dynamic models with a Newton-Euler
approach [ACT08].

2.4.2.1 Simulation of rigid systems

Figure 2.7 – Visual of the illustrative SMS used
for tool validations

The integration of the base actuators devel-
oped in section 2.2.4 to a rigid system is
first established. The validation is devel-
oped with the SMS described in appendix
B and visualized in Figure 2.7 where the
flexible modes are not considered. First a
numerical criterion is evaluated to observe
the numerical limitations constrained by the
main Simulink function and the integrations.
Then the validation of the correct implemen-
tation of functions are discussed with physi-
cal properties verified by free-floating SMS.

Simulator performances In order to
evaluate performances and limitations of the
time-domain simulations obtained with the
Simulink models, an input/output compar-
ison of the dynamic evaluation bloc is de-
veloped. The main function of the Simulink
model requires two inputs, the robot’s de-
scription and the forces/control torques. In
the case of the free-floating SMS the in-
put control is denoted τ in, such that τ in =[
0T6×1 τTq

]T
(with no forces/torques applied

on the base) and the system’s accelerations
(i.e. ẍ =

[
ẍT0 q̈T

]T
) are computed with

(2.43). Thus, the simulator’s performances
are evaluated with the threshold, λ, while
considering the error defined from (2.43) as:

‖ετ‖ = ‖τ in − (Hẍ + Cẋ)‖ < λ (2.73)

The value of λ corresponds to the numerical errors or noise which allows to conclude on the
consistency of the output data.
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Simulator validation As discussed in [Wil+18], a rigid free-floating SMS that is not sub-
ject to external torques/forces will have its CoM and momenta remaining unchanged for a
given manipulator maneuver. This property is thus considered in the validation process of a
rigid multi-body system. Considering an SMS of which its motions are described by (2.43),
for an initially null linear and angular momentum, the momentum expression is given in Rine
by [Wil+18]:

‖M0t0 + M0mq̇m + M0rq̇r‖ < λ (2.74)

with the reaction-wheels only affecting the evolution of angular momentum.

In order to consider a stable and feasible SMS maneuver (i.e. without reaching singular
configurations) and verify the momentum conservation, a simple control law is established.
Based on classical robotic control applications an NDI15 is introduced to decouple and linearize
the system. In addition a simple proportional control of the joints’ velocities is used. From
(2.43), a control torque that allows to obtain an NDI for a rotation-free-floating SMS is given
as:

τ qin = Hm (K (q̇d − q̇)) + Cmq̇d + HT
0mq̈0 + Cm0q̇0 (2.75)

with K a diagonal matrix corresponding to a linear proportional control gain and q̇d the
desired joint velocities.

Discussion with Time-domain simulations To obtain consistent time-domain results,
Simulink models are given the following solver parameters:

• Solver: ode45

• Fixed-step: 0.01s

and simulations are run on a standard computer with an Intel i7 CPU.

Firstly, the simulator performances are evaluated to properly comment simulation results.
As visualized with the evolution of the torque error signal (2.73) plotted in Figure 2.8, cor-
responding to the input torques represented in the upper subplot of Figure 2.9, data with
values lower than λ = 10−13 are considered as under the simulator precision, or in another
words corresponds to zero values.

15Nonlinear Dynamic Inversion
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Figure 2.8 – Upper subplots represent the input torques, τ rin (left) and τmin (right); Lower
subplot represents the evolution of the torque error signal ετ (2.73)

Secondly, the developed kinematic/dynamic functions are validated considering the evo-
lution of the system’s momentum for a manipulator’s/reaction-wheels’ motion. With the
control torque computation being as in (2.75), first the reaction-wheels are used then the ma-
nipulator’s joints as one can notice with Figure 2.9. This allows to observe the impact of the
SMS’s actuators as decomposed in the three first rows of subplot in Figure 2.10. As expected,
reaction-wheels only modify angular momentum while the manipulator motions affect both
linear and angular. Last row of subplot in Figure 2.10, allows to conclude on the momentum
conservation and consequently on the accurate implementation of the modeling functions to
study the behavior of a rotation-free-floating SMS. Such conclusion is made considering the
values of the angular and linear momentum that remains at the precision λ. Moreover, one
will note that the numerical error is due to a coupling transfer between the angular and linear
spacecraft’s dynamics when the manipulator is moving.
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Figure 2.9 – Upper figures represents the input torques τ qin (τ rin on the left and τmin on
the right); Lower figures correspond to the control performances with the desired velocities
in the red full-line and the measured velocities in the blue dash-line

Furthermore, interpretations of the momentum distribution can be developed based on
its conservation. As visualized with Figure 2.10, for each manipulator’s motions a counter-
reaction of the base will compensate with a linear motion the accumulated momentum. Sim-
ilarly, each manipulator’s motions inducing angular momentum are compensated with both
reaction-wheels and base motions. Similar and reciprocal behaviors occur with the use of
reaction-wheels.
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Figure 2.10 – Left subplots represent the system’s angular momentum and right subplots
the linear momentum. Sub-figures in first row respectively represent the base momentum, in
second row the reaction-wheels momentum, in third row the manipulator momentum and in
fourth row the total momentum

2.4.2.2 Validation of the flexible dynamics integration

Tools validation Flexible dynamics induces dissipative forces and consequently there is no
kinetic momentum conservation. For this reason validation cannot be based on a similar con-
servatism approach as developed in the section 2.4.2.1 and we will therefore use existing and
confirmed modeling tools. The toolbox that came by Alazard and al. [ACT08], SDT16, allows
to develop linear models of multi-body systems for space applications. Based on a Newton-
Euler modeling method, for each body a transfer function between the forces/torques and
accelerations is associated. In particular, for a spacecraft with flexible appendages attached
with a cantilever or revolute joint to the main hub, a hybrid-cantilever model is used to ob-
tain the dynamic model for each appendage. Then, in respect to the topology of the system
and through combination of the different transfer function a linearized dynamic model of
the overall system is computed. The verification process consists in a comparison of linear

16Satellite Dynamic Toolbox
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models computed from our tools and the ones obtained with SDT. The following steps are to
conclude on the accuracy of functions’ implementation integrating the flexible dynamics onto
the rigid ones of a flying SMS:

• Comparison between the rigid behaviors obtained with the SDT and our tools by ob-
serving the static gains of SDT’s direct linear models and the ones linearized from our
tools

• Comparison of the singular values of linear inverse dynamic models of the SMS

• Comparison of the eigenvalues of linear inverse dynamic models of the SMS

This validation process is developed on the PULSAR space telescope (https://www.
h2020-pulsar.eu) in which different flexible appendages are rigidly attached to a fixed el-
ement on the base as visualized with the right spacecraft representation in Figure 2.6. A
first reduced model of PULSAR, composed by the base, the payload and a sun-shield beam
was useful to assess the computation of the generalized inertia matrix, the convective inertia
matrix and the generalized stiffness matrix [Cum+21]. The equality of rigid behaviors (the
DC gain of the two direct dynamic models of the global spacecraft), the eigenvalues corre-
spondence of the inverse dynamic models of the global satellite system (base + payload +
the 4 sun-shield beams + the 2 solar panels), and the superposition of the singular values of
their frequency responses are means to assess the developments of the flexible functions (see
Figures 2.11 and 2.12 ).

Figure 2.11 – Comparison between singular values of direct linear models: on the left SDT
models and on the right models linearized from our tools [Cum+21]

https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
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Figure 2.12 – Comparison between eigenvalues of direct linear models: on the left SDT models
and on the right models linearized from our tools https://www.h2020-pulsar.eu

Simulator limitations To evaluate any numerical limitations of the Simulink model, a
comparison of input/output torques of the main Simulink function is performed. Con-
sidering a free-floating SMS with flexible appendages, the input torque, denoted τ in =[
0T6×1 τTq 0Tnη×1

]T
, allows to compute the system’s accelerations, ẍ =

[
ẍT0 q̈T η̈T

]T
,

with (2.69). Then, the torque error signal, used to consider simulator numerical precision is
defined as:

‖ετ‖ =

∥∥∥∥∥∥∥τ in −
Hẍ + Cẋ +

 06×nη
0nq×nη
Kηη



∥∥∥∥∥∥∥ < λ (2.76)

The solver parameters detailed in the previous paragraph are preserved, nevertheless some
adjustments may be required with the flexible parameters to accurately compute the flexible
dynamics.

Time-domain simulations are run on the SMS detailed in appendix B. Evaluation of ετ is
obtained for a basic SMS motion given with the input torques, τ q, illustrated with the upper
subplot in Figure 2.13. The simulator’s limitations are quantified with the torque error signal,
ετ (2.76), represented in the lower subplot in Figure 2.13. One can then conclude that data
presenting amplitudes lower than λ = 10−13 correspond to null values. This consideration
may lead to discussions on the physical properties of flexible modes considered.

https://www.h2020-pulsar.eu
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Figure 2.13 – Upper subplot represent the control torques τ qin ; Lower subplot illustrates the
evolution of the torque error signal ετ (2.76)

2.4.3 Example of possible analysis with modeling tools

SMS couplings studies are primordial prior to developing control strategies. In the literature
for rigid systems, the influence between each SMS’s body has been based on a momentum
conservation hypothesis. However, it is ambitious to develop similar assumptions in presence
of flexible appendages. With the modeling effort developed and with the associated tools, an
energetic based analysis can be introduced to illustrate and evaluate participations of each
elements on the overall system.

In order to analyze flexible dynamics evolution according to manipulator motions, one can
consider the comparison between spontaneous powers and works of rigid and flexible elements.
To distinguish flexible participations from the rigid ones, (2.69) is rewritten as:[

H0 H0q
HT

0q Hq

] [
q̈0
q̈

]
︸ ︷︷ ︸

Frigine

+
[

C0 C0q
Cq0 Cq

] [
q̇0
q̇

]
︸ ︷︷ ︸

Frigconv

=
[
06×1
τ q

]
︸ ︷︷ ︸
Frigext

−
[

H0η C0η
0nq×nη 0nq×nη

] [
η̈

η̇

]
︸ ︷︷ ︸

Fflex→rigext

(2.77)
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with Frigine an inertial force, Frigconv a convective force, Frigext an external control torque and
Fflex→rigext an external flexible force affecting the rigid dynamics. Similarly from (2.69), forces/-
torques can be defined for the flexible dynamics as:

Hηη̈︸ ︷︷ ︸
Fflexine

+ Cηη̇︸ ︷︷ ︸
Fflexconv

+ Kηη︸ ︷︷ ︸
Fflexpot

= −
[
HT

0η Cη0
] [q̈0

q̇0

]
︸ ︷︷ ︸

Frig→flexext

(2.78)

with respectively Fflexine , Fflexconv and Fflexpot an inertial, a convective and a potential flexible
force. Frig→flexext an external force corresponding to the influence of the rigid elements motions
inducing flexible vibrations.

Before introducing the work of each force, the powers are defined with (2.77) and with
(2.78) as: 

Prigine =
[
q̇T0 q̇T

]
Frigine

Prigconv =
[
q̇T0 q̇T

]
Frigconv

Prigext =
[
q̇T0 q̇T

]
Frigext

Pflex→rigext =
[
q̇T0 q̇T

]
Fflex→rigext

Pflexine = η̇Frigine
Pflexconv = η̇Fflexconv

Pflexpot = η̇Fflexpot

Prig→flexext = η̇Frig→flexext

(2.79a)

(2.79b)

(2.79c)

(2.79d)

(2.79e)
(2.79f)
(2.79g)
(2.79h)

and respectively, for each power the work associated is defined as its integral such that:

∀T > 0,W =
∫ T

0
Pdt (2.80)

If the multi-body system is entirely rigid, one can retrieve the kinetic momentum con-
servation. Considering either the involved powers of the works, the system conservatism is
verified with:  Prigine + Prigconv = Prigext

Wrig
ine +Wrig

conv =Wrig
ext

(2.81a)
(2.81b)

Then extending this observation the coupled rigid-flexible case, a conservatism of powers and
works can be verified to analyze the system’s elements solicitations and impact on the overall
SMS. From both equations (2.77) and (2.78) the flexible-rigid rotation-free-floating SMS
verifies:
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

Prigine + Prigconv = Pτrigext + Pflex→rigext

Pflexine + Pflexconv + Pflexpot = Prig→flexext

Wrig
ine +Wrig

conv =Wrig
ext +Wflex→rig

ext

Wflex
ine +Wflex

conv +Wflex
pot =Wrig→flex

ext

(2.82a)
(2.82b)
(2.82c)
(2.82d)

This allows to quantify the work and power lost when flexible vibrations occur due to system
couplings. With (2.82), the respective loss of work and powers are defined as:Wl =Wflex→rig

ext −Wrig→flex
ext

Pl = Pflex→rigext − Prig→flexext

(2.83a)
(2.83b)

An illustration of the works evolution in the system is developed with Figures 2.14 and
2.15 to analyze the influence of flexible appendages in an SMS. Considering the SMS motions
obtained with the input control torques represented in Figure 2.13, a comparison between
rigid and flexible elements’ works allows to evaluate the actuators’ influence on the energetic
loss.

• First, the impact of the manipulator is mainly on the variation of the system’s inertia
as for different configurations the mass distribution changes. This is visualized with the
left subplots of Figure 2.14 in which the rigid works are detailed.

• Secondly, reaction-wheels are mostly affecting the evolution of convective terms. Base
actuators modify the spacecraft’s angular velocities without changing mass distribution
in the overall system. Regarding the typically low manipulator’s joints velocities in
comparison to reaction-wheels, as illustrated with the second row of subplot in Figure
2.14, the base actuators will have a larger impact on the convective terms. This is
explained with the convective terms corresponding to cross products of system’s DoFs
velocities and thus large reaction-wheels velocities lead to large convective terms.

A second observation and analysis can be obtained based on the direct couplings between
reaction-wheels, base angular velocities and flexible modes vibrations.

• A first note can be made on the influence of the reaction-wheels use on the flexible
appendages vibration. As visualized with the flexible modes’ evolutions represented
in Figure 2.16, when the base actuators are used. This is easily explained regarding
convective terms and system’s velocities.

• Considering the works derived from the flexible dynamics, visualized in the right sub-
plots of Figure 2.14, for the given SMS motion, the manipulator poorly affects the base’s
rotations. Therefore, a flexible dissipative work can be quantified when the reaction-
wheels are used with (2.83) as illustrated with Figure 2.15.
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Figure 2.14 – Listing of system’s works evolutions (2.82); Left side subplots represent from
top to bottom works derived from: the inertial, convective forces and the external control
torques powers; Right side subplots represent from top to bottom works derived from: the
inertial, convective and potential forces
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Figure 2.15 – Lost work (2.83) for the SMS motions obtained with input control torques
represented in Figure 2.13
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Figure 2.16 – Flexible mode velocities η̇ for the input torques represented in Figure 2.13

2.5 Chapter conclusions

To summarize the contribution of this chapter, a modeling formalism has been elaborated to
establish simulation and analysis tools for a floating SMS with flexible appendages.
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It has been identified from the literature review, developed in the previous chapter, that
integrating flexible dynamics with those of a floating SMS remained challenging and inter-
esting for the study of current applications. The proposed methods in the literature are
either carrying numerous restrictive hypotheses or applying to simple space manipulators.
Therefore, after establishing a rigid model of a floating SMS with the DH formalism and a
Lagrangian approach, the flexible dynamics is included adapting the Lagrangian approach.
The choice of a Lagrangian approach over a Newton-Euler is based on the generality and the
simpler for a systematic modeling formalism.

The modeling formalism provides a recursive description of the system kinematics which
has allowed to extend existing simulation tools, SPART, with integration of reaction-wheels
and flexible dynamics. The new tools allow to produce different analyses of the system, as
introduced in this chapter with energetic discussions. Pre-design of the SMS, workspace anal-
yses, path-planning studies, evaluation of coupling influence are few example of the potential
use for the analysis tools. With the simulation tools, one can validate control laws or even
study stability of a rigid-flexible systems. In the following chapters, they will be use to develop
new control strategies.
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In the previous chapter, a modeling formalism has been introduced such that analysis
and simulation tools have been established. At the conclusion of this chapter, the developed
tools allow to both study and perform time-domain simulation on flying (and floating) SMS
with flexible appendages. In this chapter, steering laws are synthesized and validated with
the developed tools. First, from a short literature reviewed, areas of improvement in control
strategies for SMS with flexible appendages are listed. After illustrating the limits of a classical
control approach of SMS, a control that takes advantage of all the available actuators to

1Space Manipulator System

73
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improve control performances is proposed and discussed. From the conclusions of a common
control of the base and manipulator’s joints, a steering law is introduced to deal with flexible
appendages vibrations also referred here as system’s intern disturbances.

3.1 Areas of improvements

3.1.1 Challenges of developing steering law for SMS with flexible appendages

With the large variety of SMS applications comes numerous control challenges [FA+14];
[Li+19b]. Firstly, the space environment in which the manipulator evolves leads to differ-
ent couplings between each body composing the SMS. It complexifies the control of the
system and different solutions have been developed through the years to attenuate the nega-
tive effects of these couplings. A second difficulty lies in the presence of flexible appendages.
As developed in the previous chapter, for a base motion, either caused by the use of reaction-
wheels or from a manipulator’s motions, vibrations may destabilize the SMS. Additionally to
the couplings between the manipulator’s end-effector and the appendages, studied by Meng
and al. [Men+17], vibrations of the flexible elements may be caused by unpredictably envi-
ronmental disturbances as developed by Cao and al. [Cao+20]. For those reasons improving
the autonomous control of SMS remains a challenging task.

System couplings: In the present study, the focus is made on rotation-free-floating SMS
with reaction-wheels as the dedicated base actuators. With such manipulators, the global
kinetic momentum remains constant which may induce undesired motions caused by different
couplings. The main concern is the influence of the manipulator on the base which should
keep a fixed attitude to ensure the quality of the power supply (orientation of solar pan-
els) and communication with the ground (orientation of the antenna). Capitalizing on the
momentum conservation, studies have considered path-planning approaches in that matter
[PTN05]; [Li+19a] or adapted the motions of the manipulator with kinematic/dynamic con-
straints based on the GJM2 expression [HW18]. Moreover, path-planning methods have been
established in capture applications such that by reducing the relative motions between the
target and the servicer’s end-effector, the influences of both impact and manipulator maneu-
vers are lowered [RSS17]; [Yan+19]; [LY20]. Similarly, impedance control strategies lead to
similar results [NY06].

Furthermore, the use of null-space projector, originally introduced by Nenchev and al.
[Nen+99], have allowed to develop control strategies in which the manipulator’s motions do
not affect the base motions [PG15]; [YDH19]. Nevertheless, these methods are mainly based
on the momentum properties of the free-floating systems or established for simple manip-
ulators. As discussed in the previous chapter, flexible elements will generate a dissipative
force when they will start vibrating. Such force prevents from considering any momentum
conservation hypotheses.

2Generalised Jacobian Matrix
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Active control: To overcome the difficulty of establishing control laws without a momen-
tum conservation, studies have considered active control. Early strategies were based on
simple flexible model and were limited to small satellites. Two main active control meth-
ods can be distinguished. First the control of the DoF3 between the appendage and the
spacecraft’s base to reject the vibrations effects on the base [Hir+13]; [Hir+14]; [HGY19];
[Guo+20]. Secondly, flexible deformations are rejected with the use of piezoelectric actuators
positioned on the appendage [HM05]; [ZMP16]. The placement and number of such actuators
have an importance to guarantee a maximal deformation threshold of the appendage while
accurately controlling the spacecraft base attitude [Ang+21].

Moreover, the use of control moment gyroscopes between two flexible bodies have been
studied by identifying fast and slow sub-systems dynamics [Jia+17]. Control moment gyro-
scopes have also been considered to be placed on the flexible structure for the active vibration
suppression [HZ16]. However, in future space exploitation and exploration missions [Li+19b],
the use of dedicated actuators is quite difficult to set up as well as in terms of energetic
approach it may be contradictory with the purposes of increasing the lifespan of the missions.

Another difficulty from the active control is that a proper modeling of the flexible dy-
namics should be established. However, it remains challenging according to the studied space
structure. For that concern boundary controllers have been designed to insure asymptotic
stability of the satellite attitude control without accurate system modeling [Ata+20].

Passive control: Different alternatives to active control have been developed to reject both
system internal and external disturbances. With a limited knowledge of perturbation prop-
erties, adaptive disturbance rejection filters have been developed to avoid modal excitation
of the flexible elements when controlling the manipulator [CC12]. Quantifying the influence
of the mutual impacts between a source of an intern disturbance and the manipulator mo-
tions have been developed to introduce an SMS control strategy. For instance, Rackl and al.
[RGL18] adapted the manipulator control according to the reciprocal influence between the
robotic arm and the sloshing of the fuel tank. Moreover, Meng and al. [Men+17] proposed
to derive the flexible dynamics of the appendages such that a vibration rejection strategy can
be established [Men+18].

Nevertheless, the difficulty of deriving the flexible dynamics motivates the development
of robust control strategies. With H∞ controllers both modeling uncertainties and external
disturbances can be tackled [FTST06]; [Col+20]; [QWY19]. Furthermore, flexible vibrations
are usually not measurable and estimation techniques have been developed. Disturbance
observer are adopted to decouple the system [ZFJ08], or to improve the perturbation rejections
[CCS12]; [QWY19].

Actual solutions An important aspect of future space missions is the lifespan. For that
purpose, control strategies have focused on a reduced use of base actuators, especially when

3Degree of Freedom
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reaction-jet are involved. Giordano and al. [GCAS18] have first proposed a workspace adjust-
ment strategy to compensate for manipulator motions with an efficient use of thrusters. A
later approach developed by Giordano and al. [GOAS19] have been based on the simultaneous
control of the SMS global center of mass.

Besides efficient propellant consumption strategies, the use of electrical kinetic moment
exchange devices have raised in interest. The common use of reaction-wheels with thrusters
has been studied by Giordano and al. [Gio+20] such that only the critical moment of the
capture of a non-cooperative target are tackled with the thrusters.

Furthermore, in most applications, manipulator and base control are effectuated sepa-
rately. This can be illustrated by Wu and al. [Wu+18b] who considered the combination
of reaction-wheels and control moment gyroscopes to maintain the satellite platform fixed
during manipulator operations. This strategy aimed at dealing with the low reaction-wheels
saturation thresholds. Additionally, recent implemented control strategies also illustrate the
choice of a separate base and manipulator control [GCAS18]; [Cum+21]; [Col+20]. This
presents some benefits to ensure precise control of the robotic arm from one side and the
base from the other. However, in this chapter the interest of a common base/manipulator
actuators control is proposed.

3.1.2 Illustration of a classical control approach limitations

Before developing any further discussion on a common reaction-wheel and manipulator con-
trol, a short observation of the limits of a separated control strategy is detailed here on a
simple example. A first control law is introduced based on a simplified version of the similar
strategies proposed by Cummer and al. [Cum+21]. As illustrated by Figure 3.1, the proposed
methods separate the control of the base actuators from the manipulator’s joints. Moreover,
the control torques are computed from a single system linearization and constant control gains
are synthesized with robust control approaches. In order to simply illustrate the potential
limits of such methods, a simplification of the control proposed in the literature is considered
without developing the H∞ synthesis.

Figure 3.1 – Block diagram of classical control approach in the literature
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From the modeling of a rigid system (2.43), developed in the previous chapter, a separate
control reaction-wheels and manipulator’s joints is introduced inspired from current control
methods found in the literature. From one side, the manipulator is considered as a rigid
multi-body kinematic chain on a fixed base, thus its equation of motions are adapted from
(2.43) by negelecting the base dynamics and coupling such as:

H0
mq̈m + C0

mq̇m = τm (3.1)

where H0
m and C0

m are nominal matrices, obtained from a system linearization. Such expres-
sions of manipulator dynamics consider a fixed spacecraft base.

On the other side, the base rotational dynamic is expressed with only the reaction-wheels
as a means of control. Thus, isolating the reaction-wheels and base dynamics by neglecting
the coupling with the manipulator from (2.43), one first express the overall base dynamics as:[

H0
ω H0

ωr

H0T
ωr H0

r

] [
ω̇sat0
q̈r

]
+
[

C0
ω C0

ωr

C0
rω C0

r

] [
ωsat0
q̇r

]
=
[
03×1
τ r

]
(3.2)

with the notation 0 used to indicate nominal values of matrices (or from a linearized model).
One will note that H0

r = Hr and that for a fixed system’s CoM4 in Rine5 H0
ωr = Hωr.

Base rotations (3.2) can be expressed without reaction-wheels’ acceleration as they are not
necessarily provided for. Combining both lines of (3.2), base dynamics are given by:(

H0T
ωr −HrH0+

ωrH0
ω

)
ω̇sat0 +

(
C0
rω −H0

rH0+
ωrC0

ω

)
ωsat0 +

(
C0
r −H0

rH0+
ωrC0

ωr

)
q̇r = τ r (3.3)

This allows to have a naturally decoupled base/manipulator system. Then introducing the
constant linear control gains K0 ∈ R3×3 and Km ∈ Rnm×nm , the respective manipulator and
reaction-wheels computed torques are given as:

τmc = H0
mKm (q̇md − q̇md) + C0

mq̇m
τ rc =

(
H0T
ωr −H0

rH0+
ωrH0

ω

)
K0

(
ωsat0d − ω

sat
0

)
+
(
C0
rω −H0

rH0+
ωrC0

ω

)
ωsat0 +

(
C0
r −H0

rH0+
ωrC0

ωr

)
q̇r

(3.4a)

(3.4b)

Thus each actuators are decoupled. Respectively, τmc allows to decouple the manipulator’s
joint and τ rc reaction-wheels. Moreover, H0

ωr is a constant matrix depending on the choice
of reaction-wheels orientations in the spacecraft base and thus its pseudo-inverse is perfectly
defined.

In order to illustrate the performances of this control law, the tools developed in the
previous chapter are used. A simple SMS is considered with a 5-DoFs manipulator and four
reaction-wheels. Additionally, ten flexible modes are considered, which physical properties,
as well as for those of the overall spacecraft, are given in appendix B. The desired SMS

4Center of Mass
5Inertial frame
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motion consists of moving a 150kg mass with the manipulator as illustrated in Figure 3.2 and
maintaining the base with a fixed attitude. Control gains are computed with the normalized
dynamics (3.1) and (3.3) to guarantee a low closed-loop response time. This can be obtained
by imposing the control gains as diagonal matrices with the coefficient corresponding to the
inverse of the time response.

Figure 3.2 – Illustration of the SMS desired motion. Left to right the initial, the mid-
configuration and the final configurations

With Figure 3.3, in which the desired manipulator’s joints velocities (in dashed-line) and
measured ones (in full line) are plotted, one can conclude on the poor performances of the
velocitiy control. One will observe that velocities for joints 2 and 5 from fifty seconds give
an increasing tracking error until the end of the manipulator’s motion while the three other
joints successfully follow the desired velocities. This can be explained by the linearization
choice made to develop the computed torques (3.4). With a linearization performed for the
nominal SMS configuration, the manipulator is adequately controlled until fifty seconds of
motions then the system linearization is too far from the actual state to satisfy appropriate
control performances. This is why robust control synthesis and/or adaptive gains are required
to perform simple motions as the present one.

"The responsibility" of the linearization is in the poor control performances which are
illustrated by the successfully stabilized base with a null angular velocity. Illustrated with
Figure 3.4 and the second subplot, the angular rates of the base remains null during the
manipulator’s motions. Moreover, one will note that imposing fast control dynamics leads to
control gains K0 sufficiently large to be robust to the influence of floating system’s couplings
(i.e. between the motions of the manipulator’s end-effector and the base). This allows to first
conclude that a separated base/manipulator control can achieve good performances at the
condition of taking into account the system’s variation for the manipulator control.
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Figure 3.3 – Manipulator’s joints control performances, measured velocities (full-line) and
desired velocities (dashed-line)
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Figure 3.4 – Upper subplot is the measured reaction-wheels’ joint velocities second subplot
represents the base angular velocity and lower subplot is the flexible modes velocities

Furthermore, successfully maintaining the base with a fixed attitude allows to avoid large
flexible vibrations and even reduce them with the available reaction-wheels as illustrated
with both first and last subplots of Figure 3.4. The four reaction-wheels provide an over-
actuated system that insure base angular velocity to remain at low velocities. As discussed in
the previous chapter, considering the convective terms allows to conclude on the minimized
dissipative work lost in the flexible modes, as illustrated by Figure 3.5.
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Figure 3.5 – Dissipated work (2.83) during the complete motion with a fixed base attitude

From this short illustrative example of a classical control approach of both base and
manipulator, some conclusions can be made and possible improvements.

• Firstly, a separated control provides the possibility of adapting control performances of
both base and manipulator. However, regarding the couplings of an SMS, developing a
robust control synthesis is a "necessity".

• Secondly, it has allowed to show the limitation in the use of a unique linearization and
constant control gains to decouple the system.

• Thirdly, maintaining the base at a constant orientation allows to reduce the potential
impact of flexible vibrations on the manipulator and more generally on the rest of
the system. In that matter, investigating on a common base and manipulator control
approach could lead to a simple control law that provides precise performances.
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The chapter is then organized as following: the interest of a common base and manipulator
is discussed through a quantitative method, then secondly a control law is developed such that
high precision performances are guaranteed despite of the presence of the flexible appendages.

3.2 Interest of a common base and manipulator control

In this section, quantitative tools for analysis and control of an SMS are introduced extend-
ing our published work in [RKS19]. The presence of kinetic moment exchange actuators in
the base of an SMS offers more flexibility in the possible manipulator operations [Rog+19];
[Wil+18]. The objective of the section is to introduce a means to evaluate the interest of using
base actuators simultaneously to controlling the manipulator. To do so, a rigid rotation-free-
floating SMS is considered as it allows to come up with momentum discussions. Such system
behaviors are described by the equations of motions (2.43) detailed in the previous chapter.

First, the definition of usual SMS analysis notions from the literature such as workspace,
singularity, redundancy and manipulability are provided. This allows to develop tools to
observe the limits and feasible motions of an SMS. Secondly, kinematic indices are introduced
to quantify the interest of a common base and manipulator control.

3.2.1 SMS workspace

The manipulator workspace defines the set of reachable positions of the end-effector without
singular configurations. Its evaluation is obtained studying the GJM which also gives informa-
tion on singular configurations. The GJM is obtained with the kinetic moment conservation,
hence the restriction to the study of a rigid SMS. For an initially null system momentum and
without any external sources of disturbances, the system momentum is given in function of
the manipulator’s joints’ velocities, q̇m, and reaction-wheels’ velocities, q̇r, as [Wil+18]:

q̇0 =
[
ωsat0
ṙ0

]
= −H−1

0 H0mq̇m −H−1
0 H0rq̇r = J?m0 q̇m + J?r0 q̇r (3.5)

with J?m0 and J?r0 the Jacobian to express respectively the manipulator and reaction-wheels
velocities to the base velocity. Then developing the expression of the inertia matrix H0 of
a rigid floating SMS (2.43), for which the base angular velocity is expressed in the satellite
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body frame, Rsat6, allows to isolate the rotational and linear part of it as:

H0 = PT
0 M0P0

=

IS0 + RT
S0

( nq∑
i=1
Ii −mi (rS0 − rSi)

× (rS0 − rSi)
×
)

RS0 −mtot (rS0 − rCoM )×

mtot (rS0 − rCoM )× mtotI3


=
[

Hω −mtot (rS0 − rCoM )×
mtot (rS0 − rCoM )× mtotI3

]
(3.6)

As H0 is an inertia matrix, it is defined positive and symmetric. By applying the Ba-
nachiewicz inversion [BS02], H0 is inverted as:

H−1
0 =

 S−1
U (rS0 − rCoM )× S−1

U

S−1
U (rS0 − rCoM )× 1

mtot
− (rS0 − rCoM )× S−1

U (rS0 − rCoM )×

 (3.7)

with SU = Hω +mtot (rS0 − rCoM )× (rS0 − rCoM )×.

Thus, the generalized base Jacobian matrices J?m0 and J?r0 can later be developed.

Secondly, the evaluation of the workspace is obtained with the consideration of the end-
effector’s reachable positions. With a similar approach, generalized Jacobian matrices are
introduced for the end-effector such that its twist is evaluated from only actuators’ velocities.
Injecting the base twist, q̇0, (3.5) in the end-effector’s twist (2.19), one can define J?rEE and
J?mEE , respectively the generalized Jacobian matrices of the end-effector for reaction-wheels
and manipulator’s actuators as:

tEE = J0EEt0 + JmEE q̇m =
(
J0EEJ?m0 + JmEE

)
q̇m +

(
J0EEJ?r0

)
q̇r

= J?mEE q̇m + J?rEE q̇r
(3.8)

This relation allows to establish workspace discussions as well as actuators’ use rate to perform
a given motion. In the literature, the GJM refers only to J?mEE which, if expressed in Rsat,
and only depends on the manipulator configuration.

Redundancy of SMS: The non-holonomic constraint of free-floating SMS is due to the
non-integrability of the angular momentum equation [NM90]:

Mωω0 + MωLṙS0 + Mωrq̇r + Mωmq̇m = 03×1 (3.9)

It traduces that the dynamic couplings between the manipulator and the base leads to an
end-effector pose depending on both the manipulator’s trajectory and velocities. The redun-
dancy of a manipulator corresponds to the plurality of possible motions (i.e. multiple set of
qm and qr) to reach a base and end-effector rotation. One will note that in the case of a

6Satellite frame
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control of the base position, the end-effector can likewise be controlled in position however the
manipulator reaches or not a singularity. The degree of redundancy is the difference between
the manipulator’s DoFs and the number of end-effector tasks [NUY92]. One can distinguish
the main task, following a trajectory by the end-effector controlling its pose and orientation,
and secondary tasks, either a trajectory tracking while maintaining a fixed orientation of the
base or modifying the base orientation while maintaining the pose and/or orientation of the
end-effector. Denoting the number of end-effector tasks, ntEE , ntb the number of base tasks
and nm the manipulator DoFs, three redundancy cases can be considered for a free-flying
SMS:

• if nm = ntEE +ntb : the redundancy of the manipulator is only sufficient to control both
end-effector and base

• if nm > ntEE +ntb : the redundancy of the manipulator is sufficient to perform base and
end-effector tasks, additional constraints like actuator saturation, singularity or obstacle
avoidance can be considered

• if nm < ntEE + ntb : the redundancy degree is not enough to perform both base and
end-effector tasks, a hierarchy of tasks is required . If nm < ntEE the end-effector tasks
can be chosen to be performed first and if nm < ntb the base control can be privileged.

For rotation-free-floating SMS, the redundancy degree becomes nm + 3.

Singularity and workspace analysis: A particularity of free-floating SMS is the possi-
bility of reaching a dynamic singularity in addition of kinematic ones. Kinematic singularities
correspond to geometrical constraints of the manipulator and joint rotations while a dynamic
one occurs when a lack of a means to compensate for the manipulator motions leads to the
impossibility of moving the end-effector in any direction [PD93]. These singularities are conse-
quences of the non-holonomic constraints of a free-floating manipulator and also dependent on
its physical properties (mass/inertia). The dynamic singularities are studied with the GJM,
J?mEE . A dynamic singularity corresponds to a non-redundant manipulator when J?mEE is
rank deficient. Thus a dynamically singular configuration is evaluated with the evaluation of
the non-inversibility of J?mEEJ?TmEE as:

det
(
J?mEEJ?TmEE

)
= 0 (3.10)

Moreover, manipulator path-planning benefits from the study of dynamic singularities
as the manipulator joint rates become more important near singular configurations. Such
path-planning approaches optimize the value of det

(
J?mEEJ?TmEE

)
to insure configurations far

from singular ones. However, the main difficulty of establishing a manipulator path resides in
the non-holonomic constraints of a free-floating SMS. Papadopoulos and Dubowsky [PD93]
proposed a method decomposing workspaces in path dependent and independent subsets
of the complete workspace where respectively dynamic singularities may be encountered or
not depending on the path taken. Nanos and Papadopoulos [NP15] developed an analytical
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method to find initial base attitude and joint configuration such that the manipulator can
move into a workspace without reaching a dynamic singularity. Nevertheless, these approaches
only apply for planar manipulator. For spatial cases, Calzolari and al. [CLG20] presented a
numerical technique to obtain singularity maps for a 6-DoFs spacecraft in order to develop
path-planning method with singularity avoidance.

Manipulability: The notion of manipulability for redundant manipulator has been intro-
duced by Yoshikawa [Yos84] to establish and adapt path-planning methods. The manipula-
bility is the quantitative measure of the manipulator ability to perform an end-effector pose
and orientation considering the manipulator’s kinematics. It can be seen as a means to quan-
tify the proximity with singular configurations. The end-effector manipulability, µ

(
J?mEE

)
,

is defined as:
µ
(
J?mEE

)
=
√
det

(
J?mEEJ?TmEE

)
(3.11)

Thus, in path-planning approaches the problem of singularity avoidance can be replaced
by locally maximizing the manipulability µ at each point or satisfying the joint velocity
constraints [CLG20].

Furthermore, as accelerations and joint torques do not impact the manipulability evalu-
ation, Yoshikawa [Yos85] proposed a dynamic manipulability to likewise quantify the ability
of the manipulator to perform end-effector motions while considering the system’s dynamics.
Its evaluation is the measure of the volume of the dynamic manipulability ellipsoid formed
by the set of all realizable accelerations of the end-effector under joint constraints. For the
end-effector it is defined as the set of all end-effector accelerations that joint driving forces
can achieve. It is expressed in function of the normalized joint torques, τ̂m, defined with a
weight matrix Wτ , such that τ̂m = Wττm, verifies |τ̂Tmτ̂m| ≤ 1. Then expressing the joint
dynamics as:

H?
mq̈m + C?

mq̇m = τm (3.12)

and the time-derivative of the end-effector tasks for a fixed base:

ṫEE = J?mEE q̈m + J̇?mEE q̇m (3.13)

the dynamic manipulability, µ?, corresponds to the evaluation of the inversibility of the Ja-
cobian matrix J�mEE = J?mEEH?−1

m Wτ obtained combining both equations (3.12) and (3.13).
Thus it leads to evaluate the determinant of the scaled GJM, J�mEE [KY97]; [XLW20]:

µ?
(
J�mEE

)
=
√
det

((
J?mEEH?−1

m Wτ

)T (
J?mEEH?−1

m Wτ

))
(3.14)
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3.2.2 Distribution of system efforts

Besides system singularities, the evaluation of actuators’ usage can be interesting in path-
planning applications or for pre-sizing an SMS to satisfy mission requirements. In that pur-
pose, kinematic sensitivity indices are first introduced, as another contribution of this work,
for rigid rotation-free-floating robots based on the momentum conservation. Then simulation
examples to illustrate kinematic indices are shown with physical parameters for a microsatel-
lite from Myriade series equipped with a robotic arm.

3.2.2.1 Kinematic indices

With the expression of the generalized Jacobians (3.5) and (3.8), kinematic indices are intro-
duced to evaluate the participation of actuators in the base and end-effector motions.

Base kinematic indices: Base indices are obtained detailing the linear and angular part
of Jacobians J?m0 and J?r0 with (3.7) as:

J?m0 =
[
Jω0
m0

Jṙ0
m0

]
= −H−1

0

[
Hωm

HLm

]

=

 −S−1
U Hωm − (rS0 − rCoM )× S−1

U HLm

−S−1
U (rS0 − rCoM )×Hωm −

( 1
mtot

− (rS0 − rCoM )× S−1
U (rS0 − rCoM )×

)
HLm


J?r0 =

[
Jω0
r0

Jṙ0
r0

]
= −H−1

0

[
Hωr

HLr

]

=

 −S−1
U Hωr − (rS0 − rCoM )× S−1

U HLr

−S−1
U (rS0 − rCoM )×Hωr −

( 1
mtot

− (rS0 − rCoM )× S−1
U (rS0 − rCoM )×

)
HLr



As detailed in the previous chapter, the reaction-wheels do not affect the linear dynamics
of the base (i.e. HLr = 03×nr) which leads to:

J?r0 = −
[

S−1
U Hωr

S−1
U (rS0 − rCoM )×Hωr

]
(3.16)

As proposed by Xu and al. [Xu+16], this decomposition of the translation and rotation
allows to compute joint-to-base coupling factors. In order to deal with the range variation of
each actuators, the following scaled Jacobians will be used for analysis:

Jscalω0 =
[
Jω0
m0Qmax Jω0

r0 Ωmax

]
Jscalr0 =

[
Jr0
m0Qmax Jr0

r0Ωmax

] (3.17a)

(3.17b)
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where Ωmax and Qmax are respectively diagonal matrices of the maximal reaction-wheels and
the manipulator’s joints’ velocities.

By considering the Jacobians Jω0
m0 and Jω0

r0 expressions, one can notice that both are
factorized by S−1

U . That implies that the relative contributions of the joints and reaction-
wheels to the base angular motions do not depend on the base inertia but only on the relative
angular momentum capabilities of the manipulator and base actuators. This highlights that
the distribution of the angular momentum is a critical point to insure the controllability of
the system and dedicated control algorithms are required to deal with a non-null momentum
[ONY10]. A dedicated analysis of the components of SUJscalω0 matrix of the system in a
design phasis could address this issue. The sum of the reaction-wheels’ angular momentum
is bounded by ‖SUJr0

r0Ωmax‖F . Thus, in the angular momemtum space, this sum belongs
to the invariant polyedron which faces are normal to the reaction-wheels’ axis. For the
manipulator, its angular momentum is bounded by ‖SUJω0

m0‖, which is strongly sensitive to
the joint configuration (variation of the gravity center position and manipulator inertia).
Thus, to separate the joint and reaction-wheel contributions to the base motion according to
the joint configuration, we introduce the indices Kmω0 and Krω0 defined as follow:

Kmω0 =
‖SUJω0

m0Qmax‖F
‖SUJscalω0 ‖F

Krω0 =
‖SUJω0

r0 Ωmax‖F
‖SUJscalω0 ‖F

(3.18a)

(3.18b)

where ‖X‖F is Frobenius norm of X ∈ Rn×m defined as:

‖X‖F =
√
tr (X∗X) =

√
tr (XX∗) =

√ ∑
1≤i,j≤n,m

‖Xij‖2 (3.19)

Separating base and manipulator actuators with the relation ‖SUJscalω0 ‖
2
F = ‖SUJω0

m0Qmax‖2F+
‖SUJω0

r0 Ωmax‖2F and by analytically evaluating this norm, the kinematic indicators are inter-
esting to characterize the base controllability on pre-design stages or select preferential joint
configuration for control and path-planning purpose. One will note that the separation leads
to a complementary between Kmω0 and Krω0 . For instance, in an arbitrary manner, joint con-
figurations whose the index Kmω0 respects the arbitrary constraint Kmω0 < 0.5 are more suitable
to achieve motion without changing the base attitude.

End-effector indices: In SMS task prioritization, the highest priority task is the end-
effector motions, however with additional tasks for the base motions and with the dynamic
couplings of free-floating systems, manipulator capability to perform the end-effector task
may significantly be affected. To analyze this problem end-effector kinematic indices are
introduced. Similarly than for the base indices, the generalized Jacobians are decomposed as
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a translation and rotation sub-Jacobians as:
J?mEE =

[
JωEEmEE

JṙEE
mEE

]
= −J0EEH−1

0

[
Hωm

HLm

]
+ JmEE

J?rEE =
[
JωEErEE

JṙEE
rEE

]
= −J0EEH−1

0

[
Hωr

0

]

with (2.15), (2.19) and expression of J?m0 and J?r0 , the end-effector generalized Jacobians are
detailed as:

J?mEE =
[

RS0Jω0
m0

(rS0 − rEE)×RS0Jω0
m0 + Jṙ0

m0

]
+ JmEE (3.21)

and
J?rEE =

[
RS0S−1

U Hωr

(rS0 − rEE)×RS0S−1
U Hωr + S−1

U (rS0 − rCoM )×Hωr

]
(3.22)

To account for actuator capacity, similarly to (3.17) the following scaled Jacobians are
introduced: 

JscalωEE
=
[
JωEEmEE

Qmax JωEErEE
Ωmax

]
JscalṙEE =

[
JṙEE
mEE

Qmax JṙEE
rEE

Ωmax

]
As a main control difficulty of free-floating SMS is the coupling between the manipulator

and the base, null-motion projector can be used to restrict the redundant manipulator’s
joints motions to a sub-space which insure zero base attitude disturbance [NYU96]. The
proposed control method can be adapted to a rotation-free-floating for a common control of
the reaction-wheels and manipulator’s joints by introducing the null-motion projector:

Nω0 = I− J+
ω0Jω0 (3.24)

with J+
ω0 the pseudo-inverse of Jω0 . Thus, with this projector, the manipulability of the

end-effector without base motions can be evaluated with the indices:µ
N
ωEE

= µ(JscalωEE
Nω0)

µNṙEE = µ(JscalṙEENω0)
(3.25a)
(3.25b)

3.2.2.2 Simulation example

The interest of the introduced kinematic indices is illustrated with numerical simulations
developed on an SMS with a base exhibiting the physical parameters of the first microsatellite
in the Myriade series, Demeter [PA06]. Demeter is equipped with three reaction-wheels,
which nominally present an inertia of 4.10−4kg.m2 on their main axis and a maximal angular
speed of 2800rpm. The manipulator considered has 3-DoFs with physical parameters given
in table 3.1. Moreover, as current space manipulator such as Canadarm2 and JEMRMS do
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not exceed joint velocities of 0.7rpm [Lar+02], we assume that for this smaller manipulator
maximal joints angular speeds are less than 0.5rpm. The choice of manipulator and base
is made such that inertia ratios allow to highlight significant kinetic momentum exchanges
between the different SMS parts.

- Mass (kg) Dimension (m) Inertia (kg.m2)
Base 100 0.6× 0.6× 0.6 diag(40, 20, 40)
link 1 1.97 0.15 diag(35, 7, 4)10−4

link 2 1.58 1 diag(28, 917, 268)10−4

link 3 1.17 0.6 diag(7, 924, 273)10−4

Table 3.1 – Physical parameters of the considered SMS

Focusing on the three linear DoFs, two sets of reaction-wheels are considered to compare
with the suggested indices the impact that the manipulator may have on the base. The first
configuration is the nominal configuration as described above, the second configuration is
modified with an increased capacity of DEMETER (Hr replaced by 2Hr).

Figure 3.6 – Variation of the joint contribution to the base motion (Kmω0) plotted in Rsat for
the initial reaction-wheels (left) and the second actuators configuration (right)

To achieve this analysis, the indices have been evaluated for the two configurations in
6859 joint-space configurations uniformly distributed in the half-workspace of the manipulator
because the system is symmetric about the XZ plane. In figures 3.6, 3.7 and 3.8 iso-surfaces
of these indices are plotted and colors reflect their value for each end-effector pose. In figure
3.7 and 3.8 manipulability indices are normalized by the manipulator’s manipulability on a
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fixed base. Figure 3.6 points that increasing the reaction-wheels’ inertia allows to decrease
the contribution of the joints and to raise the one of the reaction-wheels on the base attitude
motion, as Kmω0 and Krω0 are complementary. One can also note that, the joint configurations
that impact the most the base motions are those where the end-effector is the farthest from
the system center of mass. In these critical configurations, doubling the inertia of the reaction
wheels allows to reduce the joints’ impact on the base from 0.65 to 0.4 and to ensure a stable
attitude without using thrusters. However, the manipulability of ṙEE , represented in figure
3.7, increases less than 0.1 if the base is able to move during the control of the end-effector.
This is due to the small ratio between the maximal spacecraft angular speed and joints angular
speed considered in our example. In this case, reducing the joint impact to the base with
bigger reaction wheel inertia does not affect the manipulability of ṙEE . Nevertheless, when
null-motion is used, figure 3.8 highlights an improvement of the manipulability of ṙEE with
more angular momentum in reaction wheels. As underlined by the figure 3.6, the second
configuration presents a better momentum repartition for this type of control.

Figure 3.7 – Evolution of the end-effector normalized manipulability indices, µNṙEE , plotted in
Rsat for the initial reaction-wheels (left) and the second actuators configuration (right)
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Figure 3.8 – Evolution of the end-effector normalized manipulability indices, µNṙEE , with a fix
base attitude constraint plotted in Rsat for the initial reaction-wheels (left) and the second
actuators configuration (right)

With this example, an illustration of one of the potential use of the kinematic indices
is developed. The interest of those indices is not only to pre-size an SMS optimizing the
couplings between the manipulator and the base, but likewise to adapt the control strategy.
More specifically, when the base is required to maintain a fixed attitude, a suitable set of base
actuators allows to balance the impact of the manipulator on the base due to the transfer of
kinetic moment in the SMS.
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3.3 Joint-space control of an SMS with flexible appendages

Figure 3.9 – Block diagram of the proposed joint control method

An analysis based on kinetic indices can be used to justify the interest of a simultaneous
control of the base and manipulator actuators. An SMS control strategy is developed in this
section such that internal perturbations due to flexible appendages will not impact control
performances. As illustrated with Figure 3.9, a nonlinear dynamic inversion is performed to
both linearize and decouple the system. Thanks to the modeling of a rotation-free-floating
SMS with flexible appendages developed in the previous chapter, internal disturbances are
included in the system feedback linearization such that actuators decoupling are accurately
performed. Moreover, including the disturbances forces/torques in the control torques, it
aims at rejecting perturbations with an adapted use of base actuators. With an ESO7,
the unmeasured states (i.e. the flexible modes displacements/velocities and the base linear
velocities) are included in the NDI8. This leads to an inter-dependency of observer and
control dynamics and performances which motivates a simultaneous synthesis of respective
gains based on a Lyapunov stability analysis. Then an LMI9 resolution allows to obtain linear
observer and control gains such that control performances and stability are insured.

First the state observer and control dynamics are developed capitalizing on the modeling
effort detailed in the previous chapter. In a second time, the system closed-loop dynamics are
detailed highlighting the coupling between observer and control performances, such that a
gain synthesis method is proposed to perform a given motion in an SMS workspace. Finally,
an illustration of the proposed method efficiency and interest is obtained on a simple SMS
example thanks to the developed Matlab simulation tools.

7Extended State Observer
8Nonlinear Dynamic Inversion
9Linear Matrix Inequality
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3.3.1 Observer structure

As mentioned, an observer is established aiming at including the un-measurable states of
the SMS, which behaviors is described by the equations of motions (2.69), in the NDI. It
is reminded that the flexible vibrations, η and η̇, as well as the linear dynamics of the
spacecraft, ṙS0 , are the states requiring an estimation. Likewise, to remain as general as
possible, actuators’ accelerations measures are supposed to be not available. Therefore, the
observer is designed such as:

• the control torque, τ q, and the actuators’ velocities, q, are used as observer’s inputs

• the angular base velocity, ωsat0 , is used as observer’s input

• the states to be estimated are the flexible displacement and velocities, respectively η
and η̇, and the base linear velocity, ṙS0 .

Prior to establish the observer dynamics, a re-written effort of the overall system equations
of motions (2.69) is necessary to design the observer without actuators’ accelerations, q̈. Thus,
from (2.69) including the actuators’ dynamics:

q̈ = −H−1
q

(
HT

0qq̈0 + Cq0q̇0 + Cqq̇ − τ q
)

(3.26)

onto the base and flexible dynamics:[
H0 H0η
HT

0η Hη

] [
q̈0
η̈

]
+
[
H0q
0

]
q̈ +

[
C0 C0η
Cη0 Cη

] [
q̇0
η̇

]
+
[
C0q
0

]
q̇ +

[
0

Kηη

]
=
[

06×1
0nη×1

]
(3.27)

then the flexible and base dynamics can be expressed without the actuators’ accelerations as:

M?
0η(x0,q)

[
q̈0
η̈

]
+ D?

η0η(x0,q, q̇0, q̇)

 ηq̇0
η̇

+ D?
q(x0,q, q̇0, q̇)q̇ = J?q(x0,q)τ q (3.28)

with: 

M?
0η =

[
H0 H0η
HT

0η Hη

]
−
[
H0q
0

]
H−1
q

[
HT

0q 0
]

D?
η0η =

[
0 C0 C0η

Kη Cη0 Cη

]
−
[
H0q
0

]
H−1
q

[
0 Cq0 0

]
D?
q =

[
C0q
0

]
−
[
H0q
0

]
H−1
q Cq

J?q = −
[
H0q
0

]
H−1
q

(3.29a)

(3.29b)

(3.29c)

(3.29d)
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The equivalent inertia matrix M?
0η(x0,q) is obtained from the SMS configuration (i.e. ac-

tuators’ state, q, and pose/orientation of the base in Rine, x0 =
[
θT0 rTS0

]T
). It holds the

mathematical properties of inertia matrices, in particular it is defined positive and invertible.
The equivalent convective matrices D?

η0η(x0,q, q̇0, q̇) and D?
q(x0,q, q̇0, q̇) depend on the SMS

configurations but also on the system’s velocities.

In order to alleviate further dependency notations, quantities evaluated in the inverse
kinematic/dynamic model from the measure of both x0 and q will be reduced to q. This
simplification is justified by the fact that x0 provides the pose and orientation of Rsat in Rine
but does not affect the mass distribution.

Then introducing the state vector to be estimated, x =
[
ηT q̇T0 η̇T

]T
, with (3.28) the

state space model adapted to estimate x is written as:

ẋ =

 η̇q̈0
η̈

 =
[[

0nη 0nη×nq Inη
]

−M?−1
0η D?

η0η

]
x +

[
0nη×nq 0nη×nq
−M?−1

0η D?
q M?−1

0η J?q

] [
q̇
τ q

]

= Ae(q, q̇, q̇0)x + Bq(q, q̇, q̇0)u

y = ωsat0 =
[
03×nη

[
I3 03

]
03×nη

]
x = Cex

(3.30a)

(3.30b)

By introducing the linear estimation gain L, the state vector x is estimated as xe such
that:

ẋe = Ae(q, q̇, q̇0)xe + Bq(q, q̇, q̇0)u + L(y−Cexe) (3.31)

Then denoting εe the observation error signal, defined as εe = x − xe, with (3.30) and
(3.31) the observer error dynamics are expressed as:

ε̇e = (Ae(q, q̇, q̇0)− LCe) εe (3.32)

3.3.2 Control law structure

To obtain the control law structure, first a re-written effort of (2.69) is made and secondly
the NDI structure is established.

3.3.2.1 Open-loop dynamics

With a similar re-arrangement of (2.69) as operated to design the observer, the actuators’ dy-
namics are re-written from (2.69) without the flexible and base accelerations (i.e.

[
q̈T0 η̈T

]T
).

Therefore, injecting (3.27) in (3.26), actuators’ dynamics are re-written as:

M�(q)q̈ + D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)x = τ q (3.33)
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One will notice that the disturbance torque D�x(q, q̇, ˙̂q0)x affects the actuators’ dynamics.
This torque has the particularity of including, besides the base angular velocity, only states
that can be estimated through the proposed observer (3.30). Furthermore, it corresponds to
the overall intern perturbations that requires to be rejected for a precise control.

In order to detail the equivalent inertia matrix M�(q) and the equivalent convective matrices

D�(q, q̇, ˙̂q0) and D�x(q, q̇, ˙̂q0), one will first note that
[

H0 H0η
HT

0η Hη

]
is an inertia matrix which

has an inverse given by:[
H0 H0η
HT

0η Hη

]−1

=
[

(H0 −H0ηHT
0η)−1 −(H0 −H0ηHT

0η)−1H0η
−HT

0η(H0 −H0ηHT
0η)−1 Inη + HT

0η(H0 −H0ηHT
0η)−1H0η

]
(3.34)

with the flexible modeling assumptions detailed in the previous chapter, Hη = Inη . The
inertial term (H0−H0ηHT

0η) corresponds to a scaled inertia of the base for which the flexible
inertia have been subtracted of the spacecraft base.

Then the detail of matrices in (3.33) as:

M� = Hq −HT
0q(H0 −H0ηHT

0η)−1H0q

D� = Cq −HT
0q(H0 −H0ηHT

0η)−1C0q

D�x =
[
0 Cq0 0

]
−HT

0q

[
(H0 −H0ηHT

0η)−1 −(H0 −H0ηHT
0η)−1H0η

] [ 0 C0 C0η
Kη Cη0 Cη

]

(3.35a)
(3.35b)

(3.35c)

Detailing the expression of the matrix M�(q) allows to highlight the effect of the flexible
modes’ dynamics on the actuators’ ones. With the scaled inertia term HT

0q(H0−H0ηHT
0η)−1,

one observes that flexible vibrations will affect the actuators through their impact on the
spacecraft base.

3.3.2.2 Closed-loop dynamics

In order to decouple and linearize the system, an NDI is developed capitalizing on the observer
to likewise include the disturbance torques. By introducing the subscripts d to designate a
desired quantity, the control tracking error, εc, is defined as:

εc = (qd − q) (3.36)

and with a linear control gain, K, the desired dynamic, v, is imposed as:

v = q̈d + K
[
εc
ε̇c

]
(3.37)
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Thus, a control torque, τ qc , that linearizes the system and decouples actuators is given by:

τ qc = M�(q)v + D�(q, q̇, q̇0)q̇ + D�x(q, q̇, q̇0)xe (3.38)

Injecting (3.38) in (3.33) the closed-loop control dynamics is expressed in function of the
observer error dynamics (3.32) as:

ε̈c = −K
[
εc
ε̇c

]
+ M�−1D�xεe (3.39)

Introducing the state vector z =
[
εTc ε̇Tc

]T
, one can re-write (3.39) as:


ż =

([
0 I
0 0

]
+
[

0
−I

]
K
)

z +
[

0
M�−1D�x

]
εe

= (Az + BzK)z + Bε(q, q̇, q̇0)εe
εc =

[
I 0

]
z = Czz

(3.40a)

(3.40b)

With this last expression, one will note that the control performances are dependent on the
estimation quality and its convergence. The challenge is then to insure simultaneously the
stability of the observer and the controller.

3.3.3 Simultaneous synthesis

3.3.3.1 Simple synthesis

To take into account and clearly highlight the dependency between observer and controller
performances, the extended state vector w =

[
zT εTe

]T
is introduced such that a compact

version of (3.32) and (3.40) is obtained as:
ẇ =

[
Az + BzK Bε

0 Ae − LCe

]
w

εc =
[
Cz 0

]
w

(3.41a)

(3.41b)

With the separation principle, both observer and controller gains could be evaluated
separately, however, in this section, a method to synthesize the gains K and L is proposed
such that the system remains stable and a guarantee of similar control performances is insured
for a considered servicing operation that induces variations of matrices Bε and Ae.

Thus, considering a system linearization allowing to evaluate matrices in (3.41) the control
and observer gains are synthesized simultaneously with the following proposition based on
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a Lyapunov stability analysis. Then, the gains K and L are finally obtained from an LMI
resolution.

Proposition: Assuming the initial estimation error verifies εTe0Eεe0 ≤ 1 for a given positive
definite matrix E, where εe0 is the initial condition of the observer error. If there exist
symmetric positive definite matrices Qz, Pε and matrices Wz, Wε such that for a given
scalar γ > 0: 

Ω =

(AzQz + BzWz)s Bε QzCT
z

∗ (PεAe −WεCe)s 0
∗ ∗ −γ2I

 < 0

Pε < E

(3.42a)

(3.42b)

where Xs = X + XT and Ω is a symmetric matrix, then the system (3.41) is stable and the
outputs verify: ∫ ∞

0
εTc εcdt < γ2 (3.43)

for any conditions z(0) = 0 and εe0 ∈ {ε | εTEε ≤ 1}. Moreover, the gains are obtained as:

{
K = WzQ−1

z

L = P−1
ε We

(3.44a)
(3.44b)

Proof: Let us introduce the Lyapunov function:

V(w) = zTPzz + εTe Pεεe (3.45)

such that V̇ + γ−2εTc εc < 0 for a given γ > 0.

By integration:

∀Tf > 0,
∫ Tf

0
(V̇ + εTc εc)dt < 0⇒

∫ Tf

0
εTc εcdt < γ2(V(0)−V(Tf ))

⇒
∫ ∞

0
εTc εcdt < γ2V(0)

(3.46)

with V(0) = z(0)TPzz(0) + εTe0Pεεe0 . For z(0) = 02×(3+nm), V(0) = εTe0Pεεe0 and if
εTe0Pεεe0 ≤ εTe0Eεe0 ≤ 1 then (3.43) is verified. This condition is enforced by Pε ≤ E.

The condition V̇ + γ−2εTc εc < 0 is equivalent to:[
(Pz (Az + BzK))s + γ−2CT

z Cz PzBε

∗ (Pε (Ae − LCe))s

]
< 0 (3.47)
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Applying the Schur complement on (3.47) is given by:(Pz (Az + BzK))s PzBε CT
z

∗ (Pε (Ae − LCe))s 0
∗ ∗ −γ2I

 < 0 (3.48)

Pre and post multiplying the above matrix by diag(Qz, I, I) = diag(P−1
z , I, I) and introducing

the variable changes We = PεL and Wz = KQz one obtains (3.42a) which concludes the
proof.

The resolution of the LMI (3.42a), and thus the synthesis of K and L, is obtained for
a given system linearization. Evaluating matrices Ae and Bε from that linearization and
defining the matrices Qz, Pε, Wz and Wε as LMI variables, it allows to compute the control
and observer gains by minimizing the positive LMI variable γ. Additional LMI constraints as
(3.42a) can be added for different system linearization with the same LMI variables for each
constraint.

3.3.3.2 Gains synthesis for a given SMS task

As illustrated with the example of the control law inspired by the literature developed in
section 3.1.2, the control gains should be taken into account for system inertia variations to
insure similar control performances during a given task operated by the SMS. In that matter,
a single system linearization to synthesize the gains as in the proposition 3.3.3.1 may not be
sufficient. This will lead to the study of multiple equilibrium points which will correspond to
a new LMI constraint as 3.42a for each linearization. In order to avoid such considerations,
an approach with introduction of relaxation terms in the LMI 3.42a is developed here.

We consider a typical task consisting in the manipulator moving a given mass from one
point to another while the base is maintained with a fixed orientation. Then it can easily
be assumed that the manipulator trajectory is restrained in a reduced workspace and that
the state vector

[
ωsat

T

0 ṙTS0
q̇T η̇T

]T
is bounded during the manipulator operation. This

allows to obtain a bound of the inertia and convective matrices (i.e. H and C in (2.69)) and
consequently matrices in (3.41). Thus from one linearization, let us introduce variations of
Bε and Ae respectively as ∆Bε and ∆Ae such that (3.40) and (3.32) are rewritten as:

{
ż = (Az + BzK)z + (Bε + ∆Bε)εe
ε̇e = ((Ae + ∆Ae)− LCe)εe

(3.49a)
(3.49b)

The LMI synthesis is modified with the condition (3.42a) that becomes:

Ω =

(AzQz + BzWz)s (Bε + ∆Bε) QzCT
z

∗ (PεAe + ∆Ae −WεCe)s 0
∗ ∗ −γ2I

 < 0 (3.50)
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Introducing positive relaxation terms ρ1 and ρ2 defined as the maximal singular values,
σ̄, of respectively matrix Ae and Bε such that:

{
2σ̄ (Ae) < ρ1

σ̄ (Bε) < ρ2

(3.51a)
(3.51b)

then the LMI constraint (3.50) is true if:

Ω =

(AzQz + BzWz)s (Bε + ρ2I) QzCT
z

∗ (PεAe −WεCe)s + ρ1I 0
∗ ∗ −γ2I

 < 0

⇒

(AzQz + BzWz)s + ρ2I Bε QzCT
z

∗ (PεAe −WεCe)s + (ρ1 + ρ2) I 0
∗ ∗ −γ2I

 < 0

(3.52)

This is verified by observing the following lemma.

Lemma: [
Ψ1 + ρI B

BT Ψ2 + ρI

]
< 0⇒

[
Ψ1 B + ∆

BT + ∆T Ψ2

]
< 0

∀ ∆ | ∆T∆ < ρI

Proof: [
Ψ1 B + ∆

BT + ∆T Ψ2

]
=
[
Ψ1 + ρI B

BT Ψ2 + ρI

]
︸ ︷︷ ︸

<0

+
[
−ρI ∆
∆T −ρI

]
︸ ︷︷ ︸

<0

< 0

⇐⇒ ρ2I > ∆T∆

In that respect, the relaxation terms allow to deal with variations and uncertainties of the
system during the space-robot motions. For a given manipulator motion (i.e. a trajectory
and actuators velocity limit), the variations of matrices Ae and Bε are considered in the LMI
constraint of the proposition 3.3.3.1. Additionally, for relatively small parameter uncertain-
ties present in the system modeling to evaluate the inverse kinematic/dynamic model, the
relaxation terms allow to be compensated in the gains synthesis.

To summarize the use of relaxation terms, first a system linearization is performed to
evaluate matrices in the LMI constraint (3.42a) then the relaxations terms ρ1 and ρ2 are
evaluated with a manipulator motion analysis as (3.51). Then defining the LMI variables,
the synthesis consists of minimizing γ such that (3.52) holds with the proposition 3.3.3.1.
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3.4 Base and manipulator control of an SMS with flexible ap-
pendages

Figure 3.10 – Block diagram of the proposed base-manipulator control method

In order to better illustrate full interest of the proposed control method in section 3.3, the
control scheme is adapted for a base and manipulator common control. The NDI with an
ESO structure is conserved such that the un-measured states are included in the linearization.
In that way, the use of base actuators can be illustrated in the disturbances rejection process.

The hypothesis on the un-measurable states developed in the previous section (i.e. actua-
tors accelerations, flexible modes and base linear dynamics) are conserved here. Moreover, the
same observer is used for the estimation of the state vector x =

[
ηT q̇T0 η̇T

]T
. However, in

order to distinguished the base rotations from the linear displacements, the subscript ω and
L are used to respectively designate a rotational quantity and a linear one. Thus, the overall
dynamics of the free-floating SMS considered (2.69) is re-written as:

Hω HωL Hωq Hωη

HLω HL HLq HLη

HT
ωq HT

Lq Hq 0
HT
ωη HT

Lη 0 Hη



ω̇sat0
r̈S0

q̈
η̈

+


Cω CωL Cωq Cωη

CLω CL CLq CLη

Cqω CqL Cq 0
Cηω CηL 0 Cη



ωsat0
ṙS0

q̇
η̇



+


03×1
03×1
0nq×1
Kηη

 =


03×1
03×1
τ q

0nη×1


(3.54)

Moreover, arranging the actuators such that q =
[
qTr qTm

]T
, the convective term, Cq is
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detailed as:
Cq =

[
Cr Crm

Cmr Cm

]
(3.55)

and generally for a matrix Xq:
Xq =

[
Xr Xm

]
(3.56)

3.4.1 Open-loop dynamics

As the actuators’ accelerations are assumed to be unavailable, in order to express the open-
loop dynamics, a re-writing effort of (3.54) is mandatory to obtain an expression in function
of measurable or estimable quantities. Thus, with (3.54), accelerations

[
r̈TS0

q̈Tr η̈T
]T

are
given by:r̈S0

q̈r
η̈

 = −

 HL HLr HLη

HT
Lr Hr 0

HT
Lη 0 Hη


−1

HLω HLm

HT
ωr 0

HT
ωη 0

[ω̇0
q̈m

]
+

CLω CLm

Crω Crm

Cηω 0

[ω0
q̇m

]

+


0

[
0 CL

]
CLη

0
[
0 CrL

]
0

Kη

[
0 CηL

]
Cη

x +

CLr

Cr

0

 q̇r −

 0
τ r
0




(3.57)

and similarly, from (3.54), the accelerations
[
ω̇T0 q̈Tm

]T
expression is given as:

[
ω̇0
q̈m

]
= −

[
Hω Hωm

HT
ωm Hm

]−1
[ Cω Cωm

CT
ωm Cm

] [
ω0
q̇m

]
+
[

HωL Hωr Hωη

HT
Lm 0 0

]r̈S0

q̈r
η̈


+

0
[
0 CωL

]
Cωη

0
[
0 CT

ωm

]
0

x +
[
Cωr

Cmr

]
q̇r −

[
0
τm

]
(3.58)

Combining (3.57) and (3.58), the open-loop dynamics are obtained as:

M�
ωm(q)

[
ω̇0
q̈m

]
+ D�ωm(q, q̇, q̇0)

[
ω0
q̇m

]
+ D�x(q, q̇, q̇0)x + D�r(q, q̇, q̇0)q̇r = J�τ (q)τ q (3.59)
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with: 

H�Lrη =
[

HωL Hωr Hωη

HT
Lm 0 0

] HL HLr HLη

HT
Lr Hr 0

HT
Lη 0 Hη


−1

=
[
H�L H�r H�η

]

M�
ωm =

[
Hω Hωm

HT
ωm Hm

]
−H�Lrη

HLω HLm

HT
ωr 0

HT
ωη 0


D�ωm =

[
Cω Cωm

Cmω Cm

]
−H�Lrη

CLω CLm

Crω Crm

CT
ωη 0


D�r =

[
Cωr

Cmr

]
−H�Lrη

CLr

Cr

0



D�x =

0
[
0 CωL

]
Cωη

0
[
0 Cmω

]
0

−H�Lrη


0

[
0 CL

]
CLη

0
[
0 CrL

]
0

Kη

[
0 CT

Lη

]
Cη


J�ττ q =

[
0
τm

]
−H�Lrη

 0
τ r
0

 =
[
−H�r

[
0
I

]]
τ q

(3.60a)

(3.60b)

(3.60c)

(3.60d)

(3.60e)

(3.60f)

with H�L ∈ R(3+nr+nη)×3, H�r ∈ R(3+nr+nη)×nr and H�η ∈ R(3+nr+nη)×nη . Moreover, one will
note that D�r is the combination of an equivalent stiffness and convective matrix. The term
D�xx in (3.59) represents an internal disturbance torque which impacts manipulator and base
dynamics while D�rq̇r corresponds to the impact of reaction-wheels on the rest of the system.

3.4.2 Closed-loop dynamics

Similarly to the computation of the closed-loop for the joint-space control, developed in
section 3.3.2.2, the system is first linearized and the closed-loop is express in an equivalent
formulation.

In order to decouple and linearize the system, an NDI is developed including those dis-
turbance torques. The control tracking error, εc, is now defined as:

εc =
([
θ0
qm

]
d

−
[
θ0
qm

])
(3.61)

and with a linear control gain, K, the desired dynamic, v, is defined as:

v =
[
ω̇0
q̈m

]
d

+ K
[
εc
ε̇c

]
(3.62)
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Thus, a control torque, τ qc , that linearizes the system and decouples actuators is given by:

τ qc = J�+
τ

(
M�

ωm(q)v + D�ωm(q, q̇, q̇0)
[
ω0
q̇m

]
+ D�x(q, q̇, q̇0)xe + D�r(q, q̇, q̇0)q̇r

)
(3.63)

with J�+
τ the pseudo-inverse of J�τ . One will note that J�+

τ is always well-conditioned as the
reaction-wheels’ inertia matrix remains constant (i.e. Hr).

Injecting (3.63) in (3.59) the closed-loop control dynamics is expressed in function of the
observer error dynamics (3.32) as:

ε̈c = −K
[
εc
ε̇c

]
+ M�−1

ωmD�xεe (3.64)

Introducing the state vector z =
[
εTc ε̇Tc

]T
, one can re-write (3.64) as:


ż =

([
0 I
0 0

]
+
[

0
−I

]
K
)

z +
[

0
M�−1

ωmD�x

]
εe

= (Az + BzK)z + Bε(q, q̇, q̇0)εe
εc =

[
I 0

]
z = Czz

(3.65a)

(3.65b)

Therefore, the closed-loop of the base/manipulator controlled system is expressed as the
joint-space closed-loop system (3.40). Advantageously, the formalism to obtain the closed-
loop system allows to re-use the similar gains synthesis established in 3.3.3 where only the
matrix Bε(q, q̇, q̇0) differs.

3.5 Illustration of the proposed methods

In order to illustrate the interest of the proposed method and its utilization, a simple SMS
is used in this section. To consider a realistic illustrative example, a reduced version of the
manipulator used in the PULSAR telescope deployment (https://www.h2020-pulsar.eu)
is used. It consists of a 5-DoFs manipulator with a first prismatic joint and four revolute
joints. The base is actuated by four reaction-wheels with similar capacities. Two identical
solar arrays are disposed on both sides such that 10 total flexible modes are responsible of
vibrations. Inertia, sizes and other physical parameters are detailed in appendix B and the
significant parameters are gathered in the following table 3.2.

https://www.h2020-pulsar.eu
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- Mass (kg) Inertia (kg.m2) CoM (m)
Base 1960 diag(3345,2202,2202) [0.9 0 0]
Payload 1440 diag(2458,1499,1499) [0.55 0 0]
Solar array ×2 61 - [0.001 0.001 3.845]
Reaction-wheel ×4 4 diag(0.065,0.065,0.1322) [0 0 0]
link 1 235 diag(0.065,0.065,0.1322) [0 0 0]
link 2 7 diag(0.021,0.021,0.01) [0 0 0.09]
link 3 27 diag(51,0.15,51) [0 0 0.09]
link 4 7 diag(0.021,0.01,0.021) [0 0 0]
link 5 18 diag(0.14,15.7,15.7) [0 0 0]
End-effector 150 diag(6,6,6) [0 0 0]

Table 3.2 – Detail of the SMS’ physical properties

and for the two identical flexible arrays the same 5 modes are considered and detailed in table
3.3.

- pulse (rad/s) damping LPfi
mode 1 0,16*2*pi 0.005 [-6.4 0 0 0 -35 0]
mode 2 0,70*2*pi 0.005 [0 -6.7 0 35.4 0 0]
mode 3 1.08*2*pi 0.005 [-0.1 -0.1 0 0.3 0 3.8]
mode 4 1.21*2*pi 0.005 [-3.2 0 0 0 -3 -0.01]
mode 5 3.05*2*pi 0.005 [2.3 0 -0.3 0 1.3 0]

Table 3.3 – Flexible modes’ physical properties

This section is then divided in two parts. A first analysis and method of the gains synthesis
and the interest of the control structure in which an ESO is included in the NDI are realized
for the joint control approach (i.e. section 3.3). Secondly, the benefits of such structure
and its adaptability to a "task" space control introduced in section 3.4 are discussed with
time-domain simulations.

3.5.1 Joint control results

3.5.1.1 Gains synthesis

The gains synthesis is developed such that the closed-loop system remains stable during a
complete task. While the manipulator operates, an evolution of the inertia and convective
terms may be significant to impose multiple constraints as (3.42a) in the LMI resolution
(3.3.3.1). In order to avoid discussion on the choice of equilibrium points for additional
LMI constraints, relaxation terms have been employed such that (3.51). After establishing
a manipulator maneuver with path-planning methods and singularity-free approaches that
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are not developed in this work, the relaxation terms can be evaluated. Their evaluation
requires joint position and velocities to develop the direct dynamics of the SMS. To tackle
the variations during the maneuver, a sequencing in nseq sub-motions of the complete task
is made. Thus, according to the manipulator’s configuration and velocities the gains ensure
the dealing with the largest variations. The detail of the design procedure is given by the
following algorithm:

Algorithm 1 Design procedure for an on-orbit servicing task
Define the LMI variables, Qz, Pε, Wz and Wε, as in the proposition in section 3.3.3.1
Define an equilibrium point to evaluate matrices, Ae and Bε , in the LMI constraint (3.42a)
from system’s equation of motions (3.35)
for i ≤ nseq do
For qi and q̇i evaluate matrices in (3.28) and (3.35)
Evaluate singular values σiAe = σ̄(Ae) and σiBε = σ̄(Bε)

end for
Evaluate relaxation terms ρ1 = 2max(

[
σ1

Ae
. . . σ

nseq
Ae

]
) and ρ2 = max(

[
σ1

Bε
. . . σ

nseq
Bε

]
)

such as (3.51)
Establish the LMI constraint Ω as in (3.52)
Minimize the LMI variable γ > 0 such that Ω < 0
Return K, L

Figure 3.11 – Illustration of the SMS task: the initial configuration (left), the mid-task
configuration (middle) and the final configuration (right)

Considering the task illustrated with Figure 3.11, in the pre-analysis process one can
visualize the variation during the system’s motions with Figure 3.12. As the relaxation term
ρ1 reaches significant values, one can first highlight the interest of considering relaxation
terms to avoid multiple LMI constraints. Furthermore, ρ2 corresponds to the level of control
degradation from the observer error. With the lower subplot of Figure 3.12, one will note
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that regarding the system’s evolution, the impact of low observer error should not affect the
control performances.

0 100 200 300 400 500 600 700 800

734

734.5

735

735.5

736

736.5

737

0 100 200 300 400 500 600 700 800

0

2

4

6

8

10

12

14

16

18

Figure 3.12 – Evolution of system variation for a given task, upper subplot represents the
evolution of the relaxation term ρ1 and the lower subplot represents ρ2’s evolution

In order to solve the proposition in 3.3.3.1 and the LMI constraints, the YALMIP toolbox
[Lof04] is used with the MOSEK solver. This allows to reduce the computation time when
multiple large LMI dimension constraints are considered. In the present case, LMI variables
Qz is a 18 × 18 square matrix and Pε a 26 × 26 square matrix. Moreover, with actuators
decoupling, the control gains can be decomposed as K =

[
Kp Kv

]
with Kp and Kv two

diagonal matrices.

Moreover, a discussion on the different actuators’ dynamics can be developed. Reaction-
wheels present slower dynamics than manipulator’s joints. The proposed gains synthesis as
detailed in algorithm 1 does not consider these difference of dynamics or saturation thresh-
olds. In order to introduce such considerations, after a pre-analysis of matrices Ae and Bε,
additional constraints on the control gains Kp and Kv can be defined. Such constraints are
developed on the LMI variable Qz which can be imposed as a diagonal matrix thanks to the
decoupled system. Furthermore, distinguishing reaction-wheels to manipulator’s joints in Qz,
an upper-bound limit can be defined to avoid actuator’s saturation thresholds. Such addi-
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tional constraints are proper to the studied SMS and are tuned with trial and error approach,
it remains difficult to develop a general formalism.

3.5.1.2 Simulation results

From path-planning methods, manipulator motions (i.e. joint angular pose and velocities)
are provided with the PULSAR application (https://www.h2020-pulsar.eu) to perform a
given task. As it is usual to maintain the spacecraft base with a fixed attitude, reaction-wheels
velocities are deduced from the manipulator’s with a momentum conservation approach. One
will note that this hypothesis is not verified with flexible elements but allows to define the
desired velocities as:

q̇rd = −H+
0r (H0mq̇md + H0q̇0) = −H+

0rH0mq̇md (3.66)

with initially non-null reaction-wheels’ velocities such that no base rotation occurs during
manipulator motions.

Figures 3.13 and 3.14 illustrate control performances. With upper subplots in both fig-
ure, the measured velocities are represented. In order to visualize and quantify the control
performances, for each actuators a relative tracking error signal is plotted in the respective
lower subplot of manipulator and reaction-wheels figures. This signal is defined as:

ε̇tc(q̇i) = (q̇di − q̇i)
max(q̇i)

(3.67)

One can conclude on the efficiency of the proposed method considering this relative error
signal remains under 10−3.

Considering the detail of the computed torque (3.38) given in Figure 3.15, the interest
of the control method can be illustrated. The control torques can be decomposed into three
signals. The first one is the feedback control torque (M�v), visualized in the upper subplot
in Figure 3.15. The second, (D�q̇), defined as the feedback linearizing torque, visualized in
the second subplot of Figure 3.15. The last one, (D�xxe), is the intern disturbance torque
that appears in the lower plot in Figure 3.15. The intern disturbance torque is composed of
unmeasured states and included in the system linearization thanks to the observer developed
in section 3.3.1. With an amplitude comparison of the three signals composing the com-
puted torque, one can conclude on their interests in the NDI. Regarding the low velocities
involved in this illustrative example and with reaction-wheels used to maintain the base fixed,
a comparison of the feedback linearizing torques and intern disturbances one is relevant to
conclude on the control strategy. As these two signals present similar amplitudes, including
an estimation of unmeasured states (i.e. flexible dynamics and linear base velocities) in the
computed torque it allows to improve the decoupling quality. However, as physical proper-
ties of the flexible modes may be significantly different from one appendage to another, the
vibrations could be difficult to properly be estimated. More precisely, the LMI resolution

https://www.h2020-pulsar.eu
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does not easily provide the possibility of frequency analysis. This leads to not focusing on
the observation quality in this control approach. However, the synthesis ensures stability for
a bounded observer error which is also guaranteed by the gains synthesis for a given mo-
tion. Thus, estimating amplitudes of the fastest unmeasured states is sufficient to adequately
linearize and decouple the considered system.

A second interest of the proposed method is illustrated with Figure 3.16 in which the
base angular velocities are visualized in the upper subplot and the flexible mode velocities are
represented in the lower plot. As the reaction-wheels are employed to maintain a null base
angular velocity, the flexible modes are only excited with the indirect couplings between the
manipulator motions and the flexible dynamics through the base motions. As one can notice
with the lower subplot in Figure 3.16, when the manipulator presents constant velocities, the
flexible modes vibrations are dumped. Using the reaction-wheels to maintain a fixed base,
and including the intern disturbance in the computed torque allows to adapt reaction-wheels
usage to reject these un-controllable and un-measurable states.
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Figure 3.13 – Manipulator’s joints measured velocities and control performances; upper sub-
plot is the measured manipulator’s joint velocities and lower subplot is the relative tracking
error
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Figure 3.14 – Reaction-wheels measured velocities and control performances; upper subplot
is the reaction-wheels’ joint velocities and lower subplot is the relative tracking error
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Figure 3.15 – Detail of the computed torque (3.38) highlighting interests of including un-
measured states in the NDI
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Figure 3.16 – Upper subplot represents base angular velocities; Lower subplot represents the
flexible vibration η̇

3.5.2 Interest of a base-manipulator common control strategy

With a base-manipulator control, besides providing a larger manipulability, the rejection of
disturbances can be better illustrated with the NDI/ESO control structure. Considering the
same manipulator motion to illustrate the joint-space control, a comparison of the results
obtained with similar control objectives are considered in this section.

With a first comparison of manipulator’s control performances visualized in Figures 3.13
and 3.17, one can note similar results. This allows to focus on the base and flexible dynamics
to better illustrate disturbance rejections obtained with the computed torque (3.63). With
the second subplot in Figure 3.18, one easily verifies that the base is successfully maintained
at a fixed attitude during the manipulator maneuver. This corresponds to relatively similar
reaction-wheels’ velocities that the desired ones in the previous joint-space control. As the
base is less rotating, the flexible appendages are less affected by the manipulator as illustrated
by the lower subplot in Figure 3.18 but are still excited when joints’ velocities are changing.
Capitalizing on the reaction-wheels’ constant inertia matrices (H0r and Hr), detailing the
computed torque (3.18) controlling the four reaction-wheels allows to obtain information
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on the linearization/decoupling of the system. One defines the four following signals: the

feedback control torque (J�+
τ M�

ωmv), the feedback linearizing torque (J�+
τ D�ωm

[
ω0
q̇m

]
), the

measured reaction-wheels linearizing torque (J�+
τ D�rq̇r) and the intern disturbance torque

(J�+
τ D�xxe). With Figure 3.19, each signals are detailed to highlight their role in the reaction-

wheels control maintaining the base with a null angular velocity. Regarding amplitudes of each
signals, one can note that the intern disturbance torques, visualized in the third subplot of
Figure 3.19, have nearly similar importance than the feedback linearizing torques, visualized
in the second subplot of Figure 3.19. Thus, including an estimation of the unmeasured states
in (2.69) allows to properly decouple the system and linearize it as well as using the reaction-
wheels as mean of rejection to base disturbances.

Additionally, maintaining the base fixed allows to limit the dissipation in the overall system
due to flexible appendages. As illustrated with Figure 3.20 and comparing with Figure 3.5
allows to highlight this observation.
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Figure 3.17 – Manipulator’s joints measured velocities and control performances; upper sub-
plot is the measured manipulator’s joint velocities and lower subplot is the relative tracking
error
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Figure 3.18 – Upper subplot is the measured reaction-wheels’ joint velocities second subplot
represents the base angular velocity and lower subplot is the flexible modes velocities
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Figure 3.19 – Detail of the computed torques (3.63) for the four reaction-wheels
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Figure 3.20 – Dissipated work (2.83) during the complete motion

3.6 Chapter conclusions

In this chapter, the modeling developed in chapter 2 and the analysis/simulation tools have
been used to introduce novel control strategies. After a first review of the literature to identify
possible improvement areas to control SMS, a main concern was raised with the presence of
flexible appendages.

Considering rotation-free-floating SMS, discussions on the benefits of simultaneously con-
trolling the base actuators and the manipulator have been developed. With the introduction
of new kinetic indices, a quantitative analysis can be developed to both justify the common
control and developed adapted motions. In addition, these indices are suitable for designing
an SMS and justifying the placement and number of actuators.

Motivated by the conclusions resulting of the kinetic indices use, a common base and
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manipulator joint control law has been introduced to perform precise SMS control in presence
of internal disturbance mainly due to the flexible vibrations and the spacecraft’s drift. This
control strategy is based on an NDI that capitalizes on the modeling effort developed in the
previous chapter. Thanks to the modeling of the flexible dynamics, an ESO is established
to improve the NDI quality and thus the decoupling of actuators. Both joint-space and
base-manipulator control have been developed under a similar formalism to illustrate the
advantages of such control scheme.

Another contribution lies in the gains synthesis that is simultaneously performed through
an LMI resolution problem. It is based on a Lyapunov stability analysis, the resolution ensure
control performances for a given task. It precisely requires a manipulator path with joints
velocities to evaluate relaxation terms introduced to reduce the number of LMI constraints.

With time-domain simulations effectuated on a simple SMS, the interest of such control
scheme has been attested. Therefore, this chapter introduces a formalism to establish a con-
trol of an SMS in presence of flexible appendages. However, improvements are required to
be implemented on actual systems. For that purpose, in the next chapter the focus is made
on presenting a robust control strategy based on the one presented in this chapter. Model-
ing uncertainties, measurement errors, notable system variations are considered to perform
various tasks precisely and safely.

The control schemes and the gains synthesis presented in this chapter have been ex-
tended from published works in [Kra+21a] and [Kra+21b]. One will find in [Kra+21a] the
base-manipulator control scheme with a similar ESO and control gains synthesis. Then in
[Kra+21b] one will find an extension of the control framework for a joint-space control of the
SMS. Moreover, additional robust criteria are introduced in the simultaneous gains synthesis.
This last work allows to introduce the control remaining difficulties and a first approach to
consider significant system variations.
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In the previous chapter, the motivations to perform common base and manipulator control
of rotation-free-floating SMS1 with flexible appendages have been introduced and its benefits
have been wildly discussed. However, to face actual control difficulties robust criteria must be
added in the control scheme. With the modeling derivation detailed in chapter 2, uncertainties
on physical parameters may be taken into account in the gains synthesis. Thus, for modeling
and measurement errors an NDO2 is introduced and included in the system linearization. A
similar gains synthesis as the one proposed in chapter 3 is developed based on a stability
analysis and performed through an LMI3 resolution. Moreover, one advantage offered by an
SMS is the possibility of performing different OOS4 missions. Then, an additional objective
in the gains synthesis focus on the system variations corresponding to different OOS tasks.

1Space Manipulator System
2Nonlinear Disturbance Observer
3Linear Matrix Inequality
4On-Orbit Servicing
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To summarize this chapter, the control strategy introduced in the previous one is extended
to answer current OOS problems with an additional observer and a new gains synthesis. Then
the approach is validated in a realistic environment with extensive tests on an on-orbit space
telescope assembly use-case performed on the simulation tools detailed in chapter 2.

4.1 Robust control challenges

4.1.1 Area of improvement

As the first difficulty of controlling an SMS resides in the couplings between each bodies,
robust control strategies have been focusing on rejecting the coupling effects. Such approaches
have mainly been developed for capturing targets as they may present large and unknown
disturbance on the manipulator’s end-effector and thus an important momentum variation.
Besides developing an impedance control strategy [Yos+04]; [NY06] or focusing on a path-
planning method [HW18]; [Zha+20] to reduce the capture impact, robust control schemes
have been proposed to deal with the impact and the post-capture of a target. Dong and al.
[DC14] established a robust adaptive compound control algorithm to suppress the motions
that destabilize the robotic system after the capture. However, their method based on a
momentum conservation requires strong assumptions to verify the modeling of the system
composed of the free-floating SMS and the target that they proposed.

Capture scenarios also highlight the problems due to an incorrect or a poor modeling.
Adaptive control methods have been providing interesting features to deal with the capture
of an unknown target. Nguyen and al. [NHS11] proposed an adaptive control to stabilize a
captured target with a reaction-less motion of the chaser’s base. Furthermore, the estimation
of the system physical properties (i.e. mass, dimensions, CoM5) remains challenging. Model
uncertainties have been one motivation of introducing robust strategies for SMS control. Luo
and al. [Luo+18] proposed a robust inertia-free attitude to detumble a spacecraft without
inertial property and subject to external disturbance. Similarly in the detumbling procedure,
Gangapersaud and al. [GLR19] considered a force control to avoid identifying the target’s
inertia parameters. Aghili and al. [Agh20] have developed an optimal detumbling control
strategy to cancel the momentum dissipation of the grasped non-cooperative target with
forces/torques limitations. Dubanchet and al. [Dub+15] established a fixed-structure H∞
synthesis to separately control the manipulator and base to extend the work of Aghili and al.
[Agh09b] and optimally capture a tumbling satellite.

The presence of external disturbances is another source of motivation for robust controls.
The different external perturbations are affecting either directly the manipulator and/or the
spacecraft’s base or will excite flexible vibrations of the appendages [Cao+20]. H∞ controllers
have been established to deal with external and internal perturbations [FTST06]; [SS19];
[QWY19]. These methods allow to answer different problems or difficulties in SMS control.
First the modeling uncertainties of the system [Zha+15] and likewise it avoids the difficult

5Center of Mass
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modeling of a rigid and flexible multi-body system [Col+18].

Furthermore, in the previous chapter the established control law highlights some benefits
by controlling both the manipulator and the base simultaneously. The promising results
obtained motivate to pursue the effort of improving such design to answer the requirements
of current and future OOS operations. Likewise, with the possible complete modeling of
rigid-flexible systems, one capitalizes on this to obtain adapted control solutions and efficient
use of actuators such that the mission lifespan can be optimized.

4.1.2 Limits of the control introduced in chapter 3

The proposed control scheme established in the previous chapter aimed at introducing the
interest of a common base and manipulator control in presence of perturbations inside the
system. Nevertheless, one can identify the following necessary improvements to answer actual
OOS requirements:

• A primary interest of using SMS to proceed to OOS missions is the possibility of per-
forming a multi-task mission [FA+14]. In that purpose the proposed gains synthesis
requires adjustments to consider different mass distribution and end-effector motions.

• With a similar objective, the actual synthesis is based on a well-known manipulator
task. Such synthesis is restrictive to a particular task, requiring a precise path and
motions’ velocities. Therefore, extending the synthesis to a given workspace could be a
significant improvement of the method.

• A second weakness of the proposed method is on the modeling assumptions to perform
the system linearization and designing of the observer. Developing accurate kinematic/-
dynamic models remains challenging especially when integrating the flexible behaviors
onto the overall system equations of motions. Thus, in order to deal with modeling
uncertainties the control scheme requires other adaptations.

• Additionally to model errors, the quality of measured states should also be discussed.
Typically, besides the actuators velocities, the base orientations’ measures incorporate
some measurement noises.
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4.2 Control strategy

Figure 4.1 – Block diagram of the proposed joint space control method

In this section, a novel control scheme is introduced to bring the different improvements
previously enumerated. As illustrated with Figure 4.1, the control law is based on a system
dynamic inversion (with an NDI6) in which the unmeasured states (i.e. the flexible and linear
spacecraft dynamics) are included with an ESO7 as well as an estimation of a disturbance
torque induced by the modeling error with an NDO.

The contribution of this strategy is the introduction of a disturbance torque, τ d, due to
both modeling uncertainties and measurement errors. As concluded with the previous control
scheme detailed in chapter 3, including un-measured states in the system decoupling allows
to both improve its quality and adapt the use of actuators. With the same ambition, an NDO
is developed to estimate an additional perturbation torque introduced with the evaluation of
the inverse uncertain kinematic/dynamic model. Both observers are designed thanks to the
modeling effort developed in chapter 2.

Moreover, the same assumptions as in chapter 3 on the available measurements are made
to establish the new control scheme. The actuators’ accelerations, q̈, the flexible dynamics,
η, η̇ and η̈, and the SMS base’s linear dynamics, ṙS0 and r̈S0 are presumed not measured.
Therefore, the ESO is designed by slightly adapting the observer proposed in section 3.3.1 to

6Nonlinear Dynamic Inversion
7Extended State Observer
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include the modeling/measurement errors. The NDO is similarly developed with the use of
actuators’ velocities.

Before developing the open-loop dynamics, notations are introduced in order to consider
errors in evaluation of inverse kinematics/dynamics due to modeling uncertainties and mea-
surement errors. A quantity X obtained or evaluated from measurement is indicated as X̂
such that X̂ = X + ∆X with ∆X representing the difference between the actual value and
the measured one. Thus, the system’s dynamics (2.69) obtained from the modeled spacecraft
can be expressed as:

Ĥ(q̂)

q̈0
q̈
η̈

+ Ĉ(q̂, ˙̂q, ˙̂q0)

q̇0
q̇
η̇

+ K̂

q0
q
η

 =

 06×1
τ q

0nη×1

−
τ∆1(q̂, ˙̂q, ˙̂q0)
τ∆2(q̂, ˙̂q, ˙̂q0)
τ∆3(q̂, ˙̂q, ˙̂q0)

 (4.1)

with the following hypothesis:

• the terms ∆x∆y are neglected,

• the base linear velocity is estimated by the state observer detailed in section 4.2.2 such
that ˙̂q0 =

[
ω̂sat

T

0 ṙT0e
]T

,

• measurements of actuators position and velocities are considered good enough to assume
q̂ = q and ˙̂q = q̇

Modeling and measurement errors are then gathered in a disturbance torque defined as:

τ∆(q̂, ˙̂q, ˙̂q0) =

τ∆1(q̂, ˙̂q, ˙̂q0)
τ∆2(q̂, ˙̂q, ˙̂q0)
τ∆3(q̂, ˙̂q, ˙̂q0)

 = ∆H

q̈0
q̈
η̈

+ ∆C

q̇0
q̇
η̇

+ ∆K

q0
q
η


− Ĥ(q)∆
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q̈
η̈

− Ĉ(q̂, ˙̂q, ˙̂q0)∆

q̇0
q̇
η̇

− K̂∆

q0
q
η


(4.2)

4.2.1 Joint open-loop behavior

In order to establish a joint-space control, a rewriting effort of the full system dynamic
followed by the modeled manipulator (4.1) is required. This effort aims at expressing the
joints’ dynamics in function of either measurable states or quantities that can be estimated
with the observers detailed in sections 4.2.2 and 4.2.3. First, with (4.1) actuators’ dynamics
are expressed as:

Ĥqq̈ + Ĉqq̇ = −
[
ĤT

0q 0
] [q̈0
η̈

]
−
[
0 Ĉq0 0

]  ηq̇0
η̇

+ τ∆2 + τ q (4.3)
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Secondly, from (4.1), the unmeasured states are isolated as:

[
Ĥ0 Ĥ0η
ĤT

0η Ĥη

] [
q̈0
η̈

]
+
[
Ĥ0q
0

]
q̈ +

[
0 Ĉ0 Ĉ0η

K̂η Ĉη0 Ĉη

] ηq̇0
η̇

+
[
Ĉ0q
0

]
q̇ =

[
τ∆1

τ∆3

]
(4.4)

One can note that the matrix
[

Ĥ0 Ĥ0η
ĤT

0η Ĥη

]
is an inertia matrix which by definition has

an inverse given by:[
Ĥ0 Ĥ0η
ĤT

0η Ĥη

]−1

=
[

(Ĥ0 − Ĥ0ηĤT
0η)−1 −(Ĥ0 − Ĥ0ηĤT

0η)−1Ĥ0η
−ĤT

0η(Ĥ0 − Ĥ0ηĤT
0η)−1 Inη + ĤT

0η(Ĥ0 − Ĥ0ηĤT
0η)−1Ĥ0η

]
(4.5)

with Ĥη = Inη . The inertial term (Ĥ0 − Ĥ0ηĤT
0η) corresponds to a scaled inertia of the base

for which the flexible inertia have been subtracted of the spacecraft base. Then by injecting
(4.4) in (4.3) and by introducing the state vector x =

[
ηT q̇T0 η̇T

]T
, actuators’ dynamics

are obtained as:

M�(q)q̈ + D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)x = τ q + J�∆(q)τ∆ (4.6)

with:
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0η)−1Ĥ0q
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0q(Ĥ0 − Ĥ0ηĤT

0η)−1Ĉ0q

D�x =
[
0 Ĉq0 0

]
− ĤT

0q

[
(Ĥ0 − Ĥ0ηĤT

0η)−1 −(Ĥ0 − Ĥ0ηĤT
0η)−1Ĥ0η

] [ 0 Ĉη Ĉ0η
K̂η Ĉη0 Ĉη

]
J�∆ =

[
−ĤT

0q(Ĥ0 − Ĥ0ηĤT
0η)−1 Inq ĤT

0q(Ĥ0 − Ĥ0ηĤT
0η)−1Ĥ0η

]

(4.7a)
(4.7b)

(4.7c)

(4.7d)

Thus, the joints’ dynamics depends on an un-measurable state vector x and a disturbance
torque τ d = J�∆(q)τ∆. The state vector x includes spacecraft linear drift and flexible dy-
namics while the disturbance torque gathers modeling and measurement errors. Splitting the
sources of disturbances applying on actuators presents the advantage of clearly identifying
the perturbations with different dynamics properties such that a rejection strategy can be
developed.

Moreover, one can note that matrix D�x gathers an equivalent stiffness and a convective
term multiplied by a scaled inertia. This scaling corresponds to the impact of flexible dynamics
onto the actuators’ ones.

In order to linearize the system a state observer and a nonlinear disturbance observer are
detailed in the following sections.
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4.2.2 State Observer model

An extended state observer is developed such that the flexible and the spacecraft’s linear
dynamics can be included in the system linearization detailed in section 4.2.4. The ESO is
established using the control torque and the measure of actuators’ velocities as input and the
spacecraft’s angular velocities as output measurements.

As the actuators’ accelerations are not available, by injecting (4.3) in (4.4), the dynamic
of the un-measured state can be written as:

H?
0η

[
q̈0
η̈

]
+ C?

η0η

 ηq̇0
η̇

+ C?
qq̇ = J?∆τ∆ + J?qτ q (4.8)

with: 
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[
Ĥ0 Ĥ0η
ĤT

0η Ĥη

]
−
[
Ĥ0q
0

]
Ĥ−1
q

[
ĤT

0q 0
]

C?
η0η =

[
0 Ĉ0 Ĉ0η

K̂η Ĉη0 Ĉη

]
−
[
Ĥ0q
0

]
Ĥ−1
q

[
0 Ĉq0 0

]
C?
q =

[
Ĉ0q
0

]
−
[
Ĥ0q
0

]
Ĥ−1
q Ĉq

J?∆ =
[
I −Ĥ0qĤ−1

q 0
0 0 I

]

J?q = −
[
Ĥ0q
0

]
Ĥ−1
q

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.9e)

Introducing the state vector to be estimated, x =
[
ηT q̇T0 η̇T

]T
, one can re-write (4.8)

as: 

ẋ =

 η̇q̈0
η̈

 =
[[

0nη 0nη×nq Inη
]

−H?−1
0η C?

η0η

]
x +

[
0nη×nq 0nη×nq
−H?−1

0η C?
q H?−1

0η J?q

] [
q̇
τ q

]

+
[
0nη×(6+nq+nη)

H?−1
0η J?∆

]
τ∆

= Ae(q, q̇, ˙̂q0)x + Bq(q, q̇, ˙̂q0)u + B∆(q, q̇, ˙̂q0)τ∆

y = ωsat0 =
[
0

[
I 0

]
0
]
x = Cex

(4.10a)

(4.10b)

The ESO dynamics includes the disturbance torque which requires to be estimated in
order to linearize the system as well as insuring an accurate state estimation. By introducing
the linear estimation gain Lx and τ̂ d the estimation of τ d, the state vector x is estimated as
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xe such that:

ẋe = Ae(q, q̇, ˙̂q0)xe + Bq(q, q̇, ˙̂q0)u + B∆(q, q̇, ˙̂q0)J�+
∆ (q)τ̂ d + Lx(y−Cexe) (4.11)

4.2.3 Nonlinear Disturbance Observer model

Similarly to the state observer, an estimation of the disturbance torques in the system lin-
earization aims at improving the control performances. In particular, the present disturbance
torque includes both modeling error and measurement errors which allows to compensate
different uncertainties of the manipulator model and maintain high control performances.

The disturbance observer is developed capitalizing on the structure of the joint’s dynamics
(4.6) by introducing a gain Ld, the disturbance observer is given by [Moh+13]:

˙̂τ d = −Ldτ̂ d + Ld(M�q̈ + D�q̇ + D�xxe − τ q) (4.12)

However, actuators’ accelerations are usually not available. To overcome this drawback, a
new variable w is introduced, such that [Che+00]:

w = τ̂ d − p(q, q̇) (4.13)

where the vector p(q, q̇) can be computed from the nonlinear gain Ld(q, q̇) as [Moh+13]:

d

dt
p(q, q̇) = Ld(q, q̇)M�(q)q̈ (4.14)

With (4.6), (4.12) and (4.14), one can describe the nonlinear disturbance observer with
the time-derivative of (4.13):

ẇ = ˙̂τ d −
d

dt
p(q, q̇)

= −Ld(q, q̇) + Ld(M�(q)q̈ + D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)xe − τ q)

= −Ld(q, q̇)τ̂ d + Ld(q, q̇)
(
D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)x− τ q

)
+ Ld(q, q̇)D�x(q, q̇, ˙̂q0) (xe − x)

= −Ld(q, q̇)w + Ld(q, q̇)
(
D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)x− τ q − p(q, q̇)

)
+ Ld(q, q̇)D�x(q, q̇, ˙̂q0) (xe − x)

(4.15)
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Hence the nonlinear disturbance with only measurable or estimated states is defined as:
ẇ = −Ld(q, q̇)w + Ld(q, q̇)

(
D�(q, q̇, ˙̂q0)q̇ + D�x(q, q̇, ˙̂q0)xe − τ q − p(q, q̇)

)
τ̂ d = w + p(q, q̇)
d

dt
p(q, q̇) = Ld(q, q̇)M�(q)q̈

(4.16a)

(4.16b)

(4.16c)

4.2.4 Closed-loop dynamics

After establishing the different observer models and the open-loop control behavior, one can
note the different inter-dependencies between each dynamics. In order to insure stability
of the closed-loop system, the tracking control error signal and the observers’ error signals
are considered in this section to highlight the notable dependencies between the dynamics.
The tracking error control signal is defined as εc = (qd − q), with qd the desired joint space
trajectory, the state observer error signal εe = (x− xe) and the nonlinear disturbance error
signal εd = (τ d − τ̂ d).

The state observer error signal dynamics can be obtained with (4.10) and (4.11) such that:

ε̇e = ẋ− ẋe
=
(
Aex + Bqu + B∆J�+

∆ τ d
)
−
(
Aex + Bqu + B∆J�+

∆ τ̂ d + Lx(y−Cexe)
)

= (Ae − LxCe) εe + B∆J�+
∆ εd

(4.17)

In order to obtain the nonlinear disturbance observer error dynamics, one can make a first
assumption on the relative convergence rate of the error signals compared with the evolution
of the torque disturbance. By construction, the disturbance torque τ d present slow dynamics
as the ∆ matrices have relatively low amplitudes. One can then assume that τ̇ d ≈ 0 [Che+00]
and in the case of fast disturbance dynamics, one can adapt the gain synthesis detailed in
section 4.2.5 such that the convergence rate of εd is exponential when τ̇ d is bounded [Moh+13].
Thus, the respective error dynamics is approximated by:

ε̇d = τ̇ d − ˙̂τ d ≈ − ˙̂τ d = −ẇ− d

dt
p (4.18)

Then with (4.16) and (4.18), the error signal of the NDO in function of the state observer
error signal can be detailed as:

ε̇d = Ldw− Ld (D�q̇ + D�xx− τ q − p) + LdD�xεe −
d

dt
p

= Ld(w + p)− Ld (M�q̈ + D�q̇ + D�xx− τ q) + LdD�xεe
= −Ldεd + LdD�xεe

(4.19)

Before establishing the tracking control error dynamics, a control torque that allows to
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linearize and decouple the system is introduced. For a desired actuator dynamics, v, such
that:

v = K
[
qd − q
q̇d − q̇

]
= K

[
εc
ε̇c

]
(4.20)

where K is a linear control gain, a control torque that realizes this objectives is given by:

τ qc = M�K
[
εc
ε̇c

]
+ D�q̇ + D�xxe − τ̂ d (4.21)

By injecting (4.21) in (4.6), the actuators closed-loop dynamics is given as:

M�q̈ + D�q̇ + D�xx− τ d = M�K
[
εc
ε̇c

]
+ D�q̇ + D�xxe − τ̂ d (4.22)

matrix M� is defined positive and symmetric as it an inertia matrix, thus by rewriting the
close-loop dynamics, the tracking control error dynamics is obtained as:

ε̈c = −K
[
εc
ε̇c

]
+ M�−1D�xεe −M�−1

εd (4.23)

Let’s introduce the state vector z =
[
εTc ε̇Tc

]T
, then (4.23) can be re-written as a state

representation: 
ż =

([
0 I
0 0

]
+
[

0
−I

]
K
)

z +
[

0
M�−1D�x

]
εe +

[
0

−M�−1

]
εd

= (Az + BzK) z + Bzeεe + Bzdεd

εc =
[
I 0

]
z = Czz

(4.24a)

(4.24b)

Thus, by considering (4.17), (4.19) and (4.24) one can note that the system’s stability
depends on the convergence of coupled observers dynamics. A new hypothesis on the conver-
gence rates can be made to reduce the coupling of the observers dynamics and enforce the
hypothesis of τ̇ d ≈ 0. The disturbance observer error present lower amplitudes than x as it
mainly corresponds to residual modeling errors. In consequence, the emphasis on an accurate
estimation of xe should be made over τ̂ d estimation. Imposing a faster convergence time on
the state estimation than on the disturbances allows to simplify the coupling dependency in
(4.17) such that:

ε̇e = (Ae − LxCe) εe (4.25)

With this last hypothesis, (4.19) and (4.24), a compact version of the closed-loop dynamics
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is obtained by introducing X =
[
zT εTe εTd

]T
:

Ẋ =

(Az + BzK) Bze Bzd

0 (Ae − LxCe) 0
0 LdD�x −Ld

X = A(q, q̇, q̇0)X (4.26)

4.2.5 Simultaneous gains synthesis

With the closed-loop expression as expressed in (4.26), the separation principle could al-
low to obtained the different controller and observer gains imposing negative eigen values
of (Az + BzK), (Ae − LxCe) and −Ld to insure stability of the system. However, a simul-
taneous synthesis is proposed to insure disturbances rejections with observers with slower
dynamics than the controller one. The synthesis is firstly developed for a linearized system
and then extended to deal with workspace considerations. Secondly, the synthesis method is
adapted to deal with large system evolutions mainly due to the mass distribution variations.

4.2.5.1 Robustness to modeling and measurement errors

With the following proposition, the gains synthesis allows to insure control performances in
presence of modeling uncertainties and measurement errors for a given linearized system.

Proposition: If there exist symmetric definite matrices Qz, Qd and Pe and matrices Wz

and We of appropriate dimensions such that for a given scalar γ > 0 the following LMI
constraint holds:

Θ =


(AzQz + BzWz)s Bze BzdQd QzCT

z

∗ (PeAe −WeCe)s D�Tx 0
∗ ∗ (−Qd + D�)s 0
∗ ∗ ∗ −γ2I

 < 0 (4.27)

with Xs = X+XT , Then system is quadratically stabilized with K = WzQ−1
z , Lx = P−1

ε Wε

and Ld = P−1
d M�−1 . Moreover, the outputs εc verify:∫ ∞

0
εc(t)T εc(t)dt < γ2 (4.28)

for any conditions z(0) = 0 and εe0 , εd0 ∈ {ε | εTEε ≤ 1}.
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Proof: As the matrix M� is positive definite, one can choose the following Lyapunov func-
tion:

V(X) = zTPzz + εTe Peεe + εTdPT
dM�Pdεd ≥ 0

= XT

Pz 0 0
0 Pe 0
0 0 (PT

dM�Pd)

X = XTPX
(4.29)

such that V̇ + γ−2εTc εc ≤ 0 for a given γ > 0.

Then by integration of this constraint:

∀ T > 0,
∫ T

0
V̇ + γ−2εTc εcdt < 0

⇒ γ2
∫ T

0
εTc εcdt < γ2(V0 −VT )

⇒ γ2
∫ T

0
εTc εcdt < γ2V0 = γ2

[
εTe0 εTd0

] [Pe 0
0 PT

dM�Pd

] [
εe0

εd0

]

<
[
εTe0 εTd0

]
E
[
εe0

εd0

]
< γ2

(4.30)

this condition is enforced by
[
Pe 0
0 PT

dM�Pd

]
≤ E.

The time derivative of the proposed Lyapunov function is then given by:

V̇(X) = XT

ATP + PA +

0 0 0
0 0 0
0 0 PT

d Ṁ�Pd


X

= XT

(PzAz + PzBzK)s PzBze PzBzd

∗ (Pe(Ae − LxCe))s (LdD�
T

x )T (PT
dM�Pd)T

∗ ∗ (−PT
dM�Pd)s + PT

d Ṁ�Pd

X

(4.31)

where the time derivative of the equivalent inertia matrix can be defined as a function of the
convective matrix as [Moh+13]:

Ṁ� = D� + D�T (4.32)

As proposed by Mohammadi and al. [Moh+13], a candidate nonlinear gain observer can
be chosen as:

Ld = P−1
d M�−1 (4.33)

which leads with (4.16) to the auxiliary variable:

d

dt
p = P−1

d q̈ (4.34)
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Thus, simplification can be made to obtain the expression of the time-derivative of the
Lyapunov function:

V̇(X) = XT

(Pz(Az + BzK))s PzBze PzBzd

∗ (Pe(Ae − LxCe))s D�Tx Pd

∗ ∗ (−PT
d )s + (PT

d Ṁ�Pd)

X (4.35)

Then the constraint V̇ + γ−2εTc εc ≤ 0 is equivalent to:(Pz(Az + BzK))s + γ−2CT
z Cz PzBze PzBzd

∗ (Pe(Ae − LxCe))s D�Tx Pd

∗ ∗ (−PT
d )s + (PT

d Ṁ�Pd)

 < 0 (4.36)

By applying the Schur complement, the condition becomes:
(Pz(Az + BzK))s PzBze PzBzd CT

z

∗ (Pe(Ae − LxCe))s D�Tx Pd 0
∗ ∗ (−PT

d )s + (PT
d Ṁ�Pd) 0

∗ ∗ ∗ γ2

 < 0 (4.37)

By introducing the variable changes Wz = KQz and We = P−1
e Lx, and pre and post

multiplying the above matrix by diag(Qz, I,Qd, I) = diag(P−1
z , I,P−1

d , I) one obtains the LMI
constraint (4.27).

This concludes the proof.

As such, for a linearized system the matrices Ae, D�x, D�, Bzd and Bze are evaluated.
Then defining the LMI variables Qz, Qd, Pe, Wz and We the LMI (4.27) is resolved by
minimizing the parameter γ. This allows to obtain the control and observers gains suitable to
insure stability for a given motions for which the linearization is sufficient. For large variations
the LMI (4.27) is evaluated for different system linearizations.

4.2.5.2 Robustness to system variations

During an on-orbit servicing operation, the distribution of mass is led to face significant
changes through the different manipulations. Thus the resolution of the LMI (4.27), which
is verified around a system’s equilibrium state, needs to be slightly changed in order to
consider those system variations without considering multiple equilibrium points which would
prohibitively increase the number of LMI constraints in the design process. In this section,
under mild assumptions, it is highlighted that system velocities can be neglected in a variations
preliminary analysis to focus on a workspace analysis. In other words, in the inequality (4.27),
convective terms have much less influence than inertial terms.

A first modification of the gains synthesis can be observed by considering a previous
assumption on the convergence rate of the disturbance torque estimation. Compared to both
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control and state observer error signals, the dynamics of the disturbance torque estimator
are slow enough to be neglected. Consequently, the tracking error dynamics (4.24) can be
approximated as:

ż = (Az + BzK) z + Bzeεe (4.38)

With these considerations, the LMI (4.27) including system variations during OOS opera-
tions is modified as follows (with the Deltas blocs and simplification of the coupling dynamics):

Θ =


(AzQz + BzK)s Bze + ∆Bze 0 QzCT

z

∗ (PeAe −WeCe)s D�Tx + ∆D�Tx 0
∗ ∗ (−Qd + D�)s + ∆D� + ∆D�T 0
∗ ∗ ∗ −γ2I

 < 0

(4.39)

Let us now introduce bounds ρ1, ρ2 and ρ3 on the maximum singular values of the interest
variations: 

σ̄ (∆Bze) < ρ1

σ̄ (∆D�x) < ρ2

σ̄
(
∆D� + ∆D�T

)
< ρ3

(4.40a)
(4.40b)

(4.40c)

Using a Schur-complement based argument, it is readily checked that the inequalities
(4.39) are enforced by:

Θ =


(AzQz + BzK)s + ρ1I Bze

∗ (PeAe −WeCe)s + (ρ1 + ρ2)I
∗ ∗
∗ ∗

0 QzCT
z

D�Tx 0
(−Qd + D�)s + (ρ2 + ρ3)I 0

∗ −γ2I

 < 0

(4.41)

Let us now evaluate the bounds introduced in (4.40). From equations (4.7) and (4.24),
one can identify the matrix terms that are dependent on the workspace and those that also
require system velocities to be evaluated. Decomposing D�x with a stiffness and a convective
equivalent term such that D�x(q, q̇) =

[
K�η(q) D�t,η(q, q̇)

]
defined as:


K�η = ĤT

0q(Ĥ0 − Ĥ0ηĤT
0η)−1Ĥ0ηK̂η

D�t,η =
[
Ĉq0 − ĤT

0q(Ĥ0 − Ĥ0ηĤT
0η)−1Ĉη + ĤT

0q(Ĥ0 − Ĥ0ηĤT
0η)−1Ĥ0ηĈη0

− ĤT
0q(Ĥ0 − Ĥ0ηĤT

0η)−1Ĉ0η + ĤT
0q(Ĥ0 − Ĥ0ηĤT

0η)−1Ĥ0ηĈη

]
(4.42a)

(4.42b)
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one can consider matrices M�(q) and K�η(q) on one side and velocity dependent term matrices
D� and D�t,η on an other side. Firstly, the common factor term ĤT

0q

(
Ĥ0 − Ĥ0ηĤT

0η

)−1
, which

corresponds to a scaled inertia can be constrained as:

σ̄

(
ĤT

0q

(
Ĥ0 − Ĥ0ηĤT

0η

)−1
)
≤

σ̄
(
ĤT

0q

)
σ
(
H0 −H0ηHT

0η

) = β (4.43)

where σ(A) denotes the minimum singular value of matrix A. Thus, matrices M�(q) and
K�η(q) can be bounded as: σ (M�) I ≤M� ≤ σ̄ (M�) I

σ̄
(
K�η
)
≤ βσ̄

(
Ĥ0ηK̂η

) (4.44a)

(4.44b)

Then, the velocity dependent terms can be simplified thanks to specific assumptions in
space robotic applications. In order to maintain system stability, actuators velocities remain
low enough to develop slow manipulator motions such that flexible modes excitation are
limited. Moreover, system variations correspond to the different mass distributions which are
not affected by the reaction-wheels velocities. The study of matrices D�t,η and D� results in
identifying the impact of the manipulator motions in the considered workspace.

The rewriting effort made to obtain the joint-space dynamics (4.6) has allowed to define
Dx as an equivalent Coriolis matrix. This convective term can be bounded as a function of
the SMS configuration and the actuators’ capacity such that [MM07]:

σ (D�(q, q̇)) ≤ σ̄ (D�(q, q̇)) ≤ λ‖q̇‖2max (4.45)

where the parameter λ is defined as a function of the studied workspace [MM07]:

λ = 3
2sup

( nq∑
i=1

∥∥∥∥∂M�(q)
∂qi

∥∥∥∥
)

(4.46)

Furthermore, with the assumption of slow manipulator motions, the evaluation of D�x can
be reduced to the variations of K�η. By definition, convective matrices correspond to the cross
product terms between q̇, η̇ and ω0. For slow manipulator and base motions, flexible modes
vibration amplitudes are limited. These general assumptions allow to neglect convective term
variations compared with inertia/mass ones. Bounding D�x as follows

σ̄ (D�x) ≤ σ̄
(
K�η
)

+ σ̄
(
D�t,η

)
(4.47)

and D�t,η with only convective terms such that:

σ̄
(
D�t,η

)
≤ σ̄

(
Ĉq0

)
+ βσ̄

(
ĤT

0q

) (
σ̄
(
Ĉη

)
+ σ̄

(
Ĥ0ηĈη0

)
+ σ̄

(
Ĉ0η

)
+ σ̄

(
Ĥ0ηĈη

))
(4.48)
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one finally obtains:
σ̄ (D�x) ≤ σ̄

(
K�η
)

(4.49)

Thus, with (4.44), (4.45) and (4.49) the required bounds can be evaluated as:
ρ1 =

σ̄
(
K�η
)

σ (M�)
ρ2 = σ̄

(
K�η
)

ρ3 = 2λ‖q̇‖2max

(4.50a)

(4.50b)

(4.50c)

with σ̄
(
K�η
)
corresponding to the greatest singular value of matrix

(
K�η
)
and σ (M�) lowest

singular value of matrix (M�).

4.2.5.3 Proposed design methodology

The design procedure is now generalized to a multi-task on-orbit servicing scenario in which
from one task to another the mass distribution may significantly differ as well as the size of
the workspace. To optimally consider the system changes through the different tasks and
obtain optimal constant control and observer gains, let us define n tasks, denoted t1≤i≤n ∈ T ,
where T denotes the entire set of tasks corresponding to the total servicing scenario. The
details of the design procedure are given by the following algorithm:

Algorithm 2 Design procedure for a multi-task on-orbit servicing scenario
Define the set of tasks T and for each task t1≤i≤n with an associated workspace w1≤i≤n
Define the different LMI variables, Qz, Qd, Pe, Wz and We, as in the proposition in
section 4.2.5.1
for i ≤ n do
Define an equilibrium point to evaluate matrices, Ae, D�x, D�, Bzd and Bze , in the LMI
constraint (4.27) from (4.1) Minimize the LMI variable γ > 0 such that Θ1≤i≤n < 0
Evaluate the relaxation terms ρ1, ρ2 and ρ3 as in (4.50)
Define a Θi as in (4.41)

end for
Return K, Lx, Pd = Q−1

d

Thereby, algorithm 2 provides controller and observer gains suitable for a space manipu-
lator system to perform different tasks while preserving similar control performances for each
task.
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4.3 Illustration of the proposed method

4.3.1 Study case

Figure 4.2 – Spacecraft component overview (elements are detailed in tables 4.1 and 4.2),
https://www.h2020-pulsar.eu

In order to illustrate our proposed method, the on-orbit deployment of the PULSAR telescope
presented in Rognant and al. [Rog+19] is used. Figure 4.2 shows the elements composing
the PULSAR telescope. In order to relieve the load on the simulator physics, the geometries
are simplified compared to the real components. The current properties have been estimated
from the James Webb Space Telescope.

Tables 4.1 and 4.2 present the sub-components of the spacecraft represented in Figure
4.2. Their main physical properties (dimension, mass, CoM) have been specified, inertias are
given in the XML description detailed in appendix B.

https://www.h2020-pulsar.eu
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The spacecraft’s base (1). It is the main structure including
power supply, on-board computer, attitude control actuators

and sensors, etc.
Dimensions XYZ (m): 2× 3, 2× 2, 7817 (diameter 3,2)

Mass (Kg): 1960
CoM XYZ (m): [0,9 0 0]

The payload module (2). In a real mission, this part would
contain all the electronics and data handling needed to support

the instruments.
Dimensions XYZ (m): 1, 5× 3, 2× 2, 7817 (diameter 3,2)

Mass (Kg): 1440
CoM XYZ (m): [0,55 0 0]

The sun shield which is used to protect the telescope from light
interference. Its large size can introduce perturbations in the

AOCS8. It is composed of:
Two long beams (3)

Dimensions XYZ (m): 3, 3871× 0, 3× 13, 788
Mass (Kg): 84

CoM XYZ (m): [0 0 7,1]
Two medium beams (4)

Dimensions XYZ (m): 2, 6442× 10, 986× 0, 3
Mass (Kg): 66

CoM XYZ (m): [0 5,65 0]
And the shield itself (5).

Two solar arrays (6).
Dimensions XYZ (m): 0, 02× 2× 5, 5

Mass (Kg): 61
CoM XYZ (m): [0,001 0,001 3,845]

Table 4.1 – Spacecraft sub-components, https://www.h2020-pulsar.eu

https://www.h2020-pulsar.eu
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The SMT9 container (7) with the main mast (8):
Dimensions XYZ (m): 6× 1, 42541× 1, 2344

Mass (Kg): 1132
CoM XYZ (m): [1,5 0 0]

Its function is to store the 36 segmented mirror tiles at the
beginning of assembly scenario. Its configuration consists in a
first row of 6 tiles at the bottom, and 6 consequential rows of 5
tiles. This allows for the rail of the robotic assembly system to
pass between the tiles, enabling access of all the tiles to the

robotic arm.

The pre-assembly site (9) with its unique standard interface
which will be used for attaching SMTs to form a preassembly.

Dimensions XYZ (m): 0, 2× 1, 42541× 1, 2344 (diameter
1.42541)

Mass (Kg): 22
CoM XYZ (m): [0 0 0]

The assembly site (10) around which will be assembled the
primary mirror.

Dimensions XYZ (m): 0, 2× 1, 42541× 1, 2344 (diameter
1.42541)

Mass (Kg): 28
CoM XYZ (m): [0 0 0]

The optics system (11) which only simulates the physics (mass
and collisions), not the optical part:

Dimensions XYZ (m): 0.994646× 0.781024× 0.835381
Mass (Kg): 425

CoM XYZ (m): [0 0 0]

Table 4.2 – Spacecraft sub-components, https://www.h2020-pulsar.eu

The manipulator has been adapted from the Compliant Assistance and Exploration Space
Robot (CAESAR)1. The CAESAR robotic arm is a 7-DoF10, modular manipulator designed
for space applications. Its original total length is ∼ 3m. To increase the original workspace,
its length was increased by ∼ 1m (50cm between joints 2-3 and 50cm between joints 4-
5) to allow for the complete assembly process. Figure 4.3 illustrates the latest CAESAR

10Degree of Freedom

https://www.h2020-pulsar.eu
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configuration as integrated on the PULSAR telescope with an additional prismatic DoF at
its origin corresponding to the rail. In addition, 6 reaction-wheels, positioned inside the
spacecraft’s base ((1) in Figure 4.2), allow to actively control the 3 rotational DoFs of the
space telescope. Moreover, with the two solar arrays and the sun-shield, represented by four
flexible beams, 22 flexible modes are integrated to the equations of motions as detailed in
section 2.3. The total spacecraft mass is 6892kg. The base weighs 1960 kg while the robotic
arm is limited to 60 kg.

Figure 4.3 – Stowed view (left) and end-effector closeup (right) of CAESAR arm, https:
//www.h2020-pulsar.eu

The scenario of a complete assembly can be divided into 372 sub-tasks, t1≤i≤372. The
sequencing allows to break down complex actions into more simple ones among which in-
spections tasks and tile displacements. Limited by the manipulator workspace, the mirror
assembly is decomposed into a first pre-assembly of bundles of five tiles during which the
manipulator unstacks tiles from the container and free the space in the bottom part of the
assembly site. Therefore, the manipulator is moving between one to four tiles before estab-
lishing a pre-assembly bundle. An illustration of the scenario is developed with the following
snapshots.

https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
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Figure 4.4 – Snapshot after the assembly of the upper inner ring, https://www.
h2020-pulsar.eu

The first three tiles can be directly assembled to form the upper part of the inner ring
assembly, as illustrated in Figure 4.4.

Figure 4.5 – Snapshots after the two first pre-assembly operations, https://www.
h2020-pulsar.eu

https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
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Next operation consists in building first pre-assembly and placing it on the assembly site.
Same set of operations are done to build the second pre-assembly, and placing it at the correct
location on the assembly site (as visualized in Figure 4.5).

Figure 4.6 – Snapshot after the lower inner ring assembly, https://www.h2020-pulsar.eu

Assembly of the lower inner ring follows the completion of assembly of the second pre-
assembly (Figure 4.6). Tiles are directly assembled, without the need to use the pre-assembly
site.

https://www.h2020-pulsar.eu
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Figure 4.7 – Snapshots of the four consecutive pre-assembly operations, https://www.
h2020-pulsar.eu

Finally, the last four pre-assembly/assembly operations are executed consecutively, five
tiles are first assembled on the pre-assembly site, and then the pre-assembly is positioned at
the correct location on the final assembly system.

Figure 4.8 shows the final view of the space telescope after completion of all the different
robotic tasks.

https://www.h2020-pulsar.eu
https://www.h2020-pulsar.eu
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Figure 4.8 – Final view of PULSAR, https://www.h2020-pulsar.eu

4.3.2 Simulations results

4.3.2.1 Gains synthesis solver

The LMI resolution involves high-dimensional matrices and a large set of constraints (ac-
cording to the considered scenario) which may lead to significant computational times. In
the present application, each constraint (4.27) corresponds to a 106 × 106 matrix inequality
where the decision variables Qz, Qd and Pe are respectively 28 × 28, 14 × 14 and 50 × 50
symmetric matrices. In order to better control the resolution time, the YALMIP toolbox
[Lof04] is interfaced here with the MOSEK solver. To assess the computation cost, table 4.3
gathers, for different sizes of the set of tasks T , the resolution times which have been obtained
on a standard computer equipped with an Intel i7 Processor.

As expected, the CPU time considerably increases with the size of T . However, the
number of needed iterations is not much affected. It should also be emphasized that, without
major degradation, the controllers gains can be restricted to diagonal matrices thus slightly
reducing the number of decision variables.

size of T 10 20 30 40 50 80 100 154
LMI resolution time (s) 35 130 122 186 245 426 550 833
Iterations 27 53 33 38 39 38 39 43

Table 4.3 – LMI resolution times according to the size of T

https://www.h2020-pulsar.eu
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If the time resolution becomes an issue, as it directly depends on the number of decision
variables and LMI constraints, the use of furthers relaxations can be considered at the cost
of possibly increased conservatism.

4.3.2.2 Analysis of system variations

During the on-orbit assembly of the PULSAR telescope, important system variations occur
due to mass distribution changes. A preliminary analysis of the impact of such variations –
through the evaluation of the bounds detailed in (4.40) for each sub-task of the deployment
scenario – is useful to reduce the size of T in the design process. Sub-tasks presenting
lowest variations correspond to verification maneuvers or small adjustment of end-effector
rotations. Consequently such tasks share similar physical properties with the following longer
manipulation task justifying the reduction of tasks considered in the gains synthesis.
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Figure 4.9 – Evolution of relaxation terms for each tasks of the PULSAR scenario

Figure 4.9 illustrates variations of the three bounds for each task t ∈ T for unused reaction-
wheels (i.e. q̇r = 0) as they do not affect the mass distribution in the workspace. For each
task, the norms are evaluated for the maximal joint velocities and uniformly distributed
manipulator joint configurations in the corresponding workspace wi. As a first observation,
it can be noted that a workspace approach is a suitable method to evaluate the bounds ρi.
Observing from the upper subplot of Figure 4.9, the similar evolutions of σ̄

(
M�−1D�x

)
and

σ̄
(
M�−1K�η

)
and then comparing σ̄ (D�x) with σ̄

(
K�η
)
on the central subplot, we can validate

the approximations of section 4.2.5.2 from which the bounds (4.50) are derived. Regarding
the actuators’ velocities and the variations of ρ3 from the lower subplot of Figure 4.9 in
comparison to the evolutions of ρ1 and ρ2 the study of system variations with a workspace
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analysis can be justified.

A second observation can be made on the large system variations for each task by consid-
ering the evolution σ̄

(
M�−1K�η

)
, whose maximum (red full line) and minimum (blue dashed

line) values are visualized on the upper subplot of figure 4.9. These variations motivate the
use of bounds to be incorporated as a single constraint instead of considering multiple equi-
librium points for each task which would generate numerous constraints and would lead to
an unsolvable optimization problem.

Moreover, according to the considered scenario, some successive tasks may exhibit similar
workspaces and mass distributions. Then, a reduced set of tasks can be used in the design
procedure. In our context, further simplifications could be achieved by eliminating short tasks
or those whose impact on the system variations remains small enough.

4.3.2.3 System performances in simulation

In this section, the interest of the control method is illustrated with time-domain simulations.
In order to validate the efficiency of the design procedure, simulation are performed on mul-
tiple similar tasks through the deployment scenario. Three sets of tasks are considered for
the validation process: T2T = {34, 88, 160, 214, 268, 328}, T3T = {46, 100, 172, 226, 280, 340}
and T4T = {58, 112, 184}. The first set, T2T , gathers six tasks through which the manipulator
moves a bundle of 2 tiles with a similar motion (i.e. same velocities and amplitude). Similarly,
the second set, T3T , gathers six tasks for which similar motions allow to move 3 tiles and the
last set, T4T , gathers three tasks where 4 tiles are moved. Choosing similar tasks through the
scenario aims at evaluating the robustness to system variations with comparison of control
tracking performances. Indeed, first by comparing the moving of a same mass at the end-
effector but with different overall mass distribution and secondly comparing performances
for a significantly different mass at the end-effector and a different overall mass distribution,
one will be able to conclude on the robustness of the control. The system mass or inertia
variations can be evaluated with the relaxation term ρ1 from (4.50) which its evolution for
each tasks in the scenario is plotted in the upper subplot of Figure 4.9 and likewise the values
for the considered simulated tasks are given in the Table 4.4. Furthermore, one will note that
the chosen tasks present significant variations considering the complete deployment.

ti 34 46 58 88 100 112 160 172 184 214 226 268 280 328 340
ρ1 204 266 128 206 268 129 209 273 131 206 205 270 203 203 269

Table 4.4 – Values of ρ1(ti)

Regarding modeling errors, which impact the evaluation of the inverse kinematics/dy-
namics, a degraded space manipulator model is considered. From the nominal model of the
PULSAR telescope, the following levels of uncertainties are considered: ±3% on the inertia
ISi , +10% on the flexible parameters and ±10% on the position of the CoM. Likewise, a
noise bias is included on the measure of ω0 corresponding to a ±10% of error such that state
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observer efficiency can be tested.

In the studied application, manipulator trajectories and velocities are provided with
singularity free path-planning strategies also taking into account the actuators capacities
(https://www.h2020-pulsar.eu). Reaction-wheels desired velocities are deduced from those
of the manipulator joints assuming a kinetic momentum conservation and by imposing a fixed
based such that:

q̇rd = −H+
0r (H0mq̇md + H0t0) = −H+

0rH0mq̇md (4.51)

with an initial moment considered null. The choice of imposing a fixed spacecraft attitude is
justified by the reduction of the impact of the indirect coupling effects between the manipu-
lator and the flexible appendages as developed in the previous chapter.

The validation process is divided into two main discussions. First the control performances
are evaluated considering for each set, T2T , T3T and T4T , the tracking error of both the manip-
ulator’s joints and the reaction-wheels’ velocities. This aims at concluding on the robustness
to system variations, modeling and measurement errors. Secondly, with a decomposition of
the computed torque (4.21), the contribution of including the estimations of the un-measured
states and compensating for the modeling uncertainties is discussed.

Control robustness: For each set T2T , T3T and T4T similar motions are executed by the
manipulator moving respectively 2, 3 and 4 tiles. To first illustrate the precision of the
manipulator’s joints velocity control, Figures 4.10, 4.11 and 4.12 respectively represent the
measured joints’ velocities for T2T , T3T and T4T . The dotted-line corresponds to the desired
joint’ velocity, qmd , and in full-lines represents the velocities measures. Individually consider-
ing each three Figures 4.10, 4.11 and 4.12, one will first note that for each ti in the respective
sets present similar control performances (as full-lines are overlapping). First, by obtaining
for a given set the same closed-loop response allows to conclude on the robustness of system
variations. As tasks are sorted in different set, for each set a same number of tiles and a
similar motions are considered. In one given set, for each tasks the SMS exhibits different
inertia properties due to the overall mass distribution.

https://www.h2020-pulsar.eu
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Figure 4.10 – Evolutions of all the manipulator’s joints for each ti ∈ T2T ; the dotted-line
represents the desired velocity q̇md and the full-lines correspond to each q̇m for each task
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Figure 4.11 – Evolutions of all the manipulator’s joints for each ti ∈ T3T ; the dotted-line
represents the desired velocity q̇md and the full-lines correspond to each q̇m for each task
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Figure 4.12 – Evolutions of all the manipulator’s joints for each ti ∈ T4T ; the dotted-line
represents the desired velocity q̇md and the full-lines correspond to each q̇m for each task

To emphasis on the system variations, on can analyze the difference between reaction-
wheels’ velocities insuring a fixed attitude of the base for each tasks in a given set. In that
purpose, Figures 4.13, 4.14 and 4.15 respectively represent the six reaction-wheels’ velocities
in function of each tasks respectively in T2T , T3T and T4T . Considering for instance Figure
4.13, one will note that for each qri different desired velocities (in dotted-lines) are required
for each tasks ti ∈ T2T . This traduces that the mass, initially near the base, is moved to
the mirror position through the scenario which corresponds to modifications of the system’s
inertia matrix. As the reaction-wheels’ inertia remains constant, the velocity varies to satisfy
(4.51). Then similar observations can be made for Figures 4.14 and 4.13.
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Figure 4.13 – Evolutions of all the reaction-wheels’ joints for each ti ∈ T2T ; the dotted-lines
represent the desired velocities q̇rd and the full-lines correspond to each q̇r for each task
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Figure 4.14 – Evolutions of all the reaction-wheels’ joints for each ti ∈ T3T ; the dotted-lines
represent the desired velocities q̇rd and the full-lines correspond to each q̇r for each task
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Figure 4.15 – Evolutions of all the reaction-wheels’ joints for each ti ∈ T4T ; the dotted-lines
represent the desired velocities q̇rd and the full-lines correspond to each q̇r for each task

Then, to guarantee that the system provides satisfying performances one will consider the
relative tracking errors defined for each joints as in (3.67) (i.e. ε̇tc(q̇i) = (q̇di − q̇i) /max(q̇i)).
As similar measured velocities of the manipulator’s joints, the relative error for all joints are
plotted in Figure 4.16 for each tasks ti ∈ T2T on the left, for ti ∈ T3T on the middle and for
ti ∈ T4T on the right. One will note that in the transient state, this signal reaches the largest
amplitudes. However, the overall relative error’s amplitudes are similar to those obtained in
the previous chapter (see Figure 3.13).

Considering the reaction-wheels, a similar relative tracking error is plotted for each set
T2T , visualized in the left subplot of Figure 4.17, T3T in the middle subplot of Figure 4.17 and
T4T in the right subplot of Figure 4.17. Similarly to the manipulator, during the transient
state, the relative error reaches its maximal values and are equivalent to those obtained in
the previous chapter (see Figure 3.14).

These observations allow to first highlight that the global control performances are satis-
fying regarding the large system variations and ratio of mass moved with the manipulator.
Secondly, it shows a first limit of the proposed gains synthesis. As it is difficult to impose a
closed-loop dynamic for each actuators but only insure convergence of the system, the tran-
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sient states are providing the worst performances. Moreover, no consideration on the control
torques’ limitations are considered in the synthesis which allows to consider large control
gains responsible of the transient states obtained.

Figure 4.16 – Illustration of the manipulator control performances; For each manipulator
joints the relative tracking error ε̇tc(q̇i) of each ti ∈ T2T on the left, for each ti ∈ T3T on the
middle, for each ti ∈ T4T on the right
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Figure 4.17 – Illustration of the reaction-wheels control performances; For each reaction-
wheels the relative tracking error ε̇tc(q̇i) of each ti ∈ T2T on the left, for each ti ∈ T3T on the
middle, for each ti ∈ T4T on the right

Thus, from these observations one can conclude on the robustness to system’s variations
and in particular emphasize on the possibility of performing different tasks with significant
mass to move. Moreover, it highlights the gains synthesis efficiency as it was made for motions
of end-effector’s loads between nothing and 220kg (corresponding to 4 tiles).

Interest of the control scheme: In order to illustrate the usefulness of disturbance and
state observers to properly linearize and decouple the system, the detailed components of the
control torques (4.21) are visualized for tasks in T2T in Figures 4.18, 4.19 and 4.20, for tasks
in T3T in Figures 4.21, 4.22 and 4.23 and for tasks in T4T in Figures 4.24, 4.25 and 4.26.

The control torques (4.21) can be decomposed into three signals. The first one (M�v),
visualized in Figures 4.18, 4.21 and 4.24 corresponds to the feedback control torque. The
second one ( D�q̇) is a linearizing torque and is visualized in Figures 4.19, 4.22 and 4.25.
The last one (D�xxe + τ̂ d) can be interpreted as a generalized disturbance torque. It appears
in Figures 4.20, 4.23 and 4.26. Since the joints velocities and mass to move are significantly
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different during each of the considered tasks, it can be noted that disturbances differently
impact the control performances. Thus an amplitude comparison between each signals allows
to evaluate their influence on the system linearization quality.

First, considering each set of tasks T2T , T3T and T4T individually and the different torques
composing (4.21), one can note that similar control torques are developed for each task. More
precisely, considering Figure 4.18 one will note similar amplitude of torques for each tasks
in T2T . The same observations can be made for the linearization torques with Figure 4.19
and disturbance torques represented in Figure 4.20. Similarly for T3T and T4T the torques
correspond for each tasks.

Concerning the feedback torques visualized in Figures 4.18, 4.21 and 4.24, this is explained
by similar desired velocities and a common linear control gain, K. Moreover, for the same
motions the linearization torques, represented in Figures 4.19, 4.22 and 4.25, will provide
comparable amplitudes. Additionally, the generalized disturbance torques plotted in Figures
4.20, 4.23 and 4.26, the similitude for each tasks can be interpreted by an identical estimation
quality that persists through the scenario progression.

Then to evaluate the influence of each torque on the decoupling quality, one will simul-
taneously consider all the tasks simulated. This allows to compare different behaviors in
function of system variations. Thus, the following discussions can be developed from the
overall comparisons.

• Regarding the linearized torques and the feedback ones, a first observation on similar
amplitudes can be made. For both set T2T and T3T , the linearized torques reach 10% of
the feedback torques amplitudes, as illustrated comparing Figures 4.18 with 4.19 and
Figures 4.21 with 4.22. For T4T the amplitudes are equivalent (i.e. 0.2Nm for the
feedback torques and 0.1Nm for the linearized ones) as visualized with Figures 4.24
with 4.25. This first note simply highlight the interest of developing an NDI control
scheme.

• Considering the linearized torques and generalized disturbances ones will allow to con-
clude on the interest to develop observers in the purpose of improving the system lin-
earization and decoupling. Therefore, respectively comparing Figures 4.19 with 4.20,
Figures 4.22 with 4.23 and Figures 4.25 with 4.26 one will note that the disturbance
torques approximately reach 10% of the linearization torques. From this observation,
two remarks can be developed. Firstly, such equivalent amplitudes indicate that the
estimations provide useful information on the system linearization and decoupling. Sec-
ondly, as developed in the previous chapter, maintaining the base with a fixed attitude
allows to reduce the impact of the internal disturbances and thus the amplitudes of the
disturbance torques are minimized.

• A last observation can be made on the influence of the measurement errors on the base
angular velocities. As a null base angular velocity is imposed with the use of reaction-
wheels, one will note that for the considered sensors the noise has low effects on the
disturbance torques as their amplitudes remain lower than those of the linearization
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torques.
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Figure 4.18 – Represent the feedback control torques (M�v) evolution for lower sub-figures
illustrate the linearizing torques evolution for i ∈ T2T
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Figure 4.19 – Illustrate the linearizing torques (D�q̇) evolution for ti ∈ T2T
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Figure 4.20 – Illustrate the evolution of the estimated disturbance torques (D�xxe + τ̂ d) for
T2T
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Figure 4.21 – Represent the feedback control torques (M�v) evolution for i ∈ T3T
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Figure 4.22 – Illustrate the linearizing torques (D�q̇) evolution for ti ∈ T3T
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Figure 4.23 – Illustrate the evolution of the estimated disturbance torques (D�xxe + τ̂ d) for
T3T
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Figure 4.24 – Represent the feedback control torques (M�v) evolution for i ∈ T4T
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Figure 4.25 – Illustrate the linearizing torques (D�q̇) evolution for ti ∈ T4T
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Figure 4.26 – Illustrate the evolution of the estimated disturbance torques (D�xxe + τ̂ d) for
T4T

To emphasis on the generalized disturbance torques amplitudes, one can consider the
evolution of the system internal disturbances from one side and then discuss on the quality of
the estimation. First considering the evolution of the flexible mode velocities η̇ visualized in
Figures 4.27, 4.28 and 4.29 respectively for tasks in T2T , T3T and T4T , one can observe small
and reducing vibration amplitudes. This can be justified by the reaction-wheels control that
successfully maintain the base at a null angular velocity.

Moreover, similarly to the gains synthesis developed in section 3.3.3, the one proposed
in section 4.2.5 the NDI does not require a perfect estimation to adequately control the
actuators. In addition to the difficulty of estimating the fastest flexible modes, the NDO also
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present difficulties to properly estimate the disturbance torques as modeling errors are not
quantifiable. For this reason, the synthesis offers flexibility on the tolerable amplitudes of
observer errors’ signals, εe (4.17) and εd (4.19). It is sufficient for these signals to be bounded
to insure the stability and convergence of the closed-loop system.

Figure 4.27 – Represent the evolution of the flexible mode velocities, η̇, for T2T
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Figure 4.28 – Represent the evolution of the flexible mode velocities, η̇, for T3T
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Figure 4.29 – Represent the evolution of the flexible mode velocities, η̇, for T4T

4.4 Chapter conclusions

In this chapter, a novel robust joint-space control scheme has been introduced. Inspired by
the control method developed in chapter 3, robust criteria have been considered to improve
the joint-space control scheme. The focus has been made on modeling uncertainties, mea-
surement errors, system variations and proceeding to various tasks. The NDI structure has
been conserved with the inclusion of un-measured states thanks to an ESO. Additionally, the
modeling and measurements errors have been tackled by expressing the equations of motions
of a rotation-free-floating SMS with an external disturbance torque. With similar objectives
than those developed for using an ESO, an NDO is designed to include an estimation of the
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disturbance torques induced by modeling and measurement errors. Once again, the modeling
work detailed in chapter 2 has been advantageously used in the design of the observers and
the NDI.

After developing the overall design, a second contribution of this chapter is the common
synthesis of the control and the two observers gains to satisfy precise control and disturbance
rejections. The synthesis is based on a Lyapunov stability analysis and performed through an
LMI resolution. An advantage of the synthesis is that it is developed for different workspaces
without consideration of restrictive velocities as observed in the chapter 3. Furthermore, it is
suitable to perform a wild range of tasks with an SMS in the way that significant variations
of mass are considered on the base and at the end-effector.

Validation of the proposed method has been developed on an actual on-orbit deployment
scenario that offers consequent system variations to validate the robustness and the interest
of the control method. Therefore, the chapter provides a joint-space control scheme with
a gains synthesis that allows to answer actual problematics of OOS. Extensive simulations
have provided conclusive results. The significant modeling uncertainties have been successfully
tackled thanks to the NDO. Some limits have been observed with the difficulty of imposing
closed-loop dynamics with the LMI resolution. However, the general control performances
show the effectiveness of the method and benefits of the common base and manipulator control
in OOS operations.





Conclusion and perspectives

Contribution of the thesis: Robotic systems have a key role to play in space exploitation
and exploration. A SMS11 presents multiple benefits in OOS12 applications, such as the
versatility in performing various tasks. Space manipulators provide the safest and more
reliable solutions to deal with increasing debris number, structure too large to be self-deployed
or satellite’s life extension missions. As it can be illustrated with the Canadarms and their
use to develop the MIR space station and the ISS13, their assistance to astronauts during
extra-vehicular for the different Hubble Space Telescope’s servicing missions or the recent use
to inspect parts of the ISS. The complexity of operations lead to the necessity of improving
the autonomous control of such a system to consider their use in the future space missions. In
that purpose this thesis aims at providing autonomous control methods for OOS applications.
Through the last thirty years, notable interests and advancements have been made to improve
space robotics technologies but some challenges remains to tackle the new requirements that
robotics are facing.

From the literature review, developed in chapter 1, the recent requirements for SMS are
addressed. The main improvements identified are first the need to tackle system couplings to
perform precise manipulator control. Then, for most of spacecrafts the presence of flexible
appendages, such as solar arrays, sun-shields or even antennas, has led to new challenges
in the improvement of control technologies. A requirement for establishing high accuracy
modeling and simulation tools of a rigid-flexible SMS is made to design and validate new
control strategies. Moreover, dealing with system physical properties variations has raised
interest not only for ADR14, in which the manipulator is required to deal with external and
additional forces/torques, but also to perform multi-tasks such as for an in-space assembly or
deployment. In addition, the use of kinetic moment exchange devices to actively control the
SMS’ base has raised interest to increase the field of possible motions of the SMS.

In this thesis we aimed at developing modeling tools and control algorithm suitable to
increase the autonomy of SMS.

In order to deal with the high control precision required to perform on-orbit manipulator’s
operations, a generic approach to derive accurate non-linear model of a free-floating SMS mo-
tions with flexible appendages have been developed. This contribution is detailed in chapter
2, which details its implementation as a Matlab toolbox. The modeling method, based on
an adapted DH15 formalism and with a Lagrangian approach, allows to recursively derive
kinematic and dynamic models for a multi-body system with multiple kinematic chains and
flexible elements attached to the common system’s base. The relevance of this approach and
the precision of the tools have been illustrated through extensive studies with (and without)

11Space Manipulator System
12On-Orbit Servicing
13International Space Station
14Active Debris Removal
15Denavit-Hartenberg

167



168 Conclusion

flexible appendages.

As mentioned in the literature review, few studies consider potential contribution of kinetic
momentum exchange actuator available on the satellite base. Thus in chapter 3 to assess the
interest to control such base’s actuators when the manipulator performs some tasks, kinetic
indices have been first introduced. They allow to develop quantitative analysis of the couplings
existing between the manipulator’s end-effector and the base’s motions. As the couplings in
SMS is the principal difficulty to develop autonomous control strategies, pre-designing an
SMS with the help of these indices could benefit in future control applications. Moreover,
the system analysis detailed in chapter 3, based on this indices and perform with the tools
developed in chapter 2, led to the conclusion that a common base and manipulator control
would be more efficient to achieve the expected tasks.

As the SMS’ motions could lead to flexible appendage vibrations, the development of
suitable control scheme to ensure system stability was another challenge of this thesis. This
point was handle in the second part of the chapter 3 with the design of steering laws and joint
controller of the base and the manipulator. The proposed control framework is based on an
NDI16 where an ESO17 is introduced to perform an accurate system linearization. Its design
is possible thanks to the non-trivial modeling developed in chapter 2. Additionally to the
control scheme, the second contribution is the synthesis of both control and observer gains
based on a Lyapunov stability proof and obtained from an LMI18 resolution. The simulations
of the controllers thus obtained highlight the interest of reaction-wheels to efficiently reject
undesired flexible vibrations when the manipulator operates.

However, in order to be able to apply the solutions proposed above to real systems, it is
necessary to first consider the robustness of the designed controller in a realistic scenario. Es-
pecially as NDI controller efficiency relies on the accuracy of its design model. Therefore, the
control framework proposed has been extended in chapter 4 to deal with modeling uncertain-
ties. It has been proposed to be tackled with a disturbance torque added to the overall SMS
dynamic model. With the ambition to improve the system’s decoupling quality and reject
the modeling and measurement errors, an NDO19 has been design to include a disturbance
torque estimation in the NDI in addition to the flexibility estimation perform by the ESO.

Finally, the relevance of SMS resides in their ability to perform different complex tasks
in a same mission. Thus, in chapter 4, the gains synthesis process has been also adapted to
ensure the closed-loop system for a set of tasks. This synthesis is likewise based on a Lyapunov
stability constraint leading to an LMI resolution. It includes robustness to system variations
such that the SMS can perform different tasks from which its physical properties varies.
Therefore, the contribution of chapter 4 is the overall control framework and design method
to autonomously control an SMS that requires to deal with the current and future challenges of
space exploitation and exploration. Extensive tests were developed in a realistic environment
to perform a on-orbit space telescope assembly use-case highlighting the efficiency of the

16Nonlinear Dynamic Inversion
17Extended State Observer
18Linear Matrix Inequality
19Nonlinear Disturbance Observer
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proposed method.

Perspectives:

• After developing a rigid-flexible model of an SMS with a rigid manipulator, one could
consider a flexible manipulator and extend the Lagrangian approach developed in chap-
ter 2 such that junctions between a flexible element and another one (rigid or not) could
have one DoF20. Flexible manipulators provides a means to absorb the contact in a
capture of a target and thus brings new solutions in ADR [SGS18].

• Capitalizing on the robust joint-space control established in chapter 4, one could initiate
task-space control strategies. With the rejection of intern disturbances, controlling the
manipulator end-effector and the base developing assumptions on the behaviors of the
joint-space inner loop control. Such method would benefits in capture scenarios as well
as improving the precision of manipulator’s operations [Gio+21]; [Pap+21].

• Some applications consider multi-manipulator robotic systems to benefit on the pos-
sibility of stabilizing the system with the unused manipulators while one manipula-
tor operates [SGM20]. Further analysis on the contributions the manipulators’ joints
with the presence of reaction-wheels could be developed. Likewise, the consideration of
closed-kinematic chains could provide interesting information preliminary to establish
detumbling strategies.

• Concerning robust criteria, a drawback of the LMI resolution is the difficulty to consider
actuators dynamics and adapt the closed-loop performances for a tight requirement
list. With implementation purposes, further improvements of the approach could be
investigated or compared with other synthesis methods, such as developing an H∞
synthesis. Moreover, another interesting robustness criterion to consider would be to
deal with external forces/torques applying on the end-effector in order to initiate the
control for capture applications.

20Degree of Freedom
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Appendix A

Detail of Convective matrix
evaluation

In this appendix, state-derivative expressions are given to detail the convective terms in (2.69).
To conserve a general formalism the generalized joint-state variable, q ∈ Rnq×1, defined as
q =

[
q1 . . . qnq

]
, corresponds to the kinematic chain(s) DoF1s while x0 ∈ R6×1, defined as

x0 =
[
θ0x θ0y θ0z r0x r0y r0z

]T
, corresponds to the 6-DoFs of the base.

A.1 Base-derivative of inertia matrices

In this section the following terms are detailed:

d0 = −1
2
∂

∂x0

(
tT0 M0 + q̇MT

0q + η̇MT
0η

)
d0q = −1

2
∂

∂x0

(
q̇TMq + tT0 M0q

)
d0η = −1

2
∂

∂x0

(
tT0 LTηp

)
(A.1a)

(A.1b)

(A.1c)

1Degree of Freedom
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which can be developed as:
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(A.2a)

(A.2b)

(A.2c)

With the expression of the inertia matrices (2.67) the time-derivative in function of x0l
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(l ∈ [1, 6]) are given by:
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(A.3a)

(A.3b)

(A.3c)

Inertia derivatives expressions: The inertia matrices I0 and Ii are expressed in the
inertial frame Rine2 as given by (2.10). With (2.8) and (2.9), one can detail the recursive
expressions as: 

I0 = RA0IS0RT
A0

Ii = RA0

i∏
j=1

RAjISi

RA0

i∏
j=1

RAj

T
(A.4a)

(A.4b)

This allows to expressed the following derivatives:
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(A.5a)

(A.5b)

2Inertial frame
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Therefore, the inertia derivative in function of a base state is reduced to the derivation of the
rotation matrix RA0 . This leads to ∂

∂r0x
(RA0) = ∂

∂r0y
(RA0) = ∂

∂r0z
(RA0) = 03 and with

the Euler Angles rotation order given in (2.7) the derivative in function of the base attitude
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0 c(θ0z)c(θ0x) + s(θ0z)s(θ0y)c(θ0x) −c(θ0z)c(θ0x)− s(θ0z)s(θ0y)s(θ0x)
0 c(θ0y)c(θ0x) −c(θ0y)s(θ0x)


∂

∂θ0y
(RA0) =

−c(θ0z)s(θ0y) c(θ0z)c(θ0y)s(θ0x) s(θ0z)c(θ0y) + c(θ0z)c(θ0y)c(θ0x)
−s(θ0z)s(θ0y) s(θ0z)c(θ0y)s(θ0x) s(θ0z)c(θ0y)c(θ0x)
−c(θ0y) −s(θ0y)s(θ0x) −s(θ0y)c(θ0x)


∂

∂θ0z
(RA0) =−s(θ0z)c(θ0y) −s(θ0z)s(θ0y)s(θ0x)− c(θ0z)c(θ0x) c(θ0z)s(θ0y)− s(θ0z)s(θ0y)c(θ0x)

c(θ0z)c(θ0y) −s(θ0z)s(θ0x) + c(θ0z)s(θ0y)s(θ0x) s(θ0z)s(θ0x) + c(θ0z)s(θ0y)c(θ0x)
0 0 0



with c(x) and s(x) respectively corresponding to cos(x) and sin(x).

Bi0 derivative expression: Considering rSi with i ∈ [1, nq], the matrix Bi0 (2.15) only
depends on the position of the solid Si in the inertial frame. Thus, ∂

∂θ0x
(Bi0) = ∂

∂θ0y
(Bi0) =

∂

∂θ0z
(Bi0) = 03 and: 

∂

∂r0x
(Bi0) =


03 030 0 0

0 0 −1
0 1 0

 03



∂

∂r0x
(Bi0) =


03 03 0 0 1

0 0 0
−1 0 0

 03



∂

∂r0x
(Bi0) =


03 03 0 1 0

−1 0 0
0 0 0

 03



(A.7a)

(A.7b)

(A.7c)
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Jmi derivative expression: With (2.18), the expression of the Jacobian matrix Jmi is
given ∀i ∈ [1, nq] by:

Jmi =
[
Bi1pm1 . . . Bi(i−1)pmi−1 pmi06×(nq−1)

]
(A.8)

As only pml (l ∈ [1, i]) depends on the base state, ∂

∂x0i
(Bil) = 06 and thus:

∂

∂x0i
(Jmi) =

[
Bi1

∂

∂x0i
(pm1) . . . Bi(i−1)

∂

∂x0i

(
pmi−1

) ∂

∂x0i
(pmi) 06×(nq−i)

]
(A.9)

Then two cases are considered, either the Sl and Si are in the same kinematic chain or
not. If they are, then:

∂

∂x0i
(pml) =


∂

∂x0i
(kl)

∂

∂x0i

(
k×l
)

(rSl − rAl)

 (A.10)

and if not:
∂

∂x0i
(pml) =

 03×1
∂

∂x0i
(kl)

 (A.11)

With the recursive expression of kl (2.9), its derivative expression is given by:

∂

∂x0i
(kl) = ∂

∂x0i
(RA0)

l∏
j=1

RAj

0
0
1

 (A.12)

with the detail of ∂

∂x0i
(RA0) given in the previous section.

A.2 Joint-derivative of inertia matrices

In this section the following terms are detailed:
dq0 = −1

2
∂

∂q

(
tT0 M0 + q̇MT

0q

)
dq = −1

2
∂

∂q

(
q̇TMq + tT0 M0q

) (A.13a)

(A.13b)
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Both convective terms can be developed as:

dq0 = −1
2


tT0

∂

∂q1
(M0) + q̇ ∂

∂q1

(
MT

0q

)
...

tT0
∂

∂qnq
(M0) + q̇ ∂

∂qnq

(
MT

0q

)


dq = −1
2


q̇T ∂

∂q1
(Mq) + tT0

∂

∂q1
(M0q)

...
q̇T ∂

∂qnq
(Mq) + tT0

∂

∂qnq
(M0q)



(A.14a)

(A.14b)

where, ∀l ∈ [1, nq]:

∂

∂ql
(M0) =

nq∑
i=1

∂

∂ql

(
BT
i0

) [Ii 03
03 miI3

]
Bi0 +

nq∑
i=1

BT
i0

 ∂

∂ql
(Ii) 03

03 03

Bi0

+
nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
∂

∂ql
(Bi0)

+ ∂

∂ql

( np∑
i=1

BT
Pfi0

[
Ii 03
03 miI3

]
BPfi0

)

∂

∂ql
(M0q) =

nq∑
i=1

∂

∂ql

(
BT
i0

) [Ii 03
03 miI3

]
Jmi +

nq∑
i=1

BT
i0

 ∂

∂ql
(Ii) 03

03 03

Jmi

+
nq∑
i=1

BT
i0

[
Ii 03
03 miI3

]
∂

∂ql
(Jmi)

∂

∂ql
(Mq) =

nq∑
i=1

∂

∂ql

(
JTmi

) [Ii 03
03 miI3

]
Jmi +

nq∑
i=1

JTmi

 ∂

∂ql
(Ii) 03

03 03

Jmi

+
nq∑
i=1

JTmi

[
Ii 03
03 miI3

]
∂

∂ql
(Jmi)

(A.15a)

(A.15b)

(A.15c)

In order to maintain the generality, the transformation matrix TAi,Rine is differentiated
with the recursive relation (2.8) re-written with (2.3) ∀l, i ∈ [1, nq] as:

TAi,Rine = TAl−1,Rine


c(θl) −c(αl)s(θl) s(αl)s(θl) alc(θl)
s(θl) c(θl)c(αl) −c(θl)s(αl) als(θl)

0 s(αl) c(αl) dl
0 0 0 1


i∏

j=l+1
TAj−1,Aj (A.16)

According to the nature of the joints, the differentiation of TAi,Rine according to ql ∀l ∈ [1, i]
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and ∀i ∈ [1, nq] is given by:

• If the lth joint is prismatic, then:

∂

∂ql
(TAi,Rine) = TAl−1,Rine


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


i∏

j=l+1
TAj−1,Aj (A.17)

• If the lth joint is revolute then ∀l ∈ [1, i]:

∂

∂ql
(TAi,Rine)

= TAl−1,Rine


−s(ql) −c(αl)c(ql) s(αl)c(ql) −als(ql)
c(ql) −s(ql)c(αl) −s(ql)s(αl) alc(ql)

0 0 0 0
0 0 0 0


i∏

j=l+1
TAj−1,Aj

(A.18)

If l > i:
∂

∂ql
(TAi,Rine) = 04 (A.19)

Thus, ∀l ∈ [1, nq]:
∂

∂ql
(TAi,Rine) =

∂RAi,Rine
∂ql

∂rAi
∂ql

01×3 0

 (A.20)

With (2.8), the differentiation of TSi,Rine is given by:

∂

∂ql
(TSi,Rine) = ∂

∂ql
(TAi,Rine) TAi,Si + TAi,Rine

∂

∂ql
(TAi,Si) (A.21)

where:
∂

∂ql
(TAi,Si) = ∂

∂ql

([
RAi (rSi − rAi)
01×3 1

])

=

 ∂

∂ql
(RAi)

∂

∂ql
((rSi − rAi))

01×3 0

 (A.22)

without detailing the differentiation of the matrix TAi,Si depends on the nature of joints and
can be expressed as:

∂

∂ql
(TSi,Rine) =

 ∂

∂ql
(RSi,Rine)

∂

∂ql
(rSi)

03×1 0

 (A.23)
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Inertia derivatives expressions: With the recursive expression of inertias expressed in
Rine (A.4), the derivatives in function of ql ∀l ∈ [1, nq] are given by:

∂

∂ql
(Ii) = RA0

∂

∂ql

 i∏
j=1

RAj

 ISi
 i∏
j=1

RAj

T RT
A0

+ RA0

i∏
j=1

RAjISi
∂

∂ql


 i∏
j=1

RAj

T
RT

A0

(A.24)

with the differentiation of ∏i
j=1 RAj previously detailed to obtain (A.20).

Bi0 derivatives expression:

Bi0 =

 03 03(
∂ (rSi − rS0)

∂ql

)×
03×1

 =

 03 03(
∂rSi
∂ql

)×
03×1

 (A.25)

with the differentiation of rSi previously detailed to obtain (A.23).

Jmi derivatives expression: The Jacobian matrix Jmi (A.8) is differentiated ∀l, i ∈ [1, nq]
as:

∂

∂ql
(Jmi) =

[
∂

∂ql
(Bi1pm1) . . .

∂

∂ql

(
Bi(i−1)pmi−1

) ∂

∂ql
(pmi) 06×(nq−i)

]
(A.26)

First the joint orientation vector, kk, (2.9) is differentiate ∀k ∈ [1, i] with (A.20) as:

∂

∂ql
(kk) = ∂

∂ql
(RAi,Rine)

0
0
1

 (A.27)

According to the nature of the joint Ak with ∀k ∈ [1, i]:

• If Ak is prismatic:
∂

∂ql
(Bikpmk) =

 03
∂

∂ql
(kk)

 (A.28)

• If Ak is revolute:
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∂

∂ql
(Bikpmk) =

∂

∂ql
(kk)

∂

∂ql

(
(rSi − rSk)×

)
kk + (rSi − rSk)× ∂

∂ql
(kk) + ∂

∂ql

(
k×k
)

(rSi − rAk) + k×k
∂

∂ql
((rSi − rAk))


(A.29)





Appendix B

Simple SMS1 study case

The SMS studied to validate the our proposed tools and control methods is a reduced version
of the PULSAR telescope with less DoF2s and less elements as one can visualized with figure
B.1. In this section, with the help of the urdf file used by the simulation tools detailed in 2.4,
the physical properties of the different elements are detailed. Consequently, this section help
one to reproduce or develop SMS XML description for an usage of out proposed tools.

Figure B.1 – Two configurations of the simple SMS used for illustrations

The spacecraft base is a cylinder exhibiting a 1.6m radius and 2m length for a total of
1960kg.

1Space Manipulator System
2Degree of Freedom
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<!--Spacecraft-->
<link name="Spacecraft">
<inertial>

<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="1960"/>
<inertia ixx="3345" ixy="0" ixz="0" iyy="2202" iyz="0" izz="2202"/>
</inertial>
<visual>
<origin xyz="0.1 0 0" rpy="0 -1.57075 0"/>
<geometry>
<cylinder length="2" radius="1.6"/>
</geometry>
<material name="Orange"/>
</visual>
<stiffness name="rigid"/>

</link>

For each body, a parent and a child body are defined with the joint formalism.
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<!-- Joint to Payload -->
<joint name="Spacecraft_Payload" type="fixed">

<parent link="Spacecraft"/>
<child link="Payload"/>
<origin xyz="1.1 0 0" rpy="0 0 0" />
<axis xyz="1 0 0"/>

</joint>

<!--Payload-->
<link name="Payload">

<inertial>
<origin xyz="1.45 0 0"/>
<mass value="1440"/>
<inertia ixx="2458" ixy="0" ixz="0" iyy="1499" iyz="0" izz="1499"/>
</inertial>
<visual>
<origin xyz="0.75 0 0" rpy="0 -1.57075 0"/>
<geometry>
<cylinder length="1.5" radius="1.6"/>
</geometry>
<material name="Blue"/>
</visual>
<stiffness name="rigid"/>

</link>

For a flexible element, all the physical properties (dampings, stiffness and natural fre-
quency) are defined additionally to the matrix of the participation factors (L in the XML3).

3eXtensible Markup Language
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<!-- Joint to Left Solar Panel -->
<joint name="Spacecraft_Left_Panel" type="fixed">

<parent link="Spacecraft"/>
<child link="Left_Panel"/>
<origin xyz="-0.9 0 -1.6" rpy="3.1416 0 0"/>
<axis xyz="1 0 0"/>

</joint>

<!-- Left Solar Panel-->
<link name="Left_Panel">

<inertial>
<origin rpy="0 0 0" xyz="0.001 0.001 3.8447"/>
<mass value="61"/>
<inertia ixx="17" ixy="0" ixz="0" iyy="1250" iyz="0" izz="1233"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 2.75"/>
<geometry>
<box size="0.25 2 5.5"/>
</geometry>
<material name="Blue"/>
</visual>
<stiffness name="flexible">
<mode_number value="5"/>
<mode_1 pulse="0.16*2*pi" L="-6.4 0 0 0 -35 0" damp="0.005"/>
<mode_2 pulse="0.70*2*pi" L="0 -6.7 0 35.4 0 0" damp="0.005"/>
<mode_3 pulse="1.08*2*pi" L="-0.1 -0.1 0 0.3 0 3.8" damp="0.005"/>
<mode_4 pulse="1.21*2*pi" L="-3.2 0 0 0 -3 -0.01" damp="0.005"/>
<mode_5 pulse="3.05*2*pi" L="2.3 0 -0.3 0 1.3 0" damp="0.005"/>
</stiffness>

</link>

And similarly for the right panel.

Each reaction-wheel are similar, only the rotating axis differs.
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<!--joint Spacecraft to Reaction Wheel 1 -->
<joint name="Spacecraft_to_RW1" type="revolute">

<parent link="Spacecraft" />
<child link="RW1"/>
<origin xyz="-0.4 -0.5 0.5" rpy="35.2644*pi/180 pi/4 0" />
<axis xyz="0 0 1"/>
<limit effort="1000.0" lower="0" upper="0" velocity="0"/>

</joint>

<!-- Reaction Wheel 1 -->
<link name="RW1" >

<inertial>
<origin rpy ="0 0 0" xyz="0 0 0.0" />
<mass value="4"/>
<inertia ixx="0.065" ixy="0" ixz="0" iyy="0.065" iyz="0"
izz="0.1322"/>

</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<cylinder length="0.16" radius="0.31" />
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>

</link>

Then the detail of the manipulator is given body by body as follow:
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<!--joint between {parent} and link_0-->
<joint name="Spacecraft_rail_joint" type="fixed">
<origin rpy="-1.57075 0 0" xyz="3.5 0 0"/>
<parent link="Spacecraft"/>
<child link="rail_link_0"/>
</joint>

<link name="rail_link_0">
<inertial>
<origin rpy="0 0 0" xyz="2.65 0 0"/>
<mass value="234.09894105"/>
<inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/rail/rail_base.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- joint between link_0 and link_1 -->
<joint name="rail_joint_1" type="prismatic">
<parent link="rail_link_0"/>
<child link="rail_link_1"/>
<origin rpy="0 0 0" xyz="0.15 0 0.15"/>
<axis xyz="1 0 0"/>
</joint>
<link name="rail_link_1">
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="15.90105894"/>
<inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/rail/rail_slot.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>

<!--joint between {parent} and link_0-->
<joint name="rail_link_1_arm_joint" type="fixed">
<origin rpy="0 0 0" xyz="0 0 0.05"/>
<parent link="rail_link_1"/>
<child link="arm_link_0"/>
</joint>
<link name="arm_link_0">
<inertial>
<origin rpy="0 0 0" xyz="0 0 0.0318"/>
<mass value="7"/>
<inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0.08"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/arm/link_0.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- joint between link_0 and link_1 -->
<joint name="arm_joint_1" type="revolute">
<parent link="arm_link_0"/>
<child link="arm_link_1"/>
<origin rpy="0 0 0" xyz="0 0 0.0635"/>
<axis xyz="0 0 1"/>
</joint>
<link name="arm_link_1">
<inertial>
<origin rpy="0 0 0" xyz="0 0 0.0888"/>
<mass value="7"/>
<inertia ixx="0.021" ixy="0" ixz="0" iyy="0.021" iyz="0" izz="0.01"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/arm/link_1.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- joint between link_1 and link_2 | 1_T_2 -->
<joint name="arm_joint_2" type="revolute">
<parent link="arm_link_1"/>
<child link="arm_link_2"/>
<origin rpy="-1.57079632679 0 0" xyz="0 0 0.112"/>
<axis xyz="0 0 1"/>
</joint>
<link name="arm_link_2">
<inertial>
<origin rpy="0 0 0" xyz="0 -1.6810 0"/>
<mass value="27"/>
<inertia ixx="51.3" ixy="0" ixz="0" iyy="0.15" iyz="0" izz="51.3"/>
</inertial>
<visual>
<origin rpy="1.57079632679 0 -1.57079632679" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/arm/link_2.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- joint between link_2 and link_3 | 2_T_3 -->
<joint name="arm_joint_3" type="revolute">
<parent link="arm_link_2"/>
<child link="arm_link_3"/>
<origin rpy="0 0 3.14159265359" xyz="0 -3.36198 0"/>
<axis xyz="0 0 1"/>
</joint>
<link name="arm_link_3">
<inertial>
<origin rpy="0 0 0" xyz="0 0.0237 0"/>
<mass value="7"/>
<inertia ixx="0.021" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0.021"/>
</inertial>
<visual>
<origin rpy="1.57079632679 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/arm/link_3.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- joint between link_3 and link_4 | 3_T_4 -->
<joint name="arm_joint_4" type="revolute">
<parent link="arm_link_3"/>
<child link="arm_link_4"/>
<origin rpy="1.57079632679 0 0" xyz="0 0.1125 0"/>
<axis xyz="0 0 1"/>
</joint>
<link name="arm_link_4">
<inertial>
<origin rpy="0 0 0" xyz="-1.1910 0 -0.2"/>
<mass value="18"/>
<inertia ixx="0.14" ixy="0" ixz="0" iyy="15.7" iyz="0" izz="15.7"/>
</inertial>
<visual>
<origin rpy="0 0 3.14159265359" xyz="0 0 0"/>
<geometry>
<mesh filename="meshes_dISAS/arm/link_4.dae"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>



192 Appendix B. Simple SMS study case

<!-- last joint -->
<joint name="dlsaffe_joint_ee" type="fixed">
<parent link="arm_link_4"/>
<child link="dlsaffe_link_ee"/>
<origin xyz="-2.5 0 -0.13" rpy="0 0 0"/>
</joint>

<link name="dlsaffe_link_ee">
<inertial>
<origin xyz="0 0 0" rpy="0 0 0"/>
<mass value="0"/>
<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0" />
</inertial>
<visual>
<origin xyz="0.05 0.05 0.05" rpy="0 0 0"/>
<geometry>
<box size="0.1 0.1 0.1"/>
</geometry>
<material name="Grey"/>
</visual>
<stiffness name="rigid"/>
</link>
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<!-- End-effector Mass -->
<joint name="dlsaffe_joint_ee_tuile" type="fixed">
<parent link="dlsaffe_link_ee"/>
<child link="dlsaffe_link_ee_tuile"/>
<origin xyz="0 0 0" rpy="0 0 0"/>
</joint>

<link name="dlsaffe_link_ee_tuile">
<inertial>
<origin xyz="0 0 0" rpy="0 0 0"/>
<mass value="150"/>
<inertia ixx="6" ixy="0" ixz="0" iyy="6" iyz="0" izz="6" />
</inertial>
<visual>
<origin xyz="0 0 0" rpy="0 -1.570795*2 0"/>
<geometry>
<mesh filename="tile.stl"/>
</geometry>
<material name="Red"/>
</visual>
<stiffness name="rigid"/>
</link>
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