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A B S T R A C T

This thesis is focused on the task of Visual Question Answering (VQA): it con-
sists in answering textual questions about images. We investigate Shortcut Learn-
ing in this task: the literature reports the tendency of models to learn superficial
correlations leading them to correct answers in most cases, but which can fail
when encountering unusual input data.

We first propose two methods to reduce shortcut learning on VQA. The first,
which we call Reducing Unimodal Biases (RUBi), consists of an additional loss
to encourage the model to learn from the most difficult and less biased exam-
ples – those which cannot be answered solely from the question. We show that
our method can reduce question-based shortcuts in existing VQA models, espe-
cially when tested on data with a distribution shift. We then propose a model for
the more specific task of visual counting – a subset of VQA consisting only of
counting questions. We design Spatial Counting Network (SCN), a model which
incorporates architectural priors designed to make it more robust to distribu-
tion shifts. We show that SCN has superior performances on out-of-distribution
benchmarks compared to existing models.

We then study the existence of multimodal shortcuts in the VQA dataset. We
show that shortcuts are not only based on correlations between the question and
the answer but can also involve image information. We design an evaluation
benchmark to measure the robustness of models to multimodal shortcuts. We
show that existing models are vulnerable to multimodal shortcut learning.

The learning of those shortcuts is particularly harmful when models are eval-
uated in an out-of-distribution context. Therefore, it is important to evaluate the
reliability of VQA models, i.e. the ability to assess their confidence in the given
answer. We propose a method to improve the reliability of VQA models, i.e. their
ability to abstain from answering when their confidence is too low. It consists
of training an external “selector” model to predict the confidence of the VQA
model. This selector is trained using a cross-validation-like scheme in order to
avoid overfitting on the training set but still using all the available data. We show
that our method can improve the reliability of existing VQA models, in both
in-distribution and out-of-distribution settings.
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R É S U M É

Cette thèse se concentre sur la tâche de Visual Question Answering (VQA), c’est
à dire les systèmes questions-réponses visuelles. Elle consiste à répondre à des
questions à propos de photographies. Nous étudions l’apprentissage des biais
dans cette tâche. La littérature montre que les modèles ont tendance à apprendre
des corrélations superficielles les conduisant à des réponses correctes dans la
plupart des cas, mais qui peuvent échouer lorsqu’ils rencontrent des données
d’entrée inhabituelles.

Nous proposons deux méthodes pour réduire l’apprentissage par raccourci sur
le VQA. La première, RUBi, consiste à encourager le modèle à apprendre à partir
des exemples les plus difficiles et les moins biaisés grâce à une loss spécifique.
Nous montrons que notre méthode peut réduire les biais basés sur les questions
dans les modèles VQA, en particulier lorsqu’ils sont testés sur des données avec un
changement de distribution. Nous proposons ensuite un modèle pour la tâche de
comptage visuel – un sous-ensemble de VQA composé uniquement de questions
de comptage. Nous proposons SCN, un modèle doté d’une architecture conçue
pour être robuste aux changements de distribution. Nous montrons que SCN a
des performances supérieures à celles des modèles existants sur les benchmarks
out-of-distribution.

Nous étudions ensuite les raccourcis multimodaux dans le VQA. Nous montrons
qu’ils ne sont pas seulement basés sur des corrélations entre la question et la
réponse, mais qu’ils peuvent aussi impliquer des informations sur l’image. Nous
concevons un benchmark d’évaluation pour mesurer la robustesse des modèles
aux raccourcis multimodaux. Nous montrons que les modèles existants y sont
particulièrement vulnérables.

L’apprentissage de ces raccourcis est particulièrement problématique lorsque
les modèles sont testés dans un contexte de changement de distribution. C’est
pourquoi il est important de pouvoir évaluer la fiabilité des modèles VQA, c’est-
à-dire notre capacité à évaluer leur confiance dans la réponse donnée. Nous
proposons une méthode pour améliorer cette fiabilité, afin de leur permettre
de s’abstenir de répondre lorsque leur confiance est trop faible. Cette méthode
consiste à entraîner un modèle externe, dit "sélecteur", pour prédire la confiance
du modèle VQA, à l’aide d’un système similaire à la validation croisée afin d’éviter
un surajustement du modèle tout en utilisant toutes les données disponibles.
Nous montrons que notre méthode peut améliorer la fiabilité des modèles VQA

existants, à la fois dans le cadre de la distribution et hors de la distribution.
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1
I N T R O D U C T I O N

A computer would deserve to be
called intelligent if it could
deceive a human into believing
that it was human. — Alan Turing

Deep Learning — the use of Deep Neural Networks trained on large amounts
of data — has led to major breakthroughs in many fields, such as computer vision
(Krizhevsky et al. 2012a) and natural language processing (Mikolov et al. 2013).
This pushed researchers to explore multimodal tasks that combine both visual
and textual modalities (Kiros et al. 2015b; Karpathy and Fei-Fei 2015; C. Lu et al.
2016; Das et al. 2017b; Vries et al. 2017). Among these tasks, VQA has attracted
increasing attention. The goal of the VQA task is to answer a question about an
image. It requires a high-level understanding of the visual scene and the question,
and also to link the words from the question with the regions in the image and
use both modalities adequately. Studying VQA is important for two reasons. First,
it is a challenging task that requires complex processing of the scene and the
question in order to answer correctly. It has been referred to as a visual Turing test
(Geman et al. 2015). It is an important benchmark for advances in multimodal
understanding and reasoning. Second, solving the VQA task could have direct and
tremendous impacts on real-world applications such as aiding visually impaired
users in understanding their physical and online surroundings (Gurari et al. 2018),
searching through large quantities of visual data via natural language interfaces,
or even communicating with robots using more efficient and intuitive interfaces.
Multiple datasets have been proposed by the community, ranging from synthetic
datasets such as CLEVR (Justin Johnson et al. 2017a), large-scale realistic datasets
like VQA v1 and v2 (Antol et al. 2015a; Goyal et al. 2017a), datasets focused
on visually impaired users (Gurari et al. 2018), or datasets targeting the medical
domain (Abacha et al. 2019).

Visual Question Answering has been tackled using Deep Learning methods:
huge statistical models, trained to output the desired answer based on a large
number of examples. However, those models are particularly sensitive to what

1



2 introduction

Figure 1.1. – Example of a VQA task from the VizWiz datasets: visually impaired
users ask questions about images taken with their smartphone.

has been coined Shortcut Learning (Geirhos et al. 2020): they will find the simplest
correlations between the input data and the answers. This is often a desired
property, but it can also lead to biases in the model when those correlations are
not causal. For example, if the model is trained on a dataset where all answers for

“What is the color of the sky?” is blue, then the simplest behavior for the model would
be to always output blue for this question. This is a problem, as it would not be
able to answer correctly if the sky is not blue. Additionally, when evaluating the
models on testing sets with the same distributions, using those shortcuts will lead
to high accuracy. However, when using the model in the real world, it might lead
to catastrophic failure. Shortcut learning is a problem that is not specific to VQA,
but it is particularly important in this task, as it combines multiple modalities
and requires a high-level understanding of the scene and reasoning to answer
correctly.

1.1 Contributions

In this Thesis, we tackle the problem of shortcut learning in the context of VQA.
We propose to explore various directions related to shortcut learning in VQA:
strategies to mitigate shortcut learning, by influencing the model’s preferred so-
lutions using inductive biases, methodologies to detect shortcuts in VQA datasets,
and models’ reliability in out-of-distribution settings. The goal is to better un-
derstand the problem of shortcut learning in VQA and to propose solutions to
mitigate it, making models closer to real-world usage.
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The first axis of our thesis, in Chapters 3 and 4, is centered around reducing
shortcut learning in VQA models using various inductive biases. Then, we focus
on detecting shortcuts and evaluating models’ performance and reliability in out-
of-distribution settings, in Chapters 5 and 6. We summarize our contributions in
the following list:

• Chapter 3: a learning strategy to reduce unimodal biases in

vqa

First, we explore the reduction of shortcut learning in VQA models. We
use the VQA-CP benchmark, which is designed with a distribution shift
between the training set and the testing set. It penalizes models that rely
on statistical regularities between the question and the answer. This allows
us to test the robustness of a model and its learning procedure. In this con-
text, we propose a strategy to reduce shortcut learning in VQA coming from
the question modality and encourage the model to use the visual input to
answer correctly. Our method reduces the importance of the most biased
examples, i.e. examples that can be correctly classified without looking at
the image and increases the importance of the most difficult examples, i.e.
examples that require the model to use the image to answer correctly. We
leverage a question-only model that captures the language biases by iden-
tifying when these unwanted regularities are used. It prevents the base
VQA model from learning them by influencing its predictions. This leads to
dynamically adjusting the loss to compensate for biases.

• Chapter 4: reducing shortcut learning with architectural

priors for visual counting

We then focus on Visual Counting, a sub-task of Visual Question Answering.
It consists in answering counting questions about an image, for example,
“How many cats are to the left of the car?”, the output being a number.
This task is also subject to the same kind of shortcuts as the main VQA
task. We use it to explore a second way of reducing shortcut learning with
inductive biases: architectural priors. First, we propose a benchmark to
evaluate shortcut learning and out-of-distribution generalization, similar
to the VQA dataset VQA-CP, but for visual counting. Then, we propose a
model which incorporates inductive biases in the deep architecture to guide
the model and ground its decision in the image: we structure the model’s
architecture around the selection of individual objects based on the textual
question.

• Chapter 5: detecting multimodal shortcuts for vqa

Most previous work on VQA focuses on the issue of question-based shortcuts:
superficial correlations between the question words and the answer. We
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investigate the existence of multimodal shortcuts in VQA datasets: simple
vision and language patterns that are associated with high certainty with
a given answer. We propose a method to find simple patterns in the data:
for example, the presence of a racket in the image, with the words “what”
and “sports” in the question will most likely lead to the answer “tennis”.
Those patterns might not hold in all examples, but might be learned by VQA
models. We can use examples that contradict those patterns to evaluate the
robustness of the model: if it relies on those patterns, it will fail on the
examples that contradict them.

• Chapter 6: reliability for visual question answering

Finally, we explore a complementary problem of shortcut learning: the re-
liability of VQA models. Reliability is the capacity of a model to return a
confidence score in addition to an answer. This makes it possible for the
model to abstain when the risk of failure is too high. We assess models’
reliability under distribution shift, in an out-of-distribution (OOD) setting.
The VQA models might be overconfident, especially if they learned simple
shortcuts which do not work on the OOD dataset. We evaluate how large
pre-trained vision-and-language models perform on this reliability task, and
propose a method to improve reliability for VQA.

1.2 Related publications

This thesis is based on the material published in the following papers:

• Remi Cadene, Corentin Dancette, Hedi Ben-Younes, Matthieu Cord, and
Devi Parikh (2019c). “RUBi: Reducing Unimodal Biases for Visual Question
Answering”. In: Advances in Neural Information Processing Systems (NeurIPS)

• Corentin Dancette, Remi Cadene, Xinlei Chen, and Matthieu Cord (2021a).
“Learning Reasoning Mechanisms for Unbiased Question-based Counting”.
In: VQA Workshop, Conference on Computer Vision and Pattern Recognition
(CVPR)

• Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord (2021b).
“Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning
in Visual Question Answering”. In: Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV)

• Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna
Vedantam, Stefan Scherer, Xinlei Chen, Matthieu Cord, and Marcus Rohrbach
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(2023). “Improving Selective VQA by learning from your peers”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Additionally, we worked on other projects, that are not included in this the-
sis, as they are not directly focused on the main topic of this thesis, but tackle
related problems, such as domain generalization, or compute efficiency of the
transformer’s architecture.

• Fishr: Invariant gradient variances for out-of-distribution generalization.
We explore the task of domain generalization: given multiple training do-
mains with different distributions, we want to learn a model that performs
well on another unseen test distribution. For this, models must learn to use
invariant features, that are not specific to a given domain, but equally pre-
dictive in all domains. For instance, the Colored-MNIST dataset proposes
splits where the color is predictive of the number, but with different colors
for each split. We propose a method that constrains the gradient variances
of the model across environments to be similar. This work led to the publi-
cation of a conference article:
Alexandre Rame, Corentin Dancette, and Matthieu Cord (2022). “Fishr: In-
variant gradient variances for out-of-distribution generalization”. In: Pro-
ceedings of the International Conference on Machine Learning (ICML), pp. 18347–
18377

• Dynamic Query Selection for Fast Visual Perceive. The Transformer is an
effective architecture for deep learning but has a quadratic complexity in
the number of tokens, which is problematic for large inputs. The perceiver is
a transformer-based model designed to reduce the number of input tokens,
by having a smaller and fixed number of “queries”. In this work, we analyze
the perceiver architecture for computer vision and show how to make it
more efficient by selecting dynamically only the most important queries.
This article led to the publication of a workshop article:
Corentin Dancette and Matthieu Cord (2022). “Dynamic Query Selection for
Fast Visual Perceiver”. In: CVPR Workshop, Transformers for Vision

We open-sourced the code concerning the following chapters:

• Chapter 3: https://github.com/cdancette/rubi.bootstrap.pytorch

• Chapter 4: https://github.com/cdancette/spatial-counting-network

• Chapter 5: https://github.com/cdancette/detect-shortcuts

https://github.com/cdancette/rubi.bootstrap.pytorch
https://github.com/cdancette/spatial-counting-network
https://github.com/cdancette/detect-shortcuts
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2
B A C K G R O U N D A N D C O N T E X T

In this chapter, we present a literature review of the works related to the thesis.
First, we introduce the topic of Deep Learning for Computer Vision and Natural
Language Processing. We then discuss works related to Visual Question Answer-
ing (VQA). Finally, we discuss the literature on biases and shortcut learning in
deep neural networks, especially in the VQA task.

2.1 Deep Learning for Text and Image

Deep Learning (LeCun et al. 2015) is a subfield of machine learning that focuses
on learning representations from data using deep neural networks. Neural net-
works are statistical models (Vapnik 1999), loosely inspired by the human brain.
They are high-dimensional functions composed of multiple layers of linear trans-
formations called neurons and non-linear activation functions. This basic building
block of deep neural networks is called the Multi-Layer Perceptron (MLP).

In this thesis we mainly use the Supervised Learning setting: we have a train-
ing dataset D containing samples. Each sample contains an input x and with a
ground-truth label y that the model is trained to predict. For example, for image
classification, each image is associated with a class describing its content. Other
settings include unsupervised or self-supervised learning, when no labeled data
is available (Hastie et al. 2009), and semi-supervised learning, the middle ground
between the two previous settings where the data is partially annotated (Chapelle
et al. 2009). In supervised learning, a model f with parameters θ is trained using
a loss function L that measures the distance between the predictions of the model
and the target, using a variant of stochastic gradient descent (Bottou et al. 1998).
The gradient is usually computed using the backpropagation algorithm (Rumel-
hart et al. 1986). Computing the output of the neural network f for a given input
x is called the forward pass, and computing ∇θL, the gradients of the loss with
respect to its weights, is called the backward pass. The weights are updated in the
opposite direction of the gradient to minimize the loss L.

7



8 background and context

Figure 2.1. – A typical convolutional neural network architecture. It is composed
of multiple convolution layers, that match local patterns, pooling
layers that reduce the spatial dimension of the feature maps, and
fully connected layers at the end, to return a classification out-
put. Image from https://en.wikipedia.org/wiki/Convolutional_
neural_network

In the following sections, we introduce the domains of Computer Vision and
Natural Language Processing and explain how Deep Learning is used in those
domains.

2.1.1 Computer Vision

Computer Vision (CV), the study of image processing and understanding, has
been studied for multiple decades. Until 2012, the state-of-the-art algorithms for
image classification were based on hand-crafted features, such as Histogram of
Oriented Gradients (HOG) (Dalal and Triggs 2005) or Bag-of-Words-based strate-
gies using local features like SIFT (Lowe 1999), projected on a Visual Dictionary
(Fournier et al. 2001; Sivic and Zisserman 2003) with linear classifiers learned on
top, like Support Vector Machine (SVM) (Boser et al. 1992). At the ILSVRC 2012

challenge (Russakovsky et al. 2015a), a large-scale image classification benchmark,
(Krizhevsky et al. 2012b) won the competition with AlexNet, a Deep Neural Net-
work. Since then, deep neural networks have been used in many Computer Vision
tasks, such as image classification, object detection, image segmentation, and many
others, surpassing hand-crafted feature representations. Most architectures used
in Computer Visions are based on the Convolutional Neural Network (CNN) archi-
tecture: a neural network composed of learned convolution layers and non-linear
activation functions such as the Rectified Linear Unit (ReLU). We display a typical
CNN architecture in Figure 2.1.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
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2.1.2 Natural Language Processing

Natural Language Processing (NLP) is the study of text understanding. It ranges
from tasks like summarization, language modeling or text generation, translation,
text classification and many others. The first NLP systems used fixed and hand-
crafted rule-based systems (Weizenbaum 1966). Early probabilistic systems used
in NLP were based on n-grams or hidden Markov models (Cavnar, Trenkle, et
al. 1994; Robertson and Willett 1998; Witten et al. 1999). The first popular Deep
Learning models for NLP were Recurrent Neural Network (RNN), like the Long
Short-Term Memory network (LSTM) (Gers and Schmidhuber 2001). These archi-
tectures process each word or token sequentially, one by one, using the same
model with a memory saved between each forward pass. It is trained with a
variant of backpropagation called backpropagation through time, as the network
is called multiple times with the same weights. Other variants of RNN include
the GRU architecture (Cho et al. 2014). These models can take as input token
ids, or word embeddings: vectors that represent the semantic meaning of a word
(Turian et al. 2010). The word2vec approach (Mikolov et al. 2013) is a popular
technique that uses neural networks to learn word embeddings based on word
co-occurrences.

More recently was proposed the Transformer architecture (Vaswani et al. 2017):
it is composed of multiple attention layers, and all tokens are processed in parallel
instead of sequentially like in a RNN. At each layer of the model, a token receives
updates from its own representation using an MLP, and from the other tokens of
the sequence using a Multi-Head Self-Attention mechanism. We display the full
architecture in Figure 2.2. The attention is computed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (2.1)

where Q, K, and V are respectively the queries, keys and values, and are obtained
by linear transformations from input tokens.

This results in more efficient forward and backward passes, which makes it
possible to train them on larger datasets. Those models are usually pre-trained
using self-supervised learning (they learn representations from a stream of text
without any labels) using one of the following strategies. (a) Masked Language
Modeling: a word is masked in the input text, and the whole input is used to
predict the word. (b) Next Token Prediction or Autoregressive generation: the
model can only use the previous words to predict the next word. This is often
used for language generation. This approach has been shown to scale fairly well
with very large models and datasets, (Devlin et al. 2019; Radford et al. 2018;
Radford et al. 2019; Brown et al. 2020), reaching a hundred billion parameters.
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Figure 2.2. – The Transformer architecture from Vaswani et al. 2017. It is com-
posed of multiple Attention and Feed Forward (MLP) layers.

For instance, GPT-3 (Brown et al. 2020) contains 175 billion parameters, Palm
(Chowdhery et al. 2022) contains 540 billion, and Switch Transformer reaches
1.5 trillion parameters with a sparse model (Fedus et al. 2021). Those models,
pre-trained on large-scale unlabeled data, and fine-tuned for many downstream
tasks, are sometimes referred to as foundation models. Emerging properties have
been shown to appear at those scales, like few-shot or zero-shot evaluation with
prompt conditioning (Brown et al. 2020).

The Transformer architecture is also very general and can be adapted to many
other modalities, as it just requires partitioning the input as a set of tokens. It
is now used for computer vision tasks, using image patches. Vision Transformer
architectures now reach similar accuracies to the best CNN models (Dosovitskiy
et al. 2021; Touvron et al. 2021). It has also been used for vision-and-language
learning, like CLIP (Radford et al. 2021). We will detail this further in the next
section.
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2.2 Visual Question Answering

While the two fields of Computer Vision and Natural Language Processing have
been studied for a long time, the task of bridging the gap between the two has
been studied more recently, with tasks like Image-text retrieval, Image Captioning,
Text to image generation, and others.

In this thesis, we focus on the task of Visual Question Answering (VQA). It
consists in answering a natural language question about an image, for example,
asking How many slices of pizza are there?, like in the example from Figure 2.3.
In order to answer this complex question, the network must be able to process
the image, understand the text, and also model the interactions between the two
modalities. This task, referred to as a Visual Turing Test by (Geman et al. 2015),
requires high-level text and image understanding. This task is interesting for
multiple reasons. First, it is a benchmark to test jointly the textual, visual and
reasoning abilities of artificial models. Then, it has many direct applications, such
as assistance for visually impaired users (Gurari et al. 2018), communicating with
robots, searching the web more efficiently, and many others.

The very first works to study the Visual Question Answering task had a re-
stricted focus: Malinowski and Fritz 2014a introduced the DAQUAR dataset, and
Geman et al. 2015 introduced their Visual Turing Test. Both of those datasets are
built with questions or answer that come from a small-sized fixed vocabulary.
Also, their size is limited to a few thousand images. This scale is not sufficient to
train a deep neural network that will capture the complexity of the task. Then,
the following works proposed larger datasets that enabled the successful devel-
opment of Deep Learning approaches for VQA.

2.2.1 VQA datasets

VQA v1 and v2 The main datasets used by the community in recent years
are VQA v1(Antol et al. 2015a) and VQA v2 (Goyal et al. 2017a). They are com-
posed of 123K and 443K images respectively for their training sets, and involve
“free-form” and “open-ended questions and answers provided by humans”. The
images are from the COCO dataset (T.-Y. Lin et al. 2014a) and come from vari-
ous “domains”, such as indoor scenes, outdoor scenes, animals, and people. We
display in Figure 2.3 two images with their associated questions in the VQA v1

dataset. Note that in the thesis, we focus on “Open-ended” VQA, which is the most
challenging task. Antol et al. 2015a also provides a multiple-choice version of the
task, for which each image-question pair is associated with a list of 18 possible
answers.
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Figure 2.3. – Images and their associated questions from the VQA v1 dataset
(Antol et al. 2015a). The questions and images cover a very large
variety of objects and topics.

Dataset collection The two datasets were collected in a two-step process: first,
the images were shown to people with the following prompt (from (Antol et al.
2015a)).

“We have built a smart robot. It understands a lot about
images. It can recognize and name all the objects, it
knows where the objects are, and it can recognize the
scene (e.g., kitchen, beach), people’s expressions and
poses, and properties of objects (e.g., the color of objects,
their texture). Your task is to stump this smart robot! Ask
a question about this scene that this smart robot probably
can not answer, but any human can easily answer while
looking at the scene in the image.”

Then, for each pair of question and image, were gathered 10 answers from 10

different people, to account for the diversity of possible answers. Answers may
be simple words like “yes”, “no”, or a short phrase, but annotators were asked to
avoid complete sentences.

Evaluating a model We have 10 possible answers for each question, therefore
the evaluation of a model’s predictions must be done in a way that takes into
account the number of ground truth answers that match the model’s predictions.
The VQA accuracy is computed using the following formula:

accuracy = min

(
# humans that provided that answer

3
, 1

)
Therefore, for a model to get a perfect score, it must predict the answer that

was given by at least 3 people. To give an idea of the best score a model could get,
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the average human performance is around 83.30 percent overall, (95.77 for yes-no
questions, 83.39 for number questions and 72.67 for other questions).

We explain in Section 2.4.1 the main differences between VQA v1 and VQA v2.

CLEVR (Justin Johnson et al. 2017b) is a synthetic dataset where both images
and questions are generated. The images are composed of a background, a set of
simple objects (cubes, cylinders and spheres) with a few attributes (color, texture,
position). The questions refer to those attributes and objects and can be composi-
tional. We show an example of an image and question from CLEVR in Figure 2.4.
It is a good benchmark to study compositional reasoning.

Figure 2.4. – An image from the CLEVR dataset. One of the associated questions
is “Q: What size is the cylinder that is left of the brown metal thing
that is left of the big sphere?”. Image and question from Justin John-
son et al. 2017b.

GQA (Drew A Hudson and Manning 2019) is a VQA dataset that is built from
real images from the Visual Genome dataset (Krishna et al. 2017a), but questions
are synthetically generated from the scene graph. It has a much more varied
number of objects and attributes than CLEVR and is therefore more challenging
in that regard while containing more compositional questions than VQA v1 and
v2. We show an image and question from GQA in Figure 2.5.

Visual Genome (Krishna et al. 2017a) is a dataset containing 108K images, with
multiple kinds of annotations: bounding boxes, object attributes, relationships
between objects, etc. It also contains natural language questions and answers on
101K images.

VizWiz (Gurari et al. 2018) is a real-world VQA dataset collected by visually
impaired users. They were asked to take pictures with their smartphone and
ask questions when they needed information about what was in the picture.
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Figure 2.5. – An image from the GQA dataset. One of the associated questions
is “Q: Is there any fruit to the left of the tray the cup is on top of?
A: yes?”. Image and question from Drew A Hudson and Manning
2019.

Answers were then annotated by sighted users. This dataset is very challenging,
as questions vary a lot in terms of difficulty, and the quality of images is not
always good: some images are blurry, or the objects are not well centered or
partially occluded. We show an example from VizWiz in Figure 1.1.

TDIUC (Task Driven Image Understanding) (Kafle and Kanan 2017) propose a
VQA dataset with questions from 12 distinct tasks, like object presence, scene
classification, activity recognition, counting...

2.2.2 VQA Architectures

The VQA task can be formalized as a supervised learning problem. The dataset
D is composed of n triplets (vi, qi, ai)i∈[1,n] with vi ∈ V an image, qi ∈ Q a question
in natural language and ai ∈ A an answer. One must learn a function f : V ×Q →
A with parameters θ to produce accurate predictions.

Most of the literature considers the VQA v1 and v2 datasets as single-class or
multi-class classification problems: they keep only the K most common answers,
K usually being around 3000. We thus have |A| = K. Each question is associated
with single or multiple answers, and ai ∈ R|A| represents the target probability
distribution and f : V × Q → R|A|. The function f is then learned using a Cross-
Entropy loss:
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Figure 2.6. – An image from the VizWiz dataset. One of the associated questions
is “Q: If there is any text on the screen, what does it say? A: os x
utilities”. Image and question from Gurari et al. 2018.

L(θ;D) = − 1

n

n∑
i=1

ai · log(softmax(f(vi, qi))). (2.2)

2.2.2.1 Specialized Fusion-based architectures

Early architectures proposed for the VQA task were specialized architectures
designed solely for the task. They use pre-trained unimodal models to embed
the image and the text into an embedding space, and then propose a fusion
strategy to combine the two modalities and output an answer. (Antol et al. 2015a)
in the original VQA paper proposes the following approach: visual features are
extracted with VGG (Simonyan and Zisserman 2015), a deep convolutional neural
network, pre-trained on ImageNet (Russakovsky et al. 2015b). This gives a 4096-
dimensional feature vector. Textual features are extracted with a LSTM (Gers and
Schmidhuber 2001), which is initialized randomly and trained for the VQA task.
Both features are projected to a 1024-dimensional vector with a linear layer, then
pointwise multiplied. A fully-connected linear layer then projects this vector into
answer space. The architecture is displayed in Figure 2.7. The model is trained
with standard Cross-Entropy on the most common ground truth answer for each
input example.
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Figure 2.7. – LSTM + CNN: architecture proposed by Antol et al. 2015a to solve
the VQA task. It is composed of a pre-trained VGG (Simonyan and
Zisserman 2015) CNN to process the image, and an LSTM to process
the question. The two resulting embeddings are merged with a point-
wise multiplication, then projected to the answer space using a linear
layer.

The multimodal fusion strategy here is a simple point-wise multiplication of
the two vectors. Further works have proposed more elaborate fusion strategies:
Ben-Younes et al. 2017a proposed the MUTAN fusion scheme for VQA. Instead
of a point-wise multiplication, The image v and question q are merged using a
Bilinear model using a tensor operator T . The output of the fusion operation is
y = (T ×1 q)×2 v The final model is displayed in Figure 2.8.

Figure 2.8. – Architecture of MUTAN, by Ben-Younes et al. 2017a. It is similar to
the LSTM + CNN architecture, but the fusion operation is a bilin-
ear fusion, with a factorization that allows to drastically reduce the
number of parameters, from billions to a few millions.

Other works using bilinear fusion include MCB (Fukui et al. 2016b), MLB (J.-H.
Kim et al. 2017), MUREL (Cadene et al. 2019a) and others (Yu et al. 2017; Yu et al.
2018).
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2.2.2.2 Iterative reasoning and neural-symbolic approaches

VQA is a reasoning task, that sometimes requires composing multiple oper-
ations to answer questions like What is hanging on the wall above the bed?. First,
it requires locating the bed in the image, then analyzing and identifying what
is above it. Some works propose an architecture that takes inspiration from this
intuitive idea of iterative reasoning. Yang et al. 2016 proposed an architecture
composed of multiple blocks, with different weights, where each block can query
different parts of the image. Cadene et al. 2019a proposed MUREL a multi-step
recurrent architecture that uses bilinear fusion blocks, applied recursively.

Another class of VQA architecture which is sometimes referred to as "neural-
symbolic", consists in having blocks dedicated to specific functions, like object
identification, positional reasoning, counting, etc. and then combining those neu-
ral network blocks with symbolic reasoning. (Andreas et al. 2016; R. Hu et al.
2017; R. Hu et al. 2018; Jiaxin Shi 2019). The blocks are often applied recursively.
By design, those architectures are also more explainable than other approaches:
the reasoning process is more explicit, as the block operations can be interpreted.
We show in Figure 2.9 the architecture of Neural Module Networks (Andreas et al.
2016).

Figure 2.9. – Architecture of Neural Module Network, by Andreas et al. 2016. It
is composed of a parser module, which creates from the question a
layout of computation modules to apply to the image representation
to answer the question.

2.2.2.3 Attention mechanism and transformer architecture

Recently, the attention mechanism has been used to model the VQA task. At-
tention is notoriously used in the transformer architecture, initially proposed for
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Figure 2.10. – Grid-like features versus Object Detection features. Illustration from
Anderson et al. 2018a.

language modeling (Vaswani et al. 2017). Transformer architectures have been
shown to be very effective for many tasks, including vision and language tasks,
as they can model long-range dependencies better than LSTM and CNN (Vaswani
et al. 2017).

Some works like (Yang et al. 2016; Anderson et al. 2018a; Y. Jiang et al. 2018) first
included attention layers in the original VQA pipeline, as a form of fusion between
the image and text embeddings. The attention is now cross-modal, between text
and image tokens. Anderson et al. 2018a also proposed a novel image encoding
method. Previous works were mostly using the “grid-like” features from a pre-
trained convolutional neural network. Instead, they propose to use a pre-trained
object detection model, Faster R-CNN (Ren et al. 2015), to extract object-based
features: each detected object is associated with a position, a feature vector and
a label. Most VQA questions are based on objects, and this approach significantly
improves the performances of VQA models. We display an illustration of this
approach in Figure 2.10.

Yu et al. 2019 then proposed MCAN, a modified transformer architecture for
VQA that directly takes the image and question embeddings as input. It is made
of a series of Transformer encoder-decoder blocks, with cross-attention to merge
the image and question representations. The architecture is displayed in Figure
2.11. This model is trained end-to-end on the VQA task. The study of multimodal
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Figure 2.11. – Architecture of MCAN, by Yu et al. 2019. After the image and text
embeddings using an LSTM and a Faster R-CNN, a series trans-
former block with cross-attention is used to merge the image and
question representations.

transformer architectures, with cross-modal attention to merge modalities is an
active research area today.

2.2.2.4 Large pre-trained / Foundation models

The most recent works in VQA leverage large-scale pretraining on vision-and-
language datasets. This approach is inspired by the success of large pre-trained
language models for NLP such as BERT (Devlin et al. 2019) and the GPT models
(Radford et al. 2018; Radford et al. 2019; Brown et al. 2020). Those text models are
trained on a large amount of data, using unsupervised objectives, as explained in
Section 2.1.2. This approach was also used for Computer Vision, using contrastive
learning (Grill et al. 2020; Caron et al. 2021) or masked modeling (He et al. 2022).

Those models are sometimes referred to as foundation models: they serve as a
base for evaluation or fine-tuning on many downstream tasks.

For vision-and-language, this includes LXMERT (Tan and Bansal 2019), UNITER
(Y.-C. Chen et al. 2019), OSCAR (X. Li et al. 2020), FLAVA (Singh et al. 2022), OFA
(P. Wang et al. 2022), and many others. They are trained on large-scale vision-and-
language datasets such as COCO (T.-Y. Lin et al. 2014a), Visual Genome (Krishna
et al. 2017a), Conceptual Captions (Sharma et al. 2018), and many other datasets.
They are trained on tasks like Masked Language Modeling, Masked Image Mod-
eling, Image-Text matching, Cross-modal alignment, and Image classification, as
well as unimodal tasks like image classification, or language modeling.

One of the most recent approaches, OFA, is called a unified model: it is pre-
trained on a variety of text-only, image-only and multimodal tasks, using no
task-specific head: it unifies all task outputs into a single vocabulary and can
perform text or image generation, object detection, VQA, and many other tasks as
shown in Figure 2.12. It can then be used in a zero-shot fashion if the downstream
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task is similar to the ones it was trained on, or fine-tuned on a specific task to gain
additional performance. Its architecture is an encoder-decoder transformer model.
Its transformer weights are initialized using the BART (Lewis et al. 2019), a pre-
trained language model, and a CNN is added to pre-process the image modality. It
is then trained further on image-only, text-only and multimodal tasks. All the code
and weights of pre-trained models are available online, which makes it possible to
evaluate or fine-tune the model on many vision-and-language downstream tasks,
such as Visual Question Answering. The architectures released cover a wide range
of model sizes, from 33M to 930M parameters,

Figure 2.12. – Architecture and pre-training tasks of OFA (P. Wang et al. 2022) It
is an encoder-decoder transformer model with a unified vocabulary
for images, text and bounding box locations.

2.2.3 Progress in the VQA task

We display in Figure 2.13 the progress made in recent years on the VQA v2

dataset (Goyal et al. 2017a). We observe there has been a steady improvement
over the years, the first models having around 65% accuracy, reaching now over
80%. We also observe the trends in model types: the first models were based
on bilinear fusion (Fukui et al. 2016a; Ben-Younes et al. 2017b; J.-H. Kim et al.
2018), then the attention models appeared (Anderson et al. 2018c; Y. Jiang et
al. 2018; Yu et al. 2019; H. Jiang et al. 2020), and the best models today are
the large pre-trained vision-and-language transformers (Z. Wang et al. 2022; P.
Wang et al. 2022; W. Wang et al. 2022). We also observe an increasing trend in
the number of parameters of the models, the most recent models reaching over
1 billion parameters. This was made possible by the use of large pre-training
datasets. For example, BeIT-3 is trained on 21 million image-text pairs, plus 14M
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of image and 160GB of text. We observe that most recent models now surpass
human accuracy on VQA. While this suggests that the task is now solved, we will
see in the next section that might not really be the case: the VQA task contains
a lot of shortcuts, that enable models to reach high accuracy without necessarily
using the right mechanism to answer.

Figure 2.13. – Progress over the years for the VQA v2 dataset test-std split. Scores
are from the VQA v2 Leaderboard. Only single models are reported
(no ensemble).

2.3 Shortcut learning and biases

Shortcut Learning is a common problem in Deep Learning (Geirhos et al.
2020): real-world datasets display some form of inherent biases due to their data
acquisition process (Gordon and Van Durme 2013; Chao et al. 2018; Torralba and
Efros 2011a). As a result, machine learning models tend to reflect these biases
because they capture often undesirable correlations, or shortcuts, between the
inputs and the ground truth annotations (Stock and Cisse 2018a; Jia et al. 2018a;
Manjunatha et al. 2019a; Torralba and Efros 2011b; Jia et al. 2018b). We can see in
Figure 2.14 examples of potential shortcuts in image tasks: in the first example, for
captioning, the model learns to recognize the background, instead of the primary
object, as those appear together most of the time. The model then fails in a case
where the background appears without the common object. In this thesis, we
use the terms shortcut and bias interchangeably. This is a misnomer, as bias
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Figure 2.14. – Shortcut learning: the model learns to exploit the correlation be-
tween the texture and the class of the object. From Geirhos et al.
2020

.

in statistical learning is a more general term, but they are both used in the VQA

literature to describe a similar issue.

Shortcut learning is related to the notions of causality and out-of-distribution
(OOD). In statistical learning, the usual assumption is that the data are i.i.d. (in-
dependent and identically distributed). This means that all the data are sampled
from the same distribution, especially since the testing set has the same distribu-
tion as the training set. This is rarely the case in the real world: environments
are constantly evolving, and new situations will occur that were not present in
the training set. For a model to be reliable in both in-distribution and out-of-
distributions, it needs to learn causal features to be able to generalize well. When a
model is learning shortcuts from the training distribution, it might reach a good
performance when evaluated on in-distribution data, that contains the same bi-
ases. This will however lead to poor generalization performance on OOD data,
or when used in the real world on a large scale. Deep Learning models tend to
learn the simplest solution—a property called simplicity bias—(Arpit et al. 2017;
Valle-Perez et al. 2018; Soudry et al. 2018; Kalimeris et al. 2019; Shah et al. 2020).
This is often desirable and helps generalization to in-distribution data, but in
some cases, this makes the model learn only superficial and spurious features,
and will lead to poor generalization performance on OOD data (Pezeshki et al.
2021). For instance, in image classification tasks, models were shown to be often
more biased towards the texture of objects than their shape (Geirhos et al. 2019).
We show an example in Figure 2.15.

Shortcuts might be harmful in many ways. They can lead to dangerous failures
when deployed in the real world, and can also reinforce harmful social biases
towards gender or race (Zhao et al. 2017b; Hendricks et al. 2018b)
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Figure 2.15. – A Standard ResNet-50 trained on ImageNet. The model is biased
towards the texture of an object and classifies the last example as
an elephant instead of a cat. From Geirhos et al. 2019.

Procedures exist to identify certain kinds of biases and to reduce them. For
instance, some methods are focused on gender biases (Hendricks et al. 2018a;
Zhao et al. 2017a), some others on the human reporting biases (Misra et al. 2016),
and also on the shift in distribution between lab-curated data and real-world
data (Gupta et al. 2018). In the language and vision context, some works evaluate
unimodal baselines (Anand et al. 2018; Thomason et al. 2019) or investigate how
language priors create object hallucinations (Rohrbach et al. 2018).

No general method to reduce shortcut learning without additional information
It is not possible to distinguish causal from spurious correlations in a fixed dataset
(Schölkopf et al. 2021). Thus, extra information or inductive biases is required to
guide the learning and improve the generalization to out-of-distribution data.
Geirhos et al. 2020 proposes to classify the inductive biases of models that have an
impact on shortcut learning into four components: architecture, training data, loss
function and optimization procedure. Thus, the knowledge we have about a task
can be incorporated into the final model by changing one of these components.

2.3.1 Measuring shortcut learning in neural networks

We distinguish two challenges here: the first is, given a neural network already
trained on a fixed dataset, how can we evaluate if it has learned the correct
mechanism, using causal features, or if its decisions are based on shortcuts? The
second setup is how can we evaluate the inductive biases of a training procedure
and architecture.
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Evaluating a trained model For the first challenge, there were multiple pro-
posed solutions. The first approach consists in leveraging explainability methods
(Ribeiro et al. 2016; Fong and Vedaldi 2017; Stock and Cisse 2018b; Manjunatha
et al. 2019b), such as attributions methods like LIME. Those methods highlight
parts of the input that were important in the model’s prediction. For instance,
LIME (Ribeiro et al. 2016) shows which pixels from an image contribute the most
to the classification output. A user can then use this to determine if the model is
using spurious correlations, like using the background to predict the class of the
object. We show an example of this in Figure 2.16 These methods often require
the intervention of a human or the collection of expensive annotations (Das et al.
2017a), but don’t require much prior knowledge of the source of the bias.

Figure 2.16. – Explanation of a model’s prediction using LIME for the task “Wolf
vs Husky”. The model uses the background to predict the class, as
wolves appear usually in the snow, while huskies are usually in the
grass. Here, a husky appears in the snow, and the model incorrectly
predicts it as a wolf. From Ribeiro et al. 2016.

Another strategy to evaluate shortcut learning is to create out-of-distribution
evaluation datasets that do not contain the biases that need to be avoided, or that
we hypothesize the system to exploit. (McCoy et al. 2019; Alcorn et al. 2019). It
simulates the kind of shifts in distribution that can potentially be encountered
when deployed in the real world. For example, the FairFace dataset (Kärkkäinen
and Joo 2019) has multiple groups of faces with various races, genders and ages
to evaluate face analysis models. ImageNet-C (Hendrycks and Dietterich 2019) is
a benchmark that contains images from ImageNet, but with a specific corruption
applied to them. The corruption is chosen to be a shortcut that the model might
learn to exploit. It makes it possible to evaluate how well the models rely on
low-level features that are not always relevant to the task. ObjectNet (Barbu et
al. 2019) is a benchmark that contains images from ImageNet, but with unusual
backgrounds, object poses or viewpoints.
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Figure 2.17. – Colored-MNIST dataset. The color of the digit is correlated with
its label, but the correlation is reversed from the training set to the
testing set. Image from B. Kim et al. 2019.

Evaluating the inductive biases of a training procedure and architecture on
controlled biases In this challenge, the objective is to evaluate how much a
given training procedure and model architecture are sensitive to a certain class
of shortcuts. This is related to domain generalization. A simple way to achieve
this is to control the source of biases: the “biased” variable is fixed and a pair
of (training, testing sets) that do not contain the same correlation between this
variable and the answer.

An example displayed in Figure 2.17 is Colored-MNIST (Arjovsky et al. 2019;
B. Kim et al. 2019). It is a toy dataset where the color of the digit is correlated
with its label, but the correlation is reversed from the training set to the testing
set. Therefore, a model using the color of the digit to predict the label will per-
form poorly on the testing set. Another example is Biased Activity Recognition
(BAR) (Nam et al. 2020). It is an activity recognition dataset, where the activity
is correlated with the background scene, but the correlations are changed in the
testing set.

DomainBed (Gulrajani and Lopez-Paz 2021) is another benchmark for domain
generalization. It contains seven datasets, each containing at least three domains
with different biases. Models learn on N-1 datasets and are tested on the held-out
domain. This benchmark is designed to ‘test if models are able to learn invariant
correlations that hold across all domains and generalize to the test domain, or if
they learn spurious domain-specific correlations that do not generalize to the test
domain.
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Those methods make it possible to study how inductive biases influence short-
cut learning in deep neural networks. But they require to control the source of
biases. Next, we will explore methods aiming at reducing shortcut learning.

2.3.2 Reducing shortcut learning

Geirhos et al. 2020 explain what components, or “inductive biases” have an
impact on shortcut learning: the model architecture, the training data, the loss
function and the optimization algorithm. Thus, modifying those components
might help to reduce shortcut learning. One important thing to understand is that
to reduce shortcut learning, we need to make a hypothesis about the source of the
biases, or add domain knowledge to the training procedure or the architecture
on how the task should be solved to make it more robust to those biases. Some
methods also use bias labels to reduce their impact in the final model.

And bias-reduction methods will often degrade performance on in-distribution
testing sets, as they will reduce the ability of the model to exploit the shortcuts
that are common between the training and the testing set.

Some methods include (for multi-environment / bias label) GROUP-DRO
(Sagawa et al. 2020), IRM (Arjovsky et al. 2019), JTT (E. Z. Liu et al. 2021), LfF
(Nam et al. 2020), Mixed capacity ensembles (C. Clark et al. 2020).

A different strategy is to make models “explainable by design” (Angelov 2021;
Fauvel et al. 2022). This makes it possible for users to understand the decision
of the model and assess its correctness. Using domain knowledge as architecture
priors to the model can make it harder for the model to learn spurious correla-
tions.

2.4 Shortcut learning in VQA

VQA is an interesting task to study shortcut learning. It requires performing
reasoning, which is difficult to model: learning simple spurious correlations can
be an easier way for models to achieve good performances. Additionally, it is a
vision-and-language task, which makes possible the existence of complex multi-
modal shortcuts. The VQA v1 dataset (Antol et al. 2015a) was collected without
controls on the correlations between questions, images and answers. This led to a
dataset that contains many biases, that can be exploited by models: A. Agrawal
et al. 2016 study the behavior of VQA models: they show that VQA models “seem
to be heavily reliant on the language model, perhaps not deeply understanding
the image”, and that on the VQA v1 dataset(Antol et al. 2015a), then there is not
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a large gap between the performance of the question-only model and a regular
VQA model. Additionally, they show that VQA models rely mostly on the first
few words of the question. Multiple approaches have been proposed to reduce
biases in VQA datasets and models. Most works focus on reducing the learning
of spurious correlations between the question and the answer, to force models to
rely more on the image. We classify the methods following three types of “induc-
tive biases” proposed by Geirhos et al. 2020: Training data, architectural priors
and learning strategies.

2.4.1 Methods to reduce biases in Visual Question Answering

2.4.1.1 Acting on training data to reduce biases

VQA v2 dataset A first approach that tackles those issues is to change the
inductive biases contained in the training data. The VQA v2 dataset (Goyal et
al. 2017a), follows this approach: They build a more balanced dataset, where
it is harder to answer a question using only the image. It is built by collecting
complementary images such that every question is associated with a second image
leading to a different answer. This approach is expensive, and it can be difficult
to collect the rare examples required to reduce biases but is partially effective to
reduce simple question-answer shortcuts. We display examples from this dataset
in Figure 2.18. The VQA v2 dataset contains 443K train, 214K val and 453K test
pairs of images and questions.

Figure 2.18. – Pair of examples from the VQA v2 dataset. Each question is asso-
ciated with two images with different answers. Image from Goyal
et al. 2017a.
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We observe in Figure 2.19 that overall, the answer distributions associated with
a question type are more balanced for this new dataset. This gives less opportunity
for models to learn to answer the questions without analyzing the image.

Figure 2.19. – Comparison of the distributions of answers between VQA v1 and
VQA v2. Illustration from (Goyal et al. 2017a).

Other datasets and methods Other more balanced datasets have been created.
For instance, the synthetic datasets for VQA (Justin Johnson et al. 2017b; Drew A
Hudson and Manning 2019) minimize question-conditional biases via rejection
sampling within families of related questions to avoid simple shortcuts to the
correct answer.

Other methods of reducing biases by modifying the training data include data
augmentation techniques. RandImg (Teney et al. 2020b) proposes to replace the
image with a random image and maximize the loss, the model avoids trusting too
much the textual input without looking at the image. Other works create counter-
factual samples (L. Chen et al. 2020; Teney et al. 2020a), or leverage explanations
to guide the model to focus on the right regions (Selvaraju et al. 2019).
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2.4.1.2 Architectural priors to reduce shortcut learning

Another approach is to incorporate architectural priors in models to encourage
learning the correct mechanisms. This is related to explainability by design: en-
forcing the architecture to use the correct mechanism to answer the question and
making it explainable are often related and can benefit from the same domain
knowledge. The GVQA model (A. Agrawal et al. 2018a) contains restrictions in
the architecture to prevent the learning of question biases. First, a Visual Concept
Classifier extracts a set of visual concepts from the image that are relevant to the
given question. In parallel, another model extracts a group of possible answers
from the question, such as “object”, “color” or others. Then, an answer predictor
merges those two pieces of information to predict the correct answer. This makes
it harder for the model to select an answer directly from the question and forces
it to analyze the image. The architecture of this model is displayed in Figure 2.20.
This architecture improves results on the VQA-CP dataset compared to previous
VQA models but reduces significantly the accuracy on in-distribution data. Note
that this approach requires training multiple sub-models separately, and is not
trained in an end-to-end fashion.

Figure 2.20. – The GVQA architecture from A. Agrawal et al. 2018a. Two models
are learned separately: the first one extracts visual concepts from
the answer and creates a list of possible answers. The second one
extracts categories of answers from the question. The two predic-
tions are then merged to produce the final answer.

2.4.1.3 Learning strategies to reduce shortcut learning

Ramakrishnan et al. 2018 propose a learning strategy to reduce shortcut learn-
ing, displayed in Figure 2.21. First, they add an adversarial loss that penalizes the
question encoder if it can predict the answer only from the question. Then they
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add an entropy regularization loss that forces the output distribution from the full
model to have lower entropy than the output distribution from the question-only
model, to encourage the use of the additional information contained in the im-
age. This strategy improves the accuracy of their baseline model by a few points.
Kervadec et al. 2020 proposes to use semantic loss that penalizes differently the
answers based on their semantic similarity with the ground truth answer. For
example, if the ground truth answer is “red”, the model will be penalized more
if it predicts “blue” than if it predicts “pink”.

Figure 2.21. – The Q-Adv + DoE adversarial strategy. An Adversarial loss is added
that prevents predicting the answer using only the question encoder.
Additionally, a Difference of Entropy loss encourages the predictions
from the question-only model and the main model to have a differ-
ent distribution. Image from Ramakrishnan et al. 2018.

2.4.2 Benchmarks to measure shortcut learning in VQA

VQA-CP A strategy to evaluate a model’s reliance on shortcuts is to evaluate
it on examples that contradict the shortcuts. But this is not always possible, as
shortcuts can be subtle and hard to detect. Therefore, a simpler strategy can be to
create a training set with known shortcuts and evaluate the model’s performance
on a testing set that does not follow those shortcuts. This is the approach used
in VQA-CP (A. Agrawal et al. 2018a). In this dataset, the distribution of answers
conditioned on the question type is different between the training and the testing
split. Therefore, a model using only the question and not the image to answer
the question will perform much worse on the testing split. We show the results
from their work in Figure 2.23. All existing models suffer from a huge drop in
performance compared to their scores on the original VQA setting.

GQA-OOD The GQA-OOD dataset (Kervadec et al. 2021) similar goal as VQA-
CP: propose a testing set for the GQA dataset that has a different distribution from
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Figure 2.22. – The VQA-CP v2 dataset training and testing distribution, per ques-
tion type. Image from A. Agrawal et al. 2018a.

the GQA training set but corrects some of its shortcomings. First, it has a separate
validation and testing set. This makes it possible to select hyperparameters and
avoid adaptive overfitting. Then, it doesn’t propose a different training set: all
models trained on the regular GQA dataset can be tested on this benchmark.

VQA-Hat The VQA-HAT (Human Attention) dataset (Das et al. 2017a) is de-
signed to evaluate if the VQA models focus on the same regions as a human
would do when answering the same question. It can be used as a proxy to evalu-
ate if the model is learning textual shortcuts without using the image information.
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Figure 2.23. – The VQA-CP dataset results for existing VQA models at the time
of its release. From A. Agrawal et al. 2018b.

Figure 2.24. – Example from the VQA-Hat dataset. Humans do not focus on the
same region of the image depending on the question being asked.
We can compare the attention maps of the VQA models to those of
human attention. Image from Das et al. 2017a.
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2.5 Positioning

In this thesis, we propose multiple contributions related to the topics of Vi-
sual Question Answering and Shortcut Learning. We show a figure of how our
contributions relate to each other in Figure 2.25.

1. At the start of this thesis, the VQA-CP dataset had been proposed (A.
Agrawal et al. 2018b), and the state-of-the-art approach was Q-Adv (Ra-
makrishnan et al. 2018), which attained slight improvements in results over
the baseline model. We present both those works in Section 2.4. The loss
they propose affects the question encoder, preventing it from learning short-
cuts, but does not impact the main model. We propose a learning method
that discourages the whole model from learning question-based shortcuts
(Cadene et al. 2019c).

2. Then, we focus on Visual Counting a sub-task of Visual Question Answering.
Previous models for this task are trained with a classification loss, predicting
numbers as classes: they do not take into account the structure of the output
domain (M. Acharya et al. 2019; Y. Zhang et al. 2018). This makes them
more susceptible to learning shortcuts. Additionally, previous datasets did
not have out-of-distribution evaluation sets to evaluate shortcut learning.
(M. Acharya et al. 2019; Trott et al. 2018). We propose to analyze shortcut
learning in visual counting, a benchmark to evaluate shortcut learning in
counting models, and propose a new architecture that contains inductive
biases to help alleviate this issue (Dancette et al. 2021a).

3. We then study the problem of multimodal shortcuts: most if not all works
on VQA focus on question-based biases, i.e. shortcuts between the question
words and the answer. We propose the first analysis of multimodal (question-
image) shortcuts in VQA, and a new benchmark to evaluate whether VQA
models learn those shortcuts (Dancette et al. 2021b).

4. Finally, we investigate the reliability of VQA models in the context of out-of-
distributions example: how to estimate the confidence of answers returned
by the model, and abstain in case it is too low. We build upon the work of
Whitehead et al. 2022a, on reliability for VQA in-distribution. A model might
have high reliability (i.e. the ability to estimate its own confidence) on in-
distribution test sets, partially because they can use all spurious correlations,
but give wrong confidence values for out-of-distributions examples where
the spurious correlations do not hold.

In addition to those contributions, we show in Figure 2.25 our work on domain
generalization Fishr (Rame et al. 2022), where we propose a new learning strat-
egy to learn invariant models across multiple training distributions, in order to
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generalize to a new testing distribution. We also worked on training efficiency of
vision transformer architectures (Dancette and Cord 2022).

Figure 2.25. – Contributions of this thesis. Our contributions are in blue boxes.
Grey boxes are prior works.
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Chapter abstract

In this chapter, we propose to explore a first strategy to shortcut in Visual
Question Answering (VQA): loss functions. We propose a learning strategy
to reduce the importance of the most biased examples, i.e. examples that can be
correctly classified using only the question, i.e. without looking at the image.
It implicitly forces the VQA model to use the two input modalities instead
of relying on statistical regularities between the question and the answer.
We leverage a question-only model that captures language biases to identify
these unwanted regularities. This model is learned in parallel with the VQA
model and prevents it from learning biases by influencing its predictions. This
leads to dynamically adjusting the loss in order to compensate for biases. We
validate our contributions by surpassing the reference methods on VQA-CP
v2.

The work in this chapter has led to the publication of this conference paper
(* denotes equal contribution):

• Remi Cadene*, Corentin Dancette*, Hedi Ben-Younes, Matthieu Cord,
and Devi Parikh (2019). “RUBi: Reducing Unimodal Biases for Visual
Question Answering”. In: Advances in Neural Information Processing Sys-
tems (NeurIPS)
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3.1 Introduction

As we reported in Chapter 2, VQA models achieve impressive results on the
VQA v2 benchmark. However, we explained in Section 2.4 that they tend to
exploit statistical regularities between answer occurrences and certain patterns
in the question. Those models are designed to merge information from both
modalities, but in practice, they often answer mainly using the question modality.
When most of the bananas are yellow, a model does not need to learn the correct
behavior to reach high accuracy for questions asking about the color of bananas.
Instead of looking at the image, detecting a banana and assessing its color, it is
much easier to learn from the statistical shortcut linking the words what, color
and bananas with the most occurring answer yellow. We illustrate this issue in
Figure 3.1: a model answering the question “What color is the banana?”, that
seen during its training 80% of yellow bananas, will most likely answer yellow,
even if the banana is green like in figure in the middle. Thus, as the right figure
shows, there is a crucial need to develop new strategies to reduce the amount of
biases coming from the question modality in order to learn better behaviors. As
we reported in Section 2.3, one of the inductive biases that influence a model’s
behavior is the loss function. We explore this direction for VQA.

One way to quantify the amount of statistical shortcuts from each modality
is to train unimodal models. For instance, a question-only model trained on the
widely used VQA v2 dataset predicts the correct answer approximately 44% of
the time over the test set. We propose a learning strategy that takes advantage
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Figure 3.1. – As depicted, current VQA models often rely on unwanted statistical
correlations between the question and the answer instead of using
both modalities. We aims at reducing the amount of unimodal biases
learned by a VQA model during training.

of this to reduce the amount of biases learned by VQA models that we call
RUBi – Reducing Unimodal Biases. Our strategy reduces the importance of the most
biased examples, i.e. examples that can be correctly classified without looking
at the image modality. It implicitly forces the VQA model to use the two input
modalities instead of relying on statistical regularities between the question and
the answer. We take advantage of the fact that question-only models are by design
biased towards the question modality: we add a question-only branch on top
of a base VQA model during training only. This branch influences the VQA
model, dynamically adjusting the loss to compensate for biases. As a result, the
gradients backpropagated through the VQA model are reduced for the most
biased examples and increased for the less biased ones. At the end of the training,
we simply remove the question-only branch.

In Section 3.2, we review related work on mitigating shortcut learning for VQA.
In Section 3.3, we describe our RUBi learning strategy. In Section 3.4, we evaluate
our approach on multiple models and standard benchmarks, VQA-CP v1 and v2.
Finally, in Section 3.4.4, we evaluate the impact of RUBi on visual grounding –
the ability of models to use the correct image regions to answer the question.

3.2 Related work

In the following, we discuss related works that assess and reduce unimodal bi-
ases learned by VQA models. We discuss VQA models and datasets in Section 2.2,
and give a general introduction on shortcut learning in Section 2.3, and especially
for VQA in Section 2.4.
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Assessing unimodal biases in datasets and models Despite being designed to
merge the two input modalities, it has been found that VQA models often rely
on superficial correlations between inputs from one modality and the answers
without considering the other modality (Jabri et al. 2016; Manjunatha et al. 2019a).
An interesting way to quantify the amount of unimodal biases that can potentially
be learned by a VQA model consists of training models using only one of the two
modalities (Antol et al. 2015a; Goyal et al. 2017a). The question-only model is a
particularly strong baseline because of the large amount of statistical regularities
that can be leveraged from the question modality. With the RUBi learning strategy,
we take advantage of this baseline model to prevent VQA models from learning
question biases.

Unfortunately, biased models that exploit statistical shortcuts from one modality
usually reach impressive accuracy on most of the current benchmarks. VQA-
CP v2 and VQA-CP v1 (A. Agrawal et al. 2018b), presented in Section 2.4.2,
were introduced as diagnostic datasets containing different answer distributions
for each question type between train and test splits. Consequentially, models
biased towards the question modality fail on these benchmarks. We use the more
challenging VQA-CP v2 dataset extensively in order to show the ability of our
approach to reduce the learning of biases coming from the question modality.

Balancing datasets to avoid unimodal biases Once the unimodal biases have
been identified, one method to overcome these biases is to create more balanced
datasets, as presented in Section 2.4.1.1. However, even with this additional bal-
ancing done in VQA v2, statistical biases from the question remain and can be
leveraged (A. Agrawal et al. 2018b). That is why we propose an approach to
reduce unimodal biases during training. It is designed to learn unbiased models
from biased datasets.

Architectures and learning strategies to reduce unimodal biases In parallel
with these previous works on balancing datasets, an important effort has been car-
ried out to design VQA models to overcome biases from datasets. (A. Agrawal et
al. 2018b) proposed a hand-designed architecture called Grounded VQA (GVQA),
presented in Section 2.4.1.2. It breaks the task of VQA down into a first step of
locating and recognizing the visual regions needed to answer the question, and
a second step of identifying the space of plausible answers based on a question-
only branch. This approach requires training multiple sub-models separately. In
contrast, our learning strategy is end-to-end. Their complex design is not straight-
forward to apply to different architectures while our approach is model-agnostic.
While we rely on a question-only branch, we remove it at the end of the training.
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The work most related to ours in terms of approach is (Ramakrishnan et al.
2018), presented in Section 2.4.1.3. The authors propose a learning strategy to
overcome language priors in VQA models. They first introduce an adversary
question-only branch. It takes as input the question encoding from the VQA
model and produces a question-only loss. They use a gradient negation of this
loss to discourage the question encoder to capture unwanted biases that could
be exploited by the VQA model. They also propose a loss based on the differ-
ence of entropies between the VQA model and the question-only branch output
distributions. These two losses are only backpropagated to the question encoder.
In contrast, our learning strategy targets the full VQA model parameters to re-
duce the impact of unwanted biases more effectively. Instead of relying on these
two additional losses, we use the question-only branch to dynamically adapt the
value of the classification loss in order to reduce the learning of biases in the VQA
model. A visual comparison between (Ramakrishnan et al. 2018) and RUBi can
be found in Figure 3.4.

3.3 Reducing Unimodal Biases Approach

We consider the common formulation of the Visual Question Answering (VQA)
defined in Chapter 2, Section 2.2. We consider the task as a single-label classifi-
cation problem. We define additional notations: for a single example (vi, qi, ai),
VQA models use an image encoder ev : V → Rnv×dv to output a set of nv vectors
of dimension dv, a question encoder eq : Q → Rnq×dq to output a set of nq vectors
of dimension dq, a multimodal fusion fm : Rnv×dv ×Rnq×dq → Rdm , and a classifier
c : Rdm → R|A|. These functions are composed as follows:

f(vi, qi) = c(fm(ev(vi), eq(qi))) (3.1)

Each one of them can be defined to instantiate most of the specialized VQA
models, such as Bottom-Up and Top-Down Attention (UpDn) (Anderson et al.
2018a) or MUREL (Cadene et al. 2019a).

We recall the classical learning strategy of VQA models, depicted in Figure 3.2:
it consists in minimizing the standard cross-entropy criterion over a dataset of
size n:

L(θ;D) = − 1

n

n∑
i=1

log(softmax(f(vi, qi)))[ai] (3.2)

As explained in Section 2.4, VQA models are inclined to learn unimodal biases
from the datasets (A. Agrawal et al. 2018b). They do not learn to use the image
information because there are too few examples in the dataset where the banana
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Figure 3.2. – Visual comparison between the classical learning strategy of a VQA
model and our RUBi learning strategy. The red highlighted modules
are removed at the end of the training. The output âi is used as the
final prediction.

is not yellow. Once trained, their inability to use the two modalities adequately
makes them inoperable on data coming from different distributions such as real-
world data. Our contribution consists in modifying this cost function L to avoid
the learning of these biases.

3.3.1 RUBi learning strategy

Capturing biases with a question-only branch One way to measure the uni-
modal biases in VQA datasets is to train a unimodal model which takes only one
of the two modalities as input.

The key idea of our approach, depicted in Figure 3.2, is to adapt a question-only
model as a branch of our VQA model, that will alter the main model’s predictions.
By doing so, the question-only branch captures the question biases, allowing the
VQA model to focus on the examples that cannot be answered correctly using
the question modality only. The question-only branch can be formalized as a
function fQ : Q → R|A| parameterized by θQ, and composed of a question encoder
eq : Q → Rnq×dq to output a set of nq vectors of dimension dq, a neural network
nnq: Rnq×dq → R|A| and a classifier cq: R|A| → R|A|.

fQ(qi) = cq(nnq(eq(qi))) (3.3)
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(a) Classical learning strategy (b) RUBi learning strategy

Figure 3.3. – Detailed illustration of the RUBi impact on the learning. In the first
row, we illustrate how RUBi reduces the loss for examples that can
be correctly answered without looking at the image. In the second
row, we illustrate how RUBi increases the loss for examples that
cannot be answered without using both modalities.

During training, the branch acts as a proxy preventing any VQA model of the
form presented in Equation (3.1) from learning biases. At the end of the training,
we simply remove the branch and use the predictions from the base VQA model.

Preventing biases by masking predictions Before passing the predictions of
our base VQA model to the loss function defined in Equation (3.2), we merge
them with a mask of length |A| containing a scalar value between 0 and 1 for
each answer. This mask is obtained by passing the output of the neural network
nnq through a sigmoid function σ. The goal of this mask is to dynamically alter
the loss by modifying the predictions of the VQA model. To obtain the new
predictions, we simply compute an element-wise product ⊙ between the mask
and the original predictions as defined in the following equation.
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fQM(vi, qi) = f(vi, qi)⊙ σ(nnq(eq(qi))) (3.4)

Our method modifies the predictions in this specific way to prevent the VQA
model to learn biases from the question. To better understand the impact of our
approach on learning, we examine two scenarios. First, we reduce the importance
of the most biased examples, i.e. examples that can be correctly classified without
using the image modality. To do so, the question-only branch outputs a mask to
increase the score of the correct answer while decreasing the scores of the others.
As a result, the loss is much lower for these biased examples. In other words, the
gradients backpropagated through the VQA model are smaller, thereby reducing
the importance of these examples during training. As illustrated in the first row
of Figure 3.3, given the question what color is the banana, the mask takes a high
value of 0.8 for the answer yellow which is the most likely answer for this question
in the training set. On the other hand, the value for the other answers green and
white are smaller. We see that the mask influences the VQA model to produce new
predictions where the score associated with the answer yellow increases from 0.8
to 0.94. Compared to the classical learning approach, the loss is smaller with RUBi
and decreases from 0.22 to 0.06. Secondly, we increase the importance of examples
that cannot be answered without using both modalities. For these examples, the
question-only branch outputs a mask that increases the score of the wrong answer.
As a result, the loss is much higher and the VQA model is encouraged to learn
from these examples. We illustrate this behavior in the second row of Figure 3.3
for the same question about the color of the banana. When the image contains a
green banana, RUBi increases the loss from 0.69 to 1.20.

Joint learning procedure We jointly optimize the parameters of the base VQA
model and its question-only branch using the gradients computed from two losses.
The main loss LQM refers to the cross-entropy loss associated with the predictions
of fQM(vi, qi) from Equation 3.4. We backpropagate this loss to optimize all the
parameters θQM which contributed to this loss. θQM is the union of the parameters
of the base VQA model, the encoders, and the neural network nnq of the question-
only branch. In our setup, we share the parameters of the question encoder eq
between the VQA model and the question-only branch. The question-only loss
LQO is a cross-entropy loss associated with the predictions of fQ(qi) from Equa-
tion 3.3. We use this loss to only optimize θQO, the union of the parameters of
cq and nnq. By doing so, we further improve the question-only branch’s ability
to capture biases. Note that we do not backpropagate this loss to the question
encoder eq preventing it from directly learning question biases.
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We obtain our final loss LRUBi by summing the two losses together in the fol-
lowing equation:

LRUBi(θQM , θQO;D) = LQM(θQM ;D) + LQO(θQO;D) (3.5)

3.3.2 Baseline architecture

Most VQA architectures from the state of the art are compatible with our RUBi
learning strategy. To test our strategy, we design a fast and simple architecture in-
spired by the MuRel architecture (Cadene et al. 2019b). Our baseline architecture
encodes the image as a bag of nv visual features vi ∈ Rdv using the pre-trained
Faster R-CNN from Anderson et al. 2018b, and encodes the question as a vector
q ∈ Rdq using a GRU, pre-trained on the Skip-thought task (Kiros et al. 2015b). It
computes a bilinear fusion between the question vector and the visual features
for each region. The bilinear fusion module is a BLOCK (Ben-Younes et al. 2019a)
composed of 15 chunks, each of rank 15. The dimension of the projection space
is 1000, and the output dimension is 2048. The output of the bilinear fusion is
aggregated using a max pooling over nv regions. The resulting vector is then fed
into a Multi-Layer Perceptron (MLP) classifier composed of three layers of size
(2048, 2048, 3000), with Rectified Linear Unit (ReLU) activations. It outputs the pre-
dictions over the space of the 3000 answers. While most of our experiments are
done with this fast and simple baseline architecture, we experimentally demon-
strate that the RUBi learning strategy is effective on two other VQA architectures,
Bottom-Up and Top-Down Attention (UpDn) (Anderson et al. 2018a) and Stacked
Attention Network (SAN) (Yang et al. 2016).

3.4 Results

3.4.1 Experimental setup

We train and evaluate our models on VQA-CP v2 (A. Agrawal et al. 2018b),
described in Section 2.4.2. This dataset was developed to evaluate the models’
robustness to question biases. We follow the same training and evaluation proto-
col as Ramakrishnan et al. 2018, who also propose a learning strategy to reduce
biases. For each model, we report the standard VQA evaluation metric (Antol
et al. 2015a). We also evaluate our models on the standard VQA v2 (Goyal et al.
2017a), as well as VQA-CP v1 and VQA-HAT (Das et al. 2016).
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Figure 3.4. – Visual comparison between RUBi and Q-Adv+DoE (Ramakrishnan
et al. 2018).

Optimization process We train all our models with the Adam optimizer. We
train our baseline architecture with the learning rate scheduler of Cadene et al.
2019b. We use a learning rate of 1.5 × 10−4 and a batch size of 256. During the
first 7 epochs, we linearly increase the learning rate to 6 × 10−4. After epoch 14,
we apply a learning rate decay strategy which multiplies the learning rate by 0.25

every two epochs. We train our models until convergence as we do not have a
validation set for VQA-CP v2.

We fine-tune the question encoder during training, but we do not fine-tune the
image extractor.

For the UpDn and SAN architectures, we follow the optimization procedure
described in Ramakrishnan et al. 2018.

Software and hardware We use pytorch 1.1.0 to implement our algorithms in
order to benefit from the GPU acceleration. We use a single NVidia Titan Xp GPU
GPU for each experiment. A single experiment from Table 1 with the baseline
architecture trained with or without RUBi takes less than five hours to run.

3.4.2 Evaluation of RUBi on VQA-CP

In Table 3.1, we evaluate our approach consisting of our baseline architecture
trained with RUBi on VQA-CP v2 against previous methods and VQA models.
We compute the average accuracy over 5 experiments with different random
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seeds. Our RUBi approach reaches an average overall accuracy of 47.11% with
a low standard deviation of ±0.51. This accuracy corresponds to a gain of +5.94

percentage points over the previous reference approach UpDn + Q-Adv + DoE. It
also corresponds to a gain of +15.88 over GVQA (A. Agrawal et al. 2018b), which
is a specific architecture designed for VQA-CP. RUBi reaches a +8.65 improvement
over our baseline model trained with the classical cross-entropy. In comparison,
the second-best approach UpDn + Q-Adv + DoE only achieves a +1.43 gain in
overall accuracy over their baseline UpDn. In addition, our approach does not
significantly reduce the accuracy over our baseline for the answer type Other,
while the second-best approach reduces it by 10.57 points.

Model Overall
Answer type

Yes/No Number Other

Question-Only 15.95 35.09 11.63 7.11

UpDn ** 38.01 . . .
MuRel 39.54 42.85 13.17 45.04

GVQA 31.30 57.99 13.68 22.14

UpDn * 39.74 42.27 11.93 46.05
UpDn + Q-Adv + DoE 41.17 65.49 15.48 35.48

Balanced Sampling 40.38 57.99 10.07 39.23

Q-type Balanced Sampling 42.11 61.55 11.26 40.39

Baseline architecture 38.46 ± 0.07 42.85 ± 0.18 12.81 ± 0.20 43.20 ± 0.15

RUBi 47.11 ± 0.51 68.65 ± 1.16 20.28 ± 0.90 43.18 ± 0.43

Table 3.1. – Results on VQA-CP v2 test. All reported models use the same fea-
tures from (Anderson et al. 2018b). Models with * have been trained
by (Ramakrishnan et al. 2018). Models with ** have been trained by
(Shrestha et al. 2019). Models are Question-Only (A. Agrawal et al.
2018b), UpDn (Anderson et al. 2018b), BAN (J.-H. Kim et al. 2018),
MuRel (Cadene et al. 2019b), RAMEN (Shrestha et al. 2019), BAN
(J.-H. Kim et al. 2018), GVQA (A. Agrawal et al. 2018b), UpDn + Q-
Adv + DoE (Ramakrishnan et al. 2018)

Additional baselines We compare our results to two sampling-based training
methods. In the Balanced Sampling method, we sample the questions such that the
answer distribution is uniform. In the Question-Type Balanced Sampling method, we
sample the questions such that for every question type, the answer distribution
is uniform, but the question type distribution remains the same overall Both
methods are tested with our baseline architecture. We can see that the Question-
Type Balanced Sampling improves the result from 38.46 in accuracy to 42.11. This
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gain is already +0.94 higher than the previous reference method (Ramakrishnan
et al. 2018) but remains significantly lower than our proposed method.

Architecture agnostic RUBi can be used on existing VQA models without
changing the underlying architecture. In Table 3.2, we experimentally demonstrate
the generality and effectiveness of our learning scheme by showing results on two
additional architectures, Stacked Attention Network (SAN) (Yang et al. 2016) and
Bottom-Up and Top-Down Attention (UpDn) (Anderson et al. 2018b). First, we
show that applying RUBi on these architectures leads to important gains over the
baselines trained with their original learning strategy. We report a gain of +11.73

accuracy points for SAN and +4.5 for UpDn. This lower gap in accuracy may
show that UpDn is less driven by biases than SAN. This is consistent with results
from (Ramakrishnan et al. 2018). Secondly, we show that these architectures
trained with RUBi obtain better accuracy than with the reference strategy from
(Ramakrishnan et al. 2018). We report a gain of +3.4 with SAN + RUBi over SAN
+ Q-Adv + DoE, and +3.06 with UpDn + RUBi over UpDn + Q-Adv + DoE.

Model Overall Yes/No Number Other

SAN (Yang et al. 2016) 24.96 38.35 11.14 21.74

SAN + Q-Adv+DoE 33.29 56.65 15.22 26.02

SAN + RUBi 37.63 59.49 13.71 32.74

UpDn (Anderson et al. 2018b) 39.74 42.27 11.93 46.05
UpDn + Q-Adv+DoE 41.17 65.49 15.48 35.48

UpDn + RUBi 44.23 67.05 17.48 39.61

Table 3.2. – Overall accuracy top1 on VQA-CP v2 for the SAN and UpDn archi-
tectures.

Results on VQA-CP v1 In Table 3.4, we report results on the VQA-CP v1

dataset (A. Agrawal et al. 2018b). Our RUBi approach consistently leads to signifi-
cant gains over the classical learning strategy with a gain of +9.8 overall accuracy
point with our baseline architecture, +19.2 with SAN and +7.66 with UpDn. Addi-
tionally, RUBi leads to a gain of +2.65 over the adversarial regularization method
(Q-Adv + DoE) from (Ramakrishnan et al. 2018) with SAN. A visual comparison
between RUBi and (Ramakrishnan et al. 2018) can be found in Figure 3.4. Finally,
all three architectures trained with RUBi reach a higher accuracy than GVQA (A.
Agrawal et al. 2018b) which has been hand-designed to overcome biases.

Impact on VQA v2 We report the impact of our method on the standard VQA
v2 dataset in Table 3.3. VQA v2 train, val and test sets follow the same distribution,
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Model val test-dev

Baseline (ours) 63.10 64.75
RUBi (ours) 61.16 63.18

Table 3.3. – Overall accuracy of the RUBi learning strategy on VQA v2 val and
test-dev splits.

.

Model Overall Yes/No Number Other

GVQA (A. Agrawal et al. 2018b) 39.23 64.72 11.87 24.86

Baseline (ours) 37.13 41.96 12.54 41.35

Baseline + RUBi 46.93 66.78 20.98 43.64

SAN 26.88 35.34 11.34 24.70

SAN + Q-Adv+DoE 43.43 74.16 12.44 25.32

SAN + RUBi 46.08 75.00 13.30 30.49

UpDn (ours) 37.15 41.13 12.73 43.00
UpDn + RUBi 44.81 69.65 14.91 32.13

Table 3.4. – Overall accuracy top1 on VQA-CP v1. SAN+Q-Adv+DoE (Ramakr-
ishnan et al. 2018)

contrarily to VQA-CP v2 train and test sets. In this context, we usually observe
a drop in accuracy using approaches focused on reducing biases. This is because
exploiting unwanted correlations from the VQA v2 train set is not discouraged
and often leads to a higher accuracy on the test set. Nevertheless, our RUBi
approach leads to a comparable drop to what can be seen in other comparable
strategies. We report a drop of 1.94 percentage points with respect to our baseline,
while (A. Agrawal et al. 2018b) report a drop of 3.78 between GVQA and their
SAN baseline. (Ramakrishnan et al. 2018) report drops of 0.05, 0.73 and 2.95 for
their three learning strategies with the UpDn architecture which uses the same
visual features as RUBi. As shown in this section, RUBi improves the accuracy
on VQA-CP v2 by a large margin, while maintaining competitive performance on
the standard VQA v2 dataset compared to similar approaches.

3.4.3 Ablation study

Validation of the masking strategy We compare different fusion techniques
to combine the output of nnq with the output from the VQA model. We report
a drop of 7.09 accuracy points on VQA-CP v2 by replacing the sigmoid with
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a ReLU on our best-scoring model. Using an element-wise sum instead of an
element-wise product leads to a further performance drop. These results confirm
the effectiveness of our proposed masking method which relies on a sigmoid and
an element-wise sum.

Validation of the question-only loss In Table 3.5, we validate the ability of
the question-only loss LQO to reduce the question biases. The absence of LQO

implies that the question-only classifier cq is never used, and nnq only receives
gradients from the main loss LQM . Using LQO leads to consistent gains on all
three architectures. We report a gain of +0.89 for our Baseline architecture, +0.22

for SAN, +4.76 for UpDn.

Model LQO Overall Yes/No Number Other

Baseline + RUBi ✓ 47.11 68.65 20.28 43.18
✗ 46.11 69.18 26.85 39.31

SAN + RUBi ✓ 37.63 59.49 13.71 32.74
✗ 36.96 59.78 12.55 31.69

UpDn + RUBi ✓ 44.23 67.05 17.48 39.61
✗ 39.47 60.27 16.01 35.01

Table 3.5. – Ablation study of the question-only loss LQO on VQA-CP v2.

3.4.4 Analysis of grounding on VQA-HAT

We conduct additional studies to evaluate the grounding ability of models
trained with RUBi. We follow the experimental protocol of VQA-HAT (Das et al.
2016), described in Section 2.4.2. This dataset contains human attention maps
for images from the VQA v1 dataset, indicating which regions humans found
relevant for answering the question. We train our models on VQA v1 train set
and evaluate them using rank-correlation on the VQA-HAT val set, which is a
subset of the VQA v1 val set. This metric compares attention maps computed
from a model against human annotations. In Table 3.6, we report a gain of +0.012

with our baseline architecture trained with RUBi, a gain of +0.019 with SAN and
a loss of -0.003 with UpDn architecture.

We display in Figure 3.5 and Figure 3.6 some manually selected VQA triplets
associated to the human attention maps provided by VQA-HAT (Das et al. 2016)
and the attention maps computed from our baseline architecture when trained
with and without RUBi. In Figure 3.5, we observe that the attention maps with
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Model RUBi Rank-Corr.

Random (Das et al. 2016) 0.000

Human (Das et al. 2016) 0.623

Baseline ✗ 0.431

✓ 0.443

SAN ✗ 0.191

✓ 0.210

UpDn ✗ 0.449
✓ 0.446

Table 3.6. – Correlation with Human Attention Maps on VQA-HAT val set (Das
et al. 2016).

RUBi are closer to the human attention maps than without RUBi. On the contrary,
we observe in Figure 3.6 some failure to improve grounding ability.

3.4.5 Qualitative examples

To better understand the impact of our RUBi approach, we compare in Fig-
ure 3.7 the answer distribution on VQA-CP v2 for some specific question patterns.
We also display interesting behaviors on some examples using attention maps
extracted as in Cadene et al. 2019b. In the first row, we show the ability of RUBi
to reduce biases for the is this person skiing question pattern. Most examples in
the train set have the answer yes, while in the test set, they have the answer no.
Nevertheless, RUBi outputs 80% of no, while the baseline almost always outputs
yes. Interestingly, the best scoring region from the attention map of both models
is localized on the shoes. To get the answer right, RUBi seems to reason about
the absence of skis in this region. It seems that our baseline gets it wrong by not
seeing that the skis are not locked under the ski boots. This unwanted behavior
could be due to question biases. In the second row, similar behaviors occur for the
what color are the bananas question pattern. 80% of the answers from the train set
is yellow, while most of them are green in the test set. We show that the amount
of green and white answers from RUBi are much closer to the ones from the test
set than with our baseline. In the example, it seems that RUBi relies on the color
of the banana, while our baseline misses it. In the third row, it seems that RUBi
is able to ground the textual concepts such as top part of the fire hydrant and color
on the right visual region, while the baseline relies on the correlations between
the fire hydrant, the yellow color of its core and the answer yellow. Similarly, on
the fourth row, RUBi grounds color, star, fire hydrant on the right region, while our
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Figure 3.5. – Examples of better grounding ability on VQA-HAT implied by RUBi.
From the left column to the right: image-question-answer triplet,
human attention map from (Das et al. 2016), attention map from our
baseline, attention map from our baseline trained with RUBi.
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Figure 3.6. – Examples of failure to improve grounding ability on VQA-HAT.
From the left column to the right: image-question-answer triplet,
human attention map from (Das et al. 2016), attention map from our
baseline, attention map from our baseline trained with RUBi.

baseline relies on correlations between color, fire hydrant, the yellow color of the
top part region and the answer yellow. Interestingly, there is no similar question
that involves the color of a star on a fire hydrant in the training set. It shows the
capacity of RUBi to generalize to unseen examples by composing and grounding
existing visual and textual concepts from other kinds of question patterns.
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Figure 3.7. – Qualitative comparison between the outputs of RUBi and our base-
line on VQA-CP v2 test. On the left, we display distributions of
answers for the train set, the baseline evaluated on the test set, RUBi
on the test set and the ground truth answers from the test set. For
each row, we filter questions in a certain way. In the first row, we
keep the questions that exactly match the string is this person skiing.
In the three other rows, we filter questions that respectively include
the following words: what color bananas, what color fire hydrant and
what color star hydrant. On the right, we display examples that contain
the pattern from the left. For each example, we display the answer of
our baseline and RUBi, as well as the best scoring region from their
attention map.
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3.5 Conclusion

In this chapter, we explore unimodal shortcut learning in VQA: models tend to
rely mostly on the question modality, sometimes ignoring the image. This is a
significant issue for deploying models in the real world: they are not robust to
unusual situations and might fail catastrophically. This also means that models
do not learn the intended reasoning mechanism. To tackle those issues, we propose
RUBi, a learning strategy to reduce shortcut learning in VQA. The main VQA
model is learned jointly with a question-only branch that captures unwanted
statistical regularities from the question modality. This branch influences the base
VQA model to prevent the learning of unimodal biases from the question. RUBi
is designed to be model agnostic.

We demonstrate the effectiveness of modifying the learning strategy as an in-
ductive bias to reduce question-based shortcut learning in VQA: RUBi improves
the performance of baseline models on VQA-CP v2, a dataset specifically de-
signed to account for question biases. Additionally, we see that the RUBi strategy
slightly improves the grounding for some models, demonstrating that it might
help models learn the intended reasoning mechanism. This shows that learning
strategies are an effective way to reduce shortcut learning for the VQA task.

Multiple following works explored other learning strategies. For instance, Ker-
vadec et al. 2020 propose to take account of the semantic structure of the answer
distribution: a model answering “pink” instead of “red” is better than answering
“basketball”. They show this makes the model more robust to biases in the VQA-
CP task. Teney et al. 2020a propose to create minimal counterfactual examples,
i.e. an example with a slightly different image, as an existing example, with a
ground-truth answer that is different from the original example. This encourages
the model to use the image modality and not rely solely on the question. In the
next chapter, we explore another approach to tackle this same issue: designing
the model with architectural priors to prevent shortcut learning.
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Chapter abstract

In this chapter, we focus on the task of answering counting questions, a subset
of the Visual Question Answering task. It is also subject to the same kind
of biases as the original VQA task, but the output distribution is simpler:
it is a single number. This allows us to explore another strategy to reduce
shortcut learning: architectural priors. We first introduce two large-scale
out-of-distribution datasets: TallyQA-CP and TallyQA-Odd-Even. They are
made of training and testing sets that do not follow the same answer distri-
bution to penalize models that have learned biases instead of proper counting
mechanisms. We show that state-of-the-art models obtain low performances on
our datasets, which means that they have learned biases. Then, we show that
using architectural priors in the models can help to reduce shortcut learning:
we propose the Spatial Counting Network (SCN), a model which incorporates
domain knowledge to encourage learning of the proper counting mechanisms:
it outputs a natural number obtained by selecting and counting objects in the
image. We show that our model performs better on our datasets that penalize
biases. We also report a better ability to select the correct objects to count in
the image when trained on a classic dataset.

The work in this chapter has led to the publication of a workshop paper:

• Corentin Dancette, Remi Cadene, Xinlei Chen, and Matthieu Cord (2021a).
“Learning Reasoning Mechanisms for Unbiased Question-based Count-
ing”. In: VQA Workshop, Conference on Computer Vision and Pattern Recog-
nition (CVPR).
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4.1 Introduction

As we explain in Chapter 2, shortcut learning is problematic in the context of
reasoning tasks like Visual Question Answering (VQA). In Chapter 3, we propose
a learning strategy to tackle the issue of unimodal biases. Here, we focus on the
task of answering counting questions, a subset of VQA, and propose to explore
another direction to reduce shortcut learning: using architectural priors to con-
strain the network to learn the correct mechanism and prevent it to learn spurious
correlations. We choose the counting task for several reasons:

• First, similarly to VQA, question-based counting requires high-level reasoning
abilities and displays similar biases. As illustrated qualitatively in Figure 4.1
(and later quantitatively in our experiments), current models tend to find
an easier way out by correlating the output to some spurious patterns in
the input and skipping the learning of reasoning mechanisms. For instance,
questions starting with how many wings can reasonably be answered 2 without
looking at the image, allowing models that use this kind of bias to achieve
high accuracy on the testing set. However, those models will be easily fooled
in the real world. In the largest question-based counting dataset, TallyQA
(M. Acharya et al. 2019), we found that the appearance of certain words in
the question or objects in the image is highly predictive of the count label.
For instance, the presence of the words “cars”, “are”, and “black” in the
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question are associated 94% of the time with the answer 0. Similarly, the
words “legs”, and “animal“ are associated with the answer 4. It is critical
to create appropriate benchmarks that reflect these failures and to propose
approaches to reduce shortcut learning.

• Second, the mechanism of counting is well-defined and has a structure that
can be taken into account in models. To properly answer a counting ques-
tion, one has to first detect each relevant object in the image, based on a
complex, sometimes compositional question involving other objects. Then,
figure out their relationships for possible de-duplication or filtering, and then
accumulate and aggregate the number of objects to count. These mechanisms
must be learned using the answer, a single number in the case of counting,
as the only supervision. We take advantage of this property to incorporate
architectural priors to reduce shortcut learning. Thus, we can evaluate if the
proper mechanism has been learned for models that detect and select objects
to count.

• Third, counting is a useful task that leads to important practical applications
(Lempitsky and Zisserman 2010; Briggs 2009; Onoro-Rubio and López-Sastre
2016). Solving question-based counting would lead to the next generation of
counting systems with textual interfaces.

In this chapter, we take a first step towards the development of unbiased mod-
els that learn to leverage the underlying mechanisms for multi-modal reasoning
tasks. Our contributions are two-fold. We propose two counting datasets meant
to evaluate a model and learning strategy’s ability to avoid learning biases. Both
datasets are built on the idea of changing distributions, meaning the training and
testing distributions are different. Intuitively, if a model has learned the reasoning
mechanisms for counting, it should generalize well despite changing distribu-
tions, whereas the models that learn to merely correlate inputs to outputs likely
cannot. This method has been used for general VQA. In fact, VQA-CP, presented
in Section 2.4.2, was precisely developed by re-organizing the training and testing
sets of original VQA v1 and v2. Our first dataset, TallyQA-CP, follows a similar
protocol. However, VQA-CP only tackles question biases as the re-arrangement was
conditioned on different question types. We go a step further by introducing an-
other set, TallyQA-Odd-Even, which by design penalizes models that rely on any
kind of shortcut, not just question biases. We experimentally verify the feasibility
of using our datasets to penalize the use of biases and show that reference VQA
models suffer from large performance drops on our datasets, which indicates that
they have learned biases.

Additionally, we contribute by introducing a simple and effective model —
Spatial Counting Network (SCN) — that avoids learning the biases and instead
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Figure 4.1. – Matching simple patterns from the training set can be enough to an-
swer a large number of counting questions and obtain high accuracy
on the testing set. For instance, when the words "are" and "wearing"
appear in the question while a head of a cat appears in the image
(183 times in the training set), the answer is always "0" in the training
and testing sets. In the real world, biased models that rely on such a
pattern would fail to provide the correct answer.

learns the proper reasoning mechanisms for counting. It is based on the following
design choices: 1) a regression loss instead of a classification loss to account for
the answer structures (ordered natural numbers) and strive for a better out-of-
distribution generation; 2) a final count based on individual scores to each region
with self-attention-based relationship modeling; and 3) entropy regularization to
enforce sparse region scores.

In Section 4.2, we give an overview of works related to visual counting. In
Section 4.3, we propose two evaluation benchmarks for shortcut learning in visual
counting. In Section 4.4, we propose Spatial Counting Network (SCN), our model
designed for visual counting, and we evaluate it on our proposed benchmark in
Section 4.5.
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4.2 Related work

We discussed the general VQA architectures in Section 2.2.2, and shortcut learn-
ing in VQA in Section 2.4. In this section, we discuss the related work on visual
counting.

Counting has long been a subject of interest in the computer vision community
(Lempitsky and Zisserman 2010; Arteta et al. 2016; Onoro-Rubio and López-
Sastre 2016; Marsden et al. 2018; Babu Sam et al. 2017; Sindagi and Patel 2018;
Chattopadhyay et al. 2017) leveraging annotations such as segmentation maps
(Cholakkal et al. 2019), bounding boxes (J. Liu et al. 2018) or localized dots (Lem-
pitsky and Zisserman 2010; Y. Liu et al. 2019). In this section, we discuss more
general question-biased counting approaches that require a minimal amount of
supervision in the form of a unique answer per question-image pair.

Question-based counting datasets The approaches studying counting ques-
tions on real images were first developed on Visual Question Answering (VQA)
datasets (Antol et al. 2015b; Goyal et al. 2017b; Krishna et al. 2017b; Kafle and
Kanan 2017). They were evaluated on the "how many?" questions (Y. Zhang et
al. 2018) or on subsets associated with numerical ground-truth answers such as
Count-QA (Chattopadhyay et al. 2017) or HowMany-QA (Trott et al. 2018). Since
examples labeled as number only account for around 10% of the VQA datasets,
a large dataset dedicated to counting questions was introduced: TallyQA (M.
Acharya et al. 2019). It is composed of novel simple and complex questions with
the addition of examples from previous datasets: VQA v2 (Goyal et al. 2017b),
HowMany-QA (Trott et al. 2018), TDIUC (Kafle and Kanan 2017) and Visual
Genome (Krishna et al. 2017b). We use TallyQA to build our novel datasets by
reorganizing examples between training and testing sets to induce shifts in the
distribution of counting labels.

Question-based counting models We consider only models that take a ques-
tion as input, and not specialized counting models such as (Chattopadhyay et al.
2017; Sindagi and Patel 2018). General VQA models are able to answer counting
questions by incorporating various modules that learn a fusion between the im-
age and the question (Malinowski and Fritz 2014b; Antol et al. 2015b; Ben-Younes
et al. 2017a; Ben-Younes et al. 2019b; Anderson et al. 2018a). Those equipped with
relational and self-attention modules reach better results on counting questions
(Santoro et al. 2017; Perez et al. 2018; Drew Arad Hudson and D. Manning 2018;
Cadene et al. 2019a). We hypothesize that these modules help to avoid counting
duplicated object regions more than once, an important challenge in counting.
Then, dedicated counting models were developed. The state-of-the-art, RCN (M.
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Acharya et al. 2019) is based on relational networks (Santoro et al. 2017), while
Counter (Y. Zhang et al. 2018) builds a graph representation and performs hand-
crafted operations to select objects and remove duplicates. Instead, our model is
composed of the recent self-attention module (Vaswani et al. 2017). Additionally,
an important characteristic of counting is that the answers are natural numbers.
RCN and Counter take advantage of that by using a classification loss. ILRC (Trott
et al. 2018) uses a different approach: it learns a hard selection of image regions
using reinforcement learning. Instead, our model learns a soft selection in an end-
to-end fashion and is trained with a regression loss with an entropy regularization
term to enforce the output of natural numbers. Our design choices guarantee a
certain level of interpretability and allow the model to output counting values
that have never been encountered in the training set.

4.3 Novel out-of-distribution datasets

4.3.1 Methodology for creating our evaluation benchmarks

In this section, we describe a methodology to create evaluation benchmarks
for visual counting. We design them to penalize models that over-rely on any
kind of data biases without the need for external annotations or human super-
vision. We use them to select models that have learned a more robust counting
mechanism instead of biases. We introduce two datasets by changing the distribu-
tion of count labels of the training and testing sets of TallyQA (M. Acharya et al.
2019), the recent and biggest question-based visual counting dataset. Its original
training set contains 130K real images from COCO (T.-Y. Lin et al. 2014b) and
Visual Genome (Krishna et al. 2017b). Each image is associated with questions
and count labels for a total of ∼250K samples. Answering counting questions
requires abilities to detect relationships between objects, and their attributes, per-
form spatial reasoning, and more. In Section 4.3.2, we give additional statistics
about our datasets. Then, in Section 4.3.3, we benchmark existing counting models
and show that they are subject to biases.

TallyQA-CP Inspired by the VQA-CP dataset, detailed in Section 2.4.2, we
build a new version of TallyQA (M. Acharya et al. 2019) to penalize models that
over-rely on the question-related biases. In this dataset, we condition the final
count label distribution on the question modality. We construct a new training
set and testing set by first extracting the main concept to be counted from each
question (e.g. in "how many tables are green", the concept will be "tables"). The
concept serves a similar purpose as the question type in VQA-CP (A. Agrawal
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Figure 4.2. – Shift in the distribution of samples between the training and testing
sets for the 5 most common objects in our TallyQA-CP dataset. Mod-
els that over-rely on question biases are penalized when evaluated
on the testing set.

et al. 2018a): it conditions the answer distribution differently between the training
and the testing set. More formally, if we note the answer set A and the concept of
questions C, then our goal is that ∀c ∈ C,Ptrain(A|c) ̸= Ptest(A|c). A model relying
too much on this main concept to answer the question (for example answering 2
each time the concept is wings) would be penalized on the testing set.

Here we describe how we find the concept in a given question. The main
heuristic consists in using the position of the word in the question. In most cases,
the concept to be counted is the third word of the question, as most questions start
with "How many <main concept>...". The second heuristic consists in selecting
the fourth word when the third is a color. For instance, the concept will be "cars" in
"How many blue cars are in the image?". The third heuristic consists in selecting
the fifth word when the third and fourth words are "of the" or "of those". For
instance, the concept will be "cars" in "How many of the cars are green ?" We
manually verified that these heuristics ensure picking the correct concept in most
cases.

For each concept, we calculate its associated answer distribution and apply a
greedy strategy to split all questions into a new training and testing set: For a
concept c, we assign its related question-image-answer samples containing the
most common answer randomly to either the training or the testing set. We then
assign the samples containing the second most common answer to the other
set. We continue alternating training and testing set until all samples have been
assigned. We display the distributions for the five most common concepts in
Figure 4.2. In Section 4.3.3, we experimentally verify that TallyQA-CP penalizes
question biases by evaluating a question-only model: as expected, it is almost
unable to provide the correct answer.
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Figure 4.3. – Shift in number of samples between the training and testing sets of
the original TallyQA dataset and our TallyQA-Odd-Even dataset.
Models that over-rely on any kind of data biases are penalized when
evaluated on the even count labels (in yellow).

TallyQA-Odd-Even A characteristic of our proposed TallyQA-CP is that it
mostly penalizes the use of question-related biases. Instead, we introduce the
Odd-Even version that penalizes, by construction, the use of any kind of su-
perficial shortcuts. To do so, we modify the count label distribution without any
conditioning on the input (question or image) in order to also target image-related
shortcuts and multimodal shortcuts. We generate the unbalanced TallyQA-Odd-
Even dataset by removing 90% of the samples associated with an even count label
from the TallyQA training set and 90% of the samples associated with an odd label
from the testing set. We display in Figure 4.3 the resulting number of samples per
count label. The 90% proportion was chosen because it introduces a large shift in
the distribution of count labels while allowing classification models to learn from
every possible count label. Choosing 100% would result in a zero-shot dataset on
which existing classification models could not be tested. We show in Section 4.3.2
that the 90% proportion generates a tiny shift in the distribution of images and
questions which ensures that we only evaluate the impact of a shift in count la-
bels. In Section 4.3.3, we experimentally verify that TallyQA-Odd-Even equally
penalizes question and image biases by evaluating question-only and image-only
models. They reach similar low scores. In Section 4.5, we report additional results
on various shifts between 70% and 100%.

Validation sets As raised by Teney et al. 2020b, most works that evaluate mod-
els on out-of-distribution datasets such as VQA-CP (A. Agrawal et al. 2018a) do
not use a validation set to early stop training or select hyperparameters. This bad
practice encourages adaptive over-fitting (Dwork et al. 2015) on the testing set
distribution. We address this common issue by holding out 10% of the training
sets as validation sets so that they follow the same distribution. It is expected that
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biased models perform well on validation sets, but have lower scores on testing
sets.

4.3.2 Statistics about our datasets

Training, validation and testing sets statistics We additionally define TallyQA-
Even-Odd, which is similar to the TallyQA-Odd-Even dataset, but with the reverse
protocol for creating the two splits. For all our datasets, the validation set is
made of 10% of the training set data, therefore follows the same distribution.
More specifically, for TallyQA-Odd-Even and TallyQA-Even-Odd datasets, their
validation set is built by holding 10% of the images out of the training set before
applying the same ablation strategy on both sets (e.g. removing odd examples).
For TallyQA-CP, the validation set is built after the resampling of examples into
the training and testing set.

In Table 4.1, we display the number of odd and even triplets in each set of
TallyQA-Odd-Even where 90% of triplets have been removed (p = 90%), and
other datasets where p = {0, 50, 100}. In Table A.1 of the Appendix A, we report
the same numbers with the TallyQA-Even-Odd dataset. In Table 4.2, we display
the number of triplets in each set for the TallyQA-CP dataset.

Training set Validation set Testing set

p% Odd Even Odd Even Odd Even

0 % 87,289 137,102 9,635 15,292 23,138 15,451

50 % 87,289 68,549 9,635 7,644 11,565 15,451

90 % 87,289 13,707 9,635 1,525 2,328 15,451

100% 87,289 0 9,635 0 0 15,451

Table 4.1. – Number of image-question-count triplets for each set generated by our
Odd-Even-p% strategy when applied on the TallyQA dataset (Odd-
Even-0% leads to the the original TallyQA distribution, Odd-Even-
90% leads our TallyQA-Odd-Even dataset, mainly used in this study).
Numbers of triplets for intermediate values of p can be obtained with
linear interpolation.

Shift in the distribution of questions and visual concepts We compute the
distributions of words from the questions and visual concepts in the images in
various TallyQA-Odd-Even-p% training sets and compare them to the original
distributions of TallyQA. To compute the word distribution, we proceed as follows.
We first remove the common words how, many, can, you, scene, picture, pictured,
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Training Set Validation Set Testing Set

137,080 15,231 135,596

Table 4.2. – Number of triplets for our TallyQA-CP dataset.

image, photo, there, are, seen, see, visible, shown, this, in, the, on, be, of, a, to to only keep
those that are associated to specific concepts in the images. We then compare
the distributions using the Bhattacharyya coefficient (Bhattacharyya 1946) – a
similarity metric that reaches 0 when there is no overlap between distributions,
and 1 when both are the same. Similarly, we compute visual concept distributions
by using the categories assigned to every bounding box extracted from our pre-
trained object detector (Anderson et al. 2018a) and compare the distributions
using the Bhattacharyya coefficient. In Tables 4.3 and 4.4, we see that all similarity
measurements are close to 1 which confirms that our protocol leads to a small
shift in the distribution of words and visual concepts from TallyQA original
distribution.

p% Words Similarity Visual similarity

0 % 1.0 1.0
50 % 0.997 0.9999

90 % 0.986 0.9996

100 % 0.976 0.9995

Table 4.3. – Bhattacharyya coefficients (Bhattacharyya 1946). Words and visual
concepts similarity between each of our generated training sets using
our Odd-Even-p% strategy and the original TallyQA training set.

Words Similarity Visual similarity

0.962 1.00

Table 4.4. – Bhattacharyya coefficients (Bhattacharyya 1946). Words and visual
concepts similarity between the training and the testing sets of our
TallyQA-CP dataset. The shift in distribution is very small.
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4.3.3 Evaluating counting models against our benchmarks

Experimental setup We compare state-of-the-art counting models and strong
baselines on our proposed datasets. We do not evaluate the best Transformer-
based VQA models (J. Lu et al. 2019; Tan and Bansal 2019) since they have been
pre-trained on images and questions included in our testing sets. Also, we do not
compare against counting models that are not designed to take the question as
input (Chattopadhyay et al. 2017; Sindagi and Patel 2018). The current state-of-
the-art on TallyQA is RCN (M. Acharya et al. 2019), a classification model based
on relation networks (Santoro et al. 2017). Our Random Dtrain and Dtest baselines
are random classifiers that follow respectively the training and the testing set
answer distributions. We also test bias-reduction baselines: a uniform sampling
of answers during training (RCN with Sampling), and our Reducing Unimodal
Biases (RUBi) strategy described in Chapter 3, that reduces question-related biases.
Models that over-rely on biases are expected to perform well on the validation
sets since they follow the training set distribution but suffer from a large loss in
accuracy on the testing sets.

TallyQA-CP TallyQA-Odd-Even TallyQA

Testing set Validation set Testing set Validation set Testing Set
Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE

Random Dtrain 19.53 2.84 22.13 2.77 10.26 2.81 32.35 2.89 – –
Random Dtest 20.40 2.89 19.78 2.81 30.68 2.61 10.21 2.75 – –

Q-Only 0.63 2.23 66.12 1.86 16.92 1.91 54.46 2.07 42.38 1.74

I-Only 21.55 2.24 41.99 2.08 9.80 2.06 54.20 2.06 38.14 1.70

Q+I 1.68 1.97 73.23 1.49 20.86 1.80 62.35 1.69 52.32 1.49

MUTAN 1.91 1.96 74.08 1.42 24.99 1.67 67.12 1.51 53.51 1.54

Counter 0.64 2.08 71.34 1.66 19.89 1.83 59.98 1.86 62.58 1.34

RCN 2.00 1.76 77.66 1.30 28.40 1.61 70.06 1.34 65.49 1.26

RCN w/ Sampling 5.58 1.82 76.34 1.37 27.10 1.63 65.44 1.44 53.78 1.58

RCN + RUBi 31.04 1.56 68.11 1.22 25.35 1.71 68.28 1.48 59.83 1.35

Table 4.5. – Benchmark of question-based visual counting models on our TallyQA-
CP and TallyQA-Odd-Even datasets. We report the accuracy and the
RMSE scores on the testing and validation sets. RCN + Sampling
stands for RCN with a uniform sampling strategy. We also report
scores on the original TallyQA (M. Acharya et al. 2019). Models are:
Q-Only, I-Only, Q+I (M. Acharya et al. 2019), MUTAN (Ben-Younes
et al. 2017a), Counter (Y. Zhang et al. 2018), RCN (M. Acharya et al.
2019), RUBi (Chapter 3).
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Counting models are biased As shown in Table 4.5, all models suffer from a
large drop in accuracy, compared to their scores on the validation set, and on the
original version of TallyQA (M. Acharya et al. 2019).

First, TallyQA-CP penalizes strongly the question-only model: it reaches an
accuracy close to zero on the testing set. This confirms that this dataset penalizes
models that rely on question shortcuts. The image-only model, on the contrary, is
less penalized and even beats most of the previous state-of-the-art models such
as RCN. On our TallyQA-Odd-Even, we can observe a different trend: the two
unimodal baselines have closer scores, 16.92 and 9.80, with the image-only now
having the lowest score. This confirms that this dataset penalizes all kinds of
shortcuts.

The previous state-of-the-art model RCN has an overall accuracy of 65.49%
on TallyQA and reaches an even high score on the validation sets of both our
benchmarks. However, it only gets 2% accuracy on the TallyQA-CP testing set,
and 28.4% on TallyQA-Odd-Even, suffering from a huge loss in accuracy from the
validation sets. We observe similar trends for MUTAN (Ben-Younes et al. 2017a)
and Counter (Y. Zhang et al. 2018), two commonly reported VQA models.

Additionally, the bias-reduction methods (uniform sampling and RUBi) have
a positive impact on TallyQA-CP, which is expected, especially for RUBi, since it
targets specifically question-related biases. On the contrary, both methods degrade
performances on our TallyQA-Odd-Even testing set. Finally, we can notice most
of the models, in both benchmarks, are worse than the Random Dtest classifier
that follows the testing set distribution. This highlights the fact that, while state-
of-the-art counting models reach high accuracy on regular datasets, they are in
fact incapable of counting in situations that do not match closely their training
distribution and instead rely mostly on biases.

4.4 Spatial Counting Network

We now describe our model, Spatial Counting Network (SCN). It contains in-
ductive biases to encourage the learning of the counting mechanism, and avoid
learning biases. Our model uses multi-modal fusion and self-attention to assign
counting scores to individual image regions, which allows the final accumulated
count number to be spatially grounded. To help generalization to modified count
distributions, we use a regression loss to train our model, as opposed to a classi-
fication loss (Y. Zhang et al. 2018; M. Acharya et al. 2019) and use entropy regu-
larization to encourage the counting of natural numbers, as opposed to making
discrete decisions trained with reinforcement learning (Trott et al. 2018). Impor-
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tantly, we do not incorporate knowledge about the testing set distributions such
as sampling or weighting triplets based on their count labels.

Overview. An overview of our model is shown in Figure 4.4. We mostly reuse
the formalism defined in Section 2.2.2, with some slight changes. Formally, given
a dataset D consisting of n triplet samples (v, q, c) with v ∈ V an image, q ∈ Q a
natural language question and c ∈ N a count label corresponding to the number
of instances in the image, the goal is to learn a mapping f :V×Q→N with learnable
parameters θ. Our model builds such a mapping by first encoding both inputs
and fusing them, which we detail next.

Figure 4.4. – Spatial Counting Network. It takes an image and a counting ques-
tion as inputs and outputs a count label. Each of the detected objects
is processed according to the question and their neighborhood until
a counting score is obtained. The score indicates the presence (e.g.
≈1) or absence (e.g. ≈0) of a corresponding instance. The final count
prediction is produced by summing up all scores.

Encoders and multi-modal fusion As shown in Figure 4.4, we use two encoders
to produce vectorized representations for image v and question q. For image v, a
pre-trained object detector (Anderson et al. 2018a) transforms the raw pixels to a
set of nv spatially located vectors, with each vector vi ∈ Rdv encoding the semantic
content of a region (or bounding box) within the image. We project coordinates
of each region into vectors of dv dimensions and sum them to their associated vi.
For q, we use skip-thought vectors (Kiros et al. 2015a) to obtain its representation
q ∈ Rdq . We then merge each vi with q using MLB, a multi-modal fusion module
from J.-H. Kim et al. 2017, resulting in a new set of vectors {mi}i∈{1,...,nv} ready
for relationship modeling and spatial counting, to be discussed below.

Self-attention. Since the set of bounding boxes used in encoding images can
overlap, one core challenge for correct counting is to de-duplicate boxes (Y. Zhang
et al. 2018; Trott et al. 2018) that are assigned to the same instance. Additionally,
questions can require relational reasoning between objects. We address this by
modeling general relationships among {mi} using self-attention (Vaswani et al.
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2017), letting the model learn the required mechanisms. Specifically, a single-head
attention layer with a residual connection is applied on {mi}, yielding (for each
region i) a contextualized representation {m′

i}.

Spatial aggregation. After relationship modeling, the resulting {m′
i} vectors

are then again merged with the question representation q using an MLB bilinear
fusion and produce a counting score si for each region via sigmoid activation.
Finally, the global count output ĉ =

∑
i si is a simple summation of all the indi-

vidual counting scores. We name our model Spatial Counting Network, because
each and every count is explicitly grounded to a spatial region and allows for
easy interpretation and visualization.

While the above-described model encapsulates general components like multi-
modal fusion and relationship modeling for visual counting, we would like to
highlight two design choices that are important for improving its generalization,
described next.

Regression, not classification. First, unlike many reference counting models
(Y. Zhang et al. 2018; M. Acharya et al. 2019) and general VQA models, including
large-scale pre-trained vision-and-language models (J. Lu et al. 2019; Tan and
Bansal 2019) that treat count numbers as classification labels, we state they should
be interpreted as actual numbers and we directly train the model to regress the
final output ĉ to the ground truth count label c. We choose the standard Mean
Squared Error (MSE) as the loss:

LMSE(θ;D) =
1

n

∑
(v,q,c)∈D

(ĉ− c)2. (4.1)

During testing, we round the fractional value ĉ to its nearest integer to complete
the mapping f(v, q) to count labels. This loss is suited to counting, as it takes
advantage of the natural order of the count labels. It also allows our model to
output count labels that were not seen during training, which is beneficial when
the testing set follows a different distribution of count labels.

Entropy regularization. Second, although regression is a natural choice for
number-related tasks, directly applying it to visual counting can be disadvanta-
geous, because it attempts to model the entire output counting range (i.e. ĉ can
be any real values between 0 and N ) and does not take advantage of the fact that
all the count labels are integers. One way to fix this is to select regions one by one,
with discrete decisions, and train the model through reinforcement learning (Trott
et al. 2018). However, the resulting objective function is hard to optimize directly.



4.5 experiments on scn 69

Here we propose an alternative solution by simply imposing a binary entropy
regularization term per region:

LH = − 1

n

∑
(v,q,c)∈D

[
1

nv

nv∑
i=1

si log(si) + (1− si) log(1− si)

]
, (4.2)

which essentially encourages each sigmoid output si to be close to 0 or 1. Intu-
itively, it means for each region, there is either one whole object or none – it won’t
be fractional (e.g. 0.5). This regularization not only enforces the final count ĉ to
be close to integers (since ĉ is produced by summing up scores that are close to
0 or 1), but also benefits grounding the final count in the image (since it signifi-
cantly reduces the chance of multiple overlapping regions being assigned some
fractional value and summing up to be an integer count), which in turn helps
generalization.

Our final training loss is a combination of MSE and entropy regularization:
L = LMSE + LH .

4.5 Experiments on SCN

4.5.1 Implementation details

Our SCN model We use the common Faster R-CNN (Ren et al. 2015) pre-trained
by Anderson et al. 2018a to extract object features from the image, and the com-
mon GRU language model pre-trained by Kiros et al. 2015a to extract language
features from the question. To keep a similar number of parameters with the
state-of-the-art RCN model (M. Acharya et al. 2019), we use hidden dimensions
of 1500 for the multimodal embeddings mi, 500 for the self-attention, 768 for both
bilinear fusions, and use only one self-attention head. We train our model for 30

epochs with the Adam optimizer (Kingma and Ba 2015) and a learning rate of
2.e-5 which is decayed by 0.25 every 2 epochs, starting at epoch 15. The learning
rate schedule was tuned on the validation accuracy of the TallyQA-Odd-Even
set. Importantly, for all other experiments, we use the same hyperparameters. We
early stop training based on the highest accuracy computed on the validation set.

RCN We follow the implementation and hyperparameters described in (M.
Acharya et al. 2019).

Training details All of our results are the average over 3 runs with different
seeds. We report small standard deviations. Our SCN model takes 10 hours to
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train on the original TallyQA and TallyQA-CP datasets. It takes about 6 hours to
train on the TallyQA-Odd-Even dataset because it is composed of fewer triplets.
We train our model on a single Titan X Pascal 12GB GPU.

4.5.2 Results

TallyQA-CP TallyQA-Odd-Even

Testing set Validation set Testing set Validation set
Acc. RMSE Acc. RMSE Acc. RMSE Acc. RMSE #Param

Random Dtrain 19.53 2.84 22.13 2.77 10.26 2.81 32.35 2.89 –
Random Dtest 20.40 2.89 19.78 2.81 30.68 2.61 10.21 2.75 –
RCN 2.00 1.76 77.66 1.30 28.4 1.61 70.06 1.34 47 M
RCN with LMSE 14.99 1.60 71.92 1.16 31.44 1.51 63.02 1.26 47 M

SCN (ours) 34.79 1.46 63.81 1.14 40.87 1.50 54.04 1.29 52 M
SCN w/o LH 26.88 1.47 66.56 1.11 39.54 1.48 55.62 1.26 52 M

Table 4.6. – Results on TallyQA-CP and TallyQA-Odd-Even. We report the accu-
racy and the RMSE scores. SCN without LH stands for SCN without
entropy regularization.

Main results In Table 4.6, we compare our model against the previous state-
of-the-art approach RCN (M. Acharya et al. 2019). Scores for SCN are averaged
over three runs, with a variance of 0.4 for accuracy and 0.01 for RMSE. On our
TallyQA-CP dataset, we report the best accuracy of 34.79% for our SCN on the
testing set, which corresponds to a +32.79 gain in accuracy points over RCN. On
the TallyQA-Odd-Even dataset, our model reaches the best accuracy of 40.87%,
with gains of +12.47 points over RCN. As expected, on both benchmarks we report
lower performance than RCN on the validation set. Biased models such as RCN
reach higher performances on in-distribution data by exploiting biases but fail on
out-of-distribution data. Importantly, we also show that SCN does not overfit the
testing set distribution: the validation accuracy is still higher than the testing set
accuracy.

Impact of regression loss A notable difference between our model and state-
of-the-art models such as RCN and Counter is that they are trained using classi-
fication instead of regression. For fair comparisons, we isolate the contribution
of this design choice by introducing RCN with LMSE, which is a modified RCN
that outputs a real number before rounding and is trained using the MSE loss.
We train RCN with LMSE by changing the output dimension of the last linear
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layer from 15 to 1. This allows us to train the model with an MSE regression loss
instead of a classification loss. We use the same hyperparameters as RCN.

In Table 4.6, we report a gain of +12.99 points and +3.04 points over the regular
RCN model on the TallyQA-CP test and TallyQA-Odd-Even test respectively. We
conclude that RCN with LMSE is less sensible to biases. These good performances
suggest that regression models are a better design choice to avoid learning biases.
However, other design choices allow our model to reach further gains with +19.8
and +9.43 accuracy points against RCN with LMSE.

Impact of Entropy regularization. We also perform an ablation study of our
SCN by training it without the entropy regularization (SCN without LH in Ta-
ble 4.6). We report an important effect on TallyQA-CP, with +7.91 points on its
testing set. It shows that entropy regularization helps to generalize. Interestingly,
it has very little impact on TallyQA-Odd-Even.

Difference in accuracy per count label. Gains in accuracy could be due to
different patterns such as an important gain on only one count label or small
gains on all of them. We study this in Figure 4.5, where we display a fine-grained
comparison between our model and RCN according to their accuracy per count
label. Interestingly compared to RCN, we report a higher accuracy on even count
labels which are less represented in the training set and a lower accuracy on odd
count labels which are more represented in the training set. We also report much
smaller differences in accuracy between adjacent count labels, compared with
RCN. For instance, we report a loss of -29.56 accuracy points between labels 1 and
2 compared to -85.15 with RCN. Overall, there is much less variation in our model
between even and odd count labels. These results suggest that our design choices
are useful to learn a proper mechanism of counting which helps to generalize to
a different distribution of count labels.

Difference in accuracy on various shifts in distribution We create new TallyQA-
Odd-Even variants by changing this removal proportion that was initially defined
as 90% in Section 4.3. We vary the proportion from 70% to 100%, which controls
the amount of biases that can be learned. On the extreme side, TallyQA-Odd-Even-
100% generates a training set with no even count labels and a testing set with no
odd count labels (i.e., a zero-shot setting). We also introduce the Even-Odd dataset,
where the training and testing sets mostly contain even and odd count labels
respectively, and also vary the removal proportion from 70% to 100%. We note
those datasets Odd-Even-p% and Even-Odd-p%. In Figure 4.6, we compare the
accuracy of our model against the state-of-the-art model RCN for visual counting,
and its version with regression, RCN with LMSE, on the Odd-Even-p% and Even-
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Figure 4.5. – Accuracy per count labels of our model and RCN on TallyQA-Odd-
Even. Our model reaches higher accuracies on even labels (in yellow).
These count labels are meant to penalize models that over-rely on
biases.

Odd-p% datasets. We show that our model reaches significant and consistent
gains. As expected, we report larger gains over RCN ranging from +12.78 accuracy
points to +34.52 on datasets that possess the most important shift in distributions
(e.g. p > 80). We see similar gains over RCN with LMSE. Interestingly, our model
is able to answer in the zero-shot setting (p = 100%), reaching 26.87% and 34.52%
accuracy for Odd-Even and Even-Odd respectively, while RCN has 0% accuracy.
We perform similar experiments on a modified version of our TallyQA-CP dataset,
where 10% of the samples are exchanged between training and testing to induce
a lower shift in distributions. In this setup, it is expected that biased models
such as RCN reach better performances than on the original TallyQA-CP. We
report the best accuracy of 50.10% accuracy on the testing set for our SCN, which
corresponds to a +9.9 gain in accuracy points over RCN.

More balanced TallyQA-CP version In Table 4.7, we show results on a mod-
ified version of our TallyQA-CP dataset where 10% of the examples from the
training and testing are moved to the opposite set. We call this more balanced
dataset TallyQA-CP-10%. Models are expected to perform better on it than on
our main TallyQA-CP dataset. Our SCN model still reaches the best accuracy of
50.10% on the testing set. We also report better results when adding the entropy
regularization to our SCN, and when using the regression loss LMSE on RCN.
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Figure 4.6. – Comparison between our model, RCN and its regression variant
on various versions of TallyQA using our Odd-Even-p% and Even-
Odd-p% datasets. p% controls the shift in distributions between the
training and testing sets (with the original distribution when p =
0). Models that over-rely on biases (e.g. original RCN) are strongly
penalized when p% is high (yellow gradient).

Testing set Validation set

Acc. RMSE Acc. RMSE

Question Only 12.67 2.12 58.84 1.98

I-Only 24.99 2.18 37.73 2.16

Q+I 26.89 1.73 66.87 1.55

MUTAN (Ben-Younes et al. 2017a) 27.52 1.69 68.00 1.50

Counter (Y. Zhang et al. 2018) 21.33 1.83 65.91 1.68

RCN 40.21 1.46 71.52 1.30

RCN with LMSE 43.99 1.34 65.99 1.2
SCN without LH 48.16 1.28 61.42 1.2
SCN 50.10 1.30 60.15 1.23

Table 4.7. – Results on a more balanced TallyQA-CP dataset where 10% of exam-
ples have been moved between the training and testing sets.

4.5.3 Study of the grounding ability

COCO-Grounding. Similarly to the work done in IRLC (Trott et al. 2018), we
use the grounding ability as a proxy to evaluate the proper counting mechanism
and to assess the interpretability of models. To this end, we introduce the COCO-
Grounding dataset that, contrary to previous works, allows us to compare models
that use different visual features than ours. The grounding ability can be evaluated
in a similar way to object detection models. To this end, we specifically design a
dataset named COCO-Grounding. We create questions automatically from COCO
images based on the provided annotations and save for each image-question pair
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COCO-Grounding TallyQA

AP@.50 Acc. RMSE

SCN (ours) 10.90 55.54 1.25

SCN without LH 7.63 57.07 1.24

SCN without Self-att. 9.10 54.38 1.39

Counter* (Y. Zhang et al. 2018) 6.44 60.58 1.37

Counter (Y. Zhang et al. 2018) – 62.58 1.34

RCN (M. Acharya et al. 2019) not evaluable 64.41 1.28

Table 4.8. – Grounding ability of models trained on original TallyQA dataset.
AP@.50 on COCO-Grounding is a classic metric for object detec-
tion. Low AP@.50 values are expected because these models were
not trained using the bounding boxes class annotations. Counter* (Y.
Zhang et al. 2018) was retrained by us.

the bounding boxes of the objects to be counted. Our dataset is composed of
the 4459 images from MSCOCO (T.-Y. Lin et al. 2014b) that can not be found
in Visual Genome (Krishna et al. 2017b) and importantly not in the TallyQA
training set. Each MSCOCO image is annotated with bounding boxes around
objects associated with a category among 80 classes of objects. We use these
classes to automatically generate simple questions about a given image using the
"How many {class}?" pattern. The answer to a question is the number obtained by
counting the bounding boxes associated with the given {class}. We also generate
questions associated with the count label 0 by sampling a random class among
80 that is not present on the image. We generate an equal number of 734 image-
question-count triplets associated with the count label 0, 1 and 2, and generate all
possible triplets for higher count labels (with a maximum label of 15) to reach a
total number of 3311 triplets over 2139 images.

Evaluation metrics Similarly to object detection models, our model can output
bounding box predictions. Therefore, we use the Average Precision (AP), a stan-
dard metric in object detection tasks (Everingham et al. 2015; T.-Y. Lin et al. 2014b).
It allows us to evaluate the ability of our model to detect the correct instances of
objects to count in the image. We use the AP@.50 metric, also used in the COCO
(T.-Y. Lin et al. 2014b) and PASCAL-VOC (Everingham et al. 2015) challenges.

Results In Table 4.8, we compare our SCN against Counter (Y. Zhang et al. 2018)
on the mean average precision AP@.50, an object detection metric, with an IoU
threshold of 0.5. Both models have been trained on the original TallyQA dataset.
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We report the best performances on grounding and a gain of +4.5 points over
Counter. As expected, we report a lower accuracy on the TallyQA testing set since
models that over-rely on biases are not penalized. We do not compare against
RCN (M. Acharya et al. 2019), because it does not internally associate counting
numbers to regions of the image. We also highlight the importance of entropy
regularization (+3.3 points) and self-attention mechanism (+1.9) on grounding.
This justifies our choices in architecture and regularization.

4.5.4 Qualitative results

In Figures 4.7, 4.7 and 4.9, we display representative examples of outputs of our
model with (on the left) and without (on the right) entropy regularization. We
display bolded red bounding boxes around objects when their associated count
value ci is close to 1. In Figure 4.7, we display the bounding box scores for the
question ‘How many people are in the picture?’. Both model predicts the same
answer after rounding, but we see an important difference in the bounding box
scores. With entropy regularization, SCN is able to select the four bounding boxes
corresponding to people in the image. On the other hand, our model without
entropy fails to distinguish duplicates and associates fractional values to multiple
regions. In Figure 4.8, We compare both models on the questions ‘How many
giraffes are shown?’ and ‘How many zebras are shown?’. We observe similar
observations for both of those questions: SCN with entropy regularization assigns
high scores to the regions containing the objects to be counted, and the model
without this regularization fails to do so. Additionally, the model without entropy
regularization answers incorrectly to the first question: it predicts 2.71, rounded
to 3, while the correct answer is 2.

Figure 4.7. – Qualitative comparison of bounding box scores for our SCN with
and without entropy regularization. Both models are correct, but our
model with entropy regularization selects the correct regions.
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In Figure 4.9, we display two complex questions on the same image, and show
that our SCN model is able to select the correct object (people) according to an
attribute (is he playing tennis or football?), and output a correct count (1 or 0).

Figure 4.8. – Qualitative comparison between our model with and without en-
tropy regularization. Red bounding boxes are shown with bolded
borders when their associated ci is close to 1.

Figure 4.9. – Regions selected by our SCN model for two complex questions on
the same image. SCN answers are respectively 1 and 0.
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4.6 Conclusion

In this chapter, we explore a second direction in reducing shortcut learning:
using architectural priors to constrain the network to learn the correct mech-
anism and prevent it to learn spurious correlations. We focus on the task of
visual counting, as the output distribution is simpler than the original VQA, and
the answering mechanism is more constrained. First, we introduce two out-of-
distribution datasets to penalize models that have learned dataset biases. The first,
TallyQA-CP, has a distribution shift of answers conditioned to the main concept
in the question, similar to VQA-CP. It tests the model’s reliance on question-based
shortcuts. The second, TallyQA-Odd-Even, has a distribution shift of answers con-
ditioned to the parity of the answer. Contrarily to TallyQA-CP, it tests the model’s
reliance on all superficial correlations between the input and the answer. On our
datasets, we show that reference models suffer from large performance loss which
indicates that they have learned biases. We then introduce the Spatial Counting
Network (SCN), a model that encompasses architectural priors to encourage the
learning of the correct counting mechanisms. We validate the interest of each
design choice and showed that our model is better at selecting the correct objects
to count and less prone to learn biases. We also note that our proposed model is
more explainable by design than previous approaches, as it is easy to interpret the
reasoning process of the model: each region gets assigned a score. This makes it
easier for a user to trust the model’s predictions.

Although the task of visual counting is fairly constrained, this is a step towards
deep neural networks that learn to reason. Our work is an example of an in-
terpretable model on top of black-box modules that can be used to learn more
complex reasoning mechanisms. We believe that this is a promising direction for
future research.
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Chapter abstract

In Chapter 3, as in most of the Visual Question Answering (VQA) literature,
the most studied shortcuts are those coming from the question modality. This
makes models rely, for some examples, solely on the question, without con-
sidering the image information. However, this covers only a small part of all
potential shortcuts that can be exploited by models. In this chapter, we go a step
further and explore the existence of multimodal shortcuts that involve both
questions and images. We identify potential shortcuts in the popular VQA v2
training set by mining shallow predictive rules such as co-occurrences of words
and visual elements. We then introduce VQA-CounterExamples (VQA-CE),
an evaluation protocol based on our subset of CounterExamples i.e. image-
question-answer triplets where our rules lead to incorrect answers. We use
this new evaluation in a large-scale study of existing approaches for VQA.
We demonstrate that even reference models perform poorly and that existing
techniques to reduce biases are largely ineffective in this context. Our findings
suggest that past work on question-based biases in VQA has only addressed
one facet of a complex issue.

The work in this chapter has led to the publication of this conference
paper:

• Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord
(2021b). “Beyond Question-Based Biases: Assessing Multimodal Short-
cut Learning in Visual Question Answering”. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV).
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5.1 Introduction

In Chapter 3, we mostly studied the issue of VQA shortcuts coming from the
question modality: they were superficial statistical patterns in the training data
that allow predicting correct answers by using mostly the textual information,
without deploying the desirable behavior. This is also the case in most of the
literature related to biases in the VQA task. But shortcuts might be more subtle
and involve both textual and visual elements. For instance, training questions
containing What sport are strongly associated with the answer tennis when they
co-occur with a racket in the image (see Figure 5.1). This seems to be a valid
answering strategy, but there are situations where this pattern will fail. Some
examples can be found in the validation set, such as What sport field is in the
background ?, that lead to a different answer (soccer) despite a racket being present
in the image. Because of such exceptions, a model that strongly relies on simple
co-occurrences will fail on unusual questions and scenes. Most previous work
and existing evaluation protocols are limited to text-based shortcuts. This chapter
studies multimodal biases and their impact on VQA models.

Our work introduces VQA-CounterExamples (VQA-CE), an evaluation proto-
col for multimodal shortcuts. It is easy to reproduce and can be used on any
model trained on VQA v2, without requiring retraining. We first start with a
rule-mining-based method to discover superficial statistical patterns in a given
VQA dataset that could be the cause of shortcut learning. We discover a collection
of co-occurrences of textual and visual elements that are strongly predictive of
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Figure 5.1. – Overview of this work. We first mine simple predictive rules in the
training data such as what + sport + racketV → tennis. We then
search for counterexamples in the validation set that identify some
rules as undesirable statistical shortcuts. Finally, we use the coun-
terexamples as a new challenging test set and evaluate existing VQA
models like UpDown (Anderson et al. 2018a) and VilBERT (J. Lu
et al. 2019).

certain answers in the training data and often transfer to the validation set. For
instance, we discover a rule that relies on the appearance of the words “what”,
“they”, “playing” together with the object “controller” in the image to always
predict the correct answer “wii”. We consider this rule to be a shortcut since it
could fail on arbitrary images with other controllers, as it happens in the real
world. Thus, our method can be used to reflect biases of the datasets that can
potentially be learned by VQA models. We go one step further and identify
counterexamples in the validation set where the shortcuts produce an incorrect
answer. These counterexamples form a new challenging evaluation set for our
VQA-CE evaluation protocol. This benchmark addresses some of the shortcomings
of VQA-CP: First, it evaluates models trained on the original VQA v2 training
set and does not require retraining. Second, it evaluates against real shortcuts,
instead of artificially-created correlation. Finally, we propose a clear evaluation
setup with an in-distribution validation set to avoid test set overfitting. We find
that the accuracy of existing VQA models is significantly degraded on this data.
More importantly, we find that most current approaches for reducing biases and
shortcuts are ineffective in this context. They often reduce the average accuracy
over the full evaluation set without significant improvement on our set of coun-
terexamples. Finally, we analyze models to find which shortcuts they exploit by
comparing their predictions to the shortcut predictions.

In Section 5.3, we propose a method to discover shortcuts which rely on the
appearance of words in the question and visual elements in the image to predict
the correct answer. By applying it to the widely-used VQA v2 training set, we
find a high number of multimodal shortcuts that are predictive on the validation
set. Then, in Section 5.4, we introduce the VQA-CE evaluation protocol to assess
the VQA models’ reliance on these shortcuts. By running a large-scale evaluation
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of recent VQA approaches, we find that reference VQA models exploit these
shortcuts and that bias-reduction methods are ineffective in this context.

5.2 Related Work

We review existing approaches to discovering potential statistical shortcuts and
assess their use by learned models.

Detecting cases of shortcut learning The general methods to detect shortcut
learning are explained in Section 2.3 and 2.4.

The closest approach to the work in this chapter, Manjunatha et al. 2019b, uses
the Apriori algorithm on VQA v2 to extract predictive rules that combine the
appearance of words and visual contents. However, these rules are specific to
the attention maps and predictions of the VQA model from Kazemi and Elqursh
2017. They are extracted on the validation set and are mainly used for qualitative
purposes. Our approach also relies on the Apriori algorithm but extracts rules
directly on the training set, independently of any model, and the predictive capac-
ity of the rules is evaluated on the validation set. We then propose an evaluation
benchmark based on those shortcuts.

Evaluating VQA models’ reliance on shortcuts We discuss extensively evalu-
ation benchmarks in Section 2.4.2. Once a class of shortcuts has been identified,
a way to evaluate models’ robustness is to build external out-of-distribution eval-
uation datasets on which using these shortcuts leads to a wrong prediction.

The main dataset used for the evaluation of biases is VQA-CP, presented in
Chapter 2. Our proposed evaluation has a few differences from VQA-CP. First,
it does not require retraining the model: this enables us to evaluate any model
trained on VQA v2, instead of evaluating a given training procedure. Second,
we focus on multimodal shortcuts, instead of text-based shortcuts. We follow
guidelines from (D’Amour et al. 2020; Teney et al. 2020b) for a better evaluation
of the use of shortcuts.

The closest work to ours is the GQA-OOD (Kervadec et al. 2021) dataset: they
extract from the GQA (Drew A Hudson and Manning 2019) validation and testing
set example with rare answers, conditioned on the type of question. It enables the
evaluation of models without retraining on a separate training set.

Frequent itemset mining Frequent itemset mining techniques have been used
extensively for database analysis (R. Agrawal, Srikant, et al. 1994; Uno et al. 2003).
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They have also been used more recently for sequence prediction (Bourrand et al.
2021) or computer vision tasks (Quack et al. 2007; Yuan et al. 2007; Fernando et al.
2012). For example, Fernando et al. 2012 propose to mine Frequent Local Histograms
for image classification tasks. In this chapter, we propose to use frequent itemset
mining to find superficial decision rules for the VQA task.

5.3 Detecting multimodal shortcuts in VQA

5.3.1 Our shortcut detection method

We introduce our method to detect shortcuts relying on textual and visual
input. Our approach consists in building a dataset of input-output variables and
applying a rule-mining algorithm. The code for our method is available online 1.
We consider the VQA formulation specified in Section 2.2.2: we have a training set
Dtrain made of n triplets (vi, qi, ai)i∈[1,n] with vi ∈ V an image, qi ∈ Q a question
in natural language and ai ∈ A an answer. VQA is usually cast as a problem of
learning a multimodal function f : V ×Q → A that produces accurate predictions
on Dtest of unseen triplets.

Mining predictive rules on a training set Our goal is to detect shortcuts that a
VQA model f might use to provide an answer without deploying the desired be-
havior. To this end, we limit ourselves to a class of shortcuts that we hypothesize to
be often leveraged by VQA models. We display in Figure 5.2 our rule-mining pro-
cess. These shortcuts are short predictive association rules A → C that associate an
antecedent A to a consequent C. Our antecedents are composed of words of the
question and salient objects in the image (or image patch), while our consequents
are just answers. For instance, the rule {what, color, plant} → {green} provides
the answer “green” when the question contains the words “what”, “color” and
“plant”. These shallow rules are by construction shortcuts. They are predictive on
the validation set but do not reflect the complex behavior that needs to be learned
to solve the VQA task. For instance, they do not rely on the order of words, nor the
position and relationships of visual contents in the image. They lack the context
that is required to properly answer the question. Moreover, even rules that seem
correct often have counterexamples in the dataset, i.e. examples that are matched
by the antecedent but the consequent provides the wrong answer. We later use
these counterexamples in our evaluation procedure.

1. https://github.com/cdancette/detect-shortcuts

https://github.com/cdancette/detect-shortcuts
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Figure 5.2. – Pipeline of the proposed method to detect potential shortcuts in a
VQA training set. We detect and label objects in images with a Faster
R-CNN model. We then summarize each VQA example with binary
indicators representing words in the question, answer, and labels of
detected objects. Finally, a rule mining algorithm identifies frequent
co-occurrences and extracts a set of simple predictive rules.

Binary dataset creation To detect these rules, we first encode all question-
image-answer triplets of Dtrain as binary vectors. Each dimension accounts for
the presence or absence of (a) a word in the question, (b) an objectV in the image,
represented by its textual detection label from a Faster R-CNN model (Anderson
et al. 2018a), (c) an answer. The number of dimensions of each binary vector
is the sum of the size of the dictionary of words (e.g. ~13,000 words in VQA
v2), the number of detection labels of distinct objects in all images (e.g. 1,600

object labels), and the number of possible answers in the training set (e.g. 3,000

answers). We additionally report results with ground truth instead of detected
labels in Appendix B, Table B.1.

Frequent itemset mining On our binary dataset, we apply the GMiner algo-
rithm (Chon et al. 2018) to efficiently find frequent itemsets. An itemset is a set of
tokens I = {i1, .., in} that appear very frequently together in the dataset. The sup-
port of the itemset is its number of occurrences. For example, the itemset {what,
color, plant, green} might be very common in the dataset and have high support.
GMiner takes one parameter, the minimum support. We include an additional
parameter, which is the maximum length for an itemset. We detail how we select
parameters at the end of this section.

Rules extraction and filtering The next step is to extract rules from the frequent
itemsets. First, we filter out the itemsets that do not contain an answer token, as
they cannot be converted to rules. For the others that do contain an answer a, we
remove it from the itemset to create the antecedent X ( X = I \ a). The rule is
then X ⇒ a. The support s of the rule is the number of occurrences of X in the
dataset. The confidence c of the rule is the frequency of correct answers among
examples that have X . We then proceed to filter rules. We apply the following
three steps:
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(a) We remove the rules with confidence on the training set lower than 30%
(c < 0.3).

(b) If some rules have the same antecedent but different answers, then we keep
the rule with the highest confidence and remove the others. For instance, given
the rules {is, there} ⇒ yes and {is, there} ⇒ no with a respective confidence of
70% and 30%, we only keep the first one with the answer yes.

(c) if a rules r1’s antecedent is a superset of another rule r2’s antecedent if both
have the same answer, and r1 has equal or lower confidence than r2, then we
remove r1. For instance, given the rules {is, there} ⇒ yes and {is, there, cat} ⇒
yes with a respective confidence of 70% and 60%, we only keep the first one
without the word cat.

We consider the remaining rules as shortcuts. Note that rules with a confidence
of 100% could be considered correct and not shortcuts, but these rules will not
influence our evaluation protocol, detailed in Section 5.4.

5.3.2 Analysis of shortcuts on natural data

We analyze the shortcuts that our approach can detect on the VQA v2 dataset.
We extract ensembles of rules with different combinations of minimum support
and confidence. Each time, we aggregate them into a classifier that we evaluate
on the validation set. We detail how to build this kind of classifier in Section 5.4.3.
We select the support and confidence leading to the best overall accuracy. It
corresponds to a minimum support of 2.1 · 10−5 (about ∼8 examples in training
set), and a minimum confidence of 0.3. Once these shortcuts have been detected,
we assess their number and type (purely textual, purely visual, or multimodal).
We also verify that they can be used to find counterexamples that cannot be
accurately answered using shortcuts. Finally, we evaluate their confidence on the
validation set. In the next section, we leverage these counterexamples with our
VQA-CE evaluation protocol to assess models’ reliance on shortcuts.

Words-only and objects-only shortcuts First, we show that our approach is able
to detect shortcuts that are purely textual or visual. In the first row of Figure 5.3,
we display a shortcut detected on VQA v2 that only accounts for the appearance
of words in the question. It predicts the answer “white” when the words “what”,
“color”, “is”, “snow” appear at any position in the question. In the training set,
these words appear in 95 examples and 90.62% of them have the “white” answer.
This shortcut is highly predictive on the validation set and gets 95.65% of correct
answers over 92 examples. We also display an example in which exploiting the
shortcut leads to the correct answer and a counterexample in which the shortcut
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Figure 5.3. – Examples of shortcuts found in the VQA v2 dataset. The confidence
is the accuracy obtained by applying the shortcut on all examples
matching by its antecedent. The support is the number of matching ex-
amples. More supporting examples and counterexamples are shown
in Figure 5.6.

fails because the question was about “the color of the snow suit” which is “pink”.
In the second row, we show a shortcut that only accounts for the appearance of
visual objects. It predicts “yes” when a “frisbee”, a “tree”, a “hand” and a “cap”
appear in the image. However, this kind of shortcut is usually less predictive since
they cannot exploit the question-type information which is highly correlated with
certain answers, i.e. “what color” is usually answered by a color.

Multimodal shortcuts Then, we show that our approach is able to detect mul-
timodal shortcuts. They account for the appearance of both words and visual
objectsV . In the third row of Figure 5.3, we display a multimodal shortcut that
predicts “tennis” when the words what, sport and a racketV appear. It is a com-
mon pattern with a confidence of 98.05% based on a support of 667 examples
in the training set. It is also highly predictive on the validation set with 98.97%
confidence and 291 support. At first sight, it is counter-intuitive that this simple
rule is a shortcut but answering complex questions is not about detecting frequent
words and objects in images that correlate with an answer. In fact, this shortcut
is associated with counterexamples where it fails to answer accurately. Here, the
sport that can be played in the background is not tennis but soccer.

Number of shortcuts and statistics per type Here we show that our approach
can be used to detect a high number of multimodal shortcuts. Overall, it detects
~1.12M shortcuts on the VQA v2 training set. As illustrated in Figure 5.4, since
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there are ~413K examples, it is often the case that several shortcuts can be applied
to the same example. This is the main reason behind the high number of shortcuts.
For instance, the antecedent {animals, what, giraffeV } overlaps with {animals, these,
what, giraffeV }. Among all the shortcuts that our method can detect, only ~50k
are textual, ~77k are visual and ~1M are multimodal. In other words, ~90% are
multimodal. In addition to being more numerous, they are also more predictive.
For instance, the most confident shortcut that matches an example, highlighted in
green in Figure 5.4, is multimodal 91.80% of the time. Finally, ~3K examples are
not matched by any shortcut antecedents. They have unusual question words or
visual content. We later do not take them into account in our VQA-CE evaluation
protocol. We display some representative examples in Section 5.4.2

Figure 5.4. – Multiple shortcuts can often be exploited to find the correct answer
in any given example. The confidence is the percentage of accurate
answers among examples that are matched by the shortcut antecedent.
The shortcut of highest confidence (in green) is multimodal for ~92%
of examples.

Confidence distribution on training and unseen data Here we show that
shortcuts detected on the VQA v2 training set transfer to the validation set. In
Figure 5.5, we display the confidence distribution of these shortcuts. As told
earlier, we only consider shortcuts that reach a confidence greater than 0.3 on
the training set. The number of shortcuts decreases when confidence increases.
It is expected to find fewer shortcuts with higher levels of confidence due to the
collection procedure of VQA v2 which focused on reducing the amount of data
biases and shortcuts. We evaluate on the validation set the same shortcuts detected
on the training set and also display the confidence distribution. We show that
our shortcuts are predictive on both training data, and unseen data that follows
the training set distribution. The number of shortcuts that reach a confidence
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Figure 5.5. – Histogram of shortcuts binned per confidence on the VQA v2 train-
ing and validation sets. Our shortcuts are detected on the training
set and selected to have a confidence above 30%. Even though their
confidence could be expected to be lower on the validation set, it
still is above 30% for a large number of them, indicating that the
selection transfers well to the validation set.

between 0.9 and 1.0 is even higher on the validation set than on the training set.
The confidences are overall slightly lower on the validation set, but a large number
of them are still above 0.3, indicating that they generalize to new examples from
the same distribution. The great majority of shortcuts, which obtain a confidence
lower than 1.0, allow finding examples that contradict them by leading to the
wrong answers. We manually verified by looking at these examples that only a
minority are wrongly annotated or ambiguous, most of them are counterexamples.
These counterexamples are the core of our approach to assess the VQA model’s
reliance on shortcuts.

5.3.3 Identifying most exploited shortcuts

We introduce a method to identify shortcuts that may be exploited by a given
model. On the validation set, we calculate for each shortcut a correlation coef-
ficient between its answer and the predictions of a VQA model. Importantly, a
100% correlation coefficient indicates that the model may exploit the shortcut:
both always provide the same answers, even on counterexamples on which using
the shortcuts leads to the wrong answer.

In Table 5.1, we report shortcuts that obtain the highest correlation coefficient
with UpDown (Anderson et al. 2018a) and VilBERT (J. Lu et al. 2019). Overall,
these shortcuts have high confidence and support, which means that they are
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common in the dataset and predictive. Most importantly, they are multimodal. As
a consequence, these shortcuts obtain low correlations with Question-Only (Goyal
et al. 2017b). On the contrary, they obtain a 100% correlation coefficient with Vil-
BERT and UpDown. For instance, the second shortcut provides the answer skate-
boarding for the appearance of sport, this, what in the question and a skateboardV

in the image. It is a common pattern with a support of 31 examples in the val-
idation set. It gets a correlation of 0% because Question-Only mostly answers
baseball for these examples. Its confidence of 87.1% indicates that 4 counterexam-
ples can be found where the shortcut provides the wrong answer. To be correctly
answered, they require more than a simple prediction based on the appearance
of words and salient visual contents. These results suggest that VQA models tend
to exploit multimodal shortcuts. It shows the importance of taking them into
account in an evaluation protocol for VQA.

5.3.4 Rules with supporting examples and counterexamples

In Figure 5.6, we display some counterexamples to some rules displayed in
Table 5.1. Some of those examples are “true” counterexamples, where the input
does match the rule’s antecedent, but the answer is different. For instance, in the
first example of the first rule, the question is actually about the clothes and not
the sport, and the man is dressed in a basketball outfit. On the contrary, some
examples are there due to incorrect object detection: in the second example of the
first rule, the object detection module detected a skateboard instead of a scooter.
Thus, the example is incorrectly matched.

5.4 Evaluation: Assessing models’ reliance on short-
cuts

The classic evaluation protocol in VQA consists in calculating the average
accuracy over all the examples. Instead, we introduce the VQA-CounterExamples
(VQA-CE) evaluation protocol that additionally calculates the average accuracy
over a specific subset of the validation set. This subset is made of counterexamples
that cannot be answered by exploiting shortcuts. Models that do exploit shortcuts
are expected to get a lower accuracy. It is how we assess the use of shortcuts.
Importantly, our protocol does not require retraining as was the case with the
previous protocol. We first detail the subsets creation procedure at the core of our
VQA-CE protocol. We then run extensive experiments to assess the use of shortcuts
on many VQA models and bias-reduction methods.



Figure 5.6. – Shortcuts that are highly correlated with VQA models’ predictions.
We display their antecedent made of words from the question and
objectsV from the image, and their answer. Their support, i.e. num-
ber of examples matched by the antecedent, and confidence, i.e. per-
centage of correct answers among them, have been calculated on
the VQA v2 training and validation sets. We report the correlation
coefficients of their predictions with those of three VQA models: Up-
Down [3] which uses an object detector, VilBERT [31] that has been
pre-trained on a large dataset, and Q-only [21] that only uses the
question. We also display some supporting examples, in blue, and
counterexamples, in orange.
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Train Val Correlations (Val)

Rule (antecedent → consequent) Conf. (Sup.) Conf. (Sup.) UpDown VilBERT Question-Only

doing + manV + surfboardV + handV → surfing 86.6 (115) 87.3 (55) 100.0 100.0 23.6
sport + this + what + skateboardV → skateboarding 98.2 (53) 87.1 (31) 100.0 100.0 0.0

holding + this + what + racketV → tennis racket 75.0 (26) 33.3 (3) 100.0 100.0 33.3
played + shortsV + racketV + legV → tennis 100.0 (29) 80.0 (5) 100.0 100.0 40.0

playing + they + what + controllerV → wii 100.0 (30) 88.9 (9) 100.0 100.0 66.7
picture + where + beachV + peopleV → beach 100.0 (21) 90.0 (10) 100.0 100.0 90.0

taken + where + toiletV → bathroom 85.2 (22) 80.0 (5) 100.0 100.0 20.0
eating + what + pizzaV + armV → pizza 81.5 (21) 66.7 (6) 100.0 100.0 66.7

carrying + is + what + kiteV → kite 66.7 (21) 60.0 (5) 100.0 100.0 0.0
gender + of + what + headV → male 64.1 (24) 66.7 (6) 100.0 100.0 66.7

position + helmetV + batV + dirtV → batter 61.8 (20) 71.4 (7) 100.0 100.0 0.0

Table 5.1. – Instances of shortcuts that are highly correlated with VQA models’ predictions. We display their antecedent
made of words from the question and objectsV from the image, and their answer. Their support, i.e. number
of examples matched by the antecedent, and confidence, i.e. percentage of correct answers among them, have
been calculated on the VQA v2 training and validation sets. We report the correlation coefficients of their
predictions with those of three VQA models: UpDown (Anderson et al. 2018a) that uses an object detector,
VilBERT (J. Lu et al. 2019) that has been pre-trained on a large dataset, and Q-only (Goyal et al. 2017b) that
only uses the question. We show some counterexamples in Figure 5.6.
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5.4.1 Our VQA-CE evaluation protocol

Subsets creation using shortcuts By leveraging the shortcuts that we have
detected before, we build the Counterexamples subset of the VQA v2 validation
set. This subset is made of 63,298 examples on which all shortcuts provide the
incorrect answer. As a consequence, VQA models that exploit these shortcuts to
predict will not be able to get accurate answers on this kind of example. They
will be penalized and obtain a lower accuracy on this subset. On the contrary, we
build the non-overlapping Easy subset. It is made of 147,681 examples of which
at least one shortcut provides the correct answer. On this subset, VQA models
that exploit shortcuts can reach high accuracy. Finally, 3,375 examples are not
matched by any shortcut’s antecedent. Since these examples do not belong to any
of our two subsets, we do not consider them in our analysis. As we show later in
Section 5.4.2, they have unusual questions and images.

Distribution of examples Here, we show how the split between our two sub-
sets Counterexamples and Easy affects the distribution of examples. In Figure 5.7,
we show that the original distribution of answers is similar to the Easy distribu-
tion but dissimilar to the Counterexamples distribution. Highlighted in blue, we
display the five most common answers from the Easy distribution. They can be
found at the same positions in the original distribution, the two major answers
being “yes” and “no”. It is not the case in the Counterexamples subset where
these answers appear less frequently. Nonetheless, they are still in the top 30

answers which shows that our subsets creation is not a trivial splitting between
frequent and rare answers. Similarly, the five most common answers from the
Counterexamples subset, highlighted in orange, can be found in the Easy and All
subset. Next, we report similar observations for the questions and answer-type
distributions.

Distribution of examples per question-type In Figure 5.8, we display the dis-
tribution of examples per question type, and their split between the Easy and the
Counterexamples split. We show that examples of a question type that can be
answered by yes or no, such as is, are, does, do, mostly belong to the Easy subset.
Examples of a question-type beginning by what, where or why mostly belong to
the Counterexamples subset. These examples need to be answered using a richer
vocabulary than yes or no. Examples of a question-type beginning by how belong
to both subsets.

Distribution of examples per answer type In Figure 5.9, we display the distri-
bution of examples in our two subsets per answer type. We see that most yes-no
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Figure 5.7. – Number of examples per answer (30 most frequent ones) in the com-
plete validation set, our Counterexamples subset, and our Easy sub-
set. Answers highlighted in blue and orange are the top 5 answers
for the Easy and Counterexamples subsets respectively.

questions are going in the Easy subset, as they are correctly predicted by some
rules. On the contrary, for the two other answer types, examples are more evenly
distributed between the Easy and Counterexamples subsets.

5.4.2 Examples that are not matched by any rule

In Figure 5.10, we display some representative examples that are neither in the
Easy subset nor the Counterexamples subset. These examples are not matched by
any antecedent of our rules. Their input might be unusual. We do not add these
examples to our Counterexamples subset, as they do not contradict the shortcuts
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Figure 5.8. – Distribution of the number of examples per question type. Examples
associated with our Counterexamples subset are matched by some
shortcuts, but no shortcut leads to the correct answer. Examples
associated with our Easy subset are matched by at least one shortcut
that leads to the correct answer.

Figure 5.9. – Number of examples per answer type. “All” corresponds to all the
examples from the VQA v2 validation set. Among them, examples
associated with our “Counterexamples” subset are matched by some
shortcuts, but none of these shortcuts leads to the correct answer.
Inversely, examples associated with our Easy subset are matched by
at least one shortcut that leads to the correct answer.

we found. We discard them entirely from our analysis. There consists of about 3K
of examples.
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Figure 5.10. – Representative instances of image-question-answer examples that
are not matched by any of our shortcuts. These examples have
unusual questions, images or answers.

5.4.3 Main results

In Table 5.2, we report results of some baselines, common VQA models, and the
latest bias-reduction methods following our VQA-CE evaluation protocol. Models
that exploit shortcuts are expected to get a lower accuracy on the Counterexamples
compared to their overall accuracy. All models have been trained on the VQA
v2 training set and evaluated on the VQA v2 validation set. We detail them and
discuss our findings in the next paragraphs.

Baselines The Question-Only and Image-Only baselines are deep models that
only use one modality. They are often used to assess the amount of unimodal
shortcuts that a deep model can capture. We report extreme drops in accuracy
on our Counterexamples subset compared to the overall accuracy, with a loss of
32.53 points and 22.12 points respectively. This shows that most of the questions
that are easily answerable by only using the question, or the image, are filtered
out of our Counterexamples subset.
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Approaches Overall Counterexamples Easy VQA-CP v2

Number of examples 214,354 63,298 147,681

Ba
se

lin
es Shortcuts 42.26 (+0.00) 0.00 (+0.00) 61.13 (+0.00) 22.64

Image-Only 23.70 (+0.00) 1.58 (+0.00) 33.58 (+0.00) 19.31

Question-Only 44.12 (+0.00) 11.59 (+0.00) 58.61 (+0.00) 15.95

V
Q

A
m

od
el

s SAN – grid features 55.61 (+0.00) 26.64 (+0.00) 68.45 (+0.00) 24.96

UpDown 63.52 (+0.00) 33.91 (+0.00) 76.69 (+0.00) 39.74

BLOCK 63.89 (+0.00) 32.91 (+0.00) 77.65 (+0.00) 38.69

VilBERT – pretrained†
67.77 (+0.00) 39.24 (+0.00) 80.50 (+0.00) –

Bi
as

-r
ed

uc
ti

on
m

et
ho

ds

UpDown is used as a base architecture for bias-reduction methods
RUBi 61.88 (-1,64) 32.25 (-1,66) 75.03 (-1.66) 44.23

LMH + RMFE 60.96 (-2.56) 33.14 (-0.77) 73.32 (-3.37) 54.55

ESR 62.96 (-0.56) 33.26 (-0.65) 76.18 (-0.51) 48.50

LMH 61.15 (-2.37) 34.26 (+0.35) 73.12 (-3.57) 52.05

LfF 63.57 (+0.05) 34.27 (+0.36) 76.60 (-0.09) 39.49

LMH+CSS 53.55 (-9.97) 34.36 (+0.45) 62.08 (-14.61) 58.95

RandImg 63.34 (-0.18) 34.41 (+0.50) 76.21 (-0.48) 55.37

Table 5.2. – Results of our VQA-CE evaluation protocol. We report accuracies on
VQA v2 full validation set and on our two subsets: Counterexamples
and Easy examples. We re-implemented all models and bias-reduction
methods. †VilBERT is pre-trained on Conceptual Caption and fine-
tuned on VQA v2 training set. Scores in (green) and (red) are relative
to UpDown. We also report accuracies on VQA-CP v2 (A. Agrawal
et al. 2018a) which focus on question biases and come with a different
training set and testing set. VilBERT was not evaluated for VQA-CP
as it was pre-trained on balanced datasets. We evaluate SAN (Yang
et al. 2016), UpDown (Anderson et al. 2018a), BLOCK (Ben-Younes
et al. 2019b), VilBERT (J. Lu et al. 2019), RUBi (Cadene et al. 2019c),
LMH + RMFE (Gat et al. 2020), ESR (Shrestha et al. 2020), LMH (C.
Clark et al. 2019), LFF (Nam et al. 2020), LMH+CSS (L. Chen et al.
2020), RandImg (Teney et al. 2020b)

Aggregating shortcuts to create a classifier In order to evaluate our shortcuts
as a whole, we aggregate them to build a VQA classifier. As shown in the preced-
ing section, each training example is associated with shortcuts that can be used
to find the correct answer. Among these correct shortcuts, we select the highest-
confidence one for each example. This leaves us with 115,718 unique shortcuts.
In order to predict an answer for an unseen example, we take the most predicted
answer for all its matching shortcuts weighted by the confidence of the short-
cuts. For the examples that are not matched by any shortcut, we output “yes”, the
most common answer. Our shortcut-based classifier reaches an overall accuracy of
42.26%, close to the 44.12% of the deep question-only baseline. Interestingly, both
use different classes of shortcuts. Ours is mostly based on shallow multimodal
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shortcuts, not just shortcuts from the question. Since we use the same shortcuts
to create our subsets, the shortcut-based classifier reaches a score of 0% on the
Counterexamples. On the VQA-CP testing set, our classifier reaches 22.44% accu-
racy. It highlights the difference with our counterexamples subset: VQA-CP does
penalize some shortcuts, but there are still some that can be exploited.

VQA models learn shortcuts We compare different types of VQA models:
SAN (Yang et al. 2016) represents the image as a grid of smaller patches and uses
a stacked attention mechanism over these patches, instead, UpDown (Anderson
et al. 2018a) represents the image as a set of objects detected with Faster-RCNN
and uses a simpler attention mechanism over them, BLOCK (Ben-Younes et al.
2019b) also relies on the object representations but uses a more complex attention
mechanism based on a bilinear fusion, VilBERT (J. Lu et al. 2019) also relies on
the object representations but uses a transformer-based model that has been pre-
trained on the Conceptual Caption dataset (Sharma et al. 2018). First, they suffer
from a loss of ~29 accuracy points on the counterexamples compared to their
overall accuracy. This suggests that, despite their differences in modeling, they
all exploit shortcuts. Note that comparable losses are reported on VQA-CP v2 (A.
Agrawal et al. 2018a) which especially focuses on shortcuts based on question
types. Second, our evaluation protocol can be used to compare two models that
get similar overall accuracies: UpDown and BLOCK which gets +0.37 points over
UpDown. We can explain that this gain is due to a superior accuracy on the
Easy subset with +0.96 and report a loss of -1.00 points on the Counterexamples.
These results suggest that the bilinear fusion of BLOCK better captures shortcuts.
On the contrary, VilBERT gets a better accuracy on our both subsets. It might be
explained by the advantages of pretraining on external data.

Bias-reduction methods do not work well on natural multimodal shortcuts
Our evaluation protocol can also be used to assess the efficiency of common
bias-reduction methods. We use publicly available codebases when available, or
our own implementation. All methods have been developed on the VQA-CP v2

dataset. It introduces new training and evaluation splits of VQA v2 that follow
different distributions conditioned on the question type. All the studied methods
have been applied to UpDown and reached gains ranging from +5 to +20 accuracy
points on the VQA-CP testing set. We evaluate them in the more realistic context
of the original VQA v2 dataset. We show that their effect on our Counterexamples
subset is very small. More specifically, some methods such as our previous work
RUBi (Chapter 3), LMH+RMFE (Gat et al. 2020), and ESR (Shrestha et al. 2020)
have a negative effect on all subsets. Some methods such as LMH (C. Clark
et al. 2019) and LMH+CSS (L. Chen et al. 2020) slightly improve the accuracy
on counterexamples but strongly decrease the accuracy on the Easy subset, and
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consequently decrease the overall accuracy. As reported in Teney et al. 2020b,
most of those methods rely on knowledge about the VQA-CP testing distribution
(inversion of the answer distribution conditioned on the question), which no
longer applies in our VQA v2 evaluation setting. Finally, we found two methods,
Learning From Failure (LfF) (Nam et al. 2020) and RandImg (Teney et al. 2020b)
that slightly improve the accuracy on the Counterexamples subset with gains of
+0.36 and +0.50, while having a very small impact on the overall accuracy, even
reaching small gains in the best case of LfF. It should be noted that LfF is more
general than others since it was not designed for the VQA-CP context. Overall,
all effects are much smaller compared to their effectiveness on VQA-CP. This
suggests that those bias-reduction methods might exploit the distribution shift
between VQA-CP training and evaluation splits. They are efficient in this setting
but do not work as well to reduce naturally-occurring shortcuts in VQA.

Additional Experiments We share additional experiments in Appendix C. We
explore two variants of our evaluation benchmark: First, in Section B.1, we show
results using the ground-truth visual labels instead of the detected objects. Second,
in Section B.2, we share results on the VQA v1 dataset. Both experiments show
similar results as the ones presented in this Chapter.
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5.5 Conclusion

As we explained in Chapter 2, most of the literature related to biases and short-
cuts in VQA focuses on language priors. In this chapter, we explore the existence of
multimodal shortcuts in the VQA v2 dataset. We introduce a method that discov-
ers multimodal shortcuts in VQA datasets. It gives novel insights into the nature
of shortcuts in VQA: there are many multimodal shortcuts that could be exploited
by models to achieve high accuracy. We find many shortcuts that correlate with
predictions of VQA models, suggesting that they are exploiting these superficial
decision rules. Using those shortcuts, we introduce an evaluation benchmark to
assess whether a given model exploits those: it consists in evaluating models
on shortcut counterexamples. If a model does exploit shortcuts, it will perform
poorly on those counterexamples. We find that most reference VQA models suf-
fer from a significant loss of accuracy in this setting, whether they are simple
task-specific models like SAN (Yang et al. 2016) or large pre-trained transformers
like VilBERT (J. Lu et al. 2019). We also evaluate existing bias-reduction meth-
ods, including our previous work RUBi from Chapter 3. We find that even the
most general purpose of these methods does not significantly reduce the use of
multimodal shortcuts. This shows the need for new shortcut-reduction methods.
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Chapter abstract

Despite significant improvements in Visual Question Answering (VQA), the
ability of models to assess their own correctness remains under-explored. Re-
cent work has shown that VQA models, out-of-the-box, can be very bad at
abstaining from answering when they are wrong. The option to abstain, also
called Selective Prediction, is highly relevant when deploying systems to users
who must trust the system’s output (e.g., VQA assistants for users with vi-
sual impairments). For such scenarios, abstention can be even more important
as users may provide out-of-distribution (OOD) or adversarial, inputs that
make incorrect answers more likely. In this work, we explore Selective VQA
in both in-distribution (ID) and OOD scenarios, where models are presented
with mixtures of ID and OOD examples. The goal is to maximize the number
of questions answered while minimizing the risk of error on those questions.
We propose a simple yet effective Learning from Your Peers (LYP) approach for
training multimodal selection functions for making abstention decisions. Our
approach uses predictions from models trained on distinct subsets of the train-
ing data as targets for optimizing a Selective VQA model. It does not require
additional manual labels or held-out data and provides a signal for identifying
examples that are easy/difficult to generalize to. In our extensive evaluations,
we show this benefits several different models across different architectures
and scales.

The work in this chapter has led to the publication of this conference paper:

• Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna
Vedantam, Stefan Scherer, Xinlei Chen, Matthieu Cord, and Marcus Rohrbach
(2023). “Improving Selective VQA by learning from your peers”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).
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6.1 Introduction

Recent successes of deep learning models for multimodal tasks have created
the potential for many exciting real-world applications that require a large degree
of reliability, such as assisting users with visual impairments (Gurari et al. 2018;
Sidorov et al. 2020). However, with these novels, high-stakes applications come
responsibilities towards the users, especially regarding the problem setups and
the general approach to evaluating model performance. Moreover, as we saw in
previous chapters, multimodal models are often not robust to out-of-distribution
(OOD) inputs, in particular when learning spurious correlations. A prevalent
cause of such incorrect predictions in real-world settings is distribution shifts (De-
Grave et al. 2021; Mårtensson et al. 2020; Geirhos et al. 2020), where the test
environment may differ from the training environment and models could en-
counter a wide variety of input examples at test time that may not satisfy the
independent and identically distributed assumption often made by practition-
ers when developing models. This is especially true in open-ended tasks like
Visual Question Answering (VQA) where models may receive adversarial, out-
of-distribution (OOD) inputs that are difficult to answer correctly. Moreover, we
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Q: What color will the
light be when the vehicle
has permission to
proceed?


Groundtruth A: green


Q: What color shirt is the
man wearing?


Grountruth A: white


A: white

A: white



A: red



A: [abstain]

ID

OOD

SotA VQA Model + LYP

SotA VQA Model + LYP

SotA VQA Model           

SotA VQA Model           

Figure 6.1. – VQA Models are able to answer straightforward ID questions, as in
the top example where a state-of-the-art model (P. Wang et al. 2022)
with and without our Learning from Your Peers (LYP) approach
answers correctly. However, difficult OOD examples can arise, like
the bottom example. With LYP, the model is able to abstain from
answering to avoid outputting the incorrect answer, whereas the
existing model is overconfident and outputs the answer anyways.

showed in previous Chapters 3,4 and 5 that VQA models were sensible to the
learning of biases or shortcuts from their training data. Those models are likely
to be overconfident and wrong on OOD examples that do not follow the training
shortcuts. Another issue with OOD is examples that require knowledge or skills
that the model did not learn during its training. For example, in Fig. 6.1, a model
is asked a question that requires unknown background knowledge.

One particularly important consideration when developing models for real-
world applications is reliability, i.e., the ability of the model to avoid making
errors when facing uncertainty.

One way to approach reliability is to frame the problem as a selective pre-
diction task (Chow 1957; El-Yaniv and Wiener 2010; Whitehead et al. 2022b).
In selective prediction, models are able to either output an answer or abstain
from answering (i.e., effectively saying “I don’t know”) based on the model’s con-
fidence/uncertainty in order to avoid making incorrect predictions. While the
ability to answer open-ended questions has been a point of focus in VQA, having
a model correctly answer all questions, ID and OOD, is likely unattainable (Geiger
et al. 2019; Kamath et al. 2020). Therefore, framing this problem as a selective
prediction task provides an avenue to handle such OOD examples more grace-
fully as the model can abstain from answering on many of these inputs, while
still attempting to answer as many questions as possible. Doing this requires
models to recognize OOD examples for abstention decisions (OOD detection)



104 reliability for visual question answering

and generalize to OOD examples (OOD generalization) in order to make predic-
tions on examples that the model will get right. However, previous evaluations
for selective prediction in VQA (Whitehead et al. 2022b) have been done on ID
data, where the images and questions all come from the VQA v2 dataset (Goyal
et al. 2017c). In NLP, there are some efforts on selective prediction with OOD
examples (Kamath et al. 2020; Varshney et al. 2022), although they tend to not ad-
dress practical considerations, such as assuming access to OOD data or threshold
generalization. More broadly, selective prediction and OOD generalization have
largely been studied as independent problems in the literature (Tran et al. 2022).

In this chapter, we explore selective prediction for VQA with distribution shifts,
where we present models with mixtures of both ID and OOD examples, and mea-
sure the ability of different approaches to optimize answering as many questions
as possible while maintaining a low risk of error (or high accuracy) on those
questions. We perform experiments on VQA v2 (Goyal et al. 2017c) as our ID data
and AdVQA (Sheng et al. 2021), an adversarially-collected VQA dataset, as our
OOD data. We share more details about AdVQA in Section 6.2.

We evaluate several state-of-the-art approaches to this problem and find that
existing models’ softmax probabilities are generally poor confidence estimates for
abstention decisions on OOD data, leading models to answer <3% of questions
to achieve 1% risk of error in some settings. Further, we show that training a
selection function (Whitehead et al. 2022b) improves performance ID and OOD,
but integrating features from OOD detection methods as well as augmenting with
known-OOD data (i.e., OOD data different from the unknown target distribution)
does not improve beyond simply training this selection function on ID data.
However, we observe that existing methods for training multimodal selection
functions can require a held-out dataset in order to be effective.

Therefore, we propose a Learning from Your Peers (LYP) approach that removes
the need for held-out data while also allowing both the VQA model and selection
function to learn from the additional data that would have been held out. By using
predictions on the training data from models that have not seen these examples,
our approach provides a signal for which examples in the training data can be
generalized to for a given model class, and which are too hard and should be
abstained on. This allows us to train both the main VQA model and the selector
on more data, boosting their performance.

In Section 6.2, we review prior work on selective prediction in VQA and dis-
tribution shifts in VQA. In Section 6.3, we propose an evaluation benchmark
for selective prediction in VQA with distribution shifts, and evaluate reference
methods. Then, in Section 6.4, we propose a method to use more efficiently the
available data to train a better confidence model. Finally, in Section 6.5, we present
our experiments and results.
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6.2 Related Work

The main VQA architectures are discussed in Chapter 2, Section 2.2. In this
chapter, we use the OFA model, which is described in Section 2.2.2.4. Next, we
describe other works on out-of-distribution and selective prediction.

Out-of-distribution VQA We discussed in Chapter 2, Section 2.22 the VQA-CP
benchmark, which proposes training and testing sets with a controlled distribu-
tion shift to control the learning of shortcuts.

AdVQA (Sheng et al. 2021) and A-VQA (L. Li et al. 2021) are recently intro-
duced VQA benchmarks that comprise adversarial questions using human and
model-in-the-loop procedures to generate adversarial examples. They propose
evaluation datasets, which can be used with models trained on the original VQA
datasets. We use AdVQA in this chapter, and show its construction process in
Figure 6.2. It is collected in an adversarial manner, with humans in the loop: the
human annotator is asked to write a question that might be hard for a model to
answer, and then gets the output of a reference VQA model. If the model gets
it correctly, the user can refine its question until the model gets it wrong. Other
annotators then validate the examples or provide multiple ground-truth answers.
This way, most questions are very hard to answer, even for state-of-the-art VQA
models. This gives us a good benchmark to study the robustness of our models:
they should abstain from answering most of those questions.

Figure 6.2. – Diagram of the data collection process for AdVQA. First, writers
are asked to create questions that will fool a VQA model. Validators
then double-check if the model was fooled. Finally, answerers provide
ground-truth answers. Image from Sheng et al. 2021.

Other datasets require different abilities, such as TextVQA (Singh et al. 2019)
which contains questions requiring reading text in the image, or OK-VQA (Marino
et al. 2019) which requires outside knowledge. Recently, A. Agrawal et al. 2022

performed a cross-dataset evaluation to show that VQA models exhibit poor out-
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of-distribution generalization. They used the GQA, VizWiz and Visual Genome
datasets, presented in Chapter 2, Section 2.2.

Selective prediction & Reliability Recently, Whitehead et al. 2022b explored
Selective Prediction for ID VQA. They experiment with different selectors on top
of the base VQA model for improving their reliability on the VQA task. Varshney
et al. 2022 investigates selective prediction approaches across several NLP tasks
in ID, OOD, and adversarial settings. Specifically, they trained a selector (Multi-
Layer Perceptron (MLP)) on top of the base model on a held-out split and used
the selector’s confidence scores to either answer or abstain from answering and
improved risk, and coverage metrics compared to MaxProb. Corbière et al. 2019

studies failure prediction in Deep Neural Network (DNN) by training a confidence
model on top to provide confidence measures for the model prediction.

OOD Selective Prediction. Geifman and El-Yaniv 2019 proposed SelectiveNet
that incorporates a selection head on the top of the base model, which is optimized
with a selective loss to reject samples that the model is uncertain about. Kamath
et al. 2020 trains a calibrator on top of an existing NLP model to generalize to
unknown OOD data at test time. Specifically, it trains the calibrator on a mixture
of some held-out ID data and ‘known’ OOD data. The final model is used for the
evaluation of the unknown OOD data at test time.

OOD Detection. Earlier works (Hendrycks and Gimpel 2017) relied on the
maximum class probability (MaxProb) to detect OOD samples. Liang et al. 2018

proposed ODIN that combines temperature scaling and image perturbation to
achieve better separation in softmax scores for OOD and IID images. Another line
of work used distance-based scores (K. Lee et al. 2018) or energy scores (W. Liu
et al. 2020; Z. Lin et al. 2021; Haoran Wang et al. 2021) to detect OOD. Haoqi
Wang et al. 2022 introduced VIM that detects OOD samples by fusing the logits
and feature information obtained from the model. Tian et al. 2014; Bergman
et al. 2020; Sun et al. 2022a compute nearest-neighbor distances in the feature
dimension to detect OOD data.

Image OOD Detection & reliability. Ovadia et al. 2019 investigates the effect
of dataset distribution shift on accuracy and calibration. Lakshminarayanan et
al. 2017 uses deep ensembles to quantify uncertainty estimates of classification
models. Gawlikowski et al. 2021; Abdar et al. 2021 extensive review of uncertainty
estimation methods in deep learning literature.
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6.3 Selective VQA with ID and OOD Data

In this section, we discuss the problem formulation of Selective VQA(Section 6.3.1),
how we evaluate in the ID (in-distribution) scenario (Section 6.3.2) and in the
mixed ID+OOD (out-of-distribution) scenarios (Section 6.3.3).

6.3.1 Problem formulation

As explained in Section 2.2.2, the primary setting for VQA is to learn a function
f : Q,V 7→ A to predict an answer a ∈ A to a question q ∈ Q about a given
image v ∈ V . However, when exposing models to the real world they might
encounter hard questions, OOD data points, or even adversarial questions by
users and we cannot expect that models are able to answer all questions in these
scenarios correctly. Therefore, we instead would like to identify inputs x = (v, q) ∈
X that models cannot correctly answer and abstain in those cases. This is the
setting of Selective Prediction (El-Yaniv and Wiener 2010), which has also recently
been studied for ID VQA (Whitehead et al. 2022b) and OOD text-only question
answering (Kamath et al. 2020). In this chapter, we advocate for this selective
prediction setting for ID and OOD scenarios. We closely follow the formalism
introduced in Whitehead et al. 2022b for VQA. Specifically, the output space is
extended to allow for an abstention option (denoted by ∅): h : X 7→ A∪ {∅}. Such
a Selective Model h can be realized by decomposing h into two functions, a VQA
model f and selection function g : X 7→ {0, 1}

h(x) = (f, g)(x) =

{
f(x) if g(x) = 1,

∅ if g(x) = 0.
(6.1)

For a given image-question pair x = (v, q), the Selective VQA model h only
predicts an answer from the VQA model f if the selection function g decides that
an answer should be given. Otherwise, the Selective VQA model h abstains. The
selection function g can be formulated based on a function g′ : X 7→ R that scores
the correctness of the model’s prediction f(x). Then, for a given γ, the model
outputs the answer f(x) if g′(x) ≥ γ and abstains otherwise. Ideally, g′ should
yield higher values if f(x) is correct and lower if it is incorrect. However, as we
show in the experiments this is a hard task.
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Figure 6.3. – Comparison between Selector g training procedures. (a) shows the
one in Whitehead et al. 2022b, (c) shows our LYP. See Section 6.4 for
details.

6.3.2 Evaluation

Beyond accuracy, we evaluate using the metrics designed for models with ab-
stention options following Whitehead et al. 2022b:

Risk and coverage. For a dataset D, model f , and a selection function g, coverage
is the proportion of answered questions:

C(g) = 1

|D|
∑
x∈D

g(x),

while risk is the average error on the covered subset

R(f, g) =

∑
(xi,yi)∈D(1− Acc(f(xi), yi)) · g(xi)

C(g)
,

where Acc is VQA accuracy (Antol et al. 2015b) and yi is the corresponding
ground truth answer. We measure the maximum coverage at a specific risk toler-
ance, denoted (C@R), by determining the largest consecutive subset of questions
that can be answered with at most R risk. Further, we also compute the Area
Under the Curve (AUC) for the risk-coverage curve (Kamath et al. 2020) for a
summary of performance across different coverage levels. The AUC is computed
by integrating the risk-coverage curve. Note that here, we aim for a low AUC, as
for a given coverage, we prefer a model which minimizes the risk.

Effective Reliability Φc. This metric was introduced in Whitehead et al. 2022b
to better compare methods on the test set for a threshold selected on a validation
set. This is especially important for OOD, as thresholds for a certain risk level
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don’t generalize to the test scenario. Φc is a cost-based metric and jointly measures
the reliability and effectiveness of selective models in a single metric. It assigns a
cost of c to every wrong answer that the model outputs (i.e., does not abstain on):

Φc(x) =


Acc(x) if g(x) = 1 and Acc(x) > 0,

−c if g(x) = 1 and Acc(x) = 0,

0 if g(x) = 0.

(6.2)

The total score is Φc =
1
|D|

∑
x∈D Φc(x), a mean over all samples x. To compute this

metric, we set the threshold γ on a validation set to maximize Φc. Then, we use
this threshold for abstention decisions on the test set.

6.3.3 Evaluating with Mixed ID+OOD data

As previously mentioned, we want to explore the setting where models en-
counter mixtures of ID and OOD data. More formally, we assume we are given
Dtrain and Dtest that are drawn from different distributions. In our setting, to sim-
ulate a setting closer to a real-world use case, the test data is sampled from a
mixture of ID and OOD data. Similar to Kamath et al. 2020, we assume that our
training data is drawn from Psrc while our testing data is drawn from Ptgt, where
Ptgt = αPsrc + (1 − α)Punk. Here, Punk is an unknown distribution different from
Psrc from which we obtain our OOD examples. We obtain different mixtures of
data by varying α and evaluate models across these using the metrics discussed in
Section 6.3.2. Different from prior work in NLP (Kamath et al. 2020), we assume
we do not have access to known OOD data for training, meaning all models must
be trained and thresholds must be chosen on ID data. However, we do compare
our method with this setting in our experiments.

6.4 LYP: Learning from Your Peers

Prior work has established training a selection function (or Selector) g to predict
the correctness of the outputs of a model f (Geifman and El-Yaniv 2019; Kamath
et al. 2020; Whitehead et al. 2022b) as a method for selective prediction. As in
Whitehead et al. 2022b, our Selector g learns to predict the VQA Accuracy of
f . One option is to train f on one part of the training data (Train A) and g

on a different, typically smaller, part (Train B), as shown in Fig. 6.3(a). Having
separate training data for g can be crucial: if f overfits the training data, then
training g on that same data will lead g to a solution that doesn’t generalize well
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(e.g., always answering). We show some of these drawbacks in our experiments
with observations similar to findings on stacked generalization (Wolpert 1992).
However, withholding data from training f could reduce the overall performance
of f , as it does not allow f to learn from this data. Likewise, g is unable to learn
from the training data for f . This motivates training both f and g on the same
data, e.g., as done in Geifman and El-Yaniv 2019 (shown in Fig. 6.3(b)).

We propose a simple yet effective approach, called Learning from Your Peers
(LYP), for training g that allows both f and g to utilize all the available training
data. Inspired by work on collective outliers (Karamcheti et al. 2021) and improv-
ing worst group performance (E. Z. Liu et al. 2021), our approach aims to identify
examples in the training data that are difficult to generalize to, for a given archi-
tecture and learning procedure. In particular, we want to provide more signal to
g about which examples in the training data may not be generalizable and likely
should be abstained on, despite the VQA model’s potential ability to fit these
examples during training.

Shown in Fig. 6.3(c), we first partition our full training set D into N disjoint
subsets (D = Train A + Train B). For our VQA setting, we create our partitions
by ensuring no images overlap between them. Next, we train N different models
on combinations of the subsets in leave-one-out manner: we create a training
set D∗

n = D \ Dn and train a VQA model fn on D∗
n. Once we have trained fn,

we use it to make predictions on Dn, which it has not seen during its training.
We use the ground truth annotations for Dn to obtain VQA accuracy for each
prediction, which we treat as a label for the correctness of each prediction. After
performing this operation for n = 1, ..., N , we can union the partitions to obtain an
updated training set Dsel that additionally has correctness labels for each example
(x

(n)
i , y

(n)
i , fn(x

(n)
i ), ξ

(n)
i ) for (x(n)

i , y
(n)
i ) ∈ Dn, where ξ

(n)
i = Acc(fn(x

(n)
i ), y

(n)
i ).

We train our VQA model f on all of D and then, with the obtained correctness
labels, we train our Selector g on top of f using the full Dsel dataset. For training g,
we optimize it using a binary cross-entropy objective with the correctness labels
as the target. Note the source of our targets is not the model f itself but, rather, the
subset models {fn}Nn=1 (i.e., the peers of f ). The idea behind this is that if a model
trained on the remainder of the training data D∗

n cannot generalize to an example
in Dn, then that may be a challenging example that g should choose to abstain
on as the model f is unlikely to generalize reliably to such an example at test
time, even if it has fit it during training. Essentially, these correctness labels may
provide a signal for which examples are difficult and might require abstention
more generally rather than concerning a specific model. Moreover, as we show in
our experiments, this allows both f and g to learn from the entire training data,
giving a boost in both overall accuracy as well as abstention performance.
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6.5 Experiments

In this section, we evaluate our approach LYP in an in-distribution scenario
and a realistic mixed setting, where we encounter in-distribution and out-of-
distribution examples at test time.

6.5.1 Experimental Setups

Models We operate on two different VQA architectures: CLIP-ViL (Shen et al.
2021) and OFA (P. Wang et al. 2022). CLIP-ViL is an ensemble of MCAN (Yu et al.
2019) and MoVie (Nguyen et al. 2021) with a CLIP (Radford et al. 2021) image
encoder, and OFA is a recent transformer encoder-decoder model that performs
multiple tasks and achieves state-of-the-art performance on VQA v2. CLIP-ViL
represents a strong VQA model that treats VQA as a classification task over a large
set of answers (Teney et al. 2018), while OFA represents a large-scale pre-trained
model that treats VQA as a generative task 1. For OFA, we explore 2 different
sizes of the model: OFA-Base and OFA-Large.

Selection Functions. We explore MaxProb (Geifman and El-Yaniv 2017; C.
Guo et al. 2017; Hendrycks and Gimpel 2017; Kamath et al. 2020; Whitehead et al.
2022b) as a baseline as it is a natural comparison to the VQA model out-of-the-
box since the confidence scores are simply the output probabilities of the model.
We also evaluate the Selector developed by Whitehead et al. 2022b as it attains
the strongest performance for selective VQA. Selector is a MLP that takes in a
combination of image, question, multimodal and answer representations from the
VQA model in order to predict a confidence score.

For CLIP-ViL, We use the implementations for MaxProb and Selector provided
by Whitehead et al. 2022b. 2. We follow the given hyperparameters and training
procedure. We refer readers to Whitehead et al. 2022b for details.

OFA first processes the image using a convolutional network (He et al. 2016) to
obtain a set of visual representations Ṽ . Likewise, the question is tokenized and
converted to a sequence of question token embeddings Q̃. Then, the visual fea-
tures are flattened into a sequence and concatenated with the question token em-
bedding sequence. This entire sequence is given as input to an encoder-decoder

1. While OFA is a generative model, it uses a trie-based decoding method for VQA that restricts
the generated sequences to an answer vocabulary, as opposed to open-ended generation (P. Wang
et al. 2022).

2. https://github.com/facebookresearch/reliable_vqa

https://github.com/facebookresearch/reliable_vqa
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transformer model (Vaswani et al. 2017) to predict the answers. The encoder
produces multimodal representations of the image tokens {vi}|Ṽ |

i=1 and question to-
kens {qj}|Q̃|

j=1. The encoded tokens are used as input to cross-attention layers in the
transformer decoder at each decoding step. The decoder generates output token
representations {ol}Ll=1 for an answer of L tokens. These token representations
can be fed to a linear layer to give the output logits over the token vocabulary. We
use beam search to decode the answers.

We fine-tune OFA from the pre-trained checkpoints provided by the authors
of P. Wang et al. 2022. 3 We follow the hyperparameters from the original paper
for fine-tuning. In the following, we detail the setup for the selection functions:

MaxProb. Since OFA is a sequence-to-sequence model that generates answers
token-by-token, for the MaxProb baseline, we use the joint probability of each
answer token as the confidence value, similar to common decoding algorithms
like beam search.

Selector. We largely replicate the same Selector architecture and training as
Whitehead et al. 2022b (i.e., two-layer MLP), but with some slight differences. We
remove the non-linear projection (or one-layer MLP) for each input representa-
tion. We also use slightly different input representations: First, we max-pool the
encoder image (vi) and question (qi) token representations to obtain a single rep-
resentation for each set of representations. Then, we extract the probability of the
predicted answer p, which is the joint probability of each answer token. Finally,
we extract the first output token embedding o1 that is used to predict the first
answer token. We concatenate these representations and feed this as input to the
Selector.

Training Selector with OFA. We report the training parameters in Table 6.1.
We first train the VQA model as discussed above, freeze the VQA model, and
then train Selector on top of this frozen model. We train for a maximum number
of 32 epochs and perform early-stopping on the Val split (Table 6.2) using the
AUC metric. We keep the dropout in the main model during the selector training,
as we found this improved performance of the selector.

3. https://github.com/OFA-Sys/OFA

https://github.com/OFA-Sys/OFA
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OFA-Base OFA-Large

Batch Size 256 512

Learning Rate 1e-4 4e-4
LR warmup no no
LR-decay (linear) -1e-10/step -1e-10/step
Optimizer Adam Adam
Optimizer Beta (0.9,0.999) (0.9,0.999)
Gradient clipping 1.0 1.0
Selector Dropout 0.1 0.1
Main model dropout 0.1 0.1
Image size 480 480

Table 6.1. – Hyperparameters for Selector Training on top of OFA

6.5.2 Dataset Splits

Data. In our experiments, we require both ID and OOD data that have anno-
tations available for evaluation. Therefore, we utilize the splits of the VQA v2

dataset (Goyal et al. 2017c) made available by (Whitehead et al. 2022b) as our ID
data. The entire VQA v2 train set (call it split A) is used for training VQA models
(f ). Meanwhile, the VQA v2 validation set is split into 3 parts: 86k examples
(40%) for training selection functions g (call it split B); 22k examples (10%) for
validating models; 106k examples (50%) as a test split for evaluating full selec-
tive models h = (f, g). LYP does not require different sets for training f and g,
so we train them both with the combination of A and B (A+B). For OOD data,
we use AdVQA (Sheng et al. 2021), which is an adversarial dataset constructed
by asking human annotators to create questions that are difficult to answer for
existing VQA models trained on VQA v2. The images in AdVQA and VQA v2

overlap with each other, so we only use images from AdVQA that appear in our
test split. While AdVQA is not OOD in terms of the images, one can still con-
sider this as adversarial, OOD since the questions are designed to fall outside
the training distribution of VQA v2. This is similar to other OOD VQA datasets
like VQA-CP (A. Agrawal et al. 2018a), VQA-CE (Dancette et al. 2021b), or other
VQA generalization benchmarks (A. Agrawal et al. 2022; Whitehead et al. 2021).
However, for our setting, we create different mixtures of VQA v2 and AdVQA to
serve as our evaluation data, where each mixture contains a different percentage
of ID/OOD data.

In-Distribution Splits We follow Whitehead et al. 2022b and use the splits
provided in the official implementation. We detail the splits again in Table 6.2.
No images (or question-answer annotations) are shared between splits.
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Split Usage Source %src #I #Q

Train A Train f ,g VQA v2 train 100% 82,783 443,757

Train B Train f, g VQA v2 val 40% 16,202 86,138

Val Validate f, g VQA v2 val 10% 4,050 21,878

Test Test h = (f, g) VQA v2 val 50% 20,252 106,338

Table 6.2. – Size of the splits of VQA v2 from Whitehead et al. 2022b. Note, the
“Usage” is the setting for the full model (A+B). Some models are
trained on subsets (e.g., just A) as specified in the corresponding
tables.

ID/OOD Mixtures We use AdVQA as our source of OOD data. As discussed,
AdVQA is an adversarial dataset where human annotators intentionally ask ques-
tions that state-of-the-art models trained on VQA v2 answer incorrectly. The
images in AdVQA come from T.-Y. Lin et al. 2014c, as do VQA v2. However, we
consider this as OOD since the questions are adversarial in nature and contain
distribution shifts meant to induce errors for models trained on VQA v2.

In our work, we create mixtures of ID/OOD examples for our evaluations. To
form our mixtures, we first discard all AdVQA images that overlap with the A+B
train set. This leaves 5,008 AdVQA examples. For each setting, we randomly
sample examples from the ID Test split (Table 6.2) to create the desired OOD
proportion: 45K for 10% OOD, 10K for 33% OOd, 5K for 50% OOD and 2.5K for
66% OOD.

6.5.3 In-Distribution Experiments

We first experiment with only in-distribution data to compare with prior work.
Discussed in Section 6.3.1, we evaluate using maximum coverage at different risk
levels (C@R), AUC for the risk-coverage curve, and effective reliability at different
costs (Φc). We also present accuracy to give an idea of the question-answering
performance of each model.

ID performance consistently improves with LYP. Table 6.3 shows that across
all model architectures, the top scores are achieved by utilizing LYP. For instance,
we see improvements in C@1% over both MaxProb (A+B) and Selector (B) with
OFA-Large of 16.31% and 2.06%, respectively. Likewise, Φ100 increases with LYP
by 12.49 and 1.2 over MaxProb (A+B) and Selector (B), respectively, for OFA-Large.
Moreover, the improvements are sustained at higher risk levels and lower costs.
These same observations hold across each model we experiment with on ID data.
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VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Training Name Training Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - 69.98 4.97 33.79 53.62 10.92 54.67 21.40 1.32

Selector B Self 69.98 15.79 37.79 55.65 10.21 55.44 25.82 8.74

A+B
MaxProb - - 70.72 5.54 34.84 55.04 10.49 55.93 22.81 2.59

Selector A+B Self 70.72 6.45 34.26 56.07 10.48 56.07 22.99 2.39

Selector A+B LYP 70.72 18.40 38.65 57.40 9.76 56.53 26.45 9.74

OFA Base

A MaxProb - - 74.87 3.45 45.60 66.61 7.99 62.52 30.57 6.81

Selector B Self 74.87 24.58 49.35 68.61 7.39 62.80 34.54 13.49

A+B
MaxProb - - 75.18 14.88 46.15 67.51 7.79 63.04 30.13 7.29

Selector A+B Self 75.18 26.64 50.80 69.56 7.10 63.66 34.92 12.92

Selector A+B LYP 75.18 27.71 51.64 70.20 6.98 63.88 36.29 16.30

OFA Large

A MaxProb - - 77.53 20.57 53.99 75.18 6.42 66.68 36.12 8.21

Selector B Self 77.53 30.86 58.05 76.65 5.81 67.34 41.43 17.58

A+B
MaxProb - - 77.79 16.31 53.83 75.27 6.43 66.96 36.06 6.29

Selector A+B Self 77.79 31.47 58.80 77.14 5.69 67.82 41.43 16.08

Selector A+B LYP 77.79 32.92 59.43 77.52 5.60 68.02 42.83 18.78

Table 6.3. – Risk-coverage metrics and effective reliability on ID data (i.e., VQA v2

test split (Whitehead et al. 2022b)). Scores for OFA-Large with Selector
are averaged over 3 trials.

Lastly, we see that all Selector models improve beyond all MaxProb models on
every metric for this ID data, as shown in Whitehead et al. 2022b.

LYP helps VQA models and Selector learn from the same data. We observe
that training Selector and CLIP-ViL on the same data (A+B) performs poorly,
achieving C@R and Φc similar to its MaxProb counterpart. Conversely, the OFA
models and Selector can be trained on the same data and reap the benefits of
training on more data. We hypothesize this is due to the overfitting issue: CLIP-
ViL has a training accuracy of 87.40% whereas, e.g., OFA-Base has a training
accuracy of 82.92% while also having higher accuracy on the test split. However,
we see that when using LYP, CLIP-ViL and Selector can be trained on the same
data and improve beyond the model of Whitehead et al. 2022b by, e.g., 2.61%
C@1%. Furthermore, although training on the same data can be done for the OFA
models and Selector, it does not perform quite as well as when LYP is used. For
example, with OFA-Base, training both the VQA model and Selector on A+B has
C@1% of 26.64% compared to 24.58% when the VQA model is trained on A and
Selector is trained on B. Meanwhile, using LYP with OFA-Base attains 27.71%
C@1%. These results suggest that LYP can help ID performance regardless of
overfitting on the training data.
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VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Training set Name Training Set Targets 1% 5% 10%

CLIP-ViL

A MaxProb - - 66.35 0.00 24.16 43.53 13.55 49.12 14.39 -4.64

Selector B Self 66.35 12.69 31.12 46.96 12.47 50.36 20.15 5.22

A+B
MaxProb - - 67.12 2.60 26.13 45.25 12.97 50.49 16.59 -0.93

Selector A+B Self 67.12 2.97 26.70 46.19 12.80 50.89 18.19 -0.65

Selector A+B LYP 67.12 15.22 32.58 49.18 11.90 51.43 22.09 7.12

OFA Base

A MaxProb - - 71.59 0.01 36.07 56.49 10.10 57.49 23.15 -0.34

Selector B Self 71.59 19.00 42.61 59.82 9.15 58.13 28.09 4.79

A+B
MaxProb - - 72.00 1.74 37.02 57.57 9.78 58.11 22.09 0.53

Selector A+B Self 72.00 19.72 42.70 60.84 8.90 58.90 28.05 2.88

Selector A+B LYP 72.00 21.58 44.09 61.69 8.74 59.11 28.79 10.88

OFA Large

A MaxProb - - 74.56 4.76 44.53 66.06 8.21 61.90 28.20 0.21

Selector B Self 74.56 23.53 50.17 68.76 7.33 62.96 34.43 9.88

A+B
MaxProb - - 74.79 1.30 43.70 65.95 8.26 62.24 27.09 -2.46

Selector A+B Self 74.79 22.68 50.27 69.27 7.32 63.03 33.50 4.92

Selector A+B LYP 74.79 25.38 51.07 69.74 7.17 63.41 34.85 10.34

Table 6.4. – Mixed ID/OOD scenario, composed of 90% VQA v2 and 10% AdVQA
examples.

6.5.4 OOD Evaluation

For our OOD evaluations, we build mixed datasets comprised of 10%, 33%,
50%, and 66% OOD examples. All mixtures contain 5K examples from AdVQA
as OOD examples, and the rest are randomly sampled from our ID test split. We
report the results for all models on the 10% OOD dataset in Table 6.4. Results for
other splits can be found in Appendix B.

MaxProb can be overconfident on OOD data. Across all models, we see that
MaxProb has <3% C@1% and its Φc scores become negative. These results suggest
that MaxProb may be overconfident on OOD examples, on which the model is
more likely to be incorrect. While improving the VQA accuracy of the model
improves MaxProb performance, training a Selector remains the most effective
approach and consistently.

LYP maintains improvements over other methods in the 90%/10% setting.
Similar to the pure ID setting, LYP continues to outperform other methods on the
90%/10% mixed setting. Although, we see decreases in all metrics across each
of the different methods, demonstrating the challenge of this task even with just
10% OOD data.

The more OOD data, the more challenging. We show the AUC for our models
on various mixtures of ID/OOD data in Fig. 6.4. Overall, our LYP method consis-
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tently improves AUC over the Selector baseline from Whitehead et al. 2022b, for
the three models (note lower is better for AUC).

We display two other metrics, C@5% and Φ100 in Figs. 6.5a and 6.5b. For both
plots, we show each of the three models with a Selector trained with LYP versus
the Selector from Whitehead et al. 2022b. We see in Fig. 6.5a that the improve-
ments are slightly less consistent: For CLIP-ViL and OFA-Base, LYP consistently
improves the scores over a baseline on all mixture levels. For OFA-Large, we see
that LYP only improves the results on in-distribution and low-OOD levels. On
higher-OOD levels, the baseline performs slightly better than LYP. This might be
explainable by the fact that OFA-Large is trained on a much larger dataset, and
thus is more robust out-of-the-box OOD data, thus making LYP less effective. We
make a similar observation for the Φ100 metric in Fig. 6.5b: LYP outperforms the
baseline for CLIP-ViL on all mixed settings but does not improve consistently
performance for OFA-Base and OFA-Large on high-OOD levels. This shows that
more work is needed to help generalize to such OOD data.
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Figure 6.4. – AUC for various mixtures of VQA v2 + AdVQA. Note: lower is
better for AUC

Additional OOD results In Tables C.4 to C.6 of the Appendix B, we present
the results for our experiments on the remaining OOD mixtures of VQA v2 and
AdVQA (Sheng et al. 2021). While we on average see that the Selector models and
Selector + LYP perform better than the corresponding baselines models out-of-the-
box (MaxProb), all models degrade dramatically if there is a high percentage of
OOD data in the test mixture, especially for low risk (C@1%) or high cost of error
(Φ100). Especially if we look at the realistic scenario where the threshold is chosen
on the validation set and used at test time (as for Φ100), we notice that the scores
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Figure 6.5. – C@5% and Φ100 for various mixtures of VQA v2 + AdVQA. OFA-L
stands for Large, OFA-B for Base. All models with Selector.

of all methods drop below 0 with 33.3% or more OOD data. This can be seen in
the last column of Tables C.4 to C.6 or in Figure 6.5b. These results demonstrate
that these thresholds can be overconfident on OOD examples, which leads to
poor abstention decisions such that the cost of the models’ incorrect outputs
outweighs the gains of the correct ones. Future work is needed to improve such
OOD generalization and recognize samples that cannot reliably be answered in
this challenging setup, which this work provides a new and interesting test setup
for.

6.5.5 Threshold Generalization

In this section, we investigate threshold generalization. All previous tables
reported numbers on “maximum coverage” at risk R. This metric is irrespective
of the threshold chosen as it solves for the coverage that satisfies a given risk
level. In a real-world setting, the threshold would need to be fixed once using
a validation set and then used at test time. We already evaluate this setting of
evaluating the optimal threshold on the validation set for the cost-based metric
Φc in Section 6.5.4. In contrast to Φc, which allows comparing a single number,
for risk and coverage, choosing a threshold on a validation set leads to changes
in coverage and risk, making it difficult to compare two methods. Still, in this
section, we evaluate how the threshold generalizes to ID and OOD settings.

Our method improves risk generalization over out-of-the-box MaxProb. In
Fig. 6.6, we show the test risk on various ID/OOD mixtures with a threshold set
on the ID validation split of VQA v2 for a target risk of 1%. We see that LYP (solid



6.5 experiments 119

0% 10% 33% 50% 67%
Percentage of OOD data

2

4

6

8

10

Te
st

 R
isk

 (%
) a

t V
al

-R
isk

 =
 1

%

Target Risk Level

OFA-L MaxProb
OFA-L + LYP
OFA-B MaxProb
OFA-B + LYP
CLIP-ViL MaxProb
CLIP-ViL + LYP

Figure 6.6. – Risk at various percentages of OOD when the threshold is optimized
on the validation set for maximum coverage, with a target risk level
of 1%.

line) consistently improves the generalization of risk over the MaxProb baseline:
the curves corresponding to LYP are closer to the 1% target risk level compared
to MaxProb.

Risk generalization is limited for OOD data. While we observe reasonable
good risk generalization for ID, the generalization is really limited for larger
percentages of OOD data.

CLIP-ViL is the best model for risk generalization. We see that all variants of
CLIP-ViL outperform their corresponding methods on OFA-B and OFA-L. Note
that the associated coverages are lower for the same risk level, thus CLIP-ViL is
not the best method overall. This is somewhat surprising, as Kadavath et al. 2022b
found that larger language models were better calibrated on NLP tasks.

Full results are available in Table C.7 and C.8 for our in-distribution testing set
and our mixed setting with 90% of VQA v2 and 10% of AdVQA examples.
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6.5.6 Further analysis

How many models/splits are needed for LYP? We run an ablation on OFA-
Base to show the impact of the number splits N we make of the training dataset
D. This impacts the total training time, as we need to train a model for each split
D∗

n. We see in Table 6.5 that the number of models has a very small impact on
the final results. This suggests that the overhead in training time can be reduced
significantly while maintaining strong performance.

N C@1% C@5% C@10% AUC

10 27.71 51.64 70.20 6.98
2 27.64 51.24 70.12 7.01

Table 6.5. – Varying the number of splits N for LYP. Results are reported on our
ID VQA v2 test split for OFA Base, trained on A+B, with a selector
trained on A+B.

Effect of training data size. We show in Table 6.6 that the amount of data used
for the Selector training is an important factor for its performance. Note that the
Train B set has 86K examples, which is ∼15% of the full Train A+B. The additional
data, labeled with LYP, helps Selector generalize better to test examples.

% of A+B C@1% C@5% C@10% AUC

100 27.71 51.64 70.20 6.98
75 27.48 51.11 70.26 7.01

50 26.84 51.04 70.04 7.06

25 26.03 50.15 69.65 7.16

10 23.30 47.97 68.03 7.44

5 22.62 46.10 66.10 7.71

Table 6.6. – Varying the amount of training data for the Selector. Results are re-
ported on the ID VQA v2 test split. The model is OFA Base, trained
on A+B, with a selector trained on a subset of A+B. Scores are labeled
by 10 models following our LYP method.

Impact of scaling on Selective prediction. We show in Table 6.7 the results
for three OFA variants: OFA Medium, OFA Base, and OFA Large. Those models
have respectively 93M, 180M, and 470M parameters. We see that larger models,
in addition to having a much higher accuracy on the testing set, have much better
reliability when paired with a trained selector.
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Model Method Acc. C@1% C@5% C@10% AUC

Medium MaxProb 71.30 5.08 37.56 56.85 9.95

Base MaxProb 74.70 15.82 45.67 66.11 7.96

Large MaxProb 77.79 6.12 53.57 75.04 6.49

Medium Ours 71.30 19.69 41.28 59.60 9.17

Base Ours 74.70 27.71 51.64 70.20 6.98

Large Ours 77.79 32.54 58.98 77.34 5.64

Table 6.7. – Scaling results for three variants of OFA: Medium (93M parameters)
Base (180M parameters) and Large (470M parameters) on our VQA
v2 test subset.

6.5.7 Evaluation of other baseline methods

Additionally, we evaluate the performance of multiple other baseline methods
to improve reliability in the out-of-distribution (OOD) setting. We report those
results in Appendix C. First, inspired by Fisch et al. 2022, we train Selector with
out-of-distribution detection scores computed with KNN (Sun et al. 2022b) or
SSD (Sehwag et al. 2021) as added features. We share the results in Section C.2.
Second, as discussed in Section 6.3.3, we also try training Selector on the B set,
along with some known OOD datasets similar to Kamath et al. 2020. We show
these results in Section C.3.

We show that both of those baselines, which are effective in image classification
tasks, fail here to improve the reliability of VQA models.

6.6 Qualitative examples

Figs. 6.7 to 6.9 show qualitative results comparing the OFA-Large + LYP and
OFA-Large + MaxProb, on the AdVQA dataset. In all cases, the OFA-Large model
f is trained on A+B. For all examples, the abstention threshold is set on the in-
distribution validation set to get maximum coverage at 5% risk. Fig. 6.7 shows
examples where the VQA model (OFA-Large) is incorrect. Thus, the correct be-
havior is to abstain. But the MaxProb model does not abstain using the provided
threshold, instead, it answers incorrectly. On the contrary, our model OFA-L +
LYP abstains. Fig. 6.8 shows examples where the OFA-L model is correct: the best
behavior is to answer. The MaxProb model abstains, while our method answers
correctly. Fig. 6.9 shows two kinds of failure cases of our models. In the first line,
OFA-L + LYP incorrectly abstains, as the VQA model was correct. In the second
line, our model incorrectly answer instead of abstaining, as the answer provided
by the model was incorrect.
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Q: Are the boards on the
bench flat or rounded ?


Groundtruth A: rounded




A: flat



A: [abstain]

OFA Large + LYP

OFA Large           
Q: What is the number
on the bus ?


Groundtruth A: 110




A: 10



A: [abstain]

OFA Large + LYP

OFA Large           

Q: Which one of the
following is NOT pictured
here: sled, cat or bear?


Groundtruth A: cat




A: cat



A: [abstain]

OFA Large + LYP

OFA Large           
Q: Are all the cows
blac and white?


Groundtruth A: no




A: yes



A: [abstain]

OFA Large + LYP

OFA Large           

Figure 6.7. – Qualitative examples for OFA-Large on AdVQA: on those exam-
ples, the baseline (MaxProb) answers incorrectly the answer, and our
model with LYP abstains.

Q: What is the cat laying
on? 


Grountruth A: chair




A: [abstain]



A: chair

OFA Large + LYP

OFA Large           

Q: How many plane
engines? 


Grountruth A: 2




A: [abstain]

A: 2
OFA Large + LYP

OFA Large           

Q: How many teddy bear
have shoes in the
picture? 


Grountruth A: 1




A: [abstain]

A: 1
OFA Large + LYP

OFA Large           
Q: Are there sticks on the
ground? 


Grountruth A: yes




A: [abstain]

A: yes

OFA Large + LYP

OFA Large           

Figure 6.8. – Qualitative examples on AdVQA: on those examples, the baseline
model abstains but had predicted the correct answer. OFA-L + LYP
does not abstain.

Q: What truck is this? 


Grountruth A: Ice cream



A: ice cream 




A: [abstain]
OFA Large + LYP

OFA Large           
Q: What is this object
resemble?


Grountruth A:
Umbrella


A: umbrella

A: [abstain]
OFA Large + LYP

OFA Large           

Q: Is this a dalmatian?


Grountruth A: no




A: [abstain]

A: yes
OFA Large + LYP

OFA Large            Q: What fruit is in the
bowl?


Grountruth A: pears




A: [abstain]

A: apples
OFA Large + LYP

OFA Large           

Figure 6.9. – Failure cases: on the first two examples, the baseline predicts the
correct answer, and OFA-L + LYP abstains. On the second line, the
baseline abstains from answering an incorrect answer, while OFA-L
+ LYP still answers.
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6.7 Conclusion

In this chapter, we explore Selective Visual Question Answering in the realistic,
but challenging mixed ID+OOD scenario, where a model is exposed to samples
from both the training distribution and also out-of-distribution (OOD) samples.
We find that out-of-the-box, state-of-the-art VQA models like OFA largely fail on
this task at a low risk of error (e.g., 1%). When training a multimodal selector,
models significantly improve their reliability, matching observations in the in-
distribution (ID) scenario. However, a limitation of the selector training is that
it requires splitting the training data between the VQA model training and the
Selector training to avoid over-fitting on the training data. We address this with
our approach Learning from Your Peers (LYP), which allows us to train both the
VQA model and the Selector on the full training set. We observe that in the
ID scenario as well as the mixed ID/OOD scenario, LYP consistently performs
best across all VQA models and Metrics and improves over baselines and prior
work. Our best result doubles the C@1% over prior work. Overall, all models still
have difficulties recognizing when they cannot answer OOD examples correctly
and thus decrease in performance when the percentage of OOD increases. Thus,
major challenges remain, both for improving the generalizing abilities of VQA
models to OOD examples (i.e., answering them correctly) as well as identifying
examples that the model cannot answer, whether they are in-distribution or out-
of-distribution.
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7.1 Summary of Contributions

We first summarize the contributions that we propose in this thesis before
discussing directions for future work. The problem we tackle is shortcut learning
in Visual Question Answering: the ability of a model to learn superficial statistical
regularities from the data, which can lead to answering correctly in most cases, but
without learning the correct answering mechanism. This is a dramatic problem for
deploying VQA models in the real world, especially in safety-critical applications,
like assisting visually impaired people or autonomous driving, where unexpected
cases will be encountered.

The first direction we explore is to reduce shortcut learning in VQA models, by
adding constraints on the model. As mentioned in Geirhos et al. 2020, shortcuts
are learned partially due to the simplicity bias: models are biased towards a simpler
solution, and the inductive biases that have an impact on the hypothesis class are
the architecture, the training data, and the learning algorithm and loss.

In this thesis, we show that we can effectively modify those inductive biases in
order to reduce shortcut learning: by having an a-priori on the source of biases
and the type of shortcut, we can design a system that is more robust to those
biases. First, in Chapter 3, we explore how the loss function can be modified
to reduce question-based shortcuts: we train the main model together with a
“blind” model, as a kind of mixture of experts, and use only the main VQA model
for inference. This allows the blind model to learn the shortcuts, and the main
model to learn the desired behavior. Then, in Chapter 4, we explore another
source of shortcut learning: the architecture. We show that by incorporating
domain knowledge in the model, we can improve its generalization abilities to
out-of-distribution datasets: for the Visual Counting task, a subset of VQA with
only counting questions, we design the Spatial Counting Network model, that
assigns a spatial distribution to the final answer. We also incorporate an entropy
regularization loss: we impact both the architecture and the loss. This allows the
model to be more robust to superficial shortcuts and is also explainable by design.
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In this direction, multiple works have followed ours, exploring various strate-
gies. For example, Kervadec et al. 2020 proposes an additional loss for VQA
models that takes into account the semantic structure of the answer space: if the
ground truth answer is “red”, models should be less penalized for answering
“pink” than “car”. Teney et al. 2020a explores a third axis of shortcut learning:
the data itself. They propose to create counterfactual examples, i.e. “minimally
different” examples that are very close to a training example, but with a different
answer: more specifically, they modify the image to make the question unanswer-
able, and force the model to output no answer. This forces the model to learn
to use the image modality, and not rely only on the question, thus learning the
causal relationship of the task. L. Chen et al. 2020 also proposes to use synthetic
counterfactual examples as additional training data, by changing the colors of
objects, or removing them using image inpainting, to change the ground truth
answer.

The second direction we explore is the detection of shortcuts in datasets, and
the evaluation of models: in order to effectively reduce shortcut learning, it is
critical to know more about the source of shortcuts. We show in Chapter 5 that
there are a large amount of multimodal shortcuts as well in the VQA v2 dataset.
They are more subtle than the previously studied question-based shortcuts. We
first propose a shortcut detection method based on object detection and rule
mining algorithms, and an evaluation benchmark, which addresses some of the
shortcomings of VQA-CP: our benchmark evaluates models against real VQA
v2 shortcuts and does not introduce an artificial shift in distribution to create
shortcuts. We show that most shortcut reduction methods proposed for VQA are
only effective for question-based shortcuts, but do not seem to reduce multimodal
shortcut learning. This paves the way for future work to explore multimodal
shortcut reduction methods.

Finally, we explore in Chapter 6 a tangential but related topic: reliability in
VQA models in the out-of-distribution context. As we saw previously, models
tend to rely on shortcuts and might fail catastrophically in real-world scenarios.
Parallel to fixing those issues, we can try to detect cases where a model will fail,
and give the model the ability to abstain from answering those. We find that
models of all scales are very unreliable out of the box and fail to estimate their
own confidence, especially in out-of-distribution settings. We explore various
solutions to tackle this issue and find that the most effective solution is to train
a dedicated selector function to estimate the model’s confidence. We propose
Learning from your peers, a strategy to share the model’s and selector’s training
data to maximize their performances given a fixed amount of data. This strategy
effectively improves the reliability of VQA models, in both in-distribution and
out-of-distribution settings.
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Overall, we show that VQA models are very sensitive to shortcuts, and that
shortcut learning is a major issue in VQA. We explore various strategies to reduce
shortcut learning and show that most of them are only effective for question-
based shortcuts, and do not seem to reduce multimodal shortcut learning. We
also explore the reliability of VQA models and show how to improve them.

7.2 Perspective for Future Works

Large Vision and Language models The trend in vision and language is now
large transformer models, pre-trained on a very large amount of aligned image
and text data. VQA, as most of the vision-and-language tasks, is strongly impacted
by this trend: It seems clear now that using only datasets of the size of VQA
v2 is not enough to reach human performance, given the difficulty of the task.
Eventually, a good use of the VQA dataset seems to be as a zero-shot or few-
shot downstream task for large pre-trained models: models should be able to
answer questions without any dedicated VQA training. Flamingo (Alayrac et al.
2022) shows promising results in this direction. A potential direction is to build
multimodal models by adapting large language models to vision-and-language
data, such as BLIP (J. Li et al. 2022), Flamingo (Alayrac et al. 2022) or OFA (P. Wang
et al. 2022), without having to train huge models from scratch. All those works
use the Transformer architecture, which is very effective for vision-and-language
tasks.

Additionally, the reliability and calibration of large multimodal models is an
active research area. Kadavath et al. 2022a suggests, for Natural Language Process-
ing (NLP) tasks, that large language models might be less susceptible to shortcut
learning. This remains underexplored for multimodal learning, and we hope to
see more work in this direction. By avoiding training on small-sized datasets
like VQA, shortcut learning might be less of an issue: models are not able to use
training shortcuts if they are evaluated in a zero-short or few-shot fashion.

Data efficiency Scaling of models and data size seems to be one of the most
promising directions to train better models. A very important research direction
is training efficiency: how to train the best models with the least amount of data
and compute power. Those models are very costly, for instance, the Flamingo that
we mentioned earlier is trained for 15 days using 1536 TPU chips, on 185 million
images and 182 Gb of text, and this is likely to increase for future models. How
to extract the most value from each example is a very important question.
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Human Interaction One last perspective is human interaction: those systems
seem very strong on our datasets, but there is a need for human-in-the-loop
research, where those systems are deployed to real users. Training with humans
in the loop to align the model’s behavior to human expectations has been shown
effective with large language models such as InstructGPT (Ouyang et al. 2022)
and ChatGPT (OpenAI 2022). In the multimodal case, humans-in-the-loop could
help both for training and evaluation, for example with visually impaired users
for VQA. Real questions are much harder than the ones in the VQA dataset, due
to the quality of images and the variability in questions (Gurari et al. 2018). There
is still a lot of exciting work to do in this direction.
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A D D I T I O N A L R E S U LT S F O R C H A P T E R 4

In this appendix, we report additional results for Chapter 4.

TallyQA-Even-Odd In Table A.1, we display the number of odd and even
triplets in each set of TallyQA-Even-Odd where 90% of triplets have been re-
moved (p = 90%), and other datasets where p = {0, 50, 100}.

Training set Validation set Testing set

p% Odd Even Odd Even Odd Even

0 % 87,289 137,102 9,635 15,292 23,138 15,451

50 % 43,643 137,102 4,815 15,292 23,138 7,719

90 % 8,725 137,102 969 15,292 23,138 1,551

100 % 0 137,102 0 15,292 23,138 0

Table A.1. – Number of image-question-count triplets for each set generated by our
Even-Odd-p% strategy when applied on the TallyQA dataset (Even-
Odd-0% leads to the the original TallyQA distribution). Numbers
of triplets for intermediate values of p can be obtained with linear
interpolation.
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In this appendix, we report additional experiments for Chapter 5. We explore
two variants of our evaluation benchmark: First, in Section B.1, we show results
using the ground-truth visual labels instead of the detected objects. Second, in
Section B.2, we share results on the VQA v1 dataset.

B.1 Results with ground-truth visual labels

We report in Table B.1 the results of our analysis with ground-truth visual
labels from the COCO (T.-Y. Lin et al. 2014b) dataset, instead of labels detected
with Faster R-CNN. We make similar observations to the main experiments of
the paper: bias-reduction methods often degrade performances, on both easy and
counterexample split. A few methods slightly improve the counterexamples score,
but much less than on VQA-CP. The only method which improves both overall
and counterexamples scores is LfF (Nam et al. 2020). We observed similar results
on the dataset with detected labels, reported in Table 1 of the main paper.

B.2 Results on VQA v1

We report in Table B.2 the results of our analysis on the VQA v1 dataset. We
observe similar results as in Table 1 from the main paper. Most bias-reduction
methods degrade performances on the counterexamples split, and only LfF (Nam
et al. 2020) improves performances on all three splits.
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Approaches Overall Counterexamples (ours) Easy (ours)
Number of examples 214,354 63,925 135,324

Ba
se

lin
es Shortcuts 42.14 (+0.00) 0.43 (+0.00) 65.95 (+0.00)

Image-Only 23.70 (+0.00) 2.92 (+0.00) 35.39 (+0.00)

Question-Only 44.12 (+0.00) 13.98 (+0.00) 60.88 (+0.00)

V
Q

A
m

od
el

s SAN – grid features 55.61 (+0.00) 28.99 (+0.00) 70.04 (+0.00)

UpDown 63.52 (+0.00) 37.77 (+0.00) 77.52 (+0.00)

BLOCK 63.89 (+0.00) 37.06 (+0.00) 78.52 (+0.00)

VilBERT – pretrained† 67.77 (+0.00) 43.32 (+0.00) 81.27 (+0.00)

Bi
as

-r
ed

uc
ti

on
m

et
ho

ds

UpDown is used as a base architecture for bias-reduction methods
RUBi 61.88 (-1.64) 36.05 (-1.72) 75.84 (-1.68)

LMH + RMFE 60.12 (-3.40) 34.97 (-2.80) 73.80 (-3.72)

ESR 62.96 (-0.56) 37.22 (-0.55) 76.98 (-0.54)

LMH 61.15 (-2.37) 37.82 (+0.05) 73.91 (-3.61)

LfF 63.57 (+0.05) 38.18 (+0.41) 77.44 (-0.08)

LMH+CSS 53.55 (-9.97) 37.27 (-0.50) 62.30 (-15.22)

RandImg 63.34 (-0.18) 38.13 (+0.36) 77.05 (-0.47)

Table B.1. – Results of our VQA-CE evaluation protocol with ground-truth vi-
sual labels. We report accuracies on VQA v2 full validation set
and on our two subsets: Counterexamples and Easy examples. We
re-implemented all models and bias-reduction methods. †VilBERT
is pre-trained on Conceptual Caption and fine-tuned on VQA v2

training set. Scores in (green) and (red) are relative to UpDown. We
evaluate SAN (Yang et al. 2016), UpDown (Anderson et al. 2018a),
BLOCK (Ben-Younes et al. 2019b),VilBERT (J. Lu et al. 2019), RUBi (Ca-
dene et al. 2019c), LMH + RMFE (Gat et al. 2020), ESR (Shrestha et al.
2020), LMH (C. Clark et al. 2019), LfF (Nam et al. 2020), LMH+CSS (L.
Chen et al. 2020), RandImg (Teney et al. 2020b).
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Approaches Overall Counterexamples (ours) Easy (ours)
Number of examples 121,512 40,052 80,539

Ba
se

lin
es Shortcuts 44.71 (+0.00) 0.05 (+0.00) 67.35 (+0.00)

Image-Only 24.39 (+0.00) 1.75 (+0.00) 35.83 (+0.00)

Question-Only 49.20 (+0.00) 13.48 (+0.00) 67.27 (+0.00)

SAN – grid features 58.35 (+0.00) 26.09 (+0.00) 74.58 (+0.00)

UpDown 62.83 (+0.00) 31.71 (+0.00) 78.49 (+0.00)

Bi
as

-r
ed

uc
ti

on
m

et
ho

ds UpDown is used as a base architecture for bias-reduction methods
RUBi 55.82 (-7.01) 23.87 (-7.84) 71.90 (-6.59)

LMH + RMFE 62.97 (+0.14) 31.09 (-0.62) 79.02 (+0.53)

ESR 63.03 (+0.20) 31.50 (-0.21) 78.91 (+0.42)

LMH 59.74 (-3.09) 32.80 (+1.09) 73.30 (-5.19)

LfF 63.26 (+0.43) 32.05 (+0.34) 78.97 (+0.48)

RandImg 62.87 (+0.04) 31.09 (-0.62) 78.87 (+0.38)

Table B.2. – Results of our VQA-CE evaluation protocol on VQA v1 full validation
set and on our two subsets: Counterexamples and Easy examples.
We re-implemented all models and bias-reduction methods. Scores in
(green) and (red) are relative to UpDown. We evaluate SAN (Yang et al.
2016), UpDown (Anderson et al. 2018a), BLOCK (Ben-Younes et al.
2019b),VilBERT (J. Lu et al. 2019), RUBi (Cadene et al. 2019c), LMH
+ RMFE (Gat et al. 2020), ESR (Shrestha et al. 2020), LMH (C. Clark
et al. 2019), LfF (Nam et al. 2020), LMH+CSS (L. Chen et al. 2020),
RandImg (Teney et al. 2020b).
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C.1 Jointly Training OFA and Selector

Discussed in Section 6.5.1, for training Selector, we follow a staged proce-
dure (Whitehead et al. 2022b): The VQA model is first trained until convergence
on the VQA task. Then, the weights are frozen, Selector is added to the model,
and Selector is learned on top of the frozen model.

Since we are able to train OFA and Selector on the same data, a natural compar-
ison to make is between the staged training procedure we use and joint training
(i.e., simultaneously optimizing the VQA model and Selector), similar to (Geifman
and El-Yaniv 2019). We experiment with joint training by summing their losses.
We perform this on OFA-Base, training both OFA-Base and Selector with the full
A+B data. We also experiment with first joint training OFA-Base and Selector until
OFA-Base has converged for the VQA task, freezing OFA-Base, and continuing to
fine-tune Selector on A+B.

The results in Table C.1 illustrate that joint training decreases the overall per-
formance of the Selector. All metrics yield worse performance with joint training
alone, though the gap shrinks when freezing the VQA model and continuing to
fine-tune Selector. This is even though the overall VQA accuracy remains roughly
the same with or without joint training. We conjecture that the reason for this may
be that joint training creates a somewhat non-stationary optimization problem
for Selector. Specifically, the VQA model’s representations and VQA accuracy are
changing throughout training. This means that the statistics of the inputs and
training targets for Selector (see Section 6.5.1) are changing, which may make
optimizing Selector more difficult. Other techniques may be needed in order to
properly optimize the VQA model and Selector together.
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Training Acc C@1% C@5% C@10% AUC

ID (100% VQA v2)

joint 75.08 16.04 42.78 65.91 8.11

joint+FT 75.08 24.42 50.01 69.20 7.21

staged 75.18 26.64 50.80 69.56 7.10

90% VQA v2, 10% AdVQA

joint 71.97 10.74 34.61 53.81 10.12

joint+FT 71.97 18.17 42.44 60.50 8.98

staged 72.00 19.72 42.70 60.84 8.90

Table C.1. – Comparison of joint and staged training of OFA-Base and Selector. FT
indicates that Selector is further fine-tuned after OFA-Base converges
on the VQA training objective. All models are trained on A+B.

C.2 OOD Detection features

Inspired by Fisch et al. 2022, we train Selector with out-of-distribution detection
scores computed with KNN (Sun et al. 2022b) or SSD (Sehwag et al. 2021) as
added features. We share the results in Appendix C, Section C.2.

To compute those metrics, we use the representations from the encoder of OFA.
We average the output question tokens qi and the image tokens vi, which respec-
tively yield q̄ and v̄. We compute OOD detection features for each representation
with respect to the training data. The computed features are as follows:

kNN (Sun et al. 2022b). Given an input example, we compute the cosine
distance to the k nearest neighbors in the training data. This distance is used as
an OOD score: higher scores signify more “in-distribution” examples, while lower
scores signify “out-of-distribution”. We use the efficient vector-search library
FAISS (Jeff Johnson et al. 2019) to compute the distances and identify the k closest
points. We experimented with various numbers of neighbors from 1 to 1000 and
found no significant improvements for any value. We also experimented with
using the distance to correct and incorrect neighbors, to align the distances to our
task of selective prediction.

SSD (Sehwag et al. 2021). SSD is a parametric OOD-detection method that
first builds k clusters in feature space and then fits a multivariate normal distribu-
tion for each of the k ensembles of features. For a new example, the Mahalanobis
distance (K. Lee et al. 2018) to this normal distribution is used as an OOD score.
Note that for a classification task, the labels might be used as clusters, but we
prefer to use a cluster-based algorithm, as the VQA answers do not represent a
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coherent ensemble of image or question concepts. We experimented with various
numbers of clusters in the range of [1, 1000], and saw no improvements.

Results For these OOD detection features, we give them as additional inputs
to the Selector to provide a signal for whether a given example is ID or OOD. We
find that these features do not bring significant improvements to our evaluation
metrics (Table C.2).

Acc. C@1% C@5% C@10% AUC

Selector 71.25 19.05 41.83 59.55 9.29

Selector + KNN 71.25 19.92 41.78 59.75 9.27

Selector + SSD 71.25 18.99 41.90 59.27 9.27

Table C.2. – OOD-Detection baselines. Scores are reported on the Mixed ID/OOD,
composed of 90% VQA and 10% AdVQA.

C.3 Augmenting Selector training with known OOD
data

As discussed in Section 6.3.3, we also try training Selector on the B set, along
with some known OOD datasets similar to Kamath et al. 2020. This may help
learn to discard hard examples which are very far from its training distribution.
For this experiment, we use the training sets of OK-VQA (Marino et al. 2019),
which has the same image distribution but a different question distribution, and
of VizWiz (Gurari et al. 2018), which has both image and question distribution
shifts compared to VQA v2. We see in Table C.3 that this method is not very
successful at improving reliability in our adversarial evaluation setting. Contrary
to the findings of Kamath et al. 2020 for text-only question answering, on our
Selective VQA task, adding this known OOD data during training decreases
the performance of our selector on unknown OOD data at test time. Overall, it
appears that more traditional approaches for handling OOD examples may have
difficulty generalizing to this multimodal setting.

C.4 Additional OOD experiments

In this section, we share additional results on other mixtures of ID + out-of-
distribution (OOD) AdVQA data. Table C.4, Table C.5, and Table C.6 respectively
show the results for 33%, 50%, and 66% AdVQA, respectively. We also show the
results with threshold selection on the in-distribution validation set in Table C.7
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Training Set
f Selector g C@1% C@5% C@10% AUC

90% VQA v2, 10% AdVQA

A B 19.00 41.64 58.97 9.34

A B + OK-VQA 18.38 42.33 59.80 9.17
A B + OK-VQA + VizWiz 18.48 41.08 59.40 9.36

50% VQA v2, 50% AdVQA

A B 2.68 15.98 26.72 18.97

A B + OK-VQA 1.73 15.37 26.33 18.86
A B + OK-VQA + VizWiz 2.56 14.93 26.82 19.08

Table C.3. – Results with exposure to known OOD examples for OFA-Base. OOD
= OK-VQA + VizWiz. Bold denotes best and underline is second best
per table section.

for the in-distribution testing set, and Table C.8 for the 10% AdVQA data testing
set.

VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100Name Training set Name Training Set Targets 1% 5% 10%

CLIP-ViL

A MaxProb - - 58.36 0.00 7.08 21.97 20.62 36.59 -1.47 -14.38

Selector B Self 58.36 5.87 17.41 29.21 18.90 38.76 7.11 -2.20

A+B

MaxProb - - 59.29 1.11 10.17 24.99 19.58 38.42 2.99 -9.79

Selector A+B Self 59.29 0.07 11.21 25.86 19.28 39.17 5.90 -7.37

Selector A+B LYP 59.29 7.07 19.13 31.53 17.94 39.85 12.67 3.40

OFA Base

A MaxProb - - 64.08 0.01 18.83 34.15 15.71 46.05 5.33 -28.66

Selector B Self 64.08 3.59 26.29 39.78 14.54 46.77 13.58 -10.18

A+B
MaxProb - - 64.63 0.03 17.57 33.94 15.43 46.32 2.11 -19.21

Selector A+B Self 64.63 5.11 25.83 40.13 14.09 47.58 10.75 -21.18

Selector A+B LYP 64.63 9.41 27.89 42.0 13.80 48.03 11.89 -2.81

OFA Large

A MaxProb - - 67.57 0.01 18.90 41.23 13.62 50.48 10.59 -24.77

Selector B Self 67.56 11.50 30.24 49.03 11.93 52.36 18.02 -8.92

A+B
MaxProb - - 67.78 0.03 19.92 42.32 13.47 50.81 7.41 -37.62

Selector A+B Self 67.77 5.39 29.41 48.93 12.08 51.53 15.37 -16.32

Selector A+B LYP 67.77 10.94 31.32 50.11 11.75 52.44 18.18 -11.46

Table C.4. – Results on a mixed ID/OOD setting, composed of 66.7% VQA v2

data (Test split in Table 6.2) and 33.3% AdVQA examples. Discussion
in Section 6.5.4.
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VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100Name Training set Name Training Set Targets 1% 5% 10%

CLIP-ViL

A MaxProb - - 52.66 0.00 3.08 9.77 26.57 27.65 -13.20 -20.60

Selector B Self 52.66 4.19 10.29 18.17 24.49 30.62 -2.24 -7.94

A+B

MaxProb - - 53.83 0.97 3.66 12.27 25.23 29.82 -6.40 -15.61

Selector A+B Self 53.83 0.04 5.52 13.38 24.96 30.82 -2.96 -11.50

Selector A+B LYP 53.83 3.41 11.19 20.42 23.22 31.85 5.49 -0.04

OFA Base

A MaxProb - - 59.17 0.01 5.78 18.48 20.80 38.14 -6.11 -29.98

Selector B Self 59.18 2.68 15.98 26.72 18.97 38.99 0.58 -20.48

A+B
MaxProb - - 59.61 0.06 6.91 20.86 20.17 38.45 -12.19 -31.48

Selector A+B Self 59.62 2.29 15.78 27.38 18.70 39.88 -0.74 -36.10

Selector A+B LYP 59.62 3.98 17.13 28.53 18.30 40.35 -0.49 -11.27

OFA Large

A MaxProb - - 63.02 0.31 11.53 27.85 17.18 43.42 -3.11 -34.01

Selector B Self 63.01 5.56 20.11 35.51 15.52 45.49 6.48 -26.57

A+B
MaxProb - - 62.93 0.12 6.22 26.58 17.58 43.40 -6.02 -40.93

Selector A+B Self 62.93 1.00 18.55 33.48 16.03 44.14 2.57 -43.03

Selector A+B LYP 62.93 3.51 19.74 34.18 15.78 45.03 4.19 -29.46

Table C.5. – Results on a mixed ID/OOD setting, composed of 50% VQA v2 data
(Test split in Table 6.2) and 50% AdVQA examples. Discussion in
Section 6.5.4.

VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100Name Training set Name Training Set Targets 1% 5% 10%

CLIP-ViL

A MaxProb - - 46.66 0.00 0.00 3.04 33.67 18.32 -24.68 -28.56

Selector B Self 46.66 1.91 5.65 10.09 31.43 22.00 -11.50 -12.05

A+B

MaxProb - - 47.94 0.67 1.28 5.59 32.08 20.87 -16.85 -21.99

Selector A+B Self 47.94 0.05 1.44 5.49 31.79 22.20 -11.69 -15.28

Selector A+B LYP 47.94 2.13 6.60 10.44 29.77 23.60 -0.77 -0.89

OFA Base

A MaxProb - - 53.71 0.00 0.45 8.44 26.47 29.64 -17.60 -43.15

Selector B Self 53.77 1.99 8.24 16.43 24.49 30.75 -9.75 -30.58

A+B
MaxProb - - 54.28 0.03 0.53 10.16 25.72 29.96 -25.56 -44.75

Selector A+B Self 54.26 1.52 8.79 16.23 24.15 31.88 -12.68 -52.56

Selector A+B LYP 54.26 1.95 9.71 17.11 23.79 32.38 -12.12 -20.65

OFA Large

A MaxProb - - 57.69 0.13 3.65 14.24 22.36 34.91 -16.36 -49.70

Selector B Self 57.71 3.03 11.20 22.04 20.44 37.45 -5.27 -39.01

A+B
MaxProb - - 57.52 0.08 0.54 13.41 22.87 34.70 -20.37 -56.21

Selector A+B Self 57.5 0.46 9.02 20.14 21.10 35.39 -10.72 -61.53

Selector A+B LYP 57.5 0.08 10.28 19.93 20.94 36.60 -8.58 -44.52

Table C.6. – Results on a mixed ID/OOD setting, composed of 33.3% VQA v2

data (Test split in Table 6.2) and 66.7% AdVQA examples. Discussion
in Section 6.5.4.
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VQA Model f Selection function g Acc ↑ R = 1% R = 5% R = 10%

Name Training set Name Training Set Targets R C R C R C

CLIP-ViL

A MaxProb - - 69.98 0.86 3.49 4.55 31.59 9.60 52.35

Selector B Self 69.98 0.72 13.26 4.74 36.66 9.97 55.58

A+B
MaxProb - - 70.72 1.08 6.67 4.59 32.85 9.83 54.47

Selector A+B Self 70.72 1.10 7.60 4.78 34.16 9.73 54.63

Selector A+B LYP 70.72 0.85 16.78 4.96 38.30 10.08 57.34

OFA Base

A MaxProb - - 74.87 1.18 5.32 4.96 45.45 9.96 66.44

Selector B Self 74.87 1.06 25.73 4.92 49.47 10.11 69.52

A+B
MaxProb - - 75.18 0.82 4.32 4.98 46.03 10.08 67.88

Selector A+B Self 75.18 1.14 27.88 5.23 51.76 10.09 69.87

Selector A+B LYP 75.18 1.00 27.84 5.17 52.44 10.35 71.31

OFA Large

A MaxProb - - 77.77 1.20 8.64 4.74 52.06 9.77 74.05

Selector B Self 77.33 0.89 28.27 4.89 57.02 10.12 76.45

A+B

MaxProb - - 77.78 1.12 19.26 4.83 52.69 9.94 74.82

Selector A+B Self 77.78 1.12 19.26 4.83 52.69 9.94 74.82

Selector A+B LYP 77.77 1.02 31.86 5.10 59.24 9.97 77.24

Table C.7. – Results on the ID VQA v2 evaluation set (Test split in Table 6.2).
Thresholds for desired risk level are selected on the in-distribution
Val split. Discussion in Section 6.5.5.

VQA Model f Selection function g Acc ↑ R = 1% R = 5% R = 10%

Name Training set Name Training Set Targets R C R C R C

CLIP-ViL

A MaxProb - - 66.35 1.83 3.21 6.25 29.53 12.05 50.06

Selector B Self 66.35 0.95 12.14 5.75 33.92 11.78 52.33

A+B
MaxProb - - 67.12 1.59 6.11 5.97 30.70 12.02 52.14

Selector A+B Self 67.12 1.52 6.97 6.04 31.95 11.63 51.83

Selector A+B LYP 67.12 1.14 15.26 5.81 35.46 11.72 54.08

OFA Base

A MaxProb - - 71.59 1.69 4.88 6.54 43.00 12.11 64.13

Selector B Self 71.60 1.47 23.68 6.00 46.13 12.01 66.51

A+B
MaxProb - - 72.00 1.30 3.95 6.56 43.59 12.05 65.67

Selector A+B Self 72.02 1.60 25.72 6.49 48.75 11.82 67.13

Selector A+B LYP 72.01 1.38 25.61 6.27 48.97 12.07 68.25

OFA Large

A MaxProb - - 74.36 1.74 15.43 6.61 49.83 11.96 71.98

Selector B Self 74.37 1.32 25.86 6.03 53.88 11.93 74.15

A+B
MaxProb - - 74.77 1.92 7.98 6.34 49.94 11.89 72.50

Selector A+B Self 74.77 1.48 27.51 6.20 55.21 11.93 74.92

Selector A+B LYP 74.77 1.42 29.26 6.27 56.01 11.81 75.14

Table C.8. – Results on the mixed 90% VQA v2 + 10% AdVQA evaluation set
(VQA v2 data is from the Test split in Table 6.2). Thresholds for de-
sired risk level are selected on our in-distribution Val set. Discussion
in Section 6.5.5.
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