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Abstract

Emotion recognition is a subfield of affective computing and a critical research direction for the
development of human-centered artificial intelligence, which targets the identification and inter-
pretation of human emotions through machines in an objective and automatic manner. Emotions
can be expressed and conveyed through a variety of channels which can be broadly categorized
into externally observable behavioural modalities such as facial expressions, body postures,
speech and intrinsic physiological modalities such as brain activities, skin conductance, heart
rate, etc. Therefore, emotion recognition methods have been developed accordingly based on
these modalities. Recent advances in sensor technology and human-computer interaction sys-
tems offer the possibility of migrating the deployment of emotion recognition systems from the
laboratory to the real world. However, most of the existing research is still directed towards
the former. In this context, we are interested in designing emotion recognition algorithms for
real-life scenarios from physiological, behavioural and multimodal perspectives and exploring
the implications and impact of their interventions on practical applications.

In this thesis, from the physiological perspective, we propose a self-supervised multimodal
representation learning method for wearable emotion recognition based on peripheral physio-
logical signals to cope with the overfitting problem posed by limited labelled data and the bias of
inaccurate real-world labelling. From the behavioural perspective, we suggest a non-Euclidean
metric learning method for 2D facial landmark-based expression recognition to tackle problems
such as pose variation and intra-class variation. From a multimodal perspective, we present a
deep geometric framework based on a symmetric positive definite matrix representation for mul-
timodal stress and pain detection to address the fusion issue of physiological and behavioural
modalities. Additionally, we also realize the deployment of emotion recognition in a real-life
scenario, i.e. medical simulation training, where the previously proposed algorithm is integrated
into a graphical user interface to test its feasibility and validity on the collected multimodal data,
while exploring its pedagogical effects.

Keywords: physiological signals, facial landmarks, emotion recognition, facial expression
recognition, stress/pain detection, self-supervised learning, metric learning, manifold.
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Résumé

La reconnaissance des émotions est un sous-domaine de l’informatique affective et une direction
de recherche critique pour le développement de l’intelligence artificielle centrée sur l’homme,
qui vise l’identification et l’interprétation des émotions humaines par des machines de manière
objective et automatique. Les émotions peuvent être exprimées et transmises par divers canaux
qui peuvent être classés en deux grandes catégories : les modalités comportementales observ-
ables de l’extérieur, telles que les expressions faciales, les postures corporelles et la parole,
et les modalités physiologiques intrinsèques, telles que les activités cérébrales, la conductivité
de la peau, le rythme cardiaque, etc. Des méthodes de reconnaissance des émotions ont donc
été développées sur la base de ces modalités. Les récentes avancées en matière de technolo-
gie des capteurs et de systèmes d’interaction homme-machine offrent la possibilité de faire
passer le déploiement des systèmes de reconnaissance des émotions du laboratoire au monde
réel. Cependant, la plupart des recherches existantes sont encore orientées vers le premier.
Dans ce contexte, nous nous intéressons à la conception d’algorithmes de reconnaissance des
émotions pour des scénarios de la vie réelle d’un point de vue physiologique, comportemental
et multimodal et à l’exploration des implications et de l’impact de leurs interventions sur des
applications pratiques.

Dans cette thèse, du point de vue physiologique, nous proposons une méthode d’apprentissage
de représentation multimodale auto-supervisée pour la reconnaissance d’émotion portable basée
sur des signaux physiologiques périphériques pour faire face au problème du surapprentissage
posé par des données étiquetées limitées et le biais d’étiquetage inexact dans le monde réel. Du
point de vue comportemental, nous suggérons une méthode d’apprentissage métrique non eucli-
dienne pour la reconnaissance d’expressions basées sur des points de repère faciaux en 2D afin
de résoudre des problèmes tels que la variation de pose et la variation intra-classe. D’un point
de vue multimodal, nous présentons un cadre géométrique profond basé sur une représentation
matricielle symétrique définie positive pour la détection multimodale du stress et de la douleur
afin de résoudre le problème de la fusion des modalités physiologiques et comportementales.
En outre, nous réalisons le déploiement de la reconnaissance des émotions dans un scénario
réel, à savoir la formation par simulation médicale, où l’algorithme proposé précédemment est
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intégré dans une interface utilisateur graphique pour tester sa faisabilité et sa validité sur les
données multimodales collectées, tout en explorant ses effets pédagogiques.

Mots clés: signaux physiologiques, repères faciaux, reconnaissance des émotions, reconnais-
sance des expressions faciales, détection du stress et de la douleur, apprentissage auto-supervisé,
apprentissage métrique, manifold.
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1.1 Motivation

Emotions are sets of complex physiological, cognitive and behavioral responses that are trig-
gered by internal or external stimuli. They perform a central role in human daily life and
significantly influence mechanisms such as attention, decision-making, learning, memorisation
and perception. Therefore, the identification of emotional states is crucial for a thorough under-
standing of human intelligence, behaviour and cognition [10,11]. In 1995, Picard’s pioneering
work [12] in affective computing laid the foundation for enabling machines to intelligently
recognise, interpret, simulate, and respond to human emotions. It is an interdisciplinary field
that integrates computer science, psychology, social and cognitive sciences. One of the main
topics that emerged from it is emotion recognition [13] which attempts to empower computers
with the ability to automatically infer human emotions and has become increasingly essential
for the advancement of human-centred artificial intelligence.

In recent years, rapid advances in sensors, algorithms, and computing resources are driving
the deployment of emotion recognition systems from the laboratory to the real world. The
corresponding application scenarios include:

• Healthcare: Emotion recognition provides diagnosis, prediction, and proactive interven-
tion for psychological disorders such as depression [14, 15];

• Automotive: Emotion recognition can assist in driving by identifying whether drivers are
fatigued or aggressive in order to ensure their safety [16, 17];

• Human-computer interaction: Emotion recognition can interpret emotional cues to en-
hance the user experience of various interactive devices such as robots, games, smart
speakers, etc [18, 19];

• Marketing and advertising: Emotion recognition enables precise marketing or the de-
sign of specialized advertising by interpreting the emotional responses of the target cus-
tomers [20];

In addition to the above examples, another compelling application is Emotion-aware educa-
tion [21,22], which aims to incorporate emotion recognition into education programs by moni-
toring the students’ emotional state to provide better quality tutoring. Previous studies [23–25]
have suggested a strong association between emotions and learning procedures. In [26], emo-
tions are considered to be a major impact factor in learning. In addition, the impact of different
types of emotions on the learning process varies, with positive emotions influencing aspects
such as motivation, concentration and self-regulation of learning, while negative emotions are
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detrimental to students’ performance and achievement [22]. One of the most representative
negative emotions is stress, defined in Hans Selye’s pioneering work as ”the non-specific re-
sponse of the body to any demand for change” [27], and commonly referred to as a state of
high arousal. According to the Yerkes–Dodson law [1], a person’s arousal level tends to lead to
a decrease in performance after a certain threshold has been exceeded (i.e. when in a state of
stress). An illustration is shown in Fig. 1.1. The evidence reviewed here indicates the demand
to introduce automatic recognition of students’ emotions, especially their stress states, into the
educational sessions, which is indeed the intention of this thesis.

Low High
Arousal

Weak

Strong

Pe
rf

or
m

an
ce

Fatigue, 
sleepiness

Optimal arousal

Strong stress, anxiety,
impaired performance

Figure 1.1: The correlation between arousal levels and performance described in
Yerkes–Dodson law [1]. Excerpt from [2].

More specifically, this thesis concerns medical simulation training for health professionals at
the PRESGAE Health Simulation Centre1. During the simulation training, learners may expe-
rience stressful states due to factors such as ”high fidelity” medical scenarios, complex medical
tasks, etc., which can result in decreased performance and learning efficiency. Therefore, the
main objective of this thesis is to develop a new tool for identifying the emotions, especially
stress, felt by learners during simulations, thereby offering them targeted debriefings to improve
their learning. In the end, two sub-goals are concluded from the main objective:

• Technical objective: emotions are multi-faceted and involve changes in behavior, phys-
iology, and psychology. Thus, novel automatic emotion recognition algorithms suitable
for real-life settings can be designed and evaluated from behavioural, physiological, and
multimodal perspectives to achieve a more thorough exploration.

• Practical objective: this sub-goal can be further divided into three steps: firstly, emotion
data needs to be collected under real-life conditions, secondly, an emotion recognition

1https://medecine.univ-lille.fr/presage.
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tool (i.e. a graphical user interface) that integrates the designed intelligent algorithms
needs to be developed and tested under real-life conditions, and finally, the pedagogical
impact of this tool needs to be analyzed and evaluated.

1.2 Challenges

A wide range of human emotional information can be captured, broadly classified into two cat-
egories: behavioural modality-based (e.g., facial expressions, body gestures, audio, etc) and
physiological modality-based (e.g., electroencephalography (EEG) signals and a series of pe-
ripheral physiological signals), representing controllable external manifestations and uncon-
trollable internal variations under certain emotions, respectively. Considering the necessity of
switching from in-lab settings to real-world applications, we focus on peripheral physiological
signals and facial landmarks for unimodal emotion recognition, while the multimodal approach
is based on the fusion of physiological modalities (i.e., peripheral physiological signals) and
two behavioral modalities (i.e., facial expressions and body movements represented by facial
landmarks and accelerations, respectively). The reason for selecting these modalities is further
explained in Section 2.2. In terms of emotion modality, automatic emotion recognition meth-
ods are accordingly differentiated into behaviour-based approach, physiology-based approach
and multimodal (behavioural+physiological) approach. In the following, we list the challenges
encountered by the different types of approaches for deploying accurate and robust emotion
recognition systems in a practical setting.

1.2.1 Physiological chanllenges

-Feature engineering of multivariate signal Physiology-based emotion recognition is a
complex time-series analysis involving multichannel heterogeneous signals, which typically
require domain knowledge in neuropsychology [28]. To achieve favorable recognition perfor-
mance, critical features need to be extracted and selected from each variable, which turns out to
be computationally expensive and time-consuming, especially for traditional machine learning-
based algorithms. Furthermore, the combinations of multimodal features are generally based
on early or late fusion which cannot simultaneously capture intra- and inter-modal correlations.

-Inaccurate annotation and noisy data Existing peripheral physiological datasets were
mainly collected in a laboratory environment, where the experimental protocols were carefully
designed to stimulate the expected emotional responses and obtain accurate labeling (the bound-
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ary between emotional and non-emotional data is quite clear based on the protocol). When
shifting the focus to real-life scenarios, the continuous nature of emotions makes it challenging
to determine the beginning and end of emotional events. In addition, subjective errors intro-
duced by self-evaluation also contribute to the uncertainty of the labels. Besides, unrestricted
body movements can lead to signal artefacts which significantly degrade data quality [29].

-Limited labeled data and low subject diversity Labeled data volume and subject diversity
are critical to obtaining models with generalization capabilities, particularly for supervised deep
learning models, whose automatic representation learning can effectively address the plague of
inefficient feature engineering. To date, the majority of emotion-related physiological datasets
are based on EEG signals, which are not applicable in real-life scenarios. In addition, current
emotion recognition studies typically use physiological data covering no more than 50 sub-
jects [10].

1.2.2 Behaviroual chanllenges

-Pose variations In an unconstrained environment, the head pose may not be frontal to the
camera, and this variation in appearance results in facial displacement, scale changes, in-plane
and out-of-plane rotations, preventing us from directly using the detected facial feature points
for facial expression analysis [30]. From the perspective of landmark configurations, these
changes can be summarised as rigid transformations of the face shape in the 3D case and more
complex projection transformatios in the 2D case. In addition, pose changes are often accom-
panied by other factors such as self-occlusion, texture distortion, etc.

-Intra-class variation inter-subject differences due to gender, age, culture, etc. often hin-
der the analysis of facial points, resulting in large intra-class variations. This is manifested
as different individuals expressing the same facial expression in different ways or, in a more
extreme case, the same person presenting the same expression in different ways at different
moments.

1.2.3 Multimodal chanllenges

Since the manifestation and evolution of emotions involves signals from multiple domains,
recent research has turned to behaviroual-physiological fusion with the expectation of leverag-
ing complementary properties between modalities to achieve more robust predictions [31]. In
addition, multimodal-based approaches can deal with the problem of missing modalities. For
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example, when dealing with complex emotions such as stress, the intensity of facial expressions
is commonly weak, whereas physiological information can assist in identifying emotions.

-Lack of multimodal data Currently, the emotion recognition community struggles with a
lack of public available datasets which contain both behavioural and physiological data. There-
fore, existing efforts tend to concentrate on a single perspective (i.e., either behavioural or
physiological).

-Varying data structure Multimodal data also suffers from diversity of data structures. For
example, the facial expression videos captured by the camera are a 2D matrix sequences with
a high-spatial, low temporal resolution, while the peripheral physiological signals captured by
the biosensors are a 1D time series with a lower-spatial, higher-temporal resolution.

-Multimodal fusion A major issue is how to efficiently fuse multimodal features to improve
model performance. Simply concatenating feature vectors to generate multimodal representa-
tions is the most frequently used technique for integrating behavioral and physiological data.
However, the resulting vectors are typically high-dimensional, associated with redundancy, and
fail to effectively capture intra-modal correlations. An alternative way in existing research is
decision-level fusion, where features from different modalities are extracted independently to
provide the corresponding decisions. However, the interactions between the modalities are not
well established during this process.

1.3 Thesis contributions

In order to achieve the main objective of this thesis, i.e. to develop novel emotion recognition
algorithms and to facilitate their deployment in the real world, the challenges mentioned in the
previous section should be addressed. To this end, the contributions achieved in this work can
be grouped accordingly into technical and practical levels.

Technical level Emotion recognition algorithms based on physiological, behavioural and
multimodal signals are proposed. Thus, the corresponding contributions are three-fold, depend-
ing on the type of modality used:

• From the physiological viewpoint, we proposed a self-supervised wearable emotion
recognition based on peripheral physiological signals. First, in contrast to most ma-
chine learning-based physiological recognition methods, a deep neural network based
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on residual temporal convolution and transformer was designed to (1) automatically cap-
ture more discriminative abstract features, and (2) flexibly fuse multimodal features at
different levels, allowing the encoding of intra- and inter-modal correlation information.
Secondly, unlike most supervised learning-based approaches, a self-supervised learning
(SSL) scheme was adopted to (3) address the problem of de-generalisation due to the
limited amount of labeled data and the small number of subjects, (4) get rid of the in-
terference caused by inaccurate labeling and various noises in real-life scenarios, and
(5) obtain an effective classification model that can be applied to a range of emotionally
relevant downstream tasks.

• From the behavioural viewpoint, we propose a non-Euclidean metric learning method
that can be applied to facial expression recognition. Different from traditional landmark-
based approaches which construct the facial shape representation in Euclidean space, we
considered the equivalence classes of 2D landmark configurations, which can be consid-
ered as points in the complex projective space to (1) obtain a more robust shape represen-
tation that is invariant under the class of affine transformations which contains rotation,
scaling, translation, and (2) better measure the similarity between different facial shapes
by using non-Euclidean metrics. Moreover, a metric learning algorithm was applied to
(3) reduce the intra-class variations while increasing the inter-class distances to achieve a
more discriminative feature space.

• From the multimodal viewpoint, we presented a novel LSTM-based geometric frame-
work for multimodal stress and pain detection tasks. Unlike commonly used early fusion
or late fusion strategies, we computed the symmetric positive definite (SPD) matrix of
multimodal data as input to the learning model to (1) cope with structural differences
between visual and physiological data and obtain compact, high-order multimodal repre-
sentations, and (2) simultaneously capture intra- and inter-modal correlations at different
instants. To the best of our knowledge, this is the first use of the geometry of SPD matrices
to merge physiological and behavioural signals.

Practical level Emotion recognition in unconstrained conditions, i.e. during medical simula-
tion training, was performed and the corresponding contribution was also three-fold:

• From the experimental viewpoint, a large-scale multimodal dataset containing motion
signals and peripheral physiological signals was collected via a wearable device for emo-
tion analysis, where a series of psychological questionnaires were assigned to subjects to
generate ground truth for partial data.
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• From the implementation viewpoint, an emotion analysis tool, i.e., a graphical user
interface was developed to (1) load, synchronize and display video and multimodal sig-
nal recordings, (2) execute the proposed emotion recognition algorithms and (3) test its
feasibility in a real-life setting.

• From the pedagogical viewpoint, the impact of the intervention of the emotion recogni-
tion system on pedagogy was analyzed and evaluated.

1.4 Thesis outline

This thesis is organised as follows: In Chapter 2, we conducted a systematic literature review
of emotion representations, emotion-related modalities, and emotion recognition approaches
based on physiological, behavioural and multimodal modalities. Chapters 3 and 4 correspond
to our technical contributions on the physiological and multimodal sides, respectively, where
Chapter 3 presents a self-supervised learning approach for emotion recognition based on pe-
ripheral physiological signals, and Chapter 4 introduces a deep geometric framework based on
SPD representation for multimodal stress and pain detection. Chapter 5 refers to the practical
contributions, including the collection of multimodal real-life data, the development and appli-
cation of the graphical interface, and the pedagogical relevance analysis of emotion recognition.
Regarding the technical contributions on the behavioral side, a landmark-based non-Euclidean
metric learning approach for facial expression recognition is presented in Chapter 6. Finally,
in Chapter 7, we summarise the work presented in this thesis and discuss its corresponding
limitations and suggest potential future work.
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In this chapter, we introduce the basic theoretical background on emotions and review re-
cent emotion recognition methods. Firstly, Section 2.1 introduces two ways of describing emo-
tions: the discrete emotion model and the continuous emotion model. Then, in Section 2.2,
we present the common physiological and behavioral indicators associated with emotions and
explain the reasons for focusing on peripheral physiological signals and facial landmarks in
this thesis. Accordingly, emotion recognition methods can be classified in terms of modality:
emotion recognition methods based on physiological signals, landmark-based facial expression
recognition methods, and multimodal emotion recognition methods based on physiological and
behavioral signals, which are presented in Sections 2.3, 2.4, and 2.5, respectively.

2.1 Emotion models

For the purpose of interpreting and quantifying human emotional states, two types of generic
emotion models have been established by psychologists: the categorical model and the dimen-
sional model, in which emotions are either denoted by discrete categories or mapped into a
multidimensional space, respectively [32]. The emotion recognition tasks involved in this the-
sis and previous related studies are all based on these two emotion models.

2.1.1 Categorical models

The categorical models define emotions as discrete classes. This type of approach assumes that
there exists a set of basic emotions that are innate to humans, whose expression and recogni-
tion is generally undifferentiated for individuals from different races or cultures [33]. A series
of studies were carried out to build the collection of basic emotions, the most prominent of
which are Ekman’s basic emotion model [34] and Plutchik’s ’wheel of emotions’ [35]. Ekman
proposed six basic emotions: joy, sadness, anger, fear, disgust, and surprise, based on the fol-
lowing attributes: 1) People are born with emotions rather than acquired; 2) People show the
same emotions when they are in the same situations; 3) People exhibit analogous physiolog-
ical or behaviroual patterns when expressing the same emotions. Plutchik’s emotional wheel
model [35] contains 8 primary bipolar emotions: joy vs sadness, anger vs fear, trust vs disgust,
surprise vs anticipation. Fig. 2.1(a) shows an illustration of the ’wheel of emotion’. The in-
tensity of the emotion ranges from weak to strong, as it shifts from the periphery to the centre
of the wheel. In addition, more complex emotions can be also generated by combining primary
emotions, e.g., the combination of joy and trust is love.
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2.1.2 Dimensional models

For categorical models, complex emotions are more difficult to process since they cannot cover
all emotion. Moreover, the continuity of changes in emotional states might not be well captured
by discrete models. To address the above issues, researchers have turned to the dimensional
models which describe emotions as points in a space of different dimensions. Russell [36]
proposed a two-dimensional model, also known as the circumplex model, which is the most
frequently adopted dimensional model for identifying emotions [37]. In this model, each emo-
tional state is mapped as a discrete point in a two-dimensional space, with horizontal and vertical
coordinates represented by valence and arousal, respectively. The valence axis represents the
emotions ranging from unpleasant (negative) to pleasant (positive), and the arousal axis ranges
from passive (low) to active (high), indicating its intensity level [38]. For example, stress can
be defined as a specific emotional state of negative valence and active arousal. A graphical
representation of the circumplex model is shown in Fig. 2.1(b)
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Figure 2.1: Two types of generic emotion models.

2.2 Emotion related modalities

Automatic emotion recognition can be realized on the basis of behavioural or physiological indi-
cators of the human body. Fig. 2.2 illustrates common behavioural and physiological modalities
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applied to automatic emotion recognition, which are described in more detail below.
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Figure 2.2: Common emotion-related behavioral and physiological modalities and their corre-
sponding data collection devices.

2.2.1 Behaviroual modalities

Behavioural responses to emotional states are actions that can be voluntarily controlled or
changed and externally observed [40]. Facial expressions [41], body gestures [42], speech [43],
etc, are representative modalities of conveying one’s emotional state, with the former two ap-
pearing to provide richer relevant information. A body language-based emotion recognition
study indicates that non-verbal signals such as facial expressions, body posture, gestures, etc,
have a more significant impact on the delivery of information than verbal signals, accounting
for 65% of the total.

The facial expression captured by the camera is a typical non-verbal indicator of emotional
states projected from human physical appearance. It is generally the result of an action or
combination of actions formed by facial muscles and organs. Previous research [44] indicated
that facial expressions are the most dominant form in which humans convey their emotions
during social communication. According to the pioneering work of Ekman and Friesen [45],
there is a high degree of consistency in facial expressions across human groups of different
ethnic and cultural backgrounds. In addition, they adopted the facial action coding system
(FACS) that systematically defines facial expression classification criteria by describing the
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facial muscle movements and concluded six basic emotions: joy, sadness, anger, fear, disgust,
and surprise. The strong connections between emotions and facial expressions established by
neuroscience and psychology research have inspired researchers in the fields of computer vision
and machine learning to explore automatic facial expression recognition algorithms. This also
explains the reason for selecting facial expressions as the input modality for behaviour-based
and multimodal emotion recognition in this thesis.

Another compelling visual modality that delivers human emotional information is body pos-
ture, which represents the movement of body parts and joints, It can normally be captured by
cameras, Kinect sensors, or motion capture systems. Though most emotion analysis studies
consider facial expressions as the primary source, there is still a body of literature dedicated
to uncovering the link between body gestures and emotions. For example, a person’s inner
emotion changes can be expressed through the placement of hands or legs and the way they
perform actions such as walking, sitting or standing [46]. The position of the head is also one
of the emotion-related cues, a raised chin, for example, may indicate an arrogant attitude and
a sense of superiority [47]. However, different from facial expressions, body posture seems to
be greatly influenced by cultural or gender differences. An alternative way of obtaining infor-
mation on human posture and activity for emotional analysis is to record 3-axis accelerometer
(ACC) data from a smartphone or smartwatch. The ACC was initially used in wearable activity
recognition systems, recent research in emotion recognition has applied it to the acquisition of
contextual information on user actions [37]. In addition, some research [48] has demonstra0ted
the feasibility of detecting stress states by estimating the intensity level of activities. In our
work, it is applied to the multimodal emotion recognition task.

2.2.2 Physiological modalities

Physiological reactions triggered by emotions form a natural part of the human body functioning
which are involuntary and involve internal manifestations that are imperceptible to the naked
eye, such as changes in heart rate, respiratory rate, etc. Therefore, the physiological measures
can provide more objective decisions for emotion recognition systems [32]. The physiological
modalities primarily consist of electroencephalography (EEG) signal captured from Central
Nervous System (CNS) and a series of signals measured from the Peripheral Nervous System
(PNS) such as electrocardiogram (ECG), respiration (RESP), blood volume pressure (BVP),
electrodermal activity (EDA), skin temperature (TEMP), etc.

The central nervous system as indicated by the yellow area in Fig. 2.2, consisting of the brain
and spinal cord, is the main part of the human nervous system, where the electrical activity of
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brain neurons can be accessed through EEG signals, providing information highly relevant to
emotions [29]. However, the acquisition of EEG data requires the support of bulky and invasive
head-mounted sensors, which typically consist of a large number of electrodes placed in differ-
ent areas of the scalp, making their implementation in real-life scenarios quite challenging [37].
In addition, they are highly sensitive to physiological artefacts (e.g. blinking) and electrostatic
artefacts introduced by the use of electrodes [49].

The peripheral nervous system refers to all nerves apart from the brain and spinal cord (as
shown by the blue area in Fig. 2.2). In response to external or internal emotional stimuli, the
autonomous nervous system (ANS), as one of the primary components of the PNS, is activated,
thereby triggering a series of changes in peripheral physiological signals. For instance, elevated
respiratory rate and increased electrodermal activity appear when subjects are in a high arousal
state (e.g., anger, stress, fear) [11]. The peripheral physiological signals that are frequently used
for emotion recognition include:

• Electrocardiography (ECG): is a recording of the electrical activity generated during
the contraction or relaxation of the cardiac muscles. It is a crucial indicator in emotion
recognition research which is commonly applied to estimate parameters related to the
cardiac cycle such as the heart rate (HR), heart rate variability (HRV), etc.

• Blood Volume Pulse (BVP): photoplethysmography detects changes in blood volume
by the degree to which the artery absorbs the light it emits, thus inferring cardiac cycle
information.

• Respiration (RESP): a measurement of exhaled or inhaled air volume and respiratory
rate by contraction or relaxation of a chest strap fixed near the chest cavity.

• Electrodermal Activity (EDA): this signal reflects sweat secretion by measuring skin
conductance. It can be broken into two basic components: tonic and phasic, provid-
ing slowly habituating measures of arousal and moment-by-moment measures of arousal
which reflect stimulus-specific responses [50], respectively.

• Skin Temperature (TEMP): is an indicator of the ”fight or flight” response produced by
exposure to a stressful situation. A drop in temperature of the extremities can be observed
when under this response [37].

In contrast to EEG signal, the measurement of peripheral physiological signals can be accom-
plished with convenient and less invasive wearable sensors such as wristbands, patches, smart
clothes, etc. Thus, their applicability in real life is greatly encouraged. Overall, we chose
peripheral signals for physiological-based emotion recognition in this thesis.
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2.2.3 Behavioural signal vs Physiological signal

The application of behavioural or physiological modalities in emotion recognition systems has
its own benefits and drawbacks. Behavioural signals have received considerable attention due
to their non-invasive nature in data acquisition. However, their reliability cannot be verified, as
people can autonomously control these physical manifestations to hide their true emotions (i.e.,
social masking) [51]. Peripheral physiological measures are still slightly more intrusive than
non-contact behavioural modalities, however, they allow for a long-term objective assessment
of the subject’s true internal emotional state. Moreover, considering practical context, they
may be more suitable than visual data such as facial expressions, whose performance may be
significantly influenced by the location of the camera and the computational cost of image or
video analysis is more expensive than time series. Naturally, there is a third option for emotion
recognition systems, i.e., the integration of behavioural and physiological modalities, which
generally results in more reliable decisions and can cope with missing modalities [13].
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2.3 Emotion recognition based on peripheral physiological

signals

In this section, emotion recognition approaches based on peripheral physiological signals are
presented. Fig. 2.3 illustrates the primary steps included in these methods for predicting emo-
tions. Raw physiological data collected in restricted or unrestricted environments usually need
to be pre-processed, which mainly consists of filtering, segmentation, normalization, etc. A
brief review of these these operations is given in Section 2.3.1. Once pre-processing is accom-
plished, clean data segments can be fed into various emotion recognition algorithms, which can
be broadly classified into two categories, i.e., fully supervised learning-based algorithms and
non-supervised learning-based algorithms. The former can be further subdivided into traditional
machine learning-based methods and deep neural network-based methods, which are described
in detail in Sections 2.3.2 and 2.3.3, respectively. In the end, Section 2.3.4 describes in detail
the methods based on other learning paradigms: unsupervised learning and semi-supervised
learning.
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Figure 2.3: Emotion recognition pipelines based on peripheral physiological signals.

2.3.1 Physiological data preprocessing

The primary part of pre-processing is signal filtering, with the purpose of eliminating the impact
of noise due to electromagnetic interference, motion artefacts, etc [51]. Since the data acqui-
sition setting in the literature is diverse, resulting in inconsistent frequencies of the obtained
data, hence there is not yet a unified standard for filter selection. For example, low-pass filters

17



with cutoff frequencies of 1 Hz and 2.5 Hz were applied for RESP and EDA signals in [52].
Schmidt et al. [53] employed a 0.1 Hz to 0.35 Hz bandpass filter for RESP signal while a 5 Hz
low-pass filter for the raw EDA data. In [54], Butterworth bandpass filters with different orders
and cutoff frequencies were utilized for ECG, EMG and BVP signals. After the filtering oper-
ation, the clean signal record is generally split into small data segments via a sliding window,
from which meaningful patterns are subsequently extracted for identification. The time interval
between an emotional stimulus and the physiological response it triggers tends to vary with dif-
ferent factors such as individual, signal modality, etc [11]. Therefore, it is challenging to define
an appropriate window size for emotion recognition systems. In the work of Kreibig [55], they
observed that the most common average duration of physiological responses was 60 s or 30 s
in a survey of 134 publications. Other frequently occurring average intervals are based on 0.5
s, 10 s, 120 s, 180 s, or 300 s. Once the data is segmented, manual or automated feature en-
gineering is performed to extract discriminative representations for emotion classification. For
subject-independent recognition algorithms, the data are further normalized to remove inter-
individual differences in physiological variables. The common normalization techniques are
min-max normalization or z-score normalization [29]. The former scales the original data to
the [0, 1] interval through the maximum and minimum values in the subject’s data, while the
latter converts the mean and standard deviation of the samples to 0 and 1, respectively.

2.3.2 Supervised machine learning-based methods

Traditional machine learning approaches typically require extracting and selecting the most
relevant features from pre-processed physiological signals and feeding them into a series of
classification algorithms for emotion recognition. This process can be further divided into four
stages: feature extraction, feature selection, feature fusion and classification, which will be
presented accordingly in the subsequent sections.

1) Feature Extraction

A majority of early research in wearable emotion recognition was based on machine learning,
aiming to predict emotional states using crucial features manually extracted from preprocessed
peripheral physiological signals in the time-domain, frequency-domain, time-frequency domain
and non-linear domain as input to classification algorithms.

- Time domain From the temporal perspective, Hernandez et al. [56] employed a series of
statistical featues from EDA time series such as duration, max, min, mean, standard deviation,
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signal slope between the first and last points to detect stress in the workplace with a wearable
wrist sensor. For ECG and BVP signals reflecting cardiac cycle activity, three important param-
eters: heart rate (HR), inter beat interval (IBI) and Heart Rate Variability (HRV) can be derived
depending on the position of the signal peaks, from which rich emotionally relevant information
can be computed. Bong et al. [57] suggested three time-domain features: heart rate (HR), mean
R peak amplitude (MRAmp), and mean R-R intervals (MRRI) extracted from the ECG signal
for a two-stage emotional stress detection. Kim et al. [58] calculated a series of statistical ECG
features: mean, the standard deviation of all normal-to-normal(NN) intervals (SDNN), the stan-
dard deviation of the first difference of the HRV, the number of pairs of successive NN intervals
differing by more than 50 ms (NN50), etc., for arousal-based emotion recognition. Zhang et
al. [59] utilized 7 statistical features: min, max, mean, median, standard deviation, minRatio
and maxRatio from EMG and EDA signals.

- Frequency domain An alternative method of extracting effective features is to convert the
time domain signal to the frequency domain. Fast Fourier Transform (FFT) [58] was applied on
HRV decuced from ECG signal to generate spectral features such as dominant frequency, power
of very low frequency band (VLF: 0.003-0.04Hz), low frequency band (LF: 0.04-0.15Hz) and
high frequency band (HF: 0.15-0.4Hz), and ratio of power LF/HF. Jerritta et al. [60] performed
Hilbert Huang Transform (HHT) on normalized QRS derivative ECG data for calcultaing low
and high frequency features.

- Time-Frequency domain Some studies [61, 62] focused on the time-frequency analysis
using Wavelet Transform (WT). Guendil et al. [62] employed WT to decompose each signal
into six levels and the resulting WT coefficients were treated as emotion-related components in
the six frequency bands. Xie et al. [61] calculated WT related features: min, max, mean, and
standard deviation in wavelet coefficients after decomposition for ECG, EMG and EDA signals.

- Non-linear domain Apart from the traditional temporal/spectral features, non-linear mod-
els have also been suggested for emotion recognition. Rubin et al. [63] derived 19 non-linear
ECG features based on complex analysis such as sample entropy, maximal lyapunov exponent,
correlation dimension for classifying states of panic and pre-panic. Valenza et al. [52] extracted
various non-linear features based on Recurrence Plot (RP), Deterministic Chaos (DC) and De-
trended Fluctuation Analysis (DFA) on ECG, EDA, and RESP signals for recognizing multi-
level aoursal/valence states. Their experimental results indicated that the non-linear features
enhanced the performance in comparison with the common time-frequency domain features.
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2) Feature Selection and Reduction

Due to the complexity and individual variability of emotions, recognition methods often in-
corporate multiple physiological modalities to provide better performance [32], resulting in
high-dimensional vectors that cause the curse of dimensionality. Furthermore, some redundant
features are not beneficial for identification which may lead to overfitting problems and cause
weak generalization of the learning model [51]. To solve these problems, feature selection al-
gorithms are commonly applied to select the most relevent features for emotion recognition
tasks. Some filter methods were employed, which are independent of the learning model and
filter features by statistical metrics. For example, Yan et al. [54] used Mutual Information
(MI) to reduce the feature dimension. Ayata et al. [64] suggested the use of mRMR (mini-
mum redundancy maximum relevance) algorithm to select the most appropriate feature subset
for emotion classification. However, the drawback of the filter method is that it completely
ignores the impact of the selected features on classification algorithm performance [29]. To
address this issue, wrapper methods were proposed which asses the quality of selected features
by introducing a classifier. In the work of [58], Sequential backward selection (SBS) was ap-
plied, which is a top-down method that iteratively removes a feature from the entire feature
set whose elimination improves the classification performance until the number of features is
satisfied. Xie et al. [61] selected a similar approach to SBS, Sequential forward selection (SFS),
which starts with an empty set. Their experimental results showed that by applying SFS, the
performance of the classifier is significantly improved by about 30%. However, the high compu-
tational cost associated with exhaustive search on features make wrapper methods impractical
for real-life applications [29]. In contrast to these previous time-consuming methods, some ap-
proaches adopted dimensionality reduction techniques, such as Principal Component Analysis
(PCA) [52] which maps data to a lower dimensional space while retaining the components that
contribute most to the variance. To avoid the information loss arising from mapping, a Kernel
Principal Component Analysis (KPCA) method was applied in [59], which first projects fea-
tures into a high-dimensional space using Radial Basis Function (RBF) kernel for non-linear
information extraction, and then reduces the dimensions similarly to PCA.

3) Feature Fusion

Features from different physiological modalities are generally fused in an early fashion or a
late fashion to yield superior performance over unimodal recognition methods. Early fusion
[52, 58, 59, 62, 65] is a simple and intuitive strategy, where unimodal features are concatenated
to form a single high-dimensional vector as input to the classifier. However, this approach is

20



struggling with missing data and multimodal asynchrony issue [51]. Decision fusion can ef-
fectively tackle these problems, where classifiers learn independently on unimodal data and the
final decision is a combination of predictions from all classifiers. Majority voting [61, 64, 66]
is widely deployed for emotion recognition, where the most frequent prediction is served as
the final decision. However, this approach ignores the relationships between different modali-
ties, since each classifier is trained independently. To enhance the robustness of the decision,
an adaptive decision fusion strategy [54] was proposed which first constructed sub-classifier
weights by computing accuracy matrix, correlation coefficient, instability coefficient and lin-
early merged the weighted classification results from each classifier. Though this method allow
us to capture the cross-modal interaction between different predictions, however, the connec-
tions among multimodal features are ignored.

4) Classification

Common machine learning based classifiers in the literature are Support Vector Machine (SVM)
[54,56,57,59,61–63,65–67], K-Nearest Neighbour (K-NN) [49,57,59,61,63,66,67], Random
Forest (RF) [61, 63, 64, 67], Gradient Boosting Decision Tree (GBDT) [59, 61, 67], Linear
Discriminant Analysis (LDA) [58, 66], etc. Among these learning models, the support vector
machine (SVM) is the most frequently applied in the field of physiological emotion sensing
[11]. Some studies [61, 65, 67], have found that the SVM can achieve better performance in
emotion recognition than other classifiers. For instance, Cheng et al. [67] evaluated various
classifiers using ECG and HRV features from linear, non-linear, time and frequency domains,
mong which SVM achieved the highest accuracy of 79.51% on the task of detecting positive and
negative emotions. In [61], wavelet transform features of different modalities were extracted
for the binary emotion classification, and ultimately the best accuracy of 94.81% was achieved
by fusing the SVM classifiers from ECG and EMG signals. Nevertheless, some studies [59,
63] have revealed that the ensemble methods may yield superior performance. In [63], the
fusion of time-domain, frequency-domain and non-linear ECG features was fed into a series
of classifiers for evaluation, where the RF demonstrated the best performance, achieving an
accuracy of 97.2% and 90.7% for panic and pre-panic detection, respectively. Zhang et al. [59]
implemented four classifiers: GBDT, SVM, KNN and Gaussian Naive Bayes (GaussianNB)
for performance evaluation. With the property of auto-interaction over multiple feature sets,
The GBDT outperformed other classifiers in all experimetal settings, achieving an accuracy of
93.42% in 4-class emotion recognition task.
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5) Discussion of supervised machine learning-based methods

Table 2.1 briefly summarizes the supervised machine learning-based approaches. While these
approaches have demonstrated impressive results, they present certain limitations in the fea-
ture engineering process. First, emotion-related features are required to be extracted for each
modality. This relies heavily on domain knowledge which results in difficulties of transferring
the model to other tasks, especially in the multimodal case. Second, the most reliable features
should be selected to cope with the curse of dimensionality introduced by multimodal data while
obtaining better recognition performance. However, this process is quite time-consuming and
may lead to loss of information. In addition, the above two steps limit the flexibility of fusing
multimodal data at different levels since one has to always consider the modalities involved as
well as the features extracted and selected.

Table 2.1: Overview of supervised machine-learning based methods for physiological emotion
recognition. (EF: early fusion; LF: late fusion.)

Modality Type Selection Fusion Classification Paper
ECG Time - - KNN, SVM [57]
ECG Freq - - KNN [60]
EDA Time - - SVM [56]
ECG Mix - - RF, PA, GB, DT, RC, SVM, KNN, LR [63]
ECG Mix - - SVM, RF, DT, KNN, GBDT [67]

ECG, EMG, EDA, RSPs Mix SBS EF pLDA [58]
ECG, EDA, RSP Non-linear PCA EF QRC [52]

ECG, EMG, EDA, BVP Mix KPCA EF GBDT, SVM, KNN, GBN [59]
ECG, EMG, EDA, RSP Time-Freq - EF SVM [62]

EDA, EKG, RSP Mix SBL-PCA EF SVM, ELM [65]
ECG, EMG, EDA Time-Freq SFS LF SVM, RF, NB, DT, KNN, GBDT [61]
ECG, EDA, TEMP Mix - LF SVM, KNN, QDA, LDA [66]
BVP, RSP, TEMP Time mRMR LF RF [64]

ECG, EMG, EDA, BVP Mix MI LF SVM [54]

2.3.3 Supervised deep learning-based methods

Deep learning-based methods have recently gained extensive attention in the field of emotion
recognition and have been shown to outperform machine learning methods in several studies
[15,53,68–70]. Its major advantage is the automatic mining of complex and abstract features in
the raw input, through multi-level non-linear transformations introduced by successive layers,
thus drastically simplifying the process of feature extraction and selection compared to machine
learning methods [28]. Due to their automatic representation learning properties, deep learn-
ing approaches for physiological emotion recognition typically employ multiple modalities to
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achieve more accurate and robust performance. This raises a crucial challenge for emotion
recognition based on multimodal physiological signals, i.e. how to capture the marginal and
joint representation of multiple modalities and enable their combination to be beneficial for
model performance? Marginal representation is meaningful pattern discovered from unimodal
input and is capable of modelling heterogeneity of multimodal signals (i.e., intra-modal corre-
lations), while joint representation is the encoding of potential complementary or cooperative
relationships in multimodal data (i.e., cross-modal correlations). Fig. 2.4 shows an illustration
of the deep learning-based fusion strategies for multimodal physiological signals. Three fusion
strategies are proposed to attain the above two representations, denoted as early fusion, interme-
diate fusion and late fusion [71]. In the following sections, each of these three fusion techniques
and their corresponding emotion recognition methods are described. Additionally, for the latter
two fusion modes, approaches employing EEG signals were also presented as very few studies
targeted exclusively peripheral physiological signals.
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NN 1 NN 2 NN 3

Aggrega�on

a) Early Fusion b)   Intermediate Fusion c)   Late Fusion

Figure 2.4: Deep learning-based fusion strategies for physiological emotion recognition. a)
Early fusion employs concatenated multimodal data as input and extracts efficient inter-modal
correlation information through joint learning. b) Intermediate fusion first learns marginal rep-
resentations for each modality independently, which are then combined and fed directly into
the decision layer or continue to learn advanced joint representations. c) Late fusion aggregates
decisions derived from marginal representations of unimodal data to generate final decisions.
(NN: Neural Network; NN (opt): optinal neural network for joint leanring.)

1) Early Fusion

Early fusion-based approaches typically treat features from different modalities as a unity, from
which the joint multimodal representation is learned directly. There exists two approaches for
the construction of multimodal inputs, depending on whether or not dependencies in physi-
ological signals are considered. The first is to directly concatenate the raw data or features
of individual modalities into a 1D high-dimensional vector, regardless of the time scale. The
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second one stacks multimodal data at different instants as a 2D matrix with the dimension de-
termined by the number of modalities (or features) and the number of time steps. Consequently,
different types of deep learning architectures can be applied to emotion recognition tasks based
on the structure of the input data. Fig. 2.5 illustrates three common deep models in physi-
ological emotion recognition approaches which will be described separately in the following
paragraphs.
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Figure 2.5: Typical early fusion-based emotion recognition architectures. a) Fully connected
neural network can be applied directly to multimodal vectors when the temporal dependencies
between data samples are ignored. b) Convolutional neural networks can compute temporal
dependencies on local scales in 2D multimodal inputs in a parallel manner. c) Recurrent neural
networks capture long-term dependencies in physiological sequences in a sequential manner.

- Fully connected The 1D concatenated multimodal vector can be passed directly through
fully connected deep networks to learn complex transformations. For example, Saeed et al. [72]
proposed a Multi-Task fully connected Neural Network (MT-NN) for personalized driver stress
detection. A vector of 16 time-domain features extracted from the EDA and HR signals is first
fed into a shared layer to learn a cross-task joint representation, followed by a subject-specific
layer to cope with individual differences in stress responses. Ultimately, dense layers with
sigmoid cells were used for person-specific stress detection tasks. Experimental results indi-
cated that MT-NN can further improve performance compared to coventional machine learning
models such as logistic regression (LR) and support vector machine (SVM). In [73], a similar
MT-NN based framework was proposed for subject-dependent pain detection task. Their fully-
connected architecture with ECG and EDA features also achieved superior performance over
traditional machine learning methods. Despite the promising results of the previous approaches,
the fully-connected model did not incorporate the temporal dependencies between physiologi-
cal signal values.
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- Convolutional While convolutional neural networks (CNNs) are extensively employed for
tasks involving 2D images, considerable researches have applied them for time series analy-
sis [74]. Such models apply and slide a series of time-invariant filters in a parallel fashion over
the input sequences to capture the local dependencies between samples. Multimodal physio-
logical signals are multivariate time series which can be sent into CNN-based models to learn
discriminative representations for emotion recognition tasks. In [68], a CNN model consist-
ing primarily of 1-dimensional (1D) convolutional layers and pooling layers was employed to
extract abstract representations from ECG and EDA signals. Fully-connected layers were po-
sitioned at the end of the model to output prediction probabilities. Finally, the proposed model
outperformed classic machine learning algorithms in identification of arousal and valence states.
Wang et al. [75] proposed a 1D CNN based architecture for stress detection in real-world driving
environment. Change point density was first calculated for each filtered physiological signals,
where a change point is defined as a point with a sharp increase or decrease in signal value.
The physiological signals were then randomly shifted and combined with the corresponding
change point density to form the multichannel input to the 1D CNN. Their experimental results
indicated that the proposed model generalized well on stress detection task for different sub-
jects with similar cognitive abilities. Despite the impressive results of CNN-based approaches
for emotion recognition tasks, CNNs are not sensitive to temporal order (not beyond the local
scale) and are thus ineffective in modelling long-term dependencies [74].

- Recurrent Recurrent neural networks (RNNs) and their gated variants such as the long
short-term memory (LSTM) are traditional deep neural networks for processing time-series
data, whose decisions at current time steps are influenced by past time steps, thus capturing
the temporal dependencies of elements in large scale sequences [74]. Several efforts have been
conducted using recurrent models to fully explore the temporal relationships in physiological
sequences. For instance, Awais et al. [76] proposed an intelligent remote Internet of Things
(IoT) framework for real-time emotion recognition, where wearable devices and IoT technol-
ogy allowed for wireless data collection and communication, and six peripheral physiological
signals were fed into a deep LSTM-based model to classify four categorical emotions, achieving
a high performance (F1-score) of 95 %. Zitouni et al. [77] applied a Bidirectional LSTM-based
(BiLSTM) architecture for emotion detection in real-life debates using three peripheral sig-
nals: EDA, HR and TEMP. In comparison with the baseline models, i.e. Gaussian Naive Bayes
(GNB) and eXtreme Gradient Boosting (XGBoost), the proposed model obtained the best per-
formance with an average accuracy of 90.79% for arousal, 90.53% for valence and 86.18%
for 4-class classification. Although RNNs have performed well in the above studies, they still
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exhibit some limitations. Theoretically, RNNs can model arbitrarily long sequences, However
in practice, vanilla RNN, including LSTM face vanishing gradient problem when dealing with
extra long series. Futhermore, the sequential processing makes the model training extremely
time consuming compared to CNNs.

- Hybrid In order to take advantage of both the parallel computation of CNNs and the long-
term dependency modelling of RNNs, some researches have adopted hybrid models on emotion
detection tasks. For example, Keren et al. [78] proposed a CNN-LSTM model where convolu-
tion and pooling operations first compressed the input sequence to obtain a compact high-level
representation, which is subsequently fed into the LSTM to further capture underlying temporal
correlations in sequential data. In experiments of identifying arousal and valence, the hybrid
model consistently produced better results, compared to methods based on hand-crafted fea-
tures.

In general, early fusion proved to be the preferred option for most emotion recognition
methods based on peripheral physiological signals due to its simplicity of installation, where the
joint representation can be extracted directly from the combined multimodal input, emphasiz-
ing the importance of inter-modal interactions. However, it neglects the necessity of designing
special sub-models to further capture intra-modal properties.

2) Intermediate Fusion

Early fusion treats multimodal data as a whole, where marginal representations are not learned
explicitly and hence cannot differentiate which modality the learned features are derived from.
Intermediate fusion can effectively solve this problem by first learning marginal representations
to capture intra-modal correlations, thereby injecting the priori knowledge into the model. Sub-
sequently, these bottom marginal representations are either fed directly into the decision layer
(i.e., marginal intermediate fusion, presented in Fig. 2.6 (a)) or jointly learn a higher-level rep-
resentation for prediction (i.e., joint intermediate fusion, presented in Fig. 2.6 (b)). Later on,
we will discuss emotion recognition methods based on these two intermediate fusion strategies.

- Marginal In marginal intermediate fusion, representations extracted from different modal-
ities can be directly concatenated as input to the classification. Ma et al. [79] proposed a mul-
timodal residual LSTM (MMResLSTM) network for emotion recognition. The EEG signal
and other peripheral signals: EOG (electrooculography) and EMG (electromyography) are fed
separately into four-layer LSTM based model interspersed with residual connections and layer
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Figure 2.6: Common intermediate fusion strategies for physiological emotion recognition. a)
Integrated marginal representation is applied directly to decision making. b) The marginal
representations are first combined to jointly learn a high-level multimodal representation for
better exploiting inter-modal correlations, which is later fed into the decision layer.

normalization to efficiently learn discriminative temporal features, and eventually the marginal
representations of the two branches are concatenated and sent to a fully-connected layer with
softmax function for predicting emotional arousal and valence. Zhu et al. [80] designed a emo-
tion recognition framework based on multi-hypergraph neural networks (MHGNN). Three hy-
pergraphs were first built from three physiological modalities (EEG, EOG and EMG), where
the vertices and edges of the graph represent the subjects described by the stimuli and the latent
correlations between subjects, respectively. Then, two-layer hypergraph neural networks acting
on each modality extracted representations encoding both intra-modal and cross-subject corre-
lations. Finally, a dense layer accepted all marginal representations and classified them into
different emotion categories. In [81], a hybrid model was proposed for emotion recognition in
arousal-valence space, where 2D-CNN was applied to extract spatial features from multichan-
nel EEG signals and temporal features of multiple peripheral signals were captured via LSTM,
and ultimately multimodal features were concatenated for fully connected-based classification.
The marginal fusion-based approach described above fully leveraged intra-modal correlations,
however, cross-modal correlations may not be effectively modelled. Therefore, there exists the
potential to further enhance recognition performance by exploring inter-modal cooperation.

- Joint Marginal representations from different branches can also be concatenated and passed
through a shared encoder to obtain a joint representation for classification, which exploits the
complementary and collaborative nature of the modalities. Zhang et al. [82] proposed an emo-
tion recognition framework based on regularized deep fusion of kernel machine. Low-level
unimodal representation obtained from ensemble deep kernel machine optimization (eDKMO)
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and bimodal joint representations aggregated by a fully connected layer formed the final rep-
resentation set, which are fed into the global fusion layer with regularization to generate the
final fused representation for classification. This type of method captures cross-modal relation-
ships by including additional integration layers to further enhance the recognition performance.
However, this increases the complexity of the model which may result in overfitting, especially
on limited physiological data.

Overall, intermediate fusion extracts marginal and joint representations in a hierarchical
fashion to simultaneously capture intra- and inter-modal relationships. However, few researches
have explored the performance of emotion recognition purely based on peripheral physiological
signals.

3) Late Fusion

Considering that different modalities can provide distinct information for emotion recognition,
separate sub-models can be trained on unimodal data with their resulting decisions being com-
bined to produce the final decision. According to the fusion techniques of sub-decisions, we
divide the existing emotion recognition methods into two categories, namely majority voting-
based methods and weighted voting-based methods, both of which will be discussed separately
in the following.

- Majority voting The majority voting is considered to be the most intuitive late fusion
solution, with the most voted category as the classification result. Dar et al. [83] proposed a hy-
bird framework for multimodal emotion recognition. A 2DCNN-based model and a 1DCNN-
LSTM-based model were applied to EEG signals and peripheral physiological signals (i.e.,
ECG, EDA) respectively to generate modality-specific decisions. The final predictions regard-
ing the quadratic classification of arousal-valence were determined based on the majority vot-
ing strategy. There are certain limitations to this approach, e.g. a subset of the classifiers
(which are quantitatively dominant) may occasionally give the incorrect classification at the
same time [84].

- Weighted voting An alternative approach for decision fusion is to average the outputs
of all sub-models, implying that all branches are allocated equal weights. Hssayeni et al. [85]
explored the effectiveness of this fusion technique, in which a 1DCNN-based architecture was
trained independently on different peripheral physiological signals. The class probabilities gen-
erated by the CNNs were averaged as the final output of the model. In experiments for esti-
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mating positive and negative emotions, this late fusion approach exhibited better performance
against early fusion. Considering that the contribution of different modalities to emotion recog-
nition may be unequally distributed, different weights should be assigned to individual sub-
decisions. For example, Li et al. [86] proposed a variable weight fusion strategy for multimodal
emotion recognition. EEG, ECG and EDA signals were first converted into spectrograms, an
Attention-based Bi-LSTM model was then applied to extract the most relevant time-frequency
domain features from each signal. Finally, the predictions from all sub-models are fed into the
fully connected layer to automatically learn the corresponding weights for each modality. In
the classification experiments of arousal and valence states, the proposed fusion strategy signif-
icantly improved the performance of the equal weight scheme.

On the whole, late fusion focuses on marginal representations which can encode intra-
modal correlations and this is particularly effective for data with certain modalities missing
or extremely heterogeneous data. However, its major drawback is its inability to capture the
interaction between different modalities, especially for highly relevant physiological signals in
particular emotional states.

4) Discussion of supervised deep learning-based methods

In the previous sections we reviewed multimodal physiological emotion recognition approaches
based on the three fusion strategies, a brief summary of which is presented in Table 2.2. Among
the three fusions, early fusion and late fusion can only capture inter- and intra-modal corre-
lations, respectively, while intermediate fusion is encouraging for efficient encoding of both
intra-modal and inter-modal associations at different levels. However, it can be clearly ob-
served from Table 2.2 that there are no existing intermediate fusion methods that specifically
target low-frequency peripheral physiological signals. From the perspective of real-life applica-
tions, EEG signals are inappropriate in this context due to their strong invasive nature. Hence,
there is a need to develop such fusion methods that rely solely on peripheral physiological
signals. Moreover, for supervised deep learning methods, training a sufficiently accurate and
generalizable model commonly depends on a large amount of labeled data, which is challenging
for physiological data, as the annotation is time-consuming, expensive, and requires the inter-
vention of domain experts. In addition to the quantitative limitation, the quality of the collected
labels can also be a problem. This is particularly true in real-life situations where the ground
truth of emotions is based on self-report, which can introduce subjective errors.
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Table 2.2: Overview of supervised deep learning-based methods for physiological-based emo-
tional recognition.

Fusion Modality Real-life? Taxonomy Papers
Architecture

Early

EDA, HR Yes Fully connected [72]
ECG, EDA Yes Fully connected [73]
ECG, EDA Yes Convolutional [68]

EDA, BR, HR, HRV Yes Convolutional [75]
BVP, ECG, EDA, EMG, RESP, TEMP Yes Recurrent [76]

EDA, HR, TEMP Yes Recurrent [77]
ECG, EDA HR Yes Hybrid [78]

Representation

Intermediate

EEG, EMG , EOG No Marginal [79]
EEG, EMG, EOG No Marginal [80]

EEG, EMG, EOG, EDA, BVP, RESP, TEMP No Marginal [81]
EEG, EMG, EOG, ECG, EDA, RESP No Joint [82]

Aggregation

Late
EEG, ECG, EDA No Majority [83]

ECG, EMG, EDA, RESP Yes Weighted [85]
EEG, ECG, EDA No Weighted [86]

2.3.4 Other learning paradigm based methods

In the previous section, we have demonstrated that deep neural network-based approaches are
effective in feature extraction and fusion, thus achieving superior performance over traditional
machine learning-based approaches. However, developing fully-supervised deep fusion models
for emotion recognition in a mobile environment using only wearable peripheral physiological
signals still suffers from the following problems: 1) How to train a generalised model using
limited labelled data? and 2) How to deal with the biases introduced by inaccurate and uncer-
tain ground truth collected in real-life settings? Since we always have access to large amounts
of unlabeled data, recent researches have shifted towards other learning schemes: unsuper-
vised learning, or semi-supervised learning with the intention of leveraging unlabelled data to
discover the true distribution of samples. In general, unsupervised learning uses entirely unla-
belled data, while semi-supervised learning uses a mixture of unlabelled and labelled data. In
the following, we will present physiological emotion recognition methods based on these two
learning strategies.

1) Unsupervised

Unsupervised learning algorithms expect to automatically seek hidden structures in data without
relying on supervision from labels [87]. A common technique technique applied in unsuper-

30



vised learning-based emotion recognition methods is data clustering, which aims to allocate
data to different clusters by maximizing intra-cluster similarity while minimizing inter-cluster
similarity [88]. For instance, Birjandtalab et al. [89] explored the performance of unsupervised
emotion recognition algorithms using multimodal wearable physiological signals consisting of
EDA, HR and arterial oxygen level (SPO2). A Gaussian mixture (GMM) model was applied
to the clustering of multimodal features, ultimately achieving an accuracy of over 84% in the
task of differentiating between four emotional states. Fiorini et al. [90] examined the validity
of unsupervised learning models with ECG, HR and brain activity signals. Multimodal features
extracted from the time and frequency domains were fed into three unsupervised algorithms:
K-Means, K-medoids and Self-organizing maps. Although the above methods can solve the
problems associated with data labelling, however they are all based on hand-crafted features.

For the automatic learning of more complex non-linear representations, there is an increas-
ing trend towards the use of deep neural networks for unsupervised learning. A typical model
is an autoencoder, which extracts meaningful representations through the compression and re-
construction of the unlabeled data. Several studies have explored the feasibility of this tech-
nique for emotion recognition. In [91], stacked convolutional autoencoders (SAE) were applied
independently on unlabelled ECG and EDA data to obtain generalized latent representations
for arousal classification, achieving better performance than the fully supervised approaches.
Though this method effectively modeled the heterogeneity of multimodal signals, i.e. using
different models to extract valid unimodal features, however, it neglected the collaborative and
complementary nature of multimodality. Different from the previous approach, Zhang et al. [70]
presented a correlation-based emotion recognition algorithm (CorrNet), where intra-modal fea-
tures are first obtained with separate convolutional autoencoders, followed by covariance and
cross-covariance computation between each pair of modalities to obtain inter-modal features.
However, these unsupervised learning methods based on autoencoders did not introduce super-
vised signals in pre-training. As a result, the learned representations may contain patterns that
are irrelevant to emotions, resulting in unsatisfactory performance.

2) Semi-supervised

Semi-supervised learning typically uses both a large amount of unlabelled data and a small
amount of labelled data, assuming that the presence of unlabelled data contributes to a better
learning process [92]. Depending on the training strategy, semi-supervised learning methods
can be classified into one-stage based or multi-stage based [93]. Most of the semi-supervised
emotion recognition methods belong to the latter category, which use unlabelled data for pre-
training to provide a good initialisation of the model, followed by fine-tuning on labelled
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data. For example, Luo et al. [94] presented a semi-supervised learning algorithm for Valence-
Arousal-Dominance emotion recognition based on EEG signals and peripheral physiological
signals. Stacked denoising autoencoders (SDAE) was first pre-trained and then fine-tuned in
a supervised manner to generate robust representations that were ultimately served as input to
KNN and SVM for classification. Finally, the proposed method showed slight improvements
over other supervised and semi-supervised methods in the performance comparisons. However,
as with [91], it adopted independent autoencoders for reconstruction of different modalities and
thus failed to effectively capture the cross-modal correlation of multiple data. Yu et al. [95] pro-
posed a semi-supervised multimodal stress detection framework. A LSTM autoencoder-based
(LSTM-AE) model was first trained on labelled samples and the resulting latent representa-
tions were clustered with a GMM model, which was subsequently applied to select unlabelled
samples with a similar distribution to the labelled data. Later, the selected unlabelled data was
applied to pre-train the LSTM-AE model providing the initial parameters of the encoder in
the supervised architecture. In the end, the proposed method enhanced the classification per-
formance by 7.7% to 13.8%, compared to the supervised approaches. Though the methods
described above have yielded promising results, allowing us to obtain robust and generalized
emotion recognition models with limited labeled data. However, their approach regarded the
multimodal data as a whole. The autoencoder-based model was designed to compress and
reconstruct the concatenated hand-crafted feature sequences, thus ignoring the correlation in-
formation within the modalities.

3) Discussion of non-supervised learning based methods

In the above sections, we explore non-supervised learning approaches for emotion recognition,
some of which have shown competitive or even better performance compared to fully supervised
algorithms, offering a potential to eliminate overfitting effects associated with limited labeled
data. Table 2.3 summarizes the corresponding methods demonstrated in the previous sections.
As can be observed from the table, first, the number of non-supervised studies, whether based
on traditional machine learning algorithms or deep neural networks, remains significantly lower
than that of fully supervised ones. Second, for deep unsupervised/semi-supervised learning
methods, the autoencoder appears to be a popular model option for learning generalized rep-
resentations. However, these methods cannot simultaneously model the heterogeneity and col-
laboration of multimodal physiological signals when pre-trained with unlabeled data; in other
words, they typically employ a single model or independent models for representation learn-
ing, thus ignoring intra- and inter-modal correlations, respectively. In summary, how to learn
meaningful representations from large amounts of unlabeled data while effectively integrating
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multimodal physiological signals are crucial factors for accurate and robust emotion recognition
in real-life settings.

Table 2.3: Overview of other learning paradigm- based methods for physiological emotion
recognition. (PPS: a series of Peripheral Physiological Signals, SAE: stacked autoencoder;
SDAE: stacked denoising autoencoders, Cintra/inter: columns used to indicate whether the deep
model takes into account intra- and intermodal correlations in the pre-training phase.)

Learning scheme Modality Real-life? Cintra Cinter Architecture Papers

Unsupervised

PPS Yes - - Hand-crafted [89]
EEG, PPS No - - Hand-crafted [90]

PPS Yes ✓ ✗ SAE [91]
PPS Yes ✓ ✓ CorrNet [70]

Semi-supervised
EEG, PPS No ✓ ✗ SDAE [94]

PPS Yes ✗ ✓ LSTM-AE [95]

33



2.4 Emotion recognition based on facial expressions

The process of recognizing human emotions based on facial cues is referred to as facial ex-
pression recognition (FER) and its corresponding methods can be broadly categorized into two
types, namely appearance-based methods and geometry-based methods. The former encodes
the pixel intensity information of a still image or video frame, while the latter analyses the
location information of detected facial key points around the main facial components such as
eyebrows, eyes, nose and lips in static images or videos. These detected 2D or 3D points are
known as facial landmarks and can be considered as a compact representation of a facial shape.
Compared with appearance-based methods, facial expression recognition methods based on
landmarks have several advantages: first, they are faster and more efficient for long-term emo-
tion recognition in real-world scenes since they only require the tracking of low-dimensional
point sets. The number of facial landmarks used in different methods may vary, with the most
common being 49 points [96, 97], 66 points [98, 99], or 68 points [100, 101]. An illustra-
tion is shown in Fig. 2.7. This is computationally less expensive than analyzing pixel intensity
information. Second, they can avoid the privacy issues typically related to appearance-based
methods, which require storage or transmission of the original facial images. Thus, landmark-
based methods offer a more privacy-friendly option for practical applications. Third, landmark
detection and tracking techniques are relatively insensitive to illumination variations in images,
and recent methods are even robust to occlusions. Therefore, we only considered the facial
landmark-based expression recognition approach in our work.

a)  49 points b)  66 points c)  68 points

Figure 2.7: Common facial landmark configurations in the literature, where the 66 points-
based configuration has 17 more landmarks (i.e. the blue dots) on the face contour than the
49 points-based configuration, and the 68 points-based configuration is formed by adding 2
additional landmarks (i.e. the green dots) on the inner corner of the mouth to the 66 points-
based configuration.
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Fig. 2.8 demonstrates the common steps included in the landmark-based FER systems.
The acquired emotion-related facial images are subjected to a pre-processing consisting of face
detection and alignment to remove irrelevant variations of facial expression from the data so
as to normalize the visual semantic information [102]. A brief introduction to pre-processing
is provided in Section 2.4.1. Subsequently, valid facial shape representations can be captured
for a range of emotion-related classification or regression tasks. Depending on the type of
feature support, we classified the corresponding recognition methods as point-based methods,
local region-based methods, and full face-based methods, which are presented in Sections 2.4.2,
2.4.3 and 2.4.4, respectively.

Image
acquisi�on

Classifica�on/
Regression

Facial shape representa�on

3) Full face-based
(Face detec�on & alignment)

Preprocessing

2) Local region-based1) Point-based

Euclidean space

Manifold

Figure 2.8: Landmark-based facial expression recognition pipeline.

2.4.1 Visual data preprocessing

In this section, we briefly introduce the two basic steps before performing facial expression
recognition. Given an image containing the subject, the first step of data preprocessing is to
determine the location of the region of interest (ROI), i.e., the face. One of the most widely
employed face detection algorithms is the Viola and Jones (V&J) object detection framework,
which can achieve accurate results on data collected in a controlled environment [103]. When
migrating to real-world applications, this task tends to be challenging, as the human head pos-
ture may be non-frontal and obscured by hand motions or glasses, etc. Some robust face de-
tection algorithms [104, 105] based on the Deformable Parts Model framework [106] were
developed to cope with this situation. Once face detection is accomplished, facial landmark
detection algorithms such as the Active Appearance Model (AAM) and the Supervised Descent
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Method (SDM) are then employed to locate points of critical facial areas. The obtained fa-
cial points are further applied to compute transformations (e.g., Procrustes transformation) with
predefined facial shapes to align face images, thus eliminating variations including translations,
uniform scaling, and rotations [102]. At the end of these two operations, the normalized shapes
can now be exploited to extract facial representations for recognizing emotions.

2.4.2 Point-based feature support

Approaches using point-based representations generally select specific facial landmarks from
local regions (i.e., primary components of the face) which are further exploited to derive effec-
tive features. Depending on whether dependencies between facial landmarks were considered,
such methods can be further classified into independent feature-based and non-independent
feature-based. For example, Asmara et al. [107] tracked 20 facial points located in the eyebrow,
eye and mouth regions in the facial expression video, and calculated the shifted Euclidean dis-
tance of the coordinate points between consecutive frames. In this case, the motion features of
each facial landmark were encoded independently for facial expression classification.

Considering the relationship between facial points when expressing emotions, Munasinghe
[108] calculated the distances between the points within the eyebrow and mouth regions as cru-
cial information for identifying emotions. Taking into account the variation in facial sizes, the
obtained distance vectors were subsequently normalized by a specific distance in each region.
In the end, a random forest (RF) classifier achieved an average accuracy of 90% in predict-
ing four emotions (i.e., anger, happiness, sad, and surprise). Huang et al. [109] proposed a
1D convolution-based neural network to explore the geometric information in facial landmarks.
Vectors of normalized distances between facial points and a reference point (i.e., the point on
the tip of the nose) were first computed and subsequently fed into 1D convolutional layers and
pooling layers to extract discriminative features for pain intensity estimation. Ryumina and Kar-
pov [110] proposed a deep geometric facial expression recognition framework based on Long
Short-Term Memory (LSTM). They first selected random samples of facial expressions and
calculated the Euclidean distances between facial landmarks. Subsequently, three emsemble
classifiers: Random Forest Classifier (RF), Extra Trees Classifier (ET) and AdaBoost Classifier
(AB) were adopted to calculate the average importance score of the features for filtering the
most relevant distances. An LSTM-based deep neural network was applied to capture the tem-
poral relationships in the selected facial distance sequences and achieved superior expression
recognition performance than the appearance-based approaches.

In contrast to the previous studies based on facial landmark pairs, Ghimire et al. [111] pro-
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posed a triangle-based representation for a better description of the relationship between points.
Three landmarks were randomly chosen as the triangle’s vertices, and the derived representation
contained four components, i.e., two side lengths and two angle differences between the current
frame and the first frame. Ultimately, the most discriminative triangle features were selected
by a multi-class AdaBoost with Extreme Learning Machine (ELM) classifier and applied to the
SVM-based classification. Palestra et al. [112] employed a hybrid representation containing
32 geometric features for facial expression recognition. The distance between two points, the
slope of the line connecting the two points, the area of the irregular polygon, and the ratio of
the major and minor axes of the defined ellipse were extracted from the regions of eyebrows,
eyes, cheeks, nose, and mouth, respectively, as inputs to a series of classifiers. As a result, the
best performance of up to 95.46% was obtained by the RF classifier. Though the above local
representation-based approaches exhibited promising performance in facial expression recogni-
tion, the geometric features extracted from selected facial landmarks cannot fully describe the
complex associations between facial components.

2.4.3 Local region-based feature support

This type of approach typically divides facial landmarks into several groups based on the main
components of the face, from which corresponding local features are extracted and combined
to form the final representation for the learning task. Liu et al. [113] applied separate LSTM
models to process landmarks detected in facial sub-regions such as eyes, eyebrows, and mouth,
where landmark coordinate series were fed into the LSTM cells to explore their relative posi-
tion dependencies. In the end, the geometric features extracted from seven local regions were
concatenated and weighted by a convolution-based attention model for expression recognition.
Zhang et al. [114] proposed a Part-based Hierarchical Bidirectional Recurrent Neural Network
(PHRNN) for identifying facial expressions. The facial landmarks were first divided into 4 parts
based on facial regions: eyes, eyebrows, nose, and mouth. Then, the landmark sequences of
each region were processed by independent Bidirectional Recurrent Neural Network (BRNN)
models to extract local features. A cascade fusion strategy was introduced, where the upper
facial representation was obtained by concatenating the eyebrow-eye-nose features, while the
bottom facial representation was a combination of nose-mouth features. The global represen-
tation was finally derived from the upper and lower facial representations for efficient facial
expression classification.

Apart from the above concatenation-based methods for integrating local features, some
methods employ graph models to capture the relationship between facial local areas. Wang
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et al. [115] proposed a facial expression recognition framework based on the Interval Tem-
poral Bayesian Network (ITBN), where they defined a facial expression as a set of primitive
events that occur continuously or in parallel, with primitive events being the movements of
facial points to approximate local muscle activities. The ITBN model established the spatio-
temporal dependencies between local facial components by constructing a directed graph with
facial primitive events as nodes, resulting in superior recognition performance in comparison
with classical appearance- and geometry-based approaches. Although the approaches described
above take into account the connections between facial regions, however, the selection of these
specific regions is subjective and diverse. There may be an optimal division of regions that may
require the intervention of expert knowledge. Furthermore, the division strategy may also vary
with specific tasks. Moreover, these approaches may lack robustness to variations in the head
pose as it does not regard the context of the whole face.

2.4.4 Full face-based feature support

Unlike the previous approaches based on features extracted from special points or facial local
regions, this type of approach treats the entire facial area as a whole, where the shape represen-
tations are extracted from the coordinates of all facial landmarks.

1) Shape representation in Euclidean space

Some approaches tend to construct the global shape representation in Euclidean space, which
is typically represented by a multidimensional vector. For instance, Jain et al. [116] treated
all facial landmarks as a whole, i.e., a high-dimensional vector composed of 2D coordinates.
Latent Dynamic Conditional Random Fields (LDCRFs), an undirected graph model was then
selected as a classifier, permitting the parallel encoding of motion patterns within a single fa-
cial expression and between different expressions. Experimental results showed that LDCRFs
obtained more robust performance on landmark-based shape features than on appearance fea-
tures. Lorincz et al. [117] presented a kernel-based facial expression recognition method. The
3D landmarks captured from facial expression videos were regarded as multidimensional time
series, and two kernels: the Dynamic Time Warping (DTW) kernel and the Global Alignment
(GA) kernel were applied to capture the similarity information between the sequences. Addi-
tionally, they also adopted the alternating projection method on the former to ensure the positive
semi-definite nature of the kernel. Ultimately, Gram matrices induced by these two kernels were
applied for SVM-based emotion classification. In general, the above approaches encoded the
facial shape as a Euclidean vector consisting of 2D or 3D coordinates of the landmarks for ex-
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pression recognition. However, this commonly results in a high-dimensional representation. In
the work of [117], they employed the PCA technique for the compression of the shape descrip-
tor, which in turn led to information loss. To solve this problem, some approaches adopted deep
neural networks for effective representation learning from coordinate vectors. Qiu et Wan [118]
first selected specific reference points to normalize the 68 detected facial points, and then the
coordinates of the 2D landmark configurations were fed into a fully connected neural network
in the form of 1D vectors of size 136 to classify facial expressions. Jung et al. [119] also em-
ployed a deep architecture consisting of fully connected layers. Facial movements were encoded
by landmark trajectories, which are concatenations of 1D coordinate vectors of all frames in the
facial videos and served as input to the model for facial expression recognition. Though the
above approaches can provide a more holistic and global understanding of facial expressions,
however, they ignore the geometric properties of facial shapes, thus failing to accurately capture
the deformations of the face, especially when dealing with complex expressions.

Figure 2.9: The cone of SPD matrices. Points A, B and C represent covariance-based shape
representations, where the blue and red lines symbolize distance measurements in Euclidean
space and Riemannian manifold, respectively. It can be seen that in the manifold the point A is
closer to the point B, while in Euclidean space it has the opposite result. Excerpt from [3].

2) Shape representation on manifold

Different from previous methods that use flattened coordinate vectors in Euclidean space as the
face descriptor, this class of methods builds compact, discriminative facial shape representa-
tions on non-linear manifolds that are invariant to affine transformations [120]. One successful
case is the covariance descriptor [121–123] in the field of computer vision, which efficiently
fuses high-dimensional features by computing the corresponding covariance matrix, and this is
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what we refer to as compactness. The resulting covariance representations are the symmetric
positive definite (SPD) matrices that will induce the manifold structure by defining the appro-
priate metric [124]. More specifically, the set of SPD matrices forms a cone-shaped Riemannian
manifold, on which each covariance-based representation can be considered as a point [3]. Fig.
2.9 shows an illustration of the corresponding Riemannian manifold. Consequently, one can
obtain more precise similarity measures between Riemannian representations rather than Eu-
clidean ones, which is related to better discriminative power. In addition, representations based
on Riemannian geometry are invariant under affine deformation, thus offering a possibility for
robust facial shape analysis. Hence, some studies have turned their attention to constructing
shape representations in nonlinear spaces based on the foregoing merits. These methods typi-
cally embed the motion of the facial landmarks in the time-parameterized curves according to
the Riemannian geometry of manifold data. For example, Taheri et al. [125] proposed a robust
facial expression recognition approach based on shape manifold analysis to eliminate the dis-
turbance due to viewpoint variations. The global facial deformation evoked by the emotional
expression can be registered by a sequence of facial landmarks, which were further treated as
a curve on the Grassmann manifold. The 2D landmark configurations in successive frames
were considered as adjacent points on the curve, the connections between which were char-
acterized by the velocity vectors in the tangent space. Consequently, the shape representation
derived on the manifold can better discriminate between different facial expressions than that
in Euclidean space. Tanfous et al. [126] conducted a view-invariant facial expression analysis
using geometry of non-linear manifolds. Continuous 2D landmark configurations detected in
facial expression videos were first modeled as trajectories in Kendall’s shape space, which were
subsequently encoded as sparse time series in Euclidean vector space by Riemannian sparse
coding and dictionary learning (SCDL) to suit traditional linear classification algorithms. In the
end, the proposed method achieved competitive results in macro- and micro-facial expression
recognition tasks. Kacem et al. [127] presented a novel facial expression recognition frame-
work based on the geometry of the space of Gram matrices. Gram matrices computed from a
sequence of facial landmarks were considered as points on the Riemannian manifold of posi-
tive semidefinite matrices of fixed-rank, where the matrices of adjacent frames were joined by
pseudo-geodesics to model the facial movements. The Dynamic Time Warping (DTW) tech-
nique was adopted to measure the similarity between trajectories, which was finally fed into
a pairwise proximity function SVM (ppfSVM)-based classification. Szczapa et al. [128] pro-
posed a Riemannian framework for pain intensity estimation using facial landmarks. The Gram
matrices were first computed from the combination of the face point coordinates and the ve-
locities between consecutive frames. The matrix sequences were then be regarded as curves
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on the Riemannian manifold, where a curve-fitting algorithm was applied to cope with missing
or incorrect data. The input data for Support Vector Regression (SVR)-based pain intensity
prediction was finally provided by Global Alignment Kernel (GAK) through the calculation of
the similarity scores between trajectories. Overall, the methods discussed above incorporate the
intrinsic geometry of the shape space, therefore yielding facial representations that are robust
to affine transformations. They generally employed a fixed metric to measure the similarity
between shape representations. However, the selected metric may not always be optimal for a
specific task or dataset. In such cases, the underlying relationships between facial shapes may
not be captured effectively.

Table 2.4: Overview of behavioral emotion recognition methods.(FCN: Fully Connected Net-
work)

Feature Support Shape Space Architecture Papers

Point-based

Euclidean Hand-crafted [107]
Euclidean Hand-crafted [108]
Euclidean 1DCNN [109]
Euclidean LSTM [110]
Euclidean Hand-crafted [111]
Euclidean Hand-crafted [112]

Local region-based
Euclidean Attn-LSTM [113]
Euclidean PHRNN [114]
Euclidean Hand-crafted [115]

Full face-based

Euclidean Hand-crafted [116]
Euclidean Hand-crafted [117]
Euclidean FCN [118]
Euclidean FCN [119]

Non-linear Manifold Hand-crafted [125]
Non-linear Manifold Hand-crafted [126]
Non-linear Manifold Hand-crafted [129]
Non-linear Manifold Hand-crafted [128]

2.4.5 Discussion of landmark-based FER methods

We classified facial landmark-based emotion recognition methods into three types based on the
range of facial feature support and introduced them accordingly in the previous sections. Table
2.4 provides a brief summary of these methods. First, we notice that most of the methods still
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construct their facial feature representations in Euclidean space, which are commonly disturbed
by affine transformations such as translation, scaling, and rotation. Some full face-based meth-
ods solved this issue by defining the facial shapes on non-linear manifolds, thus achieving more
robust representations to face deformations. However, these methods use predefined metrics to
describe the similarity relationships between different facial shapes. Thus they are not flexible
enough to adapt to the variable data structures in different tasks or datasets. In addition, all
existing methods do not explicitly address the significant intra-class variability presented by
facial expression images in the wild. Hence, there exists the possibility of further enhancing the
discriminative power of feature space to obtain better recognition performance.
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2.5 Emotion recognition based on multimodal signals

To date, most emotion recognition studies have focused on behavioral or physiological re-
sponses. Recently, a few studies have focused on fusing explicit behavioral signals such as
facial expressions and body motions represented by ACC (3-axis acceleration) signals and im-
plicit physiological signals to leverage the complementary nature of both to provide more robust
and enhanced emotion detection. In this section, we classify these multimodal methods into
early fusion-based (Section 2.5.1), intermediate fusion-based (Section 2.5.2), late fusion-based
(Section 2.5.3), and hybrid fusion-based (Section 2.5.4) according to the integration fashion.
The principles of the first three fusions are consistent with those mentioned in the previous sec-
tion 2.3.3, while the last one combines the early fusion and late fusion. The details of these
multimodal approaches will be discussed below.

2.5.1 Early Fusion

Similar to the early fusion mentioned in Section 2.3.3, data from the behavioral and physi-
ological domains are concatenated and treated as a single input for emotion recognition. Li
et al. [130] proposed a multimodal fusion framework for emotion recognition based on EEG
signals and facial expressions. Energies of different channels are extracted by DWT as EEG
features, while a series of geometric features such as distances between facial landmarks, an-
gles of the corner of the lip and slopes of the eyebrows are selected as facial features. Ultimately,
the SVM classifier with fused feature vectors as input obtained an improved performance over
that using solely EEG data. Werner et al. [131] collected facial distances and gradient-based
features from video frames which were combined with the statistical features calculated from
biological signals. The resulting multimodal vectors were employed to train a random forest
model for pain assessment. Experimental results indicated that the combination of facial and
physiological data improved unimodal performance in most cases, especially when predicting
high pain intensity. Gil-Martin et al. [132] introduced cube root (CR) and constant Q transform
(CQT) in the computation of the spectrum for wearable physiological and motion signals and
fed the corresponding spectrum variants as single-channel images into a 2D convolutional and
fully connected based neural network for multimodal emotion recognition. Experimental results
showed that the proposed model achieved significant performance improvements on multimodal
data compared to the unimodal settings. However, early fusion approaches sometimes fail to
deliver performance gains. Schmidt et al. [53] collected physiological and motion data using a
wrist device and a chest device and extracted various time- and frequency-domain multimodal
features for training a range of common machine learning classifiers. However, the results of
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experiments conducted on both devices demonstrated that the simple concatenation of features
from different modalities did not lead to improved performance.

2.5.2 Intermediate Fusion

Marginal features computed from physiological and behavioral modalities are either applied
directly to prediction or used to jointly learn advanced joint representations. For instance, Wu
et al. [133] suggested a facial-EEG based emotion recognition system. The spectral energies
of the three frequency bands are first extracted from the EEG signals and transformed into
image sequences. Then the facial and EEG image sequences are fed separately into indepen-
dent fully connected neural networks to extract marginal representations. A hierarchical LSTM
model with self-attention was applied to fuse and learn more abstract multimodal representa-
tions, which achieved the state-of-the-art results on the emotion classification task. Huynh et
al. [69] employed an auto-designed deep neural network based on Neural Architecture Search
(NAS) for affective states and stress detection. Filter banks and mixed features of physiological
signals and the body motion signal (i.e., ACC signal) were extracted to search for the highest
scoring architectures from 10,000 randomly generated neural network candidates for training
of individual modalities. The obtained unimodal representations were concatenated for final
classification. The obtained optimal architecture performed better on multimodal data com-
pared to the setup using only physiological data. Lai et al. [15] proposed a residual temporal
convolution-based deep neural network (Res-TCN) to capture the effective features of multi-
modal data. Two fusion strategies were implemented, the first of which fed sensor data from
all modalities as a whole into the Res-TCN model for predicting emotions, while the second
combines the marginal representations derived from the independent convolutional models for
the final classification. In comparison experiments, the latter exhibited superior performance.

2.5.3 Late Fusion

This type of approach generally integrates decisions derived from physiological and behavioral
models. Saffaryazdi et al. [134] conducted multimodal emotion recognition experiments using
facial expressions, EEG and peripehral signals. First, the apex frame in the facial expression
video was detected and fed into a 3D convolutional network along with its surrounding frames
to predict emotions. For physiological signals, various models such as SVM, KNN, RF and
LSTM were implemented to classify features of EEG and peripheral signals. Decisions from
facial expressions, EEG and peripheral signals were fused with two strategies, i.e., majority
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voting and weighted sum. The evaluation results showed that the fused data yielded improved
emotion recognition performance compared to unimodal settings.

Model1 Model2 Model1 Model2

Model3

a)   Hybrid Fusion Type I b)   Hybrid Fusion Type II
Physio Behav Physio Behav

Figure 2.10: Hybrid fusion strategies for multimodal emotion recognition. a) Physiological
and behavioural features are first merged within segmented data and their corresponding pre-
dictions are aggregated for the final decision [4]. b) Decisions of physiological and behavioural
modalities are combined with unimodal features for emotion detection [5].

2.5.4 Hybrid Fusion

Hybrid fusion can be regarded as a mixture of early fusion and late fusion. Two hybrid fusion
strategies have been found in the literature for multimodal emotion recognition, and their cor-
responding illustrations are shown in Fig. 2.10. Regarding the first strategy, Zhong et al. [4]
proposed a multimodal emotion recognition framework based on hybrid fusion of facial expres-
sions and peripheral physiological signals. The facial features extracted from different views
were first fused with a series of physiological signal features within each data segment. Next,
separate weak learners were trained on the fused features and assigned a decision for each seg-
ment. The final decision was a combination of all the weak learners’ decisions. The proposed
fusion strategy was compared with the common early and late fusion strategies and obtained
better performance in predicting emotional valence and arousal. Concerning the second strat-
egy, Gjoreski et al. [5] developed a multimodal stress detection method suitable for the real-life
setting. First, a stress detector was trained on biological data collected from the laboratory en-
vironment. Meanwhile, an action recognizer learned the subject’s behavioral information from
the ACC (3-axis acceleration) signal. Then, physiological features, the output of the stress de-
tector and action recognizer were fused and fed into a series of machine learning algorithms for
continuous pressure prediction. Finally, the experimental results indicated that the incorporation
of behavioral information could enhance recognition performance in unconstrained scenes.
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2.5.5 Discussion of multimodal emotion recognition methods

We introduced in the previous sections the emotion recognition approaches integrating physi-
ological data and behavioral data (i.e., facial expressions and body motion from ACC signal),
which are briefly listed in Table 2.5. From the table, we can first notice that half of the multi-
modal methods are on the basis of traditional machine learning algorithms. Second, half of the
solutions employed either the early fusion or late fusion strategy, neither of which could capture
simultaneously intra-modal and inter-modal correlation information. Third, facial expressions
are considered a key aspect in recognizing emotions, however, few studies have investigated
the usefulness of combining facial expressions with peripheral physiological signals for pre-
dicting emotions, especially in practical environments. These studies that have been conducted
typically involve EEG signals, which are not suitable for use outside of a controlled laboratory
setting. Additionally, the lower focus on integrating physiological signals with facial expres-
sions compared to body motions from the ACC signal is likely due to the technical difficulties
in combining visual and physiological data, which have distinct structures and characteristics

Table 2.5: Overview of behaviroual-physiological emotion recognition methods. (ACC: 3-axis
Acceleration, FE: Facial Expressions, PPS: Peripheral Physiological Signals, P+F: Physiol-
ogy+Face, P+M: Physiology+Body Motion.)

Fusion Modality Domain Real-life? Architecture Papers

Early

EEG, FE P+F No Hand-crafted [130]
PPS, FE P+F Yes Hand-crafted [131]

PPS, ACC P+M Yes Hand-crafted [53]
PPS, ACC P+M Yes 2DCNN [132]

Intermediate
EEG, FE P+F No Hier-SA-LSTM [133]

PPS, ACC P+M Yes NAS [69]
PPS, ACC P+M Yes Res-TCN [15]

Late EEG, PPS, FE P+F No 3DCNN-LSTM [134]

Hybrid
PPS, FE P+F Yes Hand-crafted [4]

PPS, ACC P+M Yes Hand-crafted [5]
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This chapter shows technical contributions on physiological aspects, where a transformer-
based self-supervised learning framework for wearable emotion recognition is proposed, which
can solve the overfitting problem due to limited supervised data while performing effective
multimodal fusion. In the following, first, we introduce wearable emotion recognition and its
challenges in Section 3.1. Next, Section 3.2 shows self-supervised learning-based approaches
in the field of emotion recognition and related research on multimodal signal fusion. In Section
3.3 we describe the proposed approach. Sections 3.4 and 3.5 present the datasets used and the
corresponding experimental results on emotion recognition, respectively. Finally, Section 3.6 is
a summary of our work.

3.1 Introduction

Emotion recognition is an emerging field of research aimed at developing algorithms and tech-
nologies to identify human emotions from various data sources. Most current methods of emo-
tion recognition rely on physical or physiological indicators of the human body. In contrast to
physical signals such as facial expressions [41] and speech [43], physiological responses under
certain emotional states are involuntary and therefore provide more objective decisions for iden-
tification systems [32]. The physiological modalities primarily consist of electroencephalogra-
phy (EEG) signals and a series of peripheral signals. However, the acquisition of EEG data
is challenging for implementation in real-life scenarios. With the advance of non-invasive
technologies, emotion recognition methods based on multiple peripheral signals captured by
smartphones/wearable watches have attracted some attention. Traditional wearable multimodal
emotion recognition used hand-crafted features as input of machine learning-based algorithms
for classification. Nevertheless, these well-designed features based on comprehensive domain
knowledge can be an obstacle for non-domain experts. Most recent researches focus on deep
neural networks, which can automatically extract complex patterns from multimodal signals.
However, given that most of them are trained in a supervised manner, it is challenging to obtain
generalizable models using limited labeled data, especially in daily life settings, where standard
protocols for obtaining accurate emotion labels are not yet well defined. Besides, each specific
supervised task requires training the deep model from scratch and its knowledge transfer ability
on other tasks is not satisfactory [135]. Self-supervised learning (SSL), as an emerging learning
paradigm, eliminates the need for extensive manual labeling and has demonstrated comparable
or even superior performance to supervised learning methods in areas of computer vision (CV),
natural language processing (NLP). Several SSL-based efforts [136–138] have been done for
emotion recognition using EEG signal, but they are not suitable for practical scenes. Only one
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work [139] targeted low-frequency wearable peripheral signals, but they ignored the correlation
between multimodal signals. In this paper, we propose a self-supervised multimodal represen-
tation learning approach for wearable emotion recognition based on peripheral physiological
signals. The first stage is model pre-training with the pretext task based on signal transforma-
tion recognition, where a large amount of unlabeled multimodal data are automatically assigned
labels through a series of transformations. Considering the heterogeneity of multimodal sig-
nals, temporal convolution-based modality-specific encoders are first employed separately on
the transformed unimodal data to extract low-level features, followed by a transformer-based
shared encoder deployed to aggregate unimodal features, enabling the modeling of comple-
mentary and collaborative properties between multimodal signals. Finally, modality-specific
signal transformation recognition is performed to learn effective multimodal representations for
downstream tasks that are robust to perturbations in magnitude or temporal domains. The sec-
ond stage is supervised emotion recognition, where the SSL pre-trained encoder part is retained
as a feature extractor to generate more generalized multimodal representations for emotion clas-
sification tasks. The overview of the proposed approach is illustrated in Fig. 3.1. To validate
the effectiveness of our method and the knowledge transferability across different datasets, we
pre-trained the proposed model on a large-scale unsupervised emotion dataset PRESAGE col-
lected in unrestricted real-life scenarios and evaluated its performance on three public emotion
recognition datasets. Overall, our contributions can be summarized as follows:

• We proposed a novel self-supervised learning (SSL) framework to learn generalized rep-
resentations from a large number of unlabeled samples to cope with the overfitting prob-
lem on small-scale physiological data.

• We adopt an intermediate fusion strategy based on temporal convolution and transformer,
capable of modeling both the heterogeneity and cross-modal correlation of physiological
signals to effectively fuse multimodal data.

• We outperformed state-of-the-art supervised or self-supervised learning-based approaches
in various emotion-related classification tasks involving mental stress, affective states,
arousal, and valence. Moreover, our model was proven to be more accurate and stable on
limited labeled data than fully-supervised models. In addition, multiple ablation studies
have been performed to investigate the effectiveness of our method.
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Figure 3.1: Overview of our self-supervised multimodal representation learning framework.
The proposed SSL model is first pre-trained with signal transform recognition as the pretext
task to learn generalized multimodal representation. The encoder part of the resulting pre-
trained model is then served as a feature extractor for downstream tasks which is frozen or
fine-tuned on the labeled samples to predict emotion classes.

3.2 Related Work

More recently, researchers have shifted their gaze from the invasive EEG signal to periph-
eral physiological signals which can be captured by lightweight and more invisible devices.
Among numerous peripheral signals, electrocardiogram (ECG), blood volume pressure (BVP),
electrodermal activity (EDA), etc, captured from the cardiac system and electrical skin ac-
tivity are crucial emotion-related modalities and have proven their validity in several studies
[15, 53, 69, 70, 140]. However, exploration of the wearable emotion recognition is not yet well
established. In Section 2.3, we reviewed methods based on fully-supervised, unsupervised and
semi-supervised learning. Among them, fully supervised methods based on deep neural net-
works struggle with the risk of overfitting and inaccurate emotion labeling, while unsupervised
learning methods have unsatisfactory performance due to their weak supervision and there is a
lack of exploration for semi-supervised learning algorithms. In addition, the fusion strategies
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of most existing approaches are ineffective in capturing both intra- and inter-modal correlations
of multimodality. In the following sections we will first detail a novel solution to the problem
of overfitting in the low-data regime, namely self-supervised learning, followed by multimodal
data fusion methods.

3.2.1 Self-supervised learning (SSL) for limited labelled data

To solve the overfitting problem introduced by the limited available data, one common solu-
tion is data augmentation, i.e., applying different transformations on the original samples to
obtain more abundant data. However, performing data augmentation on a dataset consisting of
a limited number of subjects could not introduce inter-subject variability during training and ul-
timately yield a generalized model [139]. Recently, a compelling branch in the field of unsuper-
vised representation learning is self-supervised learning (SSL), which can effectively address
the de-generalization issue posed by insufficient labeled data. Unlike unsupervised learning
which does not involve any labelled data, SSL is designed with a series of pretext tasks that in-
troduce self-supervision to unlabelled data, enabling more effective representation learning for
downstream tasks. Each unsupervised sample is automatically labeled through inherent depen-
dencies and associations between the data without human intervention [141]. The SSL model
pre-trained on pseudo-labeled data is considered as powerful feature extractor for a variety of
downstream tasks. In the domains of computer vision and natural language processing, SSL-
based work such as SimCLR [142], Word2Vec [143], and BERT [144] have exhibited competi-
tive and even superior performance on a range of tasks. However, few studies have investigated
the performance of SSL models on peripheral physiological signal data. Sarkar et Etemad [135]
introduced a self-supervised representation learning framework for ECG-based emotion recog-
nition, where the 1DCNN-based multi-task deep neural network is pre-trained with the objective
of identifying the signal transformation types applied to unlabeled data. Their study indicated
that the pretext task based on transformation recognition can enable the model to better cope
with potential variation factors in the data. However, not all time steps of a signal sequence are
associated with the downstream target event (i.e., a specific emotion). Thus, how to filter out
irrelevant information during SSL for downstream tasks is an unsolved problem. Exploiting the
synchrony of multimodal emotional responses is a potential solution. More specifically, multi-
modal physiological signals exhibit correlated or consistent temporal changes when emotions
are elicited. In this way, modeling the correlation of multimodal signals in SSL can facilitate
the capture of emotion-related components in unlabeled data. Regarding multimodal emotion
recognition, Dissanayake et al. [139] proposed a self-supervised contrastive learning approach,
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which aims to approximate the positive pairs while pushing the negative pairs away from each
other. However, their SSL model is obtained by pretraining each modality independently, and
thus again ignores the cross-modal correlations. Therefore, more effective multimodal fusion
strategies need to be developed for SSL-based wearable emotion recognition.

3.2.2 Multimodal data fusion for emotion recognition

Multimodal data fusion strategies can be generally categorized into: early fusion, intermediate
fusion, and late fusion. Most existing approaches for multimodal emotion recognition are based
on early fusion, where multimodal data are combined as a whole before performing a learn-
ing task. Joint representations can be extracted directly from concatenated vectors with deep
models such as 1DCNN [145] and Bi-LSTM [77], which allow for encoding inter-modal corre-
lations. However, since unimodal features are not learned explicitly (i.e., the heterogeneity of
the multimodal signal is ignored), this fusion strategy is not effective in capturing intra-modal
correlations. Late fusion-based approaches [15, 146] integrate the decisions of multiple inde-
pendent learning models to predict emotion categories. Thus, in contrast to early fusion, this
fusion approach ignores the connections and interactions between modalities.

Different from the previous fusion approaches, intermediate fusion enables both intra- and
inter-modal correlation, where independent feature extractors are first applied to different modal-
ities and the obtained unimodal features are then aggregated in an additional fusion module to
further learn the joint representation. A variety of options exist for this fusion module. For ex-
ample, Shu and Wang [147] adopt ed the restricted Boltzmann machine (RBM) model to learn
the joint probability distribution of multimodal low-level features to encode cross-modal infor-
mation exchanges. Zhang et al. [148] modeled the associations between multimodal features
by introducing a regularization term to the objective function. More recently, the transformers
have also gained popularity in intermediate fusion-based approaches [149–151] for video, au-
dio and text. Regarding studies on emotion recognition, Wu et al. [149] proposed a multimodal
Recursive Intermediate Layer Aggregation (RILA) model, which was applied between layers
of unimodal deep transformers to capture interactions across modalities through the integration
of multimodal intermediate representations. In this work, the transformers were employed to
provide valid intermediate features. At the same time, they have also proved to be effective
in merging multimodal data [150, 151]. The attention mechanism can capture advanced pat-
terns shared across modalities, thus exhibiting advantages over naive fusion strategies such as
concatenation. In terms of practicality, multimodal emotion recognition based on the video,
audio and text may not be well suited to real-life scenarios, as it requires considerable com-
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putational resources for long-term video stream analysis. In contrast, wearable physiological
signals can consistently predict emotions in a low-cost and objective way. However, the validity
of transformer-based models has not been well established for wearable emotion recognition.
Meanwhile, video, audio and text-based approaches cannot be directly migrated to physiolog-
ical data due to differences in data structures. In addition, they are susceptible to overfitting
problems as they generally have a relatively deep architecture and follow a fully-supervised
setup.

3.3 Proposed Method

3.3.1 Overview

Our goal is to employ unlabeled data for capturing generic representations of multimodal phys-
iological signals in order to address the de-generalization problem introduced by a limited num-
ber of labeled samples. Hence, we propose a self-supervised learning (SSL) scheme using signal
transformation recognition as a pretext objective. An illustration of the proposed approach is
shown in Fig. 3.1. In our work, three modalities measured by different sensors are considered:
electrodermal activity (EDA), blood volume pressure (BVP) and skin temperature (TEMP).
More formally, let xm ∈ RN×1 represent a 1D time-domain signal from one of the M differ-
ent modalities (in our work, M = 3), where N is the signal length. Given a set of n transform
functions T = {Tj(·), j ∈ {1, . . . , n}}, the altered multimodal signal dataset can be generated
by applying each transformation to individual modality. Based on this, one can easily build
a pseudo-labeled dataset L = {(Tj(xim), yi), yi ∈ {1, . . . , n},m ∈ {1, . . . ,M}, i ∈ [1, |L|]}
for unlabelled samples through self-supervision enabled by signal transformations. Then, the
proposed model consisting of a multimodal encoder E and modality-specific classifiers C is
pre-trained to predict the type of transformation applied to samples in L. Ultimately, only the
encoder part E of the optimal model obtained after pre-training is retained and is expected to
produce generalized multimodal representations in a variety of supervised downstream tasks.
Details of the proposed SSL framework are as follows.
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3.3.2 Self-supervised learning of multimodal physiological signals
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Figure 3.2: The original EDA signal and the disturbed EDA signals after applying five trans-
formations. For each modality, the raw signal data and the transformed signal data are stacked
and fed into the proposed SSL model for multimodal representation learning.

3.3.2.A Pretext Task: signal transformation recognition

Signal transformation recognition was adopted as the pretext task in SSL, which proved to be
effective in learning generalized representations for downstream tasks such as action recogni-
tion [152] and emotion recognition [135]. The random transformations used in the previous
SSL methods are one of the common data augmentation techniques for time series, which can
generally be classified into two categories: magnitude domain transformations and time domain
transformations. The former interferes with the signal values while preserving the time step or-
der, whereas the latter mainly affects the time scale. Previous evaluations of SSL models based
on individual transformation recognition [135,152] have indicated that Noise addition and Scal-

ing ranked highly for magnitude domain transformations, while Permutation and Time-warping

performed outstandingly well among time domain transformations. Meanwhile, according to
the review of time series augmentation strategies [153, 154], though most of the suggested
transformations have been adopted in previous SSL-based work, two transformations have not
been thoroughly evaluated: Magnitude-warping and Cropping. Ultimately, we selected the five
transformations: Permutation, Time-warping, Noise addition, Magnitude-warping and Crop-

ping for the pretext task. The reason why Scaling was omitted is that Magnitude-warping can
be seen as a special variant of Scaling1.

The above signal transformations are performed on all three modalities and the resulting
transformed signal data is fed into the proposed SSL model as input along with the original
multimodal signal data. Fig. 3.2 shows the effect of these deformations on a sample of the
EDA signal. Details of each transformation are described in subsequent paragraphs. Here, for

1Scaling multiplies time series values by a random scalar whereas Magnitude-warping distorts the signal values
by a smooth curve.
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simplicity, we write the above-mentioned 1D signal xm uniformly as x(t), where t represents
the time step.
Magnitude domain transformations:

• Gaussian noise addition: The original signal x(t) is disturbed by white Gaussian noise
z(t), which can be extracted from a zero-mean normal distribution N (0, σ2). By assign-
ing a preferred signal-to-noise ratio (SNR), the variance σ2 (i.e., the average power of the
noise) of the distribution N can be derived from the following formula 10(Psig−SNR)/10,
where Psig is the average power of the signal. In the end, the noised signal is calculated
as x(t) + z(t).

• Magnitude-warping: The magnitudes of the original signal are altered by a random
smooth curve formed by cubic spline interpolation function ϕ(·). In the end, the trans-
formed signal can be calculated as x(t) · ϕ(x(t)).

Time domain transformations:

• Permutation: The original signal is split into n non-overlapping segments x(t) = {x1, x2,
..., xn}, which are then temporally disrupted and eventually recombined together to form
the permuted signal x(t) = {xp1, xp2, ..., xpn}, where {p1, p2, ..., pn} is a shuffled version
of the original order.

• Time-warping: The original signal is divided into n non-overlapping segments x(t) =

{x1, x2, ..., xn}, half of which are randomly selected to be stretched by a linear inter-
polation function F (xi, k), where k is the stretch factor, and the remaining half of the
segments are squeezed by the function F (xi, 1/k), where 1/k is the squeeze factor. The
time-warped signal can be concatenated from the transformed segments and finally re-
sized to the original length.

• Cropping: The original signal is divided into n non-overlapping segments x(t) = {x1, x2,
..., xn}, one of which is randomly selected and resampled to the original length.

By identifying the signal transform types, our model is expected to learn a more robust and
generalized representation against disturbances in the magnitude or time domains. For example,
Magnitude-warping and Gaussian noise addition can simulate different types of real-world
noise, such as measurement errors, signal artefacts caused by the subject’s body movements,
etc. For time domain transformations, Permutation perturbs the order of time steps to prompt
the model for capturing temporal dependencies between data points, Time-warping simulates
duration variations in emotional responses by stretching or squeezing time steps, and Cropping
allows the model to be more robust to changes in the temporal location of emotional events.
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3.3.2.B Self-supervised multimodal representation learning network architecture

The proposed SSL multimodal deep neural network consists of two key elements, namely the
encoder E and the modality-specific transformation classifiers C. The encoder E can be further
subdivided into temporal convolution-based modality-specific encoders Ep and transformer-
based shared encoder Es, where Ep models the heterogeneity of multimodal signals and Es ac-
tivates cross-modal information exchange. Ultimately, the multimodal features obtained from
the encoder are used as input to C for identifying transformation types for each modality. The
implementation of these key components is described in the following paragraphs.
Modality-specific encoder: Considering the heterogeneity of the multimodal signals, separate
encoders are first employed for each modality, with a temporal convolution-based network act-
ing as the backbone to capture low-level intra-modal correlation information. The temporal
convolutional network (TCN) [155], in a nutshell, is a combination of dilated causal convo-
lution and residual connections, with parallel computational capability and robust gradients at
optimization, thus demonstrating better performance than traditional recurrent networks, such
as LSTM and GRU. One basic TCN consists of several residual blocks. The most central com-
ponents of each block are two dilated causal convolution layers. The causality can be easily
achieved when the output at the current moment t depends only on the elements of the past
historical moments up to t in the previous layer. Meanwhile, the dilation operation injects holes
in the standard convolution map, thereby increasing the reception field. More formally, given
the transformed 1D signal of modality m: x′m = Tj(xm) ∈ RN×1 with N time steps, and a filter
f of size k, the dilated convolution on time step t can be defined as

F (t) =
k−1∑
i=0

f(i) · x′m(t− d · i) (3.1)

where d is the dilation factor. Following each convolutional layer is a weight normalization
layer for the convolution filter, a rectified linear unit (ReLU) layer, and a dropout layer for regu-
larization. In the end, a residual connection is created between the input and output of the block,
where a 1× 1 convolution is introduced to eliminate the mismatch in channel numbers between
the input and output. Fig. 3.3 illustrates the detailed structure of the TCN-based backbone.
The dilated causal convolution layers in two residual blocks are equipped with 16 filters with a
kernel size of 6, where the dilation factors are 1 and 2, respectively. Zero-padding of 5 and 10
are also introduced to ensure that the input and output sequences are of the same length. Subse-
quently, a modality-specific projection head (i.e., a linear fully connected layer with 128 units)
and a layer normalization are then applied to map the low-level features to a higher dimensional
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Figure 3.3: Modality-specific backbone based on temporal convolutional network (TCN). Each
backbone consists of two residual blocks for capturing low-level features for transformed uni-
modal signals x′m. (k: kernel size, f: number of filters, d: dilation factor, p: padding size, s:
stride size, weightnorm: weight normalization for convolution filters)

embedding space. Finally, the output of the modality-specific encoder Ep is:

zm = LayerNorm(MLP (TCN(x′m))) ∈ RN×d (3.2)

where d is the embedding dimension.
Shared encoder: As mentioned in Section 3.2.1, encoding of the coordination and interaction
between multimodal signals is essential in order to learn generic representations related to the
downstream emotion recognition tasks. This can be done through the transformer in which
each modality identifies components of other modalities that are highly correlated with itself
through the attention mechanism for better signal transformation classification. To achieve this,
the low-level features zm of each modality are first stacked to form a multimodal embedding
zmulti = [z1, . . . , zm, . . . , zM ] ∈ RMN×d. The scaled dot-product attention proposed in [156] is
then applied to calculate the dependencies between different modalities:

Attn(Q,K, V ) = softmax(
QKT

√
d

)V (3.3)

where Q, K, V represent queries, keys and values, respectively. More intuitively, the attention
layer acts as a weighted sum of values V , where the attention weight associated with each value
is generated by the compatibility of the query with its corresponding key. For our shared encoder
Es, queries, keys and values are derived through a linear mapping of multimodal features zmulti,
and the resulting output of the attention layer is:

zamulti = Attn(zmultiW
Q, zmultiW

K , zmultiW
V ) (3.4)
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where WQ, WK , W V ∈ Rd×d are the projection matrices. Fig. 3.4 presents the process of gen-
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Figure 3.4: Shared encoder based on the multimodal transformer. (FC: fully-connected layer
with 128 units, LN: layer normalization)

erating attention weights from multimodal embeddings, where cross-modal communications
are activated. For our shared encoder, the one-layer vanilla transformer block proposed in [156]
with four-head attention is implemented. The feedforward layer dimension is set to 128. ReLU
is selected as the activation function for intermediate layers and a rate of 0.2 is used for Dropout
operation. In addition, we did not introduce positional coding information for the stacked mul-
timodal inputs. Since the features of each modality are generated by different encoders, the
network performance may not benefit from positional encoding in the context of heterogeneous
input. This is further explored in the ablation study (Section 3.5.6.D).
Modality-specific classification head: The multimodal features hmulti ∈ RMN×d extracted
from the shared encoder Es are then decomposed to [h1, . . . , hm, . . . , hM ] for identifying the
type of signal transformation applied to each modality. A modality-specific classification head
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Figure 3.5: Modality-specific classification headCm for signal transformation recognition task.
(GAP: 1D global average pooling, FC: fully-connected layer, BatchNorm: batch normalization,
num class: number of signal transformations, i.e., 6 in our work.)

Cm is shown in Fig. 3.5. 1D global average pooling is first applied across all time steps of
unimodal features, followed by a fully-connected layer with 64 units. 1D Batch Normalization

58



is placed before the ReLU layer for more efficient learning and a Dropout layer with a rate of
0.1 is applied to avoid over-fitting. The final fully-connected layer is equipped with a softmax
activation function, where the unit number is determined by the number of signal transforma-
tions n (i.e., n = 6 in our work, 5 transformations plus the original version). In the end, the
proposed model is optimized on the pseudo-labeled dataset L through the total loss Ltotal which
is a combination of cross-entropy losses of individual modalities (i.e., EDA, BVP, TEMP in our
work):

Lm = − 1

|L|

|L|∑
i=1

yilog(Cm(h
i
m)) (3.5)

Ltotal =
M∑
i=1

Lm = Leda + Lbvp + Ltemp (3.6)

3.3.3 Multimodal emotion recognition based on physiological signals

After pre-training the proposed SSL model with the pretext task on unlabelled data, only the
encoder part E is reserved for extracting efficient multimodal representations in a variety of
supervised downstream tasks. In this work, we select emotion recognition as our downstream
task. A classification head Cemo is applied to the output of the encoder E to generate class
probabilities for labeled samples Lsup = {(xim, yi), , yi ∈ {1, . . . , e},m ∈ {1, . . . ,M}}, where
e is the number of the emotion classes. The emotion classification head is constructed in the
same way as Cm, except that it accepts multimodal features from encoder E, thus the unit
number in the first fully-connected layer changes to 192 (i.e., 64× 3), while the unit number in
the last fully-connected layer is equal to the emotion class number. The Dropout rate is set to
0.2 to avoid over-fitting. Finally, the proposed model is optimized through the minimization of
cross entropy loss Lsup.

Lsup = −
1

|Lsup|

|Lsup|∑
i=1

yilog(Cemo(E(x
i))) (3.7)
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3.4 Datasets

3.4.1 PRESAGE Dataset

The PRESAGE dataset is a large-scale multimodal physiological signal dataset for emotion
analysis. The data acquisition is done at the Presage training center2 in Lille, France, whose
mission is to ensure the training of medical students and health professionals through immer-
sion in a recreated hospital environment, where the high-tech mannequins or hired actors, take
the place of the patients and students act as doctors. In order to analyze the students’ emo-
tional state during the simulation training to optimize the educational program, a large amount
of unlabeled multimodal physiological data has been collected from 201 trainees (104 males
and 97 females) during five different medical simulation scenarios. Fig. 3.6 (a-e) shows the
images of different scenarios captured by the cameras installed in the simulation room. The
data collection protocol was approved by the Institutional Review Board of University of Lille
with the reference number 2022-626-S108 and all trainees were given a consent form prior to
training and were required to fully read the form and provide a signature. To allow students
to perform normal medical simulation activities under interference-free conditions, Empatica

E4 Wristband (Fig. 3.6 (f)), an invasive wearable biometric sensor was adopted to continu-
ously record multimodal physiological signal data of high quality with different frequencies:
3-axis Accelerometer (ACC, 32Hz), Blood Volume Pressure (BVP, 64Hz), Electrodermal Ac-
tivity (EDA, 4Hz), Skin Temperature (TEMP, 4Hz), Heart Rate (HR, 1Hz), Inter-beat Interval
(IBI). In this work, we employed data from three modalities: EDA, BVP and TEMP collected
in the five scenarios for self-supervised multimodal representation learning.

3.4.2 WESAD Dataset

The WESAD dataset [53] is a multimodal dataset for stress and emotion recognition. Follow-
ing a study protocol in a restricted laboratory setting, three affective states, namely baseline,
stress and amusement, were elicited from 15 subjects during which physiological and motion
signals were collected by two separate sensors: RespiBAN (chest-worn device) and Empatica
E4 (wrist-worn device). Since we focus on wearable affective computing, only blood vol-
ume pressure (BVP, 64 Hz), electrodermal activity (EDA, 4 Hz) and temperature (TEMP, 4
Hz) captured by Empatica E4 were applied to the classification task. According to previous
work [15, 53, 69], a stress detection task (non-stress vs stress) and a emotion recognition task

2https://medecine.univ-lille.fr/presage.

60

https://medecine.univ-lille.fr/presage


(a) (b) (c)

(d) (e) (f)

Figure 3.6: Images of different scenarios captured by cameras placed in the simulation training
room: (a): Doctor consultation, (b): Prevention of escape for patients in an acute agitated state,
(c): Second consultation for patients with suicidal tendencies, (d): Management of cardiac ar-
rest/severe head injury/chest trauma, (e): Diagnostic announcement and (f): the wearable sensor
Empatica E4 wristband used for physiological data collection during the simulation training.

(baseline vs stress vs amusement) can be performed on the WESAD dataset for supervised
learning, where the non-stress class is a combination of the baseline and amusement classes.

3.4.3 CASE Dataset

The CASE dataset [157] is a multimodal emotion recognition dataset with continuous annota-
tions. Eight video clips were employed to stimulate four different emotions: amusing, boring,
relaxing and scary from 30 subjects. During the experiment, subjects were required to self-
assess their own emotional experiences using an annotation interface based on valence-arousal
scores, while six physiological signals were recorded at a frequency of 1000 Hz. In our work,
we selected blood volume pressure (BVP), electrodermal activity (EDA) and skin temperature
(TEMP) signals as in the self-supervised dataset for the classification task. We adopted the same
approach as in the literature [70, 139] for the mapping from continuous values of valence and
arousal to discrete classes, resulting in a binary (low vs high valence/arousal) and a three-class
(low vs medium vs high valence/arousal) classification problem for supervised learning.

3.4.4 K-EmoCon Dataset

The K-EmoCon dataset [158] is a multimodal dataset with multiperspective annotations for
emotion recognition in social interactions. 32 subjects were divided into 16 groups for a two-
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person debate, during which facial expressions, upper body posture, audio signals, EEG signals
and peripheral physiological signals were recorded by different sensors. In our experiments,
only blood volume pressure (BVP), electrodermal activity (EDA) and skin temperature (TEMP)
signals measured by Empatica E4 were retained for downstream emotion recognition tasks. Tri-
partite annotations, i.e., self-annotations, partner annotations and external observer annotations
were employed to assess subjects’ affective states during the debate. Based on the previous
work [139], we categorized the arousal- and valence-based annotations into discrete classes,
thus forming a binary (low vs high valence/arousal) and a three-class (low vs medium vs high
valence/arousal) classification problem for supervised learning.

3.5 Experiments and Results

3.5.1 Data Preprocessing

To eliminate artifacts, we first applied a low-pass Butterworth filter with a cutoff frequency of
0.5 Hz for the EDA and TEMP signals, while the same type of filter with a cutoff frequency
of 2 Hz is selected for the BVP signal in PRESAGE, WESAD and K-EmoCon dataset. For
the CASE dataset, a low-pass filter with a cutoff frequency of 2 Hz was utilized to clean these
three signals. Moreover, we performed z-score normalization as in [159] for each signal record-
ing to reduce the variation in physiological responses between different subjects. Since the
four datasets involved in the experiments were collected using sensors with different sampling
frequencies, we then uniformly downsampled all signals in the different datasets to the most
frequently occurring frequency, i.e., 4 Hz. Subsequently, based on previous work [15, 69], we
segmented the signal recordings of all datasets into windows of length 60 s with 99.5% overlap
for PRESAGE and WESAD, 99% and 95% overlap for CASE and K-EmoCon, respectively.
If the data in a window corresponds to multiple labels, we adopt the same strategy as in the
previous work [139], i.e., choosing the one with the majority as the final label. Table 3.1 con-
cludes the learning tasks corresponding to each dataset and the number of samples created after
data segmentation. The last column in the table lists the total size of each dataset, where the
first dimension represents the total number of samples, while the second and third dimensions
represent the signal length at a frequency of 4 Hz in a 60 s window after segmentation (i.e., 240)
and the number of modalities (i.e., three modalities: BVP, EDA and TEMP), respectively.
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Table 3.1: The learning tasks assigned to each dataset and the corresponding distribution of
samples between classes in different datasets. (P: Pretext task, D: Downstream task.)

Dataset Type Task Category (no. of samples) Total Size

PRESAGE P
Transformation

Recognition
Original version and

five transformations (681641) (4089846, 240, 3)

WESAD D
Stress-2 stress (36279), non-stress (85574)

(12185, 240, 3)
Emotion-3 baseline (66859), stress (36279), amusement (18715)

CASE D

Arousal-2 low (33211), high (61919)

(95130, 240, 3)
Valence-2 negative(32017), positive (63113)
Arousal-3 low (4847), medium (26898), high (63385)
Valence-3 negative(9312), neutral (56870), positive (28948)

K-EmoCon D

Arousal-2 low (3729), high (1488)

(5217, 240, 3)
Valence-2 negative(4050), positive (1167)
Arousal-3 low (1783), medium (1904), high (1530)
Valence-3 negative(1783), neutral (1904), positive (1530)

3.5.2 Implementation and model training

The training process of our SSL-based approach consists of two main phases. The first phase
is to pre-train the proposed model on the PRESAGE dataset using automatically generated
pseudo-labels for signal transformation identification. A set of transformation parameter vec-
tors (15, 0.2, 10, 9, 1.05, 4) was chosen based on the experimental results of the previous
study [159] as SNR, magnitude warping variance coefficient, number of permutation segments,
number of time warping segments, time-warping stretching coefficient, and number of cropping
segments for each modality to generate the five transformations mentioned in Section 3.3.2.A.
The pre-training process of the proposed model took approximately 26 hours on an NVIDIA
RTX 6000 GPU. The second phase retains only the encoder part of the pre-trained model to
extract valid, generalized representations for emotion recognition on WESAD, CASE and K-
EmoCon datasets. We did not introduce these three public datasets into pre-training stage in
order to verify the knowledge transfer ability of the learned features across different datasets.
Ultimately, the proposed model was installed using Pytorch. The optimal models for the pre-
text and downstream tasks were obtained by the SGD (Stochastic Gradient Descent) optimizer
with weight decay parameter of 5e-7 to avoid overfitting. For the first phase (self-supervised
pre-training), learning rate, batch size and the number of epochs are set to 5e-3, 32 and 20,
respectively. For the second phase (supervised emotion recognition), the learning rate, batch
size and number of epochs are set to 1e-4, 128, 20 on WESAD dataset, while for CASE and
K-EmoCon datasets, these parameters were set to 1e-3, 64 and 64, respectively.
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3.5.3 Evaluation metric and protocol

For a fair comparison, we adopted the same experimental protocol as in [15,53,69,70,139], i.e.
Leave-One-Subject-Out cross-validation (LOSO CV), which has the benefit of examining the
generalization ability of the model to unpresented subject data. Two metrics, accuracy and F1-
score applied in [15,53, 69, 70,139] were selected to evaluate the performance of the proposed
approach on the emotion recognition task. Accuracy represents the proportion of correctly
classified samples to the total number of samples. F1-score is considered as a harmonic mean
of the precision and recall, which is suggested for evaluating imbalanced datasets.

3.5.4 Baseline Models

Since the exploration of wearable emotion recognition based on peripheral physiological signals
has not been well established, a series of baseline models based on fully-supervised learning,
unsupervised learning, and self-supervised learning were implemented in addition to available
state-of-the-art methods to provide a more comprehensive and reliable performance compari-
son. The followings are brief descriptions of these models:

Supervised learning-based methods:

• SimpDCNN [152]: it is a simple convolutional network consisting of three convolutional
blocks with kernel sizes of 24, 16 and 8, each followed by a ReLU activation and a
dropout layer.

• MulT [160]: it is a transformer-based multimodal fusion method applied to video, audio
and text. The unimodal data is first passed through a temporal convolutional network
to obtain low-level features, then transformers based on cross-modal attention and self-
attention mechanisms are applied successively for effective fusion.

• ResNet [161]: it is a 1D convolution-based residual network adapted to physiological
signals proposed in [162, 163], which is constructed similarly to ResNet-18, consists
mainly of 8 residual blocks with batch normalization (BN) operation and ReLU activation
function, where each block contains two convolutional layers. The three modalities: BVP,
EDA, TEMP are fed into this network as multi-channel signals.

• Ours (Supervised): it is our proposed multimodal network, trained in a fully-supervised
manner.
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In addition, three additional supervised methods were applied for the performance compari-
son on the CASE and K-EmoCon datasets since they lacked baseline results compared to the
WESAD dataset.

• DCNN [145]: it employs a four-layer 1D convolutional neural network to extract modality-
specific features, and a three-layer fully connected network connected at the bottom of the
network for classification.

• Attn-BiLSTM [164]: it applies a multilayer bidirectional LSTM for capturing valid tem-
poral information for multimodal signals. The attention mechanism was applied to select
the most relevant multimodal representation of the emotional state as input for a fully
connected layer-based classifier.

• MMResLSTM [165]: it uses separate four-layer LSTM-based models for multimodal
signals with residual connections. Moreover, the weights of the LSTM layers of both
modalities are shared to activate cross-modal communication.

Unsupervised learning-based methods:

• Autoencoder: it is an autoencoder with the same encoder part as our proposed model,
while the decoder part consists of three transposed convolutional blocks for the recon-
struction of the BVP, EDA, TEMP signals. Each unimodal decoder consists of four-layer
transposed convolution with the same parameters as the convolutional layers in the en-
coder.

Self-supervised learning-based methods:

• SigRep [139]: it adopts a similar model architecture to SimCLR [142], containing an
encoder of four inception-inspired blocks and a projection head consisting of fully con-
nected layers, where each inception block consists of 1D convolutional layers with dif-
ferent kernel sizes and a maximum pooling layer in parallel. The model is applied inde-
pendently to each signal modality for contrastive representation learning.

• BENDR [166]: it is a simpler version of wav2vec 2.0 [167] that was applied to EEG
signals. We adapted it for application to peripheral physiological signals at low frequen-
cies. The multi-channel signal consisting of BVP, EDA, TEMP is first passed through
a four-layer convolution with kernel sizes of 3, 2, 2, 2, where the GeLU is chosen as
the activation function along with GroupNorm and Dropout operations, and the obtained
low-level features are randomly masked and fed to the same transformer as our proposed
model. The final output features are used to reconstruct the masked features.
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For a fair comparison, we followed the parameters provided in these works for the model im-
plementation and applied the same experimental setup. For those models initially designed for
non-peripheral physiological signals, the parameters have been slightly adjusted to match the
low-frequency wearable data for proper operation.

3.5.5 Experimental Results

3.5.5.A Comparison with state-of-the-art methods

Emotion-related classification tasks were performed on WESAD, CASE, K-EmoCon datasets
to evaluate the performance of the proposed SSL model. Tables 3.2, 3.3, 3.4 summarize per-
formance comparisons with state-of-the-art fully-supervised, unsupervised, and self-supervised
learning-based methods, which were introduced in Section 3.2 and Section 3.5.4 and hence
will not be further described here. For the SSL-based approaches, we report the results un-
der two training modes: Frozen (F) and Fine-Tuned (T). The first mode refers to freezing the
pre-trained encoder part and updating only the parameters of the classification head in the down-
stream tasks, which is designed to investigate the effectiveness of the learned self-supervised
multimodal features. The second mode employs the pre-trained encoder parameters for model
initialization and updates all parameters normally to examine the performance gain relative to
the Frozen mode. From the tables, first, it can be observed that our fully-supervised model
obtained better performance than other supervised learning approaches in most emotion recog-
nition tasks, confirming the effectiveness of the proposed architecture. Secondly, regarding our
SSL model, the comparison results indicated that, under the Frozen mode, our method achieved
superior performance over other fully-supervised, unsupervised, and self-supervised based ap-
proaches on 6 out of 10 tasks, demonstrating the generalization and high discrimination of the
representation learned through the SSL pretext task. In addition, the performance of our model
was improved in the Fine-Tuned mode, further narrowing the gap with supervised baselines
and thus achieving state-of-the-art results in 8 out of 10 tasks. Additionally, it is interesting to
note that as the number of supervised samples decreases from WESAD to CASE to K-EmoCon,
the higher the performance gain obtained by our SSL-based approach with respect to the super-
vised approaches. This can be attributed to the fact that supervised learning methods are more
prone to overfitting than self-supervised learning methods on low data regimes. Further research
on the performance comparison of these two types of methods on limited data is presented in
Section 3.5.5.B. Thirdly, in comparison with non-supervised learning methods, we improved
the performance of SigRep and BENDR, especially on the CASE and K-EmoCon datasets. The
source of this performance gap may be related to the deployed fusion strategies, in addition to
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the selected pretext tasks. SigRep [139] learned effective representations for each modality in-
dependently through contrastive learning, whereas BENDR [166] regarded multimodal signals
as a whole to reconstruct obscured multimodal features. Thus, these two approaches ignored
the encoding of inter- and intra-modal correlations, respectively. The impact of different SSL
fusion strategies on downstream performance is later investigated in Section 3.5.6.A. Further-
more, the results of the Autoencoder are inferior to other SSL methods. This may be due to the
unsupervised nature of its pre-training process which results in more redundant patterns being
captured that are irrelevant to the downstream tasks.

Table 3.2: Performance comparison of different emotion recognition tasks with state-of-the-art
methods on the WESAD dataset. (Acc: Accuracy, F1: F1-score, SL: supervised learning meth-
ods, UL: unsupervised learning methods, SSL: self-supervised learning methods, S: supervised,
F: frozen, T: fine-tuned.)

Type Methods
Stress-2 Emotion-3

Acc F1 Acc F1

SL

LDA [53] 86.46 83.77 68.85 58.18
RF [53] 88.33 86.10 76.17 66.33
SimpDCNN [152] 90.12 88.22 78.30 74.59
MulT [160] 91.76 91.17 81.09 78.27
ResNet [161] 91.93 90.97 80.85 79.63
StressNAS [69] 92.87 - 81.78 -
Res-TCN [15] 94.16 93.62 83.69 81.61
Ours (S) 93.83 92.55 84.81 83.76

UL Autoencoder 91.51 90.33 80.39 79.13

SSL

SigRep [139] (F) 92.71 91.99 81.11 78.92
SigRep [139] (T) 94.91 93.09 84.27 82.35
BENDR [166] (F) 92.53 91.72 81.98 79.71
BENDR [166] (T) 93.19 92.55 82.44 80.69
Ours (F) 94.81 93.69 83.81 82.01
Ours (T) 96.29 95.11 84.94 82.60

3.5.5.B Self-supervised learning vs Supervised learning on limited labeled data

In the previous section, our self-supervised approach presented state-of-the-art performance on
emotion recognition tasks with all labeled data in the dataset. To further investigate the effec-
tiveness of our fine-tuned model on a limited number of labeled samples, we performed a com-
parison with four supervised learning models: our proposed model with the fully-supervised
setting, MulT [160], ResNet [161] and SimpDCNN [152]. MulT and ResNet were selected
since they share similar structures to our model and are the best-performing supervised models
in addition to ours. Besides, SimpDCNN, as a low-complexity model, is not prone to overfitting
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Table 3.3: Performance comparison of different emotion recognition tasks with state-of-the-art
methods on the CASE dataset. (Acc: Accuracy, F1: F1-score, SL: supervised learning methods,
UL: unsupervised learning methods, SSL: self-supervised learning methods, S: supervised, F:
frozen, T: fine-tuned.)

Type Methods
Valence-2 Valence-3 Arousal-2 Arousal-3

Acc F1 Acc F1 Acc F1 Acc F1

SL

SimpDCNN [152] 71.33 68.74 59.20 51.95 67.16 61.60 56.80 53.85
DCNN [145] 72.35 69.96 59.78 52.80 69.63 63.43 56.09 53.51
MMResLSTM [165] 73.34 70.96 60.78 53.09 71.12 68.06 57.41 54.69
Attn-BiLSTM [164] 74.25 71.27 61.97 53.64 70.40 66.52 58.27 54.76
MulT [160] 74.81 73.17 63.14 62.50 71.28 70.44 62.15 58.48
ResNet [161] 75.29 74.62 62.89 62.18 72.35 72.19 65.46 59.69
Ours (S) 76.94 75.06 64.58 63.29 74.15 72.86 66.32 61.78

UL
Autoencoder 73.23 72.05 60.77 57.32 69.16 67.13 60.08 55.12
CorrNet [70] 76.37 76.00 60.15 53.00 74.03 72.00 58.22 55.00

SSL

SigRep [139] (F) 71.74 64.78 63.85 54.97 70.79 67.28 63.09 56.99
SigRep [139] (T) 73.29 69.84 64.63 55.68 72.08 69.45 64.88 58.81
BENDR [166] (F) 72.94 68.48 61.56 50.86 72.04 67.43 62.37 55.63
BENDR [166] (T) 72.33 67.62 62.15 53.03 71.51 67.32 63.52 57.01
Ours (F) 77.49 75.85 65.51 64.07 73.67 70.76 65.09 59.64
Ours (T) 78.57 77.74 66.64 64.85 74.98 73.10 66.19 60.56

Table 3.4: Performance comparison of different emotion recognition tasks with state-of-the-art
methods on the K-EmoCon dataset. (Acc: Accuracy, F1: F1-score, SL: supervised learning
methods, UL: unsupervised learning methods, SSL: self-supervised learning methods, S: su-
pervised, F: frozen, T: fine-tuned.)

Type Methods
Valence-2 Valence-3 Arousal-2 Arousal-3

Acc F1 Acc F1 Acc F1 Acc F1

SL

SimpDCNN [152] 77.14 70.06 59.67 48.98 72.48 61.21 46.49 38.34
DCNN [145] 78.72 72.09 61.97 51.39 73.67 65.53 49.91 39.24
Attn-BiLSTM [164] 79.76 72.19 62.56 54.35 73.30 66.23 46.95 46.77
MMResLSTM [165] 78.79 72.76 61.25 51.65 74.31 67.88 44.68 37.19
MulT [160] 80.13 76.72 63.95 59.07 74.19 72.49 49.25 47.86
ResNet [161] 80.53 78.04 64.60 62.22 74.35 73.20 50.09 46.77
Ours (S) 81.51 78.60 64.07 60.83 75.17 73.62 50.42 47.52

UL Autoencoder 80.58 75.58 63.65 58.32 71.56 69.10 48.83 47.10

SSL

SigRep [139] (F) 78.98 73.15 63.00 54.07 73.36 67.80 47.85 42.58
SigRep [139] (T) 79.14 73.55 61.74 52.69 73.94 68.71 48.56 43.90
BENDR [166] (F) 79.83 72.62 61.38 53.20 72.86 66.16 50.68 48.03
BENDR [166] (T) 78.73 72.15 61.85 54.47 73.82 69.46 52.88 51.24
Ours (F) 82.95 80.07 66.97 61.28 74.79 73.40 50.76 48.66
Ours (T) 84.14 81.08 68.37 63.10 76.40 74.29 54.60 52.34
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Figure 3.7: Performance comparison with state-of-the-art supervised learning-based methods
on limited labeled data sampled from the three emotion recognition datasets. The horizontal
axis of each subplot is the number of randomly selected samples from each class, varying from
1 to 1000, while the vertical axis is the corresponding average accuracy.

on limited data, allowing for a more comprehensive performance comparison. We implemented
a similar sampling procedure reported in [136, 137], i.e., 1, 50, 100, 500, and 1000 samples
were randomly selected for each class in the three datasets for training the classification model.
This process was executed 50 times independently for different numbers of samples. The re-
sulting average accuracy and the corresponding standard deviation of all compared models are
illustrated in Fig. 3.7. First, our fine-tuned model consistently outperforms other supervised
learning-based models for sample sizes varying from 1 to 1000 on the emotion recognition
tasks of all three datasets. Among supervised learning-based methods, SimpDCNN exhibited
the poorest results, over which our SSL model could achieve significant performance gains of
6.84% - 21.19% for different downstream tasks. Our fully-supervised model yields the highest
results compared to other supervised models, whereas the fine-tuned model initialized by self-
supervised learning parameters continues to enhance performance by 5.24% - 13.63%. Second,
for all downstream tasks, the standard deviation obtained by our fine-tuned model is narrower
with respect to the supervised learning-based deep models, demonstrating its superior general-
ization ability across different samples. The above findings are consistent with those reported
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in [168] that the advantage of the self-supervised learning-based method is its better regularisa-
tion on low data regimes to avoid overfitting problems compared to fully-supervised methods.
As the amount of available labeled data increases, the difference in performance between the
two types of models gradually decreases. Overall, the comparison results suggest that the pro-
posed method can produce more meaningful and robust representations for wearable emotion
recognition than fully-supervised methods, offering a potential solution to the problem of little
labeled data.
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Figure 3.8: Different architectures used in the ablation studies of fusion strategies. (GAP: 1D
global average pooling applied before classification.)

3.5.6 Ablation Studies

Different types of ablation experiments were designed and conducted on the WESAD, CASE
and K-EmoCon datasets to verify the validity of the proposed method. The encoder part of the
models involved was trained in freezing mode and the obtained emotion recognition results are
reported in the following sections.

3.5.6.A Ablation study of different fusion strategies

To demonstrate the effectiveness of the selected fusion strategy, we conducted ablation studies
on different SSL fusion strategies. Three variants of the proposed model based on early fusion,
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late fusion, and intermediate fusion strategies were implemented for comparison. The corre-
sponding model architectures used for comparison are illustrated in Fig 3.8. In all variant mod-
els, the TCN-based encoder Ep, transformer Es and signal transformation classification head C
all share the same parameter settings as the proposed model. For the Early fusion setup, we
treated the multimodal physiological signal as a whole, i.e. a multichannel signal, from which
multimodal representations will be learned directly. For the Late fusion setup, separate en-
coders were applied to individual modalities to extract unimodal features for classification. In
addition, the third variant model has the same fusion strategy as ours, where unimodal features
were first captured and then concatenated to learn more advanced multimodal features. The
difference, however, is that this model performs classification by multimodal features. This is
to verify the necessity of conducting modality-specific classification in the proposed method,
and we refer to this setup as Intermediate fusion with an overall loss. Consequently, the cor-
responding evaluation results are listed in Table 3.5. Our model consistently achieved the best
performance on all datasets, demonstrating the effectiveness of the selected fusion strategy, i.e.,
intermediate fusion. In addition, the intermediate fusion-based models performed better than
those based on the other two fusions. This can be attributed to the fact that the intermediate
fusion simultaneously models the heterogeneity and coordination of multimodal physiological
signals, whereas the other two fusion approaches only consider one of these two properties. Fur-
thermore, the third setting Intermediate fusion with an overall loss performs slightly worse
than our model, affirming the importance of modality-specific classification. The benefit of ap-
plying modality-specific loss functions is that it forces the model to learn, for each modality,
generic features that are robust to perturbations in the time or magnitude domain, while the
application of an overall loss fails to distinguish each modality’s contribution to the learned
representation.

Table 3.5: Ablation study of different fusion strategies: average accuracy and F1-score ob-
tained for emotion recognition on WESAD, CASE and K-EmoCon dataset using different vari-
ant model. (S-2: Stress-2, E-3: Emotion-3, V-2: Valence-2, A-2: Arousal-2, Inter w/ ol: Inter-
mediate fusion with an overall loss.)

Type
WESAD CASE K-EmoCon

S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Early 91.22 89.94 80.82 78.79 73.01 72.20 69.13 67.06 79.20 74.12 71.57 69.60
Late 93.02 91.73 81.48 80.91 75.58 72.27 71.96 68.52 80.94 76.43 72.81 70.87

Inter w/ ol 93.53 92.77 82.82 81.62 76.69 73.52 72.24 69.11 81.48 77.22 73.06 71.29
Ours 94.81 93.69 83.81 82.01 77.49 75.58 73.67 70.76 82.95 80.07 74.79 73.40
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3.5.6.B Ablation study of different modalities

We conducted an ablation study of three modalities: EDA, BVP, TEMP and their combinations
to explore their performance on emotion recognition tasks. The resulting average accuracies
and F1-scores of our model are summarized in Table 3.6. First, for the unimodal performance,
the EDA signal performs outstandingly well among all the modalities, especially when detect-
ing stress and arousal states. This is consistent with previous findings that EDA is one of the
most relevant indicators of stress [169] and has even been adopted as ground truth in some
studies [170, 171] for the stress analysis of other signals. In addition, it has been proven to
correlate linearly with arousal [171]. In the bimodal-based classification, we first observed that
the BVP+EDA setup performed better on the stress-related tasks (i.e. S-2 and E-3 on the WE-
SAD dataset) than the other setups. This suggests that the BVP signal and the EDA signal are
highly coordinated and correlated when the stress state is elicited, making their combination
more effective for detection. This finding is quite reasonable. The BVP signal contains infor-
mation on heart rate (HR) and heart rate variability (HRV) thus providing a strong correlation
with stress states. In [40], HRV and EDA were identified as the most relevant physiological
indicators for the real-time stress detection task. Secondly, the EDA+TEMP setup achieved the
best performance on the classification task regarding arousal level. This finding is supported
by previous research [172] which indicated that EDA and TEMP had a positive and negative
correlation with arousal scores respectively. Lastly, our model achieved performance gains on
both bimodal and trimodal data in most cases, confirming again its effectiveness for multimodal
fusion.

Table 3.6: Ablation study of different modalities and their combinations: average accuracy and
F1-score obtained with different modality combinations in the downstream emotion recognition
tasks, where the best performing individual modality and bimodal combinations for each task
are underlined. (S-2: Stress-2, E-3: Emotion-3, V-2: Valence-2, A-2: Arousal-2.)

Modality
WESAD CASE K-EmoCon

S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

EDA 92.36 90.58 78.72 75.90 75.21 74.80 72.15 70.13 80.65 74.60 73.09 72.69
BVP 87.82 86.35 75.20 68.80 75.90 75.15 69.23 65.07 80.76 74.13 72.88 70.67

TEMP 78.15 76.91 69.86 65.37 71.64 68.66 68.97 62.16 79.02 72.78 72.52 70.42
EDA + BVP 93.73 92.38 82.32 80.61 76.26 75.13 72.13 70.27 80.87 75.48 73.14 71.78

EDA + TEMP 90.95 89.62 79.74 76.09 76.03 74.97 72.92 70.54 81.70 77.77 74.61 72.93
BVP + TEMP 84.82 80.45 72.88 66.16 72.35 71.31 71.14 68.04 80.12 75.05 72.43 69.86

All 94.81 93.69 83.81 82.01 77.49 75.85 73.67 70.76 82.95 80.07 74.79 73.40

72



EDA BVP TEMP
0

10

20

AC
C
 [%

] *** ****
** ****

******
WEASD (S-2)

EDA BVP TEMP
0

10

20
AC

C
 [%

]
*** ****

**** *******
****
WEASD (E-3)

EDA BVP TEMP
0

10

20

AC
C
 [%

] ***
********

****
********

CASE (V-2)
SigRep BENDR Ours

EDA BVP TEMP
0

5

10

15

AC
C
 [%

] *** **ns
********

CASE (A-2)

EDA BVP TEMP
0

5

10

15

AC
C
 [%

] ****

***
*** ***

******
K-EmoCon (V-2)

EDA BVP TEMP
0

5

10

15

AC
C
 [%

] * **
*

******

K-EmoCon (A-2)

EDA BVP TEMP
Missing Modality

0

10

20

30

F1
 [%

] **** ****
** *******
*

EDA BVP TEMP
Missing Modality

0

10

20

30

F1
 [%

] ** **
** **********

EDA BVP TEMP
Missing Modality

0

5

10

15

F1
 [%

] ***
***

****
****

***

EDA BVP TEMP
Missing Modality

0

5

10

15

F1
 [%

] *** ns
ns *******

**

EDA BVP TEMP
Missing Modality

0

5

10

15

F1
 [%

] ***
ns

*** *

*****

EDA BVP TEMP
Missing Modality

0

5

10

F1
 [%

] ** ****
*******

Figure 3.9: Evaluation results of the robustness of the SSL methods in the presence of missing
modalities. The horizontal axis of each subplot represents the name of the missing modality,
while the vertical axis represents the drops in model performance compared to the case of
complete modalities, where the metrics of the vertical axes in the first and second rows are
accuracy and F1-score, respectively. (ns: no significant difference; ∗: p < 0.05, the more
asterisks, the more significant the difference.)

3.5.6.C Ablation study of missing modalities

We investigate the robustness of the proposed SSL model when a signal modality is missing
in downstream tasks, which is quite common in real-world scenarios. There exist a variety
of experimental setups for incomplete modalities. Based on [173], we selected the most chal-
lenging one, i.e., a modality is missing in both training and testing of the downstream task,
where 50% of the multimodal samples were first randomly selected and subsequently the data
values of a specific modality were set to 0 to simulate its absence. The robustness of the pro-
posed SSL model was measured by calculating its difference in performance in two cases: one
with all modalities present and one with missing modalities. The smaller the difference, the
more robust the model is considered to be. The above experimental procedure was repeated 10
times. Additionally, we benchmarked our model against the SSL baseline models: SigRep and
BENDR. Fig. 3.9 presents the average degradation in accuracy and F1-score of the compared
models when a modality is missing in different downstream tasks. A series of t-tests were fur-
ther conducted on the performance differences for a more systematic robustness comparison.
From the evaluation results, we can first observe that the performance drops of our model are
significantly lower (p < 0.05) than other SSL models on most tasks. This demonstrates the
superiority of the proposed method in terms of robustness. Second, we also note that the impact
of missing modalities on the robustness of SSL methods is task-dependent. For downstream
tasks related to stress and arousal levels, more severe performance declines could be obtained
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in the absence of the EDA signal, compared to the other two modalities. This result indicates
the importance of the EDA signal for identifying these two emotional states. Similarly, missing
the TEMP signal also leads to a considerable reduced performance in arousal-based recogni-
tion, whereas, in the valence-based tasks, the loss of the BVP signal has the greatest impact on
performance. The above results, consistent with those in Section 3.5.6.B, reconfirm the effect
of different modalities on specific emotion recognition.

3.5.6.D Ablation study of different model components

We also investigate the impact of different model components on the performance of down-
stream classification tasks. To validate the contributions of the modality-specific encoder and
the shared encoder, we designed two alternative models: No TCN and No Transformer. No
TCN eliminates the temporal convolution network (TCN) where unimodal data is passed di-
rectly through the projection layer (i.e. a fully connected layer with 128 units) in the modality-
specific encoder shown in Fig. 3.3 and the resulting unimodal low-level features are then con-
catenated as a whole and fed into the transformer. No Transformer removes the multimodal
transformer, where unimodal features are first extracted by modality-specific encoders and then
averaged along the time dimension by the 1D global average pooling (illustrated in Fig. 3.5) for
the final classification tasks. Table 3.7 present the classification results of the above two variant
models on the three datasets. Our proposed model enhances both the performance of No TCN
and No Transformer models on all classification tasks across different datasets, highlighting
the importance of capturing the heterogeneity and cross-modal correlation of multimodal sig-
nals simultaneously. Subsequently, we examined whether the addition of positional encoding
could lead to better performance for the transformers with heterogeneous embedding as input.
We employed two types of positional encoding (PE): With fixed PE and With learnable PE in
the transformer and compared their performance with our PE-free model. With fixed PE added
the fixed positional encoding obtained from sine and cosine functions of different frequencies as
proposed in [156] to the input embedding of the multimodal transformer while With learnable
PE adopted the same learnable positional encoding in [174]. Table 3.7 also show the classi-
fication results of the proposed model with different PE setting. We observed that temporal
context information injected by two types of PE did not contribute to model performance on all
classification tasks as expected. This can be attributed to the fact that the multimodal embed-
dings generated by the separate encoders already own different structures, hence the additional
positional information introduces redundancy into the model.
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Table 3.7: Ablation study of different model components: average accuracy and F1-score ob-
tained for emotion recognition on WESAD, CASE and K-EmoCon dataset using different vari-
ant model. (S-2: Stress-2, E-3: Emotion-3, V-2: Valence-2, A-2: Arousal-2)

Model Variants
WESAD CASE K-EmoCon

S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

No TCN 91.09 90.42 79.86 78.77 64.15 62.20 66.87 57.87 79.39 75.34 71.24 66.59
No Transformer 92.18 91.55 81.08 79.30 74.65 71.53 70.04 68.40 80.67 76.17 72.09 70.66

w/ fixed PE 93.49 91.63 82.38 80.47 76.37 74.45 72.59 70.05 80.32 77.43 73.35 71.20
w/ learnable PE 92.68 91.32 82.42 81.24 76.46 75.35 73.16 70.33 81.59 78.62 74.08 72.09

Our Model 94.81 93.69 83.81 82.01 77.49 75.58 73.67 70.76 82.95 80.07 74.79 73.40

3.5.6.E Ablation study of different signal transformation task

We further explored the impact of using individual transformations and their combinations in the
pretext task on downstream emotion recognition performance. As mentioned in Section 3.3.2.A,
the five transforms employed can be divided into two classes, i.e., magnitude domain transfor-
mations and time domain transformations. Therefore, the types of combinations are arranged
accordingly as combinations of transformations within the same domain and combinations of
transformations across domains. The evaluation results obtained on different emotion classifi-
cation tasks are presented in Table 3.8. First, we noticed that Permutation and Time-Warping,
which perturbed the temporal order and duration of events within the window, performed best
among the individual signal transformations, which is consistent with the results in [135, 152],
demonstrating the necessity to encode the temporal relationships of signals for emotion recogni-
tion. Second, the pre-trained models obtained by combining the same domain or cross-domain
transformations generally perform better than those based on individual transformations. The
performance of these combinations varies depending on the specific task. For the same domain
transformation combinations, P+T+C performs better for stress-related tasks, whereas N+M is
more appropriate for arousal and valence-based tasks. For the cross-domain combinations, N+T
exhibited the best performance on the classification tasks regarding stress, while N+P and M+C
performed best in predicting the arousal and valence states. Finally, we found that models based
on cross-domain combinations outperformed those based on the same domain combinations in
two-thirds of the downstream tasks. Meanwhile, our pre-trained models using the full set of
transformations consistently achieved superior performance in the classification tasks. This can
be attributed to the fact that different types of transformations inject diverse prior knowledge
for multimodal representation learning, thus contributing to the generalizability of the network.
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Table 3.8: Ablation study of individual signal transformations and their combinations: average
accuracy and F1score obtained for emotion recognition on WESAD, CASE and K-EmoCon
datasets using different transformations in self-supervised pertaining, where the best performing
transformations and combinations of transformations in each task are underlined. (N: Noise
addition, M: Magnitude-warping, P: Permutation, T: Time-warping, C: Cropping.)

Type
WESAD CASE K-EmoCon

S-2 E-3 V-2 A-2 V-2 A-2
Single Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

N 90.18 89.16 78.04 76.24 73.53 70.42 69.16 61.48 79.69 74.30 70.23 67.38
M 89.74 87.86 76.90 73.77 68.75 67.46 68.28 66.94 80.13 75.44 71.11 70.54
P 91.20 89.33 78.38 75.67 73.61 71.17 71.46 69.82 80.22 78.12 71.69 70.82
T 91.34 90.87 81.15 80.44 71.17 69.53 70.81 69.01 80.39 78.31 70.59 67.90
C 89.48 88.06 79.21 77.38 69.35 62.46 69.17 66.60 79.68 74.07 70.87 69.05

Same Domain Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
N+M 89.69 88.43 77.52 75.59 75.87 74.22 71.83 69.62 81.46 78.95 73.14 72.08

P+T+C 93.67 92.88 82.31 80.47 73.71 71.95 70.92 69.05 80.77 78.58 72.66 71.11
Cross Domain Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

N+P 92.15 91.12 80.02 78.93 75.77 73.57 72.85 70.09 80.26 78.54 73.09 71.73
M+P 91.75 90.47 79.24 77.31 74.01 72.92 72.39 69.87 80.34 79.15 71.89 70.76
N+T 92.95 91.69 83.11 81.14 73.51 71.21 70.03 68.91 81.57 79.43 72.04 69.75
M+T 91.51 90.18 79.85 77.52 71.45 70.07 71.61 69.14 80.29 79.04 71.39 69.61
N+C 91.28 90.15 78.81 76.66 73.96 72.60 70.57 68.44 79.52 77.83 73.13 71.52
M+C 90.08 89.62 78.27 76.40 71.90 69.45 69.53 67.89 82.14 79.61 73.89 72.51
All 94.81 93.69 83.81 82.01 77.49 75.85 73.67 70.76 82.95 80.07 74.79 73.40

3.6 Conclusion

In this paper, we have proposed a self-supervised multimodal representation learning framework
for emotion recognition based on physiological signals. Signal transformation recognition is de-
fined as a pretext task, where a large amount of unsupervised data is automatically labeled by the
imposed signal transformation category for pre-training of the SSL model. Subsequently, the
encoder part of the pre-trained model consisting of a temporal convolution network and trans-
former is maintained to extract effective multimodal representations for the downstream task,
i.e. emotion recognition. Eventually, we executed the pre-training on a large-scale unrestricted
emotion dataset PRESAGE and verified the validity of the proposed method on three public
multimodal emotion recognition datasets. Experimental results indicated that our approach sur-
passed fully-supervised or self-supervised learning methods, achieving state-of-the-art results
in various emotion-related tasks. Additionally, the proposed method performs better than the
fully-supervised learning approaches on limited labeled data, demonstrating its superior gener-
alization ability to avoid overfitting problems. A series of ablation studies have also confirmed
the efficiency of the designed model architecture. In the next chapter, we will report on the tech-
nical contributions on multimodal aspects, i.e., stress and pain detection based on physiological
and behavioral signals.
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This chapter mainly concerns technical contributions to multimodal aspects, where a deep
geometric framework with the symmetric positive definite (SPD) matrix as the joint represen-
tation of multimodal signals was proposed to cope with stress and pain detection tasks. In
Section 4.1, we shortly introduce stress and pain detection methods and their challenges, Sec-
tion 4.2 presents relevant multimodal studies and applications of SPD-based representations. A
detailed description of the proposed method is given in Section 4.3, followed by Section 4.4
showing details of stress and pain detection experiments and evaluation results of our method,
and in Section 4.5, we briefly summarise our work.

4.1 Introduction

From a healthcare point of view, two frequently desired tasks in emotion recognition are stress
and pain detection. Stress is a specific emotional state defined by high arousal and negative
valence condition according to the dimensional model. When exposed to long-term stressors, a
person’s mental and physical state can be negatively affected, which can further lead to chronic
health problems such as headaches, insomnia or cardiovascular disease [175–177]. On the other
hand, pain is characterized as an unpleasant sensory and emotional experience associated with
actual or potential tissue damage by the International Association for the Study of Pain (IASP)
[178]. Its accurate assessment plays a key role in diagnosing the condition, monitoring post-
operative progress and optimizing treatment options [179]. Due to the side effects of these two
sensations on health conditions, automatic detection methods are greatly encouraged, especially
if the patient is alert or uncooperative. A variety of sensors can be applied to collect stress/pain
indicators from different perspectives, whereby the corresponding approaches for stress/pain
detection can be mainly divided into three categories: 1) physiological based methods via bio-
signals (e.g., electroencephalogram (EEG), electrodermal activity (EDA), etc.); 2) behavioural-
based methods via physical signals (e.g., facial expressions, speech, body movements, etc.); 3)
multimodal-based methods via a combination of physiological and behavioural signals.

As complementary information between multimodalities contributes more to the robustness
and reliability of the system, therefore, stress/pain detection combining physiological and be-
havioural indicators has become more attractive. However, the application of multimodal data
for automatic identification requires knowledge from different domains, constituting an obstacle
for most researchers. In addition, how to effectively fuse multimodal data remains an important
challenge for such systems. From the fusion strategy perspective, the few existing efforts are
mostly based on early or late fusion and therefore unable to incorporate both intra-modal and
inter-modal correlations. From the feature engineering perspective, handcrafted feature-based
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methods dominate, however, they are typically cumbersome and inefficient for multimodal data.
In this study, we address the above problem by introducing a geometric framework that employs
symmetric positive definite (SPD) matrices extracted from physiological and behavioural sig-
nals as a joint multimodal feature representation on SPD manifold for stress/pain detection.
Continuous multimodal data recording can first be converted into SPD matrix sequences. The
tangent space mapping method is then applied to locally flatten the manifold and approximate
the SPD matrix sequences by tangent space vector sequences, where an LSTM-based deep
neural network can be implemented to learn the context correlations of input sequences for
classification. The overview of the proposed method is illustrated in Fig. 4.1. In summary, the
main contributions of this work are:

• We made the first attempt of applying the SPD matrix to fuse behavioural signals and
physiological signals for stress/pain detection.

• We employed the SPD-based representation to efficiently capture correlations within and
across modalities at different time steps.

• We adopted tagent space mapping for the linearization of manifold data which facilitates
high-level temporal feature extraction by the LSTM-based deep neural network.

• We obtained state-of-the-art results on both stress and pain detection tasks using the pro-
posed method. Furthermore, Our integration strategy is proven to be more effective than
early fusion or late fusion.
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Figure 4.1: Overview of the proposed framework. First, the SPD matrix sequences that incor-
porate the correlation information between multimodal data (i.e. physiological and behavioural
signals) can be extracted from the segmented data records. Subsequently, the tangent space
mapping projects the SPD matrix sequences to the vector sequences in the tangent space. Fi-
nally, these vectors can be used as input to the LSTM-based classification network for stress/-
pain recognition.
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4.2 Related Work

The multimodal framework is promising to improve the performance of stress/pain detection.
However, few studies can be found using combined data from different fields (i.e. physiological
and behavioural).

Multimodal stress/pain detection Some of the multimodal methods presented [5,15,53,69,
132] in Section 2.5 are targeted at stress and pain detection tasks. Among these methods, mul-
timodal stress detection approaches that combine physiological signals and motion signals (i.e.,
accelerometers) are relatively popular, as they can be captured by wearable sensors and are well
suited to the real-life setting. Alternatively, a few stress detection methods also attempt to fuse
physiological modalities with behavioural modalities based on visual data. Aigrain et al. [180]
captured body video, high-resolution facial images and physiological signals from 25 subjects
during a mental arithmetic test for stress detection, where 101 features from behavioural and
physiological signals were extracted to train an SVM classifier. For pain detection, a majority
of methods are based merely on images or videos of facial expressions, thus the effectiveness
of multimodality has not been well investigated. In the work of [181], statistical/time/frequency
domain features of the multi-physiological signals (electrocardiogram (ECG), electromyogra-
phy (EMG), skin conductance level (SCL)) and appearance/geometric features extracted from
the facial videos were served as input to a Random Forest (RF) algorithm for continuous estima-
tion of pain intensity. Werner et al. [131] collected facial distances and gradient-based features
from video frames which were combined with the statistical features calculated from biological
signals. The resulting multimodal vectors were employed to train a Random Forest (RF) model
for pain assessment. The multimodal approach described above shows promising results in
terms of stress/pain detection. However, regarding the integration of multimodal data, most of
them applied the early fusion strategy, i.e. simply concatenating the features of different modal-
ities as a whole for the corresponding learning task. Although inter-modal interactions could
be captured from the obtained joint representation, intra-modal correlations were relatively ig-
nored. In addition, most of these methods employed handcrafted features, their extraction and
selection proving to be a challenging task in the multimodal case, as not all features contributed
to the learning performance.

Symmetric Positive Definite (SPD) matrices Recently, covariance-based representations have
gained great popularity in computer vision and machine learning. This success can be explained
by three major advantages. Firstly, several characteristics can be fused into a single tensor
and deliver higher-order statistical information. Secondly, the covariance matrices are sym-

80



metric positive definite (SPD) matrices with well-established mathematical theoretical proper-
ties [182,183]. In addition, the SPD matrices have shown impressive accomplishments in many
real-world applications such as pedestrian detection [184], facial expression recognition [185],
brain-computer interfaces [186], etc. However, all of these applications concentrate solely on
behavioural perspectives or physiological perspectives. Liu et al. [187] proposed a multimodal
emotion recognition approach using video and audio modalities. Covariance matrix, linear sub-
space, and Gaussian distribution were built from facial video frames and regarded as points on
Riemannian manifolds. Subsequently, the similarity matrix calculated using different Riemann
kernels is fed into multiple classifiers (i.e., SVM, partial least squares, and logistic regression).
However, they only constructed the SPD matrix for the video modality, the audio features were
extracted using an existing toolkit, and fed into the same type of classifier as the video modal-
ity. In the end, the final fusion of the two modalities was established on the decision level.
Thus, the exploration of inter-modal correlations using SPD matrix is still missing here. In the
work of [183], they presented a more general covariance-based SPD representation, containing
additional cross-covariance information from different time steps for action recognition. In-
spired by [183], we migrate this new type of tensor representation to the scenario of multimodal
stress/pain detection and show its effectiveness in this paper. Different from the previous work,
we fuse behavioural and physiological information into one single SPD matrix-based repre-
sentation, which not only incorporates intra-modal correlations, but also allows for exchanges
across two modalities. To the best of our knowledge, this is the first use of the geometry of SPD
manifold matrices to merge physiological and behavioural signals.

4.3 Proposed Method

4.3.1 Symmetric positive definite (SPD) matrix for multimodal signal

Let xi = [v1, ..., vD]
T ∈ RD, D ≥ 2 represent a multimodal signal vector comprising the

behavioural and physiological signals at the i-th timestamp, where the number of signals is
denoted by D. A short-segment can be extracted from the continuous signal recordings of a
trial, resulting in a centered matrix X = [x1, ...,xi...,xN] ∈ RD×N , where N is the number of
time instants for each segment and the sample mean vector is µ = 1

N

∑N
i=1 xi = 0. The outer

product operation (denoted by the symbol ⊗) is then performed on all signal column vector
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pairs (xi,xj) for i and j = 1, ..., N in X and consequently produces a partition matrix :

Ω =


x1 ⊗ x1 · · · x1 ⊗ xN

x2 ⊗ x1 · · · x2 ⊗ xN
... . . . ...

xN ⊗ x1 ... xN ⊗ xN

 ∈ RDN×DN (4.1)

where the element of Ω at position (i, j) is given by:

Ω(i, j) = xi ⊗ xj = xixj
T ∈ RD×D (4.2)

The sample covariance matrix S which is a SPD matrix can be derived from the diagonal ele-
ments of Ω:

S =
1

N − 1

N∑
i=1

Ω(i, i) =
1

N − 1

N∑
i=1

xixi
T ∈ RD×D (4.3)

As can be seen from (4.3), the correlation statistics on the pairs of the signal vector (xi,xj)
at the two particular time instant i and j are completely ignored. As such, the second SPD
matrix defined as cross-covariance can be extracted from the off-diagonal elements of Ω, which
contains the correlation information of the signal vectors at different timestamps and is denoted
by C:

C =
1

N2 −N

N,N∑
i=1,j=1,i ̸=j

Ω(i, j)

=
1

N2 −N

N,N∑
i=1,j=1,i ̸=j

xixj
T ∈ RD×D

(4.4)

The covariance S and cross-covariance C, are then combined in a symmetric manner to form a
more generalised covariance-based representation which remains a SPD matrix and is denoted
by P:

P =


S C · · · C
C S · · · C
...

... . . . ...
C C · · · S

 ∈ R(m×D)×(m×D) (4.5)

where m is the dimension of the new SPD matrix P, in other words, P is composed of m blocks
of S and m(m− 1) blocks of C. A larger m corresponds to a higher computational cost, while
the information ratio of the covariance to the cross-covariance decreases [183].
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4.3.2 Riemannian Geometry of SPD Matrices

4.3.2.A Mathematical Preliminaires

A manifold M is a topological space that is locally homeomorphic to Euclidean space in a
neighbourhood of each point. A differentiable manifold is a topological manifold endowed
with a smooth structure, allowing differential calculus to be performed on M. Each point of
a differentiable manifold is attached to a tangent space which is a real vector space containing
all tangent vectors to M at the point. A differential manifold is referred to as a Riemannian
manifold if the tangent space at each point p on the manifold defines a inner product and its
value varies smoothly with p. The set of symmetric positive definite (SPD) matrices P(n) ={
P ∈ S(n),uTPu > 0,∀u ∈ Rn

}
that we wish to work with, forms a Riemannian manifold,

where S(n) =
{
S ∈M(n),ST = S

}
is the space of all n× n symmetric matrices in the space

of square real matrices M(n).

4.3.2.B Riemannian metric and geodesic distance

Given a smooth manifoldM, a Riemannian metric g onM is a smooth family of inner products
gp : TpM× TpM→ R on the tangent spaces TpM ofM. The smoothness condition for g is
satisfied if the function p ∈M→ gp(Xp, Yp) ∈ R is smooth for each of the local smooth vector
fields X , Y inM. With the definition of the inner product g, we can then define the length of
the curve joining any two points onM. Let γ : [a, b]→M be a smooth curve. Then the length
L[γ] of γ is given by

L[γ] =

∫ b

a

gγ(t)(γ
′
(t), γ

′
(t))1/2dt (4.6)

The curve γ with the shortest length between two points onM is called the geodesic. Then, the
distance between two points p1 and p2 onM is defined as

d(p1, p2) = inf{L[γ] | γ : [a, b]→M, γ(a) = p1, γ(b) = p2} (4.7)

Since the space of SPD matricesP(n) is a Riemannian manifold, various efforts have been made
to measure the distance between SPD matrices with different metrics. In this study, we consider
one of the most popular metrics, the Affine-invariant Riemannian metric (AIRM) metric [188]
which measures the geodesic distance induced by intrinsic geometry of Riemannian manifold.
By applying this metric, the geodesic connecting any two SPD matrices Pi and Pj can be easily
derived:

γ(t) = Pi

1
2 exp(tlog(Pi

− 1
2PjPi

− 1
2 ))Pi

1
2 (4.8)
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and the geodesic distance induced by the Riemannian metric is defined as

δR(Pi,Pj) = ∥log(Pi
−1Pj)∥F =

[ n∑
i=1

log2λi
] 1

2 (4.9)

where ∥·∥F is the Frobenius norm operator, and λi, i = 1 · · ·n denote the eigenvalues of
Pi

−1Pj.

4.3.2.C Exponential and Logarithm Maps

Given a SPD matrix P ∈ M, a tangent space TpM can be defined, composed by all deriva-
tives of curves through P. Then the exponential map ExpP(·) : TPM → M and its inverse
logarithm map, LogP(·) :M→ TPM are defined over Riemannian manifolds for exchanging
between the manifold and its tangent space at P. More formally, let S ∈ TpM be a tangent vec-
tor at P and γS(t) the unique geodesic such that γ(0) = P and γ′

(0) = S, then the exponential
map is given as:

ExpP(S) = γS(1) (4.10)

Intuitively, the exponential map travels from P at a constant speed S along the geodesic for one
unit of time, arriving at another point onM . For the SPD manifold P(n) equipped with the
Riemannian metric (4.9), its exponential map is defined as:

ExpP(S) = Pi = P
1
2 exp(P− 1

2SP− 1
2 )P

1
2 (4.11)

The logarithm operator, as the inverse of the exponential map, can project the point Pi onM
to the tangent space TpM [189] and is defined as:

LogP(Pi) = S = P
1
2 log(P− 1

2PiP
− 1

2 )P
1
2 (4.12)

An illustration of these two operations is shown in Fig 4.2.

4.3.2.D Tangent Space Mapping

In current literature, few approaches have been suggested to tackle the non-linearity of the SPD
manifold. A common method of dealing with this problem is to estimate the manifold-value
data by mapping them into the tangent space of a specific point on the manifold (e.g., the mean
of the data) [190]. To achieve this, we first need to construct the minimal representation on
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P

Figure 4.2: Exponential map and logarithm map between the Riemannian ManifoldM and the
tangent space TpM at P.

the tangent space. Given the expression of the Riemannian metric, we can derive its equivalent
definition as

δR(P,Pi) = ∥logP(Pi)∥P = ∥S∥P = ∥P− 1
2 logP(Pi)P

− 1
2∥I (4.13)

where I is the identity matrix. Then the minimal representation can be created by the vector
operation which maps a n × n matrix into a 1 × n2 column vector. The coordinates of tangent
vector S ∈ TpM at P is defined as:

vecP(S) = vecI(P
− 1

2 logP(Pi)P
− 1

2 ) (4.14)

Since the tangent space is the space of n×n symmetric matrices, there exist only n×(n+1)
2

inde-
pendent coefficients (i.e., upper/lower triangular part of the matrix) for the coordinate system.
Thus, the vector operation is reformulated by:

vecI(S) = [s1,1,
√
2s1,2,

√
2s1,3, · · · , s2,2,

√
2s2,3, · · · , sn,n] ∈ R

n(n+1)
2 (4.15)

The off-diagonal elements are multiplied by the weight of
√
2 as they are counted twice when

calculating the norm at the identity [188]. Now, each point on the SPD manifold is projected into
the tangent space through the use of logarithm map LogP(·) which preserves the local structure
of the manifold, and can be represented as an n(n+1)/2-dimensional vector for typical machine
learning algorithms. In general, the projection M → TPM can occur at any point P on the
manifold. However, in the work of [184], they reported that the best approximation can be
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obtained using the mean of the data. Therefore, we employ the geometric mean [191] of a set
of SPD matrices {P1,P2, . . . ,PI}, I ≥ 1, Pi ∈ P(n) to flatten the manifold

Pψ = ψ(P1,P2, . . . ,PI) = argmin
P∈P (n)

I∑
i=1

δR(P,Pi)
2 (4.16)

Since the SPD manifold is a manifold with non-positive cross-sectional curvature, the minimum
of the problem defined in (4.16) exists and is unique [192]. An effective gradient descent algo-
rithm is adopted for mean computation [193]. In the end, each SPD matrix Pi is converted into
the Euclidean vector si for classification:

si = vecI(Pψ
− 1

2LogPψ(Pi)Pψ
− 1

2 ) ∈ R
n(n+1)

2 (4.17)

4.3.3 Classification of SPD matrix sequences

Let us consider a set L =
Q⋃
q=1

Lq consisting of data from Q subjects. The qth subset Lq

is represented by Lq = {([Pi, ...,Pi+T], yi),Pi ∈ P(n), i ∈ [1, |Lq|]} ,where [Pi, ...,Pi+T]

is a segmented sequence consisting of T subsequences, Pi can be considered as a represen-
tation of the correlation information for the corresponding subsequence living on the mani-
fold, and yi is the stress/pain label associated with the entire SPD matrix sequence, such that
yi = f ([Pi, ...,Pi+T]). For each subset, its corresponding geometric mean Pψ

q can be ob-
tained with the equation (4.16). Then each SPD matrix Pi in the qth subset Lq is mapped
into the tangent space and the derived corresponding subset of vector sequences is denoted by
sq =

{
([si, ..., si+T ], yi), si ∈ R

n(n+1)
2 , i ∈ [1, |sq|]

}
using the equation (4.17). The above pro-

cess will be repeated for each subject’s data. In the end, L∗ =
Q⋃
q=1

sq is considered as the input

of the LSTM-based deep neural network in Fig. 4.1. During training, the temporal contex-
tual relationships within the tangent space vector sequence are explored by the 2-layer LSTM
network, and the output features are then fed into the fully connected layer, followed by the
sigmoid function to obtain the predicted probabilities. Algorithm 4.1 summarizes the process
of classifying the SPD matrices.
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Algorithm 4.1: Classification of SPD matrix sequences
Input:

A dataset L consisting of labeled SPD matrix sequence with T data segments collected

from Q subjects L =
Q⋃
q=1

Lq =
Q⋃
q=1

{([Pi, ...,Pi+T], yi),Pi ∈ P(n), i ∈ [1, |Lq|]} .

Output:
ŷ predicted labels of test set L∗

te.
/* Preparation of inputs to the classifier */

1: L∗ ← ∅.
2: for each subject data Lq do
3: Compute geometric mean of Lq;

Pψ
q = ψ(Pi, i = 1, . . . , |Lq|);

4: Tangent Space Mapping of SPD matrices in Lq;
si = vec((Pψ

q)−
1
2LogPψq(Pi)(Pψ

q)−
1
2 )

sq =
{
([si, ..., si+T ], yi), si ∈ R

n(n+1)
2 , i ∈ [1, |sq|]

}
5: L∗ ← L∗ ∪ sq
6: end for

/* LSTM-based classification */
7: Split L∗ into L∗

tr and L∗
te and Train LSTM using L∗

tr;
8: ŷ ← LSTM(L∗

te)

4.4 Experiments and Results

To evaluate the validity of the proposed method, we conducted multimodal stress detection
experiments on WESAD dataset while multimodal pain detection experiments were carried out
on BP4D+ dataset.

4.4.1 Datasets

The WESAD dataset [53] is one of the most widely used public datasets for stress and af-
fect recognition. In a restricted laboratory setting, multimodal data consisting of motion and
physiological signals from 15 subjects were captured by two wearable devices, a wrist sensor
and a chest sensor, respectively, and the experimental protocol was designed to stimulate three
different emotional states (baseline, stress, amusement) in the participants. Based on previous
work [15,53,69], a binary stress detection problem (stress vs. non-stress) can be formulated on
the WESAD dataset by fusing baseline class and amusement class to form the non-stress class.
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The BP4D+ dataset [194] is a large-scale multimodal spontaneous emotion database. 140 sub-
jects were required to complete 10 tasks to elicit 10 different emotions, during which 2D RGB
images, 3D model sequences, thermal videos and 8 physiological signal sequences with 1.5
million frames were captured by different sensors. In addition, the metadata are also provided,
including 2D/3D/thermal facial landmarks, hand-labelled FACS codes and auto-tracked head
poses. In this work, we focus on the identification of pain. As the dataset only provides the
most facially-expressive segments for four emotions: happy, embarrassment, fear and pain, we
therefore performed a pain detection task (pain vs. non-pain) by combining happy, embarrass-
ment, fear as the non-pain class as proposed in [195]. An example of 2D texture images/3D
model sequences/thermal images from the Pain class and their corresponding facial landmarks
is shown in Fig. 4.3.

a) 2D b) 3D c) Thermal

Figure 4.3: An example of 2D texture images/3D model sequences/thermal images from the
Pain class and their corresponding facial landmarks provided in BP4D+ dataset.

4.4.2 Data Preprocessing and SPD matrix construction

For WESAD dataset, physiological and motion signals captured by the two sensors are filtered
and downsampled to the same frequency, followed by a 10-second non-overlapping segmenta-
tion as proposed by [159]. Finally, the SPD matrix series can be calculated from multimodal
data segments. For BP4D+ dataset, we first calculated the Euclidean distance between each of
the two facial landmarks for each video frame using the provided 2D/3D/thermal facial land-
marks, and automatically selected the 10 most discriminative distances by feature selection
based on Anova F-value. Then the distance vector and the synchronized physiological signal
vector were concatenated together to form a new augmented vector. Subsequently, all the aug-
mented vectors are sliced into 1-second non-overlapping data segments. In the end, the obtained
SPD matrix sequences can be extracted from prepared data segments. Fig. 4.4 shows an SPD
matrix of a pain class sample in BP4D+ dataset that generated from the 10 facial distances be-
tween 2D landmarks and 8 physiological signals. During the pain task, the subject was asked
to immerse hands in ice water, and her mouth was involuntarily opened, hence the distances
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Figure 4.4: The multimodal SPD representation generated by a pain sample in the BP4D+
dataset, where correlations within and across two modalities (i.e., vision and physiology) can
be observed. (D1-D10: 10 distances automatically selected based on Anova F-value, BP: raw
blood pressure, BPDia: diastolic blood pressure, LAS: systolic blood pressure, LAM: mean
blood pressure, EDA: electrodermal activity, HR: heart rate, RR: respiration rate, and RV: res-
piration volts.)

automatically selected were all based on the landmarks in the lip region, which is consistent
with findings in the literature that lip movements such as oblique lip raising [196], horizontal
lip stretching [197], etc. are related to pain. Both intra-modal and inter-modal correlations can
be observed from the SPD matrix. Among all physiological signals, there was a strong corre-
lation between electrodermal activity (EDA) and respiration signal (respiration rate (RR) and
respiration volt (RV)) when the subject was suffering from pain. Among the selected distances,
the 2nd, 3rd and 6th distances were more correlated with each other. Furthermore, the associ-
ation between physiological and facial indicators can be explored, i.e. EDA, RR and RV were
also positively correlated with the 9th and 10th distances.

4.4.3 Implementation and evaluation

All the classification models were implemented using Pytorch. To avoid overfitting, dropout op-
eration was employed after the LSTM layers with a hidden state dimension of 128. The Adam
optimizer with a learning rate lr=0.001 was selected to minimize the binary cross-entropy loss
function during model training of 50 epoch. Decay coefficients of the first and second moment
estimation β1 and β2 were set to 0.9 and 0.999, respectively. In the end, the proposed framework
is evaluated using Leave-One-Subject-Out cross-validation (LOSO-CV) on WESAD dataset
followed by [15, 53, 69] and Subject independent 10-fold cross-validation on BP4D+ dataset
followed by [195] with two selected metrics: Accuracy and F1-score. Both experimental pro-
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tocols assess the model’s capacity to generalize across previously unseen subject data.

4.4.4 Stress detection results on WESAD

Binary stress detection experiments were performed using the wrist/chest-based data of all sub-
jects in the WESAD dataset. We first verify the necessity of fusing the sample covariance matrix
S and cross-covariance matrix C to form the proposed representation P. The evaluation results
of these three representations are shown in Fig. 4.5 (a). It can be observed that the proposed
SPD matrix optimizes the detection performance for all modality combinations, compared to
those using only matrix S and matrix C. Secondly, to investigate the impact of increasing the
dimensionality of the SPD matrix defined in the equation (4.5) on the detection results, we per-
formed experiments using representations with different numbers of blocks of S and C (e.g.,
m=2 meaning that P consists of 2 blocks of S and 2 blocks of C). We found that using more
blocks of S and C to compose the proposed representation P slightly enhanced the classification
performance. This can be attributed to the increased proportion of cross-covariance information
in the high-dimensional SPD matrix, further demonstrating the benefit of correlations between
multiple modalities at different instants for the classification task. Besides, we only test up
to m=4, since we noticed that sometimes the m=3 case performs best, following the trade-off
between classification performance and computational cost. Finally, we also explored whether
fusing data from different modalities, i.e., motion signals and physiological signals, could lead
to a performance gain. The corresponding results are reported in Table 4.1. For experiments
based on wrist/chest sensor data, combining these two types of data for detection yielded bet-
ter performance, compared to results based on physiological signals only. When fusing data
from both devices (wrist + chest), results using all modalities were not improved, which can
be attributed to the redundant information generated by the same motion signals from both de-
vices. When combining all physiological-based modalities, the highest performance (96.88%
accuracy and 96.44% F1-score) was obtained with P (m = 4).

Comparison with State-of-the-art To validate the effectiveness of the proposed method for
fusing motion and physiological information, Table 4.2 shows the comparison results with 5
state-of-the-art methods using multimodal features. For a fair comparison, only methods that
use the same experimental protocol were considered. In the work of Schmidt et al. [53], features
from the time and frequency domains are used to train a variety of traditional machine learning
classifiers, among which the Random Forest (RF) model achieved the best performance. Samy-
oun et al. [198] presented GAN/RNN-based deep model to generate gold standard chest sensor
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Figure 4.5: (a) Stress detection performance on WESAD dataset and (b) pain detection perfor-
mance on BP4D+ dataset using the sample covariance matrix S, the cross-covariance matrix C
and the proposed SPD representation P. (Acc: Accuracy, F1: F1-score)

Table 4.1: Stress detection performance of uni-modal setting (only physiology) and multi-
modal setting (physiology + motion) on WESAD dataset using the proposed SPD representa-
tion P. (Acc: Accuracy, F1: F1-score, ↑ (↓): multimodal performance is improved (decreased)
compared to the unimodal one.)

Sensor Type Modalities
P(m = 2) P(m = 3) P(m = 4)

Acc F1 Acc F1 Acc F1

Wrist
Physio 92.15 92.20 93.00 92.38 93.47 93.25

Physio + Motion(↑) 94.08 93.81 93.10 92.78 94.65 93.99

Chest
Physio 92.76 92.61 92.96 92.64 92.12 91.75

Physio + Motion(↑) 94.55 94.33 95.54 94.76 94.25 93.97

Wrist + Chest
Physio 95.33 95.29 95.09 94.15 96.88 96.44

Physio + Motion(↓) 94.23 94.19 94.71 93.81 96.35 95.76

features from wrist data, and classified emulated features with various machine learning algo-
rithms, among which RF (Random Forest) performed the best. Gil-Martin et al. [199] proposed
a CNN-based architecture to extract meaningful features from three transforms: the Fourier
transform (F), cube root (C), and constant q spectral transform (Q) of signal windows. Huynh
et al. [69] suggested a training scheme using neural architecture search (StressNAS). Filter
banks extracted from different modalities were utilised as model input, and the optimal model
was selected automatically for each modality from 10,000 deep neural networks for training.
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Finally, features of all modalities were concatenated for classification. Lai et al. [15] employed
residual-temporal convolution network (Res-TCN) to process the filtered multimodal signals
and proposed various fusion strategies. The above work for comparison simply spliced fea-
tures from different modalities for prediction and thus ignored the cross-modality correlations.
Overall, our proposed method using the joint SPD representation achieves the state-of-the-art
results on wrist sensor data and competitive results on chest/wrist+chest sensor data, respec-
tively, demonstrating its efficiency for integrating multimodal data.

Table 4.2: Comparison with State-of-the-art Methods on WESAD dataset (Stress vs. Non-
stress)

Sensor Type Methods Accuracy F1-score

Wrist

RF [53] 87.12 84.11
GAN/RNN-RF [198] 92.1 89.7
FCQ-CNN [199] 92.7 92.55
StressNAS [69] 93.14 -
Res-TCN [15] 94.16 93.62
Ours with P(m = 2) 94.08 93.81
Ours with P(m = 3) 93.10 92.78
Ours with P(m = 4) 94.65 93.99

Chest

GAN/RNN-RF [198] 91.1 90.2
RF [53] 92.83 91.07
FCQ-CNN [199] 93.10 93.01
Res-TCN [15] 96.69 96.61
Ours with P(m = 2) 94.55 94.33
Ours with P(m = 3) 95.54 94.76
Ours with P(m = 4) 94.25 93.97

Wrist + Chest

RF [53] 92.28 90.74
GAN/RNN-RF [198] 94.7 93.4
FCQ-CNN [199] 96.62 96.63
Res-TCN [15] 97.75 97.74
Ours with P(m = 2) 94.23 94.19
Ours with P(m = 3) 94.71 93.81
Ours with P(m = 4) 96.35 95.76

4.4.5 Pain detection results on BP4D+

To further assess the validity of the proposed method, we conducted unimodal and multimodal
pain detection experiments on the BP4D+ dataset. Similar to the process performed on WE-
SAD, we first consider the results obtained using S or C alone as baseline to explore the im-
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portance of combining them in the proposed representation. Based on the results in Fig. 4.5
(b), we reach the same conclusion that the joint SPD representation can improve classification
performance. In addition, we can infer that increasing the dimension of P can further boost per-
formance for all modalities. In the end, we also explored the performance of different modality
combinations. The evaluation results are summarised in Table 4.3. We noticed that all the mul-
timodal settings exhibit performance gains compared to unimodal detection results. Among
four unimodality (i.e. physiological signal, 2D/3D/thermal facial landmarks), the trained model
has the best performance using 2D facial landmarks where recognition accuracy and F1-score
achieved 91.59%, 89.46% respectively. In the multimodal experiments, the best results with
accuracy and F1-score of 93.45% and 91.37% can be observed with 2D + Physio setting.

Table 4.3: Pain detection performance of uni-modal setting (only physiology) and multi-modal
setting (physiology + vision) on BP4D+ dataset using the proposed SPD representation P.
(2D/3D/Thermal: 2D/3D/Thermal facial landmarks, Physio: all physiological signals, Acc:
Accuracy, F1: F1-score, ↑ (↓): multimodal performance is improved (decreased) compared to
the unimodal one.)

Modalities
P(m = 2) P(m = 3) P(m = 4)

Acc F1 Acc F1 Acc F1
Physio 81.82 81.72 83.24 82.42 82.81 81.42

Thermal Landmarks 82.82 82.70 83.18 82.93 83.53 83.37
3D Landmarks 91.01 88.84 91.13 89.04 91.27 89.30
2D Landmarks 91.44 89.24 91.59 89.46 90.94 88.56

Thermal + Physio(↑) 89.04 88.73 88.82 88.69 89.07 88.96
3D + Physio(↑) 92.53 90.20 92.66 90.47 92.54 90.25
2D + Physio(↑) 92.86 90.03 93.04 90.85 93.45 91.37

Comparison with State-of-the-art Table 4.4 shows the comparison results with 4 state-of-
the-art methods using 2D facial landmarks and physiological signals. Due to the diversity of
problem formulations and experimental settings, few pain detection efforts can be directly com-
pared to our framework. Hinduja et al. [195] trained a random forest classifier on features ex-
tracted from physiological signals and facial action units (AUs) for pain detection. Here we only
presented the comparison results based on physiological signals with them, as we did not use
AUs for the detection. Our proposed method improves the accuracy by about 5.5%. Moreover,
our framework achieved a more balanced pain detection with an F1-score of 82.42%. Since
most pain detection datasets contain only vision-related information, very little pain recognition
work has been carried out based on data from two different domains, i.e. vision and physiology.
Therefore, to validate the effectiveness of our proposed approach on fused multimodal data,
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Table 4.4: Comparison with State-of-the-art Methods on BP4D+ dataset (pain vs. non-pain).

Modality Methods Accuracy F1-score

Physiology

RF [195] 77.7 30.0
Ours with P(m = 2) 81.82 81.72
Ours with P(m = 3) 83.24 82.42
Ours with P(m = 4) 82.81 81.42

Vision

βG(t) on S+(d, n) [200] 81.86 77.34
Dual-layer 3DCNN [201] 84.03 83.98
HybNet [202] 86.43 85.71
Ours with P(m = 2) 91.44 89.24
Ours with P(m = 3) 91.59 89.46
Ours with P(m = 4) 90.94 88.56

Vision + Physiology

(L) βG(t) on S+(d, n) [200] 82.77 76.32
(E) βG(t) on S+(d, n) [200] 84.32 78.83
(E)HybNet [202] 87.94 87.16
(L)Dual-layer 3DCNN [201] 89.08 88.68
(L)HybNet [202] 89.36 89.13
(E)Dual-layer 3DCNN [201] 89.80 89.46
Ours with P(m = 2) 92.86 90.03
Ours with P(m = 3) 93.04 90.85
Ours with P(m = 4) 93.45 91.37

(E): Early fusion, (L): Late fusion.

state-of-the-art pain recognition methods that accept only visual data were implemented and
combined with our physiological signal-based model for comparison. For a fair comparison,
only the facial landmark-based methods were considered. We used the code provided by the
authors, and if the code was not available, we followed the parameters provided in their article.
Szczapa et al. [200] represented the facial landmark sequences as trajectories on the Rieman-
nian manifold S+(d, n). Each point of the trajectory is a Gram matrix computed from the 2D
facial landmarks. Then the Global Alignment Kernel (GAK) was used to calculate the similarity
matrix between the trajectories, which was used as feature for SVR-based (Support Vector Re-
gression) pain estimation. To compare the classification performance, we replaced the SVR with
an SVM (Support Vector Machine). Huang et al. [202] proposed a hybrid network (HybNet)
which combined 1D, 2D and 3D CNN to extract geometric features from facial landmarks and
spatio-temporal features for pain recognition. Choo et al. [201] employed a dual-layer 3D CNN
for capturing the spatial-temporal features of the 2D facial landmark sequences. When compar-
ing the performance of pain recognition based on solely visual information, our model performs
better as shown in Table 4.4. To compare the performance based on multimodal information,
we used two fusion techniques that are commonly used in the literature, feature level fusion and
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decision level fusion, respectively. We first note that the performance of all the vision-based
models used for comparison is improved when combined with our physiology-based model,
providing side evidence that our model learns discriminative physiological features. Secondly,
our model outperforms other multimodal approaches, both in terms of feature level fusion and
decision level fusion, which confirms that the correlation between two modalities is well cap-
tured by the proposed method and that inter-modal communication can further contribute to
the classification performance. Overall, our method achieves the state-of-the-art results on both
unimodal data and multimodal data, validating again its effectiveness.

4.5 Conclusion

In this work, we explore for the first time the feasibility of SPD matrix-based representations
for efficiently fusing physiological and behavioural signals, which can capture simultaneously
correlation information within and across modalities. Tangent space mapping converts the gen-
erated SPD matrix time series into linear vector sequences for its application to the LSTM-based
classification. The effectiveness of the proposed method was evaluated on public stress and pain
detection datasets. In the end, the proposed framework shows state-of-the-art results on both
stress and pain detection tasks. In the next chapter, our practical contribution will be presented,
i.e. the real-world application of emotion recognition systems.
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This chapter mainly reports on practical contributions, where emotion recognition experi-
ments in real-life scenarios (i.e., medical simulation training) are performed to explore its ped-
agogical implications. We first introduce what is medical simulation, why emotion recognition
systems need to be integrated into teaching programs, and the corresponding challenges in Sec-
tion 5.1. Subsequently, Section 5.2 details the data acquisition performed in the unconstrained
environment. In Section 5.3, we conduct emotion recognition experiments on collected real-life
data to verify the effectiveness of the proposed algorithms in Chapters 3 and 4. Finally, we
demonstrate an intelligent graphical user interface (GUI) incorporating the proposed emotion
recognition algorithms and explore the pedagogical impact of its intervention in Sections 5.4
and 5.5, respectively.

5.1 Introduction

Simulation is the artificial replication of complex real-world processes or events with sufficient
fidelity that is designed to enhance the learning process through immersion, practice, reflection
and feedback without encountering the risks that may be present in real-life environments [203].
In the medical field, the term medical simulation, as a subset of simulation, refers to modern ed-
ucational methodologies for training healthcare professionals by recreating clinical situations.
Its benefits are twofold: first, students can acquire and maintain clinical skills better in sim-
ulation training than in didactic teaching, considerably increasing self-confidence in practical
situations, and second, simulation training can reduce the risk of harm to patients caused by
inexperienced personnel during treatment [203]. Due to the preceding reasons, simulation has
been used extensively as a teaching tool in medical schools. However, immersive learning in
sufficiently realistic simulated scenarios tends to induce special emotional experiences in stu-
dents, with stress being the relatively common emotional state. This stress can arises from a
variety of factors or circumstances, for example, complex or high-risk tasks such as cardiac ar-
rest, time constraints in performing tasks, unfamiliar procedures or equipment, or not receiving
the desired feedback. Recently, there has been a tendency for teaching programmes to incor-
porate stress assessment sessions. The benefits are twofold: from the student’s perspective,
it reduces the negative impact of stressful states on acquisition of new skills, while from the
teacher’s perspective, stress detection allows training programmes to be adapted to individual
needs and promotes teaching effectiveness. The traditional way of assessing emotions such as
stress is subjective with the use of a series of psychological scales, however the process of col-
lection and analysis is time-consuming and therefore not suitable for direct application in the
pedagogical process.
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With the rapid development of Artificial intelligence (AI) technology and sensor devices, in-
telligent detection algorithms are being developed considerably to provide a solution for the
objective identification of students’ emotions, especially stress states. However, current stress
detection studies are mainly carried out in laboratory settings. In addition, very few researches
can be found that have studied the impact of the intervention of emotion recognition tools on
medical simulation training. To address these issues, we collected multimodal data from par-
ticipants in the high-fidelity medical simulation environment and examined the validity of the
emotion recognition algorithms proposed in Chapter 3 and 4 on real-life data. Subsequently, a
software that integrates the recognition algorithms, i.e. a graphical user interface, was devel-
oped and applied during formation to explore the pedagogical impact of the emotion recognition
tool. To summarise, the main contributions of this work are as follows:

• We collected a multimodal dataset consisting of peripheral physiological and motion sig-
nals via a wearable device in a real-world setting.

• We conducted emotion recognition experiments on real-life data and demonstrated the
effectiveness of the previously proposed algorithms.

• We designed and developed a graphical interface that can be equipped with the recogni-
tion algorithms, and investigated its feasibility and usefulness as an emotion recognition
tool in the simulation training process.

5.2 Data Collection

5.2.1 Subjects

The data involved in this chapter were collected during simulation sessions at the PRESAGE
centre over the academic years 2020-2022. The subjects were 28 students in their first year of
psychiatry internship or second year of healthcare education. All of these students were enrolled
at University of Lille and had never participated in the simulation sessions.

5.2.2 Sensors and Multimodal signals

For emotion-related data collection, a medical-grade wearable device, the Empatica E4 wrist-
band was applied to monitor students’ physiological and motion signal data unobtrusively dur-
ing the simulation training. The E4 wristband is equipped with sensors designed to gather
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high-quality data. The following multimodal signals were collected at different frequencies: 3-
axis Accelerometer (ACC, 32Hz), Blood Volume Pressure (BVP, 64Hz), Electrodermal Activity
(EDA, 4Hz), Skin Temperature (TEMP, 4Hz), Inter-beat Interval (IBI), Heart Rate (HR). The
IBI signal and HR signal are derived from the BVP signal using the E4 wristband’s built-in algo-
rithm, which represents the time interval between two consecutive BVP peaks and the number
of beats per minute, respectively. This research mainly focuses on ACC, BVP, EDA, and TEMP
signals for exploring students’ emotional status, particularly stress, during the simulation. We
did not use the IBI and HR signals provided by the E4 wristband since its BVP signal analysis
algorithm is not robust to the subject’s movement, resulting in a large number of missing values
in the signal recordings. This is consistent with the findings in [204]. Ultimately, all subjects
were required to wear the E4 wristband on their non-dominant hand for data acquisition. Fig.
5.1 illustrates the E4 wristband and its acquired multimodal signals.
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Figure 5.1: The wearable device used in this study: E4 wristband and collected raw multimodal
signals.

5.2.3 Experimental protocol

The medical simulation training along with the emotional data collection was conducted at the
PRESAGE Center, where each simulation session consisted of three phases: pre-simulation
phase, simulation training phase, and educational debriefing phase. Fig. 5.2 demonstrates the
entire experimental procedure. Details of each phase will be disclosed below.
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Figure 5.2: Experimental protocol. The grey part with grid lines represents the subject’s self-
evaluation, which was further used as ground truth for emotion recognition task.

Pre-simulation phase

Before entering the simulation room, the trainer first introduced the simulation scenario and the
teaching objectives to the trainees, i.e. the participants of the experiment. Then, participants
received an information letter, an image rights form, a consent form describing the entire ex-
periment, and a set of psychometric scales. Meanwhile, a staff assisted participants in wearing
the E4 bracelet and perform a short device test to ensure the quality of the data collected. Upon
completion and signature of all relevant documents, participants were requested to press the tag
button on their E4 wristbands to mark the start time of the simulation training and then enter
the simulation room to perform the appropriate medical tasks. The above process lasted about
5 to 10 minutes

Simulation training phase

Multimodal data was collected from three different simulation scenarios: Agitation, Suicidal

risk, Focus for the analysis of the trainee’s emotional state. In each scene, highly realistic
mannequins or hired actors, took on the role of patients, while trainees acted as doctors. The
following are short descriptions of these scenarios:

• Agitation: the scenario simulated a patient who was apparently in an acute agitated state,
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showing psychotic symptoms and trying to break out of supervision. trainees were as-
signed the task of acting reasonably to prevent the patient’s escape.

• Suicidal risk: the scenario simulated consultation with a patient who was motivated by
suicidal ideation, in which a trainee was required to make appropriate decisions based on
the assessed level of urgency and risk of suicide.

• Focus: the scenario required students to pass various tests on a surgical simulator. To
provoke stress states, they were told that the obtained score on the tests would be recorded
in the final grade of the semester.

Once the simulation was complete, the trainees were also required to press the tag button on
the E4 wristband to mark the end time. The same psychometric scales as in the first phase
were collected from the trainees to annotate their emotional experiences during the simulation
training. Each simulation session lasted about 10 minutes.

Educational debriefing phase

Finally, all participants were invited to a collective debriefing with the actors who played pa-
tients to review the simulation training process and discuss the trainees’ experience, the diffi-
culties they encountered, and potential solutions for improvement. The debriefing session was
led by a senior physician with teaching experience. In this session, the physician will apply the
emotion detection tool developed (i.e., a graphical interface with embedded AI algorithms) to
optimize the teaching process. At the end of the debriefing, trainees were invited to only fill
in questionnaires concerning their perceived level of competence and the difficulty of the task,
which were then used to study the intervention effects of the emotion detection tool.

5.2.4 Ground truth collection and evaluation

To establish the ground truth of multimodal data for emotion recognition, we collected trainees’
subjective emotional experiences before/during/after the simulation training through three types
of questionnaires: Self-Assessment Manikins (SAM), State-Trait Anxiety Inventory (STAI) and
Likert scale of perceived competence and task difficulty. The collection and analysis of the
subjects’ self-reports were carried out in collaboration with Thibaut Denis, a graduate student
from the Lille Neuroscience and Cognition Research Center. In the following, we describe these
questionnaires in detail and present the statistical analysis of the collected ground truth data.
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Psychometric scales

• Self-Assessment Manikins: Self-Assessment Manikins (SAM) [6] is a picture-oriented
emotion assessment tool, allowing subjects to rate the level of four dimensions: arousal,
valence, liking, and dominance associated with emotional responses to diverse stimuli.
Each scale is rated from 1 to 9, with 1 indicating low values for each dimension and 9
indicating high values for each dimension. In our study, we concentrated on the arousal
and valence dimensions. The illustration of SAM is shown in Fig. 5.3. We only collected
this scale after the first and second phases.

Figure 5.3: Self-Assessment Manikins. Excerpt from [6].

• State-Trait Anxiety Inventory: The State-Trait Anxiety Inventory (STAI) [205] is a sim-
ple test to measure anxiety levels which provides insight into feelings of apprehension,
tension, nervousness and worry. It consists of a series of four-point Likert scales (1. not at
all, 2. somewhat, 3. moderately so, 4. very much so), the corresponding results of which
can be considered as an approximation of a person’s acute stress state. We only collected
this scale after the first and second phases.

• Likert scale on the level of perceived competence and difficulty of the task: stress can
be considered as the result of an interaction between the learner and his or her cognitive
appraisal, in accordance with Lazarus and Folkman’s model [206]. Thus, each trainee
in the simulation was repeatedly presented with a measure of his or her perceived level
of competence in managing the simulation (primary assessment) and a measure of their
perception of the difficulty of the task (secondary evaluation). Based on this, a likert scale
of nine items was proposed. In the end, we collected this scale after all the phases.
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Figure 5.4: Analysis of Self-Assessment Manikin (SAM) data.
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Figure 5.5: Analysis of State-Trait Anxiety Inventory (STAI) data before and after simulation
training. (The green triangle symbol represents the mean value.)

Analysis of ground truth data

We analyzed the emotional experience of the 28 trainees during the simulation training based
on the obtained subjective assessment data. First, we presented descriptive statistics on arousal
and valence dimensions according to SAM scores in Fig. 5.4. The categorical representations
can be deduced from the continuous scores of arousal and valence ranging from 1 to 9, i.e.
scores less than 5 are classified as Low arousal/valence, while those greater than or equal to 5
belong to High arousal/valence. When combining the arousal and valence dimensions, it im-
plies a 4-class representation: LALV, LAHV, HALV, HAHV. Fig. 5.4.a shows the categorical
distribution of the SAM scoring for all scenarios. In general, the Low and High samples did not
differ significantly in arousal dimensions, while for valence, the vast majority of trainees had
positive emotional experiences. For the binary dimensions, HAHV and LAHV occupy the top
two positions, representing excited and calm states, respectively, while a small portion of the
sample corresponds to the HALV and LALV categories, implying stressful and boring emotional
experiences. We further investigated the effect of different simulation scenarios on the emo-
tional state of the trainees (Fig. 5.4.b). We observed that the agitation scenario differed from
the other two scenarios in that the samples were mainly concentrated in the high arousal area
and a considerable portion of the samples were distributed in subareas with negative valence.
This may be related to the difficulty of the tasks performed by the subjects in this scenario,
which required them to cope with the unexpected behavior of the agitated patients and was of-
ten accompanied by relatively violent physical conflicts in this case. In contrast, in the focus and
suicidal risk scenarios, subjects were exposed to a more calm environment, especially the focus

scenario involved only human-machine interaction, thus most of the samples presented with
low arousal and positive emotions. Second, to examine the impact of simulation training on
trainees’ perceived stress from a holistic perspective, we studied samples of STAI scales before
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and after the simulation. Fig. 5.5 demonstrates the data distribution of STAI scores collected
in different scenarios. For the agitation and suicidal risk scenarios, the average stress level of
the trainees showed modest increases at the end of the simulation. The Wilcoxon signed-rank
tests showed a significant difference between pre- and post-simulation scores in the agitation

scenario (p-value= 0.029), whereas there was no significant difference in the suicidal risk (p-

value=0.375) and focus scenario (p-value=0.141), this finding is consistent with the analysis in
arousal-valence space.

5.3 Emotion recognition experiments with real-life data

In Chapter 3 and 4, we validate the proposed emotion recognition methods based on self-
supervised learning and supervised deep learning on data collected in a laboratory setting, re-
spectively. We will continue to explore their performance in unrestricted real-life scenarios in
this section.

5.3.1 Data preprocessing

First, the same low-pass filter as in Chapter 3 was used to remove the EDA, BVP and TEMP
signal artefacts. In addition, a Butterworth low-pass filter with a cut-off frequency of 5 Hz was
used to denoise the ACC signal. Then, z-score normalization was applied to eliminate cross-
subject variation in multimodal signals. Finally, all signal modalities were sampled uniformly
to 4Hz and segmented into windows of 60 seconds with 90% overlap for emotion classification.
For arousal and valence scores varying from 1 to 9, a threshold of 5 was chosen to generate the
labels of the samples for the emotion recognition task, where scores less than 5 were classified
as Low and vice versa as High, resulting in two binary classification problems and a quadratic
classification problem (i.e., LALV, LAHV, HALV, HAHV) on the arousal and valence dimen-
sions. In addition, stress recognition is a task of particular interest, where HALV states can
be categorised as Stress and other categories in the quadratic classification can be regarded as
Non-stress. An overview of the pre-processed real-life dataset is shown in Table 5.1.

5.3.2 Methods for comparision

The following methods were implemented for performance comparison:

• Handcrafted-SVM: This is a traditional supervised machine learning-based approach
where a series of handcrafted features are extracted from the multimodal data as input
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Table 5.1: A summary of pre-processed real-life data.

Task Category (number of samples) Total
Arousal-2 low (3417), high (4857)

8274
Valence-2 low(2591), high (5683)
Stress-2 non-stress (6687), stress (1587)

Four-class
LALV(1004), LAHV(2413)
HALV(1587), HAHV(3270)

Table 5.2: List of multimodal features for machine learning-based emotion recognition.

Signal Features

ACC
mean, std of each axis/summation of all axis

absolute integral of each axis/summation of all axis
peak frequency of each axis

BVP

std of intervals between heartbeats (SDNN)
std of successive differences between adjacent R-R intervals (SDSD)

rms of successive differences between adjacent R-R intervals (RMSSD)
proportion of differences greater than 50ms / 20ms (PNN50/20)

frequency power in 0.15 - 0.40Hz (HF) and the 0.04 - 0.15Hz (LF)

EDA
Tonic: mean, std, 20th percentile, 80th percentile, quartile deviation

Phasic: peaks prominence, peaks width, peaks per 100 s, strong peaks
(peaks that are more than 1 µSiemens) per 100s

TEMP mean, std, min, max, slope

to the SVM classifier. For ACC and TEMP signals, multiple statistical features presented
in [53] were calculated directly from the pre-processed signal data. The EDA signal was
first decomposed into two basic components: tonic and phasic using the cvxEDA method
proposed by Greco et al. [207], from which the corresponding time-domain features were
then extracted separately. For the BVP signal, we first detected the peaks to recover the
IBI signal and then calculated a series of HRV features for the recognition task. The
features employed are listed in Table 5.2.

• SPD-LSTM: The multimodal fusion approach based on Riemannian geometry of the SPD
matrices proposed in Chapter 4. An LSTM-based model was used to extract and classify
high-level features from the linearised manifold data. For the comparison experiments,
we set the dimension of the SPD representation m to 3 and the other parameters to the
same settings as described in Chapter 4.

• TCN-TRANS: The self-supervised learning approach based on 1D temporal convolution
(TCN) and multimodal transformer (TRANS) proposed in Chapter 3. The experimental
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parameters were configured as described in Chapter 3. For the comparison experiments,
the frozen setting was applied, i.e. the encoder part of the pre-trained model was frozen
in the downstream emotion recognition tasks.

5.3.3 Evaluation metric and protocol

To validate the generalizability of the model on different subject data, we adopted Leave-One-
Subject-Out cross-validation protocol that is frequently used in real-life scenarios. Two com-
mon metrics: Accuracy and F1-score were selected for the performance evaluation.

5.3.4 Experimental Results

We performed the four emotion-related classification tasks mentioned in Section 6.3.1 on the
collected data and investigated the performance of three modality combinations:

• Behaviour: all behavioral modalities, i.e., 3-axis accelerometer.

• Physiology: all physiological modalities, i.e., EDA, BVP and TEMP.

• Behaviour+Physiology: all modalities. i.e., ACC, EDA, BVP and TEMP.

The corresponding results are summarised in Table 5.3. The three methods used for compar-
ison: Handcrafted-SVM, SPD-LSTM, TCN-TRANS in the table correspond to supervised ma-
chine learning, supervised deep learning and self-supervised learning, respectively. From the
classification results, we can first conclude, in line with the work presented in Chapter 3 and
Chapter 4, that both of the latter two methods can significantly enhance the performance of the
algorithms based on handcrafted features. Furthermore, SSL learning-based methods exhibit
the best performance, which can be attributed to the generalized representation learned from a
large amount of unlabelled data. With regard to the different modality combinations, from a
unimodal perspective, physiological modalities show superior performance to motion modali-
ties in a majority of learning tasks. From a multimodal perspective, the two proposed methods
both demonstrate the effectiveness of their fusion strategy on multimodal data, whereas the
Handcrafted-SVM models with concatenated multimodal features as input fail to consistently
achieve improved performance compared to unimodal ones.
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Table 5.3: Performance comparison of different emotion recognition tasks with state-of-the-art
methods on the Presage dataset. (Acc: Accuracy, F1: F1-score; B:Behaviour, P:Physiology,
B+P:Behaviour+Physiology.)

Type Methods
Arousal-2 Valence-2 Stress-2 4-class

Acc F1 Acc F1 Acc F1 Acc F1

B
Handcrafted-SVM 57.39 52.09 63.07 59.62 64.41 61.83 44.55 41.56

SPD-LSTM 72.15 70.45 75.26 71.07 76.57 72.55 61.39 54.06
TCN-TRANS 74.54 71.79 77.92 74.43 79.31 75.47 63.47 58.75

P
Handcrafted-SVM 54.35 49.80 65.82 61.13 66.15 62.44 48.27 43.93

SPD-LSTM 71.44 69.82 77.27 73.57 80.42 75.17 66.08 61.57
TCN-TRANS 73.62 71.64 80.27 75.61 83.59 79.42 67.29 63.11

B+P
Handcrafted-SVM (↓) 55.68 50.76 66.87 65.25 61.94 59.93 46.86 41.96

SPD-LSTM (↑) 73.69 71.81 78.52 75.72 82.66 78.70 67.21 62.06
TCN-TRANS (↑) 76.96 74.24 82.14 78.06 86.81 83.58 70.98 65.05

5.4 Pratical application of stress analysis tool

In the previous sections, we described the process of collecting real-life data on which we vali-
dated the effectiveness of the emotion recognition methods proposed in Chapter 3 and Chapter
4. Next, in order to achieve the main objective of the project, i.e. to verify whether the inter-
vention of emotion detection algorithms, and in particular the stress detection algorithm, could
improve the debriefing phase thus facilitating the learning of the trainees, a graphical interface
was developed and applied as a stress analysis tool to the debriefing process. In the follow-
ing, we will show the details of the tool and the evaluation results of its application in realistic
scenarios in Sections 5.4.1 and 5.4.1 respectively.

5.4.1 Development of the stress analysis tool

Fig. 5.6 (a) shows a graphical interface developed based on PyQt, allowing to load, synchronize
and visualize the trainees’ multimodal data collected in the simulation rooms. The graphical
interface consists of two parts, the upper part of which allows the display of video recordings
from the different cameras in the simulation room, while the lower part shows the physiological
signals of the trainees during the entire simulation training, and the parts of the signal curves
framed in blue are the 60 s stress segments detected by the SSL emotion recognition algorithm
proposed in Chapter 3. Besides, the areas circled by rectangles show the percentage of stress
periods during simulation training and the physical activity index (AI) calculated proposed in
[208], which represents the intensity of the motion obtained from the 3-axis accelerometry
every 60 s. During the development of the interface, we designed a simplified version based

108



(a) The initial graphical interface

(b) Simplified graphical interface

Figure 5.6: The graphical interface with the built-in SSL-based stress detection algorithm ap-
plied in debriefing phase after simulation training.
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on user feedback as shown in Fig. 5.6 (b). At the debriefing phase, the teacher expects to
quickly locate and review the most stressful segments of the trainee and provide instruction,
thus the probabilities of stress in every 60 s represented by a diverging colormap with values
ranging from [0,1] is introduced, where blue and red are biased towards the non-stress and
stress states, white corresponds to a neutral state (i.e., a probability of 0.5). In addition, all the
physiological signals initially proposed were reduced to the EDA signal for simplification since
it is considered to be one of the best real-time relevant indicators of stress [40].

Level of perceived difficulty Level of perceived competence 

Certainty of response 
on perceived difficultiy

Certainty of response 
on perceived competence

before

simulation after 

simulation after 

debriefing
before

simulation after 

simulation after 

debriefing

before

simulation after 

simulation after 

debriefing
before

simulation after 

simulation after 

debriefing

Figure 5.7: Visualization of the subjective assessment of the task difficulty and the level of
competence at three moments: pre-simulation, post-simulation and post-debriefing.

5.4.2 Evaluation of the stress analysis tool

The pedagogical relevance and feasibility of the stress detection method were validated in a
simulation training based on suicidal risk scenario in June 2022. To explore the impact of the
application of the stress analysis tool on the debriefing phase, particularly in terms of trainees’
competence development, subjective variables were first monitored in different phases of the
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simulation training. As mentioned in Section 5.2.4, a 9-item Likert scale was distributed to the
trainees at three moments: pre-simulation, post-simulation and post-debriefing, to measure their
perception of task difficulty, as well as their level of ability to manage the task. In addition, a
metacognitive dimension of certainty about the answers was added. Fig. 5.7 presents a visu-
alization of the subjective assessment. We can observe a correspondence between a potential
decrease in perceived difficulty and an increase in perceived competence, while their corre-
sponding levels of certainty of answers remain either increasing or basically invariant. This is
in line with expectations, as the trainers can target the stressful moments of the trainees during
the simulation with the aid of the developed tool, which allows them to help the students to bet-
ter solve their problems and thus promote their personal competence. Secondly, we collected
feedback from the trainees on their usage of the stress analysis tool through a 7-item Likert
scale. The feedback from trainees generally gave positive feedback on the role of the interface
in debriefing and its ability to identify key moments (Fig. 5.8). Moreover, in addition to the
the discussion of typical open questions during the debriefing process, the use of the simpli-
fied version (i.e. the colormap of stress detection probabilities) made it possible for trainees to
rapidly initiate a certain degree of reflective processing based on long-duration video material.
Therefore, the incorporation of the trainee’s stress detection in the debriefing session can also
enhance their participation and engagement. Furthermore, when reviewing the detected stress-
ful moments with the trainees, we noticed that these segments were usually accompanied by
emotional verbal expressions. This further affirms the effectiveness of our proposed algorithm
and also inspires the possibility of incorporating audio data in future work to provide more
accurate detection.

5.5 Conclusion

In this chapter, we investigated the application of an emotion recognition system in a real-life
situation, i.e., medical simulation training. Students’ multimodal signals were recorded during
the simulation via a wearable sensor, while a series of psychometric scales were applied to es-
tablish the ground truth of emotion. Subsequently, emotion recognition experiments involving
arousal, valence and stress were conducted on the collected data, proving again the validity of
the recognition algorithms presented in Chapters 3 and 4. In order to explore the feasibility
and usefulness of the intervention of emotion recognition in the pedagogical process, a graph-
ical interface incorporating the emotion recognition algorithm was developed and used in the
post-simulation debriefing session. Based on feedback from debriefing participants, the pos-
itive effects of the emotion recognition tool in educational practice were initially confirmed,
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Figure 5.8: Visualisation of trainees’ feedback regarding the application of the stress analysis
tool.

including the facilitation of skill acquisition and increased engagement. In the next chapter we
will show the technical contribution on the behavioural aspect, i.e., the landmark-based facial
expression recognition approach.
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The work presented in this chapter corresponds to the technical contributions on the behav-
ioral aspect, where a non-euclidean metric learning method with application to facial expression
recognition is proposed. In Section 6.1 we briefly introduce landmark-based shape analysis and
its limitations, followed by Section 6.2 in which we present metric learning methods applied to
facial expression recognition. In Section 6.3 we describe in detail the shape representation in
the complex projective space, the Fubini-Study metric and its optimization algorithm, in Sec-
tion 6.4 we focus on facial expression recognition experiments and explore the effectiveness of
the proposed method, and finally Section 6.5 presents a summary of the work.

6.1 Introduction

Recently landmark detection and tracking methods for human faces and bodies became reliable
and accurate. This has greatly encouraged landmark-based shape analysis methods, aiming at
shape description and comparison through the location of a pre-defined set of points and the
association between them. Since a set of landmarks detected in a video frame or still image
is a natural choice for modelling the facial shape or body shape, such methods are widely de-
ployed in the field of computer vision and multimedia such as face verification [209], person
re-identification [210], facial expression recognition [211–213] and action recognition [214].
Depending on the type of shape space, landmark-based methods can be divided into Euclidean
methods and Riemannian methods. The latter are based on the geometry of Riemannian man-
ifolds and are more robust to variation factors in the data, such as affine transformations, thus
gaining broader interest compared to the Euclidean methods. In the work of [127], the face
and body landmark sequences were parametrized as trajectories on the Riemannian manifold
of symmetric positive definite (SPD) matrices of fixed-rank. Daoudi et al. [215] used the Gram
matrix of 2D landmarks as the representation of the body shape on a non-linear manifold to
assess the depression severity of a patient. Szczapa et al. [216] encoded the facial movement
as trajectories on the manifold of symmetric positive-semidefinite (PSD) matrices for pain in-
tensity estimation. The above approaches always involve metrics defined on the manifold to
provide similarity measures for the learning task at hand. However, these Riemannian meth-
ods typically employ pre-defined metrics, which may not be the most appropriate for distance
measures on a given dataset. In response to this problem, a large number of metric learning al-
gorithms have been proposed in order to obtain more discriminative metrics to further facilitate
learning performance. However, most conventional metric learning methods for these vision
tasks are designed for the optimization of metrics in the Euclidean space and are therefore not
applicable to manifolds.
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Considering the above issues, we propose a metric learning method suited to Riemannian ge-
ometry. First, we treated the equivalence class of complex landmarks as points in the complex
projective space whose shape representation is invariant under a class of affine transformations
that consists of translations, rotations, and scaling. Based on the seminal work on shape anal-
ysis of Kendall [217], a family of metrics - Fubini-Study metrics in this space was selected for
distance measurement, where metric learning algorithm based on Large Margin Nearest Neigh-
bors (LMNN) is exploited to improve the discriminative power of the proposed metric. Finally,
the learned metric was employed in a similarity-based classification task and its validity was
verified in the facial expression recognition scenario. Fig. 6.1 demonstrates the overview of the
proposed method. Overall, the main contribution of the paper are:

• We proposed a landmark-based affine-invariant shape representation in complex projec-
tive space on the basis of Riemannian geometry.

• We adapted the LMNN algorithm to learn the optimal metric, and the resulting similarity
features have smaller intra-class differences and larger inter-class differences.

• We performed a comparison between the Fubini-Study metric and the Euclidean metric
on the facial expression recognition task, validating the effectiveness of the proposed
metric for shape analysis. Furthermore, our approach also showed competitiveness in
comparison with state-of-the-art solutions.

6.2 Related work

As presented in Section 2.4.4, most Riemann methods for facial expression recognition tasks
rely on full-face feature support, i.e. treating full-face landmark points as a whole and deriving
robust shape representations from them. However, such methods ignore the possibility of opti-
mizing the used metric to enhance learning performance. Due to the need for suitable metrics to
measure the similarity between a set of landmarks, a series of metric learning-based approaches
have been proposed for facial expression recognition tasks. The purpose of metric learning is
to find an adequate metric to better capture the potential similarity relationship hidden in the
data. The optimal metric obtained from metric learning can bring samples from the same class
as close as possible while keeping the differently labeled samples far from each other. In the
following, we focus on reporting on previous work that adopted this learning model for facial
shape analysis.
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Figure 6.1: Overview of the proposed approach. (a) 2D landmarks detected in images of facial
expressions are first converted to vectors in complex space; (b) The variants obtained by affine
transformation constitute the equivalence class of landmarks, which can be considered as the
same point in the complex projective space; (c) The application of metric learning enables the
reduction of intra-class differences while enlarging inter-class distances. Finally, the learned
metric is used for similarity-based classification.

6.2.1 Euclidean metric learning

In the work of Wan et al. [213], the facial shape representation was defined as the combination of
the shape vector represented by the facial points and the appearance feature vector. Mahalanobis
distance-based Euclidean metric learning algorithms was employed to obtain the optimal met-
ric, where similar shapes are relatively closer in the learned feature space. Experimental results
demonstrated that the KNN-based classifier with the learned metric achieved superior spon-
taneous facial expression recognition performance than the methods using the original metric
and exhibited good generalization ability on the spontaneous expressions. Kacem et al. [212]
exploited a chart of barycentric coordinates to map affine equivalence classes of facial land-
marks to the Euclidean space and then applied metric learning to the Mahalanobis distance for
the facial expression recognition task. The DTW technique combined with the optimal metric
was used to align facial shape sequences and constructed similarity-based inputs for the pair-
wise proximity function SVM (ppfSVM) classifier. In the end, the optimal metric yields better
recognition accuracy, confirming the necessity of metric learning. However, their method re-
lies on the stability of a reference triangle, which is used to obtain an affine-invariant shape
representation for metric learning.
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6.2.2 Non-Euclidean metric learning

Some non-linear methods were also proposed to learn a more discriminant metric, which can
encode the intrinsic geometry of the manifold. Daoudi et al. [211] propose a metric learning
over a family of metrics on the space of oriented ellipses centered at the origin in Euclidean
n-space and the double cover of the manifold of n × n positive semi-definite (PSD) matrices of
rank two. They first adopted the Gram matrices as the facial shape representations. The Average
Neighborhood Margin Maximization (ANMM) algorithm was then generalized to learn the
optimal quotient Riemannian metric on the manifold data. The proximity measures calculated
between facial shapes using the obtained metric were fed into the SVM classifier for static facial
expression recognition, obtaining improved performance over that before metric learning.

6.3 Proposed Method

6.3.1 Complex projective space

A 2D landmark configuration z consists of n ordered points (x1, y1), . . ., (xn, yn) on the plane.
Expressing the points as complex numbers (i.e., writing zj := xj + iyj instead of (xj, yj)), we
identify z as a complex vector (z1, . . . , zn) ∈ Cn. We will consider two landmark configura-
tions z and w to be equivalent if the points wj (1 ≤ j ≤ n) in the second configuration are
obtained from the points zj in the first by means of a common translation, rotation, and scaling.
This equivalence is established by the fact that the three transformations only alter the position,
orientation or size of the shapes accordingly, without destroying their semantic information.
Therefore, the set of equivalence classes of 2D landmark configurations is the shape space in
which we wish to work. This shape space can be considered as a generalization of the original
space of landmark configurations, enabling a more realistic measure of the similarity/dissimilar-
ity between shapes, as differences caused by transformations are excluded. Since the landmark
points are represented in complex form, the equivalence of two landmark configurations z and
w translates into the existence of a nonzero complex number a and a complex number v so
that wj = azj + v, ∀j ∈ {1, . . . , n}, where a = λeiθ controls the variation factors of scaling
and rotation while v regulates translation. If we consider only centered configurations where
z1 + · · · + zn = 0, then two centered configurations z and w are equivalent if and only if
there exists a nonzero complex number a for which w = az. This is precisely the definition of
complex projective space (i.e.,the desired shape space).

Definition 1. Complex projective space of (complex) dimension n, CPn, is the set of equivalence
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classes of nonzero vectors in Cn+1 with the equivalence relation

(z1, . . . , zn + 1) ∼ (az1, . . . , azn + 1)

for any nonzero complex number a.

z = (z1, ... , zn)

aff
ine

 tr
an

sfo
rm

ati
on

s

{

Rotation = 30

Rotation = 60

Scaling = 0.5

 ..
.

{Equivalence class of z  

Translation

w = (w1, ... , wn)

Equivalence class of w  

dA(z, w)

Shape space 
          of 2D landmarks

Happy Surprise

Figure 6.2: An illustration of 2D facial landmark configurations and its corresponding shape
space in the facial expression recognition scenario. Matching and comparison of facial shapes in
the complex projective space is not disturbed by traditional affine transformations: translation,
rotation and scaling.

A centered landmark z with coordinates (z1, . . . , zn) gives rise to an equivalence class [z] which
can also be described by its homogeneous coordinates [z1 : z2 : . . . : zn]. The equivalence
class [z] is a point in CPn−1, which, moreover, lies in the projective hyperplane given by the
homogeneous equation z1 + · · · + zn = 0. Fig. 6.2 illustrates the complex projective space
constructed in a facial expression recognition scene, where changes in facial landmarks due
to translation, rotation or scaling do not modify the emotional state conveyed by the facial
expressions. Hence, the altered landmark configurations can be all regarded as the same point
in the complex projective space, providing a better measure of the similarity between different
facial expressions.
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6.3.2 Fubini-Study Metrics

A useful feature of complex projective space is that it carries a family of simply-defined and
well-studied metrics: let A be a positive-definite Hermitian matrix, the Fubini-Study distance,
dA, associated to A between points z = [z1 : . . . : zn] and w = [w1 : . . . : wn] in CPn−1 is
defined by

|⟨Az,w⟩|2
⟨Az, z⟩⟨Aw,w⟩ = cos2(dA(z,w)) (6.1)

We recall that the expression ⟨z,w⟩ = z1w̄1 + · · · znw̄n is the standard complex-valued inner
product on Cn.

6.3.3 Euclidean Metrics

Given a positive-definite Hermitian matrix, its associated Fubini-Study metric allows us to de-
fine the distance between two equivalence classes of landmark configurations. However, there
exists also a simple alternative. Assume that for all of our landmark configurations, the i-th
landmark is different from the origin. For each landmark configuration z, instead of consider-
ing the point in CPn−1 given by z = [z1 : . . . : zn], we can consider the vector

zi :=

(
z1
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
∈ Cn−1.

Note that any two landmark configurations z and z′ are equivalent if and only if zi = z′i. In
this way, our shape space, or rather the piece of it that interests us, becomes the linear space
Cn−1 = R2n−2. This enables us to use different Euclidean metrics to measure the distance
between equivalence classes of landmark configurations.

Recall that each Euclidean metric in R2n−2 is determined by a positive-definite (2n− 2)×
(2n− 2) real matrix M and that the associated distance is given by the formula

dM(xi,yi) =
√
(xi − yi)TM(xi − yi) (6.2)

where xi and yi are coordinates in Cn−1 = R2n−2 associated to the equivalence classes [x] and
[y] in CPn−1.
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6.3.4 Distance function for Fubini-Study metrics

Recall that given a positive-definite Hermitian matrix A, the Fubini-Study distance associated
to A between points z = [z1 : . . . : zn] and w = [w1 : . . . : wn] in CPn−1 is defined by

|⟨Az,w⟩|2
⟨Az, z⟩⟨Aw,w⟩ = cos2(dA(z,w)).

Before performing metric learning using this family of distances, we must consider a cost func-
tion that is a real-valued function on the space of positive-definite n× n Hermitian matrices:

C : Hn −→ R.

Usually, the cost function takes the following form: there exist points z1, . . . , zk in CPn−1 and
a real-valued smooth function:

c : R(
k
2)

+ −→ R

such that for any positive-definite n × n Hermitian matrices, the value of C(A) only depends
on the mutual distances between the points z1, . . . , zk:

C(A) = c(dA(z1, z2), . . . , dA(zk−1, zk)).

Sometimes it is easier not to explicitly describe the dependence of the cost function C in terms
of the distances dA(zi, zj), but in terms of the square or other function f of these distances:

C(A) = c(f(dA(z1, z2)), . . . , f(dA(zk−1, zk))).

Since we need to find an optimal metric with the aid of the cost function C, i.e., to find the
best positive-definite Hermitian matrix A that assigns small distances to similar points, while
assigning relatively large distances to dissimilar points, the function f : R+ → R+ should
be smooth, strictly increasing and satisfy f(0) = 0. Given the formula for the Fubini-Study
distance, it will be convenient to work with the function f(t) = 1 − cos2(t) as part of the
cost function for metric learning. This function is smooth, satisfies f(0) = 0, and it is strictly
increasing in the interval [0, π

2
]. Notice that π

2
is precisely the diameter of CPn−1 with any

of the Fubini-Study metrics, so that whatever happens to f for t > π
2

is irrelevant. As we
are particularly interested on the dependency of the positive-definite Hermitian matrix A, the
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distance function is represented by the term F (A)

F (A) = 1− cos2(dA(zi, zj)) = 1− |⟨Azi, zj⟩|2
⟨Azi, zi⟩⟨Azj, zj⟩

(6.3)

for a number of chosen landmark configurations z1, . . . , zk in CPn−1. To summarize, we will
take the cost function C(A) to be a function of F (A). In order to obtain the optimal metric
through the cost function, the gradient of F (A) with respect to the variable A can be first given
by the formula

∇AF (A) =
−1

(⟨Azi, zi⟩⟨Azj, zj⟩)2
×

[
⟨Azi, zi⟩⟨Azj, zj⟩(⟨Azj, zi⟩ziz∗j + ⟨Azi, zj⟩zjz∗i )

− |⟨Azi, zj⟩|2
(
⟨Azj, zj⟩ziz∗i + ⟨Azi, zi⟩zjz∗j

) ] (6.4)

Proof. Recall that the computation of a gradient of a function F on an inner product space is a

two-step process. We first compute the directional derivative of F (A) at pointA in the direction

of X:

dF (A)(X) :=
dF (A+ tX)

dt
|t=0, (6.5)

where X is any positive-definite n× n Hermitian matrices. The resulting derivative is given as

dF (A)(X) = − d

dt

|⟨(A+ tX)zi, zj⟩|2
⟨(A+ tX)zi, zi⟩⟨(A+ tX)zj, zj⟩

|t=0

= − d

dt

⟨(A+ tX)zi, zj⟩⟨(A+ tX)zi, zj⟩
⟨(A+ tX)zi, zi⟩⟨(A+ tX)zj, zj⟩

|t=0

= − d

dt

⟨(A+ tX)zi, zj⟩⟨(A+ tX)zj, zi⟩
⟨(A+ tX)zi, zi⟩⟨(A+ tX)zj, zj⟩

|t=0

For convenience, we can re-write the above equation in the following form:

dF (A)(X) = − d

dt

f(t)

g(t)
|t=0

= −f
′(t)g(t)− f(t)g′(t)

g(t)2
|t=0

(6.6)
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We can first calculate the derivative f ′(t) as follows:

f ′(t) =
d

dt
⟨(A+ tX)zi, zj⟩⟨(A+ tX)zj, zi⟩|t=0

=
d

dt
⟨Azi + tXzi, zj⟩⟨Azj + tXzj, zi⟩|t=0

= ⟨Xzi, zj⟩⟨Azj, zi⟩+ ⟨Xzj, zi⟩⟨Azi, zj⟩

We can say that (z+ z) = 2ℜ(z), thus f ′(t) can eventually be written as

f ′(t) = 2ℜ(⟨Xzi, zj⟩⟨Azj, zi⟩) (6.7)

Next, the derivative g′(t) can be computed as follows:

g′(t) =
d

dt
⟨(A+ tX)zi, zi⟩⟨(A+ tX)zj, zj⟩|t=0

=
d

dt
⟨Azi + tXzi, zi⟩⟨Azj + tXzj, zj⟩|t=0

= ⟨Xzi, zi⟩⟨Azj, zj⟩+ ⟨Xzj, zj⟩⟨Azi, zi⟩

(6.8)

Finally, we can bring equations (6.7) and (6.8) back into (6.6) to obtain the final form of

dF (A)(X):

dF (A)(X) = −f
′(t)g(t)− f(t)g′(t)

g(t)2
|t=0

=
−1

(⟨Azi, zi⟩⟨Azj, zj⟩)2
×
[
2ℜ(⟨Xzi, zj⟩⟨Azj, zi⟩) ⟨Azi, zi⟩⟨Azj, zj⟩

− |⟨Azi, zj⟩|2 (⟨Xzi, zi⟩⟨Azj, zj⟩+ ⟨Xzj, zj⟩⟨Azi, zi⟩)
]

With the directional derivative dF (A)(X) defined in the above equation, we now need to find

the unique vector field ∇F (A) (i.e., the gradient on the Riemannian manifold of Hermitian

matrices) that satisfies:

⟨∇F (A), X⟩ = dF (A)(X) (6.9)

Since the inner product of two Hermitian matrices is the trace of their product, the equation
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(6.9) can be written in the following form:

tr(∇F (A)X) =
−1

(⟨Azi, zi⟩⟨Azj, zj⟩)2
×
[
2ℜ(⟨Xzi, zj⟩⟨Azj, zi⟩) ⟨Azi, zi⟩⟨Azj, zj⟩

− |⟨Azi, zj⟩|2 (⟨Xzi, zi⟩⟨Azj, zj⟩+ ⟨Xzj, zj⟩⟨Azi, zi⟩)
]

With the trick ⟨Xzi, zj⟩ = tr(X ziz
∗
j) where zi and zj are considered as n× 1 matrices, we can

rewrite the equation as:

tr(∇F (A)X) =
−1

(⟨Azi, zi⟩⟨Azj, zj⟩)2
×
[
2ℜ

(
tr(Xzi z

∗
j)⟨Azj, zi⟩

)
⟨Azi, zi⟩⟨Azj, zj⟩

− |⟨Azi, zj⟩|2
(
tr(Xzi z

∗
i )⟨Azj, zj⟩+ tr(Xzj z

∗
j)⟨Azi, zi⟩

) ]
=

−1
(⟨Azi, zi⟩⟨Azj, zj⟩)2

×
[ (

tr(Xzi z
∗
j)⟨Azj, zi⟩+ tr(Xzj z

∗
i )⟨Azi, zj⟩

)
⟨Azi, zi⟩⟨Azj, zj⟩ − |⟨Azi, zj⟩|2

(
tr(Xzi z

∗
i )⟨Azj, zj⟩+ tr(Xzj z

∗
j)⟨Azi, zi⟩

) ]
=

−1
(⟨Azi, zi⟩⟨Azj, zj⟩)2

×
[ (

tr(Xzi z
∗
j⟨Azj, zi⟩) + tr(Xzj z

∗
i ⟨Azi, zj⟩)

)
⟨Azi, zi⟩⟨Azj, zj⟩ − |⟨Azi, zj⟩|2

(
tr(Xzi z

∗
i ⟨Azj, zj⟩) + tr(Xzj z

∗
j⟨Azi, zi⟩)

) ]
=

−1
(⟨Azi, zi⟩⟨Azj, zj⟩)2

×
[ (

tr(X(zi z
∗
j⟨Azj, zi⟩+ zj z

∗
i ⟨Azi, zj⟩)

)
⟨Azi, zi⟩⟨Azj, zj⟩ − |⟨Azi, zj⟩|2

(
tr(X(zi z

∗
i ⟨Azj, zj⟩+ zj z

∗
j⟨Azi, zi⟩)

) ]
= tr(X((

−1
(⟨Azi, zi⟩⟨Azj, zj⟩)2

×
[
⟨Azi, zi⟩⟨Azj, zj⟩(⟨Azj, zi⟩ziz∗j + ⟨Azi, zj⟩zjz∗i )

− |⟨Azi, zj⟩|2
(
⟨Azj, zj⟩ziz∗i + ⟨Azi, zi⟩zjz∗j

) ]
))

In the end, the gradient∇F (A) is given by:

∇AF (A) =
−1

(⟨Azi, zi⟩⟨Azj, zj⟩)2
×

[
⟨Azi, zi⟩⟨Azj, zj⟩(⟨Azj, zi⟩ziz∗j + ⟨Azi, zj⟩zjz∗i )

− |⟨Azi, zj⟩|2
(
⟨Azj, zj⟩ziz∗i + ⟨Azi, zi⟩zjz∗j

) ]
(6.10)

which will be used for the optmization of the Fubini-Study metrics.

123



margin

target neighbors

impostors

BEFORE AFTER

impostors target neighbors

local neighborhood

class 1
class 2
class 3

zi

zj

zl

zi
zj

zl

Figure 6.3: An illustration of the LMNN algorithm modified from [7]. The proposed Fubini-
study metric will be optimised such that the distances between each sample zi and its k = 3
target neighbours are reduced, while the distances to the impostors are increased.

6.3.5 Metric Learning with Fubini-Study metrics

Large Margin Nearest Neighbors (LMNN) [7] was selected as the metric learning algorithm.
The purpose of this algorithm is to reduce the distance between each sample and its target

neighbors, which are the k pre-selected nearest neighbor samples of the same class, while trying
to keep it away from its imposters, which are differently labeled samples that invade the margin
established by those target neighbor. An illustration of the LMNN algorithm is shown in Fig.
6.3. Assuming that the target neighbor set has been selected (the nearest neighbors of each
sample are calculated by the Fubini-Study distance), the loss function of LMNN consists of two
terms. The first term is the target neighbors pulling term, given by

εpull(A) =
∑
j⇝i

Fij(A) = 1− cos2(dA(zi, zj)) (6.11)

where Fij(A) is the distance function in Eq.(6.3) between complex-valued samples zi and zj

corresponding to Hermitian matrix A. j ⇝ i iff jth sample is a target neighbor of ith sample.
The second term is the impostors pushing term, given by

εpush(A) =
∑
i

∑
j⇝i

∑
l

(1− yil)[1 + Fij(A)− Fil(A)]+ (6.12)
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where yil = 0 if ith sample and lth sample are differently labeled and 1 otherwise, the term [·]+
is defined as [z]+ = max{z, 0}. Finally, the loss function is given by,

ε(A) = (1− µ)εpull(A) + µεpush(A), µ ∈ [0, 1] (6.13)

where µ is the weighting parameter for balancing push and pull effects. The gradient of the loss
function can be formulated as

∇A(ε(A)) = (1− µ)∇A(εpull(A)) + µ∇A(εpush(A)), µ ∈ [0, 1] (6.14)

where,

∇A(εpull(A)) =
∑
j⇝i

∇AFij(A) (6.15)

and,

∇A(εpush(A)) =
∑
i

∑
j⇝i

∑
l

(1− yil)[∇AFij(A)−∇AFil(A)] (6.16)

The Riemannian Steepest Descent algorithm in the toolbox Pymanopt [218] was implemented
using the cost function and gradient in Eq.(6.13) and Eq.(6.14), respectively, to seek the optimal
solution for positive-definite Hermitian matrix A. The main procedure for our metric learning
on complex projective space is given in Algorithm 6.1.

Algorithm 6.1: Metric learning in Complex Projective Space CPn−1

Data: N training samples Z = {(Zi, yi)}N1 with their associated labels, k is the
number of target neighbors.

Result: The optimal positive-definite Hermitian matrix A⋆

1 A← I(n), identity complex matrix of dimension n. ;
2 for i = 1 . . . N do
3 Define k target neighbors NA

s (i) and their corresponding impostors NA
o (i) for each

sample Zi using the Fubini-Study metric in Eq.(6.1) ;
end

4 Cost← ε(A,NA
s ,NA

o ), ε(.) is given by Eq.(6.13);
5 Grad← ∇A(ε(A)),∇A(.) is given by Eq.(6.14);
6 A⋆ ← SteepestDescent(A,Cost,Grad), SteepestDescent(.) is the Riemannian

Steepest Descent optimization algorithm inHn;
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6.4 Experiments

To investigate the effectiveness of the proposed metric in the complex domain, we conducted
several experiments for the facial expression recognition task. First, we introduced the CK+
and Oulu-CASIA datasets used in the experiments. All details of the experimental setup are
then reported in Section 6.4.2. In the end, classification results using the proposed metric and
comparative results with the Euclidean metric and other state-of-the-art approaches in facial
expression recognition are presented in Section 6.4.3.

6.4.1 Datasets

The proposed non-Euclidean metric learning algorithm was evaluated on two public facial ex-
pression datatsets. The Cohn-Kanade Extended (CK+) dataset [8] consists of 327 annotated
frontal video sequences performed by 118 subjects, wherein each subject is required to ex-
hibit seven facial expressions during the experiment, namely – anger, contempt, disgust, fear,
happy, sad and surprise. One sequence contains images from neutral expression (first frame) to
peak expression (last frame). For the classification experiments, we exploit only the last frame,
where the intensity of facial expression attains its peak. The Oulu-CASIA dataset [9] consists
of frontal facial videos from 80 subjects captured under three illumination conditions: dark,
normal and weak normal, during which the subjects were required to imitate six classic facial
expressions: anger, disgust, fear, happy, sad and surprise. Similar to the CK+ dataset, the last
frame of each sequence has the highest expression intensity. Therefore, we use the last frame
of the 480 video sequences under normal illumination for the classification task. Randomly
selected images of facial expressions from the two datasets are presented in Fig. 6.4.

6.4.2 Experimental setting

For each landmark configuration consisting of 68 points in CK+ and Oulu-CASIA datasets,
we first excluded the 17 points of face contour. The 2D centered landmarks are then writ-
ten in complex form to represent the facial shape z ∈ CP51 which is invariant to transla-
tion, scaling and rotation. Inspired by previous work [211, 212], proximity data were con-
structed to serve as input to classifiers by using the optimal Fubini-study metric obtained from
the LMNN algorithm, where each sample zi is represented by its similarity with all samples
[dA(z1, zi), . . . , dA(zk, zi)]

T in the dataset. In the end, K-Nearest Neighbors (KNN) and Sup-
port Vector Machines (SVM) were selected as classifiers which are most frequently used in
metric learning-based methods [175]. The hyperparameters of KNN: number of neighbors n
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Figure 6.4: Sample images of facial expressions extracted from the CK+ [8] and Oulu-CASIA
[9] datasets.

and hyperparameters of SVM with Gaussian kernel: regularization parameter C, kernel co-
efficient γ were determined through grid search method. The search field was configured as
follows: the number of neighbors n ∈ [1, 10], regularization C ∈ [1e-3, 1e+3] with step 10,
kernel coefficient γ ∈ [1e-5, 10]. For evaluation, we performed the same experimental protocol
in the literature [219], [127], [220], [211], namely 10-fold subject-independent cross-validation
on CK+ dataset and Oulu-CASIA dataset with two metrics: accuracy and confusion matrix. All
subjects were divided into 10 groups in ascending order of ID, 9 groups were used for training,
and the remaining group was used for testing. In the end, the average classification performance
is reported in the following sections.

6.4.3 Results and Discussion

First, we investigated the effect of target neighbors parameter k in the LMNN algorithm on the
classification performance. The evolutions of accuracy when varying k are shown in Fig. 6.5.
The optimal performance was achieved on CK+ and Oulu-CASIA datasets when k = 8 and k =

5, respectively, for the KNN classifier, while k = 7 and k = 5 give the best results for the SVM
classifier. The above settings of parameter k were retained for subsequent experiments. We
then verified the effectiveness of the LMNN algorithm based on the proposed metric. Table 6.1
presents the average classification accuracy of the Fubini-Study metric before and after LMNN-
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based distance metric learning for facial expression recognition task on CK+ and Oulu-CASIA
datasets, respectively. From the obtained results, we can observe that the optimal Fubini-Study
metric dA⋆ obtained maximum gains of 4.84% and 9.89% in classification accuracy on CK+
and Oulu-CASIA datasets compared to the original ones, which demonstrates that the use of a
suitable metric can enhance facial expression recognition performance. In addition, the SVM
classifier generated better classification performance than KNN, both in terms of the original
and the optimal metric.
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Figure 6.5: Average classification accuracy on the CK+ and Oulu-CASIA datasets using the
Fubini-Study metric when varying the target neighbor parameter k.

Table 6.1: Overall accuracy (Acc %) of of two types of metrics, i.e., the Euclidean metrics
and the Fubini-Study metrics, before and after LMNN-based metric learning on the CK+ and
Oulu-CASIA datasets. ([·]I : identity matrix; [·]⋆: optimal matrix.)

Dataset Type Metric
Classifier

KNN SVM

CK+
Euclidean

Original Metric dMI 79.84 79.97
Optimal Metric dM⋆ 86.41 89.15

Fubini-Study
Original Metric dAI 85.81 87.53
Optimal Metric dA⋆ 90.65 91.05

Oulu-CASIA
Euclidean

Original Metric dMI 51.75 50.49
Optimal Metric dM⋆ 61.66 61.84

Fubini-Study
Original Metric dAI 53.01 55.62
Optimal Metric dA⋆ 62.91 63.75

6.4.3.A Fubini-Study metric vs Euclidean metric

A comparison with the Euclidean metric in Eq.(6.2) in measuring the similarity between dif-
ferent facial expressions is also executed on CK+ and Oulu-CASIA datasets to validate the
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Table 6.2: Confusion matrix using two optimal metrics, i.e., Fubini-Study metric and Euclidean
metric obtained after metric learning for the CK+ dataset. (Angry (An); Contempt (Co); Disgust
(Di); Fear (Fe); Happy (Ha); Sad (Sa); Surprise (Su). Underlining indicates superior perfor-
mance of the proposed metric.)

(a) Fubini-Study metric (b) Euclidean metric
An Co Di Fe Ha Sa Su

An 84.4 2.2 4.4 0.0 0.0 8.9 0.0
Co 5.5 61.1 5.6 11.1 5.6 11.1 0.0
Di 0.0 0.0 98.3 0.0 0.0 1.7 0.0
Fe 0.0 4.0 0.0 80.0 4.0 4.0 8.0
Ha 0.0 0.0 0.0 1.4 98.6 0.0 0.0
Sa 14.3 3.6 0.0 0.0 0.0 82.1 0.0
Su 0.0 1.2 0.0 0.0 0.0 0.0 98.8

An Co Di Fe Ha Sa Su
An 84.4 2.2 4.4 0.0 0.0 8.9 0.0
Co 11.1 50.0 0.0 5.6 0.0 27.8 5.6
Di 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Fe 0.0 0.0 0.0 72.0 16.0 8.0 4.0
Ha 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Sa 14.3 0.0 3.6 0.0 0.0 78.6 3.6
Su 1.2 1.2 0.0 1.2 0.0 0.0 96.4

Table 6.3: Confusion matrix using two optimal metrics, i.e., Fubini-Study metric and Euclidean
metric obtained after metric learning for the Oulu-CASIA dataset. (Angry (An); Disgust (Di);
Fear (Fe); Happy (Ha); Sad (Sa); Surprise (Su). Underlining indicates superior performance of
the proposed metric.)

(a) Fubini-Study metric (b) Euclidean metric
An Di Fe Ha Su Sa

An 58.8 12.5 3.8 2.5 1.2 21.2
Di 20.0 50.0 5.0 3.8 3.7 17.5
Fe 5.0 5.0 65.0 8.7 10.0 6.3
Ha 1.2 1.3 11.2 85.0 0.0 1.3
Su 2.5 5.0 15.0 0.0 76.3 1.2
Sa 26.2 10.0 12.5 1.3 2.5 47.5

An Di Fe Ha Su Sa
An 51.2 21.3 6.3 0.0 0.0 21.2
Di 25.0 38.8 7.5 2.5 3.7 22.5
Fe 5.0 5.0 60.0 13.8 6.2 10.0
Ha 5.0 0.0 11.3 83.7 0.0 0.0
Su 1.2 5.0 11.3 0.0 82.5 0.0
Sa 21.3 13.7 11.2 0.0 1.3 52.5

effectiveness of the proposed metric. From the results of the Euclidean metric in Table 6.1,
we can observe that the performance of KNN and SVM is improved by the proposed metric,
regardless of whether metric learning is employed or not. These results demonstrate that fa-
cial deformations can be better modeled in complex projective space rather than in Euclidean
space. To further investigate the validity of the proposed metric for identifying each facial
expression, we provide also the confusion matrix obtained using the two learned metrics, i.e.,
Fubini-Study metric and Euclidean metric obtained after metric learning, for the CK+ and Oulu-
CASIA datasets in Table 6.2 and Table 6.3, respectively. For CK+ dataset, the Disgust, Happy,
and Surprise expressions can be well recognized using the Fubini-study metric with an accu-
racy rate of over 95%, while the main confusions happened in the Contempt expression. This
can be explained by its slight facial changes and its smaller sample size compared to other ex-
pressions. When compared with the Euclidean metric, the recognition performance of the Con-
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tempt, Fear, Sad, Surprise expressions is enhanced by up to 11.1%. For Oulu-CASIA dataset,
the two metrics can both better identify Happy and Surprise than other expressions. Among all
expressions, Angry, Disgust, Fear, Happy can be better classified by the Fubini-Study metric
with a maximum gain of 11.2%. Fig. 6.6, Fig. 6.7 show the 2D visualization of the CK+ and
Oulu-CASIA datasets using the t-SNE [221] with the two metrics. For CK+ dataset, the 2D
visualization obtained by the original Euclidean metric in Fig. 6.6 (c) shows an approximately
linear relationship, and the points of different expressions are mixed together, while the original
Fubini-study metric (Fig. 6.6 (a)) has been able to well distinguish the two expressions: Happy

and Surprise. After metric learning, the Fubini-study metric can lead to a more uniform feature
distribution for different expressions compared to the Euclidean metric. We reached the same
conclusion on the Oulu-CASIA dataset that our proposed metric always yields a more discrimi-
native feature representation both before and after metric learning, with respect to the Euclidean
metric.

(a) With original Fubini-study metric (b) With optimal Fubini-study metric

(c) With original Euclidean metric (d) With optimal Euclidean metric

anger sad fear happy disgust contempt surprise

Figure 6.6: 2D visualization of CK+ dataset using t-SNE method with the proposed metrics.
(a-b) show the visualization results before and after metric learning with Fubini-Study metric.
(c-d) show the visualization results before and after metric learning with Euclidean metric.

6.4.3.B Comparison with the State-of-the-Art

We first compared the proposed method with state-of-the-art approaches for CK+ dataset, with
the details reported in Table 6.4. For a fair comparison, only the geometry-based methods
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(a) With original Fubini-study metric (b) With optimal Fubini-study metric

(c) With original Euclidean metric (d) With optimal Euclidean metric

anger disgust fear happy surprise sad

Figure 6.7: 2D visualization of Oulu-CASIA dataset using t-SNE method with the proposed
metrics. (a-b) show the visualization results before and after metric learning with Fubini-Study
metric. (c-d) show the visualization results before and after metric learning with Euclidean
metric.

that use facial landmarks were considered in the comparative evaluation. We divided these
methods into two categories, depending on whether the input is a static image or a dynamic
video sequence. The only comparable static method [211] used the Gram matrix computed
from landmarks as the shape representation and conducted a non-Euclidean metric learning on
the manifold of oriented ellipses centered at the origin in Euclidean n-space. The comparison
results show that our method performs better, both in terms of the original metric and the optimal
metric. For dynamic approaches, the ranked-first approach is the work of [127], where the facial
landmark sequences were modeled as parametrized trajectories on the Riemannian manifold
of positive semi-definite matrices of fixed-rank. However, their metric applied to calculate
the similarity between trajectories contains a weight parameter, which needs to be carefully
selected for each dataset. According to the performance ranking, the following method [220]
encoded time-varying facial shapes and used deep neural networks for classification. Compared
with these work, our method using solely the last frame achieves competitive results on facial
expression recognition. For Oulu-CASIA dataset, few geometry-based methods are available
for comparison. Based on this, we implemented the static method [211] using the code provided
by the author and the comparison results are shown in Table 6.5. Consistent with the results on
CK+, our approach always yields higher accuracy rates, regardless of whether metric learning
is used, proving its effectiveness once again for facial expression recognition.
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Table 6.4: Comparison with state-of-the-art geometric methods on the CK+ dataset.

Input Methods Accuracy
Video sequence Shape velocity on G [222] 82.80
Video sequence LDCRFs [223] 85.84
Video sequence ITBN [224] 86.30
Video sequence Intrinsic SCDL - SVM [220] 89.43
Video sequence Extrinsic SCDL - Bi-LSTM [220] 95.73
Video sequence Shape trajectories on S+(d, n) [127] 96.87

Static image original metric on S+
c (2, n) [211] 85.83

Static image original metric on CPn−1 (ours) 87.53
Static image optimal metric on S+

c (2, n) [211] 90.53
Static image optimal metric on CPn−1 (ours) 91.05

Table 6.5: Comparison with state-of-the-art geometric methods on the Oulu-CASIA dataset.

Input Methods Accuracy
Static image original metric on S+

c (2, n) [211] 53.33
Static image original metric on CPn−1 (ours) 55.62
Static image optimal metric on S+

c (2, n) [211] 62.08
Static image optimal metric on CPn−1 (ours) 63.75

6.5 Conclusion

In this chapter, a non-Euclidean metric learning method was proposed and applied to facial ex-
pression recognition, where the facial shapes were directly encoded by the equivalent class of
the landmarks in the complex projective space. The similarity between them can be measured
by Fubini-Study metrics. A metric learning algorithm based on Large Margin Nearest Neigh-
bors (LMNN) was adapted to perform metric optimization on the Riemannian manifold, i.e. the
space of positive-definite Hermitian matrices. Facial expression recognition experiments were
conducted on two public datasets to verify the validy of the proposed method. The experimental
results showed that, compared to the metric defined in the Euclidean space, the Fubini-Study
metrics are more effective and discriminative for identification of facial expressions. The latter
one also achieves comparable performance to the state-of-the-art approaches. In the next chap-
ter, we will discuss the limitations of the methods involved in this thesis and the perspectives
for future research on emotion recognition.
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Emotion recognition, an important branch of affective computing, has received considerable
attention for enabling machines to automatically recognise human emotions. With advances in
sensor technologies and human-computer interaction systems, there is a growing trend to mi-
grate from laboratory environments to unrestricted scenarios such as medical simulation train-
ing. However, there is still a lack of relevant research on the latter. In order to build emotion
recognition systems in real-life settings, from a technical point of view, appropriate intelligent
algorithms for emotion recognition should be designed at the behavioural, physiological, and
even multimodal levels. From a practical point of view, recognition algorithms need to be in-
tegrated into the user interface and the effects of the emotional feedback obtained should be
investigated. The work we present in this thesis concentrates on exactly these two aspects. At
the end of the thesis, we review the main contributions and their corresponding limitations in
Sections 7.1 and 7.2, and we discuss the perspectives for future work in Section 7.3.

7.1 Contributions

7.1.1 Technical level

From the physiological perspective, we proposed a novel emotion recognition method based
on peripheral physiological signals. A deep neural network based on the intermediate fusion
strategy was designed to optimize feature extraction and fusion of multivariate sequences, where
a modality-specific encoder based on residual temporal convolution was first employed to ex-
tract low-level unimodal features, and then a transformer-based shared encoder with stacked
multimodal features as input was applied to capture both inter-modal correlation information.
To obtain a generalized model, we adopted a self-supervised learning (SSL) scheme. The pro-
posed model was first pre-trained on a large-scale unlabelled physiological dataset with the
pretext objective of signal transformation classification. A series of downstream emotion recog-
nition tasks involving mental stress, emotional state, arousal and valence were then performed
to validate the effectiveness of the pre-trained model. Finally, our approach achieved state-
of-the-art results in comparison with fully-supervised, unsupervised, and self-supervised-based
methods.

From the behavioural perspective, We proposed a non-Euclidean metric learning method
for the facial expression recognition task. We encoded facial shapes as equivalence classes in
the complex projective space using the complex form of detected 2D landmarks, resulting in
an affine-invariant shape representation. A metric learning algorithm based on Large Margin
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Nearest Neighbors (LMNN) was applied to optimize the metrics in the non-linear space, thereby
yielding a feature space with smaller intra-class differences and larger inter-class differences.
The proposed method finally obtained superior performance to Euclidean metric learning meth-
ods and yielded competitive results in comparison with state-of-the-art methods.

From the multimodal perspective, we presented a novel deep geometric framework for mul-
timodal stress and pain detection tasks. To fully explore the potential interactions between
different modalities, we fused behavioural and physiological information into a single symmet-
ric positive definite (SPD) matrix-based representation that incorporates both intra- and inter-
modal correlations. To cope with the non-linearity of the manifold induced by the SPD matrices,
we employed a tangent space mapping technique to map the resulting SPD matrix sequences
into vector sequences in linear space, enabling the use of an LSTM-based deep neural network
for classification. To the best of our knowledge, this is the first use of the geometry of the
SPD matrix for fusing physiological and behavioural signals. This novel fusion strategy al-
lows the proposed method to achieve improved performance in comparison with feature-level
or decision-level fusion-based methods.

7.1.2 Practical level

We conducted emotion recognition experiments in a real-life setting, i.e., high-fidelity medical
simulation, where multimodal data consisting of peripheral physiological and action signals
and a series of psychological scales were collected from students. The evaluation results of
the experiments confirmed the validity of the proposed algorithms in Chapters 3 and 4, which
were then integrated into a graphical user interface to explore its impact on the pedagogical
debriefing sessions. Ultimately, the users’ feedback showed that emotion-aware teaching can
facilitate students’ acquisition of competencies and increase their engagement.

7.2 Limitations

7.2.1 Technical level

From the physiological perspective, first, we stacked the embedding sequences from the out-
put of modality-specific encoders as inputs to the transformer, expecting to learn inter-modal
dependencies through the self-attention mechanism. However, since the complexity of the
transformer is O(N2) at an input sequence length of N , this natural concatenation and dense
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cross-modal attention operation entail high computational costs, especially for large-scale learn-
ing [225]. Secondly, regarding the pretext task of self-supervised learning, we adopted a fixed
number of signal transformations to learn generalised representations for downstream tasks.
However, there may be an optimal combination strategy for signal transformations and an op-
timal set of parameter settings for these transformations. Furthermore, the optimal transfor-
mation policy probably varies from one modality to another. Third, the self-supervised pre-
training process suffers from an early de-generalisation problem, where the model possibly
converges too fast on the discriminative pretext task thereby losing its generalisation in down-
stream tasks [226].

From the behavioural perspective, our proposed method has two major limitations. First, it
is based on static facial landmarks and therefore only takes into account spatial information.
However, the execution of facial expressions is a dynamic process. Thus, the method neglects
to encode the temporal changes of facial point positions. Secondly, recent methods have at-
tempted to apply 3D facial landmarks for the identification of facial expressions, which can
better tackle the distortions introduced by head pose variations and obtain more meaningful
distance measurements. However, the proposed method cannot be extended to the 3D case as it
is not possible to express the coordinates of 3D points in complex form.

From the multimodal perspective, there are two main limitations in our approach. First, the
multimodal signals are temporally inconsistent, which is manifested by dense continuous phys-
iological signals and relatively sparse video images. We adopted the most intuitive approach, a
downsampling techinique to match multimodal data sizes for the computation of the proposed
SPD-based representation. However, this may distort the correspondence between instances of
multimodality [227]. Second, to address the non-linearity of the SPD manifold, we adopted an
intrinsic solution of projecting the manifold data onto a tangent space at some reference point
via a logarithmic map. However, this may introduce approximation errors, especially when the
projected point lies further away from the reference point.

7.2.2 Practical level

First, in terms of ground truth collection, a series of self-report questionnaires were applied to
measure emotional states. However, they inevitably have some limitations. They only record
emotions at a particular moment in time, rather than providing a continuous measure, and there
exist recall biases in the post hoc collection of subjective experiences. In addition, there may
be a delay between the real emotional experience and the emotion perceived by the individual.

136



All of these factors affect the quality of the labeling. Second, from the perspective of the recog-
nition algorithm, our approach employed a binary classification policy for the target emotion,
i.e. stress. However, given the complexity and non-linearity of human emotional responses,
differentiating only between stressed and unstressed appears to be ineffective in capturing the
subtle evolution of emotional states.

7.3 Future work

7.3.1 Technical level

From the physiological perspective, for transformers with stacked multimodal features as
input, one of the future research lines is how to reduce their computational complexity. One
possible solution is to adopt a sparse attention mechanism, which measures similarity only
for certain key positions in a sequence, and the resulting sparse attention matrix allows for
reduced computational time and memory requirements. Furthermore, in order to maximise
the generalisation of the representations learned by the self-supervised model, a scheme that
can automatically learn the optimal set of signal transformations for each modality needs to
be designed for its integration into the original framework. Moreover, the same idea could be
applied to the design of upstream pretext tasks, as sometimes learned features on the basis of
the adopted pretext task show poor transferability on downstream data.

From the behavioural perspective, the proposed method can be extended to dynamic sce-
narios. Sequences of landmarks will be explored to model the temporal relationship, where
successive landmark configurations are connected by geodesic to create a parameterized curve
in the complex projective space and the final classification will be executed based on the com-
parison of similarity between the curves. In addition, we will also explore the application of
other types of landmarks, such as body landmarks, for emotion recognition. Body movements
involve larger muscle groups with distinct changes, whereas facial motions tend to be more
subtle and may be difficult to discern. In such cases, the use of body landmarks as an emotion
recognition modality may provide more information than facial landmarks. Moreover, body
landmarks are frequently involved in another interesting direction of research, namely action
recognition.

From the multimodal perspective, in order to better address the inconsistency on the time
scale of multimodal data, an implicit alignment module can be introduced into our proposed
model to obtain better performance. Different backbones can first be applied to the physiologi-
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cal and behavioural modalities respectively to extract low-level features, followed by the calcu-
lation of the similarity between the sub-components to align the features from different modali-
ties before proceeding to fusion. Furthermore, future work could develop deep neural networks
suitable for non-linear SPD matrices in order to avoid distortion of the manifold data due to
tangent space mapping. Recent studies [228, 229] have proposed end-to-end deep Rieman-
nian architectures that can be directly applied to SPD matrices. An example is SPDNet [228],
which is inspired by classical convolutional neural networks, where a bilinear mapping layer
and an eigenvalue rectification layer were built to simulate convolutional and linear rectification
operations.

7.3.2 Practical level

First, in order to enhance the reliability of the acquired emotion’s ground truth, assessments
from a third party such as a trainer or a patient can be incorporated in the data collection proce-
dure. Second, in order to optimise the quality of pedagogy, a multi-level emotion classification
system should be developped. A more optimal solution would be performing regression tasks
to predict arousal and value scores, allowing to obtain a more comprehensive, continuous emo-
tional evolution of the trainee during the medical simulation. In addition, person-specific emo-
tion recognition models can be also deployed to facilitate individualised teaching programmes
for students. Third, during the tests of the developed graphical interface, we revealed corre-
lations between the recognized stress fragments and verbal expressions, which guided us to
incorporate speech signals in future recognition frameworks to achieve more accurate and ro-
bust performance.
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