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A B S T R A C T

This thesis is focused on the task of Visual Question Answering (VQA): it consists in answering textual questions about images. We investigate Shortcut Learning in this task: the literature reports the tendency of models to learn superficial correlations leading them to correct answers in most cases, but which can fail when encountering unusual input data.

We first propose two methods to reduce shortcut learning on VQA. The first, which we call Reducing Unimodal Biases (RUBi), consists of an additional loss to encourage the model to learn from the most difficult and less biased examples -those which cannot be answered solely from the question. We show that our method can reduce question-based shortcuts in existing VQA models, especially when tested on data with a distribution shift. We then propose a model for the more specific task of visual counting -a subset of VQA consisting only of counting questions. We design Spatial Counting Network (SCN), a model which incorporates architectural priors designed to make it more robust to distribution shifts. We show that SCN has superior performances on out-of-distribution benchmarks compared to existing models.

We then study the existence of multimodal shortcuts in the VQA dataset. We show that shortcuts are not only based on correlations between the question and the answer but can also involve image information. We design an evaluation benchmark to measure the robustness of models to multimodal shortcuts. We show that existing models are vulnerable to multimodal shortcut learning.

The learning of those shortcuts is particularly harmful when models are evaluated in an out-of-distribution context. Therefore, it is important to evaluate the reliability of VQA models, i.e. the ability to assess their confidence in the given answer. We propose a method to improve the reliability of VQA models, i.e. their ability to abstain from answering when their confidence is too low. It consists of training an external "selector" model to predict the confidence of the VQA model. This selector is trained using a cross-validation-like scheme in order to avoid overfitting on the training set but still using all the available data. We show that our method can improve the reliability of existing VQA models, in both in-distribution and out-of-distribution settings.

R É S U M É

Cette thèse se concentre sur la tâche de Visual Question Answering (VQA), c'est à dire les systèmes questions-réponses visuelles. Elle consiste à répondre à des questions à propos de photographies. Nous étudions l'apprentissage des biais dans cette tâche. La littérature montre que les modèles ont tendance à apprendre des corrélations superficielles les conduisant à des réponses correctes dans la plupart des cas, mais qui peuvent échouer lorsqu'ils rencontrent des données d'entrée inhabituelles.

Nous proposons deux méthodes pour réduire l'apprentissage par raccourci sur le VQA. La première, RUBi, consiste à encourager le modèle à apprendre à partir des exemples les plus difficiles et les moins biaisés grâce à une loss spécifique. Nous montrons que notre méthode peut réduire les biais basés sur les questions dans les modèles VQA, en particulier lorsqu'ils sont testés sur des données avec un changement de distribution. Nous proposons ensuite un modèle pour la tâche de comptage visuel -un sous-ensemble de VQA composé uniquement de questions de comptage. Nous proposons SCN, un modèle doté d'une architecture conçue pour être robuste aux changements de distribution. Nous montrons que SCN a des performances supérieures à celles des modèles existants sur les benchmarks out-of-distribution.

Nous étudions ensuite les raccourcis multimodaux dans le VQA. Nous montrons qu'ils ne sont pas seulement basés sur des corrélations entre la question et la réponse, mais qu'ils peuvent aussi impliquer des informations sur l'image. Nous concevons un benchmark d'évaluation pour mesurer la robustesse des modèles aux raccourcis multimodaux. Nous montrons que les modèles existants y sont particulièrement vulnérables.

L'apprentissage de ces raccourcis est particulièrement problématique lorsque les modèles sont testés dans un contexte de changement de distribution. C'est pourquoi il est important de pouvoir évaluer la fiabilité des modèles VQA, c'està-dire notre capacité à évaluer leur confiance dans la réponse donnée. Nous proposons une méthode pour améliorer cette fiabilité, afin de leur permettre de s'abstenir de répondre lorsque leur confiance est trop faible. Cette méthode consiste à entraîner un modèle externe, dit "sélecteur", pour prédire la confiance du modèle VQA, à l'aide d'un système similaire à la validation croisée afin d'éviter un surajustement du modèle tout en utilisant toutes les données disponibles. Nous montrons que notre méthode peut améliorer la fiabilité des modèles VQA existants, à la fois dans le cadre de la distribution et hors de la distribution. has been coined Shortcut Learning [START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF]): they will find the simplest correlations between the input data and the answers. This is often a desired property, but it can also lead to biases in the model when those correlations are not causal. For example, if the model is trained on a dataset where all answers for "What is the color of the sky?" is blue, then the simplest behavior for the model would be to always output blue for this question. This is a problem, as it would not be able to answer correctly if the sky is not blue. Additionally, when evaluating the models on testing sets with the same distributions, using those shortcuts will lead to high accuracy. However, when using the model in the real world, it might lead to catastrophic failure. Shortcut learning is a problem that is not specific to VQA, but it is particularly important in this task, as it combines multiple modalities and requires a high-level understanding of the scene and reasoning to answer correctly.

Contributions

In this Thesis, we tackle the problem of shortcut learning in the context of VQA. We propose to explore various directions related to shortcut learning in VQA: strategies to mitigate shortcut learning, by influencing the model's preferred solutions using inductive biases, methodologies to detect shortcuts in VQA datasets, and models' reliability in out-of-distribution settings. The goal is to better understand the problem of shortcut learning in VQA and to propose solutions to mitigate it, making models closer to real-world usage.

The first axis of our thesis, in Chapters 3 and 4, is centered around reducing shortcut learning in VQA models using various inductive biases. Then, we focus on detecting shortcuts and evaluating models' performance and reliability in outof-distribution settings, in Chapters 5 and 6. We summarize our contributions in the following list:

• Chapter 3: a le a r n i n g s t r at e g y t o r e du c e u n i m o da l b i a s e s i n v q a First, we explore the reduction of shortcut learning in VQA models. We use the VQA-CP benchmark, which is designed with a distribution shift between the training set and the testing set. It penalizes models that rely on statistical regularities between the question and the answer. This allows us to test the robustness of a model and its learning procedure. In this context, we propose a strategy to reduce shortcut learning in VQA coming from the question modality and encourage the model to use the visual input to answer correctly. Our method reduces the importance of the most biased examples, i.e. examples that can be correctly classified without looking at the image and increases the importance of the most difficult examples, i.e. examples that require the model to use the image to answer correctly. We leverage a question-only model that captures the language biases by identifying when these unwanted regularities are used. It prevents the base VQA model from learning them by influencing its predictions. This leads to dynamically adjusting the loss to compensate for biases.

• Chapter 4: r e du c i n g s h o r t c u t l e a r n i n g w i t h a rc h i t e c t u r a l p r iors for visual counting We then focus on Visual Counting, a sub-task of Visual Question Answering. It consists in answering counting questions about an image, for example, "How many cats are to the left of the car?", the output being a number. This task is also subject to the same kind of shortcuts as the main VQA task. We use it to explore a second way of reducing shortcut learning with inductive biases: architectural priors. First, we propose a benchmark to evaluate shortcut learning and out-of-distribution generalization, similar to the VQA dataset VQA-CP, but for visual counting. Then, we propose a model which incorporates inductive biases in the deep architecture to guide the model and ground its decision in the image: we structure the model's architecture around the selection of individual objects based on the textual question.

• Chapter 5: detecting multimodal shortcuts for vqa Most previous work on VQA focuses on the issue of question-based shortcuts: superficial correlations between the question words and the answer. We investigate the existence of multimodal shortcuts in VQA datasets: simple vision and language patterns that are associated with high certainty with a given answer. We propose a method to find simple patterns in the data: for example, the presence of a racket in the image, with the words "what" and "sports" in the question will most likely lead to the answer "tennis". Those patterns might not hold in all examples, but might be learned by VQA models. We can use examples that contradict those patterns to evaluate the robustness of the model: if it relies on those patterns, it will fail on the examples that contradict them.

• Chapter 6: reliability for visual question answering Finally, we explore a complementary problem of shortcut learning: the reliability of VQA models. Reliability is the capacity of a model to return a confidence score in addition to an answer. This makes it possible for the model to abstain when the risk of failure is too high. We assess models' reliability under distribution shift, in an out-of-distribution (OOD) setting.

The VQA models might be overconfident, especially if they learned simple shortcuts which do not work on the OOD dataset. We evaluate how large pre-trained vision-and-language models perform on this reliability task, and propose a method to improve reliability for VQA.

Related publications

This thesis is based on the material published in the following papers:

• Remi Cadene, Corentin Dancette, Hedi Ben-Younes, Matthieu Cord, and Devi Parikh (2019c). "RUBi: Reducing Unimodal Biases for Visual Question Answering". In: Advances in Neural Information Processing Systems (NeurIPS)

• Corentin Dancette, Remi Cadene, Xinlei Chen, and Matthieu Cord (2021a). "Learning Reasoning Mechanisms for Unbiased Question-based Counting". In: VQA Workshop, Conference on Computer Vision and Pattern Recognition (CVPR)

• Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord (2021b). "Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in Visual Question Answering". In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)

• Corentin [START_REF] Dancette | Improving Selective VQA by learning from your peers[END_REF]. "Improving Selective VQA by learning from your peers". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Additionally, we worked on other projects, that are not included in this thesis, as they are not directly focused on the main topic of this thesis, but tackle related problems, such as domain generalization, or compute efficiency of the transformer's architecture.

• Fishr: Invariant gradient variances for out-of-distribution generalization.

We explore the task of domain generalization: given multiple training domains with different distributions, we want to learn a model that performs well on another unseen test distribution. For this, models must learn to use invariant features, that are not specific to a given domain, but equally predictive in all domains. For instance, the Colored-MNIST dataset proposes splits where the color is predictive of the number, but with different colors for each split. We propose a method that constrains the gradient variances of the model across environments to be similar. This work led to the publication of a conference article: Alexandre Rame, Corentin [START_REF] Dancette | Dynamic Query Selection for Fast Visual Perceiver[END_REF]. "Fishr: Invariant gradient variances for out-of-distribution generalization". In: Proceedings of the International Conference on Machine Learning (ICML), pp. 18347-18377

• Dynamic Query Selection for Fast Visual Perceive. The Transformer is an effective architecture for deep learning but has a quadratic complexity in the number of tokens, which is problematic for large inputs. The perceiver is a transformer-based model designed to reduce the number of input tokens, by having a smaller and fixed number of "queries". In this work, we analyze the perceiver architecture for computer vision and show how to make it more efficient by selecting dynamically only the most important queries. This article led to the publication of a workshop article: Corentin [START_REF] Dancette | Dynamic Query Selection for Fast Visual Perceiver[END_REF]. "Dynamic Query Selection for Fast Visual Perceiver". In: CVPR Workshop, Transformers for Vision

We open-sourced the code concerning the following chapters:

• Chapter 3: https://github.com/cdancette/rubi.bootstrap.pytorch

• Chapter 4: https://github.com/cdancette/spatial-counting-network

• Chapter 5: https://github.com/cdancette/detect-shortcuts C h a p t e r

B A C K G R O U N D A N D C O N T E X T

In this chapter, we present a literature review of the works related to the thesis. First, we introduce the topic of Deep Learning for Computer Vision and Natural Language Processing. We then discuss works related to Visual Question Answering (VQA). Finally, we discuss the literature on biases and shortcut learning in deep neural networks, especially in the VQA task.

Deep Learning for Text and Image

Deep Learning (LeCun et al. 2015) is a subfield of machine learning that focuses on learning representations from data using deep neural networks. Neural networks are statistical models [START_REF] Vapnik | An overview of statistical learning theory[END_REF], loosely inspired by the human brain. They are high-dimensional functions composed of multiple layers of linear transformations called neurons and non-linear activation functions. This basic building block of deep neural networks is called the Multi-Layer Perceptron (MLP).

In this thesis we mainly use the Supervised Learning setting: we have a training dataset D containing samples. Each sample contains an input x and with a ground-truth label y that the model is trained to predict. For example, for image classification, each image is associated with a class describing its content. Other settings include unsupervised or self-supervised learning, when no labeled data is available [START_REF] Hastie | Masked autoencoders are scalable vision learners[END_REF], and semi-supervised learning, the middle ground between the two previous settings where the data is partially annotated [START_REF] Chapelle | Counting everyday objects in everyday scenes[END_REF]. In supervised learning, a model f with parameters θ is trained using a loss function L that measures the distance between the predictions of the model and the target, using a variant of stochastic gradient descent [START_REF] Bottou | Discovering Useful Compact Sets of Sequential Rules in a Long Sequence[END_REF]). The gradient is usually computed using the backpropagation algorithm [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]. Computing the output of the neural network f for a given input x is called the forward pass, and computing ∇ θ L, the gradients of the loss with respect to its weights, is called the backward pass. The weights are updated in the opposite direction of the gradient to minimize the loss L. In the following sections, we introduce the domains of Computer Vision and Natural Language Processing and explain how Deep Learning is used in those domains.

Computer Vision

Computer Vision (CV), the study of image processing and understanding, has been studied for multiple decades. Until 2012, the state-of-the-art algorithms for image classification were based on hand-crafted features, such as Histogram of Oriented Gradients (HOG) [START_REF] D'amour | Underspecification presents challenges for credibility in modern machine learning[END_REF] or Bag-of-Words-based strategies using local features like SIFT [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], projected on a Visual Dictionary [START_REF] Fournier | RETIN: A Content-Based Image Indexing and Retrieval System[END_REF][START_REF] Sivic | ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases[END_REF] with linear classifiers learned on top, like Support Vector Machine (SVM) [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]. At the ILSVRC 2012 challenge (Russakovsky et al. 2015a), a large-scale image classification benchmark, [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]) won the competition with AlexNet, a Deep Neural Network. Since then, deep neural networks have been used in many Computer Vision tasks, such as image classification, object detection, image segmentation, and many others, surpassing hand-crafted feature representations. Most architectures used in Computer Visions are based on the Convolutional Neural Network (CNN) architecture: a neural network composed of learned convolution layers and non-linear activation functions such as the Rectified Linear Unit (ReLU). We display a typical CNN architecture in Figure 2.1.

Natural Language Processing

Natural Language Processing (NLP) is the study of text understanding. It ranges from tasks like summarization, language modeling or text generation, translation, text classification and many others. The first NLP systems used fixed and handcrafted rule-based systems [START_REF] Weizenbaum | ELIZA-a computer program for the study of natural language communication between man and machine[END_REF]. Early probabilistic systems used in NLP were based on n-grams or hidden Markov models [START_REF] Cavnar | N-gram-based text categorization[END_REF][START_REF] Robertson | Applications of n-grams in textual information systems[END_REF][START_REF] Witten | Text mining: A new frontier for lossless compression[END_REF]. The first popular Deep Learning models for NLP were Recurrent Neural Network (RNN), like the Long Short-Term Memory network (LSTM) [START_REF] Gers | LSTM recurrent networks learn simple context-free and context-sensitive languages[END_REF]. These architectures process each word or token sequentially, one by one, using the same model with a memory saved between each forward pass. It is trained with a variant of backpropagation called backpropagation through time, as the network is called multiple times with the same weights. Other variants of RNN include the GRU architecture [START_REF] Cho | On the Properties of Neural Machine Translation: Encoder-Decoder Approaches[END_REF]. These models can take as input token ids, or word embeddings: vectors that represent the semantic meaning of a word [START_REF] Turian | Word representations: a simple and general method for semi-supervised learning[END_REF]. The word2vec approach [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF]) is a popular technique that uses neural networks to learn word embeddings based on word co-occurrences.

More recently was proposed the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]: it is composed of multiple attention layers, and all tokens are processed in parallel instead of sequentially like in a RNN. At each layer of the model, a token receives updates from its own representation using an MLP, and from the other tokens of the sequence using a Multi-Head Self-Attention mechanism. We display the full architecture in Figure 2.2. The attention is computed as follows:

Attention(Q, K, V ) = softmax QK T √ d k V, (2.1) 
where Q, K, and V are respectively the queries, keys and values, and are obtained by linear transformations from input tokens.

This results in more efficient forward and backward passes, which makes it possible to train them on larger datasets. Those models are usually pre-trained using self-supervised learning (they learn representations from a stream of text without any labels) using one of the following strategies. (a) Masked Language Modeling: a word is masked in the input text, and the whole input is used to predict the word. (b) Next Token Prediction or Autoregressive generation: the model can only use the previous words to predict the next word. This is often used for language generation. This approach has been shown to scale fairly well with very large models and datasets, [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Radford | Improving language understanding with unsupervised learning[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF], reaching a hundred billion parameters. For instance, GPT-3 [START_REF] Brown | Language models are few-shot learners[END_REF]) contains 175 billion parameters, Palm [START_REF] Chowdhery | Palm: Scaling language modeling with pathways[END_REF]) contains 540 billion, and Switch Transformer reaches 1.5 trillion parameters with a sparse model [START_REF] Fedus | Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity[END_REF]. Those models, pre-trained on large-scale unlabeled data, and fine-tuned for many downstream tasks, are sometimes referred to as foundation models. Emerging properties have been shown to appear at those scales, like few-shot or zero-shot evaluation with prompt conditioning [START_REF] Brown | Language models are few-shot learners[END_REF].

The Transformer architecture is also very general and can be adapted to many other modalities, as it just requires partitioning the input as a set of tokens. It is now used for computer vision tasks, using image patches. Vision Transformer architectures now reach similar accuracies to the best CNN models [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. It has also been used for vision-and-language learning, like CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]). We will detail this further in the next section.

Visual Question Answering

While the two fields of Computer Vision and Natural Language Processing have been studied for a long time, the task of bridging the gap between the two has been studied more recently, with tasks like Image-text retrieval, Image Captioning, Text to image generation, and others.

In this thesis, we focus on the task of Visual Question Answering (VQA). It consists in answering a natural language question about an image, for example, asking How many slices of pizza are there?, like in the example from Figure 2.3.

In order to answer this complex question, the network must be able to process the image, understand the text, and also model the interactions between the two modalities. This task, referred to as a Visual Turing Test by [START_REF] Geman | Visual turing test for computer vision systems[END_REF], requires high-level text and image understanding. This task is interesting for multiple reasons. First, it is a benchmark to test jointly the textual, visual and reasoning abilities of artificial models. Then, it has many direct applications, such as assistance for visually impaired users [START_REF] Gurari | Vizwiz grand challenge: Answering visual questions from blind people[END_REF], communicating with robots, searching the web more efficiently, and many others.

The very first works to study the Visual Question Answering task had a restricted focus: Malinowski and Fritz 2014a introduced the DAQUAR dataset, and [START_REF] Geman | Visual turing test for computer vision systems[END_REF] introduced their Visual Turing Test. Both of those datasets are built with questions or answer that come from a small-sized fixed vocabulary. Also, their size is limited to a few thousand images. This scale is not sufficient to train a deep neural network that will capture the complexity of the task. Then, the following works proposed larger datasets that enabled the successful development of Deep Learning approaches for VQA.

VQA datasets

VQA v1 and v2

The main datasets used by the community in recent years are VQA v1 (Antol et al. 2015a) and VQA v2 (Goyal et al. 2017a). They are composed of 123K and 443K images respectively for their training sets, and involve "free-form" and "open-ended questions and answers provided by humans". The images are from the COCO dataset (T.-Y. Lin et al. 2014a) and come from various "domains", such as indoor scenes, outdoor scenes, animals, and people. We display in Figure 2.3 two images with their associated questions in the VQA v1 dataset. Note that in the thesis, we focus on "Open-ended" VQA, which is the most challenging task. Antol et al. 2015a also provides a multiple-choice version of the task, for which each image-question pair is associated with a list of 18 possible answers. Dataset collection The two datasets were collected in a two-step process: first, the images were shown to people with the following prompt (from (Antol et al. 2015a)).

"We have built a smart robot. It understands a lot about images. It can recognize and name all the objects, it knows where the objects are, and it can recognize the scene (e.g., kitchen, beach), people's expressions and poses, and properties of objects (e.g., the color of objects, their texture). Your task is to stump this smart robot! Ask a question about this scene that this smart robot probably can not answer, but any human can easily answer while looking at the scene in the image."

Then, for each pair of question and image, were gathered 10 answers from 10 different people, to account for the diversity of possible answers. Answers may be simple words like "yes", "no", or a short phrase, but annotators were asked to avoid complete sentences.

Evaluating a model We have 10 possible answers for each question, therefore the evaluation of a model's predictions must be done in a way that takes into account the number of ground truth answers that match the model's predictions. The VQA accuracy is computed using the following formula: accuracy = min # humans that provided that answer 3 , 1

Therefore, for a model to get a perfect score, it must predict the answer that was given by at least 3 people. To give an idea of the best score a model could get, the average human performance is around 83.30 percent overall, (95.77 for yes-no questions, 83.39 for number questions and 72.67 for other questions).

We explain in Section 2.4.1 the main differences between VQA v1 and VQA v2. Johnson et al. 2017b) is a synthetic dataset where both images and questions are generated. The images are composed of a background, a set of simple objects (cubes, cylinders and spheres) with a few attributes (color, texture, position). The questions refer to those attributes and objects and can be compositional. We show an example of an image and question from CLEVR in Figure 2.4. It is a good benchmark to study compositional reasoning. GQA (Drew A Hudson and Manning 2019) is a VQA dataset that is built from real images from the Visual Genome dataset (Krishna et al. 2017a), but questions are synthetically generated from the scene graph. It has a much more varied number of objects and attributes than CLEVR and is therefore more challenging in that regard while containing more compositional questions than VQA v1 and v2. We show an image and question from GQA in Figure 2.5.

CLEVR (Justin

Visual Genome (Krishna et al. 2017a) is a dataset containing 108K images, with multiple kinds of annotations: bounding boxes, object attributes, relationships between objects, etc. It also contains natural language questions and answers on 101K images.

VizWiz [START_REF] Gurari | Vizwiz grand challenge: Answering visual questions from blind people[END_REF]) is a real-world VQA dataset collected by visually impaired users. They were asked to take pictures with their smartphone and ask questions when they needed information about what was in the picture. Answers were then annotated by sighted users. This dataset is very challenging, as questions vary a lot in terms of difficulty, and the quality of images is not always good: some images are blurry, or the objects are not well centered or partially occluded. We show an example from VizWiz in Figure 1.1.

TDIUC (Task Driven Image Understanding) (Kafle and Kanan 2017) propose a VQA dataset with questions from 12 distinct tasks, like object presence, scene classification, activity recognition, counting...

VQA Architectures

The VQA task can be formalized as a supervised learning problem. The dataset D is composed of n triplets (v i , q i , a i ) i∈ [1,n] with v i ∈ V an image, q i ∈ Q a question in natural language and a i ∈ A an answer. One must learn a function f : V × Q → A with parameters θ to produce accurate predictions.

Most of the literature considers the VQA v1 and v2 datasets as single-class or multi-class classification problems: they keep only the K most common answers, K usually being around 3000. We thus have |A| = K. Each question is associated with single or multiple answers, and a i ∈ R |A| represents the target probability distribution and f : V × Q → R |A| . The function f is then learned using a Cross-Entropy loss: 

L(θ; D) = - 1 n n i=1 a i • log(softmax(f (v i , q i ))).
(2.2)

Specialized Fusion-based architectures

Early architectures proposed for the VQA task were specialized architectures designed solely for the task. They use pre-trained unimodal models to embed the image and the text into an embedding space, and then propose a fusion strategy to combine the two modalities and output an answer. (Antol et al. 2015a) in the original VQA paper proposes the following approach: visual features are extracted with VGG (Simonyan and Zisserman 2015), a deep convolutional neural network, pre-trained on ImageNet (Russakovsky et al. 2015b). This gives a 4096dimensional feature vector. Textual features are extracted with a LSTM [START_REF] Gers | LSTM recurrent networks learn simple context-free and context-sensitive languages[END_REF], which is initialized randomly and trained for the VQA task. Both features are projected to a 1024-dimensional vector with a linear layer, then pointwise multiplied. A fully-connected linear layer then projects this vector into answer space. The architecture is displayed in Figure 2.7. The model is trained with standard Cross-Entropy on the most common ground truth answer for each input example. the LSTM + CNN architecture, but the fusion operation is a bilinear fusion, with a factorization that allows to drastically reduce the number of parameters, from billions to a few millions.

Other works using bilinear fusion include MCB (Fukui et al. 2016b), MLB (J.-H. [START_REF] Kim | Hadamard product for low-rank bilinear pooling[END_REF], MUREL (Cadene et al. 2019a) and others [START_REF] Yu | Multi-modal Factorized Bilinear Pooling with Co-Attention Learning for Visual Question Answering[END_REF][START_REF] Yu | Beyond Bilinear: Generalized Multi-modal Factorized High-order Pooling for Visual Question Answering[END_REF].

Iterative reasoning and neural-symbolic approaches

VQA is a reasoning task, that sometimes requires composing multiple operations to answer questions like What is hanging on the wall above the bed?. First, it requires locating the bed in the image, then analyzing and identifying what is above it. Some works propose an architecture that takes inspiration from this intuitive idea of iterative reasoning. [START_REF] Yang | Stacked attention networks for image question answering[END_REF] proposed an architecture composed of multiple blocks, with different weights, where each block can query different parts of the image. Cadene et al. 2019a proposed MUREL a multi-step recurrent architecture that uses bilinear fusion blocks, applied recursively.

Another class of VQA architecture which is sometimes referred to as "neuralsymbolic", consists in having blocks dedicated to specific functions, like object identification, positional reasoning, counting, etc. and then combining those neural network blocks with symbolic reasoning. (Andreas et al. 2016;R. Hu et al. 2017;R. Hu et al. 2018;[START_REF] Shi | Explainable and Explicit Visual Reasoning over Scene Graphs[END_REF]. The blocks are often applied recursively. By design, those architectures are also more explainable than other approaches: the reasoning process is more explicit, as the block operations can be interpreted. We show in Figure 2 

Attention mechanism and transformer architecture

Recently, the attention mechanism has been used to model the VQA task. Attention is notoriously used in the transformer architecture, initially proposed for language modeling [START_REF] Vaswani | Attention is all you need[END_REF]. Transformer architectures have been shown to be very effective for many tasks, including vision and language tasks, as they can model long-range dependencies better than LSTM and CNN [START_REF] Vaswani | Attention is all you need[END_REF].

Some works like [START_REF] Yang | Stacked attention networks for image question answering[END_REF]Anderson et al. 2018a;Y. Jiang et al. 2018) first included attention layers in the original VQA pipeline, as a form of fusion between the image and text embeddings. The attention is now cross-modal, between text and image tokens. Anderson et al. 2018a also proposed a novel image encoding method. Previous works were mostly using the "grid-like" features from a pretrained convolutional neural network. Instead, they propose to use a pre-trained object detection model, Faster R-CNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF], to extract object-based features: each detected object is associated with a position, a feature vector and a label. Most VQA questions are based on objects, and this approach significantly improves the performances of VQA models. We display an illustration of this approach in Figure 2.10. [START_REF] Yu | Deep modular co-attention networks for visual question answering[END_REF] then proposed MCAN, a modified transformer architecture for VQA that directly takes the image and question embeddings as input. It is made of a series of Transformer encoder-decoder blocks, with cross-attention to merge the image and question representations. The architecture is displayed in Figure 2.11. This model is trained end-to-end on the VQA task. The study of multimodal transformer architectures, with cross-modal attention to merge modalities is an active research area today.

Large pre-trained / Foundation models

The most recent works in VQA leverage large-scale pretraining on vision-andlanguage datasets. This approach is inspired by the success of large pre-trained language models for NLP such as BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF]) and the GPT models [START_REF] Radford | Improving language understanding with unsupervised learning[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF]. Those text models are trained on a large amount of data, using unsupervised objectives, as explained in Section 2.1.2. This approach was also used for Computer Vision, using contrastive learning [START_REF] Grill | Bootstrap your own latent-a new approach to self-supervised learning[END_REF][START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] or masked modeling (He et al. 2022).

Those models are sometimes referred to as foundation models: they serve as a base for evaluation or fine-tuning on many downstream tasks.

For vision-and-language, this includes LXMERT [START_REF] Tan | Lxmert: Learning cross-modality encoder representations from transformers[END_REF], UNITER (Y.-C. [START_REF] Chen | Uniter: Learning universal image-text representations[END_REF], OSCAR (X. [START_REF] Li | Oscar: Object-semantics aligned pre-training for vision-language tasks[END_REF], FLAVA [START_REF] Singh | Flava: A foundational language and vision alignment model[END_REF], OFA (P. Wang et al. 2022), and many others. They are trained on large-scale vision-andlanguage datasets such as COCO (T.-Y. Lin et al. 2014a), Visual Genome (Krishna et al. 2017a), Conceptual Captions (Sharma et al. 2018), and many other datasets. They are trained on tasks like Masked Language Modeling, Masked Image Modeling, Image-Text matching, Cross-modal alignment, and Image classification, as well as unimodal tasks like image classification, or language modeling. One of the most recent approaches, OFA, is called a unified model: it is pretrained on a variety of text-only, image-only and multimodal tasks, using no task-specific head: it unifies all task outputs into a single vocabulary and can perform text or image generation, object detection, VQA, and many other tasks as shown in Figure 2.12. It can then be used in a zero-shot fashion if the downstream task is similar to the ones it was trained on, or fine-tuned on a specific task to gain additional performance. Its architecture is an encoder-decoder transformer model. Its transformer weights are initialized using the BART [START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF], a pretrained language model, and a CNN is added to pre-process the image modality. It is then trained further on image-only, text-only and multimodal tasks. All the code and weights of pre-trained models are available online, which makes it possible to evaluate or fine-tune the model on many vision-and-language downstream tasks, such as Visual Question Answering. The architectures released cover a wide range of model sizes, from 33M to 930M parameters, 

Progress in the VQA task

We display in Figure 2.13 the progress made in recent years on the VQA v2 dataset (Goyal et al. 2017a). We observe there has been a steady improvement over the years, the first models having around 65% accuracy, reaching now over 80%. We also observe the trends in model types: the first models were based on bilinear fusion (Fukui et al. 2016a;Ben-Younes et al. 2017b;J.-H. Kim et al. 2018), then the attention models appeared (Anderson et al. 2018c;Y. Jiang et al. 2018;[START_REF] Yu | Deep modular co-attention networks for visual question answering[END_REF]H. Jiang et al. 2020), and the best models today are the large pre-trained vision-and-language transformers (Z. Wang et al. 2022;P. Wang et al. 2022;[START_REF] Tran | Plex: Towards Reliability using Pretrained Large Model Extensions[END_REF]. We also observe an increasing trend in the number of parameters of the models, the most recent models reaching over 1 billion parameters. This was made possible by the use of large pre-training datasets. For example, BeIT-3 is trained on 21 million image-text pairs, plus 14M of image and 160GB of text. We observe that most recent models now surpass human accuracy on VQA. While this suggests that the task is now solved, we will see in the next section that might not really be the case: the VQA task contains a lot of shortcuts, that enable models to reach high accuracy without necessarily using the right mechanism to answer. 

Shortcut learning and biases

Shortcut Learning is a common problem in Deep Learning [START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF]): real-world datasets display some form of inherent biases due to their data acquisition process [START_REF] Gordon | Reporting bias and knowledge acquisition[END_REF][START_REF] Chao | Being negative but constructively: Lessons learnt from creating better visual question answering datasets[END_REF][START_REF] Torralba | Unbiased look at dataset bias[END_REF]. As a result, machine learning models tend to reflect these biases because they capture often undesirable correlations, or shortcuts, between the inputs and the ground truth annotations (Stock and Cisse 2018a; Jia et al. 2018a;Manjunatha et al. 2019a;Torralba and Efros 2011b;Jia et al. 2018b). We can see in Figure 2.14 examples of potential shortcuts in image tasks: in the first example, for captioning, the model learns to recognize the background, instead of the primary object, as those appear together most of the time. The model then fails in a case where the background appears without the common object. In this thesis, we use the terms shortcut and bias interchangeably. This is a misnomer, as bias in statistical learning is a more general term, but they are both used in the VQA literature to describe a similar issue.

Shortcut learning is related to the notions of causality and out-of-distribution (OOD). In statistical learning, the usual assumption is that the data are i.i.d. (independent and identically distributed). This means that all the data are sampled from the same distribution, especially since the testing set has the same distribution as the training set. This is rarely the case in the real world: environments are constantly evolving, and new situations will occur that were not present in the training set. For a model to be reliable in both in-distribution and out-ofdistributions, it needs to learn causal features to be able to generalize well. When a model is learning shortcuts from the training distribution, it might reach a good performance when evaluated on in-distribution data, that contains the same biases. This will however lead to poor generalization performance on OOD data, or when used in the real world on a large scale. Deep Learning models tend to learn the simplest solution-a property called simplicity bias- [START_REF] Arpit | A closer look at memorization in deep networks[END_REF][START_REF] Valle-Perez | Deep learning generalizes because the parameter-function map is biased towards simple functions[END_REF]Soudry et al. 2018;[START_REF] Kalimeris | Sgd on neural networks learns functions of increasing complexity[END_REF][START_REF] Shah | Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning[END_REF]. This is often desirable and helps generalization to in-distribution data, but in some cases, this makes the model learn only superficial and spurious features, and will lead to poor generalization performance on OOD data [START_REF] Pezeshki | Gradient starvation: A learning proclivity in neural networks[END_REF]. For instance, in image classification tasks, models were shown to be often more biased towards the texture of objects than their shape [START_REF] Geirhos | ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF]). We show an example in Figure 2.15.

Shortcuts might be harmful in many ways. They can lead to dangerous failures when deployed in the real world, and can also reinforce harmful social biases towards gender or race [START_REF] Zhao | Men also like shopping: Reducing gender bias amplification using corpus-level constraints[END_REF]Hendricks et al. 2018b) Procedures exist to identify certain kinds of biases and to reduce them. For instance, some methods are focused on gender biases (Hendricks et al. 2018a;Zhao et al. 2017a), some others on the human reporting biases [START_REF] Misra | Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels[END_REF], and also on the shift in distribution between lab-curated data and real-world data [START_REF] Gupta | Robot learning in homes: Improving generalization and reducing dataset bias[END_REF]). In the language and vision context, some works evaluate unimodal baselines [START_REF] Anand | Blindfold baselines for embodied qa[END_REF][START_REF] Thomason | Shifting the Baseline: Single Modality Performance on Visual Navigation & QA[END_REF] or investigate how language priors create object hallucinations [START_REF] Rohrbach | Object Hallucination in Image Captioning[END_REF].

No general method to reduce shortcut learning without additional information It is not possible to distinguish causal from spurious correlations in a fixed dataset [START_REF] Schölkopf | Toward causal representation learning[END_REF]). Thus, extra information or inductive biases is required to guide the learning and improve the generalization to out-of-distribution data. [START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF] proposes to classify the inductive biases of models that have an impact on shortcut learning into four components: architecture, training data, loss function and optimization procedure. Thus, the knowledge we have about a task can be incorporated into the final model by changing one of these components.

Measuring shortcut learning in neural networks

We distinguish two challenges here: the first is, given a neural network already trained on a fixed dataset, how can we evaluate if it has learned the correct mechanism, using causal features, or if its decisions are based on shortcuts? The second setup is how can we evaluate the inductive biases of a training procedure and architecture.

Evaluating a trained model For the first challenge, there were multiple proposed solutions. The first approach consists in leveraging explainability methods [START_REF] Ribeiro | Why should I trust you?" Explaining the predictions of any classifier[END_REF][START_REF] Fong | Interpretable explanations of black boxes by meaningful perturbation[END_REF]Stock and Cisse 2018b;Manjunatha et al. 2019b), such as attributions methods like LIME. Those methods highlight parts of the input that were important in the model's prediction. For instance, LIME [START_REF] Ribeiro | Why should I trust you?" Explaining the predictions of any classifier[END_REF] shows which pixels from an image contribute the most to the classification output. A user can then use this to determine if the model is using spurious correlations, like using the background to predict the class of the object. We show an example of this in Figure 2.16 These methods often require the intervention of a human or the collection of expensive annotations (Das et al. 2017a), but don't require much prior knowledge of the source of the bias. Another strategy to evaluate shortcut learning is to create out-of-distribution evaluation datasets that do not contain the biases that need to be avoided, or that we hypothesize the system to exploit. [START_REF] Mccoy | Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference[END_REF][START_REF] Alcorn | Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects[END_REF]. It simulates the kind of shifts in distribution that can potentially be encountered when deployed in the real world. For example, the FairFace dataset [START_REF] Kärkkäinen | FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation[END_REF] has multiple groups of faces with various races, genders and ages to evaluate face analysis models. ImageNet-C (Hendrycks and Dietterich 2019) is a benchmark that contains images from ImageNet, but with a specific corruption applied to them. The corruption is chosen to be a shortcut that the model might learn to exploit. It makes it possible to evaluate how well the models rely on low-level features that are not always relevant to the task. ObjectNet [START_REF] Barbu | ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models[END_REF]) is a benchmark that contains images from ImageNet, but with unusual backgrounds, object poses or viewpoints. Evaluating the inductive biases of a training procedure and architecture on controlled biases In this challenge, the objective is to evaluate how much a given training procedure and model architecture are sensitive to a certain class of shortcuts. This is related to domain generalization. A simple way to achieve this is to control the source of biases: the "biased" variable is fixed and a pair of (training, testing sets) that do not contain the same correlation between this variable and the answer.

An example displayed in Figure 2.17 is Colored-MNIST [START_REF] Arjovsky | Invariant risk minimization[END_REF]B. Kim et al. 2019). It is a toy dataset where the color of the digit is correlated with its label, but the correlation is reversed from the training set to the testing set. Therefore, a model using the color of the digit to predict the label will perform poorly on the testing set. Another example is Biased Activity Recognition (BAR) (Nam et al. 2020). It is an activity recognition dataset, where the activity is correlated with the background scene, but the correlations are changed in the testing set. DomainBed (Gulrajani and Lopez-Paz 2021) is another benchmark for domain generalization. It contains seven datasets, each containing at least three domains with different biases. Models learn on N-1 datasets and are tested on the held-out domain. This benchmark is designed to 'test if models are able to learn invariant correlations that hold across all domains and generalize to the test domain, or if they learn spurious domain-specific correlations that do not generalize to the test domain.

Those methods make it possible to study how inductive biases influence shortcut learning in deep neural networks. But they require to control the source of biases. Next, we will explore methods aiming at reducing shortcut learning.

Reducing shortcut learning

Geirhos et al. 2020 explain what components, or "inductive biases" have an impact on shortcut learning: the model architecture, the training data, the loss function and the optimization algorithm. Thus, modifying those components might help to reduce shortcut learning. One important thing to understand is that to reduce shortcut learning, we need to make a hypothesis about the source of the biases, or add domain knowledge to the training procedure or the architecture on how the task should be solved to make it more robust to those biases. Some methods also use bias labels to reduce their impact in the final model.

And bias-reduction methods will often degrade performance on in-distribution testing sets, as they will reduce the ability of the model to exploit the shortcuts that are common between the training and the testing set. Some methods include (for multi-environment / bias label) GROUP-DRO [START_REF] Sagawa | Distributionally Robust Neural Networks[END_REF], IRM [START_REF] Arjovsky | Invariant risk minimization[END_REF], JTT (E. Z. [START_REF] Liu | Just train twice: Improving group robustness without training group information[END_REF]), LfF (Nam et al. 2020), Mixed capacity ensembles (C. [START_REF] Clark | Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles[END_REF].

A different strategy is to make models "explainable by design" [START_REF] Angelov | Keynote: Explainable-by-design Deep Learning[END_REF][START_REF] Fauvel | XEM: An explainable-by-design ensemble method for multivariate time series classification[END_REF]. This makes it possible for users to understand the decision of the model and assess its correctness. Using domain knowledge as architecture priors to the model can make it harder for the model to learn spurious correlations.

Shortcut learning in VQA

VQA is an interesting task to study shortcut learning. It requires performing reasoning, which is difficult to model: learning simple spurious correlations can be an easier way for models to achieve good performances. Additionally, it is a vision-and-language task, which makes possible the existence of complex multimodal shortcuts. The VQA v1 dataset (Antol et al. 2015a) was collected without controls on the correlations between questions, images and answers. This led to a dataset that contains many biases, that can be exploited by models: A. [START_REF] Agrawal | Analyzing the behavior of visual question answering models[END_REF] study the behavior of VQA models: they show that VQA models "seem to be heavily reliant on the language model, perhaps not deeply understanding the image", and that on the VQA v1 dataset (Antol et al. 2015a), then there is not a large gap between the performance of the question-only model and a regular VQA model. Additionally, they show that VQA models rely mostly on the first few words of the question. Multiple approaches have been proposed to reduce biases in VQA datasets and models. Most works focus on reducing the learning of spurious correlations between the question and the answer, to force models to rely more on the image. We classify the methods following three types of "inductive biases" proposed by [START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF] (Goyal et al. 2017a), follows this approach: They build a more balanced dataset, where it is harder to answer a question using only the image. It is built by collecting complementary images such that every question is associated with a second image leading to a different answer. This approach is expensive, and it can be difficult to collect the rare examples required to reduce biases but is partially effective to reduce simple question-answer shortcuts. We display examples from this dataset in Figure 2.18. The VQA v2 dataset contains 443K train, 214K val and 453K test pairs of images and questions. We observe in Figure 2.19 that overall, the answer distributions associated with a question type are more balanced for this new dataset. This gives less opportunity for models to learn to answer the questions without analyzing the image. Other methods of reducing biases by modifying the training data include data augmentation techniques. RandImg [START_REF] Teney | On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law[END_REF] proposes to replace the image with a random image and maximize the loss, the model avoids trusting too much the textual input without looking at the image. Other works create counterfactual samples (L. [START_REF] Chen | Counterfactual samples synthesizing for robust visual question answering[END_REF]Teney et al. 2020a), or leverage explanations to guide the model to focus on the right regions [START_REF] Selvaraju | Taking a hint: Leveraging explanations to make vision and language models more grounded[END_REF].

Architectural priors to reduce shortcut learning

Another approach is to incorporate architectural priors in models to encourage learning the correct mechanisms. This is related to explainability by design: enforcing the architecture to use the correct mechanism to answer the question and making it explainable are often related and can benefit from the same domain knowledge. The GVQA model (A. Agrawal et al. 2018a) contains restrictions in the architecture to prevent the learning of question biases. First, a Visual Concept Classifier extracts a set of visual concepts from the image that are relevant to the given question. In parallel, another model extracts a group of possible answers from the question, such as "object", "color" or others. Then, an answer predictor merges those two pieces of information to predict the correct answer. This makes it harder for the model to select an answer directly from the question and forces it to analyze the image. The architecture of this model is displayed in Figure 2.20. This architecture improves results on the VQA-CP dataset compared to previous VQA models but reduces significantly the accuracy on in-distribution data. Note that this approach requires training multiple sub-models separately, and is not trained in an end-to-end fashion. 2.21. First, they add an adversarial loss that penalizes the question encoder if it can predict the answer only from the question. Then they add an entropy regularization loss that forces the output distribution from the full model to have lower entropy than the output distribution from the question-only model, to encourage the use of the additional information contained in the image. This strategy improves the accuracy of their baseline model by a few points. [START_REF] Kervadec | Estimating semantic structure for the VQA answer space[END_REF] proposes to use semantic loss that penalizes differently the answers based on their semantic similarity with the ground truth answer. For example, if the ground truth answer is "red", the model will be penalized more if it predicts "blue" than if it predicts "pink". 

Benchmarks to measure shortcut learning in VQA

VQA-CP A strategy to evaluate a model's reliance on shortcuts is to evaluate it on examples that contradict the shortcuts. But this is not always possible, as shortcuts can be subtle and hard to detect. Therefore, a simpler strategy can be to create a training set with known shortcuts and evaluate the model's performance on a testing set that does not follow those shortcuts. This is the approach used in VQA-CP (A. Agrawal et al. 2018a). In this dataset, the distribution of answers conditioned on the question type is different between the training and the testing split. Therefore, a model using only the question and not the image to answer the question will perform much worse on the testing split. We show the results from their work in Figure 2.23. All existing models suffer from a huge drop in performance compared to their scores on the original VQA setting.

GQA-OOD

The GQA-OOD dataset [START_REF] Kervadec | Roses are red, violets are blue... but should vqa expect them to?[END_REF]) similar goal as VQA-CP: propose a testing set for the GQA dataset that has a different distribution from the GQA training set but corrects some of its shortcomings. First, it has a separate validation and testing set. This makes it possible to select hyperparameters and avoid adaptive overfitting. Then, it doesn't propose a different training set: all models trained on the regular GQA dataset can be tested on this benchmark.

VQA-Hat

The VQA-HAT (Human Attention) dataset (Das et al. 2017a) is designed to evaluate if the VQA models focus on the same regions as a human would do when answering the same question. It can be used as a proxy to evaluate if the model is learning textual shortcuts without using the image information. 

Positioning

In this thesis, we propose multiple contributions related to the topics of Visual Question Answering and Shortcut Learning. We show a figure of how our contributions relate to each other in Figure 2.25.

1. At the start of this thesis, the VQA-CP dataset had been proposed (A. In addition to those contributions, we show in Figure 2.25 our work on domain generalization Fishr [START_REF] Rame | Fishr: Invariant gradient variances for out-of-distribution generalization[END_REF], where we propose a new learning strategy to learn invariant models across multiple training distributions, in order to generalize to a new testing distribution. We also worked on training efficiency of vision transformer architectures [START_REF] Dancette | Dynamic Query Selection for Fast Visual Perceiver[END_REF]. We leverage a question-only model that captures language biases to identify these unwanted regularities. This model is learned in parallel with the VQA model and prevents it from learning biases by influencing its predictions. This leads to dynamically adjusting the loss in order to compensate for biases. We validate our contributions by surpassing the reference methods on VQA-CP v2.

The work in this chapter has led to the publication of this conference paper (* denotes equal contribution): 
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Introduction

As we reported in Chapter 2, VQA models achieve impressive results on the VQA v2 benchmark. However, we explained in Section 2.4 that they tend to exploit statistical regularities between answer occurrences and certain patterns in the question. Those models are designed to merge information from both modalities, but in practice, they often answer mainly using the question modality. When most of the bananas are yellow, a model does not need to learn the correct behavior to reach high accuracy for questions asking about the color of bananas. Instead of looking at the image, detecting a banana and assessing its color, it is much easier to learn from the statistical shortcut linking the words what, color and bananas with the most occurring answer yellow. We illustrate this issue in Figure 3.1: a model answering the question "What color is the banana?", that seen during its training 80% of yellow bananas, will most likely answer yellow, even if the banana is green like in figure in the middle. Thus, as the right figure shows, there is a crucial need to develop new strategies to reduce the amount of biases coming from the question modality in order to learn better behaviors. As we reported in Section 2.3, one of the inductive biases that influence a model's behavior is the loss function. We explore this direction for VQA.

One way to quantify the amount of statistical shortcuts from each modality is to train unimodal models. For instance, a question-only model trained on the widely used VQA v2 dataset predicts the correct answer approximately 44% of the time over the test set. We propose a learning strategy that takes advantage In Section 3.2, we review related work on mitigating shortcut learning for VQA. In Section 3.3, we describe our RUBi learning strategy. In Section 3.4, we evaluate our approach on multiple models and standard benchmarks, VQA-CP v1 and v2. Finally, in Section 3.4.4, we evaluate the impact of RUBi on visual groundingthe ability of models to use the correct image regions to answer the question.

Related work

In the following, we discuss related works that assess and reduce unimodal biases learned by VQA models. We discuss VQA models and datasets in Section 2.2, and give a general introduction on shortcut learning in Section 2.3, and especially for VQA in Section 2.4.

Assessing unimodal biases in datasets and models Despite being designed to merge the two input modalities, it has been found that VQA models often rely on superficial correlations between inputs from one modality and the answers without considering the other modality [START_REF] Jabri | Revisiting visual question answering baselines[END_REF]Manjunatha et al. 2019a). An interesting way to quantify the amount of unimodal biases that can potentially be learned by a VQA model consists of training models using only one of the two modalities (Antol et al. 2015a;Goyal et al. 2017a). The question-only model is a particularly strong baseline because of the large amount of statistical regularities that can be leveraged from the question modality. With the RUBi learning strategy, we take advantage of this baseline model to prevent VQA models from learning question biases.

Unfortunately, biased models that exploit statistical shortcuts from one modality usually reach impressive accuracy on most of the current benchmarks. VQA-CP v2 and VQA-CP v1 (A. Agrawal et al. 2018b), presented in Section 2.4.2, were introduced as diagnostic datasets containing different answer distributions for each question type between train and test splits. Consequentially, models biased towards the question modality fail on these benchmarks. We use the more challenging VQA-CP v2 dataset extensively in order to show the ability of our approach to reduce the learning of biases coming from the question modality.

Balancing datasets to avoid unimodal biases Once the unimodal biases have been identified, one method to overcome these biases is to create more balanced datasets, as presented in Section 2.4.1.1. However, even with this additional balancing done in VQA v2, statistical biases from the question remain and can be leveraged (A. Agrawal et al. 2018b). That is why we propose an approach to reduce unimodal biases during training. It is designed to learn unbiased models from biased datasets.

Architectures and learning strategies to reduce unimodal biases In parallel with these previous works on balancing datasets, an important effort has been carried out to design VQA models to overcome biases from datasets. (A. Agrawal et al. 2018b) proposed a hand-designed architecture called Grounded VQA (GVQA), presented in Section 2.4.1.2. It breaks the task of VQA down into a first step of locating and recognizing the visual regions needed to answer the question, and a second step of identifying the space of plausible answers based on a questiononly branch. This approach requires training multiple sub-models separately. In contrast, our learning strategy is end-to-end. Their complex design is not straightforward to apply to different architectures while our approach is model-agnostic. While we rely on a question-only branch, we remove it at the end of the training.

The work most related to ours in terms of approach is [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF], presented in Section 2. 4.1.3. The authors propose a learning strategy to overcome language priors in VQA models. They first introduce an adversary question-only branch. It takes as input the question encoding from the VQA model and produces a question-only loss. They use a gradient negation of this loss to discourage the question encoder to capture unwanted biases that could be exploited by the VQA model. They also propose a loss based on the difference of entropies between the VQA model and the question-only branch output distributions. These two losses are only backpropagated to the question encoder. In contrast, our learning strategy targets the full VQA model parameters to reduce the impact of unwanted biases more effectively. Instead of relying on these two additional losses, we use the question-only branch to dynamically adapt the value of the classification loss in order to reduce the learning of biases in the VQA model. A visual comparison between [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF]) and RUBi can be found in Figure 3.4.

Reducing Unimodal Biases Approach

We consider the common formulation of the Visual Question Answering (VQA) defined in Chapter 2, Section 2.2. We consider the task as a single-label classification problem. We define additional notations: for a single example (v i , q i , a i ), VQA models use an image encoder e v : V → R nv×dv to output a set of n v vectors of dimension d v , a question encoder e q : Q → R nq×dq to output a set of n q vectors of dimension d q , a multimodal fusion f m : R nv×dv × R nq×dq → R dm , and a classifier c : R dm → R |A| . These functions are composed as follows:

f (v i , q i ) = c(f m (e v (v i ), e q (q i ))) (3.1)
Each one of them can be defined to instantiate most of the specialized VQA models, such as Bottom-Up and Top-Down Attention (UpDn) (Anderson et al. 2018a) or MUREL (Cadene et al. 2019a).

We recall the classical learning strategy of VQA models, depicted in Figure 3.2: it consists in minimizing the standard cross-entropy criterion over a dataset of size n:

L(θ; D) = - 1 n n i=1 log(softmax(f (v i , q i )))[a i ] (3.2)
As explained in Section 2.4, VQA models are inclined to learn unimodal biases from the datasets (A. Agrawal et al. 2018b). They do not learn to use the image information because there are too few examples in the dataset where the banana is not yellow. Once trained, their inability to use the two modalities adequately makes them inoperable on data coming from different distributions such as realworld data. Our contribution consists in modifying this cost function L to avoid the learning of these biases.

RUBi learning strategy

Capturing biases with a question-only branch One way to measure the unimodal biases in VQA datasets is to train a unimodal model which takes only one of the two modalities as input.

The key idea of our approach, depicted in Figure 3.2, is to adapt a question-only model as a branch of our VQA model, that will alter the main model's predictions. By doing so, the question-only branch captures the question biases, allowing the VQA model to focus on the examples that cannot be answered correctly using the question modality only. The question-only branch can be formalized as a function f Q : Q → R |A| parameterized by θ Q , and composed of a question encoder e q : Q → R nq×dq to output a set of n q vectors of dimension d q , a neural network nn q : R nq×dq → R |A| and a classifier c q : R |A| → R |A| .

f Q (q i ) = c q (nn q (e q (q i )))

(3.3) Preventing biases by masking predictions Before passing the predictions of our base VQA model to the loss function defined in Equation (3.2), we merge them with a mask of length |A| containing a scalar value between 0 and 1 for each answer. This mask is obtained by passing the output of the neural network nn q through a sigmoid function σ. The goal of this mask is to dynamically alter the loss by modifying the predictions of the VQA model. To obtain the new predictions, we simply compute an element-wise product ⊙ between the mask and the original predictions as defined in the following equation.

chapte r 3 f QM (v i , q i ) = f (v i , q i ) ⊙ σ(nn q (e q (q i ))) (3.4)
Our method modifies the predictions in this specific way to prevent the VQA model to learn biases from the question. To better understand the impact of our approach on learning, we examine two scenarios. First, we reduce the importance of the most biased examples, i.e. examples that can be correctly classified without using the image modality. To do so, the question-only branch outputs a mask to increase the score of the correct answer while decreasing the scores of the others. As a result, the loss is much lower for these biased examples. In other words, the gradients backpropagated through the VQA model are smaller, thereby reducing the importance of these examples during training. As illustrated in the first row of Figure 3.3, given the question what color is the banana, the mask takes a high value of 0.8 for the answer yellow which is the most likely answer for this question in the training set. On the other hand, the value for the other answers green and white are smaller. We see that the mask influences the VQA model to produce new predictions where the score associated with the answer yellow increases from 0.8 to 0.94. Compared to the classical learning approach, the loss is smaller with RUBi and decreases from 0.22 to 0.06. Secondly, we increase the importance of examples that cannot be answered without using both modalities. For these examples, the question-only branch outputs a mask that increases the score of the wrong answer. As a result, the loss is much higher and the VQA model is encouraged to learn from these examples. We illustrate this behavior in the second row of Figure 3.3 for the same question about the color of the banana. When the image contains a green banana, RUBi increases the loss from 0.69 to 1.20.

Joint learning procedure We jointly optimize the parameters of the base VQA model and its question-only branch using the gradients computed from two losses. The main loss L QM refers to the cross-entropy loss associated with the predictions of f QM (v i , q i ) from Equation 3.4. We backpropagate this loss to optimize all the parameters θ QM which contributed to this loss. θ QM is the union of the parameters of the base VQA model, the encoders, and the neural network nn q of the questiononly branch. In our setup, we share the parameters of the question encoder e q between the VQA model and the question-only branch. The question-only loss L QO is a cross-entropy loss associated with the predictions of f Q (q i ) from Equation 3.3. We use this loss to only optimize θ QO , the union of the parameters of c q and nn q . By doing so, we further improve the question-only branch's ability to capture biases. Note that we do not backpropagate this loss to the question encoder e q preventing it from directly learning question biases.

We obtain our final loss L RUBi by summing the two losses together in the following equation:

L RUBi (θ QM , θ QO ; D) = L QM (θ QM ; D) + L QO (θ QO ; D) (3.5)

Baseline architecture

Most VQA architectures from the state of the art are compatible with our RUBi learning strategy. To test our strategy, we design a fast and simple architecture inspired by the MuRel architecture (Cadene et al. 2019b). Our baseline architecture encodes the image as a bag of n v visual features v i ∈ R dv using the pre-trained Faster R-CNN from [START_REF] Anderson | Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering[END_REF], and encodes the question as a vector q ∈ R dq using a GRU, pre-trained on the Skip-thought task (Kiros et al. 2015b). It computes a bilinear fusion between the question vector and the visual features for each region. The bilinear fusion module is a BLOCK (Ben-Younes et al. 2019a) composed of 15 chunks, each of rank 15. The dimension of the projection space is 1000, and the output dimension is 2048. The output of the bilinear fusion is aggregated using a max pooling over n v regions. The resulting vector is then fed into a Multi-Layer Perceptron (MLP) classifier composed of three layers of size (2048,2048,3000), with Rectified Linear Unit (ReLU) activations. It outputs the predictions over the space of the 3000 answers. While most of our experiments are done with this fast and simple baseline architecture, we experimentally demonstrate that the RUBi learning strategy is effective on two other VQA architectures, Bottom-Up and Top-Down Attention (UpDn) (Anderson et al. 2018a) and Stacked Attention Network (SAN) [START_REF] Yang | Stacked attention networks for image question answering[END_REF].

Results

Experimental setup

We train and evaluate our models on VQA-CP v2 (A. Agrawal et al. 2018b), described in Section 2.4.2. This dataset was developed to evaluate the models' robustness to question biases. We follow the same training and evaluation protocol as [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF], who also propose a learning strategy to reduce biases. For each model, we report the standard VQA evaluation metric (Antol et al. 2015a). We also evaluate our models on the standard VQA v2 (Goyal et al. 2017a), as well as VQA-CP v1 and VQA-HAT [START_REF] Das | Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?[END_REF]. Optimization process We train all our models with the Adam optimizer. We train our baseline architecture with the learning rate scheduler of Cadene et al. 2019b. We use a learning rate of 1.5 × 10 -4 and a batch size of 256. During the first 7 epochs, we linearly increase the learning rate to 6 × 10 -4 . After epoch 14, we apply a learning rate decay strategy which multiplies the learning rate by 0.25 every two epochs. We train our models until convergence as we do not have a validation set for VQA-CP v2.

We fine-tune the question encoder during training, but we do not fine-tune the image extractor.

For the UpDn and SAN architectures, we follow the optimization procedure described in [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF] Software and hardware We use pytorch 1.1.0 to implement our algorithms in order to benefit from the GPU acceleration. We use a single NVidia Titan Xp GPU GPU for each experiment. A single experiment from Table 1 with the baseline architecture trained with or without RUBi takes less than five hours to run.

Evaluation of RUBi on VQA-CP

In Table 3.1, we evaluate our approach consisting of our baseline architecture trained with RUBi on VQA-CP v2 against previous methods and VQA models. We compute the average accuracy over 5 experiments with different random seeds. Our RUBi approach reaches an average overall accuracy of 47.11% with a low standard deviation of ±0.51. This accuracy corresponds to a gain of +5.94 percentage points over the previous reference approach UpDn + Q-Adv + DoE. It also corresponds to a gain of +15.88 over GVQA (A. Agrawal et al. 2018b), which is a specific architecture designed for VQA-CP. RUBi reaches a +8.65 improvement over our baseline model trained with the classical cross-entropy. In comparison, the second-best approach UpDn + Q-Adv + DoE only achieves a +1.43 gain in overall accuracy over their baseline UpDn. In addition, our approach does not significantly reduce the accuracy over our baseline for the answer type Other, while the second-best approach reduces it by 10.57 points. Additional baselines We compare our results to two sampling-based training methods. In the Balanced Sampling method, we sample the questions such that the answer distribution is uniform. In the Question-Type Balanced Sampling method, we sample the questions such that for every question type, the answer distribution is uniform, but the question type distribution remains the same overall Both methods are tested with our baseline architecture. We can see that the Question-Type Balanced Sampling improves the result from 38.46 in accuracy to 42.11. This gain is already +0.94 higher than the previous reference method [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF] but remains significantly lower than our proposed method.

Architecture agnostic RUBi can be used on existing VQA models without changing the underlying architecture. In Table 3.2, we experimentally demonstrate the generality and effectiveness of our learning scheme by showing results on two additional architectures, Stacked Attention Network (SAN) [START_REF] Yang | Stacked attention networks for image question answering[END_REF]) and Bottom-Up and Top-Down Attention (UpDn) [START_REF] Anderson | Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering[END_REF]. First, we show that applying RUBi on these architectures leads to important gains over the baselines trained with their original learning strategy. We report a gain of +11.73 accuracy points for SAN and +4.5 for UpDn. This lower gap in accuracy may show that UpDn is less driven by biases than SAN. This is consistent with results from [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF]. Secondly, we show that these architectures trained with RUBi obtain better accuracy than with the reference strategy from [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF]. We report a gain of +3. contrarily to VQA-CP v2 train and test sets. In this context, we usually observe a drop in accuracy using approaches focused on reducing biases. This is because exploiting unwanted correlations from the VQA v2 train set is not discouraged and often leads to a higher accuracy on the test set. Nevertheless, our RUBi approach leads to a comparable drop to what can be seen in other comparable strategies. We report a drop of 1.94 percentage points with respect to our baseline, while (A. Agrawal et al. 2018b) report a drop of 3.78 between GVQA and their SAN baseline. [START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF]) report drops of 0.05, 0.73 and 2.95 for their three learning strategies with the UpDn architecture which uses the same visual features as RUBi. As shown in this section, RUBi improves the accuracy on VQA-CP v2 by a large margin, while maintaining competitive performance on the standard VQA v2 dataset compared to similar approaches.

Ablation study

Validation of the masking strategy We compare different fusion techniques to combine the output of nn q with the output from the VQA model. We report a drop of 7.09 accuracy points on VQA-CP v2 by replacing the sigmoid with a ReLU on our best-scoring model. Using an element-wise sum instead of an element-wise product leads to a further performance drop. These results confirm the effectiveness of our proposed masking method which relies on a sigmoid and an element-wise sum.

Validation of the question-only loss In Table 3.5, we validate the ability of the question-only loss L QO to reduce the question biases. The absence of L QO implies that the question-only classifier c q is never used, and nn q only receives gradients from the main loss L QM . Using L QO leads to consistent gains on all three architectures. We report a gain of +0 

Analysis of grounding on VQA-HAT

We conduct additional studies to evaluate the grounding ability of models trained with RUBi. We follow the experimental protocol of VQA-HAT [START_REF] Das | Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?[END_REF], described in Section 2.4.2. This dataset contains human attention maps for images from the VQA v1 dataset, indicating which regions humans found relevant for answering the question. We train our models on VQA v1 train set and evaluate them using rank-correlation on the VQA-HAT val set, which is a subset of the VQA v1 val set. This metric compares attention maps computed from a model against human annotations. In Table 3.6, we report a gain of +0.012 with our baseline architecture trained with RUBi, a gain of +0.019 with SAN and a loss of -0.003 with UpDn architecture. We display in Figure 3.5 and Figure 3.6 some manually selected VQA triplets associated to the human attention maps provided by VQA-HAT [START_REF] Das | Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?[END_REF] and the attention maps computed from our baseline architecture when trained with and without RUBi. In Figure 3.5, we observe that the attention maps with
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RUBi are closer to the human attention maps than without RUBi. On the contrary, we observe in Figure 3.6 some failure to improve grounding ability.

Qualitative examples

To better understand the impact of our RUBi approach, we compare in Figure 3.7 the answer distribution on VQA-CP v2 for some specific question patterns. We also display interesting behaviors on some examples using attention maps extracted as in Cadene et al. 2019b. In the first row, we show the ability of RUBi to reduce biases for the is this person skiing question pattern. Most examples in the train set have the answer yes, while in the test set, they have the answer no. Nevertheless, RUBi outputs 80% of no, while the baseline almost always outputs yes. Interestingly, the best scoring region from the attention map of both models is localized on the shoes. To get the answer right, RUBi seems to reason about the absence of skis in this region. It seems that our baseline gets it wrong by not seeing that the skis are not locked under the ski boots. This unwanted behavior could be due to question biases. In the second row, similar behaviors occur for the what color are the bananas question pattern. 80% of the answers from the train set is yellow, while most of them are green in the test set. We show that the amount of green and white answers from RUBi are much closer to the ones from the test set than with our baseline. In the example, it seems that RUBi relies on the color of the banana, while our baseline misses it. In the third row, it seems that RUBi is able to ground the textual concepts such as top part of the fire hydrant and color on the right visual region, while the baseline relies on the correlations between the fire hydrant, the yellow color of its core and the answer yellow. Similarly, on the fourth row, RUBi grounds color, star, fire hydrant on the right region, while our 

Conclusion

In this chapter, we explore unimodal shortcut learning in VQA: models tend to rely mostly on the question modality, sometimes ignoring the image. This is a significant issue for deploying models in the real world: they are not robust to unusual situations and might fail catastrophically. This also means that models do not learn the intended reasoning mechanism. To tackle those issues, we propose RUBi, a learning strategy to reduce shortcut learning in VQA. The main VQA model is learned jointly with a question-only branch that captures unwanted statistical regularities from the question modality. This branch influences the base VQA model to prevent the learning of unimodal biases from the question. RUBi is designed to be model agnostic.

We demonstrate the effectiveness of modifying the learning strategy as an inductive bias to reduce question-based shortcut learning in VQA: RUBi improves the performance of baseline models on VQA-CP v2, a dataset specifically designed to account for question biases. Additionally, we see that the RUBi strategy slightly improves the grounding for some models, demonstrating that it might help models learn the intended reasoning mechanism. This shows that learning strategies are an effective way to reduce shortcut learning for the VQA task.

Multiple following works explored other learning strategies. For instance, [START_REF] Kervadec | Estimating semantic structure for the VQA answer space[END_REF] propose to take account of the semantic structure of the answer distribution: a model answering "pink" instead of "red" is better than answering "basketball". They show this makes the model more robust to biases in the VQA-CP task. Teney et al. 2020a propose to create minimal counterfactual examples, i.e. an example with a slightly different image, as an existing example, with a ground-truth answer that is different from the original example. This encourages the model to use the image modality and not rely solely on the question. In the next chapter, we explore another approach to tackle this same issue: designing the model with architectural priors to prevent shortcut learning.
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Chapter abstract

In this chapter, we focus on the task of answering counting questions, a subset of the Visual Question Answering task. It is also subject to the same kind of biases as the original VQA task, but the output distribution is simpler: it is a single number. This allows us to explore another strategy to reduce shortcut learning: architectural priors. We first introduce two large-scale out-of-distribution datasets: TallyQA-CP and TallyQA-Odd-Even. They are made of training and testing sets that do not follow the same answer distribution to penalize models that have learned biases instead of proper counting mechanisms. We show that state-of-the-art models obtain low performances on our datasets, which means that they have learned biases. Then, we show that using architectural priors in the models can help to reduce shortcut learning: we propose the Spatial Counting Network (SCN), a model which incorporates domain knowledge to encourage learning of the proper counting mechanisms: it outputs a natural number obtained by selecting and counting objects in the image. We show that our model performs better on our datasets that penalize biases. We also report a better ability to select the correct objects to count in the image when trained on a classic dataset.

The work in this chapter has led to the publication of a workshop paper: Chen, and Matthieu Cord (2021a).

• Corentin Dancette, Remi Cadene, Xinlei
"Learning Reasoning Mechanisms for Unbiased Question-based Counting". In: VQA Workshop, Conference on Computer Vision and Pattern Recognition (CVPR).

Introduction

As we explain in Chapter 2, shortcut learning is problematic in the context of reasoning tasks like Visual Question Answering (VQA). In Chapter 3, we propose a learning strategy to tackle the issue of unimodal biases. Here, we focus on the task of answering counting questions, a subset of VQA, and propose to explore another direction to reduce shortcut learning: using architectural priors to constrain the network to learn the correct mechanism and prevent it to learn spurious correlations. We choose the counting task for several reasons:

• First, similarly to VQA, question-based counting requires high-level reasoning abilities and displays similar biases. As illustrated qualitatively in Figure 4.1 (and later quantitatively in our experiments), current models tend to find an easier way out by correlating the output to some spurious patterns in the input and skipping the learning of reasoning mechanisms. For instance, questions starting with how many wings can reasonably be answered 2 without looking at the image, allowing models that use this kind of bias to achieve high accuracy on the testing set. However, those models will be easily fooled in the real world. In the largest question-based counting dataset, TallyQA (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF], we found that the appearance of certain words in the question or objects in the image is highly predictive of the count label.

For instance, the presence of the words "cars", "are", and "black" in the question are associated 94% of the time with the answer 0. Similarly, the words "legs", and "animal" are associated with the answer 4. It is critical to create appropriate benchmarks that reflect these failures and to propose approaches to reduce shortcut learning.

• Second, the mechanism of counting is well-defined and has a structure that can be taken into account in models. To properly answer a counting question, one has to first detect each relevant object in the image, based on a complex, sometimes compositional question involving other objects. Then, figure out their relationships for possible de-duplication or filtering, and then accumulate and aggregate the number of objects to count. These mechanisms must be learned using the answer, a single number in the case of counting, as the only supervision. We take advantage of this property to incorporate architectural priors to reduce shortcut learning. Thus, we can evaluate if the proper mechanism has been learned for models that detect and select objects to count.

• Third, counting is a useful task that leads to important practical applications (Lempitsky and Zisserman 2010; Briggs 2009; Onoro-Rubio and López-Sastre 2016). Solving question-based counting would lead to the next generation of counting systems with textual interfaces.

In this chapter, we take a first step towards the development of unbiased models that learn to leverage the underlying mechanisms for multi-modal reasoning tasks. Our contributions are two-fold. We propose two counting datasets meant to evaluate a model and learning strategy's ability to avoid learning biases. Both datasets are built on the idea of changing distributions, meaning the training and testing distributions are different. Intuitively, if a model has learned the reasoning mechanisms for counting, it should generalize well despite changing distributions, whereas the models that learn to merely correlate inputs to outputs likely cannot. This method has been used for general VQA. In fact, VQA-CP, presented in Section 2.4.2, was precisely developed by re-organizing the training and testing sets of original VQA v1 and v2. Our first dataset, TallyQA-CP, follows a similar protocol. However, VQA-CP only tackles question biases as the re-arrangement was conditioned on different question types. We go a step further by introducing another set, TallyQA-Odd-Even, which by design penalizes models that rely on any kind of shortcut, not just question biases. We experimentally verify the feasibility of using our datasets to penalize the use of biases and show that reference VQA models suffer from large performance drops on our datasets, which indicates that they have learned biases.

Additionally, we contribute by introducing a simple and effective model -Spatial Counting Network (SCN) -that avoids learning the biases and instead learns the proper reasoning mechanisms for counting. It is based on the following design choices: 1) a regression loss instead of a classification loss to account for the answer structures (ordered natural numbers) and strive for a better out-ofdistribution generation; 2) a final count based on individual scores to each region with self-attention-based relationship modeling; and 3) entropy regularization to enforce sparse region scores.

In Section 4.2, we give an overview of works related to visual counting. In Section 4.3, we propose two evaluation benchmarks for shortcut learning in visual counting. In Section 4.4, we propose Spatial Counting Network (SCN), our model designed for visual counting, and we evaluate it on our proposed benchmark in Section 4.5.

Related work

We discussed the general VQA architectures in Section 2.2.2, and shortcut learning in VQA in Section 2.4. In this section, we discuss the related work on visual counting.

Counting has long been a subject of interest in the computer vision community (Lempitsky and [START_REF] Liu | Point in, box out: Beyond counting persons in crowds[END_REF]. In this section, we discuss more general question-biased counting approaches that require a minimal amount of supervision in the form of a unique answer per question-image pair.

Question-based counting datasets

The approaches studying counting questions on real images were first developed on Visual Question Answering (VQA) datasets (Antol et al. 2015b;Goyal et al. 2017b;Krishna et al. 2017b; Kafle and Kanan 2017). They were evaluated on the "how many?" questions (Y. Zhang et al. 2018) or on subsets associated with numerical ground-truth answers such as Count-QA (Chattopadhyay et al. 2017) or HowMany-QA [START_REF] Trott | Interpretable counting for visual question answering[END_REF]. Since examples labeled as number only account for around 10% of the VQA datasets, a large dataset dedicated to counting questions was introduced: TallyQA (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]. It is composed of novel simple and complex questions with the addition of examples from previous datasets: VQA v2 (Goyal et al. 2017b), HowMany-QA [START_REF] Trott | Interpretable counting for visual question answering[END_REF], TDIUC (Kafle and Kanan 2017) and Visual Genome (Krishna et al. 2017b). We use TallyQA to build our novel datasets by reorganizing examples between training and testing sets to induce shifts in the distribution of counting labels.

Question-based counting models

We consider only models that take a question as input, and not specialized counting models such as (Chattopadhyay et al. 2017;[START_REF] Sindagi | A survey of recent advances in cnn-based single image crowd counting and density estimation[END_REF]. General VQA models are able to answer counting questions by incorporating various modules that learn a fusion between the image and the question (Malinowski and Fritz 2014b;Antol et al. 2015b;Ben-Younes et al. 2017a;Ben-Younes et al. 2019b;Anderson et al. 2018a). Those equipped with relational and self-attention modules reach better results on counting questions [START_REF] Santoro | A simple neural network module for relational reasoning[END_REF][START_REF] Perez | Film: Visual reasoning with a general conditioning layer[END_REF][START_REF] Hudson | Compositional Attention Networks for Machine Reasoning[END_REF]Cadene et al. 2019a). We hypothesize that these modules help to avoid counting duplicated object regions more than once, an important challenge in counting. Then, dedicated counting models were developed. The state-of-the-art, RCN (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]) is based on relational networks [START_REF] Santoro | A simple neural network module for relational reasoning[END_REF], while Counter (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF]) builds a graph representation and performs handcrafted operations to select objects and remove duplicates. Instead, our model is composed of the recent self-attention module [START_REF] Vaswani | Attention is all you need[END_REF]. Additionally, an important characteristic of counting is that the answers are natural numbers. RCN and Counter take advantage of that by using a classification loss. ILRC [START_REF] Trott | Interpretable counting for visual question answering[END_REF]) uses a different approach: it learns a hard selection of image regions using reinforcement learning. Instead, our model learns a soft selection in an endto-end fashion and is trained with a regression loss with an entropy regularization term to enforce the output of natural numbers. Our design choices guarantee a certain level of interpretability and allow the model to output counting values that have never been encountered in the training set.

Novel out-of-distribution datasets

Methodology for creating our evaluation benchmarks

In this section, we describe a methodology to create evaluation benchmarks for visual counting. We design them to penalize models that over-rely on any kind of data biases without the need for external annotations or human supervision. We use them to select models that have learned a more robust counting mechanism instead of biases. We introduce two datasets by changing the distribution of count labels of the training and testing sets of TallyQA (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF], the recent and biggest question-based visual counting dataset. Its original training set contains 130K real images from COCO (T.-Y. Lin et al. 2014b) and Visual Genome (Krishna et al. 2017b). Each image is associated with questions and count labels for a total of ∼250K samples. Answering counting questions requires abilities to detect relationships between objects, and their attributes, perform spatial reasoning, and more. In Section 4.3.2, we give additional statistics about our datasets. Then, in Section 4.3.3, we benchmark existing counting models and show that they are subject to biases.

TallyQA-CP Inspired by the VQA-CP dataset, detailed in Section 2.4.2, we build a new version of TallyQA (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF] to penalize models that over-rely on the question-related biases. In this dataset, we condition the final count label distribution on the question modality. We construct a new training set and testing set by first extracting the main concept to be counted from each question (e.g. in "how many tables are green", the concept will be "tables"). The concept serves a similar purpose as the question type in VQA-CP (A. Agrawal it conditions the answer distribution differently between the training and the testing set. More formally, if we note the answer set A and the concept of questions C, then our goal is that ∀c ∈ C, P train (A|c) ̸ = P test (A|c). A model relying too much on this main concept to answer the question (for example answering 2 each time the concept is wings) would be penalized on the testing set.

Here we describe how we find the concept in a given question. The main heuristic consists in using the position of the word in the question. In most cases, the concept to be counted is the third word of the question, as most questions start with "How many <main concept>...". The second heuristic consists in selecting the fourth word when the third is a color. For instance, the concept will be "cars" in "How many blue cars are in the image?". The third heuristic consists in selecting the fifth word when the third and fourth words are "of the" or "of those". For instance, the concept will be "cars" in "How many of the cars are green ?" We manually verified that these heuristics ensure picking the correct concept in most cases.

For each concept, we calculate its associated answer distribution and apply a greedy strategy to split all questions into a new training and testing set: For a concept c, we assign its related question-image-answer samples containing the most common answer randomly to either the training or the testing set. We then assign the samples containing the second most common answer to the other set. We continue alternating training and testing set until all samples have been assigned. We display the distributions for the five most common concepts in Figure 4.2. In Section 4.3.3, we experimentally verify that TallyQA-CP penalizes question biases by evaluating a question-only model: as expected, it is almost unable to provide the correct answer. Models that over-rely on any kind of data biases are penalized when evaluated on the even count labels (in yellow).

TallyQA-Odd-Even A characteristic of our proposed TallyQA-CP is that it mostly penalizes the use of question-related biases. Instead, we introduce the Odd-Even version that penalizes, by construction, the use of any kind of superficial shortcuts. To do so, we modify the count label distribution without any conditioning on the input (question or image) in order to also target image-related shortcuts and multimodal shortcuts. We generate the unbalanced TallyQA-Odd-Even dataset by removing 90% of the samples associated with an even count label from the TallyQA training set and 90% of the samples associated with an odd label from the testing set. We display in Figure 4.3 the resulting number of samples per count label. The 90% proportion was chosen because it introduces a large shift in the distribution of count labels while allowing classification models to learn from every possible count label. Choosing 100% would result in a zero-shot dataset on which existing classification models could not be tested. We show in Section 4.3.2 that the 90% proportion generates a tiny shift in the distribution of images and questions which ensures that we only evaluate the impact of a shift in count labels. In Section 4.3.3, we experimentally verify that TallyQA-Odd-Even equally penalizes question and image biases by evaluating question-only and image-only models. They reach similar low scores. In Section 4.5, we report additional results on various shifts between 70% and 100%.

Validation sets As raised by [START_REF] Teney | On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law[END_REF], most works that evaluate models on out-of-distribution datasets such as VQA-CP (A. Agrawal et al. 2018a) do not use a validation set to early stop training or select hyperparameters. This bad practice encourages adaptive over-fitting [START_REF] Dwork | Preserving statistical validity in adaptive data analysis[END_REF] on the testing set distribution. We address this common issue by holding out 10% of the training sets as validation sets so that they follow the same distribution. It is expected that biased models perform well on validation sets, but have lower scores on testing sets.

Statistics about our datasets

Training, validation and testing sets statistics We additionally define TallyQA-Even-Odd, which is similar to the TallyQA-Odd-Even dataset, but with the reverse protocol for creating the two splits. For all our datasets, the validation set is made of 10% of the training set data, therefore follows the same distribution. More specifically, for TallyQA-Odd-Even and TallyQA-Even-Odd datasets, their validation set is built by holding 10% of the images out of the training set before applying the same ablation strategy on both sets (e.g. removing odd examples).

For TallyQA-CP, the validation set is built after the resampling of examples into the training and testing set.

In Table 4.1, we display the number of odd and even triplets in each set of TallyQA-Odd-Even where 90% of triplets have been removed (p = 90%), and other datasets where p = {0, 50, 100}. In Table A.1 of the Appendix A, we report the same numbers with the TallyQA-Even-Odd dataset. In Table 4 image, photo, there, are, seen, see, visible, shown, this, in, the, on, be, of, a, to to only keep those that are associated to specific concepts in the images. We then compare the distributions using the Bhattacharyya coefficient [START_REF] Bhattacharyya | On a measure of divergence between two multinomial populations[END_REF]) -a similarity metric that reaches 0 when there is no overlap between distributions, and 1 when both are the same. Similarly, we compute visual concept distributions by using the categories assigned to every bounding box extracted from our pretrained object detector (Anderson et al. 2018a) and compare the distributions using the Bhattacharyya coefficient. In Tables 4.3 and4 

Counting models are biased

As shown in Table 4.5, all models suffer from a large drop in accuracy, compared to their scores on the validation set, and on the original version of TallyQA (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF].

First, TallyQA-CP penalizes strongly the question-only model: it reaches an accuracy close to zero on the testing set. This confirms that this dataset penalizes models that rely on question shortcuts. The image-only model, on the contrary, is less penalized and even beats most of the previous state-of-the-art models such as RCN. On our TallyQA-Odd-Even, we can observe a different trend: the two unimodal baselines have closer scores, 16.92 and 9.80, with the image-only now having the lowest score. This confirms that this dataset penalizes all kinds of shortcuts.

The previous state-of-the-art model RCN has an overall accuracy of 65.49% on TallyQA and reaches an even high score on the validation sets of both our benchmarks. However, it only gets 2% accuracy on the TallyQA-CP testing set, and 28.4% on TallyQA-Odd-Even, suffering from a huge loss in accuracy from the validation sets. We observe similar trends for MUTAN (Ben-Younes et al. 2017a) and Counter (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF], two commonly reported VQA models.

Additionally, the bias-reduction methods (uniform sampling and RUBi) have a positive impact on TallyQA-CP, which is expected, especially for RUBi, since it targets specifically question-related biases. On the contrary, both methods degrade performances on our TallyQA-Odd-Even testing set. Finally, we can notice most of the models, in both benchmarks, are worse than the Random D test classifier that follows the testing set distribution. This highlights the fact that, while stateof-the-art counting models reach high accuracy on regular datasets, they are in fact incapable of counting in situations that do not match closely their training distribution and instead rely mostly on biases.

Spatial Counting Network

We now describe our model, Spatial Counting Network (SCN). It contains inductive biases to encourage the learning of the counting mechanism, and avoid learning biases. Our model uses multi-modal fusion and self-attention to assign counting scores to individual image regions, which allows the final accumulated count number to be spatially grounded. To help generalization to modified count distributions, we use a regression loss to train our model, as opposed to a classification loss (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF]M. Acharya et al. 2019) and use entropy regularization to encourage the counting of natural numbers, as opposed to making discrete decisions trained with reinforcement learning [START_REF] Trott | Interpretable counting for visual question answering[END_REF]. Impor-tantly, we do not incorporate knowledge about the testing set distributions such as sampling or weighting triplets based on their count labels.

Overview. An overview of our model is shown in Figure 4.4. We mostly reuse the formalism defined in Section 2.2.2, with some slight changes. Formally, given a dataset D consisting of n triplet samples (v, q, c) with v ∈ V an image, q ∈ Q a natural language question and c ∈ N a count label corresponding to the number of instances in the image, the goal is to learn a mapping f :V×Q→N with learnable parameters θ. Our model builds such a mapping by first encoding both inputs and fusing them, which we detail next. 

Encoders and multi-modal fusion

As shown in Figure 4.4, we use two encoders to produce vectorized representations for image v and question q. For image v, a pre-trained object detector (Anderson et al. 2018a) transforms the raw pixels to a set of n v spatially located vectors, with each vector v i ∈ R dv encoding the semantic content of a region (or bounding box) within the image. We project coordinates of each region into vectors of d v dimensions and sum them to their associated v i . For q, we use skip-thought vectors (Kiros et al. 2015a) to obtain its representation q ∈ R dq . We then merge each v i with q using MLB, a multi-modal fusion module from J.-H. [START_REF] Kim | Hadamard product for low-rank bilinear pooling[END_REF], resulting in a new set of vectors {m i } i∈{1,...,nv} ready for relationship modeling and spatial counting, to be discussed below.

Self-attention. Since the set of bounding boxes used in encoding images can overlap, one core challenge for correct counting is to de-duplicate boxes (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF][START_REF] Trott | Interpretable counting for visual question answering[END_REF]) that are assigned to the same instance. Additionally, questions can require relational reasoning between objects. We address this by modeling general relationships among {m i } using self-attention (Vaswani et al. chapte r 4 2017), letting the model learn the required mechanisms. Specifically, a single-head attention layer with a residual connection is applied on {m i }, yielding (for each region i) a contextualized representation {m ′ i }.

Spatial aggregation. After relationship modeling, the resulting {m ′ i } vectors are then again merged with the question representation q using an MLB bilinear fusion and produce a counting score s i for each region via sigmoid activation. Finally, the global count output ĉ = i s i is a simple summation of all the individual counting scores. We name our model Spatial Counting Network, because each and every count is explicitly grounded to a spatial region and allows for easy interpretation and visualization.

While the above-described model encapsulates general components like multimodal fusion and relationship modeling for visual counting, we would like to highlight two design choices that are important for improving its generalization, described next.

Regression, not classification. First, unlike many reference counting models (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF]M. Acharya et al. 2019) and general VQA models, including large-scale pre-trained vision-and-language models (J. [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]; Tan and Bansal 2019) that treat count numbers as classification labels, we state they should be interpreted as actual numbers and we directly train the model to regress the final output ĉ to the ground truth count label c. We choose the standard Mean Squared Error (MSE) as the loss:

L MSE (θ; D) = 1 n (v,q,c)∈D (ĉ -c) 2 . (4.1)
During testing, we round the fractional value ĉ to its nearest integer to complete the mapping f (v, q) to count labels. This loss is suited to counting, as it takes advantage of the natural order of the count labels. It also allows our model to output count labels that were not seen during training, which is beneficial when the testing set follows a different distribution of count labels.

Entropy regularization. Second, although regression is a natural choice for number-related tasks, directly applying it to visual counting can be disadvantageous, because it attempts to model the entire output counting range (i.e. ĉ can be any real values between 0 and N ) and does not take advantage of the fact that all the count labels are integers. One way to fix this is to select regions one by one, with discrete decisions, and train the model through reinforcement learning [START_REF] Trott | Interpretable counting for visual question answering[END_REF]. However, the resulting objective function is hard to optimize directly.

Here we propose an alternative solution by simply imposing a binary entropy regularization term per region:

L H = - 1 n (v,q,c)∈D 1 n v nv i=1 s i log(s i ) + (1 -s i ) log(1 -s i ) , (4.2) 
which essentially encourages each sigmoid output s i to be close to 0 or 1. Intuitively, it means for each region, there is either one whole object or none -it won't be fractional (e.g. 0.5). This regularization not only enforces the final count ĉ to be close to integers (since ĉ is produced by summing up scores that are close to 0 or 1), but also benefits grounding the final count in the image (since it significantly reduces the chance of multiple overlapping regions being assigned some fractional value and summing up to be an integer count), which in turn helps generalization.

Our final training loss is a combination of MSE and entropy regularization:

L = L MSE + L H .

Experiments on SCN

Implementation details

Our SCN model We use the common Faster R-CNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] pre-trained by Anderson et al. 2018a to extract object features from the image, and the common GRU language model pre-trained by Kiros et al. 2015a to extract language features from the question. To keep a similar number of parameters with the state-of-the-art RCN model (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF], we use hidden dimensions of 1500 for the multimodal embeddings m i , 500 for the self-attention, 768 for both bilinear fusions, and use only one self-attention head. We train our model for 30 epochs with the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] and a learning rate of 2.e-5 which is decayed by 0.25 every 2 epochs, starting at epoch 15. The learning rate schedule was tuned on the validation accuracy of the TallyQA-Odd-Even set. Importantly, for all other experiments, we use the same hyperparameters. We early stop training based on the highest accuracy computed on the validation set.

RCN We follow the implementation and hyperparameters described in (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF].

Training details All of our results are the average over 3 runs with different seeds. We report small standard deviations. Our SCN model takes 10 hours to train on the original TallyQA and TallyQA-CP datasets. It takes about 6 hours to train on the TallyQA-Odd-Even dataset because it is composed of fewer triplets. We train our model on a single Titan X Pascal 12GB GPU.

Results

TallyQA-CP

TallyQA-Odd-Even 

Main results

In Table 4.6, we compare our model against the previous stateof-the-art approach RCN (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]. Scores for SCN are averaged over three runs, with a variance of 0.4 for accuracy and 0.01 for RMSE. On our TallyQA-CP dataset, we report the best accuracy of 34.79% for our SCN on the testing set, which corresponds to a +32.79 gain in accuracy points over RCN. On the TallyQA-Odd-Even dataset, our model reaches the best accuracy of 40.87%, with gains of +12.47 points over RCN. As expected, on both benchmarks we report lower performance than RCN on the validation set. Biased models such as RCN reach higher performances on in-distribution data by exploiting biases but fail on out-of-distribution data. Importantly, we also show that SCN does not overfit the testing set distribution: the validation accuracy is still higher than the testing set accuracy.

Impact of regression loss

A notable difference between our model and stateof-the-art models such as RCN and Counter is that they are trained using classification instead of regression. For fair comparisons, we isolate the contribution of this design choice by introducing RCN with L MSE , which is a modified RCN that outputs a real number before rounding and is trained using the MSE loss. We train RCN with L MSE by changing the output dimension of the last linear layer from 15 to 1. This allows us to train the model with an MSE regression loss instead of a classification loss. We use the same hyperparameters as RCN.

In Table 4.6, we report a gain of +12.99 points and +3.04 points over the regular RCN model on the TallyQA-CP test and TallyQA-Odd-Even test respectively. We conclude that RCN with L MSE is less sensible to biases. These good performances suggest that regression models are a better design choice to avoid learning biases. However, other design choices allow our model to reach further gains with +19.8 and +9.43 accuracy points against RCN with L MSE .

Impact of Entropy regularization. We also perform an ablation study of our SCN by training it without the entropy regularization (SCN without L H in Table 4.6). We report an important effect on TallyQA-CP, with +7.91 points on its testing set. It shows that entropy regularization helps to generalize. Interestingly, it has very little impact on TallyQA-Odd-Even.

Difference in accuracy per count label. Gains in accuracy could be due to different patterns such as an important gain on only one count label or small gains on all of them. We study this in Figure 4.5, where we display a fine-grained comparison between our model and RCN according to their accuracy per count label. Interestingly compared to RCN, we report a higher accuracy on even count labels which are less represented in the training set and a lower accuracy on odd count labels which are more represented in the training set. We also report much smaller differences in accuracy between adjacent count labels, compared with RCN. For instance, we report a loss of -29.56 accuracy points between labels 1 and 2 compared to -85.15 with RCN. Overall, there is much less variation in our model between even and odd count labels. These results suggest that our design choices are useful to learn a proper mechanism of counting which helps to generalize to a different distribution of count labels.

Difference in accuracy on various shifts in distribution

We create new TallyQA-Odd-Even variants by changing this removal proportion that was initially defined as 90% in Section 4.3. We vary the proportion from 70% to 100%, which controls the amount of biases that can be learned. On the extreme side, TallyQA-Odd-Even-100% generates a training set with no even count labels and a testing set with no odd count labels (i.e., a zero-shot setting). We also introduce the Even-Odd dataset, where the training and testing sets mostly contain even and odd count labels respectively, and also vary the removal proportion from 70% to 100%. We note those datasets Odd-Even-p% and Even-Odd-p%. In Figure 4.6, we compare the accuracy of our model against the state-of-the-art model RCN for visual counting, and its version with regression, RCN with L MSE , on the Odd-Even-p% and Even- These count labels are meant to penalize models that over-rely on biases.

Odd-p% datasets. We show that our model reaches significant and consistent gains. As expected, we report larger gains over RCN ranging from +12.78 accuracy points to +34.52 on datasets that possess the most important shift in distributions (e.g. p > 80). We see similar gains over RCN with L MSE . Interestingly, our model is able to answer in the zero-shot setting (p = 100%), reaching 26.87% and 34.52% accuracy for Odd-Even and Even-Odd respectively, while RCN has 0% accuracy. We perform similar experiments on a modified version of our TallyQA-CP dataset, where 10% of the samples are exchanged between training and testing to induce a lower shift in distributions. In this setup, it is expected that biased models such as RCN reach better performances than on the original TallyQA-CP. We report the best accuracy of 50.10% accuracy on the testing set for our SCN, which corresponds to a +9.9 gain in accuracy points over RCN.

More balanced TallyQA-CP version In Table 4.7, we show results on a modified version of our TallyQA-CP dataset where 10% of the examples from the training and testing are moved to the opposite set. We call this more balanced dataset TallyQA-CP-10%. Models are expected to perform better on it than on our main TallyQA-CP dataset. Our SCN model still reaches the best accuracy of 50.10% on the testing set. We also report better results when adding the entropy regularization to our SCN, and when using the regression loss L MSE on RCN. -Comparison between our model, RCN and its regression variant on various versions of TallyQA using our Odd-Even-p% and Even-Odd-p% datasets. p% controls the shift in distributions between the training and testing sets (with the original distribution when p = 0). Models that over-rely on biases (e.g. original RCN) are strongly penalized when p% is high (yellow gradient). 

Study of the grounding ability

COCO-Grounding. Similarly to the work done in IRLC [START_REF] Trott | Interpretable counting for visual question answering[END_REF], we use the grounding ability as a proxy to evaluate the proper counting mechanism and to assess the interpretability of models. To this end, we introduce the COCO-Grounding dataset that, contrary to previous works, allows us to compare models that use different visual features than ours. The grounding ability can be evaluated in a similar way to object detection models. To this end, we specifically design a dataset named COCO-Grounding. We create questions automatically from COCO images based on the provided annotations and save for each image-question pair We use these classes to automatically generate simple questions about a given image using the "How many {class}?" pattern. The answer to a question is the number obtained by counting the bounding boxes associated with the given {class}. We also generate questions associated with the count label 0 by sampling a random class among 80 that is not present on the image. We generate an equal number of 734 imagequestion-count triplets associated with the count label 0, 1 and 2, and generate all possible triplets for higher count labels (with a maximum label of 15) to reach a total number of 3311 triplets over 2139 images. Results In Table 4.8, we compare our SCN against Counter (Y. [START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF]) on the mean average precision AP@.50, an object detection metric, with an IoU threshold of 0.5. Both models have been trained on the original TallyQA dataset.

Evaluation metrics

We report the best performances on grounding and a gain of +4.5 points over Counter. As expected, we report a lower accuracy on the TallyQA testing set since models that over-rely on biases are not penalized. We do not compare against RCN (M. [START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF], because it does not internally associate counting numbers to regions of the image. We also highlight the importance of entropy regularization (+3.3 points) and self-attention mechanism (+1.9) on grounding. This justifies our choices in architecture and regularization.

Qualitative results

In Figures 4.7, 4.7 and 4.9, we display representative examples of outputs of our model with (on the left) and without (on the right) entropy regularization. We display bolded red bounding boxes around objects when their associated count value c i is close to 1. In Figure 4.7, we display the bounding box scores for the question 'How many people are in the picture?'. Both model predicts the same answer after rounding, but we see an important difference in the bounding box scores. With entropy regularization, SCN is able to select the four bounding boxes corresponding to people in the image. On the other hand, our model without entropy fails to distinguish duplicates and associates fractional values to multiple regions. In Figure 4.8, We compare both models on the questions 'How many giraffes are shown?' and 'How many zebras are shown?'. We observe similar observations for both of those questions: SCN with entropy regularization assigns high scores to the regions containing the objects to be counted, and the model without this regularization fails to do so. Additionally, the model without entropy regularization answers incorrectly to the first question: it predicts 2.71, rounded to 3, while the correct answer is 2. In Figure 4.9, we display two complex questions on the same image, and show that our SCN model is able to select the correct object (people) according to an attribute (is he playing tennis or football?), and output a correct count (1 or 0). 

Conclusion

In this chapter, we explore a second direction in reducing shortcut learning: using architectural priors to constrain the network to learn the correct mechanism and prevent it to learn spurious correlations. We focus on the task of visual counting, as the output distribution is simpler than the original VQA, and the answering mechanism is more constrained. First, we introduce two out-ofdistribution datasets to penalize models that have learned dataset biases. The first, TallyQA-CP, has a distribution shift of answers conditioned to the main concept in the question, similar to VQA-CP. It tests the model's reliance on question-based shortcuts. The second, TallyQA-Odd-Even, has a distribution shift of answers conditioned to the parity of the answer. Contrarily to TallyQA-CP, it tests the model's reliance on all superficial correlations between the input and the answer. On our datasets, we show that reference models suffer from large performance loss which indicates that they have learned biases. We then introduce the Spatial Counting Network (SCN), a model that encompasses architectural priors to encourage the learning of the correct counting mechanisms. We validate the interest of each design choice and showed that our model is better at selecting the correct objects to count and less prone to learn biases. We also note that our proposed model is more explainable by design than previous approaches, as it is easy to interpret the reasoning process of the model: each region gets assigned a score. This makes it easier for a user to trust the model's predictions.

Although the task of visual counting is fairly constrained, this is a step towards deep neural networks that learn to reason. Our work is an example of an interpretable model on top of black-box modules that can be used to learn more complex reasoning mechanisms. We believe that this is a promising direction for future research.

D E T E C T I N G M U LT I M O D A L S H O RT C U T S F O R V Q A

Chapter abstract

In Chapter 3, as in most of the Visual Question Answering (VQA) literature, the most studied shortcuts are those coming from the question modality. This makes models rely, for some examples, solely on the question, without considering the image information. However, this covers only a small part of all potential shortcuts that can be exploited by models. In this chapter, we go a step further and explore the existence of multimodal shortcuts that involve both questions and images. We identify potential shortcuts in the popular VQA v2 training set by mining shallow predictive rules such as co-occurrences of words and visual elements. We then introduce VQA-CounterExamples (VQA-CE), an evaluation protocol based on our subset of CounterExamples i.e. imagequestion-answer triplets where our rules lead to incorrect answers. We use this new evaluation in a large-scale study of existing approaches for VQA. We demonstrate that even reference models perform poorly and that existing techniques to reduce biases are largely ineffective in this context. Our findings suggest that past work on question-based biases in VQA has only addressed one facet of a complex issue.

The work in this chapter has led to the publication of this conference paper:

• Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord (2021b). "Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in Visual Question Answering". In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Introduction

In Chapter 3, we mostly studied the issue of VQA shortcuts coming from the question modality: they were superficial statistical patterns in the training data that allow predicting correct answers by using mostly the textual information, without deploying the desirable behavior. This is also the case in most of the literature related to biases in the VQA task. But shortcuts might be more subtle and involve both textual and visual elements. For instance, training questions containing What sport are strongly associated with the answer tennis when they co-occur with a racket in the image (see Figure 5.1). This seems to be a valid answering strategy, but there are situations where this pattern will fail. Some examples can be found in the validation set, such as What sport field is in the background ?, that lead to a different answer (soccer) despite a racket being present in the image. Because of such exceptions, a model that strongly relies on simple co-occurrences will fail on unusual questions and scenes. Most previous work and existing evaluation protocols are limited to text-based shortcuts. This chapter studies multimodal biases and their impact on VQA models.

Our work introduces VQA-CounterExamples (VQA-CE), an evaluation protocol for multimodal shortcuts. It is easy to reproduce and can be used on any model trained on VQA v2, without requiring retraining. We first start with a rule-mining-based method to discover superficial statistical patterns in a given VQA dataset that could be the cause of shortcut learning. We discover a collection of co-occurrences of textual and visual elements that are strongly predictive of certain answers in the training data and often transfer to the validation set. For instance, we discover a rule that relies on the appearance of the words "what", "they", "playing" together with the object "controller" in the image to always predict the correct answer "wii". We consider this rule to be a shortcut since it could fail on arbitrary images with other controllers, as it happens in the real world. Thus, our method can be used to reflect biases of the datasets that can potentially be learned by VQA models. We go one step further and identify counterexamples in the validation set where the shortcuts produce an incorrect answer. These counterexamples form a new challenging evaluation set for our VQA-CE evaluation protocol. This benchmark addresses some of the shortcomings of VQA-CP: First, it evaluates models trained on the original VQA v2 training set and does not require retraining. Second, it evaluates against real shortcuts, instead of artificially-created correlation. Finally, we propose a clear evaluation setup with an in-distribution validation set to avoid test set overfitting. We find that the accuracy of existing VQA models is significantly degraded on this data. More importantly, we find that most current approaches for reducing biases and shortcuts are ineffective in this context. They often reduce the average accuracy over the full evaluation set without significant improvement on our set of counterexamples. Finally, we analyze models to find which shortcuts they exploit by comparing their predictions to the shortcut predictions.

In Section 5.3, we propose a method to discover shortcuts which rely on the appearance of words in the question and visual elements in the image to predict the correct answer. By applying it to the widely-used VQA v2 training set, we find a high number of multimodal shortcuts that are predictive on the validation set. Then, in Section 5.4, we introduce the VQA-CE evaluation protocol to assess the VQA models' reliance on these shortcuts. By running a large-scale evaluation of recent VQA approaches, we find that reference VQA models exploit these shortcuts and that bias-reduction methods are ineffective in this context.

Related Work

We review existing approaches to discovering potential statistical shortcuts and assess their use by learned models.

Detecting cases of shortcut learning The general methods to detect shortcut learning are explained in Section 2.3 and 2.4.

The closest approach to the work in this chapter, Manjunatha et al. 2019b, uses the Apriori algorithm on VQA v2 to extract predictive rules that combine the appearance of words and visual contents. However, these rules are specific to the attention maps and predictions of the VQA model from Kazemi and Elqursh 2017. They are extracted on the validation set and are mainly used for qualitative purposes. Our approach also relies on the Apriori algorithm but extracts rules directly on the training set, independently of any model, and the predictive capacity of the rules is evaluated on the validation set. We then propose an evaluation benchmark based on those shortcuts.

Evaluating VQA models' reliance on shortcuts We discuss extensively evaluation benchmarks in Section 2.4.2. Once a class of shortcuts has been identified, a way to evaluate models' robustness is to build external out-of-distribution evaluation datasets on which using these shortcuts leads to a wrong prediction.

The main dataset used for the evaluation of biases is VQA-CP, presented in Chapter 2. Our proposed evaluation has a few differences from VQA-CP. First, it does not require retraining the model: this enables us to evaluate any model trained on VQA v2, instead of evaluating a given training procedure. Second, we focus on multimodal shortcuts, instead of text-based shortcuts. We follow guidelines from (D'Amour et al. Frequent itemset mining Frequent itemset mining techniques have been used extensively for database analysis (R. [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF][START_REF] Uno | An efficient algorithm for enumerating frequent closed item sets[END_REF].

They have also been used more recently for sequence prediction (Bourrand et al. 2021) or computer vision tasks [START_REF] Quack | Efficient mining of frequent and distinctive feature configurations[END_REF][START_REF] Yuan | Discovery of collocation patterns: from visual words to visual phrases[END_REF][START_REF] Fernando | Effective use of frequent itemset mining for image classification[END_REF]. For example, [START_REF] Fernando | Effective use of frequent itemset mining for image classification[END_REF] propose to mine Frequent Local Histograms for image classification tasks. In this chapter, we propose to use frequent itemset mining to find superficial decision rules for the VQA task.

Detecting multimodal shortcuts in VQA

Our shortcut detection method

We introduce our method to detect shortcuts relying on textual and visual input. Our approach consists in building a dataset of input-output variables and applying a rule-mining algorithm. The code for our method is available online1 . We consider the VQA formulation specified in Section 2.2.2: we have a training set D train made of n triplets (v i , q i , a i ) i∈[1,n] with v i ∈ V an image, q i ∈ Q a question in natural language and a i ∈ A an answer. VQA is usually cast as a problem of learning a multimodal function f : V × Q → A that produces accurate predictions on D test of unseen triplets.

Mining predictive rules on a training set Our goal is to detect shortcuts that a VQA model f might use to provide an answer without deploying the desired behavior. To this end, we limit ourselves to a class of shortcuts that we hypothesize to be often leveraged by VQA models. We display in Figure 5.2 our rule-mining process. These shortcuts are short predictive association rules A → C that associate an antecedent A to a consequent C. Our antecedents are composed of words of the question and salient objects in the image (or image patch), while our consequents are just answers. For instance, the rule {what, color, plant} → {green} provides the answer "green" when the question contains the words "what", "color" and "plant". These shallow rules are by construction shortcuts. They are predictive on the validation set but do not reflect the complex behavior that needs to be learned to solve the VQA task. For instance, they do not rely on the order of words, nor the position and relationships of visual contents in the image. They lack the context that is required to properly answer the question. Moreover, even rules that seem correct often have counterexamples in the dataset, i.e. examples that are matched by the antecedent but the consequent provides the wrong answer. We later use these counterexamples in our evaluation procedure. Binary dataset creation To detect these rules, we first encode all questionimage-answer triplets of D train as binary vectors. Each dimension accounts for the presence or absence of (a) a word in the question, (b) an object V in the image, represented by its textual detection label from a Faster R-CNN model (Anderson et al. 2018a), (c) an answer. The number of dimensions of each binary vector is the sum of the size of the dictionary of words (e.g. 13,000 words in VQA v2), the number of detection labels of distinct objects in all images (e.g. 1,600 object labels), and the number of possible answers in the training set (e.g. 3,000 answers). We additionally report results with ground truth instead of detected labels in Appendix B, Table B.1.

Frequent itemset mining On our binary dataset, we apply the GMiner algorithm [START_REF] Chon | GMiner: A fast GPU-based frequent itemset mining method for large-scale data[END_REF] to efficiently find frequent itemsets. An itemset is a set of tokens I = {i 1 , .., i n } that appear very frequently together in the dataset. The support of the itemset is its number of occurrences. For example, the itemset {what, color, plant, green} might be very common in the dataset and have high support.

GMiner takes one parameter, the minimum support. We include an additional parameter, which is the maximum length for an itemset. We detail how we select parameters at the end of this section.

Rules extraction and filtering

The next step is to extract rules from the frequent itemsets. First, we filter out the itemsets that do not contain an answer token, as they cannot be converted to rules. For the others that do contain an answer a, we remove it from the itemset to create the antecedent X ( X = I \ a). The rule is then X ⇒ a. The support s of the rule is the number of occurrences of X in the dataset. The confidence c of the rule is the frequency of correct answers among examples that have X . We then proceed to filter rules. We apply the following three steps:

(a) We remove the rules with confidence on the training set lower than 30% (c < 0.3).

(b) If some rules have the same antecedent but different answers, then we keep the rule with the highest confidence and remove the others. For instance, given the rules {is, there} ⇒ yes and {is, there} ⇒ no with a respective confidence of 70% and 30%, we only keep the first one with the answer yes.

(c) if a rules r 1 's antecedent is a superset of another rule r 2 's antecedent if both have the same answer, and r 1 has equal or lower confidence than r 2 , then we remove r 1 . For instance, given the rules {is, there} ⇒ yes and {is, there, cat} ⇒ yes with a respective confidence of 70% and 60%, we only keep the first one without the word cat.

We consider the remaining rules as shortcuts. Note that rules with a confidence of 100% could be considered correct and not shortcuts, but these rules will not influence our evaluation protocol, detailed in Section 5.4.

Analysis of shortcuts on natural data

We analyze the shortcuts that our approach can detect on the VQA v2 dataset. We extract ensembles of rules with different combinations of minimum support and confidence. Each time, we aggregate them into a classifier that we evaluate on the validation set. We detail how to build this kind of classifier in Section 5.4.3. We select the support and confidence leading to the best overall accuracy. It corresponds to a minimum support of 2.1 • 10 -5 (about ∼8 examples in training set), and a minimum confidence of 0.3. Once these shortcuts have been detected, we assess their number and type (purely textual, purely visual, or multimodal). We also verify that they can be used to find counterexamples that cannot be accurately answered using shortcuts. Finally, we evaluate their confidence on the validation set. In the next section, we leverage these counterexamples with our VQA-CE evaluation protocol to assess models' reliance on shortcuts.

Words-only and objects-only shortcuts First, we show that our approach is able to detect shortcuts that are purely textual or visual. In the first row of Figure 5.3, we display a shortcut detected on VQA v2 that only accounts for the appearance of words in the question. It predicts the answer "white" when the words "what", "color", "is", "snow" appear at any position in the question. In the training set, these words appear in 95 examples and 90.62% of them have the "white" answer. This shortcut is highly predictive on the validation set and gets 95.65% of correct answers over 92 examples. We also display an example in which exploiting the shortcut leads to the correct answer and a counterexample in which the shortcut fails because the question was about "the color of the snow suit" which is "pink".

In the second row, we show a shortcut that only accounts for the appearance of visual objects. It predicts "yes" when a "frisbee", a "tree", a "hand" and a "cap" appear in the image. However, this kind of shortcut is usually less predictive since they cannot exploit the question-type information which is highly correlated with certain answers, i.e. "what color" is usually answered by a color.

Multimodal shortcuts Then, we show that our approach is able to detect multimodal shortcuts. They account for the appearance of both words and visual objects V . In the third row of Figure 5.3, we display a multimodal shortcut that predicts "tennis" when the words what, sport and a racket V appear. It is a common pattern with a confidence of 98.05% based on a support of 667 examples in the training set. It is also highly predictive on the validation set with 98.97% confidence and 291 support. At first sight, it is counter-intuitive that this simple rule is a shortcut but answering complex questions is not about detecting frequent words and objects in images that correlate with an answer. In fact, this shortcut is associated with counterexamples where it fails to answer accurately. Here, the sport that can be played in the background is not tennis but soccer.

Number of shortcuts and statistics per type

Here we show that our approach can be used to detect a high number of multimodal shortcuts. Overall, it detects 1.12M shortcuts on the VQA v2 training set. As illustrated in Figure 5.4, since there are 413K examples, it is often the case that several shortcuts can be applied to the same example. This is the main reason behind the high number of shortcuts.

For instance, the antecedent {animals, what, giraffe V } overlaps with {animals, these, what, giraffe V }. Among all the shortcuts that our method can detect, only 50k are textual, 77k are visual and 1M are multimodal. In other words, 90% are multimodal. In addition to being more numerous, they are also more predictive.

For instance, the most confident shortcut that matches an example, highlighted in green in Figure 5 Confidence distribution on training and unseen data Here we show that shortcuts detected on the VQA v2 training set transfer to the validation set. In Figure 5.5, we display the confidence distribution of these shortcuts. As told earlier, we only consider shortcuts that reach a confidence greater than 0.3 on the training set. The number of shortcuts decreases when confidence increases.

It is expected to find fewer shortcuts with higher levels of confidence due to the collection procedure of VQA v2 which focused on reducing the amount of data biases and shortcuts. We evaluate on the validation set the same shortcuts detected on the training set and also display the confidence distribution. We show that our shortcuts are predictive on both training data, and unseen data that follows the training set distribution. The number of shortcuts that reach a confidence between 0.9 and 1.0 is even higher on the validation set than on the training set.

The confidences are overall slightly lower on the validation set, but a large number of them are still above 0.3, indicating that they generalize to new examples from the same distribution. The great majority of shortcuts, which obtain a confidence lower than 1.0, allow finding examples that contradict them by leading to the wrong answers. We manually verified by looking at these examples that only a minority are wrongly annotated or ambiguous, most of them are counterexamples. These counterexamples are the core of our approach to assess the VQA model's reliance on shortcuts.

Identifying most exploited shortcuts

We introduce a method to identify shortcuts that may be exploited by a given model. On the validation set, we calculate for each shortcut a correlation coefficient between its answer and the predictions of a VQA model. Importantly, a 100% correlation coefficient indicates that the model may exploit the shortcut: both always provide the same answers, even on counterexamples on which using the shortcuts leads to the wrong answer.

In Table 5.1, we report shortcuts that obtain the highest correlation coefficient with UpDown (Anderson et al. 2018a) and VilBERT (J. [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]. Overall, these shortcuts have high confidence and support, which means that they are common in the dataset and predictive. Most importantly, they are multimodal. As a consequence, these shortcuts obtain low correlations with Question-Only (Goyal et al. 2017b). On the contrary, they obtain a 100% correlation coefficient with Vil-BERT and UpDown. For instance, the second shortcut provides the answer skateboarding for the appearance of sport, this, what in the question and a skateboard V in the image. It is a common pattern with a support of 31 examples in the validation set. It gets a correlation of 0% because Question-Only mostly answers baseball for these examples. Its confidence of 87.1% indicates that 4 counterexamples can be found where the shortcut provides the wrong answer. To be correctly answered, they require more than a simple prediction based on the appearance of words and salient visual contents. These results suggest that VQA models tend to exploit multimodal shortcuts. It shows the importance of taking them into account in an evaluation protocol for VQA.

Rules with supporting examples and counterexamples

In Figure 5.6, we display some counterexamples to some rules displayed in Table 5.1. Some of those examples are "true" counterexamples, where the input does match the rule's antecedent, but the answer is different. For instance, in the first example of the first rule, the question is actually about the clothes and not the sport, and the man is dressed in a basketball outfit. On the contrary, some examples are there due to incorrect object detection: in the second example of the first rule, the object detection module detected a skateboard instead of a scooter. Thus, the example is incorrectly matched.

Evaluation: Assessing models' reliance on shortcuts

The classic evaluation protocol in VQA consists in calculating the average accuracy over all the examples. Instead, we introduce the VQA-CounterExamples (VQA-CE) evaluation protocol that additionally calculates the average accuracy over a specific subset of the validation set. This subset is made of counterexamples that cannot be answered by exploiting shortcuts. Models that do exploit shortcuts are expected to get a lower accuracy. It is how we assess the use of shortcuts. Importantly, our protocol does not require retraining as was the case with the previous protocol. We first detail the subsets creation procedure at the core of our VQA-CE protocol. We then run extensive experiments to assess the use of shortcuts on many VQA models and bias-reduction methods. 61.8 (20) 71.4 (7) 100.0 100.0 0.0 Table 5.1. -Instances of shortcuts that are highly correlated with VQA models' predictions. We display their antecedent made of words from the question and objects V from the image, and their answer. Their support, i.e. number of examples matched by the antecedent, and confidence, i.e. percentage of correct answers among them, have been calculated on the VQA v2 training and validation sets. We report the correlation coefficients of their predictions with those of three VQA models: UpDown (Anderson et al. 2018a) that uses an object detector, VilBERT (J. [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]) that has been pre-trained on a large dataset, and Q-only (Goyal et al. 2017b) that only uses the question. We show some counterexamples in Figure 5.6.

V + bat V + dirt V → batter

Our VQA-CE evaluation protocol

Subsets creation using shortcuts By leveraging the shortcuts that we have detected before, we build the Counterexamples subset of the VQA v2 validation set. This subset is made of 63,298 examples on which all shortcuts provide the incorrect answer. As a consequence, VQA models that exploit these shortcuts to predict will not be able to get accurate answers on this kind of example. They will be penalized and obtain a lower accuracy on this subset. Distribution of examples Here, we show how the split between our two subsets Counterexamples and Easy affects the distribution of examples. In Figure 5.7, we show that the original distribution of answers is similar to the Easy distribution but dissimilar to the Counterexamples distribution. Highlighted in blue, we display the five most common answers from the Easy distribution. They can be found at the same positions in the original distribution, the two major answers being "yes" and "no". It is not the case in the Counterexamples subset where these answers appear less frequently. Nonetheless, they are still in the top 30 answers which shows that our subsets creation is not a trivial splitting between frequent and rare answers. Similarly, the five most common answers from the Counterexamples subset, highlighted in orange, can be found in the Easy and All subset. Next, we report similar observations for the questions and answer-type distributions. Distribution of examples per answer type In Figure 5.9, we display the distribution of examples in our two subsets per answer type. We see that most yes-no 

Distribution of examples per question-type

Examples that are not matched by any rule

In Figure 5.10, we display some representative examples that are neither in the Easy subset nor the Counterexamples subset. These examples are not matched by any antecedent of our rules. Their input might be unusual. We do not add these examples to our Counterexamples subset, as they do not contradict the shortcuts we found. We discard them entirely from our analysis. There consists of about 3K of examples. 

Main results

In Table 5.2, we report results of some baselines, common VQA models, and the latest bias-reduction methods following our VQA-CE evaluation protocol. Models that exploit shortcuts are expected to get a lower accuracy on the Counterexamples compared to their overall accuracy. All models have been trained on the VQA v2 training set and evaluated on the VQA v2 validation set. We detail them and discuss our findings in the next paragraphs.

Baselines The Question-Only and Image-Only baselines are deep models that only use one modality. They are often used to assess the amount of unimodal shortcuts that a deep model can capture. We report extreme drops in accuracy on our Counterexamples subset compared to the overall accuracy, with a loss of 32.53 points and 22.12 points respectively. This shows that most of the questions that are easily answerable by only using the question, or the image, are filtered out of our Counterexamples subset. Aggregating shortcuts to create a classifier In order to evaluate our shortcuts as a whole, we aggregate them to build a VQA classifier. As shown in the preceding section, each training example is associated with shortcuts that can be used to find the correct answer. Among these correct shortcuts, we select the highestconfidence one for each example. This leaves us with 115,718 unique shortcuts.

In order to predict an answer for an unseen example, we take the most predicted answer for all its matching shortcuts weighted by the confidence of the shortcuts.

For the examples that are not matched by any shortcut, we output "yes", the most common answer. Our shortcut-based classifier reaches an overall accuracy of 42.26%, close to the 44.12% of the deep question-only baseline. Interestingly, both use different classes of shortcuts. Ours is mostly based on shallow multimodal shortcuts, not just shortcuts from the question. Since we use the same shortcuts to create our subsets, the shortcut-based classifier reaches a score of 0% on the Counterexamples. On the VQA-CP testing set, our classifier reaches 22.44% accuracy. It highlights the difference with our counterexamples subset: VQA-CP does penalize some shortcuts, but there are still some that can be exploited.

VQA models learn shortcuts We compare different types of VQA models: SAN [START_REF] Yang | Stacked attention networks for image question answering[END_REF] represents the image as a grid of smaller patches and uses a stacked attention mechanism over these patches, instead, UpDown (Anderson et al. 2018a) represents the image as a set of objects detected with Faster-RCNN and uses a simpler attention mechanism over them, BLOCK (Ben-Younes et al. 2019b) also relies on the object representations but uses a more complex attention mechanism based on a bilinear fusion, VilBERT (J. [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]) also relies on the object representations but uses a transformer-based model that has been pretrained on the Conceptual Caption dataset (Sharma et al. 2018). First, they suffer from a loss of 29 accuracy points on the counterexamples compared to their overall accuracy. This suggests that, despite their differences in modeling, they all exploit shortcuts. Note that comparable losses are reported on VQA-CP v2 (A. Agrawal et al. 2018a) which especially focuses on shortcuts based on question types. Second, our evaluation protocol can be used to compare two models that get similar overall accuracies: UpDown and BLOCK which gets +0.37 points over UpDown. We can explain that this gain is due to a superior accuracy on the Easy subset with +0.96 and report a loss of -1.00 points on the Counterexamples. These results suggest that the bilinear fusion of BLOCK better captures shortcuts. On the contrary, VilBERT gets a better accuracy on our both subsets. It might be explained by the advantages of pretraining on external data.

Bias-reduction methods do not work well on natural multimodal shortcuts

Our evaluation protocol can also be used to assess the efficiency of common bias-reduction methods. We use publicly available codebases when available, or our own implementation. All methods have been developed on the VQA-CP v2 dataset. It introduces new training and evaluation splits of VQA v2 that follow different distributions conditioned on the question type. All the studied methods have been applied to UpDown and reached gains ranging from +5 to +20 accuracy points on the VQA-CP testing set. We evaluate them in the more realistic context of the original VQA v2 dataset. We show that their effect on our Counterexamples subset is very small. More specifically, some methods such as our previous work RUBi (Chapter 3), LMH+RMFE [START_REF] Gat | Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies[END_REF] 

Conclusion

As we explained in Chapter 2, most of the literature related to biases and shortcuts in VQA focuses on language priors. In this chapter, we explore the existence of multimodal shortcuts in the VQA v2 dataset. We introduce a method that discovers multimodal shortcuts in VQA datasets. It gives novel insights into the nature of shortcuts in VQA: there are many multimodal shortcuts that could be exploited by models to achieve high accuracy. We find many shortcuts that correlate with predictions of VQA models, suggesting that they are exploiting these superficial decision rules. Using those shortcuts, we introduce an evaluation benchmark to assess whether a given model exploits those: it consists in evaluating models on shortcut counterexamples. If a model does exploit shortcuts, it will perform poorly on those counterexamples. We find that most reference VQA models suffer from a significant loss of accuracy in this setting, whether they are simple task-specific models like SAN [START_REF] Yang | Stacked attention networks for image question answering[END_REF] or large pre-trained transformers like VilBERT (J. [START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]. We also evaluate existing bias-reduction methods, including our previous work RUBi from Chapter 3. We find that even the most general purpose of these methods does not significantly reduce the use of multimodal shortcuts. This shows the need for new shortcut-reduction methods.

C h a p t e r

R E L I A B I L I T Y F O R V I S U A L Q U E S T I O N A N S W E R I N G

Chapter abstract

Despite significant improvements in Visual Question Answering (VQA), the ability of models to assess their own correctness remains under-explored. Recent work has shown that VQA models, out-of-the-box, can be very bad at abstaining from answering when they are wrong. The option to abstain, also called Selective Prediction, is highly relevant when deploying systems to users who must trust the system's output (e.g., VQA assistants for users with visual impairments). For such scenarios, abstention can be even more important as users may provide out-of-distribution (OOD) or adversarial, inputs that make incorrect answers more likely. In this work, we explore Selective VQA in both in-distribution (ID) and OOD scenarios, where models are presented with mixtures of ID and OOD examples. The goal is to maximize the number of questions answered while minimizing the risk of error on those questions. We propose a simple yet effective Learning from Your Peers (LYP) approach for training multimodal selection functions for making abstention decisions. Our approach uses predictions from models trained on distinct subsets of the training data as targets for optimizing a Selective VQA model. It does not require additional manual labels or held-out data and provides a signal for identifying examples that are easy/difficult to generalize to. In our extensive evaluations, we show this benefits several different models across different architectures and scales.

The work in this chapter has led to the publication of this conference paper: [START_REF] Dancette | Improving Selective VQA by learning from your peers[END_REF]. "Improving Selective VQA by learning from your peers". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

• Corentin Dancette, Spencer

Introduction

Recent successes of deep learning models for multimodal tasks have created the potential for many exciting real-world applications that require a large degree of reliability, such as assisting users with visual impairments [START_REF] Gurari | Vizwiz grand challenge: Answering visual questions from blind people[END_REF][START_REF] Sidorov | Textcaps: a dataset for image captioning with reading comprehension[END_REF]). However, with these novels, high-stakes applications come responsibilities towards the users, especially regarding the problem setups and the general approach to evaluating model performance. Moreover, as we saw in previous chapters, multimodal models are often not robust to out-of-distribution (OOD) inputs, in particular when learning spurious correlations. A prevalent cause of such incorrect predictions in real-world settings is distribution shifts (De-Grave et al. 2021;[START_REF] Mårtensson | The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study[END_REF][START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF], where the test environment may differ from the training environment and models could encounter a wide variety of input examples at test time that may not satisfy the independent and identically distributed assumption often made by practitioners when developing models. This is especially true in open-ended tasks like Visual Question Answering (VQA) where models may receive adversarial, outof-distribution (OOD) inputs that are difficult to answer correctly. Moreover, we Q: What color will the light be when the vehicle has permission to proceed? showed in previous Chapters 3,4 and 5 that VQA models were sensible to the learning of biases or shortcuts from their training data. Those models are likely to be overconfident and wrong on OOD examples that do not follow the training shortcuts. Another issue with OOD is examples that require knowledge or skills that the model did not learn during its training. For example, in Fig. 6.1, a model is asked a question that requires unknown background knowledge.

One particularly important consideration when developing models for realworld applications is reliability, i.e., the ability of the model to avoid making errors when facing uncertainty.

One way to approach reliability is to frame the problem as a selective prediction task [START_REF] Chow | An optimum character recognition system using decision functions[END_REF][START_REF] El-Yaniv | On the Foundations of Noise-free Selective Classification[END_REF]Whitehead et al. 2022b). In selective prediction, models are able to either output an answer or abstain from answering (i.e., effectively saying "I don't know") based on the model's confidence/uncertainty in order to avoid making incorrect predictions. While the ability to answer open-ended questions has been a point of focus in VQA, having a model correctly answer all questions, ID and OOD, is likely unattainable [START_REF] Geiger | Posing Fair Generalization Tasks for Natural Language Inference[END_REF][START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]. Therefore, framing this problem as a selective prediction task provides an avenue to handle such OOD examples more gracefully as the model can abstain from answering on many of these inputs, while still attempting to answer as many questions as possible. Doing this requires models to recognize OOD examples for abstention decisions (OOD detection) and generalize to OOD examples (OOD generalization) in order to make predictions on examples that the model will get right. However, previous evaluations for selective prediction in VQA (Whitehead et al. 2022b) have been done on ID data, where the images and questions all come from the VQA v2 dataset (Goyal et al. 2017c). In NLP, there are some efforts on selective prediction with OOD examples [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF][START_REF] Varshney | Investigating Selective Prediction Approaches Across Several Tasks in IID, OOD, and Adversarial Settings[END_REF], although they tend to not address practical considerations, such as assuming access to OOD data or threshold generalization. More broadly, selective prediction and OOD generalization have largely been studied as independent problems in the literature [START_REF] Tran | Plex: Towards Reliability using Pretrained Large Model Extensions[END_REF].

In this chapter, we explore selective prediction for VQA with distribution shifts, where we present models with mixtures of both ID and OOD examples, and measure the ability of different approaches to optimize answering as many questions as possible while maintaining a low risk of error (or high accuracy) on those questions. We perform experiments on VQA v2 (Goyal et al. 2017c) as our ID data and AdVQA [START_REF] Sheng | Human-adversarial visual question answering[END_REF], an adversarially-collected VQA dataset, as our OOD data. We share more details about AdVQA in Section 6.2.

We evaluate several state-of-the-art approaches to this problem and find that existing models' softmax probabilities are generally poor confidence estimates for abstention decisions on OOD data, leading models to answer <3% of questions to achieve 1% risk of error in some settings. Further, we show that training a selection function (Whitehead et al. 2022b) improves performance ID and OOD, but integrating features from OOD detection methods as well as augmenting with known-OOD data (i.e., OOD data different from the unknown target distribution) does not improve beyond simply training this selection function on ID data. However, we observe that existing methods for training multimodal selection functions can require a held-out dataset in order to be effective. Therefore, we propose a Learning from Your Peers (LYP) approach that removes the need for held-out data while also allowing both the VQA model and selection function to learn from the additional data that would have been held out. By using predictions on the training data from models that have not seen these examples, our approach provides a signal for which examples in the training data can be generalized to for a given model class, and which are too hard and should be abstained on. This allows us to train both the main VQA model and the selector on more data, boosting their performance.

In Section 6.2, we review prior work on selective prediction in VQA and distribution shifts in VQA. In Section 6.3, we propose an evaluation benchmark for selective prediction in VQA with distribution shifts, and evaluate reference methods. Then, in Section 6.4, we propose a method to use more efficiently the available data to train a better confidence model. Finally, in Section 6.5, we present our experiments and results.

Related Work

The main VQA architectures are discussed in Chapter 2, Section 2.2. In this chapter, we use the OFA model, which is described in Section 2.2.2.4. Next, we describe other works on out-of-distribution and selective prediction.

Out-of-distribution VQA We discussed in Chapter 2, Section 2.22 the VQA-CP benchmark, which proposes training and testing sets with a controlled distribution shift to control the learning of shortcuts.

AdVQA [START_REF] Sheng | Human-adversarial visual question answering[END_REF]) and A-VQA (L. [START_REF] Li | Adversarial vqa: A new benchmark for evaluating the robustness of vqa models[END_REF] are recently introduced VQA benchmarks that comprise adversarial questions using human and model-in-the-loop procedures to generate adversarial examples. They propose evaluation datasets, which can be used with models trained on the original VQA datasets. We use AdVQA in this chapter, and show its construction process in Figure 6.2. It is collected in an adversarial manner, with humans in the loop: the human annotator is asked to write a question that might be hard for a model to answer, and then gets the output of a reference VQA model. If the model gets it correctly, the user can refine its question until the model gets it wrong. Other annotators then validate the examples or provide multiple ground-truth answers. This way, most questions are very hard to answer, even for state-of-the-art VQA models. This gives us a good benchmark to study the robustness of our models: they should abstain from answering most of those questions. 

Selective VQA with ID and OOD Data

In this section, we discuss the problem formulation of Selective VQA(Section 6.3.1), how we evaluate in the ID (in-distribution) scenario (Section 6.3.2) and in the mixed ID+OOD (out-of-distribution) scenarios (Section 6.3.3).

Problem formulation

As explained in Section 2.2.2, the primary setting for VQA is to learn a function f : Q, V → A to predict an answer a ∈ A to a question q ∈ Q about a given image v ∈ V. However, when exposing models to the real world they might encounter hard questions, OOD data points, or even adversarial questions by users and we cannot expect that models are able to answer all questions in these scenarios correctly. Therefore, we instead would like to identify inputs x = (v, q) ∈ X that models cannot correctly answer and abstain in those cases. This is the setting of Selective Prediction (El-Yaniv and Wiener 2010), which has also recently been studied for ID VQA (Whitehead et al. 2022b) and OOD text-only question answering [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]. In this chapter, we advocate for this selective prediction setting for ID and OOD scenarios. We closely follow the formalism introduced in Whitehead et al. 2022b for VQA. Specifically, the output space is extended to allow for an abstention option (denoted by ∅): h : X → A ∪ {∅}. Such a Selective Model h can be realized by decomposing h into two functions, a VQA model f and selection function g : X → {0, 1}

h(x) = (f, g)(x) = f (x) if g(x) = 1, ∅ if g(x) = 0. (6.1) 
For a given image-question pair x = (v, q), the Selective VQA model h only predicts an answer from the VQA model f if the selection function g decides that an answer should be given. Otherwise, the Selective VQA model h abstains. The selection function g can be formulated based on a function g ′ : X → R that scores the correctness of the model's prediction f (x). Then, for a given γ, the model outputs the answer f (x) if g ′ (x) ≥ γ and abstains otherwise. Ideally, g ′ should yield higher values if f (x) is correct and lower if it is incorrect. However, as we show in the experiments this is a hard task. 

Evaluation

Beyond accuracy, we evaluate using the metrics designed for models with abstention options following Whitehead et al. 2022b: Risk and coverage. For a dataset D, model f , and a selection function g, coverage is the proportion of answered questions:

C(g) = 1 |D| x∈D g(x),
while risk is the average error on the covered subset

R(f, g) = (x i ,y i )∈D (1 -Acc(f (x i ), y i )) • g(x i ) C(g) ,
where Acc is VQA accuracy (Antol et al. 2015b) and y i is the corresponding ground truth answer. We measure the maximum coverage at a specific risk tolerance, denoted (C@R), by determining the largest consecutive subset of questions that can be answered with at most R risk. Further, we also compute the Area Under the Curve (AUC) for the risk-coverage curve [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]) for a summary of performance across different coverage levels. The AUC is computed by integrating the risk-coverage curve. Note that here, we aim for a low AUC, as for a given coverage, we prefer a model which minimizes the risk.

Effective Reliability Φ c . This metric was introduced in Whitehead et al. 2022b to better compare methods on the test set for a threshold selected on a validation set. This is especially important for OOD, as thresholds for a certain risk level don't generalize to the test scenario. Φ c is a cost-based metric and jointly measures the reliability and effectiveness of selective models in a single metric. It assigns a cost of c to every wrong answer that the model outputs (i.e., does not abstain on):

Φ c (x) =        Acc(x) if g(x) = 1 and Acc(x) > 0, -c if g(x) = 1 and Acc(x) = 0, 0 if g(x) = 0. (6.2)
The total score is

Φ c = 1 |D| x∈D Φ c (x)
, a mean over all samples x. To compute this metric, we set the threshold γ on a validation set to maximize Φ c . Then, we use this threshold for abstention decisions on the test set.

Evaluating with Mixed ID+OOD data

As previously mentioned, we want to explore the setting where models encounter mixtures of ID and OOD data. More formally, we assume we are given D train and D test that are drawn from different distributions. In our setting, to simulate a setting closer to a real-world use case, the test data is sampled from a mixture of ID and OOD data. Similar to [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF], we assume that our training data is drawn from P src while our testing data is drawn from P tgt , where P tgt = αP src + (1 -α)P unk . Here, P unk is an unknown distribution different from P src from which we obtain our OOD examples. We obtain different mixtures of data by varying α and evaluate models across these using the metrics discussed in Section 6.3.2. Different from prior work in NLP [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF], we assume we do not have access to known OOD data for training, meaning all models must be trained and thresholds must be chosen on ID data. However, we do compare our method with this setting in our experiments.

LYP: Learning from Your Peers

Prior work has established training a selection function (or Selector) g to predict the correctness of the outputs of a model f (Geifman and El-Yaniv 2019; [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]Whitehead et al. 2022b) as a method for selective prediction. As in Whitehead et al. 2022b, our Selector g learns to predict the VQA Accuracy of f . One option is to train f on one part of the training data (Train A) and g on a different, typically smaller, part (Train B), as shown in Fig. 6.3(a). Having separate training data for g can be crucial: if f overfits the training data, then training g on that same data will lead g to a solution that doesn't generalize well (e.g., always answering). We show some of these drawbacks in our experiments with observations similar to findings on stacked generalization [START_REF] Wolpert | Stacked generalization[END_REF]). However, withholding data from training f could reduce the overall performance of f , as it does not allow f to learn from this data. Likewise, g is unable to learn from the training data for f . This motivates training both f and g on the same data, e.g., as done in Geifman and El-Yaniv 2019 (shown in Fig. 6.3(b)).

We propose a simple yet effective approach, called Learning from Your Peers (LYP), for training g that allows both f and g to utilize all the available training data. Inspired by work on collective outliers [START_REF] Karamcheti | Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering[END_REF]) and improving worst group performance (E. Z. [START_REF] Liu | Just train twice: Improving group robustness without training group information[END_REF], our approach aims to identify examples in the training data that are difficult to generalize to, for a given architecture and learning procedure. In particular, we want to provide more signal to g about which examples in the training data may not be generalizable and likely should be abstained on, despite the VQA model's potential ability to fit these examples during training. Shown in Fig. 6.3(c), we first partition our full training set D into N disjoint subsets (D = Train A + Train B). For our VQA setting, we create our partitions by ensuring no images overlap between them. Next, we train N different models on combinations of the subsets in leave-one-out manner: we create a training set D * n = D \ D n and train a VQA model f n on D * n . Once we have trained f n , we use it to make predictions on D n , which it has not seen during its training. We use the ground truth annotations for D n to obtain VQA accuracy for each prediction, which we treat as a label for the correctness of each prediction. After performing this operation for n = 1, ..., N , we can union the partitions to obtain an updated training set D sel that additionally has correctness labels for each example (x

(n) i , y (n) i , f n (x (n) i ), ξ (n) i ) for (x (n) i , y (n) i ) ∈ D n , where ξ (n) i = Acc(f n (x (n) i ), y (n) i ).
We train our VQA model f on all of D and then, with the obtained correctness labels, we train our Selector g on top of f using the full D sel dataset. For training g, we optimize it using a binary cross-entropy objective with the correctness labels as the target. Note the source of our targets is not the model f itself but, rather, the subset models {f n } N n=1 (i.e., the peers of f ). The idea behind this is that if a model trained on the remainder of the training data D * n cannot generalize to an example in D n , then that may be a challenging example that g should choose to abstain on as the model f is unlikely to generalize reliably to such an example at test time, even if it has fit it during training. Essentially, these correctness labels may provide a signal for which examples are difficult and might require abstention more generally rather than concerning a specific model. Moreover, as we show in our experiments, this allows both f and g to learn from the entire training data, giving a boost in both overall accuracy as well as abstention performance.

Experiments

In this section, we evaluate our approach LYP in an in-distribution scenario and a realistic mixed setting, where we encounter in-distribution and out-ofdistribution examples at test time.

Experimental Setups

Models We operate on two different VQA architectures: CLIP-ViL [START_REF] Shen | How Much Can CLIP Benefit Vision-and-Language Tasks?[END_REF] and OFA (P. Wang et al. 2022). CLIP-ViL is an ensemble of MCAN [START_REF] Yu | Deep modular co-attention networks for visual question answering[END_REF] and MoVie [START_REF] Nguyen | Movie: Revisiting modulated convolutions for visual counting and beyond[END_REF]) with a CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]) image encoder, and OFA is a recent transformer encoder-decoder model that performs multiple tasks and achieves state-of-the-art performance on VQA v2. CLIP-ViL represents a strong VQA model that treats VQA as a classification task over a large set of answers [START_REF] Teney | Tips and tricks for visual question answering: Learnings from the 2017 challenge[END_REF], while OFA represents a large-scale pre-trained model that treats VQA as a generative task1 . For OFA, we explore 2 different sizes of the model: OFA-Base and OFA-Large.

Selection Functions. We explore MaxProb (Geifman and El-Yaniv 2017; C. [START_REF] Guo | On calibration of modern neural networks[END_REF][START_REF] Hendrycks | A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks[END_REF][START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]Whitehead et al. 2022b) as a baseline as it is a natural comparison to the VQA model out-of-thebox since the confidence scores are simply the output probabilities of the model. We also evaluate the Selector developed by Whitehead et al. 2022b as it attains the strongest performance for selective VQA. Selector is a MLP that takes in a combination of image, question, multimodal and answer representations from the VQA model in order to predict a confidence score.

For CLIP-ViL, We use the implementations for MaxProb and Selector provided by Whitehead et al. 2022b. 2 . We follow the given hyperparameters and training procedure. We refer readers to Whitehead et al. 2022b for details.

OFA first processes the image using a convolutional network [START_REF] He | Deep residual learning for image recognition[END_REF] to obtain a set of visual representations Ṽ . Likewise, the question is tokenized and converted to a sequence of question token embeddings Q. Then, the visual features are flattened into a sequence and concatenated with the question token embedding sequence. This entire sequence is given as input to an encoder-decoder transformer model [START_REF] Vaswani | Attention is all you need[END_REF] l=1 for an answer of L tokens. These token representations can be fed to a linear layer to give the output logits over the token vocabulary. We use beam search to decode the answers. In our work, we create mixtures of ID/OOD examples for our evaluations. To form our mixtures, we first discard all AdVQA images that overlap with the A+B train set. This leaves 5,008 AdVQA examples. For each setting, we randomly sample examples from the ID Test split (Table 6.2) to create the desired OOD proportion: 45K for 10% OOD, 10K for 33% OOd, 5K for 50% OOD and 2.5K for 66% OOD.

OFA-Base

In-Distribution Experiments

We first experiment with only in-distribution data to compare with prior work. Discussed in Section 6.3.1, we evaluate using maximum coverage at different risk levels (C@R), AUC for the risk-coverage curve, and effective reliability at different costs (Φ c ). We also present accuracy to give an idea of the question-answering performance of each model.

ID performance consistently improves with LYP. Table 6.3 shows that across all model architectures, the top scores are achieved by utilizing LYP. For instance, we see improvements in C@1% over both MaxProb (A+B) and Selector (B) with OFA-Large of 16.31% and 2.06%, respectively. Likewise, Φ 100 increases with LYP by 12.49 and 1.2 over MaxProb (A+B) and Selector (B), respectively, for OFA-Large. Moreover, the improvements are sustained at higher risk levels and lower costs. These same observations hold across each model we experiment with on ID data. 

OOD Evaluation

For our OOD evaluations, we build mixed datasets comprised of 10%, 33%, 50%, and 66% OOD examples. All mixtures contain 5K examples from AdVQA as OOD examples, and the rest are randomly sampled from our ID test split. We report the results for all models on the 10% OOD dataset in Table 6.4. Results for other splits can be found in Appendix B.

MaxProb can be overconfident on OOD data. Across all models, we see that MaxProb has <3% C@1% and its Φ c scores become negative. These results suggest that MaxProb may be overconfident on OOD examples, on which the model is more likely to be incorrect. While improving the VQA accuracy of the model improves MaxProb performance, training a Selector remains the most effective approach and consistently.

LYP maintains improvements over other methods in the 90%/10% setting. Similar to the pure ID setting, LYP continues to outperform other methods on the 90%/10% mixed setting. Although, we see decreases in all metrics across each of the different methods, demonstrating the challenge of this task even with just 10% OOD data.

The more OOD data, the more challenging. We show the AUC for our models on various mixtures of ID/OOD data in Fig. 6.4. Overall, our LYP method consis-tently improves AUC over the Selector baseline from Whitehead et al. 2022b, for the three models (note lower is better for AUC).

We display two other metrics, C@5% and Φ 100 in Figs. 6.5a and 6.5b. For both plots, we show each of the three models with a Selector trained with LYP versus the Selector from Whitehead et al. 2022b. We see in Fig. 6.5a that the improvements are slightly less consistent: For CLIP-ViL and OFA-Base, LYP consistently improves the scores over a baseline on all mixture levels. For OFA-Large, we see that LYP only improves the results on in-distribution and low-OOD levels. On higher-OOD levels, the baseline performs slightly better than LYP. This might be explainable by the fact that OFA-Large is trained on a much larger dataset, and thus is more robust out-of-the-box OOD data, thus making LYP less effective. We make a similar observation for the Φ 100 metric in Fig. 6.5b: LYP outperforms the baseline for CLIP-ViL on all mixed settings but does not improve consistently performance for OFA-Base and OFA-Large on high-OOD levels. This shows that more work is needed to help generalize to such OOD data. [START_REF] Sheng | Human-adversarial visual question answering[END_REF]. While we on average see that the Selector models and Selector + LYP perform better than the corresponding baselines models out-of-thebox (MaxProb), all models degrade dramatically if there is a high percentage of OOD data in the test mixture, especially for low risk (C@1%) or high cost of error (Φ 100 ). Especially if we look at the realistic scenario where the threshold is chosen on the validation set and used at test time (as for Φ 100 ), we notice that the scores of all methods drop below 0 with 33.3% or more OOD data. This can be seen in the last column of Tables C. 4 to C.6 or in Figure 6.5b. These results demonstrate that these thresholds can be overconfident on OOD examples, which leads to poor abstention decisions such that the cost of the models' incorrect outputs outweighs the gains of the correct ones. Future work is needed to improve such OOD generalization and recognize samples that cannot reliably be answered in this challenging setup, which this work provides a new and interesting test setup for.

Threshold Generalization

In this section, we investigate threshold generalization. All previous tables reported numbers on "maximum coverage" at risk R. This metric is irrespective of the threshold chosen as it solves for the coverage that satisfies a given risk level. In a real-world setting, the threshold would need to be fixed once using a validation set and then used at test time. We already evaluate this setting of evaluating the optimal threshold on the validation set for the cost-based metric Φ c in Section 6.5.4. In contrast to Φ c , which allows comparing a single number, for risk and coverage, choosing a threshold on a validation set leads to changes in coverage and risk, making it difficult to compare two methods. Still, in this section, we evaluate how the threshold generalizes to ID and OOD settings.

Our method improves risk generalization over out-of-the-box MaxProb. In Fig. 6.6, we show the test risk on various ID/OOD mixtures with a threshold set on the ID validation split of VQA v2 for a target risk of 1%. We see that LYP (solid Risk generalization is limited for OOD data. While we observe reasonable good risk generalization for ID, the generalization is really limited for larger percentages of OOD data.

CLIP-ViL is the best model for risk generalization. We see that all variants of CLIP-ViL outperform their corresponding methods on OFA-B and OFA-L. Note that the associated coverages are lower for the same risk level, thus CLIP-ViL is not the best method overall. This is somewhat surprising, as [START_REF] Kadavath | Language models (mostly) know what they know[END_REF] found that larger language models were better calibrated on NLP tasks.

Full results are available in Table C.7 and C.8 for our in-distribution testing set and our mixed setting with 90% of VQA v2 and 10% of AdVQA examples.

Further analysis

How many models/splits are needed for LYP? We run an ablation on OFA-Base to show the impact of the number splits N we make of the training dataset D. This impacts the total training time, as we need to train a model for each split D * n . We see in Table 6.5 that the number of models has a very small impact on the final results. This suggests that the overhead in training time can be reduced significantly while maintaining strong performance.

N C@1% C@5% C@10% AUC Impact of scaling on Selective prediction. We show in Table 6.7 the results for three OFA variants: OFA Medium, OFA Base, and OFA Large. Those models have respectively 93M, 180M, and 470M parameters. We see that larger models, in addition to having a much higher accuracy on the testing set, have much better reliability when paired with a trained selector. 

Evaluation of other baseline methods

Additionally, we evaluate the performance of multiple other baseline methods to improve reliability in the out-of-distribution (OOD) setting. We report those results in Appendix C. First, inspired by [START_REF] Fisch | Calibrated Selective Classification[END_REF], we train Selector with out-of-distribution detection scores computed with KNN [START_REF] Sun | Out-of-distribution Detection with Deep Nearest Neighbors[END_REF] or SSD (Sehwag et al. 2021) as added features. We share the results in Section C.2. Second, as discussed in Section 6.3.3, we also try training Selector on the B set, along with some known OOD datasets similar to [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]. We show these results in Section C.3.

We show that both of those baselines, which are effective in image classification tasks, fail here to improve the reliability of VQA models.

Qualitative examples

Figs. 6.7 to 6.9 show qualitative results comparing the OFA-Large + LYP and OFA-Large + MaxProb, on the AdVQA dataset. In all cases, the OFA-Large model f is trained on A+B. For all examples, the abstention threshold is set on the indistribution validation set to get maximum coverage at 5% risk. Fig. 6.7 shows examples where the VQA model (OFA-Large) is incorrect. Thus, the correct behavior is to abstain. But the MaxProb model does not abstain using the provided threshold, instead, it answers incorrectly. On the contrary, our model OFA-L + LYP abstains. Fig. 6.8 shows examples where the OFA-L model is correct: the best behavior is to answer. The MaxProb model abstains, while our method answers correctly. Fig. 6.9 shows two kinds of failure cases of our models. In the first line, OFA-L + LYP incorrectly abstains, as the VQA model was correct. In the second line, our model incorrectly answer instead of abstaining, as the answer provided by the model was incorrect. 

Conclusion

In this chapter, we explore Selective Visual Question Answering in the realistic, but challenging mixed ID+OOD scenario, where a model is exposed to samples from both the training distribution and also out-of-distribution (OOD) samples. We find that out-of-the-box, state-of-the-art VQA models like OFA largely fail on this task at a low risk of error (e.g., 1%). When training a multimodal selector, models significantly improve their reliability, matching observations in the indistribution (ID) scenario. However, a limitation of the selector training is that it requires splitting the training data between the VQA model training and the Selector training to avoid over-fitting on the training data. We address this with our approach Learning from Your Peers (LYP), which allows us to train both the VQA model and the Selector on the full training set. We observe that in the ID scenario as well as the mixed ID/OOD scenario, LYP consistently performs best across all VQA models and Metrics and improves over baselines and prior work. Our best result doubles the C@1% over prior work. Overall, all models still have difficulties recognizing when they cannot answer OOD examples correctly and thus decrease in performance when the percentage of OOD increases. Thus, major challenges remain, both for improving the generalizing abilities of VQA models to OOD examples (i.e., answering them correctly) as well as identifying examples that the model cannot answer, whether they are in-distribution or outof-distribution. 

Summary of Contributions

We first summarize the contributions that we propose in this thesis before discussing directions for future work. The problem we tackle is shortcut learning in Visual Question Answering: the ability of a model to learn superficial statistical regularities from the data, which can lead to answering correctly in most cases, but without learning the correct answering mechanism. This is a dramatic problem for deploying VQA models in the real world, especially in safety-critical applications, like assisting visually impaired people or autonomous driving, where unexpected cases will be encountered.

The first direction we explore is to reduce shortcut learning in VQA models, by adding constraints on the model. As mentioned in [START_REF] Geirhos | Shortcut Learning in Deep Neural Networks[END_REF], shortcuts are learned partially due to the simplicity bias: models are biased towards a simpler solution, and the inductive biases that have an impact on the hypothesis class are the architecture, the training data, and the learning algorithm and loss.

In this thesis, we show that we can effectively modify those inductive biases in order to reduce shortcut learning: by having an a-priori on the source of biases and the type of shortcut, we can design a system that is more robust to those biases. First, in Chapter 3, we explore how the loss function can be modified to reduce question-based shortcuts: we train the main model together with a "blind" model, as a kind of mixture of experts, and use only the main VQA model for inference. This allows the blind model to learn the shortcuts, and the main model to learn the desired behavior. Then, in Chapter 4, we explore another source of shortcut learning: the architecture. We show that by incorporating domain knowledge in the model, we can improve its generalization abilities to out-of-distribution datasets: for the Visual Counting task, a subset of VQA with only counting questions, we design the Spatial Counting Network model, that assigns a spatial distribution to the final answer. We also incorporate an entropy regularization loss: we impact both the architecture and the loss. This allows the model to be more robust to superficial shortcuts and is also explainable by design.

In this direction, multiple works have followed ours, exploring various strategies. For example, [START_REF] Kervadec | Estimating semantic structure for the VQA answer space[END_REF] proposes an additional loss for VQA models that takes into account the semantic structure of the answer space: if the ground truth answer is "red", models should be less penalized for answering "pink" than "car". The second direction we explore is the detection of shortcuts in datasets, and the evaluation of models: in order to effectively reduce shortcut learning, it is critical to know more about the source of shortcuts. We show in Chapter 5 that there are a large amount of multimodal shortcuts as well in the VQA v2 dataset. They are more subtle than the previously studied question-based shortcuts. We first propose a shortcut detection method based on object detection and rule mining algorithms, and an evaluation benchmark, which addresses some of the shortcomings of VQA-CP: our benchmark evaluates models against real VQA v2 shortcuts and does not introduce an artificial shift in distribution to create shortcuts. We show that most shortcut reduction methods proposed for VQA are only effective for question-based shortcuts, but do not seem to reduce multimodal shortcut learning. This paves the way for future work to explore multimodal shortcut reduction methods.

Finally, we explore in Chapter 6 a tangential but related topic: reliability in VQA models in the out-of-distribution context. As we saw previously, models tend to rely on shortcuts and might fail catastrophically in real-world scenarios. Parallel to fixing those issues, we can try to detect cases where a model will fail, and give the model the ability to abstain from answering those. We find that models of all scales are very unreliable out of the box and fail to estimate their own confidence, especially in out-of-distribution settings. We explore various solutions to tackle this issue and find that the most effective solution is to train a dedicated selector function to estimate the model's confidence. We propose Learning from your peers, a strategy to share the model's and selector's training data to maximize their performances given a fixed amount of data. This strategy effectively improves the reliability of VQA models, in both in-distribution and out-of-distribution settings.

Overall, we show that VQA models are very sensitive to shortcuts, and that shortcut learning is a major issue in VQA. We explore various strategies to reduce shortcut learning and show that most of them are only effective for questionbased shortcuts, and do not seem to reduce multimodal shortcut learning. We also explore the reliability of VQA models and show how to improve them.

Perspective for Future Works

Large Vision and Language models The trend in vision and language is now large transformer models, pre-trained on a very large amount of aligned image and text data. VQA, as most of the vision-and-language tasks, is strongly impacted by this trend: It seems clear now that using only datasets of the size of VQA v2 is not enough to reach human performance, given the difficulty of the task. Eventually, a good use of the VQA dataset seems to be as a zero-shot or fewshot downstream task for large pre-trained models: models should be able to answer questions without any dedicated VQA training. Flamingo [START_REF] Alayrac | Flamingo: a visual language model for few-shot learning[END_REF] shows promising results in this direction. A potential direction is to build multimodal models by adapting large language models to vision-and-language data, such as BLIP (J. Li et al. 2022), Flamingo [START_REF] Alayrac | Flamingo: a visual language model for few-shot learning[END_REF] or OFA (P. Wang et al. 2022), without having to train huge models from scratch. All those works use the Transformer architecture, which is very effective for vision-and-language tasks.

Additionally, the reliability and calibration of large multimodal models is an active research area. Kadavath et al. 2022a suggests, for Natural Language Processing (NLP) tasks, that large language models might be less susceptible to shortcut learning. This remains underexplored for multimodal learning, and we hope to see more work in this direction. By avoiding training on small-sized datasets like VQA, shortcut learning might be less of an issue: models are not able to use training shortcuts if they are evaluated in a zero-short or few-shot fashion.

Data efficiency Scaling of models and data size seems to be one of the most promising directions to train better models. A very important research direction is training efficiency: how to train the best models with the least amount of data and compute power. Those models are very costly, for instance, the Flamingo that we mentioned earlier is trained for 15 days using 1536 TPU chips, on 185 million images and 182 Gb of text, and this is likely to increase for future models. How to extract the most value from each example is a very important question.

Human Interaction One last perspective is human interaction: those systems seem very strong on our datasets, but there is a need for human-in-the-loop research, where those systems are deployed to real users. Training with humans in the loop to align the model's behavior to human expectations has been shown effective with large language models such as InstructGPT [START_REF] Ouyang | Training language models to follow instructions with human feedback[END_REF] and ChatGPT (OpenAI 2022). In the multimodal case, humans-in-the-loop could help both for training and evaluation, for example with visually impaired users for VQA. Real questions are much harder than the ones in the VQA dataset, due to the quality of images and the variability in questions [START_REF] Gurari | Vizwiz grand challenge: Answering visual questions from blind people[END_REF]. There is still a lot of exciting work to do in this direction.

A p p e n d i x
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In this appendix, we report additional experiments for Chapter 5. We explore two variants of our evaluation benchmark: First, in Section B.1, we show results using the ground-truth visual labels instead of the detected objects. Second, in Section B.2, we share results on the VQA v1 dataset.

B.1 Results with ground-truth visual labels

We report in Table B.1 the results of our analysis with ground-truth visual labels from the COCO (T.-Y. Lin et al. 2014b) dataset, instead of labels detected with Faster R-CNN. We make similar observations to the main experiments of the paper: bias-reduction methods often degrade performances, on both easy and counterexample split. A few methods slightly improve the counterexamples score, but much less than on VQA-CP. The only method which improves both overall and counterexamples scores is LfF (Nam et al. 2020). We observed similar results on the dataset with detected labels, reported in Table 1 of the main paper.

B.2 Results on VQA v1

We report in Table B.2 the results of our analysis on the VQA v1 dataset. We observe similar results as in Discussed in Section 6.5.1, for training Selector, we follow a staged procedure (Whitehead et al. 2022b): The VQA model is first trained until convergence on the VQA task. Then, the weights are frozen, Selector is added to the model, and Selector is learned on top of the frozen model.

Since we are able to train OFA and Selector on the same data, a natural comparison to make is between the staged training procedure we use and joint training (i.e., simultaneously optimizing the VQA model and Selector), similar to [START_REF] Geifman | Selectivenet: A deep neural network with an integrated reject option[END_REF]. We experiment with joint training by summing their losses. We perform this on OFA-Base, training both OFA-Base and Selector with the full A+B data. We also experiment with first joint training OFA-Base and Selector until OFA-Base has converged for the VQA task, freezing OFA-Base, and continuing to fine-tune Selector on A+B.

The results in Table C.1 illustrate that joint training decreases the overall performance of the Selector. All metrics yield worse performance with joint training alone, though the gap shrinks when freezing the VQA model and continuing to fine-tune Selector. This is even though the overall VQA accuracy remains roughly the same with or without joint training. We conjecture that the reason for this may be that joint training creates a somewhat non-stationary optimization problem for Selector. Specifically, the VQA model's representations and VQA accuracy are changing throughout training. This means that the statistics of the inputs and training targets for Selector (see Section 6.5.1) are changing, which may make optimizing Selector more difficult. Other techniques may be needed in order to properly optimize the VQA model and Selector together. To compute those metrics, we use the representations from the encoder of OFA. We average the output question tokens q i and the image tokens v i , which respectively yield q and v. We compute OOD detection features for each representation with respect to the training data. The computed features are as follows:

kNN [START_REF] Sun | Out-of-distribution Detection with Deep Nearest Neighbors[END_REF]). Given an input example, we compute the cosine distance to the k nearest neighbors in the training data. This distance is used as an OOD score: higher scores signify more "in-distribution" examples, while lower scores signify "out-of-distribution". We use the efficient vector-search library FAISS (Jeff [START_REF] Johnson | Billion-scale similarity search with GPUs[END_REF] to compute the distances and identify the k closest points. We experimented with various numbers of neighbors from 1 to 1000 and found no significant improvements for any value. We also experimented with using the distance to correct and incorrect neighbors, to align the distances to our task of selective prediction. (Sehwag et al. 2021). SSD is a parametric OOD-detection method that first builds k clusters in feature space and then fits a multivariate normal distribution for each of the k ensembles of features. For a new example, the Mahalanobis distance (K. [START_REF] Lee | A simple unified framework for detecting out-of-distribution samples and adversarial attacks[END_REF] to this normal distribution is used as an OOD score. Note that for a classification task, the labels might be used as clusters, but we prefer to use a cluster-based algorithm, as the VQA answers do not represent a coherent ensemble of image or question concepts. We experimented with various numbers of clusters in the range of [1, 1000], and saw no improvements.

SSD

Results For these OOD detection features, we give them as additional inputs to the Selector to provide a signal for whether a given example is ID or OOD. We find that these features do not bring significant improvements to our evaluation metrics (Table C.2).

Acc.

C@1% C@5% C@10% AUC 

C.3 Augmenting Selector training with known OOD data

As discussed in Section 6.3.3, we also try training Selector on the B set, along with some known OOD datasets similar to [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF]. This may help learn to discard hard examples which are very far from its training distribution. For this experiment, we use the training sets of OK-VQA [START_REF] Marino | Ok-vqa: A visual question answering benchmark requiring external knowledge[END_REF], which has the same image distribution but a different question distribution, and of VizWiz [START_REF] Gurari | Vizwiz grand challenge: Answering visual questions from blind people[END_REF], which has both image and question distribution shifts compared to VQA v2. We see in Table C.3 that this method is not very successful at improving reliability in our adversarial evaluation setting. Contrary to the findings of [START_REF] Kamath | Selective Question Answering under Domain Shift[END_REF] for text-only question answering, on our Selective VQA task, adding this known OOD data during training decreases the performance of our selector on unknown OOD data at test time. Overall, it appears that more traditional approaches for handling OOD examples may have difficulty generalizing to this multimodal setting.

C.4 Additional OOD experiments

In this section, we share additional results on other mixtures of ID + out-ofdistribution (OOD) AdVQA data. 

L I S T O F F I G U R E S

Chapter 1: introduction Matching simple patterns from the training set can be enough to answer a large number of counting questions and obtain high accuracy on the testing set. For instance, when the words "are" and "wearing" appear in the question while a head of a cat appears in the image (183 times in the training set), the answer is always "0" in the training and testing sets. In the real world, biased models that rely on such a pattern would fail to provide the correct answer. . . 58 Accuracy per count labels of our model and RCN on TallyQA-Odd-Even. Our model reaches higher accuracies on even labels (in yellow). These count labels are meant to penalize models that over-rely on biases. . . . . . . . . . . . . . . . . 72 Figure 4.6 Comparison between our model, RCN and its regression variant on various versions of TallyQA using our Odd-Even-p% and Even-Odd-p% datasets. p% controls the shift in distributions between the training and testing sets (with the original distribution when p = 0). Models that over-rely on biases (e.g. original RCN) are strongly penalized when p% is high (yellow gradient). . . . . . . . . . . . . . . . . . 73 With LYP, the model is able to abstain from answering to avoid outputting the incorrect answer, whereas the existing model is overconfident and outputs the answer anyways. . Figure 6 Qualitative examples on AdVQA: on those examples, the baseline model abstains but had predicted the correct answer. OFA-L + LYP does not abstain. . . . . . . . . . . . . . Figure 6.9 

  Figure 1.1. -Example of a VQA task from the VizWiz datasets: visually impaired users ask questions about images taken with their smartphone.
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 2 Figure 2.1. -A typical convolutional neural network architecture. It is composed of multiple convolution layers, that match local patterns, pooling layers that reduce the spatial dimension of the feature maps, and fully connected layers at the end, to return a classification output. Image from https://en.wikipedia.org/wiki/Convolutional_ neural_network
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 2 Figure 2.2. -The Transformer architecture from Vaswani et al. 2017. It is composed of multiple Attention and Feed Forward (MLP) layers.
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 2 Figure 2.3. -Images and their associated questions from the VQA v1 dataset (Antol et al. 2015a). The questions and images cover a very large variety of objects and topics.

Figure 2 . 4 .

 24 Figure 2.4. -An image from the CLEVR dataset. One of the associated questions is "Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?". Image and question from Justin Johnson et al. 2017b.

Figure 2

 2 Figure 2.5. -An image from the GQA dataset. One of the associated questions is "Q: Is there any fruit to the left of the tray the cup is on top of? A: yes?". Image and question from Drew A Hudson and Manning 2019.

Figure 2 . 6 .

 26 Figure 2.6. -An image from the VizWiz dataset. One of the associated questions is "Q: If there is any text on the screen, what does it say? A: os x utilities". Image and question from Gurari et al. 2018.

Figure 2

 2 Figure 2.7. -LSTM + CNN: architecture proposed by Antol et al. 2015a to solve the VQA task. It is composed of a pre-trained VGG (Simonyan and Zisserman 2015)CNN to process the image, and an LSTM to process the question. The two resulting embeddings are merged with a pointwise multiplication, then projected to the answer space using a linear layer.

Figure 2

 2 Figure 2.8. -Architecture of MUTAN, by Ben-Younes et al. 2017a. It is similar to the LSTM + CNN architecture, but the fusion operation is a bilinear fusion, with a factorization that allows to drastically reduce the number of parameters, from billions to a few millions.

  .9 the architecture of Neural Module Networks (Andreas et al. 2016).

Figure 2

 2 Figure 2.9. -Architecture of Neural Module Network, by Andreas et al. 2016. It is composed of a parser module, which creates from the question a layout of computation modules to apply to the image representation to answer the question.

Figure 2 .

 2 Figure 2.10. -Grid-like features versus Object Detection features. Illustration from Anderson et al. 2018a.

Figure 2 .

 2 Figure 2.11. -Architecture of MCAN, by Yu et al. 2019. After the image and text embeddings using an LSTM and a Faster R-CNN, a series transformer block with cross-attention is used to merge the image and question representations.

Figure 2 .

 2 Figure 2.12. -Architecture and pre-training tasks of OFA (P. Wang et al. 2022) It is an encoder-decoder transformer model with a unified vocabulary for images, text and bounding box locations.

Figure 2 .

 2 Figure 2.13. -Progress over the years for the VQA v2 dataset test-std split. Scores are from the VQA v2 Leaderboard. Only single models are reported (no ensemble).

Figure 2 .

 2 Figure 2.14. -Shortcut learning: the model learns to exploit the correlation between the texture and the class of the object. From Geirhos et al. 2020 .

Figure 2 .

 2 Figure 2.15. -A Standard ResNet-50 trained on ImageNet. The model is biased towards the texture of an object and classifies the last example as an elephant instead of a cat. From Geirhos et al. 2019.

Figure 2 .

 2 Figure 2.16. -Explanation of a model's prediction using LIME for the task "Wolf vs Husky". The model uses the background to predict the class, as wolves appear usually in the snow, while huskies are usually in the grass. Here, a husky appears in the snow, and the model incorrectly predicts it as a wolf. From Ribeiro et al. 2016.

Figure 2 .

 2 Figure 2.17. -Colored-MNIST dataset. The color of the digit is correlated with its label, but the correlation is reversed from the training set to the testing set. Image from B. Kim et al. 2019.

Figure 2 .

 2 Figure 2.18. -Pair of examples from the VQA v2 dataset. Each question is associated with two images with different answers. Image from Goyal et al. 2017a.

Figure 2 .

 2 Figure 2.19. -Comparison of the distributions of answers between VQA v1 and VQA v2. Illustration from (Goyal et al. 2017a).

Figure 2 .

 2 Figure 2.20. -The GVQA architecture from A. Agrawal et al. 2018a. Two models are learned separately: the first one extracts visual concepts from the answer and creates a list of possible answers. The second one extracts categories of answers from the question. The two predictions are then merged to produce the final answer.

Figure 2 .

 2 Figure 2.21. -The Q-Adv + DoE adversarial strategy. An Adversarial loss is added that prevents predicting the answer using only the question encoder. Additionally, a Difference of Entropy loss encourages the predictions from the question-only model and the main model to have a different distribution. Image from Ramakrishnan et al. 2018.

Figure 2 .

 2 Figure 2.22. -The VQA-CP v2 dataset training and testing distribution, per question type. Image from A. Agrawal et al. 2018a.

Figure 2 .

 2 Figure 2.23. -The VQA-CP dataset results for existing VQA models at the time of its release. From A. Agrawal et al. 2018b.

Figure 2 .

 2 Figure 2.24. -Example from the VQA-Hat dataset. Humans do not focus on the same region of the image depending on the question being asked. We can compare the attention maps of the VQA models to those of human attention. Image from Das et al. 2017a.

Figure 2 .

 2 Figure 2.25. -Contributions of this thesis. Our contributions are in blue boxes.Grey boxes are prior works.

Figure 3

 3 Figure 3.1. -As depicted, current VQA models often rely on unwanted statistical correlations between the question and the answer instead of using both modalities. We aims at reducing the amount of unimodal biases learned by a VQA model during training.

Figure 3

 3 Figure 3.2. -Visual comparison between the classical learning strategy of a VQA model and our RUBi learning strategy. The red highlighted modules are removed at the end of the training. The output âi is used as the final prediction.

  Figure 3.3. -Detailed illustration of the RUBi impact on the learning. In the first row, we illustrate how RUBi reduces the loss for examples that can be correctly answered without looking at the image. In the second row, we illustrate how RUBi increases the loss for examples that cannot be answered without using both modalities.

Figure 3 . 4 .

 34 Figure 3.4. -Visual comparison between RUBi and Q-Adv+DoE (Ramakrishnan et al. 2018).

Figure 3

 3 Figure 3.5. -Examples of better grounding ability on VQA-HAT implied by RUBi.From the left column to the right: image-question-answer triplet, human attention map from[START_REF] Das | Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?[END_REF], attention map from our baseline, attention map from our baseline trained with RUBi.

Figure 3 . 6 .

 36 Figure 3.6. -Examples of failure to improve grounding ability on VQA-HAT.From the left column to the right: image-question-answer triplet, human attention map from[START_REF] Das | Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?[END_REF], attention map from our baseline, attention map from our baseline trained with RUBi.

Figure 3

 3 Figure 3.7. -Qualitative comparison between the outputs of RUBi and our baseline on VQA-CP v2 test. On the left, we display distributions of answers for the train set, the baseline evaluated on the test set, RUBi on the test set and the ground truth answers from the test set. For each row, we filter questions in a certain way. In the first row, we keep the questions that exactly match the string is this person skiing. In the three other rows, we filter questions that respectively include the following words: what color bananas, what color fire hydrant and what color star hydrant. On the right, we display examples that contain the pattern from the left. For each example, we display the answer of our baseline and RUBi, as well as the best scoring region from their attention map.

Figure 4 .

 4 Figure 4.1. -Matching simple patterns from the training set can be enough to an-swer a large number of counting questions and obtain high accuracy on the testing set. For instance, when the words "are" and "wearing" appear in the question while a head of a cat appears in the image (183 times in the training set), the answer is always "0" in the training and testing sets. In the real world, biased models that rely on such a pattern would fail to provide the correct answer.

Figure 4 .

 4 Figure 4.2. -Shift in the distribution of samples between the training and testing sets for the 5 most common objects in our TallyQA-CP dataset. Models that over-rely on question biases are penalized when evaluated on the testing set.

Figure 4 .

 4 Figure 4.3. -Shift in number of samples between the training and testing sets of the original TallyQA dataset and our TallyQA-Odd-Even dataset.Models that over-rely on any kind of data biases are penalized when evaluated on the even count labels (in yellow).

Figure 4 . 4 .

 44 Figure 4.4. -Spatial Counting Network. It takes an image and a counting question as inputs and outputs a count label. Each of the detected objects is processed according to the question and their neighborhood until a counting score is obtained. The score indicates the presence (e.g. ≈1) or absence (e.g. ≈0) of a corresponding instance. The final count prediction is produced by summing up all scores.

Figure 4 .

 4 Figure 4.5. -Accuracy per count labels of our model and RCN on TallyQA-Odd-Even. Our model reaches higher accuracies on even labels (in yellow).These count labels are meant to penalize models that over-rely on biases.
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 46 Figure4.6. -Comparison between our model, RCN and its regression variant on various versions of TallyQA using our Odd-Even-p% and Even-Odd-p% datasets. p% controls the shift in distributions between the training and testing sets (with the original distribution when p = 0). Models that over-rely on biases (e.g. original RCN) are strongly penalized when p% is high (yellow gradient).

  Similarly to object detection models, our model can output bounding box predictions. Therefore, we use the Average Precision (AP), a standard metric in object detection tasks[START_REF] Everingham | The pascal visual object classes challenge: A retrospective[END_REF]; T.-Y.Lin et al. 2014b). It allows us to evaluate the ability of our model to detect the correct instances of objects to count in the image. We use the AP@.50 metric, also used in the COCO (T.-Y.Lin et al. 2014b) and PASCAL-VOC[START_REF] Everingham | The pascal visual object classes challenge: A retrospective[END_REF] challenges.

Figure 4 .

 4 Figure 4.7. -Qualitative comparison of bounding box scores for our SCN with and without entropy regularization. Both models are correct, but our model with entropy regularization selects the correct regions.

Figure 4 .

 4 Figure 4.8. -Qualitative comparison between our model with and without entropy regularization. Red bounding boxes are shown with bolded borders when their associated c i is close to 1.

Figure 4 .

 4 Figure 4.9. -Regions selected by our SCN model for two complex questions on the same image. SCN answers are respectively 1 and 0.

Figure 5

 5 Figure 5.1. -Overview of this work. We first mine simple predictive rules in the training data such as what + sport + racket V → tennis. We then search for counterexamples in the validation set that identify some rules as undesirable statistical shortcuts. Finally, we use the counterexamples as a new challenging test set and evaluate existing VQA models like UpDown (Anderson et al. 2018a) and VilBERT (J. Lu et al. 2019).

  2020; Teney et al. 2020b) for a better evaluation of the use of shortcuts. The closest work to ours is the GQA-OOD (Kervadec et al. 2021) dataset: they extract from the GQA (Drew A Hudson and Manning 2019) validation and testing set example with rare answers, conditioned on the type of question. It enables the evaluation of models without retraining on a separate training set.

Figure 5

 5 Figure 5.2. -Pipeline of the proposed method to detect potential shortcuts in a VQA training set. We detect and label objects in images with a Faster R-CNN model. We then summarize each VQA example with binary indicators representing words in the question, answer, and labels of detected objects. Finally, a rule mining algorithm identifies frequent co-occurrences and extracts a set of simple predictive rules.

Figure 5

 5 Figure 5.3. -Examples of shortcuts found in the VQA v2 dataset. The confidence is the accuracy obtained by applying the shortcut on all examples matching by its antecedent. The support is the number of matching examples. More supporting examples and counterexamples are shown in Figure 5.6.

. 4 ,Figure 5 . 4 .

 454 Figure 5.4. -Multiple shortcuts can often be exploited to find the correct answer in any given example. The confidence is the percentage of accurate answers among examples that are matched by the shortcut antecedent. The shortcut of highest confidence (in green) is multimodal for 92% of examples.

Figure 5

 5 Figure 5.5. -Histogram of shortcuts binned per confidence on the VQA v2 training and validation sets. Our shortcuts are detected on the training set and selected to have a confidence above 30%. Even though their confidence could be expected to be lower on the validation set, it still is above 30% for a large number of them, indicating that the selection transfers well to the validation set.

Figure 5 . 6 .

 56 Figure 5.6. -Shortcuts that are highly correlated with VQA models' predictions. We display their antecedent made of words from the question and objects V from the image, and their answer. Their support, i.e. number of examples matched by the antecedent, and confidence, i.e. percentage of correct answers among them, have been calculated on the VQA v2 training and validation sets. We report the correlation coefficients of their predictions with those of three VQA models: Up-Down [3] which uses an object detector, VilBERT [31] that has been pre-trained on a large dataset, and Q-only [21] that only uses the question. We also display some supporting examples, in blue, and counterexamples, in orange.

  In Figure5.8, we display the distribution of examples per question type, and their split between the Easy and the Counterexamples split. We show that examples of a question type that can be answered by yes or no, such as is, are, does, do, mostly belong to the Easy subset. Examples of a question-type beginning by what, where or why mostly belong to the Counterexamples subset. These examples need to be answered using a richer vocabulary than yes or no. Examples of a question-type beginning by how belong to both subsets.

Figure 5

 5 Figure 5.7. -Number of examples per answer (30 most frequent ones) in the complete validation set, our Counterexamples subset, and our Easy subset. Answers highlighted in blue and orange are the top 5 answers for the Easy and Counterexamples subsets respectively.

Figure 5

 5 Figure 5.8. -Distribution of the number of examples per question type. Examples associated with our Counterexamples subset are matched by some shortcuts, but no shortcut leads to the correct answer. Examples associated with our Easy subset are matched by at least one shortcut that leads to the correct answer.

Figure 5

 5 Figure 5.9. -Number of examples per answer type. "All" corresponds to all the examples from the VQA v2 validation set. Among them, examples associated with our "Counterexamples" subset are matched by some shortcuts, but none of these shortcuts leads to the correct answer. Inversely, examples associated with our Easy subset are matched by at least one shortcut that leads to the correct answer.

Figure 5 .

 5 Figure 5.10. -Representative instances of image-question-answer examples that are not matched by any of our shortcuts. These examples have unusual questions, images or answers.

Figure 6

 6 Figure 6.1. -VQA Models are able to answer straightforward ID questions, as in the top example where a state-of-the-art model (P. Wang et al. 2022) with and without our Learning from Your Peers (LYP) approach answers correctly. However, difficult OOD examples can arise, like the bottom example. With LYP, the model is able to abstain from answering to avoid outputting the incorrect answer, whereas the existing model is overconfident and outputs the answer anyways.

Figure 6 .

 6 Figure 6.2. -Diagram of the data collection process for AdVQA. First, writers are asked to create questions that will fool a VQA model. Validators then double-check if the model was fooled. Finally, answerers provide ground-truth answers. Image from Sheng et al. 2021.

LegendFigure 6

 6 Figure 6.3. -Comparison between Selector g training procedures. (a) shows the one in Whitehead et al. 2022b, (c) shows our LYP. See Section 6.4 for details.

  to predict the answers. The encoder produces multimodal representations of the image tokens {v i } | Ṽ | i=1 and question tokens {q j } | Q| j=1 . The encoded tokens are used as input to cross-attention layers in the transformer decoder at each decoding step. The decoder generates output token representations {o l } L
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 64 Figure 6.4. -AUC for various mixtures of VQA v2 + AdVQA. Note: lower is better for AUC

Figure 6

 6 Figure 6.5. -C@5% and Φ 100 for various mixtures of VQA v2 + AdVQA. OFA-L stands for Large, OFA-B for Base. All models with Selector.

Figure 6 . 6 .

 66 Figure 6.6. -Risk at various percentages of OOD when the threshold is optimized on the validation set for maximum coverage, with a target risk level of 1%.
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 666 Figure 6.7. -Qualitative examples for OFA-Large on AdVQA: on those examples, the baseline (MaxProb) answers incorrectly the answer, and our model with LYP abstains.

  Teney et al. 2020a explores a third axis of shortcut learning: the data itself. They propose to create counterfactual examples, i.e. "minimally different" examples that are very close to a training example, but with a different answer: more specifically, they modify the image to make the question unanswerable, and force the model to output no answer. This forces the model to learn to use the image modality, and not rely only on the question, thus learning the causal relationship of the task. L. Chen et al. 2020 also proposes to use synthetic counterfactual examples as additional training data, by changing the colors of objects, or removing them using image inpainting, to change the ground truth answer.
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 14 Figure 2.14 Shortcut learning: the model learns to exploit the correlation between the texture and the class of the object. From Geirhos et al. 2020 . . . . . . . . . . . . . . . . . . . . . . . .
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 2 Figure 2.15 A Standard ResNet-50 trained on ImageNet. The model is biased towards the texture of an object and classifies the last example as an elephant instead of a cat. From Geirhos et al. 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 1631 Figure 2.16Explanation of a model's prediction using LIME for the task "Wolf vs Husky". The model uses the background to predict the class, as wolves appear usually in the snow, while huskies are usually in the grass. Here, a husky appears in the snow, and the model incorrectly predicts it as a wolf. From Ribeiro et al. 2016. . . . . . . . . . . . . . . . . 24 Figure 2.17 Colored-MNIST dataset. The color of the digit is correlated with its label, but the correlation is reversed from the training set to the testing set. Image from B. Kim et al. 2019. . . 25 Figure 2.18 Pair of examples from the VQA v2 dataset. Each question is associated with two images with different answers. Image from Goyal et al. 2017a. . . . . . . . . . . . . . . . . . . . . . 27 Figure 2.19 Comparison of the distributions of answers between VQA v1 and VQA v2. Illustration from (Goyal et al. 2017a). . . . 28 Figure 2.20 The GVQA architecture from A. Agrawal et al. 2018a. Two models are learned separately: the first one extracts visual concepts from the answer and creates a list of possible answers. The second one extracts categories of answers from the question. The two predictions are then merged to produce the final answer. . . . . . . . . . . . . . . . . . . . . . . 29 Figure 2.21 The Q-Adv + DoE adversarial strategy. An Adversarial loss is added that prevents predicting the answer using only the question encoder. Additionally, a Difference of Entropy loss encourages the predictions from the question-only model and the main model to have a different distribution. Image from Ramakrishnan et al. 2018. . . . . . . . . . . . . . . . . 30 Figure 2.22 The VQA-CP v2 dataset training and testing distribution, per question type. Image from A. Agrawal et al. 2018a. . . 31 Figure 2.23 The VQA-CP dataset results for existing VQA models at the time of its release. From A. Agrawal et al. 2018b. . . . . 32 Figure 2.24 Example from the VQA-Hat dataset. Humans do not focus on the same region of the image depending on the question being asked. We can compare the attention maps of the VQA models to those of human attention. Image from Das et al. 2017a. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 2.25 Contributions of this thesis. Our contributions are in blue boxes. Grey boxes are prior works. . . . . . . . . . . . . . . 34C h a p t e r 3: a l e a r n i n g s t r at e g y t o r e du c e u n imodal biases in vqa

Figure 4 . 2
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 47 Qualitative comparison of bounding box scores for our SCN with and without entropy regularization. Both models are correct, but our model with entropy regularization selects the correct regions. . . . . . . . . . . . . . . . . . . . 75
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: Training data, architectural priors and learning strategies.

  Acting on training data to reduce biases VQA v2 dataset A first approach that tackles those issues is to change the inductive biases contained in the training data. The VQA v2 dataset

	2.4.1 Methods to reduce biases in Visual Question Answering
	2.4.1.1

Table 3

 3 

.1. -Results on VQA-CP v2 test. All reported models use the same features from

[START_REF] Anderson | Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering[END_REF]

. Models with * have been trained by

[START_REF] Ramakrishnan | Overcoming language priors in visual question answering with adversarial regularization[END_REF]
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Table 3

 3 Table 3.3. -Overall accuracy of the RUBi learning strategy on VQA v2 val and test-dev splits. .

	Model	Overall Yes/No Number Other
	SAN (Yang et al. 2016)	24.96	38.35	11.14	21.74
	SAN + Q-Adv+DoE	33.29	56.65	15.22	26.02
	SAN + RUBi	37.63	59.49	13.71	32.74
	UpDn (Anderson et al. 2018b) 39.74	42.27	11.93	46.05
	UpDn + Q-Adv+DoE	41.17	65.49	15.48	35.48
	UpDn + RUBi	44.23	67.05	17.48	39.61

4 with SAN + RUBi over SAN + Q-Adv + DoE, and +3.06 with UpDn + RUBi over UpDn + Q-Adv + DoE. .2. -Overall accuracy top1 on VQA-CP v2 for the SAN and UpDn architectures. Results on VQA-CP v1 In Table 3.4, we report results on the VQA-CP v1 dataset (A. Agrawal et al. 2018b). Our RUBi approach consistently leads to significant gains over the classical learning strategy with a gain of +9.8 overall accuracy point with our baseline architecture, +19.2 with SAN and +7.66 with UpDn. Additionally, RUBi leads to a gain of +2.65 over the adversarial regularization method (Q-Adv + DoE) from (Ramakrishnan et al. 2018) with SAN. A visual comparison between RUBi and (Ramakrishnan et al. 2018) can be found in Figure 3.4. Finally, all three architectures trained with RUBi reach a higher accuracy than GVQA (A. Agrawal et al. 2018b) which has been hand-designed to overcome biases. Impact on VQA v2 We report the impact of our method on the standard VQA v2 dataset in Table 3.3. VQA v2 train, val and test sets follow the same distribution,

Table 3 .

 3 

4. -Overall accuracy top1 on VQA-CP v1. SAN+Q-Adv+DoE (Ramakrishnan et al. 2018)

Table 3

 3 .89 for our Baseline architecture, +0.22 for SAN, +4.76 for UpDn.

	Model	L QO Overall Yes/No Number Other
	Baseline + RUBi	✓ ✗	47.11 46.11	68.65 69.18	20.28 26.85	43.18 39.31
	SAN + RUBi	✓ ✗	37.63 36.96	59.49 59.78	13.71 12.55	32.74 31.69
	UpDn + RUBi	✓ ✗	44.23 39.47	67.05 60.27	17.48 16.01	39.61 35.01

.5. -Ablation study of the question-only loss L QO on VQA-CP v2.

  Table 3.6. -Correlation with Human Attention Maps on VQA-HAT val set (Das

	al. 2016)		0.000
	Human (Das et al. 2016)		0.623
	Baseline	✗ ✓	0.431 0.443
	SAN	✗ ✓	0.191 0.210
	UpDn	✗ ✓	0.449 0.446

  Zisserman 2010; Arteta et al. 2016; Onoro-Rubio and López-Sastre 2016; Marsden et al. 2018; Babu Sam et al. 2017; Sindagi and Patel 2018; Chattopadhyay et al. 2017) leveraging annotations such as segmentation maps (Cholakkal et al. 2019), bounding boxes (J. Liu et al. 2018) or localized dots (Lempitsky and Zisserman 2010; Y.

Table 4 .

 4 .2, we display the number of triplets in each set for the TallyQA-CP dataset.Shift in the distribution of questions and visual concepts We compute the distributions of words from the questions and visual concepts in the images in

		Training set	Validation set	Testing set
	p%	Odd	Even	Odd Even	Odd	Even
	0 % 87,289 137,102 9,635 15,292 23,138 15,451
	50 % 87,289 68,549 9,635 7,644 11,565 15,451
	90 % 87,289 13,707 9,635 1,525	2,328 15,451
	100% 87,289	0	9,635	0	0	15,451

1. -Number of image-question-count triplets for each set generated by our Odd-Even-p% strategy when applied on the TallyQA dataset (Odd-Even-0% leads to the the original TallyQA distribution, Odd-Even-90% leads our TallyQA-Odd-Even dataset, mainly used in this study). Numbers of triplets for intermediate values of p can be obtained with linear interpolation. various TallyQA-Odd-Even-p% training sets and compare them to the original distributions of TallyQA. To compute the word distribution, we proceed as follows. We first remove the common words how, many, can, you, scene, picture, pictured,

Table 4 .

 4 2. -Number of triplets for our TallyQA-CP dataset.

Table 4 .

 4 .4, we see that all similarity measurements are close to 1 which confirms that our protocol leads to a small shift in the distribution of words and visual concepts from TallyQA original distribution.

	p% Words Similarity Visual similarity
	0 %	1.0	1.0
	50 %	0.997	0.9999
	90 %	0.986	0.9996
	100 %	0.976	0.9995
	Words Similarity Visual similarity
		0.962	1.00

3. -Bhattacharyya coefficients

[START_REF] Bhattacharyya | On a measure of divergence between two multinomial populations[END_REF]

. Words and visual concepts similarity between each of our generated training sets using our Odd-Even-p% strategy and the original TallyQA training set.

Table 4 . 4
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. -Bhattacharyya coefficients

[START_REF] Bhattacharyya | On a measure of divergence between two multinomial populations[END_REF]

. Words and visual concepts similarity between the training and the testing sets of our TallyQA-CP dataset. The shift in distribution is very small.

  4.3.3 Evaluating counting models against our benchmarksExperimental setup We compare state-of-the-art counting models and strong baselines on our proposed datasets. We do not evaluate the best Transformerbased VQA models (J.[START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF][START_REF] Tan | Lxmert: Learning cross-modality encoder representations from transformers[END_REF] since they have been pre-trained on images and questions included in our testing sets. Also, we do not compare against counting models that are not designed to take the question as input(Chattopadhyay et al. 2017;[START_REF] Sindagi | A survey of recent advances in cnn-based single image crowd counting and density estimation[END_REF]. The current state-ofthe-art on TallyQA is RCN (M.[START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]), a classification model based on relation networks[START_REF] Santoro | A simple neural network module for relational reasoning[END_REF]. Our Random D train and D test baselines are random classifiers that follow respectively the training and the testing set answer distributions. We also test bias-reduction baselines: a uniform sampling of answers during training (RCN with Sampling), and our Reducing Unimodal Biases (RUBi) strategy described in Chapter 3, that reduces question-related biases. Models that over-rely on biases are expected to perform well on the validation sets since they follow the training set distribution but suffer from a large loss in accuracy on the testing sets.

		TallyQA-CP	TallyQA-Odd-Even	TallyQA
		Testing set Validation set	Testing set Validation set	Testing Set
		Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE
	Random D train	19.53 2.84 22.13 2.77	10.26 2.81 32.35 2.89	-	-
	Random D test	20.40 2.89 19.78 2.81	30.68 2.61 10.21 2.75	-	-
	Q-Only	0.63 2.23 66.12 1.86	16.92 1.91 54.46 2.07	42.38 1.74
	I-Only	21.55 2.24 41.99 2.08	9.80 2.06 54.20 2.06	38.14 1.70
	Q+I	1.68 1.97 73.23 1.49	20.86 1.80 62.35 1.69	52.32 1.49
	MUTAN	1.91 1.96 74.08 1.42	24.99 1.67 67.12 1.51	53.51 1.54
	Counter	0.64 2.08 71.34 1.66	19.89 1.83 59.98 1.86	62.58 1.34
	RCN	2.00 1.76 77.66 1.30	28.40 1.61 70.06 1.34	65.49 1.26
	RCN w/ Sampling 5.58 1.82 76.34 1.37	27.10 1.63 65.44 1.44	53.78 1.58
	RCN + RUBi	31.04 1.56 68.11 1.22	25.35 1.71 68.28 1.48	59.83 1.35

Table 4 .

 4 5. -Benchmark of question-based visual counting models on our TallyQA-CP and TallyQA-Odd-Even datasets. We report the accuracy and the RMSE scores on the testing and validation sets. RCN + Sampling stands for RCN with a uniform sampling strategy. We also report scores on the original TallyQA (M.[START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]. Models are: Q-Only, I-Only, Q+I (M.[START_REF] Acharya | TallyQA: Answering complex counting questions[END_REF]), MUTAN (Ben-Younes et al. 2017a), Counter (Y.[START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF], RCN (M.Acharya et al. 

2019), RUBi (Chapter 3).

Table 4 .

 4 

		Testing set	Validation set	Testing set	Validation set	
		Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE #Param
	Random D train	19.53	2.84	22.13	2.77	10.26	2.81	32.35	2.89	-
	Random D test	20.40	2.89	19.78	2.81	30.68	2.61	10.21	2.75	-
	RCN	2.00	1.76	77.66	1.30	28.4	1.61	70.06	1.34	47 M
	RCN with L MSE 14.99	1.60	71.92	1.16	31.44	1.51	63.02	1.26	47 M
	SCN (ours)	34.79	1.46	63.81	1.14	40.87	1.50	54.04	1.29	52 M
	SCN w/o L H	26.88	1.47	66.56	1.11	39.54	1.48	55.62	1.26	52 M

6. 

-Results on TallyQA-CP and TallyQA-Odd-Even. We report the accuracy and the RMSE scores. SCN without L H stands for SCN without entropy regularization.

Table 4 .

 4 

	Testing set	Validation set
	Acc. RMSE Acc. RMSE

7. -Results on a more balanced TallyQA-CP dataset where 10% of examples have been moved between the training and testing sets.

Table 4 .

 4 8. -Grounding ability of models trained on original TallyQA dataset. AP@.50 on COCO-Grounding is a classic metric for object detection. Low AP@.50 values are expected because these models were not trained using the bounding boxes class annotations. Counter* (Y.[START_REF] Zhang | Learning to count objects in natural images for visual question answering[END_REF] was retrained by us.

	chapte r 4		
		COCO-Grounding	TallyQA
		AP@.50	Acc. RMSE
	SCN (ours)	10.90	55.54 1.25
	SCN without L H	7.63	57.07 1.24
	SCN without Self-att.	9.10	54.38 1.39
	Counter* (Y. Zhang et al. 2018)	6.44	60.58 1.37
	Counter (Y. Zhang et al. 2018)	-	62.58 1.34
	RCN (M. Acharya et al. 2019)	not evaluable	64.41 1.28

the bounding boxes of the objects to be counted. Our dataset is composed of the 4459 images from MSCOCO (T.-Y.

Lin et al. 2014b

) that can not be found in Visual Genome

(Krishna et al. 2017b

) and importantly not in the TallyQA training set. Each MSCOCO image is annotated with bounding boxes around objects associated with a category among 80 classes of objects.

  On the contrary, we build the non-overlapping Easy subset. It is made of 147,681 examples of which at least one shortcut provides the correct answer. On this subset, VQA models that exploit shortcuts can reach high accuracy. Finally, 3,375 examples are not matched by any shortcut's antecedent. Since these examples do not belong to any of our two subsets, we do not consider them in our analysis. As we show later in Section 5.4.2, they have unusual questions and images.

Table 5

 5 

.2. -Results of our VQA-CE evaluation protocol. We report accuracies on VQA v2 full validation set and on our two subsets: Counterexamples and Easy examples. We re-implemented all models and bias-reduction methods. † VilBERT is pre-trained on Conceptual Caption and finetuned on VQA v2 training set. Scores in (green) and (red) are relative to UpDown. We also report accuracies on VQA-CP v2 (A.

Agrawal et al. 2018a

) which focus on question biases and come with a different training set and testing set. VilBERT was not evaluated for VQA-CP as it was pre-trained on balanced datasets. We evaluate SAN

[START_REF] Yang | Stacked attention networks for image question answering[END_REF]

, UpDown (Anderson et al. 2018a), BLOCK (Ben-Younes et al. 2019b), VilBERT (J. Lu et al. 2019), RUBi (Cadene et al. 2019c), LMH + RMFE (Gat et al. 2020), ESR (Shrestha et al. 2020), LMH (C. Clark et al. 2019), LFF (Nam et al. 2020), LMH+CSS (L. Chen et al. 2020), RandImg

[START_REF] Teney | On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law[END_REF] 

  the overall accuracy. As reported in[START_REF] Teney | On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law[END_REF], most of those methods rely on knowledge about the VQA-CP testing distribution (inversion of the answer distribution conditioned on the question), which no longer applies in our VQA v2 evaluation setting. Finally, we found two methods, Learning From Failure (LfF)(Nam et al. 2020) and RandImg[START_REF] Teney | On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law[END_REF]) that slightly improve the accuracy on the Counterexamples subset with gains of +0.36 and +0.50, while having a very small impact on the overall accuracy, even reaching small gains in the best case of LfF. It should be noted that LfF is more general than others since it was not designed for the VQA-CP context. Overall, all effects are much smaller compared to their effectiveness on VQA-CP. This suggests that those bias-reduction methods might exploit the distribution shift between VQA-CP training and evaluation splits. They are efficient in this setting but do not work as well to reduce naturally-occurring shortcuts in VQA.Additional Experiments We share additional experiments in Appendix C. We explore two variants of our evaluation benchmark: First, in Section B.1, we show results using the ground-truth visual labels instead of the detected objects. Second, in Section B.2, we share results on the VQA v1 dataset. Both experiments show similar results as the ones presented in this Chapter.

, and ESR

[START_REF] Shrestha | A negative case analysis of visual grounding methods for VQA[END_REF]

) have a negative effect on all subsets. Some methods such as LMH (C.

[START_REF] Clark | Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases[END_REF] 

and LMH+CSS (L.

[START_REF] Chen | Counterfactual samples synthesizing for robust visual question answering[END_REF]

) slightly improve the accuracy on counterexamples but strongly decrease the accuracy on the Easy subset, and consequently decrease

Table 6 .

 6 1. -Hyperparameters for Selector Training on top of OFA6.5.2 Dataset SplitsData. In our experiments, we require both ID and OOD data that have annotations available for evaluation. Therefore, we utilize the splits of the VQA v2 dataset(Goyal et al. 2017c) made available by(Whitehead et al. 2022b) as our ID data. The entire VQA v2 train set (call it split A) is used for training VQA models (f ). Meanwhile, the VQA v2 validation set is split into 3 parts: LYP does not require different sets for training f and g, so we train them both with the combination of A and B (A+B). For OOD data, we use AdVQA[START_REF] Sheng | Human-adversarial visual question answering[END_REF], which is an adversarial dataset constructed by asking human annotators to create questions that are difficult to answer for existing VQA models trained on VQA v2. The images in AdVQA and VQA v2 overlap with each other, so we only use images from AdVQA that appear in our test split. While AdVQA is not OOD in terms of the images, one can still consider this as adversarial, OOD since the questions are designed to fall outside the training distribution of VQA v2. This is similar to other OOD VQA datasets like VQA-CP (A.Agrawal et al. 2018a), VQA-CE(Dancette et al. 2021b), or other VQA generalization benchmarks (A.[START_REF] Agrawal | Rethinking Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization[END_REF][START_REF] Whitehead | Separating skills and concepts for novel visual question answering[END_REF].In-Distribution Splits We followWhitehead et al. 2022b and use the splits provided in the official implementation. We detail the splits again in Table6.2. No images (or question-answer annotations) are shared between splits.

	OFA-Large

Table 6 .

 6 2. -Size of the splits of VQA v2 fromWhitehead et al. 2022b. Note, the "Usage" is the setting for the full model (A+B). Some models are trained on subsets (e.g., just A) as specified in the corresponding tables.ID/OOD Mixtures We use AdVQA as our source of OOD data. As discussed, AdVQA is an adversarial dataset where human annotators intentionally ask questions that state-of-the-art models trained on VQA v2 answer incorrectly. The images in AdVQA come from T.-Y.Lin et al. 2014c, as do VQA v2. However, we consider this as OOD since the questions are adversarial in nature and contain distribution shifts meant to induce errors for models trained on VQA v2.

Table 6 .

 6 3. -Risk-coverage metrics and effective reliability on ID data (i.e., VQA v2 test split(Whitehead et al. 2022b)). Scores for OFA-Large with Selector are averaged over 3 trials.Lastly, we see that all Selector models improve beyond all MaxProb models on every metric for this ID data, as shown inWhitehead et al. 2022b.LYP helps VQA models and Selector learn from the same data. We observe that training Selector and CLIP-ViL on the same data (A+B) performs poorly, achieving C@R and Φ c similar to its MaxProb counterpart. Conversely, the OFA models and Selector can be trained on the same data and reap the benefits of training on more data. We hypothesize this is due to the overfitting issue: CLIP-ViL has a training accuracy of 87.40% whereas, e.g., OFA-Base has a training accuracy of 82.92% while also having higher accuracy on the test split. However, we see that when using LYP, CLIP-ViL and Selector can be trained on the same data and improve beyond the model ofWhitehead et al. 2022b by, e.g., 2.61% C@1%. Furthermore, although training on the same data can be done for the OFA models and Selector, it does not perform quite as well as when LYP is used. For example, with OFA-Base, training both the VQA model and Selector on A+B has C@1% of 26.64% compared to 24.58% when the VQA model is trained on A and Selector is trained on B. Meanwhile, using LYP with OFA-Base attains 27.71% C@1%. These results suggest that LYP can help ID performance regardless of overfitting on the training data.

	VQA Model f	Selection function g	Acc ↑	C@R in % ↑		AUC ↓	Φ 1 Φ 10 Φ 100
	Name	Training Name	Training Targets		C@1% C@5% C@10%	
		A	MaxProb Selector	-B	-Self	69.98 69.98 15.79 37.79 4.97 33.79	53.62 55.65	10.92 54.67 21.40 10.21 55.44 25.82	1.32 8.74
	CLIP-ViL		MaxProb	-	-	70.72	5.54 34.84	55.04	10.49 55.93 22.81	2.59
		A+B	Selector	A+B	Self	70.72	6.45 34.26	56.07	10.48 56.07 22.99	2.39
			Selector	A+B	LYP	70.72 18.40 38.65	57.40	9.76 56.53 26.45	9.74
		A	MaxProb Selector	-B	-Self	74.87 74.87 24.58 49.35 3.45 45.60	66.61 68.61	7.99 62.52 30.57 7.39 62.80 34.54 13.49 6.81
	OFA Base		MaxProb	-	-	75.18 14.88 46.15	67.51	7.79 63.04 30.13	7.29
		A+B	Selector	A+B	Self	75.18 26.64 50.80	69.56	7.10 63.66 34.92 12.92
			Selector	A+B	LYP	75.18 27.71 51.64	70.20	6.98 63.88 36.29 16.30
		A	MaxProb Selector	-B	-Self	77.53 20.57 53.99 77.53 30.86 58.05	75.18 76.65	6.42 66.68 36.12 5.81 67.34 41.43 17.58 8.21
	OFA Large		MaxProb	-	-	77.79 16.31 53.83	75.27	6.43 66.96 36.06	6.29
		A+B	Selector	A+B	Self	77.79 31.47 58.80	77.14	5.69 67.82 41.43 16.08
			Selector	A+B	LYP	77.79 32.92 59.43	77.52	5.60 68.02 42.83 18.78

Table 6 .

 6 4. -Mixed ID/OOD scenario, composed of 90% VQA v2 and 10% AdVQA examples.

Table 6 .

 6 5. -Varying the number of splits N for LYP. Results are reported on our ID VQA v2 test split for OFA Base, trained on A+B, with a selector trained on A+B. Effect of training data size. We show in Table 6.6 that the amount of data used for the Selector training is an important factor for its performance. Note that the Train B set has 86K examples, which is ∼15% of the full Train A+B. The additional data, labeled with LYP, helps Selector generalize better to test examples.

	10 27.71 51.64	70.20	6.98
	2 27.64 51.24	70.12	7.01
	% of A+B C@1% C@5% C@10% AUC
	100	27.71 51.64	70.20	6.98
	75	27.48 51.11	70.26	7.01
	50	26.84 51.04	70.04	7.06
	25	26.03 50.15	69.65	7.16
	10	23.30 47.97	68.03	7.44
	5	22.62 46.10	66.10	7.71

Table 6 .

 6 6. -Varying the amount of training data for the Selector. Results are reported on the ID VQA v2 test split. The model is OFA Base, trained on A+B, with a selector trained on a subset of A+B. Scores are labeled by 10 models following our LYP method.

Table 1

 1 from the main paper. Most bias-reduction methods degrade performances on the counterexamples split, and only LfF (Nam et al. 2020) improves performances on all three splits.

		Approaches	Overall	Counterexamples (ours) Easy (ours)
		Number of examples	214,354	63,925	135,324
	Baselines	Shortcuts Image-Only Question-Only	42.14 (+0.00) 23.70 (+0.00) 44.12 (+0.00)	0.43 (+0.00) 2.92 (+0.00) 13.98 (+0.00)	65.95 (+0.00) 35.39 (+0.00) 60.88 (+0.00)
	VQA models	SAN -grid features UpDown BLOCK VilBERT -pretrained † 67.77 (+0.00) 55.61 (+0.00) 63.52 (+0.00) 63.89 (+0.00)	28.99 (+0.00) 37.77 (+0.00) 37.06 (+0.00) 43.32 (+0.00)	70.04 (+0.00) 77.52 (+0.00) 78.52 (+0.00) 81.27 (+0.00)
	Bias-reduction methods	UpDown is used as a base architecture for bias-reduction methods 61.88 (-1.64) 36.05 (-1.72) 75.84 (-1.68) LMH + RMFE RUBi 60.12 (-3.40) 34.97 (-2.80) 73.80 (-3.72) ESR 62.96 (-0.56) 37.22 (-0.55) 76.98 (-0.54) LMH 61.15 (-2.37) 37.82 (+0.05) 73.91 (-3.61) LfF 63.57 (+0.05) 38.18 (+0.41) 77.44 (-0.08) LMH+CSS 53.55 (-9.97) 37.27 (-0.50) 62.30 (-15.22)
		RandImg	63.34 (-0.18)	38.13 (+0.36)	77.05 (-0.47)

Table B

 B VilBERT is pre-trained on Conceptual Caption and fine-tuned on VQA v2 training set. Scores in (green) and (red) are relative to UpDown. We evaluate SAN (Yang et al. 2016), UpDown (Anderson et al. 2018a), BLOCK (Ben-Younes et al. 2019b),VilBERT (J. Lu et al. 2019), RUBi (Cadene et al. 2019c), LMH + RMFE (Gat et al. 2020), ESR (Shrestha et al. 2020), LMH (C. Clark et al. 2019), LfF (Nam et al. 2020), LMH+CSS (L. Chen et al. 2020), RandImg (Teney et al. 2020b).

		Approaches	Overall	Counterexamples (ours) Easy (ours)
		Number of examples	121,512	40,052	80,539
	Baselines	Shortcuts Image-Only Question-Only	44.71 (+0.00) 24.39 (+0.00) 49.20 (+0.00)	0.05 (+0.00) 1.75 (+0.00) 13.48 (+0.00)	67.35 (+0.00) 35.83 (+0.00) 67.27 (+0.00)
		SAN -grid features 58.35 (+0.00)	26.09 (+0.00)	74.58 (+0.00)
		UpDown	62.83 (+0.00)	31.71 (+0.00)	78.49 (+0.00)
	Bias-reduction methods	UpDown is used as a base architecture for bias-reduction methods 55.82 (-7.01) 23.87 (-7.84) 71.90 (-6.59) LMH + RMFE RUBi 62.97 (+0.14) 31.09 (-0.62) 79.02 (+0.53) ESR 63.03 (+0.20) 31.50 (-0.21) 78.91 (+0.42) LMH 59.74 (-3.09) 32.80 (+1.09) 73.30 (-5.19) LfF 63.26 (+0.43) 32.05 (+0.34) 78.97 (+0.48) RandImg 62.87 (+0.04) 31.09 (-0.62) 78.87 (+0.38)

.1. -Results of our VQA-CE evaluation protocol with ground-truth visual labels. We report accuracies on VQA v2 full validation set and on our two subsets: Counterexamples and Easy examples. We re-implemented all models and bias-reduction methods. †

Table B

 B LMH + RMFE (Gat et al. 2020), ESR (Shrestha et al. 2020), LMH (C. Clark et al. 2019), LfF (Nam et al. 2020), LMH+CSS (L. Chen et al. 2020), RandImg (Teney et al. 2020b).

.2. -Results of our VQA-CE evaluation protocol on VQA v1 full validation set and on our two subsets: Counterexamples and Easy examples. We re-implemented all models and bias-reduction methods. Scores in (green) and (red) are relative to UpDown. We evaluate SAN

[START_REF] Yang | Stacked attention networks for image question answering[END_REF]

, UpDown

(Anderson et al. 2018a), BLOCK (Ben-Younes et al. 2019b)

,VilBERT (J.

[START_REF] Lu | Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[END_REF]

, RUBi

(Cadene et al. 2019c), 

  Table C.1. -Comparison of joint and staged training of OFA-Base and Selector. FT indicates that Selector is further fine-tuned after OFA-Base converges on the VQA training objective. All models are trained on A+B. Inspired by Fisch et al. 2022, we train Selector with out-of-distribution detection scores computed with KNN (Sun et al. 2022b) or SSD (Sehwag et al. 2021) as added features. We share the results in Appendix C, Section C.2.

	Training	Acc C@1% C@5% C@10% AUC
		ID (100% VQA v2)		
	joint	75.08 16.04	42.78	65.91	8.11
	joint+FT 75.08 24.42	50.01	69.20	7.21
	staged	75.18 26.64	50.80	69.56	7.10
		90% VQA v2, 10% AdVQA	
	joint	71.97 10.74	34.61	53.81	10.12
	joint+FT 71.97 18.17	42.44	60.50	8.98
	staged	72.00 19.72	42.70	60.84	8.90
	C.2 OOD Detection features		

  Table C.2. -OOD-Detection baselines. Scores are reported on the Mixed ID/OOD, composed of 90% VQA and 10% AdVQA.

	Selector	71.25 19.05	41.83	59.55	9.29
	Selector + KNN 71.25 19.92	41.78	59.75	9.27
	Selector + SSD	71.25 18.99	41.90	59.27	9.27

Table C .

 C Table C.4, Table C.5, and Table C.6 respectively show the results for 33%, 50%, and 66% AdVQA, respectively. We also show the results with threshold selection on the in-distribution validation set in Table C.7 Table C.3. -Results with exposure to known OOD examples for OFA-Base. OOD = OK-VQA + VizWiz. Bold denotes best and underline is second best per table section. for the in-distribution testing set, and Table C.8 for the 10% AdVQA data testing set. 4. -Results on a mixed ID/OOD setting, composed of 66.7% VQA v2 data (Test split in Table 6.2) and 33.3% AdVQA examples. Discussion in Section 6.5.4.

	Training Set			
	f Selector g			C@1% C@5% C@10% AUC
			90% VQA v2, 10% AdVQA
	A B					19.00	41.64	58.97	9.34
	A B + OK-VQA			18.38	42.33	59.80	9.17
	A B + OK-VQA + VizWiz 18.48	41.08	59.40	9.36
			50% VQA v2, 50% AdVQA
	A B					2.68	15.98	26.72	18.97
	A B + OK-VQA			1.73	15.37	26.33	18.86
	A B + OK-VQA + VizWiz	2.56	14.93	26.82	19.08
	VQA Model f Name Training set Name	Selection function g Training Set Targets	Acc ↑	C@R in % ↑ 1% 5% 10%	AUC ↓	Φ 1 Φ 10 Φ 100
	A	MaxProb Selector	-B	-Self		58.36 0.00 7.08 21.97 58.36 5.87 17.41 29.21	20.62 36.59 -1.47 -14.38 18.90 38.76 7.11 -2.20
	CLIP-ViL	MaxProb	-	-		59.29 1.11 10.17 24.99	19.58 38.42 2.99 -9.79
	A+B	Selector Selector	A+B A+B	Self LYP		59.29 0.07 11.21 25.86 59.29 7.07 19.13 31.53	19.28 39.17 5.90 -7.37 17.94 39.85 12.67 3.40
	A	MaxProb Selector	-B	-Self		64.08 0.01 18.83 34.15 64.08 3.59 26.29 39.78	15.71 46.05 5.33 -28.66 14.54 46.77 13.58 -10.18
	OFA Base	MaxProb	-	-		64.63 0.03 17.57 33.94	15.43 46.32 2.11 -19.21
	A+B	Selector	A+B	Self		64.63 5.11 25.83 40.13	14.09 47.58 10.75 -21.18
		Selector	A+B	LYP		64.63 9.41 27.89 42.0	13.80 48.03 11.89 -2.81
	A	MaxProb Selector	-B	-Self		67.57 0.01 18.90 41.23 67.56 11.50 30.24 49.03	13.62 50.48 10.59 -24.77 11.93 52.36 18.02 -8.92
	OFA Large	MaxProb	-	-		67.78 0.03 19.92 42.32	13.47 50.81 7.41 -37.62
	A+B	Selector	A+B	Self		67.77 5.39 29.41 48.93	12.08 51.53 15.37 -16.32
		Selector	A+B	LYP		67.77 10.94 31.32 50.11	11.75 52.44 18.18 -11.46
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https://github.com/cdancette/detect-shortcuts

While OFA is a generative model, it uses a trie-based decoding method for VQA that restricts the generated sequences to an answer vocabulary, as opposed to open-ended generation (P.Wang et al. 2022).

https://github.com/facebookresearch/reliable_vqa

https://github.com/OFA-Sys/OFA

We fine-tune OFA from the pre-trained checkpoints provided by the authors of P. Wang et al. 2022. 3 We follow the hyperparameters from the original paper for fine-tuning. In the following, we detail the setup for the selection functions:

MaxProb. Since OFA is a sequence-to-sequence model that generates answers token-by-token, for the MaxProb baseline, we use the joint probability of each answer token as the confidence value, similar to common decoding algorithms like beam search.

Selector. We largely replicate the same Selector architecture and training as Whitehead et al. 2022b (i.e., two-layer MLP), but with some slight differences. We remove the non-linear projection (or one-layer MLP) for each input representation. We also use slightly different input representations: First, we max-pool the encoder image (v i ) and question (q i ) token representations to obtain a single representation for each set of representations. Then, we extract the probability of the predicted answer p, which is the joint probability of each answer token. Finally, we extract the first output token embedding o 1 that is used to predict the first answer token. We concatenate these representations and feed this as input to the Selector.

Training Selector with OFA. We report the training parameters in Table 6.1. We first train the VQA model as discussed above, freeze the VQA model, and then train Selector on top of this frozen model. We train for a maximum number of 32 epochs and perform early-stopping on the Val split (Table 6.2) using the AUC metric. We keep the dropout in the main model during the selector training, as we found this improved performance of the selector.

A p p e n d i x
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In this appendix, we report additional results for Chapter 4.

TallyQA-Even-Odd In Table A.1, we display the number of odd and even triplets in each set of TallyQA-Even-Odd where 90% of triplets have been removed (p = 90%), and other datasets where p = {0, 50, 100}. Results on the mixed 90% VQA v2 + 10% AdVQA evaluation set (VQA v2 data is from the Test split in Table 6.2).

Thresholds for desired risk level are selected on our indistribution Val set. Discussion in Section 6.5.5. . . . . . . . 164