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Abstract

5G mobile network has seen phenomenal growth in providing IoT services and applica-
tions. IoT devices are often battery-powered to perform their operations autonomously
and serve a variety of situations, such as smart cities, autonomous cars, smart manu-
facturing, etc., thereby needing efficient energy consumption to extend their lifespan.
IoT networks should provide i) an on-demand resource allocation to support adap-
tive horizontal and vertical scaling of the network resources; ii) flexible infrastructure
virtualization that exploits in-network programmability capabilities to operate inside
an SDN-enabled virtualization platform; iii) a device-driven and human-driven intelli-
gence to address the issues of energy efficiency and ultra-low latency requirements for
future reliable and real-time IoT applications. Despite the promise, IoT networks face
several challenging issues stemming from resource constraints and low-computation
performance. Additionally, IoT systems encounter several security and privacy con-
cerns to prevent unauthorized access to smart devices and secure trust-less interactions
between devices themselves and service providers on the Internet.

To address this plethora of challenges, this thesis presents an energy-efficiency IoT
system, less computation-intensive, easy to implement, and amenable to online adapta-
tion to the variations of the network condition. In the first contribution, we introduce
a novel IoT network virtualization approaches based on SDN/NFV to offer a high
degree of automation in service chaining delivery for IoT devices. The second con-
tribution introduces a Deep Reinforcement Learning energy-efficient task assignment
and scheduling in SDN-based fog IoT Network. Furthermore, we present a computing
model for reducing network latency and traffic overhead by centralizing the network
control and orchestration in a single SDN controller layer. The last contribution in-
troduces a deep learning approach that combines SDN and blockchain to achieve task
scheduling and offloading, improve the response rate of IoT services to offer high levels
of performance, and strive to perform dynamic resource management.
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Résumé

Le réseau mobile 5G a connu une croissance phénoménale dans la fourniture de ser-
vices et d’applications IoT. Les appareils IoT sont souvent alimentés par batterie pour
effectuer leurs opérations de manière autonome et servir à diverses situations, telles
que les villes intelligentes, les voitures autonomes, la fabrication intelligente, etc. ont
donc besoin d’une consommation d’énergie efficace pour prolonger leur durée de vie.
Les réseaux IoT devraient fournir: i) une allocation de ressources à la demande pour
prendre en charge une mise à l’échelle horizontale et verticale adaptative des ressources
du réseau; ii) une virtualisation d’infrastructure flexible qui exploite les capacités de
programmabilité en réseau pour fonctionner à l’intérieur d’une plate-forme de virtu-
alisation compatible SDN; iii) une intelligence pilotée par les appareils et pilotée par
l’homme pour répondre aux problèmes d’efficacité énergétique et aux exigences de la-
tence ultra-faible pour les futures applications IoT fiables et en temps réel. Malgré la
promesse, le réseau IoT est confronté à plusieurs problèmes complexes liés à ses con-
traintes de ressources et à ses faibles performances de calcul. De plus, les systèmes IoT
rencontrent plusieurs problèmes de sécurité et de confidentialité pour empêcher l’accès
non autorisé aux appareils intelligents et pour sécuriser les interactions sans confiance
entre les appareils eux-mêmes et avec les fournisseurs de services sur Internet.

Pour relever cette pléthore de défis, cette thèse présente un système IoT à haut ren-
dement énergétique, moins gourmand en calculs, facile à mettre en œuvre et pouvant
être adapté en ligne aux variations de l’état du réseau. Dans la première contribution,
nous introduisons une nouvelle approche de virtualisation de réseau IoT basée sur
SDN/NFV pour offrir un degré élevé d’automatisation dans la prestation de châınage
de services pour les appareils IoT. Dans la deuxième contribution, nous introduisons
une attribution et une planification des tâches économes en énergie par Apprentissage
par Renforcement dans un réseau IoT de brouillard basé sur SDN. Nous présentons
un modèle informatique pour réduire la latence du réseau et la surcharge de trafic en
centralisant le contrôle et l’orchestration du réseau dans une seule couche de contrôleur
SDN. La dernière contribution introduit une approche d’apprentissage en profondeur
qui combine SDN et blockchain pour réaliser la planification et le déchargement des
tâches, améliorer le taux de réponse des services IoT pour offrir des niveaux de per-
formance élevés et s’efforcer d’effectuer une gestion dynamique des ressources.
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Chapter 1

Introduction

1.1 Context

The widespread evolution of the Internet of Things (IoT) is being fueled by the rising
number of devices connected to the Internet, which has a substantial influence on the
global amount of data produced and ushers in a world of interconnected smart de-
vices [1]. The current estimate of the number of deployed things is on the order of 50
billion connected devices and by 2025 will encompass 1000 times more connected mo-
bile devices [2]. Furthermore, according to recent studies [3], IoT devices are expected
to generate 45 percent of the internet traffic by 2026. Smart IoT devices will exchange
data and gather data from their surrounding environment using sensors, store, analyze
it, and actively interfere in it using actuators. Furthermore, data collected from IoT
devices is processed and stored in the cloud. Cloud-hosted servers have been used to
meet the vast majority of IoT applications’ demands by enabling access to informa-
tion anywhere, anytime, using an internet connection, thereby supporting ubiquitous
access, availability, and scalability of processing and storage capacity.

Despite the promise, the explosive growth of IoT data contributed to the need
for increased bandwidth to support different application areas, including smart cities,
e-health, industrial, transportation, retail, safety, and environmental services [4]. As a
result, cloud network becomes a bottleneck [5], and their architecture must be flexible
enough to be reprogrammed following any change in IoT application needs [6]. Fur-
thermore, IoT networks should be able to support fast connections to improve user
experience and ultra-low latency to unlock the potential of IoT devices. This is, how-
ever, a challenging goal to achieve because today’s network is limited in its ability to
address the requirements of even current IoT deployments [4].

Fog and Edge computing have been seen as promising approaches to moving cloud
servers close to IoT devices. Specifically, fog computing brings cloud computing ser-
vices, such as communication, computation, network control, and storage, to edge net-
work [7]. Thus, Fog services can be hosted at users’ edge wireless devices to improve
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network reliability and latency and overcome the issues stemming from geographi-
cally distributed locations in cloud computing. Additionally, fog computing relies
on discoverable, generic, forward-deployed decentralized servers located in single-hop
proximity of mobile devices. These servers should be used to offload expensive com-
putation at the network edge, perform data filtering to remove unnecessary data from
streams intended for dismounted users, aggregation, and processing at the network
edge, resulting in decreased latency, network bandwidth preservation, and improved
quality of service (QoS), and serve as collection points for data heading for enterprise
repositories [8].

Indeed, the individual fog nodes should coordinate their processing with surround-
ing helper IoT nodes by considerably offloading their responsibilities to minimize task
execution time. Fog nodes, in particular, should be able to handle burst and unpre-
dictable IoT traffic over a variety of periods. They’re also appealing to new time-
sensitive IoT services and applications, such as updating maps for self-driving cars or
delivery drones, energy usage measurements from an intelligent grid, emergency mon-
itoring, intelligent manufacturing, interactive multiplayer online games, and disaster
relief. However, wireless communication and computing resources (CPU, memory,
storage) are typically limited and energy-intensive, making it challenging to meet the
ever-increasing demand and dynamic needs of IoT applications and the heterogeneous
conditions of smart objects communicating over the Internet. As a result, flexible re-
source management, sophisticated network control, and fast task scheduling algorithms
are essential to maintain fair and consistent performance.

Moreover, millions of battery-powered IoT devices, such as smart cameras, smart-
phones, home entertainment systems, smart TVs, environmental monitoring sensors,
and smart meters, are deployed to support a variety of scenarios, including smart
cities, autonomous farming, smart buildings, and smart manufacturing [9]. These ap-
plications necessitate delivering large amounts of data over ultra-reliable, low-latency
wireless communication services. However, the rising traffic created by IoT devices, to-
gether with the rise of IoT services and applications, raises worries about the increased
energy consumption required to power, distribute, and install IoT solutions [10].

Furthermore, Software Defined Networking (SDN) [11] was introduced to deliver
dramatic improvements in network agility and flexibility. SDN offers intelligent and
centralized control of the underlying network infrastructure, which can help sched-
ule and provision the network types of equipment. The decoupling of the control
plane from the data plane helps to solve the resource management issues in diverse
IoT environments. For example, SDN can offer a flexible and collaborative task of-
floading service orchestration [12]. Along with SDN, Network Function Virtualization
(NFV) [13] can be used to chain and orchestrate virtual network functions (VNFs) and
help the SDN controller to steer the traffic among virtual and physical appliances [14].
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Even though SDN offers service providers the ability to schedule and automate net-
work control to respond to changing QoS quickly, the security has been inadequately
documented and deployed for as long as the benefits it provides, rendering it is vul-
nerable to assaults such as denial of service (DoS), distributed DoS, and volumetric
IoT botnets [15] [16] [17].

Blockchain is being envisioned to enforce security and trustworthiness in diverse
IoT environments, including transactive energy auctions, connected vehicles, and trusted
healthcare systems. Blockchain has been coupled with SDN to create systematic col-
laboration at scale in order to limit the dangers posed by malicious attacks [18] [19] [20].
Blockchain, in particular, is secure by design since it is a transparent, immutable, veri-
fied, and pseudo-anonymous technology that can be used as the backbone for a variety
of IoT applications [21]. Blockchain can, for instance, keeps track of global records in
vehicle networks [22] to ensure that distributed Vehicular Ad-Hoc Networks are fair
(VANET). Furthermore, SDN and blockchain have been utilized in tandem to redesign
the trust relationship in IoT networks [23].

Nevertheless, blockchain incurs brutal latency, high compute costs and limited
storage to process IoT transactions [24]. It also could be cost-ineffective, as it con-
sumes substantially computing power [25] and higher energy to process and validate
IoT transactions. Additionally, the lack of IoT-focused consensus protocols makes
it challenging to coordinate distributed IoT systems to detect and destroy large-scale
botnets. Thus, IoT edge devices must optimize their energy usage, use energy harvest-
ing technologies to charge their batteries, and continue to run for as long as feasible,
all during processing and scheduling their duties and providing suitable services.

This dissertation focuses on developing holistic management solutions for edge IoT
environments that ensure energy efficiency while also considering the various demands
of IoT applications workloads, their dynamicity, and responsiveness to the QoS re-
quirements. Diverse, challenging issues are linked to the realization of cooperative and
intelligent IoT communication and ensuring interoperability and energy efficiency. On
the one hand, excessive and unnecessary use of IoT power and energy resources should
be limited to drive advances in energy-efficient. On the other hand, IoT devices should
be able to support context-awareness to offer ambient intelligence to learn their sur-
roundings.’ Environment and adapt behaviors accordingly. On the other hand, IoT
devices should see their resources accessible to fog nodes to transfer heavy computa-
tional tasks from one resource-limited device to more resourceful edge servers. Finally,
IoT networks should benefit from decentralized security infrastructure to deal with
DDoS attacks and eliminate malicious risks. Specifically, edge networks should im-
plement decentralized trust management and secure usage control schemes to enforce
massive IoT transactions’ security.
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1.2 Contribution

To address this plethora of challenges, the objectives of this dissertation are to develop
solutions that focus on the three essential issues in massively distributed IoT network.

• Supporting a Context- and Energy-Aware Architecture for IoT. First,
we investigate the feasibility of extending SDN and NFV to support distributed
IoT automation and orchestration at the network edge while implementing an
IoT data management model retrieving raw sensor data into a hierarchical con-
tainment tree. We inquire into the context-aware knowledge learning model for
transforming those sensors IoT raw data into meaningful context representation
models to achieve a low-energy footprint.

• Supporting Device-Driven and Human-Driven Intelligence for Cyber
Foraging IoT devices. To address the issues of energy efficiency and ultra-
low latency requirements for future reliable and real-time IoT applications, we
examine Deep Reinforcement Learning (DRL) techniques to achieve IoT task as-
signment, scheduling and offloading. We look into task allocation and resource
planning approaches in dynamic and distributed IoT environments, while ensur-
ing consumable energy optimization minimizes latency.

• Decentralized Trust Management for Secure and Transactional IoT
Data. We delve into the integration of Blockchain and Reinforcement Learning
(DRL) to achieve energy-aware task cyber foraging in SDN-enabled IoT systems.
We dig into different DRL policies to improve the reliability, low latency, and
energy efficiency, in tandem with the blockchain consensus algorithm to verify
and validate IoT transactions.

The recent research works are mainly based on meticulously designed heuristics
that ignore the patterns of incoming tasks. Therefore, we can develop an approach
that uses SDN to enhance the control and management of fog-enabled IoT networks
in terms of flexibility and intelligence. Also, Edge devices should trust this central-
ized intermediary, creating a single failure point. Concurrently, a handful of research
activities have paid heed to address symbiotic security, energy efficiency, low latency,
cyber foraging, and scalability.

To fill the gap by ensuring energy efficiency, reliability, security, trustworthiness,
and low latency in a 5G massive IoT network, we present the contributions of this
thesis as illustrated in Figure 1.1 and described as follows:

1. Contribution 1 : Due to the significant increase of the global energy consump-
tion as a result of the expansion of urban populations, it becomes necessary to
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use a context-aware IoT approach where sensors can learn from their surround-
ing environment to regulate the actuators in a coordinated network and offer
efficient energy consumption in smart buildings.

This contribution introduces a thorough architectural framework that enables
Context-Aware IoT systems in SDN-aware networks to enable efficient energy
management in smart buildings. This contribution makes use of lightweight
virtualized network functions to allow distributed automation and orchestration
of IoT devices, and describe a context-aware method for gathering, filtering, and
processing data from sensing data in campus buildings.

2. Contribution 2 : The IoT infrastructure at the network edge is under increasing
stress as a result of the rising demand and the variety of traffic patterns orig-
inating from unpredictable, heterogeneous connected IoT objects. Edge nodes,
however, frequently struggle to implement energy-awareness and resource allo-
cation strategies in a way that effectively balances reaction time limitations,
model quality, inference accuracy, and task schedulability. Edge resources, such
as servers, routers, controllers, and IoT gateways show varying execution dura-
tions and an increasing energy consumption, which makes it difficult to schedule
the traffic optimally. To handle the unpredictability of job management, the
contribution 2 of this thesis describes a DRL strategy for IoT traffic schedul-
ing at the network edge that is built on SDN. The contribution introduces an
architectural framework to fill the gap with task allocation and scheduling is-
sues, improve the network performance, ensure lower latency and efficient energy
saving.

3. Contribution 3 : Edge IoT services and location-sensitive distributed comput-
ing are made possible by the IoT systems. By making data access and processing
quick and effective close to IoT devices, it enhances network dependability and re-
duce latency right away. However, because of the decentralization of localization
service, the security and privacy-preserving become challenging issues. Further-
more, the mobility of IoT devices becomes more challenging so that the resource
allocation and task scheduling should consider diverse parameters of wireless
channel, including interference management, fading, and QoS. While blockchain
has been seen as solution to enhance security and data integrity, it however
comes at the cost of the energy consumption, which increases drastically. The
contribution 3 of this thesis offers a symbiotic blockchain and DRL approach to
improve IoT task scheduling and offloading and reduce the energy consumption
in distributed connected IoT devices. The blockchain ensure privacy-preserving
and coordinated activity against distributed attacks, by validating IoT transac-
tions and blocks, using a novel consensus protocol. The DRL approach offers
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distributed and parallel multi-agent Actor-Critic Agent (A3C) strategy to en-
able effective work offloading and scheduling, while ensuring ultra-lower energy
consumption.

An Energy-efficiency IoT system
 less computation-intensive, easy to implement, and amenable to online adaptation to the variations of the network 

condition

IoT network virtualization approaches based 
on SDN/NFV

• Design of SDN architecture for green IoT 
networks

• Empower SDN-enabled Context-Aware IoT 
systems

• Provid a technique for collecting, storing, 
querying, and managing time-series data in 
the SDN controller using a Time Series 
Data Repository (TSDR) approach

• Offer a novel IoT data model that provides 
a data collecting facility for HVAC sensors 
and actuators in smart campus buildings

• Creat a context-awareness model that 
allows for the most accurate prediction of 
users’ actions based on their daily energy 
consumption profiles in educational and 
residential facilities

• Design and deliver customized IoT services 
on-demand

• Include a machine learning engine that 
aids the context reasoning framework in 
inferring context judgments and feeding 
back modifications to the SDN controller 
for automated traffic steering and policy 
insertion

Deep Reinforcement Learning for energy-
efficient task assignment and scheduling in 

SDN-based fog IoT Network

• Develop of an empirical model and 
formulating a task assignment and 
scheduling problem that minimizes 
network latency while ensuring energy 
efficiency

• Develop a different DRL algorithms, 
including deterministic placement 
algorithm, random, and A3C strategies, to 
show their effectiveness in offloading IoT 
tasks and reducing the amount of data 
carried on the IoT network edge, 
improving the latency, energy 
consumption, and the network overhead

Deep learning approach that combines SDN 
and blockchain to achieve task scheduling 

and offloading

• Design of architecture that based on SDN 
and Blockchain and the proposed task 
offloading and scheduling approach

• Introduce a three-layer architecture that 
included the edge network layer, data 
plane, blockchain layer, and SDN control 
plane layer

• Demonstrate that Blockchain technology 
may be used to build a trustless task 
offloading scheme for SDN-enabled IoT 
networks

• Develop a scheduling policy based on the 
Asynchronous Actor-Critic Agent (A3C) 
algorithm in symbiosis with an election-
based consensus mechanism to validate 
IoT transactions

• Propose a task offloading scheme that 
incorporates a cycle-accurate energy 
consumption model, load-balanced, and 
energyefficient design of IoT-powered 
edge devices to reduce energy 
consumption

1 32

Figure 1.1: Thesis Contributions

1.3 Dissertation Organization

To achieve the objectives above, the organization of this thesis, in addition to this
introduction, includes the following five chapters:

• Chapter 2: State-of-the-Art. This chapter describes the state-of-the-art on
edge/fog IoT communication and the challenges related to massively distributed
IoT systems. First, it elucidates concepts and approaches that have been dis-
cussed in the literature in SDN and NFV support for 5G mobile backbone,
network softwarization, and slicing for IoT. Then, we discuss AI, and Machine
Learning (ML) approaches for traffic management in different IoT systems and
discuss their influences on revolutionizing technologies in several real-world ar-
eas. Finally, we emphasize task offloading and resource allocation problems using
Reinforcement Learning and empowering cognitive and autonomic control and
management of IoT services. Next, we draw on the research directions on the
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blockchain, smart contracts, and distributed ledgers to create tamper-resistant
records of shared transactions and improve trustworthiness and model valida-
tion. Finally, we highlight the convergence of blockchain and the Internet of
Things (IoT) and empowering Blockchain-based IoT networks with SDN/NFV.

• Chapter 3: A Context-Awareness Energy-Efficient Framework for SDN-
enabled IoT Network. In this chapter, we first present a novel IoT network
virtualization approach based on SDN/NFV to offer a high degree of automa-
tion in service chaining delivery for IoT devices. Next, we introduce an IoT data
model that provides a data collection facility to accommodate smart buildings’
sensors and actuators. Then, we dig into our novel Context-Awareness Model
that represents the functional intelligence of IoT environment. after that, we
provide a novel approach to realizing the context information with Time Series
Data Repository (TSDR) and model hierarchical structures and relationships
across distributed edge IoT nodes.

• Chapter4: Reinforcement Learning-based Framework for Task Of-
floading in IoT Network Edge. This chapter first depicts the details of
our deep learning architecture that performs dynamic IoT task scheduling and
resource management. Then, it scrutinizes our DRL algorithm to address the
task offloading and scheduling issue and describes the implementation details of
our solution. Finally,

• Chapter5: Enhancing Decentralization of IoT Network with Blockchain
and Deep Reinforcement Learning. The first part of this chapter devolves
into the description of our proposed architecture, which integrates our secure, re-
liable, and flexible blockchain into the IoT network. Additionally, we present our
multi-objective optimization model to achieve IoT task offloading and distribute
tasks to IoT fog/edge nodes efficiently.

• Chapter 6: Conclusion and Perspectives. This chapter presents concluding
remarks of this dissertation, alluding to lessons learned and future work.
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State of the Art

2.1 Introduction

In this chapter, we discuss the Internet of Things and Edge Computing background.
First, in Section 2.2, we elucidate the state-of-the-art on edge/fog IoT communication.
Furthermore , in Section 2.2.7 we highlight the key challenging issues in managing
trusted IoT Networks. Then, in Section 2.3 we present the key concepts behind SDN
and NFV to support massively distributed 5G IoT networks, network softwarization,
virtualization, and slicing for IoT. Next, we highlight in Section 2.4 Machine Learn-
ing (ML) techniques for traffic management in different IoT systems. We emphasize
task offloading and resource allocation problems using Reinforcement Learning and
empowering cognitive and autonomic control and management of IoT services. Fi-
nally, in Section 2.5, we draw on the research directions on the blockchain, smart
contracts, and distributed ledgers to create tamper-resistant records. We draw on the
research directions on the convergence of blockchain and the Internet of Things (IoT)
and empowering Blockchain-based IoT networks with SDN/NFV.

2.2 Internet of Things and Edge Computing

2.2.1 Internet of Things

The term ”Internet of Things” (IoT) was first used in 1999 by Kevin Ashton [26] to
describe the Radio Frequency Identification (RFID) network. However, the term IoT
has subsequently evolved and allowed the development of diverse lightweight and in-
expensive computing types of equipment. These objects are referred to by the terms
”IoT object”, ”connected object” or ”intelligent objects” can intercept various changes
in the surrounding environment and act accordingly. IoT extends the current digital
infrastructure with everyday connected devices by making these objects intelligent,
addressable, and equipped with computing, communication, and storage capabilities.
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Furthermore, the IoT paradigm is considered the cornerstone for developing diverse ap-
plications and services for smart cities, industry 4.0, intelligent transportation, supply
chains, smart grids, healthcare systems, and many more [27].

2.2.2 Edge Computing

Edge computing is a distributed computing framework that is distinguished by its
dispersed processing capacity [28] that brings the cloud capabilities to local servers
at single-hop proximity of end-users. Edge computing allows processing data at the
network edge, directly by edge devices located as close to the originating source as
possible. Since data are localized and processed at the periphery of the network, it is
no longer required to send the data to a remote data center for processing and decision-
making. Instead, edge computing can be assimilated into distributed microdata centers
capable of processing or storing data locally. Additionally, edge networks are made
up of edge devices, such as smartphones, connected cars, smart meters, etc., and
edge servers, such as border routers, base stations, and wireless access points, all of
which can be outfitted with the essential capabilities for edge computation [29]. Edge
computing guarantees that localized calculations are realized at the edge, and that
computational service requests are answered more quickly [30].

Edge computing has several advantages to IoT networks. Bringing computation
facilities closer to the data source offers better performance. It delivers faster response
times because putting processing functions closer to the end-users reduces transmission
latency compared to cloud-hosted services. Furthermore, by keeping data at the net-
work edge, the amount of traffic sent to centralized cloud servers is reduced. Thereby,
bandwidth performance is improved [31]. Similarly, keeping data at the local edge
servers helps to improve data management, as these servers contain valuable insights
that are useful to perform real-time processing and data analysis.

2.2.3 Mobile Edge Computing

Mobile Edge Computing (MEC), also called Multi-access Edge Computing, did the
European Telecommunications introduce a network architecture Standards Institute
(ETSI) [32] to enable cloud computing capabilities at the edge of cellular networks,
i.e., cellular base stations. MEC technology allows for software programs to access
local materials and real-time information about the network conditions in the local
area. Mobile core networks are relieved of additional congestion and may efficiently
serve local needs by deploying various services and caching material at the network
edge. MEC technologies have emerged as a critical enabler for achieving the IoT and
5G goals. MEC research is located at the crossroads of mobile computing and wireless
communications, where many research opportunities have resulted in a burgeoning
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field.
In recent years, academic and industrial researchers have looked into various MEC-

related topics, including system and network modeling, optimum control, multiuser
resource allocation, implementation, and standardization. Additionally, many real-
world MEC implementations include some type of hybrid cloud access that relies on
various networking topologies, such as fixed and wireless, Wi-Fi, and mobile networks.
MEC is expected to enable new vertical IoT business use cases such as the Internet of
Vehicles (IoV), immersive user experiences based on Virtual Reality (VR), Augmented
Reality (AR), and Mixed Reality (MR), data caching, location services, content distri-
bution, Machine to Machine (M2M), enhanced mobile broadband channels, and video
streaming and analytics.

Figure 2.1: Mobile edge computing-Internet-of-Things (MEC-IoT) architecture
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2.2.4 IoT and MEC Applications and Scenarios

As shown in Figure 2.2, MEC technology may be used in a variety of IoT applications,
including smart cities, smart transportation, healthcare, etc. In this section, we de-
scribe different real-world use cases that make use of MEC technologies and show how
each application can benefit from MEC-IoT integration.

Figure 2.2: Mobile edge computing-Internet-of-Things Applications

2.2.4.1 Smart Home and Smart City

Home automation and consumer electronics have been pioneering applications of the
IoT technology [33]. Several smart home applications use IoT sensors ranging from
simple thermostat sensors to more advanced automation systems, such as smart me-
tering, smart heating and lighting, cleaning services, and home entertainment systems.
The amount of data generated on a typical smart home network is predicted to grow,
making it difficult to rely on cloud-hosted centralized servers to process and analyze
these data.

Leveraging MEC technologies offer unprecedented opportunities for connecting fu-
ture smart homes [34] by enriching home infrastructure with intelligent devices that
makes life more convenient and comfortable for residents by offering reduced communi-
cation latency, easy instantiation, and fast relocation while ensuring privacy-preserving
of sensitive data [35]. Furthermore, the MEC server’s capabilities can be added to IoT
gateways and enable extending gateway functionality to the context of smart building.
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The collaboration between these gateways and MEC servers provides additional ben-
efits such as quick instantiation, relocation, privacy preservation, and updating when
needed [36].

Moreover, IoT technology has progressed from the house to its neighborhood and
city-scale applications. We see a lot of potential in public safety, healthcare, utilities,
tourism, and transportation. Massive amounts of IoT data generated in smart cities
may be efficiently handled at the network’s edge, resulting in low latency and posi-
tion awareness [37]. For instance, video streaming cameras connected to a Long Term
Evolution (LTE) network can send video feeds to the MEC server for real-time pro-
cessing and anomaly detection [36]. In addition, applications that need the processing
of geographically distant data will benefit from collaborative edge models that link
numerous MEC servers.

2.2.4.2 Healthcare

5G has been envisioned as a key enabler for mobile health and telemedicine. In pub-
lic healthcare facilities, wearable low-power IoT medical sensors are used to monitor
health-related data and store health records. Similarly, IoT smart devices for health-
care have enabled Patient-to- Doctor (P2D), Patient-to-Machine (P2M), and Doctor-
to-Machine (D2M) connectivity. Many healthcare providers adopt IoT solutions and
wellness applications to help patients follow their prescribed care programs and facili-
tate analytics. Patients can gradually become digital stewards of their health data by
using healthcare applications to monitor their conditions at home and communicate
the state of their health with their families and doctors.

Despite these capabilities, sharing such confidential patient data has placed an in-
creasing strain on the security of the MEC network. Smart healthcare systems can
encounter severe security and privacy concerns, e.g., if unauthorized access is granted
to wearable gadgets or trust-less transactions are performed between smart health-
care devices and their healthcare service providers over the network. Furthermore,
Humanoid robots sitting next to an older adult, for example, require tactile feedback
with a 1-millisecond delay for their caretaking services. Remote surgery, for example,
needs ultra-low latency, uninterrupted communication connectivity, and collaboration
among doctors in various places [38].

2.2.4.3 Autonomous Vehicles/IoT Automotive

5G is a fundamental enabler of the V2X (Vehicle to Everything) idea, which includes
Vehicle to Vehicle (V2V), vehicle to infrastructure, vehicle to device, vehicle to pedes-
trian, vehicle to home, and vehicle to grid [39]. V2X demands important communica-
tion infrastructure in IoT automotive, where dependability and ultra-low latency are
critical elements. Autonomous and semi-autonomous driving, vehicle maintenance,
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and in-car infotainment are examples of use cases in these areas [40]. Several elements
must be addressed to operate an effective and dependable vehicular network, including
real-time traffic monitoring, continuous sensing in cars, support for Infotainment apps,
and increased security.

However, existing mobile networks are unable to provide these functionalities. In
this line, future 5G mobile systems are likely to offer greater flexibility by exploit-
ing network softwarization technology. In this context, V2X paired with MEC offers
a practical and cost-effective alternative for accelerating V2X and IoT automotive
system development [41].

2.2.4.4 Wearable IoT (WIoT)

Wearable technology has advanced dramatically in recent years, from Walkman to
step trackers, smartwatches to smart eyewear. Wearable devices are being fueled by
the development of low-power wireless technologies such as BLE (Bluetooth Low En-
ergy). Wearable computing devices range from low-cost gadgets like health and fitness
trackers to high-end products like virtual reality helmets and smartwatches. Wearable
devices will require more advanced, reliable, and high-performance communication in-
frastructure as new application areas and enabling services to emerge. Virtual reality
and augmented reality wearables, for example, require gigabit/s network bandwidth
to execute their applications. Wearable devices’ implementation in smart cities, on
the other hand, will increase network traffic on communication networks. As a result,
next-generation communication networks should be able to deliver gigabit speeds to
the expected extremely dense wearable devices [42].

Even though cloud computing has enabled a wide range of new networking services,
it will not be enough to meet the future requirements for the wearable ecosystem.
Long End-to-End (E2E) latency is why centralized cloud data centers fail. Wearable
applications, e.g., virtual reality perceptual stability, are delay-sensitive and require
incredibly low latency. By combining cloud and MEC infrastructures, MEC offers the
ability to alleviate the constraints in present cloud-based solutions. Providers will be
able to deploy storage, computation, and caching capabilities close to wearable devices
as a result of this [42].

2.2.4.5 Smart Energy

The smart grid system is an ICT-enabled energy generating, transmission, and dis-
tribution network. It can real-time perceive, analyze, and monitor energy flow and
energy-transportation infrastructure. Adding digital controls and allowing network
monitoring and telecommunication capabilities enable such functions. As a result,
an intelligent grid not only allows for two-way electrical power flows and real-time,
automated, bidirectional information flow. Incorporating such intelligence into the
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old energy infrastructure will result in a more efficient energy system. The IoT is re-
garded as the cornerstone for achieving intelligence capabilities in smart grid systems.
Transformers, breakers, switches, meters, relays, intelligent electronic devices, capac-
itor banks, voltage regulators, cameras, and other grid components are connected to
the Internet through IoT. The data collected by these IoT devices are then used to
allow automation. Reduced capital investment, optimal renewable capacity, decreased
maintenance costs, and improved customer interaction are advantages of IoT-enabled
smart grids. On the one hand, transforming an electrical grid into a smart system ne-
cessitates the inclusion of built-in, secure, networked intelligence in practically every
item and piece of equipment [43]. On the other hand, an effective system is necessary
to handle the generated data, i.e., to transport, store, and analyze the massive volumes
of data acquired by these smart devices. As a result, cloud computing is an attractive
option for these IoT-based smart grids.

Smart grids, on the whole, cover enormous geographical regions. Due to inadequate
network connectivity and the large number of devices generating data, they frequently
face bandwidth bottlenecks and communication delays. As a result, because it re-
lies heavily on centralized processing, the traditional centralized cloud architecture is
unsuitable for the smart grid domain. Furthermore, many delay-sensitive smart grid
applications, such as fault detection, isolation, service restoration, or Volt/VAR op-
timization, cannot withstand round-trip delays to contact centralized cloud systems.
MEC has been suggested as a feasible cloud computing alternative to solve these
restrictions. The calculation may be done closer to the data source using MEC. Fur-
thermore, as the number of omnipresent sensors grows, the number of possible attack
spots for the grid grows. Every smart IoT device is susceptible to cyber-attacks. MEC
enables security mechanisms to be enforced closer to the end devices. As a result,
even if an attacker gains access to an endpoint device, the assault will only acquire
access to the local network segment since MEC can detect the intrusion and disable
access [44].

2.2.4.6 IoT in Smart Agriculture

To satisfy future food production demands, the agricultural industry will need to
undergo a substantial transformation, with IoT being incorporated into numerous
production, management, and analytical operations. When compared to other sectors
such as smart cities and healthcare, the agriculture industry has been hesitant to
adopt developing Machine-to-Machine (M2M) and IoT technology. Using autonomous
vehicles (tractors), remote monitoring, and real-time analytics, precision farming, and
smart agriculture can be done. According to reports, farmers are increasingly using
agricultural drones and satellites to monitor their properties and gather crop data.
IoT sensors may give vital information regarding agricultural yields, rainfall, insect
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infestation, and soil nutrition, which can help farmers improve their farming practices
over time. Although low latency is not an essential need in the smart farming context,
managing massive data quantities will be a major consideration. On-site MEC servers
can help high-tech farming by gathering and analyzing huge data on agriculture to
improve efficiency [45]. Similarly, MEC systems can save the farmer money on data
access, synchronization, storage, and other overhead costs without shifting ordinary
agricultural applications to a remote cloud.

In poultry farms, the adoption of IoT-based automated data collecting and mon-
itoring systems may improve job productivity and service quality and get a better
knowledge of chicken care. Carbon dioxide and luminosity sensing are critical char-
acteristics in large-scale chicken houses, and sensing technologies may be utilized to
measure them. Gas sensors can provide all the information needed to avoid chicken
infertility caused by issues like as low carbon dioxide levels. Luminance sensors can
assist in maintaining the right amount of luminosity for maximum productivity. Low
latency is not as crucial for smart poultry houses as it is for smart farms. On the
other hand, large data collections need the usage of on-site MEC servers. Further-
more, transferring data between poultry houses and keeping old data in centralized
servers are critical for detecting unusual farm events. Poultry houses can employ MEC
to function with sporadic connectivity to the centralized clouds. MEC servers can tem-
porarily store the data in this instance until the farms are linked to the centralized
clouds[46].

2.2.4.7 Industrial Internet

The Industrial Internet, often known as Industry 4.0 [47], is another IoT use case in
the Industrial Internet of Things (IIoT) [48]. To boost intelligence and connection, the
IIoT includes a variety of sophisticated communication and automation technologies
such as M2M communication, machine learning, and big data analytics. IIoT networks
can connect all the manufacturing floor employees’ data and procedures and send them
to the executive offices. Using the IIoT network, decision-makers or employees may get
a complete and accurate picture of their manufacturing process, allowing them to make
better decisions. IIoT also aids in the exploitation and application of new intelligent
technologies to speed up manufacturing workforce innovation and transformation.

IIoT is primarily viewed as a means of increasing operational efficiency. However,
the IIoT offers many other advantages, including increased connection, efficiency, scal-
ability, time savings, and cost reductions for industrial processes making smart devices
the most. Furthermore, these intelligent machines function with more precision, effi-
ciency, and consistency than people. As a result, IIoT has a lot of promise in enhancing
quality control, sustainability, and overall supply chain efficiency [49].

By solving the inadequacies of M2M communication in the IIoT domain (e.g., la-
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tency, resilience, cost, peer-to-peer, connection, and security), MEC will play a critical
role in enabling future IIoT applications. Furthermore, edge computing will be used
in various IIoT deployment scenarios, according to current industry trends. Real-time
edge analytics and improved edge security, for example, are two important factors in
the development of new IIoT implementations. As a result, including MEC in IIoT
networks will accelerate IIoT progress and open up new commercial opportunities [50].

2.2.4.8 Smart Transportation

Control, efficiency, and safety are the three main purposes of smart transportation. In-
telligent Transportation Networks (ITS) employs various technologies to track, assess,
and manage transportation systems to increase efficiency and safety. As a result, trav-
eling around a city with smart transportation is more pleasant, cost-effective (for both
cities and individuals), and safer. The proliferation of IoT devices and 5G communica-
tion technologies has aided these new opportunities. The former allows for integrating
low-cost sensors and controllers into nearly any physical equipment that can be man-
aged and maintained remotely. The latter offers the high-speed connectivity needed
for real-time, low-latency network administration and control [51].

2.2.5 Edge to Cloud Continuum

The edge-to-cloud compute continuum is seamless integration and interaction between
cloud-hosted services along with data-driven edge components to maximize the value
and benefits of edge computing [52]. Specifically, edge computing is a component of a
computing continuum that extends from network-connected devices and equipment to
the hybrid cloud, including public and private clouds. Workloads will run wherever it
makes the most sense for the company to operate them in this new IT landscape. The
different environments along the continuum will collaborate to deliver the appropriate
resources for the task. This section delves into different cloud-edge continuum re-
quirements and important aspects, including resource allocation, cyber foraging, data
analytics, and computation offloading.

2.2.5.1 Resource Allocation

To make the most of the available resources, the allocation of combined computing
and communication resources must be carefully considered. A single MEC server will
serve applications that cannot be partitioned. At the same time, offloaded programs
that can be divided into multiple sections will be allocated resources on different MEC
servers. Suppose adequate resources are available when a job arrives at the MEC
server. In that case, the scheduler should assign the VM for further processing, and
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Figure 2.3: Mobile-Edge-Cloud Continuum architecture

it will delegate the job to the centralized cloud if the computational resources are
insufficient.

Several essential resource allocation techniques have been developed for the cloud
continuum for time-sensitive applications. However, one can distinguish between tech-
niques that are based on the time model, consider workload tasks with difficult deadline
requirements [53, 54] or that minimize response time [55, 56, 57] and other techniques
based on the contention model that considers tasks to compete only for computational
resources [58, 59, 60, 61].

For user application tasks and MEC service jobs, MEC servers must additionally
distribute compute and communication resources. Examples include user mobility,
network topology, scalability, and load balancing. The distribution of bandwidth will

17



Chapter 2. State of the Art

become difficult when IoT gateways distribute limited bandwidth among several IoT
devices that can handle video, audio, or bio-medical information [62]. Low-power
wireless technologies used in IoT networks (e.g., BLE, ZigBee, low-power Wi-Fi, and
LPWAN protocols like LoRa or Sigfox) have restricted bandwidth. Therefore, when
IoT devices connect to the MEC server, which serves as an IoT gateway, they must
use one of the low-power, low-bandwidth wireless connections.

2.2.5.2 Cyber Foraging

Cyber foraging opportunistically exploits fixed computing infrastructure in the sur-
rounding environment to dynamically increase the computing power of mobile com-
puters. Applications functionality is dynamically partitioned between the mobile com-
puter and infrastructure servers that store data and do computation on behalf of mobile
users in a cyber foraging system [63]. User mobility, platform features, and resource
variations such as network bandwidth and CPU load all influence where program func-
tionality is located. Cyber foraging creates a new surrogate computing layer between
mobile users and cloud data centers. Surrogates are connected infrastructure servers
with more computational capability than compact, battery-powered mobile devices.
In addition, surrogates are geographically placed to be as close to mobile computers
as possible, allowing them to deliver significantly faster network reaction times than
servers in cloud data centers. Surrogates, for example, maybe found around wireless
hotspots in coffee shops, airline lounges, and other public places [64].

In the context of computational mobility in the IoT, Cyber foraging is a critical skill
for maximizing resource use. It allows for dynamic offloading of calculations to nearby
mobile nodes or remote cloud-based servers, retrieval of results from the offloaded
computations, and then the continuation of mobile business logic execution [65].

2.2.5.3 Data Analytics

The act of gathering, evaluating, managing, processing, and using vast collections of
data from diverse sources and existing in many formats, structured, semi-structured,
or unstructured, is known as data analytics or Big Data analytics [66]. Companies
must know how to acquire, store, protect, manage, and analyze data efficiently when
faced with ever-increasing amounts of data on-site, in the cloud, online, and offline.
As a result, any company’s capacity to exploit Big Data through data analytics has
become a vital strategic concern. Organizations must leverage particular Big Data
tools, technologies, systems, and infrastructures.

Many works present an overview of initiatives to use Big Data Analytics technolo-
gies in the Edge-to-Cloud Continuum [67, 68, 69, 70]. They show how to use Data
Analytics platforms (such as Hadoop, Flink, Spark, Storm, Nifi, and others) and Ma-
chine Learning libraries (such as Spark MLlib, TensorFlow, Keras, Scikit-learn, and

18



Chapter 2. State of the Art

others) to build a real-time Big Data pipeline from the Edge to the Cloud. Therefore,
they explored three open challenges: interoperability, defining smart city applications,
and privacy concerns.

2.2.5.4 Computation Offloading

Computation offloading is one of the primary goals of edge computing since it allows
mobile devices to overcome their physical resource’s limits such as processing capabil-
ity, battery life, and storage capacity. Unfortunately, it’s challenging to know when,
and how, to offload compute cores. Various ways have been offered to address this
problem in multiple contexts, including single users, multi-user, etc. The common de-
sign goal for the single-user situation is to save energy for the mobile device. However,
the optimum offloading issue in the multi-user situation is frequently NP-hard [71]. By
employing D2D communication in next-generation heterogeneous networks, compute
workloads may be offloaded to servers but also devices [72].

2.2.6 Cloud Computing, VMs and Containers

One approach to improve security and isolation in the IoT is the use of virtualiza-
tion. Indeed, virtualization becomes a technology enabler in several embedded sys-
tems space, because it has proven to enhance the quality of software and decrease
design time [73]. Non-real-time components can still coexist in the same infrastruc-
ture without compromising the real-time nature of embedded systems, and still ensure
the real-time integrity of the system. Furthermore, security by isolation is one among
other methods that improve the security of the overall system, in which the hypervisor
assures that one domain’s execution does not interfere with that of other domains [74].
The hypervisor may achieve this isolation by ensuring that software operating in vir-
tual machines (VMs) is oblivious to software running on different VMs, even if they
are on the same physical hardware.

Simultaneously, advancements in the creation of IoT applications sparked debate
regarding the security weaknesses posed by IoT devices. Additionally, billions of these
devices will be connected to the cloud and share data. Hackers will be able to take
advantage of such flaws, putting apps tied to such devices at risk. Due, virtualization
must be considered a feasible strategy for IoT security [75].

Using container virtualization can be a lightweight alternative to hypervisors that
meets the demands of most embedded virtualization applications. Furthermore, con-
tainer virtualization is built on system calls, which is an effective strategy [76].
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2.2.7 Keys Challenging Issues in Designing and Managing
IoT Networks

The Internet of Things has capabilities that will meet future needs. However, it raises
a new set of intriguing research questions about IoT architecture, trusted device con-
nections, security problems, etc. The Internet of Things (IoT) design brings together
various technologies and substantially influences IoT applications. This part will go
through the critical challenges in IoT networks.

2.2.7.1 Scalability

Because of the large number of IoT devices, network scalability is a big concern in
the IoT network. In addition, maintaining the state information of many IoT devices
must also be considered. So, we’ll want to ensure sure the IoT system can accept an
ever-increasing number of endpoints as they arrive. This tremendous deluge of data
traffic causes significant Quality-of-Service such as bandwidth difficulties and mes-
sage delivery, although this system must not suffer from network growth, especially in
mission-critical commercial and industrial use cases. The underlying wireless technol-
ogy mainly dictates this. As a result, selecting the appropriate technology and design
is critical to ensuring the long-term survival of any linked system.

2.2.7.2 Interoperability

Every IoT system is a jumble of disparate components and technology. Therefore,
interconnecting diverse networks seamlessly is a vital issue and keeping interoperability
a must for IoT scalability to avoid getting stuck with an outdated system that can’t
keep up with future innovation. In addition, many IoT devices will be connected
to heterogeneous smart networks or applications via communication technologies to
communicate, distribute, and gather crucial information.

The lack of interoperability prevents devices manufactured and designed by differ-
ent companies from connecting autonomously, discovering each other, and collaborat-
ing with other smart devices and services, which is an obstacle to creating automated
ecosystems such as for the deployment of smart homes or smart homes city.

2.2.7.3 Constrained Resource

The Internet of Things will provide challenges in resource efficiency in low-power,
resource-constrained devices. For example, storage, computation, bandwidth, and
energy are all resources in a typical battery-powered IoT device. This massive volume
of data produced by IoT devices raises the need for processing and storage resources.
Given the normal resource restrictions of IoT nodes, it becomes essential to incorporate
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a few high-end nodes in the IoT ecosystem, such as edge devices, smart gateways, and
cloud platforms. Despite these different ideas, resource constraints remain a significant
barrier in IoT systems.

2.2.7.4 Security

The expansion in the volume of IoT devices means more devices are in operation and
can always create more security threats. Thus, it is urgent to secure the network
against malicious attacks. This is because each additional device increases the attack
surface and increases the number of people accessing the network.

Botnets are a huge security concern to IoT devices because they are always looking
for vulnerabilities. They can knock down large systems by employing a Distributed
Denial of Service assault, which is a tactic that floods a system with messages and
requests to take it down if they locate an open back door. A DDoS assault on an
IoT fleet provider might be the final nail for a specific project or the entire company.
Maintaining high levels of security between devices and the network as you scale up
production and deployment may be a significant challenge.

2.2.7.5 Privacy-Preserving

Smart cities, industrial companies, health institutions, and governments are all data
sources for IoT-based systems. These examples require various types of networks
whose communication performance can handle billions of devices communicating with
each other while guaranteeing privacy protection against attacks, knowing that IoT
attackers always rely on data collected to launch their attacks.

IoT Privacy-Preserving, most of a critical challenge, protects a device’s identifica-
tion during data transfer while maintaining a steady level of network performance.

2.2.7.6 Energy Efficiency

The device’s consumption is heavily influenced by how long it is continuously detecting,
processing, and transmitting/receiving potential data. Simultaneously, IoT devices
are often unable to broadcast across long distances because of their energy limits.
Thus, having more sensor samples improves data interpretation, but they also increase
power consumption. Therefore, before deciding on additional activities, it is vital to
define how long the device will be sensing and the strategy for manipulating and
communicating with the obtained data.
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2.3 Software Defined Network and Network Func-
tion Virtualization

Today’s IoT services and applications need an efficient network architecture to support
scalable, interoperable, and predictable IoT systems. Such a network architecture
must be flexible enough to be reprogrammed following any change in IoT application
needs. Furthermore, IoT usually adopts different communication schemes than the
traditional Internet, stemming primarily from various resource-constrained hardware
platforms. Software-Defined Network (SDN) [77] has emerged as a flexible and agile
network framework that enables reengineering of the network stack to deliver dramatic
improvements in the network agility and flexibility and solve the resource management
needs of the IoT environment [78].

Additionally, SDN enables the rapid movement of workloads across a network. For
example, it allows slicing a virtual network into partitions, using Network Function
Virtualization (NFV) to enable telecom providers to move IoT services to less ex-
pensive commodity servers. SDN makes it easier for any network to adapt and grow
as network administrators. SDN’s inherent speed and flexibility enable it to support
emerging MEC and IoT trends, which require fast and simplified data transfer between
remote sites.

In this section, we first introduce the fundamental concepts behind SDN (in Sec-
tion 2.3.1) and show how it enables refactoring of the IoT network through the Open-
Flow protocol in Section 2.3.2. Then, we introduce the SDN controller functionalities
in Section 2.3.3 and SDN applications in Section 2.3.4. Next, in Section 2.3.5 we
describe how NFV technology can be seen as a complementary technology to SDN
and illustrate different functionalities of NFV. Finally, in Section 2.3.6 we delve into
different approaches that leverage Network Softwarization in the context of IoT.

2.3.1 SDN Principles

In SDN, the control plane is detached from the forwarding plane, and communication
between the two planes is accomplished through APIs such as OpenFlow [79]. On the
other hand, SDN involves a centralized control plane regulating network traffic flows
through application program interfaces (APIs). When a packet of data arrives at a
particular switch in a network, for example, the switch’s guidelines dictate where the
packet is forwarded. As a result, network managers may deliver services throughout
the network using SDN, regardless of the hardware components.

The layered architecture of an SDN is shown in Figure 2.4, which is made up of
three levels: i) control plane, which serves as a brain for the network, managing it from
a global perspective, ii) data plane, which is made up of dumb forwarding devices, such
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as routers and switches, that only forward data in response to controller commands,
and iii) management plan, which is responsible for the administration of the SDN
network.
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Figure 2.4: SDN layers

• The SDN data plan is responsible for routing packets from point A to point
B through routers/switches based on information contained in tables. The data
plan can also be defined as managing traffic that is not destined for the equipment
itself, as opposed to the other two plans. It is an abstraction of the classical data
plan, i.e., replacing hardware pipelines in classical routers with software pipelines
in the form of flow tables.

• The SDN control plan is used to control the data plan by establishing the rules
that the router must follow to route packets. Therefore, the routing protocols
in traditional routers such as OSPF, STP, ARP, or BGP are implemented in
software form in the SDN controller.
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• The SDN management plan concerns all the tasks for network management. It
is sometimes considered as a subset of the control plan [80].

SDN success is the centralized control plane design, which allows networks to be
programmed utilizing several applications on a single entity. The centralized control
plane of SDN architecture allows for network innovation and administration. On the
other hand, large-scale networking environments cannot be controlled by a single cen-
tral controller. As a result, creating a logically centralized but physically dispersed
control plane is possible, which provides the most basic view of central control logic
while also providing scalability and dependability [81]. The static mapping of network
components with the controller, regardless of the overall load fluctuation of an indi-
vidual controller and entire cluster, is one of the main concerns of network operators
in a logically centralized SDN architecture.

SDN creates a central point that manages the control plane, while the physical
switches/routers would only have to deal with the data plane. OpenFlow is a standard
protocol that allows the controller to transmit instructions and program the flow table
of a device. These instructions, so-called OpenFlow flow entries, are rules with a
pattern (source or destination IP, mac address, TCP port, etc.) and a corresponding
action (reject the packet, transmit on port x, add a VLAN header, etc.).

2.3.2 OpenFlow Protocol

An OpenFlow protocol [82] is generally composed of a message layer, a state machine,
a data model, a system interface, and a configuration part. The following figure shows
the different components of the OpenFlow protocol.

• The flow table and the Group table are in charge of processing and forwarding
incoming packets,

• OpenFlow Channel is the interface that allows the interconnection of the under-
lying SDN routers/switches with the controller.

OpenFlow protocol components are illustrated in Figure 2.5 and is composed of
the following components:

Message Layer: The message layer is the central part of the protocol stack. It defines
the structure and semantics valid for all messages. In addition, it supports the
ability to construct, copy, compare, print, and manipulate messages.

State machine: The state machine defines the basic low-level behavior of the proto-
col. Typically, it is used to describe actions such as negotiation, discoverability,
flow control, delivery, etc.
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System Interface: The system interface defines how the protocol interacts with the
outside world. It typically identifies required and optional interfaces and their
intended use, such as TLS and TCP as transport channels.

Configuration: Almost all aspects of the protocol have initial configurations or val-
ues. The configuration can cover anything from the size of the default buffer to
responding to X.509 certificate intervals.

Data model: Another way to look at the OpenFlow protocol is to understand its un-
derlying data model. Each switch maintains a relational data model containing
attributes for each OpenFlow abstraction. These attributes describe either an
abstraction capability, its configuration state, or a set of current statistics.

2.3.3 SDN Controller

The SDN controller offers services that enable the realization of a distributed con-
trol plane and ephemeral state management and centralization principles. An SDN
controller is a software system or a set of software systems that collectively provide:
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• A database that is used to maintain the network state and manage and dis-
tribute this state in some circumstances. The database serves as a store for data
obtained by controlled network devices and related software and data managed
by SDN applications, e.g., network status, ephemeral configuration data, learned
topology, and control session data. In addition, the controller may have numer-
ous purpose-driven data management procedures in various circumstances (e.g.,
relational and non-relational databases). Other in-memory database techniques
can also be used in some instances.

• A high-level data model depicts the connections between the controller’s, the
underlying resources, policies, and other services. In many circumstances, the
Yang modeling language [83] is used to create these data models.

• The controller services are exposed to an application using the RESTful API
interface. This interface is produced from the data model representing the con-
troller’s services and features. The controller and its API may be part of a devel-
opment environment that creates API code from the model in some situations.
Some systems go even farther, providing powerful development environments
that enable the growth of core capabilities and the subsequent publication of
APIs for additional modules, such as those that offer dynamic controller expan-
sion:

1. A secure TCP control session between the controller and the network nodes’
associated agents.

2. A protocol for supplying application-driven network state on-network de-
vices based on standards.

3. A technique for discovering devices, topologies, and services; a path cal-
culation system; and maybe additional network-centric or resource-centric
information services.

2.3.4 SDN Applications

In a software-defined networking context, an SDN application is a software program
that performs a task. SDN applications can replace and extend functionalities per-
formed by firmware in traditional network hardware devices.

Northbound APIs, as shown in the above Figure 2.4 provide applications with an
abstract view of the underlying network. Network parameters such as delay/through-
put descriptors and resource availability can be included at this level of abstraction.
Based on the relevant criteria, applications seek communication between nodes. The
SDN controller configures network elements in the data plane once the optimum path
has been determined. Therefore, SDN applications can include programs for network
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virtualization, network monitoring, intrusion detection (IDS), and flow balancing (the
SDN equivalent of load balancing), among many other possibilities.

You can write scripts and automate the network administration through the API,
where several applications can be developed and accessed by the SDN controller. The
scripts can be written in Java or Python and can also use the API to retrieve informa-
tion from the SDN controller or even configure the network directly. Java and Python
are the most used, but we can also develop with other languages like C++, and it all
depends on the type of SDN controller is the case for the first NOX SDN controller.

2.3.5 Network Function Virtualization

One of the most interesting complementary technology of SDN, which has the potential
to impact the future 5G networking dramatically and how to refactor the architecture
of legacy networks, is virtualizing as many networks functions as possible, so-called
Network Function Virtualization (NFV). NFV and SDN are two related but distinct
technologies that are driving the telecom industry’s digital transformation of network
infrastructure [84]. NFV aims to virtualize a set of network functions by deploying
them into software packages, which can be assembled and chained to create the same
services provided in legacy networks. Along with SDN, NFV allows enforcing the se-
curity policies of the SDN network by enabling the deployment of virtualized network
functions inside virtual appliances. NFV refers to replacing network appliance hard-
ware with virtual machines that run software and processes under the control of a
hypervisor.

NFV is a project that aims to replace proprietary hardware-based network ser-
vices with virtual machines, with a virtual machine being defined as an operating
system that imitates specialized hardware. Virtual machines provide network opera-
tions such as routing, load balancing, and firewalls in NFV. Resources are no longer
tied to data centers when using NFV; instead, they pervade the network to increase the
productivity of internal processes. Furthermore, NFV allows communication services
to be separated from dedicated hardware components, such as routers and firewalls.
Thus, network operations can dynamically provision new services without installing
new hardware. In addition, virtualized services can run on generic servers instead of
proprietary hardware. Other benefits of virtualizing network functions include im-
plementing on-demand pay-per-use models, reduced operational costs due to fewer
appliances, and rapidly scaling the network architecture.

The Standard Developing Organization ETSI is the reference that defines the NFV
high-level functional architecture, as shown in Figure 2.6. High-level indicates that its
specified job defines the available critical blocks, architecture, and inter-relationships.
Virtual Network Functions (VNFs); NFV Infrastructure (NFVI), which includes the
elements needed to run VNFs such as the hypervisor node and virtualization clusters;
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and MANO (Management and Orchestration), which handles the operations required
to run, migrate, and optimize VNF nodes and chains, possibly in collaboration with
transport network orchestrators [85].

Figure 2.6: General NFV architecture by the ETSI

The NFVI is a set of software (e.g., virtualization hypervisor) and hardware (e.g.,
servers, storage, and network) resources that provide an NFV environment for the
deployment of VNFs. A distributed collection of VNF nodes, also known as NFVI-
PoPs, can be considered such infrastructure. Each NFVI-PoP is an abstracted physical
location of the network infrastructure (e.g., data center, network node, or end-user
premise) with a restricted computing capability to host the VNFs.

VNFs are NFVI-based software implementations of network functions (such as fire-
walls). A single VNF might be composed of numerous internal components executing
on different virtual resources like VMs (Virtual Machines). For example, a network
service in a telecommunications network is made up of one or more network functions.
VNFs implement the network functions that make up the network service on virtual
resources in the case of NFV. As a result, the network service’s behavior in an NFV
context is determined by the behavior of the constituent VNFs.

Finally, the NFV MANO provides the functionality for VNF provisioning and all
management operations, such as placing and instantiating VNFs to meet user requests
better, configuring VNFs according to active requests while meeting common traffic
engineering objectives in IP transport networks, as well as minimizing the number of
VNF instances to install.
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2.3.5.1 Network Slicing

On top of a single physical infrastructure, network slicing allows operators to run
several virtual networks. The main goal of network slicing is to construct and separate
different services on a network so that operators can give the best possible support
for those services. Even if they share the same underlying physical network, each slice
manages its packet forwarding without interfering with other slices. Figure 2.7 depicts
a multi-tenant architecture connected to a virtual overlay network through OpenFlow
switches to deliver private or public cloud services. This use case demonstrates how
partitioning network resources into several partitions allow tenants to use their virtual
L2 slices without interfering with those of other tenants. The SDN controller can
handle per-tenant/per-slice instantiation, while also providing policy-based network
management and flexible resource allocation [86]. This indicates that the controller
can adhere to its rule of providing robustness, stability, and scalability regarding the
number of tenants, concurrent experiments, and controlled resources. NFV and SDN
serve as a basis for network slicing [87] by allowing both physical and virtual resources
to be used to deliver specialized services and providing the necessary components for
network slicing [88].

Figure 2.7: OpenFlow Network Slicing use case

Another area where NFV and SDN are likely to play a significant role in network
slicing is radio access networks (RAN). Both NFV and SDN virtualize the network
components of each slice in the core of a network to meet individual demands. In
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the RAN, network slicing may be enabled by physical radio resources. NFV and SDN
is projected to be used to support various RANs as well as the many service types
that run over those RANs [89]. In addition, the commercialization of NFV and SDN
is likely to accelerate in the future years, allowing network slicing to enable flexible
network deployments to meet the demands of varied applications and services. SDN
may also be utilized to create an overall framework for 5G to operate across a control
the plane, deciding the best path for traffic flows throughout the network [88].

2.3.5.2 Service Chaining

Another concept that received a lot of attention with the evolution of SDN and NFV is
the Network Service Chaining (NSC) [90]. The NSC aimed to help network operators
to provide continuous delivery of services based on dynamic network function orches-
tration and automated deployment mechanisms to improve operational efficiency.

For example, end-to-end data flows are expected to pass through a succession of
NFV functions, which is addressed by the idea of service chaining, such as the case
of going through the firewall, encryption, load balancing, and decryption. In an NFV
context, the technology’s characteristics allow many virtual network functions to be
joined together. These connections may be built up and broken down as needed with
service chain provisioning through the NFV orchestration layer, since it’s done in
software utilizing virtual circuits.

2.3.5.3 VNFs Placement

MEC deployment may also make use of Network Function Virtualization (NFV) plat-
forms, which removes the limitations imposed by older LTE networks, such as fixed
network functionality placement [91]. NFV enables the development and placement
of virtual network functions (VNFs) in a flexible and on-the-fly manner, supporting
a wide range of application needs while also improving the management of heteroge-
neous (network, compute, and storage) resources. As a result, application and network
capabilities are handled as VNFs and controlled by an NFV Orchestrator [92] and may
be executed in a distributed system’s many locations, including, i.e0., NFV-enabled
MEC nodes.

Integrating SDN, NFV, and MEC technologies is critical for 5G development. To-
gether with SDN and NFV, MEC will play a role in addressing the issues that 5G hopes
to overcome. Hence, EC may be thought of as a kind of NFV. Any NFV-capable net-
work node on which MEC services can be hosted with assigned VNFs is considered a
MEC node. MEC entails putting computational power in new places. Network func-
tionality and end-user applications may be involved in this computation. None of the
studies on MEC and SDN integration look into using NFV to install specific VNFs to
provide end-user services like VoIP, video streaming, or web surfing.
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The benefits of SDN, NFV, and MEC, VNFs must be supplied with enough re-
sources on edge servers to avoid affecting network Quality of Service (QoS).

2.3.5.4 Migration of VNFs

The network evolves due to the dynamic nature of edges. For example, the network
topology may change, a machine’s resource capacity may change at some time, and
the bandwidth between two computers may rise or decrease owing to varying traffic
scenarios. As a result, some VNFs may require more computing resources during the
day due to high traffic situations, and they must be migrated [93] to central network
node machines with massive resources; during the night, due to lower demand for
computing resources, some VNFs must be migrated back to edge network nodes with
fewer resources, allowing the machines with massive resources to be vacated for large-
scale tasks [94].

As a result, we must promptly accomplish the VNF chain migration and the VNF
connection recovery duty after migration.

2.3.5.5 Dynamic Management of Service Chaining

Physical devices are replaced with virtual machines in SDN and NFV, which reduces
an operator’s time to market for a new service. The reason for this is that under SDN,
the centralized controller has a global view of the network, allowing for the creation
of new service chains with a simple change in policy associated with a flow [95].

Dynamic service chaining is likely to revolutionize how network operators offer
services to their subscribers, allowing them unprecedented flexibility in designing, de-
ploying, managing, and upgrading services that are individually customized to the
demands of their clients.

2.3.6 Network Softwarization in IoT

The Internet of Things sector is always searching for new capabilities to enable cutting-
edge service developments while also allowing rapid deployment and corporate agility.
Software-Defined Networking (SDN) and Network Function Virtualization (NFV), as
major vital drivers in the evolution of IoT [96], are being positioned as central tech-
nology enablers for decoupling IoT hardware from service deployment, leveraging an
increasing number and type of services supported over a single deployed IoT platform.

Adopting the virtualization idea within IoT devices is expected to result in signifi-
cant cost savings in the service providing, while also allowing for the rapid introduction
of new and innovative services to the market. This allows IoT device vendors to open
up their platforms to a large extent, while also allowing IoT service providers to avoid
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vendor lock-in with proprietary hardware and software [97]. Furthermore, by simpli-
fying network administration with centralized management and control of IoT devices
from many manufacturers and offering chances for cooperation and interoperability,
the IoT service provider will have greater control over the IoT devices.

Adoption of SDN and NFV opens up a world of possibilities in terms of control and
monitoring, distributed QoS enforcement, network resource management, in-network
data processing and storage, fusion and detection of complex events, and so on [97].

2.4 Deep Reinforcement Learning for Edge Com-
puting Applications

Deep learning has been successfully used in a variety of fields [98], including com-
puter vision, natural language processing (NLP), and artificial intelligence (AI). Deep
learning has distinctive attributes compared to traditional machine learning in terms
of feature learning, model building, and model training, as shown in Figure 2.8. It
integrates the learning of features and building models in a single model by selecting
different kernels or tuning parameters through end-to-end optimization. Deep learning
has shown tremendous information extraction and processing skills when compared to
typical machine learning approaches [99]. Furthermore, Deep learning advances have
considerably increased edge computing applications in numerous scenarios, enhancing
performance, efficiency, and management.

Figure 2.8: Comparing deep learning with machine learning

This section presents different DRL algorithms used and examined in this thesis.
We first introduce the exploitation, Restricted Boltzmann machine (RBM), and diverse
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neural network approaches used in DRL.

2.4.1 Exploration

Exploration is one of the most challenging aspects of Reinforcement Learning. Indeed,
learning agents must control investigation even if no useful information is obtained.
For example, the agent has done some environmental observation but has not attained
the goal. He can’t determine if the goal has been found just by looking [100]. Whereas,
if the agent never learns how to gain points, he will never be able to improve. This
is already an issue in games. It becomes considerably more so in real life. A simple
concept would be to reduce the amount of exploration gradually. However, when faced
with real-world activities, something in the environment may change throughout the
run, necessitating a re-exploration.

2.4.2 Restricted Boltzmann machine (RBM)

Restricted Boltzmann (RBM) machines are probabilistic graphical models that resem-
ble stochastic neural networks. A typical two-layer RBM consists of a visible layer with
the known input and a hidden layer with the latent variables [101]. RBMs are arranged
as a bipartite graph, with each visible neuron connecting to all hidden neurons and
vice versa, but no two units in the same layer are connected. RBMs have found use in
various fields, including collaborative filtering and network anomaly detection. A deep
belief network (DBN) comprises a visible layer, and many hidden layers made up of
multiple stacked RBM layers. A DBN is trained layer by layer, with each layer being
viewed as an RBM trained on top of the previously trained layer [102]. The structure
of DBNs may be used for a variety of applications, including defect detection catego-
rization in industrial contexts, threat identification in security warning systems, and
picture emotional feature extraction. RBM has been used for diverse IoT applica-
tions [103], such as intrusion detection in smart cities [104], predictive maintenance in
smart factory [105], localization [106], image recognition [107], and healthcare [108].

2.4.3 Autoencoder

AutoEncoders (AEs) are neural networks that aim at coping their input layer to their
output layers, coupled by one or more hidden layers [109]. First, the input is com-
pressed into a latent-space representation to reconstruct the output.

The AE is made up of two components: an encoder and a decoder, as is shown
in Figure 2.9. The former learns the input’s representative qualities, compresses the
input into a latent-space representation, and converts them to other latent features,
i.e., usually in a compressing way. On the other hand, the latter takes the encoder’s
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Figure 2.9: The architecture of Autoencoder

latent characteristics, reconstructs the input from the latent space representation, and
recreates the input data in its original form while minimizing the reconstruction error.
Similarly, an AE may be built as a deep architecture by stacking numerous layers into
the hidden layer.

2.4.4 Deep Neural Networks

Deep neural networks (DNN) have a deeper layer structure than typical artificial neural
networks (ANN), which have a shallow structure for more sophisticated learning tasks.
A DNN is made up of an input layer [110], numerous hidden layers, and an output
layer, with each layer’s output being fed to the next through activation functions.
The final output, which represents the model forecast, is generated at the last layer.
In the training process, optimization methods such as Stochastic Gradient Decent
(SGD) [111] and back propagation [112] are commonly utilized. In feature extraction,
classification, and function approximation, DNNs are commonly utilized.

Figure 2.10: Deep Neural Network
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2.4.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are used to analyze data in several arrays, such
as a color picture of three 2D arrays storing pixel intensities in each color channel. The
foundation of CNN design is convolutional layers, which receive 2D data structures
and extract high-level features, as shown in Figure 2.11. abstraction [113].

Figure 2.11: Convolutional Neural Network

CNN extracts spatial correlations between neighboring data by computing the inner
product of the input and the filter as it goes through the 2D data with a set of moving
filters and pooling functions. The output is then sent to a pooling block, which reduces
the spatial dimensions and generates a high level.

2.4.6 Deep Reinforcement Learning (DRL)

DRL is a hybrid of deep learning and reinforcement learning (RL) [114]. Its goal
is to create an agent that can learn the optimum action choices over a collection of
states by interacting with the environment to maximize long-term accrued rewards,
as shown in Figure 2.12. Unlike classic RL, DRL represents the policy using a deep
neural network because of its high representation capacity to approximate the value
function or direct strategy. Deep Q-Learning (DQL), Double DQL, and Duel DQL are
examples of value-based DRL. In contrast, deep deterministic policy gradient (DDPG)
and asynchronous advantage actor-critic (A3C) are policy-gradient-based DRL. The
DRL has been applied to various fields, including computer gaming, chess games, and
rate adaptation.

2.4.6.1 Deep Q Learning

The Q-Learning method generates an accurate matrix for the working agent, which
it may ”refer to” to optimize its long-term reward [115]. Although this strategy is
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Figure 2.12: Deep Reinforcement Learning

not inherently flawed, it is only practicable in relatively small settings and soon loses
viability as the number of states and actions in the environment grows. The answer to
the preceding dilemma comes from realizing that the values in the matrix only have
relative relevance. That is, they only matter concerning the other values. As a result
of this reasoning, we have Deep Q-Learning, which approximates values using a deep
neural network. As long as the relative significance is maintained, this approximation
of values is not harmful. Deep Q-Learning’s working step is to feed the starting state
into the neural network, which then returns the Q-value of all potential actions as an
output.

2.4.6.2 Dueling Deep Q Learning

The Dueling DQL’s network architecture can be broken down into two key compo-
nents [116]: value function and advantage function, as shown in Figure 2.13. The
value function is used to describe how nice it is to be in a specific condition, while
the advantage function may be used to compare the relative relevance of one action
to another. Finally, the outputs of the value function and the advantage function are
coupled back to the last layer to determine the final Q-value.

2.4.6.3 Asynchronous Advantage Actor Critic (A3C)

A3C is a multi-thread variant of the actor-critic approach that seeks to speed up con-
vergence, expand the search area, and solve the problem of highly correlated samples
collected by a single agent [117] as shown in the Figure 2.14. Multiple actor agents
interact with replicas of the environment concurrently in the A3C method, collecting
experiences used by numerous learners to train the model.
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Figure 2.13: Dueling Deep Q Learning

Figure 2.14: Asynchronous Advantage Actor Critic (A3C)
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2.4.7 Empowering Edge Applications With Deep Learning

In recent years, edge computing and deep learning have experienced fast progress
and considerable success in their respective sectors. The massive amount of valu-
able data generated and collected at the edge, on the other hand, necessitates more
robust and intelligent processing capabilities on the local level to fully unleash the
underlying potentials of big data and meet the ever-increasing demands of various
applications. Recent advances in deep learning have thrown light on edge application
scenarios, demonstrating extraordinary abilities in information interpretation, data
management, decision-making, and other areas. The merger of these two technologies
has the potential to open up many more doors, enabling the creation of a slew of
new applications. Edge computing has already been steadily combined with artificial
intelligence (AI) to achieve edge intelligence.

The combination of edge computing with deep learning allows computing intel-
ligence to penetrate every nook and cranny of a city, resulting in a smart city that
can deliver more efficient, cost-effective, energy-saving, and convenient services. Com-
puter vision and DRM have been used in smart cities for public safety, is to identify
the slums and traffic rate prediction [118] [119]. Similarly, diverse machine-learning
approaches have been used for building efficient communication on the Internet of
Vehicles (IoV) [120] and allowing more intelligent transportation management, such
as autonomous driving, traffic prediction, and traffic signal control. Likewise, there
are several approaches toward enabling the intelligent smart building, which helps to
minimize energy consumption, increase building security, and improve building sensing
capacity [121]. Additionally, recent trends in smart manufacturing rely on deep learn-
ing’s intelligent processing to offer manufacturing inspection and monitoring [122] and
reduce equipment’s failure by providing near real-time diagnostic analytics [123].

2.5 Overview of Blockchain for Trust IoT Manage-
ment

2.5.1 Introduction to Blockchain

Blockchain has emerged from the current Bitcoin [124] cryptocurrency to become an
appealing technology for decentralized resource management and transactions lookup.
Beyond cryptocurrency use, Blockchain is a decentralized ledger that stores records
and transactions carried out between users since their setup, where each member can
check the validity of the chain by itself. A distributed ledger is a shared database, fully
replicated at multiple nodes or sites, without any centralized third-party authority.
Updating the database needs the agreements of most distributed nodes that use a
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Figure 2.15: The Blockchain Data Layout

specific decision protocol.
Figure 2.15 illustrates the blockchain data layout, where transactions are repre-

sented by addresses, private and public keys, data, and hash values. Transaction data
store user records, while hash values store coded, and encrypted information generated
from the previous block. The first block does not have a hash value to any previous
block, called the genesis block. Instead, the blocks contain data in a secure form, e.g.,
timestamps and hash tree (i.e., Merkle tree) to store data blocks and hash the previous
transactions. Additionally, a blockchain can be seen as a distributed database that
maintains a doubly linked list of ordered blocks. Each block averages 1 megabyte and
contains control data of approximately 200 bytes, such as a timestamp, a link to a
previous block, some other fields, and 1 to N transactions as can fit in the remain-
ing space. The blocks, once recorded, are designed to be resistant to modification;
the data in a block cannot be altered retroactively [125]. Using a peer-to-peer net-
work and a distributed timestamping server, a public blockchain database is managed
autonomously. The block validation system is designed to be immutable so that all
transactions, old and new, are preserved forever with no ability to delete.

The adoption of blockchain technology has increased in recent years in many finan-
cial [126] and government [127] sectors, which moved from non-trusted transactions
towards decentralized, cryptographically secure, and immutable ecosystems without
any centralized authority. As a result, a blockchain-enabled IoT implementation can
improve the application’s overall speed by allowing devices to record, validate, and
then activate transactions [128].

The following are the basics of blockchain technology as explained by Zheng et
al. [129] and Tasca and Tessone [130]:

• Decentralization: A supervisor is usually present in all standard transaction
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systems, validating the transaction’s compliance and recording it in the system.
Because such a central unit is responsible for processing and approving all re-
quests, it is frequently a bottleneck that affects the overall system’s efficiency.
The decentralized structure of the blockchain system, which is based on a consen-
sus algorithm, eliminates the need for a problematic central supervisor because
each transaction is mutually confirmed, ensuring data consistency.

• Persistency: Because the transactions are verified, any attempt to approve
transactions that are incompatible with the specified policies are promptly dis-
covered by confirming/mining nodes, as are blocks containing inaccurate data.

• Anonymity: Each network user is given a randomly generated address (hash)
with which they may execute actions. This address does not allow for the un-
ambiguous identification of a genuine user.

• Auditability: Because each transaction must relate to a prior transaction, it is
possible to trace and verify what occurred to the processed data. For example,
one may see how a certain user’s balance has evolved since the system’s inception
on the bitcoin network.

• Transparency : Every user who can access the blockchain can view all trans-
actions (i.e., an encrypted format of the transactions) from any public address;
everyone on the public network has the same rights.

• Security : Due to one-way cryptographic hash algorithms, the chain of blocks
is shared, tamper-proof, and cannot be faked. The employment of cryptographic
technologies ensures the security of transactions. Users can only submit data if
they have a private key. The private key is used to create a signature, certify-
ing that a specific user requested the transaction and preventing it from being
altered.

• Immutability : Blockchain data is immutable. That is to say. The network
must approve each ledger entry. Therefore, it can’t be an undercover operation.
Each block includes the preceding block’s hash, which is calculated using the
contents of the block. As a result, even a slight change in the data causes a
change in the hash, resulting in the alteration being intercepted and rejected by
the other nodes.

2.5.1.1 Blockchain P2P Properties

Blockchain infrastructure is inherently decentralized so that all nodes are distributed
in an authenticated peer-to-peer (P2P) network. Furthermore, all communication is
direct, and synchronization is realized through a distributed timestamping server so
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that all public distributed ledgers are managed autonomously without any intermedi-
ate entity. This P2P architecture helps distributed ledgers achieve large-scale and sys-
tematic cooperation in an entirely distributed and decentralized manner. Furthermore,
blockchain use Interplanetary File System (IPFS) [131], which is a P2P distributed file
system used to connect all blockchain nodes with the same system of files. IPFS is also
used for storing and accessing files, finding information by its contents (i.e., content
addressing, not location addressing), and distributing and versioning extensive data
on many computers.

IPFS implements a distributed hash table (DHT) that offers a lookup service simi-
lar to the hash table (key, value) pairs [132]. All participating nodes in the blockchain
are responsible for maintaining the mapping of keys to values so that any change in
a single blockchain node cannot disrupt all of the networks. Such a property allows
the blockchain network to scale up and down while continue handling the arrival of
new joining nodes, the departure of other nodes, or even the failure of some other
nodes [133].

2.5.1.2 Trust with Consensus Algorithms

Blockchains are secure by design, and they use a consensus protocol to prevent a
single node or entity from controlling the whole blockchain network or distorting the
truth of what should be stored in the distributed ledger [134]. Furthermore, the
consensus algorithm is a fault-tolerant mechanism that is used to achieve the necessary
agreement to ensure that a failure of one or more blockchain nodes will not alter or
cause the failure of the entire network [135]. Additionally, the blockchain uses the
consensus protocol to keep the network consistent by keeping decentralized records
like a centralized database.

2.5.1.2.1 Proof of Work (PoW) The PoW consensus is a technique initially
employed in bitcoin. The main idea behind this algorithm is to solve a complicated
mathematical puzzle quickly and efficiently. Because this mathematical challenge ne-
cessitates a lot of computer power, the node that solves it first gets to mine the next
block. Indeed, this technique makes the nodes in competition compete to produce a
hash value for the block header that is equal to or less than a goal value [129]. When
a node reaches the goal value, it broadcasts the block to other nodes, and the other
nodes must mutually validate that the hash value is accurate. Other miners will attach
this new block to their blockchain if the block is verified.

2.5.1.2.2 Proof of Stack (PoS) Instead of investing in expensive technology to
solve a complicated issue like PoW consensus, the PoS makes validators invest in the
system’s currency by locking up part of their coins as a stake in this form of a consensus
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process. Only those are allowed to participate. All the validators will then validate
the blocks. Validators will validate blocks by betting on them if they find one that
they believe can be added to the chain. Validators receive a return proportionate to
their wagers based on the actual blocks uploaded to the Blockchain, and their stake
increases proportionately. Thus, depending on their economic stake in the network, a
validator is picked to produce a new block. As a result, PoS encourages validators to
establish a consensus through an incentive mechanism.

2.5.1.2.3 Proof of Authority PoA technique was first suggested as part of the
Ethereum ecosystem for private networks and was integrated into the Aura and Clique
clients. The authorities are a group of N trustworthy nodes that PoA algorithms rely
on. Each authority is assigned a unique id, and most of them are presumed to be
trustworthy. This principle leverages the value of identities, meaning block validators
are not staking coins but their reputation instead. To order the transactions issued by
clients, the authorities conduct a consensus. The mining rotation schema, a commonly
used way to spread the burden of block creation across the authority, is used to achieve
consensus in PoA algorithms. Time is split into stages, each with a mining leader
elected by the people.

2.5.1.2.4 Proof of Elapsed Time PoET is one of the most equitable consensus
algorithms commonly employed In permissioned Blockchain networks, choosing the
next block only based on fairness. Every validator on the network has a fair chance
to produce their block using this process. All nodes achieve this by waiting for an
arbitrary period of time and then adding proof of their waiting time to the block. The
barriers that have been generated are broadcast to the network for others to examine.
The validator with the lowest timer value in the proof portion wins. The winning
validator node’s block is added to the Blockchain. Additional checks are built into the
algorithm to prevent nodes from always winning the election or providing the lowest
timer value.

2.5.1.2.5 Practical Byzantine Fault Tolerance (PBFT) PBFT was created
to function well in asynchronous systems with no time limit for receiving a response
to a request. In addition, it has been designed to have a minimal amount of over-
head time. Finally, its purpose was to address many issues with existing Byzantine
Fault Tolerance (BFT) solutions. BFT (Byzantine Fault Tolerance) was derived from
Byzantine Generals’ Problem. A distributed network characteristic allows it to estab-
lish consensus (agreement on the same value) even when some nodes in the network
fail to reply or respond with inaccurate information. The goal of a BFT mechanism is
to protect against system failures by utilizing collective decision-making (both accu-
rate and faulty nodes), intending to reduce the effect of faulty nodes. The Byzantine
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Generals’ Problem inspired BFT.

2.5.1.2.6 Proof of Burn (PoB) Instead of investing in expensive hardware, val-
idators in PoB ’burn’ coins by sending them to an address where they are permanently
lost. Validators acquire the right to mine on the system based on a random selection
procedure by committing the coins to an unreachable address. As a result, validators
have a long-term commitment in return for a short-term loss when they burn tokens.
Miners may burn the native money of the Blockchain application or the currency of
an alternate chain, such as bitcoin, depending on how the PoB is implemented. The
more coins they burn, the more likely they will be chosen to mine the next block.

2.5.1.2.7 Proof of Capacity With PoC consensus, the validators are meant to
contribute their hard drive space instead than investing in expensive gear or burning
coins in the Proof of Capacity consensus. As a result, validators with greater hard
drive space have a better chance of being chosen to mine the next block and winning
the block reward.

2.5.1.3 Smart Contracts

A smart contract is a piece of executable code stored on a blockchain executed in
response to a particular set of circumstances. Smart contracts cannot be performed
until their calling transactions are included in a new block. Transactions are struc-
tured into blocks to eliminate non-determinism, which may otherwise affect the output
results. IoT devices gain autonomy from blockchain contracts by directly assessing if
agreements meet contractual criteria. As a result, a smart contract can reduce reg-
ulatory costs, while blockchain functionalities serve as a ledger form, validating that
transactions were completed.

Business logic is executed automatically using smart contracts in a blockchain-
based IoT system without exposing the underlying mechanism to dangers like denial-
of-service assaults. When processing transactions and connections, a smart contract
provides a high degree of collaboration and cohesiveness. As a result, a smart contract
allows the ledger’s service to contain the language of the transaction’s terms as well
as the computations to determine whether those criteria have been met [20].

As blockchain ledgers are still emerging, smart contracts take diverse forms de-
pending on the use case where they will be deployed [136] such as financial, notary,
Game, wallet, library, etc. Smart contracts can also pave the way toward new business
models and facilitate resource leading of diverse IoT services [137].
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2.5.1.4 Decentralized Applications (DApps)

Current blockchain-based applications are still confined to using smart contracts for
essential data and functionality that must be resistant to changes. To complete the
application, smart contract users must still execute their apps locally. One of the main
reasons is the performance limitations of current blockchain systems, which cannot suit
many applications’ needs. This raises concerns about operational security and appli-
cation upkeep. For example, deliberate cheating behaviors may be hidden from the
public audit in local components. To this end, ideal blockchain applications use de-
centralized applications (DApps) that are entirely hosted by a peer-to-peer blockchain
network. A deployed DApps require a low level of maintenance and control from the
original developers. Smart contracts enable DApps to interact with third-party appli-
cations on a smartphone, remote servers, hosted on the cloud, or even embedded into
small IoT devices. DApps can also access IPFS through secured TLS (Transport Layer
Security) endpoints and exchange information with them using JSON-RPC API.

Indeed, blockchain DApps are like any other modern web application (but are P2P
supported) that typically consists of a user interface (UI) that interacts with backend
services, e.g., reading and writing to persistent storage, processing, complex logic, etc.
The backend services use the blockchain core functionalities and libraries, such as the
Ethereum platform and diverse smart contracts technologies deployed in it. DApps
interact with the other functionalities of the Blockchain, allowing for transparent,
verifiable, and immutable records of each transaction, as opposed to the client-server
architecture that drives conventional internet apps. In addition, DApps can have
their own set of smart contracts that encapsulate business logic and provide persistent
storage of state when implemented on blockchain networks.

According to the description of DApps in Raval et al. [138], typical DApps include
the following four characteristics:

1. Open Source: Due to the trustworthiness of blockchain, DApps must make their
code open source so that third-party audits may be performed. For example,
Web3 is a collection of libraries that contain functionality for the Ethereum
blockchain [139], which can be used to allow DApps to interact with a local or
remote Ethereum node using HTTP, IPC, or WebSocket. In addition, web3 can
be used as a developer-facing programming framework [140] to build cross-chain
DApps.

2. Internal Cryptocurrency Support: Internal currency is the engine that drives a
DApps’s ecosystem. DApps can use tokens to quantify all credits and transac-
tions between system users, including content suppliers and consumers.

3. Decentralized Consensus: The cornerstone of transparency is decentralized con-
sensus among nodes.
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4. No single point of failure: Because all components of the apps will be housed
and operated on the blockchain network rather than on a single computer, a
completely decentralized system should have no single point of failure.

2.5.1.5 Types of Blockchains

Even though Blockchain is a relatively new technology, there are a few alternative
Blockchain taxonomies identified in the literature [141] [142] [143] [144] [145] [146],
such as public and private Blockchains. The distinction between public and private
Blockchains is not based on a difference between public (states, local governments, etc.)
and private (companies, NGOs, etc.) Blockchains, but on the open or closed nature of
the Blockchain protocol, because Blockchain protocols can be distinguished by whether
they allow free writing and reading or whether one or both of these operations must
be accepted by a third party.

According to Lin and Liao [147] blockchain technology can be classified into three
categories based on the availability of data as follows:

2.5.1.5.1 Public Blockchains are all those whose transaction records may be
accessed by everyone on the earth at any time and can participate in the process of
obtaining a consensus. Indeed, the transactions stored in these ledgers are not ad-
justable, unerasable, accessible for reading by all, ultra-secure based on cryptography,
without a central governing body, and decentralized. This is also known as a per-
missionless Blockchain. Bitcoin [124] and Ethereum [148] are two examples of such a
network.

2.5.1.5.2 Private Blockchain Companies can install these solutions in their own
internal environments, and they can choose to employ them in a completely central-
ized governance model (permissioned). The implementation occurs within a group of
partners who have decided to manage a business process jointly; they may know each
other, but they don’t always trust each other.

2.5.1.5.3 Consortium Blockchain where each member has a network node in
its infrastructure, and a sufficient number of members must validate transactions for
a block to be added to the chain. At this level, consensus no longer works because
of the remuneration of one of the nodes according to the computing power involved,
but only based on a majority acquired within the members on the validity of the
transactions. Beyond the consensus, the operating mode is the same as for public
Blockchains, particularly governance.
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2.5.1.5.4 Comparing blockchains Table 2.1 compares between the aforemen-
tioned blockchain categories. It is worth noting that each category f blockchain has
its unique set of features. For public blockchains, the advantages are that the com-
munication is organized in a P2P fashion without any intermediate node between
participants, and the blockchain is considered pseudo-anonymous. However, public
blockchains still suffer from scalability, lower transaction speed, and higher energy
consumption. Conversely, a private blockchain is the solution of choice to develop and
execute its own blockchain company. Nevertheless, a private blockchain is less secured
and decentralized than a public one. On the other hand, the consortium blockchain
is likely to appeal to businesses and organizations looking to simplify communication
and organizational collaboration, e.g., banking, financial, insurance, etc. It offers scal-
ability and is much more secure and can be seen as more efficient when compared
to public blockchains since it has better customizability and control over resources.
Nonetheless, it is less transparent and less anonymous compared to other blockchains.

Table 2.1: Comparison of types of Blockchain
Features

Accessibility Participants Consensus Transaction Speed Decentralization

Public Anyone Permissionless
Anyone PoS/PoW Slow Completed

Decentralized

Private Single organization Permissioned
known identities

Voting
multi-party consensus Lighter and Faster Less Decentralized

Consortium Multiple selected
organizations

Permissioned
known identities

Voting
multi-party consensus Lighter and Faster Less Decentralized

According to the business requirements and the advantages that each blockchain
category has to offer, the choice of which category fits better for given business logic
is still under debate. Before deciding on the best blockchain for use, it is essential to
reconsider each use case’s features, advantages, usage, and requirements.

2.5.1.6 Blockchain Practical IoT Use Cases

2.5.1.6.1 Smart Cities As a major pillar of the smart city ecosystem, human
behavior, technology nodes, and institutional administration are integrated into a
single service architecture. This model specifies essential characteristics of successful
BC data management to satisfy the system’s service delivery requirements: automated
data collection, distributed data security, openness and privacy, trust-free governance,
and democratization [149].

The Blockchain solution, according to Zheng et al. [150] is a technology-supported
intervention capable of scalable, secure, and efficient data management across cloud-
based or decentralized network channels that can be coordinated to provide a robust
output of informational resources to meet this wide range of expectations.

Academics are being pushed to establish and apply a more productive, efficient
security standard based on a centralized blockchain solution by the immediate ram-
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ifications of IoT security issues. First, efficiency and system performance are proved
through small-scale experiments, according to Chen et al. [151], and then gradually
scaled up to meet the needs of large-scale systems. A blockchain-based energy grid
was developed in Brooklyn to allow solar-paneled houses to track their energy output
and consumption, making system credits and debits easier [152]. While comparable
solutions have been proposed for other service-level billing possibilities, such as health-
care, establishing a decentralized, intermediary-free pricing system would eventually
create the efficiencies required to reduce network costs. By aggregating data on health-
care spending, Kundu [153] predicts that insurance companies and service providers
would be able to connect with client data, monitoring demand and giving discounts
based on health, payment performance, and network engagement (e.g., visiting their
primary care provider). Similarly, the consolidation of data management services via
centralized cloud-based, network-routed authorizations ensures seamless integration
as consumers add additional layers of technology and information resources to their
network connections in the integrated IoT solution developed by Bruneo et al. [154].

2.5.1.6.2 Supply chain Modern supply chains have grown into complicated net-
works due to recent advances. As a result, supply chain management systems con-
front several difficulties. These include a lack of visibility from the upstream party
(Provider) to the downstream party (Client); a lack of flexibility in the face of rapid
swings in demand and cost control; a lack of reliance on safety stakeholders; and poor
supply chain risk management. Blockchain is employed throughout the supply chain
to meet the rising demand for goods.

Many of these prerequisites for a successful and efficient supply chain are met by
default by the Blockchain data structure. Thus, it is a natural choice for industries
and their financial partners to use it to manage their supply chains [155].

Tracing the origins of a product is especially important for the quality management
of sensitive products, such as food or medicine. The timestamped registration of all
information regarding the production, shipment, and sales of any particular product
on a blockchain would instantly identify the roots of such cases instantly [156].

The technology’s distributed nature is one of the features that make blockchains at-
tractive for supply chain implementations. There is no central organization managing
the transactions and storing the supply chain activities. The fact that all transactions
and information are stored on all network nodes also inspires trust and security.

The traceability property is a direct consequence of the fact that it cannot be
altered once information is registered on the chain. Of course, perfect immutability
does not exist since. Theoretically, most networks can coordinate to tamper with the
chain. However, this is practically infeasible.
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2.5.1.6.3 Real Estates The traditional real estate system entails a great deal
of risk and time commitment. It also goes through many levels of legal procedure,
requiring numerous paper signatures and manual document verification. Blockchain
can help address these challenging issues by offering a decentralized for the purchase
and sale of properties without the involvement of a third party. In addition, files and
documents can be digitally checked and authenticated, and all papers can be kept in
a distributed digital ledger database accessible to everyone involved. smart contracts
can play a significantly larger role in this market [157] to connect buyers and sellers
more quickly and directly. Moreover, tokenizing real property can facilitate digital
exchange and eliminate the risk of manipulation by third parties.

Additionally, key real estate transactions such as purchasing, selling, finance, leas-
ing, and management can be transformed by blockchain technology. Blockchain can
help the real estate market overcome inefficiencies and inconsistencies, improve trans-
parency and reduce the risk of fraud [158]. For example, Karamitsos et al. [159] created
a blockchain system for real estate to increase trust among entities involved in real
estate development, and it eliminates the need for intermediaries because transactions
are independently verified and validated automatically.

2.5.1.6.4 Identity Management Identity management solutions are commonly
used in real-world applications and make managing digital identities and activities like
authentication easier. Recently, there have been attempts to offer blockchain-based
identity management solutions that allow users to take control of their own identities.
For example, Tobin et al. [160] created the Sovrin system based on Hyperledger to
employ digital credentials in the real world. Sovrin has a self-contained identity in-
dependent of any centralized authority and cannot be destroyed. Similarly, Naik et
al. [161] created uPort, a self-sovereign identity system. Based on Ethereum, the uPort
identity is defined by the Ethereum account address with which users communicate,
and the identity is permanent. The uPort table is the smart contract that underpins
all uPort identities and serves as the foundation for authentication and sharing offline
data access. uPort enhances Ethereum-based apps from the user’s perspective, allow-
ing them to engage with actual people rather than hexadecimal addresses. Likewise,
Soltani [162] designed ShoCard, a blockchain-based identity management solution that
allows individuals to store and defend their own digital identities. The user’s iden-
tification data will always be combined with the user’s key to preserving privacy. A
third-party database is no longer necessary. ShoCard stores the user data authentica-
tion code on the blockchain, ensuring personal identification authenticity and facilitat-
ing third-party verification. ShoCard also accepts payments with National Financial
System (SFN) currencies.
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2.5.1.7 Blockchain Implementations

2.5.1.7.1 Bitcoin is a solution demonstrated by Satoshi Nakamoto to address the
double-spending problem [124] particularly. Nakamoto developed digital signatures for
bitcoin cryptocurrency and a method that uses a P2P distributed timestamp server
as a generator of the computational evidence of transaction chronological ordering.
The project is maintained by an open community [163]. Each bitcoin transaction is
defined as a combination of the previous transaction’s digitally signed hash and the
next owner’s public key. The transaction is signed using the private key, and the
transaction is verified with the public key. The public key is stored in a wallet, i.e.,
a piece of software or hardware or cloud-hosted application. The Bitcoin ledger is a
state transition system that consists of a state that displays the ownership status of all
existing bitcoins and a state transition function, which takes the form of a transaction.
A new state is the result of the state transition function [164]. If the sender has enough
bitcoins to conduct a transaction, this procedure produces state changes for the sender
and receiver; otherwise, it produces an error.

2.5.1.7.2 Ethereum The Ethereum public blockchain is a distributed comput-
ing platform that emphasizes the use of smart contracts. Engineers may quickly
develop decentralized apps at a high level and make use of the distributions pro-
vided by Blockchain technology [165]. Compared to Bitcoin, which only maintains
Bitcoin transactions between addresses, the Ethereum blockchain contains addresses
with EVM codes. Ethereum’s transactions are recorded on the blockchain and contain
data about the information passed to the program as input. These transactions are
translated by the Ethereum Virtual Machine (EVM) and stated in the appropriate
language. Ethereum is based on a Turing complete machine that makes the smart
contract more interactive to understand and implement any future agreement. We
provide more details about the Ethereum blockchain in Section 2.5.2 below.

2.5.1.7.3 Hyperledger is an open source blockchain project jointly developed by
the Linux Foundation and IBM to promote the building of distributed blockchain
ledgers by everyone. Hyperledger is a consortium blockchain. The goal is to foster
cross-industry collaboration by creating blockchains and distributed leads, to enhance
system efficiency and dependability [166]. Five Hyperledger projects have developed,
including Indy, Factory, Iroha, Burrow, and Sawtooth [167]. Instead of the smart
contract, Hyperledger introduced a chaincode, which is the program written in Go,
node.js, or Java, to implement different users and applications’ interfaces and handle
business logic agreed to by members of the network.
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2.5.1.7.4 Corda is a distributed ledger platform comprised of mutually distrust-
ing nodes that provides a single worldwide database to track the status of transactions
between organizations and individuals [168]. Corda distributed blockchain nodes de-
ployed over a P2P network, but the communication that happens only between nodes
is point-to-point, where data are encrypted using transport-layer security. As a result,
there is no global broadcast of transactions to all parties on the network in the Corda
blockchain. Instead, all nodes can send messages to all other nodes on the one-to-one
communication. Furthermore, for any node in Corda to join the network, it should
obtain a certificate from the blockchain operator that identifies the node’s identity
through its public key. Such a deployment model enforces rules that stipulate the
information each node is allowed to send and/or receive. In addition, Corda offers a
mapping service that matches each node identity to an IP address so that each node
uses this address to send data to other joining nodes in the Corda blockchain. This
mapping service allows nodes to discover and know each other.

Additionally, Corda provides a distributed ledger that is replicated and shared
across all nodes so that each node can keep its copy of the ledger. Still, each node has
a different view of the ledger depending on the facts they share in the network. This
removes a lot of the time-consuming work necessary to maintain all ledgers’ synchro-
nization. Moreover, The hash values in the Corda blockchain, which are coupled with
the node encryption consensus, are used to ensure that transactions are only viewable
to those who are valid participants in the transaction. Corda’s significant features
include automatic smart contracts and document time stamping to ensure uniqueness.

Nodes that want to share data and transactions in the blockchain should reach
a consensus before committing their data to the ledger. Consensus entails gathering
existing values, merging them with smart contracts, and establishing new outcomes
or states. Transaction validity and uniqueness are the two most essential factors in
achieving agreement [169]. The validity of consensus is maintained by verifying the va-
lidity of the smart contract codes and ensuring that it was executed with the required
signatures. Smart contracts use notarization, time stamping, and other requirements
to maintain the transaction’s uniqueness. Further, Corda uses the notion of an im-
mutable state, which consists of digitally signed secure transactions. Transactions are
validated through the consensus protocol, which is executed inside a sandbox environ-
ment to enforce the system’s security. In addition, the consensus protocol invokes a
verification function to verify if a transaction is digitally signed by all parties, ensuring
that a transaction will be conducted if it is confirmed and validated by all participants.
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2.5.2 Introduction to Ethereum Technology

2.5.2.1 Ethereum Accounts

The account is Ethereum’s fundamental unit. Anyone who wishes to send a transaction
to the blockchain must first create an account. Externally Owned Accounts (EOA),
through which users may submit transactions directly, and Contract Accounts, which
are based on the contract code and can be used to contact another contract and send
an inside transaction if necessary. In Ethereum, each account is separated into two
parts: a private key and a public key. Each account address is created from the first 20
bytes of a public key, which is an essential component of every transaction. It’s crucial
to know the distinction between a transaction and EOA’s private key, the transaction’s
sender, and that following confirmation of the hash value’s return, we can monitor all
blockchain transactions. For internal transactions, many sources utilize call or message
conditions [170].

2.5.2.2 Ethereum Work

Ethereum functions as an open software platform based on blockchain technology.
This blockchain is hosted on many computers around the world, making it completely
decentralized. Each computer has a copy of the blockchain, and there must be a ma-
jority of agreement before any changes can be implemented on the network. However,
the Ethereum network also allows developers to build and deploy Decentralized Ap-
plications (DApps). These are also stored on the blockchain along with transaction
records.

Ethereum functions similarly to bitcoin, with the exception that it provides ”Smart
contracts” because of its built-in turning language. Transaction fees are required be-
cause every published transaction necessitates the cost of verifying and download-
ing transactions through the network. Ethereum virtual machine code may encode
any sort of computation, including loops. Ethereum has built a simplified version of
GHOST with five tiers.

2.5.2.3 Decentralized Applications

Decentralized Blockchain applications, or ”DApps”, are ultimately quite similar to
the applications we all know, with a few differences. DApps are linked to blockchain
networks such as Ethereum, a copy of the data is stored on each computer in the
blockchain network. This means that, by definition, no individual or group controls a
DApp.

Ethereum enables you to build centralized apps, also known as decentralized ap-
plications. As demonstrated in Figure 2.16, a DApp is made up of a backend code
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that operates on a distributed peer-to-peer network. Also, it is software built to run
in the Ethereum network without being managed by a centralized system, and this is
the major difference against the centralized classic applications: it allows end-users to
communicate directly with decentralized application providers.

Figure 2.16: Decentralized Application Architecture

2.5.2.4 Solidity

The programming language used to code smart contracts on Ethereum is called So-
lidity. This language was proposed in August 2014 by Gavin Wood, the co-founder of
Ethereum. Developers then developed Solidity Christian Reitwiessner, Alex Beregsza-
szi and Yoichi Hirai. At its core, solidity is an object-oriented, high-level language
for implementing Ethereum smart contracts, which can interact with different pro-
gramming languages such as C++, Java, Python, and JavaScript. Similar to those
traditional languages, solidity is statically typed that can support inheritance as well
as complex types and libraries.

Solidity is close to JavaScript and is considered easy to learn by people with existing
programming skills. Once the smart contract conditions are coded, they are compiled
into OPCODES or operation codes. An operation code is an instruction that specifies
the operation to be performed in machine language.

These opcodes are then deployed on the Ethereum network, where the Ethereum
Virtual Machine (EVM) executes them. The EVM is the first sub-layer of the network.
It is the machine that will interpret the smart contracts and implement them. Similar
to Java JVM, in EVM the smart contract code is generated in a form of byte-code that
can be compiled from source code into low-level code, which in turn will be executed for
the software interpreter. The EVM can also support another smart contract language
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called Vyper [171], which is a pythonic programming language and strong typing, but
has fewer features compared to Solidity.

2.6 Conclusion

This chapter describes state of the art in IoT and edge computing. We discussed
how SDN and NFV could be used to enable massively distributed 5G IoT networks.
Additionally, we highlighted the difficulty of task offloading and resource allocation
via reinforcement learning techniques. Besides, we introduced the fundamental con-
cepts behind blockchain technology and delved into its different deployment models
and software frameworks used to implement distributed and P2P infrastructure. We
also described different cognitive and autonomic control and administration of IoT
services and the critical, challenging issues in managing trusted IoT Networks such as
scalability, energy efficiency, security, etc. Finally, we relied on research directions on
blockchain and the Internet of Things convergence and the empowering of blockchain-
based IoT networks with SDN/NFV.

The work described in this thesis investigates different technologies that enable sup-
porting distributed and energy aware IoT systems for network edge communication.
The first contribution, which will be described in Chapter 3, develops a novel IoT net-
work virtualization approach based on SDN/NFV that uses a context-awareness model
for managing data distribution and energy efficiency in smart buildings’ environment.
In our second contribution, which will be introduced in chapter 4, we delve into dis-
tributed deep learning model-based task offloading and foraging for IoT network edge
systems. Our last contribution, which will be discussed in chapter 5, proposes to ex-
tend the blockchain system to support secure and decentralized resource allocation in
fog computing networks.
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A Context-Awareness
Energy-Efficient Framework for
SDN-enabled IoT Network

3.1 Introduction

This chapter describes the issues associated with making buildings smart, energy-
efficient, and more sustainable realized as part of the IPERCITIES project, which is
based on an IoT network’s architectural design that uses SDN and NFV. This chapter
will focus on the design of a novel IoT network virtualization approach for offering a
high level of automation and service chaining.

The objective of this chapter is, therefore, to describe in section 3.2 the imple-
mentation details of our IoT architecture in smart buildings, which enables offloading
of expensive computation at the network edge. First, we provide a novel approach
to realize context information enhanced with Time Series Data Repository (TSDR)
approach to model hierarchical structures and relationships for collecting, storing,
querying, and maintaining time series data in the SDN controller. Then, we introduce
in Section 3.2.1 a new IoT data model that provides a data collection facility to accom-
modate HVAC sensors and actuators, where data are generated and consumed locally
in smart campus buildings. Next, in Section 3.2.3 we delve into the design of our
Context-Awareness Model, which we introduce to represent the functional intelligence
that identifies a set of contexts, transition rules, dependencies, and relations between
contexts, to control energy appliances in smart buildings.

After that, we present in Section 3.3 a prototype implementation to show the
proposed architecture framework can be deployed in both educational and residential
smart campus buildings using low-cost hardware and lightweight Docker virtualiza-
tion. To this end, we used an intuitive system that is less computationally intensive,
simple to implement on small modular, low-cost Single Board Computers such as the
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Raspberry Pi, and capable of online adaptation to changes in ambient temperature
and solar heat input through windows, and other factors. Finally, some concluding
remarks will be given in Section 3.4 at the end of this chapter.

3.2 Architecture Overview

Figure 3.1 illustrates the architecture of our framework, which is composed of three
layers: at the bottom is the perception layer, which comprises the sensing layer and the
aggregator. The sensing layer encompasses all smart IoT sensors, e.g., temperature,
humidity, air quality sensors, and the HVAC actuators, which directly connect to
the network via short-range PAN technologies such as RF, Bluetooth, ZigBee, etc.
Aggregator sinks collect data from the sensing layer and act as bridges between sensor
nodes and IoT gateways, which act as a network proxy with the rest of the network.

IoT sensors and actuators use message queuing clients (MQTT) for publishing and
subscribing data to/from IoT gateways. For example, IoT sensors gather temperature
readings periodically, listen for network events through MQTT protocol, and send
commands to IoT gateways to control fans and HVAC systems. These IoT devices use
four MQTT messages to publish-subscribe data:

• i) Connect the message allows a client to connect to a remote M2M broker inside
IoT gateways. It triggers a callback function to handle any incoming MQTT
messages on the subscribed topics;

• ii) Send message is used by sensors to publish data to IoT brokers and receive
command data back to it; Store message allows MQTT traffic incoming to bro-
kers to be stored in a time-series database for retrieval in the future, and

• iii) Use message allows using Restful API for client applications to make use of
their stored data. Furthermore, these IoT devices make up three QoS levels (i.e.,
QoS 0, QoS 1, and QoS 2) to create different priority levels for the published
data.

Next, we have the fog layer, which is located in single-hop proximity of the IoT
sensing devices and includes all the network equipment to realize the micro-grid com-
munication infrastructure. It consists of IoT gateways (shown in Figure 3.2) that
interface with the perception layer to receive raw data from the sensors and send com-
mands to control the actuators. The gateway concept is prevalent in home ADSL
models and WiFi access points. However, the design of the IoT gateway is different
since it should be able to integrate heterogeneous smart objects, expose their resources,
and make them available to the rest of the IoT network. Additionally, IoT gateways
are connected to the SDN network through SDN routers (i.e., virtual and physical),
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Figure 3.1: Layered Architectural Overview of the SDN-enabled Framework

which embed an OpenFlow agent that can add, remove, update, and delete packets
inside these routing devices.

The SDN routers (OpenVSwitch virtual routers in Figure 3.2) are connected to a
SDN control layer as shown in Figure 3.1, i.e., the SDN controller, which embeds all the
intelligence and maintains the network-wide view of the data path elements and links
that connect them. The controller contains several modules we develop to integrate
into the smart micro-grid network. First, the IoT function virtualization module (will
be described in Section 3.2.2), which expands the micro-grids network capacity by
deploying virtualized IoT functions into software packages that can be assembled and
chained whenever required to deliver chained services to IoT devices. Thanks to the
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Figure 3.2: IoT Gateways

NFV platform (e.g., OPNFV in Figure 3.1) that encompasses an orchestrator (i.e., SFC
provider), which can add new services without interrupting existing ones or upgrading
the network with new devices. The orchestrator is the NFV management and network
orchestration (MANO) tool responsible for controlling and managing NFV compute,
storage, and network resources.

Second, the SDN control layer contains the IoT management model to perform
communication with IoT sensors through IoT data management and service capa-
bility’s module, i.e., IoT Data Export Plugin (will be described in Section 3.2.1) for
accomplishing M2M operations at scale. It also includes a context agent (will be dis-
cussed in Section 3.2.3) embeds the context-aware model to perform context reasoning
needed for data processing, filtering, and aggregation and to capture the knowledge
and generate high-level abstracted context information. Third, the controller layer
comprises a data processing module that makes use of a Time Series Data Repository
(TSDR) module to perform real-time data processing and analytic, data transforma-
tion, and collection services: upon received at the data store, the IoT Data Export
Plugin triggers CRUD handling operations to enable writing data in the data-store
before connecting them to the context-aware middleware to perform data processing.
The TSDR module connects to Cassandra and HBase NoSQL database management
system through plugins.

3.2.1 IoT Data Management Model

The IoT data management model is based on a data-centric IoT message broker that
uses a standardized oneM2M API to allow authorized sensors and applications to
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retrieve the data stored by other devices. In particular, the model implements a
hierarchical containment tree where each node in the tree represents n IoT resource. As
depicted in Figure 3.3, the tree contains different data and measurements of IoT devices
and their associated attributes. Each node in the tree represents a specific resource an
IoT device can interact with using the Message Queuing Telemetry Transport (MQTT)
broker or direct HTTP-like message exchange. Those attributes provide a resource’s
description in the form of meta-data that includes information about the resource
creation, access rights, resource creator, content size, creation time and date, etc.

Main Campus

CSE Building

Floor 1

Temperature

Room 1

resourceType = <CampusBase>

resourceType = <container>

resourceType = <container>

resourceType = <container>

Bio-Sciences Building

resourceType = <container>

resourceType = <contentInstance>

· content:19°

· typeOfContent = float

· contentSize = 25

· currentByteSize 

· <accessControlPolict>

· <expirationTime>

· <lastModifiedTime>, ….

Figure 3.3: Resources tree comprising IoT data.

As shown in Figure 3.1, the oneM2M Data Store represents the back-end database
where raw sensor data are stored. Furthermore, the proposed architecture supports
CRUD (create, retrieve, update, and delete) operations to collect remote IoT sensors’
sensing data. Such an approach allows us to efficiently perform inventory with life-
cycle management of IoT devices and perform big data analytics on raw sensor data,
retrieving and transforming them into appropriate context representation.

3.2.2 IoT Service Chaining

In Figure 3.1, the IoT Function Virtualization (IoT NFV) module shows our proposal
for mapping IoT sensors into virtualized functions that follow the ETSI guideline for
NFV architectural framework. In addition, the SDN controller is merged with the IoT

58



Chapter 3. A Context-Awareness Energy-Efficient Framework for SDN-enabled IoT
Network

management platform (i.e., NFV Platform) to communicate between IoT gateways and
their remote sensors and enforce state information security. The IoT-NFV module uses
lightweight containers to enable the creation of multiple isolated virtual IoT gateways
inside a single physical one. For example, VNF1 and VNF2 in Figure 3.1 represent two
independent virtualized functions chained to form a single IoT service. Constrained
Application Protocol (CoAP) messages in VNF1 coming from sensors in the sensing
layer are chained with DTLS service to enforce the security of IoT resources. Simi-
larly, another group of sensors in the sensing layer that use HTTP/REST services in
VNF1 can see their messages chained and secured with TLS in VNF2 to optimize the
cooperation between IoT devices and intermediate infrastructure, and the rest of the
IoT network. The virtualization layer is based on lightweight containers using Docker.
Thus, it becomes fast to create, install, run and deploy independent micro-services
and provide simple service composition facilities.

Routing the packets among these VNF components is wholly managed and con-
trolled by the SDN controller. Thanks to Pipework and the ”overlay” mode of the
OpenVSwitch software router. The former allows connecting multiple containers in
arbitrarily complex scenarios. The latter provides a private IP address that is only
valid internally. Each IP address P identifies a service deployment in a separate chain
so that the SDN controller can program the flow table with the required flow entries
FP to define the following component B = FP (A) in the chain for which the traffic will
be forwarded. The controller creates for each flow entry FP the forward table entries
that match received packets against the forwarding ports A they should follow with P
as the destination address.

3.2.3 Context-Awareness Model

The context reasoning model identifies a set of contexts, transition rules, dependencies,
and relations between contexts. Figure 3.4 illustrates the context-awareness model
which includes a 3-tuple (Ak, Tk, Dk), Where is Ak is the action knowledge, Tk is
Transitional knowledge, and Dk declarative knowledge. The action knowledge rep-
resents the functional intelligence for a given environment, coded using logic rules or
machine learning algorithms. For example, given a current temperature inside a room,
the system should switch on or off the HVAC system of the building.

The transition knowledge specifies when a passage to another context should be
performed. It can be expressed, for example, as IF (conditions) then (activation) tran-
sition rules, fuzzy rules, or neural network probability conditions. Finally, declarative
knowledge describes some aspects of the context, including some pre-acquired knowl-
edge for the context. For example, the number of guests in the convocation hall, room
size, room usage schedule, etc.

The context reasoning model is used to subdivide the knowledge into multi-level
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Figure 3.4: Context-Awareness Model

hierarchies. Each level is used to represent a vertical relationship between sub-levels.
Figure 3.5 illustrates an example context hierarchy for an educational building. The
vertical multi-level hierarchy describes the relationship between groups in a given set
G = {G1, G2, . . . , Gn}, where a given group Gi ∈ G contains a set of mutually exclusive
contexts Ci = Ci

0, . . . , Ci
a, . . . , Ci

n. An active context Ci
a in a subset of group Gi is active

within the context of its parents. That is, to make the inheritance active, transitional
and declarative knowledge from selected contexts in groups that are hierarchically
above Gi.

In our case, Figure 3.5 illustrates the reasoning model where Campus buildings
are the first group G1. Then, in the second group G2, we identify different types
of buildings, e.g., educational, residential, administrative, laboratory buildings, etc.
To apply this context-aware reasoning model to our case, we should activate the set
of contexts that best suits a given situation. The active context will control all the
execution processes, define behaviors of our actuators, and specify the constraints
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Winter Spring Summer AutumnWinter Spring Summer Autumn
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Education
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Night Dawn Day Dusk
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Figure 3.5: Example of context hierarchy levels for an education building

and all other context-dependent characteristics. To seek of simplicity, we describe an
example of our context reasoning model from Figure 3.5 as follows:

• Ct
Active = {Buildings, Educational, Spring, Working-Day, Day}.

• Ct+1
Active = {Buildings, Residential, Spring, Working-Day, Night}.

• Ct+2
Active = {Buildings, Educational, Winter, Holiday, Day}.

Specifically, given active contexts Ct
Active and Ct+1

Active at certain instances t and
t + 1, it might be seen as easy or even not much complicated to identify the process of
managing context operation, in particular given the slow evolution of sensor variables
such as temperature, humidity and CO2 level inside rooms in education buildings.
However, given different situation that occur in a given group Gi, we identify a domain
of services si which has its own execution thread(s) and its control is a function of
context Ct

Active. The control of service si can be defined by equation 3.1:

Control of si = Γ (Ct
Active) (3.1)

Where Γ is the context reasoning framework operating within si. For example,
room temperature behaves differently if a door/window is open/closed or if the room
is empty or occupied. Electrical lights and fans act accordingly to these situations.
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3.2.4 Machine Learning Engine

The machine learning engine capabilities are twofold: first, they help the context
reasoning framework to infer the context decisions. Second, the SDN controller’s feed-
back on the environment changes to perform automatic traffic steering and policy
placement. For the former, the machine learning engine monitors the current sensor’s
data delivery, predicts future data, and learns the optimal network management policy.
In particular, the energy demand is variable in time and space since its consumption
varies qualitatively and quantitatively on the time of days, e.g., working days, holidays,
weekends, etc., or the location where IoT devices are deployed, e.g., laboratories, class-
rooms, office building, etc. The machine learning engine provides a better-personalized
experience and prioritizes specific IoT devices that should communicate relevant in-
formation to the SDN controller. It also enables storing and processing the collected
data to analyze the datasets based on specific parameters such as location, time, and
historical data.

A B

C D

1

3

Predicted congest ion path

Healthy alternate path

Real-Time 

Processing

TSDR 
Persistance SPI

Context 

Agent

Data Model

2

Machine Learning Module

Real-Time 

Processing

TSDR 
Persistance SPI

Context 

Agent

Data Model

2

Machine Learning Module

Figure 3.6: Traffic congestion prediction with automated control.

For the latter, Figure 3.6 depicts the machine learning module, where the SDN
controller continuously learns from data generated by virtual routers and becomes
aware of the runtime status of the network. The controller collects OpenFlow statistics
(circle 1), applies ML algorithm, i.e., multi-layer perceptron (circle 2), and takes the
right decisions that adjust the policies (i.e., traffic flow redirection from A ⇒ D to
A⇒ B ⇒ D or A⇒ C ⇒ D) for traffic classification and traffic shaping, dynamically
change these policies according to the analytics results, and feedback these results
to the forwarding path for automatic steering and policy placement. In addition, the
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controller can also use the machine learning capabilities to establish normalized profiles
to predict traffic patterns and perform routing optimization based on predetermined
or dynamically updated learned rules.

3.3 Proof of Concept Implementation

We have realized a primary prototype implementation to verify the feasibility of run-
ning the platform. We first introduce the platform implementation, then highlight two
application test cases, and show our approach can operate in actual smart buildings
environments such as smart campus buildings and residential buildings.

3.3.1 Testbed Setup

Figure 3.7 depicts our target application. IoT gateways are based on a single-board
computer RPi 3 with 1 GB of memory and a quad-core ARMv8 BCM2837B0 Cortex-
A53 ARM Cortex-A53 CPU running at 1.2 GHz. The gateway connects to the net-
work using its integrated 2.4GHz 802.11n interface. It also contains hostapd userspace
daemon software, which we used to create virtual wireless networks inside the same
physical one. IoT gateways are equipped with 40 pins GPIO interfaces to connect to
a wide range of sensors and actuators.

Internet

Core network

Device Domain Edge Domain (Fog Domain) IP Backbone Cloud Domain

Windows 

Hybervisor

Azure 

IoT

Big Data

A

AWS 

IoT

SDN controller 

Other Buildings

SDN Router SDN Router

IoT orchestration

Humidity 

Sensor

HVAC

Temperature

IoT sensors

IoT Gateway 2

Humidity 

Sensor

HVAC

Temperature

IoT sensors

IoT Gateway 1

Context Awareness Module  

Data Mining Module 

IoT Service capabilities Module

Figure 3.7: Network topology used as the target application

We deployed several sensor boards that act as Cluster Head (CH) nodes to collect
raw sensor data and measure the surrounding air quality from all Cluster Members
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(CMs). CMs sensor nodes periodically measure temperature, humidity, and Co2 levels
and compare them with the last measurement. If results have changed, they send an
advertisement message (ADV) to the cluster head. Examples of CMs we used include
DHT22 temperature and humidity sensors; the MQ-135 Co2-Gas sensor; and the
K30 CO2 module that gathers the level of oxygen inside our campus buildings and
student housing residence. We also used a smart energy meter to detect and report
power consumption to CH nodes and IoT gateways. As Cluster Heads (CHs), we used
multiple NodeMCU IoT platforms running on top of the ESP8266 Wi-Fi SoC, which
integrates a TCP/IP protocol stack that allows access to our virtual Wi-Fi network
running on IoT gateways. We successfully connected these CHs through the MQTT
broker running on IoT gateways. We also used CoAP API to connect some other
sensors to the ESP8266 board. COAP servers are deployed inside IoT gateways in the
form of lightweight containers.

Additionally, our SDN controller is based on the OpenDayLight (ODL) Project,
which has several SDN and application management capabilities. The ODL platform
can be configured to run as a highly scaled up and out distributed cluster with IoT,
SDN, and NFV functions. It can also be integrated with OpenStack and deployed to
communicate with a high-traffic data center. We used OpenVSwitch (OVS) as our
distributed virtual multi-layer SDN switch managed by our SDN controller. We used
two OVS modes: NAT and bridge. The NAT mode connects the SDN routers with the
outside world. The OVS bridge mode offers virtual interfaces we used to communicate
with docker instances to multi-host networking, i.e., we used both internal IP addresses
as our pseudo-IP and MAC addresses.

3.3.2 Service Function Chain Composition in Education Build-
ing

We consider various CH nodes in charge of collecting temperature, humidity levels,
and CO2 concentration from CM sensors of occupied indoor spaces for the education
buildings. We consider three VNFs implemented inside docker images: TensorV NF ,
MosquittoV NF , and OneM2MV NF as described in Figure 3.8. The first VNF monitors
the current sensor’s data delivery, uses TensorFlow machine learning models to predict
future data from correlated sensor readings, and learns the optimal policy for the
network management by avoiding redundant readings. The second VNF gathers sensor
readings periodically, listens for network events through MQTT protocol, and sends
commands to control fans and the HVAC system. Finally, the third VNF establishes
the access to IoT resources through the hierarchical containment tree described in
Section 3.2.1.

To interconnect different micro-services running in containers, we used Docker
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Figure 3.8: Network topology used as the target application.

engine v19.03. Docker engine offers advanced network capabilities to manage the
connectivity between containers. As shown in Figure 3.8, we used Docker Network
Driver Plugin to create a virtual docker network that connects to virtual SDN routers
(OpenVSwitch) and handles all coordination between virtual hosts. We also configured
persistent docker volume to store alarms and other debugging events outside docker
containers. We also used Vagrant for automating the creation of virtual machine
instances and building and maintaining portable virtual Docker containers.

We deployed Docker swarm as our container’s orchestration tool to manage differ-
ent VNFs we deployed in our tests. Docker swarm offers a high level of availability
for the running application. In addition, we defined one of our containers as a leader
to manage membership and delegation among the other containers, which we config-
ured as workers. It is worth noting that we can use the Kubernetes (K3s) system to
automate the deployment, scaling, and management of VNFs. We configured Docker
Swarm to use docker-compose configuration files and scripts we created to tell the
docker daemon (running inside each IoT gateway) how to pull the appropriate con-
tainer image from the Docker Hub repository, how to establish networking between
VNFs, how to mount storage volumes, and where to store logs for a given container.

Figure 3.9 describes the approach we used to configure the OpenDayLight SDN
controller Service Function Chaining (SFC) to define an ordered list of network services
(i.e., TensorV NF , MosquittoV NF , and OneM2MV NF ) which we stitched together to
create a service chain. This SFC is arranged as i) physical network function (PNF) that
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Figure 3.9: SFC composition for Temperature and CO2 measurements as an IoT
service.

contains the IoT temperature and gas sensors, ii) three IoT VNFs depicted as Service
Function Forwarders (SFF) in Figure 3.9, and iii) the SFC-UI integration into the SDN
controller. When the IoT SF1 is updated with new sensor measurements, an updated
SFC composition is triggered by the docker swarm orchestrator to pull and install a new
image (or migrate an existing one) for the required VNF (MosquittoV NF , TensorV NF ,
or OneM2MV NF ), respectively. Our implementation shows that our approach can
create, instantiate and deploy new customized on-demand virtualized IoT services that
gather, process, estimate, and supervise the air conditioning inside campus buildings.
Furthermore, our approach successfully collects room temperature. It sends these
values to IoT VNFs through IoT gateways, which forward them to the SDN controller
to switch ON or OFF the HVAC appliances based on temperature and CO2 threshold.
This result is very flexible and reconfigurable as it can instantiate and deploy VNFs as
needed for scalability and saves up to 70% of the energy consumption in the campus
buildings.

3.3.3 Activity Management in Residential Building

Monitoring users’ activity in residential buildings is critical to understanding how
they interact with IoT home appliances (e.g., TV boxes, PlayStation (PS), wash-
ing machines, laptops, Lights, etc.) because different user activities usually call for
additional services. Therefore, we add an Activity Recognition (AR) model to the
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context-awareness model described in Section 3.2.3.

Table 3.1: Daily Occurring User Activity in smart residential building

Activity Sleep Use Laptop Study in office Watch TV Read Book Play PS Prepare food Washing clothes No One at home
Occurrence (%) 33 10 8.3 12.5 6.8 7.1 9.2 4.3 8.8

The AR model describes the user behavior inside a smart residential home as shown
in table 3.1. The AR model is trained using a semi-supervised learning model (which
is included in the ML engine in Figure 3.10) to forecast the appliances a user is using
during the activities described in table 3.1. For example, if user activity is ”Sleep,”
only the night light of the bedroom should be ON, and all other appliances should
be OFF. Similarly, if the weather is getting warmer, the HVAC or fans should be
ON automatically; if no one is at home, all lights and appliances should be OFF.
Figure 3.10 depicts the IoT gateway, which can be easily turned into a virtual SDN
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Figure 3.10: Typical smart home network as an IoT service.

router using OpenVSwitch and Docker Network Driver Plugin services. The SDN con-
troller can manage the whole Home Area network. The controller monitors link states
periodically via the link layer discovery protocol and creates the network topology. Ad-
ditionally, the approach we develop in this paper allows slicing the Home Area network
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into several separated logical networks. Each network partition can deal with different
QoS requirements. For example, a network partition with strict QoS requirements
can be configured for CCTV cameras, video streaming, etc. This result of architec-
ture can successfully discover many valuable data from the AR model. It has also
successfully created several separated logical networks, which improve the network’s
agility, availability, and performance. Moreover, the proposed architecture saves en-
ergy by automatically switching ON/OFF unnecessary home appliances based on the
context-awareness and AR models. The SDN controller collects valuable data for
context-aware service provisioning and manages the forwarding tables of SDN routers
to provide comfort and assistance to building occupants and apply powerful learning
models on collected data to derive behaviors that impact high energy consumption.

3.4 Conclusion

In this chapter, we have presented our contributions to answering the first problem of
making a building more energy-efficient by implementing the smart energy manage-
ment system that is beneficial to smart micro-grids in campus and residential buildings.
Therefore, we proposed a comprehensive design of SDN architecture for green IoT net-
works, which is designed to empower SDN-enabled Context-Aware IoT systems and
networks to create a flexible, agile, and reconfigurable framework for improving energy
efficiency in smart buildings and enabling automated building operations and control.
To this end, in the first section of this chapter, We have proposed the design of a novel
IoT network virtualization approach that offers a high level of automation and service
chaining. First, we have provided a technique for collecting, storing, querying, and
managing time-series data in the SDN controller using a Time Series Data Repository
(TSDR) approach. Then, we have offered a novel IoT data model that provides a data
collecting facility for HVAC sensors and actuators in smart campus buildings, where
data is created and consumed locally.

Then, we investigated many factors that influence energy consumption in campus
buildings and created a context-awareness model that allows for the most accurate
prediction of users’ actions based on their daily energy consumption profiles in edu-
cational and residential facilities. Newt, for designing and delivering customized IoT
services on-demand, we launched an IoT service chaining solution. Finally, we included
a machine learning engine that aids the context reasoning framework in inferring con-
text judgments and feeding back modifications to the SDN controller for automated
traffic steering and policy insertion. The architecture will also offer up new avenues for
the widespread adoption of energy management solutions that are based on reliable
and scalable IoT services.

The following chapters will be devoted to the task allocation and resource planning
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methodologies while guaranteeing consumable energy optimization reduces delay, and
we will investigate the use of Blockchain and Reinforcement Learning (DRL) in SDN-
enabled IoT systems to accomplish energy-aware task cyber foraging to increase the
dependability, low latency, and energy efficiency.
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Chapter 4

Reinforcement Learning-based
Framework for Task Offloading in
IoT Network Edge

4.1 Introduction

This chapter aims to introduce a novel approach for SDN-enabled IoT task offloading
based on Deep Reinforcement Learning. First, in Section 4.2 we present the archi-
tectural details of our approach to supporting task assignment and scheduling while
ensuring dynamic and flexible resource management of the underlying SDN-aware IoT
network edge. Then, we describe in Section 4.2.2 the problem statement to dispute
the optimally scheduling approach of IoT tasks and highlight our proposed approach
to transfer resource-intensive computational tasks to separate IoT devices deployed at
the network edge. Next, we delve into the design of our intelligent IoT network com-
munication system based on the DRL learning algorithm. After that, we evaluate our
approach to illustrate the effectiveness of our approach and validate our claims of flex-
ible data delivery, low latency communication overhead, and a low-energy footprint.
Finally, we present the concluding remarks of this chapter.

4.2 Model for task assignment and scheduling prob-
lem

This section delves into the architectural details that enable us to support task as-
signment and scheduling and dynamic and flexible resource management with our
SDN-based framework. It presents the problem statement and the algorithms to in-
stantiate service intelligence at the network edge.
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Figure 4.1: Task scheduling architecture at a glance

4.2.1 System’s Architecture

Figure 4.1 glances at the architectural design of our deep reinforcement assignment
and scheduling solution to address the task scheduling problem in the IoT network. We
added the task scheduler at the SDN controller level to find and select the best schedul-
ing decision policy. The algorithm that describes the task scheduler consists of a queue
containing task processing requests from mobile IoT applications, a learning-based
input representative, and a planning decision-maker based on learning. Expressly,
the dashed lines represent OpenFlow messages (i.e., FlowMod, OpenFlow Packet-IN,
and Packet-OUT, statistics such as OFPMP FLOW that carry out Information about
individual flow entries, as described by the OpenFlow Switch Specification [172]) ex-
changed between the Ryu SDN controller and the underlying Fog nodes, which are the
data plane in our example. The messages are the continuous lines between the task
scheduler and the SDN controller.

The SDN controller collaborates with our DRL algorithm to usher the process
of carrying out intelligent network resource scheduling and management. The SDN
controller uses a planner algorithm to manage task processing requests and create a
historical dataset from incoming task requests. Figure 4.1 shows the internal controller
modules: i) the path computing module assigns optimal route paths for different
types of traffic generated by different IoT tasks and highly improves the QoS settings
(bandwidth and delay); ii) the network monitoring module polls fog nodes to collect
flow statistics to determine throughput, packet loss, and delay and; iii) the controller
uses the flow scheduling module to exploit multiple paths to select the best QoS-
aware path accordingly and uses queuing mechanisms to achieve optimal bandwidth
utilization and supervise traffic activities. The SDN controller acts as the brain of
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the network by controlling the underlying fog nodes through the OpenFlow secure
channel. Additionally, our agent in the controller SDN learns to use the dataset to
represent the state information of all the fog nodes and the task requests to create
a latent representation model. Once the information available on the dataset is well
filtered and represented in a network graph, the SDN controller starts learning how
to generate learning policies to input programming decision values (Q-value). Then,
it selects the best fog node and sends the decision to OpenFlow rules for handling the
tasks. Finally, the SDN controller assigns the fog nodes to process the task requests.
After that, the mobile device can download data from the designated fog node.

4.2.2 Problem Statement

The task planning in fog computing is represented by N different tasks T = T1, T2, . . . , TN ,
which will be assigned to distinct fog nodes F = F1, F2, . . . , FM to minimize energy
consumption and time delay by optimizing the use of the transmission channel. Let
us consider:

• Xij(t): denotes the assignment of task Ti on fog node Fj in respect of the time
t.

Xij(t) =
1, if Ti runs on Fj

0, otherwise
(4.1)

• Whenever a task is assigned to a fog node to run on it, it takes some latency time
to execute in that node. We introduce the execution time of task Ti when the
task Ti is assigned to a fog node Fj, which can be obtained through the following
equation.

TTCij(t) = Di/Cj (4.2)

In which Di stands for the number of instructions of a task Ti over time, and
Cj is the CPU processing rate at fog node Fj. The execution time cost in
equation 4.2 describes the operating costs for the task assignment and indicates
the complexity of the processing whenever the number of connected devices (i.e.,
requests) increases.

• The transmission time delay for task Ti on the fog node Fj is shown by equa-
tion 4.3:

TTRij(t) = Di(t)
rij(t)

;

rij(t) = wij(t)× log(1 + hij(t)× pij(t)
σ

)
(4.3)
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Where wij(t) is the bandwidth, hij(t) is the channel power-gain, pij(t) is the
transmission power, and σ is the noise power. The fog transmission service rate
in equation 4.3 indicates the communication time of task offloading while taking
into account the wireless path fading based on the channel characteristics and
the noise power spectrum density, as well as the available bandwidth per fog
node.

• The queuing delay for the task Ti is denoted by equation 4.4:

TTWij(t) = Di(t)
wij(t)

τ

1− τ
;

τ = Di(t)× aij(t)
wij(t)

(4.4)

Where aij(t) is the average packet rate. The queuing delay, aka residence time,
indicates how many persistent tasks in the queue to offload to a neighboring
node based on the remaining queue size and incoming tasks requests

• The total time delay is given by equation 4.5:

TTij(t) = TTRij(t) + TTCij(t) + TTWij(t) (4.5)

Where TTWij(t) is the queuing delay for task scheduling.

• Similarly, the energy consumption is denoted by equation 4.6:

ECij = TTRij(t)× pir(t) + TTCij(t)× pie(t) (4.6)

Where pir(t) is the transmission power, and pie(t) is the idle power.

We model the task scheduling problem as a nonlinear multi-objective combinatorial
optimization problem with several objectives. The objective function is multi-variables
and multi-constraints. It is tricky to find an optimal solution using a polynomial
method. Thus, a compelling need is to design a hybrid heuristic algorithm proposed
in this section to build a task scheduling strategy. In simplifying the complexity of
the problem into a single objective problem and reducing the difficulty of solving, we
consider the following hypotheses:

• Each task is independent, and there is no constraint between the tasks.

• Each task can be assigned to only a fog node.

• No task can be allocated repeatedly.

• In the calculation process, the task doesn’t consider the impact of the mobility
of the terminal equipment.
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• All nodes are static, and the current task cannot be interrupted.

The objective function of task scheduling in fog nodes is shown in equation 4.7, where
both time delay and energy consumption constraints are formulated as follows:

f = min
N∑

i=1
(Wit

M∑
j=1

[Xij(t)× TTij(t)] + Wie

M∑
j=1

[Xij(t)× ECij(t)]) ; (4.7)

Subject to:

N∑
i=1

M∑
j=1

ECij(t) ≤ ECmax ;

N∑
i=1

M∑
j=1

TTij(t) ≤ TTmax

Where ECmax is the maximum energy consumption of our system, which represents the
sum of the batteries available, TTmax is the maximum delay of our system, Wit is the
weight of delay, and Wie is the weight of energy consumption. Both weighting factors
emphasize the importance of each type of constraint. In other words, the choice of
weights in such multi-objective optimization approaches alludes to the decision-maker’s
preference.

4.3 Deep Reinforcement Learning for resolving Task
Scheduling Problem

The DRL learning algorithm consists of objective (goal) oriented training and learning
technique. An agent learns the optimal policy actions to interact with the environment
and rewards it for its actions. Specifically, we define an action a belonging to a set of
actions A = {serve, forward, discard}, that corresponds to the action of serving the
current request, forwarding it to the neighbor node, and discard the request whenever
resources are no longer available. A fog node tries to maximize its cumulative rewards
and adapt to its environment to achieve the goal. The observation space (i.e., the
state space) representing the environment at a given step describes the state of task
requests to access a given service, e.g., number of task requests, number of granted
requests, and number of allocated resources for that task request.

Figure 4.2 illustrates our approach to tackling the issue scheduling problem us-
ing deep reinforcement learning. Because the task planning module contains a small
amount of information about the future arriving tasks, such as arrival time and task
size, the SDN controller uses historical tasks to build the deployment decisions. In
addition, the DRL algorithms we implemented inside the controller can analyze the
performance of all connected fog-enabled IoT nodes. We build efficient scheduling to
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execute several simultaneous tasks and predict optimal scheduling on the network that
meets both low-latency and efficient-energy requirements.
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Figure 4.2: Deep Learning for Task Scheduling

First, we train the SDN controller to represent the datasets of all tasks and fog
nodes for performing task assignments using the best optimal way under the con-
straints mentioned above, minimizing the network latency and reducing the energy
consumption. Therefore, we introduce our DRL algorithm to select and apply the best
decision that distributes the tasks on available fog nodes. As shown in Figure 4.2, the
compressed low-dimensional representation of the input is used to find a latent repre-
sentation of the data between tasks that will be executed and fog node states ready to
execute these tasks. Then, an auto-encoder model was developed, which aims to find
a latent representation Z from data X using an encoder and decoder networks. The
main goal of this model is to compute the following function g(x) = sg(Wx+b) , where
sg is an activation function as sigmoid(), W is the weight, and b is the bias. After that,
a bottleneck layer Z = g(x) filters the incoming data from the encoder layer. Then, a
decoder function defined as follows f(x) = sg(W ′z+b′) is used to reconstruct the input
X from Z (representation of latent space). The auto-encoder model is trained using
the mean squared error (MSE), which minimizes the reconstruction error between the
input X and the reconstructed input (output) X’. Furthermore, the obtained latent
representation Z, obtained by the encoder network, i.e., S∗ = Z = g(S), is used to
train the SDN controller to assign the task Ti to the node Fj and generate the optimal
decision to schedule the tasks.
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4.3.1 Task Assignment

Algorithm 1 illustrates the task assignment we implemented inside the SDN controller,
which collects information from the underlying SDN routers about the available fog
node capacities, including their available energy. Thence, the algorithm receives a list
of tasks and their characteristics and then assigns them to the available fog nodes.
The DRL algorithm selects the fog nodes based on their available energy and current
occupation rates to reduce the delay in processing time. Once the controller has
assigned tasks to their relevant nodes, it keeps track of a log dataset of the current
node’s processing and available energy.

Algorithm 1: Task Assignment to Fog Nodes
Input:

1. Detection nodes N = {n1, n2, . . . , nj} with their available energies,

2. Set of tasks T = {t1, t2, . . . , ti} with their characteristics

Output: Assign a task ti to a node nj

1 while true do // infinite loop
// learn according to cases

2 Replay (n, t) ;
// Predict the value of the reward

3 act-values = predict (n, t) ;
// Choose the action according to the expected reward

4 a = arg max(act-values[0]) ;
5 Execute a // Send t to n

Whenever a task is successfully assigned to a fog node, the controller increases
the value of the local reward and selects the forthcoming action according to the
expected reward. Then, to maximize the objective function (c.f., equation 4.7), the
algorithm applies the argmax operator to find the maximum values that fulfill low-
energy consumption constraints and lower network latency.

4.3.2 Deep Q-Learning Policy Algorithm

First, we introduce our Deep Q-Learning policy using experience replay to learn a small
data block to avoid biasing the dataset distribution. Then, the algorithm approximates
the Q-value function to explore all the states and determine all possible actions to reach
the optimal solution. The algorithm uses continuous learning through the experience
replay to update the algorithm parameters based on the previous actions. As described
in Algorithm 2, the SDN controller implements a Deep Q-learning algorithm to mimic
a learning agent that maps states of the environment to actions. The agent considers
these actions to move from one state to another to maximize a numerical reward over
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time.

Algorithm 2: Deep Q-learning algorithm with experience replay
Input: Initialize replay memory M
Initialize action-value Q with random weights
Observe the initial state s
Output: A trained model to optimally assign a task to node

1 repeat
2 Select an action a with probability ϵ
3 Select a random action;
4 Otherwise select a = arg maxa′ Q(s, a′)
5 execute action a
6 observe reward r and new state s′

// Store experience in memory
7 store exp < s, a, r, s′ > in memory M
8 sample random transitions < ss, aa, rr, ss′ > from memory M
9 compute target for each minibatch transition

10 if ss′ is terminal state then
11 tt← rr
12 else tt← rr + γ max′

a Q(ss′, aa′)
13

14 Train the Q network using (tt−Q(ss, aa))2 as loss
15 s = s′

16 until terminated

Specifically, the SDN controller selects these actions during run-time, even if an
agent doesn’t complete the knowledge of rewards and state transition functions. In
each state, the agent can choose between two types of behavior: (i) the controller
can continue exploring the state space to find optimal decision policy; or (ii) it can
leverage the information already given by the Q values defined by equation 4.8:

Q(S∗) = R + γ max Q(s′, a′)
Action a = arg max a′Q(s, a′)

(4.8)

The total reward is given by equation 4.9:

R =
n∑

i=1
(Wit

m∑
j=1

β[Xij(t)× TTij(t)] + Wie

m∑
j=1

β[Xij(t)× ECij(t)]) (4.9)

Where Wit is the delay weight and Wie is the weight of energy consumption. The
parameter β takes a positive sign if we execute the assigned task in the node, whereas
a negative sign otherwise remains pending in the queue. We implemented the training
algorithm that uses a regression loss function to reduce the total training data error.
Worthy of mention, the deep learning neural network loss function, to predict the states
of Q values, given by equation 4.10 with a hyper-parameter setting γ as a discount
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factor :

L = 1
2[r + γ max

a′
Q(s′, a′)−Q(s, a)]2 (4.10)

Algorithm 2 learns the allocation policy to provide an optimal decision regarding
both the constraints mentioned above, i.e., in terms of latency and energy and per-
formance of the system. First, to start the learning process, the algorithm initializes
a decision matrix with weights (Q-values) of random policies and observes the initial
states of the SDN network. Then, nodes will be chosen with their smallest probability
values from the filled matrix and assigned the tasks randomly to its distinct fog nodes.
Once the first step is completed, the controller can move to the following states, i.e.,
returning a reward and performing the calculation, and transitioning from one state
to another. Each newly calculated step is saved in the matrix, and we compare the
existing policy with the previous one. If the newer policy is better, it will be consid-
ered locally, optimal, etc. Thus, we repeatedly operate until we get an optimal global
assignment for each task. Then, the operation is repeated until all tasks in the waiting
queue are processed and assigned to the best available fog nodes.

4.3.3 Random Learning Policy

We introduced dense random neural networks that randomly process a data block while
simultaneously improving the learning policy’s robustness and accuracy. Algorithm 3
represents the assignment of tasks using a random agent. The latter is based on a
strategy that randomly assigns the tasks to the various available fog nodes without
considering the quality of service in terms of latency. It assigns each task to a randomly
chosen fog node and updates its energies each time. In addition, it also updates the
accumulated rewards.

4.3.4 Deterministic Learning Policy

We developed a deterministic learning policy to dictate what action to take given a
particular state. Indeed, we consider a different situation where incoming IoT tasks
are known to forecast the next event precisely from the current event. The value
of the state is the expected reward if we start from it and continue using the same
policy. Nonetheless, the deterministic policy does not involve that the reward remains
the same. Algorithm 4 represents the assignment of tasks to the corresponding nodes
using a deterministic agent. The latter will schedule the tasks one by one according
to their order of arrival and assign them to nodes close to their minimum latency.
At each iteration, an update will be performed on the energy state of the node that
executed the task.
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Algorithm 3: Agent Random
Input:

1. Detection nodes N = {n1, n2, . . . , nn} with their available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their characteristics

Output: Assign task ti to node nj

1 i← 1
2 reward← 0
3 totrewards← 0
4 while i <= m do // m is the number of tasks
5 action← env.actionspace.sample() // randomly choose an action
6

7 ob, reward← env.step(action)
8 update(N ,ob) // update of nodes
9

10 totrewards+ = reward
11 i + +

Algorithm 4: Agent deterministic
Input:

1. Detect nodes N = {n1, n2, . . . , nn} with their available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their characteristics

Output: Assign task ti to node nj

1 Sorted(N) i← 1
2 assign← false
3 reward← 0
4 totrewards← 0
5 while i <= m do // m is the number of tasks
6 for j ← 1 to n do // n is the number of nodes
7 if N [j][”energ”] > T [i][”energ”] then
8 N [j][”energ”]← N [j][”energ”]− T [i][”energ”]
9 ob, reward← Execute(T [i], N [j]) // execute task in node

10 assign← true
11 break

12 if !assign then
13 ob, reward← env.step()
14 update(N ,ob) // update of nodes
15 Sort(N)
16 totrewards+ = reward
17 i + +
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4.3.5 Asynchronous Actor-Critic Agent (A3C) Algorithm

We design Asynchronous Advantage Actor-Critic (A3C) Algorithm to involve global
network optimization in parallel by using multiple agents. These agents have their own
set of parameters to create different situations to interact with the fog nodes distributed
in the environment. Each agent harvests a different learning experience and adds it
to the overall learning experience. Algorithm 5 illustrates the task assignment and
scheduling scheme using the A3C approach, which relies on multiple agents that are
likely to explore different states and transitions. Each agent has its network parameters
and a copy of the environment.

Algorithm 5: Asynchronous Advantage Actor-Critic Agent
(A3C)

Output: Model trained with workers to assign task to node.
1 for i← 1 to n do // n is the number of workers
2 Wi.run() // Start worker thread

3 step← 1 // ForEach worker Wi, initialize step counter
4 T ← 0 // Initialize episode counter
5 repeat
6 dθ ← 0; dθv ← 0 // reset gradients
7 θ′ ← θ; θ′

v ← θv; t← step // Synchronize thread-specific
parameters

8 s← st // Initialize iteration
// Get observation state

9 while s is not terminal and step− t < tmax do
10 Simulate action at according to π(at|s; θ )
11 Receive reward rt and next state st+1
12 step + +;
13 T + +;
14 if st is terminal state then
15 R← 0
16 else R← V (st, θ′

v) // Bootstrap from last state
17

18 for i← step− 1 to t do
19 R← ri + γR
20 dθ ← dθ + ∆θ′log(π(ai|si; θ′)(R− V (si; θ′

v)))
// Accumulate gradients

21 dθv ← dθv + ∂((R−V (si;θ′
v))2)

∂θ′
v

// Perform asynchronous update of θ and θv

22 θ = θ + dθ
23 θv = θ + dθv

24 until T > Tmax

These agents interact with their respective environments asynchronously while
learning at each iteration. Thus, each agent gets its copy of the environment and
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processes the gathered data samples at their arrival. The main thrust of A3C is that
the network controls each agent to gain more acknowledge and contribute to the com-
plete knowledge of the network.

Algorithm 5 (lines 20-24 ) illustrates the policy update we developed using the
A3C approach. As shown in line 21, the A3C agents select different actions in order
to maximize the discounted reward R by updating the hyper-parameter settings such
as discount factor γ. The agents try to maximize the immediate rewards by taking
greedy actions using the policy function π and the Value function V to impact future
global parameters vectors dθ, as shown in line 22. The update operation is performed
until reaching the maximum number of predefined iterations Tmax.

4.4 Performance analysis

This section describes the testbed setup and shows the evaluation of our solution.
Specifically, we describe the results for commonly used evaluation metrics, such as
latency, energy efficiency, and network scalability.

4.4.1 Testbed Setup

We implemented our framework using an emulated SDN environment comprising
Mininet [173] as our network emulators along with OpenFlow SDN switches for cre-
ating different IoT scenarios. Furthermore, we extended Mininet to support Open AI
Gym toolkit [174] for reinforcement learning and deployed IoT nodes in the form of vir-
tualized micro-services using Docker containers in emulated Kubernetes clusters. We
also implemented the SDN northbound application using Python-based Ryu [175] SDN
controller, which performs global traffic management, load balancing, global topology
discovery, and monitoring. We developed our solution using the TensorFlow python
interface for interacting with our SDN environment. In the latter, we used to run
tests on more than 100 nodes, each running over 1, 000 tasks simultaneously. Fur-
thermore, we assessed our solution versus deterministic algorithms, random, and A3C
approaches. The deterministic agent plans tasks according to their order of arrival
and assigns them to the nearest nodes regarding their minimum latency. Whereas
the random agent assigns tasks to the available nodes in a stochastic order, i.e., it
assigns tasks to the available nodes’ strategy less. If a selected node does not have
the required capacity to execute an incoming task, then the random agent leaves its
in-hold state in the waiting queue and assigns tasks to alternative nodes. Thus, the
A3C approach uses multiple agents who independently learn a policy from their envi-
ronment and then collaborate with other agents to create global knowledge to choose
the best decision. The detailed simulation hyperparameters are given in Table 4.1.
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Hyperparameter Value
Learning rate 0.001
Gamma 0.95
Batch size 32
Exploration Max 1.0
Exploration Min 0.01
Exploration Decay 0.995

Table 4.1: Hyperparameter values in simulation

4.4.2 Pre-processing

The first step we performed on our datasets comprises pre-processing input data to
carry out the training of our SDN controller (i.e., the Ryu controller). Carrying
out data refinement allows properly representing and preparing data for our deep
Q-learning model to perform task assignments and scheduling. Therefore, we imple-
mented different techniques to reduce the dimension of our datasets to find the best
representation of our data.

2 4 6 8 10 12 14 16
Encoding dimension

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
co

ns
tru

ct
io

n 
er

ro
r (

M
SE

)

MSE
mse_pca
linear_auto
linear_sigmoid
relu_sigmoid
mse_ica

Figure 4.3: Data Pre-Processing

Figure 4.3 illustrates the Mean Square Error (MSE) regression loss function. This
yield was obtained for different refinement techniques, including Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Deep auto-encoder with
Sigmoid function, rectified linear activation function (reLU), and linear function. As
underscored by Figure 4.3, the Deep auto-encoder with Sigmoid activation function
(i.e., the Relu-Sigmoid) performs better filtering and refinement results while keeping
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the MSE error minimum. We create multiple local minima to find optimal task as-
signment strategies. The sigmoid function makes the loss function non-convex, rather
than creating a single global minimum for our training.

4.4.3 Discounted Cumulative reward

The SDN agent in run-time collects states from the environment and sends back in-
formation to the controller. By trying different actions, the agent learns to optimize
the reward from the environment. The controller can either decide to take the current
policy as the best decision to place tasks on the selected fog-enabled nodes, or con-
tinue learning from the available distributed nodes to find a better candidate to place
the current task requests. All agents are driven by the same goal, to maximize the
expected discounted return.
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Figure 4.4: Cumulative Rewards for Our approach against the three other approaches.

Figure 4.4 compares the accumulated reward got by our approach versus the de-
terministic, random, and A3C approaches. After the deterministic agent increases to
almost 550 earned rewards, it decreases and starts losing rewards. It ushers, losing its
computation power and its ability to complete the planning of newer coming tasks.
As a result, his cumulative reward curve slowly increases for the random agent, which
means some tasks have not been assigned, and we must put them on hold state. For
the A3C agent, its cumulative rewards slowly increase compared to our approach. Our
approach performs better cumulative rewards than the deterministic and random case,
selecting the available node based on the energy level. For the A3C trial agent, it has
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a lower accumulated reward compared to our approach. The update of the cumulative
reward curve of our agent is increasing rapidly compared to other agents. Thus, the
agent has a very optimal investment strategy where the action is selected each time.
It motivates it to maximize the rewarded return.
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Figure 4.5: Local Rewards with Increasing number of nodes

To evaluate the stability and the scalability of our approach, we increased the
number of fog nodes up to 50, as shown in Figure 4.5. Our SDN-enabled decision-maker
agent could quickly learn from the SDN topology network to make optimal decisions.
As a result, the local reward, i.e., optimal local assignment, rapidly reaches almost 300
in a few dozen episodes, as illustrated in Figure 4.5, which means: that optimal local
minimum, i.e., local optimization, can be performed rapidly. We also experimented
with our approach with over 100 in other scenarios (none shown in Figure 4.5), and
we observed the same behavior. Thus, we claim that our deep learning approach helps
implement local, optimal, and global task assignments and schedules for SDN-enabled
IoT networks while respecting QoS constraints.

4.4.4 Energy-Efficiency

We aim to reduce the energy consumption of running fog-enabled IoT nodes as we
described in equation 4.6 and perform better energy efficiency as we consider all nodes
as batteries-powered ones. To evaluate the energy efficiency of our SDN-enabled solu-
tion, the SDN controller trained the agent by 1, 000 episodes. As a result, the agent
should be able to plan 100 tasks for energy-constrained fog nodes. However, each fog

84



Chapter 4. Reinforcement Learning-based Framework for Task Offloading in IoT
Network Edge

node has a limited power capacity, i.e., their battery level during this planning process
is close to 5, 000wh.
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Figure 4.6: Energy Consumption in both tasks’ executing fog nodes

Figure 4.6 illustrates the energy consumption of two available fog nodes, each run-
ning up to 100 tasks simultaneously, using our training approach against deterministic,
random, and A3C training agents. Throughout the planning strategy of these tasks,
the DRL agent in our approach keeps a better battery level in both nodes compared
to the three other algorithms.

Recall that our primary objective is to minimize the overall energy consumption of
our SDN-enabled fog network, as we described in equation 4.6. Figure 4.7 shows that
our approach flags out better energy efficiency, i.e., up to 87% compared against both
deterministic agents, which perform 48%, and the random agent that performs 58%,
and the A3C agent performs 76%.

Our results confirm our claims that the solution we propose can readily be used
to optimize task scheduling and dynamically assignment of complex jobs with task
dependencies in distributed fog IoT networks.

4.4.5 Assessing the Latency performance

Our optimization approach aims at minimizing the network latency for available nodes
during the task executions, as we described in equation 4.5. We gauged the total time
delay expected by available fog-enabled nodes to process the current task’s requests
and communicate the results to remote IoT senders.
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Figure 4.8: Evaluating Latency during Task Scheduling

We measured the total delay the available fog nodes expected to handle the pend-
ing task requests. The set of latency values collected during task scheduling of our
approach, as well as with other approaches to scheduling tasks in two battery-powered
nodes, as shown in Figure 4.8.

The latency results of the different approaches have been summarized in Table 4.2.
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The deterministic approach performed a time latency of 29.59 ms in node 1 and 39.32
ms in node 2. Likewise, the random algorithm carried out 37.27 ms in node 1 and
39.71 ms in node 2. Finally, the A3C algorithm presents an average latency of 16.98
ms at node 1 and 21.23 ms at node 2. We repeated these experiments multiple times,
and we found the average latency expected by our approach is close to 7.84ms in node
1 and 8.31 ms in node 2. Therefore, our approach ensured a minimum latency of all
fog nodes and showed significant latency and energy consumption performances.

Agent node 1 node 2
A3C 16.98 21.23
Random 37.27 39.71
Deterministic 29.59 39.32
Our approach 7.84 8.31

Table 4.2: Average latency

4.4.6 Evaluating the Bandwidth performance

To assess the performance of our approach, we studied the bandwidth usage of our
IoT network during the task scheduling process. Figure 4.9 illustrates the bandwidth
usage during the scheduling by the different approaches described in section 5.2.2.
According to Figure 4.9, our approach outperforms all the other approaches during task
scheduling. Compared to both random and deterministic approaches, which performed
29.6 Gbits/s and 32.15 Gbits/ respectively, our approach outperformed both of them.
The reason is that the deterministic approach uses a deterministic greedy policy to
make the locally optimal choice at each stage without exploration. Furthermore, in
our IoT network, the deterministic algorithm will stick to the current state during
that task assignment step when it is better than the observed states. Nonetheless,
the deterministic greedy policy will find itself trapped in a local optimum, failing to
explore certain other states, which may hold a better local optimum solution. Similarly,
the randomized exploration approach (randomized policy) will explore different states
based on a specific probability distribution, making it slightly slower. Expectedly, our
approach reaches 34.70 Gbits/s, which outperforms the 33.4 Gbits/s obtained with
the A3C approach, even when we use many parallel workers (agents) that interact
asynchronously with separate instantiations of the environment. On the other hand,
the A3C technique tends to suffer when faced with more complex tasks. It takes long
delays between actions and relevant reward signals, i.e., known as Partially Observable
Environments.
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Figure 4.9: Evaluating The bandwidth utilization during task Scheduling

4.5 Conclusion

This chapter describes our approach to developing and implementing task assignment
and scheduling mechanisms for SDN-enabled IoT networks using Deep Reinforcement
Learning. The first contribution concerns the development of an empirical model
and formulating a task assignment and scheduling problem that minimizes network
latency while ensuring energy efficiency. The second contribution aims to develop
different DRL algorithms, including deterministic placement algorithm, random, and
A3C strategies, to show their effectiveness in offloading IoT tasks and reducing the
amount of data carried on the IoT network edge, improving the latency, energy con-
sumption, and the network overhead. Finally, we showed that our intelligent approach
outperforms baseline algorithms in real-time selecting optimal allocation decision poli-
cies for task assignments and scheduling. Furthermore, we have demonstrated that
our approach performed both local and global optimization, ensuring lower-latency
communication and increased energy efficiency.

Although these solutions improve our answer to the problem of this chapter, they,
however, suffer from some other limitations regarding the security and privacy of
data exchanged across distributed IoT networks, which will be addressed in the next
chapter.
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Chapter 5

Enhancing Decentralization of IoT
Network with Blockchain and Deep
Reinforcement Learning

5.1 Introduction

In this chapter, we provide a deep learning technique that integrates SDN and blockchain
to accomplish job scheduling and offload, increase the response rate of IoT services,
and try to execute dynamic resource management. First, we introduce in Section 5.2
an overview of the architectural design of our solution approach. First, we intro-
duce in Section 5.2 a novel architecture that offers a trustworthy IoT nodes place-
ment with respect. Then, in Section 5.2.2 we formulate a task assignment and multi-
objective Markov chain optimization approach to model the transition of trust features
in Blockchain-enabled nodes. Next, we study in Section 5.3 different types of models
that can address our task scheduling problem in our proposed platform through Deep
Reinforcement Learning algorithms including Deep Q-Learning (DQN), Double DQN
(DDQN), Dueling DQN and Dueling DDQN, as well as the Asynchronous Actor-Critic
Agent (A3C) algorithm. We also show the feasibility of blockchain technology to con-
struct a trust-enabled task offloading scheme for SDN-enabled IoT networks. After
that, we evaluate in Section 5.4 our proposed architecture in terms of low-latency
communication overhead and low-energy footprint. Finally, we conclude this chapter
in Section 5.5.

5.2 Overview of the Architectural Design

We used Fog Computing technologies based on blockchain and SDN to have fast,
secure, and reliable communication in an IoT environment. Specifically, our work
helps to efficiently distribute tasks to fog nodes to serve application requests from IoT
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Figure 5.1: Blockchain-based SDN for Task Scheduling in IoT Network

devices with very low latency and conserve the overall system powered-battery.

5.2.1 System Architecture

Figure 5.1 shows a high-level architecture of our approach, which involves the following
layers.

1. Edge Network: This layer represents the perception of the IoT environment
and contains the IoT sensors and devices responsible for detecting the data in
real-time and transmitting it to the next sublayer. The IoT devices send their
requests to perform their tasks to the controllers at the fog nodes.

2. Data plane: The fog nodes are represented by this layer, which incorporates
a variety of network equipment and devices such as SDN switches and routers.
The IoT devices can be provided service by fog nodes to compute some tasks.
SDN-based switches are in charge of sending data and receiving OpenFlow rules
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by the SDN controller.

3. Blockchain: This layer ensures the protection of all types of communications be-
tween IoT stakeholders, such as switch and SDN controller interactions. Blockchain
nodes allow for creating an encrypted record of all transactions that is impossible
to alter and can be shared with the whole network devices.

4. Control plane: This layer maintains a logical and high-level view of the net-
work topology provided to different services for managing the network. This
is important for efficient offloading tasks assigned to available resources at fog
nodes.

5.2.2 Problem statement

This section presents different aspects of our system from a modeling point of view.
First, we explain task scheduling using deep reinforcement learning (DRL) in an IoT
environment.

5.2.2.1 Task scheduling: Deep Reinforcement Learning based SDN Con-
troller

In fog computing, task scheduling is a service that allows efficient distribution of the
arriving tasks coming from mobile IoT applications to process in the fog nodes. The
objective is to maximize efficiency and the capacity of task processing requests coming
from mobile IoT applications while guaranteeing minimal latency with energy-saving.
To address the task scheduling and offloading problem, we combine fog networking-
based Blockchain with the SDN architecture for flexible and centralized operations,
where the control plane provides decision-making according to a better strategy. In
addition, the data plane performs the forwarding of tasks. Hence, we added service at
the Northbound plane to connect with the SDN controller level to find and select the
best scheduling decision policy and offload a task. The Task scheduler service consists
of a queue containing task processing requests from mobile IoT applications and a
scheduler decision-maker based on deep reinforcement learning.

An approach can be formulated to perform the task scheduling problem, where
the SDN controller can be picked as the agent to make a series of decisions using
deep reinforcement learning (DRL) [176]. Specifically, DRL is concerned with learning
to solve a problem by trial and error. A Markov Decision Process (MDP) based
model, motivated by recent progress in implementing DRL techniques, can be used to
formalize our problem concerning task scheduling and offloading.
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5.2.2.2 Secure Communication Based on Blockchain

The IoT is sometimes seen as an opening for cyber-attacks. This can sometimes
be the case because you are connecting equipment that was not previously available
and was not originally designed with these cyber threats in mind. Security issues
are summarized when communicating due to a breach of security policies. To ensure
secure communication and avoid the anonymity of the data transmitted, Blockchain
protocols must be integrated with the different layers of the SDN-IoT architecture,
using the encryption function used to create and validate blocks. These blocks contain
the transactions that will be added to the Blockchain ledger that can be distributed
on the network. To ensure P2P communication between stakeholders, an Ethereum
decentralized exchange protocol allows users to create smart contracts. These smart
contracts are based on a computer protocol to verify or enforce a mutual contract.
They are deployed and publicly available on a Blockchain.

To secure communications in the network IoT, we use Blockchain smart contracts.
A smart contract is a transaction verification application that is submitted to the
Blockchain network and executed dynamically [177]. He acts as an agent for two
IoT devices, including the fog node and SDN controller. The SDN controller, in
our case, will store data on the Blockchain network using a smart contract, and the
fog nodes (SDN Switches) will use the smart contract to collect data stored on the
Blockchain network. A smart contract is a software-defined protocol that digitally
enforces the settlement of a contract between multiple participating IoT nodes within
the Blockchain network that will perform traceable and immutable transactions.

5.2.2.3 Statement of the Scheme

It is assumed that:

• The SDN controller is safe

• All other IoT devices might have been hacked.

The SDN controller receives a set of A tasks requested by the mobile IoT applications,
assigned to the corresponding fog nodes to process them. The tasks are represented
by:

A = {A1, A2, . . . , AA} (5.1)

And the fog nodes denoted by:

F = {f1, f2, . . . , fN} (5.2)

The SDN controller communicates with the IoT network stakeholders from the Blockchain
(BC) system, where the OpenFlow data will be transferred as transactions in a block
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in a time slot. These blocks must be verified and validated by a single fog node already
selected by the BC (BCO) through a special consensus.

There are T time slots during the period when a period is a time between an
invalidated block issued by the controller, and he is replied with a validated block.
The time instant denoted by t, when t ∈ {1, 2, 3, . . . , T}

Let consider γf (t) represent the real trust features of fog node f ; when f ∈ F and
we consider the set of available trust features of fog node f is Φ = {Φ0, Φ1, . . . , ΦP −1}

We can use a Markov chain to model the transition of trust features in BC nodes. ⇒
The transition probability of γf (t) from one state Vs to another state Ws be KVsWs(t);
where

KVsWs(t) = Pr(γf (t + 1) = Ws|γf (t) = Vs)
where Vs and Ws ∈ Φ

(5.3)

The message denoted m communicated between the SDN controller and another fog
node may be verifying signatures, generating a message authentication code (MAC),
or verifying MAC.

Let consider Am = {Sm, Cm} denote a computation task related to message m,
where Sm is the size of message m and Cm the required number of CPU cycle to
complete this task.

We model the computation resources in fog node f for BC system as random vari-
able Υf . The parameter Υf can be split into Y discrete intervals as Y = {Y0, Y1, ..., YY −1}
and we denoted Υf (t) the computation resources at time slot t. We use a Markov chain
to model the transition of computation state in fog nodes.
⇒ The transition probability of Υf (t) from one state as to another state bs be Zasbs(t),
as

Zasbs(t) = Pr(Υf (t + 1) = bs|Υf (t) = as)
and as, bs ∈ Y

(5.4)

The execution time of computation task Am, can be denoted:

Exm = Cm

Υf (t) (5.5)

Thus, the computation rate is:

Rf (t) = af (t) Sm

Exm

= af (t)SmΥf (t)
Cm

(5.6)

where af (t) means when fog node allocated (equal 1) to execute a task related to
message or not allocated (equal 0). At time slot t, only one fog node is assigned to
the BC system.

According to a task assignment strategy described in the part 5.2.2.1, the SDN
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controller must generate (b ≥ 1) stream entries to transmit the packets. We specify P

as the processing strategy and r is a data of flow rule to contain the decision to assign
tasks to fog nodes. P and r must have the following relation:
P = {r1, r2, . . . , rb} ; where r = Xij ; denotes the assignment of task Ai on fog node
fj computed in the following way:

Xij =
1, if Ai runs on fj

0, otherwise
(5.7)

Subsequently, the SDN controller sends to each switching device the flow rules,
which contain the task assignment decisions using the blockchain network in the form
of transactions that are represented by:
H = {h1, h2, . . . , hb}

To have a confidential communication between the SDN controller and the switches
and that the flow rules will be secure, it is necessary that the content of P and itself
in H.

An attacker can make his interventions mainly on the traffic by adding, deleting,
and modifying flow entries. For example, suppose that g data for flow rules are attacked
in P , so malicious flux data P ′ is made. The scenarios we can have been:

• Delete g flow entries: P ′ = {r1, r2, . . . , rb−g}

• Add g flow entries: P ′ = {r1, r2, . . . , rb+g}

• Modify g flow entries: P ′ =
{
r1, r2, . . . , r′

b−k+1, . . . , r′
b

}
With our approach, the attacker cannot make modifications to the data flows and
cannot inject flows into the switch flow tables without going through Blockchain,
where the BCO will reject his interventions in the phase of verification described in
the section below.

5.3 Proposed approach

In this section, we explain how to respond efficiently to requests for assigned tasks to
fog nodes according to an efficient strategy while minimizing end-to-end delays and
extending the battery life of our system by optimized power consumption. The task
assignment decision and offloading will be communicated securely through the means
of the blockchain, as illustrated in the figure 5.2.

5.3.1 Task scheduling

The IoT environment is very dynamic, making it challenging for the SDN controller
to plan tasks properly. As a result, we employ the Deep Reinforcement Learning-
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IOT Device SDN Switch Blochain Node (BCO) SDN Controller Fog nodes

Figure 5.2: Assign task with secure communication

based technique for effective task placement in the relevant fog nodes to anticipate
the best policy. Furthermore, the SDN controller uses a learning agent based on the
Asynchronous Advantage Actor-Critic (A3C) algorithm [117] which maps the states
of the environment to the actions that the agent can take to move from one state to
another to maximize a reward at the overtime. Indeed, the SDN controller selects
these actions during execution, even if an agent does not complete the knowledge of
rewards and state transition functions.

In each state, the agent can predict both the value function V (s) and the optimal
policy function π(s). The learning agent uses the value of the Value (Critical) function
to update the optimal policy function (Actor), which means the probabilistic distri-
bution of the action space. The learning agent determines the conditional probability
P (a|s; θ), i.e., the parameterized probability that the agent chooses action a when it
is in state s. The agent also learns how much better the rewards were than expected.
This gives the agent new insight into the environment, and thus the learning process
is better. The following expression gives the benefit metric:

A = Q(s, a)− V (s) (5.8)

The learning of the task allocation policy is represented by algorithm 6 based on the
Asynchronous Advantage Actor-Critic (A3C) model, which relies on multiple workers
that are likely to explore different states and transitions in our environment. Each
worker has its network parameters and a copy of our environment that makes it possi-
ble to provide an optimal decision to assign the tasks to the fog nodes. These workers
interact with their respective environments asynchronously, learning with each inter-
action. A global network controls each worker. As each worker gains more knowledge,
it contributes to the total knowledge of the global network. A global network provides
each worker with more diverse training data. This configuration allows each worker
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to gain knowledge from the experiences of another agent, allowing the overall ”global
network” to be better.

Algorithm 6: Asynchronous Advantage Actor-Critic Agent
(A3C)

Output: Model trained with workers to assign task to node.
1 for i← 1 to n do // n is the number of workers
2 Wi.run() // Start worker thread

3 step← 1 // ForEach worker Wi, initialize step counter
4 T ← 0 // Initialize episode counter
5 repeat
6 dθ ← 0; dθv ← 0 // reset gradients
7 θ′ ← θ; θ′

v ← θv; t← step // Synchronize thread-specific
parameters

8 s← st // Initialize iteration
// Get observation state

9 while s is not terminal and step− t < tmax do
10 Simulate action at according to π(at|s; θ )
11 Receive reward rt and next state st+1
12 step + +;
13 T + +;
14 if st is terminal state then
15 R← 0
16 else R← V (st, θ′

v) // Bootstrap from last state
17

18 for i← step− 1 to t do
19 R← ri + γR
20 dθ ← dθ + ∆θ′log(π(ai|si; θ′)(R− V (si; θ′

v)))
// Accumulate gradients

21 dθv ← dθv + ∂((R−V (si;θ′
v))2)

∂θ′
v

// Perform asynchronous update of θ and θv

22 θ = θ + dθ
23 θv = θ + dθv

24 until T > Tmax

5.3.2 Secure communication

In our approach, we have designed a smart contract executed by the blockchain system
to provide secure and confident communication in the IoT network based on SDN. We
will use Ethereum blockchain technology [148] for intelligent contract management.

In figure 5.2, we show the process from demand to treat the task request by IoT
device to offloading data while ensuring the verification and validation by blockchain
node. Indeed, the SDN controller decides with his technique (DRL) to choose an
optimal fog node corresponding to performing task requests. He generates a flow rule
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OpenFlow to be inserted in the OpenFlow table of SDN Switch. Both interacting
nodes, such as IoT device requests and fog nodes, must add their IDs within the
packet obtained from the SDN controller.

After that, the SDN controller sends the packet containing data for the flow rule
to storage in the blockchain. However, the blockchain node (BCO) receives the packet
from the SDN controller. He will be verified by ID (hash address) with other nodes.
The BCO is responsible for assigning all the nodes distributed in the network to
Blockchain hash addresses. When a fake node attempts to access the network pre-
tending to be real with a fake ID (hash address), it will not be authenticated on the
recipient’s side as it will not be stored on the distributed blockchain ledger. Hence,
the data from the sender node will also be deleted the node will be blocked for further
communications. On the other side, if the recorded Blockchain addresses verify the
data obtained from a sender node, the fog node considers the data valid and deposited
in the database.

For the validation of transactions, we use Proof-of-Authority (PoA) consensus in
Ethereum Blockchain [178] where the mining is carried out faster because only the
predefined Blockchain ledger authority has the privilege to mine the block and the
rest of the nodes maintain data transparency.

5.3.3 BC-based consensus protocol

The SDN controller collects the OpenFlow data from the Switches. Then it generates
the decisions necessary for optimally executing the task planning service.

These decisions will be considered as transactions will be validated in a block. The
SDN controller communicates with the BC system to verify and validate its block and
synchronizes it with the network’s stakeholders.

This block verification and validation process follows the following steps:

1. The SDN controller sends the block to all nodes by the BC system. Only one
node will be selected as an ordered node (BCO) responsible for processing the
controller request. First, the BCO node verifies the MAC of the block. Then it
is a signature when they are valid. It then verifies the MAC of all transactions
and their signatures.
We consider the following parameters:

• α: generating one MAC

• αc: verifying one MAC

• β : verifying one signature

• bs: the batch size of transactions issued by the SDN controller

• v : the size of valid transactions
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We ignore the cost of sending and the cost of receiving. The cost at BCO is
calculated as follows: (1 + bs/g) ∗ (α + β)

2. The BCO node sends a message to all the other nodes of the BC. The latter
checks the MAC of BCO and the signatures and the Mac of each transaction.

• The cost at the BCO node is equal to (N − 1)α

• The cost at each node of BC without BCO node is: α + (bs/g)(α + β)

3. Subsequently, each BC node sends a message to all the other nodes from which
each node will receive D messages. the BCO node must verify D MAC, and the
other nodes generate (N − 1) MAC and verify D MAC.

• The cost at the BCO node is Dα

• The cost at each node of BC without BCO node is (N − 1 + D)α

4. After that, all nodes send a response message; hence, each node will receive D

messages. The BCO node needs to generate (N − 1) MAC and verify D MAC,
and each other node generates (N − 1) MAC and verifies D MAC, so it’s the
same cost at the BCO node and other nodes.
The cost is : (N − 1 + D)α

5. Finally, the SDN controller receives a D message from all nodes consisting of a
validated block, and the ledger of the BC system will be updated by adding this
new block. The BCO node and the other nodes need to generate (bs/g) MAC.

• The cost at the controller is : (bs/g)α

• For one transaction, the cost at BCO node is :
I = (1

g
+ 1

bs
)β + (1

g
+ 1

bs
)α + (2N+2D−2

bs
)α

and the cost at the other node is :
J = (1

g
)β + (2

g
)α + (2N+2D−2

bs
)α

The energy consumption defined as following :

EC = (I + J)× Pie (5.9)

Where Pie is the idle power
The objective function is to minimize the throughput and energy consumption

formulated as follows:

• We assume as the computation speed of τ Hz for each module in the fog node,

• We consider the order node (BCO) is not fully trusted. He has Z trust to affect
the system performance, and Z ∈ [0, 1].
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Ψ = min[Zτ

I

Zτ

J

Zτ

EC
]

Ψ = min[ Zτ

(1
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+ 1
bs

)β + (1
g

+ 1
bs

)α + (2N+2D−2
bs

)α
Zτ

(1
g
)β + (2

g
)α + (2N+2D−2

bs
)α

Zτ

[(2
g

+ 1
bs

)β + (3
g

+ 1
bs

)α + (2N+2D−2
bs

)2× α]× Pie

] (5.10)

5.3.4 Formulation Problem

We formulate this problem as a Markov decision process (MDP), defining the state
action, action space, and the reward function.

• State space: The learning agent must detect all the trust characteristics of all
the nodes (γN(t)) as well as the computing capacities of all the fog nodes ΥN(t).
Therefore, the state space will be represented as follows:

S(t) =
γ1(t) γ2(t) . . . γN(t)
Υ1(t) Υ2(t) . . . ΥN(t)

 (5.11)

where S(t) represent a state at time slot t

• action space: the agent needs to decide the selection of an ordered node (BCO)
among the nodes of the BC system and the allocation of computation resources
of the fog node.
The action space denoted by: A(t) =

{
OS(t), AM(t)

}
.

– P S(t) = [o1(t), o2(t), . . . , oS(t)] ; 1 is order node (BCO) and 0 is otherwise

– AM(t) = [a1(t), a2(t), . . . , aM(t)] ; 1 the fog node allocated and 0 is otherwise

• reward function: To improve the throughput and the energy consumption
of the consensus protocol for the BC system, we define the reward function as
follows:

ℜ = λ[ Zτ

(1
g

+ 1
bs

)β + (1
g

+ 1
bs

)α + (2N+2D−2
bs

)α

+ Zτ

(1
g
)β + (2

g
)α + (2N+2D−2

bs
)α

+ Zτ

[(2
g

+ 1
bs

)β + (3
g

1
bs

)α + (2N+2D−2
bs

)2× α]× Pie

]

(5.12)

The parameter λ takes a positive sign whenever the assigned task is offloaded
and executed by the fog node and a negative sign otherwise.

99



Chapter 5. Enhancing Decentralization of IoT Network with Blockchain and Deep
Reinforcement Learning

5.4 Performance Analysis

In this section, we present a simulation scenario to evaluate the performance of our
proposed approach. First, we describe the tested setup, followed by simulation results
and the corresponding discussions.

5.4.1 Testbed Setup

Mininet [173] as our embedded network emulators and Ethereum as a private Blockchain,
as well as OpenFlow SDN, switches to create different IoT scenarios. Additionally, we
extended Mininet to support the Open AI Gym toolkit [174] to carry out our deep re-
inforcement learning. Besides, we implemented an SDN northbound application based
on the SDN Ryu controller [175] to perform global IoT traffic management, load bal-
ancing, global topology discovery, and monitoring. Furthermore, we developed our
algorithms based on TensorFlow, an open-source Python-based artificial intelligence
library for fast numerical computing. We also created an SDN-enabled blockchain
interface using Web3.py, a Python library built for interacting with the Ethereum
blockchain. We have developed over 1, 000 of IoT tasks simultaneously inside each IoT
edge node for the experiments. Each IoT edge node generates over 10, 000 blockchain
blocks over time. Each block hold over 106 IoT transactions. To evaluate the effective-
ness of our approach against different DRL approaches, we first have evaluated different
blockchain consensus algorithms, i.e., Proof of Work (PoW) and Practical Byzantine
Fault Tolerance (PBFT), against our solution based on the Proof of Authority (PoA).
Then, we developed different DRL approaches, i.e., Deep Q-Learning (DQN), Double
DQN (DDQN), Dueling DQN, and Dueling DDQN, and evaluated them against our
approach based on Asynchronous Actor-Critic Agent (A3C) Algorithm. The detailed
simulation hyperparameters setting is given in Table 5.1.

Hyperparameter Value
Learning rate 0.0001
Gamma 0.99
Update-freq 20
Num-Threads 5
Optimizer RMSprop

Table 5.1: Hyperparameter values in simulation
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5.4.2 Experimental Results and Discussion

5.4.2.1 Evaluation of Network Latency for different consensus algorithms

Various consensus algorithms have been studied to achieve reliability in IoT networks
where multiple distributed unreliable nodes are involved in different communication
scenarios. Although blockchain enables sharing IoT data safely and storing all kinds
of log records on it, however, incurs a higher time delay in committing transactions.
IoT devices need low latency when making permanent changes within the transactions
due to their limited computation and constrained resources. Therefore, a consensus
mechanism for IoT edge networks should also reduce latency to validate IoT blocks on
the blockchain. The blockchain consensus time delay, also called blockchain network
latency, is the time delay for the first confirmation of acceptance of a transaction by
the network.

The evaluation of our solution approach for three types of consensus PoW, PBFT,
and PoA are depicted in Figure 5.3 as a comparative histogram in terms of network
latency. In addition, our approach is based on PoA and is compared against two other
consensus mechanisms, i.e., Pow and PBFT.
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Figure 5.3: Latency in overall network to different consensus.

The PoW requires computational resources to mine the block versus the PoA and
PBFT, which provide equal importance to all participating nodes in the peer-to-peer
IoT network. This figure shows that the latency with PoA less latency is almost 8.3sec

to mine a block versus the PoW and PBFT.
Our experiments show that the latency of PoW consensus achieves a higher latency

101



Chapter 5. Enhancing Decentralization of IoT Network with Blockchain and Deep
Reinforcement Learning

than other consensus algorithms. Indeed, PoW consumes a lot of computational re-
sources to confirm a block. Similarly, although the practical Byzantine fault tolerance
(PBFT) achieves better latency performance against the PoW because it gives equal
importance to all the participating nodes of the peer-to-peer network, it performs a
higher latency than our approach that implements the PoA consensus. Specifically, our
approach achieves an average latency of 8.3 seconds for confirming an IoT transaction.
In addition, the voting-based PBFT consensus achieves an average latency of 10.38
seconds to validate a transaction. The PoW consensus validates a new IoT transaction
in an average time delay of 13.84 seconds. Therefore, our approach outperforms these
approaches and archives better network latency.

5.4.2.2 Evaluating the Transactions Throughput

There are two subcategories of blockchain throughput: the read throughput and the
transaction throughput. The former measures the rates at which data are read, i.e.,
the number of reading operations completed in a given period, formally expressed in
several reads per second (RPS). However, read throughput is often not considered
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Figure 5.4: Transaction Rates (TX/sec) for Different Consensus Mechanisms

a critical metric to evaluate the quality of service in the blockchain network, since
blockchain nodes typically achieve a significantly higher read and query efficiency.
The letter is the transaction throughput, which measures how fast the blockchain can
process the incoming IoT transactions, expressed in transactions per second (TPS).
The blockchain network throughput is not measured at a single node, but it reflects
the overall performance of the blockchain network across all nodes. Specifically, the
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blockchain network throughput is the relationship of the total valid transactions per
the whole time in seconds. Figure 5.4 shows the transaction rates for the PoW, PBFT,
and our implementation of the PoA consensus algorithm. The transaction throughput
increases linearly with the increase in block size. Our approach based on the PoA
consensus achieves 6, 000 transactions compared against the PoW and the PBFT. The
PoW achieves the lowest transaction throughput, i.e., an average of 4, 000 transactions
per second, and the PBFT achieves an average throughput of 5, 000 transactions per
second.

5.4.2.3 Valid blocks for SDN-BC system

The controller sends an invalidated block that contains transactions representing the
data of OpenFlow rules. AFTER ATTAINING CONSENSUS, the BC system then
delivers the relevant verified block to all fog nodes.
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Figure 5.5: Comparison between different DRL models.

All fog nodes then learn the payloads in each transaction, allowing them to rec-
ognize events and OpenFlow orders from the SDN controller. Finally, these steps are
carried out in the consensus phase, when a fog node can synchronize network-wide
views.

Figure 5.5 shows a comparative study of valid blocks concerning training episodes
for different Deep Reinforcement Learning models in the SDN-BC System, where each
point is the average number of valid blocks per episode. Each DRL agent runs in
AdamOptimizer [179] with a learning rate of 1e−4. This figure shows that training
agents for job scheduling in an SDN-BC System allow almost 8, 000 blocks to be verified
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and validated by an A3C agent using five workers, where each worker is assigned to a
fog node. However, figure 5.6 presents the valid transactions in our SDN-BC System
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Figure 5.6: Comparison between different DRL models.
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Figure 5.7: A3C model with different number of workers.

for different Deep Reinforcement Learning models where the A3C agent performs to
obtain 8000 ∗ 103 transactions.
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The A3C approach uses multiple agents that independently learn a policy from
their environment and then collaborate with other agents to create global knowledge
to choose the best decision. It is proven in the previous figures that the A3C model is
the best compared to the other models.

Afterward, we studied the impact of the number of workers used asynchronously
to learn an A3C agent to schedule tasks at different nodes. The number of workers is
increased up to 5, as shown in figure 5.7. We observed that our A3C agent, with five
workers, where each worker is assigned for each fog node to valid blocks, is the best
to have a large number of blocks against others.

5.4.2.4 Throughput for SDN-BC system

The SDN controller must judge view modifications, access selection, and computing
resource allocation to optimize performance, such as throughput. As previously stated,
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Figure 5.8: Throughput for different Deep Reinforcement Learning models.

we structure this joint problem as a Markov decision process in this part by defining
state space, action space, and reward function. At time slot t, the learning agent must
perceive state s(t) and make joint judgments regarding view updates, access selection,
and computing resource allocation. As a result, the learning agent must know all fog
node trust characteristics and edge computing node computational capabilities.

In this part, we study the throughput of our SDN-BC system during the learning
of different DRL agents of 1, 000 training with 1, 000 tasks. Figure 5.8 presents the
throughput in the different fog nodes for different Deep Reinforcement Learning mod-

105



Chapter 5. Enhancing Decentralization of IoT Network with Blockchain and Deep
Reinforcement Learning

els, calculated by mining blocks per second. As we can see from this figure, the A3C
agent better out the other models where it can obtain 0.175 blocks/second.

5.4.2.5 Mining blocks time for SDN-BC system

Satoshi Nakamoto assured us that the complexity of mathematical issues would rise
with time; mining one block takes 10 minutes and, in addition, the time your transac-
tion is finished. Therefore, the time it takes a miner to mine a block in a proof of work
method depends entirely on the mathematical problem’s difficulty. However, Proof
of Work requires computational resources at a critical time to mine the block, hence
necessitating the investigation of alternative consensuses such as PBFT and PoA.
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Figure 5.9: Runtime of different learning DRL models.

In our SDN-BC system, we studied the ability to process many block validations
for the different DRL models in a minimum of time.

Figure 5.9 shows the runtime for learning to schedule tasks with different DRL
models to mine blocks. It is a trade-off to make valid blocks with the runtime. We
can see that the A3C agent is the better model to make almost 8, 000 blocks during
nearly 50, 000 sec compared to other models.

In addition, figure 5.10 shows a comparative study between different DRL models
about the time valid blocks during the phase of learning. It turned out that the A3C
model is the best approach. The latter had an average of 8.3 seconds to verify and
validate a block and associate it with the Blockchain than the other models.
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Figure 5.10: Block time of different learning DRL models.

5.4.2.6 Energy-Efficiency

One of the essential aspects of monitoring and optimizing the Blockchain-enabled
SDN-IoT architecture is energy usage. Our solution beats many DRL models that
employ the PoW or PBFT consensus methods, which do not account for the limits
of IoT devices, which introduce overhead in energy usage. Using the PoA consensus
to mine a block, we can efficiently decide and send packets through the A3C model
for optimum scheduling tasks. Our strategy has been demonstrated to be effective in
Figure 5.11.

We consider that batteries power all the nodes of our SDN-BC network, and we
want to reduce the overall energy consumption of our system. Therefore, we trained an
SDN controller agent per 1, 000 episodes that should be able to schedule 1, 000 tasks
at low power fog nodes. Figure 5.11 illustrates the energy consumption of different
DRL models that were mining blocks in our SDN-BC system. We can see that the
A3C model allows keeping the total energy of our system against the other models.

Furthermore, to study the impact of PoW, PBFT, and PoA consensus on the energy
efficiency of our system that we can see in the figure 5.12 shows the PoA consensus is
better than the other consensus.

5.5 Conclusion

In this chapter, we have presented our contribution to developing a novel Blockchain-
based that uses advanced deep learning mechanisms to support energy-aware task
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scheduling and offloading in an SDN-enabled IoT network. The first part has been de-
voted to the design of our architecture and the proposed task offloading and scheduling
approach, which considers battery-powered IoT devices. First, we introduced a three-
layer architecture that included the edge network layer, data plane, blockchain layer,
and SDN control plane layer. Then, we have demonstrated that blockchain technology
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may be used to build a trustless task offloading scheme for SDN-enabled IoT networks.
It delivers improved dependability and low latency while providing faster throughput
and reduced network overhead using a Deep Reinforcement Learning algorithm. Next,
we have developed a scheduling policy based on the Asynchronous Actor-Critic Agent
(A3C) algorithm in symbiosis with an election-based consensus mechanism to validate
IoT transactions, which provides high performance and fault tolerance while ensuring
low latency and achieving energy efficiency. We proposed a task offloading scheme that
incorporates a cycle-accurate energy consumption model, load-balanced, and energy-
efficient design of IoT-powered edge devices to reduce energy consumption. Finally,
the results of the experiments confirm that our approach that Combining A3C pol-
icy and PoA blockchain consensus offers 50% better energy efficiency than PoW and
PBFT baseline consensus algorithms while ensuring lower network overhead and low
latency.
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Conclusion and Perspectives

6.1 Conclusion

The main challenging issues addressed in this thesis concern the design of scalable,
energy-efficient, low-latency, and lower network overhead IoT network edge architec-
ture for smart and intelligent environments, such as smart buildings, smart cities, etc.
Our goal was to reduce the energy impact of computing and communication infras-
tructures, while improving service quality, which is critical for lowering environmental
effects and ensuring the infrastructure’s long-term viability while transitioning to re-
newable energy sources. The energy effect of fog and the management of computing
and communication resources in these infrastructures is a relatively new issue that has
received little research.

These preliminary studies provide insight into the viability of fog solutions from an
energy standpoint to enable IoT applications. IoT applications generate a great deal of
complexity due to their heterogeneity (communication protocols, calculation requests,
IoT objects, and hardware resources), distributed modeling into interdependent ser-
vices, and various Quality of Service requirements. In addition, most IoT applications
have high QoS requirements, mainly expressed as response time requirements, and
necessitate near-instantaneous processing times.

To address this plethora of challenges, the contributions made by our research work
have been presented in several stages and shown as follows:

1. In the first contribution, we proposed a comprehensive architectural design to
empower SDN-enabled Context-Aware IoT systems and networks to create a flex-
ible, agile, and reconfigurable framework to improve energy efficiency in smart
buildings and enable automated building operations and control to implement
an intelligent energy management system in smart micro-grids. First, we inves-
tigated many factors that influence energy consumption in campus buildings.
Next, we created a context-awareness model that allows the most accurate pre-
diction of users’ actions based on their daily energy consumption profiles in
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educational and residential facilities. Then, for designing and delivering cus-
tomized IoT services on-demand, we launched an IoT service chaining solution.
Finally, we included a machine learning engine that aids the context reasoning
framework in inferring context judgments and feeding back modifications to the
SDN controller for automated traffic steering and policy insertion.

2. In the second contribution, we demonstrated the possibility of establishing a
job assignment and scheduling algorithms for SDN-enabled IoT networks by
using Deep Reinforcement Learning. We devised a job assignment and schedul-
ing problem that reduces network latency while maintaining energy economy.
Our method beats deterministic placement algorithms, random placement algo-
rithms, and A3C strategies in determining optimum allocation decision rules for
task assignments and scheduling in real-time. Additionally, our method is op-
timized locally and globally, resulting in decreased communication latency and
higher energy efficiency.

3. Finally, in the third contribution, we demonstrate the viability of using blockchain
technology to build a trustless task offloading scheme for SDN-enabled IoT net-
works. Our solution approach delivers improved dependability and low latency
while providing faster throughput and reduced network overhead using a Deep
Reinforcement Learning algorithm. Furthermore, we proposed a three-layer ar-
chitecture that included the edge network layer, data plane, blockchain layer,
and SDN control plane layer in our approach. The suggested task offloading
and scheduling approach considers battery-powered IoT devices, incorporating
a cycle-accurate energy consumption model, load-balanced, and energy-efficient
design of IoT-powered edge devices to reduce energy consumption.

6.2 Perspectives

The various works carried out in this thesis open the way to diverse research perspec-
tives linked to the extension of the contributions mentioned above. These perspectives
are in the short term. See immediate directly related to this work and which are in
progress concerning the use of microservice architecture for highly deployable IoT and
long-term perspectives that concern the interoperability and connectivity between het-
erogeneous blockchain platforms for secure IoT data sharing, as well as the integration
and the adaptation of our work to other architectures.

The short-term perspectives’ outlook is as follows:

• Federated Learning for online task offloading and resource allocation:
This research work explained how the A3C approach and how the workers’ agents
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interact with their environments, collect experiences, receive rewards when ex-
ploring different IoT network states and send their model to the leading agent
to perform global optimization. Then, the agent updates its model and synchro-
nizes it with other distributed workers. However, these distributed agents do
not share transitions but collect their own experiences. As a result, those transi-
tions are often Not Independent and Identically Distributed (Non-IID) and are
generally unbalanced. Federated Machine Learning (FedML) [180] is recently
envisioned as a promising approach to solve the problem of the non-IID data in
distributed massive IoT. Instead of sharing and disclosing the training dataset
with the main worker agent or for A3C, the model hyperparameters are optimized
collectively by substantial interconnected IoT devices that act as local learners.
Additionally, FedML maintains privacy as data are not exported to third-party
servers but remain inside the IoT devices. Thus, it enables aggregating and
updating hyperparameters by leveraging the cooperation between massive IoT
devices. Therefore, our future work will develop distributed intelligence using
FedML to create an online task offloading and resource allocation with enormous
IoT networks.

• Cell-Based Microservices for Highly Deployable IoT: This thesis pin-
pointed how blockchain verifier nodes could be deployed to the virtualization
layer and a controller service abstraction layer using Kubernetes microservices
through an Infrastructure as Code (IaC) model. At the same time, these mi-
croservices offer a global security approach chained as a single service to miti-
gate attacks. However, it is associated with the complexities of the distributed
system and a higher chance of failure during communication. Cell-Based Mi-
croservices [181] are recently envisioned as a promising approach to building
independently deployable components that can be loaded from multiple network
locations and repositories at runtime. Furthermore, unifying and harmonizing
these components will enable horizontal and vertical scalability and deployment
independence. Thus, multiple federated IoT application components can run in-
dependently and be redeployed without restarting IoT applications or interrupt-
ing IoT services. Therefore, our future work will develop distributed Cell-Based
microservices to ensure deployment independence and promise flexibility and
autonomy. The sought-after goal is to guarantee modularity and cooperation
among distributed federated IoT networks.

In the long term, the main prospects envisaged concern:

• Enforcing IoT data integrity and privacy with homomorphic encryp-
tion: In this research work, blockchain helped create distributed and immutable
audit trail reviews of IoT transactions. Smart contracts are often open to the

112



Chapter 6. Conclusion and Perspectives

public and perform only computations over plaintext data. They are made avail-
able on the Internet so that users can simply access them by selecting the cor-
rect URL. However, IoT data are analyzed over edge devices, which are usually
more complex and sensitive to storage in the public blockchain (e.g., healthcare
data). Security in Blockchain could be enhanced with Homomorphic encryption
(HE) [182] to enable computation on encrypted data without leaking any infor-
mation about the underlying data. HE performs calculations on encrypted data
without decrypting them, and data are analyzed without breaching personal
privacy. Therefore, our future work will integrate Blockchain transactions (i.e.,
local model parameters) with homomorphic encryption to secure data with high
privacy in a decentralized model that enables high-performance data distribu-
tion and scalable communication between edge nodes, even in federated models
to provide better privacy-preservation.

• Interoperability and Connectivity between heterogeneous blockchains:
The architecture described in this work highlights the pivotal role of blockchain
in enforcing the security and the efficiency of SDN-enabled IoT networks to-
wards its integration in a large-scale massive and resilient 5G ecosystem. We
argue that with the Industry 4.0 rocket, the considerable investment being made
in blockchain platforms (e.g., Hyperledger, Ethereum, R3 Corda, Tezos, EOSIO,
etc.), along with various collaborating companies– each focusing on a specific
platform that fulfills their particular commercial tasks—makes it impossible to
impose a single blockchain solution for multiple companies. It would be more ex-
citing to keep these participants having their data and management system, while
creating bridges between blockchains to ensure interoperability among them. We
believe that the development of Oracle blockchain [183] to format messages for
communication, not only between heterogeneous blockchain platforms but also
with the existing enterprise management system, can offer interoperability be-
tween organizations and networks. For example, transactional activities on one
blockchain can be used as inputs to trigger the execution of another processing
on a different blockchain. Therefore, our future work looms to consider the de-
velopment of blockchain Oracle to offer bridges for cross-ledgers interoperability,
enable a wide range of cross-communication functions, and support diverse secu-
rity and data structuring capabilities to avoid corrupt, malicious, or inaccurate
data.
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pour la Création de smart cITIES en Tunisie. Programme d’Encouragement des
Jeunes Chercheurs (PEJC). Tunisian Ministry of Higher Education. Jan 2019 -
Dec 2021. ISSAT Mateur

• H2020. NGI Atlantic Project. HyPer-5G: Hyper Performance Digital Twins
for Holistic Management of Resilient 5G Edge Networks.

• Project SIGIRO : Un système intelligent pour la gouvernance par une gestion
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