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Résumé

La planète Vénus est souvent appelée la s÷ur de la Terre car elle a un rayon et

une densité similaires. La structure interne des deux planètes est donc supposée

similaire avec un noyau riche en fer, un manteau de silicate de magnésium et

une croûte de silicate. Malgré ces similitudes, Vénus n'a pas de tectonique des

plaques et de champ magnétique interne. Son atmosphère est épaisse, dense et

riche en CO2. Vénus a également une température et une pression de surface

élevées de 737 K et 93 bars, respectivement. Les connaissances sur Vénus sont

basées sur sa masse, son rayon, sa température de surface, sa topographie et son

champ de gravité. De nombreuses informations sont encore inconnues comme la

structure de son noyau, la viscosité du manteau et le degré de son activité issue

des panaches du manteau. Cette planète est intéressante car elle a évolué très

di�éremment de sa planète s÷ur et des indices récentes d'activité volcanique ont

été observées. Dans le cadre des futures missions d'exploration de Vénus EnVi-

sion et VERITAS, nous étudions la structure interne de la planète et évaluons la

détection de son activité géophysique.

Tout d'abord, nous utilisons la masse, le moment d'inertie, le nombre de

marée Love k2 et une plage attendue du facteur de qualité Q dérivé des obser-

vations géophysiques et géodésiques pour sélectionner, en utilisant une approche

Monte-Carlo, les pro�les probables des modèles de Vénus. Les modèles sélec-

tionnés constitués de quatre ou cinq couches sont des descriptions radiales des

paramètres rhéologiques de Vénus. Nos modèles sélectionnés montrent que des

contrastes signi�catifs de viscosité existent entre le manteau supérieur et le man-

teau inférieur et favorisent un noyau sans sulfur. Deuxièmement, nous estimons

l'e�et d'une activité sismique sur le déplacement de surface et la variation de

gravité. Pour ce faire, nous supposons l'occurrence d'un rifting sur Vénus de la

même géométrie et de la même magnitude que l'événement sismique de 2005 de

Manda Hararo-Dabbahu dans le système de rift Est-Africain sur Terre. Après

avoir validé notre calcul pour la Terre, nous appliquons le même modèle de
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dip-slip sur un modèle de Vénus et calculons les rebonds cosismiques et post-

sismiques. Nous montrons qu'avec les futures mesures d'altimétrie des missions

EnVision et VERITAS, les fractures sur Vénus seront mieux cartographiées et

donc plus d'informations sur son activité géologique seront déduites. De plus,

la relaxation de surface après un événement sismique sera observée avec Repeat

Pass Interferometry (RPI) e�ectuée avec VERITAS qui donnera possiblement

des indications sur la magnitude et la profondeur d'une dislocation sismique.

Mots clés : Vénus; géophysique planétaire; structure interne; rebond sismique



Abstract

The planet Venus is called the twin sister of the Earth since it has a similar radius

and density. The internal structure of the two planets are therefore assumed to

be close with an iron rich core, a magnesium silicate mantle and a silicate crust.

Despite these similarities Venus lacks plate tectonics and an internal magnetic

�eld. Its atmosphere is thick, dense and rich in CO2. Venus also has high surface

temperature and pressure of 737 K and 93 bars, respectively. The known facts

about Venus are drawn from its mass, radius, surface temperature, topography

and gravity �eld. Many information are still unknown as its core structure,

mantle viscosity and extent of its activity driven from mantle plumes. This

planet is of interest since it evolved very di�erently from its twin planet and

recent proof of volcanic activity have been observed. In the frame of the future

Venus exploration missions EnVision and VERITAS, we investigate the internal

structure of the planet and assess the detection of its geophysical activity.

Firstly, we use the mass, the moment of inertia, the tidal Love number k2 and

an expected range of the quality factor Q derived from geophysical and geode-

tical observations to select, using a Monte-Carlo approach, the most probable

interior models of Venus. The selected models made of four or �ve layers are ra-

dial descriptions of Venus rheological parameters. Our selected models show that

signi�cant contrasts in the viscosity are required between the upper mantle and

the lower mantle and additionally favor a sulfur free core. Secondly, we estimate

the e�ect of a Venus-quake on the surface displacement and gravity variation.

To do so we suppose the occurrence of a dip-slip rifting on Venus of the same

geometry and magnitude as the 2005 Manda Hararo-Dabbahu seismic event in

the East-African rift system on Earth. After validating our computation for the

Earth, we apply the same dip-slip model on a pro�le of Venus and calculate

the coseismic and postseimic rebounds. We show that, with future EnVision and

VERITAS altimetry data, the rifts on Venus will be better mapped and therefore

more information on its geological activity might be obtained. Additionally, the
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surface relaxation after a seismic event will be observed with Repeat Pass Inter-

ferometry (RPI) performed with VERITAS which will possibly give indications

on the magnitude and depth of a seismic dislocation.

Keywords : Venus; planetary geophysics; internal structure; seismic rebound
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Introduction

The planet Venus is the closest planet to the Earth and is similar to it in density

and size, both being only 5% smaller for Venus than its neighboring planet.

Despite these similarities Venus evolved di�erently than the Earth. The most

notable di�erences are the lack of plate tectonics and an internal magnetic �eld

in Venus. Its atmosphere is approximately one hundred times denser than that

of the Earth, rich in CO2 and almost lacks H2O. These discrepancies indicate

that Venus and the Earth have di�erent internal structures hence have probably

evolved di�erently. The interior of Venus can be constrained with its global

properties (radius, mass and distance to the Sun) and geophysical data such

as the topography and the gravity �eld. The topography gives insight on its

surface deformation and the gravity �eld provides its global deformation due to

tidal forces from the Sun. The topography and gravity �eld of Venus have been

most recently mapped by Magellan and Pioneer Venus orbiter (hereafter PVO).

Furthermore, proof of present volcanic activity have been detected from thermal

emissivity maps of Venus Express (hereafter VEx) [Shalygin et al., 2015; Stofan

et al., 2016]. The surface temperature of Venus is 737 K which is the highest of

the Solar System planets and its surface pressure is of 93 bars. The high surface

temperature and pressure might cause the crust to be more ductile than that of

the Earth, therefore more resistant to deformation. Magellan and VEx missions

provided the currently best topography, thermal emissivity and gravity �eld data.

There is no indication that Venus has plate tectonics [Crameri and Kaus, 2010;

Bercovici and Ricard, 2014], its geological activity and surface deformation are

caused by mantle plumes approaching the surface. Despite new information from

Magellan and VEx several questions have not been answered yet, such as what

is the extent of the activity of Venus? What is its internal structure? Why

did Venus evolve so di�erently than the Earth? Future NASA and ESA Venus

exploration missions VERITAS and EnVision [Ghail et al., 2017; Smrekar et al.,

2020] aim to answer these questions and several more by mapping with a better
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resolution the topography and the thermal emissivity as well as the gravity �eld.

We aim to better understand the inner structure of Venus and assess the detection

of its geophysical activity. Therefore we �rst make constrains on the internal

structure of Venus with already estimated parameters. Then we estimate the

seismic rebounds for a model of Venus to investigate future detection of seismic

activity in the context of the next missions (future topography and gravity �eld

data).

Tidal forces exerted on a planetary body cause deformations and mass re-

distributions in its interior. They lead to surface deformations and variations

of its gravity �eld that can be observed with geophysical and geodetical experi-

ments. Love [1909] studied the tidal deformation of a homogeneous compressible

model of the Earth and introduced the so-called Love numbers (hereafter LNs)

which describe the deformation of a planet. A planet deforms dependently to

its internal structure, therefore the LNs are an indication of its interior. The

change in the gravitational �eld of a planet due to an external gravity �eld is

described by the tidal Love number (hereafter TLN) k of degree 2, denoted by

k2 since it is predominantly of degree 2. The TLN k2 of Venus describes its

gravity �eld variation from tidal excitation induced by the Sun. It is estimated

from spacecraft radio tracking data and it has been most recently estimated to

be k2 = 0.295 ± 0.066 (2σ) [Konopliv and Yoder, 1996]. This value is denoted

in what follows by kMPVO
2 since it has been evaluated from Doppler tracking of

Magellan and PVO. This present uncertainty of k2 is too big to constrain the

core structure (solid, �uid, part solid and part �uid) [Dumoulin et al., 2017]. The

lack of an internal magnetic �eld is not a constrain either since both a �uid and

a solid core are compatible with this observation [Stevenson, 2003]. The energy

loss of a planet is caused from its delayed response to the tidal forces and it is

due to its viscoelastic nature. It is quanti�ed by the quality factor Q and it is

estimated from the real and imaginary parts of the TLNs [Murray and Dermott,

2000]. The quality factor of Venus has been approximated to be between 20 to

100 from general studies about energy loss [Goldreich and Soter, 1966] and long

term spin evolution [Correia et al., 2003]. The TLN k2 can be calculated for a

planetary model under periodic tidal forcing of frequency ω. Therefore compar-

ing the estimated k2 from spacecraft navigation with the theoretical calculation

constrains the possible models to a certain limit depending on its uncertainty. In

the �rst part of this work we �rst calculate the tidal deformations to explore the
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internal structure of the planet Venus from available observations as its mantle

viscosity for each possible core structure. The TLN k2 is calculated for di�erent

pro�les of Venus and then we use geophysical and geodetical data as kMPVO
2 to

�lter the possibilities.

Venus has been shown to have recent volcanic activity from VEx data but

the extent of this activity has not been explored yet. Future Venus exploration

missions VERITAS and EnVision will be launched in the near future and one

of their main goals is to explore the geological activity of Venus. They will

map the topography and gravity �eld of the planet with a better resolution

than the present map acquired from Magellan and PVO data. The second part

of this work is to explore future detection of seismic activity from the future

topography and gravity �eld data. A code called ASTRA [Melini et al., 2008]

calculates the coseismic and postseismic rebounds of a planet due to a fault

dilocation. We calculate with ASTRA the possible e�ect of a Venus-quake on

the surface deformation and gravity variation and whether it can be detected

from orbiters. The Beta Regio is a rift system on Venus found similar to the

East-African rift system (hereafter EARS) on the Earth [Surkov et al., 1976],

[Saunders and Malin, 1977], [Mcgill et al., 1981] and [Basilevsky, 2008]. A seismic

dislocation in 2005 took place in the EARS in the Manda Hararo-Dabbahu area.

Based on the comparison between the rift system in Beta Regio and the one of

the EARS, we estimate the e�ect of a seismic dislocation of the same magnitude

and geometry as the 2005 Manda Hararo-Dabbahu event on Venus.

Chapter 1 introduces the general information we currently know about Venus.

First, geological features at its surface, the mechanism at its mantle which drives

the surface deformation and the recent proof of volcanism observed from VEx

data. Afterwards we give current observations deduced from geophysical and

geodetic experiments. And �nally the past missions (�ybys, orbiters, atmospheric

probes and landers) and the future missions that will be launched to explore

Venus in the near future. Chapter 2 explains the theory behind the calculation of

the deformations which is used to solve tidal and load problems Lambeck [1980].

We then describe how the tidal and load Love numbers came to be introduced

in 1909 by A. E. H. Love [Love, 1909]. Next we list di�erent rheologies applied

in the deformation calculation for planetary models as Maxwell, Burgers and

Andrade rheologies. At last we explain how the rheology is introduced in the

calculation of the Love numbers. This chapter also explains the theory behind
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open source fortran codes: the plAnetary Love nuMbers cAlculator ALMA3 [Melini

et al., 2022] and A poSTseismic Rebound cAlculator ASTRA [Melini et al., 2008].

The ALMA3 is a fortran code that was originally created for the computation of

the Earth loading LNs (hereafter LLNs). The most recent version of the code

[Melini et al., 2022] calculates the TLN k2 and the quality factor Q of Venus

and was also applied in Briaud et al. [2022] for the study of the Moon. ALMA3 is

applied in chapter 3 for the study of Venus. In chapter 3 we explore the interior

of the planet Venus from its tidal deformation from the Sun. First we explore

the e�ect of two di�erent rheologies (Andrade and Maxwell) and the in�uence

of the thick and dense Venusian atmosphere on k2 and Q. Then we explore with

random Monte-Carlo sampling a large range of internal structure parameters of

Venus (densities, viscosities and thicknesses) for 4 and 5-layer models. We use

the mass and the total moment of inertia to �lter out the models that are not

consistent with these parameters. Afterwards we calculate k2 and therefore Q

with ALMA3 for each model. Finally the value kMPVO
2 derived from observations

and the expected limits for the quality factor Q to �lter out models that are

not consistent with these constraints. We deduce that the core of Venus can be

entirely �uid, entirely solid or part solid and part �uid. We also show that the

mantle of Venus has a contrast in viscosity for each of the possible core structures.

This chapter is a part of my �rst publication as the lead author which is currently

in revision, you will �nd the submitted version to Planetary and Space Science

(PSS) journal in Appendices. I am also the second author of [Melini et al.,

2022] where I wrote section 5.1 titled "tidal deformation of Venus" as part of the

benchmarking of ALMA3. In chapter 4 we explore the seismic rebound of a Venus

model possibility to detect past or present Venus-quakes. A fault dislocation

deforms a planet with surface displacements and gravity �eld variations. We �rst

model the geometry and magnitude of the 2005 Manda Hararo-Dabbahu seismic

event. We apply it to a model of the Earth and compare the results to a previous

study done by Grandin et al. [2009]. We assume that Venus is subjected to the

same rifting event. We then calculate the coseismic and postseismic rebounds

on a model of Venus with ASTRA. This study is done in the frame of the future

Venus exploration missions EnVision and VERITAS which will provide new data

on the topography and altimetry of Venus. Chapter 5 is a conclusion of this work

and discusses the open questions and perspectives in the frame of the future

exploration missions to Venus. Finally the Appendices include Appendix A with
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the scienti�c communications (submitted and published papers I authored and

co-authored) and two of these publications. The Appendix B includes additional

tables and �gures related to chapter 3.
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1. The planet Venus

The four planets closest from the Sun are called terrestrial planets for their

similarities with the Earth structure. The planet Venus size and density are only

5% smaller than that of the Earth, therefore it is often called its twin planet.

Venus orbits around the Sun with a 224 days period. Contrary to the Earth, it

does not have natural satellites and has a retrograde spin with a period of 243

days. Venus is seen as having a core rich in iron, a magnesium silicate mantle and

a silicate crust [Morgan and Anders, 1980]. Its atmosphere is 90 times denser

than that of the Earth, it is mostly carbon dioxide (symbol CO2), also rich in

nitrogen (symbol N) and sulfur dioxide (symbol SO2). This thick and dense

atmosphere causes the surface temperature to approach 740K which does not

allow any water to exist on the surface. It is the planet with the highest surface

temperature in the Solar System. The atmosphere causes a green-house e�ect

and additionally, without water, the planet struggles to form plate tectonics.

Presently, Venus shows no proof of plate tectonics activity. It is assumed to have

a stagnant-lid regime. This regime does not allow the temperature of the planet

to cool, instead the heat gets trapped inside.

1.1 Venus, an active planet

1.1.1 Geological features

Similarly to the Earth, it has been proposed that Venus has buoyant mass rising

from the mantle, called mantle plumes. Based on the gravity �eld and the

topography from Magellan Smrekar and Sotin [2012] proposed that Venus has

approximately 9 mantle plumes which, when approaching the lithosphere, cause

surface deformation. The plumes cause surface fracturing and consequently they

formed over 85000 volcanoes. Crustal fracturing on Venus caused by a rising

mantle plumes frequently manifest by the formation of novae, arachnoids and

35
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coronae on its surface.

Figure 1.1: 3D image of Anala Mons nova of 200 km diameter situated at
(14.5◦E,11◦N) from Krassilnikov [2002b]. The image is a superposition of Mag-
ellan radar image and altimetry data, it is in a N-E direction and the vertical
scale is expanded by 20 times.

Novae are uplifted domes on the surface of the planet of 100− 300 km diam-

eters and were �rst discovered with radar images from Magellan. Krassilnikov

[2002b] proposed that they form when material from mantle plumes ascend and

approach the surface which causes an uplift of the lithosphere creating a dome

at the surface. Fig. 1.1 from Krassilnikov [2002b] is an image of the Anala Mons

nova obtained from superposition of Magellan radar image and altimetry data.

Venus has 64 identi�ed novae. Following a gravitational relaxation of the litho-

sphere the dome-like shape of the uplift �attens laterally and becomes similar to

a plateau. Finally, the hot mantle plume cools down and the plateau transforms

into a circular rim with a subdued trough. These circular shapes with uplifted

shoulders at the border and a relaxed subsidence in the middle are called coronae

[Krassilnikov, 2002b] and arachnoids [Krassilnikov, 2002a]. Coronae and arach-

noids were �rst discovered from the Venera 15 and 16 radar images which were

missions of the Lavochkin space agency of the Soviet Union. An arachnoid has a

radius from 50 to 175 km with a uniform topographic shape [Head et al., 1992].

A corona has a complex structure and topography with a radius of a several

hundred kilometers. There are at least 90 arachnoids and 209 coronae on Venus.

Figs. 1.2 and 1.3 from Krassilnikov [2002a] and Krassilnikov [2002b] are images
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of arachnoid no. 186 and Pavlova Corona, respectively. They are obtained from

superposition of Magellan radar image and altimetry data.

Figure 1.2: 3D image of arachnoid no. 186 from Krassilnikov [2002a] situated
at (227◦E,17.5◦S) [Crumpler and Aubele, 2000]. The image is a superposition of
Magellan radar image and altimetry data, it is in a W�NW direction and the
vertical scale is expanded by 30 times.

Figure 1.3: 3D image of Pavlova Corona of 400 km diameter situated at
(40◦E,14.5◦N) from Krassilnikov [2002b]. The image is a superposition of Mag-
ellan radar image and altimetry data, it is in a S direction and the vertical scale
is expanded by 20 times.

Davaille et al. [2017] made observational evidence for subduction on Venus.

They produced in laboratory experiments, with a lithosphere-like skin and �uid
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heated below, the up-welling of a mantle plume which causes fractures and some-

times spread of the material (volcanism) and afterwards the formation of coronae.

They compared the laboratory observation with combined radar and topography

images of coronae on Venus. Davaille et al. [2017], in this way, reproduced the

Artemis and the Quetzalpetlatl coronae in shapes and features (rift segments, a

subduction trench, fractures and volcanic �ows) and showed that mantle plumes

trigger subduction and is favoured by a hot lithosphere. Gülcher et al. [2020]

made morphological analysis of the coronae of Venus. The goal was to dis-

cern if the existing coronae are active or inactive and, if active, to recognize at

what stage they are. They used 3D thermomechanical numerical simulation to

mimic realistic thermorheological lithosphere and mantle dynamics. They iden-

ti�ed 4 di�erent regimes of coronae formation and each goes through di�erent

stages of evolution. They found that di�erent coronae structures indicate dif-

ferent regimes of interactions between the mantle plume and lithosphere as well

as di�erent stages of evolution. After comparing the numerical simulation with

morphological analysis of coronae on Venus from topographic data they deduced

that at least 37 large coronae as the Artemis corona are active. This led to the

conclusion that extensive plume activity on Venus is still ongoing.

1.1.2 Recent activity

The surface of Venus is rich in volcanoes, rift zones and other geological features

as novae, arachnoids and coronae. The BAT (Fig. 1.4) region is located within

180◦ − 300◦E and 50◦S − 50◦N in coordinates and it is of interest for future

Venus exploration missions since it contains well preserved tectono-magmatic

structures. A chasma is an extended, narrow, deep depression, its plural is

called chasmata. Venus has many chasmata which include the Hecate Chasma

(between Atla Regio and Beta Regio), the Devana Chasma (South of Beta Regio)

and the Parga Chasma (between Atla Regio and Themis Regio). VEx was the

most recent ESA mission to Venus which had a role to study its atmosphere

and clouds. The VIRTIS (Visible and Infrared Thermal Imaging Spectrometer)

and the VMC (Venus Monitoring Camera) on-board instruments provided new

information on the geological activity of Venus. High emissivity data from the

VIRTIS instrument indicate the existence of unweathered basalt on the surface.

From VIRTIS maps Smrekar et al. [2010] showed that three regions on Venus
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Figure 1.4: A sinusoidal projection of the surface of Venus from Gra� et al.
[2018] with the central meridian at 180◦E. The map shows the major structures
as rift zones (red), large volcanoes (green), and coronae (yellow). The Beta-Atla-
Themis (BAT) region is outlined by dashed lines. The black square indicates the
location of the area of Parga Chasma studied by Gra� et al. [2018].

show high emissivity. They are Imdr Regio located South of Parga Chasma

outside the BAT Region, Themis Regio and Dione Regio located near the Themis

Regio. Smrekar et al. [2010] estimated the volume of the basalt �ow on Venus

from the surface of the emissivity at these three areas with an approximation of

�ow thickness from the Earth basaltic �ows. After estimating the �ow volume,

new hypothesis about the age of the basalt �ows were proposed. The �rst is that

Venus experienced a catastrophic resurfacing 2.5 million years ago with little

present volcanism (0.01 km3/year). The second is that Venus has equilibrium

resurfacing (1 km3/year) which sets the age of the basalt �ows between hundreds

to thousands of years extending to tens of thousands as an upper boundary. The

last hypothesis shows that the �ows can be largely younger than estimated. Until

then, no evidence for present volcanism has been shown.

Ganiki Chasma of Venus is located near Atla Regio (Fig. 1.4). Shalygin

et al. [2015] studied the VMC maps from VEx which observed bright spots in

the data in 2008 near the Ganiki Chasma. They showed that it indicates a sharp

rise in the SO2 in the upper atmosphere which witnessed a gradual decrease

in the following 5 years. Shalygin et al. [2015] therefore showed that, while

it was orbiting Venus, VEx witnessed a volcanic activity which was the �rst

proof that Venus is presently active and changing. Stofan et al. [2016] analysed
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VIRTIS maps from VEx which show emissivity anomalies in Themis Regio (Fig.

1.4). This is an indication of atmospheric spike in SO2. Combining the data

with geologic mapping and gravity anomaly Stofan et al. [2016] found that the

emissivity are plausible evidence of recent volcanic activity. Gra� et al. [2018]

studied the complex morphology of Parga Chasma and Hecate Chasma (Fig. 1.4)

and compared them to the Atlantic rift on the Earth. They found that they are a

consequence of the formation of local triple-junction rifting. This triple junction

was caused by the arrival of several mantle plumes. The di�erence between the

rift systems on the two planets is that on Venus the rift failed to progress and

achieve an ocean opening stage. As for the Earth, the Central, Southern, and

Northern Atlantic Oceans were formed.

The Beta Regio (Fig. 1.4) is a complex feature rich in rifts and volcanoes, and

it is part of the BAT region on Venus. The Earth based radar observations �rst

indicated a bright spot at 22° N and 280° E on Venus which was called "Beta".

It appeared to be caused by an elevation of the surface and was suggested to be

a large shield volcano [Saunders and Malin, 1977]. Later with gamma-ray exper-

iments from Venera 9 and 10 (both from the Lavochkin space agency), after an

estimation of the K, U and Th abundance it was shown that the Eastern part of

Beta is rich in basalt. This validates the �rst suggestion of a volcanic area pro-

posed by Surkov et al. [1976] in 1976. The "Beta" reference was later transferred

to a wider surface now called "Beta Regio" which includes the original shield

volcano. This alternate interpretation of the location is based on topographic

maps [Mcgill et al., 1981] where it includes elongated depressions spanning South

the original identi�cation. The Beta Regio therefore refers to the extended area

from 25° to 50° N in latitude and from 270° to 300° E in longitude [Basilevsky,

2008]. In what follows we refer by Beta Regio rift system to the entire systems

spanning from Beta Regio South to Phoebe Regio.

Smrekar [1994] used spectral methods from Magellan gravity data to estimate

the elastic thickness of the Venusian lithosphere in Beta Regio and they found it

to be 30 ± 5 km. Upcott et al. [1996] used forward modeling of free air gravity

anomalies to estimate the e�ective elastic thickness of the Western branch of the

EARS and they found it to be 25±5 km. Ebinger et al. [1989] found the e�ective

elastic thickness of the Eastern branch of the EARS to be 29±2 km by studying

the wavelength dependence of the correlation between the topography and the

Bouguer gravity anomaly. Therefore the Beta Regio and the EARS have similar
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e�ective elastic lithosphere thickness. Foster and Nimmo [1996] compared the

two rifts systems of 100 km length. They found that main di�erence between

the Beta Regio and the EARS is that they have half-grabens (distance between

rift faults) of 100 km and 50 km, respectively. This observation is an implication

of the higher fault strengths on Venus [Foster and Nimmo, 1996]. These results

corroborate the �ndings of Montesi [2013] that, without plate tectonics, the crust

requires additional sources of stress as mantle plumes (buoyant uplift) to perform

rifting. Therefore mantle plumes played a role in developing the Beta Regio rift

system [Montesi, 2013]. Venus is therefore an active planet and more details

on the extent of this activity will be revealed with future missions. Regions

identi�ed as likely sites of mantle plumes, show:

� active novae, coronae and arachnoids on the surface;

� mantle plume triggered subduction;

� high surface emissivity anomalies which are at times proof of volcanism.

The BAT region is of interest since it has locations with mantle plumes that are

possibly of volcanic activity such as Ganiki Chasma and Themis Regio. As well

as regions rich in geological features and rifts similar to the Earth as the Parga

Chasma and Hecate Chasma and Beta Regio.

1.2 Geophysical and geodetical observations

Strom et al. [1994] found that the surface of Venus is relatively young with an age

from 300Myr to 1Gyr based on crater counting. This might be caused by a global

catastrophic resurfacing ≈ 1Gyr ago which covered the planet with younger

material [Romeo and Turcotte, 2010]. The global catastrophic resurfacing can

be explained by resonant core-mantle friction [Touma and Wisdom, 1998; Gre�-

Le�tz and Legros, 1999]. Another argument for the young surface age is that

Venus has episodic subduction with intervals between 500 and 700 Myr with

global lithospheric overturn [Turcotte et al., 1999]. Noack et al. [2012] studied

the interaction between interior dynamics and atmosphere thermal evolution

by calculating 2D and 3D mantle convection models with digitized atmosphere

temperatures. They found that an increase of the surface temperature causes a

greenhouse e�ect. Noack et al. [2012] also found that an increase of the surface
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temperature to a critical value causes the lithosphere to become locally mobile.

Venus might have had plate tectonics [Moresi and Solomatov, 1998; Schubert

et al., 2001] before achieving the stagnant lid regime [Nimmo and McKenzie,

1998]. There is no proof that it presently has plate tectonics which might be

due to the high surface temperature [Bercovici and Ricard, 2014]. Therefore

Venus evolved di�erently than the Earth and has now a di�erent geology and

climate [Phillips et al., 2001; Noack et al., 2012; Gillmann and Tackley, 2014].

This fact drives the conclusion that Venus and the Earth have di�erent internal

mechanisms and structures. Constraining the interior of Venus can be made from

geophysical and geodetical observations of past exploration missions. The most

recent have been made from Magellan, PVO and VEx.

The 1990 NASA Magellan mission which ended in 1994 provided the best

available gravity topography data and SAR (Synthetic Aperture Radar) images.

From the topography and radar data of Magellan the topographic features, ge-

ologic structures and their surroundings as rift systems [Gra� et al., 2018], vol-

canoes, mantle plumes [Smrekar, 1994; Smrekar and Sotin, 2012], arachnoids

[Krassilnikov, 2002a], novae and coronae [Krassilnikov, 2002b] were studied. The

gravity �eld has been determined from the combination of Magellan and PVO

[Konopliv et al., 1999] and from these new data the TLN has been estimated

(Table 1.1). The ESA mission VEx (2005− 2014) focused on studying its atmo-

sphere (section 1.1.2) and did not allow a big improvement of the gravity �eld

determination from Magellan and PVO due to its high eccentric orbit [Rosenblatt

et al., 2012].

Table 1.1: The Venus parameters derived from geophysical parameters used to
constrain its interior. The mass MV is without the atmosphere.

Constant Value ±1σ References

RV (km) 6051.8 - Rosenblatt et al. [1994]

MV (×1024 kg) 4.8673 1.1× 10−4 -

MoI 0.337 0.024 Margot et al. [2021]

k2 0.295 0.033 Konopliv and Yoder [1996]

For the size and internal structure the mean radius of Venus has been es-

timated from Magellan topography data to be 6051.9 km [Rosenblatt et al.,
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1994]. The basaltic crust of Venus has been determined from the gravity and

topography data of Magellan mission to have a thickness of 30 km by geoid to

topography ratios [James et al., 2010]. The crustal density was measured from

gamma-ray back-scattering of the Venera 8 mission of Lavochkin space agency

to be 2700 − 2900 kg/m3 [Fegley, 2004]. The total mass with its atmosphere is

denoted by MV+a. It is determined with its uncertainty from the gravitational

constants G and GMV+a. The values used are of G = (6.67430 ± 0.00015) ×
10−11m3kg−1s−2 as CODATA recommended in 2018 [Tiesinga et al., 2021] and

GMV+a = 324858.592 ± 0.006 km3s−2 from MGNP180U gravity �eld [Konopliv

et al., 1999]. Hence MV+a is deduced. The mass of the atmosphere equal to

4.77×1020 kg [Taylor, 1985] is therefore subtracted to obtain the mass MV with-

out the atmosphere and is given in Table 1.1. Several parameters of Venus are

used to constrain its interior in addition to its mass without the atmosphere.

These parameters are RV , the normalized moment of inertia C̃ = C/MVR
2
V

(hereafter MoI) [Margot et al., 2021], such that C is its moment of inertia and

�nally its TLN k2 are shown in Table 1.1.

There are no additional data to assess the density pro�le of the whole planet

which led past pro�les of Venus to be a rescaled version of the Earth. The model

of the Earth usually used is the Preliminary Reference Earth Model (hereafter

PREM) [Dziewonski and Anderson, 1981] which is a 1D seismological model of

its density ρ, pressure P and elastic properties such as primary seismic wave

propagation velocity VP and secondary seismic wave propagation velocity VS.

Previous studied rescaled the Earth PREM taking into account the slightly lower

mass and smaller radius of Venus [Zharkov, 1983; Yoder, 1995; Mocquet et al.,

2011]. Aitta [2012] calculated a rescaled model of Venus from the pressure of

PREM. They assumed that there is a relation between the mantle density of the

two planets written as a function of pressure. Considering that Venus has an

iron �uid core, they modeled its density from the theory of tricritical phenom-

ena [Aitta, 2010a,b]. They �nally obtained a complete density pro�le of Venus.

Dumoulin et al. [2017] also calculated several rescaled models by modeling the

mantle density and seismic velocities from thermodynamical equilibria of mantle

minerals. They assumed two di�erent hypothesis on the temperature: a cold

mantle [Steinberger and Werner, 2010] and a hot mantle [Armann and Tackley,

2012]. Dumoulin et al. [2017] assumed in their study di�erent core structures:

an entirely �uid core, an entirely solid core and a part solid and part �uid core.
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The models of Aitta [2012] and Dumoulin et al. [2017] are used later in chapter

3 for comparison with our work.

1.3 Past and future missions

Venus, as our closest planetary neighbor other than the Moon, was the �rst

planet to be explored by a spacecraft. The �rst successful exploration was done

by Mariner 2 of the NASA. It performed a successful scan as it �ew by Venus on

the 14th of December 1962. The most successful landing missions on Venus till

the present day were executed by the Venera missions (Lavochkin space agency).

Landing spacecrafts did not survive for long due to the high temperature and

pressure at the surface. The Venera 4 capsule entered the atmosphere of Venus on

the 18th of October 1967 which was the �rst space-probe to provide measurements

from the atmosphere of another planet. It measured the temperature, pressure

and density of the atmosphere. In addition it discovered by performing multiple

chemical experiments that its atmosphere is made of 95% CO2. Mariner 5 of

the NASA also �ew by Venus in 1967. It collected data on the radiation and

magnetic �eld of the planet and, in combination with the Venera 4 data about the

atmosphere. It showed that the surface pressure is very high in comparison to the

Earth (75 to 100 times). These observations were con�rmed and improved later

by Venera 5 and 6 which entered the atmosphere in 1969. Until then no spacecraft

were able to reach the surface of Venus while functioning and transmitting.

The �rst successful landing on another planet, therefore did not crash or

perform a soft landing (as Venera 7), was done by Venera 8. It landed on Venus

on the 22nd of July 1972. Two years later, Mariner 10 (NASA) had a successful

�yby by Venus. In 1975 a Lavochkin space agency mission, Venera 9, became

the �rst orbiter of Venus and its lander successfully landed on its surface. It

provided the �rst images from the surface of another planet. This mission was

followed in the same year by Venera 10 which consisted in another successful

orbiter and lander. Afterwards in 1978 Venera 11 and 12 both landed on the

surface of Venus and had instrument failures. Pioneer Venus Orbiter (hereafter

PVO) and Pioneer Venus Multiprobe (hereafter PVM) from the NASA are also

called Pioneer Venus 1 and Pioneer Venus 2, respectively. PVO entered the

orbit of Venus on the 4th of December 1978 and decayed after 14 years. PVO

was followed by PVM which entered the atmosphere the 9th of the same month.
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PVM consisted in �ve spacecraft, one of which brie�y continued transmitting

after reaching the surface. One of the multiprobes survived for about an hour

after reaching the surface. From 1981 to 1983 Lavochkin successfully executed 4

missions (Venera 13 to 16) which consisted of orbiters and landers. From which

Venera 13 sent the �rst recording of sounds from another planet. After the end of

the Venera missions, Lavochkin sent in 1984 Vega 1 and 2 which executed �ybys

and deployed landers and atmospheric probes which operated for 2 days. The

Magellan topography and SAR data [Crumpler and Aubele, 2000] provided the

catalog of volcanic structures on the surface of Venus. This catalog was the basis

of the novae and coronae study [Krassilnikov, 2002b] as well as the arachnoids

study [Krassilnikov, 2002a]. It was followed by a ESA mission, VEx (section

1.1.2), which operated after orbit insertion from 2006 to 2014 and provided the

�rst proof of present Venusian volcanic activity [Shalygin et al., 2015]. Finally,

the most recent missions to reach Venus are Akatsuki and its IKAROS from the

JAXA (Japan Aerospace Exploration Agency). These are the only successful

Venus missions from Japan. Akatsuki performed a �yby in 2010 and successfully

entered the orbit in the 7th December of 2015. IKAROS was an experimental

spacecraft released from the Akatsuki mission and it made a �yby on the 8th

December of 2010 and failed to make observations.

Three NASA and ESA missions have been chosen to explore Venus and will

be launched in the near future. VERITAS (Venus Emissivity, Radio Science,

InSAR, Topography, and Spectroscopy) from the NASA is an orbiter and will be

launched to Venus in 2027. It will be followed by DAVINCI (Deep Atmosphere

Venus Investigation of Noble gases, Chemistry, and Imaging) from the NASA. It

will carry an atmospheric descent probe and its goal is to explore the atmosphere

of Venus: its chemistry, temperature, pressure and winds. EnVision from the

ESA will be launched in 2031. VERITAS and EnVision aim to provide a detailed

radar imagery and topography maps of the planet with special focus on areas with

present potential geological processes. They will map the surface of Venus with

altimetry with a better resolution than that of Magellan. The gravity �eld tidal

Love number k2 will also be determined with a better uncertainty than the one

achieved by Magellan and PVO (Table 1.1) by both EnVision [Rosenblatt et al.,

2021] and VERITAS [Cascioli et al., 2021]. These missions will constrain the

internal structure of the planet as its core state and its mantle viscosity, surface

composition, weathering, active volcanism and explore more the possibility of
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active subduction and tectonic processes. They will also provide the �rst maps

of rock composition at the surface and estimate surface weathering. Finally they

will search for thermal and chemical signatures from active or recent volcanism.



2. Global deformations and internal

structure

2.1 Modeling deformations

The deformation of the planet depends on its shape, density and elastic parame-

ters which variate relatively with its depth. Lambeck [1980] explained in details

the Love numbers (hereafter LNs) history and mathematical basis used for their

calculation. In this chapter we introduce the concepts behind the LNs de�nition

as well as open source codes that can be used in the present day.

2.1.1 Fundamental equations

Describing the deformation in an element of volume requires several equations

[Lambeck, 1980]:

1. The linear momentum of a body (also simply called momentum) is its

mass, which depends on its density, multiplied by its velocity. Applied

body forces per unit volume
−→
F and surface forces (also called stress) σ

change the linear momentum of an element of volume of density ρ. The

rate of the velocity −→v of the element relates to
−→
F and σ as:

ρ
d−→v
dt

=
−→
F +

−→∇ · σ, (2.1)

where
−→∇ = (

∂

∂x1

,
∂

∂x2

,
∂

∂x3

) and · represents the scalar product. This

equation is called the equation of conservation of the linear momentum.

2. The deformation of the element is described by two relations. The �rst

is between the displacement
−→
d of components di and strain tensor ε of

47
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components εij:

εij =
1

2
(∂di/∂xj + ∂dj/∂xi), where i, j = 1, 2, 3. (2.2)

The second is a relation between stress and strain. If the body is elastic,

this relation is called the Hooke's linear law of elasticity:

σij = λ tr(ε)Iij + 2µεij, (2.3)

with tr(ε) =
∑

k εkk, the cubic dilatation,
−→
I the identity matrix and µ

and λ are the Lamé constants. While µ is the rigidity (also called shear

modulus), λ = K− 4
3
µ such thatK is the incompressibility (also called bulk

modulus). This stress-strain relation depends on the rheology of the planet,

it can be replaced by another anelastic (non elastic) rheology. Section 2.1.2

details the process of calculating the deformation for anelastic rheologies.

3. A continuity equation ensures the mass conservation of the planet, where

t stands for time:

∂ρ/∂t+∇ · (ρ−→v ) = 0. (2.4)

The planet is considered to be spherically symmetrical (a sphere). It is also

assumed to be in hydrostatic equilibrium and we study the small perturbations

from this state. Therefore the perturbation equations of conservation of linear

momentum (Eq. 2.1) is linearized for small perturbations:

ρ
∂2−→d
∂t2

= ∇ · σ −∇(ρg
−→
d · −→er )− ρ∇U + g∇ · (ρ−→d )−→er . (2.5)

where now σ is the non-hydrostatic stress tensor and ρ and g respectively the

density and gravity of the deformed state. The unit vector is denoted by −→e with

radial component −→er and tangential component −→et . The potential U is the sum

of two potentials U = U1 + U2, such that U1 is of the external force
−→
F and U2

is of the non-hydrostatic internal response or in other words the self-attraction

after deformation. The potential U is subject to Poisson's equation

∇2U = −4πG∇ · (ρ−→d ). (2.6)
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inside the planetary body. We denote the surface harmonic of degree n by Sn

and the radius (also called radial boundary) in the planetary body by r. We

assume the potential U is harmonic and of frequency ν:

U =
∑

n

Un(r)Sne
iνt, (2.7)

where i is the imaginary unit. In this case, partial solutions of Eqs. 2.5 and 2.6

exist [Love, 1909], where the displacement vector,
−→
d , can be replaced by:

−→
d =

∑

n

[Wn(r)Sn
−→er +Xn(r)∇Sn

−→et ]eiνt, (2.8)

where Wn(r) and Xn(r) are unknown functions describing respectively the radial

and tangential deformations. Alterman et al. [1959] transformed Eqs. 2.5, 2.6

and 2.8 for realistic Earth models. The results are six �rst-order di�erential

equations also called fundamental solutions:

dyα
dr

=
6∑

β=1

aαβyβ, α = 1, · · · , 6. (2.9)

The parameters yα are radial functions such as:

y1 = Wn(r) is the radial displacement,

y2 is the radial stress,

y3 = Xn is the tangential displacement,

y4 is the tangential stress,

y5 = Un(r) is the potential perturbation,

y6 = ∂Un/∂r − 4πGρWn is the perturbation in potential gradient.

(2.10)

The aαβ are functions of the frequency ν, the harmonic degree n, ρ(r), g(r),

Lamé constants λ(r) and µ(r). Boundary conditions are set to solve Eqs. 2.9

such as

� regularity at the origin

� no stress at the surface,

� the deformation and stress are continuous at surface discontinuities in the
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interior,

� internal and external gravitational potentials and their respective gradients

must be equal at free surfaces and surface discontinuities.

The above expressions (Eqs. 2.9) were formulated to resolve the Earth surface

and internal loading as well as its the tidal deformations. Therefore the equa-

tions of Eq 2.10 become six di�erential equations to solve. This method can

be applied to any planetary body. Other geophysical problems can also be re-

solved by the same formulation as a planet rotational deformations and its free

oscillations [Alterman et al., 1959, 1974]. For deformation processes other than

the oscillating problem (tidal, internal loading, surface loading and rotational)

a deforming potential is required. In the case of tidal deformations the funda-

mental solutions of Eq. 2.9 are solved by assuming that the external (in this

case tidal) potential U1(r) acts on the planet without surface loading. Therefore

there are no surface stresses and the observed values are the surface deformation

(Wn and Xn) and change in gravitational potential Un (section 2.1.2 for more

details). The rotational deformation is equivalent to the tidal deformation prob-

lem by replacing the tidal potential with a potential of centrifugal force. In the

case of surface loading deformations the external potential U1(r) is considered to

be the gravitational potential of the applied load. The main di�erence between

this problem and the tidal deformation problem is the boundary conditions since

in this case the surface stresses are continuous on the surface (section 2.1.2 for

more details). The internal loading problem is similar to the surface loading as it

relates to estimating the stress and density anomalies resulting from an external

gravitational potential. The linearized momentum equation (Eq. 2.5) serves to

validate the linear momentum conservation of the planet. The continuity equa-

tion (Eq. 2.4) validates its mass conservation. The stress-strain relation called

constitutive equation (as Eq. 2.3) depends on the rheology of the body which can

be anelastic, for an elastic body the law of Hooke presents convenient solutions

of the fundamental equations (Eq. 2.9). In what follows these three equations

along with the Laplace equation of Eq. 2.7 obtained in assuming the deforming

potential U is harmonic outside the planet (four equations in total) are called

the governing equations. These governing equations are the basis for solving the

deformation problems of a planet. Love [1909] set forth parameters describing

the loading and tidal deformations derived from their consequent surface and po-
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tential deformations called respectively the Load Love numbers (hereafter LLN)

and the Tidal Love numbers (hereafter TLN).

2.1.2 Loading and tidal deformations

For the loading and tidal problems, the external deforming potential U1 is as-

sumed to be linear as the total deforming potential U (Eq. 2.7). It is also

harmonic of the same degree n and is written as:

U1 =
∑

n

U1,n(r)Sne
iνt, (2.11)

with 


Wn(r)

Xn(r)

U ′
2,n(r)


 = U1,n(r)



hn(r)

ln(r)

kn(r)


 . (2.12)

Regarding the fundamental solutions (Eq. 2.10):

y1 = hn(r)U1,n/g(r),

y3 = ln(r)U1,n/g(r),

y5 = (1 + kn(r))U1,n.

(2.13)

To calculate these parameters on the surface, r is replaced by R:

−→
dr (R) = −→er y1(R)Sne

iνt = [hn(R)/g]U ′
1,n(R)−→er ,

−→
dt (R) = −→et y3(R)∇Sne

iνt = [ln(R)/g]∇U ′
1,n(R)−→et ,

∆U(R) = y5(R)Sne
iνt = [1 + kn(R)]U ′

1,n(R),

(2.14)

where U1 =
∑

n U
′
1,n. Love [1909] introduced the constants kn and hn of degree

n, afterwards Shida [1912] introduced the constant ln. These three parameters

k, h and l are called the Love numbers which as stated before are denoted in this

manuscript by LNs. This notation is reserved for the LNs resulting of an external,

in this case tidal, potential (section 2.1.1) without loading the planet. They are

therefore called the tidal Love numbers (TLNs). If the potential loads the planet,

the corresponding parameters describing the deformation are denoted by k′, h′

and l′ and called the load Love numbers (LLNs). If tangential stresses are applied

to the planetary surface, the parameters describing this deformation are denoted
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by k′′, h′′ and l′′ and called shear Love numbers [Saito, 1978; Lambeck, 1980]. In

this work we focus on the LLNs and TLNs. These three sets of Love numbers

are related in three equations [Molodensky, 1977]:

k′
n = kn − hn

h′′
n = 3n(ln − l′n)

n+ 1

2n+ 1
,

1 + k′′
n = 3nln

n+ 1

2n+ 1
.

(2.15)

The LNs were �rst de�ned and used on the basis of an elastic Earth model. The

work of William Thomson, referred to by Kelvin, greatly impacted the study

of the Earth response to deformations. Thomson [1863] considered that the

Earth is elastic, spherically symmetrical, homogeneous and incompressible. This

model is now called the Kelvin model. Assuming a Kelvin model of a planet, its

deformation as a response to a harmonic potential of degree n = 2 only depends

on four parameters: ρ, µ, g in addition to its radius R. The TLNs become simply

[Thomson, 1863]:

k2 =
3/2

1 +
19µ

2ρgR

, h2 =
5/2

1 +
19µ

2ρgR

, l2 =
3/4

1 +
19µ

2ρgR

, (2.16)

and the LLNs

k2
′ = − 1

1 +
19µ

2ρgR

, h2
′ = − 5/3

1 +
19µ

2ρgR

. (2.17)

The Kelvin model is a simpli�ed approach to solve the deformation problems.

More realistic models as heterogeneous compressible models of the Earth were

studied afterwards [Takeuchi, 1950]. Takeuchi [1950] �rst studied the tidal defor-

mation of an elastic, compressible heterogeneous Earth model. They �xed several

Earth models based on seismology pro�les and K. E. Bullen's work [Bullen, 1936],

[Bullen, 1940] and [Bullen, 1942] on the Earth internal density distribution. They

solved the di�erential equations of stress and motion of these models with nu-

merical integrations. This theoretical work was based on assuming an elastic

response, therefore an elastic planetary body. When an elastic body is subjected

to stress, the strain is instantaneous and the initial strain fully then recovers. For

an anelatic body, the response is instead time-dependent and the initial shape

and volume of the body can not always be fully recovered. The Earth and other
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planetary objects are not purely elastic. To solve the LNs problem for a realistic

planetary model anelasticity is crucial to take into consideration. The same no-

tations for the LNs were later (and untill the present day) used to also describe

the anelastic, more speci�cally viscoelastic deformation. Therefore assuming in

Eq. 2.3 a stress and strain relation di�erent than the law of Hooke of elasticity.

In the next section we explain the di�erent between an elastic and an anelastic

medium. Additionally we explain how an elastic or an anelastic deformation of

a body is theoretically displayed.

2.1.3 Elastic and anelastic deformations

To estimate the response of a body to external or internal potentials, we have

to understand its rheology, which describes its instantaneous deformation and

relaxation (also called �ow) after an applied stress. For an anelastic planetary

body, the LNs are time-dependent and they depend on its rheology. The sim-

Figure 2.1: Representation of the elastic (Hooke) model and the �uid (Newton)
model.

plest linear rheology, as already stated in section 2.1.1, is the rheology of Hooke

corresponding to an elastic (also called a Hookean) body. We refer to a Hookean

body simply by "elastic body" (Fig. 2.1). If the body is a 1D body, the stress

is scalar denoted by σ and it is proportional to the strain which is also a scalar

denoted by ε. The Eq. 2.3 becomes in 1D:

σ = 2µε. (2.18)

At the other end of the spectrum of linear rheological bodies there is the

viscous (also called Newtonian) body, in which the stress σ is proportional to

the strain rate ε̇ [Ranalli, 1995]:

σ = 2ηε̇, (2.19)
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such as η is the linear or Newtonian viscosity, simply referred to as viscosity. We

refer to a Newtonian body simply by "�uid body" (Fig. 2.1). A �uid body does

not deform instantaneously due to stress as an elastic one, instead it exhibits a

delay or �ow in its response. In what follows, a spring (labeled with its rigidity

µ) represents the elastic properties of the medium, while a dashpot (labeled with

its viscosity η) stands for its viscous properties. Dashpots are also sometimes

called dampers since they dampen the deformation. The Maxwell model can be

described as a combination of a spring and a dashpot in series. The Kelvin-Voigt

model is a combination of a spring and a dashpot in parallel. As for the Burgers

model, it is both Maxwell and Kelvin-Voigt models in series. Maxwell, Kelvin-

Voigt and Burgers are also linear rheologies which are described as viscoelastic

since they include both an elastic and a �uid component (Fig. 2.2).

The LNs are calculated for an anelastic body as it is believed to be more

realistic than the elastic one. In this case the LNs are not constant parameters

as in Eqs. 2.16 and 2.17 but become time-dependent. Peltier [1974] was �rst

to extend the theory of the LNs calculation to a viscoelastic rheology. It was

done for a Maxwell body based on the correspondence principal of linear vis-

coleasticity which states that the time-dependent viscoelastic response can be

simpli�ed to be solved as the elastic problem [Peltier, 1974]. More speci�cally,

the correspondence principal states that with no initial conditions the Laplace

transform or Fourier transform of functions of a viscoelastic body are equivalent

to the equations for an elastic body. It was done in Peltier [1974], Vermeersen

et al. [1996] and Soldati et al. [1998] with the Laplace transform which converts

the time-dependent fundamental equations (Eq. 2.13), to the Laplace domain

as an s-dependent function where s is the Laplace variable. For an incompress-

ible planetary model the rheology contributes in the theoretical computation of

k2 through a single parameter: the complex rigidity µ̃(s) (also referred to as

complex shear modulus and e�ective shear modulus). The complex rigidity is a

function of s and it is equal to µ for the elastic rheology (Table 2.1). The form

of the s-dependent complex rigidity µ̃ depends upon the kind of constitutive law

hence the rheology of the planetary body [Patrick Wu, 1982]. Tables 2.1 and 2.2

display the complex rigidity for several di�erent rheologies as a function of s, µ

and η.

To calculate the time-dependent viscoelastic LNs the fundamental equations

(Eq. 2.10) are put in terms of the LNs (Eq. 2.13). In these fundamental equations
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the rigidity µ is replaced by the complex rigidity µ̃. The equations are solved and

the viscoelastic LNs are calculated in the Laplace domain, the Laplace transform

is denoted by denoted by L. To calculate the time-dependent viscoelastic LNs for

an applied forcing F (t), an inverse Laplace transform L−1 is applied. We denote

by l(s) a LN in the Laplace domain (which is k2(s) for the TLN k of degree 2 for

example). Its Laplace inverse transform Lδ(t) = L−1[l(s)] is the time-dependent

response to an impulsive δ forcing. The time-dependent LN, denoted by L(t)

response to a forcing F (t) is then calculated as:

L(t) = L−1
[
l(s)L[F (t)]

]
(2.20)

For the loading deformation, the forcing is set to be step-wise with F (t) = H(t)

withH(t) is a Heaviside function for the LLNs. In this case L[H(t)] =
1

s
, therefore

L(t) is:

L(t) = L−1
[ l(s)

s

]
(2.21)

which is equivalent to

L(t) = Lδ(t) ∗H(t) (2.22)

where ∗ represents the convolution operation. For the tidal deformation, the

forcing is set to be periodic of frequency ω, with F (t) = est where s = iω and

ω =
2π

τ
if τ is the tidal period. The time-dependent TLNs become:

L(t) = Lδ(t) ∗ eiωt. (2.23)

For a Kelvin model (homogeneous model) the LNs for an anelastic rheology is

calculated by replacing the rigidity µ by the complex rigidity µ̃(s) in Eqs. 2.16

and 2.17. Therefore the LNs become the frequency s-dependent:

k2(s) =
3/2

1 +
19µ̃(s)

2ρgR

, h2(s) =
5/2

1 +
19µ̃(s)

2ρgR

, l2(s) =
3/4

1 +
19µ̃(s)

2ρgR

, (2.24)

and the LLNs

k2
′(s) = − 1

1 +
19µ̃(s)

2ρgR

, h2
′(s) = − 5/3

1 +
19µ̃(s)

2ρgR

. (2.25)
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These are the s-dependent LNs for a Kelvin model. Finally, after applying Eq.

2.22 for the LLNs and Eq. 2.23 for the TLNs, the LNs are obtained as functions of

time. The tidal perturbations result from periodic perturbations, hence the TLNs

could be better calculated by a Fourier transform than by a Laplace transform.

Despite this fact ALMA uses the Laplace transfrom since it calculates both the

TLNs and the LLNs, with a modi�cation of the tidal forcing function done to

the periodic function corresponding to the TLNs (Eq. 2.23). Section 2.2 explains

in details several rheologies as Maxwell, Burgers and Andrade and gives their

complex rigidity.

2.2 Rheologies

An anelastic rheology is described by the combination of one or several springs

with one or several dashpots. They can be connected either by series or parallel

to each other. A rheology is called linear if its strain-rate is a linear function

of stress and/or stress-rate as the Hookean (Eq. 2.18) and the Newtonian (Eq.

2.19) rheologies. Other linear rheologies are the rheologies of Maxwell, Kelvin-

Voigt and Burgers [Ranalli, 1995]. A nonlinear rheology as the rheologies of

Andrade and Sundberg-Cooper have a non-linear power-law exponent strain-

rate [Weertman et al., 1978]. Laboratory experiments suggest that dislocations

inside the grains, might explain the long-term deformation of mantle materials:

non-linear stress-strain relationship [Weertman et al., 1978; Ranalli, 1995].

2.2.1 Linear rheologies

Maxwell's model (Fig. 2.2 (a)) can be described as a combination of a spring of

rigidity µ and a dashpot of viscosity η in series. The Kelvin-Voigt model (Fig.

2.2 (b)) can be described as a combination of a spring of rigidity µ′ and a dashpot

of viscosity η′ in parallel. Burgers' model (Fig. 2.2 (c)) can be described as the

Maxwell model and the Kelvin-Voigt model in series.

After an applied stress on the Maxwell model the spring and dashpot deform

independently. Therefore there is both the instantaneous deformation of the

spring and the time-dependent deformation ε(t) of the dashpot. The resulting

time-dependent deformation has an almost linear (∼ t) term only if, as this

case, a �uid body is connected in series with other elements [Spada, 2008]. This
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Figure 2.2: Representation of the Maxwell model, Kelvin-Voigt model and Burg-
ers model.

response is called a steady-state response and such a rheology is called a steady-

state rheology. Once the stress is removed the elastic spring will recover its

initial state (for a spring it is its length). The remaining �nal strain corresponds

to the deformed dashpot which, unlike the spring, does not recover its initial

state. In the case of the Kelvin-Voigt model after a stress the dashpot will cause

a delay of the deformation of the spring, which is called a transient creep. The

deformation is therefore not instantaneous. The total initial state of the model

will be recovered, because of the spring, after the stress is removed which is

also a delayed response. Finally, for the Burgers model after a stress there is

both the instantaneous elastic response of the spring in the Maxwell element and

its total recovery afterwards. It also has the steady-state (almost linear ∼ t)

response resulting from the dashpot in series with the other components in the

Maxwell element. In addition it has the transient creep caused by its Kelvin-Voigt

element before achieving the steady-state and its full recovery afterwards. The

deformation that will not be recovered, after the stress is removed, corresponds

to the deformation of the dashpot of the Maxwell element.

The complex rigidities of the elastic (Hookean) model, the �uid (Newtonian)

model, the Maxwell model, the Kelvin-Voigt model and the Burgers model are

in Table 2.1. If η → +∞, the Maxwell model becomes equivalent to an elastic

model with rigidity µ. It becomes equivalent to a �uid model with viscosity η if

µ → ∞. The Kelvin-Voigt model becomes equivalent to an elastic model with

rigidity µ′ if η′ = 0. And if µ′ = 0 it becomes equivalent to a �uid model with

viscosity η′. If η′ → +∞, the Burgers model becomes equivalent to the Maxwell
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Table 2.1: The complex rigidities for the elastic (Hooke), �uid (Newton),
Maxwell, Kelvin-Voigt and Burgers models.

Rheology complex rigidity µ̃

Hooke µ -

Newton sη -

Maxwell
µs

s+
µ

η

if η → +∞: Hooke
if µ → +∞: Newton

Kelvin-Voigt µ′ + η′s
if η′ = 0: Hooke
if µ′ = 0: Newton

Burgers

µs(s+
µ′

η′
)

s2 + s(
µ

η
+

µ+ µ′

η′
) +

µµ′

ηη′

if η′ → +∞: Maxwell
if η → +∞ and µ = 0: Kelvin-Voigt

model with an elastic element and a �uid element of a rigidity µ and a viscosity

η, respectively. And if η → +∞ and µ = 0 it becomes equivalent to the Kelvin-

Voigt model with an elastic (rigidity) and a �uid (viscosity) components of µ′

and η′, respectively.

2.2.2 Nonlinear rheologies

Andrade [1911] proposed a law describing the observed viscous �ow in metals

and allied phenomena. It is called the Andrade law and describes the transient

deformation observed in experiments of materials under stress. They found that

a lead wire under extension after the achieving its elastic phase, its deformation

becomes proportional to the time, hence the �ow becomes viscous. The di�er-

ence between the rheology of Andrade and the rheology of Burgers is that the one

of Andrade has a transient response with continuous in�nite relaxation times.

Therefore it can be represented with the Maxwell model in series with an added
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component, representing the transient response, of an in�nite number of springs

in series in parallel with an in�nite number of dashpots in series. This compo-

nent represented on the left in Fig. 2.3 illustrates the in�nite and continuous

distribution of relaxation times observed in the Andrade rheology.

James et al. [1971]; Goetze and Brace [1972] conducted experiments study-

ing the creep of rocks under high pressure (P ) and temperature (T ), such that

the conditions simulate the interior of the Earth. They showed that rocks un-

der stress and at high temperature show a transient creep that obeys the An-

drade law. The mineral olivine is a magnesium iron silicate with the formula

Figure 2.3: Representation of the Andrade modelwhere the transient component
is illustrated by an in�nite number of springs in series in parallel with an in�nite
number of dashpots in series as in Castillo-Rogez et al. [2011] .

(Mg2+,Fe2+)2SiO4 such that Mg stands for Magnesium, Fe for Iron, Si for Sil-

icate and O for Oxygen. It's the primary component of the upper mantle of

the Earth and it is a common mineral in its subsurface. The creep function of

the Andrade law was deduced from the work of both Jackson et al. [2002] and

Castillo-Rogez et al. [2011]. It was done by measuring the energy dissipation

from grain-size strain of �ne grained polycrystalline olivine. The s-dependent

creep function J(s) is given by Castillo-Rogez et al. [2011] as:

J(s) =
1

µ
+ β

Γ(α + 1)

sα
+

1

ηs
(2.26)

such that Γ is the gamma function, α and β describe the transient response

duration in the primary creep and its amplitude, respectively. More precisely β

characterizes the intensity of the anelastic friction in the material. Castillo-Rogez

et al. [2011] approximated β to be β ≃ µα−1/ηα. the empirical (or experimental)

parameter α has been determined for olivine-rich rocks to have a wide range

of 0.1-0.5, most often within 0.2-0.4 [Castillo-Rogez et al., 2011]. Louchet and
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Duval [2009] studied the relationship between strain and time, and found that

α is close to 1/3 (which is the initial value found by Andrade) if the applied

deformation is linear.

The complex rigidity of the Andrade rheology is calculated as µ̃(s) =
1

J(s)
(Table 2.2). The transient creep of this law is in the second addend in both

J(s) and µ̃ in Eq. 2.26 and Table 2.2, respectively (which correspond to the left

element in Fig. 2.3). The steady-state rheology of Maxwell (Fig. 2.2) lacks this

component. Castillo-Rogez et al. [2011] and Dumoulin et al. [2017] have shown

with applications to the Earth and with available experimental data for rock that

the Andrade law is a better approximation to describe the anelastic attenuation

at tidal frequencies. This is due to the transient nature of Andrade's rheological

law which mimics well the transition from the elastic phase to the steady-state

phase. The rheology of Andrade is used to estimate the deformation of terrestrial

planets [Dumoulin et al., 2017; Melini et al., 2022; Goossens et al., 2022].

Table 2.2: The complex rigidities for the Sundberg-Cooper and Andrade models.

Rheology complex rigidity µ̃

Sundberg-Cooper

µs
µ′

η′
+ s

s2(1 + µαΓ(α + 1)(sη)−α) + s(
µ

η
+

µ+ µ′

η′
+

µ′

η′
µαΓ(α + 1)(sη)−α)

Andrade
µs

s+ sµαΓ(α + 1)(sη)−α +
µ

η

As an example of another nonliner rheological law of Sundberg-Cooper [Sund-

berg and Cooper, 2010] is a recently developed rheology that is usually used for

the study of Mercury. The Sundberg-Cooper model is represented as the An-

drade model with the Kelvin-Voigt model in series, therefore having an additional

purely transient component. It is applied on Mercury [Goossens et al., 2022] since

laboratory experiments on materials simulating the mantle of this planet follow
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Sundberg-Cooper's law [Renaud and Henning, 2018]. We give its complex rigid-

ity µ̃ (Table 2.2) that can be applied to any planetary model. In the next section

we detail the theoretical basis ALMA3 [Spada, 2008] [Melini et al., 2022], a code

that calculates for a planetary model the LLNs and TLNs of any degree n and

under di�erent applied forcing functions F (t). This code is then applied to Venus

in chapter 3.

The �rst step in this PhD was to implement Andrade in the code ALMA to

calculate the tidal deformation of Venus with this rheology as explained in section

2.3. It was done in this thesis in a collaboration with the referenced writer of

the original code [Spada, 2008]. First, I did an analytical calculation of the TLN

for an instantaneous (Heaviside F (t) = H(t)) forcing to have an outlook on the

di�erence between Mawell and Andrade's rheological laws. This test consisted by

analytically calculating the TLNs of degree 2 for a simple homogeneous model,

hence a Kelvin model, of Venus using Eq. 2.21 with l(s) represented in Eq.

2.24. The complex rigidity µ̃ replaced in Eq. 2.21 was therefore the one in

Table 2.2. After this test was done and an overview of an expected di�erence

between Andrade and Maxwell was observed, the same complex rigidity µ̃ was

then implemented in a new version of ALMA called ALMA2. Finally the periodic

tidal forcing was then implemented in the presently �nal version of ALMA called

ALMA3 [Melini et al., 2022] where the rheology of Andrade was preserved and

tested again, this time, with a heterogeneous model of Venus (see section 3.1.1

in chapter 3). This benchmarking with the heterogeneous model of Venus from

Dumoulin et al. [2017] detailed in section 3.1.1 is partially included in the paper

Melini et al. [2022].

2.3 ALMA3 and ASTRA codes

We recall from section 2.1.1 that, for the deformation problems, the integration of

the governing equations are linearized based on the assumption of small pertur-

bations. These equations give expressions of the gravity �eld Un, radial Vn and

tangential Wn deformations (Eq. 2.10). For the loading and tidal deformations

the fundamental solutions (Eq. 2.10) are written in terms of the LNs as in Eq.

2.13. In the case of the anelastic rheologies (section 2.2) Eq. 2.13 is hard to solve

in the time domain. According to the correspondence principle [Peltier, 1974]

the fundamental solutions can be written and solved in the Laplace domain.
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One way to calculate the LNs with this technique is the viscoelastic normal-

modes (hereafter VNM) method introduced in Peltier [1974] which solves the

equations using matrix propagation method [Spada et al., 1992]. Afterwards,

the LNs are transformed to the time domain with an inverse Laplace transform,

numerically or analytically. A code called TABOO (a posT glAcial reBOund cal-

culatOr) [Spada et al., 2004] is a fortran code that uses the VNM method and

transforms the LNs analytically to the time domain. In TABOO only a limited

number of layers (no more than 9) and only the Maxwell viscoelastic rheology

can be applied. With added layers and complex rheologies the analytical inverse

Laplace transform becomes more complicated. A step forward is the fortran code

ALMA3 (plAnetary Love nuMbers cAlculator) [Spada and Boschi, 2006; Spada,

2008] which also calculates the LNs using the VNM method similarly to TABOO.

ALMA3 applies the numerical Post-Widder [Post, 1930; Widder, 1934] inversion

formula for the inverse Laplace transform. It is not limited to a certain number

of layers and many more rheologies are already implemented and applied unto

any layer. The linear rheologies of Hooke, Newton, Maxwell, Kelvin-Voigt and

Burgers and the nonlinear rheology of Andrade are implemented in this version

called ALMA3 [Melini et al., 2022]. The code assumes a spherically symmetric

(1 dimensional or simply 1D), incompressible, viscoelastic and self-gravitating

model of a planet.

The response of a planet due to a deforming potential U is divided as stated

in section 2.1.1 as a sum of two potentials U1 and U2. The external potential U1

is the direct (or rigid) response of the planet and its internal response U2 is its

non direct incremental. On the surface of the planet we replace r = R in Eq.

2.13. We recall that k =
U2

U1

, hence we write as Vermeersen et al. [1996]:

U = U1 + U2,

= U1(1 + k).
(2.27)

On the surface we have U1 =
Rgs
M

where gs is the planet surface gravity and M

is its total mass. The TLN k can then be written from Eq. 2.27, h and l become
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from Eq. 2.13 as in Spada and Boschi [2006]:

h = y1
M

R
,

l = y3
M

R
,

k =
M

Rgs
U − 1.

(2.28)

We denote by L the number of layers and ri the radius (also called radial bound-

ary) of each layer with i ∈ {1, · · · , L}, r0 = 0 being the center of the planet

and r1 the core radius. We have r1 < · · · < rL and rL corresponds to its free

surface. For an applied forcing F (t), and its Laplace inverse f(s), the VNM

method consists of solving the governing equations which corresponds to using

the technique of matrix propagation [Spada et al., 1992]. Here is an overlook of

the equations behind the theoretical basis of ALMA3 which is given in Spada and

Boschi [2006] and Spada [2008] and most recently in Melini et al. [2022]. For a

harmonic degree n the equations can be solved in the Laplace domain with the

standard propagator methods. Their solutions for r = R where R is the surface

of the planetary body are such as

(y1(s), y3(s), U(s))T = [P1W (s)J ][P2W (s)J ]−1f(s)⃗b, (2.29)

where J is the core-mantle-boundary interface matrix of 6× 3 dimension (given

analytically in Sabadini et al. [1982]). The three-component vector b⃗ corresponds

to the surface boundary conditions therefore it depends on the deformation type

(loading deformation or tidal deformation) [Sabadini et al., 1982]. The matrix

P1 (3 × 6 dimension) is a projection matrix which extracts the �rst, third and

�fth components from y⃗ as:

P1y⃗ ≡ (y1, y3, y5)
T . (2.30)

Additionally P2 (3× 6 dimension) is a projection matrix as:

P2y⃗ = b⃗f(s). (2.31)
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The matrix W is called the propagator and it is such as:

W (s) = Π1
j=L−1Yj(rj+1, s)Y

−1
j (rj, s). (2.32)

The matrix Yk(r, s) such that k ∈ {1, · · · , L − 1} is the fundamental matrix of

6 × 6 dimension which propagates the solution from the core (r = r1) to the

surface (r = R). Since the planet is assumed to be incompressible Yk depends

on the rheology (speci�cally its complex rigidity µ̃) of the layer. It contains

the linearly independent solutions of the fundamental equations (Eq. 2.9). The

three-component vector b⃗ expresses the surface boundary conditions correspond-

ing to either the loading or tidal problems . Calculating the viscoelastic response

consists on �nding the roots and residues of the secular equation |P2WJ | = 0.

For an impulsive load (f(s) = 1) the s-dependent LNs are expressed as:

l(s) = Le +
m∑

1

Li

s− si
, (2.33)

wherem is the number of viscoelastic normal modes, Le the elastic response (s →
+∞) and si are the roots of the secular equation and Li are the residues such

that i ∈ {1, · · · ,m}. The LNs in the time domain are calculated in TABOO with

complex contour integration on the Bromwich path. With the residue theorem of

Cauchy where the Laplace inverse transform becomes equivalent to a sum of the

viscoelastic responses. For an impulsive load (F (t) = δ(t)) the LNs are obtained

as the sum of the elastic and the viscoelastic responses as follows:

L(t) = Leδ(t) +
m∑

1

Lie
sit, (2.34)

This method is applied in TABOO for the Maxwell rheology for the mantle and

a limited number of layers. For a di�erent rheology and more than 9 layers the

root �nding becomes a lot more complex and a di�erent approach is needed. The

Post-Widder [Post, 1930; Widder, 1934] Laplace inverse is a non-conventional

method which is introduced and benchmarked in Spada and Boschi [2006] and

it allows to overcome the limitations of the VNM method. The original version

of ALMA3 [Spada and Boschi, 2006; Spada, 2008] aimed at calculating the LNs

for a forcing term following a Heaviside time-history (F (t) = H(t) equivalently

f(s) = 1/s). Spada et al. [2011] compared their new approach to di�erent ones as
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the original VNM method in TABOO [Spada et al., 2004] and the Spectral-�nite

elements method [Martinec, 2000]. The Heaviside forcing function is usually

applied to the loading deformation. The latest version of this code called ALMA3

[Melini et al., 2022] accounts also for a periodic forcing that can be applied to

the TLNs calculation. For the tidal deformation of period τ the forcing function

is F (t) = eiωt where ω =
2π

τ
. In this case the TLNs are complex numbers with

a real part and an imaginary part. The theory is explained in details in [Melini

et al., 2022]. As stated in Eq. 2.23 the TLNs in the time domain is obtained by

the convolution of Lδ(t) and F (t). Eq. 2.23 can be expressed as

L(t) = eiωt
∫ ∞

0

Lδ(t
′)e−iωt′dt′ = L′(ω)eiωt (2.35)

where L′(ω) = L{Lδ(t)}. Therefore we obtain with f(s) = 1 and s = iω in Eq.

2.29:

(y1(ω), y3(ω), U(ω))T = [P1W (iω)J ][P2W (iω)J ]−1)⃗b. (2.36)

Finally the TLNs are expressed as in Eq. 2.28:

h(ω) = y1(ω)
M

R
,

l(ω) = y3(ω)
M

R
,

k(ω) =
M

Rgs
U(ω)− 1.

(2.37)

as a function of ω. The real and imaginary parts are the amplitude and lag of

the response, respectively. The TLN k describes the change in the gravitational

�eld of a planet due to the in�uence of an external gravity �eld. Its predomi-

nantly of degree 2, denoted by k2. Its imaginary part is always negative therefore

we denote k2 = k2
r − ik2

i where k2
r is the real part and k2

i the absolute value

of the imaginary part. The phase lag ϵ =
ki
2

kr
2

which is ϵ = 0 (since ki
2 = 0)

if the planet is elastic. The energy dissipation of a planet is also estimated by

the TLNs through its quality factor Q and it is de�ned in Murray and Dermott

[2000]. It is expressed through the time lag as Q =
1

sin ϵ
=

∥k2∥
ki
2

such that

∥k2∥ =

√
kr
2
2 + ki

2
2
, and its inverse Q−1 is called the dissipation.

The theoretical basis of the code ASTRA which solves the seismic rebound
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problem is explained in details in Melini et al. [2008]. Unlike ALMA no update

was made to the code in this PhD. Therefore we give a general outlook on it

since it was simply used in the last chapter to provide preliminary results for

future studies. ASTRA has the same basis than ALMA which solves the loading

and tidal and deformations. More speci�cally the common basis is that the seis-

mic rebound problem also requires the simultaneous solution of the constitutive

equations, derived from the continuity equation (mass conservation, Eq. 2.4), the

constitutive equation (stress-strain relation, Eq. 2.3) and the momentum equa-

tion linearized for small perturbations (linear momentum conservation, Eq. 2.5).

Integrating these perturbation equations of conservation along with integrating

the Poisson's equation for the deforming potential (Eq. 2.6) and assuming the

potential is harmonic outside the planet (Laplace equation, Eq. 2.7) give ex-

pressions of the gravity �eld and the surface deformations (Eq. 2.10). Similarly

to ALMA, ASTRA solves the equations using matrix propagation method [Spada

et al., 2004] using the approach of the VNM method and the Post-Widder in-

version formula. Main di�erences exist between the two codes, since di�erences

exist between the seismic rebound problem and the loading and the tidal cases.

First their are no surface stresses as the tidal deformation problem and contrar-

ily to the loading deformation problem. Second, the forcing term for a seismic

dislocation translates to an internal couple of forces: a dislocation force. This

forcing couple has both spheroidal and toroidal components where the two other

deformation problems (tidal and loading) have simply a spheroidal component.

Denoting by x(s) the solution for the seismic deformation, for the spheroidal and

toroidal components the solution is such as:

x(s) = [P1W (s)J ][P2W (s)J ]−1f(s)⃗b+ p⃗ (2.38)

similarly to Eq. 2.29 where the three-component vector p⃗ corresponds to the

source boundary conditions. In this particular code the seismic dislocation is

assumed to be instantaneaous, therefore the forcing term is F (t) = H(t) hence

f(s) = 1/s as the loading problem.

The time-dependent solution x(t) is obtained from the inverse Laplace trans-

form of x(s) of Eq. 2.38. ASTRA uses the Post-Widder inversion formula [Post,

1930] and [Widder, 1934] for the Laplace inversion (section 2.3) as ALMA. Solving

the seismic problem has a slower harmonic convergence in comparison to the
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loading and tidal problems. The spheroidal and toroidal solution vectors con-

tain harmonic coe�cients for deformation, perturbation to the gravity �eld and

incremental stress tensor. The observables given by x(s) are the surface displace-

ment (
−→
d ), the incremental gravitational potential (ϕ) and the variation of the

gravity acceleration (∆g). They are obtained from harmonic summation of the

spheroidal and toroidal components for a set of spherical coordinates (r, θ, φ)

called the observation points. A semi-analytical approach was �rst developed to

compute the postseismic deformation of a planet [Piersanti et al., 1995]. This

approach extended the work of Sabadini et al. [1984] and is based on the VNM

method. As in the case of the loading and tidal deformations the governing equa-

tions are solved in the Laplace domain instead of the time domain according to

the correspondence principle of linear viscoleasticity [Peltier, 1974]. In the same

paper [Melini et al., 2008] modeled accurately the Earth coseismic deformations

induced by the 2004 Sumatra-Andaman earthquake. Their results reproduced

the surface deformation observed from Global Positioning System (GPS) stations

and the geoid signals observed by the satellite GRACE. The model of the planet

is the same as the one applied in ALMA: a spherically symmetrical, incompressible

and self-gravitating modeling. Any linear viscoelastic rheology can be imple-

mented in the code with its corresponding rigidity (section 2.2). The rheologies

already available in ASTRA are Hooke (elastic body), Maxwell, Burgers, Newton,

Kelvin and Newtonian (�uid body). The non linear rheology of Andrade is also

implemented.

In chapter 3 the k2 and Q are calculated with ALMA3 for di�erent models of

Venus. First (section 3.1) they are calculated for a model from Dumoulin et al.

[2017] and the results are compared with theirs. Afterwards (section 3.2) with

random Monte-Carlo sampling, a wide range of internal structure parameters of

Venus is explored. This method enables the study of a high number of possible

models with di�erent assumptions on the structure. The most recently estimated

value of k2 = 0.295 ± 0.066 (2σ) [Konopliv and Yoder, 1996] and an estimated

range of Q between 20 and 100 [Correia et al., 2003; Dumoulin et al., 2017] are

used as a �lter the models and preserve the one that fall into these estimations.

A 1D seismic source can be set in ASTRA (in other words aligned rupture points).

The seismic source is de�ned in the code by the coordinates (longitude,latitude)

of its center (θ,φ), its depth and seismic moment M0, strike, dip and rake angles,

length and number of rupture points p. For a source with p > 1, M0 is divided
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equally between the rupture points, therefore having each a seismic moment of

M0/p. The observables can either be computed for a 1D set of observations

(segment) or a 2D set of observations (rectangle/map) within a certain depth.

The spacial observation steps (distance between the points) is also chosen. The

observation time can either be set to t → 0 to calculate the coseismic (or elastic)

rebound or set to t > 0 for the postseismic rebound calculation. In chapter 4 the

code is applied for a seismic dislocation on the Earth model and a Venus model.

We compute the observables d and ∆g in a 2D space on the surface of the planet

(observation depth equal to 0 km).



3. Venus tidal deformations

In what follows we use the tidal deformation of Venus from the periodic TLNs

to constrain the internal structure of the planet. The most important tidal

deformations are for a period of τ = 58.4 days corresponding to the solar tides

period [Cottereau et al., 2011]. We use the ALMA code (described in section 2.3) to

estimate the periodic response of Venus to the tidal excitation. As we explained

in section 2.3, ALMA needs some inputs for computing the TLNs. These inputs

describe the rheological parameters of each layer: viscosity, density, rigidity and

thickness. These properties are poorly known for Venus. So in order to explore

the possible internal pro�les and their expressions in terms of TLNs, we randomly

sample intervals of possible values for each rheological parameter in using a

Monte-Carlo approach. A Monte-Carlo simulation consists in randomly selecting

a set of parameters that will follow, in our case, uniform distributions. We explore

each one within a wide range of values leading to a large number of models of

Venus internal structure. ALMA is then used to calculate the TLN k2 for each

model which will serve as a �lter to �lter out the models non consistent with

the most recent observation of kMPVO
2 (Table 1.1). This way we obtain a set

of possible models for the internal structure of Venus. We use homogeneous

and incompressible layered models. The outputs of ALMA3 are the real kr
2 and

imaginary ki
2 parts of the TLN k2 from both which we calculate the quality factor

Q.

3.1 Adaptation of ALMA3 for Venus

In this section we present the results obtained using ALMA3 to compute the kr
2

and ki
2 for Venus assuming its mantle follows the Andrade rheology and has four

di�erent viscosities η ∈ {1019, 1020, 1021, 1022} Pa · s. As a model of Venus we use

the radial pro�le from Dumoulin et al. [2017] plotted in Figs. 3.1 and 3.2.

69
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3.1.1 Comparison with previous work

In the work of Dumoulin et al. [2017], the TLN k2 is computed by integrating the

radial functions associated with the gravitational potential (denoted as y5), as

de�ned by Takeuchi and Saito [1950]. The simpli�ed formulation of Saito [1974]

relying on the radial function, y5 is thus employed. This method is derived from

the classical theory of elastic body deformation and the energy density integrals

commonly used in the seismological community. The system of six di�erential

equations (from which the radial function y5) is solved by integrating the three

independent solutions using a �fth-order Runge-Kutta method. A number of

10 models with di�erent density ρ and rigidity µ pro�les of Venus have been

constructed [Dumoulin et al., 2017]. They all assume a �uid core, 5 are based

on a cold temperature pro�le [Steinberger and Werner, 2010] and the other 5

on a hot temperature pro�le [Armann and Tackley, 2012]. They are constructed

from composition and hydrostatic pressure from PREM extrapolation [Dziewon-

ski and Anderson, 1981]. The model that we use is the number 5 from the hot

temperature models denoted in their work as V5-Thot (see Dumoulin et al. [2017])

therefore referred to as V.

The model V is characterized by a lower Fe content than the other models.

This di�erence in composition is supposed to explain the 1.9% observed lower

density of Venus compared to the density Venus would have if it was made of

the same material as the Earth [Bas, 1981]. Model V was also chosen [Dumoulin

et al., 2017] to explore di�erent scenarii for the state of the core other than a �uid

one, assuming a solid and partially �uid and partially solid core. The model has

500 layers excluding the atmosphere, hence a radial discretization with a step

slightly larger than 12 km. To compare with their method and results, each ma-

jor layer (core, lower mantle, upper mantle and crust) is averaged to be as one

homogeneous layer. Figs. 3.1 and 3.2 show the model V. For the comparison

with Dumoulin et al. [2017] with a mantle following the Andrade rheology, we

use a wide range for the Andrade empirical parameter α. As for the other layers

the model V is composed by an elastic crust (η → ∞) and an inviscid �uid core

(η = 0 Pa · s and µ = 0 Pa). The values of α range from 0.1 to 0.5. Fig. 3.3

(a) and (b) show respectively the real part (i.e. kr
2) and imaginary part (i.e. ki

2)

of k2. Their associated quality factor Q is calculated as Q−1 =
ki
2

∥k2∥
such that

∥k2∥ =

√
kr
2
2 + ki

2
2
and is shown in Fig. 3.3 (c) and (d). For olivine-rich rocks
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Figure 3.1: Density ρ (kg/m3) for the model V from Dumoulin et al. [2017] and
our 4-layer model derived by averaging each major layer.

Figure 3.2: Rigidity µ (1011 Pa) for the model V from Dumoulin et al. [2017]
and our 4-layer model derived by averaging each major layer.
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α is between 0.2 and 0.4 [Jackson et al., 2002]. The variation of α in Dumoulin

et al. [2017] is from 0.2 to 0.3 which is included in the olivine-rich rocks range.

The range of values obtained in their work is represented as vertical lines in

Fig. 3.3. For the real part kr
2 (Fig. 3.3 (a)) and for α between 0.2 and 0.3, the

maximum di�erence between our results and those of Dumoulin et al. [2017] are

between 1.8% to 2% depending on the mantle viscosity. These values translate

into a di�erence of 5 × 10−3 and 7 × 10−3 in kr
2, respectively. It is the same

magnitude obtained (see also Figs 6 and 7 in Spada et al. [2011]) by comparing

di�erent methods to calculate the LLN (loading Love number) for a Heaviside

step function as mentioned previously in section 2.3. Furthermore, the results

Figure 3.3: Real tidal Love number kr
2 (a), imaginary tidal Love number k2 (b),

quality factor Q (c) and its zoom into the area of interest (d) as functions of
α for a mantle with an Andrade rheology and di�erent viscosities for model V.
The vertical bars represent the range obtained by Dumoulin et al. [2017] for
α ∈ [0.2, 0.3]. The vertical dashed lines correspond to α of 0.2 and 0.4. The
dark grey area corresponds to the estimated value of kMPVO

2 ± 2σ [Konopliv and
Yoder, 1996]. The light grey area corresponds to the Q range from 20 to 100
[Correia et al., 2003].
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for kr
2 for α ∈ [0.2, 0.4], corresponding for olivine-rich rocks, fall into the range of

the most recently estimated value kMPVO
2 , with a ±2σ uncertainty [Konopliv and

Yoder, 1996]. The values of kr
2 for this range of α vary maximum from 0.015 to

0.04 depending on the mantle viscosity, equivalently 7.5 to 20 times the uncer-

tainty 2σ of EnVision which is 0.002 for kr
2. The values of k

i
2 for the same range

of α vary from 0.002 to 0.005, equivalently 1 to 2.5 times the uncertainty 2σ of

EnVision which is also 0.002 for the imaginary part.

The imaginary part ki
2 (Fig. 3.3 (b)), for η ≥ 1020 Pa · s, is di�erent between

1% and 2.16% from our estimations and the ones of Dumoulin et al. [2017]

depending on the value of α. For α between 0.2 and 0.3, the only non monotonous

variation of ki
2 is obtained for η = 1019 Pa · s. This is the main di�erence between

the two results, since the range of variations between the minimum and maximum

for the considered α range values is smaller than that of Dumoulin et al. [2017].

More speci�cally, the upper boundary is higher of 2.5% and the lower boundary

is lower of approximately 6%. Finally the quality factor Q is illustrated in Fig.

3.3 (c) and zoomed in Fig. 3.3 (d) on the area of interest, one can see on these

�gures that its span (upper and lower boundaries) for α ∈ [0.2, 0.3] is almost the

same for each viscosity. A di�erent method was used Dumoulin et al. [2017] for

the calculation of the TLN as well as the number of layers and initial conditions.

Despite that, our results are similar and show the same tendencies for each of

the mantle viscosities and values of α which de�ne the transition phase of the

Andrade law.

3.1.2 E�ect of the rheology on the TLN k2

In this subsection we compare the Maxwell and Andrade rheologies. Fig. 3.4

(a) shows the results of kr
2, k

i
2 and Q for mantle viscosities η and α between 0.1

and 0.5. Fig. 3.4 (a) shows that kr
2 is decreasing with increasing α, for each

of the explored mantle viscosities. The kr
2 and ki

2 for an Andrade mantle gets

closer to the results for a Maxwell mantle with higher α values (Fig. 3.4 (a) and

(b)). This fact is expected from equation 2.26 which approaches the Maxwell

creep equation with these higher α values. Fig. 3.4 (c) shows that the quality

factor is more sensitive to the mantle viscosity for a Maxwell rheology than it is

for Andrade rheology. Correia et al. [2003] shows that Q is between 20 and 100.

Fig. 3.4 (c) and (d) show that Q has a magnitude less than 103 for the Andrade
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Figure 3.4: Real tidal Love number kr
2 (a), imaginary tidal Love number k2 (b),

quality factor Q (c) and its zoom into the area of interest (d) as functions of α
for a mantle with Maxwell and Andrade rheologies and di�erent viscosities for
model V. The vertical dashed lines in (c) correspond to the zoomed area in (d).
The dark grey area corresponds to the estimated value of kMPVO

2 ± 2σ [Konopliv
and Yoder, 1996]. The light grey area corresponds to the Q range of 60 ± 40
[Correia et al., 2003].

mantle rheology for the explored range of α. Which leads to the same conclusion

as the other studies (see [Dumoulin et al., 2017; Castillo-Rogez et al., 2011]) that

Andrade's rheological law is a better choice to mimic the attenuation behavior

of rocks in the tidal period.

3.1.3 E�ect of the atmosphere on the TLN k2

The atmosphere of Venus is 92 times more massive than that of the Earth. The

e�ect of the thick and dense atmosphere on k2 is tested. The model of the

atmosphere is taken from the Venus International Reference Atmosphere (i.e.
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VIRA) [Sei� et al., 1985]. The atmosphere has a thickness of 100 km, a den-

sity ρatm = 36.5 kg/m3 and a rigidity µatm = 0 Pa (i. e. �uid). The viscosity

of the atmosphere is set to 10−5 Pa · s [Schi�er et al., 1968] for each computation.

Figure 3.5: Di�erence in percentage (%) of kr
2, k

i
2 and Q of Venus without and

with an atmosphere as a function of α ∈ [0.1, 0.5] for model V. The lines
correspond to a mantle with either Andrade or Maxwell rheologies for di�erent
mantle viscosities η (Pa · s). The vertical dashed lines correspond to α of 0.2 and
0.4.

Fig. 3.5 represents the variations in % of the kr
2, k

i
2 and Q after we include the

atmosphere. The atmosphere induces a decrease of the real and imaginary parts

of k2 at a maximum level of respectively 7.2% and 8.34% (Fig. 3.5). The former

percentage of 7.2% is equivalent to a decrease in kr
2 of a maximum of 0.026 which

is lower than the formal uncertainty (1σ). The variation depends slightly on the

value of α and the mantle viscosity. This e�ect on quality factor Q, is only of

a maximum of 1.65%. We conclude that the atmosphere does not signi�cantly

a�ect the studied parameters despite its high density and low viscosity.
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3.1.4 Conclusions of the benchmarking

Figure 3.6: Real tidal Love number kr
2 (a), its zoom into the area of interest

(b) and quality factor Q (c) as functions of the mantle viscosity for model V.
The red vertical lines show the range of the results of Dumoulin et al. [2017]
for α from 0.2 to 0.3. The dark grey area corresponds to the estimated value of
kMPVO
2 ± 2σ [Konopliv and Yoder, 1996].

A generalization of the study is made by expanding the viscosity range of the

mantle from the previous range of 1019, 1020, 1021 and 1022 Pa · s to a complete

variation from the �uid limit (η → 0 Pa · s) to the elastic one (η → 1035 Pa · s)
for α = 0.3. Fig. 3.6 shows kr

2 and Q as a function of the mantle viscosity.

The red vertical lines show the range of the results of Dumoulin et al. [2017]

for α from 0.2 to 0.3 as in Fig. 3.3. The grey area represents the range of

the estimated kMPVO
2 ± 2σ. The plot shows that for η ≥ 1019 Pa · s the k2 �ts

well into the estimated range, this con�rms the choice of the mantle viscosity

range of Dumoulin et al. [2017]. The quality factor Q falls between 10 to 120

for both results which is in the same magnitude as the range found in Correia

et al. [2003] of 20 to 100. The results of this work are in good agreement with

that of Dumoulin et al. [2017] for model V in the context of the present accuracy

in the Love number determinations (Fig. 3.3). Di�erences in both approaches

stand in the number of layers and the conjecture of an incompressible planet,

in opposition to Dumoulin et al. [2017] where a compressible planet is assumed.

The comparison between Maxwell and Andrade for the mantle rheology (Fig.

3.4) shows that the results depend on the value of α. For α most likely between
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0.2 and 0.4 (olivine-rich rocks), our results for kr
2 is in the range of the estimated

Magellan and PVO k2 with an uncertainty of 2σ range [Konopliv et al., 1999]. In

what follows, ALMA is applied to calculate the TLN k2 for di�erent assumptions

of the internal structure of Venus. The results are then used to �lter the possible

models using present observational and geophysical constraints.

3.2 Constraints on the Venusian internal struc-

ture

Since the internal structure of Venus is yet poorly constrained, we apply a Monte-

Carlo simulation to randomly select several internal parameters of some of its

layers within a certain range. This selection paves the way for the exploration of

wide ranges of each parameter. We use the moment of inertia and mass to �lter

the possible models before calculating the TLN. After applying the remaining

models to ALMA, k2 and Q are calculated and used as an additional �lters. Finally,

constraints on the internal structure of Venus are made.

3.2.1 Statistical approach

Three types of pro�les are considered in our Monte-Carlo approach: the presence

of a �uid core (Class 1), a solid core (Class 2) and a �uid outer core with a solid

inner core (Class 3). We denote by L the number of layers therefore L = 4 for

Classes 1 and 2 and L = 5 for Class 3. For each class, the crustal thickness and

density are set to 60 km and 2950 kg/m3 respectively [Steinberger and Werner,

2010]. The upper mantle radius is then �xed to 5991.8 km. The viscoelastic

layers, namely the lower mantle, the upper mantle and the solid core/inner core

follow the Andrade law α = 0.3. The crust is elastic η → ∞ and the viscosity

of the inviscid �uid layers are set to be 10−5 Pa · s (Table 3.1). The density of

each layer is denoted by ρi with i ∈ {1, · · · , L} and its radius (also called radial

boundary) by ri with r0 = 0 being the center of the planet. The volume of each

layer is:

Vi =
4

3
π(r3i − r3i−1) (3.1)

and its mass is Mi = ρi × Vi. For each class we apply a random Monte-Carlo se-

lection of parameters within a certain range. These parameters are the thickness,
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density and viscosity of several layers de�ned in Table 3.1. After the random se-

lection of models we accept only the ones such that r1 < · · · < rL. In order to

keep models consistent with the mass MV (Table 1.1), the density of one layer

for each class is deduced from the others. The compensation is done with the

layer corresponding to i = 1, which is the core for Classes 1 and 2 and the inner

core for Class 3 as:

ρ1 =
MV −∑L

i=2Mi

V1

. (3.2)

The compensated parameters are denoted by "compensation" in Table 3.1. The

compensated core density of Classes 1 and 2 are only accepted if 0 < ρCore <

22000 kg/m3 and the compensated inner core density is only accepted if 0 <

ρIC < 30000 kg/m3. These are theoretical and relatively high upper boundaries

for a terrestrial planet taking into account the Earth [Dziewonski and Anderson,

1981], terrestrial planets [Trønnes et al., 2019] and Venus [Shah et al., 2021]. In

a second time, we accept the models with no density inversions (ρ1 > · · · > ρL).

Finally we select models that fall within the limits and uncertainties of the total

mass (since the density ρ1 has been estimated to do so) and of the moment of

inertia C as given by:

MV =
L∑

i=1

Mi. (3.3)

and

C =
8π

15

L∑

i=1

ρi
(
r5i − r5i−1

)
, (3.4)

such that r0 = 0 is the center of the planet. Thus, the normalized moment of

inertia, MoI, for each model is obtained from Eqs. 3.3 and 3.4 as:

MoI =
C

MVR2
V

. (3.5)

After �ltering out the hypothetical models that do not match MV and MoI, we

use ALMA to compute k2. The TLN k2 from Table 1.1 is used as an additional

�lter. The last �lter is the quality factor Q taken to be between 20 and 100

[Correia et al., 2003]. The rigidity is assumed to be constant for each layer and

to be the same than model V of Dumoulin et al. [2017].
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Table 3.1: Venus internal parameters, both �xed and simulated with random
Monte-Carlo within their respective ranges

r (km) ρ (kg/m3) η (log10 Pa · s) µ (GPa)

Crust 6052.8 2950 +∞ 47.65

Upper mantle 5991.8 1000− 15000 15− 25 85.7

Lower mantle 2000− 5900 3000− 15000 15− 25 196.94

Fluid core (Class 1) 1000− 5000 compensation −5 0

Solid core (Class 2) 1000− 5000 compensation 11− 22 125.63

Outer core (Class 3) 1000− 5000 1000− 15000 −5 0

Inner core (Class 3) 1− 5000 compensation 10− 20 273.91

3.2.2 Results

For each layer we denote by rL, thL, ρL and ηL, the radius (km), thickness (km),

density (kg/m3) and viscosity (Pa · s) respectively with L = UM, LM, Core, IC

or OC representing the upper mantle, lower mantle, core, inner core and outer

core respectively. We performed 3979402, 3357033 and 4364142 Monte-Carlo

simulations respectively forClasses 1, 2 and 3. It was done until we obtained for

each class 65000models with no density inversions. Both the �uid core of Class 1

and the �uid outer core of Class 3 are assumed to be inviscid �uids, equivalently

µ → 0 Pa and η → 0 Pa · s. The solid core of Class 2 and the inner solid core

of Class 3 have a viscosity ranging between 1010 and 1022 Pa · s. This is a

wide range that includes the Earth inner core viscosity derived from experiments

[Gleason and Mao, 2013] and found to be between 1015 and 1018 Pa · s. MoI

estimated by Margot et al. [2021] from the Earth-based observations radar data

(also in Table 1.1) is 0.337 ± 0.024 (1σ). This uncertainty of 7% is too large to

make any �ltering of the original 65000 models with MoI ± 3σ. Consequently,

we use a �ltering with MoI ± 1σ. It then retains between 54.5 and 68% of the

65000 models, more precisely 35472, 35443 and 44390 models for Class 1, Class

2 and Class 3 respectively. Table 3.2 is obtained from Monte-Carlo statistical

�ltering, using the values of the MoI± 1σ and estimated k2 ± 2σ, both in Table

1.1, and a range of Q = 60±40 [Correia et al., 2003]. Finally what remains from

the latter �lters are 6870, 7026 and 4160 models for Class 1, Class 2 and Class
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3 respectively. Table A.1 in Appendices represents the quartiles of the randomly

selected and compensated internal structure parameters (th, ρ and η) after the

�ltering with the MoI, k2 and Q. The core density ρCore distribution of Classes

1 and 2 have both an upper boundary of 21999 kg/m3 and the lower mantle

density ρLM an upper boundary of 14999 kg/m3 (Fig. A.1). The density upper

boundaries of Class 2 are respectively 21992 kg/m3 and 14995 kg/m3 (Fig. A.3).

The inner core density ρIC of Class 3 has an upper boundary of 30000 kg/m3 and

the one for the lower mantle ρLM is 14980 kg/m3 (Fig. A.5). These result from

the lower mantle density upper boundary (Table 3.1) set to ρLM < 15000 kg/m3

for each class. In addition to the core density upper boundary for both Class 1

and 2 set to ρCore < 22000 kg/m3. And �nally the inner core upper boundary

for Class 3 set to be ρIC < 30000 kg/m3 after the compensation.

The 1D histograms distribution (Figs. A.1, A.3 and A.5) illustrate the

�rst and third quantiles with black lines. The upper boundaries (> 75%) for

the ρCore/IC and ρLM are high and almost evenly distributed. This results in

a wide and high 25% − 75% percentile range of 11024 − 16684 kg/m3 and

5312 − 9259 kg/m3 (Table A.1) respectively for the core and lower mantle for

Class 1. As for Class 2 they are respectively of 9628 − 16342 kg/m3 and

5393 − 9196 kg/m3. Finally for Class 3 they are 14300 − 22840 kg/m3 and

4984− 7953 kg/m3for the inner core and lower mantle for Class 3 respectively.

This indicates that the MoI, estimated k2 and Q �lters do not constrain the

upper boundaries of the lower mantle and core/inner core densities. This is the

motivation for the density �ltering for the lower mantle (ρLM < 6000 kg/m3) and

core/inner core (ρCore/IC < 13000 kg/m3) [Trønnes et al., 2019; Shah et al., 2021].

These �lters will be referred to as the additional density �lters in Appendices and

they are applied to the 3 classes of models. The histograms before the additional

density �lters are in Appendices. This additional �lter reduces the number of

models to 962, 1076 and 417 that �t the observations for Class 1, Class 2 and

Class 3 respectively. Table 3.2 represents the �rst and third quartiles resulting

from the Monte-Carlo simulation after all the �lters applied.

Results for Class 1 corresponding to an entirely inviscid �uid core, are plot-

ted on Fig. 3.7, 3.8 and 3.9. The core thicknesses (Fig. 3.7 (e)) show that the

core is the best constrained with a 25%−75% percentile range of 2898−3372 km.

As for the lower and upper part of the mantle, their ranges are 1418− 2232 km

and 600 − 1417 km respectively. The 2D histogram of Fig. 3.9 (a) shows an



3.2. CONSTRAINTS ON THE VENUSIAN INTERNAL STRUCTURE 81

Table 3.2: Results of the Monte-Carlo sampling: the mean (50%) and �rst and

third quartiles (25% and 75%) given as 50%75%
25% of the layer thicknesses th (km),

their densities ρ (kg/m3) and their viscosities η (log10 Pa·s).

Models Layers thickness density viscosity

(km) (kg.m−3) (log10 Pa · s)

Fluid (Class 1) upper mantle 9631417600 376541233446 19.922.318.3

lower mantle 183922321418 489053604484 20.7821.8519.85

core 316633722898 10899119099892 −5

Solid (Class 2A) upper mantle 14322000886 399343073622 20.9523.4819

lower mantle 13132011719 505755614616 2122.8519.95

core 323534532940 10533117239376 14.9519.4413.35

Solid (Class 2B) upper mantle 10531295771 356238423275 20.8522.918.95

lower mantle 408689220 471852774174 20.923.4818.97

core 449946994244 721576116924 20.72119.85

Fluid/Solid (Class 3) upper mantle 9311357593 372240093380 2022.618.3

lower mantle 171720881329 493253654434 21.4822.7820.6

outer core 386715158 827699126723 −5

inner core 282331482408 114501222010450 15.617.7812.95

inverse relation between thLM and thUM. The models with thUM < 600 km, cor-

respond to a relatively thick lower mantle with thLM > 2232 km as shown in

Fig. 3.9 (a). As for the densities, the core and lower mantle are well constrained

with the 25% − 75% percentile range of 9892 − 11909 kg/m3 (Fig. 3.7 (f)) and

4484 − 5360 kg/m3 (Fig. 3.7 (d)) respectively. As for the upper mantle, its

1D histogram (Fig. 3.7 (b)) is more distributed between its lower boundary of
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2957 kg/m3 and upper boundary of 4697 kg/m3. Fig. 3.8 (c) shows that the

lower mantle has a viscosity ηLM > 1018.5 Pa · s whereas the upper mantle vis-

cosity is more evenly distributed through the explored range (Table 3.1) with

ηUM > 1015.3 Pa · s. Models of Aitta [2012] and Dumoulin et al. [2017] are illus-

trated in Figs. 3.7 and 3.9 in red and green respectively for comparison to our

study. They belong in the 25%− 75% quartiles of each th and ρ 1D histograms.

Results for Class 1 show the possibility of the existence of an entirely �uid core

in Venus along ranges for the rheological parameters.

Figure 3.7: 1D histograms for each layer thicknesses th (km) (a), (c) and (e) and
densities ρ (kg/m3) (b), (d) and (f) for Class 1 (the �uid core structure) for the
upper mantle, the lower mantle, and the core respectively. The solid black lines
correspond to the 50% quartile and the dashed black lines correspond from left to
right to the 25% and 75% quartiles respectively. The red and green lines represent
the Venus models of Aitta [2012] and Dumoulin et al. [2017] respectively.

Results for Class 2 corresponding to an entirely solid core, are plotted on

Fig. 3.10, 3.11 and 3.12. The distribution of the core thicknesses (Fig. 3.10 (c))

shows a bimodal tendency leading to the de�nition of two subclasses. The �rst
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Figure 3.8: 1D histograms for the viscosities η (log10 Pa · s) of the upper mantle
(a), the lower mantle (b), their viscosity ratio ηLM/ηUM (c) and MoI (d) for Class
1 (the �uid core structure). The solid black lines correspond to the 50% quartile
and the dashed black lines correspond from left to right to the 25% and 75%
quartiles respectively. The red line in (d) is the mean value of MoI (Table 1.1)

Figure 3.9: 2D histograms of the lower mantle and upper mantle thicknesses
th (km) (a), densities ρ (kg/m3) (b) and viscosities η (log10 Pa · s) (c) of Class
1: �uid core. The solid and dashed black lines represent the �rst, second and
third quartiles as Figs. 3.7 and 3.8. The red and green circles represent the
Venus models of Aitta [2012] and Dumoulin et al. [2017] respectively.

subclass Class 2A has a smaller core with thCore ≤ 3900 km and the second

subclass Class 2B has a larger core with thCore > 3900 km. The thickness and

density histograms (Fig. 3.10 (c) and (f)) show that the two peaks of the core
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thickness correspond to two di�erent peaks in the core density: between 7153

and 12991 kg/m3 and between 6473 and 10402 kg/m3. Class 2A corresponds

to a smaller core with 25% − 75% of 2940 − 3453 km with a higher density of

9376− 11723 kg/m3. It also has a larger lower mantle and a larger upper mantle

than Class 2B. Class 2B corresponds to a larger core of 4244 − 4699 km and

a lower density of 6924− 7611 kg/m3 with smaller and more constrained thick-

nesses for the lower mantle and upper mantle. The range of the thUM for Class

2A is 886− 2000 km. The thLM of Class 2B is smaller and better constrained

with a range of 220−689 km. The range of its thUM is 771−1295 km. Therefore

the lower and upper part of the mantle are thinner and better constrained in for

Class 2B. For both Classes 2A and 2B the lower mantle viscosity ηLM does

not show the same truncating as observed for Class 1 from the originally ex-

plored range between 1015 to 1025 Pa · s (Table 3.1). The upper mantle viscosity

for both classes shows a minor truncation with ηUM > 1015.3 Pa · s. The solid

core viscosity ηCore is �ltered from its originally explored range between 1011

to 1022 Pa · s (Table 3.1). In more details for Class 2A ηCore < 1016 Pa · s or
ηCore > 1018.3 Pa · s. As forClass 2B 97% of the models have ηCore > 1018.8 Pa · s.
From Table 3.2 which shows the 25% − 75% range for each studied parameter

we conclude that Class 2A is closer to Class 1. On the contrary the Class 2B

core has a larger radius and lower density, inconsistent to any terrestrial planets

or previous work. This shows the possibility of the existence of an entirely solid

core in Venus and the ranges of the internal structure parameters for this case.

The most likely case of its existence is Class 2A.
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Figure 3.10: 1D histograms for each layer thicknesses th (km) (a), (b) and (c)
and densities ρ (kg/m3) (d), (e) and (f) for Class 2 (the solid core structure) for
the lower mantle, the upper mantle and the core respectively. The solid black
lines correspond to the 50% quartile and the dashed black lines correspond from
left to right to the 25% and 75% quartiles respectively.



86 CHAPTER 3. VENUS TIDAL DEFORMATIONS

Figure 3.11: 1D histograms for the viscositites of the lower mantle (a), the upper
mantle (b) and the core (c) and (d) η (log10 Pa · s) the viscosity ratio ηLM/ηUM

(e) and the MoI (f) for Class 2 (the solid core structure). The solid black line
corresponds to the 50% quartile and the dashed black lines correspond from left
to right to the 25% and 75% quartiles respectively.

The 1D histograms for Class 3 (the case of a solid inner core and a �uid

outer core) are shown in Figs. 3.13 and 3.14, and the 2D histograms in Fig. 3.15.

If a model of Class 3 has a very thin or non existent outer core (thOC = 0) it

converges to a model as in Class 2 with only a solid core. If its inner core is very
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Figure 3.12: 2D histograms of the lower mantle and upper mantle thicknesses
th (km) (a), densities ρ (kg/m3) (b) and viscosities η (log10 Pa · s) (c) of Classes
2A and 2B: solid core. The solid and dashed black lines represent the �rst,
second and third quartiles as Figs. 3.10 and 3.11. The red line in (f) is the mean
value of MoI (Table 1.1)

thin or non existent (rIC = thIC = 0) it converges to a model as in Class 1 with

only a �uid core. The Fig. 3.13 (e) shows that 25% of the models have an outer

core less or equal to 158 km. Its percentile range is of 158−715 km. Its density is

not well constrained. It is fairly distributed between its 25% and 75% percentiles

of respectively 6723 kg/m3 and 9912 kg/m3. The thickness of the inner core has

a lower boundary of 571 km and an upper boundary of 4348 km. It is well

constrained with a 25%− 75% range of 2408− 3148 km. This indicates in Class

3 the supposed existence of a thick inner core of almost the same magnitude

of the �uid and solid cores of respectively Classes 1 and 2. Additionally its

25% percentile is 7% and 9% smaller than that of the core in Classes 1 and

2A respectively and 17% and 18% smaller than their respective 75% percentiles.

Therefore it is smaller than the core Classes 1 and 2A with a higher density.

The inner core density has a lower boundary of 8025 kg/m3. Its upper boundary

of 13000 kg/m3 is a result of the applied density �lters. More precisely the ρIC

25% is respectively 5.6% and 11.5% higher than that of Classes 1 and 2A. As
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Figure 3.13: 1D histograms for each layer thicknesses th (km) (a), (c), (e) and
(g) and densities ρ (kg/m3) (b), (d), (f) and (h) for Class 3 (the part solid part
�uid core structure) for the upper mantle, the lower mantle, the outer core and
the inner core respectively. The solid black lines correspond to the 50% quartile
and the dashed black lines correspond from left to right to the 25% and 75%
quartiles respectively.
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Figure 3.14: 1D histograms for the viscositites η (log10 Pa · s) of the upper
mantle (a), the lower mantle (b), and the inner core (c), the viscosity ratio
ηLM/ηUM (d) and the MoI (e) for Class 3: solid inner core and �uid outer core.
The solid black lines correspond to the 50% quartile and the dashed black lines
correspond from left to right to the 25% and 75% quartiles respectively. The red
line in (e) is the mean value of MoI (Table 1.1).

for the lower mantle it is well constrained and of the same magnitude of that

of Classes 1 and 2A and larger. In comparison to the one of Class 2B, thLM

of Class 3 has 6 times bigger 25% percentile. Its density ρLM has the same

magnitude as the other classes. It is the same case for the upper mantle density

ρUM. The upper mantle density ρUM is similar to the better constrained ones as

2B and speci�cally the closest to Classes 1. From Fig. 3.14 (c) the viscosity of

the inner core is not truncated from its originally explored range between 1010

to 1020 Pa · s (Table 3.1). The lower mantle viscosity is truncated as in the case
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of Classes 1 and 2 with ηLM ≥ 1018.3 Pa · s for all models. The upper mantle

has a minor truncation with ηLM ≥ 1015.6 Pa · s. Therefore Class 3 shows the

possibility of the existence of a part �uid part solid core in Venus as it is for the

Earth and the ranges of the internal structure parameters for this case. The solid

core part (inner core) exists in all models with a minimum radius of 571 km.

Figure 3.15: 2D histograms of the lower mantle and upper mantle thicknesses
th (km) (a) and (d), densities ρ (kg/m3) (b) and (e) and viscosities η (log10 Pa · s)
(c) of Class 3: solid inner core and �uid outer core. The solid and dashed black
lines represent the �rst, second and third quartiles as Fig. 3.13 and 3.14.

The Fig. 3.8 (b) illustrates the ratio ηLM/ηUM of Class 1. Only 0.62% of

the models (equivalently 6 models) have ηLM/ηUM = 1. These models fall in the

range between 1019.7 and 1021.3 Pa · s. As for the models with di�erent mantle

viscosities the remaining models are split almost evenly with slightly more models

having a more viscous lower mantle. It is similar for Class 2A (Fig. 3.11 (e))

where 1% of the models (equivalently 7 models) have an equal viscosity. These

models fall in the range between 1019.8 and 1023.9 Pa · s. More speci�cally 56.44%

for Class 1 and 51.28% for Class 2A have a more viscous lower mantle. And

42.93% for Class 1 and 47.72% for Class 2A have a more �uid lower mantle.

The Fig. 3.14 (d) shows the ratio ηLM/ηUM for Class 3. In this case 1.2% of
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the models (equivalently 5 models) have ηLM/ηUM = 1. These models fall in the

range between 1020.6 and 1022 Pa · s. In this case the remaining models are split

between 60.7% and 38.1% with more models having a more viscous lower mantle.

The Figs. 3.9 (c), 3.12 (c) and 3.15 (c) illustrate the 2D histograms of ηLM

and ηUM of these three classes. It is not the case for Class 2B where Fig. 3.12

(f) shows no signature relation between ηLM and ηUM. The models are more

evenly distributed than the other 3 classes. Even though statistically also 0.27%

of the models (equivalently 1 model) have ηLM/ηUM = 1. The remaining models

are split between 52.14% and 47.59% with more models having a more viscous

lower mantle which is similar to the previous classes. We �t both a Gaussian

and a bimodal distribution to distinguish the possible existence of two di�erent

peaks in the viscosity ratio histograms for each of the classes (Table 3.3). A

Table 3.3: Mean M, deviation σ and Chi-squared χ2 �tting of the ratio viscosities
ηLM/ηUM of each Class.

Gaussian distribution Bimodal distribution

M σ χ2
M1 σ1 M2 σ2 χ2

Class 1 0.99 0.26 1.5 0.87 0.058 1.13 0.19 0.91

Class 2 1 0.19 1.42 0.9 0.11 1.1 0.16 0.97

Class 2A 1 0.18 1.7 0.88 0.09 1.07 0.17 1.22

Class 2B 1 0.2 1.2 0.97 0.16 1.26 0.09 2.58

Class 3 1.03 0.21 1.42 0.96 0.12 1.25 0.13 1.2

χ2 value closer to 1 is a way to distinguish a better �t. Classes 1, 2A, 3

and �nally 2 which incorporates both Classes 2A and 2B �t better with a

bimodal distribution. Hence, for these cases, statistically more models have a

mantle divided by 2 mantle layers with di�erent viscosities. We illustrate in Fig.

3.8 (b) the bimodal distribution of the viscosity ratio ηLM/ηUM as an example.

As for Class 2B it �ts better with a Guassian distribution, hence has neither

correlation nor inverse correlation between the mantle viscosities. The analysis

for Classes 1, 2A and 3 shows a generally inverse relation between the viscosity

of lower and upper mantle with almost all the models concentrated in the zone
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with a more viscous lower mantle and a more �uid upper mantle or vice versa.

When the mantle viscosities are equal in both mantle layers, they fall within the

range of the average viscosities (1019 − 1023 Pa · s) from the explored range of

1015 − 1025 Pa · s (Table 3.1). It is not the case for Class 2A where no relation

between the mantle viscosities is observed.

3.3 Discussion

For Class 1 we compare our results with previous studies. Aitta [2012], as Du-

moulin et al. [2017], constructed a model of Venus considered as a scaled Earth

density model of the Earth, as a function of depth. They propose a Venus model

with a �uid core and a mantle divided by two major parts, a lower and a upper

mantle, as the Earth. They estimated the density and size at the core-mante

boundary (CMB) assuming the core is molten iron and has enough light mate-

rials to reach an estimated density at its center and that the lower and upper

mantle densities are similar to the Earth. The density estimation of each mantle

part has been made using the Earth PREM as reference. The model of Aitta

[2012] and the model V of Dumoulin et al. [2017] are encompassed in our �rst

and third quartiles of the Class 1 selected models (red and green lines in Fig.

3.7). Therefore the model of Aitta [2012] and the model V of [Dumoulin et al.,

2017] are in agreement with our work.

The work of Shah et al. [2021] studies di�erent structure models of Venus

depending on the Si and Mg content in both the mantle and the crust and the

S content in the core. They assumed that the segregation of the core of Venus

happened as a single-stage event and set three di�erent cases for the S content

de�ned by the ratio of the number of moles of iron sul�de in the total amounts

of moles in the core, the so-called mole fraction XCore
FeS , from the Earth models

as a reference. The three cases are a core having either a nominal S content

(XCore
FeS = 0.08 − 0.15), S-rich content (XCore

FeS = 0.2 − 0.5) or S-free (XCore
FeS = 0).

Their allowed MoI range is as considered in our work the MoI ±1σ estimated by

[Margot et al., 2021], which is from 0.313 to 0.361. They �nd that not the whole

range is possible, their total estimated MoI range is 0.317 − 0.351. The MoI is

calculated as our work (eq. 3.5) as a function of density, where the density ρ is

calculated from the pressure P and temperature T , and for that an equation of
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state for each material in the planet is required. More precisely a fourth order

Runge Kutta is applied with the equations of state from the center to the surface

to calculate P , T and consequently ρ as functions of the radius. Their results

are divided by 3 ranges of MoI, the full MoI range (0.317 − 0.351), a low range

corresponding to the 1% of the lowest value (0.317 − 0.326) and a high range

corresponding to the 1% of the highest value (0.323 − 0.351) in addition to the

3 cases for the core S content, hence 9 cases in total.

Table 3.4 shows the results of Shah et al. [2021] and our results with the MoI

range corresponding to their estimations for di�erent hypotheses. Their work

permits the possibility to have an entirely �uid core (rIC = 0) as our results for

Class 1, an entirely solid core (rIC = rOC) as Classes 2A and 2B and the pos-

sibility to have a partially �uid and partially solid core (rIC ≤ rOC) as Class 3.

More precisely in Shah et al. [2021] 6 of the 9 cases they consider might permit

each of the three di�erent core structures we propose (Classes 1, 2 and 3). The

other 3 cases require the existence of either the solid or the �uid part of the core.

More precisely the only one case that the solid part is required, hence has an en-

tirely or partially solid core is the one corresponding to a low MoI and an S-rich

core. In this case rIC > 0 and has a lower boundary of 1510 km. It is similar to

our results for Class 3 where the solid part of the core is required with the a ra-

dius lower boundary of the the set of models of 571 km. The only 2 cases where

the �uid part is required, hence the existence of an entirely or partially �uid

core, are when the upper boundary of the inner core radial boundary is smaller

than the lower boundary of the outer core, equivalently max{rIC} < min{rOC}.
They correspond to the high MoI cases and a nominal S or an S-rich core contents.

We �lter our models for each class with the estimated low, high and total MoI

ranges (Table 3.4). The Fig. 3.16 represents the radii ranges (r in km) as in 3.4.

For a better comparison we represent for each parameter both the 25% − 75%

(equivalently ±50%) percentile range and the wider ±2σ (equivalently ±95.5%)

range. Classes 1, 2A, 2B and 3 are denoted respectively by C1, C2A, C2B

and C3. The same goes with the S-free, nominal S and S-rich core respectively

denoted by SF, NS and SR. The Fig. 3.16 shows that for the low MoI models

the inner core of Class 3 is in agreement with each of the ranges for di�erent S

contents assumptions (S-free, nominal S and S-rich). The core/outer core ranges
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�t with all the S contents for Classes 1, 2A and 3. It is not the case for Class

2B which �ts with none of the results of Shah et al. [2021]. The lower mantle

ranges for Classes 1 and 3 �t with all the S contents ranges. This agreement

persists with the smaller range of 25%−75%. As for the one of Class 2A, it �ts

only with the wider deviation of ±2σ. And Class 2B does not �t with any of

the radii ranges from compared study. For the high MoI models the inner core of

Class 3 is not in agreement with the S-rich core content, it has an intersection

with the nominal S with the wider deviation of ±2σ and �ts with the S-free

range also for the 25% − 75% range. The core/outer core and lower mantle

ranges follow the same analysis of the results for low MoI except for the lower

mantle range for Class 2B which �ts for the wider range of ±2σ with each S

content ranges. Finally we conclude that Class 2B which corresponds to a thick

solid low density core does not �t with either of Shah et al. [2021] results.

Our results for the Earth like core size models, Classes 1, Classes 2A,

Classes 3, are in agreements with the results of [Shah et al., 2021] with an

S-free and in a lesser degree with a nominal S core. We previously mentioned

that a low Fe content is a proposed explanation of the density de�cit of Venus

in contrast to the Earth. Lewis [1972] suggests that another explanation of this

observation is the virtual absence of S in Venus. This proposition is compatible

with our results of an S-free core. Nevertheless Ringwood and Anderson [1977]

showed that this argument is insu�cient to cause the density de�cit in Venus.

They also argued that the sulfur content in the atmosphere of Venus points to

its presence in the planet and that the core was not the result of a catastrophic

formation. Additionally during core formation S and Si are incompatible in

the metal assuming the core formed in a low pressure single-stage formation

[Kilburn andWood, 1997] where Si becomes siderophile and S becomes lithophile.

Therefore that might explain the existence of S in the mantle or the crust and the

lack or poor existence of sulfur in the core. Suer et al. [2017] studied the behavior

of S at speci�c pressures and temperatures corresponding to a terrestrial core

formation in a deep magma ocean. They show experimentally that a core inferred

from metal�silicate partitioning would result in a non continuous S accretion.

This event might cause the core to be poor in its S content. [Bercovici et al.,

2022] shows that in some cases where a molten core forms from chondrites, S

forms immediately and rises to the mantle or erupt to space, therefore does not

accrete abundantly in the core. This represents di�erent hypotheses for the S
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Figure 3.16: Comparisons between layer boundaries (radii) from Shah et al.
[2021] and those obtained for the di�erent classes considering MoI segregation
as presented in Shah et al. [2021]. The denotations C1, C2A, C2B, C3 stand
for Class 1, Class 2A, Class 2B and Class 3, respectively and SF, NS and
SR stand for S-free, Nominal-S and S-rich core models as de�ned in Shah et al.
[2021], respectively. The errorbars are given at 2σ (courtesy: A. Fienga).

content of Venus using experimental results and observation on Venus, the Earth

and terrestrial planets generally.

3.4 Conclusion

In this work we explore randomly the space of parameters of Venus internal

structure using a Monte-Carlo sampling. We consider three di�erent classes for

the core structure, an entirely �uid core (Class 1), an entirely solid core Class 2

and a partially �uid and partially solid core (Class 3). The varying parameters

are the radius, the density and the viscosity of each layer, they follow a uniform



96 CHAPTER 3. VENUS TIDAL DEFORMATIONS

distribution. We use all resulting models to calculate their MoI and �lter out the

models that do not match the most recent estimated range of the MoI of Venus.

The TLN k2 and quality factor Q are then calculated with ALMA and used to �lter

the models compatible with the most recent estimated value kMPVO
2 and the most

likely estimated range for Q. Density �lters for the lower mantle and core/inner

core for each class is successively applied to select geophysically realistic models.

We end up with two di�erent classes for Class 2, one with a smaller core Class

2A and one with a larger core Class 2B. We deduce that for Classes 1, 2A

and 3 there is a contrast in the lower mantle and upper mantle viscosities and

an inverse correlation. For Class 3 the lower mantle tends to be more viscous

than the upper mantle. After �ltering with the geophysical parameters (MoI, k2,

Q) the Class 3 inner core that is the viscid part of the core is required in this

class. Hence it has a substantial contribution in the global gravity deformation

of Venus.

Shah et al. [2021] built Venus models under di�erent assumptions of chemical

content. After the comparison of their results with ours we draw the conclusion

that our admissible models of a �uid core Class 1, a solid core Class 2A and

a partially �uid and partially solid core Class 3 agree with their S-free core or

nominal S core models. The S content in the core of Venus might help to under-

stand the core formation. Di�erent hypotheses can explain the core S content

such as its accretion history (single-stage or multi-stage formation, continuous or

catastrophic, · · · ) and the pressure-temperature conditions. The S accretion in

the Earth core did not happen continuously during the planet accretion, which is

why it would not be a major part of light elements in the core [Suer et al., 2017].

This might also be the case for Venus. According to Ringwood and Anderson

[1977] the core of Venus formed continuously not catastrophically. Therefore S

and Si became incompatible during this single-stage formation and the sulfur

migrated out of the core [Kilburn and Wood, 1997]. This single-stage type of

core formation is another possibility to consider for Venus which would result in

S-poor/free core. Constructing di�erent models of Venus based on its chemical

content (as [Shah et al., 2021]) using geophysical constraints (as in our work) such

as the TLN k2, moment of inertia MoI and quality factor Q helps to constrain

the mineralogy of the planet.
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4. Coseismic and postseismic

deformations

One way to explore the internal structure of a planet is, as done in section

3.2, by theoretically calculating parameters (such as the TLN) and comparing

the results with geophysical observations. The same approach can be applied

to learn more about the geological activity of a planet. The mantle plumes

approaching the lithosphere cause seismic dislocations, rifts, volcanoes and other

geological features as the novae, coronae and arachnoids. Aiming at discovering

the geological activity of Venus, the BAT region is of interest (see chapter 1.1.1).

It contains several plumes in the mantle approaching the surface and causing

gravity anomalies, crustal uplift and surface deformations. The seismic rebound

is a consequence of the seismic dislocation and causes deformations, such as

displacement and gravity �eld variations that can be theoretically estimated. The

purpose of this chapter is to use the analogies between Venus and the Earth done

in previous studies [Phillips et al., 1981], [Mcgill et al., 1981], [Foster and Nimmo,

1996] and [Moores et al., 2013] and estimate the seismic rebound of hypothetical

Venusquakes. Following Foster and Nimmo [1996] and Moores et al. [2013] we

assume that Venusian rifting events in Beta Regio are similar to that of the East-

African rift (see section 1.1.1). We use the ASTRA code [Melini et al., 2008] to

calculate the seismic rebound both on the Earth and on Venus. We use as an

example, the dip-slip dislocation that took place in the East-African rift in 2009.

This approach aims at estimating the magnitude of such an event for a model of

Venus and to see if it can be observed from its consequent surface deformation

(observed by topography, altimetry, · · · ) or gravity �eld deformation.

99
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4.1 Comparison between Beta Regio on Venus

and the East-African rift

A triple junction is a spot on the surface of a planet where three di�erent litho-

sphere plates meet. The Afar Triple Junction is the intersection of the divergent

(i. e. extensional) plate boundaries of Nubian (sometimes called the African

plate), Somalian and the Arabian plates. The Afar depression (also called Afar

triangle, seen on Fig. 4.1 as the blue triangle in the North) is caused by the

Afar Triple Junction also called the Afro-Arabian rift system. Fig. 4.2 zooms in

the Afar depression (the triangular feature) in Fig. 4.1 and illustrates the three

plate intersection and motion. The Afar triple junction formed the Red Sea Rift,

the Aden Ridge and the EARS (Fig. 4.2) upon its intersection. The EARS span

for 6500 km from the Afar depression to Mozambique. In the Afar Region, there

is a 105 km2 complex of basaltic shield volcanoes called Manda Hararo (MH in

Fig. 4.2). Several authors [Malin and Saunders, 1977], [Mcgill et al., 1981] and

[Phillips et al., 1981] made the analogy based on the radar imagery and altime-

try between continental rifting on the Earth and rift systems on Venus. Mcgill

et al. [1981] compared the topographic features on Venus to the one on the Earth

based on the topographic maps from PVO altimetry data. They also suggested

that the Beta Regio rift system is a consequence of a crustal uplift. Its elevation

located at 27° N and 282° E caused the formation of a complex dome.

Mcgill et al. [1981] found it to be similar to domes in continental rift systems on

the Earth (precisely the Kenyan and Ethiopian domes) in the EARS. This hy-

pothesis that the Beta Regio elevation is a dome, not simply a volcano, suggested

that Venus has a dynamic mantle.

The e�ective elastic thickness of the Beta Regio estimated by [Smrekar, 1994]

(≈ 30 km) is similar to that of the EARS. Both rifts then have the ability

to withstand deformations. Foster and Nimmo [1996] found other similarities

between the Beta Regio and the EARS using Magellan Synthetic-aperture radar

(hereafter SAR). They measured the widths of the half grabens (rift basins),

hence the distances between the rift faults of both features. Foster and Nimmo

[1996] found that the rift systems have a maximum fault lengths of ≈ 100 km

and that the half grabens are ≈ 50 km and ≈ 150 km wide respectively for the

Beta Regio and the EARS.

Based on this conclusion and the one made about the e�ective elastic thick-
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Figure 4.1: From Moores et al. [2013] rift system on Venus spanning from Beta
Regio to Phoebe Regio (on the left) and the East-African rift region on the Earth
(on the right). The �gure is after Phillips and Malin [1984].

nesses of the two regions, Foster and Nimmo [1996] suggest that Venus in general

and EARS have strong lithospheres. They further deduced that Venus requires

higher shear stresses (≈ 80 MPa) to act on the bounding faults of the rift to

form half-graben in opposite to the EARS (≈ 1−10 MPa). The goal is to better

understand the surface deformation of Venus and the tendency of the lithosphere

to form rift systems, faults and �ssures. We use ASTRA to reproduce the e�ect

of the dip-slip fault of the rifting even of the 2005 EARS rifting event. How-

ever, we stress that the strength of the continental lithosphere depends largely

on its thermal state [Karner et al., 1983]. The high surface temperature of Venus

and its thick and dense atmosphere might cause the lithosphere to withstand

deformations more than the Earth.



102 CHAPTER 4. COSEISMIC AND POSTSEISMIC DEFORMATIONS

4.2 Manda Hararo-Dabbahu rifting of 2005

Figure 4.2: From Grandin et al. [2009] map of the Afar triple junction with
rift segments (black arrows) overlap zone with bookshelf faulting (dashed black
lines) and plate motion vectors (grey arrows). Asal-Ghoubbet (A), Alayta (AL),
Erta'Ale (EA) Main Ethiopian Rift (MER), Manda Hararo (MH), Manda Hararo
Goba'Ad (MH-G), Manda Inakir (MI), Tadjoura (T) and, Tat'Ali (TA).

A rifting event in September 2005 took place in Manda Hararo. It is called

the Manda Hararo-Dabbahu rifting event since it is located near the Dabbahu

volcano, a part of Manda Hararo. Grandin et al. [2009] used geodetic data such

as INSAR (Interferometric synthetic aperture radar), SAR (synthetic aperture

radar) and SPOT (satellite for observation of the Earth) images to construct the

3D displacement maps of the event. They suggest that the rifting event is a con-

sequence of a volume of magma arriving from a mantle plume near the surface,

causing the lithosphere to break and open a dike. This dike has a length of 65 km

and a depth of 10 km. The dike opening consequently ruptured two faults in the
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crust with a slip of 3 m on average. The estimated cumulative seismic moment

of both faults rupture is 3.5×1019 N·m assuming a crustal rigidity of 3×1010 Pa.

The resulting faults are two conjugate normal faults spanning from the surface

to a depth of 3 km, a 2 m depression in between and uplifted shoulders of 2 m.

After proposing the geometry and mechanism of the rifting event, Grandin et al.

[2009] recreated the surface deformation using Okada [1985] analytic solutions

for coseismic deformation, based on the Cagniard-de Hoop method. This method

does not compute the postseismic response (the viscoelastic deformation), but

the coseismic one (the elastic response). In addition to modeling seismic de-

formations, Okada [1985] solutions can also model a dike opening and a magma

chamber de�ation. The Earth model in this case is a homogeneous half space (�at

model, not spherical as set in ASTRA), elastic, compressible and non-gravitating.

In Okada [1985] only a model of the crust is needed, the coseismic response is

observed and then computed by Grandin et al. [2009]. We will use the two con-

jugate normal faults geometry modeling as in Grandin et al. [2009] and calculate

the coseismic response using ASTRA. We then compare our results of the surface

deformation to theirs. We recreate the part of the dip-slip normal faults south

of 12.55° N for an easier geometry for our test. This part of the rift is delimited

by a red rectangle in Fig. 4.3.

4.3 ASTRA benchmarking on the 2005 Manda

Hararo-Dabbahu rifting

4.3.1 The rift geometry

We use ASTRA on a model of the Earth to model the dip-slip seismic event which

took place in Manda Hararo-Dabbahu in 2005. Since the seismic deformation

is caused by relatively shallow faults (spanning from the surface to 3 km) the

layers other than the crust, the lower mantle and upper mantle are expected to

make negligible e�ect on the surface deformation. Nonetheless they are needed

to be set for the computation of the code since ASTRA uses a model of the planet

from the core to the surface as ALMA. Consequently some chosen parameters

are set as a basic model of the Earth. The radius r, density ρ and VS are

from PREM [Dziewonski and Anderson, 1981]. The rigidity µ is calculated as

µ = VS
2ρ. The inner core and the outer core densities are averaged as one
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homogeneous core. The transition zone is considered as a part of the upper

mantle therefore averaging the upper mantle and the transition zone to be one

homogeneous layer. As for the rheology and the viscosity η, the crust is set to

be elastic (η → +∞ Pa · s). The core is set to be an inviscid �uid (µ = 0 Pa and

η = 0 Pa · s). Since only the coseismic (elastic) response is calculated, the mantle

rheology and viscosity have no e�ect on the deformation. The lower mantle and

upper mantle viscosities are set to 1020 Pa · s and with a Maxwell viscoelastic

rheology. This rheology is chosen to be applied to the mantle since the source

depth is shallow (in the crust) therefore the mantle rheology is assumed to have

little e�ect on the outcome. This chapter is a preliminary work and it is mostly

done for future perspectives. Therefore, since no comparison between the two

rheologies have been done, a better known rheology (Maxwell) seems to be a

better choice than Andrade's law for the extent of this work. The characteristics

of the model are given in Table 4.1.

Table 4.1: The Earth model of four major layers: radius (r in km), density
(ρ in kg/m3), (S) seismic waves propagation velocity (VS in km/s), rigidity
(µ in Pa), viscosity (η in Pa · s) and rheology. Parameters r, ρ and VS are from
PREM [Dziewonski and Anderson, 1981], µ is calculated from VS and ρ.

Layers r (km) ρ (kg/m3) VS (km/s) η (Pa · s) µ (GPa) rheology

Crust 6371 2520 3.074 +∞ 23.8 elastic

Upper mantle 6346.6 3604 4.858 1020 85.8 Maxwell

Lower mantle 5701 4904 6.705 1020 220.5 Maxwell

Core 3480 10987 0 0 0 inviscid �uid

A seismic rupture geometry has a shape and dimension (rupture point, seg-

ment (1D), rectangle (2D), · · · ). Its cumulative seismic moment M0 is the sum

of the seismic moment of each point rupture. The geometry and seismic moment

in addition to its slip, rake and dip angle, model the rupture. These parameters

are set in ASTRA as explained in section 2.3. The normal fault dip-slip motions

of the Manda Hararo-Dabbahu rifting are modeled as two parallel faults with

each p = 28 rupture points, the distance between the rupture points is set to

be Lp = 2 km. We denote each rupture point from North to South by pi
w for

the Western fault and pi
e for the Eastern fault such that i ∈ {1, · · · , 28}. In

ASTRA when a 1D fault is modeled the rupture points are assumed to have equal
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seismic moments, precisely M0/p each. The normal faults have rupture points

with each di�erent seismic moments. We compute each rupture point with its

corresponding seismic moment and then add up the total deformation of the 2×p

rupture points.

The seismic moment is de�ned as the product of the rigidity and geometric

moment denoted by Mg, hence M0 = µMg. The geometric moment per unit

of length of the rupture denoted by Mg/km is given in Grandin et al. [2009] for

each 2 km (which is equal to Lp). Therefore, the geometric moment for each

rupture point is Mg = LpMg/km since they are spaced, as our modeling, by 2 km.

The cumulative geometric moment of the Western fault is the sum of its rupture

points geometric moments, equal to Mg
w = 0.66 km3. The cumulative geometric

moment of the Eastern fault is the sum of its rupture points geometric moments,

equal to Mg
e = 0.37 km3. Therefore the cumulative geometric moment of the

two slip-dip normal faults is the sum of the geometric moment of both fault

equal to Mg
w+e = Mg

e +Mg
w = 1.03 km3. Since M0 is correlated to µ, a higher

rigidity hence a higher resistance to deformation is equivalent to a higher seismic

moment. We can either use the crustal rigidity (both for the Earth model and

for calculating the seismic moment) of 30 GPa assumed in Grandin et al. [2009]

or the one we derived from the Earth PREM (Table 4.1) of µ = 23.8 GPa.

These approaches are equivalent. The seismic moment of the fault ruptures

(south of 12.55°N) is M0 = µMg
w+e, which is equal to 3.09 × 1019 N·m if we

assume the crustal rigidity of 30 GPa. It is a coherent value for the fault rupture

part that we recreate, since the total faulting event has a seismic moment of

3.5× 1019 N·m. We set the rigidity values derived from the Earth PREM (Table

4.1). We then calculate the seismic moment M0 for each rupture point pi (Tables

4.2 and 4.3). The cumulative seismic moment of the eastern fault is then M0
w =

1.571× 1019 N·m. The one of the Western fault is then M0
e = 8.812× 1018 N·m.

Finally the cumulative seismic moment of the faulting event is 2.452×1019 N·m.

From Grandin et al. [2009] we explore the geometry of the faults. At the sur-

face the Western fault center is approximately at (θws , φ
w
s ) = (40.585°E, 12.374°N)

and the Eastern one at (θes, φ
e
s) = (40.61°E, 12.384°N). Both faults make an ap-

proximate angle of γ = 22° with the North, inclined to the West. The distance

between the two faults, which is the distance across the rift system, is denoted

by Ls and given in Grandin et al. [2009] to be Ls = 3 km. The faults span from

the surface to a depth d = 3 km [Grandin et al., 2009] where they intersect.
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Table 4.2: The Eastern fault geometric moment per unit of length Mg/km for
each rupture point pi from Grandin et al. [2009]. The rupture points are spaced
by Lp. Each point geometric moment is obtained by Mg/km = LpMg where Lp is
in km and their seismic moment by M0 = µCrustMg.

Eastern fault

Mg/km Mg M0 θ φ

(10−3km3/km) (10−3km3) (1016N·m) (°) (°)

p1 0 0 0 40.517 12.597

p2 0.86 1.72 4.093 40.523 12.581

p3 2.6 5.2 12.376 40.530 12.564

p4 3.4 6.8 16.184 40.537 12.547

p5 2.6 5.2 12.376 40.544 12.531

p6 3 6 14.280 40.55 12.514

p7 2.2 4.4 10.472 40.557 12.497

p8 2.6 5.2 12.376 40.564 12.481

p9 4.3 8.6 20.468 40.57 12.464

p10 5.6 11.2 26.656 40.577 12.447

p11 6 12 28.560 40.584 12.431

p12 8.2 16.4 39.032 40.591 12.414

p13 9.5 19 45.220 40.597 12.397

p14 10 20 47.600 40.604 12.381

p15 9.5 19 45.220 40.611 12.364

p16 12 24 57.120 40.618 12.347

p17 14 28 66.640 40.624 12.331

p18 15 30 71.400 40.631 12.314

p19 14 28 66.640 40.638 12.297

p20 13 26 61.880 40.645 12.281

p21 11 22 52.360 40.651 12.264

p22 9.9 19.8 47.124 40.658 12.247

p23 8.6 17.2 40.936 40.665 12.230

p24 7.8 15.6 37.128 40.672 12.214

p25 5.6 11.2 26.656 40.678 12.197

p26 3 6 14.280 40.685 12.18

p27 0.43 0.86 2.046 40.692 12.164

p28 0.43 0.86 2.046 40.698 12.147

cumulative 185.12 370.24 8.812× 102 - -
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Table 4.3: The Western fault geometric moment per unit of length Mg/km for
each rupture point pi from Grandin et al. [2009]. The rupture points are spaced
by Lp. Each point geometric moment is obtained by Mg/km = LpMg where Lp is
in km and their seismic moment by M0 = µCrustMg.

Western fault

Mg/km Mg M0 θ φ

(10−3km3/km) (10−3km3) (1016N·m) (°) (°)

p1 6 12 28.560 40.504 12.592

p2 9.9 19.8 47.124 40.51 12.576

p3 16 32 76.160 40.517 12.559

p4 17 34 80.920 40.524 12.542

p5 18 36 85.680 40.531 12.525

p6 16 32 76.160 40.537 12.509

p7 16 32 76.160 40.544 12.492

p8 14 28 66.640 40.55 12.476

p9 22 44 104.720 40.557 12.459

p10 22 44 104.720 40.564 12.442

p11 21 42 99.960 40.571 12.425

p12 16 32 76.160 40.578 12.409

p13 12 24 57.120 40.584 12.392

p14 11 22 52.360 40.591 12.376

p15 12 24 57.120 40.598 12.359

p16 15 30 71.400 40.604 12.342

p17 13 26 61.880 40.611 12.326

p18 9 18 43.316 40.618 12.309

p19 10 20 47.600 40.625 12.292

p20 11 22 52.360 40.632 12.276

p21 9 19 47.124 40.638 12.259

p22 10 20 47.600 40.645 12.242

p23 7.3 14.6 34.748 40.652 12.225

p24 4.7 9.4 22.372 40.659 12.209

p25 1.7 3.4 8.092 40.665 12.192

p26 4.7 9.4 22.372 40.672 12.175

p27 3 6 14.280 40.679 12.159

p28 1.7 3.4 8.092 40.685 12.142

cumulative 330 660 1.571× 103 - -
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Therefore the point ruptures are modeled at the averaged center of depth of

dp = 1.5 km. Each fault dips at an angle of Λ = arctan[d/(Ls/2)] which is

Λ = 63.43°. Since the two are normal faults, the strike of the Eastern fault is

denoted by se and it is approximately se = π − γ, which in degrees is se = 158°.

The strike of the Western fault is denoted by se and it is as sw = se+π, which in

degrees is sw = 338°. Additionally the dip-slip fault rupture, which is a vertical

downwards movement of its hanging wall, is modeled with a rake angle of −90°

in ASTRA, this is the value set for each rupture point. The coordinates of the

centers of the faults at depth dp have the same coordinates as their epicenters

(projection at the surface). They are calculated from the coordinates of the cen-

ters faults at the surface (θws , φ
w
s ) and (θes, φ

e
s). The fault centers at depth dp are

shifted from the fault centers at the surface by ∆φ = (Ls/4) sinΛ = 0.671 km in

latitude and ∆θ = (Ls/4) cos Λ = 0.335 km in longitude.

The Earth has a radius of RE = 6371 km. To calculate∆φ and∆θ in degrees,

we multiply each by
360°

2πRE

. Therefore, ∆φ ≈ 0.006° and ∆θ ≈ 0.003°. Finally,

the fault centers at depth dp have coordinates (θ
w, φw) = (θws+∆θ, φw

s+∆φ) =

(40.591°, 12.376°) for the Western fault and (θe, φe) = (θes − ∆θ, φe
s − ∆φ) =

(40.604°, 12.381°) for the Eastern fault. They correspond to the point ruptures

number 14 out of p = 28, denoted by pe14 and pw14 in Tables 4.2 and 4.3 respectively.

The distance in km of two point pA = (r, θA, φA) and pB = (r, θB, φB) at a certain

radius r of a planet is calculated as:

D(pA, pB) = r arccos[sinφA sinφB + cosφA cosφB ∗ cos(θB − θA)]. (4.1)

The distance at the surface of the Earth is then calculated with Eq. 4.1 with

r = RE and at the rupture points with r = RE−dp. We verify using Eq. 4.1 that

the distance between (θw, φw) and (θe, φe) is equal to 1.5 km. We assume that

the two fault are perfectly linear and we model each with a segment centered at

these spherical coordinates p14
e = (d, θe, φe) and p14

w = (d, θw, φw). To calculate

the coordinates of the other rupture points, we use trigonometry to map the

linear distribution of pi along the faults, similar to what is done to calculate

the coordinates at depth of the faults centers. The faults span of a length of

56 km. Therefore the longitude and latitude variate between each rupture point

by ∆θ′ = Lp sin γ = 0.749 km and ∆φ′ = Lp cos γ = 1.854 km respectively. To

calculate ∆φ′ and ∆θ′ in degrees we multiply each by
360°

2π(RE − dp)
, therefore,
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∆φ′ ≈ 0.017° and ∆θ′ ≈ 0.007°. We set p/2−1 = 13 rupture points at the North

of the centers and p/2 = 14 rupture points at the South of the centers. The

Eastern fault rupture points to the North of its center (θe, φe) have coordinates

of (θe − [p/2 − i]∆θ′, φe + [p/2 − i]∆φ′) where i ∈ {1, · · · , 14}). The rupture

points of the Western fault to the North of its center (θw, φw) have coordinates

of (θw − [p/2 − i]∆θ′, φw + [p/2 − i]∆φ′) such that i ∈ {1, · · · , p/2}). The

eastern fault rupture points to the South of its center (θe, φe) have coordinates

of (θe + [i − p/2]∆θ′, φe − [i − p/2]∆φ′) such that i ∈ {p/2 + 1, · · · , p}). The

rupture points of the Western fault to the South of its center (θw, φw) have

coordinates of (θw+[i−p/2]∆θ′, φw−[i−p/2]∆φ′) such that i ∈ {p/2+1, · · · , p}).
The coordinates of the rupture points for the Eastern and Western faults are

respectively in Tables 4.2 and 4.3. We observe the deformation at t → 0 years,

corresponding to the coseismic (elastic) deformation. The observations are set

at the surface from 40.3°E to 40.8°E in longitude and from 11.9°E to 12.8°E in

latitude. The distances in degrees between the observations are of 0.005° for both

coordinates (longitude and latitude). We apply the fault geometry, the seismic

moments (Tables 4.2 and 4.3), the strike, the rake and the dip angles as well as

the observations time and space to ASTRA.

4.3.2 Results for the coseismic deformation

We compare our results with the one of Grandin et al. [2009]. The negative

vertical (also called radial) displacement dr correspond to a subsidence (sinking)

of the surface below its original location. The positive vertical displacement

dr correspond to an uplift (elevation) of the surface above its original location.

We obtain a maximum subsidence of 5.39 m and a maximum uplift of 1.36 m

(Fig. 4.4 and Table 4.4). Grandin et al. [2009] found a maximum of 2 m uplift

around the faults, caused by the uplift of the shoulders of the dip-slip faults and

a 2 m subsidence in between (Fig. 4.3). Their uplift value is close to the 1.36 m

we obtain. For the subsidence, our value (5.39 m) is more than 2 times bigger

than theirs (2 m). We calculated the e�ect of each point and added the total

deformation since each rupture point is modelled with a di�erent seismic moment

(Tables 4.2 and 4.3). Therefore in the areas where the rupture points are close

and near each rupture point, there is an exaggeration of the deformation. In the

case of this rifting event, the rupture points of the Western and Eastern sides
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are close (distance of 3 km) and their e�ect of subsidence is exaggerated where

they intersect, which is in the middle of the rift. Therefore a better comparison

with the results of Grandin et al. [2009] is done with the resulting uplift than

the subsidence. To avoid this exaggeration in future studies, solutions can be

applied as removing the values calculated near each rupture point at a certain

critical distance or as an attenuation of the results. This procedure is not done

in this preliminary chapter and it can indeed be discussed for future work.

Figure 4.3: Modeled surface deformation from Grandin et al. [2009] of the slip-
dip faults of the Manda Hararo-Dabbahu rifting of 2005 calculated with Okada
[1985] solution. The red rectangle delimits the part of the rift that we recreate.

The surface deformations outputs from ASTRA are the vertical displacement



4.3. ASTRA BENCHMARKINGON THE 2005 MANDAHARARO-DABBAHURIFTING111

Figure 4.4: The Earth modeled Earth surface deformation of the slip-dip faults
of the Manda Hararo-Dabbahu rifting of 2005 calculated with ASTRA. The black
dots are each rupture point epicenter.

Table 4.4: Maximum coseismic surface displacement for the Earth after the
Manda Hararo-Dabbahu normal faults dip-slip of 2005 calculated with ASTRA.

The Earth coseismic deformation

ASTRA Grandin et al. [2009]

uplift (m) 1.36 2

subsidence (m) 5.39 2

tangential (m) 1.874 2.5

dr and two components (dθ and dφ) for the tangential displacement (of perpen-

dicular directions), from which we calculate the total tangential displacement

dt =
√

d2θ + d2φ. Fig. 4.4 shows this deformation as arrows pointing to the direc-

tion of the deformation, and the length of the arrow scaled to its norm dt. The
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values of dt span from 0 m to 1.874 m (Fig. 4.4) which is in agreement with the

value of Grandin et al. [2009] of ≈ 2.5 m (Fig. 4.3).

4.4 Application on Venus

Shalygin et al. [2015] �rst found proof of volcanic activity on the surface of Venus

taking place in 2008 (section 1.1.2). No proof of activity was observed before,

therefore next missions will focus on other possible proof of geological activity

to dig deeper in this new discovery. One way to explore the geological activity

of a planet is by observing its surface deformation from its topography. The

Magellan mission collected radar altimetry data from the �rst 8 months (be-

tween September 1990 and May 1991) of its mission orbiting Venus. Two future

missions, VERITAS [Freeman and Smrekar, 2015] and EnVision [Ghail et al.,

2017] will be launched in 2027 and 2031, respectively (section 1.3). VERITAS

will map the surface of Venus with Venus Interferometric Synthetic Aperture

Radar (VISAR) instrument and EnVision with Venus Synthetic Aperture Radar

(VenSAR). Comparing the past topography maps of Venus with future maps will

give an outlook on its surface deformation. Magellan provided altimetry data of

the surface with the vertical and tangential resolutions in Table 4.5. The future

missions will provide an improved altimetry resolution, Table 4.5 shows the res-

olution of the past and future missions.

Table 4.5: Altimetry resolutions of past (Magellan) and future missions: VERI-
TAS [Freeman and Smrekar, 2015] and EnVision [Ghail et al., 2017].

vertical resolution (m) along track (km) cross track (km)

Magellan 10− 100 8− 15 12− 27

VERITAS 5 0.25 0.25

EnVision 2.5 - -

A radar (as VISAR and VenSAR) can also be used to achieve repeat-pass

interferometry (RPI) which uses sub-wavelength precision to detect changes in

the topography. The RPI can be done if the orbiter passes over the same lo-

cation repeatedly within a speci�c path. It measures the di�erential altimetry

between each observation with a better resolution than the global altimetry map.
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Additionally to the high-resolution altimetry, VERITAS will perform RPI over

at least 12 potentially active areas on the surface of Venus. Repeated cycles

separated by 243 days are needed for the RPI. It will provide measurements of

surface deformation with 2 mm precision [Smrekar et al., 2020].

We assume that Venus is subjected to a dip-slip event of the same geometry

and magnitude of the 2005 EARS rifting event. We deduce, in addition to its

coseismic e�ect, its resulting postseismic rebound for di�erent time-scales. The

di�erence between the postseismic rebound after some time t and the initial co-

seismic rebound is called the relaxation and it is due to the viscoelastic layers of

the planet. We estimate the relaxation after t = 3 years which corresponds to the

observations of VERITAS/EnVision (either each on its own or their combined

data). Additionally we calculate the deformation after t = 30 years correspond-

ing to the time di�erence between Magellan and VERITAS/EnVision and after

t = 100 years as an exaggerated time-scale for testing.

4.4.1 The rift geometry

We apply the same normal fault dip-slip event rupture modeling described in

section 4.3.1 on Venus. We use the model V of Dumoulin et al. [2017] detailed

in section 3.1.1. In this section, the lower and upper mantle rheologies follow

the Maxwell law instead of the Andrade law. The rupture point coordinates,

geometric moments and seismic moments are in Tables 4.2 and 4.3. The same

rupture depth and angles as in section 4.3.1 are applied. We recall having the

dip angle equal to 63.43°, the rake angle equal to −90° (same dip and rake angles

for both faults) and a strike angle se = 158° and sw = 338° for the Eastern

and Western faults respectively. The lower mantle and upper mantle are set to

have equal viscosities (ηLM = ηUM = 1020 Pa · s). The crust is �rst assumed to

be elastic (η → +∞ Pa · s) as for the application on the Earth (section 4.3.1).

The e�ect of the dense atmosphere is not considered. Neither is the e�ect of the

atmosphere loading on the surface and the high surface temperature which a�ect

the response of the faults in the lithosphere to seismic ruptures [Karner et al.,

1983] as mentioned in section 4.1.
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4.4.2 Results for the coseismic deformation

The resulting surface displacement (vertical and tangential) map for Venus is

similar to the one obtained for the Earth (Fig. 4.4 and Table 4.4). The max-

imum subsidence is 5.5 m and the maximum uplift is 1.5 m. The tangential

displacement has a maximum of 2.0 m. Since the Venus model V is based

on PREM (section 3.1) and the atmosphere is not considered, these similar re-

sults are expected. The faults are not scaled down taking into consideration

the slightly smaller size of Venus, therefore the same faults have a bigger ef-

fect on Venus than on the Earth. Hence the relatively minor di�erences in the

results between the Earth and Venus (Table 4.6) is caused by the smaller size

of Venus (by 5%). The incremental gravitational potential ϕ spans from 0 to

10.104 mJ/kg in the total deformed surface. The variation of gravity accelera-

tion ∆g has a minimum of −0.18 mGal and a maximum of 0.68 mGal (Figs. 4.5

and 4.6). These values are calculated on the surface and can not be done for

an elevation above the surface with ASTRA. EnVision will have a signi�cant im-

provement on the detection of the gravity �eld of Venus. Rosenblatt et al. [2021]

estimated the gravity error that will be observed in the future by the EnVision

orbiter mission. They cumulated the error up to 110 in degree and order and

estimated that the observation error spans from 2 to 20 mGal depending on the

location. Dampening the gravity acceleration variation ∆g (Fig. 4.6) taking into

account the elevation of a satellite (250 km for VERITAS and 220− 470 km for

EnVision) around Venus gives an estimation of the observation of the orbiter.

This approach approximates what a satellite would observe in terms of gravity

acceleration variation as a response to a seismic dislocation. The deformation is

exaggerated (section 4.3.2) between the faults and we did not take into account

its dampening relatively to the satellite elevation. Even with these two facts,

the future error of EnVision (2− 20 mGal) is too large to observe the maximum

gravity acceleration variation (|∆g| = 0.68 mGal) calculated by ASTRA for this

particular dip-slip faults rupture.

We test the e�ect of a contrast in between the lower mantle and the upper

mantle viscosities. From Fig. 3.7 (b) in section 3.2, representing ηLM/ηUM,

we assume two di�erent viscosity ratios: ηLM/ηUM = 10 and ηLM/ηUM = 0.1

corresponding to one higher and one lower order of magnitudes, respectively. We

�x ηUM = 1020 Pa · s, hence ηLM = 1021 Pa · s and ηLM = 1019 Pa · s respectively
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for each case. The coseismic rebound (both surface and gravity deformations) are

the same for the three di�erent mantle viscosity cases (Table 4.6). These results

are expected since, with the coseismic deformation, it is the elastic response and

not the relaxation (also called �ow) that is involved. The overall coseismic surface

displacement (Table 4.6): uplift (1.475 m), subsidence (5.504 m) and tangential

displacement (1.954 m) are of the same magnitude of the future EnVision and

VERITAS altimetry resolutions (Table 4.6). Therefore, the sizes of the rifts

will be visualized with the future Venus exploration missions. The new data

will provide more information about the geometry of the rift systems which will

constrain the magnitude and depth of the seismic dislocation that formed them.

4.4.3 Results for the postseismic deformation

We calculate the postseismic rebound for t = 3 years, t = 30 years and t =

100 years to estimate the magnitude of the surface and gravity deformations in

these time scales. Table 4.6 represents the Venusian coseismic and postseismic

rebounds for the same normal faults rupture as previously and for the di�erent

mantle viscosity assumptions. Having equal or di�erent lower mantle and upper

mantle viscosities does not a�ect the surface displacement signi�cantly, neither

on the short term (3 years) nor on the long term (30 years and 100 years). More

speci�cally the three di�erent mantle viscosities contrast tested (Table 4.6) each

cause a relaxation of almost 18 cm after 100 years. As the di�erence between

having a mantle viscosity contrast by ηLM = 10× ηUM and ηLM = ηUM/10 only

a�ects the relaxation by a magnitude of 10−3 cm after 100 years. Therefore, the

viscosity contrast of this magnitude is not strong enough to have an e�ect on the

displacement after a dip-slip event of that model, neither on the coseismic nor on

the postseismic rebounds. It also a�ects the incremental gravitational potential

ϕ negligibly by a maximum of 0.2%. As for the gravity acceleration variation

∆g, it is the same for di�erent mantle viscosity cases and variates negligibly from

the coseismic rebound (t → 0 years) and the postseismic rebound (t = 3 years,

t = 30 years and t = 100 years). Therefore, the postseismic gravity acceleration

variation for this event is too small to be observed by EnVision in the future.

The tangential displacement (Table 4.6) does not change after 3 and 30 years

and it increases by less than 1 mm after 100 years. The uplift and subsidence

change each by 6 mm after 30 years from the elastic response and by 18 mm after
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Table 4.6: Surface deformation for Venus after an event similar to the Manda
Hararo-Dabbahu normal faults dip-slip of 2005, modeled with ASTRA. The relax-
ation is the di�erence between the postseismic rebound after certain time t and
the initial coseismic rebound.

Venus coseismic and postseismic deformation

uplift subsidence tangential ϕ positive ∆g negative ∆g

(m) (m) (m) (mJ/kg) (mGal) (mGal)

Coseismic 1.475 5.504 1.954 10.104 0.680 0.182

Relaxation (mm) (mm) (mm) (mJ/kg) (mGal) (mGal)

ηLM = ηUM

3 years: 0.6 -0.6 0 -0.029 0 0

30 years: 5.96 -5.91 0 -0.281 0 0.001

100 years: 17.85 -17.7 0.7 -0.866 -0.002 0.003

ηLM = 10× ηUM

3 years: 0.6 −0.6 0 −0.028 0 0

30 years 5.96 −5.90 0 −0.275 0 0.001

100 years 17.82 −17.68 0.7 −0.851 −0.002 0.003

ηLM = ηUM/10

3 years: 0.6 −0.6 0 −0.029 0 0

30 years 5.97 −5.92 0 −0.285 0 0.001

100 years 17.86 −17.71 0.7 −0.875 −0.002 0.003

100 years. The altimetry map resolution of Magellan has errors that are too large

(Table 4.5) to be compared with the future missions for the viscoelastic relaxation

e�ect. We make conclusions based on the e�ect of an event of the magnitude of

the 2005 Manda Hararo-Dabbahu rifting. Magellan topography map resolution

is too low (Table 4.5) to observe the rifting event occurring between Magellan

and the future missions (EnVision and VERITAS). Consequently, the vertical

relaxation of 6 mm (Table 4.6) after t = 30 years will also not be observed, hence

the time scale of the rupture can not be estimated from comparison between

Magellan and the next generation altimetry. After an event of the magnitude of

the EARS event, the future altimetry experiments will not be able to localize or
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Figure 4.5: Modeled Venus coseismic incremental gravitational potential ϕ after
an event similar to the Manda Hararo-Dabbahu normal faults dip-slip of 2005
calculated with ASTRA. The black dots are each rupture point epicenter.

date such a past rifting event from comparisons between past and present maps

Table 4.6).

As for a same scale event occurring after 2027 when VERITAS and/or EnVi-

sion will be orbiting Venus, the coseismic deformation is big enough (Table 4.6)

to be observed by the altimetry (Table 4.5) resolution that will be achieved by

both missions. The RPI experiment will be done on more than 12 locations on

Venus that have not been disclosed yet. This will correspond to the deformation

di�erential resolution of 2 mm after each 243 days cycle. The relaxation of the

surface deformation induced by an event such as the one of the 2005 EARS,

will be 6 mm after 3 years for the vertical components (uplift and subsidence).

Therefore it has a magnitude comparable with the surface di�erential achieved

by the RPI after each cycle. Finally, with the RPI on these locations of interest

on Venus the relaxation of the rifts should be detected. It will mostly depend on
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Figure 4.6: Modeled Venus variation of gravity acceleration ∆g after an event
similar to the Manda Hararo-Dabbahu normal faults dip-slip of 2005, calculated
with ASTRA. The black dots are each rupture point epicenter.

the depth and the magnitude of the event and on the observation time t after its

release.

4.4.4 Sensitivity of the viscosity of the crust

The lithosphere strength to withstand fractures and rift formation is shown to

depend on its thermal state [Karner et al., 1983]. The high surface temperature

of Venus of 737 K and massive atmosphere might cause the crust to behave more

as a viscoelastic layer instead of an elastic layer. We set the mantle viscosity to

be homogeneous and equal to 1020 Pa · s. The goal here is to test the impact of

the crustal viscosity (ηCrust) on the vertical and tangential deformation for the

coseismic and postseismic (t = 30 years) deformation and whether in this case

the relaxation might be observed by comparing the Magellan altimetry map with

the future VERITAS/EnVision maps.
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We assume di�erent crustal viscosities spanning from one equal to the mantle

viscosity (1020 Pa · s) to the elastic limit as (> 1030 Pa · s). We calculate the

coseismic deformation and the postseismic deformation at t = 30 years. In Fig.

4.7, one can see that the vertical and tangential surface deformations tend to +∞
m for a low crustal viscosity (ηCrust → 0 Pa · s). This result is expected since the

very low viscosity for the crust is equivalent to assuming a �uid crust which will

enhance the deformation. The surface deformations are almost constant and of

the order of a few meters for a crust of equal or higher viscosity as the mantle

(ηCrust > 1020 Pa · s). Therefore, the surface deformation is barely a�ected by

Figure 4.7: Vertical (uplift and subsidence) and tangential deformations for the
cosesimic and the postseismic (t = 30 years) rebounds for Venus after a dip-slip
dislocation of the same geometry and magnitude of the 2005 EARS event.

if the crust is elastic ηCrust → +∞ Pa · s or if it has equal or similar viscosity

than the mantle (ηCrust = 1020 Pa · s). This little e�ect might be due to the
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shallow depth of only 1.5 km of this rift geometry. Taking this study further to

the di�erent crustal rigidity, the e�ect of a higher seismic moment and di�erent

seismic dislocation depths can be tested. Changing the seismic moment M0 will

consist of either �xing the rigidity and changing the geometric moment Mg or

�xing the geometric moment and changing the crustal rigidity.

4.5 Conclusion

Venus is active in the present day as it has been observed from past missions.

The NASA VERITAS and Davinci+ missions and the ESA EnVision missions

are orbiters and an atmospheric probe that will be sent to Venus in the near fu-

ture. They will be equipped with instruments to observe the geological activity

of the planet. These deformations can be observed by orbiters. We suggest the

possibility to observe a present seismic dislocation, or the signature of a seismic

dislocation by studying the elastic (coseismic) and viscoelastic (postseismic) de-

formation. In this chapter we test the results obtained with ASTRA from Melini

et al. [2008] on a model of the Earth and a model of Venus of the coseismic re-

bound from a dip-slip event. The applied seismic dislocation model is of the 2005

Manda Hararo-Dabbahu rifting. For the case of the Earth we compare our re-

sults with an other study [Grandin et al., 2009]. We show the accuracy of ASTRA

despite the simple planetary model used and the approximate approach for the

fault geometry. Afterwards the same fault geometry is applied to a model of

Venus. An event of the magnitude of the 2005 Manda Hararo-Dabbahu rifting is

not big enough to be observed by EnVision with the gravity �eld variation. The

e�ect of deeper rupture centers and bigger fault lengths should be considered in

future studies. As well as the satellite altitude from the planet from where the

gravity acceleration will be dampened. Furthermore the history of Venus should

also be taken into account, more speci�cally the evolution of the BAT region,

assuming several events taking place in di�erent timescales and their cumulative

e�ect on the present day gravity �eld of Venus.

EnVision and VERITAS will be an improvement on previous radar maps of

Venus from Magellan and VEx. This global view will give for the �rst time a new

map of possible active regions. An area of interest is the BAT region detailed

in section 1.1.2. Several seismic dislocations can be implemented at di�erent

locations on Venus with di�erent timescales in order to compute its present and
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future e�ects on the planet. The resulting deformations are both surface and

gravity �eld deformations which will be observed by EnVision and VERITAS in

the future. The overall deformation for such an event is of the same order of mag-

nitude of the future altimetry errors (2.5− 5 m from Table 4.5). Therefore, rift

zones will be better mapped with the future missions. The coseismic deforma-

tion is of the same magnitude of the future VERITAS/EnVision altimetry maps.

The uplift and subsidence of the rift mapped with such a resolution will be an

indication for the possible magnitude and depth of the which caused the event.

The relaxation (postseismic deformation) of such a rift is not big enough (6 mm

after 30 years) to be observed by comparison between past and future altimetry

maps. This is due to the low resolution of the Magellan altimetry map despite

the high resolution of future VERITAS/EnVision altimetry maps. The future

RPI measurements of VERITAS (2 mm) will be obtained for speci�c locations

on Venus for each 243 days. Therefore the relaxation is of similar magnitude

(0.6 mm after 3 years) of the RPI resolution which will play a signi�cant role in

the constraint of a potential seismic activity (location, depth and magnitude).
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5. Conclusions and perspectives

In this work (chapter 3) we �rst adapt the ALMA3 open-source fortran code [Melini

et al., 2022] to the study of Venus. We apply a model of Venus with a �uid core

from a pevious study [Dumoulin et al., 2017]. The mantle is assumed to have

a Maxwell rheology or an Andrade rheology with di�erent mantle viscosities

(1019,1020,1021 and 1021 Pa·s) and di�erent values of the Andrade experimental

parameter α. We calculate the tidal Love number k2 with ALMA3 for each of these

models and compare them with the results of Dumoulin et al. [2017]. We found

that the real and imaginary parts of the TLN k2, k
r
2 and ki

2, di�er maximum

from the results of Dumoulin et al. [2017] by 2% and 6% respectively depending

on the mantle viscosity and value of α. The e�ect of the atmosphere on k2 and

Q depends on the rheology, mantle viscosity and parameter α. The di�erence

between the lack and the presence of the atmosphere is maximum of 7.2%, 8.34%,

1.65% on the kr
2, k

i
2 and Q respectively. Therefore assuming that the mantle

viscosity of Venus is homogeneous we tested ALMA3 on a model of Venus and our

results are consistent with the results of Dumoulin et al. [2017]. Afterwards we

use geophysical constraints of Venus (mass, normalized moment of inertia, tidal

Love number k2 and quality factor Q) to explore possible scenarios of its internal

structure. We explore a wide range of internal structure parameters of Venus, the

thickness, density and viscosity of each major layer. We suppose the possibility

of three di�erent core structures: �uid core (Class 1), solid core (Class 2) and a

solid inner core with a �uid outer core (Class 3). The random selection of each

layer parameter is done with Monte-Carlo sampling before using the mass and

moment of inertia to select the approved models. Then with ALMA3 we calculate

the TLN k2 and quality factor Q and we use their estimated values for Venus

to �lter once again the models consistent with these parameters. We also add

a density �lter for the inner core/core and lower mantle for the three classes.

We end up with 65000 models that �t with the moment of inertia of Margot

et al. [2021] with ±1σ for each class. The remaining models after the rest of the

123
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�lters are applied are 962, 1076 and 417 models for Class 1, Class 2 and Class

3, respectively. We show that the possibility of having an entirely �uid core, a

solid core and a partially �uid and partially solid core cannot be ruled out by

only considering geophysical constraints. We also observe a contrast between the

viscosities of the lower mantle and the upper mantle. Only 1% of each class have

a homogeneous mantle viscosity. The di�erence between the lower mantle and

the upper mantle densities and thicknesses also point out the non-homogeneity

of the mantle. Our study which is based on geophysical constrains is compared

to the work of Shah et al. [2021] which is based on the chemical assessment of

the interior of Venus. We deduce that our models �t with their S-free models

by comparing the radii and densities of the layers. It is in agreement with

past studies which support the suggestion that the core of Venus is poor or free

of sulfur [Lewis, 1972; Trønnes et al., 2019]. The radio-science experiment of

EnVision and VERITAS will provide a global mapping of its gravity �eld which

will estimate k2. For example, for EnVision both the real and imaginary parts,

with an uncertainty of σ = 0.002. This will be an improvement of the past

estimation (σ = 0.033) of the real part of k2 from Magellan and PVO gravity

�eld. In the future this study can be expended by additionally randomly selecting

the rigidity of each layer. This will take this study further with the improvement

of the uncertainty of k2 (real and imaginary parts) consequently of the quality

factor Q. This better estimation of these two parameters will better �lter the

possible models.

In the second part of this work (chapter 4) we use a �xed model of Venus

with a �uid core from Dumoulin et al. [2017] to calculate the seismic rebound

of a fault dislocation. The seismic rebound is calculated by the fortran code

ASTRA [Melini et al., 2008]. We assess the e�ect it has on the gravity �eld and

surface displacement in the goal to conceive possible future detection of seismic

activity from orbiters. We apply the same geometry, depth and moment of the

2005Manda-Hararo Dabbahu rifting event on Venus. It consists of two conjugate

normal faults dip-slip movement with a geodetic moment of 3.5× 1019 Nm for a

crustal rigidity of 3×1010 Pa and 1.5 km depth. We found that its instantaneous

coseismic e�ect on the surface displacement is of 1.4 m shoulders uplift and 5.5 m

subsidence between the faults. This vertical deformation is of interest since it

is of the same magnitude of future altimetry measurements (2.5 m and 5 m for

EnVision and VERITAS, respectively). Therefore a similar event that caused a
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rift opening on the surface of Venus will be better mapped and constraints on the

depth, geometry and geodetic moment of the seismic dislocation. Several regions

rich in rift systems and have been already shown to be similar to locations on the

Earth are of interest such as Beta Regio and Parga and Hecate chasmata. The

postseismic rebound have been also calculated in the goal of comparing it with

the coseismic rebound in the frame of past and future Venus exploration missions.

Additionally to altimetry measurements, RPI experiments will be performed by

VERITAS on several locations of interest on the surface of Venus. It will provide

an estimation of the surface deformation for each 243 days cycle which will be an

indication on the surface relaxation between each measurement. The relaxation,

which is the di�erence between the postseismic and coseismic deformations, is

due to the viscoelastic nature of the planet. The relaxation we calculated is after

3 years of the seismic dislocation taking into consideration the RPI experiments

time-scales. Another one is after 30 years taking into account the di�erence

between Magellan and future VERITAS/EnVision altimetry acquisition. We

found that the Magellan topography resolution 10 − 100 m is too big to detect

any coseismic or postseismic deformations di�erence between the past and future

missions. We also found that the contrast in the mantle viscosity does not

a�ect the coseismic or the postseismic deformations signi�cantly. The vertical

relaxation after 3 years of an event as the 2005 Manda-Hararo Dabbahu rifting

is of 0.6 mm. It is close to the future RPI di�erential resolution (2 mm) after

each cycle. Therefore depending on the depth, size and magnitude of a rift,

its relaxation might be detected by future RPI measurements. This will make

it possible to compare theoretical estimation of the relaxation from codes as

ASTRA with geophysical experiments. And therefore constrain the geometry and

magnitude of the surface dislocation which formed a rift on Venus. The e�ect

of deeper rupture centers and bigger fault lengths will be considered in future

studies. I will continue working with the same team for the next few months

in the goal of exploring more future observations of seismic activity of Venus.

One way to explore the e�ect of one or more Venus-quakes is to use a random

Monte-Carlo sampling of di�erent locations, magnitudes, depths and geometries

of several seismic dislocations. The history of Venus and more speci�cally of

the BAT region should be taken into account. The goal is to gather the known

facts about several major rifts (for example Parga, Devana and Hecate chasmata)

as their approximate age, length and depth. We will vary these parameters as
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well as the random trigger time of several major seismic dislocations on di�erent

locations. We will estimate the total surface displacement of the surface and

assess its the potential past scenarios causing their formation by comparing our

calculation with their present topography.
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S U M M A R Y
The computation of the Love numbers (LNs) for a spherically symmetric self-gravitating
viscoelastic Earth is a classical problem in global geodynamics. Here we revisit the problem
of the numerical evaluation of loading and tidal LNs in the static limit for an incompressible
planetary body, adopting a Laplace inversion scheme based upon the Post-Widder formula
as an alternative to the traditional viscoelastic normal modes method. We also consider,
within the same framework, complex-valued, frequency-dependent LNs that describe the
response to a periodic forcing, which are paramount in the study of the tidal deformation of
planets. Furthermore, we numerically obtain the time-derivatives of LNs, suitable for modelling
geodetic signals in response to surface loads variations. A number of examples are shown, in
which time and frequency-dependent LNs are evaluated for the Earth and planets adopting
realistic rheological profiles. The numerical solution scheme is implemented in ALMA3 (the
plAnetary Love nuMbers cAlculator, version 3), an upgraded open-source Fortran 90 program
that computes the LNs for radially layered planetary bodies with a wide range of rheologies,
including transient laws like Andrade or Burgers.

Key words: Loading of the Earth; Tides and planetary waves; Transient deformation; Plan-
etary interiors.

1 I N T RO D U C T I O N

Love numbers (LNs), first introduced by A.E.H. Love in 1911, pro-
vide a complete description of the response of a planetary body
to external, surface or internal perturbations. In his seminal work,
Love (1911) defined the LNs in the context of computing the ra-
dial deformation and the perturbation of gravity potential for an
elastic, self-gravitating, homogeneous sphere that is subject to the
gravitational pull of a tide-raising body. This definition has been
subsequently extended by Shida (1912) to include also horizon-
tal displacements. In order to describe the response to surface
loads, an additional set of LNs, dubbed loading Love numbers,
has been introduced in order to describe the Earth’s response to
surface loads (see e.g. Munk & MacDonald 1960; Farrell 1972) and
today they are routinely used in the context of the Post Glacial
Rebound problem (Spada et al. 2011). In a similar way, shear
Love numbers represent the response to a shear stress acting on
the surface (Saito 1978) while dislocation Love numbers describe
deformations induced by internal point dislocations (see e.g. Sun &
Okubo 1993).

The LN formalism has been originally defined in the realm of
purely elastic deformations, for spherically symmetric Earth mod-
els consistent with global seismological observations. However,

invoking the Correspondence Principle in linear viscoelasticity (see
e.g. Christensen 1982), the LNs can be generalized to anelastic
models in a straightforward way. Currently, viscoelastic LNs are
a key ingredient of several geophysical applications involving the
time-dependent response of a spherically symmetric Earth model to
surface loads or endogenous perturbations. For example, they are
essential to the solution of the sea level equation (Farrell & Clark
1976) and are exploited in current numerical implementations of
the Glacial Isostatic Adjustment (GIA) problem, either on millen-
nial (see e.g. Spada & Melini 2019) or on decadal time scale (see
e.g. Melini et al. 2015).

Since LNs depend on the internal structure of a planet and on its
constitution, they can provide a means of establishing constraints
on some physical parameters of the planet interior on the basis of
geodetic measurements or astronomic observations (see e.g. Zhang
1992; Kellermann et al. 2018). For tidal periodic perturbations,
complex LNs can be defined in the frequency domain, accounting
for both the amplitude and phase lag of the response to a given tidal
frequency (Williams & Boggs 2015). Frequency-domain LNs are
widely used to constrain the interior structure of planetary bodies
on the basis of observations of tidal amplitude and phase lag (see
e.g. Sohl et al. 2003; Dumoulin et al. 2017; Tobie et al. 2019), to
study the state of stress of satellites induced by tidal forcings (see
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Computing planetary Love numbers 1503

e.g. Wahr et al. 2009) or to investigate the tidal response of the giant
planets (see e.g. Gavrilov & Zharkov 1977).

Viscoelastic LNs for a spherically symmetric, radially lay-
ered, self-gravitating planet are traditionally computed within the
framework of the ‘viscoelastic normal modes’ method introduced
by Peltier (1974), which relies upon the solution of Laplace-
transformed equilibrium equations using the formalism of elastic
propagators. As discussed for example by Spada & Boschi (2006)
and Melini et al. (2008), this approach becomes progressively less
feasible as the detail of the rheological model is increased or if
complex constitutive laws are considered. Several workarounds
have been proposed in the literature to avoid these shortcomings
(see, e.g. Rundle 1982; Friederich & Dalkolmo 1995; Riva & Ver-
meersen 2002; Tanaka et al. 2006). Among these, the Post-Widder
Laplace inversion formula (Post 1930; Widder 1934), first applied
by Spada & Boschi (2006) to the evaluation of viscoelastic LNs for
the Earth, has the advantage of maintaining unaltered the formal
structure of the viscoelastic normal modes and of allowing for a
straightforward implementation of complex rheological laws. For
periodic loads, alternative numerical integration schemes similar to
those developed by Takeuchi & Saito (1972) for the elastic problem
(Na & Baek 2011; Wang et al. 2012) have been applied to the vis-
coelastic case by integrating Fourier-transformed solutions (Tobie
et al. 2005, 2019).

In this work, we revisit the Post-Widder approach to the evalua-
tion of LNs with the aim of extending it to more general planetary
models, relaxing some of the assumptions originally made by Spada
& Boschi (2006). In particular, we introduce a layered core in the
Post-Widder formalism and obtain analytical expressions for the
time derivatives of LNs, needed to model geodetic velocities in re-
sponse to the variation of surface loads. In this respect, our approach
is complementary to that of Padovan et al. (2018), who derived a
semi-analytical solution for the fluid LNs using the propagator for-
malism. We implement our results in ALMA3 (the plAnetary Love
nuMbers cAlculator, version 3), an open-source code which extends
and generalizes the program originally released by Spada (2008).
ALMA3 introduces a range of new capabilities, including the evalua-
tion of frequency-domain LNs describing the response to periodic
forcings, suitable for studying tidal dissipation in the Earth and
planets.

This paper is organized as follows. In Section 2, we give a brief
outline of the theory underlying the computation of viscoelastic
LNs and of the application of the Post-Widder Laplace inversion
formula. In Section 3 we discuss some general aspects of ALMA3,
leaving the technical details to a User Manual. In Section 4, we
validate ALMA3 through some benchmarks between our numeri-
cal results and available reference solutions In Section 5, we dis-
cuss some numerical examples before drawing our conclusions in
Section 6.

2 M AT H E M AT I C A L B A C KG RO U N D

The details of the Post-Widder approach to numerical Laplace
inversion have been extensively discussed in previous works
(see Spada & Boschi 2006; Melini et al. 2008; Spada 2008).
In what follows, we only give a brief account of the Post-
Widder Laplace inversion method for the sake of illustrating how
the new features of ALMA3 have been implemented within its
context.

2.1 Viscoelastic normal modes

Closed-form analytical expressions for the LNs exist only for a
few extremely simplified planetary models. The first is the homo-
geneous, self-gravitating sphere, often referred to as the ‘Kelvin
sphere’ (Thomson 1863). The second is the two-layer, incompress-
ible, non self-gravitating model that has been solved analytically
by Wu & Ni (1996). For more complex models, LNs shall be com-
puted either through fully numerical integration of the equilibrium
equations, or by invoking semi-analytical schemes. Among the lat-
ter, the viscoelastic normal modes method, introduced by Peltier
(1974), relies upon the solution of the equilibrium equations in the
Laplace-transformed domain. Invoking the Correspondence Princi-
ple (e.g. Christensen 1982) the equilibrium equations can be cast
in a formally elastic form by defining a complex rigidity μ(s) that
depends on the rheology adopted and is a function of the Laplace
variable s.

Following Spada & Boschi (2006), at a given harmonic degree
n, the Laplace-transformed equations can be solved with standard
propagator methods, and their solution at the planet surface (r = a)
can be written in vector form as

x̃(s) = f̃ (s)
(

P1�(s)J
)(

P2�(s)J
)−1

b , (1)

where the tilde denotes Laplace-transformed quantities, vector
x̃(s) = (ũ, ṽ, ϕ̃)T contains the nth degree harmonic coefficients of
the vertical (ũ) and horizontal (ṽ) components of the displace-
ment field and the incremental potential (ϕ̃), f̃ (s) is the Laplace-
transformed time-history of the forcing term, P1 and P2 are appro-
priate 3 × 6 projection operators, J is a 6 × 3 array that accounts
for the boundary conditions at the core interface, and b is a three-
component vector expressing the surface boundary conditions (ei-
ther of loading or of tidal type). In eq. (1), �(s) is a 6 × 6 array that
propagates the solution from the core radius (r = c) to the planet
surface (r = a), which has the form:

�(s) =
1∏

k=N

Yk(rk+1, s)Y −1
k (rk, s) , (2)

where N is the number of homogeneous layers outside the planet
core, rk is the radius of the interface between the (k − 1)th and kth
layer, with r1 ≤... ≤ rN, r1 = c and rN + 1 = a. In eq. (2), Yk(r, s)
is the fundamental matrix that contains the six linearly independent
solutions of the equilibrium equations valid in the kth layer, whose
expressions are given analytically in Sabadini et al. (1982). When
incompressibility is assumed, the matrix Yk(r, s) depends upon the
rheological constitutive law through the functional form of the com-
plex rigidity μ(s), which replaces the elastic rigidity μ of the elastic
propagator (Wu & Peltier 1982). Table 1 lists expressions of μ(s)
for some rheological laws. For a fluid inviscid (i.e. zero viscosity)
core, the array J in eq. (1) is a 6 × 3 interface matrix whose compo-
nents are explicitly given by Sabadini et al. (1982); conversely, for
a solid core, J corresponds to the 6 × 3 portion of the fundamental
matrix for the core Yc(c, s) that contains the three solutions behaving
regularly for r �→ 0.

From the solution x̃(s) obtained in eq. (1), the Laplace-
transformed LNs are defined as:

h̃n(s) = m

a
ũn(s) (3)

l̃n(s) = m

a
ṽn(s) (4)

k̃n(s) = −1 − m

ag
ϕ̃n(s) , (5)
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Table 1. Complex rigidities μ(s) for the linear viscoelastic rhe-
ologies implemented in ALMA3. Here, μ is the elastic rigidity, η

is the Newtonian viscosity, μ2 and η2 are the rigidity and viscos-
ity of the transient element in the bi-viscous Burgers rheology,
respectively. In the Andrade rheological law, α is the creep pa-
rameter while �(x) is the Gamma function.

Rheological law Complex rigidity μ(s)

Hooke μ

Maxwell μs
s + μ/η

Newton η s

Kelvin μ + ηs

Burgers
μs

(
s + μ2

η2

)

s2 + s

(
μ

η
+ μ + μ2

η2

)
+ μ μ2

η η2

Andrade

[
1
μ + 1

ηs + �(α + 1) 1
μ

(
ηs
μ

)−α
]−1

where we have made the n-dependence explicit, m is the mass of the
planet and g is the unperturbed surface gravitational acceleration
(Farrell 1972; Wu & Peltier 1982). Using Cauchy’s residue theorem,
for Maxwell or generalized Maxwell rheologies eqs (3)–(5) can be
cast in the standard normal modes form, which for an impulsive
load ( f̃ (s) = 1) reads

L̃n(s) = Le
n +

NM∑
k=1

Lk
n

s − sk
n

, (6)

where L̃n(s) denotes any of the three LNs, Le
n is the elastic com-

ponent of the LN (i.e. the limit for s �→∞), Lk
n are the viscoelastic

components (residues), sk
n are the (real and negative) roots of the

secular equation Det(P2�(s)J) = 0, and where NM is the number of
viscoelastic normal modes, each corresponding to one root of the
secular equation (Spada & Boschi 2006). However, such standard
form is not always available, since for some particular rheologies the
complex rigidity μ(s) cannot be cast in the form of a rational frac-
tion (this occurs, for example, for the Andrade’s rheology, see Ta-
ble 1). This is one of the motivations for adopting non-conventional
Laplace inversion formulas like the one discussed in next section.

2.2 LNs in the time domain

To obtain the time-domain LNs hn(t), ln(t) and kn(t), it is necessary
to perform the inverse Laplace transform of eqs (3)–(5). Within the
viscoelastic normal-mode approach, this is usually accomplished
through an integration over a (modified) Bromwich path in the
complex plane, by invoking the residue theorem. In this case, the
inversion of eq. (6) yields the time-domain LN in the form:

Ln(t) = Le
nδ(t) + H (t)

NM∑
k=1

Lk
nesk

n t , (7)

where δ(t) is the Dirac delta and H(t) is the Heaviside step function
defined by eq. (14) below, and an impulsive time history is assumed
( f̃ (s) = 1). As discussed by Spada & Boschi (2006), the traditional
scheme of the viscoelastic normal modes suffers from a few but
significant shortcomings that, with models of increasing complex-
ity, effectively hinders a reliable numerical inverse transformation.
Indeed, the application of the residue theorem demands the identifi-
cation of the poles of the Laplace-transformed solutions (see eqs 3–
5), which are the roots of the secular polynomial equation whose
algebraic degree increases with the number of rheologically distinct

layers. In addition, its algebraic complexity may be unpractical to
handle, particularly for constitutive laws characterized by many
material parameters.

As shown by Spada & Boschi (2006) and Spada (2008), a pos-
sible way to circumvent these difficulties is to compute the inverse
Laplace transform through the Post-Widder (PW) formula (Post
1930; Widder 1934). We note, however, that other viable possibil-
ities exist, as the one recently discussed by Michel & Boy (2021),
who have used Fourier techniques to avoid some of the problems
inherent in the Laplace transform method. While Fourier techniques
may be more appropriate to take complex rheologies into account,
and are clearly more relevant to address LNs at tidal frequencies,
the motivation of our approach is to address in a unified frame-
work the computation of LNs describing both tidal and surface
loads. If F̃(s) = L(F(t)) is the Laplace transform of F(t), the PW
formula gives an asymptotic approximation of the inverse Laplace
transform L−1(F̃(s)) as a function of the nth derivatives of F̃(s)
evaluated along the real positive axis:

F(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1
[

dn

dsn
F̃(s)

]
s= n

t

. (8)

In general, an analytical expression for the nth derivative of F̃(s)
required in eq. (8) is not available. By using a recursive discrete
approximation of the derivative and rearranging the corresponding
terms, Gaver (1966) has shown that an equivalent expression is

F(t) = lim
n→∞

n ln 2

t

(
2n

n

) n∑
j=0

(−1) j

(
n

j

)
F̃

(
(n + j) ln 2

t

)
, (9)

where the inverse transform F(t) is expressed in terms of samples
of the Laplace transform F̃(s) on the real positive axis of the com-
plex plane. Since for a stably stratified incompressible planet all
the singularities of x̃(s) (eq. 1) are expected to be located along the
real negative axis that ensures the long-term gravitational stabil-
ity (Vermeersen & Mitrovica 2000), eq. (9) provides a strategy for
evaluating the time-dependent LNs without the numerical complex-
ities associated with the traditional contour integration. However,
as discussed by Valkó & Abate (2004), the numerical convergence
of (9) is logarithmically slow, and the oscillating terms can lead to
catastrophic loss of numerical precision. Stehfest (1970) has shown
that, for practical applications, the convergence of eq. (9) can be
accelerated by rewriting it in the form

F(t) = lim
M→∞

ln 2

t

2M∑
j=1

ζ j,M F̃

(
j ln 2

t

)
, (10)

where M is the order of the Gaver sequence and where the ζ con-
stants are

ζk,M = (−1)M+k
min(M,k)∑

j=floor( k+1
2 )

j M+1

M!

(
M

j

)(
2 j

j

)(
j

k − j

)
, (11)

with floor(x) being the greatest integer less or equal to x. Eq. (10)
can be applied to (1) to obtain an Mth order approximation of the
time-domain solution vector:

x(M)(t) = ln 2

t

2M∑
j=1

ζ j,M x̃

(
j ln 2

t

)
, (12)

from which the time-domain LNs can be readily obtained according
to eqs (3)–(5).
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Computing planetary Love numbers 1505

Recalling that the Laplace transform of F(t) and that of its time
derivative Ḟ(t) are related by L(Ḟ(t)) = sL(F(t)) − F(0−) and be-
ing x(t) = 0 for t < 0, it is also possible to write an asymptotic
approximation for the time derivative of the solution:

ẋ(M)(t) =
(

ln 2

t

)2 2M∑
j=1

j ζ j,M x̃

(
j ln 2

t

)
, (13)

from which the time derivative of the LNs ḣn(t), l̇n(t) and k̇n(t) can
be obtained according to eqs (3)–(5). The numerical computation
of the time-derivatives of the LNs according to eq. (13) is one of
the new features introduced in ALMA3.

The time dependence of the solution vector obtained through
eqs (12)–(13) is also determined by the time history of the forcing
term (either of loading or tidal type), whose Laplace transform f̃ (s)
appears in eq. (1). If the loading is instantaneously switched on at t =
0, its time history is represented by the Heaviside (left-continuous)
step function

H (t) =
{

0, t ≤ 0
1, t > 0 ,

(14)

whose Laplace transform is

H̃ (s) = L(H (t)) = 1

s
. (15)

Since any piecewise constant function can be expressed as a linear
combination of shifted Heaviside step functions (see, e.g. Spada &
Melini 2019), LNs obtained assuming the loading time history in
eq. (14) can be used to compute the response to arbitrary piecewise
constant loads. However, for some applications, it may be more
convenient to represent the load time history as a piecewise linear
function. It is easy to show that any such function can be written as
a linear combination of shifted elementary ramp functions of length
tr, of the type

R(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ≤ 0
t

tr
, 0 < t ≤ tr

1, t > tr ,

(16)

whose Laplace transform is

R̃(s) = L(R(t)) = 1

s
· 1 − e−str

s tr
. (17)

Laplace-transformed LNs corresponding to a stepwise or ramp-
wise forcing time history can be obtained by setting f̃ (s) = H̃ (s)
or f̃ (s) = R̃(s) in eq. (1). The rampwise forcing function defined
by eq. (16) is one of the new features introduced in ALMA3.

2.3 Frequency dependent LNs

In the context of planetary tidal deformation, it is important to de-
termine the response to an external periodic tidal potential. The pre-
vious version of ALMA was limited to the case of an instantaneously
applied forcing. For periodic potentials, the time dependence of the
forcing term has the oscillating form eiωt, where

ω = 2π

T
(18)

is the angular frequency of the forcing term, T is the period of the
oscillation and i = √−1 is the imaginary unit. In the time domain,
the solution vector can be cast in the form

xω(t) = xδ(t) ∗ eiωt , (19)

where xδ(t) is the time-domain response to an impulsive (δ-like) load
and the asterisk indicates the time convolution. Since the impulsive
load is a causal function, xδ(t) = 0 for t < 0 and eq. (19) can be
expressed as

xω(t) = eiωt

∫ ∞

0
xδ(t ′)e−iωt ′ dt ′ = x0(ω)eiωt , (20)

where x0(ω) is the Laplace transform of xδ(t) evaluated at s = iω.
By setting f̃ (s) = L(δ(t)) = 1 and s = iω in eq. (1), we obtain

x0(ω) =
(

P1�(iω)J
)(

P2�(iω)J
)−1

b . (21)

Hence, in analogy with eqs (3)–(5), the frequency-domain LNs
hn(ω), ln(ω) and kn(ω) are defined as

hn(ω) = m

a
un(ω) (22)

ln(ω) = m

a
vn(ω) (23)

kn(ω) = −1 − m

ag
ϕn(ω) , (24)

where un(ω), vn(ω) and ϕn(ω) are the three components of vector
x0(ω) = (un, vn, ϕn)T .

Since the frequency-domain LNs are complex numbers, in gen-
eral a phase difference exists between the variation of the exter-
nal periodic potential and the planet response, due to the energy
dissipation within the planetary mantle. If Ln(ω) is any of the
three frequency-dependent LNs, the corresponding time-domain
LNs are:

Ln(t) = Ln(ω)eiωt = |Ln(ω)|ei(ωt−φ) , (25)

where the phase lag φ is

tan φ = − Im(Ln (ω))

Re(Ln (ω))
, (26)

and Re(z) and Im(z) denote the real and the imaginary parts of z,
respectively. A vanishing phase lag (φ = 0) is only expected for
elastic planetary models (i.e. for Im(Ln(ω)) = 0), for which no
dissipation occurs. We remark that the evaluation of the frequency-
dependent LNs (eqs 22–24) does not require the application of the
Post-Widder method outlined in Section 2.2, since in this case no
inverse transform is to be evaluated.

Tidal dissipation is phenomenologically expressed in term of the
quality factor, Q (Kaula 1964; Goldreich & Soter 1966), which
according to for example Efroimsky & Lainey (2007) and Clausen
& Tilgner (2015) is related to the phase lag φ through

Q(ω) = 1

sin φ
= − |L2(ω)|

Im (L2(ω))
, (27)

thus implying Q = ∞ in the case of no dissipation. Tidal dissipation
is often measured in terms of the ratio

|k2|
Q

= |k2| sin φ = −Im k2 . (28)

For terrestrial bodies, the quality factor Q usually lies in a range
between 10 and 500 (Goldreich & Soter 1966; Murray & Dermott
2000). We remark that the quality factor Q is a phenomenological
parameter used when the internal rheology is unknown; if LNs
are computed by means of a viscoelastic model, it may be more
convenient to consider the imaginary part of k2, which is directly
proportional to dissipation (Segatz et al. 1988).
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3 A N OV E RV I E W O F ALMA3

Here we briefly outline how the solution scheme described in pre-
vious section is implemented in ALMA3, leaving the technical details
and practical considerations to the accompanying User Manual.
ALMA3 evaluates, for any given harmonic degree n, the time-domain
LNs (hn(t), ln(t), kn(t)), their time derivatives (ḣn(t), l̇n(t), k̇n(t)) and
the frequency-domain LNs (hn(ω), ln(ω), kn(ω)), either correspond-
ing to surface loading or to tidal boundary conditions. While the
original version of the code was limited to time-domain LNs, the
other two outputs represent new capabilities introduced by ALMA3.
The planetary model can include, in principle, any number of layers
in addition to a central core. Each of the layers can be characterized
by any of the rheological laws listed in Table 1, while the core can
also have a fluid inviscid rheology. As we show in Section 5, nu-
merical solutions obtained with ALMA3 are stable even with models
including a large number of layers, providing a way to approximate
rheologies whose parameters are varying continuously with radius.

Time-domain LNs are computed by evaluating numerically
eqs (12) and (13), assuming a time history of the forcing that can
be either a step function (eq. 14) or an elementary ramp function
(eq. 16). In the latter case, the duration tr of the loading phase can
be configured by the user. Since eqs (12) and (13) are singular for
t = 0, ALMA3 can compute time-domain LNs only for t > 0. In the
“elastic limit”, the LNs can be obtained either by sampling them at
a time t that is much smaller than the characteristic relaxation times
of the model, or by configuring the Hooke’s elastic rheology for
all the layers in the model. In the second case, the LNs will follow
the same time history of the forcing. As discussed in Section 2,
the sums in eqs (12) and (13) contain oscillating terms that can
lead to loss of precision due to catastrophic cancellation (Spada &
Boschi 2006). To avoid the consequent numerical degeneration of
the LNs, ALMA3 performs all computations in arbitrary-precision
floating point arithmetic, using the Fortran FMLIB library (Smith
1991, 2003).

When running ALMA3, the user shall configure both the number
D of significant digits used by the FMLIB library and the order
M of the Gaver sequence in eqs (12) and (13). As discussed by
Spada & Boschi (2006) and Spada (2008), higher values of D and
M ensure a better numerical stability and accuracy of the results,
but come at the cost of rapidly increasing computation time. All
the examples discussed in the next section have been obtained with
parameters D = 128 and M = 8. While these values ensure a good
stability in relatively simple models, a special care shall be devoted
to numerical convergence in case of models with a large number
of layers and/or when computing LNs to high harmonic degrees; in
that case, higher values of D and M may be needed to attain stable
results.

Complex-valued LNs are obtained by ALMA3 by directly sampling
eq. (21) at the requested frequencies ω, and therefore no numerical
Laplace antitransform is performed. While for frequency-domain
LNs the numerical instabilities associated with the Post-Widder
formula are avoided, the use of high-precision arithmetic may still be
appropriate, especially in case of models including a large number
of layers. ALMA3 does not directly compute the tidal phase lag φ, the
quality factor Q nor the k2/Q ratio, which can be readily obtained
from tabulated output values of the real and imaginary parts of LNs
through eqs (26)–(28).

Although ALMA3 is still limited to spherically symmetric and elas-
tically incompressible models, with respect to the version originally
released by Spada (2008) now the program includes some new sig-
nificant features aimed at increasing its versatility. These are: (i)

the evaluation of frequency-dependent loading and tidal LNs in re-
sponse to periodic forcings, (ii) the possibility of dealing with a
layered core that includes fluid and solid portions, (iii) the introduc-
tion of a ramp-shaped forcing function to facilitate the implementa-
tion of loading histories varying in a linear piecewise manner, (iv)
the implementation of the Andrade transient viscoelastic rheology
often used in the study of planetary deformations, (v) the explicit
evaluation of the derivatives of the LNs in the time domain to facili-
tate the computation of geodetic variations in deglaciated areas, (vi)
a short but exhaustive User Guide and (vii) a facilitated computa-
tion of frequency-dependent loading and tidal planetary LNs, with
pre-defined and easily customizable rheological profiles for some
terrestrial planets and moons.

4 B E N C H M A R K I N G ALMA3

In the following we discuss a suite of numerical benchmarks for
LNs computed by ALMA3. First, we consider a uniform, incompress-
ible, self-gravitating sphere with Maxwell rheology (the so-called
‘Kelvin sphere’) and compare tidal LNs computed numerically by
ALMA3 with well known analytical results. Then, we test numeri-
cal results from ALMA3 by reproducing the viscoelastic LNs for an
incompressible Earth model computed within the benchmark exer-
cise by Spada et al. (2011). Finally, we discuss the impact of the
incompressibility approximation assumed in ALMA3 by comparing
elastic and viscoeastic LNs for a realistic Earth model with recent
numerical results by Michel & Boy (2021), who use a compressible
model.

4.1 The viscoelastic Kelvin sphere

Simplified planetary models for which closed-form expressions for
the LNs are available are of particular relevance here, since they
allow an analytical benchmarking of the numerical solutions dis-
cussed in Section 2 and provided by ALMA3.

In what follows, we consider a spherical, homogeneous, self-
gravitating model, often referred to as the ‘Kelvin sphere’ (Thom-
son 1863), which can be extended to a viscoelastic rheology in a
straightforward manner. For example, adopting the complex mod-
ulus μ(s) appropriate for the Maxwell rheology (see Table 1), for
a Kelvin sphere of radius a, density ρ and surface gravity g, in the
Laplace domain the harmonic degree n = 2 LNs take the form

L̃2(s) = L f

1 + γ 2 s

s + 1/τ

, (29)

where L2 stands for any of (h2, l2, k2), Lf is the ‘fluid limit’ of L̃2(s)
(i.e. the value attained for s → 0), the Maxwell relaxation time is

τ = η

μ
(30)

and

γ 2 = 19

2

μ

ρga
(31)

is a positive non-dimensional constant. Note that g is a function of
a and ρ, since for the homogeneous sphere g = 4

3 πGρa, where G
is the universal gravitational constant.

After some algebra, (29) can be cast in the form

L̃2(s) = L f

1 + γ 2

(
1 + 1/τ − 1/τ ′

s + 1/τ ′

)
, (32)
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Figure 1. (a) Comparison between numerical (dotted) and analytical solu-
tions (solid) for the h2 and k2 tidal LNs of a Kelvin sphere with Maxwell
rheology having radius a = 6371 km, density ρ = 5.514 × 103 kg·m−3,
rigidity μ = 1.46 × 1011 Pa and viscosity η = 1021 Pa·s. (b) The same, for
the time derivatives of the LNs. Note that the time axis is logarithmic.

where for a tidal forcing, the fluid limits for degree n = 2 are
h f = 5

2 , l f = 3
4 and k f = 3

2 (see e.g. Lambeck 1988) and where we
have defined

τ ′ = (1 + γ 2)τ . (33)

From eq. (32), the LNs in the time domain can be immediately
computed analytically through an inverse Laplace transformation:

L2(t) = L f

1 + γ 2

[
δ(t) + H (t)

(
1

τ
− 1

τ ′

)
e−t/τ ′

]
, (34)

while for an external forcing characterized by a step-wise time-
history, the LNs L (H )

2 (t) are obtained by a time convolution with the
Heaviside function:

L (H )
2 (t) = L2(t) ∗ H (t) , (35)

that yields

L (H )
2 (t) = L f

1 + γ 2

[
1 + γ 2

(
1 − e−t/τ ′)]

, t ≥ 0 , (36)

from which the time derivative of L (H )
2 (t) is readily obtained:

L̇ (H )
2 (t) = L f

1 + γ 2

(
1

τ
− 1

τ ′

)
e−t/τ ′

, t > 0 . (37)

In Fig. 1(a), the dotted curves show the h2 (blue) and the k2 (red)
tidal LN of harmonic degree n = 2 obtained by a configuration of
ALMA3 that reproduces the Kelvin sphere (the parameters are given
in the Figure caption). The LNs, shown as a function of time, are
characterized by two asymptotes corresponding to the elastic and

fluid limits, respectively, and by a smooth transition in between. The
solid curves, obtained by the analytical expression given by eq. (36),
show an excellent agreement with the ALMA3 numerical solutions.
The same holds for the time-derivatives of these LNs, considered
in Fig. 1(b), where the analytical LNs (solid lines) are computed
according to eq. (37).

The frequency response of the Kelvin sphere for a periodic tidal
potential can be obtained by setting s = iω in eq. (29), which after
rearranging gives:

L2(ω) = L f

1 + γ 2

[
1 + γ 2

1 + (ωτ ′)2
− iγ 2 ωτ ′

1 + (ωτ ′)2

]
, (38)

which remarkably depends upon ω and τ only through the ωτ

product. Therefore, a change in the relaxation time τ shall result in
a shift of the frequency response of the Kelvin sphere, leaving its
shape unaltered.

Using eq. (38) in (26), the phase lag turns out to be:

tan φ = γ 2ωτ

1 + ω2ττ ′ , (39)

where it is easy to show that for frequency

ω0 = 1√
ττ ′ (40)

the maximum phase lag φ = φmax is attained, with

tan φmax = γ 2

2
√

1 + γ 2
. (41)

By using eq. (38) into (27), for the Kelvin sphere the quality factor
is

QK (ω) =
√

1 + 1

γ 4

(
ωτ ′ + 1

ωτ

)2

, (42)

which at ω = ω0 attains its minimum value

Qmin = 1 + 2

γ 2
. (43)

In Fig. 2(a), the dotted curve shows the phase lag φ as a function
of the tidal period T = 2π /ω, obtained by the same configuration
of ALMA3 described in the caption of Fig. 1. The solid line corre-
sponds to the analytical expression of φ(T) which can be obtained
from eq. (39), showing once again an excellent agreement with the
numerical results (dotted). Fig. 2(b) compares numerical results ob-
tained from ALMA3 for Q with the analytical expression for QK(T)
obtained from (42). By using in eq. (40) the numerical values of ρ,
a and μ assumed in Figs 1 and 2, the period T0 = 2π /ω0 is found
to scale with viscosity η as

T0 = (3.06 kyr)
( η

1021 Pa · s

)
, (44)

so that for η = 1021 Pa · s, representative of the Earth’s mantle bulk
viscosity (see e.g. Mitrovica 1996; Turcotte & Schubert 2014), the
maximum phase lag φmax � 41.9◦ and the minimum quality factor
Qmin � 1.5 are attained for T0 � 3 kyr, consistent with the results
shown in Fig. 2.

4.2 Community-agreed LNs for an incompressible Earth
model

Due to the relevance of viscoelastic LNs in a wide range of ap-
plications in Earth science, several numerical approaches for their
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Figure 2. Comparison between numerical (dotted) and analytical solutions
(solid) for the tidal phase lag φ (a) and quality factor Q (b) for the n = 2 tidal
LNs of a Kelvin sphere with Maxwell rheology, using the same parameters
detailed in the caption of Fig. 1.

evaluation have been independently developed and proposed in lit-
erature. This ignited the interest on benchmark exercises, in which
a set of agreed numerical results can be obtained and different ap-
proaches and methods can be cross-validated. Here we consider
a benchmark effort that has taken place in the framework of the
Glacial-Isostatic Adjustment community (Spada et al. 2011), in
which a set of reference viscoelastic LNs for an incompressible,
spherically symmetric Earth model has been derived through dif-
ferent numerical approaches, including viscoelastic normal modes,
spectral-finite elements and finite elements. This allows us to vali-
date our numerical results by implementing in ALMA3 the M3-L70-
V01 Earth model described in table 3 of Spada et al. (2011), which
includes a fluid inviscid core, three mantle layers with Maxwell
viscoelastic rheology and an elastic lithosphere, and comparing the
set of LNs from ALMA3 with reference results from the benchmark
exercise.

Fig. 3 shows elastic (h(e)
n , l (e)

n , k(e)
n ) and fluid LNs (h( f )

n , l ( f )
n , k( f )

n ),
both for the loading and tidal cases, computed by ALMA3 for the
M3-L70-V01 Earth model in the range of harmonic degrees 2 ≤ n
≤ 250. The elastic and fluid limits have been simulated in ALMA3

by sampling the time-dependent LNs at te = 10−5 kyr and tf =
1010 kyr, respectively. Reference results from Spada et al. (2011),
represented by solid lines in Fig. 3, are practically indistinguishable
from results obtained with ALMA3 over the whole range of harmonic
degrees, demonstrating the reliability of the numerical approach
used in ALMA3.

Fig. 4 shows time-dependent LNs hn(t), ln(t) and kn(t), for both the
loading and tidal cases, computed by ALMA3 for harmonic degrees
2 ≤ n ≤ 5 and for t between 10−3 and 105 kyr, a time range that

encompasses the complete transition between the elastic and fluid
limits. Also in this case, numerical results obtained by ALMA3 (shown
by symbols) are coincident with the reference LNs from Spada et al.
(2011), represented by solid lines.

4.3 Viscoleastic LNs for a PREM-layered Earth model

In this last benchmark, we compare numerical results from
ALMA3 with reference viscoelastic LNs for a realistic Earth model
which accounts for an elastically compressible rheology, in order to
assess its importance when modelling the tidal and loading response
of a large planetary body. In the context of Earth rotation, the role
of compressibility has been addressed by Vermeersen et al. (1996);
the reader is also referred to Sabadini et al. (2016) for a broader
presentation of the problem and to Renaud & Henning (2018) for a
discussion of the effects of compressibility in the realm of planetary
modelling.

Here we focus on numerical results recently obtained by Michel
& Boy (2021), who used Fourier techniques to compute frequency-
dependent viscoelastic LNs for periodic forcings both of loading
and tidal types. They have adopted an Earth model with the elastic
structure of PREM (Preliminary Reference Earth Model, Dziewon-
ski & Anderson 1981) and a fully liquid core, and replaced the
outer oceanic layer with a solid crust layer, adjusting crustal density
in such a way to keep the total Earth mass unchanged. Following
Michel & Boy (2021), we have built a discretized realization of
PREM suitable for ALMA3 with a fluid core and 28 homogeneous
mantle layers, which has been used to obtain the numerical results
discussed later.

Fig. 5 compares elastic LNs obtained by Michel & Boy (2021)
in the range of harmonic degrees between n = 2 and n = 10,000
with those computed with ALMA3 . The largest difference between
the two sets of LNs can be seen for hn in the loading case (Fig. 5a),
where the assumption of incompressibility leads to a significant
underestimation of deformation across the whole range of harmonic
degrees. Incompressible elasticity leads to an underestimation also
of the kn loading LN (Fig. 5b), although the differences are much
smaller and limited to the lowest harmonic degrees. Conversely,
for the tidal response (Figs 5c and d) the two sets of LNs turn
out to be almost overlapping, suggesting a minor impact of elastic
compressibility on tidal deformations.

In Fig. 6 we consider a periodic load and compare viscoelastic
tidal LNs h2 and k2 computed withALMA3 with corresponding results
from Michel & Boy (2021). Consistently with the elastic case, we
see that the incompressibility approximation used in ALMA3 gen-
erally results in smaller modelled deformations across the whole
range of forcing periods. The largest differences are found on |h2|
(Fig. 6a) and reach the ∼20 per cent level in the range of periods
between 105 and 106 d, while on |k2| (6b) the differences are much
smaller, reaching the ∼10 per cent level in the same range of pe-
riods. Similarly, for the phase lags (Figs 6c and d) we find a larger
difference for h2 than for k2, with the phase lag being remarkably
insensitive to compressibility up to forcing periods of the order of
104–105 d.

5 E X A M P L E S O F ALMA3 A P P L I C AT I O N S

In this Section we consider four applications showing the potential
of ALMA3 in different contexts. First, we will discuss the k2 tidal Love
number of Venus, based upon a realistic layering for the interior of
this planet. Second, we shall evaluate the tidal LNs for a simple
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Figure 3. Elastic (red) and fluid (blue) Love numbers as a function of the harmonic degree for the Earth model M3-L70-V01 defined in Spada et al. (2011).
Top (a–c) and bottom frames (d–f) show Love numbers for loading and tidal forcing, respectively. Symbols show numerical results obtained with ALMA3 while
solid lines represent reference results from the benchmark exercise by Spada et al. (2011).

model of the Saturn’s moon Enceladus, in order to show how an
internal fluid layer can be simulated as a low-viscosity Newtonian
fluid rheology and how a depth-dependent viscosity in a conductive
shell may be approximated using a sequence of thin homogeneous
layers. Third, we will evaluate a set of loading LNs suitable for
describing the transient response of the Earth to the melting of large
continental ice sheets. As a last example, we will demonstrate how
ALMA3 can simulate the tidal dissipation on the Moon using two
recent interior models based on seismological data. While these
numerical experiments are put in the context of state-of-the-art
planetary interior modelling, we remark that they are aimed only at
illustrating the modelling capabilities of ALMA3 .

5.1 Tidal deformation of Venus

The planet Venus is often referred to as ‘Earth’s twin planet’, since
its size and density differ only by ∼5 per cent from those of the
Earth. These similarities lead to the expectation that the chemical
composition of the Earth and Venus may be similar, with an iron-
rich core, a magnesium silicate mantle and a silicate crust (Kovach
& Anderson 1965; Lewis 1972; Anderson 1980). Despite these sim-
ilarities, there is a lack of constraints on the internal structure of
Venus. Therefore, its density and rigidity profiles are often assumed
to be a rescaled version of the Preliminary Reference Earth Model
(PREM) of Dziewonski & Anderson (1981), accounting for the dif-
ference in the planet’s radius and mass, as in Aitta (2012). One of
the main observational constraints on the planet’s interior, along its

mass and moment of inertia, is its k2 tidal LN. The current obser-
vational estimate of k2 for Venus is 0.295 ± 0.066 (2 × formal σ ),
and it has been inferred from Magellan and Pioneer Venus orbiter
spacecraft data (Konopliv & Yoder 1996). However, due to uncer-
tainties on k2, it is not possible to discriminate between a liquid and
a solid core (Dumoulin et al. 2017).

Here we use ALMA3 to reproduce results obtained by means of the
Venus model referred to as T hot

5 by Dumoulin et al. (2017), based on
the ‘hot temperature profile’ from Armann & Tackley (2012), hav-
ing a composition and hydrostatic pressure from the PREM model
of Dziewonski & Anderson (1981). The viscosity η of the mantle of
Venus is fixed and homogeneous; the crust is elastic (η → ∞), the
core is assumed to be inviscid (η = 0) and the rheology of the man-
tle follows Andrade’s law (see Table 1). The parameters of the T hot

5

model have been volume-averaged into the core, the lower mantle,
the upper mantle and the crust. The calculation of k2 is performed
at the tidal period of 58.4 d (Cottereau et al. 2011). In the work
of Dumoulin et al. (2017), k2 is computed by integrating the radial
functions associated with the gravitational potential, as defined by
Takeuchi & Saito (1972), hence the simplified formulation of Saito
(1974) relying on the radial function is used. The method is derived
from the classical theory of elastic body deformation and the energy
density integrals commonly used in the seismological community.
One of the main differences between their computation and the re-
sults presented here is the assumption about compressibility, since
Dumoulin et al. (2017) use a compressible planetary model, while
in ALMA3 an incompressible rheology is always assumed. In Fig. 7,
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Figure 4. Time-dependent viscoelastic Love numbers for the M3-L70-V01 Earth model at long spatial wavelengths (harmonic degrees 2 ≤ n ≤ 5). Top panels
(frames a–c) and bottom ones (d–f) show Love numbers for a loading and tidal forcing, respectively. The time history of the load is an Heaviside unit step
function. Symbols show numerical results obtained with ALMA3 while solid lines represent reference results from the benchmark exercise by Spada et al. (2011).

the two curves show the k2 tidal LN corresponding to Andrade creep
parameters α = 0.2 and α = 0.3 as a function of mantle viscosity
for the tidal period of 58.4 d. Each of the vertical red segments
corresponds to the interval of k2 values obtained by Dumoulin et al.
(2017) for discrete mantle viscosity values η = 1019, 1020, 1021 and
1022 Pa·s, respectively, and for a range of the Andrade creep pa-
rameter α in the interval between 0.2 and 0.3. The grey shaded area
illustrates the most recent observed value of k2 according to Kono-
pliv & Yoder (1996) to an uncertainty of 2 × formal σ . Fig. 7 shows
that the k2 values obtained with ALMA3 for the T hot

5 Venus model fit
well with the lower boundary of the compared study for each of the
discrete mantle viscosity values if an Andrade creep parameter α =
0.3 is assumed, while for α = 0.2 the modelled k2 slightly exceeds
the upper boundary of Dumoulin et al. (2017).

5.2 The tidal response of Enceladus

The scientific interest on Enceladus has gained considerable mo-
mentum after the 2005 Cassini flybys, which confirmed the icy na-
ture of its surface and evidenced the existence of water-rich plumes
emerging from the southern polar regions (Porco et al. 2006; Ivins
et al. 2020). These hint to the existence of a subsurface ocean,
heated by tidal dissipation in the core, where physical conditions
allowing life could be possible, in principle (for a review, see Hem-
ingway et al. 2018). The interior structure of Enceladus has been
thoroughly investigated in literature on the basis of observations

of its gravity field (Iess et al. 2014), tidal deformation and phys-
ical librations (see, e.g. Čadek et al. 2016), setting constraints on
the possible structure of the ice shell and of the underlying liquid
ocean (Roberts & Nimmo 2008), and on the composition of its core
(Roberts 2015). Lateral variations in the crustal thickness of Ence-
ladus have been inferred in studies about the isostatic response of
the satellite using gravity and topography data as constraints (see
Beuthe et al. 2016; Čadek et al. 2016, 2019) and in works dealing
with the computation of deformation and dissipation (see Souček
et al. 2016, 2019; Beuthe 2018, 2019). Indeed, from all the above
studies, it clearly emerges that a full insight into the tidal dynam-
ics of Enceladus could be only gained adopting 3-D models of its
internal structure.

While a thorough investigation of the signature of the interior
structure of Enceladus on its tidal response is far beyond the scope
of this work, here we set up a simple spherically symmetric model
with the purpose of illustrating how the LNs for a planetary body
including a fluid internal layer like Enceladus can be computed
with ALMA3, and how a radially-dependent viscosity structure can
be approximated with homogeneous layers. We define a spherically
symmetric model including an homogeneous inner solid core of
radius c = 192 km (Hemingway et al. 2018), surrounded by a liquid
water layer and an outer icy shell, and investigate the sensitivity of
the tidal LNs to the thickness of the ice layer, along the lines of
Roberts & Nimmo (2008) and Beuthe (2018). In our setup, the core
is modelled as a homogeneous elastic body with rigidity μc = 4 ×
1010 Pa and whose density is adjusted to ensure that, when varying
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Figure 5. Comparison between elastic Love numbers hn (left-hand panels) and kn (right-hand panels) obtained by Michel & Boy (2021) with numerical results
from ALMA3. In both cases, the Earth model has the elastic structure of PREM in the crust and in the mantle, while the core is modelled as an uniform, inviscid
fluid. Top and bottom panels show loading and tidal Love numbers, respectively.
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Figure 7. Tidal Love number k2 as a function of the mantle viscosity ηM

for the internal model T hot
5 of Dumoulin et al. (2017). The two curves corre-

spond to numerical results from ALMA3 assuming Andrade creep parameters
α = 0.2 and α = 0.3, respectively. Red vertical segments represent the range
of the estimates obtained by Dumoulin et al. (2017), while the grey shaded
area represents the most recent observed value of k2 and its 2σ uncertainty
according to Konopliv & Yoder (1996).

the thickness of the ice shell, the average bulk density of the model is
kept constant at ρb = 1610 kg·m−3. Since in ALMA3 a fluid inviscid
rheology can be prescribed only for the core, we approximate the
ocean layer as a low viscosity Newtonian fluid (ηw = 104 Pa·s).
The ice shell is modelled as a conductive Maxwell body whose
viscosity profile depends on the temperature T according to the
Arrhenius law:

η(T ) = ηm exp

[
Ea

Rg Tm

(
Tm

T
− 1

)]
, (45)

where Ea is the activation energy, Rg is the gas constant, Tm is the
temperature at the base if the ice shell and ηm is the ice viscosity at
T = Tm. Following Beuthe (2018), we use Ea = 59.4 J (mol · K)−1,
ηm = 1013 Pa·s and Tm = 273 K, and assume that the temperature
inside the ice shell varies with radius r according to

T (r ) = T
r−a

rb−a
m T

rb−r
rb−a

s , (46)

where rb is the bottom radius of the ice shell and Ts = 59 K is the
average surface temperature. Since in ALMA3 the rheological param-
eters must be constant inside each layer, we discretize the radial
viscosity profile given by eq. (45) using a onion-like structure of
homogeneous spherical shells. To assess the sensitivity of results to
the choice of discretization resolution, we perform three numerical
experiments in which the thickness of ice layers is set to 0.25, 0.5
and 1 km. The ice and water densities are set to ρ i = 930 kg·m−3

and ρw = 1020 kg·m−3, respectively, while the ice rigidity is set
to μi = 3.5 × 109 Pa, a value consistent with evidence from tidal
flexure of marine ice (Vaughan 1995) and laboratory experiments
(Cole & Durell 1995).

Fig. 8(a) shows the elastic tidal LNs h2, l2 and k2 for the Enceladus
model discussed above as a function of the thickness of the ice
shell. The elastic tidal response is strongly dependent on the ice
thickness, with the h2 LN decreasing from ∼0.090 for a 10-km-
thick shell to ∼0.015 for a 50-km-thick shell. It is of interest to
compare these results with elastic LNs obtained by Beuthe (2018)
in the uniform-shell approximation. It turns out that the h2 LN
shown in Fig. 8(a) is slightly smaller than corresponding results
from Beuthe (2018), with relative differences between the 5 and
10 per cent level, consistently with their estimate of the effect of
incompressibility. Fig. 8(b) shows the real and imaginary parts of
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Figure 8. Elastic harmonic degree 2 tidal Love numbers for Enceladus (a)
as a function of the thickness of the ice shell. In (b), real and imaginary parts
of the viscoelastic tidal Love number h2 for a forcing period of 1.73 d are
shown. Solid lines and dashed lines correspond to discretization steps for
the ice shell of 0.50 and 1.00 km, respectively. Please note that Im(k2) has
been multiplied by a factor of 10 to improve readability.

the h2 tidal LN as a function of the thickness of the ice layer for
a periodic load of period T = 1.37 d, which corresponds to the
shortest librational oscillation of Enceladus (Rambaux et al. 2010).
As discussed above, for this numerical experiment we implemented
in ALMA3 a radially variable viscosity profile by discretizing eq. (45)
into a series of uniform layers. Solid and dashed lines in Fig. 8(b)
show results obtained with a discretization step of 0.5 and 1.0 km,
respectively; we verified that with a step of 0.25 km the results
are virtually identical to those obtained with a step of 0.5 km. The
effect of the discretization is evident only on the imaginary part
of h2, where a coarse layer size of 1 km leads to a significant
overestimation of Im(k2) if the ice shell is thinner than ∼15 km. By
a visual comparison of the results of Fig. 8(b) with fig. 4 of Beuthe
(2018), we can see that the imaginary part of h2 is well reproduced,
while the real part is underestimated by the same level we found
for the elastic LNs; this difference is likely to be attributed to the
incompressibility approximation adopted in ALMA3.

5.3 Loading LNs for transient rheologies in the Earth’s
mantle

Loading LNs are key components in models of the response of the
Earth to the spatio-temporal variation of surface loads, including
the ongoing deformation due to the melting of the late Pleistocene

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/3/1502/6633660 by Bibliotheque de L'U

niversite de N
ice Sophia Antipolis user on 13 Septem

ber 2022



Computing planetary Love numbers 1513

 -2.4

 -2.0

 -1.6

 -1.2

 -0.8

 -0.4

 0.001  0.01  0.1  1  10  100

(a)
n=2

h n

VM5a
VM5a-BG
VM5a-AD

-12.0

-10.0

 -8.0

 -6.0

 -4.0

 -2.0

  0.0

 0.001  0.01  0.1  1  10  100

(b)
n=10

h n

-16.0

-12.0

 -8.0

 -4.0

  0.0

 0.001  0.01  0.1  1  10  100

(c)
n=100

h n

Time (kyr)

Figure 9. Loading Love number hn(t) for n = 2 (frame a), n = 10 (b) and n
= 100 (c), obtained with the VM5a viscosity model by Peltier & Drummond
(2008) and with two variants that assume Burgers (VM5a-BG) or Andrade
(VM5a-AD) rheologies in the upper mantle layers.

ice complexes (see e.g. Peltier & Drummond 2008; Purcell et al.
2016), the present-day and future response to climate-driven melting
of ice sheets and glaciers (Bamber & Riva 2010; Slangen 2012),
and deformations induced by the variation of hydrological loads
(Bevis et al. 2016; Silverii et al. 2016). Evidence from Global
Navigation Satellite System measurements of the time-dependent
surface deformation point to a possible transient nature of the mantle
in response to the regional-scale melting of ice sheets and to large
earthquakes (see, e.g. Pollitz 2003, 2005; Nield et al. 2014; Qiu
et al. 2018). Here, it is therefore of interest to present the outcomes
of some numerical experiments in which ALMA3 is configured to
compute the time-dependent h loading Love number assuming a
transient rheology in the mantle. Numerical estimates of hn(t) and
of its time derivative ḣn(t) would be needed, for instance, to model
the response to the thickness variation of a disc-shaped surface load,
as discussed by Bevis et al. (2016).

In Fig. 9 we show the time evolution of the hn(t) loading LN for
n = 2, 10 and 100, comparing the response obtained assuming the
VM5a viscosity model of Peltier & Drummond (2008), which is
fully based on a Maxwell rheology, with those expected if VM5a is
modified introducing a transient rheology in the upper mantle layers.
An Heaviside time history for the load is adopted throughout. In
model VM5a-BG we assumed a Burgers bi-viscous rheological law
in the upper mantle, with μ2 = μ1 and η2/η1 = 0.1 (see Table 1),
while in model VM5a-AD an Andrade rheology (Cottrell 1996)
with creep parameter α = 0.3 has been assumed for the upper
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Figure 10. Time-derivative of the loading Love number ḣn(t) for harmonic
degrees n = 2, 10 and 100, adopting the rheological models described in the
caption of Fig. 9.

mantle. For n = 2 (Fig. 9a) the responses obtained with the three
models almost overlap. Indeed, for long wavelengths (by Jean’s rule,
the wavelength corresponding to harmonic degree n is λ = 2πa

n+ 1
2

,

where a is Earth’s radius) the response to surface loads is mostly
sensitive to the structure of the lower mantle, where the three variants
of VM5a considered here have the same rheological properties.
Conversely, for n = 10 (Fig. 9b) we see a slightly faster response to
the loading for both transient models in the time range between 0.01
and 1 kyr. For n = 100, the transient response of VM5a-BG and
VM5a-AD becomes even more enhanced between 0.01 and 10 kyr.
It is worth to note that, for times less than ∼10 kyr, the two transient
versions of VM5a almost yield identical responses, suggesting that
an Andrade rheology in the Earth’s upper mantle might explain
the observed vertical transient deformations in the same way as
a Burgers rheology. The differences between the three models are
more evident in Fig. 10, where we use ALMA3 for computing the
time derivatives ḣn(t) (this option was not available in previous
versions of the program). Compared with the Maxwell model, the
transient ones show a significantly larger initial rate of vertical
displacement, that differ significantly for Burgers and Andrade.
The three rheologies provide comparable responses only ∼0.1 kyr
after loading. We shall remark, however, that the incompressiblity
approximation used in ALMA3 has a significant impact on the hn

Love number, as we discussed in Section 4.3, so the results shown
above must be taken with caution, and a more detailed analysis of
the impact of compressibility on the time evolution of LNs would
be in order.
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Figure 11. Radial profiles of density (a) and rigidity (b) for the Moon
models by Weber et al. (2011) (W11, blue) and Garcia et al. (2011, 2012)
(G12, red). Models W11 and G12 include 10 and 71 homogeneous layers,
respectively.

5.4 Tidal dissipation on the Moon

The Moon is the extraterrestrial body for which the most de-
tailed information about the internal structure is available. In addi-
tion to physical constraints from observations of tidal deforma-
tion (Williams et al. 2014), seismic experiments deployed dur-
ing the Apollo missions (Nunn et al. 2020) provided instrumen-
tal recordings of moonquakes which allowed the formulation of
a set of progressively refined interior models (see, e.g. Heffels
et al. 2021).

In this last numerical experiment, we configured ALMA3 to com-
pute tidal LNs for the Moon according to the two interior models
proposed by Weber et al. (2011,W11 hereafter) and Garcia et al.
(2011, 2012, G12 hereafter). Profiles of density ρ and rigidity μ for
models W11 and G12 are shown in Fig. 11, with the most notable
difference being that the former assumes an inner solid core and a
fluid outer core, while the latter contains an undifferentiated fluid
core. We emphasize that model G12 includes 70 rheological layers
in the mantle and crust, demonstrating the stability of ALMA3 with
densely layered planetary models. For both models, we assumed a
Maxwell rheology in the crust and the mantle, with a viscosity of
1020 Pa·s. A more realistic approach has been followed by Nimmo
et al. (2012), who have modelled the Moon’s LNs and dissipation
adopting an extended Burgers model for the mantle, which also
accounts for transient tidal deformations (Faul & Jackson 2015).
Such rheological model is not incorporated in the current release
of ALMA3, but it can be implemented by the user modifying the
source code in order to compute the corresponding complex rigid-
ity modulus μ(s). The fluid core has been modelled as a Newtonian
fluid with viscosity 104 Pa·s while in the inner core, for model
W11, we used a Maxwell rheology with a viscosity of 1016 Pa·s,
a value within the estimated ranges for the viscosity of the Earth
inner core (Buffett 1997; Dumberry & Mound 2010; Koot & Dumb-
erry 2011). Following the lines of Harada et al. (2014, 2016) and
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Figure 12. Modulus of the tidal Love number |k2| for the Moon (frame a),
phase lag (b) and quality factor (c) as a function of the LVZ viscosity, for a
forcing period T = 27.212 d. Blue and red curves correspond to the Moon
models by Weber et al. (2011) and Garcia et al. (2011, 2012) shown in
Fig. 11. Shaded areas in frames (a) and (c) correspond to the 1σ confidence
intervals for measured values of k2 and Q according to Williams & Boggs
(2015).

Organowski & Dumberry (2020), we defined a 150-km-thick low-
viscosity zone (LVZ) at the base of the mantle and computed the
k2 tidal LNs as a function of the LVZ viscosity for a forcing period
T = 27.212 d.

For both W11 and G12 models, Fig. 12 shows the dependence on
the LVZ viscosity of the k2 tidal LN (Fig. 12a), of its phase lag angle
(Fig. 12b) and of the quality factor Q (Fig. 12c). With the considered
setup, for a LVZ viscosity smaller than 1015 Pa·s the tidal response
of the two models is almost coincident, while for higher viscosities
model G12 predicts a stronger tidal dissipation. Shaded grey areas
in frames (Figs 12a and c) show 1σ confidence intervals for exper-
imental estimates of k2 (Williams et al. 2014) and Q (Williams &
Boggs 2015). With both models we obtain values of k2 within the
1σ interval for an LVZ viscosity smaller than about 5 × 1015 Pa·s;
interestingly, for that LVZ viscosity the G12 model predicts a qual-
ity factor Q within the measured range, while model W11 would
require a slightly higher LVZ viscosity (1016 Pa·s). Of course, a de-
tailed assessment of the ability of the two models to reproduce the
observed tidal LNs would be well beyond the scope of this work,
and several additional parameters potentially affecting the tidal re-
sponse (as e.g. the LVZ thickness or the core radius) would need to be
considered.
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6 C O N C LU S I O N S

We have revisited the Post-Widder approach in the context of eval-
uating viscoelastic LN and their time derivatives for arbitrary plan-
etary models. Our results are the basis of a new version of ALMA3, a
user friendly Fortran program that computes the LNs of a multilay-
ered, self-gravitating, spherically symmetric, incompressible plan-
etary model characterized by a linear viscoelastic rheology. ALMA3

can be suitably used to solve a wide range of problems, either in-
volving the surface loading or the tidal response of a rheologically
layered planet. By taking advantage of the Post-Widder Laplace
inversion method, the evaluation of the time-domain LNs is simpli-
fied, avoiding some of the limitations of the traditional viscoelastic
normal mode approach. Differently from previous implementations
(Spada 2008), ALMA3 can evaluate both time-domain and frequency-
domain LNs, for an extended set of linear viscoelastic constitutive
equations that also include a transient response, like Burgers or
Andrade rheologies. Generalized linear rheologies that until now
have been utilized in flat geometry like the one characterizing the
extended Burgers model (Ivins et al. 2020) could be possibly im-
plemented as well modifying the source code, if the corresponding
analytical expression of the complex rigidity modulus is available.
Furthermore, ALMA3 can compute the time-derivatives of the LNs,
and can deal with step-like and ramp-shaped forcing functions. The
resulting LNs can be linearly superposed to obtain the planet re-
sponse to arbitrary time evolving loads. Numerical results from
ALMA3 have been benchmarked with analytical expressions for a
uniform sphere and with a reference set of viscoelastic LNs for an
incompressible Earth model (Spada et al. 2011). The well-known
limitations of the incompressibility approximation in modelling de-
formations of large terrestrial bodies have been quantitatively as-
sessed by a comparison between numerical outputs of ALMA3 and
viscoelastic LNs recently obtained by Michel & Boy (2021) for a re-
alistic, compressible Earth model. The versatility of ALMA3 has then
been demonstrated by a few examples, in which the LNs and some
associated quantities like the quality factor Q, have been evaluated
for some multilayered models of planetary interiors characterized
by complex rheological profiles and by densely layered internal
structures.
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preliminary reference Moon model, Phys. Earth planet. Inter., 188(1),
96–113.

Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P., 2012.
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1. Introduction32

The terrestrial planet Venus is a reminiscent of the Earth, its twin planet33

in size and density, Venus being only 5% smaller than the Earth but also 2%34

less dense. Despite the similarities between Venus and the Earth, these two35

neighbors have evolved differently as witnessed by the lack of plate tectonics36

and of magnetic field on Venus. In addition it has a CO2-rich atmosphere37

92 times more massive than the Earth atmosphere. These discrepancies38

reflect differences in the internal structure, which can be constrained by Venus39

global properties (mass, radius and distance to the Sun) and geophysical40

experiments such as topography and gravity field. Most prominently is the41

latter and its global deformation due to tidal forces from the Sun.42

The presence of hot spots on the surface of Venus has been clearly demon-43

strated in 2008 with the measurements obtained by the mission Venus Ex-44

press (VEX) [1, 2]. The question is then not if Venus is active but more about45

the extent of its activity. As there is no indication of plate tectonics on Venus46

surface [3, 4], its volcanic activity should be driven by plumes emitted from47

the planet inner part to the crust. The high temperature and pressure at its48

surface (about 740 K for 93 bars respectively) can favor a more ductile crust49

than on the Earth. But how are the plumes produced ? From which layer of50

the planet do they come from ? These are some of the open questions that51

will be addressed by the future ESA and NASA missions to Venus [5, 6].52

In this paper, we use tidal deformations as a tool for exploring the in-53

ternal structure of the planet and more specifically its mantle and its core.54

2



Tidal forces on a planet cause deformations and mass redistributions in its55

interior leading to surface motions and variations of its gravity field that56

can be observed with geophysical and geophysical experiments. [7] studied57

a compressible homogeneous Earth model and showed that the resulting ef-58

fects could be represented by a set of dimensionless numbers, so-called Love59

numbers (hereafter LNs). These Love numbers reflect the internal structure60

of the planet as they describe the capability of the planet to resist or enhance61

a forcing excitation. In particular, the change in the gravitational field of a62

planet due to the influence of an external gravity field, more specifically its63

degree 2, is primarily described by the tidal Love number (hereafter TLN) k64

of degree 2, denoted by k2. This number can be estimated from the analysis65

of spacecraft radio tracking data. Indeed, Venus TLN k2 has been estimated66

by [8] from Doppler tracking of Magellan and Pioneer Venus orbiters (PVO)67

to k2 = 0.295 ± 0.066 at 2-σ. Due to these uncertainties, the distinction68

between liquid and solid core cannot be done [9, 10]. Therefore constraining69

the internal structure of Venus is still limited for now [11]. The absence of70

a present internal magnetic field is not a constraint since both a liquid and71

a solid core are compatible with this observation [12]. However, from the72

TLNs, it is possible to estimate the energy loss of the planet induced by its73

visco-elastic deformation at tidal frequencies. It is quantified by the quality74

factor, Q (as defined i.e. by [13]), and can be derived by considering the75

real and the imaginary parts of the TLNs. Generic studies about the energy76

loss of the solar system planets [14] as well as works on the long term spin77

evolution of Venus [15] provide an interval of possible values for Q for Venus78

3



ranging from 20 to 100.79

In this paper we compute the TLN k2 and the quality factor Q of Venus80

using the Fortran program, ALMA3 [16] which calculates the TLNs of a81

planet under a periodic forcing. In the first part of the paper, we present the82

basics of the tidal deformation modeling and the internal model of Venus.83

We explore the effect of two different rheologies (Andrade and Maxwell) and84

the influence of the thick and dense Venusian atmosphere on k2 and Q. In85

the second part of the paper, we randomly explore the space of the internal86

structure parameters of Venus (densities, viscosities and thicknesses) for 4-87

and 5-layer models. We use the mass, the total moment of inertia, the value88

of k2 derived from observations and the expected limits for the quality factor89

Q to filter out models that are not consistent with these constraints. We end90

up with new scenarii for the internal structure of Venus. In particular, we91

demonstrate that the mantle of Venus presents a clear gradient of viscosities92

that exists whatever the state of the deeper layers: with or without solid93

inner core.94

2. Model of Venus tidal deformation95

2.1. Tidal modeling96

The LNs describe how a planetary body deforms in response to a sur-97

face load or an external potential and how consequently the equipotential98

surfaces are modified [7, 17, 16]. The open-source Fortran 90 program99

ALMA [18, 17, 16] computes LNs using a semi-analytical approach and for100

a spherically symmetric (1 dimensional), incompressible, visco-elastic model101

4



of planet. The method used in ALMA is similar to the Visco-elastic Normal-102

Modes method (hereafter VNM) introduced by [19] and is based on finding103

the solution of the equilibrium equations in the Laplace domain.104

This method invokes the correspondence principal of linear viscoleastic-105

ity [19] which states that the time dependent viscoelastic response can be106

simplified to be solved as the elastic problem. The LNs in ALMA3 are there-107

fore calculated in the Laplace domain (dependent on the Lalpace variable s)108

and the Post-Widder formula serves to transform them to the time domain109

[16]. The planet is assumed to be incompressible therefore the six linearly110

independent solutions of the equilibrium equations depend on the complex111

rigidity (also called shear modulus) µ̃(s) of each layer rheology [20] . In this112

case the elastic rigidity µ is replaced by the complex rigidity µ̃ [21]. In Sect.113

2.2 we discuss more the assumption of incompressibility and its effect on the114

calculation of the TLN k2. The so called Post-Widder method [22, 23] is a115

non-conventional technique for the Laplace inversion introduced and bench-116

marked in [18], which allows to overcome most of the intrinsic limitations of117

VNMs. The original version of ALMA aimed at evaluating time-dependent118

LNs for a forcing term following a Heaviside time-history. In the case of the119

tidal excitation, the forcing is periodic and in the case of Venus, the main120

tides are induced by the Sun with a period of 58 days [24]. We then use a121

modified version of the code, called ALMA3, to estimate the TLNs for a peri-122

odic forcing acting on the planet [25, 16]. The difference between ALMA and123

ALMA3 is that the latter accommodates the periodic perturbations which are124

used in this study to constrain the internal structure of Venus. This version125

5



ALMA3 calculates the complex LNs for a given tidal frequency ω where the126

real and imaginary parts account for the amplitude and phase lag of the tidal127

response, respectively. The quality factor Q can then be estimated [14, 13],128

it is calculated as the ratio between the module of k2 and its imaginary part,129

see Eq. 2. The theory behind ALMA3 is explained in details in [25] and [16].130

To compute the LNs, it is required as inputs a multi-layered discretization131

of seismological 1D profiles (i.e., radius, density, rigidity and viscosity) such132

as the PREM (Preliminary reference Earth model) model [26].133

The models tested in this work have 4 or 5 layers excluding the atmo-134

sphere. A first family of models is constituted by 4 homogeneous layers : the135

core, the lower mantle, the upper mantle and the crust. The core could be136

either fluid (with a viscosity up to 10−5 Pa.s) or solid (with a viscosity up to137

1031 Pa.s). The models with 5 layers are constituted as the models of 4 layer138

with an additional solid inner core. The layers for the lower and the upper139

mantle are visco-elastic and are described with an Andrade rheology. Finally140

the crust is supposed to be elastic. Fig. 1 shows the profiles in densities (top141

figure) and viscosities (bottom figure) used for the initial benchmark of the142

model. They will be one of the possible profiles explored with the Monte143

Carlo exploration (see Sect. 3.2).144

The Andrade’s creep function used in this work was deduced from the145

work of both [28] and [29] on the olivine mineral, a magnesium iron silicate,146

the primary component of the Earth upper mantle. The creep function J(ω)147
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defining the complex rigidity is given by148

J(ω) =
1

µ
+ β

Γ(α + 1)

(iω)α
− i

ηω
(1)

with Γ is the Gamma function, µ is the rigidity, η the viscosity, α and β149

respectively determine the transient response duration in the primary creep150

and its amplitude. More precisely β, characterizes the intensity of anelastic151

friction in the material. [29] approximated β which is affixed to the density152

of the defects, to be β = µα−1/ηα. The value of α has been determined for153

olivine-rich rocks to be within [0.1, 0.5], most often within [0.2, 0.4] (see [29]).154

The transient creep of this law translates in the second addend of Eq. 1.155

2.2. Validation: Comparisons to [10]156

In [10], the TLN k2 is computed by integrating the radial functions asso-157

ciated with the gravitational potential (denoted as y5), as defined by [30], for158

10 models with different profiles for the density ρ and the rigidity µ but all159

with a fluid core. These 10 models are based on either hot or cold temper-160

ature profiles, as well as composition and hydrostatic pressure from PREM161

[26] extrapolation. For comparison with our estimates, we select the model162

5 from the hot temperature models in [10], denoted in their work as V5-Thot,163

referred hereafter as V. If the composition of Venus was the same as the164

Earth, its density would have been 1.9% higher than that of the currently165

observed one [31, 32, 33]. One reasonable explanation is that Venus and the166

Earth have different internal structures, and for example, Venus could have167

a lower Fe content than that of the Earth [27]. This is the basis of the model168
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V which was constructed in [10] using possible Earth-like chemical content169

with a lower Fe from [27], specifically 8.1 wt%, i. e. percentage by weight,170

FeO in the mantle and the crust.171

The density and rigidity profiles corresponding to the model V are shown172

on Fig. 1. The model V was also chosen by [10] to explore different scenarii173

for the state of the core other than a fluid one, assuming a solid or a par-174

tially fluid and partially solid core. The model has 500 layers excluding the175

atmosphere, hence a radial discretization with a step a slightly larger than 12176

km. The model V was also used by [34] to test the effect of incompressibility.177

Since their code can be applied to both an incompressible and a compressible178

model, the TLN k2 has been calculated for model V for both cases. For this179

test the mantle is assumed to follow an Andrade rheology with α = 0.3 with180

an homogeneous viscosity of 1020 Pa.s. The real part of k2 was found to be181

equal to 0.2948 (4.6% smaller than the compressible case). The imaginary182

part of k2 was found to be the same for both cases with a value of 0.0087.183

In what follows the models are assumed to be incompressible resulting from184

the limitations of ALMA3.185

We average sub-layers corresponding to each major Venus layer as a single186

homogeneous layer, reducing our initial 500 layers to 4 layers without the187

atmosphere. To compare with model V, we used for the mantle the Andrade188

rheology and four viscosities η from 1019 to 1022 Pa.s. Fig. 2 (a) and Fig.189

2 (b) show the real part (i.e. kr
2) and the imaginary part (i.e. ki

2) of k2,190

respectively. Their associated quality factor Q is calculated as191
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Q−1 =
ki
2

∥k2∥
, (2)

with ∥k2∥ =

√
kr
2
2 + ki

2
2
and is shown on Fig. 2 (c) and (d). The variation of192

α in [10] is between 0.2 and 0.3. The range of values obtained in their work is193

represented as vertical lines on Fig. 2. For the real part kr
2 and for α between194

0.2 and 0.3, the maximum difference between our results and those of [10] are195

between 1.8% to 2% depending on the mantle viscosity. These differences are196

consistent with the one obtained by [35] when comparing different methods197

to calculate the LN for a Heaviside step function.198

Furthermore, as one can see on Fig. 2 (a), the results for kr
2 for α ∈199

[0.2, 0.4] [29] (corresponding to olivine-rich rocks) fall into the range of the200

most recently estimated value from the data of Magellan and PVO, therefore201

denoted by kMPVO
2 , with a ±2-σ uncertainty. For each mantle viscosity, the202

maximum difference in the values of kr
2 we obtain for this range of α is203

decreasing with increasing mantle viscosity.204

The imaginary part ki
2 (see Fig. 2 (b)), for η ≥ 1020 Pa.s, is different205

between 1% and 2.16% from our estimates and the ones of [10] depending on206

α. Nonetheless, for η = 1019 Pa.s, the peak of the curve falls in the range of207

α ∈ [0.2, 0.3]. This is the main difference between the two results, since the208

range of variations between the minimum and maximum for the considered209

α range values is smaller than that of [10]. The quality factor Q is illustrated210

on Fig. 2 (c) and (d). One can see on these figures that its span (upper and211

lower boundaries) for α ∈ [0.2, 0.3] is almost the same for each viscosity.212
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Finally, we expand the viscosity range of the mantle from the previous213

range of 1019, 1020, 1021 and 1022 Pa.s to a complete variation from the214

elastic limit (η → 1031 Pa.s) to the fluid one (η → 0 Pa.s) for α = 0.3. Fig.215

3 shows the real k2 as a function of the mantle viscosity. The red dashed216

line illustrates the range of the observed k2 with the Magellan and PVO 2-σ217

uncertainty. One can see that for η > 1018 Pa.s the value of k2 fits well into218

the observed range. This is consistent with the choice of the mantle viscosity219

range of [10], also used in our study for the comparison.220

2.3. Sensitivity to rheologies221

A comparison between the Andrade and the Maxwell rheologies is per-222

formed in order to assess the model (and more specifically the quality factor)223

sensitivity to the rheologies. Fig. 4 shows the results of kr
2, k

i
2 and Q for224

different mantle viscosities η in Pa.s.225

On Fig. 4 (a), one can see that kr
2 is decreasing with increasing α, for226

each of the explored mantle viscosities. They also approach the results for a227

Maxwell mantle with higher α values, which is also the case for ki
2 (see Fig.228

4 (b)). The quality factor, plotted on Fig. 4 (c) and (d), is sensitive to the229

mantle viscosity η for both Maxwell and Andrade rheologies. However, when230

Q computed with the Andrade rheology remains in the expected interval231

of 20 < Q < 100 [15], the value of Q obtained with the Maxwell rheology232

reaches far bigger values (from 100 with a low viscosity of 1019 Pa.s to 100 000233

for a viscosity of 1022 Pa.s). Moreover, regarding the Andrade rheology, only234

Q estimated with α < 0.3 are smaller than 100 for all considered viscosities.235
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These results are in agreement with the other studies [10, 29] which suggest236

that an Andrade rheological law is a better choice to mimic the attenuation237

behavior of planetary rocks at tidal periods [10, 36].238

2.4. Influence of the atmosphere239

Finally, we test the effect of the dense Venus atmosphere on the global240

tidal deformation of the planet. A model of the atmosphere is added as a241

viscous layer on top of the surface. The TLN k2 with the atmosphere is242

calculated with ALMA3 on top of the shallowest layer, which is the atmo-243

sphere. The model of the atmosphere is taken from the Venus International244

Reference Atmosphere [37]. The atmosphere has a thickness of 100 km, a245

density ρatmo = 36.5 kg.m−3 and no rigidity (µatmo = 0 Pa) . The viscos-246

ity of the atmosphere is fixed to 10−5 Pa.s for each computation. Fig. 5247

shows the variations (in %) of the kr
2, k

i
2 and Q when we include the effect248

of the atmosphere. We can see that the atmosphere induces a decrease of249

the real and imaginary parts of k2 at a maximum level of respectively 7.2%250

and 8.34% (Fig. 5 (a) and (b)). The former percentage of 7.2% is equivalent251

to a decrease in kr
2 of a maximum of 0.026 which is lower than the 1-σ un-252

certainty of PVO. The variation depends slightly on the value of α and the253

mantle viscosity. The effect on quality factor Q (see Fig. 5 (c)) is only of a254

maximum of +1.65%. We then conclude that the atmosphere does affect the255

studied parameters but not outside the ±2-σ of the observed k2, despite its256

high density and low viscosity.257
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3. Monte Carlo exploration258

Based on the previous comparisons, we extend the space of parameters259

to explore (thicknesses of the layers but also their densities and viscosities)260

in order to build profiles for the internal structure of Venus that match with261

the present geophysical constraints. These constraints are the total mass of262

Venus, its moment of inertia, the TLN k2 and the planet quality factor Q.263

3.1. geophysical constraints264

The mean surface radius of Venus is set to RV = 6051.8 ± 1 km [38].265

The total mass with its atmosphere is denoted by MV+a. It is determined266

with its uncertainty from the gravitational constants G and GMV+a. Using267

G = (6.67430± 0.00015)× 10−11m3kg−1s−2 [39] and GMV+a = 324858.592±268

0.006 km3s−2 [40] we deduce MV+a. The mass of the atmosphere equals to269

4.77 × 1020 kg [41] is therefore subtracted to obtain the mass MV without270

the atmosphere as given on Table 1. Several parameters of Venus are used to271

constrain its interior in addition to its mass without the atmosphere. These272

parameters are the normalized moment of inertia C̃ = C/MVR
2
V (hereafter273

MoI) [42], such that C is its polar moment of inertia and its observed TLN k2274

shown on Table 1. Finally we also consider the possible values for the quality275

factor Q at 58 days as given by [15]. Table 1 gathers these state-of-the-art276

constants that are used as constraints for this work.277

3.2. Method278

As explained in Sect. 2.1, to compute the tidal deformation of the planet279

and then to compare the TLN and quality factor to the state-of-the-art val-280
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Table 1: Venus state-of-the-art geophysical constraints. The mass MV is without the

atmosphere.

Constant Value ±1-σ References

RV (km) 6051.8 1 [38]

MV (×1024kg) 4.8673 1.1× 10−4 -

MoI 0.337 0.024 [42]

k2 0.295 0.033 [8]

Q 20 < Q < 100 [15]

ues, a discretized description of the Venus internal structure in terms of281

profiles of density, rigidity and viscosity is requested, considering different282

possible rheologies (Newton, Andrade or Maxwell). The aim of this work is283

to explore the space of these internal structure parameters (ISP) by using the284

geophysical constraints given in Sect. 3.1 as references for filtering acceptable285

combinations of ISP.286

Three types of profiles are considered: the Class 1 is constituted with287

an elastic crust, two visco-elastic layers for the mantle and an inviscid fluid288

core, the Class 2 has a solid core instead of an inviscid fluid core and the289

Class 3 has both a solid inner core and a fluid outer core. We also impose290

no density inversion in the profiles but we allow equal densities for successive291

layers. This leaves the algorithm free to propose 3-layer models with either292

the same characteristics for the upper and the lower mantle or for the crust293

and upper mantle layer. But as one can see on Table 3, the probability of294
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3-layer models with the same upper and lower mantle is very weak and the295

probability of having an upper mantle with the same characteristics as the296

crust is ruled out by non negligeable upper mantle viscosities for all classes.297

Finally the total mass of the planet is conserved in each model. To do298

so, the density of the innermost layer of each class is not randomly selected,299

but instead calculated from its random thickness and random densities and300

thicknesses of the other layers. Consequently, the densities of the fluid core301

for Class 1, of the solid core for Class 2 and of the solid inner core for302

Class 3 are not randomly sampled but deduced from the other layers.303

For each class, the crustal thickness and density are both fixed to 60 km304

and 2950 kg.m−3 [43], respectively. As a consequence the upper mantle305

boundary is fixed to 5991.8 km. The thicknesses that vary are the ones of306

the lower mantle and the core. In contrast, the third class gets three layer307

radial boundaries that vary. The crustal thickness is constrained in [44] to308

be from 8 to 25 km. Testing the effect of the crustal thickness, we replace309

the original crustal thickness of 60 km in model V to 8 km. The effect on the310

real and imaginary parts of k2 are 0.6% and 0.7%, respectively. In this work311

we uniformly explore the structural and rheological parameters in intervals312

given by Table 2. The fluid core of Class 1 is assumed to be an inviscid313

fluid therefore its viscosity is fixed to η = 0 Pa.s. The viscosity of the fluid314

outer core of Class 3 can not be set to be an inviscid fluid (zero viscosity),315

therefore it is set to be a fluid with an arbitrary low viscosity (here 10−5
316

Pa.s). For the solid layers (the mantle layers for all classes, the core for317

Class 2 and the inner core for Class 3), we consider an Andrade rheology318
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with α = 1/3 [45]. The rigidities are fixed for each layer and are equal to the319

values corresponding to the rigidity profile given on Fig. 1 and on Table 2.320

Ultimately, we select models according to the constraints mentioned in Sect.321

3.1 considering a 3-σ interval for the mass and TLN k2, a 1-σ interval for the322

MoI and the range specified in Tab. 1 for the 58-day quality factor Q.323

Table 2: Venus internal parameters, both fixed and simulated with random Monte-Carlo

within their respective range.Values indicated with a star are fixed values and values

marked with a dagger are deduced as explained in Sect. 3.2.

R (km) ρ (kg.m−3) η (log10 (Pa.s)) µ (GPa)

Crust 6051.8∗ 2950∗ ∞ 47.65∗

Upper mantle 5991.9∗ 1000-15000 15-25 85.7

Lower mantle 2000-5900 3000-15000 15-25 196.94

Fluid core (Class 1) 1000-5000 7000-22000† −∞∗ 0∗

Solid core (Class 2) 1000-5000 6000-22000† 11-22 125.63

Outer core (Class 3) 1000-5000 1000-15000 -5∗ 0∗

Inner core (Class 3) 1-5000 5000-30000† 10-20 273.91
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4. Results324

65000 models have been produced by varying the thickness, density and325

viscosity for the different layers. After a first filtering with MoI ± 1-σ, we326

retain between 54.5 and 68% of the 65000 models which correspond to 35472,327

35443 and 44390 models for Class 1, Class 2 and Class 3, respectively. A328

second filtering considering the TLN results in 13077, 16172 and 9944 models329

for Class 1, Class 2 and Class 3, respectively. Finally the quality factor330

Q filter is performed resulting in 4703, 4536 and 4160 selected models. To331

test whether the number of models simulated are enough, we tested subsets332

of the original 65000 models. The randomly chosen subsets of models consist333

increasingly of 650 to 65000 models. After filtering with the MoI, k2 and Q334

filters we illustrate (see Fig. B1) in Appendix B the percentage of selected335

models after several filters for Class 1 as an example. In Appendix A, are336

given the results when the quality factor Q is not used as a constraint. Table337

3 gives the statistics of the selected models namely the mean and the first338

and third quartiles of the parameters that have been randomly sampled and339

selected according to our method.340

4.1. Class 1: only a fluid core341

The models of Class 1 include a mantle with two separated layers (upper342

and lower), to reproduce the Earth structure, and an inviscid fluid core.343

From our simulations, it appears that when only a fluid core is present, the344

lower mantle (183922321418 km) is significantly thicker than the upper mantle345

(9631417600 km) with a higher density (489053604484 versus 376541233446 kg.m−3) and a346
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Table 3: Results of the selection process over 65000 randomly sampled profiles. Are given

in Column 1, the type of models considered and on Column 2 the layers. Column 3

gives the mean and first and third quartiles (25% and 75%) of the layer thicknesses (km),

Column 4 the densities (kg.m−3) and Column 5 the viscosities in log10(Pa.s).

Models Layers thickness density viscosity

(km) (kg.m−3) log10 (Pa.s)

Fluid (Class 1) upper mantle 9631417600 376541233446 19.922.318.3

lower mantle 183922321418 489053604484 20.7821.8519.85

core 316633722898 10899119099892 −5

Solid (Class 2A) upper mantle 14321996883 398743063619 20.9523.4819

lower mantle 13132007715 505755614612 2122.8519.95

core 324034602944 10527117139373 14.9519.4813.4

Solid (Class 2B) upper mantle 10521275773 356238443275 20.8522.918.95

lower mantle 410689220 471952774188 20.923.4818.95

core 450247024257 720975976917 20.72119.85

Fluid/Solid (Class 3) upper mantle 9252099585 372240103377 2022.618.3

lower mantle 171820991330 493253694431 21.4822.7820.54

outer core 381712159 820499006723 −5

inner core 282531412402 114501222010425 15.717.8112.95
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significantly higher viscosity (20.7821.8519.85 and 19.922.318.3 log10(Pa.s)). The higher347

lower mantle density is a result of the assumption of no density inversion in348

each model. This assumption is also driven by the fact that an increased349

density from the surface to the center of the planet can be obtained by350

integrating its pressure equations. These significant differences between the351

lower and the upper mantles stress the dichotomy of state and nature of352

these two layers. Furthermore, the distribution of the ratio between the353

lower and the upper mantle viscosities (Table 4 and Fig. 6) show two trends354

of models: the first trend has a peak of distribution for ηLM/ηUM ≈ 0.9 and355

the second trend has a peak of distribution for ηLM/ηUM ≈ 1.1. Fig. 6 also356

shows that we have slightly more models with a more viscous lower mantle357

since the mean (second quartile) of the histogram is for ηLM/ηUM > 1. It358

is unexpected since the lower mantle is expected to be less viscous than the359

upper mantle by the Arrhenius law [46]. The result is based on the selection of360

models with geophysical constraints and statistical study with minimal initial361

assumptions on the chemical content or temperature profile of Venus. Table362

4 gives the results in terms of χ2 for two adjustments of the viscosity ratio363

distribution considering a bi-modal and a Gaussian profiles. The bi-modal364

model gives a better χ2 than the Gaussian profile (0.91 versus 1.5), favoring365

a double distribution of the upper and lower viscosity ratios: one centered366

around 0.87 ± 0.058 (with a more viscous upper mantle) and one around367

1.13 ± 0.19 (with a more viscous lower mantle). The possible entanglement368

of the lower and upper mantle viscosities is even more visible on the 2-D369

histograms shown on Fig. 7. On this Figure, one can see that a more viscous370
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lower mantle relates to a more fluid upper mantle and vice versa, unless the371

two layers have similar viscosities. Models with the same viscosity (between372

1019 and 1021 Pa.s) for both the lower and the upper mantles represent about373

1% of the models. Fig. 7 (c) also shows that the lower and upper mantles374

can not be both more fluid (ηLM < 1019.5 Pa.s and ηUM < 1019 Pa.s) or more375

viscous (ηLM > 1021.8 Pa.s and ηUM > 1021 Pa.s).376

Finally, the distribution of the thicknesses of the lower and upper mantle377

(Fig. 7 (a)) shows a direct correlation, expected for a terrestrial planet as378

Venus. Moreover, the density of the fluid core that we obtain (10899119099892379

kg.m−3) is consistent with what is expected for a planet of the size of Venus380

composed by iron alloys [9].381

4.2. Class 2: only a solid core382

The models of Class 2 include a mantle with two separated layers, as for383

the models of Class 1, and a solid visco-elastic core following an Andrade384

rheology, similar to the one of the mantle, with a rigidity of 125.63 GPa (see385

Appendix B for the impact of the fixed rigidity on the results).386

Fig. 8 shows the histogram of the selected thicknesses for the solid inner387

core. Two families of models are distinguished: one with a large core of388

about 4500 km and one with a small core of about 3235 km. Fitting the389

thickness of the core with a Gaussian and with a bi-modal distributions390

gives values of χ2 of 2.47 and 0.94, respectively. Therefore the two families391

have been defined in fitting a bi-modal distribution of the thicknesses and392

in separating the two distributions at 92% of the two populations. The393
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two families, labelled Class 2A and Class 2B on Table 3 and Fig. 8, are394

considered separately in the analysis. As expected, the bigger core (Class395

2B) which is 449946994244 km thick presents a lower density 721576116924 kg.m−3,396

favoring a scenario of a core enriched in light elements. This low density core397

is also associated with a significantly higher viscosity (20.72119.85 log10(Pa.s)) in398

comparison with models of Class 2A that have a smaller core (323534532940 km399

thick) and a lower viscosity (14.9519.4413.35 log10(Pa.s)).400

Thicknesses and densities (10533117239376 kg.m−3) of the core for models of401

Class 2A are consistent with those of Class 1 and are in the expected range402

for a planet of the size of Venus. On Table 4, one can see that, also for Class403

2, the bi-modal distribution of the upper and lower mantle viscosity contrast404

is also validated (χ2 of 0.97 for bi-modal versus 1.42 for Gaussian).405

However, it is not so clearly the case when we separately consider the406

two sub-classes 2A and 2B. In particular, for the family with the biggest407

core (Class 2B), the contrast of viscosities between the upper and the lower408

mantles as presented on Table 4 is not present and the single Gaussian dis-409

tribution centered on the equal viscosity for upper and lower layers gives a410

better χ2 (1.2) than the bi-modal distribution (2.58). At the opposite, as411

one can see on Table 4, the models of the Class 2A favor a bi-modal distri-412

butions of the viscosities (χ2 bi-modal equals to 1.22 where χ2 Gaussian is413

equal to 1.7).414

4.3. Class 3: fluid outer core and solid inner core415

On Table 4, Class 3 also shows a bi-modal distribution of the viscosity416
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Table 4: Gaussian and bi-modal distributions of the ratio between viscosities of the lower

mantle and the viscosities of the upper mantle (viscosity contrast) for the different classes

of models. Are given in Columns 2, 5 and 7, the centroids M , M1 and M2, in Columns 3,

6 and 8, the uncertainties σ, σ1 and σ2 and in Columns 4 and 9, the χ2 of the each fit.

Gaussian distribution Bi-modal distribution

M σ χ2 M1 σ1 M2 σ2 χ2

Class 1 0.99 0.26 1.5 0.87 0.058 1.13 0.19 0.91

Class 2 1 0.19 1.42 0.9 0.11 1.1 0.16 0.97

Class 2A 1 0.18 1.7 0.88 0.09 1.07 0.17 1.22

Class 2B 1 0.2 1.2 0.97 0.16 1.26 0.09 2.58

Class 3 1.03 0.21 1.42 0.96 0.12 1.25 0.13 1.2

ratio of upper and lower layers of the mantle (χ2 for bi-modal distribution of417

1.2 versus 1.42 for Gaussian) but with a shift of the centroids towards higher418

ratios. Indeed, where for Class 1, the modes were centered on 0.87± 0.058419

and 1.13 ± 0.19 (marginally compatible with 1), the first mode of Class 3 is420

marginally compatible with a center at 1 (0.96± 0.12) and the second mode421

is centered on 1.25 ± 0.13. In addition, Table 3 shows that the viscosities422

of the lower mantle increased in comparison to the viscosity of the same423

layer for models of Class 1 (20.7821.8519.85 versus 21.4822.7820.6 log10(Pa.s)) when424
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the viscosities of Class 1 and Class 3 remain identical for the upper layer.425

The densities of the two layers increase marginally for Class 3 relatively to426

Class 1 but not significantly. The mechanism of the increase of the lower427

mantle viscosity induced by the introduction of the solid inner core is then428

confirmed by the results presented on Tables 3 and 4. In terms of core429

densities, they are high both for the solid inner core (114501222010450 kg.m
−3) and430

for the fluid outer core (827699126723 kg.m−3). They are in average compatible431

with the densities of Class 1 and Class 2A. Finally, when for the fluid core,432

the viscosity remains close to a low value, the viscosity of the inner core is433

obtained to be also quite small (15.617.7812.95 log10(Pa.s)) for the Class 3 but434

compatible with the value found for Class 2A.435

5. Discussion436

We compare our results with previous studies such as the one of [10] and437

[9] which constructed a scaled model of the density of Venus as a function438

of depth using the density profile of PREM [26]. Both studies consider a439

Venus model with a fluid core and a mantle divided into a lower and an440

upper layer, as the Earth. These profiles are then comparable with models441

of Class 1 as defined in Sect. 4.1, except that there is no viscosity contrast442

in between the two mantle layers in [10]. As one can see from Fig. 9, our443

Class 1 models are in good agreement with the limits extracted from [10]444

model V and [9] (illustrated respectively with red and green vertical lines).445

Moreover, we agree on the [10] conclusion that a solid core with a high density446

is mostly likely to be associated with a low viscosity. This case corresponds447
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to the models of our Class 2A with a density for the solid core not smaller448

than 9376 kg.m−3 and a viscosity not greater than 1019.5 Pa.s. We also agree449

that the probability of having a k2 < 0.25 is of about 90 % with a solid450

core (Class 2) but only of 18 % and 6 % with a fluid core or a solid inner451

core and a fluid outer core, respectively (see Fig. 10). This result stresses452

that the k2 value is indeed a good marker of the core state. Figs. 11, 12453

and 13, obtained with [47], show the relation between the real part of k2,454

MoI and mass for each of the Classes 1, 2 and 3, respectively . The mean455

value of the geophysical constraints of k2, MoI and mass are 0.295, 0.337456

and 4.8673 × 1024 kg respectively (see Table 1) and are illustrated in red,457

black and green. These Figures show that the model distribution is centered458

around the mean mass. The models of Class 1 are 55.8% higher and 44.17%459

lower than the MoI mean (see 13. These values are respectively 72.39% and460

27.6% for Class 2 (see Fig. 12) and 49.16% and 50.83% for Class 3 (see461

Fig. 13). Additionally 59.57% of the models of Class 2 have a MoI higher462

and a k2 respectively higher and lower than the mean estimated value from463

Table 1 (see Fig. 12). Therefore a better estimation of the MoI of Venus,464

additionally to k2, will better constrain the core structure between a totally465

solid state and a partially or totally fluid one as the conclusion made with466

k2 (see Fig. 10).467

We finally compare the density estimates from our classes of models with468

the end-members of the [10] density profiles for hot and cold temperature469

mantle hypothesis (Fig. 14). We obtain that the density of the lower and the470

upper mantles match with [10] profiles within the 2-σ error bars, except for471
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models of Class 2B which have a core density completely out the range from472

[10] profiles (green dot). Regarding the density of the cores, our estimates473

appear to be slightly higher than the one from [10], except for the fluid outer474

core of models of Class 3 (including also a solid inner core), which seems to475

match well with the profiles of [10]. So despite the fact that our models favor476

a viscosity contrast between the two mantle layers (as discussed in Sect. 4),477

upper and lower mantle densities from all our models match well with that478

of [10]. It is not the case for the core densities which are significantly higher479

than the one of [10] for the solid inner core, the fluid core and the solid core.480

Beside, our densities agree with the [48] S-free density profiles (Fig. 14).481

Fig. 14 shows the densities obtained in this work as a function of the relative482

radius (R) with respect to the Earth radius (RE) and compared with the483

density profiles from [48] for the three core compositions (S-free, Nominal-S484

and S-rich).485

[48] studied also different structure models of Venus based on the equa-486

tions of state evolution for different hypothesis of core compositions: without487

sulfur (S-free, with 0 wt%), with the same amount of sulfur as the Earth488

(Nominal-S, with 4.6-7.6 wt%) and with more sulfur than the Earth (S-Rich,489

with 9.1-22 wt%). They also make the hypothesis of a core segregation hap-490

pening as a single-stage event. Their estimated MoI values are encompassed491

in the 1-σ uncertainty of [42] and they considered two different patterns of492

model: those with low MoI values (generally smaller than 0.323) represent-493

ing models within the 1% lowest possible values of MoI and those with high494

MoI (generally greater than 0.323) gathering models within the 1% highest495
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possible values of MoI. In their cases, low or high MoI could indicate different496

rates of oxygen fugacity in the Venus mantle. In order to make meaningful497

comparisons, we consider two subcategories of our models according to their498

MoI values using the same MoI intervals as in [48]. More than 57% of our499

models included in the [48] Low and High MoI intervals belong to the High500

MoI models when only 13% of our models belong to the Low MoI type of501

models. 30% of the rest of our results have either smaller or higher values502

for the MoI. From Fig. 14, we can see that there is a good consistency be-503

tween our densities and [48] results for the three compositions, except for504

the Class 2B set of models which appears to be outside [48] ranges. The505

inner core, the outer core and the lower mantle densities obtained for 5 or 4506

layers with solid or fluid cores are encompassed in the intervals proposed by507

[48] without considering MoI discrimination. For the upper mantle (above508

0.8 Earth radius), our estimations appear to be slightly larger. However, [48]509

consider the upper mantle and the crust as a single layer while we consider510

two different layers.511

The radius and density of the upper mantle obtained in this work are512

about 5968 km and 3765 kg.m−3, respectively. The radius of the lower man-513

tle is about 5005 km. In averaging the upper mantle with the crust which514

has a fixed density of 2950 kg.m−3, we obtain a crust+upper mantle density515

of about 3688 kg.m−3, closer to the value expected by [48]. We consider the516

same MoI subcategories as the one proposed in [48], and as one can see on517

Fig. 15 where the densities are plotted versus the relative depth for models518

presenting Low MoI at the bottom and models having High MoI at the top,519
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the same conclusions remain for the Low MoI case. For models with High520

MoIs (gathering more than 57% of our models), we see a better consistency521

between our estimates and the S-free and the Nominal S profiles. In particu-522

lar, on the bottom side panel of Fig. 15, the Class 3 inner core density and523

the Class 1 and Class 2A core densities are significantly different from the524

one expected with a S-rich profile, whereas they are statistically consistent at525

2-σ with the nominal-S profile and totally encompassed in the S-free profile.526

One way to model the temperature dependence of the viscosity is to527

use the Arrhenius law. [46] shows that the viscosity of a material can be528

expressed as an exponential function of temperature, in other words as an529

Arrhenius-type function. Based on this fact, [49, 50] deduced an expression530

of the temperature which is highly dependent on the viscosity. Eq. 3 is531

reformulated from equation 2 of [51] which is deduced from the work of532

[49, 50]. As explained in [51], it is possible if one assumes the temperature533

Tu and the viscosity ηu of the upper mantle layer to deduce the temperature534

of the lower layer, Tl, by considering the following relation:535

Tl =
H∗

l Tu

H∗
u + TuRgln(

ηl
ηu
)

(3)

where ηl is the lower mantle viscosity, ηu is the upper mantle viscosity, H∗
l536

andH∗
u are the activation enthalpy for the lower and the upper mantle respec-537

tively and Rg is the gas constant. Therefore we calculate the temperature of538

the lower mantle from the deduced viscosities. From the mantle parameters539

(temperature, density thickness and viscosity) we obtain a Rayleigh number540

much higher than the critical value, therefore the mantle in convective. This541
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result justifies the use of Eq. 3 for convective layers [51]. Using Eq. 3, we542

estimate the temperature of the lower mantle from the viscosity contrast be-543

tween the upper and the lower mantle layers for each class of models. They544

are shown on Fig. 16. We assume for this an upper mantle temperature of545

1600 K as given by the [48] temperature profile reproduced on Fig. 16. The546

activation enthalpy values (H∗) are taken equivalent to those given for the547

Earth (240 kJ.mol−1 for the upper mantle and 430 kJ.mol−1 for the lower548

mantle) as in [52]. We consider values of the upper mantle viscosities given549

by Table 3 for the different models. We then obtain values plotted on Fig.550

16. The errorbars in x-axis correspond to 2-σ uncertainties given in Table 3551

and the errorbars in y-axis correspond to uncertainties deduced from Table552

3 upper mantle viscosities. From these estimations, we see that our models553

seem to propose a slightly hotter, but still statistically consistent, lower man-554

tle temperature in comparison with [48] with or without MoI subcategories555

(see Figs. 16 and 18). The lower mantle temperatures deduced from our556

approach are also consistent with the temperature profiles from [43] and [53]557

as one can see on Fig. 16. These two reference profiles give two possible558

extrema of temperature evolution with depth: a cold one from [43] (Venus559

scaled adiabatic profile) and a hot one from [53] (thermo-chemical Venus560

evolution). Our temperature for the lower mantle is compatible at 2-σ with561

the two hot and cold profiles but suggests an even hotter temperature than562

[53].563

The radii of the different layers considered in this work and in [48] are564

shown on Fig. 17. As in [48], we consider two regimes of models according565
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to MoI values: high MoI (greater than 0.323) and with low MoI (smaller566

than 0.323). The upper mantle is not consider here as it is supposed to be567

fixed in [48]. With these comparisons, it appears that the Class 2B (models568

with a big core and a low density) is not consistent with [48]. This class was569

already pointed as an outlier of our selection (see discussion of Sect. 4.2) and570

gathers models with no viscosity contrast between the upper mantle and the571

lower mantle. For models with high MoI (lower row of Fig. 17), there is a572

clear trend from our models to be more consistent with S-free models from573

[48] than with Nominal-S or S-rich models, especially for the Class 3. It is574

particularly clear with the radius of the inner core for which Class 3 value575

(284131292494 km) is consistent with that of S-free (from 0 to 3180 km) but not576

with that of Nominal-S (from 0 to 2380 km) or S-rich (from 0 to 750 km).577

For the lower mantle and the outer core radii for models of Class 3 but also578

of Class 1 and Class 2B, our values match well with all the models of [48].579

For models with low MoI (upper row of Fig. 17), all our models but those of580

Class 2B are consistent with the models of [48]. The comparisons between581

the densities estimated in this former work and ours, presented previously,582

also pointed out, especially for high MoI models (representing more than583

57% of our results), the same trend of our models to be more consistent with584

S-free profiles than with S-rich.585

586

Finally, regarding the core, the Class 2B models presenting a very big587

core (of about 73% of the total size of the planet) but with a low density588

(7215 kg.m−3) and presenting no contrast in mantle layer viscosities, is not589
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compatible with [48] and [10].590

6. Conclusion591

In this work, we have used state-of-the-art geophysical constraints of592

Venus (mass, total MoI, Love number k2 and quality factor Q) to infer pos-593

sible internal structure of the planet. Therefore we aim at constraining the594

internal structure of Venus with minimal assumptions about its chemical con-595

tent. We adapted the deformation semi-analytical modeling of the ALMA3
596

open-source Fortran 90 program [16] originally designed for studying the597

loading deformations of the Earth [17], to the case of the tidal deformation598

of Venus.599

For one given set of parameters extracted from [10] (model V), we first600

demonstrate that our model leads to similar results in terms of real and601

imaginary Love numbers, consistent values of the Andrade rheology α pa-602

rameter of the Venus mantle and consistent intervals of the mantle viscosities603

when this latter is supposed to be homogeneous. We then randomly sample604

the parameter space of the possible internal structure profiles, in varying the605

thicknesses, the densities and the viscosities of 4 or 5 layer profiles. Each layer606

is assumed to be homogeneous therefore having averaged values of parame-607

ters (density, rigidity and viscosity). We only consider models that induce608

geophysical quantities consistent with the state-of-the-art constraints given609

on Table 1. Over 65000 models produced randomly, remain about 18000610

models with 23% of them being 5 layer models (with a solid inner core and611

a fluid outer core) and 77% having either a fluid (38 %) or a solid core (39612
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%). We assume incompressible models, which is in the theoretical basis of613

ALMA3, with layer-fixed rigidity. The existence of the Venus inner core is614

not clearly demonstrated from our results but we show that the existence of615

a solid core cannot be ruled out by only considering geophysical constraints.616

Moreover, an interesting pattern in our models is the contrast of viscosities in617

the mantle. Indeed as it has been discussed in Sect. 5, only 1 % of our 4 and618

5-layer models have the same viscosity for the lower and the upper mantle,619

inducing significant viscosity contrasts between the two layers. Significant620

differences in densities and thicknesses for these two layers also stress the621

non-homogeneity of the Venus mantle.622

Furthermore, as one can see on Fig. 16, the viscosity contrasts are also an623

indication of a change in the temperature profile in the Venus mantle, with624

a lower mantle hotter (with a minimum of 1800 K) than the upper mantle625

(fixed at 1600 K). These lower mantle temperatures are also hotter (but still626

in agreement at 2-σ) than the temperatures proposed by [48], [43] and [53].627

The comparisons with [48] also indicate a trend of our models towards S-628

free Venus models (considering the density or the radius comparisons). Such629

types of models with a very low percentage of sulfur are in agreement with630

the past literature [32, 54]. They also ruled out the only class of models631

(Class 2B) proposing mantle layers without viscosity contrast.632

The differences in viscosities are a marker of differences in temperatures633

for the planetary mantles. This type of indication of temperature differences634

can be used as a tool for understanding the thermal evolution of the body.635

With a stagnant lid, the core heat is not evacuated and maintains the mantle636
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into higher temperatures closer to the core. This could explain the non637

existence of plate tectonics on Venus and the existence of plumes from the638

hotter regions of the mantle towards the ductile crust crossing cooler mantle639

regions.640

Finally, for the future missions towards Venus, we confirm that the deter-641

mination of a very accurate k2 TLN will be a key for deciphering the state of642

the Venus core with 90% probability that a low k2 (k2 < 0.25) will indicate a643

solid unique core with a density compatible with an iron alloy (not less than644

9000 kg.m−3) and a low viscosity (of about 1015 Pa.s). We stress, at last,645

that these results rely on an interval for the quality factor Q. The one used646

in this work is based on the range deduced from previous models and realistic647

assumptions as no direct measurement of the tidal dissipation has been done648

so far for Venus. Such an estimation will be an important outcome of future649

space missions.650
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Appendix A. Sensitivity to the value of dissipation872

The results obtained in this work are driven by the interval of possible873

values for the quality factor Q. In this section, we show the selection of874

models without considering the Q filter. The original 65000 models of each875

class have been filtered with the mass, MoI and observed k2 as used in this876

work. Therefore the difference between the original results (Table 3) and this877

section is the lack of the Q filter. The following Table A1 presents the results878

with this filter. Fig A1 shows the histograms of Q for each class with and879

without this filter. Without the quality factor Q filter set between 20 and880

100, the Q values for Classes 1, 2 and 3 range in 2-1987, 2-1707, 2-1017881

respectively (see Fig A1).882

Table A1 shows that for Class 1 the thicknesses ThCore, ThLM and ThUM883

quartiles (25%, 50% and 75%,) vary from −0.82% to −0.52%, 2.64% to 3.5%884

and −4.56% to −1.72% respectively. The three layers respective densities885

quartiles (ρCore, ρLM and ρUM) vary from −0.52% to 0.17%, 0.25% to 0.58%886

and −0.81% to −0.23%. As for the viscosities of the lower mantle ηLM and887

the upper mantle ηUM vary from 0% to 4.81% and 1.63% to 4.77 respectively.888

Table A1 also shows that for Class 2 the thicknesses quartiles of the layers,889

ThCore, ThLM and ThUM vary respectively from −2.32% to 2.7%, −0.46%890

to 27.39% and −3.79% to −4.27% respectively. The three layers respective891

densities (ρCore, ρLM and ρUM) quartiles vary from −1.1% to 3.35%, −1.63%892

to −0.56% and −2.36% to −1.6%. As for the viscosities of the core ηCore, the893

lower mantle ηLM and the upper mantle ηUM vary from −6.99% to 11.88%,894
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−9.25% to −0.43% and −5.78% to −0.65% respectively. The same table895

(Table A1) shows that for Class 3 the thicknesses ThIC, ThOC, ThLM and896

ThUM quartiles (25%, 50% and 75%,) vary from −3.22% to −1.56%, 1.31%897

to 8.8%, 3.15% to 5.3% and −2.32% to 3.15%. Their respective densities898

(ρIC, ρOC, ρLM and ρUM) quartiles vary from −0.21% to 0.08%, −0.58% to899

1.33%, 0.87% to 1.15% and −0.08% to 1.63%. The viscosities of the inner900

core ηIC, the lower mantle ηLM and the upper mantle ηUM vary from −0.38%901

to 0.5%, −2.62% to 3.07% and 1.32% to 4.25%.902
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Table A1: Results of the selection process over 65000 randomly sampled profiles. Are

given in Column 1, the type of models considered and on Column 2 the layers. Column 3

gives the mean and first and third quartiles (25% and 75%) of the layer thicknesses (km),

Column 4 the densities (kg.m−3) and Column 5 the viscosities in log10(Pa.s).

Models Layers thickness density viscosity

(km) (kg.m−3) log10 (Pa.s)

Fluid (Class 1) upper mantle 9191392576 374941143418 20.8522.918.6

lower mantle 190422951453 491553924496 21.7823.619.85

core 314233552874 10956119389909 −5

Solid (Class 2) upper mantle 11661645777 373941003385 20.4822.8517.9

lower mantle 9711661472 488954414402 20.4822.8517.95

core 357141703157 9278109397789 17.9519.916

Fluid/Solid (Class 3) upper mantle 9032165580 373840763374 20.8522.918.6

lower mantle 178021651400 497554314475 21.8523.4820

outer core 386740173 831398436795 −5

inner core 273430912344 114251223010430 15.717.912.9
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Appendix B. Testing the effect of the number of simulated models903

and the sensitivity to the rigidity904

The rigidities of the different layers have been fixed so far. In this ap-905

pendix we consider the effects of changing these parameters on the models906

selection. We also show the fact that the 65000 originally simulated models907

are enough for the statistical analysis of this work. We take Class 1 (fluid908

core) as an example.909

We select random subsets of the original 65000 models of Class 1 and910

filter them with the MoI, k2 andQ filters used in this work. Fig. B2 illustrates911

the percentage of the filtered models with respect to the number of models in912

each random subset. Fig. B1 shows the percentage of filtered models (y-axis)913

as a function of the number of models (x-axis) of the subsets. Fig. B1 shows914

that for the 65000 originally simulated models, the MoI, k2 and Q filters915

preserve 7.2% of the models (or 4703 models). This value is approached916

after 10000 simulated models. Therefore simulating more models does not917

provide a higher percentage of models after filtration. The same conclusion918

is valid for the other two filters: the MoI and k2 filters applied together and919

the MoI filter solely applied.920

We test the effect of the rigidity variation on a subset of 10000 models of921

the original 65000 original 4-layer models of Class 1. For each of the models922

from this subset we vary the rigidity of only one layer and then we calculate923

the TLN k2 and quality factor Q for the new models. The core is considered924

to be an inviscid fluid therefore µCore = 0 Pa and therefore it does not vary.925
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Therefore the layers rigidities that are tested are of the lower mantle, the926

upper mantle and the crust. The rigidity of each layer is varied each from927

the original values (see Table 2) either by ±5%, ±10%, ±15% or ±20%.928

We denote by OX and NX the original and new parameters respectively929

with X = k2 or X = Q. Fig. B2 illustrates ∆k2 =
Nk2 −Ok2

Ok2

× 100 and930

∆Q =
NQ −OQ

OQ

×100 after we vary the rigidity of one layer. The y-axis and931

the legend indicate which layer rigidity has varied from the original models932

and the percentage of variation respectively. Fig. B2 shows that the rigidity933

of the crust has the least effect on k2 and Q probably due to its smaller934

size. The effect of the rigidity of the other layers (lower mantle and upper935

mantle) has almost the same significance. The maximum effect caused by the936

variation of the lower mantle or the upper mantle rigidities by 20% increases937

Q by almost 30% and k2 by less than 20%. The estimated k2 from Table938

1 has an uncertainty with 2-σ of 22.37%, therefore it is of the magnitude939

of the difference in percentage a different rigidity of one layer causes to the940

resulting k2 and Q.941
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Appendix C. Sensitivity to creep parameter α942

In this section we investigate which layer parameters are the most sensi-943

tive to the α parameter of the Andrade rheology. The experimental parame-944

ter α is still not very well constrained, the value used in this work is α = 1/3945

[45]. We test the effect of α on a subset of the 65000 original models. We946

randomly select 5000 models and fix α values between 0.1 and 0.5 [29] with947

a step of 0.1. For each value of α and for α = 1/3, we calculate the TLN948

k2 and quality factor Q for the subset of models. Afterwards we apply the949

same filters (mass, MoI, k2 and Q) to each case. We obtain new results for950

the 5000 models subset for each class and different values of α. Finally we951

study the difference in the first, second and third quartiles obtained with the952

original and new α values. Figs. C1, C2 and C3 represent the difference in953

percentage for the quartiles of each layer parameters. The viscosities of each954

layer are studied with a unit of log10 Pa.s as in Table 3.955

Fig. C1 shows that the variations between the original and new results of956

each of the three quartiles are between +33% and −30% for Class 1. These957

two furthermost values correspond respectively to the ThLM and ThUM and958

for α = 0.1. For an approximate lower mantle and upper mantle thicknesses959

of 1800 km and 960 km (see Table 3), a change of +33% and −30% amounts960

to a variation of 594 km and of −288 km, respectively. The other parameters961

quartiles vary between ±10% depending on the value of α. For an approxi-962

mate lower mantle viscosity of 1020.78 Pa.s, a ±10% variation results in new963

viscosity values of 1018.7 Pa.s and 1022.86 Pa.s. For an approximate value of964
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an upper mantle density of 3700 kg.m−3, a change of ±5% amounts to a965

variation of ±185 kg.m−3 of the density. Classes 2 and 3 have the similar966

patterns as Class 1. Fig. C2 shows that the Class 2 quartiles vary between967

−13% and 33% depending on the layer parameters and the values of α. The968

first quartile varies ≈ by maximum of −12.8% and 33.7% corresponding to969

α = 0.1 for ρCore and ThUM respectively. The other layer parameters first970

quartile vary between ±10% except ThLM which varies by 26.9% and 17.5%971

for α = 0.1 and α = 0.2 respectively. The second (respectively third) quartile972

vary in between −13.4% and 12.36% (respectively −13% and 7.2%). These973

maximum variations correspond to ThLM. The other layer parameters vary974

between ±5% except ThUM for α = 0.1 which varies by −13.2% and −7.5%975

for the second and third quartiles respectively. Fig. C3 shows that the max-976

imum variation of the first and second quartiles of Class 3 correspond to977

α = 0.1 and to ThIC and ThLM. The first quartile of the parameters of these978

2 layers varies by −19% and +17%, respectively and their second quartile979

varies by −9.6% and 16%, respectively. The first quartile of the other pa-980

rameters vary between ±10% except ThOC and ρOC which vary by −16%981

and 11% for α = 1/3 and α = 0.1 respectively. The second quartile of the982

other parameters varies between ±10% except ρOC and ThLM which vary by983

13.6% and 16%, respectively, both for α = 0.1. The third quartile of Class984

3 varies between −8% and 27.6% and these furthermost values correspond985

to α = 0.1. The most affected parameters are ThOC (between 18.8% and986

27.6% for α of 0.1, 0.2 and 0.3) and ThLM (14% for α = 0.1). The other987

layer parameters vary between ±10%. Therefore the α parameter affects k2988
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and Q for each of the classes, hence it affects the distribution of the layer989

parameters after filtering with the ranges of k2 and Q. Nonetheless the effect990

is not big enough to affect the original general study.991
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Figure 1: Density ρ in kg.m−3 (top) and rigidity µ in 1011 Pa (bottom). Each major

layer has been averaged for the introduction in ALMA3. The model V refers to the [10]

reference profile. It is built as an Earth-like Venus model with a lower Fe content (8.1 wt%,

FeO in the mantle and the crust) to explain the density deficit of Venus in comparison to

the Earth [27].
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Figure 2: Real part of k2 (a), Imaginary part of k2 (b), Quality factor Q (c) and and its

zoom (d) as a function of α (x-axis). The mantle follows an Andrade rheology with different

viscosities specified in the legend, from 1019 Pa.s to 1022 Pa.s. The rectangles represent

the intervals obtained by [10] for α ∈ [0.2, 0.3]. The black dashed lines represent the range

of α for olivine-rich rocks. The gray delimitation shows the most recently observed value

range according to an uncertainty of 2-σ from [8].
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Figure 3: The real k2 as a function of the mantle viscosity and for α = 0.3. The model

used is V. The dashed red lines indicate the interval of k2 as observed by Magellan and

PVO [8]. The colored vertical lines represent the intervals obtained by [10] for α between

0.2 and 0.3 for different mantle viscosities. The color code of the vertical lines is similar

to Fig. 2 which indicate the four different mantle viscosities.

52



Figure 4: Real part of k2 (a), Imaginary part (b), Quality factor Q (c) and its zoom (d) as

a function of mantle viscosities η in Pa.s (x-axis) for a mantle with an Andrade rheology

for different values of α ∈ [0.1, 0.5]. The black dashed lines in (c) delimits the zoomed area

in (d). The gray delimitation shows the most recently observed value range according to

an uncertainty of 2-σ from [8].
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Figure 5: Representation of the percentage variation in (%) of kr2, k
i
2 and Q (y-axis) of

Venus without and with an atmosphere as a function of α ∈ [0.1, 0.5] (x-axis). The values

correspond to a mantle with either an Andrade and Maxwell rheologies for different values

of mantle viscosities η in Pa.s. The black dashed lines represent the range of α for olivine-

rich rocks.
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Figure 6: Class 1: Histogram of the ratio between the lower mantle viscosity versus the

upper mantle viscosities. The black curve is the bi-modal fit of the ratio distribution.

Black plain and dash lines correspond to the median and the first and third quartiles,

respectively.
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Figure 7: Class 1: 2-D Histograms for the thicknesses (top left-hand side), the densities

(top right-hand side) and the viscosities (bottom side) of the lower mantle versus that of

the upper mantle. The red and green dots show the values considered by [9] and [10],

respectively.
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Figure 8: Class 2: Histograms of the thicknesses of the core. Black plain and dash lines

correspond to the median and the first and third quartiles, respectively for each sub-class.
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Figure 9: Comparisons between the models of Class 1 and those from [10] and [9]:

Histograms in thicknesses in (km) (left-hand side column) and densities in (kg.m−3) (right-

hand side column). The solid black line corresponds to the mean and the dashed black

lines correspond respectively to the first and third quartiles. The red and green vertical

lines indicate the limits of the models proposed by [10] and [9] respectively.
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Figure 10: Cumulative histograms of the k2 values obtained with the models of Class 1

(fluid core), Class 2 (solid core) and Class 3 (solid inner and fluid outer core).
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Figure 11: Histograms and corner plots of the real k2, MoI and mass values obtained with

the models of Class 1 (fluid core). The solid red, black and green lines corresponds to

the mean values of the geophysical constraints k2, mass and MoI from Table 1.
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Figure 12: Histograms and corner plots of the real k2, MoI and mass values obtained with

the models of Class 2 (fluid core). The solid red, black and green lines corresponds to

the mean values of the geophysical constraints k2, mass and MoI from Table 1.
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Figure 13: Histograms and corner plots of the real k2, MoI and mass values obtained with

the models of Class 3 (fluid core). The solid red, black and green lines corresponds to

the mean values of the geophysical constraints k2, mass and MoI from Table 1.
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Figure 14: Comparison of the densities obtained with this work for the different classes of

models with the profiles from [48] without subcategories according to the MoI values and

[10] for the two temperature profiles considered in this study (hot and cold). The x-axis

gives the ratio between the radius R of each layer and the Earth radius. The errorbars are

given at 2-σ.
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Figure 15: Comparison of the densities obtained with this work with profiles from [48]

considering Low and High MoI as defined in [48]. Same x-axis as on Fig. 14. The

errorbars are given at 2-σ 64
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Figure 16: Comparison of the temperatures for the lower mantle for the different classes

of models with profiles from [48], [53] and [43]. The temperature of the upper mantle is

fixed to 1600 K. Same x-axis as on Fig. 14. The errorbars are given at 2-σ
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Figure 17: Comparisons between layer boundaries (radii) from [48] and those obtained for

the different classes considering MoI subcategories as presented in [48]. C1, C2A, C2B,

C3 stand for Class 1, Class 2A, Class 2B and Class 3 respectively and SF, NS and SR

stand for S-free, Nominal-S and S-rich core models as defined in [48], respectively. The

errorbars are given at 2-σ
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Figure 18: Comparison of the temperatures for the lower mantle obtained with this work

for the different classes of models with the profiles from [48] considering Low and High

MoI as defined in [48]. Same x-axis as on Fig. 14. The errorbars are given at 2-σ67



Figure A1: Histograms of the quality factor Q distribution from Classes 1, 2 and 3 with

(left) and without (right) the quality factor Q filter.
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Figure B1: The number of filtered models after each additional filter: MoI (±1-σ), k2 (±2-

σ) and Q (from 20 to 100). The x-axis illustrates the number of models in each randomly

selected subset of the original 65000 models.
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Figure B2: The difference in percentage for the real part of k2 and Q between the new

results and the original results after varying the rigidities (µ). The x-axis is the difference

in percentage either to k2 or to Q, therefore X being either k2 or Q.
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Figure C1: The difference in percentage (%) for Class 1 between the new results with α

between 0.1 and 0.5 and α = 1/3. The x-axis corresponds to the layer parameters and the

y-axis is the percentage difference. From top to bottom, the supblots correspond to the

first quartile (25%), second quartile or median (50%) and third quartile (75%).
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Figure C2: The difference in percentage (%) for Class 2 between the new results with α

between 0.1 and 0.5 and α = 1/3. The x-axis corresponds to the layer parameters and the

y-axis is the percentage difference. From top to bottom, the supblots correspond to the

first quartile (25%), second quartile or median (50%) and third quartile (75%).
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Figure C3: The difference in percentage (%) for Class 3 between the new results with α

between 0.1 and 0.5 and α = 1/3. The x-axis corresponds to the layer parameters and the

y-axis is the percentage difference. From top to bottom, the supblots correspond to the

first quartile (25%), second quartile or median (50%) and third quartile (75%).
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We represent the 1D and 2D histograms of the Monte-Carlo sampling from

chapter 3 section 3.2 before the density �lters for the lower mantle (ρLM <

6000 kg/m3) and core/inner core (ρCore/IC < 13000 kg/m3) [Trønnes et al., 2019;

Shah et al., 2021].

Table A.1: The layers thicknesses (km), densities (kg/m3) and viscosities
(log10 (Pa · s)) values for each core structure before the density �lters.

Models Layers thickness density viscosity

(km) (kg.m−3) log10(Pa · s)

Fluid (Class 1) upper mantle 231229101508 403643203757 20.0022.0018.95

lower mantle 11841726637 692792595312 20.0021.9019.30

core 258829552258 134011668411024 −5

Solid (Class 2) upper mantle 242330241610 413143953829 20.922.9519.7

lower mantle 6911289305 687691965393 20.7822.8519

core 270732492298 12665163429628 16.8519.914

Fluid/Solid (Class 3) upper mantle 230516831464 405943223811 20.622.319.3

lower mantle 10971683575 609179534984 20.722.319.48

outer core 520938230 10390125208217 −5

inner core 200623831665 182102284014300 15.617.7812.95
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Figure A.1: 1D histograms for (a), (c) and (e) each layer thickness and (b), (d)
and (f) each layer density - without the density �lters. The solid black line cor-
responds to the 50% quartile and the dashed black lines correspond respectively
to the 25% and 75% quartiles.
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Figure A.2: 1D histograms for (a) and (c) the upper mantle and lower mantle
viscosities respectively, (b) their ratios and (d) the MoI - without the density
�lters. Same representation for the solid and dashed lines as Fig. A.1.
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Figure A.3: 1D histograms for (a), (c) and (e) each layer thickness and (b), (d)
and (f) each layer density - without the density �lters. Same representation for
the solid and dashed lines as Fig. A.1.
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Figure A.4: 1D histograms for each layer (a), (b) and (c) viscosity, (e) lower
mantle and upper mantle viscosity ratio and (f) MoI - without the density �lters.
Same representation for the solid and dashed lines as Fig. A.1.
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Figure A.5: 1D histograms for each layer (a), (c), (e) and (g) thickness and (b),
(d), (f) and (h) density - without the density �lters. Same representation for the
solid and dashed lines as Fig. A.1.
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Figure A.6: 1D histograms for each layer (a), (b) and (c) viscosity, (d) the lower
mantle and the upper mantle viscosity ratio and (e) MoI - without the density
�lters. Same representation for the solid and dashed lines as Fig. A.1.

Figure A.7: 2D histograms for Classes 1: �uid core - without the density �lters.
Same representation for the solid and dashed lines as Fig. A.1.
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Figure A.8: 2D histograms for Class 2: solid core - without the density �lters.
Same representation for the solid and dashed lines as Fig. A.1.

Figure A.9: 2D histograms for Class 3: solid inner core and �uid outer core -
without the density �lters. Same representation for the solid and dashed lines as
Fig. A.1.
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