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Abstract

Recent technological progress in terms of hardware and software have given rise
to a growing need for 3D content that can be used in several domains. In this
thesis, we focus on geometric 3D content creation from multi-view 2D image
data. Although specialized hardware such as depth sensors can help to capture
3D data, the prevailing strategy is to use only RGB images as input. Accurate
3D models captured from real data are useful in a wide variety of domains
such as the entertainment industry to incorporate them in movies or video
games, cultural heritage to preserve fragile objects or scenes, healthcare for
diagnostics or virtual surgical simulations and virtual and augmented reality
to provide immersive and realistic experiences for novel applications such as
telepresence or virtual try-on. As seen with all these different applications, the
3D reconstruction task can take place in different contexts with variable size
of the reconstructed content and different numbers of input images. In this
thesis, we explore and contribute to two distinct scenarios.

First, we consider the reconstruction of dressed humans from a limited
number of input views. This scenario is particularly interesting as digital hu-
mans are at the center of a large majority of visual content that we have access
to today and the limited number of input views increases the applicability of
the method with a simplified capture configuration. However, in such context,
the problem becomes very challenging and ill-posed because redundant photo-
metric information within the input images is insufficient to infer a complete
3D model. In this context, we improve over the state-of-the-art with a new
data-driven method built on top of a neural implicit representation that pro-
poses accurate and spatially consistent 3D reconstructions of dressed humans
from only a few sparse input views. We demonstrate in our experiments a
higher reconstruction accuracy than existing methods, and even a good gener-
alization capability to real data while training on synthetic data only. Despite
these impressive results, reconstructing complete and accurate models from
only a limited number of views remains very challenging and methods that
employ more input views are still very relevant.

We therefore consider such context in a second contribution which involves
dense input viewpoints to reconstruct the visible surface. In this case, photo-
metric redundancy is leveraged to estimate the surface position and the main
challenges concern the 3D representation which must capture fine 3D details
and the appearance matching in different views that can be difficult due to
non-Lambertian surfaces, noise from the cameras or visibility issues. In par-
ticular, we contribute with a novel efficient strategy that combines the benefits
of Multi-View Stereopsis (MVS) methods that can yield pixel-wise geometric
accuracy with local depth predictions along viewing rays and the volumetric
integration used in recent differentiable rendering-based reconstruction meth-
ods. In our experiments we demonstrate more accurate surface estimations
and a good generalization ability of the method.

Finally, in a third contribution we leverage the first two contributions and
investigate how to incorporate multi-view constraints in the data-driven recon-
struction method that we developed. In particular, this is possible when the
input images share some redundancy and improves the generalization ability
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of the method, increases the level of details that can be captured and offers
the possibility to use higher resolution images as input.




Résumé

Les récents progres technologiques d’un point de vue logiciel et matériel ont
donné naissance a un besoin croissant de contenu 3D pouvant étre utilisé dans
plusieurs domaines. Dans cette thése, nous nous concentrons sur la création
de contenu 3D géométrique a partir de données d’images 2D multi-vues. Bien
que du matériel spécialisé, tel que des capteurs de profondeur, puisse aider a
capturer des données 3D, la stratégie dominante consiste a utiliser uniquement
des images RGB en entrée. Des modeles 3D précis capturés a partir de données
réelles sont utiles dans une grande variété de domaines tels que l'industrie
du divertissement pour les films ou jeux vidéo, le patrimoine culturel pour la
préservation d’éléments fragiles, la santé pour le diagnostique ou les simulations
chirurgicales et la réalité virtuelle et augmentée pour offrir des expériences
immersives et réalistes. Ainsi, la tdche de reconstruction peut prendre place
dans différents contextes en fonction de la taille du contenu 3D aini que du
nombre d’images considérées en entrée. Dans cette these, nous explorons et
contribuons sur deux scénarios distincts.

Tout d’abord, nous explorons la reconstruction 3D complete d’humains
et de leur vétements a partir d’un nombre limité de vues. Ce scénario est
particulierement intéressant puisque 'humain est au centre d'une grande ma-
jorité d’applications et qu’un nombre limité de vues facilite la mise en place
d’une méthode avec une configuration de capture simplifiée. Cependant, dans
un tel contexte le probleme devient difficile et mal posé car les informations
photométriques redondantes parmi les images d’entrée ne peuvent pas étre ex-
ploitées seules pour déduire un modele 3D complet. Dans ce contexte, nous
améliorons 1’état de l'art avec une nouvelle méthode basée sur un appren-
tissage et construite sur une représentation neuronale implicite qui propose
des reconstructions 3D précises et spatialement cohérentes d’humains a par-
tir de seulement quelques vues éparses en entrée. Nous démontrons dans nos
expériences une précision de reconstruction supérieure a celle des méthodes
existantes, et méme une bonne capacité de généralisation aux données réelles.
Malgré ces résultats impressionnants, la reconstruction de modeles complets
et précis a partir d'un nombre limité de vues reste tres difficile et les méthodes
qui utilisent plus de vues d’entrée sont toujours trés pertinentes.

Nous considérons donc dans une seconde contribution un tel contexte com-
portant des points de vue d’entrée denses. Dans ce cas, la redondance pho-
tométrique est exploitée pour estimer la position de la surface et les prin-
cipaux défis concernent la représentation 3D qui doit permettre de capturer
des détails 3D fins et la correspondance d’apparence dans différentes vues
qui peut étre difficile en raison de surfaces non-Lambertiennes, du bruit des
caméras ou de problemes de visibilité. En particulier, nous apportons une nou-
velle stratégie efficace qui combine les avantages des méthodes de stéréopsie
multi-vues (MVS) qui peuvent donner une précision géométrique au niveau du
pixel avec des prédictions de profondeur locales le long des lignes de vue et
I'intégration volumétrique utilisée dans les récentes méthodes de reconstruc-
tion basées sur le rendu différentiable. Dans nos expériences, nous démontrons
des estimations de surface plus précises et une bonne capacité de généralisation
de la méthode.




Enfin, dans une troisieme contribution, nous tirons profit des deux
premieres contributions et étudions comment incorporer des contraintes
multi-vues dans la méthode de reconstruction basée sur un apprentissage que
nous avons développée. En particulier, cela est possible lorsque les images
d’entrée partagent une certaine redondance et permet d’améliorer la capacité
de généralisation de la méthode, le niveau de détails qui peut étre capturé et
offre la possibilité d’utiliser des images de plus haute résolution comme entrée.
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Introduction

1.1 General Context

3D reconstruction refers to the automatic process of creating a digital model
of a physical object or environment from multiple 2D images or measurements.
This task represents a very long-standing problem in Computer Vision that
has been explored for more than 40 years. Digitizing an object or a scene
includes the 3D geometry, the appearance and possibly the motion if a fourth
temporal dimension is considered. Accurate 3D reconstructions are important
in many domains and allow a wide range of new applications.

First, it is widely used for entertainment purposes, particularly in the fields
of film, television and video games. By creating an accurate digital model of a
real-world object or location, it is possible to use them in a film or television
production without the need to physically build or recreate them. The same
applies for video games in which real-world objects, humans or locations are
often incorporated into immersive and realistic worlds.

With all the recent progress in terms of hardware, new types of devices
appeared in particular Head Mounted Devices (HMD) for Virtual Reality such
as the Occulus Rift, Meta Quest and the HTC Vive or glasses for Augmented
Reality such as Hololens and Google glass (see Figure 1.1). New development
kits were also released such as ARKit and ARCore which target the develope-
ment of virtual and agumented reality applications on mobile devices. These
new devices and software enable a much richer experience in 3D than videos or
images that are only a 2D projection of the real world. As a result, to provide
realistic and immersive experiments, the need for accurate and complete 3D
models is vital.

Other domains also benefit from 3D reconstruction such as cultural her-
itage preservation by creating a detailed and accurate record of an object or
site, including its dimensions, shape and surface features. This can be useful
for preserving the physical characteristics of the object or site for future gener-
ations and to have access to a virtual version that can be studied and analyzed
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1.1. General Context

c)

Figure 1.1: New virtual and augmented reality devices. a) Meta Quest 21 b)
HTC Vive Pro? ¢) Microsoft Hololens 23

from any angle and at any scale. This is especially useful for objects or sites
that are difficult to access or view in person or that are too fragile to visit or
manipulate.

When applied to large scenes, 3D reconstruction is also very important
and is used by a huge range of industries such as agriculture or inspection.
By obtaining a 3D aerial map of the crops, farmers can optimize crop yields
and reduce the use of pesticides and chemicals. Accurate 3D models can also
help for inspection of sites that can be too dangerous or time-consuming to be
performed in real-life, such as electricity pylons, telecommunication towers or
even nuclear power plants. At an even larger scale, 3D reconstruction is also
used by Google Earth to create a 3D model of the full 3D virtual globe which
can be used for exploration, education or planning for example.

Finally, 3D reconstruction is very useful in the medical domain for di-
agnosis and treatment planning. Reconstruction techniques can be used to
create detailed digital models of a patient’s anatomy, which can then be used
for diagnostic purposes by identifying abnormalities or to plan surgical pro-
cedures. Accurate 3D models of a patient’s anatomy, can also be used to
perform virtual surgical simulations. This can be useful for training surgeons
or for preparing complex surgeries, as it allows surgeons to practice and test
different approaches in a virtual environment before performing the surgery in
real-life.

As shown with all these examples, 3D reconstruction is widespread and its
range goes from small objects to larger scenes or even worldwide reconstruc-
tions.

All the methods that digitize the 3D world share a common first acquisition
step based on specific technologies. Existing capture technologies can be can
be categorized in two main groups. First, active systems use an energy source,
such as lasers or lights, to actively scan the object or scene. These systems
have the advantage of being able to capture high-resolution 3D data accurately,
but they may be more expensive and require more specialized equipment. On
the other hand, the passive systems (see Figure 1.2) do not involve the use
of an active energy source and only rely on existing light or other environ-

https://fr.wikipedia.org/wiki/Meta_Quest_2
’https://en.wikipedia.org/wiki/HTC_Vive
3https://fr.wikipedia.org/wiki/Fichier:HoloLens_2.jpeg
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Chapter 1. Introduction

Figure 1.2: The Kinovis passive capture platform at Inria Grenoble *.

mental factors to capture 3D data. With a simplified setup, passive capture
systems composed of several RGB cameras become the prevailing choice for
3D reconstruction and are also the acquisition system considered in this thesis.

By using such passive sensors, the problem of reconstructing the 3D geom-
etry of an object or a scene can be approached in many different reconstruction
contexts. It can go from reconstructing small objects to larger scenes and from
static capture scenarios to dynamic or even real-time ones. More recently, a
large amount of research also tried to simplify even more the passive systems
for multi-view reconstruction by considering fewer input views. In this thesis,
we consider two different scenarios. First, we explore 3D reconstruction from
only a few views specifically for humans and in a second time we develop a
more general method for 3D reconstruction that can be applied to any type of
objects by using more input views.

1.2 3D Reconstruction of Humans

Humans represent probably the central component in a large majority of visual
content that we have access today through pictures, movies, TV shows, video
games or even sports. More recently with the progress of virtual and aug-
mented reality, accurate 3D digitizations of humans become even more impor-
tant to obtain an immersive and realistic experience. As shown in Figure 1.3,
Humans are the central key of several applications such as virtual try-on, tele-
presence or in the virtual world called Metaverse that is expected to grow in
the future. Although less expensive and complex than active capture plat-
forms, setups composed of calibrated multi-camera still limit the applicability
of the reconstruction methods to controlled laboratory setups. To alleviate
such limitations and increase the applicability of the 3D reconstruction meth-
ods from images, a large amount of research investigated reconstruction from
much less input views. In that case, the problem becomes very challenging
and ill-posed, especially in the monocular case, and the methods cannot use
photo-metric redundant information among the input images to infer 3D. As

‘https://kinovis.inria.fr/inria-platform/
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1.2. 3D Reconstruction of Humans

Figure 1.3: Virtual humans applications. a) Telepresence ® b) Virtual try-on ©

a solution, all the methods rely on prior information that can take several
forms such as the depth information provided by an active RGB-D camera or
statistical human body parametric models such as SCAPE [6] or SMPL [116].
These low-dimensional parametric models were used a lot in the context of
3D human reconstruction from one or a few images. The earliest methods
such as SMPLify [13] proposed optimization techniques to infer statistical hu-
man model parameters from the 2D detections of the human joints in one or a
few images. More recently, with the progress of deep learning, several methods
proposed end-to-end trainable architectures [385, 90, 149] that directly estimate
the human model parameters from one or a few images. Low-dimensional sta-
tistical human models offer a robust prior information for the human body
but only represent a naked human which prevents the reconstruction of cloth-
ing and accessories. To overcome these limitations, alternative representations
were explored and combined with deep learning such as meshes [4, 207], vox-
els [58, 189] and depthmaps [52, 175]. These representations bring more flex-
ibility to represent clothing but still include several limitations. Meshes are
limited to a single topology, voxels cannot be considered for high resolution 3D
data as the spatial complexity grows cubically and depthmaps are still a 2.5D
representation and additional steps are required in order to obtain a complete
3D reconstruction of a human. To go even further, implicit continuous
neural representations were explored by various methods [162, 163] and offer
several advantages such as theoretical infinite resolution, no topology limita-
tion, memory efficiency and easy integration with deep learning frameworks.
More specifically, it consists in implementing an implicit function as a Multi
Layer Perceptron (MLP) that takes as input a 3D coordinate and outputs
either the occupancy of that point (inside/outside) or the signed shortest dis-
tance from the point to the surface. In particular, digitizing a human from a

Shttps://www.flickr.com/photos/wolfvision_vsolution/14472241106
6https ://commons .wikimedia.org/wiki/File:Virtual_clothes_trying_
%289507550174%29. jpg
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Chapter 1. Introduction

single or only a few images brings several challenges:

o The reconstruction should be of high quality with accurate and com-
plete geometry. Otherwise, the Uncanny Valley [130] phenomenon is
possible when the human reconstructions can be perceived as unsettling
or disturbing as they approach a level of realism that is close to, but not
quite, human. This occurs in particular because the human brain is very
sensitive to subtle deviations from what is expected to be a human.

o A full reconstruction should be possible from only a limited number of
input views. Photo-metric redundancy alone cannot be used in that
context and some parts are not even visible due to self-occlusion or the
low number of input views. For that, good prior information should be
leveraged efficiently by the method.

e The method should also be robust to a wide variety of clothing types
from tight clothes such as a t-shirt or tights to looser clothing such as
coats or dresses. This also involves being able to reconstruct shapes
with varying topologies for example between someone wearing pants or
a dress.

e As a human is always interacting with its surrounding environment, ob-
jects also play a important role. In many situations, a human is holding
an object and it is therefore a strong advantage if the method can recon-
struct a dressed human in 3D and also potential accessories.

1.3 3D Reconstruction From Many Views

As mentioned previously, reconstructing dressed humans from only a few sparse
views requires prior information and today the most efficient methods use
deep learning techniques to directly learn this prior information from data.
Thanks to these techniques, a significant improvement was possible in the
past few years and results are now impressive. However, the reconstruction
problem from only a limited number of views remains very challenging and
generalization to never-seen-before data is difficult. For a human, in particular,
complex poses or clothing that are unusual and not sufficiently present in the
training dataset cause reconstruction problems. Moreover, by leveraging prior
information specific to human, the method becomes specialized for this type
of reconstruction and cannot deal well with other types of data.

Based on these limitations, the reconstruction techniques that use many
input views are still very relevant. These latter have inherently more infor-
mation to perform the reconstruction and, as a result, they have the potential
to achieve higher reconstruction accuracy, much better generalization and are
not restricted to a single type of data. This reconstruction scenario of ob-
jects or humans from multiple input views is the second scenario considered
in this thesis. For this problem, a large number of methods were already pro-
posed in the past and we can distinguish roughly three main categories. The
first type represents the more traditional methods that proposed optimization
approaches. The earliest methods suggest to carve volumetric grids [98] or
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directly deform meshes [19] to obtain the correct 3D geometry. Later, the
tendency switched to the depthmap-based approaches as they alleviate the
memory limitation issues of volumetric grids and allow for higher resolution
reconstructions. With the recent progress of deep-learning techniques, a whole
line of reserach tried to benefit from them for the problem of 3D reconstruction.
Several methods proposed to learn some parts of the reconstruction pipeline
such as the image feature matching [66, 104, 224] or the standard depthmaps
fusion step [39, 157], while others even proposed to learn the full pipeline in an
end-to-end manner [83, 215]. These methods constitute the second category
and more recently a third one appeared which uses differentiable rendering to
seek for observation fidelity. These methods approximate the rendering process
with a differentiable function that allows to modify an internal 3D represen-
tation for the geometry and appearance until it matches with the observed
images. This strategy was first explored with various shape representations
including meshes [70, 92, 112, 146], volumetric grids [53, 86, 139, 188, 235]
or even point clouds [30, &1, 135] and more recently combined with neural
implicit representations [129, 197, 217] to offer impressive 3D reconstructions
and novel view renderings. As all the methods rely, explicitly or implicitly, on
accurate point matching across different images, several challenges can arise:

o Non-lambertian surfaces: when the Lambertian assumption is not re-
spected, the light is not reflected equally in all directions which can
change the appearance of a same 3D point in different images. This
makes the appearance matching more challenging. The appearance can
vary a lot, especially with specular surfaces that create strong highlights
or reflections.

o The appearance matching is also dependent on the visibility of a point
in an image. However, the true visibility can only be obtained from the
true geometry which creates a cyclic dependency.

» Noise and image blur coming from the cameras can also affect the match-
ing between several images which can in turn decrease the accuracy of
the reconstruction.

1.4 Outline and Contributions

In Chapter 2, we review some background and related works about the topics
discussed in this thesis. In particular, we present the different acquisition
technologies that exist to capture the 3D world and introduce the different
representations used for 3D data. Then, we elaborate on the problem of 3D
reconstruction of humans with a specific focus on the methods that use a
limited number of views as input. In the second part of the chapter we discuss
the problem of 3D reconstruction in a more standard context, by considering
many input RGB images. In particular, we introduce the concept of photo-
consistency which is a major component of all the methods and then we present
existing works for this type of problem. We group the approaches in three
main categories, the traditional methods, the methods that incorporate deep
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learning into the MVS pipeline and the more recent methods that are based
on differentiable rendering.

In Chapter 3, we present a novel method for 3D reconstruction of dressed
humans from a few sparse views. For that, we leverage the recently introduced
neural implicit representations used for monocular reconstruction and propose
to lift the single-view input with additional views. This allows in particular
to alleviate the depth ambiguities and strong occlusions inherent to single
view inputs. We explore a strategy to efficiently combine the contributions of
the different input views and present a technique to obtain spatially consistent
reconstructions, which allows for arbitrary placement of the person in the input
views.

In Chapter 4, we consider the more traditional scenario for 3D reconstruc-
tion with many views as input. Inspired, by the three categories of works
which tackle that problem, we propose a novel optimization-based method
which combines advantages from each of them. In particular, we present a vol-
umetric signed ray distance representation that we parameterize with depths
along viewing rays. This representation makes the shape surface explicit with
depths, keeps the benefit of better distributed gradients with a volumetric
discretization and retains pixel-accuracy by optimizing depthmaps.

In Chapter 5, we study again the 3D reconstruction of dressed humans
from a few sparse views. In contrast to chapter 3, we assume that these views
include some redundancy and we explore two strategies to combine multi-view
constraints with prior-based reconstructions to obtain accurate and full digiti-
zation of dressed humans. In particular, we first present an end-to-end learn-
able pipeline that incorporates a deep learning-based architecture for MVS,
and then, an optimization method based on recent progress in differentiable
rendering.

Finally, in the conclusion (chapter 6), we discuss the limitations and pos-
sible future directions for the work in this thesis.

In particular, we can summarize the following contributions in this thesis:

o We propose a spatially consistent 3D reconstruction framework that al-
lows for arbitrary placement of the human in the scene, achieved by
learning the model in a canonical coordinate system and by accounting
for the transformation of each input view to this system.

o We introduce a learnable attention-based fusion layer that efficiently
weighs the view contributions. This layer implements a multi-head self-
attention mechanism inspired by the Transformer network [190].

o We propose a local 3D context encoding layer that better generalizes
over the local geometric configurations, which is implemented through
randomized 3D local grids.

o We demonstrate how to train our end-to-end pipeline on a large synthetic
dataset of dressed humans and show that it can even generalize to real
data.

o We introduce a novel optimization framework for 3D reconstruction from
multiple images that combines depth optimization, as performed in the
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latest MVS strategies, with volumetric integration, as used in more recent
methods based on differentiable rendering. In particular, this framework
proposes pixel-wise accuracy by construction, does not require color de-
cisions, offers strong geometric consistency over different depthmaps and
significant parallelism.

e Qur optimization framework is agnostic to the photo-consistency met-
ric that is used and we demonstrate that such metric can be efficiently
learned from data with a deep neural network and provides good gener-
alization abilities.

o We present two strategies to incorporate multi-view constraints in the
data-driven reconstruction method that considers only a few input views.

The work in the thesis has led to the following publications:

— Pierre Zins, Yuanlu Xu, Edmond Boyer, Stefanie Wuhrer, and Tony
Tung. Data-driven 3d reconstruction of dressed humans from sparse
views. In 2021 International Conference on 3D Vision (3DV), pages
494-504. IEEE, 2021

HAL page: https://hal.science/hal-03385107v3

— (Accepted at CVPR 2023) Pierre Zins, Yuanlu Xu, Edmond Boyer, Ste-
fanie Wuhrer, and Tony Tung. Multi-view reconstruction using signed
ray distance functions (srdf). arXiv preprint arXiv:2209.00082, 2022

HAL page: https://hal.science/hal-03766943v1

The associated code is available at: https://gitlab.inria.fr/pzins/.

23


https://hal.science/hal-03385107v3
https://hal.science/hal-03766943v1
https://gitlab.inria.fr/pzins/

Background and Related Works

In this chapter we review the background of the topics discussed in this thesis
and introduce relevant related works. In Sections 2.1, and 2.2 we start by
presenting the different acquisition technologies to capture the 3D world and
the main representations used for 3D data. Then, in Section 2.3, we present
different strategies that were proposed by the community for reconstructing
humans from a few views. In Section 2.4, we present some background as well
as related works for the problem of 3D reconstruction in a more general setting
with many input images. In particular, in Section 2.4.2, we review the more
traditional approaches for Multi-View Stereopsis, in Section 2.4.3, the more
recent data-driven techniques and in Section 2.4.4, another line of works that
explore differentiable rendering approaches.

2.1 Capture Technologies

The existing technologies to capture the 3D world can be categorized in two
main groups: active and passive.

Active systems involve some kind of energy source (such as lasers or lights)
to actively scan the object or scene. They provide more prior information for
3D and were used a lot to create high fidelity digitizations in the past years.
Dou et al. [410] and Collet et al. [32] integrated for example infrared cameras in
their pipelines to propose respectively real-time high quality reconstructions
and streamable free-viewpoint videos. However, this type of systems also has
several limitations. First, active systems usually require more expensive hard-
ware and complex setups. Interference issues can also appear when combining
many active sensors and the frame-rate is usually lower than RGB cameras.
Finally, the scalability is also more limited as the size of an active capture
platform is usually much smaller than the passive ones.

On the contrary, passive systems only require RGB cameras that gather
the natural light coming from the environment to capture the appearance
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of the 3D world. RGB cameras offer the advantage of being relatively low-
cost compared to active sensors and do not introduce interference issues when
many of them are combined. Moreover, with the recent progress in terms
of hardware, RGB cameras can capture high resolution images (4K, 8K) at
very high frame-rates, going from around thousands frames per second for
a smartphone to millions or trillions for specialized cameras. For all these
reasons, passive capture systems composed of several RGB cameras become
the prevailing choice for 3D reconstruction and are also the acquisition system
considered in this thesis.

2.1.1 Active Systems

Marker triangulation A first active system consists in equipping a subject
with several infrared markers. When the scene is illuminated with infrared
light, the position of these markers can be captured with infrared cameras.
From the projection of these markers and the calibration parameters of the
cameras, the 3D position of the markers can be deduced by triangulation.
This system can reconstruct a sparse representation of a shape by capturing a
set of interest keypoints but cannot provide realistic dense reconstructions. It
was however widely used in the industry for human motion capture.

Laser point triangulation This method is also based on the triangulation
principle. A lased beam is cast into the scene and the dot that represents the
intersection with the surface is detected in several images. Again, by using
the calibration, the 3D position of that point can be determined. By casting
numerous beams, it is possible to recover a dense point cloud of the scene.

Structured light This method projects a pattern of light with known ge-
ometry (usually light stripes) onto the object or scene, and uses a camera to
capture the deformation of the pattern on the object. The resulting distortion
of the pattern in the image can be used to calculate a relative depth at every
pixel. In particular, this technology is used in the first version of the Microsoft
Kinect [229].

Time-of-Flight (ToF) cameras These cameras measure the time it takes
for a pulse of light to travel from the camera to the object and back, and use
this information to calculate the distance to each point on the surface. In the
end, depthmaps are obtained by casting a ray at each pixel of an image. Time-
of-Light technology was used in the second version of the Microsoft Kinect [165]
and is part of a broader family of range sensors that can estimate the camera-
object distance based on a round-trip time. For example the SONAR for Sonic
ranging sensors is another example which sends out a pulse of sound and waits
for the echo to return. The time it takes for the echo to return is used to
determine the distance to the obstacle.

Photometric stereo By capturing a scene with different lighting condi-
tions, normals of the observed surface can be obtained by using the shading
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variations. The famous Shape-from-Shading [74] strategy corresponds to this
type of techniques when a single input view is used.

Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) scanners CT-scanners and MRI scanners are two other examples
of active systems that are used for 3D reconstruction especially in the medical
domain. They respectively rely on a measure of the absorption of X-rays by
the human body tissues and strong magnetic fields.

2.1.2 Passive Systems

Silhouettes Silhouette-based 3D reconstruction involves using the silhou-
ette or outline of an object as input data to estimate its 3D shape. Usually,
multiple input views are considered, and the silhouettes can be obtained by
2D segmentation methods. Given the camera parameters, a 2D silhouette can
be backprojected in the 3D space to create a conical volume. By considering
several cameras, the intersection of all these volumes creates the final recon-
struction, called Visual Hull [100]. This technique is relatively robust to noise
and occlusions, as the silhouette of an object tends to be well-defined even
when other parts of the object are not visible. This technique is also quite
efficient and can even run in real-time. However, as it relies on the silhouette
information, it cannot capture concavities which greatly limits the reconstruc-
tion accuracy and also heavily depends on the quality of the 2D silhouettes.

Shape from defocus Shape from defocus [15] is another passive technique
for estimating the 3D shape of an object or scene from 2D images. It takes
advantage of the amount of blur in an image which is related to the distance
of the objects in the scene from the camera. By analyzing the blur in an image
captured with different focus setting, it is possible to estimate the depth of
each point on the object or scene. As this technique involves capturing several
images of the same scene, it is not suitable for dynamic scenes.

Stereopsis or Multi-View Stereopsis (M'VS) This method involves cap-
turing a scene or an object under two slightly different viewpoints. 2D pixel
correspondences between the two images can then be found and used in com-
bination with the calibration parameters to compute the 3D position of the
corresponding surface point by triangulation. This technique is similar to the
human visual perception system with the two eyes acting as cameras. Stere-
opsis always considers two viewpoints but the extension to multiple ones is
possible and known as Multi-View Stereopsis (MVS).

Structure-from-Motion Structure-from-Motion is a related technique that
in contrast to MVS does not assume to have access to the calibration param-
eters. It usually involves a single camera capturing a static object or a scene
under different viewpoints and also uses 2D pixel correspondences to simulta-
neously estimate the camera parameters and a sparse 3D reconstruction.
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2.2 3D Data Representations
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Figure 2.1: FExisting representations for 3D data.

Recently 3D data become more and more common with the progress in the
domains of Computer Vision, Computer Graphics and Robotics. Depending on
the acquisition devices and the applications, many representations exist with
different properties and structures, as shown in Figure 2.1. Each of them has
advantages and limitations which make them more suitable for some tasks or
scenarios. A particularly important point is the suitability of a representation
with the recent deep learning techniques. In the following, we present each of
these representations.

2.2.1 RGB-D Data

RGB-D data represents a surface as a 2D pixel grid where each pixel stores color
and depth information. It can provide information about the 3D geometry
from a fixed point of view but can also be captured from different viewpoints
and combined to obtain a more complete 3D information.

This representation offers various advantages such as memory efficiency,
easy processing and easy combination with deep learning techniques thanks to
its regular grid structure. However, it is not a true 3D representation as it is
sensitive to the viewpoints and only represents the visible surfaces.

It gains a lot in popularity with the release of powerful and low-cost depth
sensors such as the Microsoft Kinect or Intel RealSense and, as a result, RGB-
D datasets [19, 47] also become very common compared to other 3D datasets
that propose meshes or point clouds. Many computer vision tasks are devel-
oped using that representation such as identity recognition [136], pose estima-
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tion [13, 97, 194], object detection [12, 154], scene understanding [22, 176] and

)

reconstruction [3, 240].

2.2.2 Volumetric Data

A regular 3D voxel grid is a data structure that divides the 3D space into a grid
of small cubic units called voxels which are the direct extension to 3D of pixels
in the 2D domain. Although, various information such as colors, densities or
materials can be assigned to each voxel, two main definitions exist to represent
a 3D geometry.

First, the occupancy representation assigns a binary value to each voxel V;
depending if it is inside or outside a closed shape (2,

it V, ¢ Q
=0 TV¢ (2.1)
1 iV, e

Instead of binary occupancy values, it is also possible to assign continuous
values between 0 and 1 that represents the probability of occupancy of a voxel
V.

The Signed Distance Function (SDF) is the second possibility in which each
voxel V; contains the signed distance between the center of each voxel and the
nearest surface of the closed shape (2,

V_{mmwﬂm if V; € Q 22)
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where dist() computes the shortest distance from the center of V; to the surface
0f) of the shape . Several variations of the Signed Distance Function also
exist with the Unsigned Distance Function (UDF) that defines only positive
distances or Truncated Signed Distance Function (TSDF) that truncates the
values at a specific threshold.

Thanks to its regular structure, voxel grids can be used directly in convolu-
tional network architectures by performing convolutions on a 3D grid instead
of a 2D image grid and as a result became very popular for several computer
vision tasks such as shape classifications [17] or multi-view object reconstruc-
tion [30].

However, the spatial complexity of a voxel grid of size (N x N x N) is O(n?3)
which makes this representation expensive in memory and computation time.
This is a major drawback of voxel grids and limits their suitability to represent
high resolution data. As a solution, some more efficient 3D volumetric repre-
sentations were also proposed such as Octrees [124, 183] or KD-trees [11, 200].
These hierarchical tree data structures subdivide the 3D space and allow to
save a lot of space and control the resolution, i.e., high resolution around
the surface and low resolution in empty space. Finally, another limitation of
these volumetric representations is that the geometric surface properties are
not preserved as the surface is not explicitly represented.
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2.2.3 Implicit Surfaces

Implicit functions can also be used to represent 3D data and form a continuous
extension of the volumetric representations described previously. They are
defined with an equation f(X) = c that associates a function value ¢ to each 3D
point X = (z,y, z) in space. As for volumetric data and as shown in Figure 2.2,
these functions can encode a probabilistic or binary occupancy [126] of a 3D
point in space or a distance [202] which corresponds to the signed, unsigned or
truncated distance from the point X to the nearest surface. Depending on the
exact definition of the implicit function, the final surface of a shape is modeled
as a level-set of the function, usually 0.5 for occupancy and 0 for a distance
function. A final transformation step is necessary to recover an explicit surface
by using an iso-surfacing algorithm such as Marching Cubes [117].

This type of representation allows to represent shapes with varying topolo-
gies and its continuous nature offers a theoretical infinite resolution [126] while
keeping a low memory consumption. In addition, it is highly compatible with
deep learning frameworks and several works implemented implicit functions
with MLP to represent 3D data for different tasks such as classification [389],
shape completion [29, 234] or shape reconstruction [126, 202].

N r
A0}

a) Occupancy b) Signed Distance ¢) Truncated Distance d) Unsigned Signed
Function (SDF) Function (TSDF) Distance Function (USDF)

b

Figure 2.2: A 2D wvisualization of a circle (in black) and its associated implicit
functions of occupancy a) or distances b) ¢) and d). It works similarly in 3D.

2.2.4 Point Cloud

A point cloud is a discrete set P of 3D data points X; sampled on the surface of
a 3D shape and specified by their coordinates in the three-dimensional space:
P ={X;=(x;,yi,2)[i =1,...,n}. This set is unordered and unstructured by
construction.

This data representation is very popular for various tasks in Robotics,
Computer Vision or Autonomous Driving thanks to its relative ease of capture
with the available technology such as structured-light scanners. Another strong
advantage is its compactness as only the surface of a 3D object is modeled.

On the other hand, their unstructured and unordered natures and lack
of connectivity information make the processing of point cloud more difficult
than regular structured data such as depthmaps or voxel grids. Extending the
very efficient 2D deep learning operations to point cloud is also not straightfor-
ward, but a lot of works tried to address this issue. Convolutions for example
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were extended to point clouds using different types of kernels: 3D continuous
kernels [14, 113, 114] or 3D discrete kernels [75, 99, 101].

2.2.5 3D Graphs and Meshes

3D graphs and meshes form another popular representation for 3D data. A
graph G can be defined as a pair G = (V, E) where

o V={wli=1,...,n} is a finite set of vertices, each represented with their
3D coordinates in the Euclidean space v; = (;, i, ;)

o E={ej|lj=1,...,m} is a finite set of edges that represent the connections
between vertices.

A graph can be further transformed into a mesh by considering faces F' and
additional constraints to verify the 2D manifold properties. A bijective map-
ping should exist between the local neighbourhood of any point of the mesh
and a 2D disc. A mesh is then defined as a triplet M = (V, E,F) where
F ={frlk=1,...,t} is a finite set of faces, each defining a polygonal surface
connecting together several vertices. The most common mesh structure is
called triangle mesh in which all the polygons are triangles.

3D meshes are the standard representation in Computer Graphics as the
hardware (GPUs for Graphics Processing Units) is specifically optimized for
this 3D representation and the connectivity allows to have the normal infor-
mation for any surface point, which is very useful to compute lighting effects.

Similar to point cloud, applying deep learning techniques to graphs or
meshes is challenging due to the irregularity nature of this data, but impor-
tant progress has been made recently. Many approaches tried to learn 3D shape
properties from graphs with the introduction of Graph Convolutional Neural
Networks (GCNN) that can be categorized into two main families: spatial
filtering methods [166] and spectral filtering methods [18]. For meshes, Feng
et al. [16] proposed a mesh neural network that performs very well on shape
classification and retrieval and Hanocka et al. [65] used edges to define special-
ized pooling and convolution operations and demonstrated good performance
for mesh classification and segmentation.

2.3 3D Reconstruction of Humans From a Few
Input Views

In this section, we study the recent advances for the task of reconstructing the
complete 3D geometry of a human from only a few input views.

When much more input views are available, traditional reconstruction
pipelines described in Section 2.4 can be used to capture the 3D geometry
of a human. However, they tend to fail when only a few input viewpoints are
considered. Indeed, if these latter are too far from each other the appearance
matching is impossible and if they are close, only a small part of the shape is
reconstructed.
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As a result, a significant amount of research was dedicated to 3D human
reconstruction from a few views. This context is also more conceivable in
practice and at a lower price. To perform 3D reconstruction from a reduced
number of views, all the methods rely on 3D human priors that can be statis-
tically learned with parametric models or learned from data with the recent
advances in deep learning. In the next sections, we present these approaches
grouped in categories depending on the 3D representation that is involved.

2.3.1 Parametric Models

In the past, many works proposed parametric models to represent the geometry
of the human body by using dimensionality reduction. It started with the
use of a set of simple geometric primitives such as planar rectangles [137],
cylinders [88, 122, 159, 171, 172, 193] or ellipsoids [196] and then statistical
human models were learned directly from 3D scan data such as SCAPE [6],
S-SCAPE [81] or SMPL [116]. The common idea of these latter is to obtain a
low-dimensional representation that includes two sets of parameters to control
the pose and shape deformations of the human body and learn them directly
from a multi-pose and a multi-shape datasets.

To obtain more complete models, SMPL-H [160] combines the human body
model SMPL with the hand model MANO and SMPL-X [150] extends SMPL
with the MANO model and the FLAME model [106] to jointly represent the
human body with the hands and the facial expressions.

Works that estimate the pose and shape parameters of these parametric
human models from images can be categorized in two families: optimization-
based and regression-based methods.

Optimization With Parametric Models

Balan et al. [7] leveraged the low-dimensional parametric model SCAPE and
defined a cost function between the hypothesized mesh and the image obser-
vations. An optimization based on a stochastic search is then used to estimate
the pose and shape parameters of SCAPE. Guan et al. [61] leveraged user-
supplied information to obtain an initial segmentation and pose and shape
parameters. Then, the 3D body shape is optimized using different cues such
as silhouette overlaps, edge distance, and smooth shading. More recently in
SMPLify, Bogo et al. [13] optimized the SMPL pose and shape parameters
by using the 2D human joint detections estimated by a Convolutional Neural
Network (CNN) from a single image.

All these methods provide reliable results but as an optimization problem,
they usually strongly depends on the initialization, may fall in local minima
and are time-consuming.

Regression With Parametric Models

More recently, many works used deep learning techniques to directly train a
network for the task of estimating the pose and shape parameters of a para-
metric human body model from images. The training phase is usually long
and requires a large amount of annotated data, but the inference is just a
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simple forward pass in the neural network. Pavlakos et al. [119] proposed an
end-to-end method for 3D human pose and shape estimation from a single
RGB image. One of their main contribution is the incorporation of the para-
metric model SMPL inside the end-to-end framework. In particular, it allows
to predict shape and pose parameters from silhouettes and 2D keypoints and
to recover a 3D mesh during training. With this predicted mesh, they can
use a per-vertex loss and integrate a differentiable renderer to refine it with
respect to 2D annotations. This supervision based on 2D annotations is used
to balance the relative lack of 3D ground truth data for training. In the con-
current work HMR, Kanazawa et al. [90] proposed an adversarial strategy with
a discriminator that ensures the validity of a predicted mesh. It allows train-
ing the deep neural network only with 2D labels which are relatively easy to
obtain compared to 3D ground truth, and they showed superior performance
for the setting in-the-wild. Kolotouros et al. [96] chose a different strategy
and regressed the SMPL template vertex positions instead of SMPL param-
eters. The motivation is that even if the predicted mesh is consistent with
the input image when SMPL parameters are regressed, the performance in
terms of pose estimation is lower that non-parametric solutions. The authors
used a fixed template mesh with a Graph-CNN architecture and demonstrated
state-of-the-art results in terms of pose and shape estimation.

While parametric models allow for robust and possibly fast reconstructions
of the human body from only one or a few images it is limited to a coarse
naked human body. The level of detail and variability of the reconstructed
clothing and accessories remain inherently limited.

2.3.2 Meshes

To alleviate some limitations of parametric models and represent clothing and
details such as wrinkles or facial expressions, several works proposed to deform
a 3D template mesh. Xu et al. [207] proposed, in particular, to deform mesh
vertex positions using a warp field parameterized by an embedded deforma-
tion graph and supervised by silhouette segmentation. Habermann et al. [63]
proposed a two-stage strategy where a human mesh template is first fitted to
the input frame, and then, the vertices are non-rigidly deformed using dense
photometric and silhouette constraints over multiple frames. Habermann et al.
[64] introduced a method that combines a pose-estimation network which re-
gresses the skeletal pose of a human with a deformation network that esti-
mates non-rigid deformation of the dense surface. Zhu et al. [236] created a
large dataset of basketball players meshes derived from the NBA2K19 video
game. From that, they can train an identity and a skinning neural networks
that predict respectively vertex offsets and skinning weights to transform a
rest pose template into a personalized mesh in a specific pose. An interest-
ing alternative strategy for the problem of full human body prediction from a
single image was proposed by Alldieck et al. [5]. The authors considered an
image-to-image translation neural network that estimates normal and vector
displacement maps from a single RGB image and which can be applied on top
of a coarse initial mesh reconstruction.
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Even if deforming a template mesh provides more opportunities to capture
details such as facial expressions and clothing wrinkles, a mesh remains limited
to a single topology and cannot generalize to various types of clothing (e.g.
pants, skirt, dress, coat, ...).

2.3.3 Volumetric Representations

of voxels or more efficient versions with Octrees or KD-trees. In contrast to
meshes, they are not limited to a single topology and their regular 3D grid-
based structure makes them very suitable to be processed with recent 3D deep
learning techniques. A whole line of research was dedicated to reconstruct
humans in 3D from images. BodyNet [189] was one of the first methods to in-
tegrate a volumetric representation in an end-to-end trainable neural network
for 3D human body shape prediction from a single colored image. Several
losses are used for supervision: 2D segmentation and pose losses on interme-
diate representations, a 3D pose loss on 3D joints, a volumetric loss on each
voxel, and a multi-view reprojection loss on the silhouettes to increase the
importance of boundary voxels. Gilbert et al. [58] proposed a coarse-to-fine
strategy to reconstruct 3D humans from sparse multi-view videos. For that,
they voxelize an initial Visual Hull reconstruction and encode it in a latent
representation. A volumetric decoder is then used to obtain an improved ver-
sion of the initial reconstruction with higher fidelity with respect to the input
images. Similarly, Zheng et al. [232] also proposed to start from an initial
volumetric representation and use a voxelized version of an SMPL mesh for
that. Their volume-to-volume translation network uses multi-scale features
extracted from the input images to refine the initial volume representation.
Despite good results for the task of 3D human reconstruction from a few
images, the volumetric representation remains limited in terms of resolution
and computation costs which prevent the reconstruction of high quality details.

2.3.4 Depthmaps

In order to reduce the large memory requirements of the volumetric represen-
tation, some methods explored alternative representations such as depthmaps.
In Moulding Humans, Gabeur et al. [52] predicted two depthmaps from a sin-
gle RGB image, one for the visible surface, usually the front of the human, and
one for the hidden part, usually the back of a human. These depthmaps can be
later fused into a point cloud and converted to a mesh. In FACSIMILE, Smith
et al. [175] also introduced a depth inference network that predicts front and
back depthmaps from a single RGB image. A key component of their depth
network is a spatial differentiation module that converts depth into normals
and allows supervision with normals even in the absence of depth ground truth.
Finally, they proposed a mesh alignment technique to match a SMPL template
mesh with the point cloud obtained from the depthmaps.

Depthmaps provide an interesting alternative for voxel-based representa-
tions with a much lower memory requirement and their regular-grid struc-
ture also makes them very suitable for deep learning techniques. However, a
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depthmap is still a 2.5D representation and additional steps are required to
recover a full human avatar such as a fusion and meshing steps or a fitting
process of a template mesh.

2.3.5 Implicit Functions

More recently, several works also explored implicitly-defined continuous neural
representations that offer several advantages compared to explicit representa-
tions, as mentioned in Section 2.2.3.

A seminal work that used this representation to reconstruct humans from
monocular images is PIFu [162], which learns pixel-aligned implicit functions
to locally align image pixels with the global location of the 3D human. It can
also deal with sparse camera views by simply averaging the contribution of
each camera. Thanks to the underlying implicit representation, PIFu achieves
complete and more detailed reconstructions of a 3D human from a single or a
few images compared to the other methods based on different 3D representa-
tions.

In PIFuHD, Saito et al. [163] built on top of PIFu to deal with high res-
olution images in order to capture more geometric details. For that, they
proposed a multi-resolution pipeline that learns two implicit functions, one for
a low resolution occupancy and one for a high resolution occupancy. PIFuHD
also includes a pretrained image-to-image translation network that predicts
front and back normal maps which are given as additional input to the fine
reconstruction network. With GeoPIFu, He et al. [67] proposed to improve
the geometry predicted by PIFu by using latent voxel features that are pro-
cessed by a 3D U-Net [31] network. These features allow to resolve some
ambiguities in the query point encoding and also serve as a global 3D human
prior and regularizer to increase robustness. In StereoPIFu, Hong et al. [73]
proposed to integrate the geometric constraints of stereo vision with the im-
plicit representation of PIFu. It allows to recover the 3D shape of clothed
humans from a pair of rectified images. With their experimental results they
demonstrated improved robustness, completeness and accuracy. In PAMIR
(Parametric Model-Conditioned Implicit Representation), Zheng et al. [233]
proposed to combine a parametric body model with the free-form deep im-
plicit representation used in PIFu. The authors explained that this combined
representation is a key contribution to address the ill-posed problem of recon-
structing a 3D human from a single RGB image. In particular, they use the
Graph-CNN proposed by Kolotouros et al. [96] to predict a initial SMPL es-
timation from the input image which is then voxelized and processed by a 3D
encoder to extract voxel-aligned features. The latter are combined with the
standard pixel-aligned features and given as input of the MLP decoder that
implements the implicit function. Some works also built on top of PIFu to
obtain an animation-ready avatar from a monocular image such as ARCH [75]
or ARCH++ [68] in which the authors introduce a learnable semantic space
and deformation field in the PIFu pipeline that can transform any human body
to a canonical rest pose. Yang et al. [213] also reconstruct an animatable 3D
human from an image by learning three implicit functions to obtain a skinning
field, a pose field and the occupancy field from PIFu.
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Another interesting research direction for methods based on implicit func-
tions is the efficiency in terms of computation time. Even if an implicit repre-
sentation offers the advantage of low memory footprint, the inference requires
to evaluate the neural network at every position in a 3D grid which prevents the
deployment for real-time applications. To address this point, MonoPort [105]
introduced a novel hierarchical surface localization algorithm to drastically re-
duce the number of queried points during surface reconstruction without sacri-
ficing final geometry quality. They also proposed a direct rendering technique
from novel viewpoints of the captured human that is possible without recon-
structing explicit geometry. More recently, NeuralHumanFVV [181] proposed
a coarse-to-fine multi-stage pipeline to reconstruct the 3D human geometry
from a few images. In particular, they show how to generate the geometry
explicitly only in the novel views instead of the whole human geometry which
is expensive and unnecessary for real-time applications.

In this thesis, and more particularly in Chapters 3 and 5, we also lever-
age an implicit representation to reconstruct accurate and complete models
of dressed humans. In contrast to the existing works, we focus on a recon-
struction scenario with a few input views and contribute on several points
including an efficient combination of the information coming from the differ-
ent views, spatially consistent reconstructions, improved generalization with a
local context encoding and better performances with the integration of multi-
view constraints.

2.4 3D Reconstruction From Multi-View Im-
ages

In this section, we discuss 3D reconstruction of arbitrary objects from dense
viewpoints. We start by presenting the photo-consistency, a common key com-
ponent of all Multi-View Stereopsis approaches, and then we review the three
main categories of works that address this problem: traditional MVS methods
in 2.4.2, data-driven approaches in 2.4.3 and more recent methods based on
differentiable rendering in 2.4.4.

2.4.1 Photo-consistency

In the following, we present the concept of multi-view photometric consistency,
also known as photo-consistency in short, which is a key component of every
MVS algorithm. It consists in measuring the agreement between the projected
appearances of a 3D point in several images. This concept is known for a long
time [123], but the term consistency was first introduced by Seitz and Dyer
[168] as voxel consistency and later renamed photo-consistency [98]. Originally,
this term was used under the Lambertian assumption which assumes that a
3D point of a shape that is visible in multiple images is photoconsistent if
the colors corresponding to the 2D projection of that point in the images are
exactly the same. This assumption is however difficult to guarantee in real
scenarios as it depends on the viewpoints, materials, illumination and sensor
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noise. Another critical aspect for the photo-consistency measure is to have
access to the visibility information such that appearances computed from a set
of cameras actually see the same 3D point. However, this introduces a chicken-
and-egg dependency as the photo-consistency requires visibility to reconstruct
the geometry and the visibility information can only be accurately computed
from the true geometry. Several approaches exist to overcome these limitations.

Kutulakos and Seitz [98] introduced a very simple photo-consistency mea-
sure by considering the color variances of the pixels corresponding to the 2D
projections of a 3D point across the views. This strategy provided very limited
robustness to the different types of noise that appear in real life scenarios such
as reprojection errors, sensor noise, blur, vignetting or when the Lambertian
assumption is not verified. To account for this noise, many photo-consistency
metrics consider a local region where the appearance should match instead of
a single pixel. Given a set of N input RGB images and a 3D point X that is
seen by the N images, the photo-consistency function can be defined as follows
by considering each pair of images I; and I;:

C3j(X) = p(I(D(mi(X))), 1 (D(m;(X)))), (2.3)

where p() defines a similarity function computed between vectors, m;(X) rep-
resents the projection of a 3D point X into the image I;, and D() defines the
local region. The simplest way to define this local region is to use a 2D patch
of pixels around the 2D projection of the 3D point. The size of this region
is an important parameter as it defines a trade-off between uniqueness and
invariance. The appearance of a large region is more unique which simplifies
matching with the other images but invariance with respect to illumination
and viewpoints is harder to guarantee. Many similarity functions p can be
computed between the appearance information of two image patches I and J
of the same size such as Sum of Squared Differences (SSD) which is defined as

pSSD(LJ) :ZZ(IUU_JUU>27 (2‘4>

where v and v index each pixel of the two patches. Sum of Absolute Differences
(SAD) is a variant that considers the absolute difference between the pixels

psap(L,J) =" Ly — Juol- (2.5)

Normalized Cross-Correlation (NCC) is defined as the cross-correlation be-
tween the two patches I and .J normalized by the product of their standard
deviations o7 and o,

A
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010J

pnce(l,J) = (2.6)

where fm, and jm, are respectively the mean intensity values of the two patches
I and J. Various other metrics also exist such as Sum of Hamming Differences
(SHD), Census transform (CT), Rank (R) or Mutual Information (MI) and
more information is available in [51]. The general objective of these similarity
metrics is to provide some robustness to various types of noise coming from
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the camera sensor or the change of illumination or brightness across view-
points. Another trend for photo-consistency functions is to use gradient-based
image descriptors such as SIFT [118], GLOH [128], SURF [10], BRIEF [20] or
Daisy [186]. More extensive studies and evaluations of these image descriptors
are available in [72, 118, 128, 186, 199]. These descriptors combine the response
of several 2D filters, usually at multiple scales, to obtain a descriptor invari-
ant to the changes of viewpoint or illumination or other transformations such
as scaling or rotation. Such gradient-based image descriptors demonstrated
better robustness in case on noisy photometric information [102] but are usu-
ally more complex to compute compared to the standard photo-consistency
functions such as NCC.

With the objective of improving the robustness of the hand-crafted photo-
consistency functions several works explored data-driven methods. They usu-
ally build on top of deep learning techniques and learn a similarity function
directly from real images. In that case, the neural network can choose what
information to consider in order to obtain invariance for the changes of illu-
mination or brightness due to non-Lambertian surfaces and robustness with
respect to noise or occlusions. Several works in the domain of Stereo Match-
ing [121, 224, 225] proposed to learn how to compare 2D image patches by
training CNN. They usually consider two rectified patches as input and use
a Siamese neural network to extract features from these patches. Then, a
final decision network predicts the similarity score. This technique was also
explored by MVS approaches. Hartmann et al. [66] proposed a similar archi-
tecture but consider multiple input patches as input instead of pairs. Leroy
et al. [103] proposed to replace the 2D patches by the projection of a 3D volume
back-projected from a reference image. The authors explained that this strat-
egy allows to capture more local geometric patterns, takes into account the
relative positions of the cameras and is more efficient under complex dynamic
conditions.

2.4.2 Traditional Multi-View Stereo Methods

A first category of seminal methods [16, 35, 98, 168] for MVS reconstruction
used a voxel grid representation and tried to estimate occupancies and colors.
One notable technique is Space Carving [98] in which matter is iteratively
removed based on the consistency of pixel colors in multiple views. While
efficient their reconstruction precision is inherently limited by the memory
requirement of the 3D grid when increasing resolution.

Another line of works explored global optimization methods. Faugeras and
Keriven [14] proposed a global optimization based on a variational principle
that must be satisfied by the surfaces of the objects and the images. Simi-
larly, Fua and Leclerc [19] and Fua [18] used a photometric criterion that is
minimized in a global optimization of meshes or particles. Inspired by these
works, several other methods were then developed, in which the authors tried
to deform an initial shape, usually a mesh, by minimizing a reprojection er-
ror [30, 152].

In contrast to the global methods, another tendency gathers more local
methods. Furukawa and Ponce [50] proposed an interesting strategy that gen-
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erates and propagates a set of dense patches followed by a Poisson Surface
reconstruction [94]. Hiep et al. [71] combined a point cloud generation based
on local detections with a more global graph-cut based optimization.

Later the tendency switched to depthmap-based MVS methods that usu-
ally try to match image features from several views to estimate depths. Addi-
tional post-processing fusion and meshing steps [33, 93, 94, 125] are required
to recover a surface from the multi-view depthmaps. Despite the usually com-
plex pipeline, multi-view depthmap estimation gives access to pixel-accuracy,
a strong feature for the reconstruction quality which has made this represen-
tation common in MVS approaches. Campbell et al. [21] used a volumet-
ric graph-cut strategy to improve estimated depthmaps by removing outliers.
With improved depthmaps the authors relax the requirement of strong redun-
dancy among input depthmaps for the fusion stage which allows to work with
sparse datasets. More recently in GIPUMA, Galliani et al. [54] proposed an
extension of the PatchMatch Stereo algorithm [12] to directly search for cor-
respondences in multiple views. They also adapted their method such that it
can be efficiently parallelized on GPUs. Schonberger et al. [167] extended the
probabilistic framework from Zheng et al. [230] by jointly estimating depth and
normal information per-pixel, introducing a pixelwise view selection strategy
that uses both photometric and geometric priors. They also added a multi-
view geometric consistency term for depths and normals fusion. This work
is now integrated into a popular Structure-from-Motion and MVS framework
called COLMAP. Several improvements were also proposed such as an adaptive
checkerboard sampling to propagate good depth hypotheses as soon as possi-
ble [204] and a planar prior in the PatchMatch multi-view stereo framework
to solve some ambiguities in low-textured areas [205].

2.4.3 Data-Driven Multi-View Stereo Methods

With the recent advances in deep learning, several methods proposed to learn
some parts of the MVS pipeline such as the image feature matching [66, 104,
224] or the standard depthmaps fusion step [39, 157]. Others even proposed
to learn the full pipeline in an end-to-end manner. Here, we focus on these
latter and distinguish two categories depending on the representation they use.
Similarly to the traditional methods, several deep learning-based approaches
consider depthmaps which are filtered, fused and potentially converted to a
mesh in post-processing steps. Another trend of works considers a volumetric
representation for which the deep neural network directly predicts occupancy
or signed distance values. It simplifies the post-processing steps as no fusion
is required, but a 3D volumetric representation is expensive in memory which
can hinder the capture of high quality details. For that reason, the majority of
recent deep learning-based strategies consider depthmap predictions. Here, we
start by reviewing volumetric-based approaches, and then, present methods
that predict depthmaps.
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Volume-based Methods

SurfaceNet [$3] was the first attempt to propose an end-to-end approach for
MVS. Their deep neural network directly processes pairs of volumetric grids,
called Colored Voxel Cubes (CVC), that are constructed for each input view
by back-projecting pixel values in 3D and predicts binary surface presence for
any voxel in a CVC. Kar et al. [91] also used an internal 3D voxel representa-
tion to learn the MVS process. In particular, they built per-view 3D feature
volumes by back-projecting 2D image features in 3D and used a recurrent neu-
ral network to match the different volumes together. The main limitation of
these two approaches comes from the 3D discrete grid representation as the
number of voxels grows cubically with the size or the resolution of the scene.

More recently, some works of this category tackled the problem of indoor
scene reconstruction from a sequence of images. In Atlas, Murez et al. [132]
directly regressed a 3D Truncated Signed Distance Function (TSDF) for the
full scene. For that, they accumulated features in a 3D grid volume by back-
projection and processed them with a 3D CNN to predict per-voxel TSDF
values. The full 3D volumetric representation and the 3D CNN limits the size
and the level of detail of the reconstructed scene and prevents from real-time
applications. In NeuralRecon, Sun et al. [179] proposed a solution to these
issues by considering a sparse TSDF representation, sparse 3D convolutions, a
Gated Recurrent Unit (GRU) and a coarse-to-fine strategy. Their framework
can reconstruct in 3D an indoor scene from a monocular video in real-time.
More recently Bozic et al. [15] proposed a similar coarse-to-fine strategy com-
bined with a transformer-based feature fusion module. In particular, the latter
learns which coarse and fine features are the most relevant for the reconstruc-
tion problem.

Depthmap-based Methods

A large number of deep learning-based methods for MVS predict depthmaps
which are then filtered and fused into a point cloud. The depthmaps are pre-
dicted for a reference view by using other views called the source views. During
inference, each input view is sequentially considered as the reference view to
predict the corresponding depthmap. Different strategies exist to efficiently
select source views with sufficient parallax, overlap and reduced occlusions.
They usually rely on geometric information such as camera positions or angles
between camera principal axes and photometric information.

The majority of depthmap-based methods share a standard pipeline in-
troduced first in MVSNet [214]. The main component is a cost volume con-
structed in the frustum of a reference camera by a sweeping strategy called
plane sweeping. Virtual fronto-facing parallel planes are positioned at multi-
ple depth hypotheses, in which, features extracted from the reference and the
sources views are matched by a differentiable homography. To aggregate these
features coming from the different views, MVSNet uses a cost metric computed
as the element-wise variance of all the features. Then, the raw cost volume is
regularized by a 3D Unet to account for noise coming from different sources
such as occlusions or non-Lambertian surfaces. Finally, a Softmax operation
is used to obtain a probability volume and the final depthmap is computed as
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the expectation value of the depth hypotheses along each ray.
A very large number of methods were inspired by MVSNet and proposed
improvements on each component of the standard pipeline.

2D Feature Extraction Several works proposed to replace the 2D feature
extractor of MVSNet with more efficient modules or networks such as Spatial
Pyramid Pooling (SPP) [79], Feature Pyramid Network [60, 208] or attention
mechanisms [211, 222, 227].

Cost Volume Construction Several alternatives to the variance-based
strategy from MVSNet were explored to aggregate the features from the
different source and reference views in the cost volume. DPSNet [79] directly
concatenated the features from the reference and each source views and
averaged over all such pairs. Luo et al. [119] proposed to construct patch-wise
matching cost volumes which improves matching accuracy and robustness.
Several approaches also consider more information than just local perceptual
features when creating the cost volume such as contextual [120], semantic [70]
or visibility [26, 195, 206, 226, 227, 228] information.

Cost Volume Regularization The original cost volume regularization
strategy of MVSNet based on 3D convolutions is very memory-consuming
which limits the scalability of the pipeline. To overcome this, several works
introduced a Recurrent Neural Network (RNN), such as an LSTM [209] or
a GRU [110, 215] to sequentially regularize each 2D slice of the cost volume
along the depth direction. PatchmatchNet [195], an end-to-end learnable
pipeline inspired from the seminal Patchmatch algorithm [8], also avoided the
costly 3D cost volume regularization by learning adaptive propagation and
spatial cost aggregation modules.

Coarse-to-fine Architectures Coarse-to-fine architectures were intro-
duced in end-to-end MVS pipelines by several works [25, 28, 60, 212, 227]
to reduce the memory consumption and the computational cost. These
architectures take as input a pyramid of images or features and first construct
a low-resolution cost volume. At this coarse level, a very large depth range is
used to create the depth hypotheses and coarse depthmaps are then predicted
and used to narrow the depth range for the finer level. The coarse level better
captures the global shape and the fine level captures high frequency details.

All these works on data-driven multi-view stereo, have progressed a lot
recently and constitute a very promising direction for the future. However,
some challenges still remain such as the generalization to never-seen-before
data or the large memory consumption when high resolution images are used.

2.4.4 Differential Rendering

Another line of works for 3D reconstruction from multiple images has explored
differentiable rendering approaches. A large majority of these works are used
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for novel view rendering applications, however, several also focus on 3D shape
geometry reconstruction.

They build on a rendering process that is differentiable and henceforth
enable shape model optimization by differentiating the discrepancy between
generated and observed images. These methods were originally applied to
various shape representations including meshes [70, 92, 112, 146], volumetric
grids [53, 86, 139, 188, 235] or even point clouds [30, 81, 135]. In association
with deep learning, new neural implicit representations have also emerged. As
described in Section 2.2.3, their continuous nature and light memory require-
ments are attractive. They have been successfully applied to different tasks:
3D reconstruction [126, 143, 151, 162, 163, 202] or geometry and appearance
representations [57, 127, 141, 174, 182]. Most of these methods solve for 3D
shape inference and require 3D supervision, however, recent works combine
implicit representations with differentiable rendering.

Nerf [129] is the pioneer work that combines neural representations with
volumetric differentiable rendering to produce high quality photo-realistic syn-
thesis of novel views. It requires a long optimization phase and a large number
of input views. It also inspired a very large number of works that tried to
extend its capabilities or overcome some limitations. Some works improve the
rendering quality [9, 62, 192], deal with dynamic scenes [107, 144, 145, 153],
incorporate additional sparse [38, 203] or dense [158, 198] depth supervision,
generalize to novel scenes [23, 87, 221] or even accelerate the optimization
with more efficient representations or optimization strategies [24, (9, 131,
155, 178, 220].  More details can be found in different very complete sur-
veys [37, 55, 184, 201]. However, they all target the novel view rendering
problem and the quality of the associated geometry as encoded with densities
is however not perfect and often noisy. The estimated geometry still lacks
precision as the methods are not primarily intended to perform surface recon-
struction.

More related to this thesis, several works also focused on that aspect to ob-
tain better 3D surface reconstructions. They roughly belong to two categories
depending on the shape representation they consider.

Volume-based Methods The methods in this category follow the same
principle as the original Nerf but replaced the geometry representation based
on the density with a more suitable one based on a Signed Distance Function
(SDF). In NeuS, Wang et al. [197] compute the density based on a transforma-
tion of the SDF and in VolSDF, Yariv et al. [218] model the volume density as
a Laplace cumulative distribution function applied to an SDF. Both proposed
more accurate surface reconstructions than the methods using the original Nerf
density. Darmon et al. [34] even extended VolSDF and proposed a fine-tuning
strategy based on image warping to take advantage of high-frequency textures.
This method allows to incorporate traditional patch matching techniques from
MVS into a differentiable rendering-based method. To capture accurate sur-
faces, all these methods replaced the original density-based representation of
Nerf with an SDF-based representation. However, very recently, Toussaint
et al. [187] showed that the original representation of Nerf can be used for
accurate surface reconstruction if appropriate losses are added. They also
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demonstrated that by combining a non-neural parameterization, a coarse-to-
fine scheme and an explicit sparse storage they obtain very fast surface capture.

Surface-based Methods On the other hand, several works proposed to use
a surface renderer that estimates 3D locations where viewing rays enter the sur-
face and their colors. By making the shape surface explicit, these approaches
obtain usually better geometries [95, 111, 140, 217]. Nevertheless, they are
more prone to local minima during the optimization since gradients are only
computed near the estimated surface as opposed to volumetric strategies. In-
terestingly, Oechsle et al. [112] proposed a hybrid approach that combines the
advantages of both volumetric and surface rendering and obtained good surface
reconstructions.

In Chapter 4 we propose a novel optimization method for this reconstruc-
tion problem of 3D shapes from dense input viewpoints. In particular, our
method combines the benefits of MVS methods that can yield pixel-wise ge-
ometric accuracy with local depth predictions along viewing rays, the volu-
metric integration used in recent differentiable rendering-based reconstruction
methods and a data-driven strategy to learn a photo-consistency criterion.
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Data-Driven 3D Reconstruction of
Dressed Humans From Sparse Views

3.1 Introduction

In this chapter, we examine the problem of 3D reconstruction of dressed hu-
mans from a limited number of views. The ability to produce accurate visual
models of real humans in every-day context, in particular with their clothing
and accessories, is useful in a wide range of applications that deal with captured
human avatars, typically in the virtual and augmented reality or telepresence
domains. Using images for that purpose has been an active field of research for
decades, with issues that result, in part, from the high dimensionality of the
space of human shapes and appearances, especially with dressed people. The
challenge is accentuated when only few viewpoints are considered, a situation
that is, on the other hand, common in many practical contexts, for instance
with mobile devices. While model-based strategies (e.g., SMPL [115]) have
shown impressive results in case of undressed bodies, they cannot easily gen-
eralize to generic humans with clothing and accessories.

Acquiring 3D human models from images is a long-standing research topic
in computer vision. When images from several viewpoints are available, multi-
view stereo approaches (e.g. [50, 169]), and their learning-based extensions
(e.g. [83, 103]), allow for highly detailed 3D reconstructions by combining
multi-view information with photo-consistency criteria. This generative strat-
egy builds on photo-metric redundancy among input images and tends to fail
however in our context that considers only sparse input viewpoints. Besides,
data-driven reconstruction methods, that only require a single view, have been
proposed. This includes methods based on low-dimensional parametric models
(e.g. [150]) which are anyway limited with clothing and accessories; methods
based on volumetric representations (e.g. [189]) with bounded level-of-details
by construction; and methods based on implicitly defined continuous neural
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representations (e.g. [162]). These latter methods have demonstrated their
ability to recover humans with clothing and accessories. Yet, the single-view
reconstruction problem is highly ambiguous and results easily suffer from arti-
facts when the input scene differs substantially from the training set. To rem-
edy this, methods accounting for multiple input views have been proposed e.g.
[77, 162]. These extensions, however, merely combine single-view estimations
with simple average pooling. Such ways of fusion do not fully exploit multi-
view cues and are still plagued by single-view ambiguities.

In this chapter, we adopt the widely approved implicit neural representa-
tions and focus on multi-view fusion. With respect to single-view estimation
this task raises several issues. First, single-view reconstruction methods gen-
erally assume a person centered and scaled input image. This needs to be
compensated for when dealing with sequences of moving humans and in or-
der to obtain spatially consistent reconstruction with coherent localization and
scales among the sequence frames. The second question is how to aggregate
local information from viewpoints that can differ significantly, for instance
front and side-views, and which can therefore predict different occupancy at
a given spatial location. The third issue is how to account for local contexts,
defined by image color cues around a 3D point, that gain in variability with
increasing views but also allow to better differentiate local geometric patterns.
To address these issues, we propose a data-driven end-to-end approach that
reconstructs a 3D model of the dressed human from sparse camera views using
an implicit representation. Specifically, our method has three key components:

o A spatially consistent 3D reconstruction framework that allows for ar-
bitrary placement of the human in the scene that uses the perspective camera
model, achieved by learning the model in a canonical coordinate system and
by accounting for the transformation of each input view to this system.

« A learnable attention-based fusion layer that weighs view contributions.
This layer implements a multi-head self-attention mechanism inspired by the
transformer network [190].

o A local 3D context encoding layer that better generalizes over the local
geometric configurations, which is implemented through randomized 3D local
grids.

In the experiments, we evaluate our approach against the state of the art
on public benchmarks. To demonstrate the value of the spatially consistent
reconstruction, we apply our method to dynamic scenes with large displace-
ments. Moreover we also contribute with results on new real data obtained
with a multi-view platform. They demonstrate the feasibility of data-driven
approaches in practical real-world capture scenarios, even trained solely on
synthetic data.

3.2 Method

In this section we first give an overview of our method and explain the repre-
sentation that is used. We then present our strategy to learn and infer humans
in a large scene and our contributions with the spatially consistent reconstruc-
tion, the attention-based fusion layer and the local context learning.
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Figure 3.1: QOverview of the proposed pipeline. Given a sparse set of input
images with associated background masks and known calibration, our method
reconstructs a spatially consistent 3D model.

3.2.1 Overview

Our pipeline is described in Figure 3.1. High resolution images of a human
and background masks are used as inputs to reconstruct a spatially consistent
3D model using an implicit representation. To allow for a spatially consistent
reconstruction with proper scales and localization, we learn the model in a
canonical 3D local coordinate system, and transform each observation to this
space. This is achieved by localizing the 2D center of the human in each view,
by triangulating to find the 3D position of the human center, and by defining
a canonical 3D local coordinate system based on this information. This allows
to create canonical crops of the input images and background masks so they
can be fed to our deep neural network that learns to predict an implicit 3D
reconstruction in a canonical space. The result, combined with the canonical
3D local coordinate system, allows to reconstruct a spatially consistent 3D
model in the scene by placing the reconstruction in world coordinates.

Fig 3.2 gives an overview of our deep neural network for multi-view 3D
reconstruction. Image features are first extracted using a standard multi-scale
image encoder. We then sample points by combining two strategies: random
sampling in a 3D bounding box and importance sampling close to the surface
with half of the points inside the mesh and the other half outside. We also
construct a local 3D grid around each sample. Here we describe the method
for a single sample but in practice a large number of points are processed in
parallel. Using projection and bilinear interpolation, each point of the local
grid is associated with a 2D feature, which is concatenated with the depth of
the point. It is important to note that the previous steps are performed per-
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Figure 3.2: Quverview of the deep neural network for multi-view training. Image
features are extracted per view, and queried for a local grid around each sample.
All views are integrated using an attention-based fusion layer, and a context
encoding layer based on 3D convolution is applied before predicting occupancy.

view and in the end a 3D local grid of features is obtained for each view. An
attention-based module efficiently combines the information from the different
views by merging the 3D local grids. A second fully connected fusion layer
extracts a final 3D feature from the local grid. At inference time, we define a
grid at the desired resolution, evaluate the occupancy function at every grid
location, and apply the Marching Cubes algorithm [117] with a pre-defined
threshold of 0.5 to recover a 3D mesh.

3.2.2 Multi-View Implicit Surface Representation

Following recent progresses in learning-based shape modeling, we use an im-
plicit 3D surface representation for the reconstruction task. Implicit surface
representation converts arbitrary mesh surfaces into a function defined on a vol-
ume and allows for geometric details to be represented at arbitrary resolution.
Furthermore, the use of neural implicit representations is memory-efficient and
solves the main issue in other volumetric representations. Similar to methods
like [162, 163], our implicit function takes the combination of pixel-aligned
features with depth values as input and predicts an occupancy probability
o€ 10,1].

When reconstructing from a single image, the conditioning on the depth is
necessary to differentiate points on the same camera ray as their appearance
features are the same. In our case with multiple views, associations of features
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can discriminate points of the same view line, but the conditioning on the
depth is still helpful to capture details as the spatial resolution of the features is
limited. To optimally benefit from this conditioning, training examples should
all be aligned so that the network can learn a prior of the depth from the
training set. Therefore, even if we consider reconstruction in large scene, we
work in a canonical local coordinate system during training and at inference.
The origin of the coordinate system is defined at the center of each training
mesh and its orientation is the same as the world coordinate system, so we
have the following equation: Xl]ocal = Xyorid +Tj, where T} is the translation
between the world origin and the center of the j-th mesh. The exact definition
of the center of a mesh is arbitrary but should be consistent for all the training
examples. In practice, we use the median over all mesh vertices for the x and
z coordinates and the mean between the highest and the lowest vertices for
the vertical coordinate y. For each 3D point, the depth value given as input of
the implicit function is its z-coordinate in the local coordinate system aligned
with each of the cameras by applying the rotation R;. The implicit function
takes the form:

f(EI(Kz [R|t]in>7Z(Rinocal);‘9) =0,

[|[E| x R] - [0,1] (3:1)

where X, is the 3D point in world coordinates, K; and [R|t]; are respectively
the intrinsic and extrinsic parameters of the i-th camera, o is the occupancy
probability at X, and |F| the dimension of the 2D image feature. Ej(...) is
defined at any location in the image using bilinear interpolation of the values
of Er at pixel locations.

3.2.3 Spatially Consistent Reconstruction

Most existing works based on pixel-aligned features and implicit representation
consider orthographic projection where the appearance of a subject is the same
at any position in the scene. In single-view reconstruction, this simplified sce-
nario removes the ambiguity between the size of the subject and its distance
from the camera. On the contrary we deal with perspective projection like
in real environments with the pinhole camera model. We consider the case
where enough views are available to avoid the size versus distance ambiguity.
To accommodate for perspective deformations, we augment the data during
training by randomly placing the subjects in the scene. As we are learning
an implicit representation in a canonical 3D local coordinate system, the re-
construction at inference is inconsistent with the world space. Previous work
tackles this problem with a neural network that estimates the spatial trans-
formation of humans from a single image [133]. In our context, we propose to
take advantage of the multiple views and triangulate the 3D coordinates from
multiple 2D detections of the center of the human as shown in Figure 3.1. The
2D center positions are known at training time and predicted during inference
using a convolutional deep neural network. The exact definition of the center
of a human should be coherent with the point used to define the origin of the
canonical coordinate systems. To supervise this network, we can use a similar
dataset as in the remaining pipeline. Knowing the 3D center position, we can
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define a canonical 3D local coordinate system, perform the inference in that
space and replace the result in world coordinates. Note that the height of the
subject is preserved as we do not apply any normalization on the size of the
meshes during training.

3.2.4 Attention-based Fusion Layer

Image-based reconstruction benefits from multi-view cues, e.q., stereo vision,
which should be combined before the reconstruction is carried out in order to
avoid premature single-view decisions and therefore limit ambiguities. Each
view provides a feature and the question is how to aggregate them. Concate-
nating all the features, while simple, does not appear optimal because the
fused features may become large when many images are considered, making it
impossible to learn from an arbitrary numbers of views. Concatenation also
imposes an order between views, which is undesirable in practice.

Besides concatenation, fusion approaches based on statistics, such as sum-
pooling [11], average pooling [56] or max pooling [177] were proposed in the
literature. The advantages are simplicity and invariance to both the order
and the number of views. However, pooling operation loses information about
individual view contributions. In particular, views in which a point is visible
are considered equal to views in which the point is occluded and, more gen-
erally, erroneous information from an input view will contaminate the final
prediction.

We propose to go one step further by learning the fusion and contextualising
the information from different views. Previous work [210] proposes a simple
learned fusion layer that computes a normalized score for each view, for each
channel of a global feature. The main limitation is that the score of each view
is computed individually without taking into account the information from the
other views.

Inspired by recent progress in natural language processing to learn from
sequences, we propose an architecture based on the transformer network [190]
which implements a multi-head self-attention mechanism and is described in
Figure 3.3. One key component is the scaled dot-product attention which is a
mapping function from a query along with a key / value pair to an output.
The three vectors query @ = M?X, key K = M*X, and value V = M'X are
the embedding of the original feature X parameterized by matrices M2, M*
and M"Y, respectively. The idea is to compute an attention score for each view
based on a compatibility of a query with a corresponding key:

Attention(Q, K,V) = softma (QKT> V, (3.2)
ention(Q, K,V) = X ; :
Vdy

where dj, the common dimension of K, () and V.

To allow the network to attend to different geometric patterns, we propose
to use multiple heads. For that, ), K and V are linearly projected h times
and processed in parallel through a scaled dot-product attention layer. The
results from the different heads are concatenated and finally projected once

48



3.2. Method

Output Feature

( Average pooling |
————— :
Contextualized |[Contextualized ...IContextuaIized

Feature 1 Feature 2 Feature N

’|Feature 1| |Feature 2 Feature Nr

Figure 3.3: (Left) Our view fusion module. (Middle) Multi-Head Attention
module. (Right) Scaled Dot-Product Attention.

again to obtain the final output :

MultiHead(Q, K, V') = concat(Hy, ..., H,)W*°

. . k (3.3)
with H; = Attention(QW1, KW;" VW)

where W1, WZ-’“, W/ are respectively the parameters of the linear mapping of
@, K and V, and W° the parameters of the final projection.

The output of the attention modules is a set of features. Each of them
contains the original information from the corresponding view that now takes
into account the information from all the other available views. Finally, we
use the mean of these features as output of our view fusion module. Note also,
that we do not use any positional encoding on the input feature sequence to
remain invariant to the view order. Two options exist to implement multi-
head self-attention. The standard narrow version splits (), K and V into small
chunks and each head processes one of them. On the opposite, the wide option
propagates entirely (), K and V to each head. This version provides superior
performance at the expense of computation time and memory requirements. In
our work, we choose the narrow option which offers a very good compromise.

3.2.5 Local 3D Context Encoding

In the proposed framework, projection is used to associate 3D points with 2D
image features for each available view. Then, the attention-based fusion layer
weighs the contribution of each view in the fused feature. Finally, a Multi-
Layer Perceptron (MLP) predicts an occupancy probability. However, such
features do not take the 3D geometric context into consideration since the
neighbourhood is only considered in 2D when features are extracted from the
images. To include 3D context, we propose to build a local 3D grid around
each sampled point and associate each point of the local 3D grid with 2D image
features by projection.

The attention-based layer is applied individually on each point of the local
grids, after which we add another context fusion module that combines the
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Figure 3.4: A local 3D grid is constructed around each sampled point (in red),
and parameterized by a size and an orientation.

information coming from a 3D neighbourhood of a sampled point. This module
is shown in orange in Figure 3.2, and is implemented with a fully connected
layer. Thanks to this additional layer, the neural network is aware of the local
3D context of a point. In this way, we expect the network to better capture 3D
geometric patterns and to increase robustness against nuisance factors (e.g.,
texture, lighting).

As shown in Figure 3.4, the local grid is parameterized by the size S and
orientation R. Empirically, we found that fixing R during training strongly
links the local grid to the global coordinate system and the orientation of the
human body. To remain invariant to the orientation of the human, during
training we randomly align R with one of the available views at each iteration.

The grid size S needs to be chosen based on the training data and the
type of the targeted 3D patterns. Our goal is to learn local 3D patterns that
typically contain points in the same or close-by body parts. As a full local
grid can be expensive in computation time and memory, we propose a variant
that uses only the cells along the three grid axes that traverse the center of the
grid. In that case, three one-dimensional vectors are considered instead of one
three-dimensional grid, which significantly decreases the number of grid points
while still allowing to take into account local context along three directions.
We call this version "light" and use it in all our experiments.

3.3 Implementation Details

In this section, we give some implementation details about the reconstruction
network, the human center localization strategy as well as the view selection
during training.

3.3.1 Reconstruction Network

The image encoder of our reconstruction network is a Stacked Hourglass Net-
work, with intermediate supervision, composed of 4 hourglass modules each of
depth 2. The size of the output features is 128 x 128 x 256. Since we trained
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the network with a small batch size, we also introduced group normalization
instead of batch normalization. Our view fusion layer is composed of 6 mod-
ules based on multi-head self-attention with 6 heads. The local 3D context
fusion maps features from a 3 x 3 x 3 grid into a single feature of size 256.
The Multi Layer Perceptron (MLP) is composed of 6 layers of dimensions
256,1024,512,256,128,1 with skip connections between the first layer and all
the other layers except the last one. We optimized our network during 100
epochs using the root mean square propagation algorithm with a learning rate
of 1 x 10~ that is divided by 10 at iterations 60 and 80. We implemented our
method using Pytorch [118].

3.3.2 Human Center Localization

256x256x3 8x8x512

AdaptativeAvgPool2D

Rel U activations after every
Conv2D and Linear layers

7x7x512
1024
1024
2

Figure 3.5: Human center detection network based on VGG16 [175].

In Figure 3.5 we show the architecture of our deep neural network based
on the standard VGG16 [173] architecture to detect the human center on each
of the view. These 2D detections are then used to triangulate the 3D position
of the person in the scene. The center of the person is arbitrarily defined but
should be coherent with the origin of the canonical coordinate systems used
at training. In practice, we defined it as :

median(vertices.x)
0.5 % (max(vertices.y) —min(vertices.y))

median(vertices.z)

where y is the up-axis. We do not use the median for the up-axis to account
for cases where numerous vertices are grouped at the top or the bottom. Such
cases are worth considering since a human is less symmetric with respect to
the horizontal plane. In Table 3.4, we compute the Lo distance between the
2D detections and 2D ground truth as well as the 3D positions triangulated
from the 2D detection and the 3D ground truth. Here we used 4 views evenly

distributed around the person with a random elevation axis between 0° and
45°.

3.3.3 Training Views

To train our deep neural network, we created a synthetic model view set by
rendering 3D models from Renderpeople [2] using 360 cameras located around
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Figure 3.6: View selection angles.

them as explained below. In contrast to Multi-View Stereo methods, only a few
of these views are considered at inference (between 2 and 6 in our experiments).
The views used at inference should be ideally evenly distributed around the
person in order to increase its visibility. At inference, results are most of the
time better for parts of the surface that are observed than hidden ones for
which the reconstruction relies solely on the prior learned from the training
set. To build such image sets for the training we sample the synthetic views
of a 3D model and create several model view subsets with few images.

To define the position of our cameras when creating such a subset, we
use a rotation angle around the up-axis and an elevation angle, as described
in Figure 3.6. For the orientation, we assume that the cameras are always
looking at the center of the scene.

In practice, at each training iteration we choose N angles around the up
axis that are evenly distributed among [0°,45°,90°,135°,180°,225°,270°,315°
and add a random offset between —20° and 20°. The elevation angles are
selected randomly between 0° and 45°. Note that we trained our model with a
fixed elevation angle when comparing with other methods (7.e.PIFu [162] and
PIFuHD[163]) that consider a similar scenario.

3.4 Experimental Results

In this section, we evaluate the proposed method and compare it with the
state of the art. First, we introduce the training and testing datasets as well
as the evaluation metrics. We then compare our approach quantitatively and
qualitatively against the current state of the art and provide a ablation studies
to justify our contributions. Finally, we show results of spatially consistent
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reconstruction and applications on real multi-view stereo data.

3.4.1 Settings

We create our synthetic dataset with Renderpeople [2], a public commercial
dataset that provides highly detailed meshes obtained from 3D scans and cor-
rected by artists. Its main advantage is the very high quality of the geometry
which is essential to learn geometric details, especially with clothing. The hu-
mans from this set are in relatively standard poses and often hold accessories
such as bags, cups or other objects. In total, we have 1026 meshes, split into
800 meshes for training, 100 for validation and 126 for testing.

To evaluate quantitatively the reconstructed human meshes, we first com-
pute the Chamfer Distance (CD) between the ground truth mesh and the
reconstructed mesh. By considering average distances between meshes, this
metric tends to measure the global quality of the reconstructions. To focus
more on local details, we also consider surface normal of the reconstructed
and ground truth meshes and compute the Lo and cosine distances between
them (Norm Cosine and Norm L2, respectively). Finally, in order to eval-
uate accurately the raw predictions of our network before the Marching Cubes
post-processing that transforms the occupancy probability grid into a mesh,
we compute the average L distance (><103) between predicted and ground
truth occupancy (Occ L1).

3.4.2 Comparisons

CD (cm Occ L1 Norm Cosine Norm L2
Methods (em) 4 v v v

mean | median | mean | median | mean | median | mean | median

PaMIR [233] | 0.554 | 0.508 |1.977 | 1.754 | 0.097 | 0.090 |0.361 | 0.343
PIFu [162] 0.592 | 0.510 [2.079 | 1.773 | 0.103 | 0.093 | 0.376 | 0.358
PIFuHD [163]| 2.008 | 1.624 | 5.837 | 4.543 | 0.181 0.162 0.544 | 0.503
Ours 0.367| 0.316 [1.538| 1.323 |0.089| 0.083 |0.350| 0.337

Table 3.1: Quantitative results and comparisons with PaMIR [255], PIFu [107]
and PIFuHD [105] on Renderpeople dataset. PaMIR, PIFu and ours use /
views as input (see Figure 3.7) and PIFuHD uses a single frontal view. Best
scores are in bold.

In the context of 3D reconstruction of dressed humans from a few sparse
views, PIFu [162] demonstrated state-of-the-art results so we consider it as the
baseline result. For the comparison we trained it on our training dataset. This
method has proven its benefit against model-based reconstructions and we do
not provide comparisons with the latter. PIFuHD [163] extends PIFu to high
resolution images and shows impressive single view reconstructions of details
for the visible parts. No training code is available, so we use the published
pre-trained model for the comparison. PAMIR [233] combines the implicit
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Figure 3.7: Qualitative results and comparisons with multi-view PIFu [102],
multi-view PaMIR [255] and PIFuHD [105]. The 4 input images are rendered
with the rotations around the vertical axis : 10°, 110°, 150°, 300°. PIFuHD

uses a single frontal view as input.

representation with a parametric body model and shows improved single-view
and multi-view reconstructions. The released code and pre-trained model are
only for single-view reconstruction, so we implemented the missing parts our-
selves and trained a multi-view model on our training dataset. We do not
provide direct comparisons between our method and multi-view stereo (MVS)
methods applied on the exact same input data since MVS methods fail when
only few images are available. PIFu, PIFuHD and PaMIR use orthographic
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images in which the human is at the center and cannot address the spatial
consistency in world space. For a fair evaluation, we create a corresponding
training / validation / test dataset composed of meshes from Renderpeople
and evaluate all four methods on this data.

Qualitative results on synthetic data are presented in Figure 3.7. PIFu
and PaMIR achieve promising reconstructions but fail on some parts like the
hair and the arm in the first row, or the watering can and clothing wrinkles
in the second row. Our method appears clearly more robust and captures
more geometric detail as can be seen on faces and clothing wrinkles. PIFuHD
achieves detailed reconstructions for the visible parts like the face but, unlike
for our method, the quality decreases significantly for the hidden parts and the
global shape is not respected like the head on both rows. This is inherent to
single view reconstruction methods and emphasizes the utility of using multiple
views.

This intuition is verified by the associated quantitative results in Tab. 3.1
that confirm the benefit of our method on three aspects. First, the global
quality of the reconstructions is improved by a large margin with the Chamfer
distance. Second, metrics on surface normal are also in line and show that
local geometric details are better captured. Third, our method achieves better
results on the raw values of the implicit function.

3.4.3 Ablation Studies

To evaluate the impact of our contributions, namely the multi-head self-
attention fusion layer and the local 3D context encoding, we conducted qual-
itative and quantitative ablation studies. To isolate these contributions from
eventual human center detection errors, we place here the human person at
the center of the scene. For the first contribution, we replaced the view fusion
module by a simple average pooling strategy and for the second, individual
sample points were considered in place of the proposed local 3D grid.

Quantitatively, disabling the view fusion or the context encoding module
both affect the reconstruction performance. From the results shown in Fig-
ure 3.8 and Tab. 3.2, we clearly see that the multi-head self-attention view
fusion module is crucial for both the global quality and the local geometric
details. On the other hand, the local 3D context encoding is not sufficient
by itself but when combined with the view fusion module helps the global
reconstruction quality and avoids holes or missing parts.

To evaluate the scalability of our method, we compare reconstructions with
different numbers of input views. It demonstrates that adding views effectively
decreases depth ambiguities and occlusions with a clear improvement in the
reconstructions. Visual results in Figure 3.9 show that the global quality of the
shape (noise and missing parts) as well as geometric details (face and skirt)
are improved as more views are used. It also shows the superiority of our
proposed method compared to the baseline. Visual results are confirmed by
the quantitative evaluation in Tab. 3.3. In particular, we observe a stronger
improvement when using 4 views instead of 2 compared to 6 views instead of
4. This observation seems reasonable since the views used here are distributed
evenly around the person and 4 views are sufficient to observe every side.
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. CD (cm) | Occ L1 ] |Norm Cosine || Norm L2 |
Variants

mean | median | mean | median | mean | median | mean | median

w./o. fusion | 0.553 | 0.478 |2.013 | 1.755 | 0.101 0.093 0.373 | 0.353
w./o. context| 0.413 | 0.363 | 1.622 | 1.399 | 0.091 0.087 | 0.353 | 0.342
Ours full 0.367| 0.316 |1.538| 1.323 |0.089| 0.083 [0.350| 0.337

Table 3.2: Ablation studies on the effectiveness of different components. We
evaluate our method when deactivating the view fusion module and the local 3d
context encoding, respectively. Best scores are in bold.

. CD (cm) | Occ L1 | |[Norm Cosine || Norm L2 |
Variants

mean | median | mean | median | mean | median | mean | median

PIFu 2 v.| 1.386 | 1.233 | 3.206 | 2.861 | 0.136 0.130 0.444 | 0.432
PIFu 4 v.| 0.592 | 0.510 | 2.079 | 1.773 | 0.103 0.093 0.376 | 0.358
PIFu 6 v.| 0.331 | 0.313 | 1.499 | 1.402 | 0.088 0.083 0.345 | 0.331

Ours 2 v. | 0.870 | 0.753 | 2.909 | 2.474 | 0.121 0.114 |0.407 | 0.392
Ours 4 v. | 0.367 | 0.316 | 1.538 | 1.323 | 0.089 0.083 0.350 | 0.337
Ours 6 v. |0.279| 0.245 [1.383| 1.215 |0.082| 0.079 |0.337| 0.327

Table 3.3: Ablation studies on using a different number of views as input. Best
scores are in bold.
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a) b) c) d) e)

Figure 3.8: Ablation studies of our approach: a) Input cropped images. The
4 input images are rendered with the rotations around the vertical axis : 10°,
110°, 150°, 300°. b) Ground truth models. c¢) Ours without the attention-based
view fusion module. d) Ours without the local 3D context encoding. e) Our
full method.




Chapter 3. Data-Driven 3D Reconstruction of Dressed Humans From Sparse
Views

Ground
Truth

Ours
2 views |

Ours
4 views

PIFu
6 views

Ours
6 views

Figure 3.9: Ablation on different number of input views. As more views are
added, the reconstruction with our method are improved. We also show the
reconstruction results of PIFu [107]

3.4.4 Spatially Consistent Reconstruction

To demonstrate the spatial consistency of the reconstructions we consider two
scenarios, using data from Renderpeople [2]. First, we apply our method
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to dynamic input, namely to four synchronized video sequences showing a
human walking in a scene. We reconstruct the sequence frame-by-frame, and
Figure 3.10(a) shows that the reconstructions contain details (ears, clothing
wrinkles) and are spatially consistent with the ground truth.

As a second scenario, we consider a static scene containing multiple persons
at different positions and render high resolution images with 4 cameras. Note
that this evaluation focuses on spatially consistent reconstructions and not
occlusions between persons. Hence, we render each person individually while
the other persons are hidden. Figure 3.10(b) shows that the reconstructions
are spatially consistent with the ground truth and we can also note that the
heights of the persons are correctly reconstructed.

3.4.5 Application to Real-world Data

To demonstrate the generalization of our method, we show 3D reconstructions
of clothed humans with real images obtained with a 60 camera multi-view
capture system. We compare with PIFu and PIFuHD when reconstructing
with the front view only, to PIFu when reconstructing with 4 views, and to a
multi-view stereo method [103] on the same scenes but with 60 images. For
all methods to be applicable, we consider the person centered in the middle
of the scene. It is important to note that the networks were trained purely
on synthetic data while tested on images from a real acquisition scenario.
Figure 3.11 shows that single view reconstructions suffer from an inherent
depth ambiguity: some parts are missing (hair and backpack) and the pose is
incorrect. Our method performs better than PIFu when 4 views are available,
with more realistic global shapes and more detailed local geometries. More
importantly, the comparisons with the multi-view stereo method applied to 60
images demonstrate the potential of data-driven strategies in the multi-view
reconstruction domain.

3.4.6 Additional Experiments
Human Center Localization

As shown in Table 3.4, the average Euclidean distance between the ground
truth and triangulated 3D human center is around 4.4cm. We compute these
metrics on test data (360 groups of 4 views for 50 persons) and follows the
strategy explained in Section 3.3.3 to select the 4 views. Additionally, we show
in Figure 3.12 an example of reconstruction with manually specified errors on
the human center location. We see that the reconstruction quality is not
affected too much up to 5 cm. Noise starts being visible with an error of 10
cm and the reconstruction fails with larger error like 20 cm.

Attention scores

We provide in Figure 3.13 a visualization of the attention scores of our view
fusion module. We use 4 input views, evaluate our deep neural network in a
3D grid of resolution 256 and save the attention score of the first self-attention
layer. Note that we use a single head for this experiment. Points that are
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Figure 3.10: Spatially consistent reconstructions. a) Frame-by-frame recon-
struction of a sequence from synchronized videos. Left: high resolution images
for one example frame. Right: our result with the ground truth superimposed
in red. b) Person-by-person reconstruction of a scene with multiple people.
Left: high resolution images for one example person. Right: our result with
the ground truth superimposed in red. a) and b) For both, the camera rotations
around the vertical axis are 10°, 110°, 200°and 300°with a random elevation
angle between 0°and 40°.

predicted close to the surface inside or outside are visualized and the intensity
of the red channel represents how much the considered view contributed for
each point. We clearly see that each point attend more to views in which they
are visible.

Encoders

In our work, 2D features are extracted using the Stacked Hourglass en-
coder [138] that stacks multiple pooling and up-sampling networks. It allows
the extraction of information at multiple scales and accounts therefore for both
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a) b)

Figure 3.11: a) Real scene cropped images. b) PIFu [102] and ¢) PIFuHD [103]
with a single frontal view. d) PIFu with 4 views. e) Multi-view stereo [105]
reconstruction with 60 views. f) Our method with 4 views.

L2 - 2D (pixels)|L2 - 3D (cm)

mean| median |mean| median

9.795 8.944 4.398 | 4.291

Table 3.4: FEvaluation of the human center detection on images and the 3D
triangulated position of the center. Both are evaluated on test images.

local and global contexts. Intermediate supervision is also applied to the out-
put of each module while training our network. Of course numerous alternative
encoders exist and could be used in our architecture in place of the Stacked
Hourglass encoder. We provide in this section a comparison with 2 popular
options: U-Net [161] and HRNet [180]. Results are shown in Figure 3.14 and
in Table 3.5. The U-Net [161], a fully convolutional network based on a con-
tractive and an expansive part, gives results which are visually close to those
obtained with the Stacked Hourglass encoder, with however significantly more
noise as confirmed by the metrics in Table 3.5. On the other hand, the more
recent work HRNet [180] fails to provide similar results in this context.
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No error Error : 5cm Error : 10cm Error : 20cm

Figure 3.12: Reconstructions from 4 views that show the impact of a 3D human
center localization error on the reconstruction.

CD (cm) | | OCCL1] Norm Cosine || Norm L2 |
Encoders

mean | median | mean | median | mean | median | mean | median

SHG 0.385| 0.322 |1.602| 1.380 |0.087| 0.081 |0.343| 0.326
U-Net [161] | 0.572 | 0.482 | 1.984 | 1.688 | 0.108 | 0.101 0.389 | 0.369
HRNet [180]] 1.092 | 1.075 | 3.682 | 3.547 | 0.181 0.178 | 0.565 | 0.553

Table 3.5: Quantitative results obtained by our approach, on Renderpeople
data [2], with 3 different image encoders (see text in Section 3./.0 for com-
ments). Best scores are in bold.

Local grid size

A key point of our method is the encoding of the local context of each sampled
3D point. To this purpose, we use a local 3D grid around each sampled point
and in the pipeline, each original sampled point is associated with the addi-
tional points from their 3D local neighbourhood. At each training iteration,
the local grids are aligned randomly with one of the camera used and the grid
size is constant and defined before training.

Here we provide the results obtained with different grid sizes defined in
world coordinates: small (2 cm), medium (10 cm) and large (20 cm) grids.

Table 3.6 shows that the best results were obtained with the medium-sized
local grid, which is the one that was used for the other results in this chap-
ter. This result is confirmed visually on Figure 3.15, where the medium grid
shows better reconstructions with more details and less noise. This experi-
ment demonstrates that the size of the local grid is important as it defines
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Reconstruction Attention to Attention to Attention to Attention to
from 4 views the front view the back view the right view the left view

2

ife
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” 1 #
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Figure 3.13: Attention scores: points predicted as close to the surface (in or

out) are visualized. The intensity of the red channel represents the contribution
of the considered view.

the neighbourhood considered to predict the occupancy probability of the grid
center. With a small grid, all grid points tend to be projected on the same 2D
feature which prevents the 3D context to be encoded. On the other hand, with
large grids, points can be far from each other, even on different body parts.
In that case, the neighbourhood considered is too large and not informative
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Figure 3.14: Comparative reconstruction results with our approach applied us-
ing 3 different image encoders. a) Input RGB images. b) U-Net [101]. ¢)
HRNet [180]. d) Stacked Hourglass [135].

when predicting occupancies.

CD (cm) | | OCC L1 | |Norm Cosine || Norm L2 |
Grid size

mean | median | mean | median | mean | median | mean | median

small (2 cm) 0.422 | 0.413 | 1.668 | 1.566 | 0.089 | 0.087 |0.342| 0.336
medium (10 c¢m) |0.385| 0.322 11.602| 1.380 |0.087| 0.081 | 0.343 | 0.326
large (20 cm) 0.441 | 0.421 | 1.677 | 1.592 | 0.091 0.089 | 0.350 | 0.341

Table 3.6: Quantitative results and comparisons with 3 local grid sizes on Ren-
derpeople data [?]. Best scores are in bold.

3.5 Conclusion

In this chapter, we build on recent progress on implicit representations of 3D
data and propose a method for 3D reconstruction of clothed humans from a
few sparse views. We introduce three key components: 1) a spatially consistent
reconstruction that allows for arbitrary placement of the person in the input
views using a perspective camera mode; 2) a fusion layer based on an attention
mechanism that learns to efficiently combine the information from all avail-
able views; 3) a mechanism that encodes local 3D patterns in the multi-view
context. Our experiments show that the proposed method outperforms the
state of the art in terms of details and global quality of the reconstructions on
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Figure 3.15: Qualitative comparisons of the reconstructions using our method
with 3 different local grid sizes. a) Input RGB images. b) Small grid (2 cm).
c¢) Medium grid (10 ¢m). d) Large grid (20cm).

synthetic data. We also demonstrate a better generalization of our method on
real data acquired with a multi-view platform. Additionally, we show that our
approach can even approximate multi-view stereo results with dramatically
fewer views.
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Multi-View Reconstruction Using
Signed Ray Distance Functions (SRDF)

4.1 Introduction

In this chapter we consider the 3D reconstruction problem in a more tradi-
tional scenario with dense input viewpoints. This problem of reconstructing
3D shape geometries from 2D image observations has been a core issue in
computer vision for decades. Applications are numerous and range from
robotics to augmented reality and human digitization, among others. The
problem can be decomposed into two parts, the 3D shape geometry and
the shape appearance estimations. While the second part is necessary to
generate images from novel viewpoints, the first appears more crucial in most
applications and is often a preliminary step to the appearance estimation.
We focus on the shape geometry estimation in this chapter. When images are
available in sufficient numbers, multi-view stereo (MVS) is a powerful strategy
that has emerged in the late 90s (see [170]). In this strategy, 3D geometric
models are built by searching for surface locations in 3D where 2D image
observations concur, a property called photo-consistency. This observation
consistency strategy has been later challenged by approaches in the field that
seek instead for observation fidelity using differentiable rendering. Given
a shape model that includes appearance information, rendered images can
be compared to observed images and the model can thus be optimized.
Differentiable rendering adapts to several shape representations including
point clouds, meshes and, more recently, implicit shape representations. The
latter can account for occupancy, distance functions or densities, which are
estimated either directly over discrete grids or through continuous MLP
network functions. Associated to differentiable rendering these implicit
representations have provided state-of-the-art approaches to recover both the
geometry and the appearance of 3D shapes from 2D images.
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Figure 4.1: Our method overview. Left: Given multiple RGB images and an
initial coarse reconstruction, our method optimizes depth maps using a volu-
metric shape energy E that is evaluated at samples along viewing lines. Right:
The optimized depth maps are further fused into a surface model.

With the objective to improve the precision of the reconstructed geometric
models and their computational costs, we investigate an approach that takes
inspiration from differentiable rendering methods while retaining beneficial as-
pects of MVS strategies. Following volumetric methods we use a volumetric
signed ray distance representation which we parameterize with depths along
viewing rays, a representation we call the Signed Ray Distance Function or
SRDEF. This representation makes the shape surface explicit with depths while
keeping the benefit of better distributed gradients with a volumetric discretiza-
tion. To optimize this shape representation we introduce an unsupervised
differentiable volumetric criterion that, in contrast to differentiable rendering
approaches, does not require color estimation. Instead, the criterion considers
volumetric 3D samples and evaluates whether the signed distances along rays
agree at a sample when it is photo-consistent and disagree otherwise. While
being volumetric our proposed approach shares the following MVS benefits:

i) No expensive ray tracing in addition to color decisions is required,;
ii) The proposed approach is pixel-wise accurate by construction;
iii) The optimization can be performed over groups of cameras defined with
visibility considerations. The latter enables parallelism between groups
while still enforcing consistency over depth maps.

To evaluate the approach, we conducted experiments on real data from
DTU Robot Image Data Sets [32], BlendedMVS [216] and on synthetic data
from Renderpeople [2] as well as on real human capture data. Ablation tests
demonstrate the respective contributions of the SRDF parametrization and
the volumetric integration in the shape reconstruction process. Comparisons
with both MVS and Differential Rendering methods also show that our method
consistently outperforms state of the art both quantitatively and qualitatively
with better geometric details.

67



Chapter 4. Multi-View Reconstruction Using Signed Ray Distance Functions
(SRDF)

4.2 Method

Our method takes as input IV calibrated color images 7 =I;c(; ] and assumes
N initial associated depth maps D =Djc(; nj that can be obtained using an
initial coarse reconstruction, with for instance pre-segmented image silhouettes
as in Figure 4.1. It optimizes depth values along pixel viewing lines by con-
sidering a photo-consistency criterion that is evaluated in 3D over an implicit
volumetric shape representation. Final shape surfaces are thus obtained by
fusing depth maps, as in e.g. [33, 54]. The main features of the method are:

 Shape representation (Sec 4.2.1): depth maps determine the signed dis-
tances, along pixel viewing rays, that define our volumetric shape rep-
resentation with the SRDF. Parameterizing with depths offers several
advantages: it better accounts for the geometric context by materializ-
ing the shape surface; it enables pixel accuracy regardless of the image
resolution; it allows for coarse to fine strategies as well as parallelization
with groups of views.

o Energy function (Sec 4.2.2): our shape energy function is evaluated at
sample locations along viewing lines and involves multiple depth maps
simultaneously, therefore enforcing spatial consistency. It focuses on the
geometry and avoids potential ambiguous estimation of the appearance.

« Photometric prior (Sec 4.2.3): The photo-consistency hypothesis eval-
uated by the energy function along a viewing line can be diverse. We
propose a criterion that is learned over ground truth 3D data such as
DTU [82]. We also experiment a baseline unsupervised criterion that
builds on the median color.

4.2.1 Signed Ray Distance Function

Our shape representation is a volumetric signed distance function parameter-
ized by depths along viewing rays. This is inspired by signed distance functions
(SDF) and shares some similarities with more recent works on signed direc-
tional distance functions (SDDF) [239]. Unlike traditional surface-based rep-
resentations such a function is differentiable at any point in the 3D observation
volume.

Instead of considering the shortest distances along any direction as in stan-
dard SDF, or in a fixed direction as in SDDF [239], we define, for a given 3D
point X | its N signed distances with respect to cameras j € [1, N] as the signed
distances of X to its nearest neighbour on the surface as predicted by camera
j along the viewing ray passing through X. We denote the distance for X
and camera j by the Signed Ray Distance Function (SRDF), as illustrated in
Figure 4.2:

SRDF(X,D;) = SRDF;(X) = D;(X)— Zj(X), (4.1)

where D;(X) is the depth in depth map D; at the projection of X and Z;(X)
the distance from X to camera j.
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& SRDF{(X)

"Camera J prediction

Camera |

Figure 4.2: For any 3D point X, its ray signed distance SRDF;(X) = D;(X)—
Z;j(X) with respect to camera j is the signed shortest distance from X to the
surface, as predicted by camera j along the corresponding viewing line.

4.2.2 Volumetric Shape Energy

The intuition behind our volumetric energy function is that photometric ob-
servations across different views should be consistent on the surface and not
elsewhere. Importantly such a behavior should be shared by the SRDF pre-
dictions across views that should also consistently identify zero distances for
points on the surface and non-consistent distances elsewhere. Given this prin-
ciple, illustrated in Figure 4.3, a computational strategy is to look at the
correlation between these 2 signals, the observed photo-consistency and the
predicted SRDF consistencies, and to try to maximise it at 3D sample lo-
cations {X} in the observation space (see Figure 4.4). To this purpose we
introduce the following consistency energy function:

E<{X}>sz> :ZCSRDF(XvD) C<I>(X>I)> (4'2)
X

where {X} are the 3D sample locations, Cgrpp(X,D) and Cg¢(X,Z)
represent measurements of consistency among the predicted SRDFs val-
ues SRDFjcq n(X) and among the observed photometric observations
®je1,n)(X), respectively, at location X. Both are functions that return
values between 0 and 1 that characterize consistency at X. We detail below
the SRDF consistency measure Csppr(X). The photo-consistency measure
Cp(X) is discussed in Section 4.2.3. The above energy E is differentiable
with respect to the predicted depths values D and computed in practice
at several sample locations along each viewing ray of each camera, which
enforces SRDFs to consistently predict surface points over all cameras.

SRDF consistency From the observation that SRDF consistency is only
achieved when X is on the surface, i.e.when SRDF;(X) =0 for all non oc-
cluded cameras j, we define:

N .
Csror(X) =[] (exp(- SRDE;(X)?

1 ) + FSRDF); (4.3)

0d

where the ray signed distances are transformed into probabilities using an
exponential which is maximal when SRDF;(X)=0. I'sgpr is a constant that
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prevents the product over all cameras to cancel out in case of inconsistencies
caused by camera occlusions. It can be interpreted as the probability of the
SRDF} value at X knowing camera j is occluded, which can be set as constant
for all values. o4 is a hyperparameter that controls how fast probabilities
decrease with distances to the surface. It should be noted here that the above
energy term Cspprp is a product over views at a 3D point X and not a sum,
hence gradients w.r.t. depth values are not independent at X, which forces
distances to become consistent across views.

Camera k prediction "{C : redici
SRDF(X) » Camera j prediction

X SR
Camera Camera k Camera Camera k
SRDF (X )!=SRDF,(X) SRDF ,( X )=SRDF (X

(@,(X)=B)1=(D, (X)=1) (@,(X)=B)=(@, (X)=1)

Figure 4.3: Inconsistency (left) and consistency (right) of the ray signed dis-
tances SRDF;;(X) and of the photometric information ®;1(X) at X with
respect to cameras j and k.

Current depth Ground-truth depth

SRDF consistency
across multiple cameras

Photo-consistency signal
across multiple cameras

ground-truth depth
I Correlation between SRDF

consistency and
photo-consistency

Figure 4.4: The SRDF consistency (red) and photo-consistency signals (green)
along a viewing line. Their cross correlation will be maximal when the current
predicted depth aligns with the ground truth depth.

4.2.3 Photometric Consistency

Our model is agnostic to the photo-consistency measure Cg(X) that is chosen.
In practice, we have considered 2 instances of Cp(X): A baseline version that
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relies on the traditional Lambertian prior assumption for the observed surface
and a learned version that can be trained with ground truth 3D data.

Baseline Prior Our baseline prior assumes a Lambertian surface and there-
fore similar photometric observations for points on the observed surface for
all non-occluded viewpoints. While ignoring non-diffuse surface reflections the
assumption has been widely used in image based 3D modelling, especially by
MVS strategies. The associated consistency measure we propose accounts for
the distance to the median observed value. Under the Lambertian assump-
tion all observed appearances from non-occluded viewpoints should be equal.
Assuming further that occluded viewpoints are fewer we define the photo-
consistency as:

() = ﬁ (emp<_ ||<I>j<X)—€I3<X,I>>||2>+F¢)’ (4.4)

Oc

J=1

where ®;(X) is photometric observation of X in image j, typically an RGB
color, and ®(X,Z)) is the median value of the observations at X over all
images. Similarly to equation 4.3, I'g is a constant that prevents the product
over all cameras to cancel out in case of occlusion and o, is a hyperparameter.
As shown in Section 4.4 this baseline photometric prior yields state-of-the-art
results on synthetic 3D data for which the Lambertian assumption holds but
is less successful on real data.

N multi-view
RGB images

Per 3D point
photo-
consistency
probability
*
image encoder

A 3D noints —~ N multi-scale Attention-based| _ Single multi-view
Projection on multi-scale § local features encoder aware feature

features of each view

Figure 4.5: Proposed architecture to learn the photo-consistency.

Learned Prior In order to better handle real images that are noisy and
for which the Lambertian assumption is partially or not satisfied, we have
experimented a more elaborated photo-consistency measure with a data driven
approach. Inspired by previous works [66, 104], we cast the problem as a
classification task between points that are photo-consistent across multiple
views and points that are not and train a network for that purpose.
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As described in Figure 4.5, the network architecture tries to match the local
appearance of a 3D point in different views and outputs a photo-consistency
score between (0 and 1. This module is independent of the number of cameras
and provides very good results on real data and generalization abilities as
demonstrated in Section 4.4.

4.3 Implementation

In the following, we first provide more details about our optimization pipeline.
Then we describe the architecture of our photo-consistency network and finally
specify the hyperparameters we use in the experiments.

4.3.1 Optimization Pipeline

To allow for efficient processing, we define G groups of cameras, which can
be optimized in parallel. Since our approach optimizes geometry based on
appearance matching, it is preferable to minimize occlusions. For this reason,
we heuristically choose to gather cameras that are close to each other.

For the depth maps associated to a camera group, at each epoch, we iterate
over all rays r§ corresponding to foreground pixels ¢ of cameras j, as defined
by pre-segmented silhouettes, and sample points along 7“;- around the current
depth estimation dz This sampling is parameterized by two parameters: an
offset o that defines an interval for the sampling around the current depth
[d} — o;dé + 0], and the density of the sampling which represents the number

of points that we sample uniformly in that interval. Ideally, the real depth dA;

should be contained inside the interval [d; — o;d;" + o], otherwise it is difficult
for the appearance to guide the geometry optimization. From that observation,
we define a coarse-to-fine strategy for the sampling. With the aim to capture
the ground truth depth in the interval, we start with a large interval that is
gradually reduced. The sampling density can be adjusted in the same way
but decreasing the size of the sampling interval already indirectly increases its
density, so in practice we keep the sampling density constant.

Our shape energy, described in subsection 4.2.2; is computed over all the
samples from all the rays of each camera. The gradients are computed using
Pytorch autodiff [147] and back-propagated to update depth maps.

4.3.2 Photo-consistency Network
Architecture

As explained in section 4.2.3, we propose a data-driven photo-consistency mea-
sure to better handle real images that are noisy and for which the Lamber-
tian assumption is partially or not satisfied. This network is composed of 3
main parts. First, features are extracted from the input images by an image
encoder composed of convolutional layers, batch normalizations, ReLu acti-
vations and max-pooling operations, as shown in Figure 1.6. Given an input
3D point, its per view multi-scale features are obtained by projecting it in the
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multi-scale feature maps extracted with the image encoder and by concate-
nating over scales. Next, we use a self-attention module [191] to combine the
multi-scale features from all views and obtain therefore a multi-scale/multi-
view (MSV) feature. This Pytorch [148] module is parameterized as follows,
d_model = 115, nhead = 1, dim__ feedforward = 256, num,__layers = 6. Note
that we also apply a Mean operation on the output of this self-attention mod-
ule. Finally, a fully connected network decodes the MSV feature and outputs
a photo-consistency score between 0 and 1, as shown in Figure 4.7. To train
the network, we use an MSE loss between the ground truth and predicted
photo-consistency scores and the Adam optimizer with a learning rate of 1le™%.

<. 52833 Input image

Conv 0 feat_in=3, feat_out=16, kernel_size=3

RelLU

Batch Norm

................

Conv 1 feat_in=16, feat _out=32, kernel_size=3

feat_in=32, feat_out=32, kernel_size=3

................

Conv 3 feat_in=32, feat_out=64, kernel_size=3

RelLU

feat_in=64, feat_out=64, kernel_size=3

a1eUa)eIU0)D

o] MUIti-sCale feature
Size=3+ 16+ 32+ 64 =115

Figure 4.6: Architecture of the image encoder.

Training Strategy

To train the photo-consistency network, we use the DTU Robot Image Data
Sets [32] composed of 124 scans of objects. For each scan, there are 49 or 64
images under 8 different illuminations settings, camera calibration and ground
truth point cloud obtained from structured light. We select 15 test objects and
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size = 115
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Figure 4.7: Fully connected decoder.

remove all the scans that contain these objects from the training set which re-
sults in 79 training scans. Next, we reconstruct a surface from the ground truth
point cloud using the Screened Poisson algorithm [93] and surface trimming of
9.5. From the reconstructed meshes we render ground truth depth maps and
use them to sample points on the surface (positive samples) and points that
are either in front or behind the surface (negative samples). We make sure
to keep a balanced sampling strategy with an equal number of positive and
negative samples.

To encourage the network to remain invariant to the number of cameras,
at each training iteration, we randomly select a subset of K cameras from the
total N cameras. Matching appearances between cameras too far from each
other leads to inconsistencies as a result of the potentially high number of
occlusions. To remedy this, we create the camera groups using a soft nearest
neighbour approach. We randomly select a first camera, compute its K’ nearest
neighbours cameras with K < K’ < N, and randomly select K —1 cameras
from them. In practice, N =49 or 64 and we choose K € [4,10] and K’ =
min(2K,15)’.

4.3.3 Hyperparameters

In Table 4.1 we specify the hyperparameters we used in our experiments. They
mostly depend on the unit of the dataset and the prior of photo-consistency
that is used. The definition of each parameter is available in sections 4.2.2,
4.2.3 and 4.3.1.

4.4 Experimental Results

To assess our method we conduct an evaluation on multi-view 3D shape re-
construction. First, we introduce the existing methods that we consider as
our baseline. Then, we present the datasets as well as the evaluation met-
rics. We provide quantitative and qualitative comparisons against the current
state of the art on real images using our learned prior for photo-consistency.
Then, we also show that our method combined with a baseline prior for photo-
consistency provides good reconstruction results under the Lambertian sur-
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DTU |Renderpeople/Real human capture data

Unit mm cm m
Photo-consistency prior|learned| baseline learned

Oc 0.1 0.05 0.1

o4 25 2.5 0.025

0 100 10 0.05

Sampling density 51 51 51

Ir 1 0.1 0.001

Table 4.1: Hyperparameters used in our optimization for the different experi-
ments.

face assumption. Finally, we demonstrate better generalization abilities of our
method compared to deep MVS inference-based methods and that the latter
can serve as an initialization.

4.4.1 Datasets and Metrics

To evaluate our method on real multi-view images with complex lighting, we
use the 15 test objects from the DTU Data Sets [$2] and BlendedMVS [216].
Note again that BlendedMVS is not used to train our learned photo-consistency
prior. For DTU, the corresponding background masks are provided by Yariv
et al. [217]. To test our method with the baseline prior for photo-consistency,
we render multi-view images from Renderpeople [2] meshes. This dataset pro-
vides highly detailed meshes obtained from 3D scans of dressed humans and
corrected by artists. We render 19 high-resolution images (2048x2048) that
mostly show the frontal part of the human. For the quantitative evaluation
with DTU we use a Python implementation [1] of the official evaluation pro-
cedure of DTU. The accuracy and completeness metrics, with the Chamfer
distances in mm, are computed w.r.t. ground truth point clouds obtained
from structured light. Finally, to evaluate generalization to novel data, we
also experiment with images from a large scale hemispherical multi-view setup
with 65 cameras of various focal lengths.

4.4.2 Baseline Methods

To assess our approach, we evaluate the geometry against state-of-the-
art methods among 3 categories: classic MVS, deep MVS and differential
rendering-based methods. First, COLMAP [167] and ACMMP [204] are clas-
sic MVS methods that have been widely used and demonstrate strong per-
formances for MVS reconstruction. Among all the deep MVS methods, we
consider two of the most efficient methods PatchmatchNet [195] and CasMVS-
Net [60] for which the code is available and easy to use. Finally, for the
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differentiable rendering-based methods we consider IDR [217] which was one
of the first works that combines a differentiable surface renderer with a neural
implicit representation. It requires accurate masks but handles specular sur-
faces and has shown impressive reconstruction results. We also compare with
two more recent works that use volumetric rendering and provide impressive
reconstruction results: NeuS [197] and NeuralWarp [31].

For the evaluation on DTU using all the available views (49 or 64 depending
on the scan) we retrain PatchmatchNet and CasMVSNet as their pre-trained
models use a different train/test split. We use the pre-trained models for IDR,
NeuS (with the mask loss) and NeuralWarp.

To recover meshes with our method, we use a post-processing step with a
bilateral filter on the optimized depth maps, a TSDF Fusion [33] method and
a mesh cleaning based on the input masks. For COLMAP, ACMMP, Patch-
matchNet and CasMVSNet we try to use the same TSDF Fusion method [33]
as much as possible. For differentiable rendering-based methods (IDR, NeuS
and NeuralWarp), the implicit representation is simply evaluated in a 3D grid
of size 5123 and then Marching Cubes [117] is applied.

4.4.3 Multi-View Reconstruction From Real Data

Qualitative results In Figure 4.8, we show comparisons between our
method and the considered baselines. While IDR, NeuS and NeuralWarp
produce high quality details, they show some artifacts on some misleading
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