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Depth Attention for Scene Understanding

by Zongwei Wu

Deep learning models can nowadays teach a machine to realize a number of tasks, even
with better precision than human beings. Among all the modules of an intelligent machine,
perception is the most essential part without which all other action modules have difficulties in
safely and precisely realizing the target task under complex scenes. Conventional perception
systems are based on RGB images which provide rich texture information about the 3D
scene. However, the quality of RGB images highly depends on environmental factors, which
further influence the performance of deep learning models. Therefore, in this thesis, we aim
to improve the performance and robustness of RGB models with complementary depth cues
by proposing novel RGB-D fusion designs.

Traditionally, pixel-wise concatenation with addition and convolution is the widely applied
approach for RGB-D fusion designs. Inspired by the success of attention modules in deep
networks, in this thesis we analyze and propose different depth-aware attention modules and
demonstrate our effectiveness in basic segmentation tasks such as saliency detection and
semantic segmentation. First, we leverage the geometric cues and propose a novel depth-wise
channel of attention. We merge the fine-grained details and the semantic cues to constrain
the channel attention into various local regions, improving the model discriminability during
the feature extraction. Second, we investigate the depth-adapted offset which serves as a
local but deformable spatial attention for convolution. Our approach forces the networks to
take more relevant pixels into account with the help of depth prior. Third, we improve the
contextualized awareness within RGB-D fusion by leveraging transformer attention. We show
that transformer attention can improve the model robustness against feature misalignment.
Last but not least, we focus on fusion architecture by proposing an adaptive fusion design. We
learn the trade-off between early and late fusion with respect to the depth quality, yielding a
more robust manner to merge RGB-D cues for deep networks. Extensive comparisons on the
reference benchmarks validate the effectiveness of our proposed methods compared to other
fusion alternatives.
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Chapter 1

Introduction

1.1 Context and Motivation

Computer vision algorithms aim to provide machines with the capability to understand

the 3D scene. Traditionally, the input for computer vision algorithms is the 2D RGB

images (R for red, G for green, and B for blue). Thanks to the development of image

processing algorithms, it becomes possible to detect the contour of the object with

Sobel or Canny detectors or to compute the key features with SIFT method. Despite

the rich 2D features on the image plane, it is still challenging to explore the 3D

information and further include them in image processing.

For human beings, visual perception is realized through binocular vision, i.e., we

combine visual information measured from two eyes. Inspired by neurological obser-

vation, researchers develop a stereo vision that requires a series of images as input.

By comparing features or key points of the same scene from at least two images, 3D

information such as depth can be better extracted by analyzing the correspondences

of objects from different camera poses.

Despite the plausible results achieved by stereo vision on modeling geometry, the re-

quirement of multiple images of the same scene from the input side limits its popularity

compared to monocular images, mainly due to "redundant" data acquisition and data

storage. These phenomena can also be noticed by analyzing the size of the existing

public datasets. Currently, the largest stereoscopic dataset is the InStereo [33, 86]

with 2K images for indoor scenes and Holopix [66] with 50K images for the in-the-

wild scenario, while for monocular images, the largest publicly available dataset is the

ImageNet [29] which contains more than 14 million images. Therefore, one question

is naturally raised: is it possible to leverage geometric cues in a monocular image?

Researchers on RGB-D images and sensors have provided a positive answer to the

question. Recently, with the development of 3D sensors such as RGB-D Kinect, Radar,

and Lidar, depth images can be obtained from the input side at a more affordable cost.

Another approach to obtain the depth is by the mean of monodepth estimation. It is
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worth noting that the recent development of large labeled datasets and AI (artificial

intelligence) makes it possible to estimate depth from a single image thanks to the

significant data prior, which has been regarded as an ill-posed problem for several

decades. Indeed, RGB and depth images are complementary to one another. The prior

(RGB) contains rich photometric information and is sensitive to color changes, while

the latter (depth) contains rich geometric cues and can improve the awareness of scale

changes and out-of-the-plane rotation. Taking advantage of both modalities as input,

computer vision algorithms can achieve superior performance on scene understanding.

Starting from the year 2011, deep neural networks [59,133] have brought a revolution

in the field of computer vision. Different from early works based on handcraft fea-

tures, deep networks adopt a gradient-based learning strategy, i.e., backpropagation,

to find the optimal parameters for the encoder-decoder architectures. Since then, deep

learning methods for computer vision tasks have drawn great attention. Hundreds of

thousands of deep networks have been proposed and have almost dominated all the

vision tasks, even surpassing human beings in many applications. It is worth noting

that most works, especially those milestones such as different VGG [133], ResNet [59],

and ViT [32] backbones, are trained and tested with RGB images as input. As dis-

cussed in previous paragraphs, this is mainly due to the tremendous visual color data

produced daily and the existing large RGB benchmarks for pretraining. Inspired by

the development of depth sensors and different estimation methods, this thesis seeks

to discover an efficient manner to improve the RGB baseline performance with com-

plementary depth awareness.

1.2 Complementary Modalities to RGB Image

Creating intelligent and effective sensing systems is a major challenge nowadays. Con-

ventionally, most sensing systems are based on a simple RGB camera. One typical

example is the regular consumer cameras equipped on most smartphones. After sev-

eral decades of development, nowadays there exist different types of RGB cameras

with all kinds of prices, sizes, and functionalities. Since RGB cameras can provide

rich textual information, including all the contours, they can help humans to realize

complex tasks together with software algorithms.

However, it is also challenging for such a sensor to operate optimally under all condi-

tions and all the time. For example, similar to the human being, while the lighting

condition is unsatisfactory, i.e., during the night, in the tunnel, rainy and foggy, the

obtained RGB will be under low-quality. Therefore, RGB cameras can no more pro-

vide informative clues on the contours as before. Occupancy is another factor. The
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RGB image can only provide textual features of the nearest object while being agnostic

of the occluded objects which are hidden beyond the scene.

Consequently, monitoring environmental factors such as weather conditions and occu-

pancy are becoming increasingly important and challenging for scene understanding,

especially for autonomous driving, drone, and robots. Therefore, one promising solu-

tion is to create perception systems with multiple sensors, especially sensors providing

a complementary modality. For example, depth sensors can help to provide the object

distance and geometric cues on the object boundaries. Thermal images can contribute

to facilitating the scene understanding through specific infrared imaging, yielding a

robust manner to deal with low-lightening conditions. Event cameras can provide

extreme accurate cues on moving objects and become advantageous for visual percep-

tion in dynamic scenes. Among all the sensors, depth modalities are so far the most

developed systems together with RGB images, especially in autonomous driving with

the additional awareness of the 3D scene.

1.3 Depth Acquisition

There exist three popular sensors to acquire depth information: Radar, Lidar, and

depth camera. Radar and LiDAR provide 3D point clouds, while depth cameras

provide a 2D depth image. In the following sections, we briefly review the pros and

cons of each sensor.

1.3.1 RaDAR

Radar (radio detection and ranging) has been widely used in military applications

since this kind of sensor can precisely locate and track the object’s position and

moving speed. The radar consists of a transmitter and a receiver. The transmitter

sends radio waves in a targeted direction, which are further reflected once reach a

measurable object. The reflected waves are sent back to the receiver. Based on

the returned signal, algorithms are able to provide informative cues about the target

object.

Radar technologies have been explored for driving systems by Mercedes-Benz in 1999.

Different from a depth camera, a radar system is more sensitive and can provide more

information on moving objects. Furthermore, RaDARs can provide objects with severe

occlusion, which is not the case with a depth camera. Another advantage of radar is

its robustness against unsatisfactory visibility and noise. However, the RaDAR sensor

can only provide a limited number of points on the objects, which is significantly less

informative compared to the depth sensor in terms of scene understanding.
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1.3.2 LiDAR

LiDAR (light detection and ranging) works in a similar way as RaDAR. The main

difference is that LiDAR utilizes laser lights, while Radar is based on radio waves.

Therefore, in a commercial application such as an autonomous vehicle, LiDAR can

see farther objects in the scene, while it is not possible for radar. Nowadays, LiDAR

has a detection range of more than 100 meters with extremely high precision.

LiDAR can be regarded as a 3D scan that provides geometric information about the

3D scene. The density of point clouds depends on the number of lasers, also known as

LiDAR channels. For example, the commonly used Velodyne-16 sends 16 lasers. To

provide accurate 3D information about the environment, the LiDAR sensor requires

a real-time computation with hundreds of thousands of points. Therefore, LiDAR

sensor requires more computation power compared to camera and radar, which also

yields a higher price for LiDAR sensors.

1.3.3 Depth Camera

Recent depth or range cameras often measures object distance by using Time-of-Flight

(TOF) remote sensing technologies. The most successful product is the Microsoft

Kinect camera. Specifically, they first illuminate the scene and the measured objects

with controlled patterns of dots, i.e., infrared light or LED. Then they compute the

time that the reflected light takes to travel between the object and the camera. The

flight time is directly proportional to the distance between the camera and the mea-

sured object. This Time-of-Flight measurement is carried out independently by each

pixel of the camera, thus making it possible to obtain a complete 3D image of the

measured object. Depth cameras can use in both indoor and outdoor scenes. The

price of an effective depth camera is inexpensive, which has drawn great interest for

different applications such as drones and industrial robots.

Among the depth image and the point cloud, in this thesis, we are particularly inter-

ested in fusing RGB images with depth images. The major reason is that depth images

can be treated as 2D data, while point clouds provided by RaDAR or LiDAR are in

3D form. The latter requires more computational cost due to the additional channel.

Another reason is that depth images are dense. Each pixel on the image contains a

valuable 3D cue. However, while we project the point clouds obtained by RaDAR or

LiDAR on the image plane, the obtained map is sparse, yielding several holes. These

kinds of images require additional processing such as depth completion to obtain the

dense map. Indeed, a single frame RGB-D image sees only the unoccluded objects of

the 3D world. However, these objects are the most crucial and important obstacles

to analyze for both human beings and intelligent machines.
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1.4 Scope and Challenges

RGB-D fusion can be applied to different tasks. During this thesis, we are particularly

interested in two main segmentation applications: semantic segmentation and salient

object detection which are two of the most basic topics for computer vision.

• Semantic Segmentation aims to label each pixel within the input image. It

classifies a number of classes and separates each class from the rest. Different

from object proposal which outputs a bounding box prediction [52,58], semantic

segmentation can detect objects that cover a wide range of areas in the image

at a pixel level, making it possible to detect irregularly shaped objects cleanly.

Because of this precise detection, semantic segmentation can be applied in a

variety of industries that require accurate scene understanding. One typical and

popular application of semantic segmentation is for the robot in both indoor and

outdoor scenes. For the indoor scene, the cleaning robot and the robotic arm

are the two typical applications of semantic segmentation. The former (cleaning

robot) needs to identify objects such as the floor and other obstacles in order to

find the best path to accomplish the mission, and the latter (robotic arms) re-

quires perfectly localizing the target object for grasping. For the outdoor scene,

autonomous vehicles and drones are two other typical applications of semantic

segmentation. The objectives of both applications are the same, i.e., the perfect,

safe, and autonomous control of robots in a complex and unknown environment.

Therefore, accurate perception is highly required to have a robust representation

of a complex and unstructured environment for obstacle avoidance.

Despite the plausible results achieved by deep networks, existing RGB models

[9,126,198] are more sensitive to color changes rather than geometric differences,

mainly due to the lack of depth input from the input side. Therefore, while

dealing with scenes where objects share the same color, state-of-the-art models

can fail to accurately separate. Sometimes this can be also challenging for human

beings. For example, as shown in Fig 1.1, there exist the bath towel, sofa, wall,

cat, and rabbit. While it is easy to separate objects such as bath towels and sofas,

however, it is extremely challenging to distinguish the cat and the rabbit due to

the same visual appearance. The sub-optimal light condition is also challenging

for robotics applications such as autonomous driving [50], especially during the

night, rainy, and foggy scenes. Therefore, it is beneficial and essential to profit

from other modalities such as depth to improve the performance and robustness

of deep neural networks against inferior conditions. The additional depth cues

should contribute to better dealing with different scales and generating clearer
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boundaries, and even being able to calibrate the RGB image when the visual

appearance is sub-optimal.

• Salient object detection seeks to segment image contents that visually attract

human attention the most. It shares the similar idea of key feature detectors

such as SIFT. The main difference is that saliency detection outputs regions

of interest, while SIFT predicts pixels of interest. Saliency detection can be

regarded as an extreme case of semantic segmentation where there are two la-

bels, i.e., salient and non-salient. Studies have shown that salient objects are

always characterized by uniqueness, focus, and objectness, which makes them

distinctive from both local and global surroundings. Saliency detection can

be applied in various applications such as image cropping, web image filter-

ing, medical image processing, image search, and so on. Recent researches also

show that saliency can be coupled with object detection [134] and video object

segmentation [155]. Similar to semantic segmentation, RGB salient object mod-

els have difficulties performing well under several challenging conditions, such

as low-lighting conditions or similar appearance between foreground and back-

ground. One way to address these issues is to employ depth cues [37], which

are naturally complementary to RGB images with spatial information. Differ-

ent from semantic segmentation which requires an accurate separation of all

objects within the image, saliency detection only focuses on the visually most

attractive parts. Therefore, for saliency detection, we are essentially interested

in leveraging depth cues within local salient regions instead of all pixels.

Since depth cues can contribute to the scene understanding, how to efficiently ex-

plore the geometry along with RGB images has become a vital research topic for

RGB-D models. We argue that the basic assumption of RGB-D fusion is that these

modalities contain both heterogeneous and homogeneous information. Since RGB

and depth images describe almost the same scene (with slight differences in the field

of view due to the sensor specification if the depths are acquired rather than esti-

mated), they share similar information at the semantic level. However, there is also

a considerable difference between these two modalities. RGB images contain rich vi-

sual appearance information such as color and intensity, while depth maps are more

sensitive to geometric changes, such as occlusion, scale changes, and out-of-the-plane

rotation. Despite the plausible results achieved by recent fusion methods, it is still

unknown how to efficiently and effectively fuse RGB-D features. Specifically, it can be

noticed that most existing methods process RGB and depth features separately and

fuse them through addition or concatenation. Therefore, these methods are agnostic

of information redundancy.
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Figure 1.1: Based on the RGB image, can you segment my Babo
and his cat friend? What happens if you have additional cues such as

(pseudo) Depth?

Furthermore, RGB and depth may contain unsatisfactory features from the input

side. For RGB images, there may exist several local regions with unsatisfactory light

conditions or blurred objects. For depth maps, the measurement can be uncertain

and inaccurate. When the depths are measured from sensors, the accuracy can be

affected by environmental factors such as object distance, object texture, etc. While

the depths are computed from stereo images or monocular depth estimation, the

accuracy is highly dependent on the quality of estimation methods.

Finally, while the depth is registered from the camera, the RGB-D sensor setups

require a full calibration of the 2D-3D systems, such as perfect and ideal extrinsic

calibration and timestamp synchronization. However, in practice, these exigences are

always hard to achieve. Proposing an efficient and robust fusion method with respect

to sensor misalignment has become a vital research topic nowadays.

1.5 Contributions

In this thesis, we seek to propose new fusion designs to address the aforementioned

issues. We briefly summarize our major contributions as follow:

1.5.1 Depth-wise channel attention

Existing saliency works often adopt channel attention to emphasize the attentive

features for both RGB and depth modalities. However, the vanilla channel atten-

tion [64,121,161] is agnostic of fine-grained cues since the first step of channel attention

is to squeeze the spatial resolution. Thus, despite the auxiliary depth information, it

is still challenging for models equipped with vanilla channel attention to distinguish

objects with similar appearances but at distinct camera distances. Therefore, from a

new perspective, we propose a granularity-based attention RGB-D saliency detection.
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Specifically, we leverage the Otsu thresholding algorithm to first generate various lo-

cal regions according to the granularity [87, 107]. These regions can be considered as

distinct local spatial attention. Then for each region, we apply local channel atten-

tion by masking out the others. Therefore, we improve the vanilla channel attention

with a better awareness of multi-granularity properties from geometric priors. This

approach can be regarded as a depth-wise operation. Similar to depth-wise convo-

lution, we split the input feature into different parts with respect to depth. Then

we spatially constrain attention around the different local regions. Finally, we merge

them together to form the locally-enhanced output. We extensively validate the ef-

fectiveness of the proposed challenging RGB-D benchmarks. Our fusion design can

improve saliency detection in several challenging scenarios where the state-of-the-art

approaches fail, notably in cases where multiple objects with similar appearances but

at distinct camera distances.

1.5.2 Depth-guided spatial attention

We observe that pixels sharing the same semantic label tend to share the same

depth similarity, and more specifically, the 3D planarity. Despite the plausible re-

sult achieved by deep neural networks, especially the convolutional ones, the fixed

size and shape of the convolutional kernel limit its capability to model contextualized

awareness according to the geometry [154]. Therefore, we introduce a new convo-

lutional neural network that leverages the depth and planarity priors to deform the

sampling positions for basic convolutional operators, i.e., convolution and pooling.

Specifically, instead of applying the convolution on the 2D image plane, we first back

project the conventional 2D sampling position to the 3D space to create the sampling

point cloud with the help of depth information and intrinsic parameters. Among these

3D points, we use the mean square least method to output the estimated plane coef-

ficients. Based on these coefficients, we generate a depth-adapted planar grid, whose

projection on the 2D image forms the depth-guided deformable sampling position.

This deformation plays the role of local depth attention to improve the discriminabil-

ity of RGB features. We demonstrate through two tasks, i.e., semantic segmentation

and saliency detection, the generalization capability of such fusion design. Compared

to other RGB-D fusion alternatives [65, 154, 176], we show that depth as offset can

better leverage the geometric cues to improve the baseline performance.
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1.5.3 Cross-modal transformer attention

Recently, transformer networks have led to another revolution in the computer vision

society. Initially designed for NLP (natural language processing) tasks, the trans-

former has shown its capability in modeling long-range dependencies to process con-

textualized awareness for input sequences. Starting from 2020, transformer attention

has been applied in various vision tasks and rapidly superior performance compared to

CNN networks in various applications [17, 32, 98, 218]. Compared to convolution, the

transformer is built upon global attention with inter key-query correlation. We observe

that by extending the inter key-query correlation to cross-modal key-query correlation,

transformer attention suggests a natural way to aggregate RGB-D features. Inspired

by this observation, we propose to first extract modality-specific features and then ag-

gregate them through transformer attention. Our key idea is to leverage transformer

attention to improve the scene understanding with enhanced awareness of visual dif-

ferences and geometric cues, respectively. To enable position awareness and leverage

locality into our transformer fusion, we propose a semantic-aware position encoding

generator built upon convolutions. We process a modality-specific sequence as input

and generate a category-aware position encoding. We aim to spatially constrain the

attention around the neighboring area to better segment objects. Extensive compar-

isons on RGB-D indoor benchmark datasets have shown the superior performance and

robustness of our network compared to pixel-wise fusion counterparts.

1.5.4 Layer-Wise Attention for RGB-D fusion

Most existing RGB-D fusion works can be roughly grouped into categories: early fu-

sion, middle fusion, and late fusion. Early fusion methods concatenate RGB images

and depth maps from the input side and process the mixed RGB-D features through

deep networks. Late fusion methods always first extract RGB and depth features

separately through parallel encoders and then merge them at the semantic level. Dif-

ferent from late fusion, middle fusion works merge RGB and depth cues at each level

during feature extraction to form multi-scale shared features. Despite the plausible

results achieved by previous fusion works, existing works often require a fixed hand-

craft design, which cannot be adapted to different inputs. To address this issue, we

seek to design an adaptive fusion network that can automatically switch from differ-

ent fusion designs according to the inputs. Our intuition is that good quality depth

should contain rich geometric or low-level features which correlate well with stemming

layers of a deep network. Therefore, in such a case, the early fusion is more suitable

to merge multi-modal features. However, while the depth map is unsatisfactory, it

becomes hard to explore the low-level features. Therefore, a middle or late fusion

should be preferred so that RGB-D cues are more merged at deep semantic space
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instead of stemming layers. To achieve such a goal, we propose layer-wise attention

which learns the trade-off between early and late fusions, depending upon the provided

depth quality. We show through the RGB-D saliency task that such fusion avoids the

negative influence of the spurious depths while being opportunistic when high-quality

depths are provided. We expect to validate the effectiveness and the generalization

capability of such design for other tasks, such as semantic segmentation and object

detection, in a similar setting of RGB-D inputs.

1.6 Organization

This thesis dissertation is divided into six different chapters:

• Chapter 2 introduces a short history of the most related CNN, attention, and

transformer works in computer vision. We also present different depth represen-

tations including both 3D and 2D data. We highlight the advantages of RGB

and depth fusion on the 2D image and provide an overview of RGB-D fusion

milestones.

• Chapter 3 discusses the integration of fine-grained details into the vanilla channel

attention to form the granularity-aware attention. Additionally, we explore the

different cross-modal attention fusion designs for saliency detection.

• Chapter 4 explores how to use the depth to deform the RGB sampling position

to be adapted to the perspective effect. We show that the depth as offset, in

other words as local spatial attention, can significantly improve the baseline

performance for different vision tasks.

• Chapter 5 shows how to leverage the transformer attention for RGB-D fusion.

We show that transformer attention is more robust to feature misalignment

compared to pixel-wise hard associations. Furthermore, we introduce a novel

learnable positional encoding that is modality-specific and can leverage rich

spatial cues from hierarchical features.

• Chapter 6 presents the layer-wise attention for RGB-D fusion with respect to

the input depth quality. We also improve conventional spatial attention with

superior robustness against feature misalignment. The proposed mechanisms

allow us to efficiently exploit the multi-model inputs while being robust against

low-quality depths.

• Chapter 7 concludes this thesis and discusses some future perspectives on the

presented works.
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Chapter 2

Development of Deep Neural
Networks: a Brief Literature
Review

Deep learning is a very large topic and it is quasi-impossible to review all the details

such as convolution, pooling, relu, batch normalization, dropout, MLP, etc. It is also

impossible to view all different data augmentations, weight initialization, loss fusion,

gradient descent, etc. In this manuscript, we assume that the readers have already

gained basic notions of deep learning. Therefore, in this section, only several mile-

stones in the deep learning area will be briefly reviewed, including CNN backbones,

attention modules, and transformer networks. The objective is to provide an overview

of the deep network’s history, with a zoom on the development of different attention

models. Also, note that we do not introduce the comparison with our proposed ap-

proaches. Detailed comparisons can be found in each of our proposed methods.

2.1 Convolution Neural Network

When we talk about deep neural networks, convolutional ones are just unavoidable.

Initially designed for image classification, convolutional neural networks (CNN) have

dominated the computer vision society for almost ten years. The final objective of

CNN is to extract the characteristics of each image by compressing them with different

layers of convolution. The input image passes through a succession of filters and

creates a new matrix with a smaller resolution but with a higher channel dimension.

These new matrices, also known as feature maps, contain therefore more semantic

cues of the images and can contribute to the scene understanding.

The basic operator of CNN is convolution, which is a simple mathematical operation

widely used for image processing and recognition. The basic idea of convolution is to

add neighboring pixels to each element of the image, weighted by the kernel elements.

A classical convolution can be denoted as:
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Figure 2.1: Illustration of LeNet-5 network, a convolutional neural
network at an early stage. The image is from [53].

y(p) =
∑

pn∈R(p)

w(pn) · x(p + pn), (2.1)

where w is the weight matrix. R(p) is the grid for point p. Physically it represents a

local neighborhood on an input feature map, which conventionally has a regular shape

with certain dilation 1, such that :

R(p) = au⃗ + bv⃗ (2.2)

where (u⃗, v⃗) is the pixel coordinate system of input feature map and (a, b) ∈ (∆d ·
{−1, 0, 1})2. In image processing, different forms of convolution kernel have been pro-

posed and have shown great advances in image blurring, sharpening, edge detection,

and others. These kernels have pre-defined handcraft weights such as identity matrix,

gaussian filters, Sobel kernels, Canny kernels, etc.

In the deep learning area, convolution also plays an important role. Different from

the previous pre-defined weights, deep learning aims to find the optimal weights for

convolution kernel by using gradient descent. Gradient descent is an optimization

algorithm that finds the minimum of any convex function by gradually converging

towards the minimum. For example, for supervised learning where the ground truth is

known, gradient descent is used to minimize the cost function, which is indeed a convex

function (for example the mean squared error). Since in the thesis, our objective is

NOT to propose novel optimization methods, in the following paragraphs we simply

and briefly explain the main logic of gradient descent for background understanding.

The first step of gradient descent is to start from a random initial value (a random

kernel weight) and then we measure the value of the slope with this initialization. The

slope in mathematics is computed as the derivative of the loss function.

Once we obtain the derivative, the next step is to define how much we progress in the

direction of the slope which descends. This distance is termed Learning Rate, which

could be translated as learning speed. This operation results in modifying the value

of the parameters (kernel weights) of our model.
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Figure 2.2: Illustration of VGG-16 networks which extract the fea-
tures from the input and class the image into a class. The image is

from [105].

By repeating these two steps in a loop, the gradient descent is therefore an iterative

algorithm that makes it possible to find the ideal value for the learned convolutions.

It is worth noting that a large value of the learning rate can contribute to the fast

convergence of the learning models. However, the final results may not be optimum

since several local minima can be missed. On the other hand, a small learning rate

may be stacked in local minima, while being agnostic to the global minima. How to

find the best learning rate is yet an open question for researchers in the field.

Once the basic convolution operator is unveiled, it becomes easier to better under-

stand a deep convolutional neural network (CNN) which can be regarded as a simple

combination of different layers of convolution as shown in Figure 2.1. In this section,

we briefly review several milestones that are related to the thesis.

In 2014, VGG nets [133] have been proposed which can be regarded as the first very

deep Convolutional Networks. This work shows that the depth of neural networks

can significantly affect the performance and comes up with two models: VGG-16 and

VGG-19, where 16 and 19 stand for the number of convolutional layers contained in

each model. An example of VGG-16 is shown in Figure 2.2. Different from previous

works, VGG nets replace large-size kernels with a combination of 3×3 kernels one after

the other. This design contributes to reducing the model complexity for convolution

and makes a deep network possible with respect to a limited GPU size. However,

despite the uniform design for different layers and the appealing performance, VGG

nets are heavy and time-consuming during training, i.e., the model size of VGG-16 is

around 533Mb. Additionally, VGG nets have shown that while the number of layers

increases, the performance of the model also increases. However, in practice, a simple
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Figure 2.3: VGG nets with the residual connection. The image is
from [31].

increase in layers does not necessarily lead to better performance. This can be also

figured out by the fact that there only exist VGG 16 and 19 but not VGG 50 or VGG

100.

In fact, one of the main ideas of deep neural networks is based on back-propagation.

A neural network uses a loss function to express the precision in each node. The back-

propagation uses gradient descent by the chain rule which computes the gradient of the

loss function one layer at a time with respect to the other weights in the network. This

happens in reverse through the neural network, hence named the back-propagation.

After the process, nodes with a high error will have less weight than those with a lower

error. The back-propagation or the gradient descent will pass through all the nodes

from the end to the start. Therefore, while the network is too deep, in the case of

VGG nets, the back-propagation will become minimal, yielding a gradient vanishing

and making weight changes at the stemming layers very small.

To address this issue, in 2016 ResNet [59] showed that a simple identity function

can perfectly deal with the gradient vanishing since the local gradient becomes 1

instead of 0. Therefore, even with networks with a significant number of layers,

the gradient can be back-propagated without decreasing in value. With the help

of the identity function or the residual connection, ResNet comes up with different

variations with more convolution layers such as ResNet-50, ResNet-101, and ResNet-

152. After ResNet, a number of other works have been published in order to propose

a powerful CNN backbone such as Res2Net [47], ResNext [174] etc. A recent work
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RepVGG [31] inspires by the success of ResNet and, as shown in Figure 2.3, proposes

a new architecture with residual connection to make VGG networks great again.

2.2 Self Attention

In the field of deep learning, the development of CNN has shown great achievement

in various computer vision tasks such as object detection and semantic segmentation.

These applications are usually built on top of CNN backbones. In previous sections,

we have briefly reviewed several models such as VGG and ResNet. The effectiveness

of such backbones has been fully verified and is widely used in various computer vision

tasks. It can be seen that a deep neural network always contains a contracting path

and an expansive path. The contracting path, also known as the encoder, extracts

high-level features from the input image. For CNN networks, the contracting path

consists of different layers of convolutions with respect to different backbones, e.g.,

VGG and ResNet. The core computation is the convolution operator, which learns

feature maps from the input feature map through the convolution kernel. Essentially,

convolution can be regarded as a feature fusion of a local region, which includes spatial

and inter-channel feature fusion. Formally, let an input image I with size I ∈ RC×H×W ,

the contracting path outputs a high-level feature map x with size x ∈ Rc×h×w by

jointly fusing spatial and channel cues within the convolutional kernel. As suggested

in previous works, features in the stemming layers retain higher spatial resolution,

while features in the latter layers have a smaller spatial resolution but retain more

semantic details:

c > C , h < H, w < W (2.3)

For the convolution operation, a large part of the work is to improve the receptive

field, that is, to integrate more feature fusion in space, or to extract multi-scale spa-

tial information. For feature fusion along channel direction, the convolution operation

basically fuses all channels of the input feature map by default. However, during the

development, one question is naturally raised: are all the spatial and channel infor-

mation important? Specifically, taking the feature map x as example, x ∈ Rc×h×w .

Should each pixel contribute equally to the output when h × w is significant, i.e.,

1920× 1080? Similarly, should each channel contribute equally to the output when c

is significant, i.e., 2048 for ResNet-101? To tackle these issues, different self-attention

modules, especially channel and spatial attention modules, have been proposed. In

the following paragraphs, we review the several milestones for self-attention modules.
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Figure 2.4: Illustration of SENet. The image is from [64]

2.2.1 Channel Attention

2.2.1.1 Squeeze and Excitation Network

Squeeze and Excitation Network (SENet) [64] is the pioneering work for channel at-

tention. The idea of SENet is to pay attention to the relationship between channels,

hoping that the model can automatically learn the importance of different channel

features. To this end, SENet proposes the Squeeze-and-Excitation (SE) module, as

shown in Figure 2.4:

Specifically, let an input feature map x ∈ Rc×h×w , SE block first adopts the Squeeze

step which computes the average presentation for each channel with the help of av-

erage pooling which squeezes the spatial dimension, forming a vector v with size

v ∈ Rc×1×1. This vector is then fed into a multi-layer perceptron (MLP) to com-

pute an attention map. The principle of this structure is to enhance the important

features and weaken the unimportant features by controlling the size of the scale so

that the extracted features can focus solely on channel cues rather than spatial cues.

Finally, the attention map is multiplied with the feature map x , yielding a highlighted

presentation with enhanced channel attention.

It is worth noting that there are many algorithms for computing a global representa-

tion for the Squeeze step. SENet uses the simplest averaging method which averages

the information of all pixels into one value. This choice is made because the final re-

calibration weight is applied to the entire channel, and the spatial representation must

be computed based on the overall information of the channel. In addition, SENet aims

to study the correlation between channels instead of the spatial distribution. There-

fore, global average pooling can mask the spatial distribution information, yielding a

more accurate re-calibration weight for channels.

The excitation part is implemented with 2 MLP. The first MLP compresses c channels

into c/r channels to reduce the amount of computation. The second MLP restores

reduced features back to c channels. r refers to the compression ratio for the channel

dimension. The MLP aims to exploit the correlation between channels to learn a

meaningful re-calibration weight. In fact, the squeeze output of a mini-batch sample

cannot be directly used as the re-calibration weight since the last should be trained
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Figure 2.5: Illustration of details on efficient channel attention. The
image is from [121].

based on the entire data set instead of based on a single batch. Therefore, an MLP is

necessary to learn a global presentation.

Following SEnet [64], several studies have been proposed which aim to improve SE

blocks by capturing more complex and more informative channel dependencies or even

incorporating additional spatial attention. Although these methods achieve higher

performance, they often bring extra and heavy computational costs over the plain

version. In 2020, researchers propose a novel and effective channel attention module,

ECAnet, with limited additional learning parameters.

2.2.1.2 Efficient Channel Attention

The original SENet is built upon 2 MLP and then uses a sigmoid function to gener-

ate the channel weight given the input features. The two MLP layers are designed

to capture nonlinear cross-channel interactions, which include dimension reduction to

control model complexity. Although this strategy has been widely used in other chan-

nel attention modules, the authors of SEnet experimentally show that reduction also

brings side effects to channel attention prediction, and makes the captured dependen-

cies between all channels inefficient. Therefore, as shown in Figure 2.5, researchers

propose an efficient channel attention module for deep CNNs, named ECAnet [121]

standing for efficient channel attention, which avoids dimension reduction and effec-

tively captures the information of cross-channel interactions.

Specifically, after channel-level global average pooling without dimension reduction,

ECA captures local cross-channel interaction information by considering each channel

and its k neighboring channels, which ensures both the model efficiency and compu-

tation cost. To achieve this goal, ECA applies 1D convolution of size k, where the

convolution kernel size k represents the coverage of local cross-channel interactions,
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Figure 2.6: Illustration of details on spatial transformer network.
The image is from [68].

i.e., how many neighboring channels near the target channel participate in the chan-

nel’s coverage. This kernel size k is proportional to the channel dimension. Compared

with backbone models, deep CNNs with ECA modules (called ECA-net) introduce

few extra parameters and almost negligible computation, while bringing performance

gains.

Apart from these two widely used channel attention, there are a lot of other works

aiming to improve the squeeze part and/or the excitation part as shown in Figure

2.5. We encourage readers to refer to the survey [54] for more details on the channel

attention modules.

In addition to channel dimension, spatial resolution is also important for computer

vision tasks, especially for object localization. Therefore, in the following section, we

will review another type of attention work, i.e., spatial attention, to better enhance

the response at the pixel-level.

2.2.2 Spatial Attention

2.2.2.1 Spatial Transformer Network

While channel cues are important for semantic understanding, spatial cues can con-

tribute to precise object location. In fact, for computer vision tasks, we hope that

the deep network can achieve a certain invariance to the changes in object pose or

position. Therefore, we can learn the deep model from a limited number of images and

generalize the knowledge to other scenarios where objects are in different poses and

positions. The traditional CNN uses convolution and pooling operations to achieve

translation invariance at a certain level. However, this invariance is only true at the

image plane, i.e., objects translating along the image axis. While the objects translate

at the direction of depth, i.e., the normal of the image, the previous invariance is no

more validate. Therefore, conventional CNN is not invariant to geometric transfor-

mations such as rotation, distortion, scale changes, etc.
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Figure 2.7: Illustration of details on dilated convolution. The image
is from [184].

Therefore, a number of works tackle this axis and propose different approaches aiming

to enhance spatial awareness to better handle the geometric changes. At an early

stage, STN [68] attempts to learn the spatial transformations from the input image.

The derivable STN does not need redundant annotations, and can adaptively learn

the spatial transformation methods for different data. It can not only perform a

spatial transformation on the input but also can be inserted into any layer of the

existing network as a complementary module to realize the spatial transformation of

different feature maps. Finally, the network model learns invariance to translation,

scale transformation, rotation, and more common distortions, which also makes the

model perform better on many benchmark datasets.

As shown in Figure 2.6, each ST module consists of a Localization net, Grid generator,

and Sample. The localization net determines the parameter θ which stands for the

transformation required by the input image/feature. Grid generator aims to find the

mapping matrix T (θ) between output and input features through θ. Finally, the

Sampler applies the mapping matrix to the input features. For more details, we refer

readers to the original paper [68].

2.2.3 Dilated Convolution

While STN adds an additional module to explicitly model the transformation, another

research direction is to implicitly integrate the spatial awareness into the convolution

operation, e.g., the pioneering work Dilated Convolution. Dilated/Atrous Convolu-

tion, by name, injects holes into the standard convolution map to increase the recep-

tion field. Compared with the original normal convolution, the dilated convolution

has one more hyper-parameter called dilation rate, which refers to the number of in-

tervals of the kernel (e.g. normal convolution is dilatation rate 1) as shown in Figure

2.7. With the help of an increased receptive field, the neural network can yield better

invariance to the geometric changes within the enlarged sampling position.
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Figure 2.8: Illustration of details on deformable convolution. The
image is from [28].

Following the original dilated convolution, there exist several improved versions to

adjust the limitation of the original work. For example, from the enlarged dilation,

it can be seen that this design is used to obtain long-ranged information. However,

this design is more suitable for the segmentation of large objects and may yield an

unsatisfactory result for small objects. How to deal with the relationship between

objects of different sizes at the same time is the key to designing a dilated convolution

network. There exist several works which aim to address the above-mentioned issue

and can be found in [54].

2.2.4 Deformable Convolution

Sharing the same idea as Dilated convolution, Deformable Convolution [28] is pro-

posed in 2017 which can be regarded as a more general representation of convolu-

tion. It proposes two new modules to improve the deformation modeling capabilities

of CNNs, called "deformable convolution" and "deformable ROI pooling", both of

which are based on adding extra offsets in the module for spatial sampling positions.

These offsets are learned during the training and do not require additional supervi-

sion as shown in Figure 2.8. These new modules can easily replace common modules

of existing CNNs and use backpropagation for end-to-end training, resulting in de-

formable convolutional neural networks. Formally, the deformable convolution can be

formulated as follow:

y(p) =
∑

pn∈R(p)

w(pn) · x(p + pn +∆pn) (2.4)
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The original method has shown great performance on semantic segmentation and

object detection and is widely applied in different tasks such as saliency detection,

tracking, etc.

2.2.5 Non-local Attention

Through recent research, it can be seen that one trend of spatial attention is to better

leverage contextualized information, i.e., dilated convolution with a large squared

receptive field or deformable convolution with a more malleable form. Recently, non-

local attention has drawn great research interest in the computer vision community.

In deep neural networks, capturing long-range dependencies is crucial. For sequential

data (e.g. speech, language), loop operations are the main solution for long-range

dependency modeling. For image data, conventionally long-range dependencies are

modeled by stacking deep convolutions to form large receptive fields.

Both convolution and loop operations deal with local neighborhoods in space or time.

Therefore, long-range dependencies can only be captured when these operations are

repeated, i.e, gradually propagating signals in the text/image. One severe limitation

of such a repeating process is, e.g., computationally inefficient. Therefore, in 2018,

researchers propose non-local [156] operations as an efficient, simple, and general

component for capturing long-range dependencies in deep neural networks as shown

in Figure 2.9. The proposed non-local operation is a generalization of the classical

non-local mean operation in computer vision. Intuitively, the non-local operation

computes the response of a position as a weighted sum of features at all positions in

the input feature map.

According to the original paper, using non-local operations has several advantages.

Firstly, non-local operations compute the correlation between any two pixels/position

within the feature map, regardless of their euclidean distance. This makes non-local

attention more suitable and powerful to model long-range dependencies compared to

previous work. Secondly, through the empirical result, with only a few layers (e.g. 5

layers), non-local operations are efficient and achieve significantly better performance

compared to the baseline. Finally, the non-local operation can be easily combined

with any existing deep neural network.

It is worth noting that non-local attention [156] is the first tentative to apply global

attention in computer vision tasks. It is similar to the self-attention or transformer

module for machine translation [147]. However, it focuses on 2D input, i.e., image.

Another major difference is that non-local attention is more like single-head attention

which serves as a complement module for the CNN backbone, while the original trans-

former is multi-head attention and serves as the backbone to extract the long-range
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Figure 2.9: Illustration of details on non-local attention. The image
is from [156].

dependencies. Inspired by the success of transformers in NLP, researchers designed a

transformer backbone for computer vision tasks, termed ViT, which will be discussed

more in detail in the following section.

2.2.6 Transformer

2.2.6.1 Self and Cross Attention

Following the idea of self-attention, in 2020 ViT [32] is proposed to treat an image

as a series 16 × 16 words. In other words, ViT first applies transformer attention in

computer vision tasks, which has challenged the CNN empire.

Initially, transformer attention [147] is designed for NLP (natural language processing)

tasks. The basic idea is to compute the correlation between a given query (e.g., a target

word in the output sentence) and certain key elements (e.g., source words in the input

sentence). The correlation between query and key elements provides an attention

map that prioritizes the most important words in the sentences. Where both key and

query elements are from the same source, it is called self-attention which analyzes the

intra-sentence relations. While the elements are from different sources, it is called

cross-attention which analyzes the relations between different sentences. Figure 2.10

shows the sketch of transformer attention.

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V , (2.5)
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Figure 2.10: Illustration of a transformer attention. The image is
from online source1 basing on [147].

If we take a deeper look at the design, the non-local operation is actually a variant

of self-attention, which can be understood as a small part of the Transformer struc-

ture. Therefore, from this perspective, there is no essential difference between the two,

and they both establish long-distance dependencies. From a functional point of view,

non-local attention or self-attention is equivalent to the encoder part of the Trans-

former, which only does feature extraction. However, in addition to self-attention, the

transformer also includes the decoder part, i.e., cross-attention, which can be used for

reasoning. Therefore, the Non-local algorithm does not jump out of the standard

practice of CNN, while the Transformer can directly predict the result, and the entire

pipeline is more refreshing and clean, i.e., without various decoder modules.

Nowadays, transformers [32,98,147] have achieved leading performance in various vi-

sion tasks. It is worth noting that the transformer is initially designed to process

1D signals, i.e., languages which can be extremely long. Therefore, capturing long-

range dependencies is the most crucial part of NLP models. However, for CV tasks,

images are the most common input. While understanding an image, the local corre-

lation is also important since one pixel is always linked to neighboring pixels. This

is also the reason why CNN has achieved great performance since its birth. Hence,

directly extending transformer models to CV applications may yield sub-optimal per-

formance. While this bottleneck can be solved with a large training dataset, reducing
1https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/
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the training/inference time remains an imperative topic for both research and indus-

trial applications. Furthermore, adding the locality-awareness is also important for

transformer networks [24,84,97,181].

2.2.6.2 Complexity Reduction

Despite the efficiency and great performance of transformers in vision tasks, the com-

putational cost is O(N2) is also an ineligible issue for deep neural networks, especially

in cases where the input data is a high-resolution image. In fact, during the initial-

ization stage of transformer attention, the weights are assigned to all feature pixels

and they are almost equal. This means that the network needs to learn what are

the most meaningful/informative locations through the image, and these locations

should be sparse instead of dense. What’s more, an original transformer requires a

high computational cost when calculating attention weights since the network needs

to compute the correlation between one pixel (query) and all others (keys). This leads

to a quadratic relationship with the number of feature pixels. Therefore, it is difficult

to apply Transformers to high-resolution features.

To tackle these issues, recent works aim to explore new forms of Transformers to

reduce the computational cost. In this section, we briefly review several milestone

works which are related to this thesis.

Deformable DETR One idea is to select a set of keys instead of the whole feature

map. In other words, since we want to learn sparse spatial positions, why not use the

deformable convolution set? However, deformable convolution also lacks relational

modeling capabilities. Nevertheless, this is what the transformer attention is best at.

Hence, in 2021, researchers propose Deformable DETR [218], which contains the ad-

vantages of both deformable convolution and transformer. Specifically, for each query,

before focusing on all spatial positions (all positions are used as keys), Deformable

DETR only focuses on more meaningful positions that the network considers to con-

tain more local information (less and a fixed number of positions are used as keys),

alleviating the problem of large feature maps. Technically, during the implementation

process, the input feature map is fed to a linear map and outputs 3 features. The

first 2 features encode the offset of the sampling and determine which keys should be

found for each query, and the last feature contains the contribution of keys. Instead of

computing the correlation between key and value, Deformable DETR only normalizes

the contribution of the found keys, yielding a significantly lighter computational cost

compared to the original form (10x faster compared to DETR).

Swin Transformer Another group of works aims to constrain the global attention to

a series of local attention and finally merge them. One of the most exciting works must
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Figure 2.11: Comparison between Swin Transformer (left) and orig-
inal ViT (right). The image is from [98].

be the best paper of ICCV 2021, i.e., Swin Transformer [98]. The biggest contribution

of Swin Transformer is to propose a backbone that can be widely used in all computer

vision fields, and most of the common hyperparameters in CNN networks can also be

manually adjusted in Swin Transformer, such as the number of network blocks, the

number of layers, the size of the input image, etc.

Before the Swin Transformer, networks such as ViT used a small and fixed-sized

image as input, i.e., 224 for ViT. Therefore, for an input image, the first step is to

resize the resolution to fit the requirement. This strategy will undoubtedly lose a

lot of information. Unlike previous works, the input of the Swin Transformer is the

original size of the image. In addition, Swin Transformer uses the most commonly used

hierarchical network structure as in CNN. It is worth noting that the receptive field

of Swin Transformer is similar to a CNN network: while the network level deepens,

the receptive field of nodes is also expanding. The hierarchical structure of Swin

Transformer also gives it the ability to perform segmentation or detection tasks with

structures such as FPN [89] and U-Net [126].

The details of the window attention can be found in Figure 2.11. The basic idea of

Swin Transformer is to constrain the self-attention to local windows. Therefore, the

number of relative queries is limited to a fixed receptive field (Window), which can re-

duce the amount of calculation and introduce locality prior. Another important design

of Swin Transformer is the shifted window. Unlike traditional sliding windows, the

design of non-overlapping windows is more friendly to hardware implementation, re-

sulting in faster actual running speed. As shown in Figure 2.11, in the sliding window

design, different points use different neighborhood windows to calculate the relation-

ship, which is not hardware friendly. In the non-overlapping windows used by Swin

Transformer, the points in the unified window will use the same neighborhood for cal-

culation, which is more speed-friendly. Practical tests show that the non-overlapping
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window method is about 2 times faster than the sliding window method. Another

meaning is that the shift operation is performed in two consecutive layers. In the L

layer, the window partition starts from the upper left corner of the image, and in the

L+1 layer, the window partition moves half a window to the lower right. This design

ensures that there can be information exchange between non-overlapping windows.

2.2.6.3 Conditional Positional Encoding: CPVT

For transformer attention, since the self-attention operation is permutation-invariant,

positional encodings (PE) are required to explicitly encode the positional information

of the tokens in the sequence. The ViT model uses the learned fixed-size positional

embedding, but when the image input size changes, the positional embedding needs to

be interpolated to adapt to the change in the number of input tokens, which will result

in performance loss. Therefore, researchers propose CPVT [24] to learn and constrain

the positional encoding by convolution layers. The solution of CPVT is to introduce a

convolution with zero-padding to implicitly encode the positional information (PEG),

thereby eliminating the need for explicit positional embedding. The key point is that

the CPVT model can adaptively fit with the spatial resolution.

2.2.6.4 Joint Convolution and Transformer: ACmix

Recent research has shown that Transformers are limited to model local awareness,

which is in the meantime the strength of convolutional networks. One recent research

direction is therefore combining transformer with CNN [98, 108]. Swin Transformer

has shown a great example by introducing several local properties to transformer

design. Different from Swin Transformer, another research direction [108] aims to

explicitly joint the advantages of CNN and transformer together.

We have discussed in the previous sections that convolution and transformer have

similar computational mechanisms. In previous works, convolution and self-attention

are two powerful techniques for representation learning and are often considered as

two different mechanisms. In the CVPR22 paper ACmix [108], the authors demon-

strate that most of the computations in both paradigms are actually realized by the

same operations, demonstrating a strong intrinsic relationship between them. Specif-

ically, the author splits both convolution and self-attention into two stages. In the

convolution operation, a traditional convolution with a kernel size of k × k can be

decomposed into k × k individual 1 × 1 convolutions. As for the self-attention mod-

ule, 1×1 convolutions are used to generate query, key, and value. Then the attention

weights are computed following the conventional self-attention. By doing so, the first

stage of both convolution and self-attention contains similar operations. This makes

it possible to combine these two seemingly different paradigms and form the proposed
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Figure 2.12: Illustration of details on ACmix. The image is from
[108].

ACmix, which enjoys the benefits of local and global attention while having minimal

computational overhead compared to pure convolution or self-attention. The details

can be found in the Figure 2.12 and the original paper [108].

Inspired by the success of both channel and spatial attention, several researchers

propose to jointly apply both attention to the baseline, forcing the network to learn

both semantic and resolution cues.

2.3 Joint Channel-Spatial Attention

2.3.1 Convolutional Block Attention Mechanism

We have discussed in the previous section the importance of the attention module in

the channel and spatial direction. It can be noticed that the presented works only focus

on one dimension, with few networks explicitly tackling both dimensions. Therefore,

following the same motivation but with another perspective, CBAM [161] proposes a

joint channel and spatial attention module, aiming to increase the response at the most

informative regions and channels and suppress unnecessary features. To emphasize

meaningful features in both spatial and channel dimensions, the authors sequentially

apply channel and spatial attention modules to learn what to pay attention to and

where to pay attention in the channel and spatial dimensions, respectively. This not

only saves parameters and computing power but also ensures that each module can

be integrated into the existing network architecture as a plug-and-play module.

Specifically, for channel awareness, the whole computation is similar to the original

SEnet. The main difference is that during the squeeze part, in CBAM both global

max pooling and average pooling are applied. For spatial awareness, CBAM computes
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Figure 2.13: Illustration of a Channel and Spatial attention for CNN.
The image is from [161].

the spatial attention map by applying average pooling and max pooling on the input

feature map x ∈ Rc×h×w and obtains the attention map m with size m ∈ R2×h×w .

Different from channel attention which squeezes the spatial resolution, here the pooling

methods are along the channel axis and therefore squeeze the channel dimension. Then

the attention map is fed into a 2D convolution and a sigmoid function to reduce the

fuse average-max pooled features and form the final attention map. Finally, the spatial

attention is multiplied by the input feature map x .

Note that in the original paper [161], the authors suggest that channel attention and

spatial attention can be combined in a parallel or sequential manner. But the authors

found that combining sequentially and putting the channel attention at the front

achieves better results.

2.3.2 Dual Attention

DANet [43] proposes an another manner to leverage both spatial and channel atten-

tion as shown in Figure 2.14. Specifically, the models combine two types of attention

modules on top of traditional dilated FCNs, which model semantic inter-dependencies

in spatial and channel dimensions, respectively. The Position Attention module se-

lectively aggregates the features of each position by taking a weighted sum of the

features of all positions. Similar features will be related to each other regardless of

the euclidian distance. Meanwhile, the Channel Attention module selectively em-

phasizes interdependent channel maps by integrating relevant features in all channel

maps. These two attention modules are exploited to capture global information in
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Figure 2.14: Illustration of details on dual attention. The image is
from [43].

images. The dual attention has nowadays been exploited in various applications such

as RGB-D semantic segmentation [207], image generation [142], etc.

The Position Attention Module and Channel Attention Module proposed by DANet

are actually the same as the self-attention calculation method in Transformer. The

difference is that one of the features involved in the calculation is a picture feature

(2D) and the other is a word embedding (1D).

2.4 RGB-D Fusion

In previous sections, we briefly reviewed several milestones in the deep learning area.

Most of these works are designed for RGB single images as input. While it is more

trivial to extend these approaches to video tasks such as video semantic segmenta-

tion [139, 140], it is more challenging to extend these designs to multi-modal inputs,

especially with RGB-D inputs. In this section, we will briefly review several RGB-D

fusion designs so that the readers can have a global view of this field.

2.4.1 Depth as 3D Data

How to deal with complementary depth is a key research topic for RGB-D tasks. Dif-

ferent from 2D RGB images, RGB-D images provide additional cues on 3D geometry.

Therefore, a straightforward motivation is to project the 2D pixels to form the 3D

representations as shown in Figure 2.15. Among all the 3D representations, the most

widely used ones are the voxel format and the point cloud format.
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Figure 2.15: Illustration of different 3D representations. From left
to right: Point cloud, elevation map, multi-level surface map, and

voxel representation. The image is from [63].

Voxel can be regarded as a 3D format of the pixel. It describes the occupancy of a 3D

grid. Once the 3D voxel is obtained from the depth sensor, a straightforward idea is to

extend conventional 2D CNN to 3D CNN by adding the additional depth dimension.

Previous works [103,171] have shown that this method works well when dealing with

applications such as shape recognition.

Despite the demonstrated success, it inefficiently consumes huge memory as data is

often sparse on the 3D scene. In contrast to previous works, [116, 118] propose to

directly use the point cloud representation. Point cloud data are often orderless. In

other words, by reshaping the order of the point cloud, the object features remain the

same. In addition, each point inside the point cloud is highly correlated with others.

By deeply analyzing these characters, PointNet [118] is proposed to directly deal with

point cloud input. This method has shown a great advantage in both computational

cost and performance compared to 3D CNN with voxels and has become the standard

to deal with 3D data.

2.4.1.1 2D-3D Fusion

The 3D geometric cues provided by the depth data can naturally complement the

RGB input. Therefore, proposing a 2D-3D fusion module has drawn great attention.

One typical work is the DenseFusion [148] for 6D pose estimation. The main idea is

that since RGB data and point cloud data are heterogeneous data located in different

feature spaces, so DenseFusion uses a heterogeneous network to process these two kinds

of data separately while retaining the structure of the two kinds of data themselves. It

proposes a dense pixel-level fusion method, which integrates the features of the RGB

data and the features of the point cloud in a more suitable way.

Specifically, the first step is to pre-process the input RGB and point cloud data.

DenseFusion realizes the semantic segmentation on the RGB image and extracts the

point cloud corresponding to each mask. The cropped RGB regions, along with the

corresponding point cloud are fed into the deep network.
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Figure 2.16: Illustration of DenseFusion pipeline. The image is from
[148].

The deep network follows the conventional encoder-decoder design as shown in Figure

2.16. However, it has two branches. Firstly, it uses a fully convolutional network to

project each pixel in the RGB crop to the color feature space, as well as the point cloud

with a separate branch. Then, these two modalities are simply concatenated and fed

into MLP for information integration, after which an average pooling is applied to

obtain global features. Finally, the average feature, along with the modality-specific

features, are concatenated to form the shared feature maps which are finally proceeded

by the pose estimation decoder.

DenseNet shows a simple concatenation between different modalities can significantly

boost the performance over the single-modal baseline. Following DenseNet, there

are a lot of other 6D pose estimation models such as [62] with different and more

complicated fusion modules.

2.4.2 RGB-D 2D Fusion

Despite the plausible results with 2D-3D fusion, 3D data are always processed by a

3D deep network, which is commonly heavier than 2D networks. Therefore, another

group of research aims to explore depth as a 2D map and realize the fusion on the 2D

plane. Since there exist a lot of works focusing on RGB-D 2D fusion, hence, in this

section, we only review the most representative works. More detailed related works

can be found in each chapter.

2.4.2.1 Depth as 2D map

Instead of processing the 3D data, an alternative is to consider depth as another 2D

image complementary to the RGB image. Deep neural networks for paired 2D RGB-D
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Figure 2.17: Illustration of encoded HHA from a depth image. The
image is from [124].

images have attracted research interests for years and numerous improvements have

been achieved. One straightforward idea is to use 2D depth as an additional input

along with an RGB image. By deeply extracting depth features, networks can improve

performance over the RGB baseline. This idea is widely used in tasks such as RGB-D

Salient Object Detection.

However, for RGB-D semantic segmentation, researchers often adopt another repre-

sentation of depth. At the early stage, [55] proposes to encode a depth map to a

3-channel HHA image, which refers to Horizontal disparity, Height above ground, and

normal Angle. By using this method, we can encode the depth map to the HHA map

which shares the same dimension as the RGB input. An example can be seen in Figure

2.17. Since then, the encoded HHA is widely used in RGB-D semantic segmentation

tasks.

While the representations are different, the depth cue remains in the 2D dimension

which is the same as the RGB input. Therefore, various fusion methods have been

proposed to aggregate RGB and depth information. [217] thoroughly divides different

fusion strategies into five categories as shown in Figure 2.18. More commonly, we can

group different fusion works into three groups: early, middle, and late fusion. Early

fusion often merges RGB-D images at stemming layers. Some of them even aggregate

RGB-D images from the input and form 4-channel or 6-channel input. The advantage

of such a strategy is the computational cost since after the early fusion, only one

feature extraction is required at the semantic level. However, due to the imbalance

between RGB and depth features, especially at the early stage, this design cannot
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Figure 2.18: Illustration of conventionally applied fusion designs in
the literature. The image is from [217].

fully leverage the multi-modal cues. Therefore, some other works propose to realize

late fusion. [37] adopts an extremely late fusion that aggregates RGB-D cues at the

output level. But most other late fusion works merge RGB-D cues at the semantic

level, e.g., the output of the encoder. To further model the feature fusion at each level,

a number of others works propose to fuse RGB-D features at each stage. This design

is termed middle fusion. Each fusion strategy has its pros and cons. It is therefore

hard to judge which one is better. Generally, experimental results show that middle

fusion can yield better performance, but it is also the most time-consuming fusion

strategy compared to its counterparts.

2.4.2.2 Pixel-wise Fusion

At the early stage, RGB-D features are simply aggregated with addition or concatena-

tion convolution as shown in Figure 2.19. FuseNet [57] is one of the typical examples of

incorporating the auxiliary depth information into the RGB encoder-decoder through

simple addition. It first extracts multi-scale depth features and then simultaneously

adds them to the RGB mainstream at each scale. The addition can also be replaced by

concatenation. Commonly, researchers concatenate RGB-D features along the chan-

nel dimension. Therefore, the concatenation is always combined with an additional

convolution to reduce the doubled channel size. Despite the plausible improvement

compared to the RGB baseline, both addition, and concatenation fusion have several

limits. Firstly, they do not take the noise of RGB-D images into account. Secondly,

they assume that RGB-D features share different but completely complementary in-

formation. Therefore, they do not take feature redundancy into account. Finally, they

assume that both modalities are well-aligned at the pixel-wise level.

2.4.2.3 Fusion with Self-Attention

To tackle the above-mentioned limits and be inspired by the success of attention

modules, several works further explore the effectiveness of such designs for RGB-D

fusion. For example, ACNet [65] first apply self-attention modules to self-calibrate
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Figure 2.19: Illustration of pixel-wise fusion strategy with simple
addition. The image is from [57].

Figure 2.20: Illustration of SAGate pipeline and fusion details. The
image is from [15].

RGB and depth features and then fuses them at each stage. The self-calibration step

is exactly the same as the original channel attention proposed by SENet [64].

Sharing a similar idea, SA gate [15] further explicitly leverages spatial and channel

cues to firstly calibrate modality in a bi-directional manner and further realize middle

fusion. The pipeline is shown in Figure 2.20. In addition to the channel attention

applied in ACNet, SAGate adopts both spatial and channel attention. Furthermore,

SAGate explicitly leverages the cross-modal interaction to calibrate both RGB and

depth features with cross-modal cues, while ACNet only adopts self-modal attention

to improve the feature representation.

2.4.2.4 Fusion with Non-local Attention

In contrast to previous works based on self-attention (channel and spatial attention),

several works explore non-local attention to better leverage the contextualized cues.

D-CNN [154] is one of the pioneering works which integrates the depth distance into

the weight function for convolutional operations. Specifically, it computes the depth

distance between two pixels and uses this depth-aware weight to recalibrate the con-

volution and pooling. The details can be found in Figure 2.21.

Another line of work is to explore long-range attention for RGB-D fusion. The pi-

oneering work is the CANet [207] which computes the cross-modal attention at the
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Figure 2.21: Illustration of depth-aware convolution. The image is
from [154].

Figure 2.22: Illustration of RGB-D fusion proposed by CANet. The
image is from [207].

feature level. The details can be found in Figure 2.22. It can be seen that the idea is

highly similar to Dual Attention [43] and non-local attention [156].

2.5 Summary

In this chapter, we reviewed several milestones during the development of Deep Learn-

ing models from CNN to Transformer via different attention modules. We also review

various existing RGB-D fusion methods from pixel-wise fusion to non-local attention

via self-attention. It can be seen that the development of RGB-D fusion methods is

highly correlated to the development of RGB tasks, with around one year or two years

gap. In the following chapters, we will present our contributions achieved during this

these.
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Chapter 3

RGB-D Salient Object Detection
via Hierarchical Depth Awareness

RGB-D saliency detection aims to fuse multi modalities to accurately localize salient

regions. Existing works often adopt attention modules for feature modeling, with few

methods explicitly leveraging fine-grained details to merge with semantic cues. Thus,

despite the auxiliary depth information, it is still challenging for existing models to

distinguish objects with similar appearances but at distinct camera distances. In this

chapter, from a new perspective, we propose a novel Hierarchical Depth Awareness

network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the

observation that the multi-granularity properties of geometric priors correlate well

with the neural network hierarchies. To realize multi-modal and multi-level fusion,

we first use a granularity-based attention scheme to strengthen the discriminatory

power of RGB and depth features separately. Then we introduce a unified cross dual-

attention module for multi-modal and multi-level fusion in a coarse-to-fine manner.

The encoded multi-modal features are gradually aggregated into a shared decoder.

Further, we exploit a multi-scale loss to take full advantage of the hierarchical infor-

mation. Extensive experiments on challenging benchmark datasets demonstrate that

our HiDAnet performs favorably over the state-of-the-art methods by large margins.

3.1 Introduction

Salient object detection (SOD) aims to find the most prominent region inside an im-

age that visually attracts human attention. Conventional SOD approaches only take

color images as inputs. With deep learning models, RGB SOD has achieved signifi-

cant success [30,91,172,194,202]. However, these models may result in unsatisfactory

performance when dealing with complex scenes, e.g., low-contrast light or object oc-

clusion.

Recent advanced RGB-D sensors provide accessibility to depth maps at low cost.

The complementary geometric cues can contribute to scene understanding. In the



38 Chapter 3. RGB-D Salient Object Detection via Hierarchical Depth Awareness

(a) RGB (b) Depth (c) Threshold (d) Otsu (e) Ours (f) DASnet (g) SPnet (h) GT

Figure 3.1: Motivation of our hierarchical depth awareness. (a)
and (b) are the paired RGB-D inputs. (c) and (d) represent Multi-
Otsu thresholding on depth histogram and the generated Otsu regions,
respectively. Our approach takes full advantage of depth priors to
improve the feature discriminatory power and obtain the saliency mask
(e). Compared to two state-of-the-art (SOTA) RGB-D models (f) and
(g), our method favorably yields results closer to the ground-truth

mask (h).

literature, two main designs have been widely exploited, i.e., single-streaming schemes

that combine RGB-D images from the input side [44, 189, 203] and multi-streaming

network that extracts multi-modal features separately and combines them at semantic

levels [38, 69, 100, 141, 187, 190, 195, 210]. Existing networks often directly extract

semantic features through the deep network, with few methods fully explore the rich

geometric priors provided by the depth map.

Previous works on channel attention [59,64,121,161] have shown their effectiveness in

emphasizing the attentive features among channels. A number of saliency detection

works [38,69,190,199] adopt channel attention to enhance multi-modal features. How-

ever, the first step of learning channel attention is to aggregate the spatial information

of feature maps to construct a 1×1×C vector by using global average pooling, where

C is the number of channels. As a result, the foreground and background contribute

equally to the output, which is not optimal to distinguish salient objects. Considering

these issues, an intuitive motivation is to design local channel attention referring to

depth priors in order to improve feature representation learning.

As shown in Fig. 3.1, while dealing with complex scenes, current state-of-the-art

(SOTA) RGB-D models [199, 210] fail to extract the salient region due to similar

visual appearance between the foreground and background (Fig. 3.1(f) and (g)).

However, we observe that salient regions often share similar depth properties, i.e., a

certain granularity of depth prior, that help to distinguish the salient objects from

the background (Fig.3.1(b) and (d)). Inspired by this observation, we develop a

local feature enhancement scheme with granularity-based attention (GBA) to improve

saliency detection. Specifically, we propose to first generate various local regions

according to the granularity via Otsu thresholding [87, 107]. These regions can be

considered as distinct local spatial attention. Then for each region, we apply local

channel attention to improve the feature discriminatory power. Fig. 3.1(c) and (d)

illustrate such an example of the Otsu threshold values and granularity-aware masks,
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respectively. We show that our approach can better reason about salient regions (Fig.

3.1(e)) that are closer to the ground truth (Fig. 3.1(h)).

We further introduce a cross dual-attention module (CDA) to learn channel and spatial

attention from auxiliary modalities to improve the current streaming. The enhanced

features are hierarchically fused for final saliency map generation. Besides, the same

cross-interaction scheme is embedded to articulate features between encoders and

decoders through a U-Net-like [126] architecture. We attentively mirror the multi-

scale encoder features to preserve valuable geometric priors within each decoder. The

encoded features are gradually fused to a shared decoder. Finally, we use a multi-scale

loss on top of outputs from each decoder to optimize the saliency map. Concretely,

our contributions are summarized as follows:

• We propose a novel granularity-based attention scheme that attends to fine-

grained details in order to strengthen the feature discriminability of each modal-

ity.

• We design a new multi-modal and multi-level fusion scheme with a multi-scale

loss to take full advantage of the network hierarchy.

• We extensively validate our HiDAnet on large-scale challenging benchmarks.

Our approach performs favorably over SOTA models with large margins.

3.2 Related Work

There are extensive surveys [5, 26, 130, 153, 205, 209] of salient object detection in the

literature. In this section, we briefly review related RGB-D saliency detection as

follows:

Multi-Modal Fusion. The auxiliary depth map provides extra geometric clues

in addition to visual appearance. To efficiently merge both modalities, several fusion

methods have been proposed. A number of works [13, 44, 45, 188, 189, 203] directly

concatenate the depth map with RGB images from the input side through a single-

stream network. On the one hand, JLDCF and its successor [44, 45] explore the

siamese design for saliency detection by concatenating RGB and depth images in an

additional dimension with a joint learning scheme. DANet [203] forms a four-channel

input and enhances the extracted features with a dual-attention mechanism learned

from depth. [188, 189] propose the stochastic framework to analyze the uncertainty

during human labeling and model the distribution of the saliency output. Different

from previous works, [12, 13] attempt to address RGB-D SOD from the 3D point of

view with a 3D convolutional neural network. The recent [208] leverages the depth

cues to mimicks multi-view images and then fuse them to form the final output.
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On the other side, multi-stream models [38, 69, 74, 100, 141, 187, 190, 195, 210] have

achieved leading performances in RGB-D SOD. These models adopt two parallel en-

coders on different modalities, and the features are fused through different strategies.

Several works [38,186,215] firstly enhance the depth features before fusing with RGB

features. It is worth noting that a portion of the depth maps in existing saliency

datasets are not of satisfactory quality. As discussed in [20, 37, 44, 170], the depth

may contain measurement or estimation bias. Thus, DCF [69] designs a calibration

module to improve the depth quality. [20, 67, 74, 170] propose a layer-wise attention

to model the geometric contribution with respect to the network depth. [20] explores

an additional backbone to learn the weighting scalar purely from depth. [170] an-

alyzes the similarity between RGB and depth features to regular the depth contri-

bution. Sharing the same motivation, [74] computes the reliability of each modality

at each stage and then merges them through their reliability. Instead of learning

the weighting scalar, [67] generates the weighting maps at each scale to calibrate the

feature response. Similarly, [197] leverages bilateral attention to improve foreground-

background features separately. Unlike these works, we first divide the feature map

into several local regions with the help of depth granularity. The feature maps are fur-

ther calibrated with different local attention to improve the feature discriminability.

Compared to [67,197], our fined-grained details are statically computed by maximiz-

ing the inter-class distance without learning parameters, leading to more reasonable

and stable locally-calibrated areas.

There exist other works which only extract features from RGB input while the depth

map only serves as supervision [70, 115, 199]. In this context, [71, 167] propose to

leverage the pseudo-depth to guide the RGB learning. A2dele [115] further formulates

depth supervision as a knowledge transfer problem. CoNet [70] and DASnet [199]

propose a multi-task learning framework with an additional depth head together with

the saliency branch. However, we argue that these methods cannot fully leverage the

multi-modal cues during feature extraction. Instead, we propose a cross-interaction

scheme to take full advantage of cross-modal cues. We benefit from the auxiliary

modality to alleviate errors in the feature modeling (depth to RGB, and RGB to

depth).

Multi-Level Fusion. U-Net with skip connections [126] has shown its effectiveness

in pixel-level segmentation tasks. Several RGB-D SOD models [100, 109, 187, 210]

equip this design for clearer boundary generation. [109] adopts the feature-wise ad-

dition. [100, 210] concatenate the encoder features with the decoder. [187] designs a

dense connection between high-level features and the decoder. In this work, we ex-

ploit the contribution of attention modules for skip connections applied to SOD. It is
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worth mentioning the success of skip connections can be mainly attributed to aggrega-

tion between the semantic features provided by the contracting path and fine-grained

features from the expansion path. From a new perspective, we consider the encoder-

decoder features as multi-modal features, and a unified cross-fusion scheme is applied

to boost the performance.

Attention for Feature Enhancement. Attention methods such as transformer

[147], CBAM [161], SEnet [64], DA [43], and ECA [121] have demonstrated their

success in other vision tasks. A number of RGB-D saliency models also equip attention

modules to extract attentive features from different modalities. VST [93] and TriTrans

[100] adopt transformer [147] for saliency detection. [149,199,204] apply the SE module

to compute modality-specific attention for feature calibration. Similarly, CDInet [187]

designs a depth-induced channel attention to enhance RGB features. From another

perspective, [193] deeply explores the spatial attention at different scales with the

help of decoupled dynamic convolution. Sharing the same motivation, DFMnet [195]

adopts a depth holistic attention on top of features with different resolutions. More

recently, several works leverages both spatial and channel attention to jointly improve

the feature representation. For example, BBSnet [38] applies the CBAM [161] on

the depth map to improve the depth quality before fusion. [160] further improves the

CBAM by highlighting spatial features. Sharing the same motivation, CMINet [190]

applies the DA [43] on to lately merge RGB-D features. Different from previous works

with bi-directional cross-modal attention, HAINet [77] explores the purified depth to

improve the RGB features in turn.

Despite the proven effectiveness, previous channel attention schemes do not fully ben-

efit from the geometric priors. For example, the same attention can be applied to

both foreground and background. The rich geometric priors in the input depth map

have rarely been discovered, which limits the performance of RGB-D saliency detec-

tion. DSA2F [141] introduces a depth-sensitive module with the help of the depth

histogram. However, it computes the depth region with a fixed threshold for each

input image and the attention scores are simply computed by a Conv1×1. In contrast,

we propose to dynamically generate multi-granularity regions with the multi-Otsu

method [87, 107]. The fine-grained details are further integrated with channel atten-

tion to enhance the feature discriminability for sharper edge generation.

3.3 Method

Fig. 3.2 presents the overall framework of our proposed HiDAnet. Note that the Otsu

masks are generated from the depth map during the pre-processing. Firstly, RGB and
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Figure 3.2: Architecture of our HiDAnet. Our network adopts U-
Net-like design and consists of granularity-based attention (GBA Sec-
tion 3.3.1), cross dual-attention module (CDA Section 3.3.2), and effi-
cient multi-input fusion (EMI Section 3.3.3). RFB is the receptive field
block from [94] for accurate object detection. White blocks denote
the network backbone. Our granularity-based attention strengthens
the discriminatory power of RGB and depth features separately. Our
cross dual-attention module takes advantage of cross-domain cues to
attentively realize multi-modal and multi-level fusion in a coarse-to-
fine manner. Our efficient fusion scheme effectively models the shared
information from each modality. The shared features are further im-
proved with the skip connections for final saliency map generation.

Best viewed in color.

depth maps are fed into two parallel encoders for feature extraction. For each individ-

ual encoder (RGB/Depth), we propose a granularity-aware module (GBA) with the

help of input Otsu masks to enhance the discriminatory power, e.g., foreground and

background. This module is naturally embedded into different levels of the encoder

to correlate with the network hierarchies. With the enhanced features, we propose a

unified fusion mechanism (CDA) for multi-modal and multi-level fusion. It enables a

cross-domain interaction with both channel and spatial attention to learn the infor-

mative shared features in a coarse-to-fine manner. These features are later gradually

aggregated into the shared decoder through the efficient multi-input fusion module

(EMI). Lastly, we exploit a multi-level loss to take full advantage of the network

hierarchies. Details of each component are presented in the following sections.

3.3.1 Feature Extraction with Granularity-Based Attention

We observe that the multi-granularity properties of geometric priors correlate well with

the network hierarchies of saliency models. Inspired by this observation, we propose

the granularity-based attention that aims to attentively combine the spatial attention

mask with the conventional channel attention as shown in Fig. 3.3. For earlier layers,

it strengthens the low-level representations to precisely localize the salient object with

a sharp boundary. For deeper layers, it improves semantic abstraction and contributes

to the identification of salient objects regardless of appearance variations.
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Figure 3.3: Diagram of the granularity-based attention. The depth
awareness is encoded via local efficient channel attention (LECA).

ECA is from [121].

Given the depth map D with its histogram H, we dynamically generate the fine-

grained details. According to the value/distance within the depth map, we use the

multi-Otsu thresholding algorithm [87,107] to discretize the histogram H into several

different regions. The vanilla Otsu algorithm [107] works for the bi-level thresholding,

where pixels are divided into two classes, C0(d) with distance [0, d ] and C1(d) with

distance [d+1, 255] given the threshold d ∈ N. It steps through all possible thresholds

d ∈ [0, 255] to find the threshold that minimizes the intra-class variance, which is

defined as a weighted sum of variances of the two classes:

σ2
w (d) = w0(d)σ

2
0(d) + w1(d)σ

2
1(d), (3.1)

where σ and w stand for the variance and probability of each class. The probability

distributions are computed as the number of pixels contained in the interval:

w0(d) =
d∑

i=0

p(i); w1(d) =
255∑

i=d+1

p(i). (3.2)

In this work, we use the extended multi-Otsu [87] to generate multiple thresholds.

Assuming T random thresholds (d1, d2, ..., dT ) dividing the depth into T + 1 parts.

Let (σ2
i ,wi ) be the variance and the pixels number of region i (1 ≤ i ≤ T + 1). The

optimal values {d∗
1 , d

∗
2 , ..., d

∗
T} are chosen by maximizing the inter-class variance:

{d∗
1 , d

∗
2 , ..., d

∗
T} = argmax{σ2

w (d1, d2, ..., dT )}, (3.3)

where σ2
w =

∑T+1
i=1 wiσ

2
i . To reduce the computational cost, we only generate the

Otsu regions once during pre-processing and further resize them to fit the resolution

of feature maps from different scales.

For the i th region mi , (1 ≤ i ≤ T + 1, i ∈ N∗), we mask out the feature map fin

with element-wise multiplication to suppress the inactive area through fin⊗mi . Then,

channel attention is applied to improve the feature representation with local awareness.

Compared to the vanilla channel attention [64, 121], we replace the global average
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(1) RGB (2) Depth (3) DSA2F Thresholds, Regions, and Result (4) Our Thresholds, Regions, and Result (5) GT
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Figure 3.4: Visual comparison with the concurrent alternative. Dif-
ferent from DSA2F [141]. Our method maximizes the inter-class vari-
ance, leading to more accurate masks compared to DSA2F. We fur-
ther explore the granularity cues via channel attention, yielding results

closer to the ground truth (5).

pooling with the local average pooling that attends to the local details referring to

geometric priors. Finally, the locally enhanced features are aggregated by a residual

connection for the final output generation fout . The overall process can be formulated

as:

LECA(x) = σ(Conv1d(LAP(x)))⊗ x ,

fout =
T+1∑
i=1

LECA(fin ⊗mi ) + fin,
(3.4)

where σ(·) is the Sigmoid activation, ⊗ is the element-wise multiplication, and LAP

denotes the local average pooling on each masked region. We provide more details

on the differences between the proposed granularity-based attention and traditional

channel attention in the ablation study Section 3.5 Tab. 3.5.

Remarks. Several previous works have proposed to explore depth prior in various

manners such as the contrast in CPFP [200], the edge in CoNet [70], or the histogram

in DSA2F [141]. Our approach resembles the DSA2F that both methods belong

to threshold-based segmentation frameworks. However, one main difference is that

we dynamically generate optimized masks with the Ostu algorithm, while DSA2F

applies fixed thresholds on the T + 1 largest depth distribution modes that cannot

adapt to different scenarios without handcraft adjusting. Fig. 3.4 illustrates the

difference in the thresholds and regions. We observe that our approach computes

more discriminative regions, yielding a more effective and robust manner to explore

the depth prior. Moreover, since the Otsu algorithm optimizes the thresholds by

maximizing inter-class variance, our generated masks are more robust to the depth

noise compared to the concurrent work. Additionally, we leverage the granularity

with channel attention, while DSA2F simply uses a Conv1×1 for local awareness. As

shown in Fig. 3.4, by integrating the fine-grained details into the channel attention,

we can reason about more accurate saliency regions closer to the ground truth. The

quantitative comparison with [70, 141, 200] can be found in Section 3.4.3 Tab. 3.1.

Our superior performance proves that we can better model the depth priors.
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3.3.2 Encoder Fusion with Cross Dual-Attention Module

Previous studies [37, 115, 199] have affirmed the effectiveness of learning from two

heterogeneous modalities for RGB-D SOD. Color images provide rich information

in visual appearance while depth maps contain more spatial priors. Both modalities

contribute to modulating homogeneous semantic information. Therefore, the objective

of multi-modal learning is to efficiently fuse features with diverse information from

different modalities. Similar to multi-modal features, multi-level features also contain

both heterogeneous and homogeneous information: high-level features are richer in

abstract semantic cues while low-level features are richer in fine-grained details. Thus,

from a new perspective, we design a unified fusion scheme to make full use of cross-

domain cues for both multi-modal and multi-level reasoning.

Assuming two paired multi-modal features fx and fy . We firstly build a transformation

Ft to map the inputs fx , fy ∈ RC×h×w to feature maps f ′x , f
′
y ∈ RC ′×h×w with C ′ = C

2 .

Specifically, Ft is the combination of a 1×1 convolution which halves the channel size

and a 3× 3 convolution which is expected to activate the edge response:

f ′x = Ft(fx) = Conv3×3(Conv1×1(fx)),

f ′y = Ft(fy ) = Conv3×3(Conv1×1(fy )).
(3.5)

Once obtaining the lightweight representation, the next step is to aggregate features

from different domains (RGB-D or encoder-decoder). We observe from Fig. 3.1 that

the fine-grained details, such as relative boundary, facilitate the identification of salient

objects. Simultaneously, in case it is difficult to distinguish objects at the same

distance on the depth map, e.g., when distinguishing the motorbike from the street,

the visual appearance becomes more reliable. Inspired by this observation, we aim to

use heterogeneous clues to compensate for the single-domain streaming.

To this end, we propose a cross dual-attention fusion scheme as shown in Fig. 3.5.

Specifically, from each input feature map, we learn the 1-D channel attention Mc ∈
RC ′×1×1 to determine what information to be involved, and the 2-D spatial attention

Ms ∈ R1×h×w to determine which part to focus. We formally have the operations:

Mc(f
′) = σ(MLP(GAP(f ′)) +MLP(GMP(f ′))),

Ms(f
′) = σ(Conv7×7(Concat(CAP(f

′),CMP(f ′)))),
(3.6)

where σ(·) is the Sigmoid activation, MLP is the multi-layer perceptron, GAP and

GMP are the global average and max pooling, respectively, and CAP and CMP are

the average and max pooling across the channel, respectively. With the learned dual

attention from separate feature maps, we enable a cross-domain interaction. In such
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a way, we can alleviate the ambiguities in the domain-specific features. Finally, the

cross-enhanced features are fed into concatenation and convolution to form the shared

representation f ′out . The overall process can be formulated as:

f enhx = Ms(f
′
y )⊗Mc(f

′
y )⊗ f ′x ,

f enhy = Ms(f
′
x)⊗Mc(f

′
x)⊗ f ′y ,

f ′out = Conv3×3(Concat(f
enh
x , f enhy )),

(3.7)

where ⊗ denotes element-wise multiplication. For the shared encoder, starting from

the second layer, once the multi-modal features are fused through cross attention, the

output is further combined with the previous level output through a Conv3×3.

Remarks. Our fusion design differs from concurrent works [69,191,199,210] in several

aspects: (A) We leverage both spatial and channel attention to aggregate multi-

modal features, while [69,199] only focus on channels; (B) Different from ASTA [191],

our calibration is bi-directional (RGB to depth and depth to RGB), while ASTA is

asymmetric which only leverages depth cues to improve RGB features. Hence, it does

not tackle depth noise; (C) SPnet [210] also adopts the symmetric fusion strategies.

Our work differs from SPnet in that we fully explore the attention modules for feature

fusion, while SPnet is built upon simple convolutions to combine features; (D) The

fusion scheme can also be implemented by the CBAM [161]. However, vanilla CBAM

is modality-specific and cannot explore its relevance in cross-domain features. The

ablation study in Section 3.5 Tab. 3.9 shows the gain with the cross interaction.
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3.3.3 Decoder Aggregation with Efficient Multi-Input Fusion Mod-
ule

To aggregate the learned features from both RGB and depth decoders into the shared

decoder, a simple concatenation may not be adaptive enough due to the tripled number

of descriptors. Thus, we propose an efficient multi-input fusion strategy. Specifically,

as shown in Fig. 3.6, after the simple concatenation between different inputs (RGB fR ,

depth fD , and previous-level shared features fh), we adopt the vanilla ECA [121] mod-

ule (termed GECA while G stands for global pooling) to explore the inter-dependencies

of different features. Thus, the most responded features are adaptively selected to form

the shared decoder. A residual addition is adapted to reinforce the contribution of

the previous level features. We have the overall process:

fshared = GECA(Conv3×3(Concat(fR , fD , fh))) + fh. (3.8)

The shared decoded features are then fed into our cross dual-attention scheme to

realize the skip-connection between the shared encoder-decoder.

Remarks. Our encoder fusion (CDA) and decoder fusion (EMI) are technically

different. We observe that the spatial cues gradually lose during encoding and become

limited for decoders. This motivates us to apply both spatial and channel attention

for the encoder fusion, while only using channel attention for the decoder fusion.

3.3.4 Optimization

To take full advantage of the hierarchical information, we supervise multi-level outputs

for both RGB, depth, and shared/fused branches. For outputs from each level, the

predicted map is upsampled to form the same resolution mask as the ground truth.

We adopt BCE loss LBCE for pixel restriction and IoU loss LIoU for global restriction

[122,159,199]. Therefore, we have the loss Li for the i th level output:

Li = LBCE
i + LIoU

i . (3.9)

In total, we have five-level outputs (after each RFB in Fig. 3.2). Thus, by combining

the loss from each branch (R for RGB, D for depth, and S for shared branches), the

overall multi-level loss function Lml becomes:

Lml =
5∑

i=1

λi (Li (R) + Li (D) + Li (S)), (3.10)

where λi is the weight of the different-level loss. To correlate with the network hier-

archies, we follow [19,199] and set the weight λ as {1, 0.8, 0.6, 0.4, 0.2}.
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We expect the multi-level loss to measure the difference between the generated mask

and ground truth at various layers, and to force the network to learn hierarchical

features that capture long- and short-range spatial relationships between pixels. The

gain by adopting the multi-level loss can be found in ablation study Section 3.5 Tab.

3.8.

3.4 Experiments

3.4.1 Benchmark Datasets

To verify the effectiveness of our approach, we firstly train with the conventional

training dataset following the protocol presented in [38, 69, 100, 199, 210] with 2,195

samples: 1,485 samples from the NJU2K-train [72] and 700 samples from the NLPR-

train [112]. For testing, experiments are conducted on five classical benchmark RGB-

D datasets. DES [22] : includes 135 images of indoor scenes captured by a Kinect

camera. NLPR-test [112]: contains 300 natural images captured by a Kinect under

different illumination conditions. NJU2K-test [72]: contains 500 stereo image pairs

from different sources such as the Internet, 3D movies, and photographs taken by a Fuji

W3 stereo camera, where several depth maps are estimated through an optical flow

method [138]. STERE [106]: includes 1,000 stereoscopic images downloaded from the

Internet where the depth map is estimated using the SIFT flow method [90]. SIP [37]:

contains 929 images with humans in the scene, and images are acquired by a mobile

device. We further evaluate our model on a newly published dataset COME15K [190]

where the depth is estimated through a modified optical flow algorithm [151]. In this

case, our model is trained with provided 8,025 training samples and tested on the

“Difficult” set with 3,000 images.

3.4.2 Experimental Settings

Our model is implemented based on Pytorch and trained with a V100 GPU. Our

backbone is initialized with the pre-trained weights obtained from ImageNet. For

the depth stream, we modify the first convolution to start from one channel. The

input RGB-D resolution is fixed to 352×352. We choose the Adam algorithm as our

optimizer. We initialize the learning rate to be 1e−4 which is further divided by

10 every 60 epochs. The total training time takes around 6 hours for 100 epochs.

During training, we adopt random flipping, rotating, and border clipping for data

augmentation. During inference, the prediction maps from the shared branch are the

final outputs (middle branch of Fig. 3.2).

We evaluate our performance with four generally-recognized metrics: F-measure is a

region-based similarity metric that takes into account both Precision (P) and Recall
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Figure 3.7: Average Max F-Measure, MAE, and Model Size of
different methods on benchmark datasets. The circle size denotes the
model size. Note that better models are shown in the upper left corner
(i.e., with a larger F-measure and smaller MAE). Methods with smaller
size perform inferior, making our method both efficient and accurate.

(R). Mathematically, we have : Fβ = (1+β2)·P·R
β2·P+R

. The value of β2 is set to be 0.3 as

suggested in [1] to emphasize the precision. In this paper, we report the maximum F-

measure (Fβ) score across the binary maps of different thresholds. Mean Absolute

Error (M) measures the approximation degree between the saliency map and ground-

truth map at the pixel level. S-measure (Sm) [35] evaluates the similarities between

object-aware (So) and region-aware (Sr ) structures of the saliency map compared to

the ground truth. Mathematically, we have: Sm = α · So + (1 − α) · Sr , where α is

set to be 0.5. E-measure (Em) evaluates both image-level statistics and local pixel-

matching information. Mathematically, we have: Em = 1
W×H

∑W
i=1

∑H
j=1 ϕFM(i , j),

where ϕFM(i , j) stands for the enhanced-alignment matrix as presented in [36]. To

make a fair comparison, we use the same protocol as [210] to evaluate the officially

released saliency maps for each SOTA method.

3.4.3 Comparison with SOTA RGB-D models

Quantitative Comparison: We provide in Figure 3.7 an overview of the average

performance on conventional benchmark datasets, i.e., DES [22], NLPR [112], NJU2K

[72], STERE [106], and SIP [37]. The detailed quantitative performances can be

found in Tab. 3.1. We also present in Tab. 3.2 the quantitative comparison on the

newly published challenging COME15K [190] dataset. All saliency maps are directly

provided by authors or computed by authorized codes.
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Table 3.2: Quantitative comparison on the challenging COME15K.
The performance is evaluated with Difficult test set [190].

JLDCF A2dele DMRA CoNet BBSnet SPnet CMINet Ours
M ↓ .075 .092 .137 .113 .071 .065 .064 .062
Em ↑ .870 .838 .775 .813 .876 .888 .893 .893

Table 3.3: Quantitative comparison with different fusion designs.
We replace our fusion module with four SOTA fusion modules and
retrain the new networks under the same training setting. We use the
Mean Absolute Error (M), max F-measure (Fm), S-measure (Sm), and

max E-measure (Em) as evaluation metrics. (Bold: best.)

Dataset Size NLPR NJU2K STERE SIP
Metric Mb Fβ ↑ Em ↑ Fβ ↑ Em ↑ Fβ ↑ Em ↑ Fβ ↑ Em ↑
Res2Net50 + Ours 525 .929 .961 .939 .954 .921 .946 .919 .927
Res2Net50 + BBS [38] 509 .922 .953 .918 .939 .890 .909 .916 .917
Res2Net50 + CDI [187] 531 .926 .958 .927 .946 .922 .945 .907 .920
Res2Net50 + DCF [69] 347 .927 .958 .933 .948 .916 .939 .911 .923
Res2Net50 + SP [210] 737 .925 .959 .935 .954 .915 .944 .916 .930

Under the consideration of a fair comparison, we conduct experiments with different

backbones such as VGG16 [133], ResNet50 [59], and Res2Net50 [47]. It can be seen

that our HiDAnet with each backbone achieves comparable and superior performance

compared to the SOTA models with the same backbone. Specifically, our HiDANet

with VGG16 backbones achieves significantly better performance on NLPR and SIP

datasets, while being very competitive on the model size with 269 MB and around

6 FPS. Our HiDAnet with ResNet50 backbones further sets new SOTA records on

DES, NLPR, and NJU2K datasets with 523 MB and around 12 FPS. We also follow

the SOTA SPNet and replace our backbone with Res2Net50. It can be seen that

our method performs favorably compared to SPNet with only 525 MB compared to

that of SPNet with 702 MB. Our FPS is around 11. We also exhibit in Fig. 3.9 the

PR curves with several latest published models to further demonstrate the superior

performance of our model.

Finally, in addition to the difference in the backbone, we observe that existing works

adopt different architectures, i.e., design of decoder, supervision, training settings,

etc. Under the consideration of fair comparison and to purely analyze the effective-

ness of encoder fusion design, we re-implement several fusion alternatives under the

same architecture (Res2Net50 + fusion). Specifically, we choose the same backbone

(Res2Net50), the same decoder (the SOTA [210]), loss (multi-scale supervision), and

the same training settings as ours. The only difference between one model to another

is in the fusion module. The quantitative comparison can be found in Table 3.3. It

can be seen that by replacing our fusion with other methods, the empirical results sig-

nificantly drop. This validates the superior effectiveness of our granularity and CDA

in leveraging RGB-D cues compared to other alternatives.
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RGB Depth GTOursSPnetDFMnetDCFnetBBSnet DASnet TriTransJLDCF

Figure 3.8: Visual comparison between our HiDAnet and SOTA
methods in various challenging cases.

Qualitative Comparison: Fig. 3.8 illustrates generated saliency maps of different

methods on challenging cases: cluttered background and foreground with a similar

appearance (1st − 2nd rows), human in scene (3rd − 5th rows), and low contrast on

the depth map (6th − 7th rows). Compared to the SOTA models, our HiDAnet yields

results closer to the ground-truth masks. For the motorbike in the 1st row, our model

can selectively remove the background region (board). For the sculpture in the 2nd

row, our network pays local attention to the foreground and thus the hollow part can

be detailed. We can also accurately extract the human with large deformations in the

3rd − 5th rows.

Robustness against Depth Noise: Tab. 3.4 reports the robustness analysis on

the depth quality. To make a fair comparison, we conduct experiments and compare

with the SOTA SPnet [210] and CMINet [190] under the same inferior condition with

a simulated Gaussian noise on depth. We further evaluate the performances on the

simulated noisy testing dataset. The noise level is defined by the conventional metrics

RMSE and δ1. While RMSE and δ1 are 0, we report the performance tested with the

vanilla dataset (without noise). Drop ∆ denotes the performance degradation by %

under the simulated depth noise.

Note that CMINet designs a multi-scale mutual information minimization during the

encoding stage and lately merge multi-modal features at the semantic level, yielding an

unsatisfactory performance while dealing with noisy datasets (drop 2.0% Sm and 2.3%

Em for noisy DES). Differently, both SPnet and ours fuse features at each stage, leading

to superior robustness against the noise. Compared to SPnet, it can be seen that our
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Figure 3.9: Comparison on PR curves. Our HiDANet achieves
better performance compared to the 12 listed SOTA methods across

different datasets.

performance is more stable, which can be attributed to our granularity attention and

fusion designs. The gain of each component can be found in Tab. 3.8.

3.5 Ablation Study

Comparison with Vanilla Channel Attention. We propose granularity-aware at-

tention (GBA) referring to geometric priors, which differs from the traditional channel

attention on the pooling strategies. Formally, let z ∈ RC be the squeezed spatial in-

formation from feature x ∈ RH×W×C . Accordingly, we can obtain three variations of

average pooling:

(I ) z =

∑∑
x(.)

H ×W
; (II ) z =

∑∑
x(.) ·mi ()

H ×W
; (III ) z =

∑∑
x(.) ·mi (.)∑∑

mi (.)
(3.11)

where (I) denotes the vanilla global average pooling, (II) is the global pooling with

local region mi (.), and (III) is our proposed GBA module that applies local pooling

with local region mi (.). Note that when depth data is constant, i.e., all the pixels

belong to the same granularity, our local average becomes the global average pooling

and our model is equivalent to the conventional channel attention [64,121]. To verify

our effectiveness, we conduct experiments by replacing our local pooling with the

aforementioned poolings. Empirical results in Tab. 3.5 show that compared to (I),

(II) can better leverage local awareness which spatially constrains attention around

the local region. However, with a large H × W , the attention activation is limited.

Hence, we further propose a local pooling to automatically adjust the weight (III).

Our superior performance validates the effectiveness of our local design.
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Table 3.4: Experiments under inferior conditions with simulated
depth noises (RMSE , δ1). While RMSE , δ1 are 0, it represents the
result without simulated noises. Drop ∆ denotes the absolute perfor-
mance difference. Our HiDAnet leads to a more stable performance
compared to the SOTA methods with a lower ∆ under different infe-
rior conditions, proving that our model is more robust against depth
noises. We use the Mean Absolute Error (M), max F-measure (Fm), S-
measure (Sm), and max E-measure (Em) as evaluation metrics. (Bold:

best.)

Dataset DES NLPR NJU2K
Metric RMSE δ1 M ↓ Fβ ↑ Sm ↑ Em ↑ RMSE δ1 M ↓ Fβ ↑ Sm ↑ Em ↑ RMSE δ1 M ↓ Fβ ↑ Sm ↑ Em ↑

CMINet21 0 0 .016 .944 .940 .975 0 0 .020 .931 .932 .959 0 0 .028 .940 .929 .954
CMINet21 .261 .270 .022 .925 .920 .952 .259 .342 .021 .929 .932 .960 .236 .413 .032 .934 .922 .948

Drop ∆(%) - - .6 1.9 2.0 2.3 - - .1 0.2 0 .1 - - 0.4 0.6 .7 .6
SPNet21 0 0 .014 .950 .945 .980 0 0 .021 .925 .927 .959 0 0 .028 .935 .925 .954
SPNet21 .261 .270 .017 .944 .935 .972 .259 .342 .020 .922 .924 .956 .236 .413 .033 .931 .920 .946

Drop ∆(%) - - .3 .6 1 .8 - - .1 .3 .3 .3 - - .5 .4 .5 .8
Ours 0 0 .013 .952 .946 .980 0 0 .021 .929 .930 .961 0 0 .029 .939 .926 .954
Ours .261 .270 .015 .948 .943 .980 .259 .342 .021 .930 .930 .962 .236 .413 .029 .935 .925 .953

Drop ∆(%) - - .2 .4 .3 0 - - 0 .1 0 .1 - - 0 .4 .1 .1

Table 3.5: Ablation study on attention designs with different average
pooling methods.

# Description
DES NLPR NJU2K STERE

M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑
I Global Attention + Global Pool .019 .940 .020 .929 .030 .936 .037 .918
II Local Attention + Global Pool .015 .947 .021 .927 .032 .928 .038 .915
III Local Attention + Local Pool (ours) .013 .952 .021 .929 .029 .939 .035 .921

Why GDA in both streams: We analyze in Tab. 3.6 the contribution of GBA for

both RGB and Depth feature modelings: (A) We remove the GBA from our network,

denoted as RGB+D; (B) GBA is only applied in the RGB stream, denoted as RGB(G)

+ D; (C) GBA is applied in both streams, denoted as RGB(G) + D(G). We observe

that the performance augments by gradually inserting GBA into the encoders. This

shows that GBA can be considered as depth-aware attention for the RGB stream and

as a self-enhancement module for the Depth stream to produce regions with favorable

objectness.

Number of Otsu Regions for GBA: Our fine-grained details are determined by

the number of Otsu regions as shown in Figure 3.10. The two first columns represent

the paired RGB-D inputs. On the 3rd , 5th, and 7th columns we list the Otsu regions

with different numbers of multi granularities, respectively. On the 4th, 6th, and 8th

columns we list the generated masks with different numbers of thresholds T = 1, 2, 3,

respectively.

By comparing the 3rd and 5th columns, it can be seen that a small number of Otsu

threshold T = 1 cannot get the full benefit from the geometric priors. For example,

the building in the 1st row cannot be perfectly distinguished from the background;



3.5. Ablation Study 55

T
a
bl

e
3.

6:
A

bl
at

io
n

of
G

B
A

m
od

ul
e.

E
xp

er
im

en
ts

by
gr

ad
ua

lly
ad

di
ng

G
B

A
m

od
ul

e
on

R
G

B
an

d
D

ep
th

st
re

am
s.

R
G

B
(G

)/
D

(G
)

de
no

te
s

th
e

ca
se

w
he

n
gr

an
ul

ar
it
y

at
te

nt
io

n
is

ap
pl

ie
d

to
R

G
B

/D
ep

th
br

an
ch

.

D
at

as
et

D
E

S
N

L
P

R
N

JU
2K

ST
E

R
E

SI
P

M
et

ri
c

M
↓

F
β
↑

S
m

↑
E
m

↑
M

↓
F
β
↑

S
m

↑
E
m

↑
M

↓
F
β
↑

S
m

↑
E
m

↑
M

↓
F
β
↑

S
m

↑
E
m

↑
M

↓
F
β
↑

S
m

↑
E
m

↑
(A

)
R

G
B

+
D

.0
15

.9
49

.9
40

.9
72

.0
22

.9
25

.9
27

.9
60

.0
30

.9
32

.9
23

.9
52

.0
37

.9
13

.9
01

.9
36

.0
46

.9
14

.8
89

.9
23

(B
)

R
G

B
(G

)
+

D
.0

14
.9

51
.9

43
.9

80
.0

21
.9

27
.9

26
.9

60
.0

30
.9

36
.9

23
.9

53
.0

36
.9

16
.9

07
.9

45
.0

43
.9

19
.8

94
.9

28
(C

)
R

G
B

(G
)

+
D

(G
)

.0
13

.9
52

.9
46

.9
80

.0
21

.9
29

.9
30

.9
61

.0
29

.9
39

.9
26

.9
54

.0
35

.9
21

.9
11

.9
46

.0
43

.9
19

.8
92

.9
27



56 Chapter 3. RGB-D Salient Object Detection via Hierarchical Depth Awareness

𝑹𝑮𝑩 𝑫𝒆𝒑𝒕𝒉 𝑮𝑻𝑴𝒂𝒔𝒌𝟐𝑻 = 𝟐𝑻 = 𝟏 𝑴𝒂𝒔𝒌𝟏 𝑴𝒂𝒔𝒌𝟑𝑻 = 𝟑

RGB Depth T = 1 Mask1 T = 2 Mask2 T = 3 Mask3 GT

Figure 3.10: Qualitative comparison with different numbers of
Otsu thresholds (T = 1, 2, 3) for our granularity-based attention.
With the threshold T , we divide the depth map into T + 1 regions
with different colors. Each region shares the same granularity of geo-
metric information. With one threshold T = 1, the local regions are
coarse and cannot get the full benefit from the geometric priors. This
results in unsatisfactory salient masks (4th column). With two thresh-
olds T = 2, the depth map is better discretized with more fine-grained
details, yielding salient masks closer to the ground truth (6th column).
With three thresholds T = 3, the depth map is over-discretized, re-
sulting in sub-optimal salient masks (8th column). Our plain HiDAnet

is built upon T = 2.

the cups in the 2nd row are mixed with the table and a part of the wall. The un-

satisfactory thresholding on the depth histogram leads to sub-optimal performance of

granularity-based attention that the discriminatory power cannot be fully exploited.

While augmenting the number of thresholds to T = 2, we observe from the 5th column

that the scene can be better discretized. The fine-grained details contribute to the

clearer boundary generation as shown in the 6th column. We further augment the

number of thresholds to T = 3 and observe the over-discretization, leading to the

misunderstanding on the depth map. Thus, it results in lower quality salient masks

as shown in the 8th column.

Thus, we perform the experiments with different numbers of thresholds T . Tab. 3.7

shows that the best overall performance is achieved with T = 2 thresholds, thus with

n = 3 regions. It can be considered as a scene discretization into three parts: close,

middle, and far regions. Our plain HiDAnet is with T = 2 thresholds and achieves the

best performance. We also discover that the sensitivity to thresholding varies from

one dataset to another, especially the NLPR dataset which is not highly sensitive to

the granularity. This is mainly due to the fact that NLPR contains objects residing

in the background. In such circumstances, the target object has the mixed depth

response as the background, leading to less-noticeable granularity as shown in the last

two rows of Figure 3.10. In more common and popular cases (DES, NJU2K, STERE,
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and SIP), our fine-grained details achieve significant improvement compared to our

baseline with conventional attention as shown in Tab. 3.7.

Ablation study on Key Components: Tab. 3.8 presents a thorough ablation

study for each key component. We observe that by gradually adding proposed mod-

ules, our network leads to better performance. We also conduct experiments by replac-

ing our proposed modules with several SOTA counterparts. Specifically, we compare

our Granularity-Based Attention with the DEDA module proposed in [203]. Both our

GBA and DEDA belong to the mask-guided attention modules. Specifically, DEDA

leverages the depth map to dynamically learn the masked-guided attention map which

is supervised by the ground truth. The learned attention map refers to the contrast

to guide RGB learning. Differently, our mask is statically computed by the Otsu

threshold by maximizing inter-class variance. The computed local regions refer to the

fine-grained details which are further integrated with semantics cues. Empirically, by

comparing (#6−#8), our GBA performs favorably against DEDA, showing that our

method can better leverage the depth cues to distinguish objects with different camera

distances. We also replace our encoder fusion (CDA) with the concurrent DCF [69]

built upon channel attention. The main difference is that DCF is based on channel

attention, while our CDA additionally leverages the spatial attention for better lo-

calization. By comparing (#7 −#8), we can observe that while CDA is replaced by

the DCF, the performance drops significantly. This validates the effectiveness of our

CDA with both channel and spatial attention.

Design of Cross Dual Attention: We verify in Tab. 3.9 the design of our encoder

fusion by removing or replacing each component: (C1) Features are simply fused

through addition; (C2) Features are fused through concatenation-convolution (CC);

(C3) Features are firstly self-enhanced with vanilla CBAM before the addition fusion.

(C4) Features are firstly self-enhanced and later fused through CC. (C5) We explore

the attention in a cross manner and fuse features with addition. We can observe the

gain of attention modules by comparing (C1−C3−C5), the improvement from cross-

domain interaction by comparing (C3−C5), and the contribution of CC by comparing

(C5 − Ours). These results validate the effectiveness of our proposed encoder fusion

scheme.

Design of Efficient Multi-Input Fusion: We also verify the design of our decoder

fusion in Tab. 3.9: (E1) Features are fused with CC. (E2) Features are concatenated

and fed into the ECA model before the convolution. (E3) Features are fused with

CC and then fed into the ECA. (E4) Based on the configuration E2, we further

add a residual addition. By comparing (E2 − E3) and (E4 − Ours), we can observe

that the ECA module performs better with a reduced channel size. The comparison
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Table 3.8: Ablation study on key components of HiDAnet. We par-
tially remove key components or replace the fusion designs with simple

addition.

# Baseline GBA CDA Skip EMI Lml
DEDA DCF DES STERE
[203] [69] M ↓ Fβ ↑ M ↓ Fβ ↑

1 ✓ .018 .941 .038 .917
2 ✓ ✓ .016 .944 .037 .917
3 ✓ ✓ ✓ .016 .946 .036 .919
4 ✓ ✓ ✓ ✓ .015 .947 .036 .923
5 ✓ ✓ ✓ ✓ ✓ .014 .949 .034 .921
6 ✓ ✓ ✓ ✓ ✓ .016 .946 .041 .914
7 ✓ ✓ ✓ ✓ ✓ ✓ .017 .946 .037 .918
8 ✓ ✓ ✓ ✓ ✓ ✓ .013 .952 .035 .921

Table 3.9: Ablation study on encoder fusion and decoder fusion
designs. CC stands for Concatenation-convolution. S stands for Self-

interaction. R stands for residual connection.

Dataset # C1 C2 C3 C4 C5 E1 E2 E3 E4 Ours
Descrip. Add CC S+C1 S+C2 Cross+C1 CC Middle Later E2+ R

DES M ↓ .017 .016 .015 .014 .015 .015 .016 .015 .014 .013
Fβ ↑ .945 .946 .948 .949 .947 .947 .945 .949 .950 .952

STERE M ↓ .039 .039 .036 .037 .036 .038 .038 .037 .036 .035
Fβ ↑ .915 .916 .918 .917 .919 .914 .915 .916 .920 .921

between (E2 − E4) validates the effectiveness of residual addition which propagates

the hierarchical features.

3.6 Conclusion

In this chapter, we propose an end-to-end HiDAnet for RGB-D saliency detection. Dif-

ferent from previous networks, we fully leverage fine-grained details and merge them

with semantic cues through local channel attention. Extensive evaluations on chal-

lenging RGB-D benchmarks indicate that our HiDAnet improves saliency detection in

several challenging scenarios where the SOTA approaches fail, notably in cases where

multiple objects with similar appearances but at distinct camera distances (granular-

ity). In addition to the channel axis, the spatial direction also plays an important

role in CNN. Therefore, in the following chapter, we will discuss how to leverage the

depth cues to better design non-local depth-adapted spatial attention.
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Chapter 4

Depth As Offset - A Novel Spatial
Attention For CNN

In the previous chapter, we have discussed the depth-wise channel attention to im-

prove the discriminability of CNN with respect to geometric priors. In addition to the

channel axis, spatial information is also important which helps to precisely localize

the object on the image. Hence, in this chapter, we present how can we leverage

the depth cues to design a local and deformable depth-adapted spatial attention. We

validate our approach on both semantic segmentation and saliency detection tasks.

It is worth noting that few existing methods explicitly leverage the contribution of

depth cues to adjust the sampling position on RGB images. Therefore, we propose a

novel framework to incorporate the depth information in the RGB convolutional neu-

ral network (CNN), termed Z-ACN (Depth-Adapted CNN)r. Specifically, our Z-ACN

generates a 2D depth-adapted offset which is fully constrained by low-level features to

guide the feature extraction on RGB images. With the generated offset, we introduce

two intuitive and effective operations to replace basic CNN operators: depth-adapted

convolution and depth-adapted average pooling. Extensive experiments on seman-

tic segmentation and saliency detection tasks demonstrate the effectiveness of our

approach.

4.1 Application in Semantic Segmentation

4.1.1 Introduction

As one of the fundamental tasks in computer vision, semantic segmentation aims to

understand the pixel-wise label from an input image of a generic target scene. Recent

advances in deep neural networks, as well as the GPU, have set new state-of-the-art

(SOTA) performance in semantic segmentation. Despite significant progress in the

last decade, semantic segmentation based on RGB input remains challenging in many

challenging scenarios, i.e., low-contrast light, object occlusion, and separating objects

sharing a similar visual appearance.
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(a) Conventional Receptive Field (b) Adapted to Depth Priors

Figure 4.1: A sketch of Depth-Adapted Sampling position. We ex-
plicitly leverage the depth priors to compute a locally-deformable sam-
pling position, yielding a simple but efficient manner to introduce a

global-local attention into CNN.

Recent developments in RGB-D sensors make RGB-D inputs accessible at a low cost,

motivating research interests in designing various fusion strategies to merge multi-

modal features. A number of works have demonstrated the benefit of spatial cues to

improve the accuracy of semantic segmentation, affirming the effectiveness of learn-

ing from complementary modalities. In the literature, two main designs have been

widely exploited: single-stream design and two-stream design. The single-stream of-

ten realizes an early fusion where RGB and depth images are simply concatenated

from the input side. Different from conventional RGB networks with 3-channel, sev-

eral works merge multi-modal inputs at the channel axis to form a 4-channel input

(RGB-D) or 6-channel input (RGB-HHA where HHA is encoded from depth refer-

ring to disparity, height above ground, and norm angle). However, these networks

directly extract features from early-mixed modalities that cannot fully explore the

correlation between RGB and depth images. The two-stream strategy adopts parallel

encoders that extract multi-modal features separately and further fuse them at dif-

ferent semantic levels. Nevertheless, compared to single-stream networks, two-stream

designs inevitably increase the computational cost. Furthermore, the fusion mecha-

nism is often pre-defined that cannot adapt to different scenarios without handcraft

adjusting.

In this chapter, we explore differently the relationship between RGB and depth by

explicitly leveraging the perspective effect. Recent non-local attention [28,64,98,147,

156,161] works in vision tasks have proved their effectiveness in modeling contextual-

ized awareness. Several recent works [24, 99, 108] further figure out that aggregating

both global and local attention can lead to better performance since neighboring pix-

els tend to have high similarity and correlation. Sharing the same idea, we seek to

improve CNN with local but contextualized awareness which is fully constrained by

the geometry. As shown in Figure 4.1(a), the conventional convolution is designed

to have a regular and fixed structure on the image plane. With additional priors on
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camera parameters and depth cues, we show that the sliding windows can adapt to

the geometry, e.g., the vanishing effect as shown in Figure 4.1(b).

Inspired by this observation, we develop a Depth-Adapted Convolutional Network,

denoted Z-ACN. Z stands for the Z-axis of the camera coordinates representing the

depth information. Specifically, we propose a depth-adapted offset that can be inte-

grated into basic functions of CNN, i.e, convolution and pooling, and introduce two

new operators: depth-adapted convolution and depth-adapted average pooling.

Our proposed depth-adapted convolution replaces conventional neighboring pixels

with geometrically similar ones. Concretely, we reshape the receptive field to cover

pixels sharing the same 3D plane with the center of the kernel, yielding a simple but

efficient manner to articulate both photometric and geometric information. The sec-

ond introduced operator is depth-adapted average pooling. Sharing the same idea as

the depth-adapted convolution, we re-define the notion of neighboring pixels for av-

erage pooling such that the geometrical relations will be considered while computing

the mean of the local region of the feature map. Both operators break the limits on

the conventional definition of neighboring pixels, forcing the network to pay attention

to a larger and more malleable receptive field.

Depth-adapted operations are based on the intuition that pixels with the same ge-

ometrical character should be more likely to share the same semantic label. One

common example is the vanishing effect, as illustrated in Figure 4.1. We assume that

pixels on the same 3D plane tend to share the same class. This 3D plane and depth

variance have a high correlation. As shown in Figure 4.1, we display the projection

of the 3D plane of the rail on the image plane as the adapted sampling position. The

depth-adapted field should be more correlated to the real scene compared to the con-

ventional neighboring field. Essentially, our method uses depth to transform planes

into a canonical pose relative to the camera, such that the extracted feature maps are

also in a canonical reference frame and thus invariant to scale changes and out-of-plane

rotation. The main advantages of such operations are summarized as follows:

• We propose a novel depth-adapted convolutional network termed Z-ACN, that

can integrate the geometric constraint into the conventional receptive field, hence

improving the convolution with depth-aware contextualized attention.

• Our grid adaptation is processed by the non-learning method that does not

introduce extra learning parameters compared to conventional counterparts.

• Experiments on both indoor and outdoor RGB-D semantic segmentation bench-

marks demonstrate that our method can perform favorably over the baseline

performance with large margins and set the new state-of-the-art performance.
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4.1.2 Related Work

4.1.2.1 3D Representation

We have discussed in previous sections the success of PointNet in dealing with 3D

data. Since then, different 3D CNN methods are trying to adapt to the irregularity

of the point cloud. [82] integrates an x-transformation to leverage the spatially-local

correlation of point cloud [146] introduces a spatially deformable convolution based

on kernel points to study the local geometry. [96] learns the mapping from geometry

relations to high-level relations between points to get a shape awareness. [95] defines

convolution as an SLP (Single-Layer Perceptron) with a nonlinear activator.

Besides, a number of efforts have been made to reduce the model complexity. [145]

adapts CRF (Conditional Random Fields) to reduce the model parameters. Multi-

view methods [16, 48, 75, 117] reform 3D CNN to become the combination of 2D

CNNs. [16] profits from Lidar to get bird-view and front-view information in addi-

tion to a traditional RGB image. [48] uses depth image to generate the 3D volumetric

representation after which projections on X, Y, and Z planes are learned respectively

by 2D CNNs. 3D CNN achieves better results than RGB CNN but requires further

development on problems such as memory cost, data resolution, and computing time.

4.1.2.2 2D RGB-D Fusion

Through the development of RGB-D fusion models, it can be seen that there exist a

number works that aim to guide the feature extraction with enhanced depth awareness.

D-CNN [154] enhances the network with a depth similarity term which re-weight

the standard convolution with the depth-related local context. Since then, various

works have been developed on the forms of weight functions. [18] extends the idea

of [154] to dilated convolution. [175, 176] develop 2.5 D convolutions with a more

generalized weight function. [23] projects 3D convolution on 2D images to form a

depth-aware multi-scale 2D convolution. [177] uses depth information to define local

neighborhoods by introducing a learned Gaussian kernel. Sharing the same idea of

re-weighting the convolution, ShapeConv [7] integrates the channel attention into the

convolution function and forms a more generalized convolution that is not limited to

RGB-D context.

It can be seen that contextualized awareness has played a vital role in RGB-D fusion.

For two-stream designs, multi-modal features are often firstly fed into attention mod-

ule before the data fusion: [85] with ConvLSTM modules, ACNet [65] with channel

attention [64], [177] with a learned Gaussian convolution kernel, and [15] with a mod-

ified CBAM [161]. For single-stream design, the contextualized awareness is directly

integrated into the basic convolution function to re-calibrate the filter weight: [154]
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with depth similarity, [176] with a malleable depth-aware function, and [7] with chan-

nel attention. Despite the popularity of attention modules in previous works, the

capability of modeling long-range dependencies is still limited due to the fixed shape

of the convolutional receptive field, i.e., within the 8 neighboring pixels for a conven-

tional 3× 3 convolution. In contrast, we propose a depth-adapted sampling position

to explicitly leverage both global and local awareness in a simple yet efficient man-

ner. By designing a geometry-constrained offset, we aim to break the conventional

receptive field to adapt to the perspective effect, yielding an effective depth-guided

2D CNN to improve the RGB understanding.

4.1.2.3 Non-local Adaptive Model

In previous chapters, we have briefly reviewed several non-local networks. Despite

the demonstrated promising results, we observe that the contextualized awareness

are or learned through gradient descent, e.g., the positional encoding in CPVT and

the offset in Deformable works, or learned through a pre-defined large receptive field,

e.g., global attention in transformer and large kernel size in ConvNext. In the case

of multi-modal feature learning, we seek to compute the global awareness from the

additional prior. This perspective has been widely studied in the field of spherical

images where the global attention is computed according to the distortion priors [25,

27, 41, 143]. Inspired by these works, we propose to compute the non-local awareness

from the depth priors, making the convolution geometry-aware for RGB-D semantic

segmentation. A concurrent work SConv [11] learns the offset from depth image.

Our approach resembles the SConv in that both methods belong to depth-adapted

convolution frameworks. However, one main difference is that our offset is purely

defined by the geometric without requiring any gradient descent, while SConv applies

convolutional layers to learn the offset from latent space. Our approach explicitly

leverages the scale changes along the Z-axis of camera coordinates and out-of-the-

plane rotation. Instead of adding extra learning parameters, we show that a simple

and intuitive local deformation can contribute to semantic segmentation with minimal

cost.

4.1.3 Depth-Adapted Convolutional Network

In this section, two depth-adapted operations are presented: depth-adapted convolu-

tion and depth-adapted average pooling. Figure 4.2 shows the information propaga-

tion in our network.

First, we take a 2D conventional regular and fixed area on the depth map, which

corresponds to a conventional receptive field, e.g., 3× 3 convolution. We back-project

the pixels to the 3D scene to get the 3D position in the camera coordinate. Second,
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Deformable

Back-Projection LMS

2D Grid 3D Points 3D Plane
Depth-Adapted

2D GridZ-ACN (ours)

𝑥′

Projection

𝑛

𝑅ଷ(𝑃)𝑅′(𝑝)

𝑅(𝑝) 𝑃

𝑦′

(a) Standard (b) Deformable

(c) Depth (d) Z-ACN (ours) 3D Grid
Depth-Adapted

Figure 4.2: On the left we show the example of a 3 × 3 kernel: a)
shows a standard 2D convolution with dilation equal to 1. b) shows
the offset computed from deformable convolution [28]. c) is the avail-
able depth data. The represented figure shows a linear change with
the depth value. From left to right, the scene becomes deeper. d)
illustrates offset computed by Z-ACN which is adapted to depth. On
the right, we illustrate the overview of our approach. LMS stands for
Least Mean Square algorithm. (x⃗ ′, y⃗ ′) are the 3D unit axis. Firstly,
pixels within the 2D receptive field are back-projected to 3D space
to form a point cloud, based on which a 3D plane is computed with
normal n⃗ . Secondly, a new 3 × 3 grid on the 3D space is created
with the help of 3D axis (x⃗ ′, y⃗ ′) which are perpendicular to the nor-
mal n⃗. Finally, the 3D grid is projected to the image plane, forming
our depth-adapted sampling position. Zoom in for more details on the

depth-guided sampling position on the RGB image.

we compute a depth-aware plane that passes through the real-world position of the

kernel center and fits the best to all 3D points. Third, we create a 3D regular grid on

this plane with an adapted orientation to fit the geometry. Last, we project this 3D

grid on the image plane to form a 2D depth-adapted sampling grid.

Our model requires 2 inputs: input feature map and depth map (ground truth or

estimated). The feature map is denoted as x ∈ Rci×h×w , where ci is the number of

input feature channel, h and w are the height and weight of the input feature map.

The depth map is denoted as D ∈ Rh×w . D is used to adapt the spatial sampling

locations by computing the offset, denoted as ∆p ∈ Rcoff ×h1×w1 , where h1 and w1 are

the height and weight of the output feature map and coff = 2 × N × N for a N × N

filter. Different from Deformable ConvNet, our offset does not require gradient during

back-propagation. The output feature map is denoted as y ∈ Rco×h1×w1 , where co is

the number of output feature channel.

4.1.3.1 Depth-Adapted Convolution

A standard image convolution is formulated as:

y(p) =
∑

pn∈R(p)

w(pn) · x(p + pn), (4.1)
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where w is the weight matrix. R(p) is the grid for point p. Physically it represents

a local neighborhood on input feature map, which conventionally has regular shape

with certain dilation ∆d , such that :

R(p) = au⃗ + bv⃗ (4.2)

where (u⃗, v⃗) is the pixel coordinate system of input feature map and (a, b) ∈ (∆d ·
{−1, 0, 1})2.

To exploit the 3D planarity, depth-adapted convolution simply adds an adapted de-

formation term ∆p to adjust the spatial sampling locations :

y(p) =
∑

pn∈R(p)

w(pn) · x(p + pn +∆pn) (4.3)

The convolution may be operated on the irregular positions pn + ∆pn as the offset

∆pn may be fractional. To address the issue, we use the bilinear interpolation which

is the same as that proposed in [28]. In the following subsections, we will present how

to process this offset from traditional computer vision algorithms.

4.1.3.2 3D Planarity

To compute the offset, firstly we assume that the camera fits the pinhole model.

Therefore, with the camera parameters, we can back-project 2D pixels within the

conventional field R(p) into camera coordinates, forming the 3D point cloud Pi =

(Xi ,Yi ,Zi ) . An analysis of the intrinsic parameters is presented in Section 4.1.5. Let

p = (u0, v0) be the center of 2D receptive field and P0 = (X0,Y0,Z0) the associated

back-projection on 3D space. The plane π passing through P0 and fitting the best to

all Pi can be extracted by applying the least square method:

−→n = arg min−→n =(n1,n2,n3)
||−→n ||=1

∑
i

||−→n ·
−−→
P0Pi ||2 (4.4)

where −→n = (n1, n2, n3) is an approximation of the normal of the plane π.

Basing on the plane π, we build a new planar and regular grid, denoted as R3D(P0),

which is centered on P0. The regular shape is defined by an orthonormal basis (x⃗ ′, y⃗ ′)

on the plane π. We fix x⃗ ′ as horizontal (x⃗ ′ = (α, 0,β)). As x⃗ ′ is on the plane π defined

by its normal n⃗ = (n1, n2, n3) and (x⃗ ′, y⃗ ′) are the orthonormal basis, we have :

x⃗ ′ · n⃗ = 0; ||x⃗ ′||2 = 1; ||⃗n||2 = 1; n⃗ × x⃗ ′ = y⃗ ′. (4.5)
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Analytically, we can obtain (x⃗ ′, y⃗ ′) as follow:

x⃗ ′ =


n3√
1−n22

0

− n1√
1−n22

 , y⃗ ′ =


− n1n2√

1−n22»
1− n22

− n2n3√
1−n22

 (4.6)

To conclude, R3D(P0) is defined as :

R3D(P0) = ax⃗ ′ + by⃗ ′ (4.7)

with (a, b) ∈ (−ku, 0, ku)× (−kv , 0, kv ) where (ku, kv ) are scale factors.

A conventional 2D convolution on the image plane can be considered as realizing a

planar convolution on a fronto-parallel plane on the 3D camera basis. While the depth

value is constant, our depth-adapted plane −→n becomes the same as the fronto-parallel

plane. Otherwise, our plane −→n can better explore the perspective effect compared to

the counterpart, yielding a depth adapted sampling position R3D(P0) in the camera

basis.

4.1.3.3 Scale Factor

The scale factors are designed to be constant such that the 3D receptive field of each

point from the feature map has the same size. In such a way, with the variance of

depth, due to the perspective effect, the projected 2D receptive field on the image plane

will have different sizes. The value of scale factors can be empirically set in different

tasks. In our application, we want the adapted convolution performs the same as a

conventional 2D convolution on a particular point p(u0, v0) whose associated plane in

Eq. 4.4 is fronto-parallel {Z |Z = Z0}. By taking into account the dilation ∆d and

the camera focal length (fu, fv ), we have:

ku = ∆d × Z0

fu

kv = ∆d × Z0

fv
.

(4.8)

4.1.3.4 Depth-Adapted Sampling Position

To form the depth-adapted sampling position, we denote R’(p) as the projection of

R3D(P0) on the image plane :

y(p) =
∑

pn∈R’(p)

w(p) · x(p + pn)

=
∑

pn∈R(p)

w(p) · x(p + pn +∆pn).
(4.9)
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Different from the conventional grid R(p), the newly computed R’(p) breaks the

regular size and shape structure with the additional offset. In such a way, the geometry

information is incorporated in RGB CNN.

4.1.3.5 Depth-Adapted Average Pooling

A standard average pooling is defined as :

y(p) =
1

|R(p)|
∑

pn∈R(p)

x(p + pn). (4.10)

This treats every pixel equally regardless of its associated geometry information, e.g.

whether they belong to the same plane or not. To address this issue, similar to depth-

adapted convolution, we add an extra offset to adjust the pooling field to the geometry.

We force pixels sharing the same plane to contribute more to the corresponding output.

For each pixel location p, the depth-adapted average pooling operation becomes :

y(p) =
1

|R(p)|
∑

pn∈R(p)

x(p + pn +∆pn). (4.11)

4.1.3.6 Understanding Depth-Adapted operations

In Figure 4.2 we show several examples of depth-adapted sampling positions of given

input neurons (the center) on an RGB image. We seek to profit from the depth cues

to articulate both photometric and geometric information for RGB CNN. Our method

integrates the geometry into the convolution by adjusting the 2D sampling grid. This

pattern is integrated into Eq. 4.3. In the case of conventional CNN, the shape of the

grid is fixed as regular, which has difficulty adapting to the perspective effect. With

the proposed Z-ACN, we can better leverage the geometric constraint in the sampling

position. As shown in Figure 4.2, the receptive field for a closer input neuron in the

3D space is larger than that of a geometrically farther neuron. Sampling positions on

the same plane also have different shapes that are adapted to the camera-projection

effect. These patterns improve 2D CNN’s performance with contextualized awareness

without complicating the network with extra learning parameters.

4.1.4 Experiments

4.1.4.1 Experimental setup

Dataset and metrics. We evaluate the effectiveness of our approach on both

indoor and outdoor RGB-D semantic segmentation benchmarks, including NYUv2

dataset [132], SUN RGBD dataset [135] and KITTI dataset [50]. For the NYUv2

dataset, it contains 1,449 RGB-D images which are split into 795 training images and
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𝑹𝑮𝑩 𝑯𝑯𝑨 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 GT+ 𝒁-ACN Per Class IoU improvement (%)

Figure 4.3: On the left we illustrate the qualitative comparison on
the NYUv2 dataset. The two first columns are the input RGB and
HHA, respectively. Baseline represents the semantic map obtained
with early fused RGB-HHA input. + Z-ACN stands for the results
obtained by inserting our depth-adapted sampling position into the
baseline. It can be seen that by explicitly leveraging non-local atten-
tion, our method reasons about semantic maps closer to the ground
truth (GT). The black regions in "GT" are the ignoring category. On
the right we illustrate the per-class improvement above the baseline.

We improve 29/37 classes with 5.2% mean IoU increment.

654 testing images. For SUN-RGBD, it contains 37 categories of objects and consists

of 10,335 RGB-D images which are split into 5,285 training images and 5,050 testing

images. For the KITTI dataset, we use the semantic segmentation annotation pro-

vided in [179], which contains 70 training and 37 testing images from different scenes,

with high-quality pixel annotations in 11 categories. The performance is evaluated

with common metrics, i.e., Pixel Accuracy (PixelAcc), Mean Accuracy (mAcc.), Mean

Region Intersection Over Union (mIoU), and Frequency Weighted Intersection Over

Union (f.w.IoU).

Implementation details. Our approach requires paired RGB-D images as input.

The depth map is first used to generate the geometry-aware offset which is further

integrated into the network. As HHA encoding, the offset generation can be also

realized during pre-processing since our method does not require gradient descent.

We follow the same learning settings for both our proposed network and the baseline

counterpart. Experiments are realized with 2 Nvidia V100 GPUs under the PyTorch

framework. During inference, we apply a single-scale inference strategy.

Comparison protocol. We evaluate the generalization capability of our approach

with different backbones, including old-fashioned VGG-16 encoders and popular ResNet

encoders. We seek to demonstrate that our approach can constantly improve the

baseline performance. To purely analyze the gain by applying our approach, we only

replace the vanilla convolution and average pooling with our proposed depth-adapted

operators.

4.1.4.2 With VGG-16 backbone

Comparison with D-CNN [154]: D-CNN is the pioneering work that integrates

depth into the basic operations of convolutional networks. The depth is used to
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Table 4.1: Comparison with the concurrent D-CNN [154] which uses
depth to re-design the convolutional weight. Both models are trained
from scratch with the same training settings. Our method achieves
better performance under different datasets, show that the depth priors

are better exploit with our Z-ACN.

Dataset NYUv2 SUN-RGBD
Method RGB D-CNN Z-ACN RGB D-CNN Z-ACN

PixelAcc (%) 50.1 60.3 73.5 66.6 72.4 78.4
mIoU (%) 15.9 27.8 28.4 22.8 29.7 30.5

compute a similarity term to re-calibrate convolutional weight. We build our approach

upon the DeepLab architecture, which is the same as D-CNN [154]. Note that both the

D-CNN and our approach belong to the depth-aware convolution framework. Unlike

the D-CNN model, we update the depth information to break the limitation of a

fixed structure, which can better leverage long-range dependencies while D-CNN seeks

to refine the sampling position within the conventional receptive field. To evaluate

our superior design, we follow the same training settings as D-CNN and conduct

experiments on both NYUv2 and SUN-RGBD datasets. Since conventional backbones

are pre-trained with RGB input, i.e., ImageNet [29], which is not designed for RGB-D

tasks. Hence, we follow D-CNN and train our model from scratch. We refer authors

to [154] for more details on the training strategies.

The quantitative comparison can be found in Table 4.1. We only extract features from

RGB input images. The baseline model is with VGG-16 encoder under Deeplab [9]

architecture. D-CNN stands for the performance obtained by adding depth-aware

re-calibration on both convolution and pooling. Z-ACN is the result obtained with

our proposed convolution and pooling where we explicitly integrate the contextualized

awareness in the basic operators. Our method can achieve superior performance over

the counterpart, validating the effectiveness of our depth guided sampling position

which can better model geometric priors compared to D-CNN.

Comparison with pre-trained methods: We also evaluate our method with pre-

trained weights, i.e., we initialize the weight with the pre-trained models and further

fine-tune it on NYUv2 datasets. We build our approach upon the DeepLab architec-

ture, which is the same as D-CNN [154]. We report in Table 4.2 the performances

of different methods. It can be seen that our method performs favorably over other

methods. Compared to [119] which adapts a 3D CNN, our model remains a 2D CNN

that requires less computational cost but achieves superior performance. Compared

to our baseline, i.e., vanilla Deeplab, our Z-ACN enables significant improvements by

encoding the depth information into the network. As D-CNN, our approach can also

work well with the early fused RGB-HHA input, yielding a further improvement in



72 Chapter 4. Depth As Offset - A Novel Spatial Attention For CNN

Table 4.2: Quantitative comparison with VGG-16 based methods
on NYUv2 dataset. Our method significantly boosts the performance
over the baseline and sets a new record on VGG-16-based approaches.

Model Learned features mIoU (%)
SurfConv [23] RGB + HHA 31.0
Eigen et al. [34] RGB + HHA 34.1
3DGNN [119] RGB 39.9
Std2p [61] RGB + HHA 40.1
D-CNN [154] RGB 41.0
CFN [88] RGB + HHA 41.7
D-CNN [154] RGB + HHA 43.9
Baseline RGB + HHA 40.4
Z-ACN (Ours) RGB 42.5
Z-ACN (Ours) RGB + HHA 45.6

the performance. The quantitative results validate that our operators are more effec-

tive in merging multi-modal features compared to the counterpart and set the new

state-of-the-art performance with the VGG-16 encoder.

The qualitative comparison can be found in Figure 4.3 which shows the improvement

of our approach over the baseline. The two first columns show the input RGB image

and input HHA map. Baseline is the result obtained with early fused RGB-HHA

input. + Z-ACN denotes that we further apply our approach over the baseline. It

can be seen that our approach can favorably improve scene understanding over the

counterparts by explicitly leveraging the depth cues, yielding more accurate semantic

maps.

4.1.4.3 With ResNet backbones

Plug in SOTA ESAnet [128]: The current SOTA CNN performance on RGB-D

semantic segmentation is achieved with ESAnet. To evaluate the generalization prop-

erties of our approach, we plug our Z-ACN into ESAnet, aiming to further improve the

performance with additional depth-awareness. Compared to VGG encoders, ResNet

encoders are deeper with more convolutions. Hence, replacing all convolutions with

depth-adapted convolutions will yield more computational cost. As suggested in pre-

vious work [3,131], the geometric cues play a more vital role in the first convolutional

layers. Therefore, to find the best trade-off between the computational cost and the

performance, we simply add a 3 × 3 depth-adapted convolution before the RGB en-

coder. This operation can be regarded as am early fusion to merge RGB and depth

images at the stemming layer.
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Table 4.3: Quantitative comparison with the baseline ESAnet on
NYUv2 dataset. By simply adding an depth-adapted convolution, our
method performs favorably over the baseline with different backbones,

demonstrating the generalization capability or our Z-ACN.

Backbone Setting mIoU (%) Improvement ∆ (%)

ResNet-18 ESAnet 46.28 0.74Ours 47.02

ResNet-34 ESAnet 48.13 1.02Ours 49.15

ResNet-50 ESAnet 49.02 1.03Ours 50.05

ResNet-101 ESAnet 49.44 1.76Ours 51.24

The gain by further adding our Z-ACN can be found in Table 4.3. With our depth-

adapted operator, the new model performs favorably over the ESAnet baseline un-

der different backbones, demonstrating the generalization capability of our approach

which can easily be embedded into any existing backbones. Furthermore, since both

our approach and the counterpart shares the same architecture, the improvement is

purely attributed to our depth-awareness, validating the effectiveness of our geometry-

guided sampling position.

Comparison with RGB-D attention convolutions: To evaluate our Z-ACN, we

compare our approach with two recent RGB-D attention convolutions, ShapeConv [7]

and SConv [11]. ShapeConv decomposes the features within the receptive field into

a base component and the remaining which are then calibrated with two additional

learning weights before the convolution. The base component is computed by the

mean function to squeeze the spatial resolution, which can be regarded as the ad-

ditional channel attention for convolution. Different from ShapeConv which is not

specially dedicated to RGB-D tasks, we explicitly leverage the depth prior to de-

form the convolutional sampling position, yielding a simple but efficient manner to

integrate the spatial attention into convolution. Meanwhile, the concurrent SConv

proposes a learning strategy to infer a depth-aware offset from latent space. However,

for the same scene, the learned offset may vary under different settings such as dif-

ferent training strategies or backbones. As shown in Figure 4.4, while the backbone

changes, SConv yields different sampling positions. Intuitively, the depth-aware offset

should be only dependent on the geometry and independent of the learning factors.

Different from SConv, our offset is computed without any learning parameters, mak-

ing our depth-awareness constant under different environments. Further, we show

through Figure 4.4 that our computed receptive field can favorably describe the per-

spective effect over the counterpart. Besides, we report in Table 4.4 the model size for

each method. Similar to ShapeConv, our method does not add additional parameters
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(b) Depth (c) SConv-Res18 (d) SConv-Res34 (e) Ours(a) RGB

Figure 4.4: Visual comparison with concurrent depth-aware offset
SConv. (a-b) are the input RGB and Depth. (c-d) illustrates the
learned sampling position from SConv [11] for different ResNet back-
bones. (e) is the receptive field computed by our approach. SConv
adopts a learning diagram to generate the receptive field, resulting
in different shapes for different backbones. However, our method ex-
plicitly leverages the geometric constraint for the perspective effect.
Our whole process is realized without learning parameters, making
the depth-adapted sampling position independent from the neural net-

work.

Table 4.4: Model size with different attention convolutions. We
choose ResNet-18 as the backbone. Similar to ShapeConv, our method
do not add extra learning parameters on top of the baseline. Different
from SConv, we compute the offset in a non learning manner, yielding a
efficient manner to explicitly leverage the depth attention in 2D CNN.

ResNet-18 ESAnet [128] + SConv [11] + ShapeConv [7] + Ours
Size (Mb) 304 +1 +0 +0

above the baseline and is more efficient compared to SConv which requires additional

learning costs.

Table 4.5 illustrates the quantitative comparison with other attention convolutions.

Under the consideration of a fair comparison, we embed all the operators into the

ESAnet baseline and retrain them under the same settings. It can be seen that our Z-

ACN outperforms the concurrent approaches with a large margin under all backbones.

This highlights the effectiveness of our depth-constraint attention compared to channel

attention (ShapeConv) and learned depth attention (SConv).

Comparison with SOTA performance: We compare the performance of our Z-

ACN with other state-of-the-art models. The quantitative results can be found in

Table 4.6. Our Z-ACN sets the new state-of-the-art performance in NYUv2 datasets.

Compared to ShapeConv when both methods use ResNet-101 as the backbone and

adopt single-scale inference, our approach achieves 3.8% mIoU improvement.

Outdoor scene: We also evaluate our approach to the outdoor scene, e.g., KITTI

[50]. The vanilla KITTI dataset provides RGB and lidar input. We take the dataset

presented in [179] which provides a dense depth map. We validate all methods on the

held-out testing set due to the smaller size and lack of a proposed validation split.
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Table 4.5: Quantitative comparison with other attention convolu-
tion methods on NYUv2 dataset. All methods are implemented on the
ESAnet baseline and trained under the same settings. Our approach
achieves better mIoU compared to concurrent works under different
backbones, validating the effective of our geometry-constrained sam-

pling position.

Backbone Setting PixelAcc mAcc mIoU f.w.IoU

ResNet-18
+SConv 74.19 60.01 46.93 60.26
+ShapeConv 74.11 59.37 46.38 60.61
+Ours 74.35 59.82 47.02 60.73

ResNet-34
+SConv 74.95 61.08 47.99 61.77
+ShapeConv 74.68 61.07 47.70 61.20
+Ours 75.78 62.81 49.15 62.64

ResNet-50
+SConv 76.13 62.36 49.04 63.00
+ShapeConv 76.17 62.45 49.58 63.02
+Ours 75.88 63.55 50.05 62.99

ResNet-101
+SConv 76.49 63.65 50.43 63.67
+ShapeConv 76.45 63.28 50.10 63.46
+Ours 77.00 64.26 51.24 64.32

We adopt the same modified ResNet-18 as presented in [23] as our backbone with

skip-connected fully convolutional architecture [101]. The conventional convolution is

replaced by our proposed operator.

Our model is compared with 3D representation such as PointNet [116], Conv3D [136,

145] and 2D representation such as DeformCNN [28] and SurfConv [23]. Conv3D

[136, 145] and PointNet [116] use the hole-filled dense depth map provided by the

dataset to create 3D input. For PointNet, the source code is used to use RGB plus

gravity-aligned point cloud (pcl). The recommended configuration [116] is used to

randomly sample points. The sample number is set to be 25k. For Conv3D, the

SSCNet architecture [145] is used and is trained with flipped - TSDF and RGB. The

resolution is reduced to 240×144×240 voxel grid. For DeformCNN, RGB images and

HHA images are chosen as input for a fair comparison. For SurfConv, we compare

with their best performance, which requires a resampling on the input image to be

adapted to the 8 levels of depth. For all the above-mentioned models, we follow the

same configuration and learning settings as discussed in [23].

The quantitative result is reported in Table 4.7 that all methods are trained from

scratch following [23]. While dealing with an outdoor scene, 3D methods such as point

cloud suffer from computational costs compared to 2D CNN which extracts features

from images. It is also the case for Conv3D [136, 145] since voxelizing the whole

3D space is time-consuming. Compared to these 3D methods, our model remains

2D CNN but achieves a better result. DeformCNN [28] takes into RGB + HHA as

input and learns offsets to deform the sampling position. Nevertheless, the offset is
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Table 4.6: Performance comparison with SOTA methods on NYUv2
dataset. ⋆ denotes the multi-scale strategy. Our method is tested
with single-scale inference strategy and sets the new state-of-the-art

performance among ResNet based models.

Method Backbone PixelAcc mAcc mIoU f.w.IoU
ACNet [65] ResNet-50 - - 48.3 -
2.5D [175] ResNet-101 75.9 - 49.1 -
ShapeConv [7] ResNet-101 74.5 59.5 47.4 60.8
⋆CFN [88] ResNet-152 - - 47.7 -
⋆3DGNN [120] ResNet-101 - 55.7 43.1 -
⋆RDFNet [110] ResNet-152 76.0 62.8 50.1 -
⋆ShapeConv [7] ResNet-101 75.5 60.7 49.0 61.7
⋆Malleable [176] ResNet-101 76.9 - 50.9 -
⋆SGNet [11] ResNet-101 76.8 63.1 51.1 -
⋆CANet [207] ResNet-101 76.6 63.8 51.2 -
Z-ACN (Ours) ResNet-101 77.0 64.3 51.2 64.3

Table 4.7: Comparison on KITTI test set. Our methods achieve
better performance compared to 3D approaches and the concurrent
SurfConv. It is worth noting that with single RGB input, our depth-
adapted sampling position enables significant improvement over our
baseline, validating the effectiveness of depth-guided non-local atten-

tion. Models are trained from scratch.

Model Learned features Acc (%) mIoU (%)
PointNet [116] RGB + pcl 55.1 9.4
Conv3D [136,145] RGB + voxel 64.5 17.5
DeformCNN [28] RGB + HHA 79.2 34.2
SurfConv-8 [23] RGB + HHA 79.4 35.1
Baseline RGB 79.3 31.3
Z-ACN (Ours) RGB 79.7 33.5
Z-ACN (Ours) RGB + HHA 80.1 35.8

learned from the input feature maps which do not explicitly leverage the geometric

constraints. In contrast, our model computes the offset from low-level constraint, i.e.,

1-channel depth, with traditional algorithms and does not require gradient descent.

The result in Table 4.7 shows that our model performs favorably over DeformCNN

without extra learning parameters, validating the effectiveness of our depth-adapted

sampling position. SurfConv is a concurrent work that incorporation 3D information

into 2D CNN. However, it requires additional pre-processing on the input data such

that depth-guided image resampling. Instead, we encode the depth into the CNN via

the bias of offset. Compared to the concurrent method, our approach achieves large

performance gains.

We present in Table 4.8 the quantitative comparison over the baseline with weight

initialization. Baseline1 and Baseline2 represent the result obtained with RGB input
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Table 4.8: Quantitative comparison on KITTI test set. Networks
are trained from pre-trained models.

KITTI Baseline1 + Z-ACN Baseline2 + Z-ACN
mAcc (%) 48.3 49.5 51.8 55.1
mIoU (%) 39.1 40.6 41.6 45.3

𝑹𝑮𝑩 𝑯𝑯𝑨 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 GT+ 𝒁-ACN Per Class IoU improvement (%)

Figure 4.5: On the left we illustrate the qualitative comparison on
the NYUv2 dataset. The two first columns are the input RGB and
HHA, respectively. Baseline represents the semantic map obtained
with early fused RGB-HHA input. + Z-ACN stands for the results
obtained by inserting our depth-adapted sampling position into the
baseline. It can be seen that our approach can also improve the base-
line performance in outdoor scenes. The black regions in "GT" are the
ignoring category. On the right, we illustrate the per-class improve-
ment above the baseline. We improve 7/11 objects with 3.7% mean
IoU increment. Segmentation results on the KITTI test dataset. GT
stands for ground truth. The black regions in "GT" are the ignoring

category.

and early fused RGB-HHA input, respectively. + Z-ACN stands for the results ob-

tained by inserting our depth-adapted offset into the baseline. It can be seen that our

methods can significantly enable gains over the baseline performance with improved

depth-awareness. We illustrate in Figure 4.5 the per-class IoU improvement with RGB

input. Compared to the baseline, our approach enables improvement on 7/11 objects,

especially "salient" objects in the urban scene such as the vehicle, cyclists, and pedes-

trians. However, we also observe that our approach achieves lower performance in

detecting lanemark. This is because the lanemark is co-planar as the road that the

confusing geometrical information may add noises for our depth-adapted model.

The qualitative comparison over the baseline is shown in Figure 4.5. The two first

columns show the input RGB image and input HHA map. Baseline is the result

obtained with early fused RGB-HHA input. + Z-ACN denotes that we further replace

the baseline convolution with our approach. By explicitly leveraging the geometry,

our approach constrains the network to pay more attention to boundaries and reason

about semantic maps with higher accuracy. We observe that objects like the vehicle,

pedestrian, and cyclist are better segmented, as well as the sign. Recognizably, these

objects do not share the same depth compared to the background (road or pavement).

Hence, our adapted sampling position contributes to improving the discriminability

of these salient objects.
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Table 4.9: Empirical analysis on the influence of the intrinsic pa-
rameters. All methods are trained from pre-trained model under the

same setting.

NYUv2 (%) mAcc mIoU
Baseline 51.9 40.4
Z-ACN (kr ) 53.4 41.6
Z-ACN (GT) 55.2 42.5

4.1.5 Additional Studies and Discussions

In this section, we conduct additional studies on the NYUv2 dataset to validate the ef-

ficiency, robustness, and flexibility of our operators. We choose VGG-16 with Deeplab

as the baseline. The features are extracted from RGB images. The depth map is used

to guide the sampling position.

4.1.5.1 Intrinsic Parameters

Our model requires the intrinsic parameters to back-project the pixels to the 3D scene

and project the depth-adapted 3D planar grid to the image plane. This pattern is

integrated into Eq. 4.4 and Eq. 4.8. Demanding camera parameters as priors can be a

strong assumption that limits the application. Therefore, we evaluate the performance

with a randomly set camera matrix.

The intrinsic parameters include the principal point and the focal length. However,

most models resize the input image shape, which results in difficulties in using the

official principal point value. Hence, we assume that the principal point is the same

as the center of the input image and chose a random value for focal length. We set

(fu, fv ) = (100, 100) for NYUv2 dataset, where the official value is around (519, 519).

We retrain the new model under the same training setting. The quantitative result

is reported in Table 4.9. We denote kr , the result obtained with randomly chosen

intrinsic parameters, and GT , the result obtained with official values.

It can be seen that with an arbitrary value for intrinsic parameters, our model can

still achieve favorable performance compared to the baseline. Compared to the result

obtained with GT intrinsic value, the loss is only 0.2% for mAcc and 0.9% for mIoU.

The result validates that our model can get rid of the assumption of the input intrinsic

parameters under the condition that they are logically chosen.

4.1.5.2 Ablation Study

To further verify the functionality of both depth-adapted convolution and depth-

adapted average pooling, the following experiments are conducted.
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Table 4.10: Results of using depth-adapted operators in different
layers. Experiments are conducted on NYUv2 test set. i stands for

the number of convolution layers.

Configuration mIoU (%)
Result from scratch

a) Baseline 24.0
b) Z-Conv5_1 27.6
c) Z-Convi_1 29.7
d) Z-Convi_1 + Z-AvgPool 30.4

Result from pre-trained
a) Baseline 40.4
b) Z-Conv5_1 42.2
c) Z-Conv5_2 41.7
d) Z-Conv5_3 41.7
e) Z-Conv5_1 + Z-AvgPool 42.5

• For results trained from scratch: we analyze a) baseline performance, b) a deep

layer convolution replaced by Z-ACN, c) first convolutions from all layers re-

placed by Z-ACN, d) CNN replaced by Z-ACN including the average pooling.

• For results trained from pre-trained weight: we analyze a) baseline performance,

b) the first convolution from a deep layer replaced by Z-ACN, c) the second

convolution from a deep layer replaced by Z-ACN, d) the third convolution

from a deep layer replaced by Z-ACN, e) CNN replaced by Z-ACN including the

average pooling.

Experimental results are reported in Table 4.10. While learning from scratch, our

operators can effectively extract features with geometric relationships and improve

the segmentation performance. By comparing (a) and (b), we only replace deep

convolution with our approach, i.e., the first convolution of layer 5 of VGG-16, we

achieve a 3.6% gain on mIoU. (c) illustrates the result with the first convolution of

all layers replaced by our approach. Our Z-ACN enables a 5.7% gain compared to

the baseline (a). Finally, by introducing the depth-adapted average pooling (d), we

observe that the performance can be further promoted, validating the effectiveness of

our depth-adapted pooling method.

While learning from the pre-trained model, we firstly want to argue that the existing

weight may not be fair nor suitable for our adapted convolution. The existing weight

is learned with a fixed size and shape structure, while our adapted convolution breaks

this limitation. The most suitable pre-trained weight for our operator might require

training our depth-adapted model on ImageNet, which is impossible since the depth

information is not available on this dataset.
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Nevertheless, we still show that our approach can benefit from the conventional pre-

trained weights. By fine-tuning the weights, Table 4.10 illustrates that replacing the

first convolution from a deep layer contributes the most to the performance by 1.8%

over the baseline. By introducing the depth-adapted average pooling, the performance

can be further promoted.

4.2 Application in Saliency Detection

4.2.1 Introduction

In the last decade, RGB-based deep learning models for salient object detection (SOD)

[30, 91, 172, 194, 202] achieved significant success thanks to the advances of GPU and

CNN. Given an input image, the goal of SOD is to compute the pixel-wise location

of the prominent objects that visually attract human attention the most. However,

RGB SOD models focus more on photometric information instead of geometry. This

is due to the fixed shape and size kernel design of CNN that is not invariant to scale

changes and to 3D rotations. By the lack of geometric information on the input side,

it is inevitable for RGB models to add additional learning modules in the network to

attend to salient objects, resulting in model complexity and computational cost.

Recent RGBD-based SOD has motivated research interest thanks to the accessibil-

ity of cross-modal information from the input side. State-of-the-art RGBD mod-

els [44, 109, 115, 203] achieve superior performance over the RGB baseline, affirming

the effectiveness of learning from two modalities. Most architectures adapt fusion-wise

models, such as early fusion [203] where the depth map is fed as the fourth channel

to RGB image, or multi-scale and late fusion [109] where two-stream networks are

adopted. However, early fusion contains more low-level features than semantic ones.

Multi-scale or late fusion inevitably requires more learning parameters. As shown in

Figure 4.6, the size of RGBD models is often larger than that of RGB networks.

We explore differently the relationship between depth map and RGB image. Taking

human beings as an example, to distinguish salient objects from the 3D world, the

input is the visual appearance through human eyes. With the color information and

thanks to the depth estimation capability, humans further discover geometric infor-

mation. This prior guides the understanding of RGB images. It should be the same

case for intelligent machines.

To this end, we propose a novel Modality-Guided Subnetwork (MGSnet) which adap-

tively transforms convolutions by fusing information from one modality to another

(e.g., depth to RGB or RGB to depth). Our network matches perfectly both RGB

and RGB-D data and dynamically estimates depth if not available by simply applying

an off-the-shelf depth prediction model. We design a subnetwork mechanism alongside
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Figure 4.6: Comparison with SOTA saliency model. We report the
performance analysis on NLPR dataset [112]. Note that better models
are shown in the upper left corner (i.e., with a larger mean F-measure
and smaller MAE). The circle size denotes the model size. Our pro-
posed MGSnet for RGB SOD achieves the best performance with the
lightest model size. The MGS design can also be embedded to the
state-of-the-art RGBD model HDFnet [109] to enable further progress

(denoted as ∗+MGS).

the master streaming pipeline. The subnetwork can be treated like a light residual-

addition branch as the ResNet [59]. It takes one modality map as the master input,

e.g. RGB, and enhances its robustness by deforming the convolution kernel with the

supervision of the complementary modal prior, e.g. depth, and vice versa.

In summary, the main contributions of this chapter are listed as follows :

• By exploiting the nature of CNN sampling position, we propose a novel cross-

modal fusion design (MGS) for salient object detection, where we use a sub-

sidiary modality, i.e., RGB/depth, to guide the main modality streaming, i.e.,

depth/RGB.

• For RGB-only input, we suggest using an off-the-shelf depth prediction model to

mimick the multi-modality input. Our MGSnet enables dramatical performance

gain on benchmark datasets and achieves state-of-the-art performance among

RGB SOD models.

• The proposed MGS can also be embedded in RGBD two-stream network with

the advantage of cross-modality cues while being lightweight.

4.2.2 Related Work

RGB SOD: In the past decade, the development of GPU and CNN contributes

to the advances of RGB SOD. One core problem is understanding the geometric

information from the image. Fully Convolutional Network (FCN) [101] is a pioneering

work in leveraging spatial information in CNN. Most recent researches dominating

RGB SOD are FCN-based, such as [194] which designs a single stream encoder-decoder
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system, [79] which adopts a multi-scale network on input, and most currently [30,91,

172,202] which fuse multi-level feature map. Some branch designs also have achieved

impressive results such as C2S-Net [81] which bridges contour knowledge for SOD.

By inserting additional transformation parameters in networks, it contributes to the

model performance. Nevertheless, the inference time and computational cost become

more significant.

RGBD SOD: The complementary depth map may provide extra clues on the geom-

etry. How to efficiently joint RGB and depth modality is the key challenge for RGBD

SOD. One possible solution is to treat the depth map as an additional channel and

adapt a single-stream system as shown in DANet [203]. It further designs a verifi-

cation process with a depth-enhanced dual attention module. An alternative is to

realize multi-stream networks followed by a feature fusion mechanism. PDNet [215]

designs a depth-enhanced stream to extract geometric features and further fuses with

the RGB features. D3net [37] adopts separate networks to respectively extract fea-

tures from RGB, depth map, and RGBD four-channel input. A late fusion is further

realized. HDFnet [109] adopts two streaming networks for both RGB image and depth

map. These features are further fused to generate region-aware dynamic filters. JL-

DCF [44] proposes joint learning from cross-modal information through a Siamese

network. Generally, RGBD networks achieve superior performance compared to RGB

as shown in Figure 4.6. However, these methods rely on the quality and accessibility

of the depth map. A high-quality depth map requires expensive depth sensors and is

still sparse compared to an RGB image as suggested in [37,44]. To this end, DCF [69]

proposes to calibrate the raw depth to improve the quality. Nevertheless, the high

computational cost due to the two-streaming network requires more development.

Some recent researches [70, 115, 199] propose to learn from RGBD images and tests

on RGB. This design enables an RGB CNN to achieve a comparable result with

RGBD SOD during testing. Different from it, we propose to firstly discover the

hidden geometric modality behind RGB images by simply using an off-the-shelf depth

prediction method. With the estimated depth, we further propose a Modality-Guided

Subnetwork mechanism to enhance the master RGB network understanding of the

contour problem. Our proposed MGSnet achieves state-of-the-art performance with

real-time inference speed compared to other RGB models. It can also be embedded

in RGBD two-stream models to enable further progress with raw depth.
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Figure 4.7: Overview of our MGSnet. (a) Conventional RGB mod-
els [91,172,194] insert additional modules to learn geometry-invariant
features. (b) RGBD models [44, 109, 203] adopt fusion-wise design to
learn both photometric and geometric information. (c) Our proposed
MGSnet which takes only RGB image for both training and testing.
We use depth prior to guide sampling position on RGB feature map
through a subnetwork design to compensate the master streaming.
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Figure 4.8: Illustration of embedded MGS on a RGBD two-
streaming network.

4.2.3 Modality-Guided Subnetwork

4.2.3.1 Overview

In Figure 4.7 (c), our network only takes RGB as input that then estimates the pseudo-

depth. Our MGSnet only takes the pseudo-depth to deform the RGB streaming. In

other words, only the RGB modality is fed through Conv_4.

Note that our model is not limited by the nature of the modality. It can be a depth-

guided RGB convolution as well as an RGB-guided depth convolution. Figure 4.8

presents our model embedded on an RGBD two-streaming network and Figure 4.9

illustrates the idea of modality-guided sampling position. We learn the offset from

both semantic RGB and depth features to create a cross supervision mechanism.

For simplicity, we present in the following section a depth-guided subnetwork for RGB

features. It contains three parts: a master RGB streaming network, an off-the-shelf

prediction model to estimate a pseudo-depth map if not available, and a depth-guided

subnetwork design. For simplicity, VGG-16 [133] architecture is adopted as our basic

convolutional network to extract RGB features for its wide application in SOD. We
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use RFB [94] on the steamer layers (f3, f4, f5) which contains high level features for

SOD as suggested in [44,109,115]. We further embed our subnetwork to enhance the

edge understanding of the encoder output. We take the same decoder as proposed

in [115] and a simple binary cross-entropy (BCE) as the loss.

4.2.3.2 Depth-guided Subnetwork

To proceed with the geometric prior, the depth map D and the RGB feature map (out-

put of Conv_4) are fed together to our model. We use f4 ∈ Rb×512×h×w to denote the

input RGB feature. The depth prior and RGB feature maps are articulated through

an adaptive convolution to compute depth-aware RGB feature maps as output. The

last is added to the master RGB stream to form the final feature map.

The subnetwork contains three convolutions of different filter sizes: 1× 1, 3× 3, and

1× 1. It shares the same architecture of plain baseline of ResNet [59] that the 1× 1

layers are used for reducing (512→64) and then increasing dimensions (64→512),

allowing the 3 × 3 layer with smaller input/output dimensions. We denote D and U
for the first and the last 1 × 1 convolution, which stands for down-sample and up-

sample, respectively. This design can significantly reduce the learning parameters,

which contributes to the lightweight design of our subnetwork. Different from ResNet

that uses the three layers as a bottleneck, we use them as the residual-addition branch

which serves as complementary information to the plain network.

Similar to previous section 4.1.3, we replace the conventional 3 × 3 convolution by

deformable convolution (DeformConv) [28], where the kernels are generated with dif-

ferent sampling distributions which is adapted to depth modality. Mathematically,

we have:

y(p) =
∑

pn∈R(p)

w(pn) · x(p + pn +∆pn) (4.12)

The convolution may be operated on the irregular positions pn + ∆pn as the offset

∆pn may be fractional. To address the issue, we use the bilinear interpolation which

is the same as that proposed in [28]. The adapted convolution is denoted as A.

Thanks to the depth input of the subnetwork, the scale and geometric transformation

of objects on the RGB feature map can be directly analyzed with the adapted offsets.

This process is expressed as:

∆pn = η(D) (4.13)
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(a) Depth-guided sampling position. (b) RGB-guided sampling position.

Figure 4.9: Visual understanding of MGSnet. A pair of RGB and
depth images from an RGBD dataset are illustrated on the left. While
extracting features through two streaming networks, the cross-modal
information beyond the fixed sampling position is not utilized (sec-
ond left). Our proposed modality-guided sampling position breaks the
limit of fixed-local configurations. The new sampling position incorpo-
rates supporting modality into the basic function of CNN on the main
modality: the fixed sampling position is replaced by relevant neighbors

defined by the supporting modality without limitation (right).

We present two types of offset generators according to different plain networks. More

details are discussed in the following section. The newly defined sampling position

becomes depth-aware and helps to better articulate the RGB feature and geometric

information. Finally, the output of MGS is added to the master stream, which serves

as complementary depth-aware guidance on RGB features.

The entire process to compute the modality-guided feature fM can be formulated as

follows:

fM = MGS(f4,D)

= U(A(D(f4), η(D)))
(4.14)

The output of RGB encoder can be formulated as :

out = f5 + λfM (4.15)

where λ is the weight parameter.

4.2.3.3 Offset generator

We use another modal prior to deform the main stream convolution. When the offset

exceeds the input size, the output will be computed as if the zeros padding is applied.

For RGB input, the pseudo-depth is used to deform the RGB sampling position.

The offset is generated through Z-ACN [166, 169] or previous section 4.1.3. It firstly

back-projects the 2D conventional grid to form a 3D point cloud according to the

depth. Based on the point cloud, it extracts a depth-aware 3D plan and further

creates a depth-aware 3D regular grid. Then it projects the 3D regular grid to the

image plan to form the deformable sampling position. More details can be found in Z-

ACN [166,169] paper. Different to DeformConv [28] that learns offset from the RGB
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feature map to deform RGB sampling position, Z-ACN computes offset according

to low-level geometric constraint (one-channel depth) and does not require gradient

descent, thus perfectly matches our light-weight subnetwork design. The computed

offset allows the RGB convolution to be scale and rotation independent. We verify

through experiments the superior performance of our model in the ablation study.

For RGBD input, current Sconv [11] suggests learning the RGB offset from a semantic

depth feature map. We share the same motivation as Sconv. However, Sconv firstly

projects the depth into a high-dimensional feature space and secondly learns a depth-

aware offset and mask. Unlike Sconv, we learn the offset from the encoder or high-

level features to avoid the additional projection. In other words, in our case, the

offset generator η is realized through a simple 3 × 3 convolution to minimize the

computational cost. Furthermore, we adapt to different modalities as input, i.e., it

learns offset from both RGB and depth, while Sconv only learns from depth.

4.2.3.4 Understand adaptive sampling position

Our model aims to compensate for the single modality streaming. As shown in Figure

4.9, while extracting features from RGB images, the conventional sampling position

is limited by the lack of capability to include geometry due to the fixed shape. We

propose to use the depth prior to accurately locate the sampling position. For RGB

input without depth prior, we suggest mimicking the depth map by using a monocular

depth estimation model. Some pseudo-depth images may be inaccurate due to the

domain gap between SOD and monocular depth estimation. In such a case, the

offset will converge to 0 so that the deformation becomes minimal and local. The

contribution of the depth-aware RGB feature is further regularized by the weight

parameter λ of Eq. 4.15. In Fig. 4.10, we show that our method is robust to non-

optical depth through several examples.

While extracting features from raw depth, conventional sampling positions may pro-

duce sub-optimal results due to some inaccurate measurements. The raw depth maps

for SOD are obtained by camera measurements such as Kinect and Light Field cam-

eras, or estimated by classic computer vision algorithms as [90, 138]. Thus, the raw

depth images may contain noise and ambiguity. We can visualize several low-quality

samples on the third row of Figure 4.10. To this end, we propose to use the RGB im-

age to deform the depth sampling position. In such a case, the RGB-guided sampling

position can make up for the measurement error on geometry.
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4.2.4 Experiments

4.2.4.1 Benchmark Dataset

To verify the effectiveness of our method, we conduct experiments on seven follow-

ing benchmark RGBD datasets. DES [22] : includes 135 images about indoor scenes

captured by Kinect camera. LFSD [80]: contains 100 images collected on the light

field with an embedded depth map and human-labeled ground truths. NLPR [112]:

contains 1000 natural images captured by Kinect under different illumination condi-

tions. NJUD [72]: contains 1,985 stereo image pairs from different sources such as the

Internet, 3D movies, and photographs taken by a Fuji W3 stereo camera and with esti-

mated depth by using optical flow method [138]. SSD [216]: contains 80 images picked

up from stereo movies with estimated depth from flow map [138]. STEREO [106]: in-

cludes 1000 stereoscopic images downloaded from the Internet where the depth map is

estimated by using SIFT flow method [90]. DUT-RGBD [114]: contains 1200 images

captured by Lytro camera in real-life scenes.

4.2.4.2 Experimental Settings

Our model is implemented basing on the Pytorch toolbox and trained with a GTX

3090Ti GPU. We adopt several generally-recognized metrics for quantitative evalu-

ation: F-measure is a region-based similarity metric that takes into account both

Precision (Pre) and Recall (Rec). Mathematically, we have : Fβ = (1+β2)·Pre·Rec
β2·Pre+Rec

. The

value of β2 is set to be 0.3 as suggested in [1] to emphasize the precision. In this

chapter, we report the maximum F-measure (Fβ) score across the binary maps of

different thresholds, the mean F-measure (Fmean
β ) score across an adaptive threshold

and the weighted F-measure (Fw
β ) which focuses more on the weighted precision

and weighted recall. Mean Absolute Error (MAE) studies the approximation de-

gree between the saliency map and ground-truth map on the pixel level. S-measure

(Sm) evaluates the similarities between object-aware (So) and region-aware (Sr ) struc-

ture between the saliency map and ground-truth map. Mathematically, we have:

Sm = α · So + (1 − α) · Sr , where α is set to be 0.5. E-measure (Em) studies both

image level statistics and local pixel matching information. Mathematically, we have:

Em = 1
W×H

∑W
i=1

∑H
j=1 ϕFM(i , j), where ϕFM(i , j) stands for the enhanced-alignment

matrix as presented in [36].

4.2.4.3 Performance Comparison with RGB Input

We firstly compare with RGB models, including R3Net [30], PoolNet [91], CPD [172],

AFnet [40]. All saliency maps are directly provided by authors or computed by au-

thorized codes. For fair comparisons, we adopt the same training set as suggested

in [115], which contains 1485 samples from NJUD, 700 samples from NLPR, and 800
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samples from the DUT-RGBD dataset. The remaining images of all listed datasets

are used for testing. The quantitative comparison is presented in Table 4.11. Our

model is trained with 50 epochs with 256× 256 input image size.

For the RGB model, we can conclude from Table 4.11 that the improvement on the

saliency map is attributed to different learning modules, which results in high com-

putational cost (size). Different from traditional RGB models which do not exploit

the depth information, we propose to take full advantage of the pseudo-geometry

estimated with an existing monocular depth estimation method.

We re-train two RGB-D SOD network (HDFnet [109], CoNet [70]) with the additional

estimated pseudo-depth. We observe a significant performance gap between the recent

RGB-D models and the previous RGB models. The main reason is the quality of

depth estimation: the domain gap between the depth estimation dataset and the

SOD dataset leads to some failure depth maps. This can be noticed in the poor

performance of HDFnet that extracts features from both RGB and depth images.

CoNet, however, is more robust to the depth quality since the depth map is only

used to supervise the feature extraction on RGB images. Our model shares the same

motivation as CoNet to use depth prior to guide SOD but in a completely different

manner. In our model, we directly learn a geometric-aware offset from the depth map

to the sampling position on the RGB image. Our model achieves consistent superior

performance compared with other models.

4.2.4.4 Performance Comparison with RGB-D Input

We also compare with state-of-the-art RGBD models with raw depth input in the

Table 4.12, including CoNet [70], A2dele [115], DANet [203], cmMS [76], HDFnet [109],

and DSA2F [141]. For fair comparisons, all saliency maps and the FPS are directly

provided by authors or computed by authorized codes. Note that the FPS depends

on the GPU for inference. Thus, only the FPS of HDFnet is tested on the same GPU

as ours.

While depth is only used as supervision during training and only RGB image is re-

quired during testing, our model surpasses existing efficient A2dele significantly on

performance with only an + around 5Mb model size. Compared to CoNet, the model

size is minimized by 63% and achieves a comparable result. As presented in Fig-

ure 4.9, our proposed module can take advantage of cross-modality cues while being

lightweight. Thus, we further incorporate with the HDFnet [109] to show the per-

formance gain by integrating our approach. It achieves the state-of-the-art (SOTA)

performance on VGG16 based models (HDF + Ours). To better demonstrate the su-

periority of the proposed method, we also use a larger backbone (VGG19) to compare
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with the plain version HDFnet and the SOTA method DSA2F. Note that DSA2F uses

neural architecture search to automate the model architecture while ours is hand-

designed. Our model enables significant gains on the plain version with minimal cost

(+ around 1 Mb on model size) and achieves comparable results with the DSA2F.

4.2.4.5 Qualitative Evaluation

We present the qualitative result with some challenging cases in Figure 4.10: low

density (1st columns), similar visual appearance between foreground and background

(2nd − 5th columns), small objects (6th columns), far objects (7th − 9th columns),

human in scene (10th columns), and similar and low contrast on depth map (11th−13th

columns). It can be seen that our MGSnet yields the results closer to the ground truth

mask in various challenging scenarios, especially for the last three columns with low-

quality depth clues. Different from two-stream networks that tend to treat sub-optimal

depth equally as RGB input, MGSnet extracts features from RGB images while the

depth map serves only as complementary guidance, thus becoming robust to depth

bias. By analyzing the response on HDFnet (sixth row) and HDFnet with embedded

MGS (seventh row), we observe that our approach enables the plain network better

discrimination of salient objects from the background.

4.2.5 Ablation Study

Figure 4.10: [
Visual comparison between the proposed MGSnet and the state-of-the-art

RGB/RGBD methods. ]Visual comparison between the proposed MGSnet and the
state-of-the-art RGB/RGBD methods. ∗ denotes that the ground truth depth is
used during testing. We also embed MGS on the HDFnet [109] to enable further

improvement, denoted as ∗HDF + Ours.
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Effect of Modality-Guided Sampling Position: Our modality-guided sampling

position aims to incorporate multi-modal information through the basic function of

CNN - the sampling position of convolution. This pattern is integrated in Eq. 4.12

and Eq. 4.13. To verify the effectiveness of the proposed modality-guided sampling

position, a series of experiments with different learning strategies are realized.

(1) - (4) are experiments on RGB model: (1) RGB Baseline. (2) Self-guided de-

formable sampling position. We learn the offset from the RGB feature map. (3) RGB

pseudo-depth early fusion. We form a four-channel input with pseudo depth. (4)

Depth-guided deformable position. We compute an offset from pseudo-depth using

Z-ACN to guide RGB streaming. (5) - (7) are experiments on RGBD model: (5)

Baseline. We use the same architecture as HDFnet. (6) Self-guided deformable sam-

pling position. The offset applied to RGB streaming is learned from the RGB feature.

Idem for depth streaming. (7) Cross modality-guided deformable position. We learn

an offset from depth to guide RGB streaming, and vice versa.

In
pu

t
RG

B
RG

BD
O
ur
s

M
as
k

Figure 4.11: Visual analysis of embedded depth with MGSnet.

Table 4.13 (1) and (3) compare the performance of the baseline RGB three-channel

input and mimicked RGBD four-channel input with pseudo-depth, respectively. The

mimicked multi-modality early fusion achieves better performance, indicating that the

pseudo-depth provides additional semantic. However, by comparing (3) and (4), we

observe that the proposed depth-guided deformable sampling position can better use

the complementary information to supervise RGB streaming, compared with early

fusion. By comparing (2) and (4), we show that the depth-guided deformable position

is more accurate on saliency compared to that of the self/RGB-guided. This verifies

the assumption that depth cues can help the RGB model to better distinguish the

foreground and background. Note that in (4) we only extract features from RGB im-

ages. The additional awareness of the geometry is only treated as a 2D offset to better

locate the sampling position. This new integration design contributes to the model

performance with minimal cost. For better understanding, the qualitative result pre-

sented in Figure 4.11 shows that our approach provides more accurate saliency maps
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with better contrast. On the RGBD model (5-7), we also observe the superior per-

formance with the cross-modality deformable sampling position achieves as it directly

compensates for the single modal streaming.

Performance with different depth qualities: We also conduct an experiment

to show the impact of depth quality. We choose the HDFnet [109] as the baseline

and further embed it with our method. We present the average metric on all testing

datasets in Table 4.14 with pseudo-depth (estimated) and raw depth from the RGBD

dataset. Results obtained with pseudo-depth are denoted with *.

AvgMetric HDFnet∗ +Ours∗ HDFnet +Ours

MAE ↓ .1053 .0758 .0405 .0375
Fβ ↑ .8410 .8599 .9121 .9166
Fmean
β ↑ .7326 .7868 .8730 .8831

Fw
β ↑ .6789 .7488 .8569 .8672

Sm ↑ .8010 .8390 .9013 .9053
Em ↑ .8359 .8797 .9312 .9377

Table 4.14: Performance variation with different depth qualities. (*)
denotes results obtained with pseudo-depth.

It shows that the quality of depth has an important influence on performance. Features

extracted from raw depth describe better the salient object and were in line with our

expectations. However, in both cases, our MGS can significantly enable progress

compared to the plain networks. For pseudo-depth, the contribution of our MGS

is more significant, which can be explained by the effectiveness of our RGB-guided

sampling position for depth streaming. It can efficiently help to alleviate depth errors.

4.3 CONCLUSIONS

In this chapter, we discuss a novel 2D CNN to include geometric information in RGB

CNN. We firstly validate our approach in semantic segmentation tasks. Different

from previous works that integrates the channel or spatial attention into convolution

through learning methods, our network fully explores the geometric constraint in a

statistic manner, making the depth-awarenss independent to the learning settings.

We introduce two basic depth-adapted operators that can be easily integrated into

the existing CNN model. Extensive studies generalization property of our methods

which perform favorably over the baseline and other convolutions. Experiments on

challenging RGB-D datasets demonstrate that our approach performs well over the

state-of-the-art methods by large margins.

Furthermore, we test the idea of depth-guided convolution on RGB-D saliency tasks.

Since our method can only generates offset from depth cues, we inspire from concur-

rent method and propose a learnable offset generate to enable bi-directional guidance
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(Depth to RGB and RGB to depth). Extensive experiments against RGB baselines

demonstrate the performance gains of the proposed module, and the addition of the

proposed module to existing RGB-D models further improved results.

In this chapter, we present how to explore depth as a form of spatial attention to bet-

ter guide convolutional sampling position. Recent development on NLP, especially on

transformer attention has shown great advantages in modeling contextualized aware-

ness. Regular convolution and deformable convolution can also be regarded as a

special case of transformer: the query is the center pixel and the key are the neigh-

boring pixels within conventional sampling position or deformable sampling position.

Despite the plausible results achieved by convolutional networks, the limited capa-

bility of modeling the contextualized features is the main performance bottleneck for

both backbones and feature fusion modules. Therefore, in the following chapter, we

present the transformer attention to fuse RGB-D cues.
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Chapter 5

Transformer Fusion for RGB-D
Semantic Segmentation

Fusing geometric cues with visual appearance is an imperative theme for RGB-D in-

door semantic segmentation. Existing methods commonly adopt convolutional mod-

ules to aggregate multi-modal features, paying little attention to explicitly leveraging

the long-range dependencies in feature fusion. Therefore, it is challenging for existing

methods to accurately segment objects with large-scale variations. In this chapter,

we propose a novel transformer-based fusion scheme, named TransD-Fusion, to bet-

ter model contextualized awareness. Specifically, TransD-Fusion consists of a self-

refinement module, a calibration scheme with cross-interaction, and a depth-guided

fusion. The objective is to firstly improve modality-specific features with self- and

cross-attention, and then explore the geometric cues to better segment objects shar-

ing a similar visual appearance. Additionally, our transformer fusion benefits from a

semantic-aware position encoding which spatially constrains the attention to neigh-

boring pixels. Extensive experiments on RGB-D benchmarks demonstrate that the

proposed method performs well over the state-of-the-art methods by large margins.

5.1 Introduction

Recent developments in depth sensors provide geometric information at a low cost.

Since the depth information along with images can naturally contribute to scene un-

derstanding, RGB-D semantic segmentation has drawn increasing attention [154,158,

166,206].

When merging the depth cues and images, three typical challenges arise: (1) Multi-

modal fusion. RGB input contains rich information on visual changes, while depth

images are sensitive to occluded boundaries. How to extract, preserve, and fuse these

modality-specific features is as yet an open issue for RGB-D semantic segmentation.

(2) Noisy response in each modality. On the one hand, the similar visual appearance

between neighboring objects can adversely affect the model discriminability. On the
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Figure 5.1: Comparison of different RGB-D fusion strategies.
(1) Conventional RGB-D early fusion schemes. (2) Previous attempts
to improve the RGB-D learning with local depth awareness [154,166].
(3) Pipeline of most existing two-stream networks with pixel-wise fea-
ture fusion strategies [15,65]. P. stands for Pixel-Wise Correlation.
(4) Our transformer fusion which explores contextualized geometric
cues to better deal with objects sharing the similar visual appearance.

T. stands for Transformer Fusion.

other hand, the depth quality may be influenced by environmental factors during

acquisition, such as object distances, as discussed in previous works [15, 37, 69]. (3)

Feature alignment. As shown in Fig. 3.1(3), current fusion approaches assume that

the sensor calibration is precise and different modalities are accurately aligned at the

pixel level, which is not always the case in practice. Despite the recent advances

[11, 15, 65, 154], we observe that most existing works are still based on pixel-wise

fusion, whose limited awareness of contextualized cues causes the main performance

bottleneck.

Recently, transformer has shown its capability in modeling long-range dependencies

in various vision tasks [17,32,98,218]. Compared to convolution, transformer is built

upon global attention with inter key-query correlation. We observe that by extend-

ing the inter key-query correlation to cross-modal key-query correlation, transformer

attention suggests a natural way to aggregate RGB-D features. Inspired by this obser-

vation, we propose to firstly extract both mixed RGB-D and modality-specific depth

features. Then we leverage the depth cues to retrieve geometric information from

mixed RGB-D features. As shown in Fig. 3.1(4), the key idea is to leverage contex-

tualized transformer attention to improve the early fusion with enhanced awareness

of depth cues. As such, we can better deal with objects sharing a similar visual ap-

pearance but at different camera distances or with occlusion, which is challenging for

indoor semantic segmentation.

Specifically, our transformer fusion with geometric cues, termed TransD-Fusion, con-

sists of three parts: a self-enhancement module, a bi-directional cross-calibration mod-

ule, and a depth-guided query design. The enhancement module is realized through

the vanilla transformer self-attention. The bi-directional calibration module aims to

refine each modality with complementary information: for the depth image, we ex-

pect to suppress unsatisfactory responses due to measurement bias; while for the RGB
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image, we expect to strengthen the edge awareness on neighboring objects with a sim-

ilar visual appearance. Finally, the depth-guided query strategy ensures effectively

segmenting objects with strengthened discriminability.

To enable position-awareness and leverage locality into our TransD-Fusion, we propose

a semantic-aware position encoding generator (S-PE) built upon convolutions. It

takes a modality-specific sequence as input and generates a category-aware position

encoding. We expect our encoding to spatially constrain the attention around the

neighboring area to better segment objects. Moreover, our positional embedding can

be learned from hierarchical features, yielding a simple yet efficient encoding for RGB-

D fusion. Finally, to tackle the limitations of CNN-based backbones, we implement our

TransD-Fusion on Swin-Transformer [98] to better model contextualized dependencies.

In brief, our contributions are summarized as follows:

• We propose a novel transformer-based multi-modal fusion to replace the existing

pixel-wise fusion modules for RGB-D semantic segmentation.

• We design a semantic-aware position encoding (S-PE) scheme to improve our

transformer fusion. The S-PE is dynamically generated from a modality-specific

sequence of tokens by a convolutional layer, yielding a spatial constraint on

neighboring features for accurate segmentation.

• Our proposed network performs favorably over the state-of-the-art methods on

large-scale benchmark datasets by large margins.

5.2 Related Work

5.2.1 RGB-D Semantic Segmentation

How to deal with the complementary depth is a key research topic for RGB-D se-

mantic segmentation. At an early stage, [55] proposes to explore the geometric

cues by transforming the depth map into an HHA image. Afterward, researchers

take RGB-HHA as input and design various fusion strategies. Several preliminary

works [55, 57, 150] fuse the RGB-D images from the input side, treating depth/HHA

as additional channels. D-CNN [154] further proposes a depth-aware re-calibration

weight to strengthen the discriminatory power during feature modeling. Since then,

networks with early-fused RGB-HHA have shown great advances with different forms

of weight functions [18, 175, 176]. However, the proposed depth-aware operations are

sensitive to depth noise, which might be the performance bottleneck while dealing

with unsatisfactory geometry.

To address this issue, several works propose to re-calibrate feature representation

with the attention modules. ACNet [65] adopts self-enhancement module with the

channel attention [64]. Sharing the same idea, ShapeConv [7] directly integrates the
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channel attention into the convolution function. SA gate [15] further leverage spa-

tial attention [161] to calibrate each modality. Another group of works proposes to

enhance feature representation with long-range attention. [85] introduces ConvLSTM

models in RGB-D fusion to better model contextualized cues. VCD [177] introduces

a learned Gaussian convolution kernel to improve spatial-context awareness. Several

works [11, 166] integrate depth cues with the deformable convolution [28] to create

a more malleable receptive field. Despite the popularity of non-local attention in

RGB-D semantic segmentation [11, 85, 166, 177], the capability of modelling long-

range dependencies is still limited due to convolution-based feature extraction and

fusion. Furthermore, one basic assumption for existing approaches is that the RGB

and depth maps are perfectly aligned at the pixel level, which is not always the case

in practice due to sensor calibration errors. To tackle these dilemmas, we propose a

transformer-based aggregation scheme to explicitly leverage contextualized awareness

in multi-modal feature fusion.

5.2.2 Transformer Fusion

There are extensive surveys [56, 73, 144] of transformer applied in vision tasks. ViT

and its successors [32, 98, 123] explore the transformer on feature modeling. DERT

and its successors [8,46,218] adopt transformer on the detection head. Several works

on video object tracking [17, 152, 180] adopt transformer to analyze the correlation

between search image and template image. Another work on saliency detection [93]

adopts transformer as a dimension regulator to convert the sequence of tokens from

the encoder space to the decoder space. Different from previous works, our model aims

to explore multi-modal cues for feature aggregation. We make full use of attention

modules to explicitly preserve, calibrate, and fuse multi-modal information.

By design, attention modules cannot capture order awareness of input tokens. Hence,

various researches on position encoding (PE) have been conducted to address this

issue. In the literature, two main groups of solutions are proposed: absolute PE

and relative PE. Absolute PE generates a unique encoding vector for each position,

e.g., 2D sinusoidal embeddings [49, 147], while relative PE proposes to focus on the

relative distance of the elements [4, 129, 183]. In vision tasks, previous studies [32,

60, 98, 162, 218] have shown that the relative position enables better performance on

the image classification task, while the absolute encoding is more suitable for object

detection where the pixel position plays a vital role in segmenting and locating objects.

CPVT [24] proposes a conditional PE to leverage the local awareness through a single

2D convolution to improve ViT. However, extending such an idea to RGB-D feature

fusion at the semantic level is non-trivial due to the limited feature resolution. In
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Figure 5.2: Overview of the proposed network for RGB-D semantic
segmentation. Our TransD-Fusion leverages the transformer attention
to aggregate multi-modal features. The self-attention aims to refine
modality-specific features, while the cross-attention makes full use of
cross-domain cues to firstly calibrate and then combine multi-modal
information. The transformer fusion benefits from dynamically gen-
erated position encodings to constrain the attention around category-

aware neighboring pixels.

contrast, we propose a modality-dependant and semantic-aware PE to improve our

transformer fusion with a better position and category awareness.

5.3 Our Approach: TransD-Fusion

5.3.1 Overview

Fig.5.2 presents the overall framework of our network which is composed of a master

network, a subsidiary network, and our proposed transformer feature fusion (TransD-

Fusion). The master network is an encoder-decoder pipeline with early-fused RGB-

HHA images. The encoder stage takes the transformer backbone to extract features

from concatenated RGB-HHA input, while the decoder stage takes the classical convo-

lutional head to output the semantic map. The subsidiary network takes HHA images

as input. It processes depth features and aims to enhance the master network with

geometric cues via our TransD-Fusion. Details are presented in the following sections.

5.3.2 Master-Subsidiary Network

Early fusion has been widely exploited in RGB-D semantic segmentation [18,154,175,

176]. It promotes the geometric constraint in the visual appearance from the input

side. Nevertheless, the inflexibility of further analysis of multi-modal features at the

semantic level severely limits the model performance. To address this issue, we design

a master network with early-fused input and a subsidiary stream to enable high-level

manipulation with transformer fusion.
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Figure 5.3: Our proposed feature enhancement, calibration, and fu-
sion scheme with transformer attention. Best viewed in color.

Given the RGB image I ∈ R3×H×W and the geometric feature HHA map D ∈
R3×H×W , we can obtain the master feature X ∈ R3×H×W :

X = Conv1×1([I ,D]), (5.1)

where [] denotes the concatenation along the channel dimension. In such a way, the

master feature contains both photometric and geometric information and feats the

input shape of the transformer backbone.

To extract multi-modal features, X and D are firstly fed into the patch partition to

form two sequences of token separately, and then fed into the Swin-Transformer [98]

encoders. A Swin-Transformer layer contains window-based multi-head self-attention

(W-MSA), shifted window partitioning configurations (SW-MSA), and a point-wise

multi-layer perceptron (MLP) with layer norm (LN). For the i th layer, i ∈ {1, ..., L},
it takes the sequence zi−1 as input, and outputs the new sequence zi+1:

ẑi = W -MSA(LN(zi−1)) + zi−1;

zi = MLP(LN(ẑi )) + ẑi ;

ẑi+1 = SW -MSA(LN(zi )) + zi ;

zi+1 = MLP(LN(ẑi+1)) + ẑi+1.

(5.2)

Compared to CNN backbones [59,133], transformer encoders [98,147,198] can better

model long-range features. Furthermore, we particularly build upon Swin-Transformer

[98] with window attention which reduces the computational complexity. We refer

readers to the original paper [98] for more details.
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5.3.3 Transformer feature fusion

Given two sequences of tokens fX ∈ Rc×h×w and fD ∈ Rc×h×w from different streams,

we firstly apply convolutions to fX and fD and and output two new feature maps.

We expect to strengthen the local awareness and/or to reduce the channel size from

c to c ′. These two new feature maps are further flattened in spatial dimension,

obtaining fx ∈ Rc ′×hw and fd ∈ Rc ′×hw . These flattened features are the inputs of our

transformer fusion.

As shown in Fig. 5.3, we propose a three-stage fusion scheme. Firstly, the modality-

specific features are enhanced through self-attention. Secondly, a bi-directional cali-

bration is applied with cross-attention. Finally, we initialize a geometry-guided query

scheme to accurately segment objects. The attention module is equipped with learn-

able position encoding to enable both local and semantic awareness. In the following

paragraphs, we introduce the details of each component. The benefit of each compo-

nent can be found in the ablation study Section 5.4.2.3 Table 5.6.

5.3.3.1 Multi-Head Attention in Transformer.

The attention mechanism is the key component of our TransD-Fusion. Given an

input sequence of tokens, it is firstly flattened to a 1D vector and generates three

intermediate representations: queries Q, keys K , and values V . The attention is

formulated as follows:

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V , (5.3)

where dk is the scaling factor. [147] shows that multi-head attention with h heads can

further contribute to the model performance by paying diverse attention to features

from different positions. The multi-head attention is formulated as follows:

MultiHead(Q,K ,V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i ,VW V
i )

(5.4)

where WO ,WQ
i ,WK

i ,W V
i are the projection matrices.

5.3.3.2 Self-Enhancement.

While (Q,K ,V ) are from the same input modality, the attention module becomes

multi-head self-attention which can be considered as a self-enhancement. It analyzes

long-range dependencies and explores contextual information to further improve the

modality-specific features. Taking flattened global feature fx as an example, the self-

enhanced global feature Xs can be formulated as:

Xs = fx +MultiHead(Qx + Px ,Vx + Px ,Kx), (5.5)
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where (Qx ,Kx ,Vx) are the associated intermediate representations and Px is the asso-

ciated position encoding. Similarly, we can obtain the self-enhanced geometric feature

Ds with the associated position encoding Pd .

5.3.3.3 Cross-Calibration.

The objective of cross-calibration is to reduce the ambiguity in a single modality, e.g.,

the limited awareness of the geometric cues in visual appearance and measurement

bias in geometric features. Different from previous dual attention [15,161], our cross-

calibration is based on transformer attention. We take the queries from one input

feature, e.g., QDs , to compute the correlation with the keys from the other modality,

e.g., KXs . Formally, we have:

Xc = Xs +MultiHead(QDs + Pd ,KXs + Px ,VXs ),

Dc = Ds +MultiHead(QXs + Pd ,KDs + Px ,VDs ),
(5.6)

where (Xs ,Ds) are the outputs of the self-enhancement module, (QXs ,KXs ,VXs ) are

the associated intermediate representations for master feature Xs , and (QDs ,KDs ,VDs )

for subsidiary feature Ds . We use the same position encodings (Px ,Pd) as in previous

self-enhancement module.

5.3.3.4 Depth-Guided Fusion.

To combine master and subsidiary streams, similar to cross-calibration, we use the

geometry stream to initialize the query strategy. The difference compared to cross-

calibration is that the depth-guided fusion here is non-symmetrical version. We have:

Output = Xc +MultiHead(QDc + Pd ,KXc + Px ,VXc ) (5.7)

where (Xc ,Dc) are the outputs of the cross-calibration module, in which the same

position encodings (Px ,Pd) are used. The depth-guided fusion module contributes to

deal with objects with similar appearance.

5.3.4 Semantic-Aware Position Encoding

We propose a novel position encoding to equip with our transformer attention. Specif-

ically, for each modality, we dynamically generate the position encoding from a lower-

dimensional feature map with a larger resolution to make full benefits of spatial in-

formation, i.e., the output of the first stage of the encoder.

As illustrated in Fig. 5.4, given the two sequences with higher resolution, we first

project the input sequence into a high-dimensional feature space through semantic
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Semantic-aware Position Encoding Generator (S-PEG)
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𝑃𝐸

𝑃𝐸

Figure 5.4: Our proposed semantic-aware position encoding (S-PE).
Left: position encoding flows. Right: illustration of encoding genera-

tor. Best viewed in color.

projector P. Here we use the term "semantic" since the embedding dimension is sig-

nificantly higher than the input dimension. Therefore, we assume that the projection

can allow the feature map to contain more semantic cues. Then, we utilize two con-

volutional modules F to strengthen the local awareness of the input sequence. Each

module consists of 3× 3 convolution, batch normalization, and ReLU activation.

5.3.5 Architecture

We follow [43, 207] and apply our transformer fusion on the highest-dimensional fea-

tures where the resolution is minimized. To generate the output semantic map, we

adopt the classical DeeplabV3+ [9] architecture. The whole training process is super-

vised by the conventional cross-entropy.

In our model, we adopt early fusion together with late fusion. The objective is to fully

leverage the depth cues at both the geometric level and semantic level. The idea of

using HHA cues to guide RGB-D learning has been widely used in previous RGB-D

works, such as DCNN [154], 2.5D [175], Malleable [176], DACN [166], etc. The main

difference is that previous works compute local attention (depth weight/offset) from

the depth and embed them in convolution, while we explicitly leverage the contextu-

alized awareness to better deal with feature misalignment.

Our fusion strategy substantially differs from the recent fusion works. Specifically,

CCFFNet [163] adopts spatial and channel attention on features, while our work is

fully based on contextualized attention with tokens. Compared to DeepFusion [83],

our cross-modal interaction is bi-directional, while DeepFusion is single-directional

(Lidar to camera). Finally, compared to CPVT [24], our positional embedding can

better leverage both hierarchical and semantic cues, yielding a simple yet efficient

encoding for RGB-D fusion as shown in ablation study.
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5.4 Experiments

We evaluate our model on three benchmark RGB-D datasets, i.e., NYUv2 [132], SUN-

RGBD [135], and Stanford 2D-3D-Semantic Indoor Dataset (SID) [2]. We analyze the

performance with common metrics, i.e., Pixel Accuracy (PixelAcc), Mean Accuracy

(mAcc.), Mean Region Intersection Over Union (mIoU), and Frequency Weighted

Intersection Over Union (f.w.IoU). Let si be the number of pixels with the ground

truth class i . nij denotes the number of pixels with ground truth class i and but

predicted as class j . nc denotes the number of total classes, and s =
∑

i si is the

number of all pixels. Mathematically, the metrics are defined by:

• Pixel Acc: PixelAcc =
∑

i
nii
s

• mean Acc: mAcc = 1
nc

∑
i
nii
s

• mean Intersection over Union: mIoU = 1
nc

∑
i

nii
si+

∑
j nji−nii

• Frequency Weighted Intersection over Union: f .w .IoU = 1
s

∑
i si

nii
si+

∑
j nji−nii

We follow conventional train-test protocols for RGB-D benchmarks experiments [7,15,

206]. On NYUv2 with 40 categories, we follow the widely-used split with 795 images

used for training and the rest 654 images are for testing among the 40 classes. On

SUN-RGBD with 37 categories, we follow the widely-used split with 5,285 images for

training and the rest 5,050 images for testing. On SID with 13 categories, we train

our model on areas 1, 2, 3, 4, and 6 and Area 5 is for testing. During training, we

resize the images to a random ratio between 0.5 and 2.0 and explore left-right flipped

images. We choose the standard SGD optimizer with momentum to train our model

following the “poly” learning rate policy. The initial learning rate is set to 0.007,

the momentum is fixed to 0.9, and the weight decay is set to 0.0001. For inference,

we evaluate our model with multi-scale testing strategies, i.e., {0.5, 0.75, 1.0, 1.25,

1.5, 1.75}. Similar to previous works [7,15,55,154], we take RGB and HHA images as

input. The HHA maps are generated according to [55] during pre-processing. To make

a fair comparison, our transformer backbone is initialized with the weights pre-trained

on ImageNet-1K [29] as CNN backbones.

5.4.1 Comparison with the State-of-the-Art Models

5.4.1.1 Quantitative Comparison.

Table 5.1 illustrates the quantitative comparison on NYUv2. We observe that the

models with transformer encoders [51,158] outperform CNN approaches. Our TransD-

Fusion even surpasses transformer counterparts on mIoU and sets a new state-of-the-

art record, i.e., 55.5% with 1.7 FPS. We also report the performance of the SUN-RGBD

dataset and SID dataset. Our TransD-Fusion (Swin-B) outperforms the concurrent
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Figure 5.5: Qualitative comparison. We compare our TransD-Fusion
with SOTA CNN model and with vanilla transformer backbone. The

black regions in semantic maps indicate the ignored category.

ShapeConv [7] which is also built upon DeepLabV3+ with a large margin: 1.4% ↑
mIoU on SUN-RGBD and 1.6% ↑ mIoU on SID. The leading performances on indoor

benchmarks validate our effectiveness.

5.4.1.2 Qualitative Comparison.

Fig. 5.5 illustrates semantic maps generated by SOTA CNN model ShapeConv [7],

transformer baseline (with DeeplabV3+ [9]), and our TransD-Fusion. Compared to

ShapeConv, we observe that transformer models can better generate contextualized

features and yield results closer to the ground truth. Compared to the transformer

baseline, TransD-Fusion can further explore geometric cues to distinguish objects

sharing similar visual appearances, leading to a more accurate semantic segmentation.

5.4.2 Ablation Studies

5.4.2.1 Robustness against Alignment Bias.

We analyze the robustness of different fusion approaches against sensor misalignment,

i.e., RGB and Depth maps are not accurately aligned at the pixel level. Specifically,

we simulate a calibration error on NYUv2 by additionally cropping 20 pixels from the

RGB input and obtaining a misaligned dataset. We retrain our TransD-Fusion (Swin-

B) and the SOTA CNN model ShapeConv with early-fused input. To make a fair

comparison, we additionally build two late-fusion baseline networks with the Swin-B

backbone. The features are combined with attention modules such as SA gate [15]

(denoted as Swin + SA), or with simple pixel-wise concatenation and convolution

(denoted as Swin + Conv).

The performances under the inferior condition are presented in Fig. 5.6 and in Tab.

5.2. Since SA and Conv are built upon the pixel-wise correlation between different

modalities at the semantic level, their performances significantly drop when the fea-

tures are no more accurately aligned. We observe 1.8% mIoU degradation on Swin



5.4. Experiments 109

76.4

76.0

77.7

76.0

78.4

76.8

78.5
78.2

63.5
63.1

66.2

64.8

67.1

65.0

69.4

68.4

51.3

50.8

53.3

51.5

54.7

51.2

55.5
55.3

63.0
62.6

64.9

63.2

65.7

63.5

66.3

65.5

𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑷𝒊𝒙𝒆𝒍𝑨𝒄𝒄

𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑂𝑓𝑓𝑖𝑐𝑖𝑎𝑙 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝒎𝑨𝒄𝒄 𝒎𝑰𝒐𝑼 𝒇.𝒘. 𝑰𝒐𝑼

𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑛𝑣 𝑆𝑤𝑖𝑛 + 𝑆𝐴 𝑆𝑤𝑖𝑛 + 𝐶𝑜𝑛𝑣 𝑂𝑢𝑟𝑠

Figure 5.6: Robustness analysis on the simulated misaligned NYUv2
dataset. Our TransD-Fusion leads to a more stable performance com-

pared to SOTA fusion approaches.

Table 5.2: Robustness analysis on the simulated misaligned
NYUv2 dataset. Our TransD-Fusion leads to a more stable and supe-

rior performance.

Method Crop (pixel) PixelAcc mAcc mIoU f.w.IoU
ShapeConv 40 74.7 62.5 49.2 61.1
Swin + CC 40 76.1 64.1 50.5 62.8
Swin + SA 40 75.7 63.1 50.7 62.2
TransD-Fusion 40 78.1 69.1 55.1 65.7
ShapeConv 60 74.6 60.7 48.2 60.8
Swin + CC 60 74.8 63.1 48.8 61.4
Swin + SA 60 75.3 63.7 49.7 61.9
TransD-Fusion 60 77.9 68.8 54.8 65.5

+ SA and 3.5% mIoU degradation on Swin + Conv, respectively. In contrast, our

TransD-Fusion only drops 0.2% on mIoU. The stable performance against misalign-

ment can be attributed to our fusion design which is built upon the contextualized

correlation, yielding a more soft and robust fusion scheme for RGB-D semantic seg-

mentation.

5.4.2.2 Generalization Capability.

Our TransD-Fusion can be used as a plug-in module. To demonstrate its generaliza-

tion properties, we conduct experiments with several widely used semantic segmen-

tation architectures, such as Segmenter [137], PSPnet [198], and DeeplabV3 [10] or

DeeplabV3+ [9]. We use Swin-B as the backbone for all architectures and report

the performances on the NYUv2 dataset in Table 5.3. “Baseline” presents the result

obtained with RGB-HHA input through the Swin backbone under the corresponding

architecture. “Ours” presents the result obtained by further applying TransD-Fusion

between backbone and decoder. “+↑” shows the performance gain with our approach.

We observe that TransD-Fusion consistently enables progress over the baseline per-

formance in each architecture, demonstrating the flexibility and effectiveness of our

method.
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Table 5.4: Ablation study on our fusion design. We report the perfor-
mance comparison with other fusion alternatives on NYUv2 dataset.

# F1 F2 F3 F4 F5 OursDescrip. (Early) (Add) (Conv) (SA) (TransT)
PixelAcc 78.0 77.4 77.0 77.7 76.5 78.5

mAcc 66.1 64.6 63.9 66.2 63.2 69.4
mIoU 53.8 52.8 52.2 53.3 51.4 55.5

f.w.IoU 65.1 64.3 63.6 66.2 62.9 66.3

5.4.2.3 Comparison with Previous Fusion schemes.

To verify whether our transformer fusion with contextualized awareness is efficient,

we conduct experiments by replacing TransD-Fusion with other approaches. To make

a fair comparison, all the experiments use the Swin-B backbone with DeeplabV3+

architecture. We have “F1” denoting the early fusion for RGB-HHA input. “F2”-

“F5” adopt the conventional two-streaming design with different late fusion designs:

“F2” with pixel-wise addition; “F3” with concatenation-convolution; “F4” with SA

gate [15]; “F5” with TransT [17]. The quantitative results can be found in Table 5.4.

We observe that our TransD-Fusion enables a better result compared to other fusion

methods.

Note that SA gate [15] and TransT [17] are initially applied with CNN backbones

and are re-employed with our transformer backbone. Our TransD-Fusion differs from

these two designs in several aspects: (A) Compared to SA gate, our work is based

on transformer attention, while SA gate adopts conventional dual attention [161].

Our superior performance (“Ours” >“F4”) shows that we can better model long-range

dependencies to effectively aggregate multi-modal features. (B) Both TransT and

our TransD-Fusion belong to transformer fusion frameworks. However, TransT is ini-

tially designed to compute the correlation between two RGB images, hence focusing

on shared features between two inputs. Extending TransT to RGB-D fusion is not

trivial since there exist both common and different information in these two modali-

ties. Empirically, as shown in Table 5.4, TransT (“F5”) leads to significantly dropped

performance which is even lower than simple fusion designs such as addition and con-

volution (“F2”-“F3”). Different from TransT, we design a depth-guided query strategy

to deal with objects that share a similar visual appearance. Furthermore, we lever-

age a category-aware position embedding to equip with our attention, while vanilla

TransT uses an absolute encoding which is not suitable for multi-modal fusion.

5.4.2.4 Comparison with other position encodings (PEs).

Prior works adopt different PEs that focus on order awareness to improve feature

extraction. The PE in our TransD-Fusion plays a more vital role since it should
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Table 5.5: Ablation study on positional encoding. We replace our
positional encoding with other alternatives and report the performance

comparison on NYUv2 dataset.

# P1 P2 P3 P4 P5 P6 P7 OursDescrip. (w/o) (Abs) (Relative) (L4) (L3) (L2) (CPVT)
PixelAcc 77.8 78.1 78.5 78.3 78.3 78.4 78.4 78.5

mAcc 68.2 67.9 67.5 66.6 67.4 68.8 68.3 69.4
mIoU 53.9 54.2 54.9 54.2 54.3 54.9 54.8 55.5

f.w.IoU 65.1 65.6 65.7 65.5 65.8 66.2 66.0 66.3

be locality-aware for better segmentation and be category-dependent for multi-modal

fusion. To validate the superiority of our proposed PE, we conduct experiments by

removing or replacing our encoding with other approaches and report the performance

in Table 5.5. We have: “P1” without PE; “P2” with absolute PE; “P3” with relative

PE. Since our PE can be learned from a hierarchical feature with higher resolution to

fully excavate the spatial cues, we also conduct experiments to analyze the influence

of feature resolution. We denote: “P4” for PE learned from the output of Layer 4;

“P5” learned from Layer 3 output; “P6” learned from Layer 2 output. We replace

our PE with the concurrent CPVT [24] by re-implementing it in our TransD-Fusion,

denoted as “P7”. Under consideration of a fair comparison, we apply CPVT to learn

features from Layer 1 output as our S-PE.

Empirical results in Table 5.5 show that there exists significant degradation on mIoU

after removing or replacing our S-PE with conventional PEs. This validates the ef-

fectiveness of our S-PE that can better constrain the transformer attention for multi-

modal fusion. We also observe that the spatial dimension plays an imperial role for

our S-PE. When the spatial resolution decreases, i.e., from Layer 1 output to Layer 4

output, the performances with our S-PE drop as well. Compared to the concurrent

CPVT, our superior performance demonstrates that we can better leverage locality

awareness.

5.4.2.5 Key Components Analysis of TransD-Fusion.

In this section, we conduct studies to verify the importance of the key components of

TransD-Fusion: Master stream (master), Subsidiary stream (sub), Self-Enhancement

(SE), Cross-Calibration (CC), and Depth-Guided Fusion (DGF). All the experiments

are built upon the Swin-B backbone and we report the associated model size for

each module. We remove partially or entirely the key components. To make a fair

comparison, we additionally conduct experiments with conventional fusion strategies

such as element-wise addition (Add), concatenation-convolution (Conv), and the

concurrent SA module [15] under the same architecture. Note that the SA module is

initially applied for middle fusion. Under the consideration of a fair comparison we
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Table 5.6: Key components analysis on NYUv2 dataset.

# Master Sub Add Conv SA−M SE CC DGF
Metric

42 Mb 37 Mb 5Mb mAcc mIoU
1 ✓ 66.1 53.8
2 ✓ ✓ 67.0 53.9
3 ✓ ✓ ✓ 61.4 51.2
4 ✓ ✓ ✓ 67.1 54.6
5 ✓ ✓ ✓ 68.5 55.1
6 ✓ ✓ ✓ ✓ 68.6 55.2
7 ✓ ✓ ✓ ✓ 66.5 54.3

Ours ✓ ✓ ✓ ✓ ✓ 69.4 55.5

adopt the same middle fusion design to merge RGB-D features at each scale. This is

denoted as SA-M in Table 5.6.

We observe from Table 5.6 that after removing the cross-calibration module, the per-

formance drops since the modality-specific features can no more benefit from comple-

mentary cues. Without self-enhancement, the performance further degrades. While

further replacing the depth-guided fusion strategy with pixel-wise fusion module, we

can observe a significantly drop, i.e., 3.9% ↓ on mIoU with Add and 0.5% ↓ on

mIoU with Conv. These results validate the necessity of leveraging the long-range

dependencies for feature fusion. Finally, by comparing lines #5-#6, we observe that

the SE plays a minimal role. Therefore we try to replace our SE with the SA mod-

ule [15]. However, the performance significantly drops, which shows the importance

of our self-attention that fully leverages and preserves modality-specific features with

contextualized cues.

5.5 Conclusion

In this chapter, we propose a novel RGB-D fusion scheme for semantic segmentation.

Different from previous fusion designs built upon pixel-wise correlation, our network

fully explores the transformer attention to aggregate multi-modal features with con-

textualized cues. Additionally, we design a novel position encoding generator to better

leverage the locality awareness into our transformer fusion. Extensive ablation stud-

ies verify the robustness against misalignment and the generalization property of our

TransD-Fusion. The comparison with previous works on fusion design and position

encoding further validates the effectiveness of our proposed approach. Experiments on

challenging RGB-D benchmarks demonstrate that our TransD-Fusion performs well

over the state-of-the-art methods by large margins.

Despite the fact that there exist a number of various fusion methods from pixel-wise

aggregation to cross-modal contextualized attention, it is still unclear which should

layer apply the fusion method. In the literature, early, middle, and late fusion designs
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have been widely explored. However, existing fusion architectures are designed in a

handcrafted manner, which is agnostic of input data. For example, researchers have

shown that stemming layers focus more on low-level geometric features, while deeper

layers focus more on semantic cues. Since a depth map is a sort of low-level geometric

input, it is trivial and intuitive that while the depth is good, it should play a more

important role at the stemming stage. While the depth quality is unsatisfactory due

to the measurement bias, it should play a more important role at a deeper stage.

From this perspective, we discuss in the following chapter our proposed robust fusion

design which can learn the trade-off between the early and late fusion with respect to

the depth quality.
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Chapter 6

Robust RGB-D Fusion for Saliency
Detection

Efficiently exploiting multi-modal inputs for accurate RGB-D saliency detection is a

topic of high interest. Most existing works leverage cross-modal interactions to fuse

the two streams of RGB-D for intermediate features’ enhancement. In this process, a

practical aspect of the low quality of the available depths is not considered. In this

chapter, we aim for RGB-D saliency detection that is robust to the low-quality depths

which primarily appear in two forms: inaccuracy due to noise and the misalignment to

RGB. To this end, we propose a robust RGB-D fusion method that benefits from (1)

layer-wise, and (2) trident spatial, attention mechanisms. On the one hand, layer-wise

attention (LWA) learns the trade-off between early and late fusion of RGB and depth

features, depending upon the depth accuracy. On the other hand, the trident spatial

attention (TSA) aggregates the features from a wider spatial context to address the

depth misalignment problem. The proposed LWA and TSA mechanisms allow us to

efficiently exploit the multi-model inputs for saliency detection, while being robust

against low-quality depths. Our experiments on five benchmark datasets demonstrate

that the proposed fusion method performs consistently better than the state-of-the-art

fusion alternatives. The source code will be made publicly available.

6.1 Introduction

Saliency detection aims to segment image contents that visually attract human at-

tention the most. Existing RGB-based saliency detection methods [91, 172, 194, 199]

achieve promising results in generic settings. However, in cluttered and visually simi-

lar backgrounds, they often fail to perform accurate detection. Therefore, many recent

works [37,70,115,199] exploit image depths as additional geometric cues, in the form

of RGB-D inputs, to improve the saliency detection performance in difficult scenarios.

Given accurate and well-aligned depths, existing RGB-D methods perform well even

in difficult scenarios. Unfortunately, this is not often the case in practice. Sometimes,
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𝑴𝒊𝒔𝒂𝒍𝒊𝒈𝒏𝒎𝒆𝒏𝒕

𝑰𝒏𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚

Figure 6.1: Motivation of layer-wise attention. (a) and (b) are the
paired RGB-D inputs. (e) and (f) are the associated saliency maps
generated from the single-modal input which are sub-optimal. (c) is
the overlay between RGB and depth image. It can be seen that there
exists inaccurate measurement from the depth map and misalignment
between both modalities, which is the main performance bottleneck
for existing models. To address this issue, we propose a robust RGB-
D fusion to explicitly model the depth noise for saliency detection.
Compared to the state-of-the-art method SPNet [210] (g), our model

favorably yields results (h) closer to the ground-truth mask (d).

only low-quality depths can be acquired, depending upon the scene and the source

of depths. For example, depths from multi-view stereo cameras are often noisy [21,

178] and asynchronous depth cameras are spatially misaligned [111], as shown in

Figure 6.1. Other environmental factors such as object distance, texture, or even

lighting conditions during the acquisition can also degrade the depth quality [37, 69,

168, 195]. Therefore, a method that can still exploit the geometric cues, while being

robust to the depth quality discrepancy is highly desired.

We observe that most existing methods perform unsatisfactorily on datasets with

low-quality depths. This is primarily because of the commonly used fusion technique

[38, 100, 109, 164, 187, 210] that merges the parallel streams of RGB and depth with

equal importance, while being agnostic to misalignment. Less accurate depths are

evidently expected to play a smaller role than their counterpart. On the other hand,

the possibility of misalignment between RGB and depth needs to be considered during

the fusion process.

In this work, we propose a robust RGB-D fusion method that addresses the afore-

mentioned problems of inaccurate and misaligned depths. The proposed method uses

a layer-wise attention (LWA) mechanism to enable the depth quality aware fusion of

RGB and depth features. Our LWA attention learns the trade-off between early and
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late fusions, depending upon the provided depth quality. More precisely, LWA en-

courages the early fusion of the depth features for high-quality depth inputs, and vice

versa. Such fusion avoids the negative influence of the spurious depths, while being

opportunistic when high-quality depths are provided. In other words, the good-quality

depth should play an important role in early layers thanks to its rich and exploitable

low-level geometric cues, while low-quality depth should be more activated at semantic

levels.

To address the problem of misaligned depths, we introduce the trident spatial attention

(TSA) that aggregates features from a wider spatial context. The introduced TSA is

used to replace the vanilla spatial attention, enabling the aligned aggregation of the

misaligned features. In particular, our TSA requires only minor additional parameters

and computation, while being sufficient to address the problem of misalignment. Note

that the misalignment problem often exists only locally therefore the global context

(at the cost of additional computation) may not be necessary. Such an example is

shown in Figure 6.1(c). We improve the vanilla spatial attention with different scales

of receptive fields, yielding a simple yet efficient manner to replace the pixel-wise

correspondence with region-wise correlation. Finally, the new spatial attention is

adaptively merged with channel attention to form our hybrid fusion module.

In summary, our major contributions are listed below:

• We study the problem of RGB-D fusion in a real-world setting, highlighting two

major issues, inaccurate and misaligned depths, for accurate saliency detection.

• We introduce a novel layer-wise attention (LWA) to automatically adjust the

depth contribution through different layers and to learn the best trade-off be-

tween early and late fusion with respect to the depth quality.

• We design a trident spatial attention (TSA) to better leverage the misaligned

depth information by means of aggregating the features from a wider spatial

context.

• Extensive comparisons on five benchmark datasets validate that our fusion per-

forms consistently better than state-of-the-art alternatives, while being very

efficient.

6.2 Related Work

There are extensive surveys of salient object detection [5, 153, 209] and on attention

modules [73,144] in the literature. In the following, we briefly review related works.
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Figure 6.2: Architecture. Our proposed network consists of a layer-
wise attention (LWA, see Section 6.3.1) and an adaptive Attention
Fusion (AF, see Section 6.3.2). LWA aims to find the best trade-off for
early and late fusion depending on the depth quality, while AF leverage
cross-modal cues to compute the shared representation with channel
attention and improved spatial attention (TSA). CRM is from [69].

6.2.1 RGB-D Fusion for Saliency Detection

In the literature, we can divide current models into two types of architectures: single-

stream and multi-stream schemes. The main difference is in the number of en-

coders. Single-stream networks are commonly lighter compared to multi-stream works.

In [44,203], the authors proposed the concatenation of RGB-D images from the input

side and then feed them into a single encoder-decoder architecture. From another

perspective, [115] introduces a depth distiller to enable cross-modal knowledge dis-

tillation, leading to a lightweight inference strategy with RGB-only input. Other

works [70,141,200] propose to directly integrate low-level geometric cues in the RGB

stream to strengthen the RGB features. Despite the proven result with a lightweight

model, single-stream models fail to explicitly model cross-modal correlation in com-

plex scenarios, which is the main performance bottleneck.

Recently, multi-stream architectures have drawn increasing research interests. A num-

ber of works [38,39,100,109,168,190,210] propose to explicitly model RGB and depth

cues through two parallel encoders and then aggregate multi-modal features through

multi-scale fusion schemes, leading to better performance compared to their counter-

part. In the literature, we can group existing works into three categories based on

the fusion schemes: 1) depth-guided fusion, 2) discrepant fusion, and 3) multi-scale

fusion. Depth enhanced fusion models [38,109,195] often adopts an asymmetric fusion

scheme that the depth features are fused into RGB features at each level to improve

the boundary awareness. However, these models are sensitive to depth noise and

the performance is significantly degraded when depth maps are under inferior condi-

tions. Other works [69,109,168,187,192] propose to merge multi-modal cues through

a discrepant design. In [187], the authors adopt different fusion designs for low-level

and high-level features, i.e., RGB to calibrate depth in earlier layers and depth to

calibrate RGB in deeper layers. [69, 192] only fuse features at semantic levels, i.e.,
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outputs from the last three layers. Different from discrepant and asymmetric designs,

a number of works [39, 190, 199, 210] realize bi-directional cross-modal interaction at

each scale of the neural network. This fusion design, also known as middle fusion, has

shown plausible performance in saliency benchmarks. Nevertheless, we observe that

most existing works treat RGB and depth equally to form the shared features, paying

little attention to explicitly model the measurement bias and alignment issue. [195]

has introduced a weighting strategy to deal with the measurement bias. However,

their weighting scheme assumes the perfect alignment between multi-modal features.

Different from previous works, we estimate the depth quality index by leveraging con-

textualized awareness. We show through empirical comparison that our approach can

better model the depth quality to adjust the contribution.

6.2.2 Attention for Cross-Modal Interaction

Self-attention modules [43, 98, 121, 147, 156, 161] have been proven to be efficient for

visual tasks. Inspired by their success, a number of RGB-D saliency works [38, 69,

92, 187, 199] leverage self-attention as an augmentation to better preserve, calibrate,

and fuse multi-modal features. [69, 199] explicitly leverages the attention along the

channel direction to calibrate each modality. [92] introduces a mutual and non-local

strategy to learn the spatial cues from one modality and apply it to the other. Several

recent works [39,93,100] further explore the long-range dependencies with transformer

attention [147].

Despite the popularity of contextualized attention, we observe that these modules

often require a significant computational cost. Therefore, fusion with transformer

attention is often realized with a small resolution feature map, i.e., at deeper layers

of encoders [39, 92, 100]. To benefit from the spatial cues at each stage, a number of

works [38,39,187] adopt the hybrid models with vanilla spatial and channel attention

from [161] to aggregate features at each stage. However, vanilla spatial attention is

agnostic of feature misalignment. Moreover, these hybrids treat spatial and channel

attention equally, failing to be adjusted with respect to the network depth. Different

from previous works, we propose a simple yet efficient trident spatial attention that

can better model contextualized awareness compared to its counterpart. Furthermore,

we integrate our spatial attention with channel attention in a parallel scheme, yielding

a more robust fusion strategy with adaptive weights.

6.3 Method

Figure 6.2 presents the overall framework of our network. We first extract RGB and

depth features through parallel encoders. Then, these features are gradually merged

through our proposed fusion module with respect to the depth noise. Specifically,
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Figure 6.3: Layer-Wise Attention (LWA). It takes paired RGB and
depth low-level features as input, i.e., features from first layer R1 and
D1, and outputs confidence values λi to adjust the depth contribution
for the i th stage fusion. Specifically, we first leverage non-local atten-
tion to enable bi-directional interaction. Then, the cross-calibrated
features are merged together and fed into a MLP to model the depth
contribution. The dashed shortcut (green) stands for the residual ad-

dition for reducing gradient vanishment.

to tackle the inaccurate measurement bias, we propose a layer-wise attention (LWA)

to control the depth contribution. To deal with feature misalignment, we propose a

hybrid attention fusion (AF) module with a trident spatial attention and an adaptively

merged channel attention. Details of each component are presented in the following

sections.

6.3.1 Layer-Wise Attention

We observe that there exist several depths with unsatisfactory quality as shown in

Figure 6.1. Inspired by this observation, we propose a depth quality indicator that

aims to explicitly model the depth contribution. Our intuition is that while dealing

with low-quality depth at early layers, the network should have a higher confidence

value on the RGB feature instead of equally average the multi-modal cues.

As depicted in Figure 6.3, our layer-wise attention takes outputs from the first encoder

layer as input, i.e., R1 ∈ RC×H×W and D1 ∈ RC×H×W . We argue that these features

contain more heterogeneous and modality-specific cues compared to semantic-level

features which are homogenized. With R1 and D1, we first compute the similarity

between the two modalities. Instead of directly realizing the pixel-wise multiplication,

we leverage the contextualized awareness to avoid the feature misalignment and focus

on the measurement bias. Specifically, R1 and D1 are firstly fed into Conv1×1 and

flattened to form R ′
1 ∈ RC×HW and D ′

1 ∈ RC×HW . These new features are then

fed into the matrix multiplication as shown in Eq. 6.1. To normalize the obtained

attention map, we further apply the softmax function to adjust the weight. Further,
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the normalized weight map is multiplied to flattened R1 and D1 to improve the cross-

modal awareness. Finally, the retrieved RGB and depth attention maps are merged

together through addition. Formally, the similarity matrix can be formulated as:

Attention(R ′
1,D

′
1) = softmax(

R
′
1D

′T
1√
c

)(R ′
1 + D ′

1). (6.1)

Similar to self-attention works [147, 156], we add a skip connection with early fused

RGB-D features to stabilize the training procedure. Once we obtain the similarity

matrix, we seek to explicitly quantify the depth measurement bias. Specifically, we

first extract the feature vector with the help of global average pooling (GAP) and

then feed it into a multi-level perceptron (MLP) to estimate the confidence values.

We particularly estimate distinct values to explicitly guide feature fusion at different

scales. The adaptive weight λ ∈ R5 can be formulated as:

λ = MLP(GAP(Attention(R ′
1,D

′
1))). (6.2)

Finally, let Ri and Di be the encoded RGB-D features from the i th layer. Instead

of equally averaging both feature maps by Ri + Di which is agnostic of input depth

quality, our proposed fusion by Ri +λiDi can better merge multi-modal features with

context awareness.

At first glance, our attention map is similar to non-local attention [156] which has

been applied in S2MA [92] or to transformer attention [147] which has been applied in

TriTrans [100]. However, our method differs from previous works in two aspects, i.e.,

the purpose and the model size. Compared to S2MA which uses non-local attention for

cross-modal calibration, our work aims to analyze the similarity between multi-modal

features and assign a confidence value to the depth cues. Compared to TriTrans which

adopts multi-head transformer attention to fuse features at the deepest layer, our

design is significantly lighter with only one head and is applied to low-level features

with higher resolution. The concurrent work DFMnet [195] adopts Dice similarity

coefficient [104] to analyze the depth quality. However, it simply multiplies RGB

and depth features with the pixel-wise association, paying little attention to explicitly

model measurement bias and the misalignment in a separate manner.

6.3.2 Adaptive Attention Fusion

Existing methods [38, 39, 69, 187, 199] often adopt attention modules, i.e., spatial at-

tention (SA) and channel attention (CA), to enable cross-modal interaction, with few

methods pay attention to inherent feature misalignment. While by design CA is more

robust to this issue due to the squeezed spatial resolution, the vanilla SA has more

difficulties dealing with this inferior condition since it assumes a perfect alignment
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Figure 6.4: Motivation of attention fusion. (1) Vanilla spatial atten-
tion [38,161,187] which is not suitable for cross-modal interaction due
to feature misalignment. (2) We propose a trident spatial attention
(TSA) with dilated receptive field to better leverage contextualized

awareness. Better to zoom in.

between different modalities. To address this dilemma, we propose to improve the

current SA with enlarged global awareness, yielding a simple yet efficient manner to

replace the pixel-wise alignment with region-wise correlation. Furthermore, current

works simply apply CA and SA one by another [38, 39] or equally average them to

form the output [187]. These works are agnostic to the network depth that SA and

CA still contribute equally at each stage. Previous work [108] has shown that layers

with different depths will pay attention to different contexts. Therefore, we seek to

introduce an adaptive fusion strategy with learnable weights to automatically adjust

the contribution of each attention at different levels.

Formally, let an input feature map f ∈ RC×H×W . The vanilla SA firstly squeeze

the channel dimension with average and max pooling across the channel, denoted as

CAP(·) and CMP(·), respectively, to obtain the spatial map f ′ ∈ R2×H×W . Then,

from f ′ SA learns a 2-D weight map SA ∈ R1×H×W :

f ′ = Concat(CAP(f ),CMP(f ));

SA(f ) = σ(Conv1(f
′))),

(6.3)

where σ(·) is the Sigmoid activation, Conv1 stands for the convolution with dilation 1.

To improve global awareness, we replace the current convolution with trident branches

where each branch focuses on learning features with different scales, as shown in Figure

6.4. Our proposed trident spatial attention can be formulated as:

TSA(f ) = σ(Concat(Conv1(f
′)

Conv3(f
′)

Conv5(f
′)).

(6.4)

where Conv1,Conv3,Conv5 stand for convolutions with different dilation values.
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To attentively aggregate multi-modal features, we follow the pipeline of the Cross-

Reference Module (CRM) as suggested in DCF [69]. Formally, let Ri and Di the

paired RGB-D input for the fusion module, we first compute the modality-specific

channel CAr and CAd , as well as the shared channel attention CAf as follow:

CAr = CA(Ri ); CAd = CA(Di );

CAf = norm(max(CAr ,CAd));
(6.5)

The vanilla CRM benefits from channel attention to realize the self- and cross-calibration

before the feature fusion. We have:

CRM(Ri ,Di ) = Concat(CAf ⊗ CAr ⊗ Ri ;

CAf ⊗ CAd ⊗ Di );
(6.6)

We refer readers to the original paper [69] for more details on the cross-modal inter-

action. In our application, we replace the final concatenation with adaptive addition

with respect to depth quality and form our qCRMCA as follow:

qCRMCA(R,D) =CAf ⊗ CAr ⊗ Ri+

λ · CAf ⊗ CAd ⊗ Di ;
(6.7)

Moreover, we additionally design another branch where the CA is replaced by our

proposed TSA. This new branch is termed as qCRMTSA. We further learn two scalar

values α and β to adaptively weight CRMTSA with the original branch CRM with

channel attention. Finally, our adaptive fusion (AF) can be formulated as:

AF (R,D) = α · qCRMCA(Ri ,Di ) + β · qCRMTSA(Ri ,Di ) (6.8)

6.3.3 Architecture

In this chapter, we propose a novel fusion design that can be easily adapted to any

existing architecture. To compete with the state-of-the-art performance, we choose

Res2Net [47] as our backbone to extract features. Our decoder is the same as SP-

Net [210]. Specifically, it consists of five-level RFB blocks [94]. Each block is skipped

and connected with the fused encoded features. However, different from SPNet with a

triple decoder to explicitly both modality-specific and shared features, we only main-

tain one decoder to decode our efficiently fused features. Our network is supervised

by conventional IoU and BCE losses.
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6.4 Experimental Validation

6.4.1 Datasets, Metrics and Training Settings

We follow previous works [38, 69, 168, 210] and train our model on the conventional

training set which contains 1,485 samples from the NJU2K-train [72] and 700 samples

from the NLPR-train [112]. For testing benchmarks, we observe that the depth quality

within each dataset varies, which is mainly due to acquisition methods. Specifically,

DES [22] contains 135 images of indoor scenes captured by a Kinect camera. SIP [37]

provides a human dataset that contains 929 images captured by a mobile device.

Therefore, these two datasets can be considered moderate with less noisy depths.

However, the remaining NLPR-test [112], NJU2K-test [72] and STERE [106] datasets

are more challenging. NLPR-test [112] contains 300 natural images which are captured

by a Kinect sensor. However, the images are obtained under different illumination

conditions. NJU2K-test [72] contains 500 stereo image pairs from different sources

such as the Internet and 3D movies. A number of depth maps are estimated through

the optical flow method [138]. STERE [106] contains 1,000 stereoscopic images where

the depths are estimated with SIFT flow method [90]. Due to the measurement

or estimation error, these datasets contain more noisy depths. Therefore, to purely

analyze the performance under different conditions, we additionally report the average

metric (AvgMetric) for datasets with good quality depths and for datasets with more

challenging depths.

To quantify the performance of our methods, we compute conventional saliency met-

rics such as Mean Absolute Error, F-measure, S-measure, and E-measure. Specifi-

cally, Mean Absolute Error (M) measures the pixel-level similarity between the

estimated saliency map and the ground-truth map. For F-measure, we report the

maximum F-measure (F ) score across the binary maps of different thresholds.

S-measure (S) and E-measure (E) are more specialized metrics for saliency detec-

tion. The prior (S) was firstly introduced in [35] to evaluate the similarities between

object-aware (So) and region-aware (Sr ) structures of the saliency map compared to

the ground truth. The latter (Em) is introduced in [36] to evaluate both image-level

statistics and local pixel matching information. We refer readers to the original paper

for more details.

Our method is based on the Pytorch framework and is learned with a V100 GPU. The

encoder is initialized with the pre-trained weights. For the 1-channel depth input, we

replace the first convolution of backbone to feet with the depth size. The learning

rate is initialized to 1e−4 which is further divided by 10 every 60 epochs. We fix and

resize the input RGB-D resolution to 352×352. During training, we adopt random
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flipping, rotating, and border clipping for data augmentation. The total training time

takes around 5 hours with batch size 10 and epoch 100.

6.4.2 Comparison with SOTA fusion alternatives

We observe that existing works adopt different architectures, i.e., choice of backbones,

design of decoder, supervision, training settings, etc. For example, light models [164,

195] always choose MobileNet [127] to extract features. Several works [109,115,203] are

based on VGG [133] encoders, while another group of models [39,195] takes ResNet [59]

as encoders. Recent works [100, 210] are based on more powerful backbones such as

Res2Net [47] and ViT [32]. The choice of backbone will undoubtedly impact the

final performance. Furthermore, the design of the decoder varies from one work to

another. Several works are based on DenseASPP [182], while others are based on

RFB [94]. Under the consideration of a fair comparison, we re-implement six SOTA

fusion works under the same architecture. Specifically, we choose the same backbone,

same decoder, loss, and same training settings as ours. The only difference between

one model to another is in the fusion module. We refer readers to previous sections

for more experimental details. Note that several fusion designs [69,164] were initially

applied only to certain layers. To fairly and purely analyze the fusion performance,

we implement all the fusion modules at each scale as ours.

Table 6.1 illustrates the quantitative comparison. We also report the model size of

each embedded fusion module. ∆Size stands for the difference in model size compared

to ours. It can be seen that our fusion strategy yields significantly better results com-

pared to our counterparts. Compared to the lightest DCF fusion which only applies

channel attention during feature fusion, we add additional spatial attention, yielding a

slightly heavier model size (+29 Mb) but favorably improving the performance. Else-

wise, our model size is significantly lighter compared to other counterparts, validating

the effectiveness of our proposed fusion module.

6.4.3 Quantitative Comparison

Table 6.2 illustrates the quantitative comparison. For challenging datasets (NLPR,

NJU2K, and STERE), our method performs favorably over the existing methods and

sets a new state-of-the-art (SOTA) record, validating the superior robustness of our

approach against depth bias. We further illustrate in Figure 6.5 the trade-off between

model size and SOTA performances. Compared to the current SOTA TriTrans [100],

our model is significantly smaller with only one-third of the model size but with

better performance on S-measure. For other datasets with less depth noise (DES

and SIP), we also achieve competitive performance with almost halved the model size

compared to the current SOTA SPNet [210]. Note that both SPNet and ours adopt
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Figure 6.5: Average Performance, Speed, and Model Size of
different methods on challenging datasets (NLPR, NJUK, STERE).
The circle size denotes the model size. Note that better models are
shown in the upper right corner (i.e., with a larger F-measure and
larger FPS). Our method finds the best trade-off of the three measures.
Methods with higher speed perform inferior, making our method both

efficient and accurate.
BBSNet DASNet DCFNet DFMNet SPNetTriTransRGB Depth TSASAGTOurs

Figure 6.6: Qualitative comparison. We also illustrate the depth
features enhanced by vanilla SA and by our proposed TSA, respec-
tively. Our work yields more boundary activation compared to the

counterpart. Better to zoom in.

Res2Net50 [47] as the backbone. Thus, our performance can be contributed to our

proposed fusion solely.

6.4.4 Qualitative Comparison

Figure 6.6 presents the generated saliency maps of different methods on challenging

cases. Specifically, the 1st − 3rd rows show the cases with a single human in the scene

with the depth captured by a mobile camera (1st row) or estimated by algorithms

(2nd − 3rd rows). 4th− 6th rows show the cases when there are multiple humans in the

scene. The associated depths are captured by a mobile camera. 7th−8th illustrates the

cases with clustered foreground-background. 9th row shows the case with low-quality

depth. It can be seen that our methods consistently reason about saliency masks

closer to the ground truth.
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Figure 6.7: Trade-off between early and late fusion. Our layer-wise
attention can adaptively model the depth contribution during feature
fusion. While are with low quality, we assign less weight for early fusion
since the noisy geometric cues are difficult to be exploited. Meanwhile,
we assign more weight for late fusion to leverage the multi-modal se-

mantic cues for feature fusion.

We further illustrate the comparison between depth feature maps enhanced with our

proposed spatial attention (TSA) and with the counterpart (TA). For the cases with

multi-objects at different camera distances, i.e., 1st−6th rows, we can visualize that our

attention can better segment object regions. This can be contributed to our trident

branches with different scales. Furthermore, our attention yields more activation

on the boundary, facilitating the network to better leverage geometric for saliency

detection.

Finally, we illustrate in Figure 6.7 the histogram for our layer-wise attention. We

particularly choose λ1 and λ5 to facilitate the understanding of the trade-off between

early and late fusion. We can observe that while depths are of low quality, our

LWA assigns more weights for late fusion (with low λ1 value and high λ5 value).

While depths are of good quality, our LWA assigns more weights for early fusion

(with high λ1 value and low λ5 value). This observation is consistent with previous

studies [39, 69, 109, 187] with discrepant fusion. We hope our analysis of layer-wise

attention can inspire future adaptive fusion works.
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Figure 6.8: Attention contribution during feature fusion. L1, ...L5
stands for the different layers. We realize attention fusion through

α · CA+ β · TSA.

6.4.5 Distribution of Spatial and Channel Attention

Since we propose an adaptive weighting strategy to merge our spatial attention (TSA)

and channel attention (CA), we illustrate in Figure 6.8 the distribution of weights of

each attention at different stages of the network. We can observe that TSA and CA

contribute differently with respect to the network depth. At layer 1 (L1), the network

assigns more weight to TSA. This can be explained by the significant spatial resolution

of the features. For deeper layers, it can be seen that SA and CA tend to play a similar

role at each stage to enhance the feature modeling with equal importance. However,

we show that the contributions from different layers to form the final output are

different. Specifically, it can be seen that attention from the third layer (L3) and the

fourth layer (L4) contribute more compared to the first two layers (L1 − L2) and the

last layer (L5). The different contribution with respect to the network depth is also

consistent with previous works [108] and to our layer-wise attention that shallow and

deep layers play different roles for feature fusion.

6.4.6 Ablation Study

In this section, we conduct an ablation study to validate the effectiveness of each

proposed component. The quantitative result of each combination can be found in

Table 6.3. To analyze the effectiveness of our trident spatial attention (TSA), we

replace ours with vanilla spatial attention [161] and observe a dropped performance.

This is mainly due to the limited receptive field of vanilla attention that assumes a local

correlation between different features. In contrast, our TSA can significantly improve

performance by leveraging contextualized awareness. The boosted performance on

the aforementioned datasets validates the design of our TSA.

We also conduct experiments by replacing our LWA with another depth quality module

presented in DFM [195]. While the LWA is replaced, the performance is significantly

degraded. The difference between DFM and ours is in the manner to compute the
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Table 6.3: Ablation study on key components. B stands for the
baseline performance where RGB-D features are merged through sim-

ple addition without any form of attention.

B
CRM DFM LWA Size Overall Metric

CA TSA SA α,β ( [195])(Ours) Mb↓ M ↓ F ↑ S ↑ E ↑
✓ 305 .039 .915 .904 .935
✓ ✓ 336 .035 .918 .907 .940
✓ ✓ ✓ 364 .035 .923 .910 .943
✓ ✓ ✓ 363 .035 .920 .908 .941
✓ ✓ ✓ ✓ 364 .034 .924 .910 .943
✓ ✓ ✓ ✓ ✓ 364 .035 .921 .908 .941
✓ ✓ ✓ ✓ ✓ 365 .033 .924 .911 .944

similarity matrix. Specifically, DFM assumes a perfect alignment between multi-

modalities and realizes a pixel-wise matrix multiplication, while we leverage the non-

local attention with flattened vectors to compute the similarity.

6.5 Conclusion

In this chapter, we propose a novel fusion architecture for RGB-D saliency detection.

Different from previous works, we improve the robustness against inaccurate and

misaligned depth inputs. Specifically, we proposed a layer-wise attention to explicitly

leverage the depth quality by learning the best trade-off between early and late fusion.

Furthermore, we improved the vanilla spatial attention to a broader context, yielding a

simple yet efficient mechanism to address the depth misalignment problem. Extensive

comparisons on benchmark datasets validate the effectiveness and robustness of our

approach compared to the state-of-the-art alternatives. Our method also sets new

records on challenging datasets with smaller model sizes. The method developed in

this chapter can potentially be used for other tasks, such as semantic segmentation

and object detection, in a similar setting of RGB-D inputs in a robust manner.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In this thesis, we are interested in fusing RGB-D information for a more effective and

robust scene understanding. The objective is therefore to propose novel and more

adapted fusion modules to improve the RGB baseline performance. We are particu-

larly interested in designing fusion methods with different forms of attention, which

have recently drawn great research interest and set a new state-of-the-art performance.

The main strength of attention modules is that they can leverage the most informative

features from the input. These cues can be from the channel and spatial dimension, as

well as contextualized correlation and layer-wise fusion architecture. The computed

attention can therefore better guide the RGB-D fusion to alleviate local noise and

improve the feature representation.

Our first contribution in this thesis is to merge the depth information, i.e., the gran-

ularity with the semantic cues, i.e., channel attention. We show that by creating a

depth-wise channel attention, the deep neural network can pay better attention to

local regions. Therefore, the feature discriminability can be naturally enhanced by

locally constrained attention. We observe that the proposed attention module cor-

relates well with the network hierarchy, which learns different scales of information

during the encoder stage. Hence, by integrating our proposed depth-wise channel

attention into the feature extraction, we can extract features with better awareness

of the geometric constraint.

The second contribution is on the spatial attention with depth-awareness. We observe

that the concurrent learning methods cannot fully leverage the low-level constraint.

Without explicit supervision, the learned attention is not consistent on the same pixel

but with different chosen backbones. Differently, we propose to compute statically the

offsets and do not require any learning parameters, yielding a more consistent attention

fully dependent on the geometry. We show that the static spatial attention performs

significantly better than the dynamic counterpart on semantic segmentation. However,

one limitation of the static model is that it cannot be extended to all modalities, such
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as computing a RGB attention to improve the depth learning. Therefore, we follow

the learning strategy to perform a bi-directional supervision pipeline to improve both

RGB and depth stream for saliency detection.

The third contribution is to explore the contextualized attention for RGB-D fusion.

Conventional methods focus more on fusing multi-modal features, with few methods

paying attention to feature alignment. Therefore, while the RGB and depth images

are not perfectly aligned due to calibration bias, previous methods built upon pixel-

wise correlation fails to perform well under inferior condition. To tackle this issue,

we propose a transformer-based RGB-D fusion design that can better leverage global

attention and hence become more robust to feature misalignment. We dig into the

basic operators of the transformer module: we leverage the self-attention for feature

self-enhancement and make full use of the cross-attention for cross-modal calibration

and feature fusion. We also propose a local and context-aware positional encoding to

constrain the global attention into local regions to boost the segmentation accuracy.

Last but not least, we propose a layer-wise attention for an adaptive and robust RGB-

D fusion. Previous methods often adopt pre-defined and fixed fusion architecture such

as early, middle, and late fusion, which cannot be adapted to the data context. For

example, a depth image with good quality can directly provide rich low-level geometric

cues that correlate well with the stemming layers. Therefore, it is more intuitive and

straightforward to apply early fusion for such a case. While the quality of depth image

is unsatisfactory that geometric cues cannot be easily extracted at an early stage, it

becomes necessary to apply an encoder to extract the desired feature and fuse RGB-D

features at the semantic level, i.e., late fusion. Inspired by this intuition, we propose a

context-aware layer attention that learns the trade-off between early and late fusion.

Hence, our model can automatically define which layer/stage is more adequate to

fuse multi-modal features, yielding a simple yet robust manner to control the depth

contribution with respect to the image quality.

7.2 Perspective

From my point of view, we are nowadays in the transition stage where people have

the choice between a CNN model and a transformer model. CNN is well known for its

sliding receptive field which can pay attention to local pixels. The transformer, from

another perspective, can better model the long-range dependencies while requiring

more computational cost compared to a fixed-size local convolutional window. Each

design has its intrinsic pros and cons. Hence, it is yet unclear to the vision society

which model can consistently lead to better performance. A recent work [108] proposes

to combine both CNN and transformer and shows the superior performance of a hybrid
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backbone. Therefore, one possible future direction for RGB-D fusion is to leverage

both local and global attention to merge multi-modal features.

Another perspective is on the availability of depth images. One inherent shortage of

RGB-D fusion is the requirement of multi-modal data from the input side, which is

hard to achieve in practice. One possible alternative is to estimate a pseudo-depth to

mimick the RGB-D input. Nevertheless, the pseudo-depth can be with sub-optimal

quality due to the domain gap. Despite the recent tentative [134] which re-calibrates

the pseudo-depth attention according to the trustful regions, these regions are still

computed by a pre-trained saliency model and there are no theoretical supports that

the salient regions contain good depth estimations. Furthermore, in this thesis we

focus more on the spatial correlation between different modalities, paying little at-

tention to temporal consistency which is important for video tasks. How to ensure,

enhance, and benefit from the consistency thanks to the depth priors (ground truth

or estimated) can be another future research direction.

Finally, the objective of perception is to promote machines with sensing capability

and further realize complex tasks. In the industrial context, an algorithm should be

able to provide good performance while being embedded in a low-cost system. This

criterion inspires us to design a lightweight RGB-D fusion module in the future, i.e.,

proposing methods to minimize the redundancy between multi-modal features. A

recent work [190] has shown that by minimizing the mutual information, the network

can learn more complementary and informative cues from RGB-D inputs. However,

this work does not focus on the lightweight model, which leaves large room for an

efficient fusion module.
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Appendix A

Academic Experience

A.0.1 Publication

The works developped durnig this thesis yield in the following accepted publications:

• Robust RGB-D Fusion for Saliency Detection [170], 3DV, 2022

• Modality-Guided Subnetwork for Salient Object Detection [168], 3DV, 2021

• Depth-Adapted CNN for RGB-D cameras [166], ACCV (Oral), 2020

We also have several accepted or under-reviewing submissions developed during this

thesis:

• RGB-Event Fusion for Moving Object Detection in Autonomous Driving, ICRA

2023 [214]

• Depth-Adapted CNN for RGB-D Semantic Segmentation [169] (Extension of

previous conference paper)

• RGB-D Salient Object Detection via Hierarchical Depth Awareness [165]

• Transformer Fusion for Indoor RGB-D Semantic Segmentation [173]

A.0.2 Reviewer

During the thesis, I am glad and fortunate to contribute to the computer vision society

as a reviewer. I help my supervisors and collaborators to review top-level conference

and journal papers such as NeurIPS, ECCV, AAAI, IROS, ICRA, CVMJ, and TIP. I

also serve as a reviewer for 3DV, BMVC, ACCV, and RA-L.

A.0.3 Teaching assistant and Master Thesis Supervision

During the PhD, I serve as teaching assistant in IUT Le Creusot, University of Bour-

gogne Franche Comte. I supervise students from different years, from bachelor’s to

master. I realized more than 100 hours on algorithms, programming, image process-

ing, computer vision, and artificial intelligence.
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I have also got the chance to help and advise some master students:

• Shriarulmozhivarman GOBICHETTIPALAYAM (Master Thesis at the Univer-

sity of Bourgogne Franche Comte – 2022): “Robust RGB-D Fusion for Saliency

Detection”.

• Hugo LEBLOND (Research Intern at the University of Bourgogne Franche

Comte – 2022): “RGB-D Nerf for Deformable Objects”.
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