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1 Document de synthese

Le secret d’un bon discours, c’est
d’avoir une bonne introduction et une
bonne conclusion. Ensuite, il faut
s’arranger pour que ces deux parties ne
soient pas trop éloignées 'une de
I'autre.

George Burns

1.1 Introduction

The General Theory of Relativity (GR) was developed by Albert Einstein more than one
century ago. Since its birth, GR has been tested in details, in particular in Solar System. The
first three tests, proposed by Einstein himself in 1915, concerned the anomalous precession
of Mercury perihelion, light deflection in gravitational fields and the gravitational redshift.
Even if the precession of Mercury was already known before GR, the theory was able to
explain it successfully. Experiments proving light bending was realized by Eddington in 1919,
and evidence for gravitational redshift was claimed to be detected in 1925 by astrophysical
measurement [2] and clearly confirmed by Pound & Rebka experiment in 1959 [111]. With the
beginning of space exploration in the 1960s, additional tests began to be made starting with
Shapiro’s measurement of the relativistic time delay in Viking ranging [154, 155]. In 1974, with
the discovery of binary pulsars, Hulse & Taylor [77] studied much stronger gravitational fields
than those found in the Solar System, enabling the first indirect detection of gravitational
waves. At the scale of the laboratory, the past few decades have seen dramatic progress in our
ability to manipulate and coherently control matter-waves, leading also to new applications
navigation and geophysics to tests of GR with an unprecedented sensitivity and accuracy [12].
Thus, GR is extremely well tested locally in both weak and strong field limit, and the story
of testing GR opened a new windows in February 2016 with the announcement of Advanced
LIGO & VIRGO teams of the direct detection of gravitational waves from a black hole merger
[1]. However, we know that GR can not be renormalized as quantum theory and it is an
ultimate goal to find a deviation in order to construct a new theory unifying all fundamental
interactions, as string theories and/or quantum loop theory are aimed to do.

During the last 30 years, observational techniques in fundamental astronomy have progressed
and we have seen a tremendous progress in technology. It has led to enormous improvements
of accuracy in the disciplines of astrometry and time. Indeed, focusing on astrometry, it is
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worth highlighting that between 1988 and 2013 we expected the same gain in accuracy (milli
to micro-arcsecond, so 4 orders of magnitude) as that have been done during the whole history
of astrometry, from Hipparchus until 1988. Other observation techniques like Interferometry,
high-precision atomic clocks, Lunar and Satellite Laser Ranging, GNSS, Very Long Baseline
Interferometry, Radio Science, etc., have also made progress in accuracy by several orders of
magnitude.

Beyond some threshold of accuracy, any astronomical problem has to be formulated within the
framework of Einstein’s theory. An illuminating example is the light deflection at the limb of
the Sun, which reaches 1.75as and decreases only as 1/r with increasing impact parameter r
of a light ray to the solar center. Thus, for light rays incident at about 90° from the Sun the
angle of light deflection still amounts to 4 mas and has to be compared to the accuracy of the
Gaia mission of several pas in positions, parallaxes and proper motions of billion stars [063].
It is the reason why the field of applied relativity has emerged about 40 years ago, when the
growing accuracy of observations and the new observational techniques have made it necessary
to take relativistic effects into account on a routine basis. Since that time applied relativity
has evolved into one of the basic ingredients of fundamental astronomy, the discipline that
includes celestial mechanics, astrometry, time scales and time dissemination etc. On the one
hand, that development required significant theoretical efforts. Triggered also by the needs
of applications at an engineering level, special theoretical techniques have been developed to
construct the so-called local reference system and to derive the equations of translational and
rotational motion of a system of N bodies having arbitrary composition and shape. On the
other hand, astronomers and engineers had to rethink and to reformulate their problems in
a language compatible with GR. The need to change the way of thinking from Newtonian
common sense to relativistic is probably the source of many of the difficulties that non-experts
have with relativity. In the same time the relativity itself is quite simple and elegant at least
in the post-Newtonian approximation.

The International Astronomical Union (IAU) discussed in details the construction of a GR
framework for modeling the high-accuracy astronomical observations, with a 20 years process
from 1990 to 2000. By adopting new conventions concerning the definition and use of a set
of relativistic reference systems [20, |, IAU gave the essentials tools leading GR to become
the standard theory of gravitation in the field of Fundamental Astronomy, astrophysics and
experimental fundamental physics. It was the birth of the Fundamental Relativistic Astronomy
which is perfectly summarized in Figure (1.1), from the construction of relativistic reference
systems to their application to the determination of equations of motion, light propagation and
the construction of astronomical observables. Nowadays Fundamental Relativistic Astronomy
is essential for many practical goals in astrometry, deep space navigation, planetodesy, geodesy
and time & frequency metrology, that is to say in all fields requiring high precision in the Solar
System.
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FIGURE 1.1 — Scheme of Relativistic Fundamental Astronomy. Inspired from [1].

Furthermore, I constructed all along these last years my research with respect to the different
boxes of Figure (1.1), which allow me to decline the outline of the document along three kinds
of contributions :

— I will consider first the description of light rays in weak fields; in almost all of the

theoretical studies devoted to this problem, the properties of light rays are determined
by integrating the differential equations of the null geodesics [32, 83, 87, 88, 89, 81, 41, 106,
, 44, , , , 12]. This procedure is workable as long as one contents oneself with
analyzing the effects of relativistic first order of corrections. However, analytical solution
of the geodesic equations requires cumbersome calculations when terms of second order
are taken into account, even in the case of a static, spherically symmetric space-time [58,
, ]. It is why I introduced several formalisms allowing to determine the deflection

of light and the travel time of photons without integrating the geodesic equations. The
first method was constructed on a general post-Minkowskian expansion of the Synge
World Function [160] applied to light rays, leading to the determination of the so-called
Time Transfer Functions. Then I found a way to determine the Time Transfer Functions
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within a stand-alone method and obtained their general post-Minkowskian expansion.
Some applications of the formalism are given in the context of global space astrometry and
radioscience observables with example to the JUNO, BepiColombo and GRAIL missions.

— Then I will discuss my contributions dedicated to relativistic celestial mechanics. They
are focused on the motion of deep space probe and the construction of ephemerides
for planets and natural satellites. The concept of 4-dimensional ephemerides will be
described. Then I will focus on planetary tides and dissipation. Indeed, the signature of
tides and relativistic effects on the motion of the body are quite similar, a good example
being the Earth-Moon System : I will summarize some results on the dissipation of rocky
and fluid bodies, thanks to a new formalism I introduced in 2009.

— The last part of this report will be dedicated to the test of Fundamental Physics that one
can expect nowadays with Solar System data. I will consider planetary ephemerides, Very
Long Baseline Interferometry and Lunar-Laser Ranging. Two test phenomenologies will
be used, i.e. the traditional Parametrized Post-Newtonian formalism and the Standard
Model Extension, useful to study all kind of possible violations of the Lorentz symmetry.

As a Habilitation a Diriger les Recherches (HDR) is aiming at proving the capability to lead a
research group and/or supervise students, I will emphasize on this point all along the following.

1.2 Light propagation in curved spacetime

1.2.1 Definition and fundamental properties of Synge’s world func-
tion

During my PhD thesis and my post-doctoral position in Germany, so between fall 2002 and
spring 2009, I developed a new formalism to describe light propagation through Solar System.
Instead of solving, analytically and/or numerically, the equations of the null geodesics, we
focused on the Synge World Function [160] and found a way to determine the Synge World
Function as a general post-Minkowskian series, in the weak field approximation. From the
World Function, we show how to determine explicitly the coordinate time of flight of a photon
between two events located at finite distance from the origin of a coordinate frame. In contrast
with null geodesic determinations, The two main advantages of this method is first to evaluate
integrals along Minkowskian straight line, which is very simple, and second to be able to
consider difficult gravitational field beyond the traditional first post-Minkowskian order.

First, we briefly recall how its fundamental properties can be straightforwardly derived from the
variational principle defining the geodesic curves (for the characteristic function V' = /2 |Q],
see e.g. Buchdahl [29, 27, 28] ). We begin with recalling some useful results concerning the
general variation of a functional defined as an action in classical mechanics.

Let x4 and zp be two points of space-time connected by a differentiable curve Cyp defined
by the parametric equations z® = z®((), with {4 < ¢ < (p. Given a Lagrangian function
L(z%, &%) with 2°(¢) = dz?(¢)/d(¢, one can define the functional S by

. (B
3(Cas] /C L(®(0), #5(¢))dC (L.1)
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the integral being taken along C'4p. Let us consider now an arbitrarily neighbouring curve
C"y g connecting points x4 and x g/, represented by parametric equations z'* = 2/*((’), with
Car < (" < (pr. Let 24 + 02% = 2% and 2% + d2% = 2%, be the coordinates of x4 and zp
respectively. Putting d2%(¢) = 2'*(¢) — 2%({), one can define a one-to-one correspondance
between Cyp and Cy g by the infinitesimal transformation

() = (¢ + 6¢) = x%(() + 027(() , (1.2)

where

027(¢) = 627(¢) + £%(¢)o¢ (1.3)

with the boundary conditions
0x*(Ca) = 029, 0x%((p) = dz%. (1.4)

__ Performing an integration by parts leads directly to the following expression for the quantity
0S = S[Cuap| — S[Cag| (see, e.g., [66])

~ s [9L d (OL\] - B
08 = - — 0x*(C)d w0z — HoCl, 1.5
[ 5 — i (5 )] 3o~ ac + oo — sy (15)
where p,, is the 4-momentum belonging to z“ and H is the Hamiltonian :
oL
a — . 9 H = Pa P — L . 16
Pa = 5o Pad (1.6)

In the following we assume that there exist domains D of space-time such that whatever
ra € D and xp € D, x4 and zp are linked by a unique curve I'4p realizing an extremum of
the functional S. Then, describing I' 45 by parametric equations z* = x*((), we can associate
to any domain D a function S of x4, xp, (4, (g defined as

(@, 25, Cay C5) = /F L (2°(¢), #%(¢)) dC . (L.7)

Extending a terminology currently used in mechanics, we shall call S the characteristic (or
principal) function belonging to the Lagrangian L adapted to the domain D. Since the functions
z*(C) satisfy the Euler-Lagrange equations

OL d (9L
dxe ¢ <ag;~a) =0 18

the total variation of S(z 4, g, 4, (p) reduces to the boundary terms in equation (1.5). Conse-
quently, one has the relations

oS oS
- _ = 1.
ax% (pa)A, 03:% (poc)B ) ( 9)
95 g, 95y, (1.10)
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Considering that H is a function of z* and p,, then substituting for (p,)a and (p,)p from
equations (1.9) into equations (1.10), it is easily seen that S(x 4, zg, (4, (p) satisfies a Hamilton-
Jacobi equation both at z% and at x%

83 .08 03 .08
o (i) s () .

Let us apply these results to space-time V; endowed with a Lorentzian metric g, and insert
in equation (1.1) the Lagrangian defined by

1
L= 5%51}%5. (1.12)

Each curve I' 4g parametrized by ¢ for which S has an extremum is a geodesic path joining z 4
and zp. Parameter ( is said to be affine. According to (1.6), we have now

. 1,
Pa = Gopt’, H=-9"paps, (1.13)

2
from which it is easily deduced that H = L on any geodesic path. Owing to the fact that
L does not contain ¢ as an explicit variable, this last equality implies that the Lagrangian L
defined by (1.12) is a constant of the motion.

We are only concerned here with a weak-field metric represented by equation (1.41) throughout
space-time. So we henceforth restrict our attention to the domains D = N, , N, being defined
in Introduction. Then whatever zp € N, ,, there exists a unique geodesic path I'4p connecting
x4 and xp. Let us denote by Q) the characteristic function belonging to the Lagrangian (1.12)
adapted to N, ,. According to (1.7) we have

~ L[
Q($A7xB7CAa QB) - 5/ gaﬁwaxﬁdCa (114)
Ca

the integral being taken along I'4p. Since L = H is a constant of the motion, we have L =
Hy = Hp on I 4. Inserting these relations into equation (1.14) yields

Q(an B, CA? CB) ]

Hi=Hp = 1.15
4 N (B —Ca (1.15)
Substituting these expressions of H4 and Hp into equations (1.10), we get
o9 QO o9 Q
_ : S _ (1.16)
da (B—Ca OCp (B —Ca
Integrating these equations, we find that 0 may be written as
~ Qxa,x
Q(.ZUA,ZEB, gAa CB) = ( A B) 5 (117)
(B —Ca

where (x4, xp) is a function of 24 and of xp. This two-point function, which is symmetric in
x4 and xpg, is called the world function. Denoting by A the unique affine parameter such that
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A4 =0 and A\g = 1, we infer from equations (1.14) and (1.17) that (x4, zp) may be written
as
1t dzt dx”
Q == (ZY(N) ————d\, 1.18
@nn) =5 [ omla” )G G (1.18)
the integral being taken along I'4g. It can be easily seen that
1
Q(za,zp) = §€AB[SAB]2, (1.19)

where e4p = 1,0, —1 when I'4p5 is a timelike, a null or a spacelike geodesic, respectively, and
sap is the geodesic distance between x4 and xp, i.e.

SAp = / \/ |guwdardzy|.
Tas

The relevance of the world function in the problems related to the light deflection, the time
delay or the gravitational frequency shift is justified by the following properties, which are
easily deduced from the above-mentioned theory.

Property 1 The covariant components of the vectors tangent to the geodesic path I ap at x4
and xg respectively, are given by

dz¥ o0
— ) =—7=% 1.2
(g,w - )A e (za,28), (1.20)
dx¥ o0
(gwﬁ)g = @($A7$B>- (1.21)

These fundamental formulae are immediately deduced from equations (1.9) and (1.13). They
show that the vectors tangent to the geodesic path I'4p at x4 and xp can be explicitly deter-
mined when the world function Q(z4,xg) is known.

Any other affine parameter ¢ along I' 45 is such that

¢=(CB—Ca)A+Ca, (1.22)

where (4 and (g are the values corresponding to 4 and xp, respectively. As a consequence,
we have for the tangent vector dx*/d( the general formulae

dzx¥ 1 of

(guud—C)A = —m m (IL”A,IB) , (1.23)
dz¥ 1 o5

<g’“’d—<)3 = G =G 0a% T ) (1.24)

It is clear that point xp may be replaced in (1.24) by any point x(¢) on I'4p which differs
from x 4. Returning to A for the sake of simplicity, we find that the covariant components of
the vector tangent to I' 45 at point z(\) are given by

dz¥ 1 0Q
(g’“’ﬁ) o = X@(QTA#E(/\)) ; (1.25)
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where 0€Q2/0z* denotes the partial derivative of Q(x4,x) with respect to z* at point z. It
immediately follows from equations (1.25) that the system of equations

<C%\H) o %g“p(x(/\))%(“’x@))’ (1.26)

can be regarded as the first-order differential system governing the geodesic paths passing
through a given point z4. The regularity of this system at x4 is a direct consequence of the
following property [160].

Property 2 The first-order partial derivatives of Q(x 4, x) may be expanded as

o0}
5 (T4 %) = Gu(@a) (@ = 24) + Cpag (v, 7) (2" — ) (2 = ), (1.27)

where the functions Cyap(a,x) remain bounded in the neighbourhood of x 4.

It results from this property that 92/0x*(z 4, ) — 0 as © — x4 and that the r.h.s. of equations
(1.25) and (1.26) remains bounded as A — 0.

Now, the following statement can be straightforwardly derived from equations (1.11), (1.13)

and (1.15).

Property 3 The world function Q(za,xp) satisfies the Hamilton-Jacobi equations

1 o2 N2

— qaB _

59 (xA)ﬁxﬁ(xA7mB)axi(xA’xB) = Q(za,28), (1.28)
1 o0 012

— 0B _

59 (;EB)ax% (xA,a:B)ax% (xa,x5) = Qxa,28) . (1.29)

As we shall see below, these equations and Property 2 enable to construct the world function
in any post-Minkowskian approximation.

Properties 1, 2 and 3 are valid whatever the nature of the geodesic curve joining x4 ant xg.

In the case of null geodesics, (1.18) and L = Hy = Hp = 0 immediately lead to the following
statement.

Property 4 Two points x4 and xg are joined by a light ray if and only if the condition
Qza,25) =0 (1.30)

15 fulfilled.
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1.2.2 Time Transfer Functions Formalism

Thus, Q(x4,2) = 0 is the equation of the light cone C,,. It follows from Property 4 that if
Q(z4,2p) is known in N, it is possible to determine the travel time tp — t4 of a photon
connecting two points x4 and zp as a function of t4, 4 and @ or as a function of tg, 4 and
p. It must be pointed out, however, that solving the equation Q(cta, x4, ctp, xp) =0 for tp
yields two distinct solutions ¢ and t5 since the timelike curve z* = z; cuts the light cone C,,
at two points 2}, and x5, x} being in the future of z.

In the present document, we always consider x 4 as the point of emission of the photon and xg
as the point of reception, and we focus our attention on the determination of ¢}, — ¢4 (clearly,
the determination of ¢t — 4 comes within the same methodology). For the sake of brevity, we
shall henceforth write ¢5 instead of ¢5.

In general, tg — t4 may be considered either as a function of the instant of emission 4, and
of x4, xp, or as a function of the instant of reception tg and of x4, xp. So we are led to
introduce two distinct (coordinate) time transfer functions 7, and 7, respectively defined by

tg —ta="T(ta,xa,xp), (1.31)

and
tB—tA:'];(tB,.’DA,IBB). (1.32)
We shall call T.(ta, x4, xp) the emission time transfer function and 7, (¢, T 4, € ) the reception

time transfer function.

There exist direct relations between the time transfer functions and the components of the
vector tangent to a null geodesic. Indeed, it results from equations (1.30) and (1.31) that
whatever &g, % and x4, one has the relation

Q($OA7mA7I?4+C7;<tA7wA7mB)7mB) =0. (133)

Differentiating this identity with respect to 2%, x%y and z'y, respectively, it is easily seen that
the relations

o0 of) a7T.
aT%(I'A,IB)—F@([EAﬁL’B) 1+%(1}A,CEA,J}B) :0, (134)
o) o) a7,
@@AJB) + C@@A@B) E(tAﬂ?AamB) =0, (1.35)
0N a7T.
C@(ZL‘A,ZL‘B) axiB<tA7mA’mB)+@(xA,mB):07 (136)

hold for any couple of points (z4,2p) connected by a null geodesic. Of course, analogous
relations may be derived from the identity

Q (2% — cTo(tp, Ta, Tp), @a, 2%, 25) = 0. (1.37)

Comparing these relations with equations (1.20)-(1.21), we get the following theorem for the
components of the vectors tangent to a light ray.
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Property 5 Consider a photon emitted at point x4 = (cta,x4) and received at point xp =
(ctg,xp). Denote by k* the vector dz*/d( tangent to the photon path, ¢ being any affine
parameter. Then, one has relations as follow for the covariant components of the vector tangent
at x4 and xp

k; oT. a7, aT,17!
— = — - = — — |1 — .
(k:o)B “ouy ~ Comy [ atB] ’ (1.38)
ki P 01,17t oT,
(ko)B { 87;} - T,
=1+ = 1— , 1.40
(ko) a Ot A otp (1.40)

where T, and T, are taken at (ta, s, xp) and (tg, x4, xp), respectively.

These fundamental formulae show that all the theoretical problems related to the directions of
light rays or to the frequency shifts may be solved as soon as at least one of the time transfer
functions is explicitly determined. This property will be very useful in practice since extracting
the time transfer formulae (1.31) or (1.32) from equation (1.30), next using equations (1.63)-
(1.40) will be more straightforward than deriving the vectors tangent at x4 and zp from
equations (1.20)-(1.21), next imposing constraint (1.30).

1.2.3 General Post-Minkowskian Expansion of the World and Time
Transfer Functions

With Pierre Teyssandier and Bernard Linet, I found a way in 2004 to express the World Func-
tion and the Time Transfer Functions as general post-minkowskian series in weak gravitational
field, where perturbation are evaluated along a line integral. Then, assuming that space-time
is globally regular with the topology IR x IR3, i.e. without event horizon, we can admit that
the Lorentzian metric is represented at any point x by a series in ascending powers of G

(2, G) = gl + > G g (x), (1.41)
n=1
where
9% = n = diag (1, -1, -1, -1)
in any quasi Cartesian coordinates. Neglecting all terms involving gfﬁ,ﬂ), gfff,“), ... defines the

so-called nth post-Minkowskian approximation.

Post-Minkowskian expansion of the World Function

Taking equation (1.41) into account, it is possible to assume that Q(z4,2p5) admits also an
expansion as follows

Qza,25) = QO(x4,258) + Z GO (24, 28) . (1.42)

n=1
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It is trivial to find the expression Q) (24, 25). In a Minkowskian background, the zeroth-order
light ray trajectory is simply a Minkowskian straight line, F(X])B, connecting x4 and xg which

can be parametrized as follow

zoy(A) = (@5 —aQ)A+25, 0<A<1. (1.43)

QO)(z4,25) can be obtained by remplacing in Equation (1.18) g by 1 and 2® by Eq. (1.43),
respectively. We get immediately

1 v v
U2, 25) = rlah — 24) (s — ). (1.44)
In my 2004 paper [110], I found a recursive procedure for determining each term Q™ (z 4, )

within the nth post-Minkowskian approximation without calculating the geodesic I' 4p, joining
x4 and xp. Indeed, all along the null geodesics joining these two point-events, the Hamilton-
Jacobi are fulfilled ; if we suppose z = (ct, x) as a free parameter, a point-event belonging to
['45, we can introduce a new world function Q(z,7) = Q(x) between x4 and x. Of course,
we can also assume that Q(z) admits a post-Minkowskian expansion

Q(z) = i G 0" (z) with Q(z4) =0. (1.45)

Q(x) satifies the Hamilton-Jacobi in z, so we get

90 (@) DL _ (20,0000, 0) = 20a). (1.46)

I demonstrated that equation (1.46) can be replaced by an infinite set of ordinary differential
equations for the perturbation terms Q" (x4, ) when z is constrained to move along the
zeroth-order geodesic F(ﬂ; defined by Eq. (1.43). As a consequence, each term Q™ (z4,25)
is obtained in the form of a line integral along a straight line in the background Minkowski
metric. Thus, I obtained a recursive procedure which completely avoids the calculation of the
perturbation of the geodesic joining the given end points, leading to the following property :

Property 6 Assuming spacetime metric as a post-minkowskian expansion (1./1), the world
function between two point-events x4 and xg 1s given by

Uwa,vp) = QN wa,2p) + Y G (24, 25),

n=1
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where
1 g g l v
O a4,28) = ~5 sy = )5 = %) | ol (N2, (1.47)
1 v
U (4, 25) = — 5o (2% — 255 — %) / 91 (20 (A) A

1 n—1

1 x 19Qm—P)
3, 295@ (o) (A [nup( B~ Ty (@4, z0()

P 5@ 9O (n—p—a)
ﬁw(xmx(o)()\))w(mm37(0)0‘)) aA
=1

1n-1 _
1 aQ(p o0 (n—p)
1 / (@4, 7(0)(N))dA, (1.48)

25" g (PN "

whatever n > 2, all mtegmls being evaluated along the Minkowskian straight line defined by
Eq. (1.]3).

Post-Minkowskian expansion of the TTF from the World Function

In 2004, the first method to determine the Time Transfer Functions was to deduce them from
the Synge World Function. Let be x4 = (cta,x4) et 25 = (ctp,xp) two point-events on a
manifold endowed by a metric admitting the general post-Minkowskian expansion (1.41) and
supposing that €2 is also admitting an expansion as

Qza,25) = QO(za,25) + QY (24, 25) , where QFM (14, 25) ZG” "z, 28),

(1.49)
and Q) (z4,2p) is the World Function in Minkowski spacetime as defined by (1.44), we can
easily deduce from (1.44)

1

S (2 — ) (= ) = Pt — t)? — Fap, (1.50

Rap being defined by R?%,; = 6;;(2% — %) (2% — 27,). Imposing Q = 0 in (1.49) and substitu-
ting (1.50) to QO (x4, 25), Te and T, to tz — t4, respectively, we get

Q(O)(xA,xB) =

T2 :RiB—QZG”Q(”)(ctA,a:A,ctA+c7;,a:B), (1.51)

and .
AT =Rip—2) G'Q(ctg — ¢Tr,xa, clp, Tp). (1.52)

n=1

The question is now to inverse Q) depending themselves on T, et 7,. This kind of problems
have been treated by Lagrange in celestial mechanics, in particular concerning the Kepler
equation ; let us consider a function u(z, ) defined by

u? = 2% + Z e"hy () (1.53)
n=1
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satisfying

u(x,€)|e=0 = x, (1.54)
e being a small parameter (which is the case for the Gravitational constant G) in order to
satify the convergence of the series. Using a MacLaurin expansion of v in the neighborhood of
e = 0, the solution of (1.53) can be written

u(z,e) =x+ Zs”un(x) :
n=1

where | ol 2)
"u(x, e
Up(2) = =——F—"=
n! Q" o
One has then to calculate successive derivatives of (1.53) with respect to € whilst taking into
account (1.54). A straightforward calculation gives w,(z) whatever n. The first elements can
be obtained as follows

ur(w) = 5 [hala) + () () — (2]
us(r) = o | ho(a) + (s () + Sh () + g (@) — 2 ()

(1.55)

Applying this procedure to (1.51), it is possible to determine explicitly 7. at all pos-Minkowskian
order of approximation. First, let us introduce two useful notations as follow

an)(tA, T4, wB) = Q(n)(CtA, Ty, cta+ Rap, :133) (1.56)
and
~(n) kO
Qelk(tA,CBA,ZBB) = W(CtA,wA,CtA—FRAB,iBB) (157)
B

with £ = 1,2,3,.... Taking into account (1.55)-(1.57) and substituting 7. to u, Rap to x and
Q™ to h, in (1.53), we obtain the following property

Property 7 At the third post-Minkowskian order of approximation, the Time Transfer Func-
tion in emission, characterizing the coordinate time of flight of a photon between a point-event
of emission x4 and a point-event of reception xg is given by

3
1
Te(ta,@a, @) = —Rap + > G T (ta, @a, ) + O(GY), (1.58)
n=1
where
G
(1) — = 1.59
R (1.59)
1 ~ ~ 1
T = = |02 4+ TN, + ST (1.60)
CRAB ¢ 2
1 [~ 1 ~ ~
T = R [Q(S) + 072(1)92?)1 + —02(7;(1))298\)2 + 07;(2)921\)1 +ETWTP|
AB
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quantities Q" and QS‘LL being defined by (1.56) and (1.57), respectively.

A similar reasoning can be performed for 7,.

Stand-alone post-Minkowskian expansion of the Time Transfer Functions

It is worth to say that the calculation of the Time Transfer Functions from the determination
of the Synge’s World Function Q(z 4, xp) and then deducing light travel time from the equation
Q(za,xp) = 0 is a procedure which works quite well, but presents an unpleasant drawback :
once the general post-Minkowskian expansion of the world function is known, obtaining the
corresponding expansion of light travel time still requires a lot of additional calculations, as
we demonstrated in [165].

It is why I reconsider the problem with Pierre Teyssandier in order to find a stand-alone method
which totally avoids the calculation of the World Function. Going back to the property 5, let
us focus on two particular relations, i.e.,

k’i o aﬁ(w/htBawB)
and K T
k) 9Tlta@azs) (1.63)
ko 23 oz'y

The covariant components of the vector tangent to I'yg at x4 satisfy the equation
(g’“’kuku)“ =0. (1.64)

Dividing equation (1.64) side by side by [(kq)a]?, and then taking equation (1.62) into account
yield '

- o, . oT, 0T,
g (2% — Tz a) + 2c 9" (2% — Ty, ) T +c2gzj(x03—c7;,wA)—T T =0 (1.65)
The same reasoning using (¢"'k,k, )., = 0 and equation (1.63) leads to
. . y 7. 07T,
g (2% + cTe, xp) — 2c g% (2% + cTe, ) +c? g (2% + cTe, B) 7. 97 =0. (1.66)

Equations (1.65) and (1.66) are nothing else that Hamilton-Jacobi-like partial differential equa-
tion. In [163], I showed that these two relations can be rewritten as two integro-differential
equations on which a post-Minkowskian can be performed without difficulties. Indeed I ob-
tained a recursive procedure at the nth post-Minkowskian approximation which spares the
trouble of solving the geodesic differential equations and avoids determining Synge’s world
function, any nth-order perturbation term being an integral taken along a zeroth-order null
straight line.

1. The covariant component ky of a null vector k cannot vanish in the chosen coordinate system since the
vector 9/0x° is assumed to be timelike everywhere.
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1.2.4 Some applications with the TTF formalism

Several projects emerged from this work on TTF formalism. The first main idea was to develop
a complete relativistic ray tracing modeling based on TTF, dedicated to space astrometry. A
second idea was to consider the TTF formalism as the basic algebra to express accurately the
radioscience observables, used for deep space navigation and planeto-dynamics.

With a Ph.D. student, Stefano Bertone, I constructed a TTF-based astrometric model for
observable Gaia modeling when Solar System deflecting bodies are considered to be punctual in
uniform motion [16]. We compared our approach to the two ray tracing models commonly used
by the Data Processing and Analysis Consortium (DPAC) of the Gaia mission : GREM [81]
and RAMOD [13], validating our approach at the high level of 0.1uas. We continued this work
in a very close collaboration with the Torino Observatory, which hosts a Gaia data center. By
merging our 2014 model with the Italian astrometric data analysis pipeline called GSR (Global
Sphere Reconstruction) [170], we obtained a new pipeline, GSR-TTF, now fully operational in
Torino [17].

These years of work have taught me a very important lesson : all groups (mine, Torino and
Dresden) have noticed the emergence of divergent terms in their first-order relativistic for-
mulation. So we need to push our calculations to the second order of corrections in order to
construct a reliable model [34, 115], even if a priori the first order seems to be sufficient. By
analogy, it is a situation quite similar to perturbative work in celestial mechanics.

Furthermore, space astrometry is not the only very high precision technique currently avai-
lable. It is also the case for deep space navigation. Indeed Range accuracy improved by one
order of magnitude during the last 10 years (from 1 meter for the NASA Cassini probe to
10 c¢m for the ESA BepiColombo mission [127, (67]). Thanks to the development of X- and Ka-
band transponders, Doppler accuracy increased drastically from ~ 10 mHz for Pioneer Venus
Orbiter [85] (at 60 s integration time) to the uHz level for BepiColombo and for Juno [(1] at
1000 s integration time. Improvements in the technical accuracy of these observables result in
better constraints on their scientific interpretation and have consequences in several domains.
For this reason, a continuous effort is necessary to keep up the modeling with the increasing
accuracy of instruments and mission goals. It is of course the case for relativistic modeling of
light propagation in radioscience. I decided then to extend explicitly the TTF formalism to
the second and even the third order of post-Minkowskian order of corrections.

First of all, I completed with my students a complete post-Newtonian first-order theory in the
gravitational field of uniformly moving extended bodies (axisymmetric case). We obtained a
very general result that we applied to the JUNO mission, showing that the Jupiter quadrupole
moment (i.e. its flattening) has a significant influence on signal propagation [74]. Indeed, the
level of correction is of the same order of magnitude than the accuracy of the measurements
and must be considered in the data analysis. As illustrated on Figure (1.2), the Dopper signal
(left plot) can reach the level of several 107 m/s and the Range signal is roughly about
the centimeter level (right plot). I communicated this result to NASA experts involved in
the radioscience of JUNO (W. Folker and B. Jacobson at Jet Propulsion Laboratory) who
successfully implemented my new formula in their navigation data analysis.



16 1.2. LIGHT PROPAGATION IN CURVED SPACETIME

15 15
g 10 1.0
5.5 o5 ZE o5
5% IRRINRS T T -
25 AT T I E
S 05 -05
-1.0 -1.0

(a) Doppler Observable. (b) Ranging Observable.

FIGURE 1.2 — Simulation of impact of Jupiter flattening on the radioscience observables of the
Juno mission.

Moreover, I studied with S. Bertone the impact of trans-  ansponder detay impact on HEO Doppter gt

ponder delay in the formulation of Doppler and Range [15]. 2 m
We modified the standard approach developed by Théo B T AR A
Moyer [128] by including a new term, modeling explicitly -
the transponder internal delay, in the computation of the & 3
light-time equation. We considered several interesting cases oo L
such as an Earth swing-by, NASA GRAIL [185] and ESA ,‘Zgl e

BepiColombo missions. We used the planetary extension - \

~0.04
0.0 0.1 0.2 0.3 0.4 0.5
Days since J2000.0 +9.2292e3

of the Bernese GNSS software [15] to simulate two-way X-
band Doppler for BepiColombo Mercury Planetary Orbiter
(MPO) nominal orbit retrieved from ESA Spice SPK for S%blfrt;t I;r‘;ifllgrl\?ffif;‘Cjnfgg/tgf/gggg
08/04/2025. We first computed Doppler data as observed different values of the transponder delay dt
by the Deep Space Network antennas following the stan- (1 mHz~0.035 mm/s @ 84 GHz).

dard formulation by [128]. Then, we included the transponder delay in the light-time modeling
used for the simulation. We computed the resulting Doppler signal for several values of trans-
ponder delay in the range 1075 — 1073 s and show the differences with respect to [125] in

Fig. 1.3.

Second-order of relativistic post-Minkowskian 0 =
corrections were considered with caution. My
goal was to obtain either new useful analytical
formulas and /or the simplest possible numerical
formulation. It is exactly what we did with my
students in [75]. After expressing TTF at second e El o

PM order in the most simplest way possible, we

proposed a numerical scheme to calculate these Fig. 1.4 — 2PM Simulation of Mercury Range during Bepi-
functions. We applied our result to the GAME Celombo mission.

project [62] and the BepiColombo mission. We were able to highlight an interesting enhanced
term to be considered in the future data analysis of the radioscience BepiColombo MORE
experiment [78]. The accuracy of the MORE instrument being around 10cm, Figure (1.4) illus-
trates that, modulo particular orbital configurations of the probe, relativistic peaks of 2nd order
of 80cm can appear and therefore must be cleaned.

-0.2

~04

2 PM Range [m]

-0.6

All of this works led me to be involved in several space projects. Indeed, in 2012, I was co-
Pi of the M3 GETEMME proposal [137]. This project was aimed to study in details the
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martian satellites, Phobos and Deimos, by using space geodesy techniques applied to the
martian system. This proposal was complementary with PHOBOS Grunt mission which was
not launched successfully and the spacecraft were lost quickly. I also became responsible for
the astrometric core processing workpackages of the Theia consortium [166] when answering to
ESA M4 and M5 calls. I am currently member of the Science Team of the E-GRASP proposal
to the ESA Earth Explorer 10 call.
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1.3 Celestial mechanics, ephemerides and tidal effects

The preparation of the Gaia mission led to a modification of planetary ephemerides. Indeed,
all available ray tracing modeling used as timescale TCB (Coordinate Barycentric Time) of
IAU conventional BCRS (Barycentric Celestial Reference System). Usually, planetary epheme-
rides realized their own timescale TDB (Dynamical Barycentric Time). An adequate timescale
transformation, from TDB to TCB, was then necessary. It was possible by using algorithms
developed in [18, 80, 71]. However these procedures were not fully satisfactory because they
are performed a posteriori from a given ephemeride, generally by using different gravitatio-
nal fields to calculate the time dilation. It led to an incoherence. In 2005 at the Institut de
Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Jacques Laskar and collaborators
prepared a new numerical ephemeride called INPOP (Intégrateur Numérique Planétaire de
I’Observatoire de Paris). Dr. Laskar invited me to participate to this adventure during several
months between fall 2005 and Spring 2006, just before I got my post-doc position in Germany.
I participated to the project with several dedicated tasks concerning the relativistic modeling
used by INPOP : equations of motion, conservation laws and timescales.

0.001
In consequence, I co-authored the publi- 0.000

cation of INPOPO08 where my contribution o o0
was first to check the relativistic equations oo
of motion used in INPOP and to deter- -0.005
mine exactly the motion of the barycentre. gggz
I proposed also a way to calculate, simul- -0.005
taneously with the equation of motions, -0.010
the difference between TCB and TDB. It gg;z
led to the production of the first 4D plane- 0.002
tary ephemerides [53]. Fig. (1.5) shows the oo
quality of the stability of INPOPO8 bary- B,
centre, which is constrained at a level bel- -0.008
low 0.1 millimeter over two centuries. 0010
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When I have been hired as an assistant as- Fig. 1.5 — The INPOP Center of mass drift in mm.
tronomer in 2009, Valéry Lainey contacted

me. At that time, he published a paper in Nature [99] demonstrating that the tidal dissipation,
traditionally called the @ factor [69], inside the lo-Jupiter system was substantial. The same
year, using Cartesian symmetric trace free tensor, I published with Stéphane Mathis a very
general paper on tidal effect going beyond the punctual approximation for the tidal pertur-
ber. I noticed indeed a strong correlation between relativistic and tidal effects when fitting
ephemerides. Having already in mind GR tests with Lunar Laser Ranging, I decided to study
more deeply tidal effects between two extended bodies and, more precisely, the interaction bet-
ween mass multipole moments of their gravitational fields and the associated tidal phenomena,
obtaining the most general formalism to study tides [120].

Dr. Lainey was interested by saturnian moons with an objective to combine ground optical
astrometry over long periods (i.e. centuries) and the Cassini data. He detected indeed for
the first time tidal dissipation in this system and his goal was to build an extremely accurate
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ephemeris of the Saturnian moons of Saturn to confirm this new result. Valéry therefore formed
a group of experts from different fields to study this discovery, the international group Encelade
2.0. In this collaboration, my role was to be his expert in GR and tide. I validated all modelings
concerning observation process and dynamical equations of motion, in order to avoid any a
conceptual mistake (or a missing term), in particular concerning GR effects. I co-authored the
articles of the collaboration where I had a substantial contribution [33, , 100].

We continued with Stéphane Mathis to study tidal dynamics, in particular by focusing on the
rheology of the bodies. We co-supervised Pierre Auclair-Desrotour during his M2 internship.
We asked P. Auclair-Desrotour to study the contribution of inertial and gravito-inertial waves
on the tide, so the answer of a superficial fluid layer. This led to the publication of several
papers [0, D, ]. We computed the tidal kinetic energy dissipated by viscous friction and ther-
mal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted
to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the per-
turbation were derived analytically as explicit functions of the tidal frequency and local fluid
parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification,
viscous and thermal diffusivities) for periodic normal modes. We demonstrated the strong
impact of the internal structure and of the rheology of the central body on the orbital evolu-
tion of the tidal perturber : a smooth frequency-dependence of the tidal dissipation causing
a smooth orbital evolution while a peaked dissipation can produce erratic orbital behavior.
As shown on Figure (1.6), the influence of

the rheology of the dissipative body can be Or<=o_ ‘ S
very varied according to its internal struc- 1000l ”‘\\\ peaks model||
ture. Indeed, this figure summarizes a Ge- ¢ s..
dankenezxperiment where we imagined the i—zooo— S

fall of Phobos on a rocky Mars (blue dot- & '

ted reference curve with constant () fac- § ~3000/

tor) and on a completely fluid planet with £ —4000¢ '

a similar mass than Mars (green curve). & .

In this situation, the upper enveloppe of ~S000f ':

our fictitious planet is excited by Phobos ~6000 : -
leading to the birth of inertial and gravito- 0 1 Ti2me (yr) ° 4X 107

inertial waves with resonances at wave ex-
citation frequencies. It leads to shake the
evolution of Phobos semi-major axis with
erratic jumps. It is also worth highlighting
that in this case, when the Phobos orbital
period leaves the excitation interval of waves, the fall of Phobos stops. This is the difference
between equilibrium [180, 181] and dynamical [68] tides.

Fig. 1.6 — Evolution of the Phobos semi-major axis a over time with
a Q factor proportional to inertial wave dissipation in fluids (green
curve), and with a constant Q factor (blue dashed curve). The abscissa
represents time in years, the vertical axis measures the evolution of
the semi-major axis from its actual value.

To obtain these results, I developed a numerical code called ESPER (Evolution Séculaire des
orbites Planétaires En Relativité) which has never been published. Post-Newtonian GR effects
are correctly taken into account up to second post-Newtonian order of correction. A complete
module for tide have been implemented. Recently, with S. Brun and S. Mathis, we supervised
Mansour Benbakoura during its M2 internship. Our objective was to implement magnetism
inside ESPER, following the interesting results presented in [159]. It led us to produce a patch
to ESPER called ESPEM (Evolution Séculaire des orbites Planétaires avec Magnétisme) which
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will be presented in a forthcoming publication [14].

All of this work gave me a solid approach to tidal effects necessary for GR tests with Lunar
Laser Ranging, which I started later with a PhD student, A. Bourgoin (see section 1.5.3).
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1.4 Tests with the Parametrized Post-Newtonian for-
malism

The post-Newtonian approximation of GR is a method to solve Einstein’s field equations
for physical systems in which motions are slow compared to the speed of light and where
gravitational fields, inside and around bodies, are weak. It is exactly the case for Solar System
bodies. The underlying idea is to treat spacetime as being that of flat Minkowski spacetime
as the zeroth approximation, and to modify it by successive corrections. This means that one
can characterize a gravitational system in question by a small parameter € as

e~ (v/c)? ~GM/rc* ~ p/pc?, (1.67)

where v, M and r denote the characteristic velocity, mass and size or separation within the
system; p and p are the characteristic pressure and density within the bodies, G and ¢ being
Newton’s gravitational constant and the speed of light in a vacuum, respectively.

Consequently, the components of the metric tensor can be written as
Guv = Nuw + h,u,l/ (168)

where 7 is the Minkowki flat spacetime metric and, |h,,| < 1, a perturbation. A consistent
construction of h requires determination of hgy correct through O(e?), ho; through O(e%/?) and
h;j correct through O(e).

The only way that one metric theory differs from another is in the numerical values of the
coefficients that appear in front of the metric potentials. It is the purpose of the Parametrized
post-Newtonian Formalism (PPN) where one inserts parameters in place of these coefficients,
parameters whose values depend on the theory under study. PPN formalism was pioneered
by Kenneth Nordtvedt [131, |, who studied the post-Newtonian metric of a system of
gravitating point masses, extending earlier work by Eddington, Robertson and Schiff. Will [168,

, ] generalized the framework to perfect fluids. A general and unified version of the PPN
formalism was developed by Will and Nordtvedt [177, 136]. The metric tensor can be expressed
as follows

goo = — 14+2U — 28U — 26®y + (2y + 2+ a3+ — 26) D1 +2(37 =28+ 1+ G + &) Dy
4+ 2(1 + (3)P3 +2(3y + 3¢ — 26) Py — (¢ — 26 A — () — g — a3)w?U
— apw'w U + (2a3 — aq)w'V;,

Ggoi = — 34y +34+ a1 —as + G =2V —s(1 + aa — (. + 25 W,
—s(ay — 2a0)w'U — UZJ

+ (1 4+ 27U)d;5,

where 3, v, €, ai, as, as, (1, G, (3 et (4 are the PPN parameters, w’ being the ith component
of velocity relative to a prefered frame, U the Newtonian gravitational potential, ®y,, ®;, O,
3, ¢4, A, Uyj, V; and W; being post-Newtonian potentials.

The parameters v and [ are the Eddington-Robertson-Shiff parameters used to describe classi-
cal tests as light deflection and perihelion precession, and are in some sense the most important.
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TABLE 1.1 — PPN parameters and significance. a3 is indicated twice since it is a measure of 2

effects.

Parameter What is measures relative Value in  Value in semi- Value in fully

to GR GR conservative conservative

theories theories
0% How much space-curvature 1 ~ ~
produced by unit rest mass ?
I} How much nonlinearity in 1 153 153
the superposition law for
gravity 7

& Preferred-location effects ? 0 & &
o Preferred-frame effects ? 0 o 0
(65) 0 (65) 0
Qs 0 0 0
as Violation of conservation 0 0 0
G of total momentum ? 0 0 0
G 0 0 0
(s 0 0 0
Ca 0 0 0

They are the only non-zero parameters in GR and scalar-tensor theories. The parameter £ is
non-zero in any theory of gravity predicting preferred-location effects such as an anisotropy
in the local gravitational constant (the Whitehead effects); ay, as and a3 measure whether
or not theory predicting post-Newtonian preferred-frame effects; as, (1, (2, (3 and (4 measure
whether or notviolations of global conservation laws for momentum. I summarize in Table (1.1)
the values of these parameters in GR, in any theory that possesses 6 global conservation laws
for angular momentum, the fully conservative scenario and in any theory that possesses conser-
vation laws for angular momentum, the fully conservative scenario.
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(a) Constraints on PPN ~.

Table 1: Current limits on the PPN parameters.

Parameter Effect Limit Remarks

¥—1 time delay 23 x107°  Cassini tracking
light deflection 2x107* VLBI

p—-1 perihelion shift 8x 1075  Jog=(2.2+0.1) x 107
Nordtvedt effect 23x 107" gy =48 —~v — 3 assumed

I3 spin precession 4x107%  millisecond pulsars

ay orbital polarization 10-*  Lumar laser ranging

7x107° PSR J1738+0333

as spin precession 2x 1079  millisecond pulsars

ag pulsar acceleration 4% 1020 pulsar P statistics

G 2x 1072 combined PPN bounds

G2 binary acceleration 4x1078 P‘P for PSR 1913+16

[« Newton’s 3rd law 10~%  lunar acceleration

Ca - not independent

(b) Techniques used to constrain PPN parame-

ters.

FIGURE 1.7 — Actual constraints on PPN parameters.

Figure (1.7) gives an overview of the actual constraints on the PPN parameters. Fig. (1.7b) is a
table describing which what techniques the contraint has been obtained. Fig. (1.7a) is dedicated
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on the determination of PPN ~; it illustrates the constant improvement of its determination
with time and the variety of techniques used, from optical light deflection, VLBI and radio-
science experiments.

1.4.1 Contributions with planetary ephemerides

The analysis of the motion of the planet Mercury around the Sun was historically the first
evidence in favor of GR with the explanation of the famous advance of the perihelion in 1915.
From there, planetary ephemerides have always been a very powerful tool to constrain GR and
alternative theories of gravitation.

When I collaborated with the INPOP team between 2006 and 2009, we used the INPOPOS
ephemerides [55] to perfom some tests of gravitation. At that time, we considered the advance
of perihelion of a planet given by

2 (2y — B+ 2)GMaun 375 R
Aw — sun 1.69
“ a(l — e?)c? y a?(1—e?)?’ (1.69)

where G and ¢ are the Newtonian gravitational constant and the speed of light in a vacuum,
respectively ; Jo and Ry,, are the Sun oblateness and equatorial radius; a and e are the semi-
major axis and the eccentricity of the precessing planet. Nevertheless if v plays a role in
the equations of motion, it is worth to note that light propagation is only sensible to that
parameter. PPN ~ can be then estimated with high accuracy by light deflection measurements
by VLBI, by time delay during an interplanetary roundtrip and by Doppler tracking data of
a space mission. This is also why, in the following, we put v = 1 in order to only test the
sensitivity of PPN § on the perihelion’s advance of planets. However, Eq. (1.69) demonstrates
that we can immediately suspect that it is not possible to do a relevant estimation of PPN
without considering Sun J;. Furthermore, it may be not possible to decorrelate safely these
two quantities with only one planet, as Mercury.

With INPOPO08 [55], MEX and VEX tracking data have lead to an important improvement of
Mars and Venus orbits, respectively. But their impact was not only limited to the improvement
of the planet dynamics, playing also a role in the determination of parameters such as asteroid
masses, the oblateness of the Sun and the PPN parameter 5. It was then suitable to take
advantage of this new situation by attempting to decorrelate these parameters.

The ratio between the uncertainties of the observations and the sensitivity of the observed orbit
to the GR modifications was evaluated by dividing the cumulative advance of the perihelion
over a period of time corresponding to the time span of observations by the angle uncertainty
of INPOP and presented in table 1.2. If the amplitude of the advance of the perihelion on
Venus and Mars orbits is considered for a set of observations of equivalent accuracy, Venus
data will be seven times more efficient to test GR and to estimate the sun Jy than Mars. If
VEX mission is prolongated from 2 years to 4 years and if VLBI observations are done from
the tracking of the spacecraft with an accuracy of about 1 mas, VEX data will be then as
important for the PPN testing and Sun J; estimations as the direct 800-meter accuracy radar
ranging on Mercury. Besides, the Mars data are still very important because of the long time
span of observations of very good quality obtained since the Viking mission in 1978.
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TABLE 1.2 — The first 2 columns give the a priort INPOP uncertainties in geocentric angles
and distances limited by the observation accuracies. In the third column, one may find the
estimation of the general relativity and sun oblateness effect of the advance in perihelion, w,
on the Mercury, Venus and Mars perihelia per year. The fourth column gives the S/N ratio
estimated over the period of time given in years in column 5.

INPOP  accuracy w S/N  period

Planets angle  distance  7/yr years
Venus 0.001” 4m 0.086 172 2
344 4
Mars 0.001” 2m 0.013 130 10
390 30
Mercury  0.050” 1km 0.43 300 35

However, The advance of the perihelion induced by GR and sun .J; has an impact very similar
to the advance induced by the main-belt asteroids on inner planet orbit. In INPOPOS, a ring
was fixed to average the perturbations induced by the main-belt asteroids which cannot have
their signal fitted individually on tracking observations. This ring has its physical characteristics
(mass and distance to the sun) estimated independently from the fit by considering the albedos
and physical properties of 24635 asteroids [95].

Two different but complementary analysis and determination of PPN 5 and Sun J; have been
done with a fixed model of asteroid perturbations (same values of asteroid and ring masses and
of densities as INPOPO0S8). The first approach was based on a least square estimate of parameters
during the fit of planet equations of motion to observations. We estimated what was the impact
of each datasets in the determination of J; and 3 : several fits of the initial condition of planets
and the parameters J, and 8 hav been made using different sets of observations. This led to
32 adjustments based on INPOPOS. For each fit, changes were made in the selection of Mars
and Venus data in order to estimate the impact of each important set of observations in the
fit of the Sun J; and PPN g. We looked at the variations in the estimation errors of the 2
parameters and we use the 1-o given by the least squares as indicator of this uncertainty. With
this method, we were then able to quantify the influence of each data sets on the determination
of the pair (8, J,) as well as the stability of the determinations of the parameters. Indeed these
variations in the error’s estimation of the pair (3, Js) are a relevant indicator of the uncertainty
of the fit of 5 and J,. To take into account the correlation between .J; and [, we used two
modes of adjustments : in the mode 1, § or J, are fitted alone with the initial conditions of
planets; in the mode 2, both parameters are fitted simultaneously with the initial conditions
of planets.

The results are summarized in table 1.3. One can first notice that the determinations of sun
Jo and  made separately (i. e. mode 1) give better ¢ than fits including simultaneous (3, J5)
determination (mode 2). This is obviously consistent with the expected result relative to the
determination of correlated parameters. The best results for a correlated determination of
Jo and  (mode 2) are then obtained when only the most accurate observations of Mars
(MGS/MO, MEX and Viking) and Venus (VEX) are used simultaneously.
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TABLE 1.3 — 1-0 least squares obtained for J, and [ using several sets of observations.

mode  J2 (1-7) mode  J2 (1-7)

x107  x10° x107  x103

Modern Mars 1 0.181 Impact of VEX 1 0.144
MEX + MGS/MO 1 0.042 Mars + VEX 1 0.025
2 0.367 0.085 2 0.208 0.037

Impact of Vkg 1 0.161 Impact of old Venus 1 0.188
MEX + MGS/MO + Vkg 1 0.040 Mars + old Venus 1 0.040
= Mars 2 0.302 0.076 2 0.283 0.060

A second and original strategy to study the sensitivity of the planetary ephemerides to J,
and PPN 3 was to estimate how does an ephemeris built using different values for .J, and
PPN § and fitted on the same set of observations as INPOPO08 differ from INPOPO0S. Such
differences give an indication on how observations are sensitive to these parameters and with
which accuracy we can estimate a parameter such as (.
To test such sensitivity, we focused our attention on the postfit residuals of the most accurate
dataset used in INPOPO8 adjustment : the Mercury direct range, because of its sensitivity
to GR and to the Sun Jy; VEX, MEX and MGS/MO data because of their high accuracy
and simulated S/N presented on table 1.2; Jupiter Galileo data and Saturn Cassini normal
point. These 2 latest data sets were selected because they induce a global improvement of the
planetary ephemerides and especially of the Earth orbit.
To estimate the sensitivity of these 7 most accurate sets of data used in INPOPO0S8 adjustment
to the variations of values of J, and PPN 3, we estimated the ratio S/N defined as :
S/N = Oi,j — 00,0

70,0
where o; ; is the 1-sigma dispersion of the postfit residuals of an ephemerides based on INPOP08
but with values of J, and PPN (3 different from the ones used in INPOPO08 and fitted on all
the INPOPOS data sets and og is the 1-sigma dispersion of the postfit INPOPOS residuals.
We have used 9 values of .J; varying from 1.45 x 107 to 3.05 x 10~7 with a 0.2 step and 24
values of PPN 3, building then 192 different ephemerides.

TABLE 1.4 — [ intervals in which the residuals stay below the 5% limit. The value of 3 given
here is estimated for v = 1.

Data £ min B max | Data B min 8 max | Data B min S max
MGS/MO+MEX 0.99995 1.0002 | Jupiter VLBI 0.9996 1.0002 | Viking 0.9995 1.0002
VEX 0.99990 1.0002 | Saturn Ranging 0.9998 1.0005 | Mercury 0.9985 1.005

On Table (1.4), we have gathered minimum and maximum values of PPN (3 defining the
sensitivity interval of the different datasets. The sensitivity interval is the interval of PPN
for which the S/N remains below 5%. Values of PPN § greater than the maximum value given
in table (1.4) or smaller than the minimum value cannot be seen as realistic in comparison to
modern observations. It appeared that the MGS/MO and MEX data provide the most narrow
interval of sensitivity with 0.99995 < 5 < 1.0002.

Nowadays, INPOP team is still pursuing this kind of experiment, by using new available data.
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For example, recently, by using the Messenger tracking data and introducing Monte-Carlo
method, they succeed to improve drastically the sensitivity to PPN 5 [171, 50].

Related Publications :

@ A. FIENGA, J. LASKAR, P. KuCcHYNKA, C. LE PONCIN-LAFITTE, H. MANCHE et M.
GASTINEAU. « Gravity tests with INPOP planetary ephemerides ». In : TAU Symposium.
Sous la dir. de S. A. KLIONER, P. K. SEIDELMANN, & M. H. SorreL. T. 261. TAU
Symposium. Jan. 2010, p. 159-169. DOI : 10.1017/81743921309990330. arXiv : 0906 .
3962 [gr-qc]

1.4.2 Contributions with Very Long Baseline Interferometry

Very Long Baseline Interferometry (VLBI) is a geometric technique which measures the time
difference in the arrival of a radio wavefront emitted by a distant radio source (typically a
quasar) between at least two Earth-based radio telescopes, with a precision of a few picoseconds.
Knowing the group delay and the angular separation between the baseline between the antennas
of the telescopes and the line of sight of the observation, the distance between the telescopes
can be determined and consequently VLBI tracks the orientation of the Earth in an inertial
reference frame provided by the very distant quasars, determining accurate terrestrial and
celestial reference frames.

Geodetic VLBI observations are run daily since 1979 and the database contains nowadays
almost 6000 24hours sessions, corresponding actually to 10 millions group-delay observations,
with a present precision of a few picoseconds. One of the principal goals of VLBI observations is
the kinematical monitoring of Earth rotation with respect to a global inertial frame realized by a
set of quasars, the International Celestial Reference Frame [19], as defined by the International
Astronomical Union [157]. The International VLBI Service for Geodesy and Astrometry (IVS)
organizes sessions of observation, data storage and products distribution, in particular the
Earth Orientation Parameters. Because of this precision, VLBI is also a very interesting tool
to test gravitation in the Solar System [155]. Indeed, the gravitational fields of the Sun and the
planets are responsible of relativistic effects on the quasar light beam through the propagation
of the signal to the observing station. VLBI is able to detect these effects very accurately
through the gravitational group delay, given by [50]

GM |+ 7Lk
ey 1) I (TR (1.70)
c? |7| + 7.k

where 7; stands for the position vector of the ith station and k the unit vector pointing towards
the radio source, both referring to the center of mass of the deflecting body. For a typical
VLBI baseline between Westford (Massachusetts) and Wettzell (Germany) of ~6,000 km, 7, is
~170 nanoseconds (ns) for a source at the Sun’s limb, rapidly decreases to ~10 ns at 4° away
from the Sun, and remains close to the accuracy of VLBI measurements (nowadays around
10 ps), even for elongations close to 180° (see Fig. 1.8).

In the past years, VLBI data were used in various attempts to determine 7. Using less than 4
years of observations, [119] found v consistent with GR within 0.005. Using 10 years of obser-
vations, [150] estimated a standard error of 0.002. [113] got 0.9996 £ 0.0017 after observations
of the relative deflection of 3C 273B and 3C 279. [156] obtained 0.99983 + 0.00026 (statistical
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FIGURE 1.8 — Gravitational delay 7, as a function of the elongation angle ¢ to the Sun for the

baseline Westford—Wettzell.

standard error) with VLBI observations before 1999. The current best estimate of v, however,
was not obtained with VLBI : it is consistent with GR with an error of 2 x 107°, and was
obtained by [18] who derived it from spacecraft tracking experiments.

Errors reported in the various papers are
often formal errors obtained from the pro-
pagation through the adjustment proce-
dure of an initial SNR-derived standard
error on the delays. They might there-
fore not directly compare to one another.
Though all these works, except [18], deal
with deflection of the radio waves by the
Sun, it must be mentioned that special
VLBI sessions were carried out to measure
the deflection close to Jupiter or other pla-
nets [151].

Since 1998, SYRTE maintains a VLBI
data analysis center, OPAR lead by Dr.
Sébastien Lambert. This center has mul-
tiple objectives : determination of Earth
Orientation Parameters and the realiza-

Elongation to the Sun (°)

ol . . I . . .
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Fig. 1.9 — The main plot displays the observational history of the
sources at less than 30° from the Sun (black : observations treated

in [104] ; red : additional observations of routine experiments not pro-
cessed in [104] excluding VLBA+ and VLBA ; blue : VLBA+; green :
VLBA)

tion of terrestrial and celestial frames. Its operational activity is realized in the framework
of the International VLBI Service (IVS). OPAR is analyzing every day Intensive VLBI obser-
vations, enabling us to determine the rotation angle of the Earth, namely UT1. The astrometric
accuracy of these observations is roughly some dozen of microarcseconds, representing a pre-
cision of a few millimeters concerning the absolute positiong of the Earth pole. Between 2009
and 2011, I collaborated with S. Lambert to produce a new generation of GR tests with VLBI
data. In our works, we estimate v from routine geodetic VLBI observations, using the additio-
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nal 1999-2008 time period with respect to [156]. We compared estimates and errors obtained
over several time spans and using various analysis schemes in order to address the accuracy
and to point out some systematics and limitations. In particular, we stressed the importance
of having new observations close to the sun, which had not been done roughly since 2000 as
shown in Fig. 1.9. Concerning our determination of PPN ~, it was possible to obtain a new
constraint, with the complete observations database, at the level of 1.2 x 1074 [105, ], which
is still today the best estimate possible with this technique. With S. Lambert, we have since
convinced IVS to make new observations close to the Sun ; since 2011, IVS decided to run new
observations close to the Sun and the first data are now available, their processing being under
study.

Related Publications :

® S. B. LAMBERT et C. LE PONCIN-LAFITTE. « Improved determination of v by VLBI ».
In : Astronomy & Astrophysics 529, A70 (mai 2011), A70. DOI : 10.1051/0004-6361/
201016370

@ S. B. LAMBERT et C. LE PONCIN-LAFITTE. « Determining the relativistic parameter
v using very long baseline interferometry ». In : Astronomy & Astrophysics 499 (mai
2009), p. 331-335. DOI : 10.1051/0004-6361/200911714. arXiv : 0903.1615 [gr-qc]

1.5 Testing Lorentz symmetry

Lorentz invariance is one of the fundamental symmetry of relativity, one of the corner stones
of both GR and the Standard Model of particle physics. It states that the outcome of any
local experiment is independent of the velocity and of the orientation of the laboratory in
which the experiment is performed. If one considers non-gravitational experiments, Lorentz
symmetry is part of the Einstein Equivalence Principle (EEP). A breaking of Lorentz symmetry
implies that the equations of motion, the particle thresholds, etc... may be different when the
experiment is boosted or rotated with respect to a background field [38]. More precisely, it is
related to a violation of the invariance under "particle Lorentz transformations” [38] which are
the boosts and rotations that relate the properties of two systems within a specific oriented
inertial frame (or in other words they are boosts and rotations on localized fields but not
on background fields). On the other hand, the invariance under coordinates transformations
known as "observer Lorentz transformations” [33] which relate observations made in two inertial
frames with different orientations and velocities is always preserved. Considering the broad field
of applicability of this symmetry, searches for Lorentz symmetry breaking provide a powerful
test of fundamental physics. Moreover, it has been suggested that Lorentz symmetry may not
be a fundamental symmetry of Nature and may be broken at some level. While some early

motivations came from string theories [94, 95, 92], breaking of Lorentz symmetry also appears
in loop quantum gravity [65, 3, , 130], non commutative geometry [72, 31], multiverses [20],
brane-world scenarios [30, 61, 37] and others (see for example [162, 123]).

Tests of Lorentz symmetry have been performed since the time of Einstein but the last decades
have seen the number of tests increased significantly [93] in all fields of physics. In particular,
a dedicated effective field theory has been developed in order to systematically consider all
hypothetical violations of the Lorentz invariance. This framework is known as the Standard-
Model Extension (SME) [38, 39] and covers all fields of physics. It contains the Standard Model
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of particle physics, GR and all possible Lorentz-violating terms that can be constructed at the
level of the Lagrangian, introducing a large numbers of new coefficients that can be constrained
experimentally.

In this document, we focus on the gravitational sector of the SME which parametrizes de-
viations from GR. GR is built upon two principles [169, 176, 173] : (i) the EEP and (ii) the
Einstein field equations that derive from the Einstein-Hilbert action. The EEP gives a geo-
metric nature to gravitation allowing this interaction to be described by spacetime curvature.
From a theoretical point of view, the EEP implies the existence of a spacetime metric to which
all matter minimally couples [167]. A modification of the matter part of the action will lead to
a breaking of the EEP. In SME, such a breaking of the EEP is parametrized (amongst others)
by the matter-gravity coupling coefficients a,, and ¢,,, [97, ]. From a phenomenological point
of view, the EEP states that [170, 173] : (i) the universality of free fall (also known as the weak
equivalence principle) is valid, (ii) the outcome of any local non-gravitational experiment is
independent of the velocity of the free-falling reference frame in which it is performed and (iii)
the outcome of any local non-gravitational experiment is independent of where and when in
the universe it is performed. The second part of Einstein theory concerns the purely gravita-
tional part of the action (the Einstein-Hilbert action) which is modified in SME to introduce
hypothetical Lorentz violations in the gravitational sector. This section focuses exclusively on
this kind of Lorentz violations and not on breaking of the EEP.

1.5.1 Postfit analysis versus full modeling

Since the last decade, several studies aimed to find upper limits on SME coefficients in the
gravitational sector. A lot of these studies are based on the search of possible signals in post-fit

residuals of experiments. This was done with LLR [13], GPB [9], binary pulsars [152, 153] or
Solar System planetary motions [79, 73]. However, I proposed two new works focused on a
direct fit to data with LLR [25] and VLBI [109], which are more satisfactory.

Indeed, in the case of a post-fit analysis, a simple modeling of extra terms containing SME
coefficients are least square fitted in the residuals, attempting to constrain the SME coefficients
of a testing function in residual noise obtained from a pure GR analysis, where of course Lorentz
symmetry is assumed. It comes out correlations between SME coefficients and other global
parameters previously fitted (masses, position and velocity. .. ) cannot be assessed in a proper
way. In others words, searching hypothetical SME signals in residuals, i.e. in noise, can lead to
an overestimated formal error on SME coefficients, as illustrated in the case of VLBI [109], and
without any chance to learn something about correlations with other parameters, as for example
demonstrated in the case of LLR [25]. Let us consider the VLBI example to illustrate this fact.
The VLBI analysis is described in Section 1.5.2. Including the SME contribution within the full
VLBI modeling and estimating the SME coefficient 577 altogether with the other parameters
fitted in standard VLBI data reduction leads to the estimate 577 = (—5+8) x 107°. A postfit
analysis performed by fitting the SME contribution within the VLBI residuals obtained after
a pure GR analysis leads to 577 = (—0.6+2.1) x 1078 [109]. This example shows that a postfit
analysis can lead to results with overoptimistic uncertainties and one needs to be extremely
careful when using such results.

In the following, I am using a standard canonical frame used in the SME framework is a Sun-
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centered celestial equatorial frame [90], which is approximately inertial over the time scales of
most observations. This frame is asymptotically flat and comoving with the rest frame of the
Solar System. This special frame will help to deal with the different techniques presented below
(VLBI, LLR and planetary ephemerides), in order to compare all the corresponding results, we
need to report them in the same canonical inertial frame. The Cartesian coordinates related
to this frame are denoted by capital letters

X==(cI, X7 = (T, X,Y, 7). (1.71)

The Z axis is aligned with the rotation axis of the Earth, while the X axis points along the
direction from the Earth to the Sun at vernal equinox. The origin of the coordinate time T
is given by the time when the Earth crosses the Sun-centered X axis at the vernal equinox.
These conventions are depicted in Figure 2 from [11].

1.5.2 VLBI

Following what I have done previously with VLBI (see section 1.4.2), we tried with S. Lambert
and A. Hees to use VLBI group delay to constrain SME parameters. Our first concern was
about a formulation of light propagation in SME to construct the VLBI group delay in this
phenomenology. Indeed, the propagation time of a photon emitted at the event (c¢T,, X.) and
received at the position X, can be computed in the SME formalism using the time transfer
function formalism [111, , , 75, 7] and is given by [ 1, &]

Rer GNM 2—TT _TJ J Re - Ner-Xe
X, T.,X,) = 2 1—— — N, | In —m————
TiXe Te, Xr) c T { 3° ° "R X

GnM _TJpJ  =JKarJ pK R. — R,
+T <S Per — S NeTPer> W (172)
GyM A oA
+ N [gTJN; + 5K pIpK gTT] (N,.N., — N,.N.,) ,
C

where the terms a; and ay from [8] are taken as unity (which corresponds to using the harmonic
gauge, which is the one used for VLBI data reduction), R, = | X.|, R, = | X,|, Rer = | X, — X,|
with the central body located at the origin and where we introduce the following vectors

X X, X.—X,; X,
K:_e> Ni'E J = J z’ Ni: . s Per:NerX(XTXNET)a (173)
R, Ry | XGij1 | XGi]
and p
Per == (1.74)
| P, |

G n being the observed Newton constant, measured by considering the orbital motion of bodies,
and defined by [11, 9, 73]

Gy =G (1 + ggTT) : (1.75)

Equation (1.72) is the generalization of the well-known Shapiro time delay including Lorentz
violation. VLBI is actually measuring the difference of the time of arrival of a signal received
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by two different stations. This observable is therefore sensitive to a differential time delay.
Assuming a radio-signal emitted by a quasar at event (7., X.) and received by two different
VLBI stations at events (77, X;) and (73, X5) (all quantities being expressed in a barycentric
reference frame), respectively, I obtained the VLBI group-delay A7gvgy in SME formalism as
follows [109]

GNM 2 Ri+K. X, 2GyNM _
A = 2 1- 251 = (N K — NL.K) , (1.76
T(SME) 3 ( 38 ) nRg—i-K.Xz 3 3 5N 1K), )
where T only kept the 577 contribution (see Eq. (7) from [109] for the full expression) and we
use the same notations as in [57] by introducing three unit vectors
Xe X1 X2
K=2% N=2% and Ny= 2. (1.77)
| Xl | X | X

Ten million VLBI delay observations between August 1979 and mid-2015 have been used to
estimate the 577 coefficient. First, VLBI observations are corrected from delay due to the radio
wave crossing of dispersive media by using 2 GHz and 8 GHz recordings. Then, we used only
the 8 GHz delays and the Calc/Solve geodetic VLBI analysis software, developed at NASA
Goddard Space Flight Center and coherent with the latest standards of the International Earth
Rotation and Reference Systems Service [111]. We added the partial derivative of the VLBI
delay with respect to 57 from Eq. (1.76) to the software package using the USERPART
module of Calc/Solve. We turned to a global solution in which we estimated 577 as a global
parameter together with radio source coordinates. We obtained

T = (=54+8) x 1077, (1.78)

with a postfit Toot mean square of 28 picoseconds and a x? per degree of freedom of 1.15.
Correlations between radio source coordinates and 577 are lower than 0.02, the global estimate
being consistent with the mean value obtained with the session-wise solution with a slightly
lower error.

In conclusion, VLBI is an incredible tool to test Lorentz symmetry, especially the 577 coeffi-
cient. This coefficient has an isotropic impact on the propagation speed of gravitational waves
as can be noticed from Eq. (9) from [96] or Eq. (11) from [91]. The analysis performed in
[109] includes the SME contribution in the modeling of VLBI observations and includes the
5T parameter in the global fit with other parameters. It is therefore a robust analysis that
produced the first reliable estimate on the 577 parameter. This constrain has been drastically
improved very recently with the observation by Advanced LIGO and Virgo detectors of the
gravitational-wave event GW170817 on 2017 August 17. With its electromagnetic counterpart,
in particular the gamma-ray burst GRB 170817A observed by Fermi, 577 has been constrained
at the level of 10715 [64], so ten orders of magnitude better than with VLBI.

1.5.3 Lunar Laser Ranging

On August, 20th 1969, after ranging to the lunar retro-reflector placed during the Apollo 11
mission, the first LLR echo was detected at the McDonald Observatory in Texas. Currently,
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there are five stations spread over the world which have realized laser shots on five lunar retro-
reflectors. Among these stations four are still operating : Mc Donald Observatory in Texas,
Observatoire de la Cote d’Azur in France, Apache point Observatory in New Mexico and
Matera in Italy while one on Maui, Hawaii has stopped lunar ranging since 1990. Concerning
the lunar retro-reflectors three are located at sites of the Apollo missions 11, 14 and 15 and
two are French-built array operating on the Soviet roving vehicle Lunakhod 1 and 2.

LLR is used to conduct high precision measurements of the light travel time of short laser pulses
emitted at time ¢; by a LLR station, reflected at time t, by a lunar retro-reflector and finally
received at time t3 at a station receiver. The data are presented as normal points which combine
time series of measured light travel time of photons, averaged over several minutes to achieve a
higher signal-to-noise ratio measurement of the lunar range at some characteristic epoch. Each
normal-point is characterized by one emission time (#; in universal time coordinate — UTC),
one time delay (At, in international atomic time — TAI) and some additional observational
parameters as laser wavelength, atmospheric temperature and pressure etc. According to [32],
the theoretical pendent of the observed time delay (At, = t3 — t; in TAI) is defined as

At, = [Tg . Art(Tg)} A [Tl - Art(Tl)}, (1.79)

where T} is the emission time expressed in barycentric dynamical time (TDB) and A7, is a
relativistic correction between the TDB and the terrestrial time (TT) at the level of the station.
The reception time T3 expressed in TDB is defined by the following two relations

T3 =1+ %HXO’ (TS) - XT(TQ)H + A7‘(grav) + ATaa (180&)
T, =T + %HXT(B) — X, (T1) || + AT(grav) + ATa, (1.80b)

with 75 the time in TDB at the reflection point X, and X, are respectively the barycentric
position vector at the emitter and the reception point, X, is the barycentric position vector
at the reflection point, A7 gy is the one way gravitational time delay correction and A7, is
the one way tropospheric correction.

LLR measurements are used to produce the Lunar ephemeris but also provide a unique op-
portunity to study the Moon’s rotation, the Moon’s tidal acceleration, the lunar rotational
dissipation, etc [17]. In addition, LLR measurements have turn the Earth-Moon system into
a laboratory to study fundamental physics and to conduct tests of the gravitation theory.
Nordtvedt was the first to suggest that LLR can be used to test GR by testing one of its
pillar : the Strong Equivalence Principle [132, , |. He showed that precise laser ranging
to the Moon would be capable of measuring precisely the ratio of gravitational mass to inertial
mass of the Earth to an accuracy sufficient to constrain a hypothetical dependence of this
ratio on the gravitational self-energy. He concluded that such a measurement could be used to
test Einstein’s theory of gravity and others alternative theories as scalar tensor theories. The
best current test of the Strong Equivalence Principle is provided by a combination of torsion
balance measurements with LLR analysis and is given by [179, , ]

n=(44445)x107*, (1.81)

where 7 is the Nordtvedt parameter that is defined as mg/m; = 1+ nU/mc* with mg the
gravitational mass, m; the inertial mass and U the gravitational self-energy of the body. Using
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the Cassini constraint on the v PPN parameter [19] and the relation n = 45 — v — 3 leads to
a constraint on 3 PPN parameter at the level 8 —1 = (1.2 4+ 1.1) x 107* [173].

In addition to tests of the Strong Equivalence Principle, many other tests of fundamental
physics were performed with LLR analysis. For instance, LLR data can be used to search
for a temporal evolution of the gravitational constant G/G [179] and to constrain the fifth
force parameters [129]. In addition, LLR has been used to constrain violation of the Lorentz
symmetry in the PPN framework. [129] deduced from LLR data analysis constraints on the
preferred frame parameters a; and oy at the level ap = (—=74+9) x 107 and ay = (1.8 £2.5) x
107°.

Considering all the successful GR tests performed with LLR observations, it is quite natural
to use them to search for Lorentz violations in the gravitation sector. In the SME framework,
[13] used the lunar orbit to provide estimates on the SME coefficients. Using a perturbative
approach, the main signatures produced by SME on the lunar orbit have analytically been
computed in [ 1]. These computations give a first idea of the amplitude of the signatures pro-
duced by a breaking of Lorentz symmetry. Nevertheless, these analytical signatures have been
computed assuming the lunar orbit to be circular and fixed (i.e. neglecting the precession of
the nodes for example). These analytical signatures have been fitted to LLR residuals obtained
from a data reduction performed in pure GR [13]. They determined a “realistic” error on their
estimates from a similar postfit analysis performed in the PPN framework. The results obtai-
ned by this analysis are presented in Table 1.5. It is important to note that this analysis uses
projections of the SME coefficients into the lunar orbital plane 5!, 5%2 5% (see Section V.B.2
of [11]) while the standard SME analyses uses coefficients defined in a Sun-centered equatorial

frame (and denoted by capital letter 5'7).

TABLE 1.5 — Estimation of SME coefficients from LLR postfit data analysis from [13]. No
correlations coefficients have been derived in this analysis. The coefficients 59 are projections
of the 5/ into the lunar orbital plane (see Eq. (107) from [11]) while the linear combinations
S0gc and 3o s are given by Eq. (108) from [11].

Coefficient

gl — 522 (1.340.9) x 10710
512 (6.9 +4.5) x 10711
501 (—0.8+1.1) x 1076
592 (—5.24+4.8) x 1077
80we (0.24+3.9) x 1077
5005 (-1.3+4.1) x 1077

However, as discussed in Section 1.5.1 and in [109, 25], a postfit search for SME signatures into

residuals of a data reduction previously performed in pure GR is not fully satisfactory. First
of all, the uncertainties obtained by a postfit analysis based on a GR data reduction can be
underestimated by up to two orders of magnitude. This is mainly due to correlations between
SME coefficients and others global parameters (masses, positions and velocities, ...) that are
neglected in this kind of approach.
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In addition, in the case of LLR data analysis, the oscillating signatures derived in [11] and
used in [13] to determine pseudo-constraints are computed only accounting for short periodic
oscillations, typically at the order of magnitude of the mean motion of the Moon around the
Earth. Therefore, this analytic solution remains only valid for few years while LLR data spans
over 45 years (see also the discussions in footnote 2 from [73] and page 22 from [I1]).

Regarding LLR data analysis, a more robust strategy consists in including the SME modeling
in the complete data analysis and to estimate the SME coefficients in a global fit along with
others parameters by taking into account short and long period terms and also correlations
(see [25]). In order to perform such an analysis, a new numerical lunar ephemeris named
"Ephéméride Lunaire Parisienne Numérique” (ELPN) has been developed within the SME
framework, during the Ph.D. thesis of A. Bourgoin supervised by myself and M.-C. Angonin.
The dynamical model of ELPN is similar to the DE430 one [60] but includes the Lorentz
symmetry breaking effects arising on the orbital motion of the Moon. The SME contribution

to the lunar equation of motion has been derived in [11] and is given by
ol = GNgM e - 3 SRLAK LT | 25 (—TK@KTJ STJUKTK>
”
4 TR _ STII K STCILK | gy, ] (L)

where Gy is the observed Newtonian constant defined by Eq. (1.75), M is the mass of the
Earth-Moon barycenter, ém is the difference between the Earth and the lunar masses; 7/
being the unit position vector of the Moon with respect to the Earth; ¢/ =v7/c with v/ being
the relative velocity vector of the Moon with respect to the Earth; VI = VJ/c with V7 being
the Heliocentric velocity vector of the Earth-Moon barycenter and the 3-dimensional traceless
tensor defined by

1
R L (1.83)

These equations of motion as well as their partial derivatives are integrated numerically in
ELPN. In addition to the orbital motion, effects of a violation of Lorentz symmetry on the
light travel time of photons is also considered. More precisely, the gravitational time delay
AT (grav) appearing in Eq. (1.79) is given by the gravitational part of Eq. (1.72) [3].

Estimates on the SME coefficients are obtained by a standard chi-squared minimization : the
LLR residuals are minimized by an iterative weighted least squares fit using partial derivatives
previously computed from variational equations in ELPN. After an adjustment of 82 para-
meters including the SME coefficients a careful analysis of the covariance matrix shows that
LLR data does not allow to estimate independently all the SME coefficients but that they are
sensitive to the following three linear combinations :

FXX _ g¥Y §TY 4 0.4357%, §XX 4 g¥Y _0g%Z _ 4 55V 7. (1.84)

The estimations on the 6 SME coefficients derived in [25] is summarized in Table 1.6. In
particular, it is worth emphasizing that the quoted uncertainties are the sum of the statistical
uncertainties obtained from the least-square fit with estimations of systematics uncertainties
obtained with a Jackknife resampling method [116, 70].
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TABLE 1.6 — Estimation of SME coefficients from a full LLR data analysis from [25] and
associated correlation coefficients.

Coefficient Estimates Correlation coefficients

sTX (—0.9+£1.0) x 1078 1

Y (-5.7+£7.7)x 10712 -0.06 1

552 (-=22+£59)x 1072 -0.04 029 1

XX FVY (0.6 +4.2) x 10711 0.58 -0.12 -0.16 1

1Y +0.43 577 (6.24+7.9) x 107 0.16 -0.01 -0.09 025 1

XX 4 3YY 92597 45357 (23+4.5) x 107! 0.07 -0.10 -0.13 -0.10 0.03 1

In summary, LLR is a powerful experiment to constrain gravitation theory and in particular
hypothetical violation of the Lorentz symmetry. A first analysis based on a postfit estimations
of the SME coefficients have been performed [13] which is not satisfactory regarding the ne-
glected correlations with other global parameters as explained in Section 1.5.1. A full analysis
including the integration of the SME equations of motion and the SME contribution to the
gravitational time delay has been done in [25]. The resulting estimates on some SME coeffi-
cients are presented in Table 1.6. In addition, some SME coefficients are still correlated with
parameters appearing in the rotational motion of the Moon as the principal moment of inertia,
the quadrupole moment, the potential Stockes coefficient (55 and the polar component of the
velocity vector of the fluid core [25]. A very interesting improvement regarding this analysis
would be to produce a joint GRAIL (Gravity Recovery And Interior Laboratory) [36, 1141, ]
and LLR data analysis that would help in decorrelating the SME parameters from the lunar
potential Stockes coefficients of degree 2 and therefore improve marginalized estimations of
the SME coefficients. Finally, in [13] and [25], the effects of SME on the translational lunar
equations of motion are considered and used to derive constraints on the SME coefficients.
It would be also interesting to extend these analyses by considering the modifications due to
SME on the rotation of the Moon. A first attempt has been proposed in Section V. A. 2. of
[11] but needs to be extended.

1.5.4 Planetary ephemerides

A violation of Lorentz symmetry within the gravity sector of SME induces different types of
effects that can have implications on planetary ephemerides analysis : effects on the orbital
dynamics and effects on the light propagation. Simulations using TTF [164, 75, 74] based
on the software presented in [76] have shown that only the 577 coefficients produce a non-
negligible effect on the light propagation (while it has impact only at the next post-Newtonian
level on the orbital dynamics [11, 97]). On the other hand, the other coefficients produce non-
negligible effects on the orbital dynamics [I 1] and can therefore be constrained using planetary
ephemerides data. In the linearized gravity limit, the contribution from SME to the 2-body
equations of motion within the gravitational sector of SME are given by the first line of Eq.
(1.82) (i.e. for a vanishing V*). The coefficient 577 is completely unobservable in this context
since absorbed in a rescaling of the gravitational constant (see the discussion in [11, 9]).

Ideally, in order to perform a solid estimation of the SME coefficients using planetary epheme-
rides, one should include the full SME equations in the integration of the planets motion and fit
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them simultaneously with the other estimated parameters (positions and velocities of planets,
Jo of the Sun, ...). This solid analysis within the SME formalism has not been performed so
far.

As a first step, a postfit analysis has been performed with A. Bourgoin and A. Hees [79, 73].
The idea of this analysis is to derive the analytical expression for the secular evolution of the
orbital elements produced by the SME contribution to the equations of motion. Using the
Gauss equations, secular perturbations induced by SME on the orbital elements have been
computed in [11] (see also [79] for a similar calculations done for the 577 coefficients only). In
particular, the secular evolution of the longitude of the ascending node €2 and the argument of
the perihelion w is given by

dQ n e . (e —¢)_ dm 2nae
() = sy |aorne + raguns - G2 oo 11850
dw d g2 om 2na(e’ —g)
2N = —cosi{ =N —n|——(5pp—3 bt SRS 1.
<dt> COSZ<dt> ”{ 261 5P~ 500) T R Ca — i }  (1.85b)

where a is the semimajor axis, e the eccentricity, 7 the orbit inclination (with respect to the
ecliptic), n = (Gyme/a®)'/? is the mean motion, € = 1 — (1 —¢e2)'/2, §m the difference between
the two masses and M their sum (in the cases of planets orbiting the Sun, one has M ~ dm).
In all these expressions, the coefficients for Lorentz violation with subscripts P, @), and k are
understood to be appropriate projections of s#* along the unit vectors P, (), and k, respectively.
For example, 5% = k'57%, 5pp = P'P75%. The unit vectors P, () and k define the orbital plane
(see [11] or Eq. (8) from [73]).

Instead of including the SME equations of motion in planetary ephemerides, the postfit analysis
uses estimations of supplementary advances of perihelia and nodes derived from ephemerides
analysis [113, , 52] to fit the SME coefficients through Eq. (1.85). In [73], estimations of
supplementary advances of perihelia and longitude of nodes from INPOP (see Table 5 from [52])
are used to fit a posteriori the SME coefficients. This analysis suffers from large correlations due
to the fact that the planetary orbits are very similar to each other : nearly eccentric orbit and
very low inclination orbital planes. In order to deal properly with these correlations a Bayesian

Monte Carlo inference has been used [73]. The posterior probability distribution function can
be found on Figure 1 from [73]. The intervals corresponding to the 68% Bayesian confidence
levels are given in Table 1.7 as well as the correlation matrix. It is interesting to mention that

a decomposition of the normal matrix in eigenvectors allows one to find linear combinations of
SME coefficients that are uncorrelated with the planetary ephemerides analysis (see Eq. (15)
and Table IV from [73]).

In summary, planetary ephemerides offer a great opportunity to constrain hypothetical viola-
tions of Lorentz symmetry. So far, only postfit estimations of the SME coefficients have been
performed [79, 73]. In this analysis, estimations of secular advances of perihelia and longitude
of nodes obtained with the INPOP planetary ephemerides [52] are used to fit a posteriori the
SME coefficients using the Eqs. (1.85). The 68% marginalized confidence intervals are given
in Table 1.7. This analysis suffers highly from correlations due to the fact that the planetary
orbits are very similar. A very interesting improvement regarding this analysis would be to
perform a full analysis by integrating the planetary equations of motion directly within the
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TABLE 1.7 — Estimations of the SME coefficients from a postfit data analysis based on planetary
ephemerides from [73]. The uncertainties correspond to the 68% Bayesian confidence levels of
the marginal posterior probability distribution function. The associated correlation coefficients
can be found in Table III from [73].

Coefficient

XX gVY (—0.8 £2.0) x 1010
XX 1 5YY 2577 (—08+27)x 10710
Y (—=0.3£1.1) x 10710
§XZ (-1.043.5) x 1071
5% (5.5 4 5.2) x 10712
gIX (—2.948.3) x 107

1Y (0.34+1.4) x 1078

512 (—0.245.0) x 1078

Correlation coefficients
1
099 1

0.99 0.99 1

098 098 0.99 1

-0.32 -0.24 -0.26 -0.26 1

099 098 098 098 -0.32 1

0.62 0.67 062 059 0.36 0.60 1
-0.83 -0.86 -0.83 -0.81 -0.14 -0.82 -095 1

SME framework and by fitting the SME coefficients simultaneously with the other parameters
fitted during the ephemerides data reduction.
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1.6 Perspectives : Research Projects

With the direct detection of gravitational waves and especially the observation of their elec-
tromagnetic counterparts, the determination of the SME 5’7 parameter has been improved
by ten orders of magnitude with respect to my VLBI constrain. If it illustrates brilliantly the
impact of this emerging gravitational astronomy for fundamental physics, VLBI seems then
not any more competitive in the future. However, Gaia will bring a very large amount of accu-
rate data, covering at least a timespan of 5 years of observation. GSR-TTF astrometric sphere
reconstruction can be an interesting tool to test Lorentz invariance. I will therefore develop
the analytic model of the astrometric observable in minimal SME. In the forthcoming months,
It will be implemented inside GSR-TTF and used with the Gaia data, in particular those
concerning stars.

I will pursue studies of the minimal SME in its gravity-matter sector. I plan to strengthen my
collaboration with Valéry Lainey, actually senior fellow at JPL. Indeed, we agreed recently to
test Lorentz invariance with ephemerides of natural satellites. The rheological variety of natural
satellites is such that my LLR results, in the context of gravity-matter sector of minimal SME,
can be greatly improved. This work will be put into relation with the recent invitation of W.
Folkner, from JPL, in order to collaborate on DE planetary ephemerides.

1.6.1 (Gaia data and Solar System Objects dynamics

The second release of the Gaia catalog (DR2) will be published end of April 2018. Observations
of more than 14 000 Solar System Object (SSO) will be published, with a very good astrometric
accuracy. During the last two years, with A. Hees, we developed a simulation pipeline of
SSO orbit propagation, whatever the metric theory of gravitation. My primary objective is to
perform fundamental physics tests with SSOs. The great interest of these objects is their wide
variety in semi-major axes, eccentricity and especially in inclination. With the large amount
of Gaia data, this interests is even stronger because it will improve de facto the statistics after
a global fit. Moreover, the variety in inclination ensures interesting results with respect to
planetary ephemerides in the context of the minimal SME in its gravity sector. Indeed, this
large variety of orbits can lead to a complete decorrelation of all the nine SME parameters of
the gravity sector, which will be done for the first time.

Some preliminary simulations have been already performed and the results are encouraging.
That is why I am actively collaborating with Daniel Hestroffer and Pedro David (IMCCE),
both responsible for part of the official SSOs Gaia pipeline, to implement our simulation tool
in data analysis.

Finally, I am interested with the Radar data from a long observation program at Arecibo
telescope, led by Prof. J.-L.. Margot at UCLA. A collaboration, with A. Hees, is ongoing in
order to combine the Gaia and Radar data. I am expecting an improvement PPN parameter
as well as a significative extension of the exclusion zone concerning the 5th force formalism [59)].
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1.6.2 ACES-PHARAO

As part of my astronomer’s duties, I am participating in the implementation of the data analysis
software of the microwave link of the ACES-PHARAOQO mission. This links allows to compare
the PHARAO clock on board the International Space Station (ISS) with ground clocks located
in metrology laboratories involved in the project. We recently finalized an article describing
the data analysis algorithm [120] and the impact of the orbit error of the pallet on mission
specifications.

The near future is now to develop Einstein’s gravitational redshift test. It will be necessary
to take into account any possible noise on board the ISS, on the link microwave and on
ground. We already know that each metrology laboratory will be able to communicate in
direct view with the ISS during 5 minutes every 90 minutes. We must therefore quantify how
many laboratories and how many ISS passes be needed to perform the redshift test with the
best possible sensitivity, while ensuring the best control of systematics and biases. For example,
we have to study which adjustment algorithm, direct least squares or Monte-Carlo, is the most
convenient.

1.6.3 Satellite Laser Ranging

I used almost all astrometric and astro-geodesic techniques to constrain alternative phenome-
nologies to GR, except one of them : Satellite Laser Ranging (SLR) data. But, with the large
number of SLR satellites orbiting the Earth at different semi-major axes and inclination, the
large amount of data over decades, SLR techniques seems to be an interesting tool to test
gravity. It is worth to highlighting that SLR data, from LAGEOS satellite, has been used to
detect the Lense-Thirring effect [30]. The situation is even favorable with the recent launch of
LARES satellite in 2013 [35], aiming to improve this fundamental physics test.

As member of ILRS (International Laser Ranging Service) since 2013, I have access to SLR
data. In France, we have a powerful tool : the GINS software (Géodésie par Intégrations Numé-
riques Simultanées) which is developed and maintained by the CNES Space Geodesy team in
Toulouse. It is a precise orbit determination software. It includes on the one hand a process of
numerical integration of the differential equations of motion of a satellite or a constellation of
satellites in an inertial frame, taking into account all the gravitational and surface forces acting
on the satellite as well as its specified attitude thanks to a macro modeling. On the second
hand GINS allows a least-squares fitting procedure to produce a precise restituted orbit with
a simultaneous determination of global and local parameters (gravity field, radiation pressure,
etc.). GINS can deal with GNSS (GPS, Galileo, GLONAS, etc.), SLR, LLR, DORIS, altimetry
and even VLBI data. GINS is also a tool for planetary geodesy by calculating orbits of deep
space probes with Ranging and Doppler DSN (Deep Space Navigation) data.

In collaboration with Florent Deleflie (IMCCE) who is in charge of a SLR analysis center at
Paris Observatory, Pascal Rosenblatt and Jean-Charles Marty (GINS developers), I intend to
modify deeply the software, either on the dynamics and the processing of the data, to be able
to consider any alternative phenomenologies to GR, in particular the SME formalism. The first
steps will be to consider the equations of motion, light propagation and clocks in SME and 5th
force formalisms.
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1.6.4 Non-minimal SME

I presented previously my main results concerning a search for potential Lorentz symmetry
violations, by considering different sectors of SME. For the gravity sector, I got the best current
constraints. Is it sufficient 7 Without going into theoretical details, in fact the community
has tried to accurately test the first-order corrections in SME, which corresponds to a linear
Lagrangian with the Riemann tensor. This is called the minimal SME and. It motivates me to
consider the second order of corrections, which is called the non-minimal SME. It is a question
here of taking into account terms in the Lagrangian that can be quadratic and/or proportional
to the covariant derivatives of the Riemann tensor. The first theoretical works, describing this
regime, just appeared in the literature, notably by Prof. Q. Bailey at Embry-Riddle University
in Arizona [7, 10].

In these pioneering works, Bailey does not yet conclude on the equations of motion of a N
bodies system. On the other hand, equations of light propagation have been obtained. As a
preliminary work, I used the spacetime interval proposed by Bailey to calculate TTF. I was
able to retrieve his result concerning the propagation delay of photons and I have extended
its result to the deflection of light rays. I am therefore considering, as a first step, to use these
preliminary results to theoretically construct the gravitational delay of VLBI observable and
to confront this new formulation with the IVS-OPAR data to constrain, for the first time, the
parameters of this new non-minimal gravity sector.

Then, a long-standing collaboration with Quentin Bailey being established, I plan to work with
his team to theoretically establish the equations of motion of N bodies system, ultimately to
confront them with the LLR data within the ELPN model.
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2 Note d’accompagnement

Accompagner quelqu'un, c’est se placer
ni devant, ni derriere, ni a la place.
Cest étre a coté.

Joseph Templier

2.1 Scientific and administrative responsabilities

Since my recruitment, I have been involved in the administration of research. Thus, between
2012 and 2016, I was member of Section 17 of the CNRS National Committee. This experience
first allowed me to discover the evaluation of CNRS research units and researchers. I was able
to appreciate the role of the section in recruiting young researchers. In 2014, I was proposed
by the director of SYRTE, Arnaud Landragin, as deputy director of the laboratory, which
was validated by the Council of the laboratory and then by INSU. I am primarily concerned
with the space division of the laboratory, that is to say, the supervisory of two teams : Farth
Rotation and Space Geodesy and Celestial Reference System. As SYRTE Deputy Director, I
am responsible for representing the laboratory at the DIM/ACAV+ Steering Committee. In
addition, I have been an evaluator for several funding proposals, for example french ANR and
american NSF. Finally, since 2016, I became member of the Fundamental Physics Group of
the CERES at CNES.

I am also involved in scientific society. Since 2012, I am a member of the International Astro-
nomical Union and since 2013 of the International Laser Ranging Service.

I have participated in the proposal of space projects and answered to calls for ESA-M missions.
So, in 2012, I was Co-PI of the GETEMME proposal to the M3 call. The objective of this project
was high-precision planetodesy in the Martian Moon system. In 2014 and 2016, I participated
in the Theia consortium in to the call M4 and Mb5. Theia is a high precision differential
astrometry project (sub-pas) and an open observatory. For the M5 call, T took charge of
workpackages concerning relativistic modeling of the astrometric observable. Unfortunately,
none of his answers were accepted by the European Space Agency. Finally, more recently, I
became a member of the Science Team of the E-GRASP mission proposal, which is submitted,
and still in competition, to the European Space Agency at the call Earth Explorer Mission
EE-10. In this context, I am in charge of workpackages concerning relativistic geodesy and
possible fundamental physics tests with E-GRASP.
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Some of my scientific activities are related to consortia. Thus, I belong to the DPAC consortium
of the Gaia mission since 2006 and I am member of the data analysis center of the ESA
ACES/PHARAO mission. I also participated in the international group Encelade 2.0, initially
funded by Sorbonne Université, which is now an ISSI international team.

2.2 Astronomer’s duties

Since 2006, I am member of the Data Processing and Analysis Consortium (DPAC) of the
Gaia mission of the European Space Agency (ESA).

Between 2008 and 2012, I was responsible for timescales on board the Gaia satellite, that is
to say observation time tagging thanks to an onboard rubidium clock. Given the astrometric
accuracy of the satellite of a few pas, the onboard timescale has to be maintained with a relative
stability of 1us over the timespan of the mission. It led me to develop a relativistic modeling
of time transfer in order to calculate precisely the relation between proper and coordinated
time along the satellite orbit, as well as the management of the realization onboard timescale
thanks to the rubidium clock.

Since 2010, I am contributing to the data analysis pipeline of Solar System Objects. In colla-
boration with Daniel Hestroffer, who is responsible of a part of that pipeline, we are preparing
softwares needed to perform fundamental physics tests with these observations.

Finally, at the local scale of the Paris Observatory, I am member since 2011 of the Steering
Committee of the Gaia Specific Action, created by the Scientific Council of Paris Observatory.

Since 2009, I also joined the ACES group within SYRTE Theory and Metrology team. My
role is to participate in the PHARAO/ACES microwave link modeling and analysis code. To
do this, I studied and quantified the multi-path reflections between a ground station and the
ACES platform integrated on the Colombus module of the International Space Station. I also
contributed to the software for reference frames transformations, in particular the transforma-
tions between terrestrial (ITRF) and celestial (ICRF) frames. I also modeled the attitude of
the International Space Station using quaternion, as well as the precise positioning of the two
antennas (in S and Ku band) of the ACES payload.

Finally, since the end of 2016, I have taken the responsibility of the ANO1/PHARAO national
observation service.

2.3 Thesis supervisory

2009-2012 : Aurélien Hees.

Aurélien Hees realized his Ph.D. thesis under the direction of Peter Wolf, SYRTE, and Véro-
nique Dehant, Royal Observatory of Belgium. I took part at the level of 10% with a scientific
supervisory. My involvement was important concerning Aurélien’s learning of my TTF Forma-
lism, which was finally very useful to Aurélien’s work. After three post-docs, at JPL, at Rhodes
University in South Africa and at the University of Los Angeles (UCLA), Aurélien joined the
CNRS as permanent researcher in 2017. He is now one of my closest collaborator.
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Selected related Publications :

1.

A. Hegs, Q. BAILEY, A. BOoUrRGOIN, H. PIHAN-LE BARS, C. GUERLIN et C. LE
PONCIN-LAFITTE. « Tests of Lorentz Symmetry in the Gravitational Sector ». In : Uni-
verse 2 (déc. 2016), p. 30. DOI : 10.3390/universe2040030. arXiv : 1610.04682 [gr-qc]

C. LE PONCIN-LAFITTE, A. HEES et S. LAMBERT. « Lorentz symmetry and very long
baseline interferometry ». In : Phys. Rev. D 94.12, 125030 (déc. 2016), p. 125030. DOTI :
10.1103/PhysRevD.94.125030. arXiv : 1604.01663 [gr-qc]

A. HEEs, Q. G. BAILEY, C. LE PONCIN-LAFITTE, A. BOURGOIN, A. RIVOLDINI, B.
LAaMINE, F. MEYNADIER, C. GUERLIN et P. WOLF. « Testing Lorentz symmetry with
planetary orbital dynamics ». In : Phys. Rev. D 92.6, 064049 (sept. 2015), p. 064049.
DOI : 10.1103/PhysRevD.92.064049. arXiv : 1508.03478 [gr-qc]

A. HEES, et C. LE PONCIN-LAFITTE. « Light propagation in the field of a
moving axisymmetric body : Theory and applications to the Juno mission ». In : Physical
Review D 90.8, 084020 (oct. 2014), p. 084020. DOI : 10.1103/PhysRevD. 90 .084020.
arXiv : 1406.6600 [gr-qcl

A. HEES, et C. LE PONCIN-LAFITTE. « Relativistic formulation of coordi-
nate light time, Doppler, and astrometric observables up to the second post-Minkowskian
order ». In : Physical Review D 89.6, 064045 (mar. 2014), p. 064045. por : 10.1103/
PhysRevD.89.064045. arXiv : 1401.7622 [gr-qc]

. A. HEEs, B. LAMINE, S. REYNAUD, M.-T. JAEKEL, C. LE PONCIN-LAFITTE, V. LAI-

NEY, A. FUzraA, J.-M. Courty, V. DEHANT et P. WOLF. « Radioscience simulations
in general relativity and in alternative theories of gravity ». In : Classical and Quantum
Gravity 29.23, 235027 (déc. 2012), p. 235027. DOI : 10.1088/0264-9381/29/23/235027.
arXiv : 1201.5041 [gr-qc]

2009-2012 : Stefano Bertone.

Stefano Bertone realized his Ph.D. thesis under the direction of Marie-Christine Angonin (50%)
and me (50%). The goal was to construct a new astrometric modeling, based on the TTF
formalism. Stefano was able to show the equivalence between this new modeling and the Gaia’s
DPAC modeling GREM. A close collaboration with Torino Observatory, which provided us
with a probe attitude model, led to build a complete celestial sphere reconstruction, named
GSR-TTF, which is today fully operational. Since 2013, Stefano is postdoctoral fellow at Bern
University in Switzerland, where he is developing new space geodesy methods for the study of
the Moon gravitational field with the GRAIL data.

Related Publications :

1.

, C. LE PONCIN-LAFITTE, P. ROSENBLATT, V. LAINEY, J.-C. MARTY
et M.-C. ANGONIN. « Impact analysis of the transponder time delay on radio-tracking
observables ». In : Advances in Space Research 61 (jan. 2018), p. 89-96. DOI : 10.1016/
j.asr.2017.09.003. arXiv : 1708.00546 [astro-ph.EP]

, A. VECCHIATO, B. BUCCIARELLI, M. CrOSTA, M. G. LATTANZI, L.
BiancHI, M.-C. ANGONIN et C. LE PONCIN-LAFITTE. « Application of time transfer
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functions to Gaia’s global astrometry. Validation on DPAC simulated Gaia-like observa-
tions ». In : A&A 608, A83 (déc. 2017), A83. DOI : 10.1051/0004-6361/201731654.
arXiv : 1708.00541 [astro-ph.IM]

3. A. HEEs, et C. LE PONCIN-LAFITTE. « Light propagation in the field of a
moving axisymmetric body : Theory and applications to the Juno mission ». In : Physical
Review D 90.8, 084020 (oct. 2014), p. 084020. DOI : 10.1103/PhysRevD. 90 . 084020.
arXiv : 1406.6600 [gr—-qcl

4. A. HEEs, et C. LE PONCIN-LAFITTE. « Relativistic formulation of coordi-
nate light time, Doppler, and astrometric observables up to the second post-Minkowskian
order ». In : Physical Review D 89.6, 064045 (mar. 2014), p. 064045. poI : 10.1103/
PhysRevD.89.064045. arXiv : 1401.7622 [gr-qc]

D. , O. MiNazzoLrl, M. CRoSTA, C. LE PONCIN-LAFITTE, A. VECCHIATO
et M.-C. ANGONIN. « Time transfer functions as a way to validate light propagation
solutions for space astrometry ». In : Classical and Quantum Gravity 31.1, 015021 (jan.
2014), p. 015021. por : 10.1088/0264-9381/31/1/015021. arXiv : 1306.2367 [gr-qc]

2012-2016 : Adrien Bourgoin.

Adrien Bourgoin realized his Ph.D. thesis under the direction of Marie-Christine Angonin
(20%) and myself (80%), with the scientific participation of Sébastien Bouquillon and Gérard
Francou from Paris Observatory Lunar Analysis Center (POLAC at SYRTE). The purpose of
Adrien’s thesis was to construct, from scratch, a new dynamical modeling of the Earth-Moon
System in alternative theories to GR. The objective was to be able to simulate the Earth-
Moon distance in any metric theory of gravity. In a second step, Adrien deeply modified the
existing data analysis software of LLR measurements (CAROL, written actually in GR, using
IERS conventions). The goal was to be able to consider any light-time equation whatever the
gravitational theory used. When completed, Adrien attempted to consider a complete study
of Lorentz invariance with LLR data within the SME formalism. Two important articles have
been published in Physical Review Letters : the first concerns the gravitational sector and the
second a gravity-matter coupling. Adrien is since January 2017 in post-doc at the University
of Bologna.

Related Publications :

1. A. BOURGOIN, C. LE PONCIN-LAFITTE, A. HEES, S. BOUQUILLON, G. FRANCOU et M.-
C. ANGONIN. « Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar
Laser Ranging ». In : Physical Review Letters 119.20, 201102 (nov. 2017), p. 201102. DOI :
10.1103/PhysRevLett.119.201102. arXiv : 1706.06294 [gr-qc]

2. A. HEgs, Q. BAILEY, A. BourGcoIN, H. PiHAN-LE BARS, C. GUERLIN et C. LE
PONCIN-LAFITTE. « Tests of Lorentz Symmetry in the Gravitational Sector ». In : Uni-
verse 2 (déc. 2016), p. 30. DOI : 10.3390/universe2040030. arXiv : 1610.04682 [gr-qc]

3. A. BOUurRGOIN, A. HEES, S. BouQUILLON, C. LE PONCIN-LAFITTE, G. FRANCOU et
M. -C. ANGONIN. « Testing Lorentz Symmetry with Lunar Laser Ranging ». In : Phys.
Rev. Lett. 117 (24 déc. 2016), p. 241301. DOI : 10.1103/PhysRevLett . 117 .241301.
URL : http://link.aps.org/doi/10.1103/PhysRevLett.117.241301
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A. HEEs, Q. G. BAILEY, C. LE PONCIN-LAFITTE, A. BOURGOIN, A. RIVOLDINI, B.
LAaMINE, F. MEYNADIER, C. GUERLIN et P. WOLF. « Testing Lorentz symmetry with
planetary orbital dynamics ». In : Phys. Rev. D 92.6, 064049 (sept. 2015), p. 064049.
DOI : 10.1103/PhysRevD.92.064049. arXiv : 1508.03478 [gr-qc]

Licence/Master internships

Regularly, I have supervised students of licence and of first/second year master. For some of
them, it was even possible to enhance their internship with one (or even two) publication(s)
in rank A refereed journals.

. 8

. 8

(3

2.5

2017. M2 internship of Valentin Decouesnes. M1 internship of Julien Frank.

2016. M2 internship of Mansour Benbakoura. .3 and M2 internships of Nicolas Blonski
and Valentin Decouesnes, respectively.
Related Publications :

(a) M. BENBAKOURA, V. REVILLE, A. S. BRUN, C. LE PONCIN-LAFITTE et S. MA-
THIS. « Evolution of star-planet systems under magnetic braking and tidal interac-
tion ». In : to be submitted to A&A (2018)

2014. M2 internship of Luc Senecal.

2013. M2 internship of Pierre Auclair- Desrotour (co-director : S. Mathis).
Related Publications :

(a) P. AUCLAIR-DESROTOUR, C. LE PONCIN-LAFITTE et S. MATHIS. « Impact of
the frequency dependence of tidal Q on the evolution of planetary systems ». In :
Astronomy € Astrophysics 561, L7 (jan. 2014), p. L7. por : 10.1051/0004-6361/
201322782. arXiv : 1311.4810 [astro-ph.EP]

(b) P. AUCLAIR-DESROTOUR, S. MATHIS et C. LE PONCIN-LAFITTE. « Scaling laws
to understand tidal dissipation in fluid planetary regions and stars 1. Rotation,

stratification and thermal diffusivity ». In : A&A 581, A118 (sept. 2015), A118.
DOI : 10.1051/0004-6361/201526246. arXiv : 1506.07705 [astro-ph.EP]

2012. M2 internship of Frédéric Pierret.
2011. M2 internship of Mélody Sylvestre (co-director : D. Hestroffer).

2010. M2 internships of Stefano Bertone and Kazuhisa Oyama.
Related Publications :

(a) , C. LE PONCIN-LAFITTE, P. ROSENBLATT, V. LAINEY, J.-C. MARTY
et M.-C. ANGONIN. « Impact analysis of the transponder time delay on radio-
tracking observables ». In : Advances in Space Research 61 (jan. 2018), p. 89-96.
DOI : 10.1016/j.asr.2017.09.003. arXiv : 1708.00546 [astro-ph.EP]

2009. M2 internship of Meng-Hsun Chung.

Teaching

Since 2017, I co-supervised with Daniel Hestroffer a methodology in the Dynamics of Gravi-
tational Systems at M2 of the Observatory.


https://doi.org/10.1103/PhysRevD.92.064049
http://arxiv.org/abs/1508.03478
https://doi.org/10.1051/0004-6361/201322782
https://doi.org/10.1051/0004-6361/201322782
http://arxiv.org/abs/1311.4810
https://doi.org/10.1051/0004-6361/201526246
http://arxiv.org/abs/1506.07705
https://doi.org/10.1016/j.asr.2017.09.003
http://arxiv.org/abs/1708.00546

60 2.5. TEACHING

Since 2016, I am in charge of TP of L3 numerical modeling for physics in python, whose head
is Pacome Delva at Sorbonne Université.

Since 2015, I participate in the lectures Metrology and Fundamental Physics, whose head is
Marie-Christine Angonin, at M2 of Observatory.

Since 2009, I am teaching at M1 of the Observatory, responsible of the TD Relativity and Time.

From 2009 to 2016, I co-supervised with Valery Lainey a methodology in the Dynamics of
Gravitational Systems at M2 of the Observatory.

In addition, I am regularly invited to teach in national and/or international schools. For
example, I gave two lectures during the last GRGS (Groupe de Recherche en Géodésie Spatiale)
summer school in 2016 at Les Houches. I gave also a lecture in 2016 in Bad Honeff in Germany
on Time Transfer Functions and more recently, in September 2017, I gave two lectures at Gif
School of IN2P3. I also co-organized, with Jean Souchay, a CNRS school in 2008 in Bareges,
south part of France near the Pyrénées.

I also have teaching administration activities. Thus, since 2011, I co-organize all méthodologies
of the Dynamics of Gravitational Systems at M2 of the Observatory.

More recently, in September 2017, I am the new director of the Observatory Master’s Men-
tion, now endorsed by PSL, whose name being SUTS (Sciences de I'Univers et Technologies
Spatiales) and is one of the most important Master in Astronomy & Astrophysics in France.
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ABSTRACT

Aims. This study revisits the estimate of the post-Newtonian relativistic parame’ .¢ y reported previously. We use (i) improv. 0-
physical and astronomical modeling in the analysis software package, and (ii) . higher number of observations, a large part of aich
come from a relatively small number of VLBA experiments at 8 GHz.

Methods. We analyzed more than seven million group delays measured _y
and August 2010. The parameter y was least squares fitted to delays as a globa.
Results. The most complete solution of this study yielded y = 0.99992 + 0.000.
paper. The item (i), which is recognized as important for geodesy and reference fra.
are smaller than 107*. As expected, the formal error in y decreases when additional ses.
strate that the inclusion of more than 1.7 million observations from the VLBA (mainly 1.
e estimate of y by about 15% wi.

experiments) in the analysis decreases the formal error .

Key words. astrometry — techniques: interferometric — g1 ‘viw.

1. Introduction

In an earlier paper (Lambert & Le Poncin-Lafitte 2009, hereafter
LL09), we estimated the post-Newtor meter y by analyz-
ing group delays recorded by ast .inetric an.  odetic very long
baseline interferometry (VLR", at 8 GHz wi. an accuracy of
1.5x 1074,

In a parallel study. .0
ment with General Relativity o.
VLBA observations of 3C 279
43 GHz. Though the accuracy of t.
compete with ~*' Yieg, the authors | "mted out that the pre-
cisionof th ueterminau.  “vcouldbein. vedby scheduling
speciall” designed VLBA e..  ‘ments.

Sace then, a number of e. ‘s in the geow .y and astron-
or _ ~mmunities led to the inclv  Hn of subst .atially improved
sweoph_  -al and astrometric mode ‘n the VLBI data reduction.
Moreove e completed the Paris Jbservatory VLBI analysis
center obse. “‘onal database by ar ling a large number of new
observations .. had not been pr cessed in LL09, and by up-
grading the analy  software to .ew models. For these reasons,
we thought that it w  vorthv .ale to re-launch the LL0O9 analy-
ses to appreciate the in..  * ,t all the improvements listed above.

~t et al. (200 © nd agree-
-107* usi~.g phase  venced
' 3C 273 at 15, ~nd
measurement does uot

2. Analysis configuration

The session list now includes a number of sessions that were
not processed in LLO9 (Fig. 1). Most of them are generally de-
signed for geodetic application such as Earth orientation param-
eter monitoring or station coordinate determination. After 2009,
most of the additional sessions are the IVS rapid turn around ex-
periments R1 and R4, scheduled every Monday and Thursday,
respectively, that are designed to provide twice weekly Earth

Article published by EDP Sciences

" long baseline mterferometry between August 1979
ameter ove __ entire observational time period.

vhere » it was J.99984 + 0.00015 in our 2009

alization, provides estimates of |y — 1] that

< are processed. In particular, we demon-

‘he RDV and VLBA calibrator survey
“vect to our previous determination.

orie .ation pe. s and continuity with the NEOS and CORE
¢ »sions that wer operated before 2002. A relatively small num-
oer of additiona. sessions after 1994 used of the 10-station North
American Very Long Baseline Array (VLBA). The observing
. onfiguration of the VLBA network allows one to image sources
a. 4 determine highly accurate station and source positions (see,
e. Petrov et al. 2009). The VLBA can be used either alone
(“aese sessions will be referred to as VLBA sessions in the
following) or together with additional overseas antennas (de-
noted by VLBA+ sessions in the following) that push baseline
lengths to more than 10000 km. The former category includes
the VLBA Calibrator Survey (VCS) programs 1 to 6 (Beasley
et al. 2002; Fomalont et al. 2003; Petrov et al. 2005, 2006;
Kovalev et al. 2007; Petrov et al. 2008) that were scheduled be-
tween 1994 and 2007. They contain observations as close as 1.4°
to the Sun, which are indicated as green, vertical bands in Fig. 1.
In the latter category, one finds the sessions known as RDV ex-
periments using the VLBA plus up to ten additional geodetic
stations located worldwide (in blue in Fig. 1). It appears that
VLBA+ sessions stopped observing at less than 15° from the
Sun after 2002, like all other routine VLBI experiments. VLBA
and VLBA+ sessions usually have a number of observations
larger than 10000 and a postfit rms delay in the range 5-30 ps.
The most complete solution in this study processed
5055 sessions between 3 August 1979 and 30 August 2010, to-
talling more than 7.3 millions ionosphere-free group delay
measurements at 8 GHz. The calculations used the
Calc 10.0/Solve 2010.05.21 geodetic VLBI analysis software
package!, developed and maintained at NASA Goddard Space
Flight Center, and were carried out at the VLBI analysis center
of the Paris Observatory (Gontier et al. 2006), which is part of

! http://gemini.gsfc.nasa.gov/solve
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Fig. 1. The main plot displays the obse- ...
additional observations of routine e seriments n.
plot gives the Sun spot number (¢ _N, Clette et al. =

the International VLBI Serv.
(IVS, Schliiter & Behrend 2007,
their rates, and station coordinatc.
session. Loose no-net rotation (NNR) «
per sessior .ere uu. v applied tc
stations ¢ .cluding Fort Da.  Texas), Pie 1.
Fairb» .xs (Alaska), and the "GO antenna

for Geoder, anu  “vometry
“rth o entation pa.  “ters,
“sre estimated onc. |
‘ranslation constraints

= positions of all
* (Ne'v Mexico),
Concepcidn,

Ch"" because of strong non-.. 1 displacer cnts (the latter
t.0.  experienced post-seismm elaxation effects after large
earthqu. - on the Denali fault in = '03, and between Talca and
Concepcic  ~ early 2010, respect ‘ely). Antenna thermal de-

formations w
whereas antenn.
ters over the full o.

mapped using the values of Nothnagel (2009)
-is offsets wer estimated as global parame-

vational “.me span for a set of 66 stations.
The cut-off elevation.  «ale was set to 5°. Zenith wet delays
were estimated as a ¢ .nuous piecewise linear function at
30-min intervals. Trop sphere gradients were estimated as 6-hr
east and north piecewise functions at all stations except a set of
110 stations with poor observational history.

Station heights were corrected for atmospheric pressure and
oceanic tidal loading. The relevant loading quantities were de-
duced from surface pressure grids from the U. S. NCEP/NCAR
reanalysis project atmospheric global circulation model (Kalnay
et al. 1996; Petrov & Boy 2004) and from the FES 2004 ocean
tide model (Lyard et al. 2004). A critical change with respect
to LLO9 is the use of atmospheric pressure loading coefficients

A70, page 2 of 4

2r .o zu 0 0.1 0.2 03 04
Deflection (")

“story of the sources ¢ * less than 30° from the Sun (black: observations treated in LLO09; red:
‘ocessed in LLO9 exc'uding VLBA+ and VLBA; blue: VLBA+; green: VLBA). The upper
7). The right plot dis} 'ays the deflection angle predicted by General Relativity.

ac diurnal and semi-diurnal frequencies computed with a non-
inverted barometer (NIB) hypothesis. In this hypothesis, oceans
do not react to any atmospheric pressure variations and any in-
crement in the atmospheric sea level pressure is fully and in-
stantaneously transmitted to the ocean bottom. The NIB ocean
is assumed to be static on time scales around and below a few
days (e.g., Willebrand et al. 1980; Wunsch & Stammer 1997). In
LL09, we assumed that the ocean reacted to balance atmospheric
pressure variations at the sea level.

We used a priori source coordinates of the second realiza-
tion of the International Celestial Reference Frame (ICRF2,
Fey et al. 2010), adopted by the International Astronomical
Union (IAU) in August 2009 as the fundamental realization
of the International Celestial Reference System (Feissel &
Mignard 1997) and a replacement of the ICRF (Ma et al. 1998).
The ICRF2 contains the coordinates of 3414 extragalactic
sources determined after VLBI observations at 8 GHz dur-
ing 1979-2009. With respect to the first ICRF, the noise floor
(40 pas) has improved by a factor of five, and the axis stability
(10 pas) by a factor of two. Nevertheless, in LL09, we men-
tioned that the a priori radio source catalogue does not influence
the results at a significant level since source coordinates are es-
timated during the analysis. Therefore, we do not expect the use
of the ICRF2 to be the source of the improvement yielded in
this paper. As in LL09, we loosely constrained the sources to the
ICRF?2 catalogue. With respect to LL09, three sources identified
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Table 1. Characteristics of the solutions and estimates of y. Details of the various solutions are given in the text.

No. No. No. Postfit rms delay vy Xf
sessions delays  sources (ps)

1979-2008 LL09 3937 4386112 916 25.0 0.99984 +0.00015  0.86
1979-2008 S1 3937 4400315 913 24.8  1.00004 +0.00015  0.84
1979-2008 S2 4643 4952152 1022 24.8 099998 +0.00015 ~ <4
1979-2010 S3 4930 5584232 1077 24.8 1.00004 +0.00014  0.84
1979-2010 S4 5012 6997297 1343 233 099993 +0.000.3  0.83
1979-2010 S5 5055 7351000 3706 232 099992 + ¢ 2084

as gravitational lenses were removed: 0218+357 and a compo-
nent 0218+35A (observed in one session each), and PKS 1830-
211 (observed in two sessions).

In the new software release, the a priori precession and nu-
tation comply with the IAU 2000/2006 resolutions, which in-
corporate the nutation model of Mathews et al. (2002) in a way
that is consistent with the precession of Capitaine et al. (2003b)
and the non-rotating origin-based coordinate transformation be-
tween the terrestrial and celestial coordinate systems (Capitaine
et al. 2003a).

As a major change with respect to LL09, the Niell (1996)
mapping functions (NMF) were replaced by the Vienna map-
ping functions 1 (VMF1, Bohm et al. 2006), where tw  ~f the
three coeflicients of the continued fraction expressing the
static mapping functions are computed from the 40-yr rearn \lys..
(ERA—40) of the European Center for Medium-Range We. ther
Forecast (ECMWF) data. Unlike the previously available m p-
ping functions (Niell 1996; Niell 2000; Bohm & Schuh 200-),
they depend on the day of the year, and are no longer symmet
ric with respect to the equator. Tesmer et al. (2007) showed that
VMF1 lead to station heightrepeat~".uty .~ 5.7% better than
other mapping functions. Thev .iso mentior..  that, compared
with NMEF, the effect on the r uio source declit dons is ~10 uas
for declinations below -2

In the next section, v.e prc
test the influence of the change.
above.

°t various so’ " ...
“th resp.ct to LLO.

~igned to
listed

3. Analy’ .s and resw.

Table . summarizes the solul.  ‘nformation «.  uisplays esti-
me’  of y and the reduced x> ¢ e solution .he first line of
7able  =produces the most comp e solution of LLO9. In solu-
tion S1, considered the same se ion list as in LLO9 to check
the effects e improved geophys al and astronomical model-
ing and the si.. “ changes in the ar lysis configuration, as listed
in Sect. 2. The .  “ber of delays .a S1 appears to be higher by
less than 0.005% . in LLO" because of the use of different
versions for a few ses.  *s. ", turns out that the formal errors in
v are expected to be cor arable, at about 1.5 X 10~*. However,
it appears that y is clos r to unity: |y — 1| was 2 x 10~* in LL09,
and less than 10~ in S1.

Taken individually, none of the analysis configuration
changes listed in the previous section are able to fully explain
the small shift in the central value of y toward unity. It results
from the combined effects of all the geophysical and astronomi-
cal model improvements.

Solution S2 included additional VLBI sessions between
1979 and 2008 that had not been processed in LLO9 (exclud-
ing the VLBA and VLBA+ sessions). It therefore checked the

ase, but not extend-
“tions were based
"0, Solution S3

effect of completing th. bservational a.
ing the observing time sp. . The next three
on processed ses<”  until .he end of August
included addit* .nal VLL" sessions between 200c 1201, and
checked thr ability of the current geodetic VLBI vations
(excludir ; the VLBA and VLBA+ sessions) to const .un y if the
currer hserving stra.>gy were continued in the “uture. As for
S1 .e. mated value ~f |y —1|in S2 and S3 are well below
107, Solu.  S3 pror wsed about 12% more observations than
S2. The forn.  rre decreased by 6%. Routine VLBI sessions
scheduled every  ~e days on average are only able to decrease
the errorin y ata1.  ~f about 107° per year.
Solution S4 is sin. “to S3. except that it included an ad-

ditional 72 VLBA+ sess. ~ / cheduled bi-montly in average).

"~ error was reduced to 1 x 107*. Finally, solution S5, which
is . ~<st complete solt ..on considered in this study, included
both ¥ .. ~nd VLBA sessions. We obtained y = 0.99992 +
0.07912. Altue e lengths of the S3 and S5 session lists dif-
f ¢ by less than “ o, the addition of the rather sparse VLBA ses-
sions increases the number of delays by 30% and the number
of sources by a factor of four. Compared with LL09 and other
:»lutions that used routine VLBI experiments only (S1 to S3),
sc™tinn S5 has the formal error that is smaller by ~15%, where
ly 1] is below 107*, and shows that the VLBA experiments,
a.though scheduled sparsely, have a good potential for General
Relativity tests.

4. Concluding remarks

Although we do not challenge the results of Bertotti et al. (2003)
from Cassini spacecraft measurements (y = 1.00002 +0.00002),
the small improvement presented in this study is notable be-
cause it illustrates the capability of certain geodetic/astrometric
VLBI networks and observing configurations to increase the sen-
sitivity to y. The VLBI observational data base provides a very
flexible way to test General Relativity in the Solar System at the
level of 10~ thanks to the public availability of the data and the
low CPU time taken by the solutions.

This data base is still increasing with new observations of
very good quality thanks to a great, joint effort of worldwide
radio astronomical observatories and space agencies. The up-
coming VLBI 2010 will be designed in particular to reduce sys-
tematic errors, including possible source structure corrections
thanks to faster antennas, larger networks, and higher data rates
resulting in a uv coverage that is much better than in the cur-
rent geodetic experiments (Petrachenko et al. 2008). This new
VLBI network will likely lead to improved ground-based tests of
General Relativity (Heinkelmann & Schuh 2010). We therefore
encourage VLBI observing program committees to schedule
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observations of sources close to the Sun as in the VLBA cali-
brator survey sessions.

Acknowledgements. We are grateful to Prof. Harald Schuh for his review that
helped in improving the paper. This study could not have been carried out with-
out the work of the International VLBI Service for Geodesy and Astrometry
(IVS) community that coordinates observations and correlates and stores geode-
tic VLBI data.
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Given the extreme accuracy of modern space science, a precise relativistic mod- .ng of obsc  ‘ons is
required. In particular, it is important to properly describe light propagation thrc 1 the Solar Sys.. ~ For
two decades, several modeling efforts based on the solution of the null geodes. ' equations have .
proposed, but they are mainly valid only for the first-order post-Newtoni» ~ “roxim. tion. However, wiu
the increasing precision of ongoing space missions such as Gaia, © AME, Be,Colombo, JUNO, and
JUICE, we know that some corrections up to the second order h-.e to be taken into account for future
experiments. We present a procedure to compute the relativi .uc coordinate time delay, Doppler, and
astrometric observables avoiding the integration of the null ‘=sic equation. This is possible using the
time transfer function formalism, a powerful tool providing key ntities such  the time of flight of a

light signal between two point events and the tangent vector to its 1.
compute the time transfer functions and their derivatives (and thu.
observables) up to the second post-Minkowskian order. We express these
functions that depend only on the metric #nd its derivatives evaluated along .
~rical estimations. As an illusti.

" e up to second post-Minko
give the order of magnitude of these correctio s for the

This method is particularly well adapted fo.
expressions in static and spherically symmett = sp.

and for astrometry in a GAME-like observatio. .

DOI: 10.1103/PhysRevD.89.064045

I. INTR”.DUCTION

During the last 2°
stunning progress. idadeec
of probes increased drastica.
spacecraft reached the level ot .
and 3 x 107 m /< for the Doppler, ?]. In the near future,
the Ber’ _vlombo . ‘on should 1. ™ an accuracy of
10 cr.and 107° m/s 1. nge and Do, -, re ;pectively
[4 .. On the other hand, w  'n the next fe ears, Gaia’s

ometric catalogue is exp =d to get - vsitions, paral-
lax  °nd proper motions of at  ion celestial objects with a
precis  of several microarcse dnds [6], improving by a
factor on 10 what was accon »lished with HIPPARCOS
[7]. Howev. ve know that t' zse high-precision observa-
tions need to reduced -.d interpreted in a complete
relativistic frame k& [&. Several key points need to be
considered, in partic . a precise modeling for the propa-
gation of the obser ed signal. In the limit of geometrical

~ars, space sci ace has made
“e accuracy ... .  ‘racking
For e~.ample, the ~sind
~v meters for the . _.
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veodes .. Indec 1, we show how to
ze, Doppler, and astrometric
“ities as quadratures of some
‘nkowskian straight line.

. we provide explicit
aan order. Then we
and Doppler on the LepiColombo mission

PACS mu  Jers: 04.20.Cv, 04.25.-g, 04.80.-y

« ptics, it is well known that light rays follow null geodesics.
T radioscience (range & Doppler) and astrometric
¢ servables are traditionally analyzed by determining the
full light trajectory, by solving the null geodesic equations.
This method works quite well within the first post-
Newtonian (1PN) and post-Minkowskian (1PM) approx-
imations, as it is shown by the results obtained in [9-16]. In
the context of the Schwarzschild-like geometry, a solution of
the null geodesic equations has been derived at the post-post-
Minkowskian (2PM) order in [17,18]. The case of a static,
spherically symmetric space-time has also been considered
in [19] where a solution of the eikonal equation is found.

However, finding an analytical solution of the geodesic
equations is a challenging task that requires complex
calculations, in particular when one has to take into account
the presence of mass multipoles and/or the effects due to
the planetary motions. Moreover, calculations become
quite complicated in the 2PM approximation [20] espe-
cially when space-time is not stationary [21]. Nevertheless,
it has been recently demonstrated that this task is not at
all mandatory and can be replaced by another approach,
initially based on the Synge World Function [22] and then
on the time transfer functions (TTF) [23].

© 2014 American Physical Society
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Indeed, within the TTF formalism, the solution of
the null geodesic equation is advantageously replaced by
the determination of the TTF and its first derivatives.
In general, the determination of the TTF is as challenging
as the integration of the null geodesic equations.
Nevertheless, this task is really easier in a weak gravita-
tional field. In particular, an algorithmic method to compute
a PM expansion of the TTF at any order has been presen-
ted in [23], the determination of the TTF being done by
performing integrals of some functions of the space-time
metric evaluated along a Minkowskian segment between
the emitter and the receiver of the signal. Moreover, from a
computational point of view, the quadrature of a function
taken along a straight line is easier than the full determi-
nation of the photon trajectory, which is a boundary value
problem [24].

In this paper, we take advantage of the properties of
the TTF formalism in order to construct a straightforward
modeling of radioscience and astrometric observables.
We present here a method to compute the TTF and its
derivatives (and therefore coordinate time delay, frequency
shift and astrometric observables) at 2PM order. Our
method is particularly well adapted for numerical compu-
tation of radioscience and astrometric observables from
the space-time metric. It can be used in General Re. v
as well as in any alternative theories of gravity, whei > u.
light propagation is described by the null geodesic ed ua-
tions at the geometric optic approximation, improving wi at
two of us presented up to 1PM order in [25].

The paper is organized as follows. In Sec. II, we present
the notations and the conventions used through this paper.
In Sec. III, we introduce F .cuy . *TF formalism
and recall how to determi.¢ the TTF \ :n the emitter
and the receiver of the lie” (ray are in motio . In Sec. IV, we
present a straightforw” .. ndeling of the - adioscience and
astrometric observables h.  the TTEF. ..« tm.  “nt, no
expansion nor approximation  made and the obs.  “les
are expressed in terms of the T, nd its first derivau . co.
In Sec. V. == *“~w how to con. ‘= the TTF and its
derivat cs up to 21 ~der. In Sec. ~ we specify our
forn- .ias for a static, spu.~ ~lly symmet.  mar -time and
ar uly them to a Schwarzsc:  like geometi  We compute

order of magnitude of . 2PM terr s in two cases.
Fir. e compute the values o he range and Doppler for
BepiC  +ubo and compare our zsults with those obtained
in [26]. ‘ond, considering = GAME-like observation
[27], we si.  ~te absolute ar . relative astrometric obser-
vations near th ~ mb of the »un to make evident the 2PM
contribution to liy  lefl- _tion and aberration. In Sec. VII,
we give our conclur .

II. NOTATION AND CONVENTIONS

In this paper c is the speed of light in a vacuum
and G is the Newtonian gravitational constant. The
Lorentzian metric of space-time V, is denoted by g

PHYSICAL REVIEW D 89, 064045 (2014)

The signature adopted for g is (+ — ——). We suppose that
space-time is covered by some global quasi-Galilean
coordinate system (x*) = (x°,x), where x° = ct, t being
a time coordinate, and x = (xi). We assume that the
curves of equation x! = constants are timelike, which
means that ggy > 0 anywhere. We employ the vector
notation a in order to denote ’ ' a% a®)= (a).
Considering two such quantities ¢ und ¢« we use a-b
to denote a'b’ (Einstein conventir . on repeated indices is
used). The quantity |a| stands ~ - the ordinary Euclidean
norm of a. For any quantitv s(» €, denotes the partial
derivative of f with resr _ct to x“.  this paper, we are
dealing with post-M’ .owskian (P..  ~xpansions. We
suppose each quantity an be represen. s a series in
ascending pow. ~f G. The indices n. arentheses
characterize *'.c order »f perturbation. They set v
or down, d pending on the convenience. For exai. | the
space-ti .« metric can be expanded as

G - Y0 (1)
n=1

(n)

where g,/ is of . order O(G").

III. TIME TRANSF.. " NCTION FORMALISM

ns consider two - uservers O 4 and Op located at
points . xp, respectively. We suppose that the past null
cor. at a g.. ‘at xp = (ctp,xp) intersects the world
Vae x =x, at ¢ .y one point x4 = (ct4,x4) (see Fig. 1).
The difference ¢tz — t4 is the coordinate travel time of a
light ray connecting the emission point x, with the
.eception point xp. This quantity may be written as a time
tt ~~"2r function [22,28-30],

ty—ta =T (x4, 15.%p) = T ,(14.%4,Xp), ()

where 7', and 7, are the time transfer functions (TTF) at
reception and at emission, respectively. In the following,

Emitter
worldline

Receiver
worldline

Tetrad EE‘
)
"Wave vector 1,:’,;

Wave vector k'y
Oa

(ta,va)

FIG. 1 (color online). Representation of the general geometry
studied in this paper: alight signal of frequency v, is emitted by O 4
with a wave four-vector of components &} and received by Oj ata
frequency v and with a wave four-vector of components k.
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we consider only the case of the TTF at reception, but the
discussion can be done in the same way by using the TTF at
emission. TTF directly gives the coordinate propagation
time of an electromagnetic signal and is therefore closely
related to the Range observable [25]. The determination of
the TTF is as challenging as the integration of the null
geodesic equation [11], but, in the weak field approxima-
tion, a general PM expansion of the TTF has been presented
in [23] and will be used in Sec. V to derive explicit
equations up to the 2PM order. Generally speaking, neither
the emitter O 4 nor the receiver Op of an electromagnetic
signal are static. Instead, they are following a trajectory
x4 (1) and x5 (7) usually parametrized by a coordinate time 7.

PHYSICAL REVIEW D 89, 064045 (2014)

with A,/c the so-called “delay function” [23]. From an
experimental point of view, the position of the emitter O 4
may be recorded at the time of emission 75 rather than at the
time of reception 74, i.e. we may have more direct access to
x4 (tp) rather than x4(74). Two approaches are possible.
First an analytical solution can be derived by following the
procedure presented in [31]. For any qua ‘ty Q,(¢) defined
along the world line of the obse" .er ¢, let us put
Q4 = 04(tg). Thus we may wri‘. X, for x,(.p), 74 for
r4(tp), etc. The idea is now to  vand the position of O 4
recorded at time 7, with res” .ct . nordinate time 75 by a
Taylor expansion as follr vs,

In this case, Eq. (2) becomes an implicit r.elati.on since x, X4(t0) =X4 4+ (o, —15)04 +%(1A )%,
depends on #,. In the weak field approximation, Eq. (2)
must then be read as +é(tA ~ tB)3BA g »
tg—ta =T (xa(ta). 15, xp(15)) e P
. -
_ xa(tp) —xa(ta)| lA where o =valty) =Gtl,, @n=as(ts) =77, and
N c +Z r(®a(ta). 1. 5(15)). by =b, = ‘Z;‘;‘ . “e introduction of this expansion
(3)  in (3) leads
|
D a-D N R a-Dag\?
tB_tA:ﬁjL(tB_tA)ANAB (BNA) |:UA “"DAB—<VA~ AB>:|
E cDyp 2¢Dyp Dyp
tp—12)> [l ~  _ _  #s-Ly (b4 Ma,-D Vo Dap)]l 1, .
+(B ~A) by Dy — 7y, — AT (Ya A AB)+(/’~4AB)]_~__Ar(xA’tB,xB)
2c¢Dyp 13 Diyp ~ A AB ¢
tg —14) OA, (X4, tg, x5) .. (tg —14)? [10.\,(Xs .5, X5) .. (XA, tg.Xp) .
_(B : 4) r(xAinB)UZ+(B ‘A) |:77EAinB)aA+} (xiA l;xB)Ui‘vqu:|+”" (5)
c ox!y c 2 Ixly Ox',0x),
where D3 = xp(15) —x4(7,), Dag = |t | and v, =|v,|. A1 iterative solution of Eq. (5) gives
Dyg  Va- - o (VaDg\t L =
Tt twosalta) = 2P0 (BB g,
¢ 2c « Dap
1 S ([P (P R B
+? L “Dap)(V3 —as - Dypp) + EDABbA Dy _EDABVA @y +2Ar(xA7 1, Xp)
DugOA. ¢ xp) .. V4-D -
Dap 08 )y I Dasp g 1) + 0(1/5). (©)
¢ Ca c“Dyp

Eque  n (6) is a post-New nian (PN) formula since
the TTF . -panded in terms f quantities such as ¥4 /c,
(Dag-a)/c: ~t should be .nall in order to assure the

convergence o1~ series .c should be noted that for this
PN expansion A, ‘s _onsidered of order G/c?. This
computation can be ¢ .atinued to higher orders if necessary.
This analytical exg .nsion includes what is usually referred
to as Sagnac-like terms [12,32]. However, this expansion
has the disadvantage of being valid for small velocities/
accelerations only, which is not problematic in the Solar
System but can be limiting in other applications like binary

064

pulsars. Moreover, in this expansion, derivatives of A,
appear (and higher derivatives appear at higher orders), and
these terms can become difficult to compute.

That is why a second approach, based on a numerical
iterative process, is more practical. This procedure is
standard and can be written as

Start : fE\O) =ty — T (xa(1p). 15.Xp(1p)) (7a)

Loop : IXH) =t — ’T,(xA(tX)), tg,x5(t5)) (7b)

045-3
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End : when|t§+]> - tﬁm <e, (Tc)

with e the desired accuracy. Each step of this iterative
procedure requires one to evaluate the TTF. In practice, at
least for Solar System applications, this procedure con-
verges very quickly after two or three iterations. The main
advantages of this procedure are that no PN approximation
is done and it is easy to implement.

These two procedures allow us to compute 74, the
coordinate emission time of the signal emitted along the
world line x4 (7), from the reception coordinate time 75 and
the coordinate of the receiver x. The analytical expansion
(6) is a PN expansion of ¢, up to O(1/c*) while the iterative
procedure (7) is valid up to any order.

IV. DOPPLER AND ASTROMETRIC
OBSERVABLES FROM THE TIME
TRANSFER FUNCTION

Here, we derive exact relativistic formulas to model the
Doppler and astrometric observables as functions of the
TTF and its partial derivatives. We consider three different
observers O 4, O 4 and Og. We assume that O 4 and O 4
are emitting light rays at coordinates (f4,x,4) and (f.,X4),
respectively. We assume also that these signals are re ~ =d
by Op at coordinates (73,x3). O is equipped W'
comoving tetrad of components E. Figure 1 illustrates the
specific case of a light ray of frequency v, emitted by (14
with a wave four-vector of components k% and receive 1
by Op at a frequency vy and with a wave four-vector ot
components k.

A. Frequency .qift observ.. 2s

First, we focus on the »me-way frequenc - shift between
O, and Opg. Letus et as follows:

Ay |one-way
== e .
v A-B L,

It ic well known u.

“eratio vg/L, “n be expressed

as 17 3,34]
vg  upky u, 51 + Bk ©)
v Wk T R

where uf, . Ix*/ds), and u = (dx*/ds)g are the four-

velocity of ¢, d Og, f = dx',/cdt and iy = dxiy/cdt
are their coo cate - clocities, k{ = (k#/k}) and
k= (kB/kE), wh. ', and k are the wave vectors
tangents to the ligh’ ray at the point of emission x, and
at the point of reception xp, respectively.

The TTF formalism provides a direct way of defining the
ratio of the spatial and temporal covariant components of
the tangent vector to a photon trajectory k* = dx*/do, ¢
being an affine parameter, at O 4 and Op as [22]

PHYSICAL REVIEW D 89, 064045 (2014)

N k; oT ) 0A
), =[] =¢Z2L=_Ni —r, (o
Ea= (), =< =Mho + g+ 109
. k; oT 07T 1!
(k)p= (7] =—co+ [1 - r}
ko B 8x§5 alB
, 0A 1 "A -1
—(Niy + 55 x [1 — 0 o
( AB +8x’3> ¢ UI,J (10b)
k T 10A
(O)le_aT o __L’ (10C)
(ko) B c Oty
where N, = % w1 Ri,=xk- and Ryup =
|xz —x4|. Noting that
S 2008 + g BB 2 /o
A/B — Yoo + gOuB +gljﬂﬂ ]A/B ’ * )
itis ' straightforw “rd to define the one-way “.equency
shi’c (>, ~ a functior ~f A, and its partial derivatives.

Substitutin,_ v k; fre Eq. (10) and inserting it in relation
(9) using (11, =~ gets the exact expression [25,34,35]

. Cn
ve _lan 2908 + BB

= ; 21172
va fgoo+. A +gupH }B/

7 i i OA, OA,

1 —I\ABﬁ'B —ﬂlBax; _%az,;

T e
L= N+ Bi 5

12)

This modeling can be extended easily to a multiway
frequency shift. For example, let us consider a signal
~mitted with a frequency v, by an observer O 4, transmitted
b~ observer Oy and then received by an observer O at a
fr quency v, which can eventually be O 4 for a two-way
trequency shift. The frequency shift between O 4 and O is
defined in the same way as for the one-way,

A
B T (13)
Viasc Va
The ratio v¢/v, can be decomposed as follows,
e gy B (14)

Vo  UBe L7\

where v, is the proper frequency received by the observer
Op, while vy, is the proper frequency emitted by the same
observer. The factor dvg =vp,/vp, stands for any fre-
quency shift, i.e. due to a transponder, introduced between
the reception and reemission of the signal. The computation
of the multiway frequency shift is straightforward: the two
terms vc/vp . and vg /v, from (14) are one-way frequency
shifts and can be computed using (12). This procedure can
be generalized easily if more links are needed.
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B. Astrometric observables

The goal of astrometry is to determine the position of
celestial bodies from angular observations. We focus on
two main approaches. First, we consider the modeling of
the direction of incidence of a light ray in a given reference
frame, which gives an absolute positioning of the studied
object on a celestial sphere. Second, we consider the case of
the angular separation of two light sources.

One way to get a covariant definition of the absolute
positioning of a light source is to use the tetrad formalism
[36-39] thus giving the direction of observation of an
incoming light ray in a tetrad E comoving with the
observer Oy (see Fig. 1). Let us note EY > the components
of this tetrad, where (a) corresponds to the tetrad index
and yp is a normal tensor index that can be lowered and
raised by use of the metric. The tetrad is assumed to be
orthonormal so that

IuwEle Elgy = Niay(p)- (15)

Vector EY, is chosen unit and timelike, and consequently
EY,, are unit and spacelike. The components of the tetrad
alsow us to transform the coordinates of the wave vector
from the global coordinate frame to the tetrad frame,

k(“) = E’Za)kﬂ’ N
where k, are the coordinates of the wave vector in ‘he
global frame (represented on Fig. 1) while ky) ae
the coordinates of the same vector in the tetrad frame
The incident direction of the light ray in the tetrad
frame (which is a relativistic obe~ " "~V is given by the
normalization

(i) — _ —_
' \ﬂ woa KO e an
‘jk J [

where we used the properties o1
fact that the m=*~i~ tensor has a M
tetrad  .une. Usn._ = transforme
Eq. 7" /), one gets

aull-vector £ an. _
swskian form in the
2 law (16) into

: E% ko + El k EY) +F o k;
"l<l> — ()"0 <l> J _ (i) <’> J (18)

J J o7

Ejgko+ Ejgk;  Efy) + Ejgk;
where &, - the deflection f ictions at Op defined in
(10b). This vession is cons’ ¢ent with the one derived in

[40]. Using t.
incoming directic
delay function and .

=lation (J”0) one can then express the
“the ght ray in terms of the reception
gerivatives [41,42] as

_ 10 J J 0A,
i Ef) (1= £55) — E{yNJ — Ef, 55 19
_ 104, J J OA,’
Efo) (1 = ¢5i) = Elg)N' = Efg) 5f

which is an exact formula.
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Let us now examine the second kind of astrometric
observations, namely the modeling of angular distance
between two celestial bodies. This observable can also be
computed within the TTF formalism. We assume that
two different light sources O, and O, are emitting a
light ray I' and I", respectively. These light rays are
received simultaneously by Oy at co -inates (fg,xp).
We denote by k and k' the wave vec* . ot 1 and I at Og,
respectively. Using expression (10" ), we construct the ratio
(kj) corresponding to I" and ") describing I, which
require an expression for the uei. ’Ves of the TTF whose
expression up to the 2P™ order w  “e given in Sec. V.
It is straightforward t- how that the  ~ular distance ¢
between O 4 and O 4, « observed by a  ing observer
Opg, can be writt  ~s [45]

o {(!]00 +2g08" +9k1€kﬂl)gl’(ké— ki)(kj
4 (1+ﬂmkm)(1+ﬂlkl/) B
(20)

’

where fi, = /¢ 1) is the coordinate velocity of Op at
coordinates (f; ).

V. POST-ML. YWSKTAN EXPANSION
OF THE TIME " ASFER FUNCTION
AND ITS JERIVATIVES

In . 77 we have presented a method to compute
De _pler anu .netric observables in an exact form
.epending exp' .itly on the expression of the TTF and
its derivatives. In this section, we present a way to derive
these quantities up to 2PM order as integrals of some
Jinctions of the space-time metric taken along a straight
li  .nthe weak field approximation, the expression of 7,
2 aformal PM series has been derived by [23] and can be
written in ascending powers of G as

R

T, (x4, t5,xp) = AB—!— ZA (x4,1.x5),  (21)

where A\") is of the order O(G"). The goal of this section is
then to derive analytical formulas for the delay functions
A(, ), A( ) and their derivatives [44] up to 2PM order.

A. Notations and variables used

In the following, we provide some useful notations used
throughout this paper. First of all, the Minkowskian path
between the emitter and the receiver (which is a straight
line) is parametrized by 4 (whose values are between 0 and
1) and is given by

() = ctp

— R g (22a)

z(ﬂ):xB_/lRAB :xB(l_ﬂ)+ij. (22b)
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We introduce the derivatives of these expressions with
respect to the variables x5, i.e. the quantities

0°(A )
ZO(A[) (4) = %54) = AN}, (23a)
0 azo(l) i
2 i) (A) = o —ANyp> (23b)
B
07/ (A .
Zapn(4) 6x(j‘) =28, (23c)
; 07/ (A .
gy (4) = ax(,» ) (1—-2)5}, (23d)
B
0 82 0 2
A NELNL . —6), (23
Z(ayan () = 8xf‘8xA Rus —— (NapNap — 6u),  (23e)
0?70 2
oy = 575 = —— (NApNy s =5 23
Z e (A Ol Ok RAB( AsNap —du). (23D

We will use the functions p and p(,) defined from the PM
expansion of the space-time metric as follows,

Pin(D) = plet) (P (D). Nip. Ras]
Rup

> (24

g ?0) - 2N,If\39( )t NABN/Z(%Bg( )} sy
We also define a similar expression with the metric replaced
by its derivatives

p(n)a(j’) = p[g‘(lyl:)a(zﬁ(j')\ IVAB’ RAB}
_ Ras

Of . k ko )
[9(0, 4 q(()n).a+N/, CABe ]./x(/l)'

It is wor”'
the de .vative of p,)(»,
an” R,p constants,

" ~t the last der..  "on corresponds to
‘hrespectto. vy keeping N,

aavuvas

ap(n) )_

Pnald) = o (25)

NAB,RAR:cst

We will «

use the functio’ , } that are defined by the
derivative of p, {)

vith respe- . to x,, by keeping 7P constant,

P
axh |

‘I{n) (/1) =

P=cst

1 . 0
) [_NZABQ(()S) + 29(111)

+ NZBNQBN,JABQI{!,)]

ik
- 2gén)N§B

20 (26a)
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It is then straightforward to show that

9w
Ox

. (26b)

=cst

We define a similar expression by replacing the metric by
its derivatives,

j _ 8p(n)a ap(n‘ ;
q(n)a( ) - O - s
XA | p=cst P =cst
1 j 0j ik
=3 [_Niwg?no) - 29&),0[ - N Nig

+ NipNipNa, gfz),a]z,, (26¢)

P (2)"

Finally, the @ .1vatives 0. 7 =en’ .g

7P constar . are denoted by

with respect to x% e

i

. g q
)] )
S(n)\ﬂ)_ . : Za:cs‘— Uhi{ e
1 o y L
TR 5 —NypNig) +29(, —2N£B(Q(IZ)N£B
k i AT/ ij
+Qén)N£xB)+s\ V];BN]AB(:)’NABNI/AB_51)La(/{>'
(26d)

~ .nsion at first PM order

The expressi a of ASU is given in [23] as an integral
taken along z%(A) of the components of the metric tensor,

_Rag [1 oo i 00
_TA [9(1)_2NA39(1)

+ NipNapd(h)] o, 40 @7

1
A(, )(xAJB,xB)

Using the notations (24), we rewrite Eq. (27) as
1 )
AV (x4, 15,x5) = /0 plgy)(2#(4)). N}y Rap)d2

1

The derivatives of Asl) can then be computed from (28)

by inverting the integral and the partial derivative and by
using the chain rules,
7%

) i
Ny Rag=cst Oxy

8Ar ( /
o X4, tp,Xp)
op

<
8
9pn)4)

ox!,

} da. (29)

F=cst

This can be rewritten using relations (23), (25) and (26a) as
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8A
o e tnxa) — [ Pl (2) + iy (),

(30a)

while a similar reasoning leads to

aAg) ! a i
Txf_?(xm tp.Xp) = A [P(l)a(’l)z‘(g,-)(/l) - ‘](1)(1)}@1’

(30b)

oAl

1
(X4.15.%p) = C/o P(l)o(ﬂ)dﬂ-

Equations (29)—(30) are equivalent to those derived in [25].
When replaced into Eq. (12), Eq. (19) and Eq. (20), they
give a full description of Doppler and astrometric observ-
ables at 1PM.

Some other quantities will be useful for the computations
at the 2PM order. In particular, Al )( (1), t5,xp) is defined

similarly to (27) as
zB / [ 00 -2 Nz

+ NigNT 4! du

AV (z(2), t5,xp)

il)]y"(ﬂ)
l .
= [ bl 070 M Reslae 3

where the integral is performed over = straight line joining
z%(A) to x%. This path is par .uetrize 7 y*(u), whose
components are given by

Y(u)=ctg , ~=ctg—ulx; —7N| (32a)

yu)=xp—p  —24)). )

Using the - of z* given Eq. (22), the last
expres .on becomes

Y - (pd). 33)

Insc o this relation in (31) « 1 noticing that
R.p =7 45 (34a)
and
N_g = Nyp, (34b)

one gets

1 .
A e2)tg.5) = [ Dl ). Ny AR,
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Since p is linear with respect to R4, the last expression
becomes

1 .
A 2)ty.x0) = [ Dl (). N Rl

1
=4 / pa)
0
A @A) 15.05)

We shall also need the quantits e (where the
derivative is taken with respe the first argument). To
compute it, we apply the ¢’ uintux  » Eq. (31) so that we
get

(Au)dp. (35)

A (z(A), tg.xr

Ox!
L[7p Wl (yﬁ(,u)),N;B,sz] dy*
i e NiyR p=cst 7'
apls, V(). N' 7o)
+ N ]dy. (36)
7 yP=cst

The first part of . ~tegrand gives

aplgs) (" (W), Nig.»
oy* ’NgB,R:B:CSt
=Py, ) Nig Ry

= ﬁp[d{lbm(z/’(ly)),NZB,RAb] = /lp(l)a(/lﬂ)’ (37
vhile the derivative of y* is given by

9y (u) 0y’ ()

o = /‘N;B = P‘NjAB’ o7 = yé]

The comparison of these expressions with (23a) and (23c)
gives then

= 2% (). (38)

The computation of the last quantity in the integrand is also
straightforward. We get

Oplgr) (3’ (1)) N'p. Rop)
o7

y=cst

NlBgOO +2901 _2gtk Nk +Nk Nl Nth

) 290 ~ 290 g

(39)

1
=5[-

Using (34) and (33) into Eq. (39) and comparing to
Eq. (26), one can finally set
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Oplgy) (¥ (). Nig, Ryp)
oz

=g, (). (40)

Y=cst

We can now use (37), (38) and (40) into (36) to get

Ox! B
(41a)

The next quantities of interest are the derivatives of
Agl)(z(/l), tg,xp) with respect to XA/B and t5. Once again,
we apply the chain rules to (35) so that

(1) 1
M =1 A [p“),l(/lﬂ)Za(A,)(/Iﬂ)

8}654
+ gy ()] du, (41b)
OAY (2(2), 15.xp) ! .
— e / [P(1)a(210)2% 1) (A0)
= q(y)(Ap)ldp, (41c)

OAY (2(4). 15.x5)

1
5 :cﬂ/ pauyo(A)du.  (Ma,
Ip 0

Finally, we make explicit the second derivatives «f
Ail)(z(/l), tg,Xp) using the chain rules from Eq. (41) as

NS ! .
o o A 15 %5) = % waiante T qneiag

v'fl)az,a(Aj)(Ai) + (1\~ZafAi)
du, ‘42a)

aZA(l)
A—r. (- /,v/, LByw
Oxpox!

— s (42b)
RN I ,
M(Z\ ‘5, Xp) = CA 7 1)a0(A)2y j) (A1)

+ ’u)o(’h‘)}dﬂ- (42¢)

To summarize, the e pansion of the TTF and its derivatives
at 1PM order are given by (28) and (30). The quantities
|

01, (4)

i
ox)y

1 .
A [P()a(A)2 i) (Att) + q(y) () .

= p(2)a(/1)zfzm) (4) + q€2) (’1) - A(Vl)(z(l) vaxB)[p(l)Oa(}“)Zfl(A,‘) (l) + qzl)o(i)] - p(l)O(ﬂ)

PHYSICAL REVIEW D 89, 064045 (2014)

(35), (41) and (42) will be useful in the calculation of the
2PM expansion of the TTF presented in the following.

C. Expansion at second PM order

The expression of A% can also be derived from [23] and

rewritten with our notations as

AP (x4, t5.x5) = Al [Z,(2) + 7,(2) +Z3.)]dA (43)
with

i) = poy(A) - @) tgxs ()

"1
=p .. ‘lP(m(/l)/o poy(Au, (44a)

where w- nave used (35),

) ; oA
i pk . r
1) R .JJU/]_,u(;l) X ax[

L=, o (z(4). 15, xp)

[RAB.'y\ \ Rf;ggélf)]zw)

1 .
x A [Pan s (0) + gy (A)]dp, - (44b)
= we have used (41" and

reA(l) 2
)

oy,

24,

T 4)=—

Rinl | , 2

=205 o o)+ Gl
Jj=1

(44c)

where we have used the relation (41).
Applying extensively the chain rules, we can now derive
the expression of the partial derivatives of Eq. (43) as

BN /1 aT, 0T,
—— (x4, 15,Xp) = — (4 — (1
8}(/’4/3( As'B B) o 8)(2/3 axA/B( )
+ 8{3 (z)} da (45a)
8xA/B
OB )= [+ 5w+ 5 |
oy A tBXE) = G oty oty '
(45b)

where the derivatives can be written as follows,

INS
oxi,

(z(4). 15.xp), (46a)
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T, (4 A | PRU
—8;2 ) = p<2),,(/1)zf’23i) (ﬂ) - ql(z) (l) - Ap)(Z()‘)’ thva)[p(l)Oa(l)ZjBi) (A) - qzl)o(l)] - p(l)o(i) ax;; (Z(}‘)’ thxB)v (46b)

and with ASI)(z(/l), tg,xp) and its derivatives given by (35), (41b) and (41c). Similarly, we also compute

9Z,(4) o GINS
o Nang(hy + 90y + (Rasd()) a = 901) aRhs)Zai ) ) X 7 (@4): 18 %)
0i . " aZA(l)
j : r
+ [Rapg(i) — Risg(n) o) * D07 (z(4). 5. %), (46¢)
9L,(4) _ [V O+ (R g’k REp)Z e, X@A(rl) (A), tg, x
8)6% ABQ( ) g( 1) ABQ ABJZ (Bi)l 5(2) Ox. Z(4),tp,xp)
aZA(U
ik r
—+ [RABg ABg] ]Z/i W(Z(ﬂ),tg,xlg\ (46(”
and
0T;(2)  Niy (0AY : N NS
it () f i e gen).
0T;(2)  Niy <~ (oA Al
= — — (z(4). 15, —R )otpon o (2(4). 15, . 46
ox 2 2o (z(4). 15 xB ABZ 8x/ B oo 7 (z(4). 15, %) (46f)
where the derivatives of Asl) are given by (41) and t1 = secon. " atives are given - .plicitly in Eq. (42). Finally, the
derivatives of 7 (1) with respect to 5 are given by
0T, o dA(rl)
FT cpn —cpuypo(AAr (24, . xp) — p1yol(s) (z(4), 15, xp), (46g)
tp Otg
97, Ji k ik 8A(1) \ k ik 32A
a_[B: c[Ra- /I)A,O_RABg(I),O]z DX o (=(4). 152 - [RABQ() Ry } 8t ox (z(4)). (46h)
oa) A di 46i
= ABZ o eI Xp) - o1 8x1( z(4). tp. xp)dA, (461)
wh e A is givenby (35, firstderivati. .y (41d)and ds® = A(r)c*di® — B(r)8;dxidx. (47)
~ 'a), and where the expres. 1 of the ser .ad derivatives
a.‘ven by Eq. (42). As mentioned in [45], the light rays of metric (47) are

‘Th. lations given above pre ide the TTF and its deriv-  the same as the light rays of any d5* conformal to (47).
atives u,  the 2PM order in ¢ integral form particularly e can thus simplify the calculations by choosing
adapted fo,  umerically evalv .ion from any metric. When 752 _ A71(r)ds> and deal with the following line
replaced into.  “12), Eq. (1€, and Eq. (20), they give a full element:
description of Du  'er anr’ astrometric observables at 2PM.

- B(r) _ -
2 2,942 i _ 2,942 i
VL APPLICATIC <8 TO A STATIC, SPHERICALLY & = ¢°dr" =305 ydx'dx! = 2di” = U(r)5;ydx'dx’,

SYMMETRIC SPACE-TIME

The results presented above will be illustrated through
the case of a static, spherically symmetric space-time. In ~ We can now consider a PM expansion of the func-
isotropic coordinates, the line element can be written tion U(r) =1+ UMD (r) 4+ UP(r) 4 ---. This procedure

(48)
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will simplify the results shown in Sec. V. Let us assume
that a light ray is emitted by O 4 at coordinates (cz4,X,)
and received by an observer Op at coordinates

|

Ry

PHYSICAL REVIEW D 89, 064045 (2014)

(ctg,xp). Using Egs. (28)—(30), the reception delay
function and its first derivatives at 1PM order can be
written as

I
A (. x5) = =22 / U0 (2(2)da, 49)
0
IS UNGra) o [Ras s Nig,a o ) aU
@(xA’xB):_TNAB_‘_ — Xt (A= Rip—13)| % by Z z(4))da. (49b)
PN UD(ry) . Rapxiy {1 1 oUW
= (x4, = N} B — A))dA
oxty (x4, %) 2 At 2 A z(A) Or (2(2))
Rus ; N AL ,
— BB i Man 2 | g2 A ))aa o,
B Mo, -] S S G 2
|
where z(1) = [z(1)|, z(1) being given by Eq. (22) and @) oy Rap U =
where we use the notations r4 = |x,|, rg = |xg|, Rap = A w) =2 Jo (U (2(4) +Z3(D))dA, - (52)
|xg —x4| and Ny = (xi —xi)/R,p. Similarly, using
(41a), one can show that where we define. (1) = 2Z5(2)/Rp. Using Eq. (50),
oA one gets
— - (2(2).xp)
Ox _ 3 OA(I)(Z(. ) 2
N iy, = L
— oz M R }
Rus . N
15 g+ﬂ(r2 Ri;—r3)|V(A), (50) % 7
. V2(2
with 4 )[4 R - (zzw—R%B—r%)ﬂ} 3
[ ou
= )
Via) = Jo zl. Or (2(Au 6D with R.p = |x3 —z(4)|. In the last relation, it can sometimes
be useful to replace z(1)> — R%; — r3 = A(r3 — Rip — r3)
Substituting now for the metric  “sor from Eq. (45, . or 4R%*;ry—(*(4)— R%B—r%) =—22[(ra+rp)*—R%,]x

Eq. (43), the ?PM order of the rec. on delay function is

[(ra—rg)* —R2%;] and use V(4) as defined by (51). From

given b Egs. (45)-(46), the derivatives of ASZ) are then given by
O k N;‘ (2) RAB 1 /11'(/1) 8U(2) 3j3
= LA+ —= = () | dA, 54
a Rup 2 Jo L(A) or axg() (542)
oA Niy o, Ras [ (1—2)7(2) oU® 0T,
. Ay —_ dA 54b
A e Tl 0] 4
with
01, 2@ Gy 20 ,V(4) ov 2 12
5 ) =~ { A5 U6 H )~ 2 VT G+ 7 = R~ — B3
= 22VE(Q)[2r3Ri, + (5 — Rip — 2)x§3]}, (55a)
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01, 1 7(2) oum V(a) 9
() =—--<2(1=2 M A A 2-R} —rg)? — R}
ot 0 = =3 {20 -2 Z U ) 2 ) - 2 VS W0+ = Rl = ) - R
+ V2D + g — Rap)Rip + (3 + Rap — r%)xé;]}, (55b)
and where the derivatives of V(1) can be computed as
v 1 7o*u™ P2 () out zi(iﬂ)l
— (1) = (4 : —u? (4 d, 56
o @ = [ S G 25 3 2 ) S0 (560
ov 1 [oru™m (1 — Au)uz' (Au) out ()
— @)= p) —(1—-24 3 « 56b
R R e Qe (56b)
Let us now study a Schwarzschild-like metric, whose expansion in isotropic “inates is
2 m m? 2 12 o3 om? oo
ds*=\1=-2—4+2f—+ - |cdt" = | 1+2y -+-e—+--|5;dx'dx/, (57)
r r ro 2 r
—
and U(r) is given by One shou, ~ote t"at Eq. (59a) is equivalent to the

2
U = 14214 )=+ 25 o0 (58)

where k =2(1+7) -+ 3e.
Introducing U(r) from Eq. (58) into (49) leads tc

1) 1 dj
Ay’ =Rup(1 + m/ —
AB( }/) o Z(}L)
R
=(y+ Dmln (M) (59a)
ra” 7 —Rpp
8A
- (1+7/) N
axA AP
RAB i N‘L 3 B
+|:TXB+ 2 N _R/sz_ B)J
—4(1+y)m
e ' \Z_RiB]
2(1+y, ’—RAB / ]
- —xi+n v +rp)l.
(ra+rp)?—k, 14 * )
(59b)
NG i Ran {4(1+7)m(i+i)}
Oxjp ra P 2 (ra+rg)* —Rig
A 1 NilB/
— |2 S+ R3,
)
—40 y)m

Fal(ra - VB)Z - R/zw]
2(1+y)m Rup .
R S A/ A A, V£ .
(ra+rg)*—Rig * an(ra 1)

(59¢)

r'p

expression ot .me delay found by Shapiro [46], while
the two derivativ =~ "59b) and (59c¢) are in agreement with
results found in [1.

The computation at .
Qubstituting for U(r) frox

2PM order is more cumbersome.
4. (58) into Eq. (52), one gets

, [' dA Ryp
g 2/ Z()+2

where, using V (1) as determined from Eq. (51),

/ Ty(MdA. (60)
0

V() = —2(1 + }’)m/;%dﬂ

41+y)m

T TIED +r-R OV
and substituting into Eq. (53), we obtain Z5(4) as
- 4(1 +y)°m’rg
T,(2) = —
)= @) + 17 - PR
,d A
=40 ) @

Replacing this expression in Eq. (60) and integrating, one
gets

R 1 2
AP (x4, x5) = m?> 22 {“”COS’; S0ty } (63)
TATg [\/1—p L+pu

with  p = (nyng) and where nyp =x4/5/7a/p
Substituting for A, from Egs. (49)-(63) into Eq. (21),
we finally get an expression for the TTF in a
Schwarzschild-like metric and up to 2PM as
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T (xa,tp,Xp) = 1tp — 1y

:@+(7+1)mln(rA+VB+RAB>
c C rA+rB_RAB

m?Rap {Karccosy (1+7y)?
V1i—pr  1+4u

We recover a result previously derived by different
approaches [19,20,22,23,45] (see also [47] in the case
where f =y =¢=1).

We can now compute the derivatives of A(,Z). As an
example, we will only focus on the derivative with respect
to x';; the other derivative (with respect to x}) can be
computed similarly. Using Eq. (58) into Eq. (56), one gets

} . (64)

Crarp

ov - 8(1 + y)mi
oy, N = S0 T 7P~ PP
x {[22(2) + 22(A)rg + z(2) - xp]x}

— AR [22(A)rg +z(2) - x5} (65)
|

PHYSICAL REVIEW D 89, 064045 (2014)
Replacing this result in Eq. (55a) then leads to

0I, _ 4(1 +y)>m?rgh
oxy 2 (W(2(2) +rp)* — PRy
x {xp[rg + 4rpz(A) + 32%(2) — *R%)
— AR y[rg + 4rpz(A) + 22 — A R3] (66)

which, after some lengthy bv’ 5. htforward calculations,

can be written as

oz - oad | (24 irgR!
3:8(1_'_},\ _qA (z()+r3)xb2 rfi I;‘Bz'
9y M) +rp)7 - TR
07)
Fir .y, = needs to cc npute the integral corresponding to

the secon.  *m of F . (. '2), namely

122(2)

RAB/I [ﬂzi(ﬂ) ou® } 2/
— A))|dl=—-"~R ——=dA
2 Jo [z(4) or (%)) ABM f (1)
2o Y
KM~ AR « "o, . . Km  .p . .
=T Tl ) — e 2Bl — ). (68)
Zral —p) M B) Prai _ﬂz)( B —Hny)

Now, substituting from Eq. (63), Eq. (67) and Eq. (68) 1'to Eq 34a), onc _

AP

— 1
Oox)y rar,

~VAB

1 —u

km? - ro . Ry
ra(1—p?

Rup

=) = A

(1+y)°m? { ; Ryp ; }
Atrm [y Rae iyl (692)
Tl T
while a similar reasoning for R lewds to
) 5
o Km arce K [ . RAB ; ; :| RAB ; ; }
- Ny —————(nly —un'))| —————<(n'y —un;
axB g /_1—/4 AB rB(l—/tz)( B A) VB(I_ﬂz)( A B)
_H,)zsz - Rap ; ; }
+- -N o, + n', +nh) . (69b)
P (L g AT

Some ai,
same form

~a allows us to pv the last two results in the

the one four in [48], which serves as
verification of . approac’ . Of course, in the case of the
Schwarzschild me.  *h- analytical derivation of Eq. (63) is
much simpler than 1 _ above calculations to get Eq. (69)
and can be used to check our calculation. Nevertheless the
method presented here is very efficient for numerical
evaluations of the derivatives of the TTF, necessary
when using more complex metrics and for the test of
alternative theories of gravity, when the integrals are no

|

longer analytic. As an example, we will present in this
section several applications of our formulae to future space
missions.

A. Application to BepiColombo

The future BepiColombo mission will reach an impres-
sive level of accuracy on its measurements: 10 cm on the
range and 10~% m/s on the Doppler [4,5]. Such an accuracy
needs a light propagation model that includes the influence
of some of the 2PM terms coming from the Sun [26]. As an
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example of how the equations presented in this paper can be
applied to a real measurement, we simulate a one year
Mercury-Earth Doppler link taking into account only the
gravitational contribution from the Sun. The Earth and
Mercury orbits used here come from the JPL ephemerides

PHYSICAL REVIEW D 89, 064045 (2014)

1—2m4opm _3p m_ Ui gy tam _3emlly
Vg N 223 T2 Y, T2 2 oc?

Uy 5 3 2 2 2
_om m>_3p m Vg _ o, Vkm _ 3 .mVs
\/1 2r8+2ﬂri 2ﬂ3 T 27(%,; 2€r§ i

[49,50] obtained using the SPICE toolkit [51]. % ‘LB7 (70)
Substituting for the metric, A,, and its derivatives from qa
Eq. (57), Eq. (59) and Eq. (69), respectively, into Eq. (12),
one can write the expression of the Doppler around a
spherical mass as where we defined
Nyp - va (I+y)m
=1- — 7o+ 1rg)Nap-va + Raphiy - v
qa c crarg(1+ p) [(ra 8)Nap *Va ABTA * V]
m? | arecos 4 Nag-v R (ny-v ng-v )) " —(nug-v ny v
bt ol oy AB (h iy, — . : —(up -V, — .
Crals m AB " VA rA(l—,uz) A VA — HURp - Vy (L= B VA — Hly A)J
(1+y)°m? Rasp ]
T AN _AB (. . 71
crara(1 4 ) | VA8 vA+rA(1+ﬂ) (ng-va+np-vy) (71a)
and
Nyg-v 1+y)m
qp=1-— AB_ L ( ) [(ra + 78)Nap - vy — Ragng - v
c crarg(l+p)
xkm? [ arccos p R R
[72 <_NAB'VB +i2 (o —lmA'VB)) +7Abz A"VB—HNp Vp)
CraTg |\/1 —p rp(1—p?) rp(1—p
(1 +y)*m? Rup
———————— |Npp-vg—————(ny-vp - . 71b
crara(1 ) | VA8 Vg oL+ ) (ny-vp- np VB)A (71b)

We use relation (64) and Eqs .o, " to estimate the
order of magnitude of thr first and . »>nd PM con-
tributions to the Mercv y-Earth range « d Doppler as
illustrated in Fig. 2. ©  different peak correspond to
Solar conjunctions .n th. ~ometry of L. .  “vation.

30+
251
or

A
H N
T

150 200
Time [day]

. "Range [km]

-0.2¢

—0.4}

2 PM Range [m]

-0.61

-0.8

0 50 100 250 300 350

FIG. 2 (color online).
radioscience link.

Moreover, we would like to stress the fact that the
>xpression of the time transfer used in the standard
1 odeling of radioscience measurements (see for exam-
p (52]) is only an approximation of the relation (64)
stven by

“ﬁ%

0.1

0.05

-0.05

1 PM Doppler [m/s]
o

-0.10

20
15
10

-5
-10
-15
-20

2 PM Doppler [um/s]

0 50 100 150 200

Time [day]

250 300 350

First and second post-Minkowskian contributions to the range and the Doppler for a one-year Mercury-Earth
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0
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FIG. 3 (color online). Difference between the standard formu-
lation of the Range/Doppler used in radioscience modeling (72)
and the exact 2PM expression (64).

T (x4 15.Xp) = tg — 14

c c

X1n<VA+VB+RAB+(1 “'V)m). 2,
ra+rg—Rug+ (1 +y)m

A comparison of range and Doppler simulations ou -
tained using expressions based on the approximation
(72) and on expression (64), which is complete up to
2PM order, is shown in Fig. 2 . ‘fy the accuracy
of the standard radioscien . modeling Ve get results
just below BepiColombr accuracy. Neve ‘heless, future
space missions will 7 at increasin® the level of
accuracy on radio.cien. measureme ‘. .  hat the
current modeling shall be . +oved 0 include full
2PM correction on light prop. *on.

B. J* .cection of « 't ray emitte v a star and

obsex ' on Earth

(n order to simulate an a.  metric obse’ .able, one can
sy fy the reference frame sed to give the incident
direc ~ of a light ray. As 1own in Sec. IV B, this
referen.  “rame is mathematic Ily modeled by a tetrad
E’<‘a>, whic  xplicitly appears m the computation of the
astrometric 0.  “vables (19) wWe develop here the expres-
sion of akinema  ly nor otating tetrad comoving with an
observer in the casc - ,tatic spherically symmetric space-
time described by ‘' .e metric (47). This tetrad is called
“kinematically nonrotating” in the sense that the spatial
coordinates’ transformation between the global and the
local coordinate frames does not depend on a time-
dependent orthogonal matrix [53]. This kind of local
coordinate system is currently used in the definition of

PHYSICAL REVIEW D 89, 064045 (2014)

the Celestial Geocentric Reference System [54] and is
extensively used in the context of the Gaia mission [40].
Defining 9, the vectors of the natural coordinate basis and
€a) the basis vectors of the tetrad, the transformation
between these two bases is noted E’Za> and is given by

el = ’(‘a>8ﬂ. (73)
The great advantage of such a ¥ .sis is that the tetrad is
locally orthonormal. This tran- nation physically corre-
sponds to a change of bas’, in tangent space of the
differential manifold. Frr .1 the poin.  view of the metric,
we can easily show th. ink between ti. ., of the natural
coordinate basis and 7, + using Eq. (7.

N ) = 8(ew) <) = 8(E O By 0.

= /Zr-\EZ(;)g (aw d,) = /Za>EIZp>gﬂu~ (74)
Al inde.  related to tetrad (between angle brackets)
are raised . ' lowr.ed usiag Minkowski metric tensor,
while natural . anate basis indexes are set up and down
using the g, me.
We can split the ~usformation between the natural
coordinate basis and th.  ~al omoving basis of the tetrad
“~to two parts A o = Aj ¢ [37]. The first step (para-
I 4 by A%) consis’s in orthogonalizing the natural
COoOore ... ~<is to obtain a local orthonormal coordinate
bar s static w.. pect to the coordinate system used. The
ccond part of e transformation (parametrized by Af )
consists in applying a Lorentz boost to this orthonormal
basis to make it comoving with the observer. Quantities
i»lated to the final tetrad will be denoted with indices
b sen angle brackets while quantities expressed in the
i” .ermediate tetrad will be denoted with a hat. Since the
space-time metric (47) is diagonal, it is straightforward to
orthonormalize the basis,

RO — L AN=A=0 MN=—ri @5

The second step consists in a Lorentz boost of the previous
tetrad in order to make it comoving with the observer.
We will note the quadrivelocity of the observer (expressed
in the global coordinate system) by u® = dx®/ds. This
velocity can also be expressed in terms of coordinates

related to the intermediate tetrad &% = di®/ds = Nju* =
(\/A(r)u®, \/B(r)u'). Finally, the coordinate velocity of
the observer will be denoted by g :%dd—f. The same
quantity expressed in the intermediate tetrad is
/3” = %% = \/%ﬂi. The second matrix transformation is
thus simply given by a standard Lorentz transformation
matrix whose inverse is given by
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52
0 _» 0 _ Al _ _oni P s VT ainj

o~
(76)
with
. B -1/2
p==p)= (1—$ﬂ2) . an
The combination of Eq. (75) and Eq. (76) gives
EY = P ! (78a)
O VAl VA —Brp
A 75 p
El =-— =— . (78b
0SB vamBop
i B(r) P
EO. — _ }/ﬁ B i 78
0= Vae - VA0 Vam s
B :5if'+f?+21ﬁiAj: 8
VB VBD)
. VBpp o
VA(r) = A(r)B(r)f* + A(r) — B(r)*
2
7 1 ! —:
/
g 0
T 2 _ |
1 -
5 1
s -2
& 3
o ' ' N
£ s
175 180 185 190
Time [day]

FIG. 4 (color online).
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Equation (78) is the exact expression of a kinematically
nonrotating tetrad comoving with a given observer in a
static, spherically symmetric space-time. It can be
expanded to 2PM order if necessary using Eqs. (57)—(58).

We then consider a hypothetical star located far away
from the Solar System and nearly in the Earth’s orbital
plane. We compute the incident directi-  of the light ray
emitted by this star and observed or _arth. The reference
frame used to give the incident .irection is given by a
comoving kinematically nop- ating tetrad. The only
gravitational interaction cor .«de. s the one of the Sun
described by the metric (“ /). The n.  “nt direction of the
light ray can be comp :d using Eq. . ) and Eq. (69b)
into Eq. (19), and the « pression of the  -ad (78). The
incident directio- " the light ray with respe. the tetrad

is denoted by . and c.n be parametrized by tv  'ngles «
and 6 usur .y called right ascension and declinat
nt) = (cos 'cosé,sinacosé, sinb). (79)

~nte e 1PM and 2PM contributions to a
= total deflection angle. As one can see
the 2PM correction to the angular
measurement depen.. 1 two ferms: a first term propor-
tional to x and a secona - .oportional to (1 + y)?, both
" *hem being formally ¢ order 2PM. Nevertheless, it is
kno “hat the term proportional to (14 y)> can be

Figure 4 rep
and 6 as well a.
from relation (6%

abso eu ~ 1PV term by a change of variable and it
- [— Total deflection|
g 1
c
Aj' o
é 10
<]
© 4
s
o
107®
o 1 [— Total deflection|
©
E
- 1072
S
g 107
8 107¢
E . :
-8 : T
& 108
[— Total deflection|
R
©
2
S 102
5
]
g 10
X
107®
0 50 100 150 200 250 300 350

Time [day]

Contributions to the observed direction of an incident light ray coming from a star. Left: contributions expressed

for the right ascension and declination in the tetrad [see relation (79)]. Right: contribution to the total angular deflection. The
2PM contribution is the total formal 2PM contribution (including the so-called enhanced 2PN terms). The « contribution represents the x

term in (69b).
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FIG. 5 (color online). Contributions to the angular separation between two incident ’ gnt rays ¢ “ming from two stars as o~ ed fre .
Earth. The 2PM contribution is the total formal 2PM contribution (including the ¢ -called enhanced 2PN terms). The x con.. "~ ais

the contribution proportional to the x term in (69b).

is therefore usually called “enhanced 2PN term” (for further
details, see [18,48]). The enhanced 2PN term has a
contribution of the order of few milliarcseconds (mas)
while the second-order contribution proportional to x has a
contribution of 10 microarcseconds (uas) only.

C. Angular distance between two stars as
measured from Earth

For this application, we consider two hypothetical sta
located far away from the Solar System nearly in the
Earth’s orbital plane and we compute the angular separation
between these two stars as *.casuree  m Earth. This
representation can be used » . a very simpl,  d model of the
GAME space mission I”/,55-57]. The o1 y gravitational
interaction considere . ~ is the one (ae t~ the Sun.
Relation (20), giving the «  “lar separ-uon be. ™ two
incident light rays, can be sn.  ‘fied n the case ¢ “ic
and spherically geometry desc. 4 by the space-uie
metric (47 ~ heerved angle  hetween two stars
can thr . be written «

a2 _L[(As) = )P )K —k
2 41Bra)(1+p W)U+ FR

where | and (k ;') are the ¢ nponents of the deflection
functions « e two incident Ii at rays expressed in global
coordinates . can be cor puted using the expression
(10b), A(r) ana  “*) are .e functions parametrizing the
metric (47) and f* i ¢ is the coordinate velocity of the
observer. We apply - .e last expression in a Schwarzschild
geometry. The functions A(r) and B(r) are then given by
(57) and the k vectors are determined by (10b), once
Eq. (59¢) and Eq. (69b) have been introduced. Figure 5
represents the evolution of the angular separation (80) with
respect to time and the contribution of the 1PM and 2PM

)

correctio.
(see previou
measurement .
tional to « and a
this case too, the s.
contribution of the o

~ntribution, proportiona
v, ~aly.

Wre s, =call that the accuracy aimed by modern
ast ometric nu. .s is about the pas level, so that most
_PM order effe s are observable near the Sun, while the
“enhanced 2PN term” also needs to be taken into account
when observing near Jupiter or Saturn.

As for th  ection of the incident light ray

~ctic ), the .PM correction to the angular
auds on two terms: a first term propor-

ond one proportional to (1 + 7). In
lled “enhanced 2PN” term has a
of few mas, while the 2PM
w0 k, has a contribution of

VII. CONCLUSIONS

In this paper, we use the time transfer function in order to
compute range, Doppler and two kinds of astrometric
observables: the absolute incident direction of light rays
in a given frame and the angular separation between two
incident light rays. The formulation presented in Sec. IV is
very general and can be used at any order. All the
observables depend on the TTF and its derivatives. We also
show how to numerically compute the TTF and its deriv-
atives up to 2PM order. This is done in the form of integrals
of functions of the metric and its derivatives taken along a
straight line. This method is particularly efficient from a
numerical point of view. On one hand, it does not require one
to numerically derive the TTF (which can lead to numerical
error). On the other hand, it does not require the computation
of the full trajectory of the photon in curved space-time,
which is a boundary value problem (see [24]). This approach
can be applied to any metric and therefore can also be used to
determine observables in alternative theories of gravity (as
long as the light propagation is governed by a null geodesic).
We also present a version of the formalism valid in the case

064045-16
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of a static, spherically symmetric space-time. As a validation
of our method, we explicitly compute analytically the
TTF and its derivatives in the case of a Schwarzschild-
like geometry and compare our expressions with well-
established results from [48]. Finally, we apply our formulae
to compute the Range and Doppler for a BepiColombo-like
space mission and to simulate different configurations of a
Gaia-like and GAME-like astrometric observations. We
show that the standard model used for radioscience mea-
surements is accurate at a level just below BepiColombo
accuracy. We also highlight that modern pas-astrometry
needs to take into account second-order relativistic correc-
tions for observations near the limb of the Sun and of giant
Solar System planets.
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Light propagation in the field of a moving axisymmetric body:
Theory and applications to the Juno mission
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Given the extreme accuracy of modern space science, a precise relativistic modeli~ . of o. ~ “ations is
required. We use the time transfer function formalism to study light propagation i- che field ot~ “rmly
moving axisymmetric bodies, which extends the field of application of previous orks. We firstpr. ta
space-time metric adapted to describe the geometry of an ensemble of uniformly m\ ving bodies. Then,
show that the expression of the time transfer functions in the field of auni* ~_ movin body can be easil,
derived from its well-known expression in a stationary field by using - change of v. viables. We also give a
general expression of the time transfer function in the case of a~ ensemble of arbitrarily moving point
masses. This result is given in the form of an integral that is easi” computable rumerically. We also provide

the derivatives of the time transfer function in this case, v’
astrometric observables. We particularize our results in the case .
we apply our results to study the different relativistic contributions to

Juno mission in the Jovian system.

DOI: 10.1103/PhysRevD.90.084020

I. INTRODUCTION

In modern times, the accuracy of spacecraft trackin r
requires a very detailed modeling of the light propagation
in order to compute range and Dobnler observables. For
example, the Cassini spacecr?” ica..  he level of few
meters accuracy for the rav ge and 3 x . © m/s for the
Doppler [1-3], while t*_ future BepiCc >mbo mission
should reach an acc * of 10cm on the range and
107 m/s on the Lopple 45]. Simil . ace. ‘es are
expected for the Juno missic ‘6], v aich will rc the
Jovian system by mid-2016.

The comr#~*~n of radiosciencc
the detr .unation «  ‘“vometric obs
base’.ie interferometry “ing [7]) req s d” iermining
th  propagation of light ..  curved spac .me. In this

‘ext, several approaches e. ‘. Assumir  that the metric
is . wn, solving the null ge 'esic equations [8] or the
eikon. wation [9] is the stanc 'd method allowing one to
getall th.  ‘ormation about lig : propagation between two
point evem.. 1lany solutions 1ave been proposed in the
post-Newtonia.  °N) and i- the post-Minkowskian (PM)
approximations v.  ~ de-.ng with the bending effects due
to the mass multipc anoments of the bodies in the Solar

servables, as well as
“bles (very large
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*re mandatory ‘o compute Doppler and
oving axis  ~etric bodies. Finally,
-ange .ad Dopyler tracking for the

PACS numbc.  "4.20.Cv, 04.25.-g, 04.80.-y

Sy. “10-17]. On the . «her hand, the effects of the motion
of m .av, on ths light propagation have also been
st ated [10,10 . A different approach is also available,
.itially based ¢ . the Synge world function [22-24] and then
on the time transfer functions (TTFs) [25,26]. In this
formalism, the computation of the coordinate light time,
1 e frequency shift and the light deflection can be computed
a:  .egrals of functions of the components of the metric
t asor over a straight line joining the emitter and the receiver
of the signal [25,26]. This method has already been
successfully used to compute the propagation of light in
different configurations. For example, the TTF in the field of
a stationary axisymmetric body has been determined at the
first post-Newtonian (1PN) approximation [22,27]. The light
propagation in the field of moving monopoles at 1.5 post-
Newtonian order has also been treated [28]. Finally, the
TTFs in the field of a static monopole up to the second and
third post-Minkowskian (3PM) approximation have also
been determined [26,29-31].

In this paper, we use the time transfer function formalism
to compute the coordinate propagation time, the frequency
shift and the deflection of light in the field of uniformly
moving axisymmetric bodies and in the field of arbitrarily
moving point masses. In Sec. III, we briefly review how
the radioscience and astrometric observables can be deter-
mined from the TTF and its derivatives. Then, in Sec. IV,
we determine the space-time metric describing the geom-
etry in the field of a uniformly moving axisymmetric body,
and we note the metric describing the field of arbitrarily

© 2014 American Physical Society
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moving point masses. In Sec. V, we use these metrics to
develop a general expression of the TTF. A general result is
given in the form of an integral that is computable
numerically. Moreover, an analytical result is developed
in the case of a uniform motion. The derivatives of the TTF
are also determined. In Sec. VI, we particularize our results
in the case of a uniformly moving axisymmetric body by
analytically determining the contribution of each multipole
to the TTF. Finally, in Sec. VII, we apply our results to
determine the different relativistic contributions to the
radioscience tracking of the Juno spacecraft in the
Jovian system. The contributions of the Sun and Jupiter
moving monopoles and of the Jupiter moving J, are
identified. Finally, we give our conclusions and general
remarks in Sec. VIIL

II. NOTATION AND CONVENTIONS

In this paper, c is the speed of light in a vacuum and G is

the Newtonian gravitational constant. The Lorentzian
metric of space-time V, is denoted by g. The signature
adopted for g is (+ — ——). We suppose that space-time is
covered by some global quasi-Galilean coordinate system
(x#) = (x°,x), where x° = ct, with t being a time coor-
dinate, and x = (x’). We assume that the cm - of
equations x' = const are timelike, which means that .,
0 anywhere. We employ the vector notation a in ord. t to
denote (a', @, a*) = (a'). Considering two such quanti.‘es
a and b, we use a - b to denote a’b’ (Einstein convention ¢ 1
repeated indices is used). The quantity |a| stands for the
ordinary Euclidean norm of a. For any quantity f(x*), £,
denotes the partial derivative of ” *spect to x%.

III. TIME TRAN‘ ¢ER FUNCT1 N AND
OF "RVABLES

Let x4 = (cty,x4) and .
space-time that are supposed .
light ray. They denote the emi
of the ele~* ~4ic signal. The
of a p' uton connec.. 1 and xp 1s
[2375,32,33] as

- (ctg,xp, oe twe  nts of
‘e cranected by a e
~ and reception puint
ordinate light time
ven by the TTF

1
=ty =T (xp.t5,X5) =- é"’zA(xAlest)s (1)

where 2
Alxy, tp,x),
As develop.
astrometric obsel
The range is directly

tp,xp) is the TTF and Ryp = |x§ —x,| and
> the so-called * delay function.”
" detail ir (26], the range, Doppler and
Tes ¢ .a all be computed from the TTF.
.ated to the coordinate time of flight

'In this paper, we used the reception TTF. Similar results can
be obtained using the emission TTF, which depends on ¢, instead
of 15 [25].

’In this paper, we call for simplicity A(x,, 5.xp5) a “delay
function” even though it has the dimension of a distance.
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of the photon through a coordinate transformation (see
also [34]).
The frequency shift is given by [24,34,35]

i i ninl/2

vp _ [900 + 290i8" + 9:;B' A/

v lgoo + 200 + 9BV
R

— ot (2)
L= Nigf" + By 5

‘nate velocity.

where f8, ; = dx} p/cdt s the co
‘ly related to the

The astrometric obs vables are a.
TTF through the use o. 23]

. ; oT JT |-
(k). = (Z) - 1-22
ko B ((9xjg 813
; 0A 10A]-!
=—(N — | x[1=—" , 3
I e R
cov riant coonponents of the tangent vector
ectory (k*)p = dx*/dA|z (A being an
‘g and NAB :I;_ji:x_b‘_xA.

R
distance between two light rays
< grces can also be related to

where k, arc
to the photon
affine parameter)

Finally, the angu.
coming from two diffe.

1, [26,36].

. ‘ore, the compu ation of the TTF (or equivalently
of th ac. " ~ction® and its derivatives is crucial in order
to .nalyze du.. . effects on observations that are done
asing light pro- agation.

IV. METRIC AT FIRST POST-MINKOWSKIAN
APPROXIMATION

A. Uniformly moving axisymmetric body

Let us suppose that the gravitational field is generated by
an ensemble of axisymmetric bodies. We are interested in
calculating the contributions of the mass multipoles and of
the motion of the bodies on light propagation. The first step
is to consider the metric describing such a space-time. The
metric for each of the bodies at 1PM order in its own local
reference system is given by G, = n,, + H,,, where H ,
is given by [37]

W(X*
Hoy = =2 (cz ) +0(G?). (4a)
Hy, =0, (4b)
Hay = =28, 50 1+ 0(GY), (40)

with the spin multipoles being neglected. Let us stress
that the potential W depends on the local coordinate
X% = (cT,X).

084020-2
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We can now perform a Poincaré transformation in order
to obtain the metric in the case of a uniformly moving body.
The procedure is similar to what is developed in [38]. The
coordinate transformation is given by

X = b 4 ALX©, (5)

where x* = (ct,x) are the coordinates of the global
reference system and A% is given by
N=rp A =N =1,P)

2
A =8+ ﬁ,,ﬂ’, (6)

where i, = v, /c, v', is the coordinate velocity of the body
and y, = 1/,/1—f3 with g, = |B,|. Note that b* is a

constant four-vector that specifies the origin of the coor-
dinate system: it points from the origin of the global
reference system to the origin of the comoving frame at
T =0 [38]. We have

b' = xi(t) and b° = c1y, (7)

and the trajectory of the moving body in the global fr. ..
given by

xp(t) :xp(t0)+cﬂp(t_t0)' (‘)
The inverse coordinate transformation is given by
X¢ = A ot = ), )

where Ay is the inver " A% and is give 1 by

Ag =7ps ]\é) =1 W, pﬁi)’
~ 7/2 L
A LB . (10)

s

T* _ metric transformation  ~iven by

g R = N NG = LA + HP), (1)
which le.  to

W =GN HY. (12)

From Eq. (4), we ha . H* = Z¥ 5> The introduction of
this expression anc the expression of A% given by Eq. (6)
into Eq. (12) leads to

*Notice that we define H? = G — 7, which at the linear
order is given by H¥ = —py*p*H,,.
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2W(X%)

W= =511 +5;) + 0(G?), (13a)
o 4AW(XY) .
WO = 7(2 )ﬁg,yi + O(G?), (13b)
L 2W(X“ i o .
w = g ). %)

It is worth mentioning that this r :tric is a generalization of
the international astronomic.  on (IAU) metric [37]
which can be recovered ir .ae lim. " small $,,. This limit
is explicitly developed © Appendix L T.et us also stress
that W still depends on . e local coordin.. ~ X“. Therefore,
we still need to = the ‘oordinate transt. ~tion (9) to
express the r enttu W s a function oo > globrl
coordinates .*. More precisely, we get

W= Wive) = WAL (v - %)), (14)
The metn.
uniformly mc
geometry due to .
is then given by

“3) des .woes the geometry generated by a
~ ody at 1PM. The metric describing the
nsemble of N uniformly moving bodies

N

2W
70 — 27%% L+ B) +O(GY). (15a)
p=1
Noaw,
=Y —ZLpiy2 + O(G?), 15b
; 2 et (G%) (15b)
N
ff——j{j L (53 +2B5hr3) + O(G?).  (15¢)

p=1

In the case of an axisymmetric body, the Newtonian potential
can be decomposed in a multipolar expansion

. GM 2 re\" [k, X
WP(X’):TP{I—ZJW<%> P,,( pR )}
n=2

(16)

where k, denotes the unit vector along the symmetry axis of
the body p, M, is the mass of the body p, J,,, are its mass
multipole moments P, are the Legendre polynonnals, Tpe 18
the equatorial radius of body p and R = |X|. In this paper,
we assume that the symmetry axis of the body k, is time
independent, which means we neglect the precession and
nutation of the body.

B. Arbitrarily moving point masses

The determination of the metric describing the geometry
around an arbitrarily moving extended body at the
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post-Minkowskian approximation is very complex. In
particular, one cannot simply use an instantaneous
Lorentz transformation, but a local accelerated reference
system has to be defined (see the discussion in the
conclusion of [38]). This is beyond the scope of this paper.
Nevertheless, the metric for arbitrarily moving point
masses at the post-Minkowskian approximation has already
been determined using the Liénard-Wiechert potentials
[18,19,38]. In Appendix A, we briefly note how to compute
this metric.

The space-time metric describing the geometry around
an arbitrarily moving point mass can be written as
[18,19,38] (see also Appendix A)

2W (X!
K = c(2 L (14 5) + OG), (172)
o AW(XY)
hoi = C(z )ﬁ’;rrﬁﬂrO(GZ% (17b)
2W(X! _—
w =28 6, 2, )+ O, (179

with W(X?) = GM/R (since this metric is only v~lid for
point masses),

Yor o
. . (ﬁpr'rpr)’ (‘8)

Xi = _ﬁipr}/prrpr+ri7r+ 1 +7 pr
pr

and where the index r denotes quantities that have to be

evaluated at the retarded time 7. © © ' by
x — ., (¢, r
t,:t—‘— M:t——‘ , (19)
c ¢

where 7, =[x —x,(7,)] a.  ,(t,) is “ue posi.  ~f the
body p at the retarded time. T, -or.ssion of the p. ™!
W(X?) can then be explicitly wr, - as

G Gn.
W)= U (20)
|XI| (rpr_(rpr'. /

L.~ limit of small velocitie. ‘he expression of the IAU

met. - recovered (see Appen x B 2). Finally, the metric
for an  emble of masses i the sum of the metrics
generated  =ach body.

V. TIMr RAMSFER FUNCTION AT
GENERALI-. » 1PM APPROXIMATION

In [24], a PM expansion of the TTF is presented. It
develops the TTF in terms of integrals of functions of the
metric components over a straight line between the emitter
and the receiver of a light signal. At 1PM order, the delay
function is given by Ref. [35] as

PHYSICAL REVIEW D 90, 084020 (2014)

A(xy.tp,xp)
Rag (! 00 i 3,00 i AN pij 2
:T, ; [ —2N g h" + N y N gh ]Z(,wdi—&-(’)(G ),
(21)
where the integral is taken along a  ~ight line para-
metrized by
L) =ct= - IRy, (22a)
(M) =xp— 4" ap=xp(1 O +Ixs.  (22b)
A. General exp “sion i the case of un. n motion
As can be .cen from *he expression of the 1.  ‘c (17,

A can be vritten as a sum of delay functions g.  ated
by eac’ individual body A = Zgil A,. Replar ag the
expr n of the met.‘c (15) in (21) gives

Ap(xA, tB?"\

_ ZRAB

=2 [ N B, (R ()~ )

(23)
- —seful to express .ne argument appearing in the
expre- ~f the potential W, in the right-hand side of

(22" as

A(2(2) = b*) = =iy et = 19) +2(2) = &'

1+yp

by using Egs. (8), (10) and (22) and by denoting
X0 =x,(to). It is also possible to rewrite Eq. (24) in a
more compact form as

N (2() = b") = Ry — Gy (25)
by setting

s
1—1—;/1,

= X0 = 1p¥p(ts = 1),

RpX :xX+

ﬂpr : (xX _xp())]

(26a)
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2
4
Gyp = Rup|Nap — 7,8, + py B,B, Nap)
4

1+
= Rapg pAB (26b)
and
2
4
gpap = Nap —7,Bp + #ﬂp(ﬂp “Nagp). (26¢)
P

Let us denote by [ the integral appearing in the TTF
expression (23) in the case where the body p is static.
Therefore, I is given by

- 1
I(pr7xpB) = I(RABvxpB) = A Wp(xpB — AR 5)dA,
(27)

where x,4, =x, —x, and x,; =x5—x,. Usually, the
solution of this integral is given in terms of x,, and
X ,, but formally, the integral depends on R and x 5. The

transition between the two expressions of / and 7 in the
static case is trivial because x,4 = x,5 — R4p. However,
this transition no longer applies in the moving case, and it
has to be replaced in Eq. (23) by

~ 1
(Gap.Rp) = /0 W,(R,5 —AGap)di  28)

with the two variables defined by Eqs. (26) and similarly tc
what was proposed in [28].

Therefore, all the results in *' iing case can be
derived from the expressior used in static case by
replacing x5 by R,z (267" and R, by G, (26b). We can
use the conversions gi- 1 below, where or each “static

13

case” quantity on *.ec . we give the ‘g case”
equivalent on the right. We
7
xpB_)Rpp-“ I %ﬂp[ﬂp.\ _xp())]
7]
—Xp0 = 7p l"? - tO)’ (293)
pp = |xpB‘ — B = |prl’ (29b)
R,p
nyg = Nyp - RL, (29¢)
pB
Ryp = Gyp = $pAB

2
14
= RAB|_ A~ 7pBp + prpﬂp(ﬂp “Nag) |
(29d)

Rap — RABVp(l =B, “Nap), (2%)

PHYSICAL REVIEW D 90, 084020 (2014)

I4 PAB

Nas = 9pAB - Vp(l —ﬂp “Nap) ’ (291)

X,a =X, —Rup = Ry —Gup = Rpp +7,,Rup.
(29¢)
Tpa = [Xpal = Rps = pal, (2%h)
R O

with

9ps - ~AB| N 7’p(1 _ﬁp “Nyg, (30)
and R,y _.ven by Eq. (26a). Therefore, we can  write

Eq. 27 as

"Rap
A,  tp.xp) *—CA—Y%;(I —Nyp 'ﬂp)2

1 ) )
« / W, (R, —iGip)di.  (31)
0

Then, using the defini. " [ from Egs. (27) and (28)

1 the correspondences 29), we are able to express
the « form of the T(F in the field of moving bodies
as

2R
Ap(xA»‘waB) = C;B 7’%(1 —Nyp 'ﬂp)2

><I(RpA +ypﬁpRABvaB)7 (32)

w 1 R,x given by (26a). The last expression can also be
written as

7%(1 —Nyp 'ﬁp)2
9pAB
X Ap(RpA + ypﬂpRABstB) (33)

A, (x4, 15, Xx5) =

= Vp( —Nyap ﬁp)
X A[7(Isz +ypﬂpRABvaB)’ (34)

where A(pr,xpB) is the expression of the static TTF.
This particularly simple equation is very useful since it
allows one to determine the TTF of a uniformly moving
body from the corresponding static TTFE.

The derivatives of the TTF, needed to compute the
frequency shift (2) and the astrometric direction (3), can
be computed from (34), keeping in mind Eq. (26). In the
case of a uniformly moving body, their expressions are
given by
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8Ap(an thxB)
O

ﬁi)_N,l;‘,Bﬁp 'NAB I

PHYSICAL REVIEW D 90, 084020 (2014)

A j i 4 i
=7p(1 =Nag - B,)Ap ja(Rpa +7,B,Rap.R,p) {517 - J’pﬁ';z (NAB - #ﬁp)}
P

+ yp R Ap(RpA + ypﬂpRAB’RpB)’ (353)
AB
OA (x4, 15,Xp)
Oy
~ }/2 L L~
=y,(1 =Ny 'ﬂp){Ap,jB(RpA +7,B,Ra5.R,p) {51'1' + ] +Py ﬂlpﬂé:| +VpPoNiplpa(P - ypﬂpRABaRpB)}
P
B, —N'pB, Nap ~
_yprp(RpA +7pﬂpRAB»RpB)» (35b)
Ryp

0A (xA,tB,xB) Lo~ N
— == —C}’%(l = Nag BB 18y ia(Rps +7pBpRag. R 5) + Ay (Rys +7,B,Rap. Ry, (35

Oty

where A .ix(x4.Xp) is the expression of the derivative of
the static TTF with respect to xy,

X 0A (xa.%5)
A A(x x):7p - . (36)
PJAX\AMASAB
Oxly
It is worth mentioning that in the static case, we hav > u.
relation

and consequently

Ap,iB(xAva\ = Ap,iA(xB,«‘. (38)

'f the derivativr s of the TTF in
~d by inser.ag . s. (35)

We r.esent an app ‘on
"~ bodies in Sec. v..

Therefore, the expres” .
the moving case is also obw
the static TTF and its derivatiy
in the field of moving axisymn.

B. Case .

7.1 previous section g
the field of uniformly .
w. "o acceleration, it is stili

wonuniform  ~tion
‘he exact soi. of the TTF
'ing bodies f the bodies

yssible to use the previous

forn. which corresponds i neglecting higher order
terms 1. ~d to the acceleratio of the body. In this case,
the choice ¢ the parameter ( introduced in Eq. (24)

becomes crity [t has been aown [10,12,21] that a good
choice of 7, (i.e.  ‘ch mi- .mizes the approximation error)
is given by the time  ~ .osest approach of the photon with

respect to the body. which is given by

with g :NAB _ﬂp(lB)'

"+t ase of arbi ~rily moving point masses, it is
possible . “merice’ y m.>grate the TTF (21) using the
metric (17). ‘« approach has the convenience to be

strictly valid at 1PM order, whatever the motion of
the bodies. Inserti.. '7) in the expression (21) gives

2R
C(xa.tpxp) = TAB/f (1 =Nyp 'ﬂpr)z

o (Zw —xh (1) +

]/2
pr i
1+ Yo ﬁprﬂpr

(2(2) = x,(2,) = By pr(t = z,)) da,
(40)

v uere yp,, and f3,,. depend on the retarded time coordinate ¢,
that is related to ¢ through (19). The integral in Eq. (40) can
then be evaluated numerically, whatever the motion of the
body x,(1).

C. Moving emitter
In the previous sections, we handle the case where the
source of the gravitational field is moving. In general, the
emitter and the receiver of the electromagnetic signal are
also moving. In this case, the determination of the time
transfer requires solving Eq. (1), which is now implicit,

tg—ty =T (x5(t4), 15, %p)

_ e —xa(ta)
C

1
+ ;A(xA(ZA)v t.Xp).

In practice, the solution of this implicit equation can be
determined by an iterative procedure to find z, [for
example, see Eq. (7) of [26]]. Another solution consists
in a post-Newtonian expansion of 7,4 from the TTF [for
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example, see Eq. (6) of [26]]. Let us denote by 7, the
Minkowskian coordinate time of the emission solution of

- —x,(
lB—fA:|xB jA(A)|’ (41)

and then we can write, at first order in B, = v4(%4)/c,

R _
Ip—1y = %+ Axy(Ta), 15, Xp)
Ryp o; OA(xs(14). 15.%p)
== 2 2T 2 42
R e

where the “bar” denotes quantities evaluated at 7, like
Ry = |xp —x4(%4)|. The contribution proportional to B is
also known as a Sagnac term. It has the same form as the
contribution from the velocity of the source of the gravi-
tational field at first post-Newtonian order as can be seen
from Eq. (50). The order of magnitude of this contribution
can reach a few meters for a Juno-Earth signal, as can be
seen from Fig. 4. Therefore, when iteratively solving the
light-time equation, one needs to include the relativistic
perturbations or take into account the Sagnac terms to avoid
the risk of significant errors.

|RpA '7_;‘

PHYSICAL REVIEW D 90, 084020 (2014)

VI. CASE OF UNIFORMLY MOVING
AXISYMMETRIC BODIES

We can now use the general procedure presented in the
previous section in the case of uniformly moving
axisymmetric bodies whose potential is given by the
multipole expansion (16). The TTF in the case of a static
axisymmetric body has been compr ‘n [27] and is
given by

Ap(pr’xpB) = AMp(prvx 3) 'nn(prﬂxpB)’ (43)

sle contribution
“tribution.
‘e is well

where A, represent he mass moi.
and A, represents the mass multipole

The TTF cor , nding to a static mon.
known [22] -.d is give.. by

3 ) GMI’

, A rpa + 1o+ Rap
¥pasXpp) = 2

In .
rpA+rpB_RAB

; (#4)

By inserting (-
we obtain the 1 .
motion as

* 1to (34) and using the substitutions (29),
‘n the field of monopoles in uniform

? gl +Ryp+7,Rap(1 =B, Nap)

M
pyp(] _NAB ﬂp)

Apy(xy,tg,xp) =2 2

n
|RpA +- pﬁpl‘A‘,

™ }’pRAB(l _ﬂp 'NAB) ’ (45)

with R, x given by (26a). On the ~*" -~ hand, the mass mui pole contribution A;,, has been computed in [27] as

- " 1 1
A; (x4, )=K — O, (X4, X,8), 46a
"””( pA ) pn — {(r,A + 7,5 — Ryp)" ™" (rpa + 7,5+ RAB)n_mH} o ¥pn) (462)
with K ,, = 2GM ,J,,,r'./c* @
PN L (n—m)! { ;
®nm(pr7xp.. _1) Z ﬁﬂ[sl(pr’xpB)] ‘ (46b)
i i l1.12....lm.[:1
where sum 7 denot . the summation over the s L1y (kp - Xpa
sets of no.  ~eative integers i; », ..., i,, satisfying the pair 1(%pa:X ) =T T
of equations r . i
- x
+ = C} 1/2)< ? PB), (46d)
pB rPB

i\ +",+3i3+ - +mi,=n
{' S (46¢)

and where S;(x,4,X,5) is defined by

with CE_]/ 2) (x) the Gegenbauer polynomial of degree / and
of parameter —1/2.

Therefore, the multipole term of the TTF for the case of
moving axisymmetric bodies is given by inserting (46) into
the relation (34) and using the substitutions (29),
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2GM,J,,r",
ey (1= Nag-B,)

A, (xXa.tp,xp) = B

1 1
x
,; |:(RpA +7pByRasl + Rpp — Rapy,(1 =B, - Nag)) ™!

1
- n—m ®nm (R +ﬂ Ry R )’ (47)
(‘RpA + ypﬂpRAB| + RpB + RABJ’p(l _ﬂp 'NAB)) i ” r 4 e

with R, x given by (26a).

In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), ¢ 'so needs the derivatives
of the TTF in the static case. The derivative of the TTF in the case of a static monopole is * nowi. =, for example, [39]),
and it is given by

~ 4GM , Nig(rpa + 1rpp) + Rapni,
Appia(Xpa,Xpp) = — L —=, (48a)
Pl P P (:2 (rpA + rpB)Z . KZB

4GM, NZB(rpA + rpB) y ‘Aan)B 5

Avryia(Xoa,X,5) = = =L a(X,5:X)4)- 48b
Mp,tB( PA pB) 6‘2 (rpA + rpp\ Q243 . JA( pB pA) ( )
Also, the derivatives of Eq. (46) can be computed as
n
~ npn + Nap —Nyp
Ay (x4, x,8) =K —(n— 1 2 - Ox, 4, x
Jpn,zA( pA pB) pn 2 { (n—m+1) {(VpA -y — RAB)n—m+2 (rpA + o QAB)n—mH ( PA pB)
1 1
—— N - Y X 4,7 s 49a
+ |:(rpA + rpp — RAB)n—m+l (rpA + rpp t - n—m+l:| A\nm( PA 1’5)} ( )
n
< nyp - Nap B+ Nap
A w(x,a,x,8) =K g —(n—-m+1 L L - P ]G)x X
JP"JB( PA PB) pn £~ { ( )|:(rpA + rop — 2] ‘B)n—m+2 (rpA + rpB + RAB)n—m+2 ( pA PB)

1 1
+7 AR, |
[(” s —Rap) " (rpat s+ Rap

)n_m+1} Y gjm (% pas X ) } (49b)

where

m

m)! . -
YX\nm(prﬁxp N (_l)n—m Z %le[sl(pr’xpB)]” !
i i

i ll!lZ-”-im! =
T - Pk om0k, — Pk, - nx)n,x]
x U s, (0 pn.x,8)] Al ol p_pXITPX (49c¢)
q= #l Tpx

The  -ivatives of the TTF fun.  on in the case of a moving axisymmetric body are then given by combining Egs. (44) and
(49) v Eq. (43) and by us g it together with the combination of Eqs. (48) and (49) with Egs. (35) [using the
correspor.  “ces (29)].

A. Particular case: Post-Newtonian expansion

Section VA g ~awav .o compute the TTF in the field of uniformly moving bodies. The obtained expressions are exact
atany orderinf8,..  .neless, a post-Newtonian expression can sometimes be more practical to use in the case of slowly
moving bodies. The _rore, we present here an expansion of the previous results in terms of the small parameter §,. An
expansion of (32) gives

Ap(x/» tg.xp) = (1 -B, 'NAB)A[)(prvxpB) + (Rap—c(tp— fo))ﬂZA,;.iA(xpmxpB) —c(ty— tO)ﬁ;Ap.iB(prvxpB)v (50)

with x,x = xy —x,(to). For example, the use of this formula in the case of the moving monopoles leads to
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A, (x4, 15, Xp)

GM
,zp (] _ﬁp 'NAB) In
C

Tpa ¥ rpp + Rag
T'paA +rpB_RAB
_ 4 OMpRas (rpa + 1p8)Nag - By + Ragnpa - B,

c? (rpa + rpB)2 - Rig

=2

GM ,R c(Mps + 1
44— (g By (npn > ”BZ +0O(c™,
¢ (rpa+1p8)° = Rig
(51)
with i,y = fj; = % This expression is equivalent to the

one given by Eq. (20) of [28]. Obtaining this result in such a
straightforward way illustrates the effectiveness of the TTF
approach.

B. Particular case: The quadrupolar term

An explicit calculation for each of the multipoles is
straightforward given the above formulas. As an example,
|

GM J
AJ,,2 (Xpa:%,p) =

2
erpe

PHYSICAL REVIEW D 90, 084020 (2014)

let us explicitly develop the expression for the quadrupolar
term J,. The only sets of integer solutions to Egs. (46¢) are
ij=2 for m=1 and {i; =0,i, =1} for m=2. As
shown in [27], we obtain

~ GM , J R
AJ,,Z(prvxpB): e

C2 rpArpBI—i— ‘pA'an
X {1 — (ko + 1= (ky-mp5)°
pA TpB

_<_] +L> kp- A np)?
T'pA T'pB 1+n an

(52)

Thers =, inserting (7?2) into (34) and using th- substitu-
tic.s (.. we obtain
Rup

C—zp}’%z(l —Nap 'ﬁp)2

|RpA > ypﬁpRAB‘RpB 1 +I~VA 'NpB

1—(k, Ny 1—=(k, i ( 1 ey (VA NP (53)
|RpA+ypﬂpRAB| RpL i +7pﬂpRAB| PI)B 1 +NA'NpB
and ‘“A _ RpA + 4 pﬂpRAB ) (54)
|RpA a ypﬂpRABl
The derivative of (52) wi*.. respect to x,,, :an be computed u:'ng Eq. (49a) and is given by
~ . - © nuy+Nyp 1,0 —Nyp
Ay X x,5)=2— Tk, (n )12 A - P
oyt (Epi-¥pa) e {[ pe (s L(rpA +rpp = Rap)®  (rpa+rpp + Rag)’
1 [1 - ";L)Z+ 1-(k, 'an)2:| { R4+ Nyp _ 1,4 —Nyp }
2 pa TpB (rpa+rps = Rap)*  (rpa +7pp + Rap)?
Rap(rpa+ )k, (n,a+n,p)
Y 5= = ip . Bk, — (k- mpp)n 4
r, B (14n,4-n,)
_ _l ﬂz(kp npp )k, +[1-3(k, '"pA)z]"pA (55a)
2r' 1y 1+n,, n,p ’
while the deriv.  =s “.th respect to x,; can be obtained by symmetry as
AJ,,Z,iB(prvxpB) = AJ,]Z.iA(xpB»pr)' (55b)

In order to evaluate the contribution of the moving quadrupole to the derivatives of the time transfer, it is then sufficient to

combine Eqgs. (55) and (52) as shown in Egs. (35).
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FIG. 1 (color online). Representation of different contributions on the range (le”. panels) and range rate (right panels) betw .ano

and Earth over one year. The contributions represented are the lower order cr .aribution (the actual value of the observables’ .nd the
corrections produced by the Shapiro due to the monopole of the Sun.

VII. APPLICATION TO JUNO

As an example, we use the equations presented in
previous sections to give estimates of the relativistic
corrections on the observables for the Juno n. "~n.
Juno is currently on its way to Jupiter, which it will ea.
in 2016. The spacecraft will orbit Jupiter during one y =ar.
Some of the relativistic perturbations on the Juno orbit h: ve
been studied in [40,41]. The main goal of this section is iy
assess the order of magnitude produced by different effects
due to the Sun and Jupiter on the time transfer. We shall use
the nominal orbit of the missi~ . awe.  Tupiter obtained
using the Naif SPICE toolki* 42] and ker. ', as well as the
DEA430 planetary ephem-.1s [43]. The ex :cted accuracy
for Juno is of the order ) cm on the ran‘ 2 and 107 m/s

i

m]

Sha, o Jupiter
Stati
"2
N r

Effect due to the mot’
of Jup. [107

0 57 100 150 200 250 300 350
Time from 10 oct. 2016 [day]

FIG. 2 (color online).

on the Dop,
relativistic cown
time between Eai.
rate. The range rate 1.
time of 10 seconds.
™ the following figure: all the time scales are given in
ter.. ¢ the coordinat. time, which is similar to the
baryr _nu. ~rdinat > time introduced in the IAU conven-
tic «s(see [37]). . observations, done in terms of local time,
can be derived oy a relativistic coordinate transformation,
which is conventional [37,44]. Nevertheless, this transforma-
ion will not significantly change the figures presented below.
Figure 1 represents the lower order time transfer and
re _erate between Juno and Earth, as well as the relativistic

[6] .n the tullowing, we present different
ations to the two-way coordinate light
nd Juno and the corresponding range
“een computed with an integration

Shapiro Jupiter
Static [10~*m/s]

0 50 100 150 200 250 300 350
Time from 10 oct. 2016 [day]

Effect due to the motion
of Jup. [10~8m/s]
o

Representation of different contributions on the range (left panels) and range rate (right panels) between Juno

and Earth over one year. The contributions represented are the corrections produced by the Shapiro due to the monopole of Jupiter (top
panels) and the contributions due to the velocity of Jupiter (bottom panels).
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and Earth over one year. The contributions represented are the correctior- produced by the J, of Jupiter (top panels) .nd the
contributions produced by the fact that the J, is moving (bottom panels)

Shapiro correction from the Sun. These corrections are
standard.

Figure 2 represents the contributions of the mass
monopole of Jupiter on the range and on the ran, rate.
These contributions have been split into two parts: . |
related to the case where Jupiter is static and a contriby tion
proportional to Jupiter’s velocity fy,,. The static par. is
computed using (44) with the position of Jupiter taken ‘t
the critical time 7y given by Eq. (39). The contributior.
relative to the velocity is computed by taking the difference
between the relations (45) and /* ane can see, the
contributions relative to the - .otion of .  er are 2 orders
of magnitude below the ev sected accuracy [ Juno and can

gl
I
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FIG. 4 (color online).

ted "a the modeling of the time transfer. A
holds for the motion of the Sun around
center, which is even smaller. Note
that the analytical rc ‘s presented in these graphs have
been checked by nume. ' mtegrating the TTF (40).
Tigure 3 represents the .ontributions of the quadrupole
ol . = (J,) on the ra..ge and on the range rate of Juno.
As 2" ove,  “ave ¢ lit these contributions into two parts:
or. related to . case where Jupiter is static and one
proportional tc Jupiter’s velocity fy,,. The static part is
computed using (52) with the position of Jupiter taken at
the critical time 7, given by Eq. (39). The contribution
1 lative to the velocity is computed by taking the difference

safely be ne,
similar conclus.
the Solar System

o

Sagnac Shapiro
Sun [m]

Soo

[ =2

L
g [T

[
o o ¢

|
o
o

0 50 100 150 200 250 300 350
Time from 10 oct. 2016 [day]

Representation of different contributions on the range between Juno and Earth over one year. Top left panel: The

2PN contribution from the monopole of Jupiter (contribution proportional to /ijzup). Bottom left panel: The contribution proportional to
the acceleration of Jupiter. Right panels: The Sagnac contributions (proportional to the Sun mass and to Jupiter mass) due to the motion

of Juno.
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between the relations (53) and (52). As one can see, the
contributions relative to the J, of Jupiter are of the same
order as the Juno’s expected accuracy. Therefore, the effect
of the J, should be taken into account in the reduction of
the tracking data. The contribution related to the velocity of
the J, is far beyond the current tracking accuracy. Once
again, the analytical results presented in these graphs have
been checked by numerically integrating the TTF (40). It is
important to notice that the curves highly depend on the
geometry of the probe orbit. Since Juno has a polar orbit
and is never in conjunction with Jupiter; the velocity effects
are not detectable. Therefore, the situation can be different
for another space mission like JUICE [45].

Figure 4 is given for illustrative purposes, and it shows
more effects on the range of Juno. First of all, the effects of
the second order in f3y,, are represented. They are computed
by making the difference between the formula valid at all
orders in fy,, (45) and the 1PN expansion (50). This shows
that one can safely use the PN expansion presented in
Sec. VIA within the Solar System. The effect of the
acceleration of Jupiter on the range is also presented.
This is computed by making the difference between the
numerical integration of the TTF in which we are using the
real Jupiter trajectory (40) and the result valid at all orders
in the velocity (45). The small rapid oscillations con.  ~m
oscillations in Jupiter’s acceleration, which results fro 1 ..
perturbations due to the Galilean satellites.

Finally, on the right of Fig. 4 the Sagnac effects ¢ 1e
to the motion of Juno are represented. The contributior.
represented are due to the Shapiro of the Sun and Jupiter,
which has been computed using (42). These contributions
should be included in the anal* .o ui . data either as a
perturbation or when solvir _ the light-ti.  iterations.

A\ 14 NCLUSIONS

= TTF ~.d its den:
vv.ametric bodies .

asses, which is useful
*strometric observ-

In this paper, we compute. "as in
the field of uniformly moving .
the field of arbitrarily moving poii.
in order t* _vaiue. ~e, Doppler a.
ables .arst, in Sec. v, computed «  ~tric ~dapted to
dec cibe the space-time p etry due to sodies in a
‘bal reference system by u. v a Poincaré .ansformation.
~n, we presented a gent | method to compute the
1 its derivatives in . case where the bodies
the gravitational fic 1 are in uniform motion.
at the TTF in the .ase of uniform motion can
be directly de. 4 from the s itic TTF, as can be seen from
Eqgs. (34)and (3. This re- .t is very powerful and valid for
any velocities. Mc  ~_r, in Sec. VB, we developed a
general expression .t the TTF in the case where the
gravitational field 1s generated by arbitrarily moving point
masses. The result is given as an integral over a straight line
between the emitter and the receiver (40), which can be
computed numerically. This general formulation has been
used to numerically check our analytical derivations but is

TTE
generav.
‘We showe.
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also useful to assess the effects due to the acceleration of
the body on the light propagation.

Then, in Sec. VI, we showed how our method can be
easily applied to the metric presented in Sec. IV to
analytically compute the TTF and its derivatives (and thus
the range, frequency shift and astrometric direction) for a
light signal propagating in the field ~t one or more
axisymmetric bodies in uniform m- .on. The results of
this paper complete the work of "27,28] and, :n general,
extend the field of applicability the TTF formalism [25].

Finally, as an example of .ar. hod, we computed the
range and Doppler for t+_ Juno 1. ‘on during its orbit
around Jupiter and stv” .d in detail .~ “fferent perturba-
tions due to the Sun ai. ' Jupiter on ligi.  -opagation. In
particular, we &' ed tht in addition t¢ = standard
Shapiro contr’’ ations v e to the mass monopo.  © Jupit- -
and of the € .n, the contribution of Jupiter J, isals. ~ .ant
at the le- ¢l of accuracy expected for Juno. The m’ ..on of
the & and of Jupite - produces effects that are .0o small
coiupai. 0 Juno aca  <y. Nevertheless, this conclusion
highly dep. "~ on th- geon.>try of Juno orbit and it should
be assessed ¢.  “".y for other space missions (JUICE, for
example [45]).
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APPENDIX A: METRIC OF ARBITRARILY
MOVING POINT MASSES

7" .¢ standard way to compute the metric for an arbitrarily
r oving point mass is to use the Liénard-Wiechert poten-
tials as in [18,19,38]. Based on the analogy between the
Maxwell equations and the linearized Einstein field equa-
tions [46], the guidelines of classical electromagnetism (see
Chapter 8 of [47]) follow. This procedure is described in
detail in [38]. According to the formulas for the retarded
potentials, the field at the point of observation at time ¢ is
determined by the state of motion of the body at the earlier
time 7, which is determined by (19) (in the following, the
index r denotes quantities evaluated at the retarded time ¢,.).
We can introduce a reference system comoving with the
body at the retarded time, whose temporal origin coincides
with the retarded time. The coordinates with respect to this
frame will be denoted by X“, and they can be derived by the
instantaneous Lorentz transformation
X0 = R, (v - xb,), (A1)
where x)), = ct, andx,, = x,,(t,) are the coordinates of the
body at the retarded time. It is important to notice that the
Lorentz transformation is done at the retarded time [i.e.
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/~\’,’” = /~\Z(t,)]. The four-vector X* is a null four-vector
[”aﬁXaXﬂ:n;w(xM_xl:)(xy_xl;):Cz(t_tr)2_|x_xp(tr)|:
0]. In this frame, the space-time metric is known,

HY = 2W( WX sap, Wthh can be written in a manifestly

WX (U, U, — 1y with US,
the four-velocity of the body at the retarded time (in the
comoving frame U$, = §%). Since the expression of
the metric is manifestly covariant, we can express it in

the global frame by using the local transformation (A1),

, AW (XH s 1,

covariant way as H% =

(A2)

where the X’ are given by the transformation (A1) and
where u}, is now given by uf, =y, (1.8,,) with y,, =
vp(t;) and v, = dx,/di, .

We can write the space-time metric as (17) with X’ given
by (Al), which can be explicitly written as (18). For
example, in the case of a point mass (W = GM/R), one
gets

= |Xi| = Ypr(rpr - (rpr 'ﬂpr))

and the metric can be written as

2GM
h = 71+ B3) + O(G?), (A3a)
Cz(rpr - (rpr 'ﬂpr)) ! r
, 4GM .
W= — By, +C ), (A3b)
Cz(rpr - (rp' fpr)) pree
. 2GM N
h' = C rﬂ rY r) !
Cz(rpr - (rpr 'ﬂpr))ypr e
(A3c)
7 ais expression is exac.  he same as . ae found in

* 19,38]. In the limit of sn
01 IAU metric are recovel

velocities. e expressions
(see Appendix B 2).

APPr. X B: CORRF PONDENCE WITH

THE TIATU" METRIC
1. Case

In Sec. IVA, we uerive the post-Minkowskian metric
related to uniformly moving bodies (13). It is interesting to
show that the post-Minkowskian limit of the IAU metric
[37] is recovered in the limit of the small velocities. In order
to show this, we first need to develop the argument
appearing in the potential W from Eq. (14) as

w’.ormly moving bodies

PHYSICAL REVIEW D 90, 084020 (2014)
Ay (e = b) = =y, Bye(t = to) + x' = xj,(to)

T pig. (x—x, (1))
7, p p

(B1)

Using the fact that the motion of the body is uniform, this
expression can also be written as

A (0 = by = x' = xi (1) + (x—x,(1)).
(B2)
In the limit of the sm. velocities (,Bp 1), we have

- o
A (=) = Ay_xp\f)JriﬂP e (X —x,0, o

(B3)

Usi, - expansion - the limit of small velocities, the
expressic.  “the pote .." W appearing in the metric (13)
becomes
. 1
WIA, (¥ = b)] = (0] + 5 Wl = x, (0I5B,
- )+ O(ﬁi), (B4)
whe. = OW/0X/. mtroducing this expression in the

metr'C (1., e to

2W(x' - x,) W' —xb)
}h00 — ) + 4 2 z ﬁ%
+ﬂﬂ("07x<))ﬁf W, () — (1) + O(G2)
+ (g(ﬂ;t)/cl)7 (BSa)
L AW =X)L
i = W0 g o)+ o). (s
L 2W (X —xi)
hil = Tpgij +O(G*) +O(B3/c*).  (B5c)
For example, in the case of a point mass (W = %), the
last expression becomes
GM
=244 zﬁz ( B,)* +0(G?)
r,c rpc
+O(p}/e). (B6a)
. GM .
W =4, + O(G?) + O /), (B6b)
P
. GM
hii — 2r—c26[j + O(G*) + O([}%/cz), (B6c)
P
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with r, = |r,| and r, =x —x,(r). This expression is
exactly the one recommended in the IAU conventions
[see Egs. (8) and (51-55) from [37] or Resolutions B1.5. in
the Appendix of the same paper].

2. Case of arbitrarily moving point masses

The metric (17) or (A3) describes the space-time
geometry around an arbitrarily moving point mass at the
first post-Minkowskian approximation. It is interesting to
show that the post-Minkowskian limit of the IAU metric
[37] is recovered in the limit of the small velocities.

We need to express the quantities at the retarded time ¢,
as a function of the quantities at the time ¢. Since

r

=P
t,—t o (B7)
we have
r,(t)=r, =x—x,(1)
t—t,)?
=, (0) = (= 1w, (0) = T )
+0((t=1,)°) (B8)
Tpr Tr -3 /
:r,,,—Tv,,,—z—czap,—FO(c ). By,

It is useful to notice that in the last term of this expressio 1,
we can replace ¢, by ¢ (this will introduce a higher orde.
correction). A simple calculation leads to

r?)"’(ﬂp'rp)z:(rpr_(ﬂp "pr))2+', %r
2
r

_p_];' r, +0(c™). (B10)

This leads to

PHYSICAL REVIEW D 90, 084020 (2014)

2 (B, T, a,-r
_ pr Pp Ty pTp
rp,—(ﬂpr~rp,)—rp 1—7+T+ C‘2

+0(c73). (B11)

Since

2

Yor =7, T O(c?) =1+~ + O(c7), (B12)

we have

1 1 B, ' a,r,
ypr(rpr - (ﬁpr vnr)) rp 2?’?, 262 '
(B17)

Introdur ag Eq. (B13) in the space-time metric (A" , leads
to

, oM, GM

M
B0 =y = (r -B.)?
czrp czrp P czr;(rp ﬂp)
_ fﬁ—ﬂﬂ% )+ OG?) +(1/c%),  (Blda)
P
A M .
N 4%2/;",, + O(G?) +O(1/c*), (B14b)
D
. oM 5 3
Wil =226, + O(G*) + O(1/%). (Bl4c)
}"PC

1he culy additional term with respect to the metric (B6) is
tt «erm proportional to the acceleration in gg,. This term is
cxactly the one appearing in the IAU metric [see Eq. (54) of
[37]] as already noticed in [48].
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vsités,

Planetary ephemerides are a very powerful tool to constrain deviatic  from e theory of gene.
relativity (GR) using orbital dynamics. The effective field theory frar~ work . lled uie Standard-Model
Extension (SME) has been developed in order to systematically r .ametrize hypothetical violations of
Lorentz symmetry (in the Standard Model and in the gravitation- . sector). In this communication, we use

the latest determinations of the supplementary advances of *
planetary ephemerides analysis to constrain SME coefficir .cs .
gravity-matter couplings. Our results do not show any deviatio.
constraints. Moreover, combinations with existing constraints from
interferometry gravimetry allow us to disentangle contributions from .

gravity-matter couplings.

DOI: 10.1103/PhysRevD.92.064049

I. INTRODUCTION

The Solar System has proven to be an efficient laboratory
to discover new phenomena fro~ “itational observa-
tions. Historically, one can m¢ .aon the .  dvery of “dark”
components [such as the ~.anet Neptune edicted by Le
Verrier] or evidence to- ‘rds non-Newton in gravity the-
ories [for example .e dhelion adva .~~ ° Mercury
which pointed towards g ral rela’.vity (G. The
Solar System remains the mo. verse laboratory s
the theory of gravity, that is to s. “R.

Constr~” .c..  “onsfromGK  onlybeobtained in
an ext aded theoretic. ~ mework tha.  rametrizes such
dev’utions. The constrain.. 1t are obtainc q observa-
+ ns are framework depenc . In the pac decades, two
n. works were widely used . ‘he literature at the scale of
the . - System, namely the p. metrized post-Newtonian
(PPN) . malism [1] and the fth force framework [2].
Stringent «  “traints have bee' obtained for these formal-
isms [1,3-8].. -erecently, c .ier phenomenological frame-
works have bc  devel- ped like the Standard-Model
Extension (SME). . " ME is an extensive formalism that
allows a systematic + _scription of Lorentz symmetry viola-
tions in all sectors of physics, including gravity [9-11].
Violations of Lorentz symmetry are possible in a number of

—
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* perihelia anu of the nodes obtained by
* the pure gra ‘v sector and also from
"m GR .a u =y improve current
~ T .ser Ranging and from atom
wure gravity sector from the

PACS numbers: 04.. "1 “ +80.Cc, 11.30.Cp

scer ios .  ed n the literature. While some early
1 otivation came .om string theory [12], Lorentz violations
can also appea. in loop quantum gravity, noncommutative
field theory and others [13,14]. The SME is an effective field
‘heory aiming at making phenomenological connections
b tweren fundamental theories and experiments.

. particular, a hypothetical Lorentz violation in the
sravitational sector naturally leads to an expansion at the
level of the action [11,15] which in the minimal SME writes

)
d'x 162G (R—uR+ st;" 1 aﬂﬂbcaﬂ;tb)

+8[sm, 1P, g, ] (1)

N grav —

with G the gravitational constant, g the determinant of the
metric, R the Ricci scalar, ley the trace-free Ricci tensor,
Copu the Weyl tensor and u, s** and %P the Lorentz
violating fields. To avoid conflicts with the underlying
Riemann geometry, we assume spontaneous symmetry
breaking so that the Lorentz violating coefficients need
to be considered as dynamical fields. The last part of the
action S’ contains the dynamical terms governing the
evolution of the SME coefficients. In the linearized gravity
limit, the metric depends only on # and 5** which are the
vacuum expectation value of u and s** [15]. The coefficient
u is unobservable since it can be absorbed in a rescaling of
the gravitational constant. The so obtained post-Newtonian
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metric differs from the one introduced in the PPN formal-
ism [15]. In addition to the minimal SME action given by
Eq. (1), there exist some higher order Lorentz-violating
curvature couplings in the gravity sector (nonminimal
SME) [16] that have been constrained by short range
experiments [17]. These terms are not considered in this
communication.

In addition to Lorentz symmetry violations in the pure-
gravity sector, violations of Lorentz symmetry can also
arise from gravity-matter couplings. In [18], it has been
shown that gravity-matter couplings violation of Lorentz
symmetry can be parametrized by the following classical
point mass action:

Smat = / d/l(_m vV Y + zcﬂbuuub - (aeff)”uﬂ)’ (2)

where u/ is the four-velocity of the particle, m is its mass
and ¢ and (a.y )" are Lorentz violating fields. In this
action, spin-coupled Lorentz violation is effectively set to
zero. The new fields ¢* and (a.;)* depend on the
composition of the point particle [18]. This modification
of the action produces two different types of effects: (i) a
modification of the way gravity is sourced and (ii) a
violation of the three facets of the Einstein equiy ~e
principle. The first effect will result in a modification « t u.
space-time metric solution of the field equati ns.
Modifications of the metric in the linearized approximati n
depend on (aS) coefficients, the background values of th
coefficients (a.g)* from the source body [18]. On the other
hand, the violation of the equivaler~~ nrinciple generated
by the action (2) leads to a 7_viation. T the geodesic
motion depending at first ¢ Jer on the co. cients &7 and
(@), the backgroun values of the L ‘entz violating
fields of the test ma- ..

Up to now, several stuu.
gravity SME coefficients 5 1.
Ranging [19], atom interferometry
range exr 71 planetary o
Gravit Probe B [24).  -ecently bina.
(@, coefficients are . -ntly poorly - wained by
”7-29]. On the opposite, s. * of the ¢#¥ oefficients are
sv  ely constrained (see forex. ple[26,27,30,31]). A listof
curte  ~onstraints on all SME efficients can be found in
[32]. In "~ study, we will conc 1trate on the impact of 5
and (al;) efficients on pla -tary orbital dynamics and
neglect the ¢ ~efficients ar . leave them for future work.

In this comn. "~ation we show that planetary orbital
dynamics can be u.  “ derive stringent constraints on the
SME coefficients. J' ueed, SME modifications of gravity
induce a secular variation of some orbital elements [15,18]
such as the longitude of the ascending node and the
argument of perihelia. These variations are introduced in
Sec. II. In Sec. III, we compare these variations with the
present level of residuals coming from INPOP10a

have cor.strainea nure-
for cxample Luna. ar
vimetry [20,21], short
“al dynamics [23],
ulsars [25]. The
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(Intégrateur Numérique Planétaire de 1’Observatoire de
Paris) ephemerides [33]. We use a Bayesian inversion to
infer the posterior probability density function (pdf) on the
SME coefficients. From the pdf, we estimate correlations
between the coefficients. We estimate realistic confidence
intervals and also determine linear combinations of the
SME coefficients that can be determi- ‘1 independently
from planetary orbital dynamics. In "cc. 1+. we combine
our results with previous results < stained by Lanar Laser
Ranging analysis and atom ~ ‘erferometry gravimetry.
Finally, in Sec. V, we disr .ss obtained results and
present several ideas that - .ay imprc ~ *he current analysis.

II. EFFECTS O¥ SM." ON ORBITAL. VNAMICS

In the line> .ed gi. ity umit, the gravity s of th>
minimal S*.£ is paramewrized by a symmetric . ~ ee
tensor ¥ and by a scalar # that is unobservable .ace it
correr  nds to aresca'ing of the gravitational cor .ant[15].
Fu .per. =, the matt <qravity coupling is parametrized
amongst o. < by thr (a.g,“ coefficients which depend on
the composit.  ~f .ae different bodies. The components of
these coefficier. depend on the observer coordinate
system. The stana.  frame used in the SME formalism
labeled by (7,X,Y,z, ~omc ing with the Solar System,
the spatial axes are defi. .y equatorial coordinates (see

' of [15]) and the o~ zin of time is given by the time
whewn TSarth crosses the Sun-centered X axis at the
verr .t equu.  h- planetary orbital elements are defined
v .th respect to .e ecliptic coordinate system. The two
coordinate sys.ems differ by a rotation R of angle ¢ =
23.44° (the Earth obliquity) around the X axis. Therefore,
he transformation of the tensor 3 is given by 5/ =

% 7,5 and 5% = Ri5T! where capital letters refer to the
e ,aatorial reference system and lower case letters refer to
the ecliptic one. Similarly, the transformation of the (G )*
vector is given by (@)’ = R (degr).

SME modifications of gravity induce different types of
effects (for an extensive review, see [15,18]). Two important
effects can have implications on planetary ephemerides
analysis: effects on the orbital dynamics and effects on the
light propagation. Simulations using the time transfer for-
malism [34] based on the software presented in [35] have
shown that only the 577 and (ag)” coefficients produce a
non-negligible effect on the light propagation (while it has
impact only at the next post-Newtonian level on the orbital
dynamics [15,18]). Since in this analysis we concentrate on
orbital dynamics, these coefficients are not considered and
will be neglected. This can safely be done since the signatures
from the 577 and ()" coefficients on the light propagation
are similar to the logarithmic standard Shapiro delay, which
is not correlated to orbital dynamics effects.

The equations of motion in the SME formalism are given
in [15,18]. Neglecting the ¢, contributions, the two-body
equation of motion reads

064049-2




TESTING LORENTZ SYMMETRY WITH PLANETARY ...
2 .J k.1
v _OnM | OM | w3l
dr r r 2

72

om [ _ ny . .
+2o7 (SOk+ Z ia(aeff)k) vk

w=e,p.n

om (. ny o )
—Zﬁ(s0-7+ Z %a(aeff)f>vkr"], (3)

w=e.p.n

where Gy is the observed Newton constant, M = m; + m,
is the total mass of the two bodies, m = m, — m; is the
difference of the two masses, r/ = r| — r} is the relative
position of the two masses and

ny =N} =Ny, 4)

with NY, the number of particles of species w in the
body 1, 2. The coefficient 577 is completely unobservable
in this context since absorbed in a rescaling of the
gravitational constant (see the discussion in [15,24]).
The coefficient (a';)" can also be absorbed in a rescaling
of the gravitational constant that depends on the compo-
sition of each planet [18]. In this context, one would
observe a different Gy with the different | '~nets.
Nevertheless, this effect is expected to be very a
[18] and would not produce any supplementary advaces
of the perihelia and of the nodes and therefore is neglec “ed
in this analysis.

In Eq. (3), the sums on w need to be done on tht
electrons, protons and neutrons. In the case of a Sun-planet
system, we have M = m, + mn ~ Sm=mg—m,
mg and ny = Ny — Ng = - .vg. The t that we are
neglecting N) means f'at we are ne ecting effects
produced by the viola*”  of the universe ity of free fall.

Under these assui.ptio. the equat’ - _ motion
depend on
—0i o Nw .
N @y (s2)
~35% - 09a(a, YV -O0.la(@; ., (5b)

whe  we used a simple n lel for the composition
of th. Sun characterized y N&/mg = Nb/mg =
09(Gev, ! and NL/ 15~0.1(GeV/c?)™! as
described in "1 (with ¢ ths speed of light in vacuum).
In this paper, @, ")/ is a' vays expressed in GeV/c? and

(age ) = (a%) + (aly). (6)

Using the Gauss equations, secular perturbations
induced by SME on the orbital elements can be computed
similarly to what is done in [15,23]. The two orbital
elements needed for our analysis are the longitude of the
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ascending node Q and the argument of the perihelion w.
The secular change in these two elements is given by

dQ\ n £ _ .
dr/ " sini(1—e2)1? 2 Skp S e

2 _ . 2 .
+ (e > e)ikQ cos @ — —2€ gk ‘Osw}, (7a)
e

Y 4
+—n£ 2—58], (7b)

where a is tb “imaj v axis, e the ¢
the orbit i clination (with respect to the ‘lipti ),
n=(Gy» o/a*)"/* is the mean motion and . -1-—
(1—¢? /2. In all t=se expressions, the coeffir'ents for
Lor ... ‘olation with ~ubscripts P, Q, and k are under-
stood to . ~opropriz . . ojections of 5#* along the unit
vectors P, &, 1k espectively. For example, S& = k'S,
Spp = P'P/5Y. > unit vectors P, Q and k define the
orbital plane

atricity, i

P = (cosQcosw—cos:  c«Sinw)e,
‘«inQcosw + cc.icos Qsinw)e, + sini sinwe.,

(8a)

0 = —(cos Qsmw + cos i sin Q cos w)eé,

+ (cos icos Qcos @ — sinQsinw)é, + sini cos we,

(8b)
k = sinisinQeé, — sinicos Qé, + cos ié,, (8¢)
where EMY . define the basis of the ecliptic reference system.

The relations (7) are generalizations of Egs. (168)—(171)
from [15] that do not include the (@)’ terms.

III. ANALYSIS AND RESULTS

Planetary ephemerides analysis uses an impressive
number of different observations to produce high accurate
planetary and asteroid trajectories. The observations used to
produce ephemerides comprise radioscience observations
of spacecraft that orbited around Mercury, Venus, Mars and
Saturn, flyby tracking of spacecraft close to Mercury,
Jupiter, Uranus and Neptune and optical observations of
all planets [4,6,7,33,36-43]. Estimations of supplementary
advances of perihelia with the Russian Ephemerides of
Planets and the Moon (EPM) are presented in [6,42]. The
INPOP ephemerides have produced estimations of supple-
mentary advances of perihelia and nodes. Table I gives

064049-3




A. HEES et al.

TABLE 1. Values of supplementary longitude of nodes and
argument of perihelia estimated by INPOP10a (see Table 5 from
[33]). These values are estimated in [33] as the interval in which
the differences of postfit residuals are below 5%.

Planet Q (mas X Cy’l) 0] (mas X Cy_l)
Mercury 1.4+18 04+£0.6
Venus 02+1.5 02+1.5
EMB 0.0£0.9 -0.2+0.9
Mars —0.05 +£0.13 —0.04 +0.15
Jupiter —40 =42 —41 +42
Saturn -0.1+£04 0.15 +0.65

estimations obtained by INPOP10a [33] on supplementary
longitude of nodes Q and on supplementary argument of
perihelia1 .

Since 577 and (a%;)” do not play any role in the orbital
dynamics and 5 is trace free, the observations depend on
eight independent fundamental coefficients: %% — 3577,
5O =X 4 g 2572 XY X2 5¥Z and S%/ (these
coefficients will be denoted as p; in the following). In
this communication, we perform a Bayesian inversion to
infer knowledge on these eight independent coefficients
using a Monte Carlo Markov chain (MCMC) alg “hm.
The approach is very similar to the one used for v ..
pulsar data [25]. The observations are assumed tc be
independent and the errors to be normally distribut d.
The pdf describing the likelihood (i.e. the probability >
obtain observations O; given certain values of the SME
coefficients p;) is given by

L(O;|p1.ps. ..p,) =cste™ } )
where the y? is con.puted
}(2 _\ (d’p/,SME(Pk) ‘vLINPOP)z
= 7]
pL 6’}),,1
Q -0 i
+( pl.SM. )‘ pLINPO, (10)

N
where index pl of the su is running over the six
different ,  =ts from Table I, ,;vpops @p mpop and the
correspondin,  are from T»".1e I and where @, svg (i)
and QPI_SME(pk , = sim .ated values depending on the
SME coefficients . ). The posterior pdf of the SME
coefficients is giver oy

n [33], @ is noted w which is commonly used for the
longitude of the perihelion but the estimated values correspond to
supplementary argument of perihelia and not to longitude of
perihelia (usually noted by @) [44].

PHYSICAL REVIEW D 92, 064049 (2015)
(11)

where z(py, ...p,) = z(py)...z(p,) is the prior pdf on the
SME coefficients p, and C a constant. We use a uniform
prior pdf on the SME coefficients and the MCMC algo-
rithm used is a standard Metropolis-Hasting algorithm [45].
We run the Metropolis-Hastings sample  mtil 10° samples
have been generated. The conver  .nce o. the MC is
ascertained by monitoring the e .mated Bayesian confi-
dence intervals of the parame*  Finally, to diminish the
effect of the starting configv- .tion. ~ discard the first 1000

P(p1.p2,---Pnl0;) =CL(Oi|py,...p )7 (P15 Py),

samples.

The marginal pdf  a single SM. oefficient p; is
given by

P(p,10;) -/ dmfdpz.uP(m,--.,pn\u (1)
where ' integrals are performed over all thr SME

coeffi nts p; excep® p;.
. tn. 0 shows th the coefficients of our model are
highly coi.  ‘ed, see .1g. . We have used the correlation

matrix estim. ~ f
correlations, sec
due to the fact ti.

assess the strength of the parameters
ble III. These correlations are mainly
"1l planets have very similar, low
inclination, orbital pi.. - Ne- >rtheless, we can produce
marginal 1D posterior « ~ oution for each of the eight
~ coefficients. The b’ .cograms corresponding to these

p—
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FIG. 1 (color online). 2D marginal posterior pdf (useful to
assess the correlations). On the 2D plots, the blue dotted contours
represent the 67% Bayesian confidence area, the red continuous
contour represent the 95% Bayesian confidence area and the
dashed green contours represent the 99.7% Bayesian confidence
area. The histograms represent the marginal pdf of the SME
coefficients.
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TABLE II. Estimations of the SME coefficients. These esti-
mations are still correlated and the correlation matrix is given in
Table III. The uncertainties correspond to the 68% Bayesian
confidence levels of the marginal pdf.

SME coefficients Estimation

XX —5hY (-0.8 £2.0) x 10710
50 = 39X 4§17 — 2572 (-0.8 £2.7) x 1071¢
XY (=0.3 £ 1.1) x 10710
5X2 (-1.0£3.5) x 10711
512 (55+£52)x 10712
STX (—2.9+8.3)x 107°

sor (03+£1.4) x 1078

Stz (-02£5.0) x 107

distributions are presented in Fig. 1. The corresponding
Bayesian confidence intervals are presented in Table II.
Another approach (based on the first run) to avoid highly
correlated coefficients is to find the independent linear
combinations of the SME coefficients that can be deter-
mined by planetary ephemerides analysis. This can be done
numerically by performing a normalized Cholesky decom-
position of the covariance matrix,
C = K"D?K, N
where C is the covariance matrix of the SME coefficit nts
estimated from our first run, K is an upper triangular mat'x
whose diagonal elements are unity and D is a diagona’
matrix. Then the linear combinations b of the fundamental
SME coefficients (noted p) giver *

b= K p, (14)
with KT the inver-.  the transpose of K, can be
determined completely in.  ~undently F, the . sis of
planetary orbital dynamics. our case, this C.  “ky
decomposition (K~T) is given b,
by = (7 =57, (15a)
F =-1.37b; +59, (15b)
by =  15b; —0.3152 +5%7, (15¢)
by =0.01. +0.0645¢ — 0.4 §XV 4 5%7, (15d)
bs =0.26b, —t € 40 513X - 1.675%% + 5772 (15e)
be = —35.5b; +9.7 .2 —22.675%" — 33.955%7

+7.8357% + 8%, (15f)

by = 1641.4b; —2101.15¢ + 4939.95%" — 8846.85%7
+ 4810.65%% — 0.895% + S¥, (15g)
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Unit Box
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FIG. 2 (color
assess the correla.
coefficients given b,

“r ). 2D marginal posterior pdf (useful to
") of the linear combinations b; of the SME
(15). On the 2D plots, the blue dotted
contours represent the ™ Bayesian confidence area, the red
continuous contour repres. - J5% Bayesian confidence area
1 the dashed green contc .s represent the 99.7% Bayesian
Cu. ~e area. The 1D hi .ograms represent the marginal pdf of
the SM . = combinations b;.

by = 44.5b, + 47.152 — 580.15%7 + 1041.35%7

+231.55%% + 3.435% +2.56S% + 5%, (15h)

v .ch the expression of S‘{D given by Eq. (5). We can now use
the linear combinations b; as fundamental parameters for
our analysis. Performing a new MC run (using the same
prior and likelihood as previously), we show that these
combinations can be estimated without any correlation.
This can be seen in Fig. 2 where the 2D marginal posterior
pdf on the b; combinations are presented. More quantita-
tively, the computation of the correlation matrix shows that
the b; combinations are completely decorrelated by plan-
etary ephemerides analysis since the absolute values of the
correlation parameters never exceed 0.03. The 1D posterior
pdf of the b; combinations are also represented in Fig. 2.
The estimated mean and standard deviation are given in
Table IV. The obtained uncertainties are much smaller than
those given in Table II.

We want to emphasize the fact that the results from both
approaches presented above are completely equivalent.
They are two ways to represent the same results. One is
free to choose which approach is more appropriate: to work
with the fundamental SME coefficients determined by
Table II at the price of including the covariance matrix
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TABLE 1III. Estimations of the correlations coefficients be-
tween the different SME coefficients: s¥X — 5Y¥ 52 XY 5XZ
§Y7, STX 3TV and S1Z.

1

099 1

099 099 1

098 098 099 1

-032 -024 -026 -026 1

099 098 098 098 -032 1

062 067 062 059 036 0.60 1

-0.83 -0.86 -0.83 -0.81 -0.14 -0.82 —-0.95 1

TABLE IV. Estimations of the independent linear combinations
b; of the SME coefficients. The expressions of the combinations
b; are given by Eq. (15). The uncertainties correspond to the 68%
Bayesian confidence levels of the marginal pdf.

SME linear combinations Estimation

b, (0.8 £2.0) x 10710
b, (23£23)x 107!
b (3.04+9.7) x 10712
by (024 1.1) x 10712
bs (=03+2.4)v 10713
be (02+1.1). =
b, (-0.6 £2.3) x v
bg (0.3117)><n9

(or equivalently the correlation matrix from Table III) in the
analysis or to work with uncorre’-~ ™" ~ear combinations
of the SME coefficients thar .re deter. 1 by Table IV.
The results provided by be .1 approaches a  cribe the same
physical information. herefore, they re completely
equivalent.

IV. COMBINATION W).
RANGIN AND ATOM IN.
AVIMETR

" CUNAR LASEn
"FEROMETRY

‘he results oo~ «in the last
‘able in the [(iterature. In

J* s interesting to comu

< tion with constraints a
p. cular, Lunar Laser Rang ¢ (LLR) data have been
useu  constrain the pure gi ity sector of SME [19].
Similai.  “tomic gravimetry d a have also been used to
constrain . ¥ coefficients [2 ,21]. We will first combine
our results » ~ Sec. III v «h LLR results to produce
constraints on ti. "ME puv . gravity sector alone. This will
highlight the impi.  ~ .nt brought by the planetary eph-
emerides data. In a < .cond step, we will consider both the
pure gravity sector and the gravity-matter couplings coef-
ficients. We will demonstrate that the combination of
planetary ephemerides data, LLR data and atom interfer-
ometry gravimetry data allows one to completely disen-
tangle all the SME coefficients 5 and (al;)”.
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The procedure to combine different types of analysis is
standard and consists of performing a global least squares
fit of all the estimations available. Obviously, the planetary
estimations given by Table II are not independent. To take
into account the correlation between the coefficients
estimated in Sec. III, we use the parameter covariance
matrix from Table III as a weight in th least squares fit.
Similarly, the coefficients estimated i we LR analysis are
weighted by their standard deviati- .1 in the least squares fit.
Since no covariance matrix ca~ e found in the literature,
we assume these estimati- as he independent (this
corresponds to a worst ¢ .e scenar,  'nstead of working
with results given in 7 »le II that arc  -related, we can
equivalently use the line. * combinations p 1 by Eq. (15)
and we then us”  ~ estinvated standard dc  ‘ions from
Table IV to w .ght the 1. "st squares fit. In thatap,  ach, t* &
weight ma* «x in the fit is diagonal. We insist on the chat
both ap- (oaches lead to the same results. In the fr .owing
wep e the mean a “d the standard deviation ¢. the SME
coudficic  as given £~ the least square fit.

Pure gravity sector

First, let us foc. = the pure gravity sector alone and
neglect the (@)’ co. “ients It has been shown in [15]
that the main oscillations «e radial distance between the
*~ and the Moon due o the 3 coefficients depend on
“~mbinations: s!! — 522, 512, 301, 502, Sqzc and
5o .- They . pressed in terms of the standard SME
oefficients exr cssed in an Earth equatorial frame and in
terms of the longitude of the ascending node a and of the
inclination f of the Moon’s orbit with respect to the
«quator. These combinations are given by Eqs. (107) and
(.7, from [15]. The longitude of the ascending node «
v «h respect to the equator oscillates around 0. This
oscillation is due to the secular advance of the longitude
of the ascending node with respect to the ecliptic. Similarly,
the inclination of the Moon’s orbit with respect to the
equator oscillates around f = 23.44°. As a consequence,
the transformation of the LLR linear combinations to the
standard SME coefficients is given by

SiX lu

<A — <l

s g =51 =352 = 0.92(3¥ - 57)

+0.08(3%% 4 57V — 25%2) — 0.735Y%,  (16a)
58 = 5'2 = 0.925% + 0.405%7, (16b)
55 = 592 = 0.9257Y +0.40577, (16c¢)
Sfir =3 =3, (16d)
Sfir = Sage = —3.2157 = 1.395"7, (16¢)
S{ir = Sz = —3.5057%. (16f)
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TABLE V. Estimations of the SME coefficients derived from
LLR analysis from [19].

SME linear combination Estimation
SR (1.3£0.9) x 10710
PR (6.9+4.5)x 107!
59R (=5.2+4.8)x 1077
PR (-0.8+£1.1) x 107¢
sE R (0.24+3.9) x 1077
SR (=1.34+4.1) x 1077

Note that the above transformations are different from those
used in [21]. In that paper, the authors have used @ = 125°,
which corresponds to the transformation between the lunar
plane and the ecliptic plane at the date J2000 while the
reference frame used in the SME framework is the
equatorial plane (and not the ecliptic one). Therefore,
the value of a and S needs to be taken with respect to
the equatorial plane at the moment where the experiment
was performed, or as their average value if they vary during
the experiment.2

In [19], Battat et al. have fitted the amplitudes related to
the signature of the six SME combinations (16) on residuals
of LLR analysis. As a result, they obtained cor-traints
given in Table V.

Combining these constraints with those obtained 1 tu.
previous section from planetary ephemerides leaa to
estimations of the pure gravity SME coefficients giv 'n
in Table V1. One can see that the 5¥* — 577 and the thre.
coefficients 5/% (with J # K) are improved by the

J <KL K L .J
fr GNM |: JK K 35t rLr 4 ,(ETK— Z
dar SME =R 2r? wien
3VKgi LKy m( . L
—_ -
r M \ w=e,p,n
wherr M = m¢ + mg, =mg—m_ Mg, * is the

pc ation of the Moon witi.  “pect to the . .n, v’ is the
tive velocity of the Moon . 1 respect te .ne Earth, VX is
the  ‘iocentric velocity of the arth-Moon barycenter and

ny =N =N ~-Nj (18a)
NY N

=2 (=<+ ) (18b)
mc Mg

Note that [15] advised caution on this point: “For definiteness
and to acquire insight, we adopt the values a = 125° and
p = 23.5°. However, these angles vary for the Moon due to
comparatively large Newtonian perturbations, so some caution is
needed in using the equations that follow”.

——2 v(ﬂ
M
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TABLE VI. Estimated mean and lo uncertainty of the SME
coefficients s#* by combining planetary ephemerides analysis
from Sec. IIT and LLR analysis [19]. It has been assumed that the
(@)’ coefficients vanish.

SME coefficients Estimation

FXX _ vy 9.6 +5.6) x 10711
59 = §XX 4§17 2572 (o 20.78) x 10710
5XY (6.5+22) x 10711
52 2.0+ 1.0) x 10711
577 (4.1£5.0)x 10712
57X (4.3+£25)x 107
sTY 11+ 1.1)x 1078
572 . 8+£3.0)x1078
combinatir .s of the data. This is mainly due to ract

that the _orrelations are reduced. It is also worth r cntion-
ing ¥ this combinc 1 analysis improves the combined
LLK an.  ‘om interfi metry gravimetry analysis from
[21] by 2+ order of muznitude.

B. Gravity sc

In order to use LLK  ~lysis 0 constrain simultaneously

the 5 and (a%:)’ coer. .ts, we need to identify the

“hutions of the (alf, ) coefficients to the amplitudes of

the . " "oon distance oscillations. The SME contribu-

tior o the v, "~~, of motion of the Moon-Earth system
r.n be found ir  15,18] and is given by

- and matter-gravity couplings

) )VKVJ VK K TJ VJETKI'K

w

1)
)1}’9”—2%(5”—}— Z ;—;a( eff)1>v’(r’<}, (17)

w=e.p.n

|
where N} is the number of particles of species w in the body i.
Following the approach described in Appendix A of [15] (see
also [46,47]), we expand the equations of motion around a
reference circular orbit and perform a Fourier analysis to
obtain the contributions of the (@) terms to the oscillations
of the Earth-Moon distance. The term proportional to VX’
in the first line of Eq. (17) leads to an oscillation at the Earth
orbital frequency Qg. The (@)’ coefficient modifies the
expression of 5 50g.1 in Eq. (A20) from [15]. Similarly, the
modifications of the terms proportional to ém in Eq. (17)
change the expression for 3°! and 5°2. To summarize, we find
that the (@)’ coefficients will modify the combinations
appearing in LLR oscillations as (5¢{,; and 55 . being
unchanged)
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sLLR =357+ E a)

02 Ng 2
o3 a2, 19
5 Z " a(ay) (19)
Shr =50 + Z )
NW
A5 =Y = Ca(ay)! (19b)

_ _ ny . _
5fir =s%v+2z (cos na(ay;)” + sinna(ay)?)

W Nl’V
= Sggc T 22 (m( + m—@) (cosna(at)’

+ sinpa(ak)?), (19¢)
S{ir = 50gs T 2Z—a a)®
< E(V N&‘ —w \X (
=504+ ZZ me + e aaky)”, 19d)

where 5o . and 5q_, are given by Eq. (108) of [15] o. by
Egs. (16e) and (16f). A simple model for the compositix n
of the Earth leads to N&/mg = Ng/mg ~Ni/mga
0.5(GeV/c?)~! [18]. Similarly, the model for the composi-
tion of the Moon from I, to N¢/mg =
N /m¢ = NE/me~0.5(Ge”, /c?)™!. Usi  these values,
the combinations (16¢)— " >f) appearing in L R data analysis
are modified by the /".;;, efficients as o'~ -

5fir = 0.92(5™" — 0.5a(a Z;p) Noa(ay)”)
0 YSa@@h) -y Aam)?),  (200)
e =X —05a(@i") - sa(aky)X, (20b)
shr= 2157 =1.39577 +1. ta(al,”)"
+1.e ‘@)Y +0.8a(a ;7)% +0.8a(a)?, (20c)
shr = =3.505"% +  (as?)* + 2a(al;)X. (20d)

Atom interferometry gravimetry has also been used to
constrain SME coefficients [20,21]. A violation of Lorentz
symmetry induces periodic variations of the local acceleration
that can be measured by atom gravimetry. Amplitudes of

PHYSICAL REVIEW D 92, 064049 (2015)

these oscillations have been partially computed in [15] for the
5# coefficients (see Table IV) and in [18] for the (@)’
coefficients (see Table IV). An improved calculation shows
that the (a)%;)” coefficients modify only two of the amplitudes
constramed in [20,21]:

] |4
C, =25 sinoy — 2 L 5T
2 c
4V, . N7 Ny w
+?wezpn{l®m_" N a(ayy)"
= —§4,sin 2y, (21a)
D, YZ 4)(+h—155TX
4VL Ny 3N3]
> Jiont 3o a(a)
w=e,p.n -
:%SA 2y, (21b)
where ig =1Ig, R%)~1/2 (with Ig the Earth

spherical inertial n. ~nt and Rg the Earth radius),
iy =1-3ig~—-1/2,15 ' -2ig/3 ~4/3, the subscripts

~fer to the test body, V' = wgRg siny is the velocity of
the .. “ary due to Earth rotation (wg being the angular
vele ity oo Sar’, rotation) and y is the geographical
¢ atitude of the cation where the experiment is performed.
In the last expressions, we introduced two linear combina-
tions given by

K3 EXZ—'_LEZ S'TY
J iysin2y c
8V, 1 CNY O3NB]
3¢ —+-—la(ay)’, (22a
T i4sin2;(w_ez,,_n[l®mﬁzm® (@), (222)
4 VvV
EﬁIZEYZ P —LISS'TX
igsin2y ¢
8y, 1 CNY O3NS]
o w)te (22b
3c iysin2y Z {le +2m alag) (22b)

w=e,p.n

For the experiment performed by [20,21], we have y = 42.3°
and V; /c =~ 1.04 x 107°. Moreover, numerical estimations
for a cesium atom interferometer lead to N¢&,/mcs=
NP /mey=0.44(GeV/c?)™!, Nt /me,=0.63(GeV/c?)™!
Finally, the values for the Earth are given in [18] and are
mentioned above after Eq. (19). Using these values gives

Sar=54+1.12x 1075

—5.43x 10 %a(as")Y =5.96x 10~%a(al;)",  (23a)
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TABLE VII. Estimations of the SME coefficients derived from
atom interferometry gravimetry by [20,21].

SME linear combination Estimation

XX g7Y (44+£11)x 107
§XY (0 2+3.9)x 107
G (-2.6 £4.4) x 10~°
5B (-0.3+£4.5)x 107°
51X (=3.1+£5.1) x 1073
577 (0.1 £5.4)x 1073
577 (1.4 +£6.6) x 1073

58 =577-1.12x10757X

+5.43% 10 (ast?) ¥ +5.96x 10-%a(al; )X, (23b)
with (as;”)’ given by Eq. (6).

Therefore, the experiment from [20,21] is sensitive to the
last two combinations and not to %% and 5'% alone. The
results from [21] are presented in Table VII.

In our final analysis, we combine the three analysis with
both the 5 and (Zzg'ff)J coefficients: (i) planetary eph-
emerides analysis given by Table II with the correlation
matrix from Table III [or equivalently the result< from
Table II on the linear combinations given by Egs. ™!
(i) LLR data analysis from [19] summarized in Taile .
with linear combinations given by Egs. (16a), (16b), nd
(20) and (iii) atom interferometry gravimetry analysis frc m
[20,21] presented in Table VII with the linear combination
given by Eq. (23). The (marginalized) results of this fit are
presented in Table VIII.

The resulting estimations . not si.
deviations from GR. The - vmbinations .
analyses allow one to stimate each of

any significant
the three data
1e coefficients

TABLE VIII. Estimated mea.
coefficients obtained with a fit co
LLR data analysis from [19] and atou.

1 1o ur_ertainty o SME
“i.g results from S.

erferometry gravimetry

experimer* = _,__

SMF coefficients L onatoa
T (9.6 £5.6) . 10711

s KX 4§ 0577 1.6 £0.7¢) x 10710

XY (6.5+32) x 107!

547 2.0+ 1.0) x 10711

577 (4.145.0)x 10712

57X (=74 +8.7) x 1076

s (=0.8 £2.5) x 107

572 (0.8 4£5.8) x 107

a(age)* + a(aly)* (=7.6 £ 9.0) x 10~° GeV/c?
a(ag)" + a(ag)" (—6.2+9.5) x 1075 GeV/c?
a(ay)” + alaly)” (13422) x 10+ GeV/c2
a(agy)* (=54 £ 6.3) x 1076 GeV/c?
alay)” (4.8 +82) x 107 GeV/c2
a(ag)” (=1.1+£1.9) x 10~ GeV/c2
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individually. The spatial part of 5/X is completely deter-

mined by the combination of planetary ephemerides and
LLR data. The atom interferometry gravimetry is not
accurate enough to provide any significative improvement
on the uncertainty of these coefficients. With an improve-
ment of 2 orders of magnitude, the atom gravimetry data
would become significative to estimate ' §/X coefficients.
On the other hand, the three data set~ are re vired in order
to decorrelate the 57/ and the “u%;)’ coefficients. The
uncertainties on 37/ are mucb  ver than those shown in
Table VI where the coefficie .is (¢, ' have been neglected.
This reflects the fact that .ie individv  oefficients are still
highly correlated.

v. DISCUSSION

First of ., the accuracy of the constraints on . .ME
coeffici ats obtained in Table II (planetary orbital d° namics
alop- ~ of the sam order of magnitude as wie binary
pwsars | constrain’ n the SME coefficients with an
improveme. f 1 ¢ Jer ot magnitude on the coefficients
572 Neverthe, 1t is known that nonperturbative effects
(similar to those  wputed in [49]) may arise in binary
pulsar systems. The  -verturbative effects depend highly
on the fundamental .. -v “.or example, see [50] for

~npertubative calculatio in Einstein-Aether theory or
. “va gravity). In _cneral, the results from [25] are
effect /. “traints Hn the strong field version of the s
th . may inci.. onperturbative strong field effects and
sne should b careful when comparing strong field
tests and weak field tests as the one performed in
Sec. III. The results shown in Table IV improve the current
.‘olar System constraints [32] by 1 to 3 orders of magni-
tt  Furthermore, the analysis combining planetary orbital
¢ namics and LLR from Table VI improves by 2 to 3 orders
of magnitude the previous results that combined LLR and
atom interferometry. This shows the high impact provided
by planetary ephemerides analysis.

As mentioned in Sec. III, our results show that the
estimated SME coefficients are highly correlated. The
correlations are due to the similarity of the orbital planes
of all the planets. Therefore, one way to improve the results
by reducing the correlations is to use bodies with different
orbital planes like e.g. asteroids. This can be achieved for
example with Gaia observations similar to what is proposed
in [51].

The constraints obtained in Sec. Il are mainly due to the
internal planets. For instance, Jupiter has absolutely no
influence on the results shown in Table II. This is a
consequence of its not so well-known orbit. An improve-
ment by a factor 10 on the knowledge of Jupiter’s orbit is
required for that planet to play a significant role in this
analysis. Therefore, the improvement of Jupiter’s trajectory
expected from the analysis of Juno’s radioscience and very
long baseline interferometry data [52] may improve the
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result of our analysis. In particular, it will reduce some of
the correlations which will lead to an improvement of the
estimations of the SME coefficients. In the same spirit, the
influence of Saturn is weak but nevertheless highly
important to decorrelate the coefficients. Furthermore, an
improvement of Mercury’s orbit by a factor 10 (which can
be regarded as the improvement by Messenger’s data that
are not yet included in INPOP10a analysis [33]) will lead to
an improvement on the estimations of 574 by a factor 2 and
to a 10% improvement on the coefficients ST and S (but
to no improvement at all on the other coefficients). In
summary, the best way to improve the current analysis is to
improve the trajectory of the “badly” determined planetary
orbits in order to improve the decorrelation instead of
improving more the planets that are already very well
determined.

As mentioned in Sec. II, the influence of the 577 and
the (al)" coefficients on the orbital dynamics only
appears at the next post-Newtonian order and these
coefficients are therefore not constrained by our analysis.
Nevertheless, these coefficients will play an important
role in the light propagation [53,54]. Therefore, planetary
ephemerides may potentially constrain this coefficient by
considering the effect of 577 on the light time f the
radioscience Range observables used in the an
Other opportunities to constrain this coefficient a.2 w
consider a conjunction experiment like the one perfon ed
with the Cassini spacecraft [3] (or to analyze Cassini d: *a
within the SME formalism as proposed in [55]) or t
consider Very Long Baseline Interferometry observations
similar to what has been done for -~ v post-Newtonian
parameter [5].

The multiplication of tb numbers of . [E coefficients
that need to be consid ed leads to an acrease in the
uncertainties on each ...  ‘ual coefficier s i< is due to
the correlations between differen* coeftic - that
appear when their number 1. ~re~sed. Therefoi. i
highly important to increase th. mber of analyses to
constrain <~ “his communic. 1, we have shown
how a _ombination v e analyses disentangle the
diff- .ent coefficients. Ne  “eless, the cc "~ _.ats shown
i~ Table VIII are still high. orrelated, es ccially in the
« Vsector. One way toredu  these conelations is to use
moi. “servations that are sen. ive to other combinations
of the \ )’ coefficients. This :an be done in two ways:
(i) to con. v different sourc . bodies that generate the
gravitational . 1and (ii) to 1" .e more orbital geometry like
e.g. asteroids «_ mics »  already mentioned. The first
point is related to «. ™ ¢ that the (al;)’ coefficients enter
the equations of me .on essentially through the properties
of the source body. (n this communication, only two source
bodies have been used: the Sun (in the planetary orbital
dynamics analysis) and the Earth (in LLR and in atom
interferometry gravimetry). Considering more source
bodies with different compositions can help to reduce

PHYSICAL REVIEW D 92, 064049 (2015)

correlations. In this sense, a test using the satellites around
the different planets would be highly relevant.

Finally, we would like to soften the results presented
here. First of all, we insist on the fact that the constraints
obtained in Sec. III correspond to the intervals in which the
differences of INPOP10a postfit residuals are below 5%, as
they are obtained directly from the limite ~f Table I coming
from [33]. As such, they do not direc*”, rep.. sent the usual
lo confidence interval. A cleane’ approach would be to
include the SME equations - motion directly in the
planetary ephemerides softv .«re ' to estimate the SME
coefficients directly from ae raw . which corresponds
to the approach usu~  / used for « hating the PPN
coefficients [4,6,7] or more recently ~onstrain the
Modified Newte-  ~ Dyn. mics theory [56, “uw analysis
demonstrates *.¢ impac* of such an analysis a1, “erefor,
provides a .aong incentive.

In adr aon, the LLR data analysis has been perfor .ied by
fittinc®  “me oscillati..~ signatures in the LLR ¢ .ta resid-
ual,. T, »proachis1 *optimal since it suffers from two
drawbacks. -st, the uscilic ting signatures derived in [15]
have been co. 't J analytically using several approxima-
tions. They can . “sed to estimate an order of magnitude
on the different eh.  oroduced by SME but they are not
optimal for a real data lysis “furthermore, the signatures
nsed in [15] include only Jdominant oscillations, several

“frequencies are pror uced by SME and ignored in the
data o ‘). Second, fitting in the residuals is not optimal
sine . it ao. « ~.ow one to analyze the correlations
F_cween the SM  coefficients and the other parameters that
are usually fitted in a standard LLR data analysis. For these
reasons, a cleaner analysis would include the SME equa-

ions of motion directly in the software used to reduce LLR
a ta Results obtained in [19] and in this communication
g . strong motivations to perform such an analysis.

Finally, the atom interferometry gravimetry analysis
should be interpreted with caution. The atom interferom-
etry gravimeter results from [20,21] assume a model of the
local solid Earth tides. While such models can be partly
analytically based, it is known that the many frequencies of
the Earth tides include all of the frequencies in the SME
signal [57]. If any aspect of the tidal model includes fitting
sinusoidal functions to local gravimetry measurements or
global measurements of, for example, the ocean heights
[58], the signal for the SME may be partly subtracted due to
the strong correlation with the tidal signal.

VI. CONCLUSION

In this communication, we have shown that the planetary
orbital dynamics allow one to constrain a violation of
Lorentz symmetry with an impressive accuracy. In Sec. 111,
we use the current limits on supplementary advances of
perihelia and nodes provided by INPOP10a [33] to estimate
the SME coefficients 5#* and (a%)’. In this analysis, the
coefficients ¢ have been neglected since they are already
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constrained with a high level of accuracy [32] but they can
be considered in a future work. Our analysis has been
performed using a standard Bayesian inversion. Results on
the SME coefficients are given in Table II. No significative
deviation from GR is observed. As mentioned in Sec. III,
these estimations are highly correlated (see Table III or
Fig. 1). We have identified numerically the linear combi-
nations of the SME coefficients that can be estimated
independently from planetary ephemerides. The estima-
tions on these combinations are given in Table I'V. These
two results are completely equivalent (as long as one uses
the correlation matrix with the first estimation). Our results
produce uncertainties similar to those obtained from binary
pulsars data [25] on most of the coefficients and improve
the constraints on 577 by 1 order of magnitude. Moreover,
we improve the current best weak field tests by 2 to 3 orders
of magnitude.

We also perform a combined estimation of the SME
coefficients using results from three different analyses:
(i) the planetary ephemerides analysis performed in Sec. 111,
(ii) the LLR data analysis performed in [19] and (iii) the
atom interferometry gravimetry analysis realized in
[20,21]. The combination of LLR and planetary ephemeri-
des leads to the best current estimations on the pure gravity
SME coefficients as shown in Table VI [when neg ‘g

PHYSICAL REVIEW D 92, 064049 (2015)

the (@)’ coefficients]. In these three analyses, we also
take into account potential effects produced by a Lorentz
violation in the matter-gravity coupling which is para-
metrized by the (aY;)’ coefficients. Finally, the combina-
tions of the results from the three data analyses lead to the
first independent estimations of the §* and (al%;)’ coef-
ficients. The results are presented ir ™able VIII. The
obtained uncertainties are relativel> iarge, vhich is due
to the numbers of coefficients considered and to the
remaining correlations. Some ° s to reduce these corre-
lations are proposed in Sec V.
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Lorentz symmetry violations can be described by an effective field theory framewer
both General Relativity and the Standard Model of particle physics called tF . Stc
extension (SME). Recently, post-fit analysis of Gravity Probe B and binary pu’ ars lead «
limit at the 10™* level on the time-time coefficient 577

hat contains
‘rd-Model
~ upper

of the pure-gravit- sector of the imal

SME. In this work, we derive the observable of Very Long Baseline Interfer netry (VLBI) i 'E
and then we implement it into a real data analysis code of geodetic V™ BI ob. ~rvations. Analyz

all available observations recorded since 1979, we compare estims _ .

TT 4ad errors obtainec

with various analysis schemes, including global estimations over ¢ veral time . mans and with various
Sun elongation cut-off angles, and with analysis of radio sourc’ coordinate time series. We obtain a

constraint on 5
5 previous post-fit analysis estimates.

PACS numbers: 04.50.Kd,04.80.Cc,11.30.Cp

Historically, the measurement of the bending of light
due to the gravitational mass of the Sun is one of the
most important and precise test of General Re. v
(GR). Within the Parameterized Post-Newtonian (.°F:.,
formalism [1], this effect has been constrained by ’ery
Long Baseline Interferometry (VLBI) observations [2, 3],
space astrometry with Hipparcos [4] and the Cassini r« -
dioscience experiment [5], the latter being the most strin-
gent constraint on the PPN ~ parameter.

The SME framework has + _cn de.
tensive formalism that all” vs a systema
Lorentz symmetry viol- 1ons in all secto;  of physics, in-
cluding gravity [6—=&! he motivations came first from
string theory [9, 10) whic. ~u possibl* proa.. " orentz
violations, this statement a, ~rs #lso in loop ¢  m
gravity, non commutative field . wy and others [11, ...

ed to be an ex-
description of

A hypot*-'" ' Torentz violati. u the gravitational
sector - aturally lea. an expansic  t the level of the
acti- a [8, 13] which in wuinimal Sh. it s

w= [ 2L (R—w +9"RE, -t Cop,)

+S/[’S‘“/7taﬁ'uuag ‘] ’ (1)

with G v

the space-t.
trace-free Ric.  ~nsor, (",g,, the Weyl tensor and u,
s and t*P# the e .oz violating fields. To avoid con-
flicts with the unde ying Riemann geometry, we assume
spontaneous syms .etry breaking so that the Lorentz vi-
olating coefficients need to be considered as dynamical
fields [13]. The last part of the action S’ contains the
dynamical terms governing the evolution of the SME co-
efficients. In the linearized gravity limit, the metric de-
pends only on @ and §*” which are the vacuum expec-

sravitational con< ant, g the determinant of

metric g,,, . the Ricci scalar, RIT“, the

TT — (=54 8) x 107°, directly fitted to the .oservations and improving by a factor

ad s#¥ [13]. The coefficient @ is un-
* be absorbed in a rescaling of the
gravitational constan. "he <, obtained post-Newtonian
metric differs from the  _ introduced in the PPN for-
. ~ [13]. In additio to Lorentz symmetry violations
in th _ oravity sector, violations of Lorentz symme-
trv can also " om gravity-matter couplings [14], but
.e do not cons .er them in this work. Hence SME is an
effective field theory making possible confrontations of
fundamental theories and experiments. Indeed, since the
'ast decade, several studies aimed to find upper limit on
$MT coefficients by searching possible signals in post-fit
r .iduals of experiments. This was done for pure-gravity
SME coefficients with Lunar Laser Ranging [15], atom
interferometry [16], Gravity probe B [17], binary pul-
sars [18], Solar System planetary motions [19, 20], cosmic
ray observations [21] or event very recently with gravita-
tional waves detection [22]. However, all these works are
post-fit analysis based originally on pure GR and con-
sequently their approach is not fully satisfactory in the
sense that correlations in the determination of SME co-
efficients and other global parameters (masses, position
and velocity...) can not be assessed. Then in the best
case, a simple modeling of extra terms containing SME
coefficients are least square fitted in the residuals of the
experiment. In a more correct approach, SME model-
ing must be included in the complete data analysis and
its coefficients must be determined as global parameters.
It is exactly what we present here in the case of VLBI
observations.

tation value of
observable since it

VLBI is a geometric technique which measures the
time difference in the arrival of a radio wavefront emit-
ted by a distant radio source (typically a quasar) between
at least two Earth-based radio telescopes, with a preci-




sion of a few picoseconds. Knowing the group delay and
the angular separation between the baseline between the
antennas of the telescopes and the line of sight of the
observation, the distance between the telescopes can be
determined and consequently VLBI tracks the orienta-
tion of the Earth in an inertial reference frame provided
by the very distant quasars, determining accurate terres-
trial and celestial reference frames.

Let us write the VLBI group delay in the International
Celestial Reference Frame (ICRF) as defined by the In-
ternational Astronomical Union (IAU) [23] with coordi-
nates (z#) = (27, x), where 2T = ct, ¢t being a time
coordinate, and & = (z7) is the spatial position. We
consider a quasar as source with as coordinates of the
emission event (t.,x.). This signal is received by two
different VLBI stations at events (t1,@1) and (t2,T2),

respectively. Using the same notations as in [24], we in-
troduce three units vectors
e X r; —I; X;
=T N = = " and n = ——
|| Tij |51 ||

We denote by ¢, —te = T(xe,te,x,) the coordinate
propagation time of a photon between an emission event
whose coordinates are given by (t.,z.) and a re ~tion
event whose coordinates are given by (¢, z,). We ¢ .
simply the VLBI group delay A7 from

AT(fEute:mh 51:2) = T(meateam2) - T(mﬁtevml) - \2)

For the observation of a quasar, we then use the limit

re = |@e| = oo and the VLBI time delay is given by

At(k,x1,x2) = lim [T (@, te, 2) — T (Te, te, 1)) -
Te—$00

(4)

The coordinate propagation time can be computed
from the linearized SME metric from 13, 25] using the
time transfer functions formalism " ;. '~ SME, it has
been computed in [27] (see Eq. (2 .)) for the , ure gravity

sector and is given by

rer G /L _ Te — Ty
T(matevmr) = + - 57< T]pe Q‘]Kn;a]rpgr>
c y Tel'y
GM e — . Te
42 (14577 =™ 0! | In Te . Te (5)
C Ty — Ner
GM o AT A _

+—5 ['ET ' neJr +5” peJTpg - STT} (P Mer 20 )

wher”  he terms a; nd as from [27] are take as unity

(w'.acL  -responds t« sing the harmonic gauge, which
is the onc  ~d for V .1 lata reduction) and where
Per = Mg, {:ET' X ner') =Ty — (ner'wr)ne'r

= Ner X X ncr) =T — (ner~me)nerv (6)

Per
[Per]”

~an now give the _xpression of the group delay be-
tweer . “'LBI stations. We are using the assumptions
the . the sow. “ocated at infinity (r, — 00). We need
o introduce (F 1mto (4), which leads to

and where p., =

|
GM T 17,01 "1tk T
AT<gra\,)(k7,:E1,a:2\ —’2673 [1+S + s k ]lnm —
GM
ST s ek -nak) (7)

M

¢ T _ G KT A IR AT A
+= "-T"+8']K/€K](n‘2*ﬂij)+73 8"Kpi’pf<(n1~k—1)—S"Kp‘z’pﬁ((nz-k—l)]7

c3

v 1ere the subscript (grav) rsto the gr: .tational part

he group delay and whey
pL:kX(a:LXk:): BL—(ka)k, (8)

Moreover, - simplified formula can be

1

and p; = ‘

used for prém utilisat’ .a considering a typical accu-
racy of a VLBL  -erv .con of the order of 10 ps and
that GM/c® ~ 5. .07% s. Since the coefficients 57
are already const ained and are smaller than ~ 1077
[20, 28], all terms GM /35T are too small to be detected
and can be neglected. The coefficients 57 with I # J
are also constrained by previous studies and are smaller
than 10710 [18, 20, 28]. Therefore, we can also neglect

terms that are proportional to GM/c35'7 with I # J.

Finally, since we know that |3X%X — s¥Y| < 10710 and

|8XX 4+ 5V —25%Z| < 10719 [28], we can safely say that
at the level of accuracy required 55X =~ 5V ~ 54Z in
Eq. (7). Under these assumptions and using the fact that
§" is traceless, the VLBI group delay can be written

GM

_ r+ k.il:l
Afigran) = 275 (14 577 n 2

ro + k.xo
2GM _pp

= 5% (ne.k—myk) . (9

3 (n2 1-k) . (9)
It is important to notice that the bare GM parameter
appearing in the post-Newtonian metric do not corre-
spond to the observed GM parameter measured with
orbital dynamics (using planetary motion for the Sun).
There is a rescaling between the two parameters given by




GM = GM (14 5/35"T) (see Sec. IV of [17] or [13, 20]).
Using the observed mass parameter leads to
GM

2 7T r1+ k.xq
AT(gray) = 2073(1 - 38 JIn ————

ro + k.IBQ
2GM

+3 3 57T (ng.k — ny.k) .(10)

This last formula is the one used to fit the 577 coefficient
using VLBI observations.

From August 1979 to mid-2015, almost 6000 VLBI 24-
hr sessions (correspondingly 10 million delays) have been
scheduled for primary goal of monitoring the Earth’s
rotation and determining reference frames. The In-
ternational VLBI Service for Geodesy and Astrometry
(IVS) [29]' imposed a minimal distance to the Sun of
15° after 2002 in order to avoid potential degradation of
geodetic products due to radio wave crossing of the Solar
corona. This limit was recently removed (Fig. 1).

20
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FIG. 1. Observational hi
20° to the Sun (blue dots) an
rescaled to fit in the plot; [30]).

7 of the sr.rces « ss than
“m sps ¢ number (1. “rve,

In o’ . analysis, ""LBI delays ‘o corrected from
dela- due to the radio .~ crossing ot  ~ers’ve regions
ir che signal propagation , " in a prelin. .ry step that

de use of 2 GHz and & Hz record’.ugs. Then, we
on -sed the 8 GHz delays  fit the parameters listed

herea We used the Calc; olve geodetic VLBI anal-
ysis sotv e developed at N/ 5A Goddard Space Flight
Center, in  "<h the astrome ric modelling of VLBI time

't with th- iatest standards of the Inter-
national Earth .  tior and Reference Systems Service
(IERS) [31]. We au. . the partial derivative of the VLBI
delay with respect .0 577 from Eq. (10) to the software
package using the USERPART module of Calc/Solve.

delay is comp,

L The TVS operates regular geodetic VLBI since 1998.

We ran a first solution in which we estimated 577, all
source and station coordinates and all five Earth orienta-
tion parameters once per session. A priori zenith delays
were determined from local pressure values [32], which
were then mapped to the elevation of the observation us-
ing the Vienna mapping function [33]. Wet zenith delays
and clock drifts were estimated at i» -vals of ten and
thirty minutes, respectively. Trope phere g -adients were
estimated at intervals of 6 ho s. Suitable loose con-
straints were applied to sour and station coordinates
to avoid global rotation of .ne «  “tial frame and global
rotation and translatio- of the te  -trial frame. Sites
undergoing strong nc mear motion. e to, e.g., post-
seismic relaxation, we. » excluded fron. e constraint.
This prelimina~  “lution. allowed us to 1. “ify a half-
dozen of sess uns with ~bnormally high postt. s (g
erally hig' or than 1 ns). The distribution 577 » a4 by
its errr  also reveals a few points clearly lying outside
the ©  -ibution (see Wig. 2). These data corresponds to
the 26+ “ons of the YNTO08 campaign (August 2008),
representl. 1% ¢’ the u-taset. Without the CONTO08
sessions, we «  ~"aed 57T = (=54 11) x 107°. Keeping
the CONTO08 se.  ms moves the mean value to 7 x 107,

0.10F T THT T

Estimate of 5

—0.05 . .*

—0.40F L Ll
1980 1985 1990 1995 2000
Time [years]

2005

10

Scaled estimate of 57"
o al

|
[$))

19585
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Time [years]

FIG. 2. Session-wise estimates of 377 (Top) and 57" scaled
by its error (Bottom) for 5895 sessions (blue dots). The red
circles highlight the 26 CONT08 sessions.




A spectral analysis of the time series revealed no signif-
icant peak. We computed 577 over 1000 random subsets
containing three quarters of the 5895 sessions to check the
stability of the mean value. 377 stays around 0 within
8 x 1075, We also addressed the sensitivity to Solar ac-
tivity. To do so, we used the Sun spot number (SSN)
monthly data to separate VLBI sessions into two groups:
each group contains sessions occurring when the SSN is
higher or lower than its median value computed over our
observational time span, that is 2947 sessions in each
group. We obtained 577 = (3 +£16) x 10~° for the high
activity periods, and 377 = (=12 £ 15) x 10~° for low
activity period, giving no clue on the influence of Solar
activity.

We turned to a global solution in which we estimated
57T as a global parameter together with radio source co-
ordinates. Station coordinates were left as session param-
eters. Constraints remained unchanged. We obtained
57T = (=548) x 107°, with a global postfit rms of 28 ps
and a x? per degree of freedom of 1.15. Correlations
between radio source coordinates and 577 remain lower
than 0.02. The global estimate is consistent with the
mean value obtained with the session-wise solution with
a slightly lower error.

In this letter, we have presented a test of Lorem ~-
metry performed using 36 years of VLBI data. Cont -a1..,
to previous studies of Lorentz symmetry in the gre 7ity
sector, our work is not based on a post-fit analysis »n
residuals obtained after a GR analysis but rather on 2
full SME modelling in the VLBI data reduction process.
Our analysis leads to a constraint on the 577 coefficient
at the level of 107°. This ¢r .uclen.  Harticularly im-
portant since it controls t¥ . speed of g1.  ty in the SME
framework [22]. Our - sult improves t 2 best current
constraint on this cor . it [17, 18] by a actor of five. In
the future, the accumula.  of VLBI a1, frame-
work of the permanent geo. - mo-atoring prog let
us expect improvements of thi. — nstraint as well a. ca-
tended teste
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Lorentz symmetry violations can be parametrized by an effective field theory framev .rk that con-

tains both General Relativity (GR) and the Standard-Model of particle physics callr
Model-Extension (SME). We present new constraints on SME parameters of the » ure g
obtained analysing Lunar Laser Ranging (LLR) normal points. We have built © .ew num.
ephemeris computed in the SME framework and we have performed a LI” data analysis

ne Standard-
‘ty sector,
~l lunar
Mg a

set of 20603 normal points extended from August 1969 to December 2013. Ne found no ev. e

for Lorentz violation at the level of 1078, 10712, 107!2, 107!, 107° 107,

respectively §TX, §XY7 EXZ, §A, EC, ED, 57

1071 and 10~

and 5. Four parame . .. ‘mate. are improve unt.

three order of magnitude compared to previous post-fit residue’, analysis C~duced on theoretical
grounds. This work is the first LLR experimental measuremer . computed in SME framework.

PACS numbers: 04.50.Kd,04.80.Cc,11.30.Cp

Since his establishment in 1915 by Einstein, GR has
survived one century of experimental and theoretical
scrutiny. During this century, foundations of the the-
ory have been tested spanning all scales, from tl = Solar
System to the edge of the early Universe. Current |
lar System remains the most precise opened labor. tory
to put constraints on GR. Those constraints can onl, be
computed in an extended framework parametrising de -i-
ations to GR. In the past decades, two frameworks wei »
widely used in the literature at the scale of the Solar Sys-
tem, namely the Parametrized P~~' " ~vtonian (PPN) [1]
and the fifth force formalis~. [2]. He  er, some moti-
vations are given to look .or deviations > GR in other
frameworks than the t- » extensively cor idered. One of
those is the SME fr .. vk [3-5] aimj . -* ~vstemati-
cally parametrized any vio. on of the orentz.  metry
in all sectors of physics from  tic'es physics to . ™*

AYd

Lorentz svmmetry or Local Lo, = Invariance (LLI) is
a funde .cntal pio, - of space-tin.  Mllowing from the
spec’ . theory of relat, applied froi.  ~rtic'2s physics
te GR. It states that the . ome of any 1. . test experi-
t (gravitational or not)  udepender . of the velocity
o1~ local freely falling frar.  in which the experiment

isrec 4 [1]. Considering the road field of applicability
of the L. testing Lorentz syr netry violations provide a
powerful v of fundamental physics. In addition, many

scenarios in v 'iterature r .pect some Lorentz violation
at different ene. leve!  String theory, loop quantum
gravity and non-c.  .uatative fields theory are some ex-
amples of such sce” arios [6, 7]. In this context, Colladay
and Kostelecky have built an effective fields theory mak-
ing possible confrontations between fundamental theories

and experiments called the SME.

Following from [5, 8], an hypothetical violation of the
Lorentz symmetry in the gravitational sector naturally

leads to an~ ~anson at tue level of the action which is

given in the . mal SME as
¢ 4 o pv pT afuv
Sy =— 16nC d*z, (R—»R+s""R,, +t Capuv)
+ S [ 10 g, (1)

Here o« he gravitational constant, g is the determi-
ns .6 of the 1. tensor g,,, R is the Ricci scalar, REV
.3 the trace fre . Ricci tensor, Cog,, is the Weyl confor-
mal tensor, u, s*¥ and t*?* being the Lorentz violat-
ing fields. S’ contains the dynamical terms governing
he evolution of SME coefficients. From experimental
e " .nces the violating fields have to be small quanti-
t s, therefore we will work in the linearised gravity limit
where the metric depends only on @ and s#” which are
the vacuum expectation values of u and s#** [3]. The co-
efficient u will be not take into account since it can be
absorbed in a rescaling of the gravitational constant. As
mentioned by [8], the so obtain post-Newtonian metric
differs from the one introduced in the PPN formalism.
Using this wide formalism, many studies aimed to con-
strain SME parameters of the pure gravity sector by
searching possible theoretical signals in post-fit residu-
als of experiments obtained in pure GR. This procedure
has been applied in many experiments such atom inter-
ferometry [9], Gravity Probe B [10], binary pulsars [11],
planetary ephemerides [ ], cosmic ray observations
[14], gravitational waves detection [15] and LLR [16].
However, this kind of approach is not fully satisfactory
since correlations between SME coefficients and others
global parameters (masses, positions and velocities, ...)
are neglected. Moreover, the first order analytical terms
characterising Lorentz violation, which are looked for in
this kind of post-fit residuals analysis, are always at the
same frequency than natural frequencies appearing in the




fundamental problem governing the evolution of the ex-
periment. Consequently, after a fit in pure GR, signals at
the natural frequencies are absorbed in the redefinition
of initial conditions and physical constants. Therefore,
it could be problematic to look for first order analytical
Lorentz violating signal in post-fit residuals since it could
have been absorbed in a redefinition of one or more phys-
ical parameters. Finally, in the case of LLR data analy-
sis, the oscillating signatures derived in [8], are computed
only accounting for short periodic oscillations; typically
at the order of magnitude of the mean motion of the
Moon around the Earth. For instance, the precession
motion in 18.6 years, of the lunar orbit on the ecliptic
plane is neglected. Therefore, this analytic solution re-
mains only available for few years compared to the 45
years of LLR data span. Consequently, approach in [10]
is not the most fair to estimate SME coefficients. In a
more correct form, they have to be estimated in a global
fit with others parameters in data analysis. This ap-
proach, have been realized recently in a study using Very
Long Baseline Interferometry data [17] to improve 377.
In this letter, we present the first global experimental
measurement in SME framework with LLR observations.

LLR is used to conduct high-precision measurements
of the round-trip travel time, or the separation bet A
LLR station on Earth and a corner cube retroreflect. s «
the lunar surface. Modifications of the round-trip t1 wel
time contain a lot of informations about the Earth-Mc »n
system leading to many different fields of investigatior s
as astronomy, lunar science, geodesy, geodynamics anc
gravitational physics. In addition the determination of
physical or gravitational pars .cters fits from the 45
years of LLR data span .ad from th. echnology im-
provement which leads * .e observational ccuracy at the
sub-centimetric leve!

The theoretical opserve
travel time from a LLR sta.
T, to a lunar retroreflector (7,
back to a «t=*" - raceiver (ry) au
puted - aue is give..  “ollow

is defined " (1) . helight
trarsmitter (r,) ‘me
T5 and then the ...y
ae T3. So, the com-

Atc = [T5 — ATt\ \-‘ — [Tl — A 41)} (2)

n ||7‘7«(T2) —To (T3
[

T3 = AT+ ATy A (3)

o (Ty)—1(T
T2:T1_|_ (2)7671()7H+A7—3+A7—a+"' (4)

where At, is the co uted round-trip travel time in TAI
(International Ats _aic Time), r, is the barycentric posi-
tion vector of one of the 5 LLR stations (Mc Donald Ob-
servatory, Texas, Observatoire de la Cote d’Azur, France,
Haleakala Observatory, Hawai, Apache point Observa-
tory, New Mexico and Matera, Italy), 7, is the barycen-
tric position vector of one of the 5 lunar retroreflectors

(located at the Apollo 11, 14, 15 and Lunokhod 1, 2), T;
with ¢ = 1,2 and 3 is the Barycentric Dynamical Time
(TDB) at epoch 14, ¢ is the speed of light in vacuum, A7
is the one-way light time delay due to gravity (equal to
Shapiro effect at first order), A7, is the one-way time
delay due to the troposphere and A7 is a relativistic
time scale correction from TDB to T ~ Ellipses in the
second member of Eq. (3) and (4" .eprese. t some addi-
tional possible corrections to T~ .nd Ts. In practice, At,
is changed in a one-way lenc  quantity defined as the
distance p. = §At..

In order to simulate p. in the
have built a new r aerical lunar
(Ephéméride Lunaire b risienne Numér.
putes the orbit- 1 the otational motio. “the Moon
and planets ‘publishe soon). In addition, » N co .-
putes the .elativistic time scale difference bety the
TT (T .restrial Time) and TDB and also the .ngular

TE framework, we
hemeris, ELPN
») which com-

velor  of the Moou ’s liquid core considering, a damp-
ing terr.  ~tween the ve and the lunar mantle. More-
over, we . -rate _artia.' at the same time than the

“ on directly from variational equations
merical method. These are approxi-
» which are integrated at the same
time, during the con. “atio. The dynamical model is
very closed to the one  JE430 [19] since the post-fit
~nce, on the Moo . s orbit remains below 5¢m on
the 1 Moon distance and below 50cm on the lon-
git- de, du.. - time span of LLR data. The main
~ynamical diffr c¢nces are the non-spherical potential of
the Earth ana the Moon modelled only until the 5 de-
gree in ELPN and the number of accounted asteroids,
since only the 70 most massive are integrated in ELPN.
T 2 most important difference, is the Lorentz violating
¢ utribution arising from the Earth-Moon system alone,
1mplemented with the associated partials. The additional
SME acceleration to the Earth-Moon vector is given in
[8] (see Eq. (104)) and is expressed as

equations ot
unlike a purely
mately 6000 equay

GM 3 .
afy = {g{K rf = Sartititel 4 35TV ]

r3

_ —TJVKTK _ §TKV']TK + 3§TLVKfoL7’J
0
T ) D

where G is the observed Newtonian constant, M is the
mass of the Earth-Moon barycentre, dm is the differ-
ence between the Earth mass and the lunar mass; 7/
being the unit position vector of the Moon with respect
to the Earth; 9/ = v//c with v’ being the relative ve-
locity vector of the Moon with respect to the Earth;
vIi=v’ /c with V7 being the Heliocentric velocity vector
of the Earth-Moon barycentre. Latin indices represents
space-coordinate (X,Y,Z) and T represents the coordi-
nate time (TDB) as in Eq. (2). We have introduced

the 3-dimensional traceless tensor 575 = /K — %ETT(SJK




which leads to a rescaling of the Newtonian constant as
G = G(1+ 25™) [10]. From now until the end, we will
omit the subscript ”#”, when we will speak about s/X.

The numerical ephemeris provides orientation, posi-
tions and velocities of bodie’s centres of mass, time
scales transformation and all the associated partials. The
remaining quantities needed for the evaluation of Eq.
(2) are computed using an existing software at PO-
LAC (Paris Observatory Lunar Analysis Centre) based
on IERS (International Earth Rotation System) conven-
tions 2003 [20]. This software has been uploaded in order
to integrate the SME time delay formulae (see [21], Eq.
(24)) of the pure gravity sector, expressed in standard
harmonic gauge (a1 = ag = 1). This expression have to
take into account the rescaled Newtonian constant G, de-
fined previously in the orbital part. However, considering
that the current accuracy over the measured observable
is po 2 Imm, and computing the largest value of p,. aris-
ing from time delay at 0 order, we conclude that only
577 23 x 1074, |57V 2 5 x 107* and |5/K| > 5 x 10~*
are attainable with the LLR time delay derived in SME
framework. Considering the current available constraints
on 5" (see [22]), the SME time delay can be safely re-
duced to the well known Shapiro time delay in p ~ GR
(putting all the s#¥ = 0). However, the full exp1 -
could help, decorrelating the §#*¥ parameters since ‘hey
not only appear in the orbital part any more. So we k>pt
the full expression deduced from [21].

Therefore, integrating Eq. (5) and computing the time
delay, let to evaluate Eq. (2) in ord~* to determine resid-
uals which are then minim’ _u by . quare fit using
analytical partials numeri ally integrate in ELPN.

First of all, we have © "1t a reference so ition computed
in pure GR by fitt ug « *“ of 76 pare - cluding
initial conditions as the ge.  “tric prsitions ot . sta-
tions, the selenocentric positic o7 lunar retroreh.
the barycentric Earth-Moon pos:  * and velocity vectors
at J200”7 oue 1w hration angle.  Tuler angles) with
their .ime derivatives 12000, and . rotation vector
of .ne Moon fluid core a.  900. We est. od also, the

sses of the Earth-Moon = ycentre ans the one of the
M. 1, the Earth rotational t. =-lag for diurnal and semi-
diuwr.  deformation, the pote: ial Love number of degree
2,3 an.  »f the Moon, the M >n time-lag for solid-body
tide of degy, 2, the total mo’ ent of inertia of the Moon,
the ratio of |, v moment . inertia of core to the mean
total moment « nertia ot the Moon, the flattening of
the Moon core an. = damping term between the solid
mantle and the flu’ . core of the Moon.

This new lunar solution constitutes the starting point
of the current analysis. From it, we have built a second
one by fitting the exact same parameters including the
following SME coefficients 57%, 5%, X4 54, 5¢ 5P 5P
and 57. Coefficients from 54 to 57 are linear combination

0.5 T T T T T
0 §XY
0s | J o=

(1071
- I 4-15
1 1 1 1 -3
Yy Gy
%o ) ‘9\9@ Gy (3
() o 24 &)
“ay U
(o4 R
FIG. 1. Est .aations of sX¥ and 5* as a functio. "5 - b-

samples f om data. Error bars are those providec y the
chi-squ ve fit at 1 standard deviation (o). The z-o .s shows
the 7 of the corresp \nding LLR station which ure deleted
frc.n th mple, also = "me” means the all set of observa-
tions. The 7 line ¢ .resp uds to the theoretical values of
the SME coe.  ~p*, in GR framework.

of SME parameters, ~h

=5 -5 (6a)
8 =5X 45 _25% (6b)
¢ =5 1043 57 (6¢)
P =517 _0.43 577 (6d)
58 =357 — 22238 (6¢)
5" =350 122257, (6f)

F .aluating 54 and 57 instead of 57K for J = K, let to
maintain the 3-dimensional traceless condition (57 =0),
after successive fits. Concerning the choice of fitting 5¢,
5P, 5F and 57 instead of 37V, 574, 5Y% and 37, it is
related to high correlations arising between pure SME
coefficients and it will be discussed in the continuation.

As mentioned by [23] analysis of LLR data may suf-
fers from neglected systematic uncertainties in model
parameter-estimates. Such omissions may arise from ob-
servations or from modelling, for instance from individ-
ual data weights or from neglected correlation between
observations of each LLR stations. As a consequence,
the standard deviation reported by the chi-square fit so-
lution (labelled o), could underestimates the true model
parameter-estimates uncertainties. Therefore, it is essen-
tial to quantify the order of magnitude of such ignored
systematics in the data analysis. Resampling methods,
as Jackknife [24], could let to determine bias using pa-
rameter estimators on subsamples from data.

In this study, we have assumed that neglected system-
atics may arise from observations and more specifically
from each LLR station. This assumption is highlighted




SME Other works This work or/o
57X | (40.5+6.2) x 1077|(=0.4+£1.2) x 1078 | 4.9
Y (=0.6+£1.5) x 107 |(=7.5 £ 7.6) x 107'?| 6.0
5% | (=274 1.4) x 1077|(~1.7 £ 4.6) x 107'%| 5.4
5 |(=1.24£1.6) x 1072 (+1.0 £ 2.4) x 1071 | 4.7
59 |(=0.14£2.9) x 107¢|(+3.7+£7.6) x 107° | 3.9

(

(

(

7 [(~0.444.6) x 1075 (—3.5+£3.3) x 1077 | 4.1
57 |(-=0.4+8.5) x 1077 |(—6.4+8.8) x 107'°| 6.5
57 |(+1.5£6.9) x 1078 |(+0.3£1.0) x 1077 | 4.1

TABLE 1. Table of estimated values of SME parameters of
the minimal SME with LLR. Second column : results de-
duced from [22] where authors mentioned the work of [16] and
[25] who provide estimations deduced on theoretical grounds.
Third column : results obtained from experimental measure-
ment by the current LLR data analysis. Uncertainties are
distributed at 1 realistic standard deviation (o).

with Fig 1, since values of 5% and 54 are strongly in-
fluenced by respectively Grasse and Mc Donald observa-
tions. However, SME coefficients are universal parame-
ters and should not depend on subsets. Therefore, for
these two coefficients we conclude that their estimation
are biased by respectively Grasse and Mc Dona ~ T.LR
stations.

Also, in order to estimate systematics arising fron. sta-
tions, we have built 5 subsamples labelled as X[;) fori =1
to 5, each one deleting all observation of one LLR su-
tion from the sample X, and we have computed the as
sociated pseudovalues labelled as ps], for all the j SME
parameters. Pseudovalues are 1 with parameter
estimators thanks data ane’,sis as

psl = ¢ (X0 4]¢7(X) — ¢ (. 1), (7)

where ¢7(X) is the estim.
sample X. Then, Jackknife .
dovalues as if they were indep
with mear '*"7 Also, with the  ~tral limit theorem,
we cor pute for eac.. "W parameter  he mean and the
sar _te variance of ps;,  (labelled as ). ".1 order to
o ¢ a confidence interval a. nting for b1 . Finally, the
"istic error is given for e. 1+ SME pe_ameters by the
for. mgexpression: o, = v 4+ ¢’2. The resulting pa-

- of parar _eer 3, . ~ed for
e i< to treat eac M-
‘ent random variauies

rame. alues and their reali ic errors, are reported in
Tab. I, v " the correspondir , ratio of o, /0.
From th. i-square solut on we are able to deduced

correlations b.  ~en SMF parameters and others global
parameters. Fii.  f 2’ let’s point out that fitting 5¢
and 5P instead of and 57% is absolutely necessary,
since the anticorr .iation between couple of coefficients
goes from -0.99 to -0.08 which is more acceptable. At
the same time, the correlation between 54 and 57 goes
from 0.99 to 0.07 once changed in 57 and 5. Second of
all, while contribution of SME parameters have been in-

cluded only in the orbital part and in the time delay, 54

4

and 57 are strongly correlated with parameters appear-
ing in the rotational motion of the Moon as the principal
moment of inertia, the quadrupole moment, the potential
Stockes coefficient Coy and the polar component of the
velocity vector of the fluid core. Those parameters have
an impact on the rotational motion of the Moon which
affects the orbital motion through ths “¥ect of the lunar
potential. Therefore, a possible ev sianaticn is that sig-
nature of SME coefficients * » .d 5% arise ac the same
frequency than effect of the I v potential.

a set of 20603 data
* the range thanks
+ computed in
Torentz vio-
“imations
mA i-

In conclusion, we havs analy.
spanning 44 years of L” { by evalua.
ELPN a new numer. 1l lunar ephen
SME framework We fo. ud no evidence .
lation and we ' ..c .. ~orov.d all the previou.
deduced or .neoretical grounds, until 3 orders

tude for ~ *Y, X4, 5¢ and 5P.
* adrien.bo. 1@obspm.fr
 ahees@astrc  ~.edu
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