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Preamble

I started my academic career with a Ph.D. in so-called “pure applied
maths” [Loi16], working on functional optimization[RL15, LO16] and
probabilistic graphical models [LO14]. While I immensely enjoyed the
powerful tools I got to study and later develop, I also regretted not tackling
concrete issues. I decided that after my Ph.D., I would start with real
problems and let their characteristics and constraints guide my research.
Circumstances and opportunities led me to study geospatial machine
learning at IGN, and I could not have asked for a more exciting, impactful,
and fertile playing field.

The message of this manuscript is simple: geospatial data has distinc-
tive characteristics leading to unique machine-learning challenges and
impactful applications. I draw two conclusions from this observation:
(i) the analysis of geospatial data should rely on bespoke methods to
leverage its unique structure; (ii) geospatial tasks are great candidates
for evaluating and motivating new machine learning approaches. This
habilitation showcases various methods involving abstract mathematical
reasoning, sensor-specific considerations, and everything in between. The
common motto is always to leverage the specificities of the considered
problem into the architecture of the algorithm for added precision, speed,
and parsimony.

In the title of this manuscript, I use the phrase “structured learning”,
a reference to “structured optimization”. This sub-field of functional
optimization consists in designing efficient algorithms that exploit the
structure of the functional to minimize. Although most of the work here
is more applied than pure mathematical optimization, I have applied this
principle throughout all my research.

The term “geospatial data” refers to acquisitions with a large-scale spa-
tial structure, without necessarily referencing their absolute position on
Earth. This encompasses remote sensing data, such as satellite or aerial
acquisitions, but also 3D scans or images taken from large scenes.
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Abstract

Abstract

This manuscript presents an overview of my work in the field of geospa-
tial machine learning, a rapidly growing interdisciplinary field that poses
many methodological challenges and has a wide range of impactful appli-
cations. Throughout my research, I have focused on developing bespoke
approaches that leverage the unique properties of geospatial data to create
more efficient, precise, and parsimonious models.

This manuscript is divided into four main chapters, each covering a
different property of geospatial data structures that can be leveraged algo-
rithmically. The first chapter presents a versatile mathematical framework
formalizing the concept of spatial regularity with graphs. We propose an
efficient algorithm that tackles a broad family of spatial problems and pro-
vides novel convergence guarantees and significant speed-ups compared
to generic approaches.

The second chapter introduces a deep learning method that extends the
idea of exploiting graph regularity to the case of massive 3D point clouds.
We simplify the task of large-scale semantic segmentation by formulating
it as as a small graph labelling problem. Our compact models reach high
precision at a fraction of the computational cost of other approaches.

In the third chapter, we present a collection of methods designed to take
advantage of the data structure inherited from 3D sensors. By considering
the sensors’ structure, we develop powerful networks with state-of-the-art
accuracy, latency, and robustness for various applications and data types.

The last chapter dives into the real-life challenge of automated satellite
time series analysis for crop mapping. Recognizing the difference between
such data and standard formats used in computer vision, we propose novel
and streamlined architectures that achieve unprecedented precision while
remaining efficient and economical in memory and preprocessing. We also
introduce the task of panoptic segmentation for satellite time series and an
efficient architecture to solve this problem at scale.

In summary, this manuscript argues that geospatial problems represent
a challenging and impactful venue for evaluating the newest machine
learning and vision methods and a fertile source of inspiration for design-
ing novel approaches.

An extended abstract in French is available at the end of the manuscript.
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CHAPTER 1

Introduction

Geospatial data analysis has obvious assets as a scientific field: virtually
unlimited data, abundant annotations, challenging structure, unparalleled
scale, and exciting applications. This combination makes it a promising
and exciting field for evaluating and designing novel machine learning
algorithms. This chapter details the specificities of geospatial data and
presents some of its most motivating applications. We then argue for the
benefits of using dedicated architectures, and present an overview of how
the works in this manuscript leverage the unique structures of geospatial
data.

1 The Unique Structure of Geospatial Data

Geospatial data refers to data augmented with their location on Earth. By
extension, we use this term to designate data with a large-scale spatial ex-
tent without necessarily referring to an absolute positioning system. Such
data are typically collected with various remote sensing sensors and ex-
hibit particular properties not commonly encountered in natural images
and videos. In particular, the diversity of complex sensors requires special
considerations. Geospatial problems are typically large-scale, with entan-
gled spatial, temporal, and spectral dimensions. Lastly, the absolute tem-
poral and spatial frame of reference is a crucial characteristic that can be
exploited for added precision and speed.

Multi-Sensor. As for photography, geospatial data inherits the structure
of the sensors used for acquisition. While intrinsic and extrinsic parame-
ters are often sufficient to characterize the acquisition of a natural image,
remote sensing sensors require specific considerations. Geospatial data can
be collected by various sensors: active or passive, mobile or static, terres-
trial, aerial or spatial, within or beyond the visible light spectrum. In this
work, we focus mainly on two types of data:

• LiDAR Scans. This active sensor uses lasers whose return times
can be used to infer the location of reflective surfaces. LiDARs can
be mounted on a fixed frame [HSL+17, ASZ+16], a mobile plat-
form [GLSU13, LAL22], manned or unmanned aircrafts [KLMC22a,
VAG20, IGN], and even satellite [DBG+20]. The high precision and

3
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(a) Optical SITS (b) Radar SITS (c) Orthophotography

(d) Aerial Scan (e) 3D Time Sequence (f) Terrestrial Scans

Figure 1.1: Example of geospatial data types considered in this manuscript.

low latency of LiDARs have contributed to their wide adoption for in-
dustrial applications. Spinning LiDAR, in particular, have a complex
acquisition geometry in which the sensor spins while being mounted
on a mobile platform in a dynamic environment.

• Satellite Image Time Series (SITS). Satellites offer a privileged perspec-
tive on our planet in terms of extent and viewpoints. Some satel-
lites provide optical information across a broad spectrum of frequen-
cies thanks to sophisticated sensors [DDBC+12], while others use
radar waves to gather rich information about objects reflecting spe-
cific bandwidths [PRG+16]. With carefully planned orbits, the satel-
lites fly over certain areas at a periodical rate of a few days or less,
producing temporal sequences of images.

Large-Scale. Earth Observation (EO) is one of the primary sources of
geospatial data. Global coverage is standard for satellite [DDBC+12,
PRG+16, DBG+20], and country-scale acquisition campaigns are frequent
for aerial imagery [IGN]. Geospatial data analysis tasks often require pro-
cessing data at a near-global scale, e.g. biomass estimation for carbon cap-
ture assessment [LKA+22] or agricultural monitoring for worldwide food
security [MRB+19, PI18].

Geospatial processes display influences at different spatial and tempo-
ral scales simultaneously: the crop cultivated in a field is influenced by the
parcel’s slopes, but also its bioclimatic regions; the fields’ appearance dur-
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ing an acquisition will be influenced by the position of the sun and the at-
mospheric conditions [RMM20], but also the cumulative weather patterns
of the last few months [NPA22] and local agricultural practices. Some pro-
cesses require considering large areas simultaneously: some urban land use
classes can only be decided based on their position within complex urban
configurations. The extent of EO is typically arbitrary and only depends on
the memory and computation available. Consequently, modelling large-
scale geospatial processes necessitates efficient and parsimonious methods.
In contrast, computer vision considers images with a fixed and predictable
extent and prioritizes precision over speed and scalability.

Geospatial processes also exhibit multiple and intricate data shifts. We
observe a combination of prior-shift (more vines in Italy than Norway),
concept-shift (roofs look different in the South or North of France), and
covariate-shift (meteorological conditions vary year to year) [KL18].

Multidimensional. The influence of the spatial dimensions on geospatial
processes is evident; “everything is related to everything else. But near things
are more related than distant things” is often referred to as the first law of
geography [Tob70]. However, the temporal and spectral dimensions also
play a crucial role in remote sensing data analysis.

The multi-temporality of geospatial data can be a consequence of the
orbit of satellites or the very nature of the sensor, such as spinning LiDARs.
For many applications, the temporal dimension of the acquisitions is cru-
cial for differentiating different classes, such as tree species or crop types
[GLGC19], which may appear similar at specific dates and only differs in
their evolution. For other applications, time is a structuring constraint,
e.g. real-time 3D perception for autonomous driving [LAL22].

Satellite images often have a greater spectral extent than natural images.
This goes from a fourth near-infrared channel or the 13 bands of Sentinel-
2, to hyperspectral imagery, which uses hundreds [MPH+22]. This infor-
mation proves decisive when analyzing materials with specific spectral re-
sponses, such as vegetation [CRC05, TDH+13], minerals [CS95], water re-
sources [GCB07], and anthropogenic structures [WHL08].

Geo-referenced. A key difference between natural images and geospatial
data is the absolute spatio-temporal coordinates of the latter. One of video
analysis’ most challenging aspects is tracking the objects of interest across
frames. The positions of static geospatial objects such as roads or agricul-
tural parcels are given in an absolute referential (typically WGS84 [SM98],
or Lambert93 [Tho52]), greatly simplifying the co-registration between ac-
quisitions taken at different dates or with different sensors.

The spatio-temporal coordinates are also structuring information.
Knowing that a video frame is the 13-th of the sequence does not give much
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information about its content nor impacts its interpretation. In contrast, the
time of year when a satellite image is taken drastically influences its anal-
ysis, and the exact time of day also impacts the radiometry through the
sun’s position. Weather patterns also significantly affect geospatial pro-
cesses such as plant growth [NPA22], and dictate cloud cover, which com-
pletely blocks optical observations. Likewise, the exact coordinate of a pixel
in an image is usually not informative. In contrast, the absolute position
of a geospatial acquisition may strongly influence its interpretation due to
spatial domain shift.

Richly Annotated. Language models have access to a near-infinite cor-
pus by training on the entire Internet with efficient self-supervised tasks
[RWC+19, GBB+20]. Many aligned text-image pairs [RKH+21] are also
available online as captioned images. However, direct annotations of text
and images often require costly and time-consuming human intervention.

Geospatial data benefit from extensively available annotations. In-
deed, Geographical Information Systems (GIS) [Goo10, Cha08] are widely
used by public and private actors alike for numerous tasks such as ur-
ban and terrain modelling [For08], driving guidance systems [LWZ20],
or econometrics [BJL+02]. Thanks to increasingly open public data poli-
cies [geo], crowd-sourced initiatives [Map], and academic efforts [GL21b,
LAL22, GLSU13, SBK21], the amount of open-access annotated geospatial
data has starkly increased. For example, countries such as France and Den-
mark release yearly the cultivated crops in each agricultural parcel of the
country [RPG], amounting to millions of labels every year. Many govern-
ments publish publicly the cadastre (extent of properties) of their entire ter-
ritory [BDT]. The wide availability of annotated geospatial data results
in a uniquely favourable setting for developing and evaluating machine
learning algorithms.

Despite a surface-level resemblance, the structure of geospatial data
differs vastly from natural images and videos. In particular, the data
is gathered with a variety of active or passive sensors with unique
properties. The data also displays a complex multidimensional
structure with entangled spatial, temporal, and spectral dimensions.
The scale of data is also more extensive than typically encountered in
computer vision, requiring scalable algorithms for training and infer-
ence. However, remote sensing data benefits from absolute spatial
and temporal referencing, making tracking more accessible and con-
ditioning information extraction. Contrary to many machine learning
applications, remote sensing data can be paired with a large amount
of open-access annotations at a low cost.
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2 Impactful Applications of Geospatial Analysis

After years of unbridled enthusiasm from the industry as well as the gen-
eral public, some voices have called the true potential of computer vi-
sion for real-life applications to be over-hyped [Man18], unsustainable
[TGLM21], and even unethical [VN20]. Such declarations can appear in-
flammatory and provocative. Notwithstanding, we argue that automated
geospatial analysis assuredly leads to impactful and beneficial applica-
tions. Below is a non-exhaustive list of applications that motivated this
manuscript’s work.

Crop Mapping. The ability to classify and predict the yield of crops at
a large scale is a crucial part of the growing concern for global food se-
curity [MRB+19, PI18]. Through its Common Agricultural Policy, Europe
distributes over 57B euros each year in subsidies [CAP] (25B dollars in the
US). The fair allocation of this assistance implies at least partial automa-
tion, as France alone counts close to 10 million individual parcels [RPG].
Moreover, crop type classification can also ensure that the best agricultural
practices are employed to preserve soil [AAM+11, Bul92] and to maximize
yield without relying on pesticides [KKN+15, SL08].

Forest Inventory. Automated vegetation analysis from aerial observation
is an essential step for many forestry applications [BLBK17], such as forest
management [JSM01], biomass estimation [FSM+16, Lu06], or forest fire
modelling and prevention [MR11, Mac96, SOC01]. In turn, this allows for
further ecological studies of the forest biome, such as estimating habitat
suitability [HDW+06, MVG+09] or deriving biodiversity indicators [BD05,
Nag01, IK98].

LiDAR-equipped satellite [DBG+20] offers the perspective of global
monitoring of forest resources [LKA+22]. However, aerial or space-borne
remote sensing of natural forests is often limited to canopy observation and
misses its multilayer structure of [KLMC22a, FMJ+15]. Furthermore, anno-
tations often require costly in-situ observations [KLMC22b].

Land Use/Cover Mapping. Thanks to aerial/spatial points of view, re-
mote sensing allows states to oversee their territory’s land usage exten-
sively. This has proven especially important to monitor the increase in im-
pervious surface [AJG96, SBT+05] and its harmful environmental effects.
Automated and large-scale land-use classification is also helpful in mon-
itoring urban sprawl [HL03, VOOR19] and is a step towards sustainable
urban development [TL16].

Another use of automated remote sensing analysis is the possibility
of emergency mapping [BGT15] to better facilitate disaster response and
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damage assessment, for floods [ASM+22], earthquakes [DG12, DBC+11],
tsunamis [KMMB20], or forest fires [CC89], and even conflicts [LS19].

Digital Twins. Extensive acquisition capabilities combined with effi-
cient processing of 3D data allow for the perspective of digitizing entire
cities [Bat18, KNL+20] as well as extensive industrial facilities [NSGW21,
KFC+19]. Both prospects represent significant environmental and eco-
nomic stakes. For example, digital cities allow to better design and monitor
urban ecological corridors [PZL17]. Modelling of industrial infrastructures
can increase productivity [VBR+17, MLL+19] or facilitate their decommis-
sioning [PTB16].

Autonomous Driving. Autonomous driving is predicted to become a
norm-shattering reality in the near future. Nevertheless, there are still sev-
eral significant hurdles to overcome for large-scale deployment, not only
regarding social, ethical, and engineering issues but also in terms of ma-
chine learning, computer vision, and remote sensing research. As the de-
bate rages on over whether or not cameras are the only necessary sensor for
fully autonomous vehicles, several major players have opted for a highly
diversified array of sensors on their prototypes: thermal cameras, radar,
LiDAR in various configurations, ultrasounds sensors, audio sensors, and
so on [Zoo, GKM+20, Val, Lyf]. This diversity and complementary of sen-
sors, combined with the entangled spatial and temporal dimensions of the
acquisitions, make some aspects of this problem a flagship remote sensing
/ geospatial application.

Cultural Heritage / Archaeology. Remote sensing technologies have been
used successfully for monitoring heritage sites and discovering hidden ar-
chaeological sites for several decades [LWG+19]. Aerial LiDAR has al-
lowed archaeologists to find remnants of forgotten civilizations hidden un-
der heavy forest cover in the Amazon [PBI+22] and the jungles of Angkor
[EFP+13]. LiDAR scanning has also been used to save endangered artifacts
[Ico, LL19] or help their protection [PBM+18], and more generally, backing
up our shared cultural and ecological heritage [FLE+22].

3 Exploiting the Structure of Geospatial Data

Due to their unique properties, geospatial problems present unique chal-
lenges, making them a compelling opportunity for evaluating and design-
ing new approaches in machine learning and computer vision.
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3.1 Geospatial Analysis as an Evaluation

Machine learning methods are typically evaluated on problems taken from
vision, language, or medicine. Geospatial tasks constitute an excellent stan-
dard for measuring models’ performance, scalability, and expressiveness.
We provide here some pointers on how to increase the appeal of geospatial
problems as a standard evaluation task for learning algorithms.

Accessible Datasets: Accessibility and ease of use are central to the suc-
cess of image datasets: images are easy to open and manipulate with most
modern programming frameworks. This is far from the case for geospatial
data, which tends to use dedicated formats which are typically harder to
manipulate, e.g. .tiff for georeferenced images or .las for 3D scans. Using
generic formats such as .npy or .h5 format can significantly lower the bar-
rier of entry for researchers interested in applying their method to geospa-
tial data. Datasets should also, of course, be freely distributed and acces-
sible. Platforms like Zenodo offer free hosting with unlimited downloads
for academic datasets.

Cleaned and Focused Problems: Large-scale spatial data exhibits a vari-
ety of complex domain shifts. For example, the composition of acquisitions
at different dates, times, or days, translates into radiometric discrepancies.
Rare classes can only appear in select regions, complicating the creation of
meaningful train/validation/test sets. The class nomenclatures useful for
practitioners can often be problematic for learning because of their ambi-
guity, excessively rare classes, or significant inter-class similarities.

When constructing datasets to assess the performance of learning algo-
rithms, it is essential to curate the data to insulate the precise task eval-
uated. Indeed, spatial domain shifts or rare classes may bias the metrics
in favour of specific architectures for reasons unrelated to the evaluated
tasks. Adaptive sampling or reduced nomenclature can help mitigate these
issues. Keeping adequate metadata can allow specific evaluation settings
focused on the messiness and complexity of real-world data.

Geospatial benchmarks need to consider the spatial auto-correlation of
spatial processes in their train/test split. There should be a clear demarca-
tion and buffer between these parts of the dataset, as failing to do so may
overtly favour large models overfitting the training set. However, unless
the goal is to evaluate low-shot learning or domain adaptation, the data
distribution of the training set should be relatively similar to the test sets.
It is a tricky balance to find, and these questions should be attentively con-
sidered when designing geospatial benchmarks.

https://zenodo.org/


10 CHAPTER 1. INTRODUCTION

Reproducible Code: The geospatial community should systematize the
release of open-access code for every publication. This will encourage
authors to compare their work with recent baselines and allow for more
thorough studies of the impact of a paper’s contributions. The (almost)
systematic release of research code played a significant part in computer
vision’s rapid evolution and success. In contrast, many geospatial arti-
cles still present methods evaluated on closed datasets without meaningful
comparison to the state-of-the-art, open-access implementation or enough
detail to re-implement them. Regardless of the brilliance of the ideas they
explore, such papers have nearly no scientific value.

3.2 The Need for Dedicated Architectures

Remote sensing as a field shares the same goal as computer vision: analyze
an object or environment from information gathered by a sensor situated
at a distance. As detailed in Section 1, geospatial data and remote sensing
differ from natural images in several key ways. However, a substantial part
of geospatial analysis research directly applies computer vision methods to
remote sensing data methods with little adaptation, limiting their efficiency
[RCVS+19, TRW+21]. Developing algorithms and architectures that exploit
the uniqueness of geospatial data leads to several benefits, which we list
below.

Adaptive. Geospatial processes are typically large-scale and require net-
works with large receptive fields to capture. Likewise, as remote sensing
sensors are typically further away than cameras, they have lower resolution
and density, necessitating adapted processing. Computer vision focuses on
analyzing objects or indoor scenes from dense acquisitions, which does not
benefit from modelling long-range interactions to the same extent. For ex-
ample, the nadir or near-nadir point of view of aerial scans differs from
acquisitions at ground level. This results in distinct sampling density and a
unique perspective on the world. Terrestrial LiDAR in urban areas captures
building facades with centimetric precision, whose geometry is well char-
acterized by grid-based approaches [CGS19] or dense convolutions. On
the contrary, aerial scans have a density of only a handful (10-20) echos per
square meter and are mostly limited to roofs, resulting in significant gaps
between related entities. This motivates the use of networks that are robust
to stark changes in density and able to connect distant entities.

Efficient. Computer vision favours large models with a high-level un-
derstanding of natural images. Remote sensing tasks are typically more
grounded, less abstract, and require smaller models. Furthermore, the size
of remote sensing acquisition favours algorithms that can scale to large in-
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puts. Using gigantic pretrained computer vision models such as Founda-
tion Models [BHA+21] may give satisfying results out of the box, but incurs
superfluous computation and have unnecessarily high hardware require-
ments. Streamlining architectures to the bare essential results in faster and
more data-efficient approaches, at virtually no cost in precision.

Multimodal. While multimodality is explored in computer vision, it is an
essential aspect of geospatial data frequently captured by many different
sensors with complementary characteristics. Furthermore, georeferencing
leads to a natural alignment across modalities, which is often difficult or
impossible with natural images. While this alignment facilitates the fusion
of various sources of information, this remains a nontrivial task due to their
differing nature and resolution.

Attractive. The use of unaltered vision models for geospatial tasks may
wrongly lead students and researchers outside of the community to believe
that geospatial analysis is purely an applied field without methodological
challenges. On the contrary, the successful use of novel and dedicated ar-
chitectures for spatial problems promotes the field as a vector of innova-
tion. This is a key endeavour to present geospatial tasks as a challenging
and impactful source of evaluation and inspiration for novel methods.

4 Organization of the Manuscript

We present approaches to leveraging geospatial data’s structure into more
efficient, parsimonious, and precise algorithms. The works are organized
into chapters covering different characteristics of geospatial data that can
be exploited.

Chapter 2: Exploiting Graph Regularity. We first present an abstract for-
malization of spatial regularity into a generic graph framework. We in-
troduce the cut pursuit algorithm to minimize a large family of function-
als commonly encountered in geospatial learning and other applications.
We present a unified analysis for several versions of the method, includ-
ing strong and unique theoretical guarantees and speed improvements of
several orders of magnitude. This chapter contains this manuscript’s most
theoretical work, which will serve as the basis or inspiration for much of
the work presented thereafter.

Chapter 3: Exploiting Spatial Regularity of 3D Data. This chapter
presents a deep learning implementation of the ideas of the last chapter
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for the particular case of large-scale 3D data analysis. By computing adap-
tive partitions of point clouds or 3D space, we transform complex problems
of semantic segmentation or surface reconstruction into small-scale graph
analysis problems. This approach allows us to reach state-of-the-art results
with compact and efficient methods.

Chapter 4: Exploiting Sensor Structure of 3D Data. This chapter de-
scribes three distinct approaches that exploit the specific structure of 3D
acquisition sensors. Our methods apply to LiDAR time sequences, joint
image and point cloud scans, and large point clouds in the wild. Our ap-
proaches result in significant improvements in terms of precision, latency,
and model size for semantic segmentation and surface reconstruction tasks.

Chapter 5: Exploiting the Structure of Satellite Time Series. This final
chapter presents our work on satellite image time series (SITS) for auto-
mated crop mapping. By identifying the profound differences between
SITS and videos, we design new dedicated approaches to exploit their
specificities, which results in significant gains in precision and efficiency.
We also present the first state-of-the-art for SITS panoptic segmentation and
a unique dedicated dataset.



CHAPTER 2

Exploiting Graph Regularity

Many geospatial analysis problems can be formulated as the minimization
of a functional defined on a graph and whose solutions are spatially reg-
ular. We first formalize this property as a form of graph-structured spar-
sity, then introduce the cut pursuit algorithm, which exploits this property
for computational efficiency. Our approach can be adapted to functionals
with various degrees of smoothness and continuity, covering a wide array
of spatially structured problems such as inverse brain imaging or large-
scale surface reconstruction. When applied to problems whose solution is
spatially regular, the cut pursuit algorithm provides a considerable accel-
eration compared to other widely used optimization algorithms. In some
settings, we also prove unique convergence guarantees that do not require
smoothness or convexity of the minimized functional.
This chapter is organized around the following publications:

† [LO17] Loic Landrieu, Guillaume Obozinski, “Cut pursuit: Fast Al-
gorithms to Learn Piecewise Constant Functions on General Weighted
Graphs”, SIAM Journal of Imaging Science, 2017
[RL18] Raguet Hugo, Loic Landrieu, “Cut-Pursuit Algorithm for Regular-
izing Nonsmooth Functionals with Graph Total Variation”, ICML, 2018
[RL19] Raguet Hugo, Loic Landrieu, “Parallel Cut Pursuit For Minimiza-
tion of the Graph Total Variation”, ICML Workshop on Graph Reasonning,
2019
[GLCV19] Stéphane Guinard, Loic Landrieu, Laurent Caraffa, Bruno
Vallet, “Piecewise-planar Approximation Of Large 3D Data As Graph-
Structured Optimization”, ISPRS Annals of Photogrammetry, Remote Sensing
& Spatial Information Sciences, 2019

† Work presented in the PhD thesis of the defendant [Loi16].
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1 The Cut Pursuit Algorithm

Graphs are commonly used to describe the structure of spatial data, such as
point clouds or vector maps, by encoding the adjacency between individual
elements. As we will exemplify in our numerical experiments, many real-
life geospatial problems can be expressed as the minimization of a well-
chosen functional whose variables are associated with the vertices of such
a graph. We can express the spatial regularity of the minimizers as a form
of graph-structured sparsity. We first propose formalizing these concepts
mathematically and then introducing an efficient optimization algorithm
capable of leveraging this graph sparsity.

We define an unoriented graph G = (V, E, w) with edge weights w ∈
RE
+. We consider a functional F : ΩV 7→ R whose input variable x can be

decomposed with respect to the vertices of G: each xv belongs to the set Ω.
We seek x⋆ a minimizer of F: 1

x⋆ minimizes
x∈ΩV

F(x) . (2.1)

We are interested in functionals F whose minimizers x⋆ are constant
with respect to a partition of V into a small number of components w.r.t G.
This property corresponds to a regularity prior on spatial processes and
can be exploited algorithmically for faster solving.

1.1 Graph-Structured Sparsity

We define two notions of regularity, which are related but not equivalent.

Graph-Coarseness. Mumford and Shah describe an image as simple if it
is piecewise smooth, i.e. can be decomposed into a small number of regions
with short contours and smooth variations [MS89]. This chapter focuses on
a stricter form of simplicity: the signal is constant within each region. We
can translate this concept for a signal x defined on the vertices of a graph
G: x is simple if it is constant within the regions of a partition V of V with
much fewer connected components than vertices, i.e. |V| ≪ |V|. This prop-
erty is referred to as graph-coarseness and is a widely used prior for natural
images [ROF92] and medical imagery [EZE07] images. It is also commonly
encountered when the vertices of V correspond to elements positioned in
space, such as pixels or 3D points. Since the concept of connectedness in a
graph is inherently discontinuous, directly encouraging graph-coarseness
makes the optimization problem significantly more complicated.

1Depending on its properties, minimizing F can mean finding a global or local optimum,
a critical point, or simply trying to achieve low values of F.
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(a) Gradient has 89% zeros. (b) Gradient has 58% zeros.

Figure 2.1: Graph-Sparsity and Graph-Coarseness. Example of two
vertex-valued signals which are both graph-coarse: they only have two
constant connected components characterized by white or black vertices.
We represent the non-zeros values of the graph-gradient as red edges. The
signal in (a) is also graph-sparse, while the signal in (b) is not.

Graph-Sparsity. We qualify x as graph-sparse if most vertices linked by
an edge share the same value: |{(u, v) ∈ E | xu ̸= xv}| ≪ |E|. When Ω is
equipped with a vector structure, this property translates into the spar-
sity of the graph-gradient, i.e. {xu − xv | (u, v) ∈ E} is mostly zero.
This corresponds to a form of structured sparsity as described by Bach
et. al [BJMO12], and hints at the possibility of more parsimonious and effi-
cient solving methods.

Encouraging Coarseness. As illustrated in Figure 2.1, graph-sparsity im-
plies graph-coarseness. Indeed, if G itself is connected, the number of con-
stant connected components of x is bounded by the number of non-zero
values of its graph-gradient plus one. However, the converse is false: a
graph-coarse signal is not necessarily graph-sparse.

Motivated by this observation, a straightforward way to impose a
coarseness prior to a graph signal x is to use a sparsity-inducing regular-
izer on the graph gradient. This observation leads to the following family
of functionals, first characterized by Geman and Reynolds [GR92]:

F(x) := f (x) + ∑
(u,v)∈E

wu,vh(xu, xv) , (2.2)

with f : ΩV 7→ R and h : Ω 7→ R a function that reaches its minimum
only when xu = xv. More precisely, we are interested in functions h that
encourage strict equality between xu and xv. 2 Consequently, we can expect

2When Ω is continuous and equipped with a vector structure, we typically have
h(xu, xv) = ρ(xu − xv) with ρ a sparsity-inducing function, e.g. a non-smooth norm
[BJMO11a].
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a minimizer x⋆ of such functional F to be graph-sparse and hence graph-
coarse. In particular, with h(xu, xv) = ∥xu− xv∥we obtain the well-studied
regularity-inducing graph total variation (TV).

The functional optimization literature explores many approaches to ex-
ploit the sparsity of the solution of some large-scale problems with fast and
parsimonious algorithms [BJMO11b]. Analogously, we propose to exploit
the graph-coarseness of functional minimizers of the form Equation 2.2
with a working set strategy. 3

1.2 Principle of Cut Pursuit

The cut pursuit algorithm maintains a current partition V of V and alter-
nates between two steps: the reduction step and the refinement step, see Fig-
ure 2.2 The reduction step finds minimizers of F that are also piecewise
constant w.r.t V . The refinement step splits V into a finer partition. Both
steps can be performed efficiently by exploiting the structure of their corre-
sponding optimization problems.

G

G

a) Reduction b) Refinement c) Reduction d) Refinement e) Reduction

Figure 2.2: Steps of the Cut Pursuit Algorithm. At first, the vertices of the
graph G are combined into a single component, defining a single-vertex
reduced graph G, and the resulting reduced problem is solved (a). The
partition is then iteratively refined (b,d) and the corresponding reduced
functionals minimized (c,e). The reduction steps are performed w.r.t the
smaller reduced graph G, while the refinement step involves the full graph
G. The vertex colours represent their values, from blue to red.

Problem Reduction. From a partition V , we can define a reduced graph
G = (V , E , W) whose vertices are the components of V itself, the edges

3By analogy with the literature on sparse optimization, we distinguish between working
set and active set algorithms. The former, also called column generation algorithms, maintains
a set of constraints that can be active or not, while the latter considers the exact set of active
constraints.
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denote the adjacent components, and W their weights:

E := {(U, U′) ∈ V2 | (U ×U′) ∩ E ̸= ∅} (2.3)

WU,U′ := ∑
(u,v)∈U×U′

wu,v . (2.4)

We can use this reduced graph to advantageously express the target func-
tional F for iterates x that are piecewise constant w.r.t V . We first notice
that such x can be written as 1(r,V) with r ∈ ΩV such that:

[1(r,V)]v =

{
rU if v ∈ U
0 otherwise.

(2.5)

In other words, a signal that is piecewise constant w.r.t V is completely
characterized by only |V| values. In this case, we call r the reduced variable,
indicating the value of x for each component of V .

Without loss of generality, we can assume that h(x, x) = 0 in Eq. (2.2).
In this case, h(xu, xv) is zero for all edges (u, v) linking vertices in the same
constant component. Consequently, the regularization cancels out inside
constant components. We introduce the reduced functional F(V) : ΩV 7→
R, defined as the restriction of F to variables that are piecewise constant
w.r.t V , and which can be written as such:

F(V)(r) := F(1(r,V)) = f (1(r,V)) + ∑
(U,U′)∈E

WU,U′h(rU , rU′) . (2.6)

We remark that F(V) has a very similar structure to the target functional F
and inherits its regularity. Furthermore, F(V) is defined w.r.t the reduced
graph G, which is much smaller than G as long as V is coarse. Under this
hypothesis, minimizing F(V) is significantly easier than minimizing F. If we
had access to a constant partition of the sought solution x⋆, solving Eq. (2.6)
would also solve the full problem defined in Eq. (2.1), but at a drastically
reduced cost. The next step consists in approximating this partition.

Refining V . While the reduction step allows us to solve a simplified ver-
sion of the problem, the resulting minimizer is only as good as the current
partition V . The goal of the refinement step is to add new degrees of free-
dom to Eq. (2.6) so that its minimization yields a lower value for F. In prac-
tice, we seek a refining partition V ′ that can be combined with V to obtain a
new finer partition through cross-partitioning:

refine(V ,V ′) := {U ∩U′ | U ∈ V , U′ ∈ V ′} . (2.7)

In cases where F is not convex, it can be useful to define a more complex
refining operator refine(V ,V ′) to mitigate the influence of suboptimal early
decisions [SIBD11], see Section 3.3.
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We consider a class of graph-functionals whose minimizers are piece-
wise constant with respect to a coarse partition and hence only
defined by a few values. The cut pursuit algorithm exploits this
property by iteratively refining a graph partition and solving a con-
strained version of the objective functionals. Both of these steps have
specific properties allowing for their efficient computation.

Algorithmic Structure. Due to the structure of F defined in Eq. (2.2), there
exist minimizers x⋆ of F that are piecewise constant with respect to a parti-
tion with few components. Hence, we iteratively refine a partition V with
a top-down approach until we find a partition that lets us compute a satis-
factory minimizer of F. The different steps of the cut pursuit algorithm are
represented in Figure 2.2, and can be summarized as follows:

• Init. Set V as the connected components of V, i.e. the coarsest possible
partition of V.

• Reduction. Minimize the reduced functional F(V) with respect to the
current partition V :

r(V) ← minimizes
r∈ΩV

F(V)(r) . (2.8)

The complexity of this step depends on the characteristics of F and
the coarseness of V .

• Refinement. We now split the current partition V into finer compo-
nents by computing a refining partition V ′:

V ← refine(V ,V ′) . (2.9)

The rationale for finding V ′ depends on F and Ω. In favourable cases,
this amounts to finding a minimum cut in a well-chosen flow graph.

• Stopping Criterion. If the chosen stopping criterion is not reached,
we return to the refinement step.

In the following sections, we explain how this approach can be imple-
mented for different choices of f , h, and Ω.

2 Cut Pursuit for Graph-Total Variation

With h(x, y) = ∥x − y∥, finding the stationary points of F as defined in
Eq. (2.2) amounts to regularize f with the graph total variation. This setting
is well-studied and understood, and we are able to prove the convergence
of our proposed scheme. We first provide a quick survey of the functional
optimization literature on total variation. Then, we explain how to imple-
ment the cut pursuit algorithm for Ω = R when f is differentiable, and
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to what extent these hypotheses can be relaxed. We then present heuristic
approaches to deal with data from multivariate vertices, e.g. Ω = Rn, and
to parallelize the graph cut-based refinement stage of cut pursuit. Finally,
we provide several numerical experiments showcasing the considerable ac-
celeration provided by the cut pursuit algorithm for problems with coarse
solutions.

2.1 Background on Total Variation

Rudin, Osher and Fatemi [ROF92] first introduced the total variation reg-
ularizer as a tractable surrogate of the Mumford-Shah functional [MS89].
It has been at the center of sustained interest in the image processing
community as a simple and versatile prior on natural and medical im-
ages [EZE07]. The total variation is also the subject of numerous works
in the functional optimization community. Large-scale problems regular-
ized by the total variation are typically solved by first-order proximal split-
ting algorithms [CP08, RFP13, CGN+13] with or without pre-conditioning
[PC11, RL15, MYWC18]. While these iterative methods enjoy convergence
guarantees in the convex case, they require many iterations over thou-
sands or even millions of variables. Luckily, most approaches can be par-
allelized in a straightforward fashion, which can mitigate this drawback
[BS14, KBJ+15]. Furthermore, a large array of functions can be regularized
with such schemes [LP15].

An alternative approach exploits a deep connection with graph cuts:
the total variation is the Lovász extension of the submodular cut function
in a well-chosen flow graph [Bac11]. This link has led to several fast al-
gorithms, among which the one of Chambole & Darbon [CD09] who re-
formulate finding the proximal of the graph total variation as a parametric
max-flow problem. Such methods are typically very fast thanks to effi-
cient graph cut solvers [BK04]. However, these approaches can only be
applied to regularize functions f with restrictive properties (convex, sepa-
rable, smooth) and cannot be easily parallelized.

The cut pursuit algorithm for graph-total variation regularizing com-
bines all the advantages of the previously mentioned methods:

(i) the speed of graph cut-based approaches,
(ii) the parsimony of sparsity-aware optimizers,

(iii) the ease of parallelization and
(iv) versatility of iterative proximal-based algorithms.
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2.2 Regularizing Smooth Functionals

We first describe the cut pursuit algorithm in its most straightforward set-
ting: Ω = R and the function f : ΩV 7→ R is differentiable everywhere, but
not necessarily convex.

Reduction Step. This step consists in retrieving a critical point r(V) of the
reduced functional F(V) defined w.r.t a current partition V , see Eq. (2.6). The
difficulty in finding r(V) depends on the structure of f . If f corresponds to
an inverse problem, e.g. f (x) = ∥Hx − y∥2 with H a linear operator, then
the minimization of F(V) has the exact same form as F only with |V| ver-
tices instead of |V|. For other forms of f involving, for example, nonlinear
operators across multiple coordinates of x, the reduced functional may not
necessarily be easier to minimize than F. In this case, one should not use
the cut pursuit algorithm.

The reduced functional can often be efficiently minimized with a first-
order proximal-based algorithm, such as Generalized Forward Backward
Splitting [RFP13]. Given the small number of variables, we can run many
iterations and provide high-precision critical points. However, the reduced
functional is typically poorly conditioned4 since the size of the components
of V and the length of their interface can vary significantly. We can address
this difficulty with a preconditioning strategy such as the one proposed by
Raguet and Landrieu [RL15].

Refinement Step. The goal of the refinement step is to split the compo-
nents of the current partition V such that the following reduction step can
decrease the objective functional F as much as possible. Intuitively, this
can be achieved by refining the components of V to unlock new steep de-
scent directions. The directional derivative of F at the current iterate x in
direction d ∈ ΩV can be written as follows:

F′(x, d) = ∑
v∈V

δv(x)dv + ∑
(u,v)∈E(x)

=

wu,v∥du − dv∥ , with (2.10)

δv(x) := ∇v f (x) + ∑
v∈V

∑
u∈N (v)

we sign(xv − xu) , (2.11)

whereN (v) = {u ∈ V | (u, v) or (v, u) ∈ E}, sign(t) = −1, 0, or 1 depend-
ing on t < 0, t = 0, or t > 0, and E(x)

= = {(u, v) ∈ E | xu = xv}. We aim to
find a steep descent direction d, i.e. leading to a small directional derivative
F′(x, d). The first term of Eq. (2.10) indicates the sensitivity of each vertex
v to an increase of their iterate xv. This value depends on the gradient of

4Some directions are much more sensitive than others, which complicates finding a fitting
gradient step size.
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(a) Observed signal. (b) First binary
partition.

(c) First reduced
variable.

(d) Second binary
partition.

(e) Second reduced
variable.

binary cut

binary
partition

Figure 2.3: Illustration on an Image. We construct a graph from the pixels’
adjacency, and use the pixels’ intensity to assign a value yv to each vertex v.
We visualize the first two steps of the cut pursuit algorithm for a simple TV
denoising problem: Ω = R, f (x, y) = ∥x− y∥2 and h(xu, xv) = ∥xu − xv∥.
We represent the graph cuts from the refinement stage as black (source-
size) and white (sink-size) pixels separated by a red line representing the
resulting minimal cut.

f and the values of adjacent vertices, see Eq. (2.11). The second term of
Eq. (2.10) favours descent directions with identical amplitude for adjacent
vertices with equal iterates. In other words, we must make a compromise
between the individual tendency of each vertex to increase or decrease and
avoid the creation of new discontinuities between adjacent vertices.

In general, finding the steepest direction at x is a hard problem, poten-
tially as hard as minimizing F itself. However, we need not necessarily find
the steepest direction but add relevant degrees of freedom to F(V). To make
the problem more tractable, we restrict the space of potential directions to
D = {−1, 1}: increase or decrease. Now, we can write the search for the
steepest binary descent direction d(x) as a combinatorial optimization prob-
lem:

d(x) ∈ argmin
d∈DV

F′(x, d) . (2.12)
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+δu(x)

(a) Binary direction flow graph.
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u(2) v(2) z(2)

w(u,v)

w(v,u)

−δ−u (x) + mu

δ+u (x) + mu

mu

(b) Ternary direction flow graph.

Figure 2.4: Flow Graphs. Finding a minimal cut in the flow graphs above
provides the steepest binary/ternary direction, and thus a refining parti-
tion. In this illustration, xu = xv ̸= xz. The vertical edges’ capacity of the
flow graphs are derived from the δv in the smooth setting, and from δ+v ,
δ−v as well mu := max (0, δ−v (x),−δ+v (x)) in the nonsmooth setting. The
horizontal edges are defined by the edge weights of G.

Fortunately, this problem has a favourable structure and can be efficiently
solved by finding a minimum cut in a well-chosen flow graph, see Fig-
ure 2.4a. Such a cut can be retrieved in quasi-linear time with efficient
solvers such as the one of Boykov and Kolmogorov [BK04]. The refining
partition V ′ is then defined as the maximal constant connected components
of the steepest binary descent direction d(x).

Convergence Guarantees. Despite restricting the search directions to
{−1, 1}V , the cut pursuit algorithm is guaranteed to find a stationary point
of F in a finite number of steps. If x is not a stationary point of F, then d(x)

is a strict descent direction. In other words, the following reduction step
will decrease F. On the contrary, if dx does not refine V , then x is prov-
ably a stationary point of F. In practice, since the partition induced by x⋆

is coarse and the size of the current partition increases exponentially with
each refinement step, we only need a few iterations to reach convergence
at machine precision.

In [LO17], Guillaume Obozinski and I provided a first convergence
proof by identifying the flows in the flow graph with the sub-gradient of
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F. The idea of this proof is that if no non-trivial cut 5 of the flow graph
can be found, no descent direction of f at x is steep enough to justify cre-
ating a new discontinuity—more formally: −∇ f (x) ∈ ∂TV(x). We also
provided additional motivation for our method by viewing the total vari-
ation as an atomic gauge [CRPW12] and the steepest binary direction as
the Frank-Wolf direction of the regularization problem [Jag13]. In [RL18],
Hugo Raguet and I developed a more elementary proof based on a system-
atic analysis of the directional derivative of F. The gist of the proof is that
for a wide variety of functionals, if a strict descent direction exists, there
also exists another strict descent direction whose vector representation is
only composed of 1s and −1s. A major benefit of this last proof is that it
does not assume the convexity of F.

The cut pursuit algorithm can efficiently recover critical points of a non-
convex functional regularized by the total variation with no more than a
few graph cuts. Furthermore, the graph gradient of our solutions is exactly
sparse since all considered iterates are piecewise constant. This is in con-
trast to iterative algorithms, which are only sparse after thresholding pro-
cedures which often yield artifacts. Finally, our top-down strategy favours
retrieving partitions with few components, offering a solution to the unde-
sirable staircasing effects often encountered using iterative methods.

The cut pursuit algorithm provably minimizes F in just a few graph
cuts. It provides convergence guarantees to machine precision, and
its solutions are coarse without post-processing.

2.3 Extension to Non-Smooth Functionals

Proximal-based methods can be used to regularize a large array of func-
tionals with the graph total variation [RFP13, LP15], including nonsmooth
ones. In [RL18], we show that when Ω = R, the cut pursuit algorithm can
be extended for f consisting of a smooth part s and a non-differentiable,
vertex-separable part. In other words, f can be written as follows:

f (x) = s(x) + ∑
v∈V

gv(xv) , (2.13)

with s : ΩV 7→ R differentiable everywhere and gv : Ω 7→] − ∞, ∞] for
all v ∈ V. We only assume that all gv are directionally differentiable in the
sense that limt↓0

1
t (gv(x + td)− gv(x)) exists in ]−∞, ∞] for all x such that

gv(x) < ∞ and all d ∈ ΩV . Note that this definition is different from regular
differentiability. In fact, any convex function is directionally differentiable
regardless of smoothness [HUL04, part D], while the converse does not

5A cut is trivial if all vertices are on the same side: source or sink.
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hold. In practice, we choose gv as set indicators of convex subsets of Ω, or
gv = ∥ · ∥ to obtain the LASSO regularizer [EHJT04].

Reduction Step. The reduction step is unchanged from the differentiable
case as long as a sufficiently versatile solver is used to find a stationary
point of the reduced function F(V), such as the Generalized Forward Back-
ward [RFP13].

Refinement Step. The rationale of this step is also unchanged: we add
degrees of freedom to the current partition by looking for a steep descent
direction. However, since the functions gv are not differentiable, we must
adapt Eq. (2.10). In particular, the directional derivative of F at x ∈ ΩV in
direction d ∈ ΩV now writes:

F′(x, d) = ∑
v∈V
dv>0

δ+v (x)dv + ∑
v∈V
dv<0

δ−v (x)dv + ∑
(u,v)∈E(x)

=

wu,v∥du − dv∥ , (2.14)

with

δ+v (x) := ∇v f (x) + g′v(xv,+1) + ∑
v∈V

∑
u∈N (v)

we sign(xv − xu) (2.15)

δ−v (x) := ∇v f (x)− g′v(xv,−1) + ∑
v∈V

∑
u∈N (v)

we sign(xv − xu) . (2.16)

The main difference between Eq. (2.14) and Eq. (2.10) is that non-smooth
functions gv may have different directional derivatives in the increasing
(+1) or decreasing directions (−1). Consequently, it is now possible for a
given vertex to not favour either the increasing or decreasing directions.
This leads us to add the null value to the discrete set of possible direc-
tions D when simplifying the search for a steep descent direction Eq. (2.12):
D = {−1, 0, 1}. Solving this steepest ternary descent direction problem cor-
responds to finding a minimum cut in a suitable flow graph, represented
in Figure 2.4b.

Convergence Guarantees. The non-smooth setting benefits from the
same guarantees as the smooth setting: if x is not a stationary point, then a
strict ternary descent direction exists, i.e. d(x) ∈ DV such that F′(x, d(x)) <
0. Consequently, if solving Eq. (2.12) returns a trivial cut, then x is a station-
ary point. In practice, we only need a few iterations (less than 10) to achieve
machine precision for most standard total variation parameterizations.

2.4 Extension to Multidimensional Values

We can extend the cut pursuit algorithm to the case where each vertex is
associated with a multidimensional variable. Although our convergence
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guarantees do not hold, this approach efficiently leads to satisfactory ap-
proximate solutions.

Choosing a Direction Set. In the previous setting, restricting the set of
candidate directions D to increasing (+1), decreasing (−1), or null (0) is
enough to obtain our optimality certificate. This allows us to efficiently find
the steepest binary/ternary descent directions with a single graph cut. In
the setting where Ω is multidimensional, i.e. when the signal x has several
values for each vertex, such restricted directions may not be sufficient. To
preserve optimality guarantees, D would have to be large or even infinite,
preventing us from efficiently finding a steep descent direction. However,
we can choose D heuristically to achieve empirical efficiency without a the-
oretical convergence guarantee.

A key point to note is that the set of potential directions D can be chosen
for each vertex independently and change according to the current iterate.
If each vertex v has its own set of candidate directions Dv, then the total set
of directions in Eq. (2.12) is the Cartesian product of all directions×v∈V Dv.

Examples. In the case of Ω = Rn, we can define a heuristic set of di-
rections for each component U of V by computing eU the first eigenvector
[Pea01] of the centered values of the iterate for the component: {xv}v∈U .
We can then define Dv = {−eU ,+eU} for all v ∈ U, or add even more
directions corresponding to other eigenvalues. Each component can adapt
its descent directions according to its content, resulting in better splits and
fewer computations than generic candidate directions.

We also propose a meaningful heuristic direction set when Ω = ∆K,
the K-dimensional simplex. For each vertex v ∈ V, we denote by kv :=
argmaxk∈[1,K] xv,k the corner of the simplex which is closest to xv, i.e. the
label for which xv associates the highest predicted probability. We then
define Dv = {1k − 1kv | k ∈ [1, K]}, with [1k]l = 1 if k = l and 0 otherwise.
In other words, each vertex can decide to transfer probability from a label
to its most likely label or remain unchanged. Our split can factor in various
configurations by adapting the descent direction at the vertex level.

2.5 Parallel Refinement

In practice, the refinement step is often the computational bottleneck of the
cut-pursuit algorithm. The reduction step only involves |V| variables and
relies on easily parallelizable solvers. In contrast, finding a steep descent
direction implies finding minimal cuts in a flow graph with at least V + 2
vertices. Although the Ford-Fulkerson graph cut solver can be surprisingly
fast [FF56], it is not easily parallelizable.



26 CHAPTER 2. EXPLOITING GRAPH REGULARITY

Parallelizing Graph Cuts. All binary terms in Eq. (2.10) and (2.14) cor-
respond to edges within the constant components of the current partition
V . There are no binary terms connecting vertices in different components.
Consequently, F′(x, d) is separable along the components of V . For the bi-
nary case, this means that we can rewrite F′(x, d) as follows:

F′(x, d) = ∑
U∈V

F′U(xU , dU) , with for all U ∈ V , (2.17)

F′U(xU , dU) = ∑
v∈U

δv(x)dv + ∑
(u,v)∈E(x)

= ∩U2

wu,v∥du − dv∥ , (2.18)

In terms of graph cuts, no flow can be exchanged between the components
of V , allowing us to compute the cuts in each component independently. We
implemented a multi-threaded version of the already efficient implementa-
tion of the Ford-Fulkerson algorithm [FF56] by Boykov and Kolmogorov
[BK04].

Taking advantage of the particular structure of the refinement prob-
lem, we propose the first multi-threaded application of the Ford-
Fulkerson algorithm.

Balancing the Parallel Workload Distribution. While our parallelizing
strategy already considerably accelerates the cut pursuit algorithm, we can
improve thread utilization even further. Indeed, when performing the re-
finement step in parallel, each component is assigned to a single thread.
Consequently, the computation takes at least as long as the time required
to refine the most challenging component, typically the largest one. If the
partition is unbalanced, this can lead to poor threads usage. Consider the
first iteration, where the partition only has one component, preventing par-
allelization.

For this reason, we advocate decomposing the largest components into
smaller balancing components with a maximum size defined by the prob-
lem size and the number of available threads. This can be done efficiently
with a breadth-first search from random starting vertices. In the refinement
step, we set the border edge capacities between balancing components to
0 in Eq. (2.17). In the reduction step, we can ignore the balancing compo-
nents. In theory, this partitioning strategy may lead to worse local min-
ima or reduce the accuracy of the solution. In practice, the acceleration
provided might offset the disadvantage of slightly less optimal solutions
depending on the application.

Let us finally note that there is still room for improvement. For in-
stance, we could replace the greedy breadth-first construction of the bal-
ancing components with better domain-specific heuristics. This is espe-
cially true for spatially embedded graphs as many fast and data-adaptive
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partition algorithms exist for 3D point clouds [MD03, Mea82, YL22]. Fur-
thermore, the compelling time and space complexity of the Ford-Fulkerson
algorithm does not simply depend on the size of the flow graphs but also
on the ratio between vertical and horizontal capacities: large horizontal ca-
pacities tend to incur longer computation time. This observation may lead
to better parallel scheduling. However, an important limitation of this line
of improvement is that the balancing step must be efficient or risk negating
any computational benefit otherwise provided.

(a) Reflectance
Regularization

(b) Brain Source
Identification

(c) Segmentation
Regularization

Figure 2.5: Qualitative Results. Illustration of the solutions given by the
cut-pursuit algorithms. (a) noisy and regularized point cloud reflectance
(detail of a much larger scene); (c) synthetic and recovered ground truth
brain activity; (b) noisy prediction and regularized point cloud classifica-
tion.

2.6 Numerical Experiments

We showcase the performance of the cut pursuit algorithm across three dif-
ferent experiments. See Figure 2.5 for a visual representation of these tasks.

Point Cloud Reflectance Regularization. We spatially regularize the re-
flectance of 3D points acquired with a mobile LiDAR scanning vehicle as
described by [PPC+12]. This corresponds to a denoising problem f : x 7→
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∥x− y∥2 with y the observed noisy reflectance. G is the 5-nearest neigh-
bours graph of the point cloud (|V| = 109m and |E| = 317m). We expect
the solution to be simple as anthropic scenes typically contain parts with
uniform materials and reflectance.

Brain Source Identification in Electroencephalography. We consider the
inverse problem of brain source identification from electroencephalogra-
phy. The brain of a patient is mapped to a triangular mesh whose adjacency
structure is described by a graph G = (V, E) with |V| = 20k and |E| = 29k.
A set of N = 91 electrodes records the patient’s brain activity y ∈ RN , and
the goal is to retrieve the neuron activation on the detailed mesh. The re-
lationship between the electrodes’ output and the brain activity is given by
a lead-field linear operator ϕ : RV 7→ RN , which is derived from physical
and physiological considerations by experts of the domain [BAC+14]. To
model the regularity, sparsity, and positivity of brain signals, we set

f : x 7→ 1
2
∥y− ϕx∥2 + ∑

v∈V
(λv |xv|+ ιR+(xv)) , (2.19)

with λv the parameters of the weighted LASSO regularization and ιR+ the
set indicator function of R+.

Point Cloud Classification Regularization. We consider the problem of
spatially regularizing noisy semantic labellings of point clouds among a
class set K [LRV+17]. G is the 10-nearest-neighbours graph of the point
cloud, (|V| = 3 000 111 and |E| = 17 206 938). A noisy classification
y ∈ RV×K is given by a random forest classifier operating on handcrafted
vertex geometric features as described in [GL17]. Noting ι∆K the convex in-
dicator of the |K|-dimensional simplex, and KL (r, s) = ∑k∈K rk log(rk/sk)
the Kullback–Leibler divergence, we choose

f : x 7→ KL (yv, xv) + ∑
v∈V

ι∆K(xv). (2.20)

In this multidimensional setting, we use the heuristic direction set de-
scribed in Section 2.4 for simplices.

Competing Methods. We compare the performance of the cut pursuit al-
gorithm against highly specialized graph cut-based approaches and flex-
ible proximal algorithms. The competing methods—all implemented in
C++—are as follows:

• PMF: the parametric max flow-based algorithm of [CD09] for the
proximity operator of the graph total variation;
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• PFDR: the Forward-Douglas–Rachford splitting algorithm of [Rag18]
preconditioned according to [RL15], with all proximal steps paral-
lelized;

• CP: cut pursuit algorithm with PFDR to solve the reduced problem;
• PCP: CP with parallel refinement, without balancing the parallel

workload distribution;
• PCP-balanced: PCP with component balancing.

Analysis. We report the performance across methods and tasks in Fig-
ure 2.6. We first compute a high-precision estimate of the optimal value
for these convex problems by running PFDR for 1e5 iterations, which leads
to an iterate evolution under 10−8 as measured by the largest coordinate
change. This allows us to approximate and plot the distance towards opti-
mality.

When the sought solution is coarse, the cut pursuit algorithm can
accelerate by several orders of magnitude compared to state-of-the-
art solvers. In simple settings such as TV-denoising, our approach
outperforms the highly specialized PMF algorithm [CD09] by a sig-
nificant margin. We can also employ cut pursuit to more complex set-
tings, such as the regularization of nonconvex and nondifferentiable
functions, and observe comparable improvements.

In all experiments, the cut pursuit algorithms converge in less than 10
iterations, translating to faster recovery than iterative methods as detailed
in Table 2.1. In the point cloud smoothing experiment, the cut pursuit al-
gorithm performs as well as the highly specialized Parametric Max-Flow
formulation. Parallelizing the refinement steps brings a significant speed-
up, and is further improved when using the component balancing strategy.

In the brain source identification, the final partition contains only 20
constant component. This setting advantages cut pursuit, which can solve
this complex, poorly conditioned, and medium-sized problem several or-
ders of magnitude faster than iterative methods. However, parallelization
does not bring significant improvements in this setting, and the balancing
strategy leads to a suboptimal solution.

Cut pursuit also brings significant acceleration to the semantic segmen-
tation regularization problem. Despite the non-applicability of our con-
vergence guarantees, our method can retrieve high-quality solutions. The
balancing strategy further accelerates the recovery.

Warm Restart Strategy. In contrast to methods using dual [CD09] or aux-
iliary variables [Rag18, RFP13], the cut pursuit algorithm can leverage a
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Table 2.1: Recovery Speed. Time for the method to reach a solution within
10−2 of the approximate optimal. PMF cannot be used to minimize the
functionals in the second and third experiments. The cut pursuit algorithm
offers acceleration of several orders of magnitude.

Reflectance Brain Source Segmentation
Regularization Identification Regularization

PFDR 1123 1.40 838
PMF 732 - -
CP 511 0.04 271
PCP 255 0.04 145
PCP-Bal. 150 0.11 39

candidate iterate believed to be close to the solution with a simple warm
restart strategy. Indeed, instead of starting the current partition V with
{V}, we can use the maximal constant connected components of the candi-
date iterate. When computing a sequence of problems with decreasing reg-
ularization strength, we can use the previous partition as initialization, see
[LO17][2.8]. This strategy allows us to approximate the entire regulariza-
tion path of TV for a cost comparable to solving the lowest regularization
setting.

Conclusion. We have provided a theoretical and practical framework for
harnessing the speed of efficient graph-cut algorithms for a large class
of graph-structured problems involving nondifferentiable terms alongside
the total variation. Cut pursuit is not meant to be an all-purpose algo-
rithm. It should only be used if the solution is expected to be piecewise
constant w.r.t a coarse partition, and this is not generally the case with nat-
ural images. However, we believe that cut pursuit addresses some of the
limitations of common solvers for such problems:

(i) Cut pursuit is both fast and versatile as does not require convexity
or differentiability. In contrast, competing methods are either fast but
very specialized (PMF) [CD09], or generic but slow [Rag18].

(ii) Cut pursuit retrieves a solution that is exactly piecewise constant. In
contrast, the iterative method requires a thresholding step which can
engender artifacts.

(iii) By construction, the cut pursuit algorithm retrieves a coarse solution.
In contrast, iterative methods generally find solutions with many
small constant components due to the staircasing effect of total vari-
ation [Jal16].

(iv) Cut pursuit allows us to run the fast Ford-Fulkerson graph cut algo-
rithm in parallel to solve continuous optimization problems.
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(a) Reflectance Regularization.
109 M vertices, 317 M edges.

0 0.2 0.410
−

5
10
−

4
10
−

3
10
−

2
10
−

1
10

0

time (in s)

(b) Brain Source Identification.
19 k vertices, 29 k edges.
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(c) Segmentation Regularization.
3 M vertices, 17 M edges.

PCP
PCP-balanced
CP
PFDR
PMF

Figure 2.6: Relative distance to the approximate optimal against the run-
ning time of the algorithms; optimal values are estimated by longer, high-
precision runs.

3 ℓ0-Cut Pursuit for Contour Regularizing

We now consider the case where h(xu, xv) = [xu − xv] with [ · ] : Ω 7→ R
equals to 0 at 0Ω and 1 elsewhere. In other words, the graph-structured
regularization in Eq. (2.2) becomes the cut between constant components,
i.e. the total contour length of the induced partition. This regularization can
be linked to several other commonly used regularizers and problems. We
can see this penalizer as a continuous-space version of the Potts penalty
[Pot52], a generalized version of the minimal partition problem in which
the number of components is not predefined [Lec89], a discrete (graph)
version of Caccioppoli partitions [TC96], or an ℓ0 version of the total variation
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following the terminology of Candes et. al for the LASSO penalty [CWB08].
In this setting, the functional F is neither continuous nor convex. Con-

sequently, finding a global optimal is generally not an option regardless of
the convexity of f . However, we show that our approach can be adapted
into a greedy formulation, dubbed ℓ0-cut pursuit, which can find quickly
and reliably good local minima of F. We restrict ourselves to the setting in
which f is separable into continuous functions: f (x) = ∑v∈V fv(xv) with
fv : Ω 7→ R. This assumption is not necessary but greatly simplifies the
formulation of the following sub-problems.

3.1 Reduction.

For a given partition V with reduced graph G = (V , E , w), we define the
reduced functional F(V) for the reduced variable r ∈ ΩV as follows:

F(V)(r) = ∑
U∈V

∑
v∈U

fv(rU) . (2.21)

Note that we drop the edge-wise regularization term altogether. The ratio-
nale is that during the reduction step, we only change the values of compo-
nents and do not add nor remove existing borders. Since the ℓ0 norm penal-
izes all non-zeros values identically, we can completely ignore the penalty
term in the reduction phase. We can now solve the reduced problem for
each component independently and in parallel. A caveat of this simplifica-
tion is that adjacent components with very close values may benefit from
adjusting their iterates to remove their mutual borders. This case is han-
dled by a backward step defined below.

3.2 Refinement.

In the original cut pursuit formulation, we perform the refinement step by
minimizing an energy determined by the directional derivative of F. Since
the functional F is non-continuous in the ℓ0 setting, we do not have access
to such values. Instead, we define a greedy counterpart of the steepest
binary partition that we dub the optimal binary partition, which we use to
split the current partition V . The optimal binary partition B⋆ is a solution
to the following bilevel optimization problem:

B⋆ ∈ argmin
B⊂V

min
h,h′∈ΩV

∑
U∈V

[
∑

v∈U∩B
fv(hU) + ∑

v∈U∩Bc
fv(h′U)

]
+ ∑

U∈V
w (U ∩ B, U ∩ Bc) , (2.22)

with Bc the complementary of B w.r.t V. The rationale of this step is to split
each component U of the current partition V along a binary partition (B ∩
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U/Bc ∩U), associated with the constant values hU , h′U ∈ Ω2 respectively.
The second term quantifies the additional boundary incurred by the new
partition.

The optimization problem defined in Eq. (2.22) is difficult as the sec-
ond term is still nonconvex and noncontinuous. We can, however, find
an approximate solution by alternating between solving for (h, h′) and B.
The partition retrieved is provably a local minimum of the nonconvex op-
timization problem defined in Eq. (2.22). In practice, only a few (two or
three) iterations are necessary.

3.3 Backward-Step.

It is common for greedy working set methods to implement a backward
step in which previous decisions can be reversed, see the Single Best Re-
placement method of Soussen et. al [SIBD11]. In our setting, this amounts
to removing existing borders by merging adjacent components. While we
explored different strategies, the simplest one is, in most cases, sufficient.

We perform this step after the refinement step. We start by computing
for each adjacent component (U, U′) ∈ E in the reduced graph the change
in the objective functional F incurred by their merging. If this value is nega-
tive, the reduction in contours length outweighs the removal of one degree
of liberty incurred by forcing the vertices in U ∪U′ to share the same value.
Such cases typically happen for borders added at early iterations that are no
longer relevant after further refinement. We then greedily select the most
profitable move, i.e. which most decreases the objective functional and up-
date the potential gains of all adjacent components. This step is repeated
until there are no more profitable fusions. With f vertex-separable, this step
is performed by considering the reduced graph only, and is hence very fast.

While the contour penalty defines a difficult nonconvex, noncontin-
uous problem, the ℓ0-cut pursuit algorithm can efficiently find ap-
proximate solutions, outperforming celebrated approaches such as
α-expansion [BVZ01] with observed accelerations up to 100-fold.

3.4 Numerical Experiments.

We evaluate the performance of the ℓ0-cut pursuit algorithm for a 3D
point cloud segmentation. This large-scale optimization problem consists
of grouping points into clusters with homogeneous properties and simple
contours, called superpoints. We consider 271 point clouds from the S3DIS
dataset [ASZ+16], averaging 116 000 points each after subsampling. In the
next chapter, we give more details about this experiment and its motiva-
tion.



34 CHAPTER 2. EXPLOITING GRAPH REGULARITY

For a 3D point cloud, we define a graph G = (V, E, w) such that V is
the set of 3D points, E encodes their adjacency, and w their proximity. We
associate with each vertex v a value yv ∈ R7, encoding its radiometry and
local geometry. We aim to compute a piecewise constant approximation of
this signal into few components. This amounts to minimizing the following
functional for x ∈ ΩV :

F(x) := ∑
v∈V
∥xv − yv∥2 + ∑

(u,v)∈E
wu,v[xu − xv] . (2.23)

We can approximately minimize this functional with the ℓ0-cut pursuit al-
gorithm. As a baseline, we define the following approach:

• We set the number of classes K.
• We run the K-means algorithm on the observations y ∈ R7 × V to

obtain class values k ∈ R7×K. The resulting centroids define a discrete
set of values that each vertex can take.

• We compute the combination of classes minimizing F. This cor-
responds to a classical energy minimization problem which can be
solved approximately with α-expansion.

• We update the class values by computing their feature average. This
step is homologous to the debiasing post-processing often applied to
the solution of regularized problems [DPS15].

Note that this baseline is only partially comparable to cut pursuit: the for-
mer operates on a discrete set of values while the latter works in a continu-
ous space. Since the problem itself is defined w.r.t a continuous domain,
we can expect the cut pursuit approach to reach lower energies. How-
ever, we can compare the execution time of the two approaches. Indeed,
both heavily rely on graph cuts to minimize the energy, albeit in a dif-
ferent manner: α-expansion solves a graph cut problem for each class at
each iteration, while the cut pursuit algorithm uses the cuts to split exist-
ing components. Comparing the execution speed between these methods
may inform us which graph cut formulation is more efficient for piecewise
constant approximation.

In Figure 2.7, we represent the evolution of the performance of ℓ0-cut
pursuit, with or without parallelization, as well as two versions of our base-
line with K = 10 and 20. We observe that ℓ0-cut pursuit reaches lower en-
ergies, which we expected. More interestingly, our approach provides an
acceleration of over 100 fold compared to α-expansion. This indicates that
the component-wise splitting of ℓ0-cut pursuit might be a much better strat-
egy than the class-wise splitting of α-expansion when the sought signal is
coarse. Furthermore, we can bring further speed-ups with parallelization.
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Figure 2.7: Numerical Experiment for ℓ0-cut pursuit. We represent the
evolution of F/|V| with respect to computation time in seconds. The cut
pursuit algorithm produces its approximation in little more than 2 minutes
with parallelization, and under 7 minutes without. In contrast, α-expansion
takes up between 2 and 8 hours depending on the chosen number of labels
and desired precision.

4 The Plane-Pursuit Algorithm

Our approach is particularly well-suited for data exhibiting spatial regular-
ity and well-represented with graphs, such as 3D point clouds. This setting
has attracted most of the interest in cut pursuit in terms of applications:
[TGB19, GL17, LRV+17, LS18, MSF20]. In the next chapter, we will detail
an approach to scale the analysis of deep networks to point clouds contain-
ing millions of points with cut pursuit. This section presents a specialized
adaptation of cut pursuit for computing piecewise-planar approximations
of large 3D point clouds.

We derive the graph G = (V, E, w) from an unstructured 3D point
cloud: V is the set of 3D points, E captures local neighbourhoods, and
w ∈ RE

+ the proximity of points. We aim to approximate a point cloud with
a small number of 2D planes embedded in R3. We propose to formulate
this task as the recovery of a graph-coarse signal on graph G.

Let P be the set of all planes of R3. We denote by d(v, π) the distance
between a point v and a plane π ∈ P . We define Π : V 7→ P as the func-
tion that associates each vertex of V with a plane Πv in P . We want Π
to define as few planes as possible while remaining a good approximation
of the point cloud. This task amounts to recovering a signal Π on the set
of vertices V for which (i) the points are well approximated by their pro-
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jection in their respective plane: d(v, Πv) is small and (ii) the signal Π is
graph-coarse. We can translate these objectives into a unique functional F
to minimize:

F(Π) := ∑
v∈V

d(v, Πv)
2 + µ ∑

(u,v)∈E
wu,v[Πu ̸= Πv] , (2.24)

where [π ̸= π′] is the function of P2 → {0, 1} equal to 0 when π and π′

are identical planes and 1 otherwise. The parameter µ ∈ R+ is the regu-
larization strength. The first term of Eq. (2.24) measures the fidelity of the
planar reconstruction defined by Π. The second part of Eq. (2.24) encour-
ages planes associated with adjacent vertices to be identical.

The functional defined in Eq. (2.24) is similar in structure to Eq. (2.2),
and we can apply the same algorithmic scheme as in the previous sections
with minor adjustments: the reduction step now perform plane-fitting for
each component, and the refinement step use RANSAC [FB81] to initialize
the splitting procedure described in Section 3.2.

Numerical Experiments. We compare our results with a traditional pla-
nar segmentation approach based on a region-growing clustering by Cohen
et. al [CSAD04]. For a given number of components/regions, plane pursuit
improves the geometric error by an entire order of magnitude and speed
by more than 50-fold. In Figure 2.8, we represent qualitative results illus-
trating the reason behind this performance: plane pursuit fits large planes
where the geometry is simple, adapting the size of planes to the local ge-
ometry’s complexity.

The cut pursuit algorithm can be adapted for the efficient planar re-
construction of unstructured 3D point clouds. The resulting plane-
pursuit algorithm takes advantage of the regularity of the solution to
provide both a significant acceleration and a better approximation.

Conclusion

Cut pursuit is a meta-algorithm, which can take different forms depend-
ing on the property of the functional to minimize. We provide convergence
proofs for a wide range of data functionals when using the total variation
as graph regularizer. The cut pursuit algorithm can be seen as an efficient
heuristic strategy in more complex settings. In all cases, we provide consid-
erable acceleration when the sought signal exhibits graph-coarseness. This
results from the algorithmic design that exploits such structured sparsity
but also from an efficient parallel implementation.
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(a) Region-growing baseline with 492 regions.

(b) Plane-Pursuit with 492 components.

Figure 2.8: Qualitative Results for Plane-Pursuit. We represent the pro-
jection of each point on their supporting plane, and each colour represents
a different component/region. Our method yields planes of adaptive size:
large in geometrically simple regions such as roads, and smaller for com-
plex areas such as facades and window panes.
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CHAPTER 3

Exploiting the Spatial
Regularity of 3D Data

This chapter presents different methods for exploiting the spatial regular-
ity of large 3D point clouds to accelerate their automated analysis. We first
propose a versatile family of spatial regularizers for semantic labelling. We
then introduce superpoint graph, a compact yet rich representation of large
point clouds. This structure can be computed efficiently and leads to signif-
icant improvement in terms of precision and scalability. We also present a
hybrid approach combining deep learning and combinatorial optimization
to mesh large point clouds.
This chapter is organized around the following publications:

[LS18]: Loic Landrieu, Martin Simonovsky, “Large-scale Point Cloud Se-
mantic Segmentation with Superpoint Graphs”, CVPR, 2018
[LB19]: Loic Landrieu, Mohamed Boussaha, “Point Cloud Oversegmenta-
tion with Graph-Structured Deep Metric Learning”, CVPR, 2019
[CCHL20]: Chaton, Thomas, Nicolas Chaulet, Sofiane Horache, and Loic
Landrieu, “Torch-Points3D: A modular multi-task framework for repro-
ducible deep learning on 3D point clouds”, 3DV, 2020
[SLMV21]: Raphael Sulzer, Loic Landrieu, Renaud Marlet, Bruno Val-
let, “Scalable Surface Reconstruction with Delaunay-Graph Neural Net-
works”, Symposium on Geometry Processing (SGP), 2021
[LRV+17]: Loic Landrieu, Hugo Raguet, Bruno Vallet, Clément Mallet,
Martin Weinmann, “A structured regularization framework for spatially
smoothing semantic labelings of 3D point clouds”, ISPRS Journal of Pho-
togrammetry and Remote Sensing, 2017
[GL17]: Stéphane Guinard, Loic Landrieu, “Weakly supervised
segmentation-aided classification of urban scenes from 3D LiDAR
point clouds”, ISPRS - International Archives of the Photogrammetry and
Remote Sensing and Spatial Information Sciences, 2017
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1 Regularizing 3D Point Clouds Segmentation

We present a structured-optimization approach to impose a spatial regular-
ity prior to probabilistic 3D point classifications. Our approach increases
performance while retaining the probabilistic nature of the prediction.

Classical Approaches to 3D Semantic Segmentation. Steady improve-
ments in sensor technology allow the acquisition of 3D point clouds with
high resolution and precision. A straightforward consequence of the point
density is that the resulting point clouds exhibit a strong spatial regularity.
This property manifests itself in the semantic labels associated with each
3D point: a point surrounded by points belonging to the class “car” most
likely has the “car” label as well, as seen in Figure 3.1a.

Until the recent rise of 3D deep learning [QSMG17a, GWH+20], most
3D point cloud semantic segmentation pipelines classified individual
points based on hand-crafted features [WJHM15]. These features are de-
rived from spatial neighbourhoods of each point, which can be fixed
[DMDV11], adaptive [WSM+15], or multiscale [TGD+18]. However, the
label associated with each point is ultimately decided independently for
each point, leading to the low spatial regularity of the labels as observed in
Figure 3.1b.

Many works use graphical models such as Markov Random Fields
(MRF) [MBVH09, SVB10, LR12, NNSP14] or their discriminative counter-
part, Conditional Random Fields (CRF) [SNRS14] to increase the spatial
regularity of the prediction. Computing marginal inference on a large scale
is costly and can lead to poor results. Maximum a Posteriori (MAP) infer-
ence can be efficiently and reliably approximated with graph cut-based al-
gorithms [BVZ01]. However, this type of inference produces a single label
for each point and discards any confidence information from the predic-
tion. Calibrated predictions, as seen in Figure 3.1d, are crucial in 3D analy-
sis, particularly for applications such as autonomous driving [HWB+13] or
surface reconstruction [CBV17, CKR04].

Spatial Smoothing as Structured Optimization. Let G = (V, E, w) be an
edge-weighted graph characterizing the adjacency structure of a 3D point
cloud indexed by V. We consider a probabilistic labelling δ ∈ ∆V of the
points of V, with ∆K the K-simplex when K is the number of classes. We de-
note δv,k the probabilistic prediction associated with the vertex v and class
k. δ is typically obtained by classifying each point individually as proposed
in [WJHM15]. We propose to advantageously formulate the problem of in-
creasing the spatial regularity of δ as a structured optimization problem in
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(a) True labels. (b) Pointwise prediction.

(c) Regularized prediction. (d) Confidence.

Figure 3.1: Smoothing a Pointwise Prediction.:A 3D point cloud taken
from the Paris-rue-Cassette Dataset [VBS+15] and with true annotation (a).
A pointwise classifier first gives a noisy semantic segmentation (b) which
we smooth to improve the spatial regularity (c). Our approach allows to
retain the probabilistic nature of the segmentation (d) : confident un-
certain. Note that misclassifications in (c) correspond to the least confident
area in (d).
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the domain ΩV :

q⋆ ∈ argmin
q∈ΩV

∑
v∈V

f (δv, qv) + ∑
(u,v)∈E

wu,vh(qu − qv) . (3.1)

For different choices for Ω, f , and h, this versatile formulation allows us to
define both classic and new smoothing problems:

• MAP Inference in a CRF. (MAP) We set Ω to ∆K the corner of the
K-simplex, f (δv, qv) = ∑K

k=1 qv,k log(δv,k), and h = [· = 0Ω] equal to
1 at 0Ω and 0 otherwise. This formulation corresponds to the MAP
problem in a CRF defined by G. This combinatorial problem can be
efficiently approximated with α-expansion, but the solution is a sim-
ple labeling without confidence values.

• TV-regularized KL-Divergence. (KL-TV) We set Ω = ∆K, f (δv, qv) =

∑K
k=1 δv,k log(qv,k), and h(x) = ∥x∥1,1 = ∑K

k=1 |xk|. The choice of
f corresponds to the (variable part of the) Kullback-Leiber diver-
gence, a similarity measure between distributions based on informa-
tion theory [KL51]. The choice of h leads to the graph-total variation
presented in Section 2.1. The resulting convex problem is typically
solved using first-order proximal methods such as the Generalized
Forward-Backward Splitting algorithm [RFP13].

• Continuous Potts with KL-Divergence. (KL-Potts) In this formula-
tion, we change h to [· = 0Ω]. This results in a continuous-space, non-
convex, and noncontinuous optimization problem, which we have
extensively described in Chapter 2. This functional can be efficiently
minimized with the ℓ0-cut pursuit algorithm.

As a baseline, we also consider the marginal inference in the CRF de-
fined by G (Marginal), solved with Loopy-Belief Propagation [Pea82].

Numerical Experiments. We evaluate these four approaches on three
open-access medium-scale 3D scenes containing between 1.3 and 12 mil-
lion points and between 3 and 7 distinct semantic classes. We first perform
adaptive-scale geometric feature extraction [WSM+15] and train a random
forest classifier on a small subset of 1000 points to obtain noisy pointwise
predictions. We observe in Figure 3.2 that the performance of marginal
inference provides significantly lower results than the other methods in
terms of the F1-score. MAP inference leads to results of comparable quality
to KL-TV and KL-Potts, but loses the probabilistic nature of the prediction.
In contrast, we can associate confidence with each prediction of KL-TV and
KL-Potts by computing the entropy of the class prediction. As seen in Fig-
ure 3.2 that almost all errors occur for the 30% least confident points, illus-
trating the interest of this approach when precision is critical.
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Figure 3.2: Quantitative Results for Label Smoothing. Accu-
racy/coverage plot: we sort the points by decreasing confidence for the
Oakland-3C dataset (top left), the Oakland-5C dataset (top right) and the
Paris-rue-Cassette database (bottom left). The precision reaches nearly
100% for probabilistic methods at coverage 70%, i.e. once removing the 30%
least confident points

We propose a versatile optimization-based framework for spatially
regularizing pointwise prediction on 3D point clouds. In particular,
our approach increases the precision of the prediction while retaining
the probabilistic nature of the pointwise prediction, which is critical
for many applications.

2 The Superpoint Approach

Following the steps of image analysis, 3D point cloud analysis has now
fully adopted the deep learning paradigm [GWH+20]. However, neural
networks are limited in the size of the inputs they can handle simultane-
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ously. LiDAR scans often reach several million points and require sliding
window strategies [QYSG17, CGS19, TQD+19, CCHL20]. Although this
is sufficient for problems such as indoor segmentation, the loss of global
structure can be a limiting factor for large-scale geospatial data.

The semantic labels of 3D point clouds are generally regular, as ex-
plored in the previous section. Furthermore, the transitions between ob-
jects typically occur in regions with geometric or radiometric discontinu-
ities. In other words, the interface between objects of different natures is
often characterized by a sharp shift in shape and/or colour—or a learned
combination of such features. Consequently, by grouping adjacent points
with similar local geometry and radiometry, the resulting partition should
also be semantically homogeneous: each component contains mainly the
same semantic or instance labels. Instead of using this prior ex post to
improve a noisy prediction, we propose to exploit this property algorith-
mically to improve processing efficiency. The resulting deep learning ap-
proach we propose can handle millions of points simultaneously.

Principle of SuperPoint Graph. We represent large 3D point clouds as
collections of interconnected shapes called superpoints, in the spirit of su-
perpixel methods for images [ASS+12]. As illustrated in Figure 3.3, we
represent this structure with an attributed directed graph called the Super-
Point Graph (SPG). The vertices are the shapes, and the edges represent
their adjacency relationship in 3D space. We also equip each edge with a
descriptor of the nature of the adjacency between superpoints (e.g. max and
average distance, interface size, size ratio).

Instead of considering individual points or voxels, we directly classify
superpoints. Since the number of superpoints is typically several orders of
magnitude smaller than the number of points, this allows us to consider
large point clouds and model long-range interactions. The proposed SPG
representation divides the semantic segmentation problem into three dis-
tinct problems of different complexity:

1 Semantically homogeneous partition: We first partition the point
cloud into geometrically simple superpoints. We can easily derive
the SPG from this partition.

2 Superpoint embedding: Since superpoints are geometrically simple,
we can embed them with a lightweight point set network.

3 Contextual segmentation: The SPG typically contains a few hundred
vertices and a few thousand edges at most, even for complex scenes.
This small scale allows us to employ powerful graph convolution net-
works to leverage the context of superpoints.

Note that only the partitioning step considers the entire point cloud; all
other steps operate directly on the superpoint graph. An essential hypothe-
sis is that geometrically simple superpoints are semantically homogeneous,
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(a) RGB point cloud (b) Geometric partition

(c) Superpoint graph (d) Semantic segmentation

Figure 3.3: Superpoint Graph. An input point cloud (a) is divided into ge-
ometrically simple shapes, called superpoints (b). We construct a graph by
linking nearby superpoints with superedges (c). We then use graph convo-
lutions to classify the superpoints according to their shape and context.

i.e. contain mostly points with the same label. In Section 2.1, we first assume
that geometric and radiometric homogeneity implies semantic purity. We
then present in Section 2.2 a method to directly learn to partition the point
cloud into semantically homogeneous regions.

By grouping points into geometrically and semantically homoge-
neous regions, we cast the semantic segmentation of a large 3D point
cloud as a vertex classification problem on a small graph.

2.1 Geometrically Homogeneous Point Cloud Partition

This section details the partition of an input point cloud V into geomet-
rically and radiometrically simple and contiguous regions. Our objective
is not to retrieve individual instances, such as cars or chairs, but to break
down objects into geometrically simple parts, as seen in Figure 3.3.

Geometrically Homogeneous Partition. We associate with each point
a set of geometric features based on hand-made dimensionality features
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Figure 3.4: Pipeline. We illustrate our approach on a toy scene with a table
and a chair. We partition the point cloud (a), which allows us to build
the superpoint graph (b). Each superpoint is embedded with a PointNet
network. The embeddings are then refined with message passing along
superedges to produce the final labelling (c).

[DMDV11, GL17] and, if available, radiometric information (e.g. colour,
intensity). We denote these features by f ∈ Rdv×V . We also compute
Gnn = (V, Enn, w) the k-nearest neighbours adjacency graph of the point
cloud in 3D space (this is not the SPG). Each edge (u, v) in Enn is attributed
with a non-negative weight w(u,v) ∈ R+ encoding the proximity of the
points.

Partitioning amounts to computing a piecewise constant approximation
of f with respect to the graph Gnn. We define the superpoints as the con-
stant connected components of the solution of the following optimization
problem:

argmin
g∈Rdv×V

∑
v∈V
∥gv − fv∥2 + λ ∑

(u,v)∈Enn

wu,v[xu − xv] , (3.2)

with [xu − xv] = 0 if xu = xv and 1 else, and λ the regularization strength
that determines the coarseness of the resulting partition. By construction,
the recovered superpoints S = {S1, · · · , Sk} are geometrically and radio-
metrically homogeneous regions of the point cloud. The defined functional
is neither convex nor continuous, making its exact minimization unrealistic
for large point clouds. However, the ℓ0-cut pursuit algorithm introduced in
Chapter 2 can quickly find an approximate solution with a few graph cuts.

Computing SuperEdges. The SPG is an oriented attributed graph G =
(S , E , F) whose vertices are the superpoints S and whose edges E (referred
to as superedges) represent the adjacency between superpoints. We link su-
perpoints whose points are connected in the Delaunay tetrahedralization
[JT92, WH94] of the point cloud. Using this adjacency definition instead of
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nearest neighbours allows us to model long-range relationships not typi-
cally captured by nearest neighbour graphs. We attribute each superedge
with features that describe the adjacency relationships between the con-
nected superpoints, such as the offset vector between their centroids and
comparisons between the superpoint size and shapes. Note that the asym-
metry in the superedge features makes the SPG a directed graph.

2.2 Learning to Partition 3D Point Clouds

(a) Input Point Cloud (b) Learned Embedding

(c) Oversegmentation (d) True Objects

Figure 3.5: Learning to Partition. We process a point cloud (a) with our
point embedding network (b). We compute a piecewise constant partition
of these embeddings (c), which closely follows the ground truth objects (d).

Not all interfaces between objects are characterized by a change in ge-
ometry or colour. For example, whiteboards and walls are flat, white, and
vertical. The transition between these objects is subtle yet immediately rec-
ognizable to the human eye. Additionally, certain objects present heteroge-
neous radiometry and geometry: trees are composed of trunks (flat, brown,
and vertical) and foliage (scattered, green, and volumic). In this section, we
propose learning point descriptors with high contrast along object transi-
tions; see Figure 3.5.

Graph-Structured Contrastive Loss. We denote by σ : V 7→ SV
m a neu-

ral network which extracts local geometric and radiometric features of 3D
points, with S the m-dimensional hypersphere. This model is typically
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Figure 3.6: Contrastive Functionals. The homogeneity-promoting func-
tional ϕ (in blue) and the contrastive functional ψ (in red) used in the graph-
structured contrastive loss.

straightforward and operates with a limited receptive field (e.g. 50 near-
est neighbours of each point). Our goal is for the vertex-valued function
f = σ(V) to be homogeneous within objects and to present high contrast at
their interface. To this end, we define the set of intra-edges Eintra as the edges
of Enn connecting points within the same object. Equivalently, Einter is the
set of inter-edges and represents the transition between distinct objects.

We propose to learn f by minimizing the following graph-structured
contrastive loss:

ℓ( f )|E| := ∑
(u,v)∈Eintra

ϕ ( fu − fv) + ∑
(u,v)∈Einter

µu,vψ ( fu − fv) , (3.3)

with ϕ (resp. ψ) a function minimal (resp. maximal) in 0, and µu,v ∈ REinter

a weight on inter-edges. A point embedding function that minimizes this
loss should be uniform within objects and have sharp contrast at their in-
terface. Consequently, the components of the piecewise constant approxi-
mation of Eq. (3.2) should follow the objects’ borders.

We chose ϕ, the function that promotes intra-object homogeneity as
ϕ(x) := δ(

√
∥x∥2/δ2 + 1− 1) with δ = 0.3. The first term of ℓ becomes the

pseudo-Huber graph-total variation on the Eintra edges [H+73, CBFAB97],
and promotes the homogeneity of embeddings within the same object.
With ψ(x) = max (1− ∥x∥, 0), the second part of ℓ penalizes vertices con-
nected across objects’ borders and that share similar embeddings. A point
embedding constant within objects and with enough contrast between ad-
jacent objects will have a loss of 0, which implies perfect segmentation
with a well-chosen parameterization of Eq. (3.2). The four-colour theorem
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[Gon08] tells us that such embedding can be achieved for hyperspheres
with a dimension of 3 or more. However, because σ operates on point
features, borders that do not present sufficiently distinct geometric or ra-
diometric signatures will remain undetected.

Cross-Partition Weighting. Equation Eq. (3.3) views the problem of
learning to partition as an edge classification problem. However, a single
missed edge can erroneously fuse two large superpoints that cover differ-
ent objects and drastically impact the quality of the partition. We propose
to translate the influence of each edge on the resulting partition into a set
of inter-edge weights µu,v, see Figure 3.7.

We compute the partition S obtained by the piecewise constant ap-
proximation of the point features f as defined by Eq. (3.2). We define the
cross-partition Vcross between S and the true partition O of V into objects:
Vcross := {O ∩ S | O ∈ O, S ∈ S}. For all inter-edge (u, v) ∈ Einter, we de-
note by U (resp. V) the element of Vcross containing u (resp. v) and associate
the following edge weight:

µu,v := µ0
min (|U| , |V|)
| U ×V ∩ Einter |

, (3.4)

with µ0 a normalizing parameter. The rationale of this formula is the fol-
lowing: since (u, v) is an inter-edge, u and v belong to different objects.
If (u, v) is not detected as a transition, then U and V will be erroneously
merged Since U and V cover different objects, this would incur at least
min (| U |, | V |) trespassing vertices, i.e. vertices that do not belong to the
same object as the majority of the vertices of their superpoint. The weights
are also divided by the size of the interface between U and V to evenly
distribute the penalty over the number of edges that make up an interface.
This prevents long borders from being overrepresented in the loss and al-
lows the network to handle choke points.

We partition large point clouds into semantically homogeneous re-
gions by computing a piecewise constant approximation of local
point descriptors on an adjacency graph. These descriptors can be
either hand-crafted or learned to present high contrast at the inter-
face between objects.

2.3 SuperPoint Classification

After constructing the superpoint graph, our goal is to assign a semantic
label to each superpoint based on its shape and the global context of the
scene, see Figure 3.4.
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Figure 3.7: Cross-Partition Weighting. Scene comprised of a door (D) and
a wall (W). Two superpoints L (left) and R (right) overlap the door. The
edges of (LW, LD) (resp. (RW, RD)) connect the vertices of the left (resp.
right) superpoint that belong to the wall and the door. With fewer trespass-
ing vertices and a longer interface than (RW, RD), the weights of (LW, LD)
are smaller.

Superpoint Embedding. Since superpoints are geometrically simple by
construction, we sub-sample them on-the-fly to np = 128 points and nor-
malize them to the unit cube. This adaptive sampling increases the compu-
tational and memory efficiency, and doubles as a powerful data augmenta-
tion. We then embed each superpoint U ∈ S independently and in parallel
into a vector zU of size nz = 32 with a simple shape-embedding network
π : R3×np 7→ Rnz such as PointNet [QSMG17b]. To take the superpoint size
into account, we concatenate its diameter to the maxpooled shape vector.

Contextual Segmentation. In order for each superpoint to refine its em-
bedding based on its local context, we employ a message-passing scheme
inspired by Edge-Conditioned Convolutions (ECC) [SK17]:

(i) We initialize the state of each superpoint U with the shape embedding
z(0)U = zU .

(ii) Each superedge (U, V) is assigned a filter ΘU,V ∈ Rnz mapped from
its features by an MLP.

(iii) Each superpoint U sends a message ΘU,V ⊙ z(t)V to each of its neigh-
bours V ∈ NU in the SPG, consisting of its current state modulated
by the edge filter.

(iv) Once all messages are sent, each superpoint U combines the incoming
messages and updates its current state accordingly.

(v) After a set number of (iii) 7→ (iv) steps, the last current state is
mapped to a vector of class scores by another MLP.
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The following equation summarizes the main mechanism behind this
scheme:

z(t+1)
U = update

(
z(t)U , pool

({
ΘU,V ⊙ z(t)V

}
V∈NU

))
, (3.5)

with pool the averaging operator, ⊙ the Hadamard product, and update
a modified Gated Recurrent Unit (GRU) [CvMG+14]. We added a gat-
ing mechanism allowing the recurrent network to block parts of the input
vector depending on its current state. The GRU can ignore specific chan-
nels in straightforward cases, freeing their usage for ambiguous situations.
Note that the superpoint and superedge embedding networks, as well as
the GRU, are all trained end-to-end simultaneously.

This message passing scheme is similar to some inference methods used
in CRFs, such as Loopy Belief Propagation [MWJ13], or its numerous deep
learning-based reformulations [ZJR+15, SU15, LSvdHR16, CK16, LKZ+17].
The main difference is that the messages operate directly on learned repre-
sentations instead of relating to class compatibility. This allows the network
to leverage weak unaries or to discover latent sub-classes corresponding to
object parts, e.g. the legs of tables and chairs.

2.4 Numerical Experiments

Datasets. We evaluate the performance of our 3D point cloud analysis
algorithm on three datasets of different natures:

• S3DIS [ASZ+16]. This indoor dataset of office buildings contains
more than 278 million semantically annotated 3D coloured points
in 6 building areas and annotated with 13 classes and individual in-
stances.

• Semantic3D [HSL+17]. This large outdoor dense RGB LiDAR
dataset consists of over 3 billion points from various urban scenes.
The dataset consists of 15 training scans and 15 test scans with with-
held labels and a reduced test set of 4 subsampled scans.

• vKITTI3D [GWCV16, EKHL17]. This autonomous driving dataset is
made up of virtual LiDAR scans [GWCV16] with point annotations
[EKHL17].

Point Cloud Oversegmentation. We first evaluate the partition quality
obtained from hand-crafted and learned features. We compare our results
with two state-of-the-art superpoint methods: VCCS [PASW13] and the
method of Lin et. al [LWZ+18]. We also implemented a 3D version of the
deep superpixel algorithms proposed by [JSL+18] and inspired by SLIC su-
perpixels [ASS+12]. We propose three metrics to evaluate the quality of a
partition. Oracle Overall Accuracy (OOA), which is the accuracy obtained
when associating each superpoint to its majority label; Border Recall and
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Figure 3.8: Quantitative Oversegmentation Results. Performance of the
different algorithms on the 6-fold S3DIS dataset (a, b, c), and the 6-fold
vKITTI dataset (d, e, f). SSP-Cluster and VCCS are not represented for
vKITTI for the sake of legibility as their performance is too low.

Precision (BR and BP), assessing how well the contour of objects is correctly
recovered (with a set tolerance).

In Figure 3.8, we present the results of the different oversegmentation
approaches. Using learned features leads to partitions requiring five times
fewer superpoints than competing methods to reach the same purity and
border quality. We can observe in the qualitative results displayed in Fig-
ure 3.9 that networks learn features with high contrast around objects, even
ones with subtle interfaces such as whiteboards and white walls. Further-
more, the features are homogeneous within objects even when the radiom-
etry and geometry change due to light reflections or composite objects such
as trees.

Point Cloud Semantic Segmentation. We report in Table 3.1 the per-
formance of SPG, with and without learned partition and for different
datasets. Since our approach classifies superpoints and not points, its pre-
cision is bound by the quality of the partition. However, with only a frac-
tion of the parameters of large and complex neural networks such as KP-
Conv [TQD+19], or MinkowskiNet [CGS19], our method achieves compa-
rable performance. Learning the partition provides a consistent improve-
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Input cloud Ground truth objects point embeddings

VCCS [PASW13] Lin in [LWZ+18] ours

(a) S3DIS scene with 58 true objects. Superpoints : SSP 442, VCCS 436, Lin 423.

Input cloud Ground truth objects point embeddings

VCCS [PASW13] Lin in [LWZ+18] ours

(b) vKITTI scene with true 233 objects. Superpoints: SSP 420, VCCS 422, Lin 425.

Figure 3.9: Qualitative Oversegmentation Results. Our learned point fea-
tures are homogeneous within objects and present high contrast at their
border, allowing for their precise segmentation.

ment, with few additional parameters (under 15k). SPG training epochs
are at least an order of magnitude faster than its competitors, and the entire
model can be trained in under 2h on a single commercial GPU, compared
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to days on GPU clusters for the most demanding networks.

Table 3.1: Quantitative Semantic Segmentation Results. Results given in
% of mIoU over several datasets.

Model
Size S3DIS Semantic3D

vKITTI3D×106 6Fold Red/Full

PointNet [QSMG17a] 3.5 47.6 - 34.4
PointNet++ [QYSG17] 12.4 54.5 - -
SPG [LS18] 0.25 62.1 73.2/76.2 55.4
MinkoNet [CGS19] 31 65.9 - -
ConvPoint [Bou19] 2.8 68.2 -/76.5 -
SSP + SPG [LB19] 0.25 68.4 - 57.0
SPNet [HYC+21] - 68.7 - 57.0
RandLA-Net [HYX+20a] 1.2 70.0 77.4/- -
KPConv [TQD+19] 14.9 70.6 - -

3 Large-Scale Surface Reconstruction

Most surface reconstruction methods rely either on visibility-based en-
ergy formulations [BRV16, CBV17, JP11, JP14, VLPK12, ZSH19, LPK09] or
shape-based deep learning approaches [GFK+18, YFST18, SO20, LZS20,
DGF+19]. Energy-based methods are typically scalable and robust, and
provide useful topological guarantees. Deep learning approaches can learn
surface priors directly from training data leading to high-performance in-
distribution. This section presents a hybrid method in which a graph neu-
ral network predicts the parameter of a graph-cut problem, combining the
advantages of both approaches, see Figure 3.10.

3.1 Tetrahedralization-based Surface Reconstruction

The point density of a 3D point cloud is highest near the surface of the
scanned objects. A standard approach to exploit this regularity is to dis-
cretize the 3D space with a Delaunay tetrahedralization [CG+04] and di-
rectly classify each cell as inside or outside. Indeed, the size of the result-
ing cells is inversely proportional to the density of points, simplifying the
decision for large empty regions of space. The interface between the inside
and outside cells determines the predicted surface.

We denote by T the set of tetrahedron partitioning the 3D space, and
E ⊂ T × T the edges connecting cells with a shared facet. We aim to find
a labelling lt in {0, 1} for each tetrahedron t, with 0 meaning outside and
1 inside. Each cell is attributed a potential Ut quantifying its likelihood of
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(a) Delaunay
triangulation and
ray casting.

(b) Local and con-
textual learning
with gnn.

(c) Global opti-
mization with
graph cuts.

(d) Surface recon-
struction.

Figure 3.10: Pipeline. We discretize the input point cloud (a) and com-
pute tetrahedron visibility information from lines of sight and from
camera positions . We use a graph neural network (b) to predict an occu-
pancy score for each tetrahedron, which in turn define an energy (c) leading
to a minimal cut in an adapted flow graph. The reconstructed surface
(d) is the interface between cells with different labels.

being inside based on visibility considerations, i.e. cameras are outside, and
the immediate continuation of a line-of-sight after impact is inside. We also
define binary potential Bs,t, whose value indicates the propensity of a facet
to be part of the sought surface. The optimal label assignment minimizes
the following energy:

E(l) = ∑
t∈T

Ut(lt) + λ ∑
(s,t)∈E

Bs,t(ls, lt) , (3.6)

where λ ≥ 0 is the regularization strength. We can find a global minimizer
of the energy E by computing a minimum cut in an appropriate flow graph
[BVZ01] or using a linear programming approach [BdLGM14]. Of course,
the quality of the resulting surface highly depends on the relevance of the
unary and binary terms. Handcrafted potentials are usually quick to com-
pute but may be insufficient in complex cases.

We can exploit the irregular density of 3D scans with a partition of
space that is adaptive to the point density. We then use a hybrid ap-
proach to classify each cell as inside or outside. Our method benefits
from the scalability and robustness of energy-based models and the
adaptability of deep learning.

3.2 Visibility-Based Occupancy Prediction

We propose to use a graph neural network to predict unary potentials in-
stead of using handcrafted values. We first associate each cell with a set
of visibility features based on ray traversal from the sensor positions. We
then use the scalable Graph-SAGE [HYL17] graph-convolution scheme to
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Table 3.2: Object Reconstruction. Evaluated on shapes from Berger
et. al [BLN+13] with different scanning settings, our approach outperforms
both traditional and deep approaches despite only using a fraction of the
training set of ConvONet [PNM+20].

Method
Chamfer [↓] Volumetric [↑] Number [↓]

distance IoU (%) of
(point ave. %) components

ConvONet [PNM+20] 2.53 64.1 7.6
IGR [GYH+20] 5.13 62.6 38.3
Poisson [KH13] 0.74 86.1 7.8
Labatut et al. [LPK09] 0.72 86.4 2.0
Ours 0.65 88.5 1.1

leverage information from adjacent cells and predict for each t a pair of
class scores it, ot. These scores can be combined to form a soft occupancy
prediction with a softmax function. This network is supervized with the
Kullback-Leibler divergence between the predicted and true occupancy ra-
tio of each cell. Finally, we define the unary terms according to the occu-
pancy scores:

U(lt) = it [lt = 0] + ot [lt = 1] , (3.7)

with [x = y] the Iverson bracket, equal to 1 if x = y and 0 otherwise.

3.3 Numerical Experiments

We present numerical experiments to show the performance of our recon-
struction method for both objects and large-scale scenes. In both settings,
our method is only trained on a small synthetic dataset (130 shapes from
ShapeNet [CFG+15], artificially scanned) and yet outperforms state-of-the-
art learning and non-learning-based methods, highlighting its capacity for
generalization.

Object Reconstruction. We scan virtually 5 shapes from Berger
et. al [BLN+13], each with 5 noise, resolution, and outlier ratio settings.
As seen in Table 3.2, our approach outperforms both traditional and deep
learning approaches trained on the entirety of ShapeNet (50k objects).

Scene Reconstruction. Even though we only train our model on a small
set of synthetic shapes, it can generalize to large real-life scenes, see Fig-
ure 3.11. Our method consistently outperforms traditional methods in
terms of precision. It is also faster and more memory efficient than deep
learning methods such as ConvONet.
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(a) Dense MVS input. (b) Our textured mesh.

(c) Details Image. (d) [JP14]. (e) Ours.

Figure 3.11: Qualitative Results on ETH3D. Our mesh reconstruction
method takes as input a dense MVS point cloud (a) and produces a
mesh (b), simultaneously preserving fine details and completing missing
parts (here textured with [WMG14]). We represent: in (c), a cropped image
of a detail from the terrace scene of the ETH3D benchmark [SSG+17b]; in
(d), the reconstruction by Jancosek and et. al [JP14]; and in (e), our recon-
struction. Notice the missing staircase and spurious vertical pattern on the
concrete wall in (d). In contrast, our method (e) reconstructs part of the
staircase as well as the fine-grained wall textures.

Conclusion

We presented three methods to leverage the underlying structure of 3D
point clouds for three tasks: (i) improving pointwise predictions, (ii) an-
alyzing large point clouds, (iii) large-scale surface reconstruction. By ex-
ploiting spatial regularity, our approaches resulted in higher precision, re-
duction in model size, faster training, and higher generalization.
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CHAPTER 4

Exploiting the Structure
of 3D Sensors

This chapter presents four methods that exploit the acquisition structure
of 3D data for added speed and precision. We study the structure of Li-
DAR time sequences and show how a sensor-aware method can reach real-
time speed without sacrificing accuracy. We then propose an end-to-end
approach for merging images and raw 3D point clouds which defines a
new state-of-the-art with minimalistic pre-processing. We introduce a sim-
ple way to consider the acquisition geometry of 3D scans to infuse visibil-
ity information into any deep surface reconstruction methods. Finally, we
present a deep learning approach for automated forest inventory that use
the ability of LiDAR to penetrate the tree canopy to predict a multi-layer
vegetation structure.

This chapter is based on the following publications:

[LAL22]: Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Online Seg-
mentation of LiDAR Sequences: Dataset and Algorithm”, ECCV, 2022

[RVL22]: Damien Robert, Bruno Vallet, Loic Landrieu, “Learning Multi-
View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation”,
CVPR, 2022

[SLB+22]: Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Mar-
let, Bruno Vallet, “Deep Surface Reconstruction from Point Clouds with
Visibility Information”, ICPR, 2022

[KLMC22a]: Ekaterina Kalinicheva, Loic Landrieu, Clément Mallet, Nes-
rine Chehata, “Multi-Layer Modeling of Dense Vegetation from Aerial Li-
DAR Scans”, CVPR Workshops, 2022

[KLMC22b]: Ekaterina Kalinicheva, Loic Landrieu, Clément Mallet, Nes-
rine Chehata, “Predicting Vegetation Stratum Occupancy from Airborne
LiDAR Data with Deep Learning”, Journal of Applied Earth Observation and
Geoinformation, 2022
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1 Online LiDAR Segmentation

Roof-mounted spinning LiDAR sensors are widely used by autonomous
vehicles [RBG19]. Most semantic datasets [BGM+19, JOWS21, LXG21] and
algorithms used for LiDAR sequence segmentation operate on frames cor-
responding to a 360◦ degree arc around the sensor. This incurs an acquisi-
tion latency of over 100ms, which is incompatible with real-time applica-
tions. To remedy this limitation, we introduce HelixNet, the largest dataset
of LiDAR time sequences with fine-grained point information, allowing for
precise latency estimation. We also introduce Helix4D, a spatio-temporal
transformer architecture operating on slices of acquisition corresponding to
a fraction of a complete sensor rotation, significantly reducing the latency
without hampering precision, see Figure 4.1.

z + αt

x
y

(a) Temporal acquisition (b) Online processing (c) Semantic labels
considered voxel receptive field sensor position

Figure 4.1: Online LiDAR Segmentation. The 3D point sequences of ro-
tating LiDAR follow a complex helix-like structure in space and time, rep-
resented in (a). We propose an efficient spatio-temporal transformer oper-
ating on angular slices centred on the sensor’s position (b). The slices are
partitioned into voxels, each gathering information with voxels from past
slices to build a large spatio-temporal receptive field. Our proposed model
can segment the LiDAR point stream (c) with state-of-the-art accuracy and
in real-time.

1.1 HelixNet: A Dataset for Online LiDAR Segmentation

We introduce HelixNet, a large-scale, open-access LiDAR benchmark for
real-time semantic segmentation algorithms. HelixNet contains 20 3D se-
quences from the STEREOPOLIS II dataset [PPC+12], corresponding to 10
billion 3D points across 78 800 frames and 8.85 billion individual labels. As
shown in Table 4.1, HelixNet is the largest densely annotated open-access
rotating LiDAR dataset by a significant margin.
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Table 4.1: Embarked LiDAR Datasets with Semantic Point Annotations.
With over 8.8B annotated 3D points, HelixNet is 70% larger than Se-
manticKITTI, and includes diverse scenes spanning 6 different French
cities. HelixNet arranges points with respect to the sensor rotation and
contains fine-grained information about their release time.

Dataset labels frames classes span format

HelixNet (Ours) 8.85B 78k 9 6 cities
sensor
rotation

SemanticKITTI [BGM+19]5.2B 43k 19 1 city frame
Rellis3D [JOWS21] 1.5B 13k 16 1 city frame
KITTI-360 [LXG21] 1.0B 81k 37 1 city frame
A2D2 [GKM+20] 387M 41k 38 3 cities frames
Paris-Lille-3D [RDG18] 143M N/A 50 2 cities multi-frame
Toronto3D [TQM+20] 78M N/A 8 1 city multi-frame

We format the sequences to closely follow the LiDAR data stream re-
leased by the sensor. More specifically, points are grouped by packets
sharing the same release time, i.e. the moment they are made available to
the segmentation algorithm. We also associate each point with the po-
sition and angle of the sensor, rather than only once per frame for Se-
manticKITTI [BGM+19]. This fine-grained information is critical to mea-
suring the acquisition latency (acquisition to release) and inference latency
(release to classification). The fine-grained information about the sensor
position allows us to group the points into meaningful acquisition slices, a
critical step for the approach detailed in the next section.

1.2 Helix4D: Fast LiDAR Segmentation with Transformers

We consider a sequence of 3D points acquired by a rotating LiDAR on a
mobile platform, which we split into chronologically ordered slices of ac-
quisition. As represented in Figure 4.3, we process each slice with a U-Net
architecture [RFB15] with cylindrical convolutions [ZZW+21]. At the low-
est resolution, a spatio-temporal transformer network connects neighbour-
ing voxels in space and time, resulting in a large receptive field.

Temporal Slicing Instead of processing the data frame-by-frame, we pro-
pose to split the sequence into slices covering a fixed portion ∆θ ∈]0, 2π]
of the sensor rotation, resulting in a shorter acquisition time and lower la-
tency. Choosing ∆θ = 2π corresponds to the classic frame-by-frame setting
and implies an acquisition latency of 104ms in HelixNet or SemanticKITTI
[BGM+19]. A slice size of ∆θ = 2π/5 leads to an acquisition latency of
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Time Label

beginning of extract end of extract
Unlabeled Road Other surface Building
Vegetation Traffic signs Static vehicle Moving vehicle
Pedestrian Artifact

Figure 4.2: Extracts from HelixNet. Our proposed dataset contains various
urban scenes from motorways to pedestrian plazas and historical centers.

21ms, which is more conducive to the real-time processing of driving data.

Spatio-Temporal Transformer Inspired by the Cylinder3D
model [ZZW+21], we discretize into grids of increasing coarseness.
We use a cylindrical convolutional encoder to produce feature maps at
the lowest resolution. These features are processed by a spatio-temporal
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Figure 4.3: Helix4D Architecture. A point sequence is split into angular
slices and encoded with a cylindrical convolutional encoder Egrid. At the
lowest resolution, we apply W consecutive spatio-temporal transformer
blocks T w with attention spanning current and past slices. The resulting
features are up-sampled to full resolution with a convolutional decoder
Dgrid and used to classify the individual points.

transformer and, in turn, upsampled to full resolution with a convolu-
tional decoder. The points are then individually classified to produce
a semantic segmentation of the sequence. Our simplified architecture
results in a lighter computational and memory load but can still learn rich
spatio-temporal features thanks to the addition of the transformer module
described below.

We consider all non-empty voxels at the lowest resolution, forming a
non-strictly ordered time sequence. We apply to each voxel W indepen-
dent transformer blocks T 1, · · · , T W successively. For added efficiency, the
transformers use a sparse attention scheme by only comparing each voxel
v with other voxels within a mask determined by a spatial radius R and
a set of rotation offsets P ⊂ N. In the context of autonomous driving,
we choose R = 6m and P = {0, 5, 10}, corresponding to slices 0.5 and 1
seconds in the past along with the current one. We encode the relative po-
sition between voxels based on their spatio-temporal offset in the manner
of Wu et. al [WPC+21].

We design a simplified transformer architecture [VSP+17] with only
two learnable modules: a linear block generating the keys and values and
the relative positional encoding. We save further computation at inference
time by storing in memory the keys, values, and absolute positions of the
voxels in past slices with a fixed buffer of max(P) rotations. This allows
us to allocate a large spatio-temporal receptive field to each voxel without
supplementary computations.
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Figure 4.4: Influence of Slice Size. We plot the processing time (left, in
ms) and precision (right, in mIoU) of different methods for the considered
slices sizes, estimated on the validation set of SemanticKITTI [BGM+19].
Methods whose inference time is slower than the acquisition time of the
slice (red shaded area) do not meet the real-time requirement.

1.3 Numerical Experiments

Evaluating Online Semantic Segmentation We evaluate the perfor-
mance and inference time for our approach and other state-of-the-art meth-
ods on our proposed dataset HelixNet and the standard SemanticKITTI
dataset. We consider different slice sizes, from ∆θ = 2π/5 to ∆θ = 2π,
i.e. frame-by-frame. We measure the inference latency of a segmentation
method as the average time between the release of the last point of a slice
and its segmentation. To meet the real-time requirement, the classification
of a slice must be faster than its acquisition, as slower processing would
cause the prediction module to continuously fall behind. Although thin-
ner slices directly reduce acquisition latency, they also make the real-time
requirement more strict: a complete turn must be processed in less than
104ms, and a fifth turn must be in at most 21ms.

Because SemanticKITTI [BGM+19, GLSU13] lacks the pointwise infor-
mation we provide in HelixNet, we cannot directly run semantic segmenta-
tion algorithms in the online setting. This forces us to make several approx-
imations concerning the laser alignments, the movement of the vehicle, the
rotation speed of the sensor, and the release time of the points. We must
also adapt existing frame-by-frame methods to process slice and not full
frames. We propose to process the point clouds corresponding to each slice
independently and sequentially. This approach restricts the receptive field
to the extent of the slices. However, since the sensor moves, the relative
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positions given in past slices whose may no longer be valid. By explic-
itly modelling the spatio-temporal offset between voxels, Helix4D does not
suffer from this limitation.

Analysis. In Figure 4.4, we report the inference time and mIoU for dif-
ferent slice sizes. Due to its design, the performance of Helix4D is not af-
fected by the slice size. In contrast, competing methods perform worse with
smaller slices. Helix4D yields state-of-the-art accuracy in the frame-by-
frame setting, with mIoU scores only matched by Cylinder3D [ZZW+21].
However, Cylinder3D has 50 times more parameters and is twice slower,
failing to meet the real-time requirement.

Only two approaches can perform real-time classification of slices with
∆θ ≤ 2π/3: SalsaNeXt [CTA20] and Helix4D. Our approach outperforms
SalsaNeXt by over 10 mIoU points for both frame and slices. Our model’s
total latency (acquisition plus inference time) in the online setting is 40ms
(21 + 19ms). However, it reaches the same performance as Cylinder3D
evaluated on full frame with a latency of 212ms (104+ 108ms), an accelera-
tion of more than 5 folds. In short, Helix4D is as accurate as the largest and
slowest models, with an inference speed comparable to that of the fastest
and least accurate models.

We exploit the helix-like structure of point cloud sequences acquired
with a rotating LiDAR mounted on a mobile platform. Instead of
waiting for a complete sensor rotation to start inference, we process
slices of rotation, drastically decreasing the acquisition and process-
ing latency. Evaluated on our proposed dataset and a classic bench-
mark, our approach reaches the performance of state-of-the-art meth-
ods with a latency reduced by 5× and a model size reduced by 50×.

2 Image and LiDAR Fusion

LiDAR scans capture geometric information with high precision; images
provide rich textural and contextual cues. We can exploit this complemen-
tarity by processing each modality with a dedicated network and projecting
onto 3D points the 2D features learned from real [DN18, HZJ+21, JGS19]
or virtual images [KYF+20, CLLH19]. However, merging large-scale point
clouds and images raises challenges such as mapping pixels with points
and aggregating features between multiple views. Current methods rely
on a costly mesh reconstruction or specialized sensors to recover occlu-
sions, and use heuristics to merge available image information. In contrast,
we propose an end-to-end trainable multiview aggregation model to com-
bine features from images taken at arbitrary positions.
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Figure 4.5: Multiview Information. A 3D point is seen in several images
with different insights. Here, the green image contains contextual informa-
tion, while the pink image captures the local texture. The orange image
sees the point at a slanted angle and may not contain additional relevant
information.

2.1 Deep Multi-View Aggregation

We consider P a set of 3D points and I a collection of co-registered im-
ages from the same scene. We seek to exploit the correspondence between
3D points and 2D pixels to perform 3D point cloud semantic segmentation
with features learned from both modalities. As illustrated in Figure 4.5, the
conditions under which a pixel sees a 3D point heavily influence the qual-
ity of the image information. Intuitively, closer images contain textural in-
formation, while far-away images are more informative about the context.
On the other hand, a slanted viewing angle may result in unreliable or ir-
relevant 2D features. We propose a method to learn to aggregate relevant
image features onto 3D point clouds based on such viewing conditions.

Point-Pixel Mapping. Combining point clouds and images involves
computing point-pixel mappings that takes occlusions into account. This
generally necessitates accurate depth maps from specialized sensors
[VM98, CHLS17] or a costly meshing step [BGLSA18]. We propose a GPU
implementation of the straightforward Z-buffering method [Str82], which
efficiently computes the sought mapping directly from point clouds, im-
ages, and poses. This algorithm defines for each point p the set v(p) ⊂ I of
images in which it is visible. If i ∈ v(p), we say that image i and point p are
compatible, and denote by pix(p, i) the index of the pixel of i which sees p.

We associate with each compatible point-pixel pair (p, i) a vector o(p, i)
describing the conditions under which the point p is seen in i. We use a
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set of 8 handcrafted features describing the point-pixel distance, local ge-
ometry, viewing angle, distortion, local density, and occlusion rate, i.e. the
ratio of neighbouring points also seen in the image. While we could learn
to describe the viewing conditions based on learned 2D and 3D features
in an end-to-end fashion, this incurs a significant increase in memory load
and did not improve performance in our experiments. Our proposed fea-
tures contain enough information to learn point-image compatibility and
are easy to compute.

early, intermediate

and late fusion


attentive feature

pooling

point of interest


pyramid pixel 

pooling

viewing conditions

concatenation

Figure 4.6: Bimodal 2D/3D Architecture. We combine a 2D convolutional
encoder E2D and a 3D network composed of an encoder E3D, a decoder
D3D, and a classifier C3D with three different 2D/3D fusion strategies: early
(our choice in the experiments), intermediate, and late fusion.

Learning Multi-View Aggregation. We denote by { f 2D
i }i∈I a set of 2D

feature maps of width C associated with the images I, typically obtained
with a convolutional neural network. We aim to transfer these features to
the 3D points by exploiting the correspondence between points and images.
However, not all viewing images contain equally relevant information for
a given 3D point. For example, an image viewing a point from a distance
may give important contextual cues, while an image taken close and at a
straight angle may give detailed textural information. In contrast, an image
in which a point is seen from a slanted angle or under high distortion may
not contain relevant information and may need to be discarded. Note that
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the relevance of an image depends on the other views: while an image may
see a point with a less-than-ideal viewing angle, it may be the only one
with contextual cues and therefore should be kept.

To model these complex dependencies, we predict for each compatible
point-image pair (p, i) a quality score x(p, i) ∈ R describing the relevance
of image i for point p. The scores x(p, i) are defined as a deep set function
[ZKR+17] of the viewing conditions o(p, i) for all images i seeing p:

{x(p, i)}i∈v(p) = DeepSet({o(p, i)}i∈v(p)) . (4.1)

We use a softmax function to compute attention scores a(p,i) in [0, 1] repre-
senting the relative relevance of image i for point p among the image set
v(p). We associate to the point p the 2D features P( f 2D, p) defined as the
sum the 2D features for all pixels seeing p weighted by their respective
attention scores a(p, i):

P( f 2D, p) = ∑
i∈v(p)

a(p, i)ϕ
(

f 2D
i [pix(p, i)]

)
, (4.2)

with ϕ a learned linear function. The vector P( f 2D, p) corresponds to the
image information gathered from all views of p according to their rele-
vance. In Figure 4.7, we observe the influence of several viewing conditions
on the attention scores.

We propose to exploit the synergy between 3D point clouds and im-
ages by learning a multiview aggregation scheme based on the view-
ing conditions of points in images: distance, viewing angle, etc. Com-
bined with standard 2D and 3D networks, our methods define a new
state-of-the-art while only requiring raw point clouds, images, and
poses. In contrast, all other methods operate on colourized point
clouds, and 2D/3D fusion approaches require either a meshing step
or specialized depth sensors.

Extensions. We propose two extensions of this approach: view gating
and feature grouping. View gating is a mechanism that allows us to com-
pletely block the image features for a point if no viewing conditions are
satisfactory. The gating parameter g(p) ∈ [0, 1] for a point p is a non-
decreasing function of the maximum class score x(p,i) for all viewing im-
ages i ∈ v(p). We then multiply P( f 2D, p) by this parameter, allowing the
module to block possibly corrupted information from poor scanning con-
ditions.

The motivation for feature grouping is that there may be several man-
ners for an image to be relevant or not for a point p, such as contex-
tual cues, textural information, and colour. We group the channels of
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Figure 4.7: Influence of Viewing Descriptors. Given a point seen in an
image (top left), we compute the quality scores when varying the view-
ing conditions from their initial values •. We observe some interesting be-
haviours for the aggregation module which can combine multiple viewing
conditions in a nontrivial way. Top right, images with a high occlusion rate
despite a straight viewing angle are blocked from transferring information.
Bottom left, the module selects close images, but not too close—except if
the surface is planar. Bottom right, images with a high occlusion rate de-
spite a low point density are discarded.

ϕ
(

f 2D
i [pix(p, i)]

)
into K contiguous groups. We now associate for each

point-image pair (p, i) a set of K quality values, one for each feature group.
We then define K attention scores, each measuring the relative importance
of images for its feature group. After their weighted summation, we con-
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catenate the features channelwise.

Modality Fusion Network. We represent in Figure 4.6 the different fusion
strategy that we have explored. In practice, we observed that replacing
the RGB values of point clouds in colourized point clouds with the pooled
image features leads to the best performance. We use the implementation
of the Minkowski Engine [CGS19] from torch-Points3D [CCHL20] as 3D
backbone, and a pretrained ResNet18 network for embedding images.

2.2 Numerical Experiments

(a) Colorized
Point Cloud (b) Ground Truth (c) 3D Backbone

Predictions
(d) Our Model
Predictions.

Figure 4.8: Qualitative illustration. Scenes from our considered datasets
(top: S3DIS, middle: ScanNet, bottom: KITTI-360) with (a) colorized point
clouds, (b) ground truth point annotations, (c) prediction of the backbone
network operating on the colorized point cloud, and (d) our method op-
erating on raw uncolored point clouds and images. Our approach can use
images to resolve cases in which the geometry is ambiguous or unusual,
such as a large amphitheatre with tiered rows of seats (top row).

We present in Table 4.2 the performance of our approach compared to
state-of-the-art semantic segmentation methods. Using our image fusion
module consistently improves the performance of our 3D backbone by a
large margin of 3 to 5 points. Remarkably, we outperform the recent Point-
Transformer network even though its performance is much higher than our
backbone. We also perform better than all 2D/3D fusion methods. Note
that all evaluated methods use colourized point clouds except ours, which
only uses raw point clouds and images. See Figure 4.8 for qualitative illus-
trations. The gating mechanism accounts for 0.4 to 3 mIoU points depend-
ing on the considered dataset, and channel grouping for 0.4 to 4.8 points.
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Table 4.2: Quantitative Evaluation. Mean Intersection-over-Union of dif-
ferent state-of-the-art methods on S3DIS’s Fold 5 and 6-fold, and KITTI-
360 Test. All methods except the last line are trained on colourized point
clouds. State-of-the-art, second highest.

Model S3DIS KITTI
Fold 5 6-Fold Val 360 Test

Methods operating on colorized point clouds
PointNet++ [QYSG17] - 56.7 67.6 35.7
SPG+SSP [LS18, LB19] 61.7 68.4 - -
MinkowskiNet [CGS19] 65.4 65.9 72.4 -
KPConv [TQD+19] 67.1 70.6 69.3 -
RandLANet [HYX+20b] - 70.0 - -
PointTrans.[EBD21] 70.4 73.5 - -
Our 3D Backbone 64.7 69.5 69.0 53.9

Methods operating on point clouds and images
MVPNet [JGS19] 62.4 - 68.3 -
VMVF [KYF+20] 65.4 - 76.4 -
BPNet [HZJ+21] - - 69.71 -
3D Backbone+ 67.2 74.7 71.0 58.3DeepViewAgg (ours)

3 Surface Reconstruction with Visibility Information

Most deep surface reconstruction methods from point clouds ignore pose
information and only operate on point location. However, sensor visibility
holds valuable information regarding space occupancy and surface orien-
tation. This section presents two simple ways to augment point clouds
with visibility information that surface reconstruction networks can lever-
age with minimal adaptation. Our proposed modifications consistently
improve the accuracy of generated surfaces as well as the generalization
capability of the networks to unseen domains.

3.1 Visibility-Augmented Point Clouds

By incorporating visibility information into common Deep Surface Recon-
struction (DSR) architectures, we aim to improve the occupancy [LPK09,
VLPK12, JP11] and orientation [SSG17a] of the predicted surface, see Fig-
ure 4.9. While DSR methods have achieved impressive results due to their
ability to learn shape priors [PFS+19, MON+19] and shape similarities
[HMGCO20, DDN20], they tend to generalize poorly to unseen categories
or settings. We aim to increase their generalization capacities by learning a
more grounded and physical visibility model.

Real-world point cloud acquisition techniques, such as LiDAR scanning
or multi-view stereo (MVS), naturally provide the sensor position. We can
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(a) Reconstruction using only the point positions.

(b) Reconstruction with visibility augmented point cloud.

Figure 4.9: Reconstruction with Visibility Information. We augment each
3D point with a sightline vector and two auxiliary points are placed be-
fore and after the observed point. We can then easily adapt surface re-
construction algorithm to reconstruct significantly more accurate surfaces.

then form lines of sight between the sensor and the acquired points. For
each point, we associate (i) a unit line-of-sight vector pointing in the direction
of the sensor; (ii) two auxiliary points situated before and after the point
along the line of sight, see Figure 4.10 for an illustration. By construction,
the before is likely outside the scanned object, and the after point is likely
inside. We position these auxiliary points at a distance d on each side of
the real point, where d is a typical level-of-detail value, e.g. the scanning
resolution at a set distance.

We can adapt most DSR networks to handle visibility-augmented point
clouds with only two simple modifications:

• We concatenate the 3 coordinates of the line-of-sight vectors to the
point location and features.

• We add auxiliary points to the point cloud, thus tripling the num-
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Figure 4.10: Visibility-Augmented Point Cloud. Each observed point is as-
sociated with a sightline unit vector pointing toward its sensor. New points
are added before and after each point to help disambiguate occupancy.

ber of input points. We can perform a volumetric sampling for each
category of points (before, after, and real points) for efficiency.

Since we only add point and input features, most existing architectures can
be used as is. As most of the memory and computation is taken up by
the computation of wide feature maps for subsampled clouds in the inner
layers, our modification typically does not result in significant overheads.

3.2 Numerical Experiments

We report the results of experiments on object- and scene-level point clouds
by evaluating 5 of the top-performing DSR approaches with and without
our proposed improvements. Because sensor position is typically not given
in current datasets and benchmarks, we perform a synthetic scan of all 3991
shapes from ModelNet10 to form a synthetic training set.

Object-Level Reconstruction We report in Table 4.3 the performance on
ModelNet10 for various models, with and without sightline vectors or aux-
iliary points. We observe a general performance improvement across all
methods, as illustrated in Figure 4.11. In practice, adding line-of-sight vec-
tors and auxiliary points is comparable to directly adding the true oriented
normals from the sought surface in terms of performance. However, these
normals are not accessible without ground truth surface, while sensor po-
sitions are freely given.

The effect on the run time of adding sightline vectors and auxiliary
points depends on the method: under 2% increase for POCO and Con-
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Figure 4.11: Object-Level Reconstruction. Shapes from the ModelNet10
test set reconstructed using four different DSR methods operating on point
clouds with and without our proposed visibility-augmentation.

vONet, 25% for Shape As Points, and 125% for Points2Surf whose bottle-
neck is the nearest neighbour computation between points.
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Table 4.3: Object-Level Reconstruction. We report the volumetric IoU
(IoU), average Chamfer distance (CD) and normal consistency (NC) for
DSR methods trained and tested on ModelNet10, with and without line-
of-sight vectors (SV) or auxiliary points (AP). † Trained on ShapeNet.

Model SV AP IoU ↑ CD ↓ NC ↑
ConvONet-2D [PNM+20] 0.853 0.618 0.934
ConvONet-2D [PNM+20] ✓ 0.871 0.557 0.936
ConvONet-2D [PNM+20] ✓ ✓ 0.889 0.508 0.944

ConvONet-3D [PNM+20] 0.885 0.493 0.949
ConvONet-3D [PNM+20] ✓ 0.911 0.424 0.956
ConvONet-3D [PNM+20] ✓ ✓ 0.923 0.393 0.959

Points2Surf [EOMW20] 0.842 0.590 0.890
Points2Surf [EOMW20] ✓ 0.859 0.544 0.896
Points2Surf [EOMW20] ✓ ✓ 0.856 0.548 0.897

Shape As Points [PJL+21] 0.903 0.438 0.948
Shape As Points [PJL+21] ✓ 0.907 0.430 0.950
Shape As Points [PJL+21] ✓ ✓ 0.914 0.410 0.954

POCO [BM22] 0.907 0.422 0.945
POCO [BM22] ✓ 0.915 0.408 0.950
POCO [BM22] ✓ ✓ 0.917 0.406 0.950
† LIG [JSM+20] – 0.974 0.849
† LIG [JSM+20] ✓ – 0.880 0.882

DGNN [SLMV21] ✓ 0.866 0.543 0.884

Out-of-Domain Reconstruction We evaluate the impact of adding visi-
bility information to existing networks in terms of generalization capac-
ity. We trained POCO on ModelNet and tested it on large-scale scenes
from ScanNet (real) and SceneNet (synthetic). In both cases, the visibility-
augmented models produce smoother reconstructions with better com-
pleteness, see Figure 4.12. Quantitatively, the surface IoU increased by al-
most 3%.

We also evaluate out-of-category reconstructions by testing models
trained on ModelNet on shapes from ShapeNet [CFG+15]. We observe a
significant performance increase for all evaluated methods, up to +44%
surface IoU points. This illustrates the benefit of learning a visibility model
instead of shapes. Lastly, we evaluate models trained on synthetics shapes
from ModelNet10 on real-world scans acquired with LiDAR or MVS. In
Figure 4.13, we show that all considered networks reconstruct more accu-
rate surfaces using visibility information.
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Figure 4.12: Out-of-Domain Scene-Level Reconstruction. POCO trained
on ModelNet10, with and without visibility information, is run on scenes
from SceneNet (synthetic RGB-D scan) and ScanNet (real RGB-D scan).

We propose to incorporate visibility information into deep surface re-
construction methods by adding for each point a unit vector pointing
towards the sensor and a pair of auxiliary points along this vector.
This only requires minimal adaptation of the considered architecture
and results in consistently improved predicted surfaces. More strik-
ingly, the generalization capacity of the networks is significantly in-
creased, and models trained on small synthetic objects can be applied
to unseen classes, entire scenes, and even real scans.
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Figure 4.13: Out-of-Domain Reconstruction. Reconstructed shapes from
a LiDAR point cloud (left, Ignatius from Tanks And Temples) and a MVS
point cloud (right, TempleRing from Middlebury) using four different DSR
methods trained on ModelNet10, with and without visibility information.
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point labels vegetation layers

deciduous coniferous overstory
stem understory understory
ground vegetation ground ground veget.

Figure 4.14: Multi-Layer Forest Analysis. We introduce WildForest3D, a
novel dataset of annotated UAV-LS point clouds of dense forest (left), and
a new model for the multi-layer analysis of vegetation. Our network per-
forms 3D semantic segmentation (middle), and produces height maps and
watertight meshes for three vegetation layers (right).

4 Forestry Analysis from Aerial LiDAR

The automated analysis of vegetation is one of the key challenges of en-
vironment monitoring, allowing us to measure carbon stock and biodiver-
sity [LKA+22, FSM+16]. Since cameras and low-resolution LiDAR cannot
capture meaningful information underneath the tree tops [TVB+10], most
methods focus on analyzing the canopy [HCZ17]. However, such analysis
is limited: (i) tree height makes a poor substitute for biomass [Lu06], (ii)
canopy-only analysis ignores the critical biodiversity and natural habitats
from the understory [GAMP12], and (iii) ground vegetation is pivotal for
forest fire modelling [MR11]. On the other hand, aerial LiDAR scanners
with sufficient resolutions can perfectly capture precise geometric infor-
mation below tree tops [FMJ+15]. We propose to directly model the multi-
layer structure of natural forests, whose observation is unlocked by LIDAR.
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4.1 Multi-Layer Vegetation Modeling

We release the first dataset with pointwise information for natural forests
and introduce a network to explicitly model the multi-layer structure of
natural forests.

WildForest3D. We introduce a first-of-its-kind dataset of 29 scans of
dense natural forest, which contains 7 million 3D points and 2.1 million
individual labels. This corresponds to over 2000 tree instances which were
individually located and classified by in situ observations from forestry ex-
perts. The labels indicate the nature of the vegetation: deciduous canopy,
coniferous canopy, understory, stems, and ground. We also produce high-
resolution maps of the occupancy and thickness of three vegetation layers:
ground vegetation, understory, and overstory.

max-proj
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max-proj
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Sampling PointNet++

proj

proj

proj Surface reconstruction

Training

Inference

ground 

vegetation
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overstory
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3D watertight

mesh

Samples merging

Figure 4.15: Multi-Layer Modeling. Our network yields label predictions
for each 3D point, which are projected onto rasters to obtain soft occupancy
maps for 3 different vegetation layers. The network is supervised using 2D
and 3D annotations. During inference, the predictions are used to derive
the minimum and maximum elevation of each layer, which we convert in
a watertight 3D mesh.

Layer-Wise Modeling. We design a model for the automated analysis
of multi-layer vegetation from aerial laser scans. Our network operates
directly on the 3D points to perform semantic segmentation of the point
clouds and generate layer occupancy rasters, see Figure 4.15. Both 2D and
3D tasks are supervised end-to-end and simultaneously. Once trained, our
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(a) Point-wise La-
belling.

(b) True Ground
Veg. Occupancy.

(c) True Under-
story Occupancy.

10m

(d) True Over-
story Occupancy.

(e) Point-wise Pre-
diction.

(f) Pred. Ground
Veg. Occupancy.

(g) Pred. Under-
story Occupancy.

(h) Pred. Over-
story Occupancy.

Figure 4.16: Qualitative Results. In the top row, we show the ground
truth for the point labels and layer occupancy maps, with un-annotated
3D points in grey. In the bottom row, we report our predictions with errors
in red.

model produces height maps for all layers, which we transform into wa-
tertight meshes. This surface-based representation is helpful for down-
stream applications such as biomass, carbon stock, and fire fuel estimation
[FBJ+12, GCVY21], soil illumination [HvOW03], or vegetation parameter
extraction for the forest inventory [AHK+21], see Figure 4.14.

Trained on our WildForest3D, our model can accurately predict the
height and thickness of all vegetation layers at a resolution of 0.25m2. The
estimation error is divided tenfold compared to classical approaches such
as regression trees and linear regressions operating on handcrafted descrip-
tors, see Figure 4.16 for a qualitative illustration.

4.2 Weakly-Supervised Learning for Forestry Analysis

Pointwise annotation is exceptionally costly and tedious for forestry data.
Contrary to most 3D modalities whose scans can be annotated by special-
ized companies, forest data require experts to take physical measurements
and determine tree species in-situ. This task is particularly complex for
natural forests, which may be poorly accessible, and whose trees are often
interlocking. Experts produce tree-wise annotations that need to be con-
verted to a useful format for training machine learning algorithms, such as
point labels, which is a laborious and error-prone process. We propose a
weakly-supervised scheme from coarse annotations to remediate this criti-
cal limitation. The in-situ forestry experts are asked to estimate the cover-
age ratio of three vegetation layers (overstory, understood, ground vegeta-
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tion) in a 10m radius around a geo-localized position, see Figure 4.17. This
task is much simpler than detailed tree inventory and can be performed
in minutes for each plot of over 300m2. We release a novel dataset of 200
cylindrical plots with dense 3D scans and cover ratios to evaluate if such
annotations are sufficient for training deep models.

(a) LiDAR scan. (b) Aerial image. (c) In situ view.

Figure 4.17: Plot-Based Annotations. We represent in (a) the 3D point
clouds corresponding to two distinct plots. In (b), we show an aerial view
of the plots, and in (c) the perspective of the in situ annotator. The top plots
has a layer coverage of 0%, 10%, 50% for overstory, understory, ground veg-
etation, and the bottom plot 40%, 60%, 50%.

We consider the problem of strata occupancy regression presented in
the last section. We train a network that predicts fine-grained occupancy
maps, only supervised with plot-aggregated coverage ratio. We com-
bine this approach with two auxiliary losses: (i) pixel-wise negative cross-
entropy to discourage low confidence occupancy (i.e. 50%) and produce
crisper maps; (ii) we model the distribution of point elevation as a mix-
ture of two Gamma distributions, which can be fitted with the expec-
tation–conditional–maximization (ECM) algorithm [YCHNP19]. Models
trained on purely plot-aggregated data can predict occupancy maps at
0.25m2 with high precision.



82 CHAPTER 4. EXPLOITING THE STRUCTURE OF 3D SENSORS

We exploit the unique perspective offered by aerial LiDAR on the
multi-layer structure of natural forests. We propose a model that per-
forms jointly 3D semantic segmentation and layer occupancy regres-
sion. Our model yields a precise estimation of the density and height
of different vegetation strata, which is helpful for a variety of forestry
applications. We also propose a weakly-supervised training scheme
that greatly simplifies the annotation process while yielding precise
occupancy maps.

Conclusion

We have shown through four different 3D models and applications the ad-
vantage of considering the specificities of the sensor when designing net-
work architectures. Considering the viewing conditions of images in point
clouds allows us to overtake state-of-the-art 2D/3D hybrid segmentation
models while reducing costly preprocessing. Exploiting the rotating Li-
DAR structure motivates a novel architecture with high precision and sig-
nificantly decreased latency and model size. We propose a simple alteration
to recent deep surface reconstruction methods to incorporate visibility in-
formation. Our approach leads to across-the-board improvements and a
significant increase in generalization capacity. Finally, we exploit the abil-
ity of LiDAR to penetrate tree canopy to learn the multi-layer structure of
natural forests.



CHAPTER 5

Exploiting the Structure of
Satellite Time Series

This chapter presents our work on the automated analysis of Satellite Im-
age Time Series, or SITS. Due to accessible data and plentiful annotations,
SITS analysis is a prime example of a remote sensing task which bene-
fits from the deep learning approach. However, SITS follow a complex
multi-modal, spatial, temporal, and spectral structure. We propose a fam-
ily of attention-based algorithms exploiting these properties to increase the
speed and precision of crop mapping.
This chapter is organized around the following publications:

[GLGC20]: Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano,
Nesrine Chehata, “Satellite image time series classification with pixel-set
encoders and temporal self-attention”, CVPR, 2020
[GL21b]: Vivien Sainte Fare Garnot, Loic Landrieu, “Panoptic Segmenta-
tion of Satellite Image Time Series with Convolutional Temporal Attention
Networks”, ICCV, 2021
[GL20]: Vivien Sainte Fare Garnot, Loic Landrieu, “Lightweight Temporal
Self-Attention for Classifying Satellite Image Time Series”, ECML Workshop
on Advanced Analysis and Learning on Temporal Data, 2020
[GL21a]: Vivien Sainte Fare Garnot, Loic Landrieu, “Leveraging Class Hi-
erarchies with Metric-Guided Prototype Learning”, BMVC, 2021
[GL22]: Vivien Sainte Fare Garnot, Loic Landrieu, “Multi-Modal Tempo-
ral Attention Models for Crop Mapping from Satellite Time Series”, ISPRS
Journal, 2021
[QL21]: Félix Quinton, Loic Landrieu, “Crop Rotation Modeling for Deep
Learning-Based Parcel Classification from Satellite Time Series”, Remote
Sensing, 2021
[GBLC20]: Sébastien Giordano, Simon Bailly, Loic Landrieu, Nesrine
Chehata, “Improved crop classification with rotation knowledge using
Sentinel-1 and -2 time series”, Photogrammetric Engineering & Remote Sens-
ing, 2021
[GLGC19]: Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano,
Nesrine Chehata, “Time-space trade-off in deep learning models for crop
classification on satellite multi-spectral image time series”, IGARSS, 2020
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1 Stakes and Challenges of SITS Analysis

NN

(a) RGB image (b) Agricultural Parcels

Figure 5.1: Sentinel-2 Image. RGB values for the 31TFM tile, covering
110× 110 km and containing over 200 000 agricultural parcels.

Advances in space-based remote sensing, such as the launch of the
Planet [BMKS14] and the open-access Sentinel constellations [DDBC+12],
have allowed for sustained improvements in the precision and availabil-
ity of Earth observation. In particular, satellites with high revisit fre-
quency are ideal for analyzing phenomena with complex temporal dynam-
ics [GLGC19] such as crop mapping—the driving application of this chap-
ter, see Figure 5.1.

The automated analysis of Earth observation creates impactful financial
and environmental opportunities for private and public actors. Crop mon-
itoring is necessary for the fair allocation of farming subsidies (57 and 22
billion euros per year in Europe and the US, respectively [CAP]). It can help
enforce crop rotation best practices for maximizing yields [KKN+15, SL08]
and soil protection [AAM+11, Bul92]. Automated SITS analysis is also used
for other applications such as surveying urban development [TL16] and de-
forestation [RHV+18].

Despite the inherent difficulty of differentiating between the complex
growth patterns of cultivated plants, virtually limitless access to data and
annotations have encouraged the development of algorithmic solutions for
automated crop monitoring from satellites [KDB+19]. Indeed, Sentinel-2
averages one multi-spectral observation every five days, which is benefi-
cial for characterizing crop phenology [SBAK20, VMD+18], see Figure 5.2.
Moreover, farmers declare the kind of crop cultivated in their parcels
yearly. This represents over 10 million yearly annotations for France alone
[RPG], all openly accessible in the Land-Parcel Identification System.

SITS present a set of unique challenges and structures:
• Large Scale. The amount of data acquired by Sentinel-2 is consid-

erable: more than 25 To / year in Europe for the optical modality
alone. Training and applying deep models require computation- and



1. STAKES AND CHALLENGES OF SITS ANALYSIS 85

memory-efficient architectures.
• Absolute Spatio-Temporal Frame of Reference. The position of a

pixel in a picture or the frame number in a video is typically consid-
ered arbitrary and uninformative information. In contrast, absolute
spatial and temporal coordinates are crucial information in SITS as
they significantly influence observations: wheat crops have different
spectral signatures in Denmark or Italy, and in October or March.

• Cloud Occlusion. Agricultural parcels generally do not occlude each
other from the near-nadir perspective of a satellite. 1 However, cloud
cover impacts acquisitions in several ways, from total occlusion to di-
rect and indirect (shadow) radiometric corruption [LSL+17, GYL+20].
2

• Low Spatio-Temporal Resolution. The spatial resolution and revisit
time of the Sentinel-2 satellites are nothing short of a technological
marvel and revolutionized Earth observation. However, agricultural
parcels are structured by elements such as hedges and furrows, which
are typically smaller than the size of Sentinel-2 pixel (10m). Likewise,
the evolution of agricultural land is organized around technical acts
such as harvest or mowing, which are typically shorter than the satel-
lite’s revisit time of five days. This differs from the analysis of natural
images or videos, in which the target objects or events are typically
covered by multiple pixels and frames.

• Multi-Modality. Earth’s surface is constantly monitored from space
by an array of public, private, and military sensors that differ in
nature and resolution. The Sentinel constellation itself comprises
synthetic-aperture radar (S1), optical, microwave, and infrared ra-
diometers (S2,S3), spectrometers (S3,S4,S5), and altimeters (S3,S6). In
particular, C-band radar and visible/near-infrared radiometers col-
lect complementary information [VTGGP18], which is useful for crop
and land mapping. Furthermore, while cloud cover is highly dis-
ruptive for optical imagery, radar waves are essentially unaffected
[SWNW18].

These characteristics make the analysis of SITS for crop monitoring an ex-
citing and challenging machine learning task, deserving of uniquely tai-
lored solutions. Throughout this chapter, we define SITS as 4-dimensional
tensors of size T × C × H ×W, with T the length of the sequence, C the
number of channels per pixel, and H, W the spatial extent of the images.
Note that in the general case, the acquisition dates depend on the region

1Note that images with oblique viewing conditions also exists, causing self-occlusions
in mountainous areas.

2Clouds are surprisingly pervasive: up to 65% of the Earth’s surface is occluded from
space at any given time, and around 35% for land masses [JR08]. This makes crop moni-
toring [ESR+16] and emergency mapping [RRW19] particularly difficult in humid tropical
regions.
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Figure 5.2: Sentinel-2 Time Series. Images (RGB bands, 10m per pixel) for
parcels of Winter cereal and Spring cereal. The dots on the horizontal axis
represent the unevenly distributed acquisition dates throughout the period
of interest. Note the importance of the temporal evolution of the parcels to
discriminate between classes.

(tile) considered, a complication that our proposed solutions handle well.

2 Parcel Classification

In this setting, we know the exact extent of each parcel and try to predict the
nature of the crop from a time sequence of observations. This is the oper-
ational setting in countries with an open-access Land Parcel Identification
System (LPIS), such as France or Denmark.

2.1 Spatial Encoding

Figure 5.3: Architecture of the PSE. Each image of the considered sequence
is processed as an unordered set of pixels.
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The spatial resolution of 10m per pixel of the Sentinel-2 optical sensor
limits the nature of the spatial information that can be captured. In partic-
ular, textural information, such as furrows and hedges, is typically lost.
This coarseness questions the widespread use of CNNs [KLSS17, RK18,
GLGC19] as spatial encoders for SITS. In fact, CNNs are known to rely
mainly on texture to extract spatial features [GRM+19].

Instead, we propose to consider each image as an unordered set of pixel,
i.e. a point cloud in spectral space. Our proposed Pixel-Set Encoder (PSE)
network randomly samples pixels for each date, and uses a modified set-
based architecture [QSMG17a, ZKR+17] to learn statistical descriptors of
the parcels’ spectral distribution. While this approach destroys spatial in-
formation, the randomness of sampling acts as a powerful augmentation
strategy to fight overfitting. We also incorporate a set of handcrafted spatial
features (e.g. perimeter, surface), which are easy to compute and allow the
network to retain high-level information about the parcel shape. Another
advantage of this approach compared to image-based approaches is that
parcels can be processed in parallel, regardless of their size. This allows
us to forego the memory-intensive and information-altering resizing and
padding steps required to embed images of various shapes with CNNs.

Recognizing that the spatial resolution of Sentinel-2 images may be
too low to represent texture, we view parcels as unordered sets of
pixels and learn statistical descriptors of the parcels’ spectra with a
simple set-based network.

2.2 Attention-Based Temporal Encoding

The temporal dimension of remote sensing time series can be handled
in a number of ways, such as temporal concatenation [KLG+16], tem-
poral statistics [PVI+16], histograms [BMT+15], time kernels [TMC+17],
shapelets [YK09], or probabilistic graphical models [GBLC20]. However,
attention-based networks [VSP+17] have initiated a new era for sequential
information analysis. Initially designed for Natural-Language Processing
(NP), Transformers have proved more expressive and faster to train than
RNNs for various tasks. We propose to adapt this concept to satellite im-
age time series. Given the difference between the analysis of NLP and SITS,
this requires several adjustments.

Transformer Network. In the original formulation, a query-key-value
triplet q(t), k(t), v(t) is computed simultaneously for each element x(t) of the
input sequence. The key k(t) conveys information about the nature of the
content, the value v(t) encodes the content itself, and the query q(t) the type
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Figure 5.4: Architecture of the Temporal Attention Encoder. Our sim-
plified transformer architecture can efficiently embed sequences of image
embeddings. Variables in bold are tensors concatenated along the temporal
dimension, e.g. e = [e(0), · · · , e(T)].

of contextual information needed to embed x(t). Each element of the se-
quence associates an attention score to the preceding elements by comput-
ing the dot product compatibility between k(t<T) and q(t), rescaled with a
modified softmax layer.

This procedure can be computed several times in parallel with different
sets of independent parameters, or heads. This approach, called multi-head
attention, allows for the specialization of different query-key compatibility.
Since all computations are parallel, the Transformer takes full advantage of
modern GPU architecture and yields a significant speed increase compared
to recurrent architectures.

Positional Encoding. In their paper on text translation, Vaswani et. al en-
code the position of elements in the sequence with discrete Fourier coeffi-
cients, as defined in Equation 5.1. Instead of the position in the sequence,
we use the number of days since the first observation to help to account for
inconsistent temporal sampling (see Figure 5.2).

[p(t)]Ei=1 = sin
(

day(t)/τ
2i
E +

π

2
mod(i, 2)

)
, (5.1)

with E the size of the spatial embedding.

End-to-End Encoding. Since we train our spatial and temporal encoders
simultaneously, we can directly use spatial features as values. This removes
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needless computation and avoids a potential information bottleneck. Using
a single linear layer FC(h)

1 , we generate the keys k(t)h and queries k(t)h for each
element t of the sequence and each head h in parallel :

k(t)h , q(t)h = FC(h)
1

(
e(t) + p(t)

)
(5.2)

Master Query Generation. Our goal is to encode the sequence corre-
sponding to one year of observation for each parcel. In NLP, this corre-
sponds to the sentence classification setting, e.g. for sentiment analysis, and
is typically done using a special “beginning of sentence” token [DCLT18].
Here, we generate a single master-query q̂h per sequence and head h as the
temporal average of all queries of the sequence, processed by a single fully-
connected layer FC(h)

2 :

q̂h = FC(h)
2

(
mean

(
{q(t)h }

T
t=1

))
(5.3)

Two benefits of this approach are that the query can adapt to the content of
the sequence and is linear in time instead of quadratic for token embedding
tasks.

Multi-Head Temporal Attention. We multiply the master query with the
keys to produce attention weights a(h) ∈ [0, 1]T for each element of the
sequence, determining which dates contain the most helpful information.
We use the attention weight to obtain the output oh as the temporal average
of the input embeddings. Finally, we concatenate the output of all heads
and process the results with MLP3:

ah = softmax
(

1√
dk

[
q̂h · k

(t)
h

]T

t=1

)
(5.4)

oh =
T

∑
t=1

ah[t]
(

e(t) + p(t)
)

(5.5)

ô = MLP3 ([o1, · · · , oH ]) . (5.6)

In Figure 5.5, we illustrate head specialization by plotting the average at-
tention masks for two types of cereals. We can see that each of the four
heads specializes in a specific portion of the time series. Additionally, the
dependency of the attention mask to the input is apparent for head 4, which
focuses on late spring for Spring Cereal samples and late summer for Sum-
mer Cereal samples.

2.3 Efficient Temporal Attention

An important observation from the previously presented TAE is that in-
creasing the number of heads is beneficial for precision, but incurs a high
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(a) Spring Cereal

(b) Summer Cereal

Figure 5.5: Average attention masks of the TAE heads, obtained from 128
samples of spring (a), and summer (b) cereal parcels. Head 4 adapts to the
different classes to detect specific events.

computational and memory cost. We thus propose the Lightweight Tem-
poral Attention Encoder (L-TAE), a stripped-down version of the TAE al-
lowing for the efficient use of many attention heads. We present the main
proposed changes below and in Figure 5.6.

Channel Grouping: we split the E channels of the sequence of spatial
embeddings into H groups of size E′ = E/H with H the number of heads.
We denote by e(t)h the groups of input channels for the h-th head of the t-th
element of the input sequence.

Query-as-Parameter: We save computations by directly defining the mas-
ter queries as trainable parameters of the network. While such queries are
not adaptive to the input, we can use many heads to maximize the expres-
sivity of the learned features. Only the keys are obtained with a learned
linear layer.
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softmax

Head 1

Head 3

Head 2

MLP

Figure 5.6: L-TAE Architecture. An input sequence e of T vectors of size
E, with H = 3 heads and keys of size K. The channels of the input em-
beddings are distributed among heads. Each head uses a learned query q̂h,
while a linear layer FCh maps inputs to keys. We concatenate the outputs
of all heads into a vector the same size as the input embeddings.

Table 5.1: Asymptotic Complexity of Sequence Embedding Networks.
The GRU’s memory update complexity is given in the Keys and Mask
columns. X is the size of the output vector. M is the size of the hidden
state of the GRU.

Method Keys Mask Output

L-TAE O(TEK) O(HTK) O(EX)
TAE O(HTEK) O(HTK) O(HEX)

Transf. O(HTEK) O(HT2K) O(HEX)
GRU O (MT(E + M)) O(MX)

Multi-Head Attention: The rest of the network operates similarly to the
TAE: outputs oh of each head are defined as the temporal average of inputs
weighted by attention scores derived from key-query compatibility. Finally,
the outputs of all heads of size E/H are concatenated into a vector of size
E and processed by a multi-layer perceptron MLP to the desired width.

Computational Complexity In Table 5.1, we report the asymptotic com-
plexity of different sequence embedding algorithms. The L-TAE channel
grouping strategy removes the influence of H in the computation of keys
and outputs compared to a TAE or a Transformer. The complexity of the
L-TAE is also lower than the GRU’s as M, the size of the hidden state, is
typically larger than K (130 vs 8 in the experiments presented in Table 5.2).
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2.4 Quantitative Results

Table 5.2: Quantitative Evaluation. We report the overall Accuracy (OA)
and mIoU Classification metrics for different architectures, as well as train-
ing time (one epoch) and inference time for the entire dataset, and the size
of the dataset on the disk . 1 disk space required for training and pure
inference, 2 time for the entire training step, 3 preprocessing and inference
time, 4 dataset before and after preprocessing.

OA mIoU Training Inference Disk Size
(s/epoch) (s/dataset) Gb

PSE+TAE (ours) 94.2 ±0.1 50.9 ±0.8 158 149 28.6 / 12.31

CNN+GRU [GLGC19] 93.8 ±0.3 48.1 ±0.6 656 633 98.1
CNN+TCNN [PWP19] 93.3 ±0.2 47.5 ±1.0 635 608 98.1
Transformer [RK19] 92.2 ±0.3 42.8 ±1.1 13 420 + 43 28.6 / 0.224

ConvLSTM [RK18] 92.5 ±0.5 42.1 ±1.2 1 283 666 98.1
Random Forest [GBLC20] 91.6 ±1.7 32.5 ±1.4 2932 420 + 43 28.6 / 0.44 4

We report in Table 5.2 the performance of our approach and different
competing networks on a proposed open-access dataset.

Sentinel2-Agri. We propose a dataset comprising 191 703 image time se-
quences corresponding to agricultural parcels of the T31TFM Tile in south-
ern France. All sequences are composed of 24 observations spanning from
January to October 2017, with a spatial resolution of 10m and 10 spectral
bands (we discard B01, B09, and B10). We associate each sequence with
the label corresponding to the majority culture retrieved from the French
Land Parcel Identification System records3 with a 20 class nomenclature de-
signed by the subsidy allocation authority of France. The dataset is highly
imbalanced: four classes cover 90% of the samples.

We propose two versions of the dataset, depending if images are stored
as patches or sets. In the patch format, we resize each parcel into a tensor of
size T×C× 32× 32 with nearest neighbour spatial interpolation and zero-
padding. In the set format, the pixels of each parcel are stored in arbitrary
order into a tensor of size T × C× N, with N the total number of pixels in
a given parcel. Note that this format neither loses nor creates information,
regardless of parcel size. Hence, this setup saves up to 70% disk space
compared to the patch format (28.6Gb vs. 98.1Gb). This dataset constitutes
the first large-scale dataset for object-based agricultural parcel classification
and is freely accessible at github.com/VSainteuf/pytorch-psetae.

3http://professionnels.ign.fr/rpg

github.com/VSainteuf/pytorch-psetae
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Figure 5.7: Precision, Speed, and Model Size. We report the mIoU aver-
aged over 5 runs for different temporal encoders plotted with respect to
the number of FLOPs necessary to process one sequence. The marker size
represents the number of trainable parameters in the model. The L-TAE
outperforms other models across all model sizes and processing require-
ments.

Competing Methods. We compare our approach to recent algorithms op-
erating on similar datasets. These methods use CNNs or spatial pooling for
spatial encoding and recurrent neural networks, temporal convolutions, or
transformers for temporal encoding. We parametrize all models to have
roughly 150k parameters. We report in Table 5.2 the performance of all
methods in terms of precision, speed, and memory usage.

Efficient Temporal Attention. We focus on the advantages of the L-TAE
by using the same PSE network for spatial encoding and varying the tem-
poral encoders. We report the performance in Figure 5.7.

We propose to adapt the successful attention model from NLP to
SITS. Not only does our approach define a new state-of-the-art in
terms of precision, but it is four times faster and uses a parsimonious
data format only requiring a quarter of disk size. A variation of our
temporal model reaches even higher performance with smaller mod-
els: a model with only 9k parameters overtakes a GRU with over 3m
parameters. Several other studies confirmed the superiority of our
models for SITS [SK20, KTR+21].
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3 Panoptic Segmentation of SITS

We now study crop mapping when both the content and contour of
parcels must be retrieved, which is the most common operational setting.
This problem can be framed as panoptic segmentation of an image se-
quence [KGHD19, MV21]. However, since agricultural parcels are geo-
referenced and static, we only need to consider the geo-referenced pix-
els and not all images in the sequences. This removes the complex task
of spatially tracking objects [TSA19]. While some approaches propose
to perform instance segmentation [Rie17], delineation (border detection)
[GPGMLS17, MPT20, WD20], or oversegmentation [PKPG12], there exists
no dedicated approach for detecting individual objects consistently across
an entire satellite image sequence.

3.1 Spatio-Temporal Pixel Encoding

The first step of our pipeline is to learn pixel-wise features encoding the
spatio-temporal dynamics of SITS containing multiple parcels. The key
insight of our proposed architecture is to use temporal attention to com-
pute meaningful spatio-temporal maps at several resolution levels simul-
taneously. Temporal U-Net networks [SPI+19, RCW+19, PVK21] only pro-
cess the temporal dimension of the lowest resolution and collapse the skip
connections with spatial averaging. This prevents the extraction of spa-
tially adaptive and parcel-specific temporal patterns at higher resolutions.
Conversely, convolution-recurrent encoders [RK18] process the temporal
dimension at the highest resolution, which results in an increased memory
requirement and ignores the low spatial regularity of the data. Instead, we
propose to efficiently compute temporal attention masks at all resolutions
using an upsampling strategy on the attention masks themselves, see Fig-
ure 5.9.

Our model, dubbed U-TAE (U-Net with Temporal Attention Encoder),
encodes a sequence x of dimension T × C× H ×W in three steps:

(a) Each image in the sequence is embedded simultaneously and inde-
pendently by a shared multi-level spatial convolutional encoder.

(b) We apply an L-TAE to all the pixels of the lowest resolution feature
map independently to obtain pixelwise temporal attention masks. We
then use bilinear interpolation to obtain masks at all spatial resolu-
tions and collapse the spatial dimension of the maps at all levels.

(c) The resulting spatial feature maps are processed by a convolutional
decoder to produce rich feature maps at all levels.

A subtlety of our spatial encoder is that the image batches mix acquisi-
tions taken at different dates. Consequently, the samples are not identically
distributed, which prevents the use of BatchNorms [IS15]. To address this
issue, we use Group Normalization [WH18] with 4 groups instead in the
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(a) Image from the sequence. (b) Panoptic annotation.

(c) Panoptic segmentation. (d) Semantic segmentation.

Figure 5.8: Problem Statement. We consider an image sequence (a) with
panoptic annotations (b). Our objective is to learn spatio-temporal pixel
features, which can be used to perform panoptic (c) and semantic segmen-
tation (d). We observe some difficult configurations: boundary ambiguities
that can not be resolved from a single image (cyan circle ), and conversely,
visually fragmented areas annotated as a single instance (red circle ).

encoder. As shown later, the impact of this simple change on the perfor-
mance is drastic for all temporal U-Net and not only ours.

PASTIS Dataset. We introduce the PASTIS (Panoptic Agricultural Satel-
lite TIme Series) dataset, the first large-scale, publicly available SITS dataset
with semantic and panoptic annotations. PASTIS is comprised of 2 433 se-
quences of multi-spectral images of size 10× 128× 128. Each sequence con-
tains between 38 and 61 observations taken between September 2018 and
November 2019, for over 2 billion pixels spanning 4000 km2. We estimate
that close to 28% of images have at least partial cloud cover.

Each pixel of PASTIS is associated with a semantic label taken from
a nomenclature of 18 crop types plus a background class. Each non-
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Figure 5.9: Spatio-temporal Encoding. A sequence of images is processed
in parallel by a shared convolutional encoder. At the lowest resolution,
an attention-based temporal encoder produces a set of temporal attention
masks for each pixel, which are then spatially interpolated at all resolu-
tions. These masks are then used to collapse the temporal dimension of the
feature map sequences into a single map per resolution. Finally, a convolu-
tional decoder computes features at all resolution levels.

background pixel has a unique instance label corresponding to its parcel
index. In total, 124 422 parcels are available, each with bounding box, pixel-
precise mask, and crop type. The French Payment Agency estimates the
accuracy of the crop annotations via in situ control to be over 98% and the
relative error in surface to be under 0.3%. To allow for fair cross-validation,
we split PASTIS into 5 folds with a 1km buffer between images.

Semantic Segmentation. By setting the width of the highest resolution
layer to the number of classes, the U-TAE can perform semantic segmen-
tation. As seen in Table 5.3 the U-TAE significantly outperforms the other
methods from the state-of-the-art. Interestingly, most of the advantage of
our approach is attributable to the use of attention maps at all resolution
levels. Collapsing the skip connections with simple temporal average re-
sults in a performance comparable to the other evaluated methods. The
main advantage of temporal attention is that it can be easily used at differ-
ent resolutions, in contrast to recurrent network-based approaches.

3.2 Panoptic Segmentation

We now use the multi-scale feature maps learned with the U-TAE to per-
form panoptic segmentation. Since the U-TAE operates on many images
for each sequence (often over 50), we favour an efficient design. Further-
more, given the relative simplicity of parcel borders, we can avoid com-
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Table 5.3: Semantic Segmentation. We report for our method and six com-
peting methods the model size in trainable parameters, Overall Accuracy
(OA), mean Intersection over Union (mIoU), and Inference Time for one
fold of ∼ 490 sequences (IT).

Model
# param

OA mIoU IT (s)×1000

U-TAE (ours) 1 087 83.2 63.1 25.7
3D-Unet [RCW+19] 1 554 81.3 58.4 29.5
U-ConvLSTM [RCW+19] 1 508 82.1 57.8 28.3
FPN-ConvLSTM [MLRF+21] 1 261 81.6 57.1 103.6
U-BiConvLSTM [MLRF+21] 1 434 81.8 55.9 32.7
ConvGRU [BYPC16] 1 040 79.8 54.2 49.0
ConvLSTM [RK18] 1 010 77.9 49.1 49.1

U-TAE w. Skip Mean 1 074 82.0 58.3 24.5

plex region proposal networks such as Mask-RCNN [HGDG17]. Instead,
we adapt the single-stage Object-as-Point instance segmentation network
[ZWK19, WXS+20] and name our network Parcels-as-Points (PaPs) to high-
light this inspiration.

Parcel Detection. We define a centerness heatmap from the ground truth
parcel bounding boxes by associating each centroid with a heteroscedastic
Gaussian kernel depending on their spatial extent. This allows us to frame
the detection problem as the regression of this heatmap, supervised using
a modified logistic loss. We predict parcel centerpoints at all spatial local
maxima of the predicted centerness heatmap, which can can be efficiently
retrieved with a single max-pooling operation, see Figure 5.10.

Size, Class, and Shape Prediction. We attribute to each detected center-
point a multi-scale descriptor by concatenating the feature maps at all res-
olutions in the channel dimension. From this descriptor, we predict a class,
a size, and a small shape patch of fixed size S, typically 16 pixels. This
patch is reshaped using the predicted size to obtain a rough shape predic-
tion. To obtain a pixel-precise instance prediction, we also predict a saliency
map at full resolution, shared for all detected centerpoints of the sequence.
This saliency map is cropped along the predicted parcel bounding box, and
combined with the rough shape prediction in a residual fashion to obtain a
soft occupancy mask for each predicted centerpoint, see Figure 5.11

We supervise the class predictions with the cross-entropy and the pre-
dicted sizes with a rescaled L1 loss. The shape patches and saliency map
are supervised with the binary cross entropy between the predicted and
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(a) Instance masks (b) Target heatmap

(c) Observation from se-
quence.

(d) Predicted center-
points

Figure 5.10: Centerpoint Detection. The ground truth instance masks (a) is
used to construct a target heatmap (b). Our parcel detection module maps
the observation (c) to a predicted heatmap (d). The predicted centerpoints
(red crosses) are the local maxima of the predicted heatmap (d). The black
dots are the true parcel centers.



3. PANOPTIC SEGMENTATION OF SITS 99

Table 5.4: Panoptic Segmentation Experiment. We report class-averaged
panoptic metrics: SQ, RQ, PQ. The U-TAE appears essential to the quality
of the prediction.

SQ RQ PQ

U-TAE + PaPs 81.3 49.2 40.4
U-ConvLSTM + Paps 80.9 40.8 33.4

true occupancy mask of the parcels. We combine all losses without scaling.
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Figure 5.11: Panoptic Segmentation. The local maxima of the predicted
centerness heatmap define M tentative parcels. We then predict a bound-
ing box size, a semantic class, and an S× S shape patch for each detected
centerpoint. Combined with a global saliency map, the shape patch allows
us to predict pixel-precise masks.

Converting to Panoptic Segmentation. Panoptic segmentation consists
in associating to each pixel a semantic label and, for non-background pix-
els (our only stuff class), an instance label [KGHD19]. We resolve the over-
laps of the previously described instance proposals with Non-Maximum
Suppression. We report in Table 5.4 the performance of our approach, con-
stituting the first state-of-the-art of SITS panoptic segmentation. See Fig-
ure 5.12 for qualitative illustrations of the advantage of our approach.

We adapt our temporal attention encoder to analyze remote sensing
image time series. We propose a hybrid convolutional transformer
architecture which defines a new state-of-the-art for semantic seg-
mentation of agricultural parcels. We also propose the first dataset
for evaluating the task of agricultural parcel panoptic segmentation,
for which our approach sets up the first state-of-the-art.
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(a) Single image (b) Panoptic GT (c) Panoptic seg (d) Semantic seg

Figure 5.12: Qualitative Panoptic Segmentation Results. We present a
single image from the sequence using the RGB channels (a), and whose
ground truth parcel boudaries and types are known (b). We then present
our predicted panoptic segmentation (c), and semantic segmentation (d).
Large, fragmented parcel are sometime declared as one single field , mak-
ing their recovery difficult. Conversely, fragmented parcels are correctly
predicted as a single instance, suggesting that our network is able to use
the temporal dynamics to recover ambiguous borders.
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4 Multi-Modal TAEs

The various sensors of Earth Observation satellites capture information of
different natures and distinct spatial and temporal resolutions, with vary-
ing resilience to atmospheric conditions. In particular, C-band radar and
optical images possess well-known synergies for automated crop map-
ping [VTGGP18, SWNW18, CTGHM+19]. Optical time series contain
highly relevant information for monitoring the evolution of plant phenol-
ogy [VMD+18, SBAK20], but are highly susceptible to cloud cover and at-
mospheric distortion [STAL20]. Conversely, radar acquisitions are impervi-
ous to cloud cover, which makes them uniquely well-suited for monitoring
rapidly changing biological processes [MKL+14]. However, radar is influ-
enced by extrinsic factors such as humidity and terrain, making it harder
to extract robust features.

The fusion of optical and radar time series has been extensively ex-
plored with traditional machine learning methods [VTGGP18, SWNW18,
GBLC20], and more recently, recurrent neural networks [IIGM19]. As illus-
trated in Figure 5.13, we leverage this multimodality with temporal atten-
tion networks. We extend the work of [OAPL21] by assessing the benefit
of combining optical for improving the precision and robustness to cloud
cover of several crop mapping tasks. We also evaluate the effect of two
simple training enhancements.

Fusion Schemes. As represented in Figure 5.14, we list four different
schemes for merging image time series of different modalities:

• Early Fusion. We choose a pivot modality (e.g. optical) and tempo-
rally interpolate all other modalities to the acquisition dates of this
pivot modality. We stack the resulting images in the channel dimen-
sion and process the sequence with a single spatio-temporal encoder.

• Mid Fusion. Each modality is processed by a dedicated spatial en-
coder. We merge the resulting embeddings into a single time series
processed by a single temporal encoder.

• Late Fusion. Each modality is processed by a dedicated spatio-
temporal encode, and the resulting feature maps are concatenated
channel-wise before classification.

• Decision Fusion. Each modality is classified independently, and we
average their class scores.

Training Enhancements. Optical images contain richer information for
crop mapping than radar acquisitions. This imbalance can cause the deci-
sion to overly rely on the optical modality, resulting in a weak supervisory
signal for the other modality. We present two simple training enhance-
ments to mitigate this issue:
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Figure 5.13: MultiModal Dataset. We introduce the PASTIS-R dataset
containing 2433 multimodal image time series of Sentinel-2 optical and
Sentinel-1 radar data. We evaluate different fusion strategies and enhance-
ments on parcel-based classification, semantic segmentation, and panoptic
segmentation.

• Auxiliary Supervision. All schemes except early fusion can benefit
from the addition of auxiliary loss supervising each modality inde-
pendently. This ensures that all modalities contain enough informa-
tion to perform meaningful classification on their own.

• Temporal Dropout. During training, we randomly drop some acqui-
sitions from the time series, with an increased probability for the op-
tical modality. This prevents the network from overly relying on a
single modality. Note that this enhancement also reduces the mem-
ory required for training, which can prove necessary for large models
or image sequences.

PASTIS-Radar. To evaluate the benefit of multimodality, we extend the
PASTIS dataset with corresponding Sentinel-1 observations. We separate
the observations made in ascending and descending orbits into two differ-
ent time series of around 70 3-channel images: vertical polarization (VV),
horizontal polarisation (VH), and the ratio of vertical over horizontal po-
larization (VV/VH). We use the Ground Range Detected format processed
into backscattering coefficient in decibels, orthorectified at a 10m spatial
resolution. We do not apply spatial or temporal speckle filtering or radio-
metric terrain correction. The resulting data consists of 339k radar images
and is available at github.com/VSainteuf/pastis-benchmark.

Multi-Task Evaluation. We report in Table 5.5 the improvements brought
by the proposed fusion strategies and enhancements. We observe a consis-
tent increase in precision compared to the individual modalities across all
schemes, with late fusion being particularly well suited for parcel classifica-
tion and semantic segmentation, while early fusion gives the best panoptic
results. See Figure 5.16a for qualitative illustrations of our results.

github.com/VSainteuf/pastis-benchmark
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(a) Early fusion. The raw fea-
tures are interpolated and con-
catenated into a single sequence

(b) Mid fusion. The spatial fea-
tures are merged into a single
multimodal sequence.

(c) Late fusion. The learned
spatio-temporal features of each
modality are concatenated prior
to classification

(d) Decision fusion. each
modality is processed indepen-
dently, and the resulting deci-
sion averaged

Figure 5.14: Evaluated Fusion Schemes. We implemented four ways to
embed time series of different modalities.



104 CHAPTER 5. EXPLOITING THE STRUCTURE OF SITS

Table 5.5: Quantitative Evaluation. We report the 5-fold cross-validated
performance of the individual modalities and fusion schemes across three
tasks. When it is possible to isolate their effect, we report the improve-
ment of our proposed enhancements in parenthesis. ‡ indicates that the
enhancements are detrimental, and ⋆ that the enhancements are necessary
for fitting the model into memory. A dash−means that this model was not
evaluated for memory issues or because its design is incompatible with the
task.

Modality
Parcel Semantic Panoptic

Classification Segmentation Segmentation
mIoU mIoU SQ RQ PQ

S1D 64.7 (+0.2) 54.9 ‡ 77.0 39.3 30.9
S1A 63.3 ‡ 53.8 ‡ 77.4 38.8 30.6
S2 74.5 (+0.6) 63.6 (+0.5) 81.3 49.2 40.4

Early Fusion 76.5 (+1.6) 65.8 (+0.9) 82.2 50.6 42.0
Mid Fusion 76.5 (+1.4) - - - -
Late Fusion 77.2 (+4.2) 66.3 ⋆ 81.6 50.5 41.6
Decision Fusion 75.8 (+3.3) 64.3 ⋆ - - -

Robustness to Clouds. In Figure 5.15b, we report the robustness to cloud
cover brought by the fusion schemes and enhancements by artificially
masking optical acquisitions during inference for parcel classification and
semantic segmentation. Even with 70% to 90% of optical acquisitions miss-
ing, the fusion schemes outperform the model operating on radar time se-
ries.

Optical and radar acquisitions have known synergies for crop map-
ping. We design several multimodal schemes and related enhance-
ments, resulting in higher precision and robustness to varying cloud
cover across different crop mapping tasks.
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Figure 5.15: Varying Cloud Cover Experiment. We evaluate different mod-
els with varying ratios of available optical observations remaining. In both
parcel-based classification (a) and semantic segmentation (b), the fusion
models prove robust to a reduced number of optical observations.
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(a) S1D (b) S2 (c) Fusion (d) GT

Figure 5.16: Qualitative Results for Panoptic Segmentation. We compare
the predictions made by unimodal models operating on S1D (a), S2 (b), the
late fusion model (c), and the ground truth annotations (d). Some parcels
are misclassified when only using the optical modality but are successfully
recovered by the radar and fusion models (green circle ). Some parcels
are only detected using both modalities (red circle ).
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5 Modelling Crop Rotations

2018 2019 2020

Oats Win Oats Sum Wheats Mixed cereal
Rapeseed Flow/Frui/Vege Leguminous Alfalfa
Maize Barley Win Barley Sum Wood Pastures
Potato Meadow Rye Soybean
Sorghum Sunflower Triticale Vineyard

Figure 5.17: Multiyear Sentinel-2 Data. Crop type for a part of our area of
interest across three years.

The impact of crop rotations is extensively studied in the agricultural
optimization literature [DSG+12, DRVI03, BF15]. Given their measurable
impact on crop yields [KKN+15], it is natural to assume that crop rotations
significantly influence the choice of cultivated species. Consequently, tak-
ing past cultures into account when classifying parcels should improve our
precision.

However, most crop mapping methods operate on a single year’s worth
of temporal acquisitions and ignore the inter-annual crop dynamics repre-
sented in Figure 5.17. Previous works propose to use probabilistic Markov
models [OID15] or Conditional Random Field (CRF) [GBLC20] to learn
transition statistics explicitly. Yaramasu et. al [YBP20] analyze multi-year
data with a deep convolutional-recurrent model, but only select one im-
age per year, thus ignoring intra-year dynamics. In contrast, we propose
a model that operates at the intra-year scale through yearly sequences of
observations and at the inter-annual scale by considering past cultures.

Multi-Year Dataset. In order to evaluate the impact of crop rotation, we
present Sentinel2Agri-Multi, a version of the Sentinel2Agri dataset span-
ning 2018, 2019, and 2020. We select 103 602 stable parcels only, i.e. whose
contours only undergo minor changes across the three studied years. Our
dataset associates each parcel with three image time series and three crop
annotations corresponding to the years 2018, 2019, and 2020.

Inter-Year Training. Given several years of annotated acquisitions, we
observe that training a single model on a single multi-year dataset is ben-
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eficial compared to training different models for each year independently.
Indeed, the increased volume of data and varying temporal domains result
in a network with better generalization, and mitigate the rare class issue.
Implemented with a PSE+L-TAE baseline, the mixed-year approach out-
performs specialized networks trained on a single year worth of data even
for their year of specialization by up to 5 mIoU points for parcel classification.
These results should encourage practitioners to combine several years of
annotations when constituting SITS datasets.

Modeling Rotations. We consider the problem of classifying a parcel
given SITS corresponding to several years, along with ground truth labels
for the past years. We propose three strategies to exploit this data:

• Mobs: we process all yearly SITS independently and concatenate their
spatio-temporal embeddings before classification.

• Mlab: we only process the SITS of the target year and concatenate to
the resulting spatio-temporal feature the sum of the one-hot-encoded
past labels.

• MCRF: we only process the SITS of the target year and use a second-
order CRF to model crop rotations from past labels.

These models can learn to resolve ambiguous observations by considering
the history of a parcel. By processing past knowledge of labels and cur-
rent observations end-to-end, the model Mlab performs best. As shown
in Table 5.6, this results in an appreciable improvement of over 6.3 points
compared to only considering the last SITS. Further analysis shows that
the most significant increase (16.9%) is for permanent crops (e.g. vineyards,
meadow), followed by crops with statistically significant rotation patterns
(e.g. rapeseed, soybeans) with 7.6%. Even for crops with no apparent rota-
tion rules, this model provides an increase of 2.3% on average.

We model multi-year patterns of agricultural cultivation by consider-
ing the parcel crop type history. Combined with our temporal atten-
tion model, this leads to a significant improvement across all cultures.

Table 5.6: Performance by model. Performances of the models Mobs and
Mlab for the year 2020. We compare with the model Msingle trained on only
the target year, and a CRF baseline MCRF.

Model Description OA mIoU

Msingle last SITS only with L-TAE 96.8 68.7
Mobs SITS for all 3 years with L-TAE 96.8 69.3
MCRF last SITS with L-TAE + past labels with CRF 96.8 74.4
Mlab last SITS + past labels with L-TAE 97.5 75.0
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6 Leveraging Class Hierarchies

Figure 5.18: Class hierarchy for S2-Agri.

Classification models typically focus on maximizing prediction accu-
racy, regardless of the semantic nature of errors. A step towards more re-
liable and interpretable algorithms would be to explicitly model and mea-
sure this gravity of errors [BMT+20]. In many classification problems, we
can organize the class set according to a tree whose structure encapsulates
the semantic similarity and discrepancy between classes in a hierarchical
fashion. For a classification task over a set K of K classes, we represent the
class tree by a finite metric D ∈ RK×K

+ such that D[k, l] is the length of the
shortest path between class k and l in the nomenclature tree. For a dataset
indexed by N , the Average Hierarchical Cost (AHC) between class predic-
tions y ∈ KN and the true labels z ∈ KN is defined as [RDS+15, DBLFF10]:

AHC(y, z) =
1
|N | ∑

n∈N
D[yn, zn] . (5.7)

Crop mapping especially benefits from predictions with a low hierar-
chical cost. Indeed, payment agencies monitor the allocation of agricul-
tural subsidies and whether crop rotations follow best practice recommen-
dations [Gra97]. The monetary and environmental impact of misclassifi-
cations are typically reflected in the class hierarchy designed by domain
experts [BF15, Bul92], see Figure 5.18. By achieving a low AHC, we ensure
that these downstream tasks can be meaningfully realized.
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Figure 5.19: Metric Guided Prototype. We propose a hierarchical tree rep-
resenting the visual similarity between digits. The baselines (a) linear clas-
sifier and (b) prototypical classifier ignore this prior. The proposed regu-
larization term used in (c) leads to prototypes whose arrangement is con-
sistent with the class hierarchy. This results in a decrease of Average Hierar-
chical Cost (AHC), as well as Error Rate (ER), indicating that the taxonomy
may contain useful information for learning better visual features.

Beyond reducing the AHC, the class hierarchy may also contain infor-
mation about the data structure. Although it is not always the case, co-
hyponyms (i.e. siblings) in a class tree tend to share some structural prop-
erties. Encouraging such classes to have similar representations could lead
to more efficient learning, e.g. by leveraging shared feature detectors, as
exemplified in Figure 5.19.

Metric-Guided Regularization. We propose to integrate a pre-defined
class hierarchy into a prototype-based network [YZYL18, CLT+19]. We in-
troduce a regularization term encouraging the pairwise distance between
prototypes to reflect the error cost defined by the class tree. We define a
function f : X 7→ Ω mapping inputs in X to the representation space Ω.
Each class k is associated with a prototypes πk ∈ Ω. A sample xn is classi-
fied with the label k if f (xn) is closer to πk than all other prototypes. Both
f and π can be learned jointly with log-likelihood maximization [SSZ17].

We equip the embedding space Ω with a distance function d : Ω ×
Ω 7→ R+, such that (Ω, d) forms a continuous metric space. We say that
the prototypes π are consistent with the finite metric D if their pairwise
distance in (Ω, d) reflects their distance in D: the mapping k 7→ πk has
low distortion, as defined by De Sa et. al [DSGRS18]. We argue that this
property should lead to a lower hierarchical error: near misclassifications
are more likely to result in a related class. However, the scale induced by
the tree may be in conflict with the optimal arrangement of prototypes to
minimize the classification loss. We propose a new regularizer which is a
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⋆

Figure 5.20: Quantitative Results. Error Rate (ER) in % and Average Hi-
erarchical Cost (AHC) on four datasets for Guided-proto, the Linear Clas-
sifier baseline (Cross-Entropy), and competing approaches. Methods that
use the hierarchical knowledge are indicated with the symbol . We plot
the best performances on each dataset in green. Our guided prototype ap-
proach improves the ER and AHC across the four datasets compared to the
baseline. ⋆: would not meaningfully converge.

scale-free and differentiable surrogate of distortion:

Ldisto(π) =
1

K(K− 1)
min
s∈R+

∑
k,l∈K2, k ̸=l

(
sd(πk, πl)− D[k, l]

D[k, l]

)2

. (5.8)

Minimizing this regularizer encourages the pairwise distances between
prototypes d(πk, πl) and their classes D[k, l] to be close. Note that the inner
minimization problem can be efficiently solved in closed form.

6.1 Numerical Experiments.

We evaluate our approach across different tasks and datasets with fine-
grained class hierarchies: image classification on CIFAR100 [KH+09] and
the 1010-class iNaturalist-19 [VHMAS+18], RGB-D image segmentation on
NYUDv2 [NSF12], and image sequence classification on S2-Agri. We de-
fine class hierarchies for each dataset, such as the one represented in Fig-
ure 5.18. We only use classical backbone networks: ResNet18 [HZRS16]
for CIFAR100 and iNaturalist-19, FuseNet [HMDC16] for NYUDv2, and
PSe+LTAE for S2-Agri.
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(a) Linear Classifier (b) Ours (c) Cost

Figure 5.21: Effect of Regularization. Partial confusion matrices for the
“living organism” class subset of CIFAR100 for the linear classifier baseline
(a) and our approach (b). For readability, we only display (in black) entries
of the matrices with at least one confusion. We also represent the cost of
confusing different classes in shades of reds (c). We note that our approach
yields fewer confusions between pairs of classes with high costs, such as
plants and animals.

We compare our approach with a linear classifier baseline and several
reimplemented methods designed to leverage extrinsic class hierarchies.
As seen in Figure 5.20, the benefits provided by our approach appear on all
datasets. Compared to the linear classifier baseline, our model improves
the AHC by 3% on NYUDv2 and S2-Agri, and up to 9% and 14% for CI-
FAR100 and iNat-19, respectively. While some methods perform on par or
better than ours for some datasets, only our metric-guided prototypes con-
sistently reduce the hierarchical cost across all tasks and datasets. We also
observe a relative decrease of the error rate by 3 to 4% across all datasets
compared to the linear classifier baseline. This indicates that cost matri-
ces derived from the class hierarchies can help neural networks learn more
discriminative representations.

In Figure 5.21, we represent the partial confusion matrices of the cross
entropy baseline and our approach on CIFAR100, illustrating that guiding
prototypes with a finite metric lead to fewer “high-cost” errors.

We model the agreement between a prediction and a tree-shaped
class hierarchy as the distortion between two metric spaces. Com-
bined with a versatile prototype-based approach, our model signifi-
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cantly reduces the weighted and unweighted error rates across vari-
ous datasets and tasks.

Conclusion

SITS analysis is a high-impact and complex machine learning task with
unique challenges. We propose a series of methods leveraging the particu-
lar structure of SITS for crop-type mapping applications. Our models lead
to higher precision, faster inference, and lower memory requirement for
parcel classification problems. We also propose the first method for panop-
tic segmentation on SITS, and new ways to exploit the synergy between
remote sensing modalities and the semantic structure of complex class sets.
We release 4 unique and novel datasets aiming to popularize SITS analysis
as a machine learning task and to encourage more reproducible science.
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CHAPTER 6

Perspectives

I identify two main directions for future work on geospatial machine learn-
ing: efficient learning with hierarchical partitions and reciprocal learning
with many modalities.

1 Efficient Learning with Hierarchical Partitions

The cost of training state-of-the-art neural networks has reached unprece-
dented levels, effectively pricing out most public actors and practitioners
[BHA+21]. Indeed, recent deep learning advances favour generality and
scalability over efficiency [JGB+21], raising questions regarding the sus-
tainability of the field. Exploiting the spatial regularity of geospatial pro-
cesses could be the key to more sober and efficient machine learning. When
analyzing a scene, we do not give the same attention to each square cen-
timetre of every surface. Instead, we instinctively group our environment
into homogeneous regions of various sizes and analyze their relationships
at different scales: this car is composed of four tires, a hood, and a roof; is on a
road and under a tree; is in the middle of a commercial district. However, tradi-
tional deep learning methods process the input’s atomic elements (pixels,
voxels, 3D points) uniformly despite the highly redundant information they
carry, which leads to wasteful computations. Furthermore, this restricts the
quantity of data considered simultaneously and prevents the modelling of
long-range interactions. We could achieve more efficient learning by mim-
icking this two-step process: first compute a hierarchical partition of the
input into homogeneous regions dubbed super-elements (e.g. , super-pixel,
super-points), then perform a multi-scale analysis of the super-elements.
This would allow efficient and parsimonious high-level and large-scale rea-
soning without considering millions of individual atoms.

This approach goes exactly against the trend of large, generic, and pow-
erful models [BHA+21] which aim to be free from any sort of inductive bias
or human expertise [JGB+21]. The main idea is to leverage the spatial reg-
ularity of many spatial processes [Tob70]. This property translates into the
spatial regularity of many latent variables of interest such as semantic or
instance labels, or surface parameterization. Consequently, the solution to
many spatial analysis problems is constant with respect to a partition of
the input with much fewer components than the number of atomic ele-
ments. By computing such partition at multiple nested scale, we can define
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(a) Grid Partition. (b) Hierarchical Partition. (c) Network Architecture.

Figure 6.1: Architecture from Structure. Instead of using cookie-cutter grid
partitions (a), we build a hierarchical partition of a scene (b). We can then
define a network whose architecture (c) is directly derived from the parti-
tion itself instead of from uniformly spaced convolutions. This allows the
analysis of the input data to adapt to its local complexity. The red shaded
rectangles indicate a step in which super-elements of the same level ex-
change information, e.g. with a transformer architecture.

a hierarchical partition encompassing both small details and large struc-
tures. Instead of using this prior to improve atomic predictions ex-post
[KK11, LRV+17, MKH19], we could define a network whose entire struc-
ture adapts to the data, while reducing the complexity of learning problems
by several orders of magnitude. This would significantly accelerate infer-
ence, training, and lead to more compact models with lighter hardware
requirements. Furthermore, multi-level hierarchical partitions allow us to
model long-range interactions, which would be particularly beneficial for
geospatial data.

2 Cross-Modal Reciprocal Learning

The supervised learning paradigm requires costly annotations, which can
be particularly expensive in some geospatial applications. For exam-
ple, forestry labels must be collected in situ in poorly accessible areas
[KLMC22a, KLMC22b], making large-scale annotation prohibitively costly.
Instead, we could train models by exploiting the diversity of remote sens-
ing sensors, their global scope, and systematic georeferencing.

Text-Image contrastive pretraining [CHL05] has shown impressive re-
sults in computer vision [OLV18], leading to influential foundation mod-
els [RKH+21, YCC+21]. Contrastive learning has been recently explored
for EO by exploiting the spatial alignment between time series [AUM+21]
and for cross-modal localization [TLB+22]. We could generalize this ap-
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proach to the multi-modal setting with georeferenced observations. In
other words, we want to align spatially the features extracted from acqui-
sitions with different modalities: the descriptor of an area should be con-
sistent regardless of the scanning sensor and different from other areas. By
forcing spatial alignment across sensors capturing different information,
the features must describe the only shared latent variable: the actual con-
tent of the considered area.

Generalizing contrastive learning to the multi-domain setting raises
several theoretical and technical challenges. First, the classic two-
modalities formulation leads to an exponential complexity w.r.t the num-
ber of sensors, quickly becoming impractical. Furthermore, current work
produces a single descriptor per image, whereas we will consider pixel
descriptors, worsening the combinatorics of the problem. Second, cross-
modal learning implies the simultaneous training of several large networks
and the manipulation of costly multi-modal batches. This raises technical
issues such as inefficiency in memory use and prolonged training times.
Lastly, if we only optimize the encoders associated with different sensors
to produce spatially aligned features, sensor-specific information may be
ignored. This would result in weaker individual representations discard-
ing the unique strength of each sensor at the benefit of the lowest common
denominator. However, such training would have a considerable impact
as we could train single and multi-modal models using nothing but geo-
localized observations. The resulting feature extractors could be fine-tuned
on downstream tasks with much fewer annotations than if trained from
scratch.

3 Other Works

I have also had the pleasure of collaborating with Mathieu Aubry (ENPC)
on unsupervised object discovery in object-level [LMAL21] and large-scale
[LVAL23] 3D datasets. Our approach involves learning representations in
input space, rather than in an abstract feature space, allowing the mod-
els to provide interpretable and editable visualizations of their reasoning.
This property is beneficial for application to industrial and public-policy
settings. We also propose an application to sound discovery [LBT+22],
showcasing the versatility of our proposed approach.
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Figure 6.2: Cross-Modal Contrastive Learning. We consider a set of en-
coders for different inputs: image time series, LiDAR scans, hyperspectral
images, etc. Each multi-modal patch is embedded by a dedicated encoder
into a small 5× 5 feature map of width 128, whose cells are trained to be
co-linear with the corresponding cell in the same modality and contrasted
with others.
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Curriculum Vitae

Short CV

Summary I am a machine learning/computer vision researcher with a
strong interest in geospatial applications. My multi-disciplinary research
aims to exploit the specific structure of complex tasks to develop more
efficient solutions. I strive to create links between machine learning and
geospatial communities by organizing workshops and conferences and co-
chairing working groups.

Positions and Education

Since 2012, I have the status of civil servant of the French Ministry of
Ecology (IPEF).

• 2023-, IMAGINE, LIGM, ENPC : Researcher,
• 2015–2023, IGN/ENSG, LASTIG, UGE : Researcher,
• Sep 2012 - Sep 2016, ENPC ParisTech - INRIA, PhD

Learning structured models on weighted graphs, with applications to spatial
data analysis. Advisors: Francis Bach and Guillaume Obozinski.

• 2011 - 2012, ENS Cachan, MSc. Master MVA, machine learning.
• 2011 - 2012, ENPC ParisTech, MSc. Master IMI, computer science.
• 2007 - 2011, Ecole Polytechnique, MSc. Algorithmics.

Research

Software Development I am committed to reproducible research: every
published article comes with its open-source implementation. I authored or
participated as an advisor to over 30 repositories, including the following
highlights:
• [�]loicland/superpoint-graph 642⋆ 207⋔
• [�]loicland/cut-pursuit 64⋆ 18⋔
• [�]torch-points3d/torch-points3d 2001 ⋆ 338 ⋔
• [�]VSainteuf/pytorch-psetae 128 ⋆ 29 ⋔
• [�]drprojects/DeepViewAgg 148 ⋆ 15 ⋔
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⋆ : A⋆ ranking
Á : oral

W : workshop

Breakdown of my post-PhD Publications across different fields.

Datasets My students and I released 7 open-access datasets, totalling
2500+ downloads or over 300To :
• HelixNet: largest 3D datasets (10B points) for autonomous driving,

contains unique sensor information for precise latency measurements.
• PASTIS: first dataset of satellite image time series with parcel borders

and content (4000km2, 2B pixels).
• PASTIS-R & Multi-Year Sentinel: companion datasets focusing on

multimodality and multi-year acquisition, respectively.
• StrataNet & WildForest3D: first densely and weakly annotated aerial

LiDAR datasets for forest inventory (over 2000 individual trees).

Invited Talks I have given over 20 invited talks, both for academic insti-
tutions (ETH Zurich, Ecole Polytechnique, Univ. Bologna, Politecnico di
Milano, Univ. Erlangen, Tech. Univ. Danemark, Norwegian Inst. for Bioe-
conomics Research, Univ. Aix-Marseille, Univ. Montpelier, Univ. Paris-Est,
SIAM symposium) and leading industry research centers (Valeo AI, Face-
book AI Research, Sony CSL, ENGIE CRIGEN, Quantcube Tech.).

I also gave keynote addresses to the Urban3D ICCV Workshop (2021),
the French Robotic Research Symposium (2019), the French Workshop on
Mobile and Airborne LiDAR (2022) , the 2nd International Workshops on



121

Point Cloud Processing (2019,2023), and the French Workshop on Graph
Signals Processing (2019).

Supervision and Community

Graduated PhD students (with percentage of supervision):
Raphael Sulzer 2018-2022 40% now at INRIA Titane, FRA
Vivien S.F Garnot 2018-2021 90% now at Univ. of Zurich, CHE
Stéphane Guinard 2017-2020 50% now at Univ. of Laval, CAN
Mohamed Boussaha 2017-2020 50% now at Gambi-M, FRA
Ongoing students (with percentage of supervision):
Damien Robert 2020-2023 100% with ENGIE & B. Vallet
Romain Loiseau 2020-2023 80% with M. Aubry (ENPC)
Ongoing post-Doctoral Fellow: Ekaterina Kalinincheva Jan 2021-Jan 2023
Internships: 14 master & industry interns

Organization & Community
• Program chair of the XXIV ISPRS Congress (2022), main event of the

Remote Sensing community (every 4 years), 743 papers published
and 1500 participants from 59 countries, coordinating 200+ area chairs
[LRE+22].

• Organizing committee of Earth Vision (2021,2022,2023), a leading
CVPR worskhop at the intersection between remote sensing and com-
puter vision.

• Program chair of the Conference on IGN Research (2019, 2020), (800+
participants) and LASTIG Research Seminar (250+ participants).

• Editorial.
- Editorial advisory board of IJPRS (Elsevier, IF:11.8)
- Reviewing Committee of Remote Sensing (MDPI, IF:5.3)
- Guest editor for IJPRS (Elsevier, IF:11.8).
• Scientific Society:
- Co-chair of the ISPRS WG Temporal Geospatial Data Understanding.
- Co-lead of the IEEE GRSS WG Image and Signal Processing.
• Reviewing: ICML , CVPR , ISPRS Congress, NeurIPS, ICCV, ECCV,

ICLR, BMVC, IJCV, PAMI, IJDSA, IJPRS.
• Awards:
- Outstanding reviewer: ICML2021 (top 10%), CVPR2021 (top 10%),

ECCV2022 (top 5%), ISPRS Congress 2022 (top 5%).
- CVPR 2022 Best paper finalist (top 33 / 2065).
• Expertise: ANR Grants, Dutch Research Council (NWO), Canadian

Centres of Excellence (Mitacs).
• Jury Member: 3 PhD jury, 3 PhD committees, 1 assistant professor Jury.
• Scientific Advisory Board of the AI-based startup SAMP (samp.ai).

samp.ai
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Teaching
• ENSG, Course Instructor and Creator, Deep Learning for Remote Sensing

and Introduction to Machine Learning (24 hours yearly).
• EduSERV for EUROSDR, MOOC instructor and course creator, Deep

learning for remote sensing (2 weeks).
• Master IMI (ENPC), Teaching assistant, Machine learning.
• Master MVA (ENS), Teaching assistant: Probabilistic graphical models,

Invited Speaker: 3D Deep Learning
• Master AMMI (Rwanda), Teaching assistant, Probabilistic Graphical

Models (2 weeks intensive training).

Projects and Grants
• Principal investigator of the ANR JCJC READY3D: REal-Time Anal-

ysis of DYnamic LiDAR 3D Point Clouds (total cost: 476ke, 194ke
subsidy).

• Participant of the BIOM ANR Project (total cost: 1 776ke,
723ke subsidy).

• DGA PhD Grant (100ke subsidy).
• ASP Agence de Services et de Paiement - 300ke research Grant.
• Joint PhD between ENGIE, IGN and Univ. Paris Est (250ke).



Synthèse en Français

De par leur richesse, échelle et complexité, les données géospatiales sont un
excellent terrain d’inv-estigation pour l’apprentissage automatique. Plutôt
que d’utiliser des outils existant issus de la vision par ordinateur ou de
l’apprentissage machine, notre motivation est d’exploiter la structure par-
ticulière des données géospatiales pour proposer des algorithmes adaptés
et innovants. En accordant nos méthodes aux tâches considérées, nous at-
teignons d’important gains de vitesses, de performance, et une réduction
drastique de la taille des modèles considérés.

1 Contributions Scientifiques

Je présente dans cette section un rapide aperçu de mes contributions scien-
tifiques et de mes charges d’encadrements et organisationnelles à l’IGN au
cours de ces 6 dernières années.

J’ai ensuite rejoint l’IGN (LASTIG, ENSG, UGE), où je me suis intéressé
à l’apprentissage automatique pour les données géospatiales.

Publications. Je situe mes recherches à l’interface entre la vision par ordi-
nateur et l’apprentissage automatique d’une part, et la télédétection et pho-
togrammétrie d’autre part. Je publie avec mes étudiants dans des journaux
spécialisés et thématiques de la communauté de télédétection et de pho-
togrammétrie (IJPRS, JAEOG, PERS, Remote Sensing) mais aussi dans les
conférences méthodologiques très sélectives de vision et d’apprentissage.
En particulier, j’ai depuis ma thèse publié à CVPR (4 papiers dont 2 oraux
et un best paper finalist, 3 workshops), ICML (1 papier et 2 workshops), et 2
papier à I/E.CCV. J’ai aussi publié dans des conférences plus spécialisées
comme 3DV (2 papiers dont 1 oral), BMVC, SGP Eurographics et ICPR.

Logiciel et Donnée Libre. Mes étudiants et moi avons publié plus de 22
dépôts de code libres liés à nos projets, accumulant plus 3000 étoiles sur
GitHub et 500 branches. Nous avons aussi constitué 7 jeux de données
libres aux propriétés uniques, totalisant plus de 2000 téléchargements.

Organisation. J’ai été Program Chair du congrès 2022 de l’International
Society of Photogrammetry and Remote Sensing (ISPRS), le plus grand
évènement de la communauté, qui a lieu une fois tous les 4 ans et
a rassemblé 1500 chercheurs de 68 pays différents. Je participe aussi
à l’organisation du Workshop CVPR EarthVision (2021 et 2022), qui
a pour but de rassembler les chercheurs en vision intéressés par les
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problématiques d’observation de la Terre. J’ai aussi organisé les journées
de la recherche de l’IGN sur le thème de l’IA pour la géomatique (800 par-
ticipants, virtuels) et plusieurs séminaires inter-disciplinaires sur le sujet
rassemblant jusqu’à 250 participants (virtuellement).

Responsabilité Éditoriale. Je suis au comité de rédaction du journal de
l’ISPRS (IF: 9.0) et de Remote Sensing (IF: 5.3). Je fait partie des comités
de lecture de nombreuses conférences et journaux de vision par ordina-
teurs (CVPR, ECCV, ICCV, ACCV, BMVC, PAMI, IJCV) et d’apprentissage
(ICLR, NeurIPS, ICML). J’ai été distingué plusieurs fois comme outstanding
reviewer: CVPR21, ICML21, ISPRS22. Depuis 2022, je suis également Work-
ing Group Officer pour le pôle Understanding Temporal Data de l’ISPRS, et
Co-lead du Working Group IEEE GRSS sur Image and Signal Processing.

Encadrements. J’ai co-encadré 3 doctorants qui ont défendus avec succès
leur thèse, et je co-encadre actuellement 3 autres étudiants et une post-
doctorante. J’ai encadré 14 stages de master ou industriels.

Financements. Je suis porteur principal de l’ANR JCJC ReADy3D sur
la perception 3D temps réel pour la conduite autonome (476ke, 194kede
subvention). Je participe aussi à ANR (BIOM, 1 776ke), et ai contribué à
l’obtention de financements auprès d’acteurs privés (ENGIE: 250k e) et
publics (ASP: 300k e, DGA : 100k e).

2 Spécificités des Données Géospatiales

L’analyse des données géospatiales a plusieurs atouts qui en font un ex-
cellent terrain d’application pour l’apprentissage automatique. En parti-
culier, ces données sont typiquement acquises à grande échelle par une
variété de capteurs, et possèdent une structure complexe qui mêle les di-
mensions spatiale, temporelle, et spectrale. Il existe de nombreuses sources
de données géospatiales et d’annotations en libre accès. Leur analyse au-
tomatique à grande échelle mène de nombreuses applications à fort impact,
autant économique qu’environnemental et social.

Malgré une ressemblance superficielle, les données géospatiales
présentent des différences importantes avec les images ou vidéos na-
turelles typiquement traitées en vision par ordinateur. La structure unique
des données géospatiales nécessite donc de développer des méthodes
adaptées. Le principe guidant l’ensemble de mes travaux est d’exploiter
cette structure pour mettre au point des algorithmes et architectures
adaptés afin d’améliorer la vitesse et précision de leur analyse.

Dans ce manuscrit, nous présentons certains des travaux que j’ai con-
duit avec mes étudiants depuis l’obtention de mon doctorat en septembre



3. STRUCTURE DE RÉGULARITÉ SUR GRAPHE 125

2016. En particulier, nous développons la manière dont nous avons exploité
les structures suivantes:

• Structure de régularité sur Graphe: nous proposons une approche
mathématique pour résoudre certains problèmes d’optimisation en
tirant parti d’une propriété de régularité habituellement rencontrée
lors de l’analyse de données géospatiales.

• Structure de Régularité des Données 3D: ces méthodes exploitent le
même principe que le chapitre précédent mais dans le cadre de
l’apprentissage profond pour l’analyse automatique de grands nu-
ages de points.

• Structure des Capteurs de Données 3D: nous proposons plusieurs ap-
proches exploitant la structure particulière de certains capteurs 3D
pour améliorer la rapidité et la précision de leur analyse.

• Structure des Séquences Temporelles Satellite: nous présentons une
série d’algorithmes pour l’analyse automatique de séries temporelles
d’images satellites, améliorant significativement l’état de l’art de ce
domaine.

3 Structure de Régularité sur Graphe

Cette première section présente nos travaux les plus théoriques, où nous
montrons comment une propriété abstraite de régularité définie par
rapport à un graphe général peut être exploitée pour considérablement
accélérer la résolution d’une large classe de problèmes d’optimisation.
Dans certaines circonstances, notre approche apporte également des
garanties théoriques inédites et nécessitant peu d’hypothèses sur les
fonctions considérées. Nos travaux s’appliquent à de nombreux problèmes
géo-spatiaux, pour lesquels nous parvenons à réduire les temps de calculs
de plusieurs ordres de grandeur, c.f. Figure 7.1. Cette section reprend les
publications suivantes:

[LO17] Loic Landrieu, Guillaume Obozinski, “Cut Pursuit: Fast Al-
gorithms to Learn Piecewise Constant Functions on General Weighted
Graphs”, SIAM Journal of Imaging Science, 2017
[RL18] Raguet Hugo, Loic Landrieu, “Cut-Pursuit Algorithm for Regular-
izing Nonsmooth Functionals with Graph Total Variation”, ICML, 2018
[RL19] Raguet Hugo, Loic Landrieu, “Parallel Cut Pursuit For Minimiza-
tion of the Graph Total Variation”, ICML Workshop on Graph Reasonning,
2019
[GLCV19] Stéphane Guinard, Loic Landrieu, Laurent Caraffa, Bruno
Vallet, “Piecewise-Planar Approximation of Large 3D Data ss Graph-
Structured Optimization”, ISPRS Annals, 2019
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Figure 7.1: Cut Pursuit. Évolution de la distance à la solution pour
différentes versions de Cut Pursuit (CP, PCP, PCP-bal) et autres méthodes
(PFDR [RL15], PMF [CD09]) et différentes tâches. L’accélération peut at-
teindre plusieurs ordres de grandeurs.
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Contexte. Nous considérons le problème d’optimisation consistant à min-
imiser une fonction dont les variables x ∈ ΩV sont définies selon les som-
mets d’un graphe G = (V, E, w) avec des arêtes aux poids w ∈ RE

+. En par-
ticulier, nous nous intéressons aux fonctions F qui peuvent se décomposer
de la manière suivante :

F(x) := f (x) + ∑
(u,v)∈E

wu,vh(xu, xv) , (7.1)

avec f : ΩV 7→ R et h : Ω 7→ R une fonction qui atteint son minimum
uniquement quand xu = xv. Ces fonctions apparaissent naturellement
lors de l’analyse de problèmes ayant une composante spatiale, comme les
données géospatiales ou l’imagerie médicale. Cette formulation couvre
une large famille de problèmes d’optimisation fonctionnelle, telle que la
régularisation par variation totale sur un graphe général (h = ∥ · ∥) et la
régularisation par longueur des contours (h = [· ̸= 0]).

Cut Pursuit. Les points critiques x⋆ de F exhibent typiquement une forme
de régularité par rapport au graphe G: les sommets connectés ont souvent
des valeurs identiques. Par exemple, le label sémantique associé à un point
3D est partagé par la majorité de ses voisins. En conséquence, les solution
x⋆ sont constantes par rapport à une partition V de V avec un faible nombre
de composantes. En imposant que les variables x soient constantes par rap-
port à V , la minimisation de F devient plus simple. En effet, ce problème
réduit n’a que |V| variables au de |V|, tout en gardant une structure simi-
laire.

Cette propriété peut être exploitée algorithmiquement pour accélérer
la minimisation de F. En effet, chaque solution est entièrement définie
par une partition et la valeur associée à chacune de ses composantes.
L’algorithme cut pursuit alterne entre la minimisation du problème réduit
contraint par la partition courante V et le raffinement de V en composantes
plus petites. La première étape peut être effectuée efficacement de par
sa faible dimension, et la seconde peut se formuler sous la forme d’un
problème de coupe minimale dans un graphe de flot bien choisi.

Performance. L’approche proposée est avantageuse quand il existe une
solution x⋆ constante par rapport à une partition V telle que |V| ≪
|V|. Dans ce cas, l’algorithme cut pursuit apporte une accélération pou-
vant atteindre 1000x, même pour des problèmes inverses complexes.
De plus, notre approche est entièrement parallèle grâce a la première
implémentation multi-thread de l’algorithme de Ford-Fulkerson [FF56].

Garanties. L’algorithme cut pursuit s’applique à une grande variété de
problèmes. Pour le cas de la variation totale, notre approche permet
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(a) Nuage de points
RGB

(b) Partition
géométrique
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(d) Segmentation
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Figure 7.2: Superpoint Graph. Un nuage de points (a) est partitionné en
formes géométriquement simples (b). Un graphe reliant les superpoints
adjacents est construits (c), permettant leur classification (d).

non seulement une résolution efficace, mais apporte un certificat de crit-
icalité à précision machine et une garantie de convergence en un nombre
fini d’itérations. Contrairement à la plupart des méthodes existantes, nos
preuves ne nécessitent ni la convexité ni la differentiablité de f .

Versatilité. Notre approche peut aussi se décliner pour la régularisation
par longueur des contours des zones constantes, qui n’est ni continue, ni
différentiable, ni convexe. Néanmoins, notre approche reste plus rapide
que le populaire algorithme α-expansion quand la solution recherchée
est simple. Nous proposons aussi une variation de notre approche pour
l’approximation de grands nuages de points 3D en un faible nombre de
plans. Ici encore, quand la solution est bien simple (i.e. peu de plans), notre
méthode apporte une accélération de plus d’un ordre de grandeur comparé
à l’état de l’art.

4 Structure de Régularité des Données 3D

Dans cette section, nous proposons des approches pour la segmentation
sémantique et la reconstruction de surface pour de très grands nuages
de points. Ces méthodes sont basées sur les mêmes idées que la section
précédente, mais adaptées au cadre de l’apprentissage profond. Cette
section est principalement basée sur les articles suivants:

[LS18]: Loic Landrieu, Martin Simonovsky, “Large-scale Point Cloud Se-
mantic Segmentation with Superpoint Graphs”, CVPR, 2018
[LB19]: Loic Landrieu, Mohamed Boussaha, “Point Cloud Oversegmenta-
tion with Graph-Structured Deep Metric Learning”, CVPR, 2019
[SLMV21]: Raphael Sulzer, Loic Landrieu, Renaud Marlet, Bruno Val-
let, “Scalable Surface Reconstruction with Delaunay-Graph Neural Net-
works”, Symposium on Geometry Processing (SGP), 2021
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SuperPoint Graph. Nous introduisons l’approche Superpoint Graph
pour la segmentation sémantique de nuages de points 3D à large échelle.
Cet algorithme consiste à calculer une partition du nuage de points en
formes simples, appelées superpoints, et la création d’une structure de
graphe liant les superpoints voisins. Au lieu de classifier chaque point
indépendamment, nous classifions les superpoints eux-même, réduisant
ainsi la complexité du problème de plusieurs ordres de grandeur. En
d’autre terme, nous transformons le problème de segmentation sémantique
d’un grand nuage de points en la classification des sommets d’un graphe
avec peu de sommets. Cela nous permet d’utiliser des puissants outils
de convolution sur graphe pour analyser le contexte de grandes scènes,
c.f. Figure 7.2. Notre approche permet de classifier avec d’excellents
résultats des nuages contenant des dizaines de millions de points avec
des réseaux de neurones efficaces en temps d’inférences et en nombre de
paramètres.

Segmentation Supervisée. La limitation de l’approche précédente est
que toute erreur dans la partition entraı̂ne des mauvaises classifications.
Nous proposons donc d’entraı̂ner un réseau de neurones à segmenter
un grand nuage de points en superpoints sémantiquement purs. Nous
mettons au point une nouvelle fonction de perte contrastive permettant
d’apprendre une représentation de points qui soit homogène au sein des
objets et présente de forts contrastes à leur interface. La partition en
découlant aboutit à une amélioration importante de la qualité de la seg-
mentation sémantique.

Reconstruction Large Échelle. Nous proposons une approche pour
la reconstruction grande de surface à grande échelle basée sur une
discrétisation de l’espace 3D par une tetraèdrisation de Delaunay. Nous
adaptons les classiques modèles d’énergie sous-modulaire, qui peuvent
être efficacement résolus par minimisation de flots, mais dont les potentiels
sont appris par un réseau de neurones sur graphe. Notre méthode combine
donc la richesse des méthodes d’apprentissage et la rapidité et les garanties
des méthodes énergétiques. Entraı̂née sur un faible nombre de scans
virtuelles, notre approche généralise à de nouveaux domaines et à de très
grandes scènes avec une qualité supérieure aux modèle d’apprentissage et
énergétiques.

5 Structure des Capteurs de Données 3D

Dans cette section, nous présentons nos travaux ayant pour but d’exploiter
la géométrie particulière des acquisitions de télédétection 3D pour
améliorer la précision et la vitesse d’algorithmes de segmentation
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(a) liDAR Rotatif (b) Image/LiDAR (c) Visibilité

Figure 7.3: Structure des Capteurs.
Nous exploitons la structure d’acquisition des LiDARs rotatifs, la
complémentarité images/ LiDAR, et les informations de visibilités qui peu-
vent être déduites de la pose des capteurs.

sémantique et de reconstruction de surface. Ce chapitre est basé sur les
publications suivantes:

[LAL22]: Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Online Seg-
mentation of LiDAR Sequences: Dataset and Algorithm”, ECCV, 2022
[RVL22]: Damien Robert, Bruno Vallet, Loic Landrieu, “Learning Multi-
View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation”,
CVPR, 2022
[SLB+22]: Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Mar-
let, Bruno Vallet, “Deep Surface Reconstruction from Point Clouds with
Visibility Information”, ICPR, 2022

LiDAR Rotatif Mobile. Les LiDARs rotatifs sont très utilisés dans le
cadre de la conduite autonome, motivant ainsi le besoin d’outils d’analyse
temps réel de séquences temporelles de points 3D. La structure de ces
séquences est complexe: le capteur tourne rapidement sur lui-même, la
plate-forme d’acquisition est en mouvement, et les environnements urbains
sont typiquement dynamiques; voir Figure 7.3a pour une illustration.

La plupart des jeux de données et algorithmes proposés pour l’analyse
de telles séquences opèrent sur un découpage en trames couvrant 3600◦,
ce qui conduit à une latence d’acquisition incompatible avec les applica-
tions temps réels. Nous répondons à ce problème avec deux contributions
principales. Tout d’abord, nous présentons HelixNet, un dataset de 10 mil-
liards de points 3D annotés individuellement avec labels sémantiques et
les informations de capteur nécessaires à la mesure précise de la capacité
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temps réel des algorithmes de segmentation. Nous proposons également
Helix4D, un réseau spatio-temporel compact et efficace spécialement conçu
pour l’analyse de séquences de points 3D issues d’un LiDAR rotatif. He-
lix4D opère sur des tranches d’acquisition couvrant une fraction de tour du
capteur sur lui-même, réduisant significativement la latence totale.

Nous évaluons la performance et latence de plusieurs algorithmes de
l’état de l’art sur HelixNet et SemanticKITTI. Helix4D atteint une précision
comparable aux algorithmes de segmentations les plus récents avec une
réduction de plus de 5× en terme de latence, et 50× du nombre de
paramètres.

Complémentarité Image/LiDAR. Les images et les nuages de points con-
tiennent des informations différentes et complémentaires: les images cap-
turent la texture et le contexte des objets, alors que les nuages de points
reflètent leur géométrie avec précision, c.f. Figure 7.3b. Les approches hy-
brides 2D/3D proposent de combiner ces informations pour améliorer la
précision de l’analyse de grandes scènes.

Combiner images et nuages de points issus de grandes scènes présente
de nombreuses difficultés, telles que la mise en relation des points et des
pixels et l’agrégation des descripteurs issus de différentes images. Les
méthodes actuelles nécessitent souvent la construction d’un maillage ou
l’usage de capteurs spécialisés pour trouver les occlusions, et utilisent des
heuristiques pour combiner les images.

Nous proposons une méthode d’agrégation multi-vues exploitant les
conditions d’observations (angle de vue, distance, occlusion, etc.) des
points 3D dans les images. Notre approche permet de combiner des
réseaux 2D et 3D standards et d’obtenir des résultats supérieurs aux
réseaux classiques ou hybrides sans nécessiter de colorisation, de mail-
lage, ni de capteur de profondeur. Notre approche opère sur les nuages de
points bruts, et un nombre arbitraire d’images avec pose. Nous définissons
un nouvel état de l’art pour un jeu de donnée de segmentation de scènes
d’intérieur et un autre jeu de données centré sur la conduite autonome.

Reconstruction avec Information de Visibilité. Les méthodes actuelles
de reconstruction de surface à partir de nuages de points 3D ignorent
les informations de pose et n’utilisent que la position des points. Cepen-
dant, la pose des capteurs permet de déduire des informations de visibilité
(ligne de vue) qui sont précieuses pour la reconstruction et l’orientation
des surfaces prédites. Nous proposons deux manières simples d’enrichir
chaque point 3D avec ses informations de visibilité: (i) ajout d’un vecteur
pointant vers le capteur, (ii) ajouts de points virtuels le long de la ligne
de vue, c.f. Figure 7.3c. Ces deux modifications peuvent s’intégrer facile-
ment à de nombreuses approches existantes avec modifications minimales.
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Notre méthode améliore la précision des surfaces générées mais aussi les
capacités de généralisation des réseaux à des nouveaux domaines: nou-
velles classes, scènes entières, nouveaux capteurs.

6 Structure des Séquences Temporelles Satellite

Cette section présente nos travaux sur l’analyse automatique de séries tem-
porelles d’images satellites (SITS) comme représenta à la Figure 7.4. De par
l’accessibilité de grandes quantités de données annotées, l’analyse automa-
tique de SITS est un exemple de premier plan de l’intérêt des approches
d’apprentissage pour l’analyse des données géospatiales. Cependant, les
SITS suivent une structure particulière nécessitant des approches adaptées:
multimodalité, faible résolution spatiale, spatio-spectro-temporalité, et
grande échelle. Nous proposons une série d’algorithmes exploitant cette
structure pour améliorer la vitesse et précision de l’analyse des SITS. Cette
section est basée sur les articles suivants:
[GLGC20]: Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano,
Nesrine Chehata, “Satellite image time series classification with pixel-set
encoders and temporal self-attention”, CVPR, 2020
[GL21b]: Vivien Sainte Fare Garnot, Loic Landrieu, “Panoptic Segmenta-
tion of Satellite Image Time Series with Convolutional Temporal Attention
Networks”, ICCV, 2021
[GL20]: Vivien Sainte Fare Garnot, Loic Landrieu, “Lightweight Temporal
Self-Attention for Classifying Satellite Image Time Series”, ECML Workshop
on Advanced Analysis and Learning on Temporal Data, 2020
[GL21a]: Vivien Sainte Fare Garnot, Loic Landrieu, “Leveraging Class Hi-
erarchies with Metric-Guided Prototype Learning”, BMVC, 2021
[GL22]: Vivien Sainte Fare Garnot, Loic Landrieu, “Multi-Modal Tempo-
ral Attention Models for Crop Mapping from Satellite Time Series”, ISPRS
Journal, 2021
[QL21]: Félix Quinton, Loic Landrieu, “Crop Rotation Modeling for Deep
Learning-Based Parcel Classification from Satellite Time Series”, Remote
Sensing, 2021
[GBLC20]: Giordano, Sébastien and Bailly, Simon and Landrieu, Loic and
Chehata, Nesrine, “Improved crop classification with rotation knowledge
using Sentinel-1 and -2 time series”, Photogrammetric Engineering & Remote
Sensing, 2021
[GLGC19]: Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano,
Nesrine Chehata, “Time-space trade-off in deep learning models for crop
classification on satellite multi-spectral image time series”, IGARSS, 2020

Classification de Parcelles. De par leur grande accessibilité, les séries
temporelles d’images satellites sont au centre d’un effort d’automatisation
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(a) Single image (b) Panoptic GT (c) Panoptic seg (d) Semantic seg

Figure 7.4: Segmentation Panoptique de SITS. Notre objectif est de
prédire automatiquement les cultures et contours de parcelles agricoles à
partir de séries temporelles d’images satellite.

des données d’observation de la terre. En particulier, le suivi des cultures
agricoles est un sujet d’importance écologique, économique, et politique
majeure. En effet, plus de 57 milliards de subvention par an de subvention
sont distribuées chaque année en Europe aux agriculteurs, et la rotation des
cultures a un important impact environnemental mais aussi le rendement
des cultures.

Les approches les plus couramment utilisées pour cette tâche mêlent
des réseaux convolutionnels pour l’aspect spatial et des réseaux récurrents
pour la dimension temporelle. Observant que la résolution des images
satellites à faible temps de revisite ne permet pas de capturer la texture
des cultures, nous proposons de considérer chaque parcelle comme un en-
semble non ordonné d’observations radiométriques multi-spectrales. Cette
approche permet d’apprendre efficacement des descripteurs de la réponse
spectrale des parcelles sans avoir à les redimensionner, ce qui économise à
la fois du temps de calcul et de la mémoire.

Nous adaptons également les méthodes d’auto-attention si efficace en
traitement de la langue au contexte des séquences d’images satellite. Nous
proposons une série de modifications visant à améliorer la performance et
de la vitesse de ces méthodes pour notre cas d’usage, aboutissant à une ar-
chitecture légère et performante qui est maintenant largement utilisée dans
le domaine de la classification de séries temporelles. Pour l’évaluation,
nous mettons à disposition un dataset de parcelles annotées et leurs séries
temporelles correspondantes.

Segmentation Panoptique de Parcelles. Nous proposons une exten-
sion de nos travaux précédents pour prédire non seulement les cultures
mais aussi la forme des parcelles agricoles. Ce problème peut se for-
muler comme la segmentation panoptique de séries temporelles d’images:
chaque pixel est associé à un label sémantique, et les pixels de cultures sont
associés à l’index de leur parcelle.

Ce problème a été étudié pour les images satellite, mais la dimension
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temporelle reste ignorée alors qu’elle est critique pour la classification des
espèces végétales. Nous présentons la première approche d’apprentissage
pour la segmentation panoptique de série temporelle d’images satellites.
Un premier module combine des convolutions spatiales et l’approches
d’attention temporelle décrite ci-dessus pour extraire de riches descripteurs
spatio-temporels multi-échelles. Un second module permet de prédire effi-
cacement et précisément le contour des parcelles agricoles.

Nous introduisons aussi PASTIS, le premier jeu de données libre
de séries temporelles d’images satellites avec annotation panoptique, et
couvrant plus de 4000 mk2. Évalué sur cet dataset, nous démontrons
la supériorité de notre encodeur spatio-temporel pour la segmentation
sémantique, et proposons le premier état de l’art de la segmentation panop-
tique de séries d’images satellite.

Extension Multi-Années. Les rotations de cultures jouent un rôle im-
portant sur l’impact environnemental et le rendement des cultures. Nous
proposons un modèle capable d’apprendre les rotations de cultures pour
améliorer leur classification. Nous introduisons également le premier jeu
de données multi-années de séries temporelles d’images satellite. Notre
approche améliore les performances de classification comparés aux modèle
mono-années, mais aussi par rapport aux approches existantes pour pren-
dre en compte les rotations.

Multimodalité Optique-Radar. Les capteurs optiques passifs super-
spectraux et le radar à synthèse d’ouverture permettent d’acquérir depuis
l’espace des informations complémentaires sur les cultures. Nous pro-
posons une nouvelle approche pour combiner ces informations pour
l’analyse de SITS. Notre méthode repose sur les modules d’attention
temporelle décrits ci-dessus, et peut combiner différentes modalités sans
nécessiter d’alignement temporel, d’interpolation, ou de pré-traitement.

Nous proposons également une extension du jeu de données PASTIS
avec les séries radar associées à chaque série optique. Nous évaluons nos
approches et ses variations sur différentes tâches, allant de la classification
de parcelles à la segmentation panoptique. Nous définissons un nouvel état
de l’art pour chacune des tâches considérées grâce à l’apport de la multi-
modalité.

Classification Hiérarchique. Les espèces agricoles peuvent être orga-
nisées selon une hiérarchie de classes, à l’instar de nombreuses autres
nomenclatures. Cette structure induit une distance sémantique entre
classes, et définit ainsi une métrique discrète.

Nous proposons une régularisation permettant d’apprendre conjointe-
ment des descripteurs et des prototypes de classes qui suivent un arrange-
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ment en accord avec la distance sémantique entre leur classes. Formelle-
ment, nous minimisons la distorsion enter la métrique discrète entre
classes et la métrique continues entre prototypes. Nous évaluons notre
approche sur différentes tâches, de la classification de séries temporelles
à la segmentation sémantique d’images de profondeur, et observons une
baisse systématique du taux d’erreur pondéré par leur coût. De façon
plus surprenante, dans certains cas le taux d’erreur non pondéré diminue
également, démontrant que l’injection de connaissance sur la hiérarchie des
classes permet aussi d’améliorer la qualité des descripteurs appris.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation.
EMNLP, 2014.

[CWB08] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd.
Enhancing sparsity by reweighted ℓ1 minimization. Journal
of Fourier Analysis and Applications, 2008.

[DBC+11] Fabio Dell’Acqua, Christian Bignami, Marco Chini, Gianni
Lisini, Diego Aldo Polli, and Salvatore Stramondo. Earth-
quake damages rapid mapping by satellite remote sensing
data: L’aquila april 6th, 2009 event. Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 2011.

[DBG+20] Ralph Dubayah, James Bryan Blair, Scott Goetz, Lola Fa-
toyinbo, Matthew Hansen, Sean Healey, Michelle Hofton,
George Hurtt, James Kellner, Scott Luthcke, et al. The
global ecosystem dynamics investigation: High-resolution
laser ranging of the earth’s forests and topography. Science
of Remote Sensing, 2020.

[DBLFF10] Jia Deng, Alexander C Berg, Kai Li, and Li Fei-Fei. What
does classifying more than 10,000 image categories tell us?
ECCV, 2010.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. NAACL, 2018.

[DDBC+12] Matthias Drusch, Umberto Del Bello, Sébastien Carlier,
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Robinson, and Martin Schaich. LiDAR reveals pre-Hispanic
low-density urbanism in the Bolivian Amazon. Nature,
2022.

[PBM+18] Laura Pastonchi, Anna Barra, Oriol Monserrat, Guido Luzi,
Lorenzo Solari, and Veronica Tofani. Satellite data to im-
prove the knowledge of geohazards in world heritage sites.
Remote Sensing, 2018.

[PC11] Thomas Pock and Antonin Chambolle. Diagonal precon-
ditioning for first order primal-dual algorithms in convex
optimization. ICCV, 2011.
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