
HAL Id: tel-04086849
https://hal.science/tel-04086849v1

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logics for Representation and Design of Auctions
Munyque Mittelmann

To cite this version:
Munyque Mittelmann. Logics for Representation and Design of Auctions. Multiagent Systems
[cs.MA]. Université Toulouse 1 Capitole, 2022. English. �NNT : �. �tel-04086849�

https://hal.science/tel-04086849v1
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 1 Capitole

 

Présentée et soutenue par

Munyque MITTELMANN

Le 1 septembre 2022

Logiques pour la Représentation et la Conception d'Enchères

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications 

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse 

Thèse dirigée par
Laurent PERRUSSEL

Jury
M. Michael THIELSCHER, Rapporteur

Mme Natasha ALECHINA, Rapporteure
M. Giuseppe PERELLI, Examinateur

M. François SCHWARZENTRUBER, Examinateur
M. Laurent PERRUSSEL, Directeur de thèse

Mme Leila AMGOUD, Présidente





Abstract

An auction is a popular mechanism that aggregates participants’ bids into a social
decision, usually expressed in terms of allocations and payments. Automated agents
are widely used in auction-based markets, but they are usually designed to act on
a specific context. Those agents cannot switch between different kinds of markets.
For doing so, they should be able to “understand” the auction rules and reason
about their own valuations and about other players’ private information valuations.
This limitation inspires the development of a lightweight logic-based language for
representing the rules of an auction market, which will then allow automated general
players to reason strategically in different environments.

Another important problem is the design of new auctions and, more generally,
mechanisms. The challenge here is to aggregate individual preferences, while choos-
ing a socially desirable outcome and reaching an equilibrium despite the fact that
agents can lie about their preferences. Although logic-based languages have been
widely considered in the context of Multi-Agent Systems (MAS), the use of formal
methods and strategic reasoning for Automated Mechanism Design (AMD) has not
been much explored yet.

This thesis investigates an application of logics and strategic reasoning for Game
Theory and MAS. In particular, we propose the use of formal methods for the spec-
ification, design and evaluation of mechanisms, with focus on auctions. This thesis
addresses such challenges by introducing logic-based approaches for representing
and designing auction-based markets with strategic players.

Firstly, for providing a foundation for general and automated auction playing
in MAS, we propose a framework for representing auctions, denoted Auction De-
scription Language (ADL). ADL addresses important dimensions of auction-based
markets and is general enough to represent most auction settings. We illustrate the
generality of ADL by modelling a number of representative auctions. We extend
ADL with knowledge operators and an action modality for characterizing bounded
rational behavior of bidders when reasoning about the effect of actions and other
agents’ rationality.

Second, we propose a novel approach for reasoning and designing new auctions
(and, in general, preference aggregation mechanisms) based on formal methods.
Such approach for AMD aims to automatically generate mechanisms from their
specifications and verify them in relation to target economical properties. For ver-
ifying mechanisms, we propose a new variant of Strategy Logic (SL) with quanti-
tative semantics and epistemic operators. We demonstrate how it can express key
concepts from Economic Theory, including Nash equilibrium, strategyproofness and
individual rationality, which are at first importance when designing new auctions
and when agents need to reason about their properties. We also introduce a quan-
titative semantics for SL with natural strategies and imperfect information which
enables reasoning about mechanisms based on the complexity of strategies. The



ii

analysis of mechanisms and their strategies boils-down to model checking formulas
from those SL variants. Finally, we offer a novel perspective on the design of mech-
anisms by rephrasing the AMD problem in terms of synthesis from specifications
in Quantitative SL. This approach enables automatically generating optimal mech-
anisms from a quantitative logical specification, which may include not only game
rules but also requirements over the strategic behavior of participants and quality
of the outcome.



Resumé

Une enchère est un mécanisme compétitif qui permet d’allouer un ensemble de
ressources auprès d’un ensemble d’agents. Ce mécanisme agrège les offres effec-
tuées par les participants à l’enchère dans le but de produire une décision sociale
caractérisée en termes d’allocations et de paiements. Les agents automatisés sont
largement utilisés sur les marchés basés sur les enchères, mais ils sont généralement
conçus pour agir dans un contexte spécifique. Pour passer d’un type de marché à
un autre, les agents doivent être capables de “comprendre” les règles de l’enchère et
de raisonner sur leurs valuations ainsi que sur les valeurs privées des autres joueurs.
De fait, il est nécessaire de définir un langage simple permettant de représenter
les règles d’un marché aux enchères, qui permettra ensuite à des joueurs généraux
automatiques de raisonner stratégiquement dans différents environnements. Cet as-
pect stratégique, notion centrale de la théorie des jeux et des systèmes multi-agents,
est de première importance dans la caractérisation des mécanismes d’enchères.

Un problème de première importance concerne la conception de nouvelles
enchères, ou plus généralement, de nouveaux mécanismes. En effet, un des prin-
cipaux objectifs consiste à agréger les offres individuelles tout en garantissant un
résultat socialement souhaitable. La dimension stratégique est donc au cœur de la
conception de mécanismes. Alors que les langages logiques ont été largement consid-
érés dans le contexte des Systèmes Multi-Agents (SMA), l’utilisation de méthodes
formelles et de raisonnement stratégique pour la Conception Automatique de Mé-
canismes a été à peine étudiée.

Cette thèse explore l’application des logiques pour la description et la conception
de mécanismes d’enchères. Ces derniers placent la dimension stratégique en leur
cœur et nous proposons l’utilisation de méthodes formelles pour la spécification, la
conception et l’évaluation de mécanismes intégrant cette dimension.

Dans un premier temps, afin de fournir une fondation pour les joueurs d’enchères
généraux et automatisés dans les SMA, nous proposons un formalisme pour
représenter les enchères, appelé Auction Description Language (ADL). ADL traite
des dimensions importantes des marchés basés sur des enchères et est suffisamment
général pour représenter la plupart des contextes d’enchères. Nous montrons qu’en
enrichissant ADL avec un opérateur de connaissance et une modalité d’action pour
caractériser le comportement rationnel limité des enchérisseurs, les agents enchéris-
seurs peuvent raisonner sur l’effet des actions ainsi que sur la rationalité des autres
agents.

Dans un second temps, nous proposons une nouvelle approche pour le raison-
nement et la conception de nouvelles enchères basée sur des méthodes formelles.
Cette approche vise à générer des mécanismes à partir de leurs spécifications et à
les vérifier par rapport à des propriétés économiques objectives. Nous proposons
une nouvelle variante de Strategy Logic (SL) avec une sémantique quantitative et
des opérateurs épistémiques. Nous montrons comment elle permet d’exprimer des



iv

concepts essentiels de la théorie de l’économie, notamment l’équilibre de Nash et la
manipulation stratégique, qui sont de première importance lors de la conception de
nouvelles enchères et lorsque les agents doivent raisonner sur leurs propriétés. Nous
introduisons aussi SL avec des stratégies naturelles, qui permet de raisonner sur les
mécanismes en fonction de la complexité des stratégies. L’analyse des mécanismes
et des stratégies se résume donc à la vérification de formule en SL dans des modèles
représentant des enchères. Enfin nous proposons la reformulation du problème de la
conception de mécanismes en termes de synthèse de spécifications logiques. Cette
approche permet de générer automatiquement des mécanismes optimaux à partir
d’une spécification, qui peut inclure non seulement les règles du jeu mais aussi des
exigences sur le comportement stratégique des participants.



Acknowledgments

First and foremost, I would like to express my deepest gratitude to my thesis super-
visor, Laurent Perrussel, for teaching me how to become a researcher, and also for
his constant support and encouragement. This thesis would not be possible without
his kind help and guidance.

I would like to thank all the committee members for being part of the jury
for my Ph.D. defense: Natasha Alechina, Leila Amgoud, Giuseppe Perelli, Lau-
rent Perrussel, François Schwarzentruber, and Michael Thielscher. In particular, I
want to thank the rapporteurs Natasha Alechina and Michael Thielscher for having
accepted reading and reviewing my thesis.

During my Ph.D., I had the opportunity to meet, talk and work with incredibly
talented researchers. I am grateful for everything I learned while working with
Francesco Bellardinelli, Sylvain Bouveret, Andreas Herzig, Wojtek Jamroga, and
Vadim Malvone. I would also like to thank Jonathan Ben-Naim, Giuseppe de
Giacomo, Umberto Grandi, Jérôme Lang, Emiliano Lorini, and Giuseppe Perelli
for their fruitful comments and advice. I extend my gratitude to the AGAPE and
LILAC teams, which provided many interesting seminars and discussions.

I am extremely grateful to Aniello Murano for making me feel welcome in his
laboratory and for the joint collaboration throughout these years. His energy and
excitement for research (and Napoli!) are inspiring and contagious. I would like
to extend my sincere thanks to Bastien Maubert, for helping me to improve my
mathematical skills and for being great to work with.

My sincere thanks also go to my friends and fellow Ph.D. students, in special
to Rachael Colley for the teamwork in organizing our classes and for sporadically
proofreading my writing.

I would also like to thank the ANR project AGAPE for having supported my
Ph.D. research and to the University of Toulouse for providing me with a wonderful
learning environment.

Many thanks to my parents, Mauristela and Euzébio, for all of the sacrifices that
you’ve made on my behalf. Thanks to my wonderful siblings, Maytê and Gustavo,
from whom I regret being far away during these last years. I thank my dearest friend
Késsi: I was really lucky when you decided to randomly interrupt my reading to
chat a decade ago. Last but not least, thank you Tárcio for your sincere patience,
caring, and for always believing in me even when I felt discouraged.

Undertaking this Ph.D. has been a life-changing experience for me. I have grown
up not only professionally but also personally for which I truly thank you all for
the support and motivation that led me here.





Contents

Abbreviations 1

1 Introduction 3
1.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Representation of Auctions . . . . . . . . . . . . . . . . . . . 5
1.1.2 Automated Mechanism Design . . . . . . . . . . . . . . . . . 5
1.1.3 Logics for Strategic Reasoning . . . . . . . . . . . . . . . . . 6

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Representing Auctions 9

2 Logic for Auction Specification 11
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Auction-Based Markets . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Negotiation Protocols . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Game Description Language . . . . . . . . . . . . . . . . . . . 14

2.2 Auction Description Language . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Verification of ADL-Descriptions . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Direct Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Well-Formed Protocols . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Representative Auctions in ADL 31
3.1 Simultaneous Ascending Auction . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Representing as a model . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Evaluating the protocol . . . . . . . . . . . . . . . . . . . . . 35

3.2 Combinatorial Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Tree-Based Bidding Language . . . . . . . . . . . . . . . . . . 41
3.2.2 Vickrey–Clarke–Groves Mechanism . . . . . . . . . . . . . . . 44
3.2.3 Iterative Combinatorial Exchange . . . . . . . . . . . . . . . 51

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



viii Contents

4 Actions, Knowledge and Rationality 57
4.1 Epistemic Auction Description Language . . . . . . . . . . . . . . . . 57

4.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Dutch Auction with Private Valuations . . . . . . . . . . . . 62

4.2 Rationality in Auctions . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Bounded Rationality . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Bounded Rationality in the Dutch Auction . . . . . . . . . . 66

4.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Strategic Reasoning in Mechanism Design 71

5 Verification of Mechanisms 73
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Automated Mechanism Design . . . . . . . . . . . . . . . . . 74
5.1.2 Logics for Strategic Reasoning . . . . . . . . . . . . . . . . . 75

5.2 Quantitative Epistemic Strategy Logic . . . . . . . . . . . . . . . . . 77
5.3 Reasoning about Auction Mechanisms . . . . . . . . . . . . . . . . . 79

5.3.1 Social Choice Functions . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Mechanisms as wCGSii . . . . . . . . . . . . . . . . . . . . . 81
5.3.3 Implementation of Social Choice Functions . . . . . . . . . . 83
5.3.4 Mechanism Properties . . . . . . . . . . . . . . . . . . . . . . 87
5.3.5 Revenue Benchmarks with Knowledge . . . . . . . . . . . . . 90

5.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Mechanisms and Natural Strategies 95
6.1 Natural Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Quantitative Natural Strategy Logic . . . . . . . . . . . . . . . . . . 98
6.3 Repeated Keyword Auctions . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Solution Concepts for GSP . . . . . . . . . . . . . . . . . . . 101
6.3.2 Natural Strategies for GSP . . . . . . . . . . . . . . . . . . . 104

6.4 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1 Expressive and Distinguishing Power . . . . . . . . . . . . . . 109
6.4.2 Expressivity of NatSL[F ] vs. SL[F ] . . . . . . . . . . . . . . . 110

6.5 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Synthesis of Mechanisms 115
7.1 Quantitative Strategy Logic . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Satisfiability and Synthesis of SL[F ] . . . . . . . . . . . . . . . . . . 117

7.2.1 Booleanly-Quantified CTL∗[F ] . . . . . . . . . . . . . . . . . 117



Contents ix

7.2.2 Deciding BQCTL∗[F ] Satisfiability . . . . . . . . . . . . . . . 119
7.2.3 Decidable Cases for SL[F ] Satisfiability . . . . . . . . . . . . 120
7.2.4 Automated Synthesis of Optimal Mechanism . . . . . . . . . 122

7.3 Synthesis for Mechanism Design . . . . . . . . . . . . . . . . . . . . 124
7.3.1 Characterizing Properties with SL[F ] . . . . . . . . . . . . . . 124
7.3.2 Action-bounded Mechanisms . . . . . . . . . . . . . . . . . . 125
7.3.3 Turn-based Mechanisms . . . . . . . . . . . . . . . . . . . . . 128

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusion 133
8.1 Summary of Contributions and Discussion . . . . . . . . . . . . . . . 133
8.2 Perspectives and Future Work . . . . . . . . . . . . . . . . . . . . . . 135

A Complexity classes 137

B Satisfiability of BQCTL∗[F ] 139

C Published work 143

Bibliography 145





Abbreviations

ADL Auction Description Language

ADLK Epistemic Auction Description Language

AMD Automated Mechanism Design

ATL Alternating time Temporal Logic

BNF Backus-Naur Form

DSE Dominant Strategy Equilibria

ET Epistemic State Transition

GDL Game Description Language

GGP General Game Playing

GSP Generalized Second Price

MAS Multi-Agent Systems

NatSL[F ] Natural Quantitative Strategy Logic

NE Nash Equilibria

SCF Social Choice Function

SL Strategy Logic

SL[F ] Quantitative Strategy Logic

SLK[F ] Quantitative Epistemic Strategy Logic

ST State Transition

TBBL Tree-Based Bidding Language

VCG Vickrey–Clarke–Groves

wCGS Weighted Concurrent Game Structure

wCGSii Weighted Concurrent Game Structure with Imperfect Information

wCGSl Weighted Concurrent Game Structure with Imperfect Information and
Legality

WE Weighted Epistemic





Chapter 1

Introduction

An auction is a popular mechanism that aggregates participants’ bids into a social
decision, usually expressed in terms of allocations and payments. The goal of an
auction is to determinate the winners and their payments, when the precise price
of the items considered in the market is unknown or unclear. Classical examples of
such items include art pieces, jewelry and antiques. According to Chevaleyre et al.
(2006), auctions are characterized by having a centralized allocation procedure that
specify trades of items and by considering monetary transfers (that is, payments).
Being centralized means a single entity decides on the final allocation of resources
amongst agents. The central entity in an auction is the auctioneer and the reporting
of preferences takes the form of bidding. Agents are not required to reveal their
true preferences during bidding, but they may bid whatever they believe to fit their
own interests.

The importance of Auction Theory is many-fold. From a practical point of view,
they are used for negotiating a large number of goods and services, property, and
financial instruments (Klemperer, 1999). Moreover, new auctions-based markets are
being designed for considering novel trading and allocation problems, including, for
instance, e-commerce advertising (Liu et al., 2021), smart grids (Li et al., 2020),
smart contracts on blockchain (Galal and Youssef, 2019) and renewable energy
technologies (Rubio-Domingo and Linares, 2021). From an empirical perspective,
auctions provide a valuable testing-ground for Economic Theory. The interest in
experimental work on auction has been prominent in the literature (Klemperer,
1999). Finally, auctions are also relevant for theoretical reasons. For instance, they
have been important in developing the understanding of price formation. In fact, as
pointed by Krishna (2009), auctions are used precisely because the seller is unsure
about the values that bidders attach to the object being sold and the uncertainty
regarding values is an inherent feature of auctions. Additionally, auction-theoretic
models and techniques also apply to mechanisms without monetary transfers and
can help develop models of oligopolistic pricing (Klemperer, 1999).

Automated agents are widely used in auction-based markets but software agents
are usually designed to act on a specific context (see, for instance, auto-bidding
frameworks in online advertising (Wen et al., 2022)). Those agents cannot switch
between different kinds of markets. For doing so, they should be able to “under-
stand” the auction rules and reason about their own valuations and also about other
players’ private information valuations. This limitation inspires the development of
a lightweight logic-based language for representing the rules of an auction market,
which will then allow automated general players to reason strategically in different



4 Chapter 1. Introduction

environments.
More than describing, the design and evaluation of new auctions (and, more

generally, mechanisms) is a central problem in multiagent settings (Conitzer and
Sandholm, 2002). In such setting, we need to be able to aggregate individual pref-
erences, which are conflicting when agents are self-interested. More importantly,
the mechanism should choose a socially desirable outcome and reach an equilibrium
despite the fact that agents can lie about their preferences (Asselin et al., 2006).
Automating the process of creating and evaluating mechanisms has numerous ad-
vantages, as stated by Sandholm (2003):

• It can be used in settings beyond the classes of problems that have been
already studied in manual mechanism design, which is a clear link with the
general dimension of auctions;

• It can yield better mechanisms (in relation to the quality of the outcome
and/or avoiding strategic manipulation) because it can be constructed over
the particulars of the setting. This is the case, for instance, when designing
auctions for selling airport landing slots or rights to transmit signals over
specific bands (spectrum auctions);

• It shifts the burden of designing a mechanism from humans to a machine,
which may be a difficult and time-consuming task when considering complex
aggregation problems and strategic solution concepts.

Although logic-based languages have been widely used for verification (Clarke
et al., 2018) and synthesis (David and Kroening, 2017) of Multi-Agent Systems
(MAS), the use of formal methods for reasoning about auctions under strategic
behavior as well as automated mechanism design has not been much explored yet.
An advantage in adopting such perspective lies in the high expressivity and gener-
ality of logics for strategic reasoning (Pauly and Wooldridge, 2003). Moreover, by
relying on precise semantics, formal methods provide tools for rigorously analysing
the correctness of systems, which is important to improve trust in mechanisms
generated by machines. The problem of formally reasoning about mechanisms is,
however, nontrivial: it requires to consider quantitative information (e.g., utilities
and payments), private information about the participant’s preferences, and com-
plex strategic concepts (such as strategy dominance and equilibria).

This thesis addresses such challenges by introducing logic-based approaches for
representing and designing auction-based markets with strategic players. Our moti-
vation is two fold: first, we aim to provide a foundation for general and automated
auction playing in MAS, by establishing a logical framework to create a good bal-
ance between expressive power and computational efficiency. Second, we propose
a novel approach based on formal methods for (i) reasoning about auctions under
strategic behavior and (ii) Automated Mechanism Design. Such approach aims to
automatically generate auctions from their specifications and verify them in relation
to target economical properties.



1.1. Background and Context 5

1.1 Background and Context

This section gives an overview of the context and the main related works to which
this thesis is related.

1.1.1 Representation of Auctions

There are numerous variants of auctions depending on the parameters considered,
including the number of distinct items and copies as well as the number of sellers
and buyers (Klemperer, 1999; Krishna, 2009). For a fixed set of parameters, the
protocol, i.e., the bidding, payment and allocation rules, may also differ. Building
intelligent agents that can switch between different auctions and process their rules
is a key issue for building automated auction-based marketplaces. In this scenario,
the auctioneer should at first allow participants to express their preferences and
second describe the rules governing the market.

A number of bidding languages have been proposed for conveniently expressing
preferences, specially when considering combinatorial settings (Nisan, 2004). Such
languages focus on compactly representing the space of possible bids over combi-
nations of items. In this work we are interested on the representation of auction
rules. For a comparative overview of classical bidding languages (e.g., OR and XOR
languages), the reader may refer to Nisan (2000).

In relation to the formal representation of auction rules, we recall the descrip-
tive auction language (Rolli et al., 2006), which allows the specification of auctions
by allowing players to bid using the XOR language. Rule-based approaches have
also being used for representing single-dimensional auctions (Lochner and Wellman,
2004) and negotiation protocols (Bădică et al., 2006). Similarly, negotiation proto-
cols have being handled with meta-languages (Hudert et al., 2009b), the Extensible
Markup Language (Hudert et al., 2009a) and rule-markup languages (Dobriceanu
et al., 2007).

Since the above languages lack a precise semantics, Wooldridge and Parsons
(2000a, 2000b) motivate and compare the use of different logical languages for
specifying negotiation protocols. In the context of General Game Playing (GGP),
the Game Description Language (GDL) was designed for specifying game rules
while maintaining a tractable complexity (Genesereth and Thielscher, 2014). The
use of languages inspired on GDL for describing market-based protocols have been
studied in the context of negotiation (Jonge and Zhang, 2016; de Jonge and Zhang,
2021) and single-item markets (Thielscher and Zhang, 2010). Such approaches lack
a clear link between the language, the mechanism formalization and the agents’
preferences, which is a key aspect for enabling reasoning about auctions.

1.1.2 Automated Mechanism Design

Designing an auction in such manner to ensure features of the outcome alongside
with a desirable behavior of the participants is a key challenge in Economics. In
fact, this problem is known as Mechanism Design: the formulation of game-like



6 Chapter 1. Introduction

systems whose equilibria satisfy some desired properties, usually expressed in terms
of incentive, utility or social welfare. Traditionally, mechanisms have been formu-
lated and verified by human specialists, who use their knowledge and experience for
defining the game rules. Creating and verifying mechanisms which will be played
by strategic agents can be a very difficult and time-consuming task.

Sandholm (2003) introduced Automated Mechanism Design (AMD), whose goal
is to automatically create mechanisms for solving a specific preference aggregation
problem. AMD is usually handled as an optimization and domain-oriented problem.
Most solutions used on the literature are based on machine learning, which include,
for instance, neural networks (Shen et al., 2019; Dütting et al., 2019) and statistical
techniques (Narasimhan et al., 2016). A number of works explore computed-aided
verification of auctions (Caminati et al., 2015; Barthe et al., 2016; Kerber et al.,
2016), where the process is assisted by a reasoner. In the context of fully-automatic
verification, Pauly and Wooldridge (2003) and Wooldridge et al. (2007) advocate the
use of Alternating-time Temporal Logic (ATL) (Alur et al., 2002) to reason about
mechanisms. The main limitation in these works is the purely qualitative setting
and the impossibility of expressing key strategic concepts such as dominance in the
logic.

1.1.3 Logics for Strategic Reasoning

This thesis is also related to the long-established logical approach to systems verifi-
cation (Clarke et al., 2018) and synthesis (David and Kroening, 2017). In the recent
years much progress has been made in the field of logics for strategic reasoning. Pi-
oneering work includes the Coalition Logic (Pauly, 2002) and the aforementioned
ATL (Alur et al., 2002). These logics use coalition modalities to specify strate-
gic abilities of groups of agents, an important notion in Mechanism Design. A
logic for reasoning about composite strategies in turn-based games is introduced
by Ramanujam and Simon (2008), where strategies are treated as programs that
are combined by connectives from propositional dynamic logic. The Strategy Logic
(SL) (Chatterjee et al., 2010; Mogavero et al., 2014) subsumes ATL and considers
explicit manipulation of strategies. This feature allows expressing important con-
cepts in games, such as Nash equilibria. A recent quantitative extension of SL,
denoted SL[F ] (Bouyer et al., 2019), introduces values in models and functions in
the language, enabling the reasoning about key game-theoretic concepts such as
utilities and preferences. Several works have also considered extensions of SL with
imperfect information (Belardinelli et al., 2020; Berthon et al., 2021; Cermák et al.,
2018), which is also an important feature when modeling auctions with private
valuations.

1.2 Contribution

This thesis addresses the problem of modelling and analyzing auction mechanisms
for MAS using logics and strategic reasoning. The main contributions of this work



1.2. Contribution 7

can be summarized as follows:

1. We provide a framework for representing auctions, denoted Auction Descrip-
tion Language (ADL). ADL addresses important dimensions of auction-based
markets and is general enough to represent most auction settings. We illus-
trate the generality of ADL by modelling a number of representative auctions;

2. We demonstrate how ADL can be used for the automated verification of di-
rect mechanisms and for automatically checking well-formedness of auction
descriptions;

3. We extend ADL with knowledge operators and an action modality (denoted
Epistemic ADL, or simply ADLK) for providing a ground for the design of gen-
eral auction players and characterizing their rational behavior when reasoning
about the effect of actions and other players rationality;

4. We propose a new variant of Strategy Logic with quantitative features, im-
perfect information and epistemic operators, that we call SLK[F ];

5. We demonstrate how SLK[F ] can express the implementation of social choice
functions and be used for automatically verifying a number of important prop-
erties often required in auctions, or more generally in mechanism design. We
also show how we can express properties relating agents’ revenues with respect
to their beliefs about other agents’ preferences;

6. We show that verifying a mechanism in relation to classical properties boils-
down to model checking a SLK[F ] formula and we prove it can be done in
Pspace for memoryless strategies;

7. We introduce a quantitative semantics for SL with natural strategies and
imperfect information (denoted NatSL[F ]) which provides a new perspective
for formal verification and design of novel mechanisms based on the complexity
of strategies;

8. We prove that the model-checking problem for NatSL[F ] is Pspace-complete
and that NatSL[F ] has incomparable distinguishing and expressive power to
SL[F ];

9. We offer a novel perspective on the design of mechanisms by rephrasing the
AMD problem in terms of synthesis from SL[F ] specifications. This approach
enables automatically generating optimal mechanisms from a quantitative log-
ical specification, which may include not only game rules but also requirements
over the strategic behavior of participants and quality of the outcome;

10. We solve the synthesis problem for SL[F ] by investigating the related satis-
fiability problem in two cases: when the number of actions is bounded, and
when agents play in turn.



8 Chapter 1. Introduction

1.3 Outline of Chapters

This thesis is divided in two parts. The Related Work is spread out at the first chap-
ter of each part. Part I is focused on auction specification using logical languages.
Chapter 2 details the related works on the representation of auction-based markets.
We then introduce ADL for describing auction rules, and provide its semantics based
on state-transition models. Next, we explore the evaluation and characterization of
protocols described in ADL. Finally, we examine the complexity of model checking
ADL-formulas, that is, the problem of deciding whether a formula holds in a stage
of a path under a state-transition model.

Chapter 3 illustrates the generality of ADL by demonstrating its use for rep-
resenting and evaluating representative auctions. We consider a simultaneous as-
cending auction, a Vickrey-Clarke-Groves mechanism and an iterative combinatorial
exchange.

Chapter 4 extends a simplified version of ADL with epistemic operators and
action modalities. We characterize agents’ rationality in relation to high-order
knowledge about other agents and a finite number of stages looked ahead. We
illustrate the use of ADLK for reasoning about Dutch auctions and examine its
model-checking complexity.

Part II investigates logical and strategic reasoning in mechanism design. In
Chapter 5, we focus on the verification of mechanisms. We first propose a new
variant of Strategy Logic with quantitative features, imperfect information and
epistemic operators, that we call SLK[F ]. We show how mechanisms can be cast
as concurrent-game structures and how SLK[F ] can be used to express and verify
fundamental concepts from mechanism design, including the implementation of so-
cial choice functions and a number of classical properties (e.g., strategyproofness,
individual rationality and efficiency), which are at first importance when automated
agents need to reason about an auction-based market. Finally, we study the com-
plexity for model checking SLK[F ]-formulas.

Chapter 6 extends SL[F ] with natural strategies. We then investigate its use
for reasoning about simple strategies and equilibria in repeated keyword auctions.
Finally, we analyze this logic in relation to its distinguishing power, expressivity,
and model checking complexity for natural strategies with and without recall.

Chapter 7 offers a novel perspective on the design of mechanisms. We propose
the generation of optimal mechanisms from a quantitative logical specification. For
doing so, we rephrase the AMD problem in terms of synthesis of concurrent game
structures from SL[F ]-formulas. To solve this synthesis problem we investigate the
related satisfiability problem for SL[F ], which had not been studied so far. Finally,
we illustrate the relevance of mechanism synthesis with examples based on auctions.

Chapter 8 summarizes the main results of this thesis and discusses some di-
rections for future work. Appendix A introduces basic notation from complexity
theory. Appendix B presents additional details for the satisfiability proof outlined
in Chapter 7, and Appendix C lists the papers published papers during my PhD
from which this thesis is based.



Part I

Representing Auctions





Chapter 2

Logic for Auction Specification

In this chapter we aim at proposing a language with clear semantics to enable the
representation of auctions as well as the reasoning about its rules. Auctions may
differ in several ways, from the setting considered to the availability of an expressive
bidding language. According to the classification proposed by Kalagnanam and
Parkes (2004), let us first recall the six core dimensions of auctions:

1. Resources: the auction may involve a single item or multiple items, with single
or multiple units of each item. The type of the item may also be considered,
i.e., the item may be a multi-attribute commodity, that is, the item may be
characterized by more attributes than just the price (such as the service time,
quality, and payment terms);

2. Market structure: the auction may be distinguished based on whether it has
single or multiple buyers and/or sellers. In single-sided auctions, there is either
a single seller selling resources to multiple buyers (i.e., forward auctions), or a
single buyer sourcing resources from multiple suppliers (i.e., reverse auctions).
In a double auction, there are multiple suppliers selling resources to multiple
buyers. Finally, an exchange is a generalization of double auctions, where the
participants trade items;

3. Preference structure: the participants’ preferences define their utilities over
different outcomes (e.g., marginal utility, quasi-linear utility);

4. Bid structure: it refers to the flexibility with which participants can express
their preferences. The bid structure ranges from simple statements of willing-
ness to accept a given selling price to complex bids that state prices, quan-
tities, bundles, and logical connectives. In single-dimensional auctions, only
one attribute is considered (e.g., the price offered for a good). On the other
hand, multi-dimensional auctions handle a number of attributes in the bid
(e.g., quality, delivery date) (Parsons et al., 2011);

5. Market clearing: in relation to the method for matching the supply to demand,
an auction may be single-sourcing (i.e., matching pairs of buyers and sellers)
or multi-sourcing (i.e., matching multiple sellers with a single buyer, or vice-
versa);

6. Information feedback: auctions may also differ on whether they are direct (i.e.,
one-stage protocols without information feedback) or indirect mechanisms



12 Chapter 2. Logic for Auction Specification

(i.e., protocols where agents can adjust their bids in response to information
feedback).

In the spirit of General Game Playing (GGP) (Genesereth and Thielscher, 2014)
where games are described with the help of the Game Description Language (GDL),
we propose the Auction Description Language (ADL). Such logical language builds
upon bidding languages, and hence provides a natural way to represent a wide range
of protocols, ranging from single-units auctions to iterative combinatorial exchanges
(Parkes et al., 2005). As for GDL, we propose a precise semantics based on state-
transition models, that gives a clear meaning to auction rules. With ADL, we can
use different bidding languages for describing the set of possible actions, including
the Tree-Based Bidding Language (Parkes et al., 2005), which generalizes known
languages such as XOR and OR (Nisan, 2000) to combinatorial exchange. To the
best of our knowledge, ADL is the first framework offering a unified perspective
on an auction mechanism and it offers two benefits: (i) with this language, one
can represent many kinds of auctions in a compact way and (ii) the precise state-
transition semantics can be used to derive key properties.

2.1 Related Work

Our work is rooted in the key contributions on Auction Theory (Nisan, 2000, 2004;
Xia et al., 2005; Krishna, 2009). All these works adopt a mechanism design per-
spective: they focus on designing and evaluating protocols and bidding languages.
ADL has a different purpose. It is designed to represent auction protocols and to
allow a modular definition of actions sets, which may be characterized by a bidding
language. ADL can be used to automatically derive properties for these protocols.
ADL is also a tool for mechanism design, since it is a well-suited framework for
testing new auctions.

2.1.1 Auction-Based Markets

To the best of our knowledge, almost all contributions on the computational rep-
resentation of auctions focus on the implementation of the winner determination
problem. For instance, Baral and Uyan (2001) show how the winner determination
for a combinatorial auction can be encoded in a logic program. A hybrid approach
mixing linear programming and logic programming has been proposed by Lee and
Lee (1997): they focus on sealed-bid auctions and show how qualitative reasoning
helps to refine the optimal quantitative solutions. Giovannucci et al. (2010) explore
a graphical formalism to compactly represent the winner determination problem for
multi-unit combinatorial auctions. Linear Logic has also been used for modeling
combinatorial auctions (Porello and Endriss, 2010). The authors explore the rep-
resentation of bids and the winner determination. However, there is no temporal
operator to allow reasoning on iterative auctions.



2.1. Related Work 13

The descriptive auction language (Rolli et al., 2006) allows a formal specification
of auctions. Agents can only bid through XOR combinations of items. Although
the XOR language is widely used, the specification approach is more flexible when
the bidding language is not fixed for all protocols. In fact, as stated by Nisan (2004),
the choice of a bidding language should aim to find a balance between expressivity
(i.e., being able to express every preference function) and simplicity (i.e., being
intuitive and computationally efficient). There are numerous auction types that do
not require the expressive power of the XOR language and can be implemented with
simpler bidding languages. For instance, in a Dutch auction, agents may simply
say whether they accept the current selling price or not.

A rule-based scripting language for representing single-dimensional auctions
have been proposed by Lochner and Wellman (2004). Since it is single-dimensional,
bids are composed exclusively by prices. On the other hand, the framework Mul-
tiple criteria English Reverse Auctions (Bellosta et al., 2005; Bellosta et al., 2008)
characterizes bids with vectors of attributes and criteria. Their framework allows
to represent English reverse auctions that differ in relation to model for aggregating
bidders’ preferences and the information feedback provided to participants.

2.1.2 Negotiation Protocols

A related problem to auction specification is the one of representing negotiation
protocols. As noted by Meyer et al. (2004) negotiation is investigated from dif-
ferent perspectives, such as economics, psychology, computer science and others.
Consequently, there is no agreement in relation to its definition and the distinction
between negotiation and auctions may be vague. Although some authors consider
auctions as types of negotiation protocols, in this work we consider them related,
but rather distinct, types of allocation procedures.

As mentioned before, by auctions we refer to centralized mechanisms that spec-
ify trades of items and payments based on the bidders’ reported preferences. On
the other hand, we consider that in negotiation protocols, allocations emerge as the
result of a sequence of local negotiation steps. That is, they describe the negoti-
ation over resources in a distributed setting. Another important difference is that
negotiation protocols for exchanging goods may not depend on monetary transfer.

Bădică et al. (2006) discuss how rule-based approaches can be used to automated
negotiation. The paper focuses on experimental results for concurrent negotiation
and do not address the generality of their approach. Hudert et al. (2009b) propose
a framework to enable negotiations according to bilateral and multilateral protocols
using a meta-language to define protocols based on a set of attributes and param-
eters. In a subsequent work, the authors propose a language based on Extensible
Markup Language for meta-negotiating the choice of negotiation protocols and for
instantiating and parameterizing the system used for conducting the chosen proto-
col (Hudert et al., 2009a). Similarly, rule-markup languages have also been used
for the declarative representation of negotiations (Dobriceanu et al., 2007).

Due to the lack of a precise semantics, the approaches considered up to here



14 Chapter 2. Logic for Auction Specification

are too poor to enable reasoning. This limitation motivates the study of negotia-
tion protocols with logic-based languages. In two papers, Wooldridge and Parsons
(2000a,b) briefly compare the use of different languages for negotiation, including
propositional logic, a language for electronic commerce and a negotiation meta-
language. They consider simple protocols with multi-attribute negotiation of single
goods. Even in this setting, the problems of determining if agreement has been
reached and determining if a particular protocol will terminate are computationally
hard. A basic logical framework for negotiation has also been proposed by Meyer
et al. (2004). In the two agents setting, the work explores modes of negotiation
from which an agreement over an outcome can be reached when the participants
are rational, cooperative and truthful.

2.1.3 Game Description Language

The Game Description Language (GDL) is the official language used for the GGP
competition (Genesereth and Thielscher, 2014). To incorporate imperfect infor-
mation games, GDL has been extended to GDL-II (Thielscher, 2010) and GDL-III
(Thielscher, 2017). GDL-II and GDL-III aim at describing the rules of an imperfect
information game, but do not provide tools for reasoning about how a player infers
information based on these rules. All these logics face decidability and tractability
issues: their expressive power prevents them from being implemented realistically
in an artificial agent. Jiang et al. (2016) propose an epistemic extension of GDL
(E-GDL) to represent and reason about imperfect information games. Their lan-
guage allows us to represent the rules in the imperfect information setting. A key
characteristic of E-GDL is that it manages the balance between expressiveness and
computational complexity of model checking (∆P

2 ). GDL has also been extended for
defining, comparing and combining strategies in (Zhang and Thielscher, 2015a,b).
This extension includes the dual connectives prioritised disjunction and prioritised
conjunction for expressing preferences when combining strategies.

The use of GDL-based languages for describing market-based protocols has also
been studied. Jonge and Zhang (2016) discuss the use of GDL for modeling negoti-
ation. The main advantage is being able to apply the existing domain-independent
techniques from GGP. For instance, the Monte Carlo Tree Search algorithm has
been adapted for negotiations in non-zero-sum games (Jonge and Zhang, 2017). In
another paper, they propose the use of GDL as a unifying language for defining
general and complex negotiation domains (de Jonge and Zhang, 2021).

The Market Specification Language proposed by Thielscher and Zhang (2010) is
also based on GDL. The work focuses on representing single item auctions through
a set of rules and then interpreting an auction-instance with the help of a state-
based semantics. However, the main limit is the lack of a clear link between the
language, the mechanism formalization and the agents’ preferences, which prevents
the evaluation of GDL-based specifications as mechanisms.



2.2. Auction Description Language 15

2.2 Auction Description Language

Let us now define the Auction Description Language (ADL), which is a framework
for specification of auction-based markets composed by a state-transition model
and a logical language. To encode an auction, we first define its signature, which
specifies the participants (the agents), the goods being traded and the propositions
and variables describing each state of the auction:

Definition 2.1. An auction signature S is a tuple (N,G,B,Φ,Y, I,F), where:

• N = {1, .. ., n} is a nonempty finite set of agents (or bidders);

• G = {1, .. .,m} is a finite set of good1 types;

• B is a nonempty finite set of bids (or actions);

• Φ is a finite set of atomic propositions specifying features of a state;

• Y is a finite set of numerical variables specifying numerical features of a state;

• I ⊆ Z is an interval of the form [zmin, zmax] denoting the value range for any
countable component of the framework, where zmin ∈ Z, zmax ∈ Z, zmin ≤ 0
and zmax ≥ 0;

• F ⊆ {f : Ba × Ib → I | a, b ∈ I⪰0} is a set of state-independent functions of
possibly different arities.

We assume I is equipped with a partial order2 ⪯, capturing the standard less-
than-or-equal relation over its elements. By convenience, we assume 0 ∈ I and
denote I⪰0 = [0, zmax] and I≻0 = (0, zmax] as the non-negative and positive parts of
I, respectively. Similarly, I⪯0 = [zmin, 0] and I≺0 = [zmin, 0) denote the non-positive
and negative parts of I.

Hereafter, we will fix an auction signature S and all concepts will be based on
this signature, except if stated otherwise. Note that zmin and zmax, in the definition
of I, should be large enough to represent the total supply of goods being traded
as well as the cumulative available money among agents. Throughout the rest
of this chapter, we assume that is the case. Values outside I are rounded to the
nearest value zmin or zmax. We assume that F contains the functions sum(z1, z2) =
min(zmax, z1+z2), sub(z1, z2) = max(zmin, z1−z2), times(z1, z2) = min(zmax, z1 ·z2),
denoting the addition, subtraction and multiplication of two integers z1, z2 ∈ I,
respectively. . Similarly, we also assume F contains the functions

max(z1, z2) =
{
z1 if z2 ⪯ z1

z2 otherwise

1Throughout this thesis the terms “item” and “good” are used interchangeably.
2A partial order is a relation that is reflexive, antisymmetric, and transitive.



16 Chapter 2. Logic for Auction Specification

and

min(z1, z2) =
{
z1 if z1 ⪯ z2

z2 otherwise

capturing the maximum and minimum among two integers z1, z2 ∈ I.
Given a sequence (zi)i∈N ∈ In and a 2-ary function f ∈ F such that f : I× I→ I,

we will use the following shortcut:

fi∈N(zi) = f(z1, f(z2, f(..., f(zn−1, zn))))

A trade is a tuple (λi,j)j∈G,i∈N ∈ Inm, where λi,j denotes the number of units j
being traded by agent i. A trade specifies which items each agent is selling and/or
buying. A positive trade expresses how many units of a good type are purchased
and a negative trade represents how many units are sold. Similarly, a positive
payment denotes how much a buyer will pay and a negative payment expresses how
much a seller will receive.

A tuple of objects indexed by agents in N is called a profile. In a profile, we
may omit the index set and we write it in bold, e.g., λ for (λi)i∈N and (λj)j∈G for
(λi,j)j∈G,i∈N. Given a profile o, we let or be the component of agent r and o−r be
(oi)i ̸=r. Let us now present the model and the language’s syntax and semantics.

2.2.1 Syntax

Let LZ be the set of numerical terms, with each z ∈ LZ defined as follows:

z ::= z | var | f(β, .. .,β, z, .. ., z)

where β ∈ B is a bid, z ∈ I is an integer, var ∈ Y is a numerical variable and f ∈ F
is a function3.

The logical language for ADL is denoted by LADL and a formula φ in LADL is
defined by the following Backus-Naur Form (BNF) grammar:

φ ::= p | initial | terminal | legali(β) | doesi(β) | ¬φ | φ ∧ φ | ⃝φ | z ≤ z

where p ∈ Φ is an atomic proposition, i ∈ N is an agent, β ∈ B is a bid, and z ∈ LZ

is a numerical term.
Intuitively, initial and terminal specify the initial terminal states, resp.; legali(β)

asserts that agent i is allowed to take action β at the current state and doesi(β)
asserts that agent i takes action β at the current state. The formula ⃝φ means “φ
holds at the next state”. The formula z1 ≤ z2 means that the numerical term z1 is
smaller or equal to the numerical term z2.

We use the standard abbreviations from propositional logic, such as φ ∨ ψ for
¬(¬φ ∧ ¬ψ), φ→ ψ for ¬φ ∨ ψ, and φ↔ ψ for (φ→ ψ) ∧ (ψ → φ). We take ⊤ to
be an abbreviation for some fixed propositional tautology such as p ∨ ¬p, and let

3Notice f(.) may be 0-ary.



2.2. Auction Description Language 17

⊥ be an abbreviation of ¬⊤. We also use abbreviations for comparison operators,
such as z1 = z2 for z1 ≤ z2 ∧ z2 ≤ z1, z1 < z2 for z1 ≤ z2 ∧ ¬(z1 = z2), z1 ̸= z2 for
¬(z1 = z2), z1 ≥ z2 for z2 ≤ z1 and z1 > z2 for z1 ≥ z2 ∧ z1 ̸= z2. The extension of
the comparison operators to multiple arguments is straightforward.

Assume the bids β = (βi)i∈N, where βi ∈ B is a bid associated to the agent
i ∈ N. The formula does(β) =def

∧
i∈N doesi(βi) represents that the agents in N

perform the joint action β.

2.2.2 Semantics

As for GDL, the semantics of ADL is based on state-transition models. This is
more suitable for describing the dynamics than stable models that were initially
considered for GDL and GGP (Genesereth and Thielscher, 2014). Such models
allows us to represent the key aspects of an auction, at first the legal bids and the
transitions among states.

Definition 2.2. A state-transition-model (ST-model for short) M is a tuple (W,

w̄,T,L,U,πΦ,πY), where:

• W is a nonempty set of states;

• w̄ ∈W is the initial state;

• T ⊆W is a set of terminal states;

• L ⊆W×N×B is a legality relation, describing the legal actions at each state,
we let L(w, i) = {β ∈ B | (w, i,β) ∈ L} be the set of all legal actions for agent
i at state w;

• U : W×Bn →W is an update function, given d ∈ Bn, let di be the individual
action for agent i in the joint action d;

• πΦ : W→ 2Φ is the valuation function for the state propositions;

• πY : W×Y→ I, is the valuation function for the numerical variables.

A path represents a run or execution of an auction protocol. Formally,

Definition 2.3. Given an ST-model M = (W, w̄,T,L,U,πΦ,πY), a path is a se-
quence of states and joint actions w0

d1
→w1

d2
→ . . . dt

→wt
dt+1
→ . . . such that for any t ≥ 1:

(i) w0 = w̄; (ii) wt ̸= w0; (iii) dt
i ∈ L(wt−1, i) for any i ∈ N, (iv) wt = U(wt−1,d

t);
and (v) if wt−1 ∈ T, then wt−1 = wt.

For any path δ, let δ[t] denote the t-th state of δ, θ(δ, t) denote the joint action
performed at stage t of δ, θi(δ, t) denote the action of agent i performed at stage
t of δ, and δ[0, t] denote the finite prefix w̄ d1

→w1
d2
→.. . dt

→wt. A path δ is complete
if δ[e] ∈ T, for some e > 0. After reaching a terminal state δ[e], for any e′ > e,
δ[e′] = δ[e]. Finally, for a given model M, any state w such that there exists a
complete path δ of M such that w ∈ δ will be called a reachable state of M.



18 Chapter 2. Logic for Auction Specification

The semantics for ADL is given in two steps. First, we define function fZ to
compute the meaning of numerical terms z ∈ LZ in some specific state. Next, a
formula φ ∈ LADL is interpreted with respect to a stage in a path.

Definition 2.4. Given an ST-model M, we define function fZ : LZ ×W → I,
assigning any z ∈ LZ and state w ∈W to a number in I:

fZ(z,w) =


πY(w, z) if z ∈ Y
f(β1, .. .,βn, fZ(z1,w), .. ., fZ(zm,w)) if z = f(β1, .. .,βn, z1, .. ., zm)
z if z ∈ I

where n,m ∈ I⪰0.

Definition 2.5. Let M be an ST-Model. Given a path δ of M, a stage t on δ and
a formula φ ∈ LADL, we say φ is true (or satisfied) at t of δ under M, denoted by
M, δ, t |= φ, according to the following definition:

M, δ, t |= p iff p ∈ πΦ(δ[t])
M, δ, t |= ¬φ iff M, δ, t ̸|= φ

M, δ, t |= φ1 ∧ φ2 iff M, δ, t |= φ1 and M, δ, t |= φ2

M, δ, t |= initial iff δ[t] = w̄
M, δ, t |= terminal iff δ[t] ∈ T
M, δ, t |= legali(β) iff β ∈ L(δ[t], i)
M, δ, t |= doesi(β) iff θi(δ, t) = β

M, δ, t |=⃝φ iff M, δ, t+ 1 |= φ

M, δ, t |= z1 ≤ z2 iff fZ(z1, δ[t]) ⪯ fZ(z2, δ[t])

A formula φ is globally true through δ, denoted by M, δ |= φ, if M, δ, t |= φ for
any stage t of δ. A formula φ is globally true in an ST-model M, written M |= φ, if
M, δ |= φ for all paths δ in M. Finally, let Σ be a set of formulae in LADL, then M
is a model of Σ if M |= φ for all φ ∈ Σ.

Similar to Epistemic GDL (Jiang et al., 2021), the following propositions hold:

Proposition 2.1. Let M be an ST-model, for each agent i ∈ N and each action
β ∈ B,

1. M |= doesi(β)→ ¬doesi(β′), for any β′ ∈ B such that β′ ̸= β

2. M |= ∨
β′∈B doesi(β′)

3. M |= doesi(β)→ legali(β)

4. M |= ¬⃝ initial

5. M |= terminal ∧ φ→⃝φ, for any φ ∈ LADL



2.2. Auction Description Language 19

6. M |= initial→ ¬terminal

Proof. Let M be an ST-model, δ be a path, t ≥ 0 be an stage in δ, i ∈ N be an agent
and β ∈ B be an action. For Statement 1, assume M, δ, t |= doesi(β) iff θi(δ, t) = β.
Then for any β′ ∈ B such that β′ ̸= β, θi(δ, t) ̸= β′ and M, δ, t |= ¬doesi(β′).

Statement 2 follows from the definition of δ, since θi(δ, t) ∈ L(δ[t], i) and
L(δ[t], i) ⊆ B, we have M, δ, t |= ∨

β′∈B doesi(β′).
Let us verify Statement 3. Assume M, δ, t |= doesi(β), then θi(δ, t) = β and by

the definition of δ, β ∈ L(δ[t], i) and M, δ, t |= legali(β).
We consider Statement 4. By the path definition, for all t > 0, δ[t] ̸= w̄. Thus,

δ[t+ 1] ̸= w̄ and M, δ, t+ 1 |= ¬initial. It follows that M, δ, t |= ¬⃝ initial.
We now verify Statement 5. Assume M |= terminal ∧ φ, for some φ ∈ LADL.

Then δ[t] ∈ T and δ[t+ 1] = δ[t]. Thus, M, δ, t+ 1 |= φ and M, δ, t |=⃝φ.
Finally, we consider Statement 6. Assume for the sake of contradiction that

M, δ, t |= initial ∧ terminal. Then, δ[t] = w̄ and δ[t] ∈ T. By the path definition, it
should be the case that t = 0. Due to the loop on terminal states, it follows that
w0 = w1, which is a contradiction with the path requirement wt′ ̸= w0, for any
t′ ≥ 1.

Statements 1 and 2 specify an agent performs exactly one action in each state.
Furthermore, if she does an action, then it must be legal (Statement 3). As a
consequence from the path construction, we have that no state can be followed by
the initial one (Statement 4) and any formula that holds in a terminal state also
holds in the subsequent state (Statement 5). Finally, if a state is the initial one
then it is not a terminal state (Statement 6).

We also have tautologies related to the partial order ⪯:

Observation. Let M be an ST-model, i ∈ N be an agent, z = (z1, z2, . . . , zn) be
a list of numerical terms (i.e., z ∈ Ln

Z) and f ∈ F be any function such that
f : In → I, for some n ∈ I≻0,

1. M |= z1 ℜ z1, for ℜ ∈ {≤,≥,=}

2. M |= z1 ℜ z2 ∧ z2 ℜ z1 → z1 = z2, for ℜ ∈ {≤,≥,=}

3. M |= z1 ℜ z2 ∧ z2 ℜ z3 → z1 ℜ z3, for ℜ ∈ {≤,≥,=}

4. M |= zi = zj ↔ f(zi, z−i) = f(zj , z−i), for any 1 ≤ i ≤ n

5. M |= z1 = z2 ↔ z2 = z1

6. M |= z1 ℜ z2 → ¬(z2 ℜ z1), for ℜ ∈ {<,>}

Proof. Statements 1-6 follow from the definition of ⪯ and the abbreviations for the
comparison operators.



20 Chapter 2. Logic for Auction Specification

Statements 1, 2 and 3 are a consequence from ⪯ being reflexive, antisymmetric
and transitive, respectively. Two numerical terms are equal if and only if the value
obtained after applying f is equal for both terms (Statement 4). Statement 5 says
that the equality operator is symmetric and Statement 6 states that the operators
representing the relations smaller-than and greater-than are asymmetric.

Requirements for representing verifiable auctions For verifying a protocol
expressed in ADL with respect to mechanism properties, its signature S = (N,G,
B,Φ,Y, I,F) must comply with the following requirements:

• F should include a function vi : B×Inm → I for each agent i ∈ N, where vi(β,λ)
denotes the value of β given a joint trade λ ∈ Inm, i.e., vi(β,λ) represents the
value reported for trade λ under i’s bid β4;

• There are no duplicate bids in B, that is, there are no two bids β,β′ ∈ B, such
that β ̸= β′ and vi(β,λ) = vi(β′,λ), for any trade λ ∈ Inm and any agent i;

• Each payment and trade should be represented as a numerical variable, that
is, {payi, tradei,j : i ∈ N, j ∈ G} ⊆ Y. The variables payi and tradei,j denote
the value in a state of agent i’s payment and her trade for the good j (that
is, the number of units of j being bought or sold by i), respectively.

Other functions may as well be included in F . For instance, for indirectly repre-
senting market clearing with ADL, one may encode a winner determination function,
such that it assigns bids and allocations to trades. Such function is not a compul-
sory requirement for the bidding language, since we can also directly represent the
market clearing through LADL-rules5.

2.3 Verification of ADL-Descriptions

In this section, we explore the general evaluation of auction-based protocols. First,
we recall concepts from mechanism design and present their formulation in ADL.
As for GDL, we then define well-formulated protocol descriptions.

2.3.1 Direct Mechanisms

A mechanism aggregates agents’ preferences and decides for an outcome (e.g., an
allocation of goods, a result of an election, etc) (Conitzer and Sandholm, 2002).
Auctions are a type of mechanism, in which the outcome is described in terms
of trades and monetary transfers among the participants. According to a given

4For instance, assume the bid β =“buy one apple for 2€ or two for 3€”. We can define a bid
value function vi(β,λ) such that the bid vi(β,λ) = 2 when λi,apple = 1 and vi(β,λ) = 3 when
λi,apple = 2. Other examples are given in the next chapter.

5A winner determination function is shown in Section 3.2.1.2 and the protocol presented in
Section 3.1 has the market clearing represented through LADL-rules.



2.3. Verification of ADL-Descriptions 21

objective, the goal of Mechanism Design is to design a game (i.e., the mechanism)
such that an outcome with desirable features is reached, despite the agents’ self
interests (Sandholm, 2003). The objective of a mechanism can include, for instance,
truthfulness of agents (i.e., strategyproofness), maximization of social welfare (i.e.,
efficiency), voluntary participation (i.e., individual rationality), and so on.

Let us recall concepts from economics and show how to represent some classi-
cal but important objectives (hereafter called properties) in ADL, namely budget-
balance, efficiency, individual rationality and strategyproofness. As we focus on
auctions, we denote the mechanism outcome as a pair (λ,p), where λ = (λj)j∈G
is a trade (describing the items being exchanged among the agents) and pi is the
payment for agent i.

The preference of an agent i in N over a trade λ is modeled by a preference
function ϑi : Inm → I, where ϑi ∈ Vi and Vi is a finite set of possible preference
functions for i. We call Vi the preference space of i. We classically assume that the
utility of agent i over an outcome (λ,p) is quasi-linear (i.e., the utility’s dependence
on the payment is separable and linear)6, defined as ϑi(λ)− pi.

We use the value reported in a bid for a given trade to assess whether the bid
represents the agent’s preference function.

Definition 2.6. Let B be an action set and Vi be the preference space of agent
i ∈ N. A bid β ∈ B represents a preference function ϑi ∈ Vi, denoted by β ∼i ϑi, iff
vi(β,λ) = ϑi(λ), for all trade λ ∈ Inm.

Similarly, an action set may represent a preference space. In this case, exactly
one bid in the action set should represent a preference function.

Definition 2.7. Given a set of actions B and a preference space Vi of agent i ∈ N,
we say B represents Vi, denoted by B ≈i Vi iff for each ϑi ∈ Vi there exists a unique
bid β ∈ B such that β ∼i ϑi and for each bid β ∈ B there exists a preference
function ϑi ∈ Vi such that β ∼i ϑi.

If B ≈i Vi, for each ϑi ∈ Vi we let βϑi denote the bid β ∈ B such that β ∼i ϑi, that
is, βϑi is the bid that represents ϑi. Given a preference profile ϑ, let βϑ = (βϑi)i∈N
denote the profile of bids representing ϑ.

Notice not all elements of I are feasible values for trades, for instance in a
traditional English auction, the trade for each agent should be either 0 or 1 while the
interval I could include greater values for encoding the payments. In the following,
the possible choices considered for trades in the mechanism are denoted Λ ⊆ Inm.

An indirect mechanism describes the available actions for each agent and an out-
come function that maps vectors of actions (also know as strategies) into outcomes.
In a direct mechanism, each agent’s available action consists on reporting prefer-
ences from her preference space (Jackson, 2009). Formally, a direct mechanism is
defined as follows (Nisan et al., 2007):

6Quasilinearity of utilities refers to the fact that the utility function is a linear combination of
the preference valuation function and the price paid by the agent. However, the preference function
ϑi itself can be general.



22 Chapter 2. Logic for Auction Specification

Definition 2.8. A direct mechanism (s,p) specifies a social choice function s :∏
i∈N Vi → Λ and a profile of payment functions p, where pi : ∏

i∈N Vi → I denotes
the amount agent i pays (or receives).

Regardless whether a protocol is multi- or single-stage, we view each step
we

de+1
→we+1 of a path w0

d1
→w1

d2
→ . . . dt

→wt
dt+1
→ . . . in an ST-model M as a direct mecha-

nism, where e ≥ 0 and the social choice and payments are encoded by the update
and valuation functions in M. Formally,
Definition 2.9. Given a preference space profile V , an ST-model M and a state
w ∈ W such that L(w, i) ≈i Vi for each i ∈ N, and let the set of possible trades be
defined as Λ = {(πY(w′, tradei,j))i∈N,j∈G : w′ = U(w,βϑ) & ϑ ∈

∏
i∈N Vi}. Then

state w is a direct mechanism (s,p), where for each ϑ ∈
∏

i∈N Vi, the outcome is
denoted by the valuation of the numerical variables regarding trades and payments
in the state w′ = U(w,βϑ). The social choice function is

s(ϑ) = (λj)j∈G

where λi,j = πY(w′, tradei,j) for each agent i and good j. The payment function for
agent i is

pi(ϑ) = πY(w′,payi)

The state w′ = U(w,βϑ) in the above definition is called an outcome state. Any
reachable state in an ST-model is an outcome state, except the initial state. For
the next subsections, we fix an ST-Model M and a preference space profile V such
that L(w, i) ≈i Vi for each agent i and state w ∈W.

2.3.1.1 Budget-balanced mechanisms

A mechanism is strongly budget-balanced (SBB) if the cumulative payment among
the bidders is zero, for every preference they may have (Mishra and Sharma, 2018).
A mechanism where there is no monetary deficit, that is, where only the designer
can earn revenue, is called weakly budget-balanced (WBB) (Mishra and Sharma,
2018). This condition is a relaxation from SBB, where the cumulative payment
among the bidders cannot be negative.
Definition 2.10. A direct mechanism (s,p) is strongly budget-balanced (resp.
weakly budget-balanced) if for each ϑ ∈

∏
i∈N Vi,∑

i∈N
pi(ϑ) = 0 (resp.

∑
i∈N

pi(ϑ) ≥ 0)

We denote the condition of a state being SBB by the following ADL-formula:

SBB =def sumi∈N(payi) = 0

The formula WBB is defined similarly:

WBB =def sumi∈N(payi) ≥ 0



2.3. Verification of ADL-Descriptions 23

Remind we consider that each stage in M represents a direct mechanism. The ST-
model M is SBB (resp. WBB) if that is the case for all outcome states of all paths
in M, that is, if M |=⃝SBB (resp. M |=⃝WBB).

Similarly, we could represent conditions for the balance of trades. Balance of
supply-demand requires the cumulative of trades for each good to be exactly zero
(Larsen et al., 2013). Mechanisms with free disposal allow trades to sell more items
than are purchased (Parkes and Ungar, 2001), that is, the cumulative of trades for
each good must be at most zero.

2.3.1.2 Strategyproof mechanisms

A mechanism is strategyproof (SP), or incentive compatible, if each agent i prefers
reporting her real preference ϑi than reporting any other preference ϑ′

i, since ϑi gives
her at least the same utility (Nisan et al., 2007).
Definition 2.11. A direct mechanism (s,p) is strategyproof if for every agent i ∈ N,
every preference profile ϑ and every ϑ′

i ∈ Vi,

ϑi(s(ϑ))− pi(ϑ) ≥ ϑi(s(ϑ′
i, ϑ−i))− pi(ϑ′

i, ϑ−i)

Now we reformulate this condition in terms of states from an ST-model. Let Vi
denote the preference space for each agent i.

Given the ST-model M, a path δ in M and a stage t ≥ 0 in δ, such that
L(δ[t], i) ≈i Vi for each i. For any preference profile ϑ, let δϑ denote a path such
that δ[0, t] = δϑ[0, t] and θ(δϑ, t) = βϑ (i.e., M, δϑ, t |= does(βϑ)). In other words,
δϑ is a path with the same prefix as δ, but one in which agents report the preferences
ϑ in δϑ[t] instead of the actions they perform in δ[t].

We say that δ[t] is strategyproof if for every i ∈ N, every preference profile ϑ

and every ϑ′
i ∈ Vi, we have that, for some x ∈ I,

M, δϑ, t |=⃝sub(vi(βϑi , (tradej)j∈G),payi) = x

and
M, δ(ϑ′

i ,ϑ−i), t |=⃝sub(vi(βϑi , (tradej)j∈G),payi) ≤ x

M is strategyproof if each stage t ≥ 0 of each path δ in M is strategyproof.

2.3.1.3 Efficient mechanisms

A mechanism is efficient (EF) if the social choice function maximizes the (utilitar-
ian) social welfare (Parkes and Ungar, 2001), i.e., the cumulative preference among
the agents.
Definition 2.12. A direct mechanism (s,p) is efficient if for every preference profile
ϑ,

∑
i∈N

ϑi(s(ϑ)) = max
λ∈Λ

∑
i∈N

ϑi(λ)



24 Chapter 2. Logic for Auction Specification

Let us express this condition in terms of an ST-model M. The following formula
determines whether the current trade maximizes the social welfare:

EF(β) =def

(
sumi∈N(vi(βi, (tradej)j∈G)) = max

λ∈Λ
(sumi∈N(vi(βi,λ)))

)
We say M is EF if, after performing a joint action, the trade in the outcome

state maximizes agents’ preferences, that is M |= does(β) → ⃝EF(β), for every
β ∈ Bn.

2.3.1.4 Individually rational mechanisms

A mechanism is (ex-post) individually rational (IR), if agents always get non-
negative utility (Nisan et al., 2007). Given a reported preference, in an IR mech-
anism, the agent’s utility when participating is at least as good as if she did not
participate (assuming the utility of non-participation is zero). Individual rational-
ity is also known as voluntary participation since it expresses the idea that agents
are not forced to participate in the mechanism (Parkes and Ungar, 2001).

Definition 2.13. A direct mechanism (s,p) is individually rational if for every
agent i ∈ N, every ϑ ∈

∏
r∈N Vr,

ϑi(s(ϑ))− p(ϑ) ≥ 0

We use the following ADL-formula to denote whether a state is IR:

IR(β) =def
∧
i∈N

sub(vi(βi, (tradej)j∈G),payi) ≥ 0

The ST-model M is IR if performing a joint action leads to an individually
rational state, that is, M |= does(β)→⃝IR(β), for every β ∈ Bn.

The properties described in this section are classical in mechanism design, since
they describe desirable features of the outcome. The objective of a mechanism may
include a combination of different properties. However, well-known impossibility
results restrict the feasible combination of such properties: no mechanism can be
efficient, strongly budget-balanced and individual-rational (Myerson and Satterth-
waite, 1983) and no mechanism can be efficient, incentive compatible and strongly
budget-balanced (Green and Laffont, 1979).

In this chapter, we describe how to verify ST-models by considering that each
stage is a direct mechanism, that is, an iterative protocol is treated as a sequence
of (independent) direct mechanisms. The revelation principle (Nisan et al., 2007)
states that any indirect mechanism that implements a function in dominant strate-
gies can be converted into a strategyproof direct mechanism. For this reason, con-
sidering direct mechanisms is of first interest.

If we want to verify an ST-model M as an (unique) indirect mechanism, we
need to evaluate properties considering the final outcome, that is, on the terminal



2.3. Verification of ADL-Descriptions 25

states of each path. The classical approach in mechanism design requires properties
to hold in strategic equilibrium rather than for all possible outcomes. As ADL
does not involve quantification over strategies, we need meta-reasoning to capture
the strategic equilibrium for a given solution concept (such as Nash or dominant
strategy equilibrium). The reader may refer to (Nisan et al., 2007) for a discussion
on the problem of finding strategic equilibria.

In the next subsection, we will focus on properties that ensure well-formed
descriptions in ADL. This properties are not related to the mechanism outcome but
require protocols to be playable and eventually end.

2.3.2 Well-Formed Protocols

Love et al. (2006) introduced constraints for games used in GGP. This constraints
constitute desirable features of games described in GDL by ensuring their descrip-
tions to be meaningful (or well-formed), in the sense that games are playable,
eventually terminate and are weakly winnable by any player.

We rephrase the constraints for termination and playability in terms of ST-
models. First, termination refers to whether each path from an ST-model reaches
a terminal state.

Definition 2.14. An ST-model M terminates if each path δ in M is complete, that
is, δ[t] ∈ T, for some t > 0.

Playability means there is a legal action for each agent to take in each moment
of the auction.

Definition 2.15. An ST-model M is playable if L(w, i) ̸= ∅ for each reachable state
w ∈W and agent i ∈ N.

Weak winnability means that, for each agent, there is a sequence of joint actions
that leads to a terminal state where the goal value is maximal. In the logical
formulations of GDL, weak winnability means that every player has a chance to
win (Zhang, 2018; Ruan et al., 2009), that is, there exists a path to a winning state.
In ADL, weak winnability follows from our assumption that each stage represents
a direct mechanism. Since we understand the agent’s preferences as represented
by legal actions, there exists a joint action in each stage leading to a state that
maximizes her utility among the possible outcomes. Hence, we do not focus on
weak winnability for determining whether a protocol is well-formed.

A well-formed protocol is a set of rules in ADL whose model is an ST-model
that satisfies both termination and playability.

Definition 2.16. Given an ST-Model M and a finite set of ADL-formulae Σ ⊂
LADL, Σ is a well-formed protocol over M if M is a model of Σ, M terminates and
it is playable.

It is possible to have different descriptions that are well-formed with respect to
the same model (e.g., due to redundancy). In fact, a given auction description may



26 Chapter 2. Logic for Auction Specification

also be sound in respect to several models. Investigating minimal descriptions is an
interesting non trivial open question. A potential path is to characterize the mini-
mum equivalent of an original ST-model, that is, the canonical model. This problem
was explored for GDL (Jiang et al., 2019), where they use the notion of bisimu-
lation equivalence between ST-models. In a recent paper, Zhang (Zhang, 2020)
investigates the equivalence of two GDL-descriptions when they describe games
behaviorally the same.

The automated verification of strategyproofness and termination requires meta-
reasoning over the possible paths of a ST-Model. However, for a number properties
(such as efficiency and individual rationality), the problem of analyzing a stage as
a direct mechanism boils down to model checking ADL-formulae.

2.4 Model Checking

Now we examine the complexity of the problem of deciding whether an ADL formula
is true with respect to a model, a path, and a stage in the path.

Definition 2.17. The model-checking problem for ADL is the following: Given an
ST-Model M, a path δ in M, a stage t ≥ 0 in δ and a formula φ ∈ ADL, determine
whether M, δ, t |= φ or not.

In the next sections, we show that the model-checking problem for ADL is de-
cidable in polynomial-time deterministic Turing machine (Ptime) when functions
in F can be computed in polynomial time.

2.4.1 Upper Bound

Let φ ∈ be a formula and M be an ST-Model over S. We say that ψ is a subformula
of φ if either (i) ψ = φ; (ii) φ is of the form ¬φ, or ⃝ψ and ψ is a subformula of φ;
or (iii) φ is of the form φ ∧ φ′ and ψ is a subformula of either φ or φ′. We denote
Subformula(φ) as the set of all subformulae of φ.

Theorem 2.1. Assuming that functions in F can be computed in polynomial time,
the model-checking problem for ADL is in Ptime.

Proof. Assume the functions in F can be computed in polynomial time. Algorithm
modelCheck works in the following way: first it gets all subformulae of φ and orders
them in a vector S by ascending length. Thus, S(|φ|) = φ, i.e., the position |φ| in
S corresponds to the formula φ itself, and if φi is a subformula of φj then i < j.
An induction on S labels each subformula φi depending on whether or not φi is
true in δ[j] under M. Since functions in F can be computed in polynomial time,
if φi does not have any subformula, its truth value is obtained directly from the
model. Since S is ordered by formulae length, if φi is either of the form φ′ ∧ φ′′ or
¬φ′ the algorithm labels φi according to the label assigned to φ′ and/or φ′′. If φi

is of the form ⃝φ′ then its label is recursively defined according to φ′ truth value
in the stage t+ 1. As Algorithm modelCheck visits each subformula at most once,



2.4. Model Checking 27

Algorithm 1 modelCheck(M, δ, t, φ)
Input: an ST-model M = (W, w̄,T,L,U,πΦ,πY), a path δ in M, a stage t ≥ 1

in δ and a formula φ ∈ LADL.
Output: true if M, δ, t |= φ, and false otherwise

1: S ← Subformula(φ) ordered by ascending length
2: Let isTrue[1, · · · , |φ|] be a boolean array initiated with true values
3: for i← 1 to |φ| do
4: φ← S[i]
5: switch the formula type of φ do
6: case φ is of the form φ′ ∧ φ′′

7: isTrue[i]← isTrue[getIndex(S, φ′)] ∧ isTrue[getIndex(S, φ′′)]
8: case φ is of the form ¬φ′

9: isTrue[i]← ¬isTrue[getIndex(S, φ′)]
10: case φ is of the form ⃝φ′

11: isTrue[i]← isTrue[i] ∧modelCheck(M, δ, j + 1, φ′)
12: case φ is atomic
13: isTrue[i]← M, δ, t |= φ

14: return isTrue[|φ|]

and the number of subformulas is not greater than the size of φ, the algorithm can
clearly be implemented in a polynomial-time deterministic Turing machine with
Ptime.

2.4.2 Lower Bound

Now let us characterize a lower bound of the complexity of model-checking ADL. To
do so, we reduce the model-checking problem for GDL, which is known to be Ptime
(consequence of Lemma 2 by Jiang et al. (2021)). This reduction is computable in
logarithmic space in the size of the input.

Theorem 2.2. The model-checking problem for ADL is Ptime-hard.

Proof. First, we recall GDL definitions. By convenience, we refer to the GDL for-
malization presented in (Jiang et al., 2019). Let SGDL = (N,B,Φ) be a game
signature, where Φ is a propositional set, N is a set of agents, and B is the action
set. Let MGDL = (W, w̄,T,L,U, g,πΦ) be a GDL model over SGDL, where W, w̄,
T, L and πΦ are defined in the same way as in a ADL model (see Definition 2.2),
U : W×B|N| →W\{w̄} is the update function and g : N→ 2W is the goal function.

A path δ in MGDL is an infinite sequence of states and joint actions, defined in
the same way as Definition 2.3. Let δ be a path in MGDL, a formula φ in LGDL is
defined by the following BNF:

φ ::= p | initial | terminal | legalr(a) | wins(r) | doesr(a) | ¬φ | φ ∧ φ | ⃝φ

where p ∈ Φ, r ∈ N and a ∈ B.



28 Chapter 2. Logic for Auction Specification

For any stage t ≥ 0 and formula φ ∈ LGDL, the semantics of LGDL are similar
to Definition 2.5, except by the following case: MGDL, δ, t |= wins(r) iff δ[t] ∈ g(r).

Given a stage t > 0 and a formula φ ∈ LGDL, we show how to construct an ADL
model MADL, such that M, δ, t |= φ iff MGDL, δ, t |= φ.

Let SADL = (N, ∅,A,Φ′, ∅, [0, 0], ∅) be the auction signature, where Φ′ =
Φ ∪ {wins(r) : r ∈ N}. We define the ADL model MADL = (W, w̄,T,L,U,π′

Φ, ∅),
where W, w̄,T and U are the same as in MGDL. The valuation function for state
propositions is defined as follows: π′

Φ(w) = πΦ(w) ∪ {wins(r) : w ∈ g(r) & r ∈ N},
for each w ∈W.

Since U(w,d) ∈W, for each w ∈W and d ∈ B|N|, we have that U is an update
function in accordance with Definition 2.2. Furthermore, if δ is a path in MGDL
then it is a path in MADL. Since {wins(r) : r ∈ N} ⊆ Φ′, we have that LGDL ⊆ LADL.

Given φ ∈ LGDL, if φ is not in the form wins(r), then it is straightforward that
MGDL, δ, t |= φ iff MADL, δ, t |= φ. Now we consider the case were φ ∈ LGDL is in
the form wins(r), for some r ∈ N. Assume MGDL, δ, t |= wins(r) iff δ[t] ∈ g(r) iff
wins(r) ∈ Φ′(δ[t]) iff MADL, δ, t |= wins(r).

Theorem 2.2 shows that Algorithm modelCheck is optimal when the functions
in F can be computed in polynomial time. As for GDL, the ST-model may have
an exponential size with respect to the number of atomic propositions used (e.g.,
the number of agents and items).

2.5 Conclusion

ADL is useful for representing the rules of an auction as well as for verifying a
number of properties. For discussing its generality, we refer again to the six auction
dimensions from Kalagnanam and Parkes (2004)’s classification:

1. Resources: ADL can represent auction variants with single and multiple units
as well as multiple types of goods;

2. Market structure: ADL represents single and double-sided auctions in addition
to exchange protocols. However, we cannot represent dynamic sets of agents
and goods;

3. Preference structure: as we are concerned with the general representation of
auctions, we focus on how agents can express their preferences rather than on
the underlying structures of their utility functions. Following the literature on
Mechanism Design (Parkes and Ungar, 2001), we consider agents with quasi-
linear utilities. In such a case, the agents’ utilities are based on a preference
function over the outcomes and her payment. For a discussion on the hierarchy
of preference functions, the reader may refer to Feige et al. (2015);



2.5. Conclusion 29

4. Bid structure: ADL can be used alongside different bidding languages. We
define requirements for the bidding set. In the next chapter, we illustrated
how to employ different bidding structures in ADL;

5. Market clearing: ADL can encode single and multi-sourcing auctions;

6. Information feedback: in ADL, direct mechanisms are described by a one-stage
protocol and indirect mechanisms are represented by iterative protocols.

Hence, ADL addresses all these dimensions and is general enough to represent
most settings. Notice that, similar to GDL, ADL focuses on deterministic and
perfect information protocols. GDL-II is an extension for handling imperfect in-
formation (Thielscher, 2011) and may be considered for auctions such as iterative
sealed-bid auctions. These are however less common.

Different from the related work (Rolli et al., 2006), our proposal is flexible
and not restricted to a specific bidding language, as one may use different bidding
languages with ADL for defining distinct protocols.

Beyond the auction setting, ADL is also able to represent several kinds of re-
source allocation problems: as noticed by Chevaleyre et al. (2006), auctions can
be seen as a subdivision of allocation mechanisms. The main characteristics of
an auction are (i) central authority (the auctioneer), (ii) monetary transfer among
participants, and (iii) agents’ preferences expressed through bids. All these key
features are expressible in ADL.

Similar to ADL, the semantics of GDL is based on fixed paths. Thus, constraints
for well-formed descriptions cannot be encoded through formulae using the standard
formulation of GDL. Zhang (2018) proposes a GDL-based modal logic to enable
reasoning over game descriptions, with which one can express conditions such as
playability, termination and winnability. However, the work does not investigate
the complexity of verifying formulae in this modal logic. Ruan et al. (2009) use
ATL (Alur et al., 2002) to reason about GDL-specified games. They prove that
the problem of interpreting ATL formulae over propositional GDL descriptions is
Exptime-complete and show how to use ATL for the verification of well-formedness
conditions, which might or might not hold on various games. Deciding whether a
GDL description is well-formed is undecidable in general, since deciding whether a
description leads to games that always terminates would solve the halting problem
for a Turing machine (Saffidine, 2014).

As shown in Section 2.3, we can encode different properties of direct mechanisms
as ADL-formulae (e.g., individual rationality and budget balance). Although we
cannot represent strategyproofness and the constraints for well-formed descriptions
entirely as ADL-formulae, we are still able to infer them by meta-reasoning over the
model specification.

Other logical languages are suitable for encoding properties. Termination and
playability, for instance, can be written as ATL-formulae (Alur et al., 2002). As SL
(Chatterjee et al., 2010) includes quantification over strategies, it allows the evalua-
tion of games in strategic equilibria. Therefore, it can be used to encode properties



30 Chapter 2. Logic for Auction Specification

for indirect mechanisms as logical formulae, as we shall see in Chapter 5. However,
the expressivity of such languages brings a computational cost. The model-checking
problem for ATL∗ with perfect information is in Pspace in the memoryless case and
deterministic double exponential time with perfect recall (Schobbens, 2004). As for
SL, the model-checking is NonElementary with respect to the size of the spec-
ification. More specifically, it is k-Expspace-hard in the alternation number k of
quantifications in the specification (Mogavero et al., 2014). The model-checking
problem for ADL is in Ptime in the size of the formula. For this reason, we be-
lieve ADL provides a reasonable cost-benefit for expressing and evaluating general
auctions. As a drawback for ATL, SL and ADL, representing auctions as concurrent
game structures or state-transition models may require exponential size.

In the next chapter, we illustrate the use of ADL for specifying different, al-
though representative, types of auctions: a simultaneous ascending auction, a Vick-
rey–Clarke–Groves mechanism and an iterative combinatorial exchange.



Chapter 3

Representative Auctions in ADL

In the previous chapter, we proposed ADL a logical language for the specification
of auctions. We also characterized the well-formedness of auction descriptions and
showed how to evaluate properties of direct mechanisms using ADL. Now, we illus-
trate the generality of ADL by modeling different auction-based markets. We focus
on two auction types: simultaneous ascending auction and combinatorial exchange
as we believe they are representative to demonstrate the expressive power of ADL.
The first generalizes English auctions to multiple items and uses a simple bidding
language for stating the price an agent is willing to pay for each item. The second
type, combinatorial exchange, is a generalization of combinatorial and double-sided
auctions. In this case, we show how to use a tree-based bidding language for elici-
tation of preferences over logical combinations of goods in two-sided markets. We
consider an one-shot and an iterative variants of this auction type. Finally, each
of those protocols is evaluated in terms of their well-formedness and the properties
from direct mechanisms described in Section 2.3.

3.1 Simultaneous Ascending Auction

Let us now consider the simultaneous ascending auction (SAA), which is a single-
side and single-unit protocol similar to the traditional English auction, except that
several goods are sold at the same time, and that the participants simultaneously
bid for any number of goods they want. According to Cramton (2011):

“The simultaneous ascending auction (and its variants) will remain the
best method for auctioning many related items in a wide range of cir-
cumstances, even settings where some of the goods are complements for
some bidders.”

To represent the SAA with n types of goods and m agents, we first describe
the auction signature, written Ssa = (N,G,B,Φ,Y, I,F), where N = {1, .. .,m},
G = {1, .. ., n}, Φ = {soldj , bidi,j : j ∈ G & i ∈ N}, Y = {price,pricej , tradei,j ,

payi : j ∈ G & i ∈ N} and I ⊂ N. The propositions soldj and bidi,j represent whether
the good j was sold and whether i is bidding for j, resp. The variables price and
pricej specify the current price for any unsold good and the selling price for j, resp.
Agents may specify the value they are willing to pay for each good in a given state.
The action set is defined as follows: B = {(p1, .. ., pm) : pj ∈ I⪰0, 1 ≤ j ≤ m}, where
pj denotes the price for good j. F includes the functions previously introduced



32 Chapter 3. Representative Auctions in ADL

(e.g., sum(z1, z2), max(z1, z2)). It also contains vi : B × Inm → I, for each agent
i ∈ N. This function is defined as follows:

vi((p1, .. ., pm),λ) =
∑
j∈G

λi,j · pj

for a trade λ ∈ Inm and a bid (p1, .. ., pm) ∈ B.
Each instance of a SAA is specific and defined with respect to B, I and the

constant values inc,m, n ∈ I≻0 and start ∈ I⪰0, representing the number of agents
and the quantity of distinct good types, the bid increment, and the starting price,
respectively. Then, the rules of an SAA are formulated by ADL-formulae as shown
in Figure 3.1.

1. initial ↔ price = start ∧
∧

j∈G

(
pricej = start ∧

∧
i∈N(¬bidi,j ∧ tradei,j =

0)
)

2. soldj ↔
∨

i∈N tradei,j = 1, for each j ∈ G

3. terminal↔ ¬initial ∧∧
j∈G(soldj ∨

∧
i∈N ¬bidi,j)

4. ⃝(tradei,j = 1↔ bidi,j ∧
∧

r∈N\{i} ¬bidr,j), for each i ∈ N, j ∈ G

5. ⃝(tradei,j = 0↔ ¬(bidi,j ∧
∧

r∈N\{i} ¬bidr,j)), for each i ∈ N, j ∈ G

6. legali(p1, .. ., pm)↔ ∧
j∈G

(
(pj = 0 ∧ tradei,j = 0) ∨ (pj = sum(price, inc)∧

¬soldj) ∨ (pj = pricej ∧ tradei,j = 1)
)
, for each i ∈ N, p1, .. ., pm ∈ {x :

0 ≤ x < zmax − inc}

7. ¬terminal ∧ price = x→⃝price = sum(x, inc), for each x ∈ I⪰0

8. ¬terminal∧pricej = x→⃝((pricej = x∧ soldj)∨ (pricej = sum(x, inc)∧
¬soldj)), for each j ∈ G, x ∈ I⪰0

9. ⃝bidi,j ↔ (doesi(p1, .. ., pm) ∧ pj ̸= 0) ∨ (bidi,j∧terminal), for each i ∈ N,
j ∈ G and some p1, .. ., pm ∈ I⪰0

10. payi = sumj∈G(times(pricej , tradei,j)), for each i ∈ N

Figure 3.1: Simultaneous Ascending Auction represented by Σsa

In the initial state, no agent is bidding, no trade is performed and the prices
have the value start (Rule 1). A good is sold if it is traded to some agent (Rule 2).
In a terminal state, all the goods are either sold or no one is bidding for them (Rule
3). A good will be traded to an agent in the next state if she is currently the only
active bidder for this item, otherwise there is no trade (Rules 4-5). For each good,
an agent can either bid the value 0, an increment on the current price (for unsold
goods) or repeat her winning bid for this good (Rule 6). In a non-terminal state, the



3.1. Simultaneous Ascending Auction 33

propositions and numerical variables are updated as follows: (i) the current price
increases, (ii) the selling price increases for unsold goods, and (iii) the active bidders
for each good are updated with respect to their bids (Rules 7-9). The payment for
an agent is the cumulative value of the selling price for her traded goods (Rule 10).
Let Σsa be the set of Rules 1-10.

3.1.1 Representing as a model

Next, we address the model representation of the SAA. Let Msa be the set of ST-
models Msa defined for any constant values start ∈ I⪰0 and inc, n,m ∈ I≻0. Each
Msa is defined as follows:

• W = {⟨(bj)j∈G, (λj)j∈G, p, (pj)j∈G⟩ : bi,j , λi,j ∈ {0, 1} & p, pj ∈ I⪰0 & i ∈ N &
j ∈ G}, where bi,j denotes whether agent i is bidding for good j, λi,j specifies
the number of goods with type j traded for agent i, p denotes the current
price and pj represents the selling price for j;

• w̄ = ⟨0, .. ., 0, 0, .. ., 0, start, start, .. ., start⟩, in the initial state, there is no trade
or active agent and the prices are start;

• T = {w : w = ⟨(bj)j∈G, (λj)j∈G, p, (pj)j∈G⟩ ∈W \ {w̄} & for all j ∈ G, either
(i) λi,j = 1 for some i ∈ N or (ii) bidi,j = 0, for all i ∈ N}, the terminal states
are the ones where every good was sold or there is no bidder interested on
purchasing it;

• L = {(w, i, (pj)j∈G) : i ∈ N & w = ⟨(bj)j∈G, (λj)j∈G, p, (pj)j∈G⟩ ∈ W & for
all j ∈ G, and all 0 ≤ pj < zmax − inc such that either (i) pj = 0 & λi,j = 0 or
(ii) pj = p + inc & λr,j ̸= 1, for all r ∈ N or (iii) pj = pj & λi,j = 1}, that is,
agents can choose to raise their bid or to give up of unsold goods, if an agent
bought a good, she must keep her bid for it;

• For every w = ⟨(bj)j∈G, (λj)j∈G, p, (pj)j∈G⟩ in W and all d ∈ Bm, U is
defined as follows: if w ∈ T then U(w,d) = w. Otherwise, U(w,d) =
⟨(b′

j)
j∈G, (λ

′
j)

j∈G, p′, (λj)j∈G⟩, where for every i ∈ N and j ∈ G each compo-
nent is updated as follows,

(i). b′
i,j = 1 iff di ̸= 0; and b′

i,j = 0 otherwise;
(ii). λ′

i,j = 1 iff b′
i,j = 1 and for all r ∈ N \ {i}, b′

i,j ̸= 1; and λ′
i,j = 0 otherwise;

(iii). p′ = p+ inc;
(iv). p′

j = pj + inc iff λ′
r,j = 0 for all r ∈ N; and p′

j = pj otherwise.

• For each w = ⟨(bj)j∈G, (λj)j∈G, p, (pj)j∈G⟩ in W, i ∈ N and j ∈ G,

(i). πY(w, tradei,j) = λi,j ;
(ii). πY(w, price) = p;



34 Chapter 3. Representative Auctions in ADL

(iii). πY(w, pricej) = pj ;
(iv). πY(w, payi) = ∑

j∈G pj · λi,j

• For each w ∈W, πΦ(w) = {soldj : λi,j = 1 & j ∈ G & i ∈ N}∪{bidi,j : bi,j = 1
& j ∈ G & i ∈ N}.

Hereafter, we assume an instance of Msa ∈ Msa and Σsa for some start ∈ I⪰0 and
inc, n,m ∈ I≻0.
Example 3.1. Let Msa ∈ Msa, such that start = 1 and inc = 1. We assume there
are two agents in N, denoted by i and s, and two types of goods in G, denoted by
a and b. Figure 3.2 illustrates a path in Msa, showing the value of the numerical
variables and the propositions that hold in each state. For convenience, we omit
the numerical variables when their value is 0. In state w0, agents r and s bid for
good a, but only agent r bids for good b. In state w1, since r is the only bidder for
b, it is sold to her. Agent r cannot change her bid for b and s can no longer bid for
it. In w1, only agent s accepts to increase her bid for a. In state w2, a is sold to s.
Since all the goods were sold, this state is terminal.

w̄
price = 1 ∧ pricea = 1 ∧ priceb = 1
legalr((pa, pb)) ∧ legals((p′

a, p
′
b )),

where pa, p
′
a, pb, p

′
b ∈ {0, 2}

w0

L

initial
πY

doesr((2, 2)) and doess((2, 0))

bidr,a ∧ bidr,b ∧ bids,a ∧ soldb

πY

L

πΦ

w1

trader,b = 1 ∧ payr = 2
price = 3 ∧ pricea = 3 ∧ priceb = 2

bidr,b ∧ bids, a ∧ solda ∧ soldb

πY

terminal

L

πΦ

w2

legalr((0, 2)) ∧ legals((3, 0))

trader,b = 1 ∧ payr = 2
trades,a = 1 ∧ pays = 3
price = 4 ∧ pricea = 3 ∧ priceb = 2

T

legalr((pa, 2)) ∧ legals((p′
a, 0)),

where pa, p
′
a ∈ {0, 3}

doesr((0, 2)) and doess((3, 0))

doesr((0, 2)) and doess((3, 0))

Figure 3.2: A Path in Msa, with 2 bidders and 2 goods



3.1. Simultaneous Ascending Auction 35

3.1.2 Evaluating the protocol

Let us now evaluate the protocol. First, we show that Σsa is a sound representation
of Msa.

Lemma 3.1. Msa is an ST-model and it is a model of Σsa.

Proof. (Sketch) It is routine to check that Msa is actually an ST-model. Given
a path δ, any stage t of δ in Msa, we need to show that Msa, δ, t |= φ, for each
φ ∈ Σsa. Let us verify Rule 1. Assume Msa, δ, t |= initial iff δ[t] = w̄. By the
definition of w̄, πΦ and πY, we have πY(w̄,price) = start, πY(w̄, pricej) = start,
bidi,j ̸∈ πΦ(w̄) and tradei,j = 0, for all i ∈ N and j ∈ G. Thus, Msa, δ, t |= initial iff
Msa, δ, t |= price = start ∧

∧
j∈G(pricej = start ∧

∧
i∈N(¬bidi,j ∧ tradei,j = 0)).

Now we verify Rule 2. Let j ∈ G be a good type. Assume Msa, δ, t |= soldj iff
soldj ∈ πΦ(δ[t]) iff πY(δ[t], tradei,j) = 1 for some j ∈ G iff Msa, δ, t |=

∨
i∈N tradei,j =

1.
Next, we consider Rule 3. Assume Msa, δ, t |= terminal iff δ[t] ̸= w̄ and for all j ∈

G, either Msa, δ, t |= trader,j = 1 for some r ∈ N or Msa, δ, t |= ¬bidi,j for all i ∈ N.
By Rule 2, Msa, δ, t |= terminal iff Msa, δ, t |= ¬initial∧∧

j∈G(soldj ∨
∧

j∈G ¬bidi,j).
Now we verify Rule 9. Let i ∈ N and j ∈ G. Assume Msa, δ, t |= (doesi(p1, .. .,

pm) ∧ pj ̸= 0) ∨ (bidi,j ∧ terminal), for some p1, .. ., pm ∈ I⪰0. We next prove for the
two cases. First, assume Msa, δ, t |= bidi,j ∧ terminal. Then bidi,j ∈ πΦ(δ[t]) and
δ[t] ∈ T. By the update function, δ[t + 1] = δ[t] and Msa, δ, t + 1 |= bidi,j , i.e.,
Msa, δ, t |= ⃝bidi,j . In the second case, assume doesi(p1, .. ., pm) ∧ pj ̸= 0. By the
update function, bidi,j ∈ πΦ(δ[t+ 1]) and thus Msa, δ, t |=⃝bidi,j .

The remaining rules are verified in a similar way.

Next, we show that no good can be bought by two different agents, i.e., given
any two agents and a good, one of them will have her trade equal to zero. When a
good is sold, it will still be sold in the next state.

Proposition 3.1. For each j ∈ G and each i, r ∈ N such that i ̸= r,

1. Msa |= tradei,j = 0 ∨ trader,j = 0

2. Msa |= soldj →⃝soldj

3. Msa |= ¬soldj → price = pricej

Proof. Given a path δ in Msa, any stage t of δ and a good type j ∈ G, let i, r ∈
N, such that i ̸= r. Let us consider Statement 1. If δ[t] = w̄, then Msa, δ, t |=
tradei,j = 0 ∧ trader,j = 0 (see Rule 1). Otherwise, by the path definition, δ[j] =
U(δ[t− 1], θ(δ, t− 1)). Let us suppose for the sake of contradiction that Msa, δ, t ̸|=
tradei,j = 0∨trader,j = 0. Since W construction defines tradei,j , trader,j ∈ {0, 1}, we
have Msa, δ, t |= tradei,j = 1∧trader,j = 1. Thus, Msa, δ, t−1 |=⃝tradei,j . By Rule
4, Msa, δ, t − 1 |= ⃝(bidi,j ∧

∧
s∈N\{i} ¬bids,j). Thereby, Msa, δ, t − 1 ̸|= ⃝(bidr,j ∧∧

s∈N\{r} ¬bids,j) and Msa, δ, t − 1 ̸|= ⃝trader,j=1. Thus, Msa, δ, t ̸|= trader,j = 1,
which is a contradiction.



36 Chapter 3. Representative Auctions in ADL

For Statement 2. Assume Msa, δ, t |= soldj . Then, Msa, δ, t |= tradei,j = 1 for
some agent i ∈ N. From Rule 6, θi(δ, t) = (p1, . . . , pm) with pj = πY(δ[t],pricej)
and θr(δ, t) = (p′

1, . . . , p
′
m) with p′

j = 0, for all agent r ̸= i. By Rule 9, we have
Msa, δ, t |= bidi,j ∧

∧
r∈N\{i} ¬bidr,j . Thus, it follows from Rules 2 and 4 that

Msa, δ, t |=⃝tradei,j = 1 and Msa, δ, t |=⃝soldj .
For Statement 3, notice all prices in the initial state have the same value (Rule

1) and the current price and the price for unsold items are increased by the same
amount in each turn (Rule 7 and 8). Assume Msa, δ, t |= ¬soldj . Since Msa |=
soldj → ⃝soldj , there is no stage t′ < t such that Msa, δ, t

′ |= soldj and thus
Msa, δ, t |= price = pricej .

Each path in Msa reaches a terminal state, and thus the protocol satisfies the
termination condition. Furthermore, Msa satisfies playability, that is, there is always
a legal action for each agent to take. Thus, Σsa is well-formed over Msa.

Theorem 3.1. Σsa is a well-formed protocol over the ST-model Msa.

Proof. Since Msa is a model of Σsa (see Lemma 3.1), we have to show that for each
path δ in Msa and each agent i ∈ N,

1. δ is a complete path;

2. Msa |=
∨

a∈B legali(a).

Let us start by verifying Statement 1. Remind start ∈ I⪰0 and inc ∈ I≻0. Let δ

be a path in Msa. In δ[0], πY(δ[0],price) = start. By the update function, for any
stage t, if δ[t] ̸∈ T, then πY(δ[t+ 1], price) = πY(δ[t], price) + inc.

For the sake of contradiction, let us assume δ is not complete. Let i ∈ N be an
agent. By the definition of L, (p1, .. ., pm) ∈ L(δ[t], i), for all 0 ≤ pj < zmax− inc and
j ∈ G, such that either (i) pj = 0 & πY(δ[t], tradei,j) = 0, or (ii) pj = price + inc
& πY(δ[t], trader,j) = 0 for all r ∈ N, or (iii) pj = pricej & πY(δ[t], trader,j) = 0.
Since πY(δ[t + 1],price) > πY(δ[t], price), there will be a stage e ≥ 0 in δ, where
the condition (ii) will not be true for any 0 ≤ pj < zmax − inc. Thus, for each
good j, it will be the case that i bids 0 for it or the good was assigned to her (i.e.,
πY(δ[e], tradei,j) = 1). From Rules 3 and 9 in Σsa, it follows that δ[e + 1] ∈ T.
Thus, δ is a complete path, which is a contradiction.

We now consider Statement 2. Given a path δ in Msa and a stage t in δ, we
show that there is a legal action for agent i in δ[t]. For each j ∈ G, let pj = 0 if
πY(δ[t], tradei,j) = 1. Otherwise, let pj = πY(δ[t],pricej). By L definition, we have
(p1, .. ., pm) ∈ L(δ[t], i). Thus, Msa, δ, t |=

∨
a∈B legali(a).

From being a single-side auction where all agents are buyers, it follows that
there is no monetary deficit in Msa, but it is not strongly budget-balanced.

Proposition 3.2. Msa |=⃝WBB and Msa ̸|=⃝SBB



3.1. Simultaneous Ascending Auction 37

Proof. Suppose a path δ in Msa and a stage t in δ. Note that each trade can be
either 0 or 1 and the price for a good is at least 0, i.e., πY(δ[t], tradei,j) ∈ {0, 1}
and πY(δ[t],pricej) ∈ I⪰0. It follows from Rule 10 that Msa, δ, t |= payi ≥ 0 for each
agent i and Msa, δ, t |= sumi∈N(payi) ≥ 0. Thus, Msa |=⃝WBB.

We will prove Msa is not strongly budget-balanced with a counter-example.
Given an agent i, let δ be a path in Msa such that θi(δ, 0) = (start, 0, . . . , 0) and
θs(δ, 0) = (0, . . . , 0) for each agent s ̸= i. Since (start, 0, . . . , 0) ∈ L(δ[0], i) and
(0, . . . , 0) ∈ L(w, s), there exists such path in Msa. Since δ[0] ̸∈ T, πY(δ[0], price) =
πY(δ[0],pricej) = start and soldj ̸∈ πΦ(δ[0]) for each j, it follows from Rules 7 and
8, that all prices are increased by the constant inc > 0, that is Msa, δ, 1 |= price =
sum(start, inc)∧∧

j∈G pricej = sum(start, inc). By Rule 9, we have that agent i is only
bidding for the good 1, that is, Msa, δ, 1 |= bidi,1∧

∧
j∈G\{1} ¬bidi,j . All other agents

are not bidding for any good, i.e., Msa, δ, 1 |=
∧

j∈G ¬bids,j , for each s ̸= i. From
Rules 4 and 10, we have Msa, δ, 1 |= tradei,1 = 1 ∧ payi = price1 ∧

∧
s∈N\{i} ps = 0.

Since πY(δ[1], price1) > 0, we have Msa, δ, 1 ̸|= sums∈N(pays) = 0 and Msa ̸|=
⃝SBB.

The simultaneous ascending auction is only efficient on states preceding the
terminal one.

Proposition 3.3. Given a joint action β ∈ Bn,

1. Msa ̸|= does(β)→⃝EF(β)

2. Msa |= does(β)→⃝(terminal→ EF(β))

Proof. Given a path δ in Msa, we first consider Statement 1. We prove Msa is
not efficient with a counter-example. Our purpose is to show that there exists a
joint action β such that Msa, δ, 0 |= does(β) ∧ ¬ ⃝ EF(β). That is, Msa, δ, 0 |=
does(β) ∧ ¬⃝ sumi∈N(vi(βi, (tradej)j∈G)) = maxλ∈Λ(sumi∈N(vi(βi,λ))).

As we consider the initial state of δ, Msa, δ, 0 |= price = start ∧
∧

j∈G pricej =
start ∧

∧
i∈N(¬bidi,j ∧ tradei,j = 0). Thus, no good was sold, that is, Msa, δ, 0 |=∧

j∈G ¬soldj . Let i and r be two distinct agents in N with i ̸= r. From the definition of
L, L(δ[0], i) = L(δ[0], r) and (p1, . . . , pm) ∈ L(δ[0], i) if pj = 0 or pj = sum(start, inc)
for each good j.

Let us assume Msa, δ, 0 |= does(β) for β ∈ Bn such that βi = βr = (start +
inc, 0, . . . , 0) and βs = (0, . . . , 0) for each s ∈ N \ {i, r}. Since βi ∈ L(δ[0], i),
βr ∈ L(δ[0], r) and βs ∈ L(δ[0], s), there exists such path in Msa. Thus, Msa, δ, 1 |=
bidi,1 ∧ bidr,1. Notice bidi′,j does not hold in δ[1] for any other pair (i′, j) ̸= (i, 1)
and (i′, j) ̸= (s, 1). From Rules 4 and 5, we have Msa, δ, 1 |=

∧
i′∈N,j∈G tradei′,j = 0.

Recall the valuation of each agent i′ is v′
i((p1, .. ., pm),λ) = ∑

j∈G λi′,j · pj for a
trade λ ∈ Inm and a bid (p1, .. ., pm) ∈ B. Since each trade has the value 0 in δ[1],
it follows that Msa, δ, 1 |= sumi∈N(vi(βi, (tradej)j∈G)) = 0.

However, let λ ∈ Inm be a trade such that λi,1 = 1 and λi′,j = 0 for all other pair
(i′, j) ̸= (i, 1). It is easy to see that λ ∈ Λ. The value of this trade for i is vi(βi,λ) =



38 Chapter 3. Representative Auctions in ADL

start + inc and v′
i(β′

i,λ) = 0 for each i′ ̸= i. Thus, we have ∑
i∈N(vi(βi,λ)) =

start + inc, Msa, δ, 1 |= ¬sumi∈N(vi(βi, (tradej)j∈G)) = maxλ∈Λ(sumi∈N(vi(βi, λ)))
and Msa, δ, 0 |= ¬⃝ EF(β).

For Statement 2, let β ∈ Bn be a joint action and t ≥ 0 be a stage of δ. From
the definition of Msa we have that each trade can be only 0 or 1. That is, if
λ ∈ Λ then λi,j ∈ {0, 1} for each agent i and good j. Assume Msa |= does(β) and
Msa, δ, t |= ⃝terminal. We intend to show that Msa |= ⃝EF(β), i.e., Msa, δ, t |=
⃝sumi∈N(vi(βi, (tradej)j∈G)) = maxλ∈Λ(sumi∈N(vi(βi,λ)))).

We focus on the case where δ[t] ̸∈ T. Let i be an agent in N and let (p1, . . . , pm)
denote i’s action in β. Recall function vi((p1, . . . , pm),λ) = ∑

j∈G pj ·λi,j , for a trade
λ ∈ Inm. Since the value for each good in vi depends only on its reported value in
i’s bid and its trade for i, we show that the part of vi((p1, . . . , pm),λ) corresponding
to each good j (i.e., pj · λi,j) is maximized when λi,j = πY(δ[t], tradei,j).

From the definition of B, we have that the reported value for j in i’s bid is at
least zero, i.e., pj ≥ 0. We check for two cases:

1. If pj = 0, then λij · pj = 0, for any trade λ ∈ Λ. Thus, Msa, δ, t + 1 |=
times(pj , tradei,j) = max(times(pj , 0), times(pj , 1));

2. If pj > 0, then Msa, δ, t + 1 |= bidi,j . Since δ[t + 1] ∈ T, it should be the
case that Msa, δ, t + 1 |= soldj . From Rule 2, we know the trade for good
j is one for some agent, i.e., Msa, δ, t + 1 |= ∨

r∈N trader,j = 1. Because
Msa, δ, t + 1 |= bidi,j , it should be the case that the agent who have a trade
for j is i (see Rules 4 and 5), that is, Msa, δ, t + 1 |= tradei,j = 1. Hence,
Msa, δ, t+ 1 |= times(pj , 1) = max(times(pj , 0), times(pj , 1)).

It follows that

Msa, δ, t+ 1 |= sumi∈N(vi(βi, (tradej)j∈G)) = max
λ∈Λ

(sumi∈N(vi(βi,λ))))

or simply, Msa, δ, t |=⃝ef(β).
The case where δ[t] ∈ T, follows from the loop on the path definition.

The auction described by Msa is individually rational, since agents pay at most
their bids.

Theorem 3.2. Given a joint action β ∈ Bn, Msa |= does(β)→⃝IR(β)

Proof. Given a path δ in Msa and a stage t, assume Msa, δ, t |= does(β) for some
β ∈ Bn. We consider first the case where δ[t] ̸∈ T. Let i ∈ N be an agent and
(p1, . . . , pm) denote the bid of i in the joint action β. Let us consider the good
j ∈ G. We denote by prj = πY(δ[t + 1], pricej) the price of good j in δ[t + 1]
and by λ = (πY(δ[t + 1], trades,j′))j′∈G,s∈N the trade in δ[t + 1]. Recall function
vi((p1, . . . , pm),λ) = ∑

j∈G λi,j · pj . Similarly, by Rule 10, we have that the payment
for agent i in δ[t+ 1] is πY(δ[t+ 1], payi) = ∑

j∈G prj · λi,j .



3.1. Simultaneous Ascending Auction 39

We have θi(δ, t) = (p1, . . . , pm). Notice inc, pj ∈ I⪰0 by the definition of Ssa.
According with the action legality (Rule 6), the value of pj can be either zero, the
price of j in δ[t] or the current price incremented by inc. For each of the three
cases, we show that the part of i’s payment corresponding to j is equal to the part
of vi((p1, . . . , pm),λ) corresponding to j:

• If pj = 0, agent i chosen to not bid for good j. By Rules 5 and 9, Msa, δ, t+1 |=
¬bidi,j ∧ tradei,j = 0. Thus, we have λi,j · pj = prj · λi,j = 0.

• If pj = πY(δ[t],pricej), by the definition of L, it must be the case that the
good was already sold to agent i, that is Msa, δ, t |= tradei,j = 1 ∧ soldj .
Since good j is sold, Rule 6 ensure other agents can only bid the value 0
for j, and thus, Msa, δ, t + 1 |= ∧

r∈N\{i} ¬bidr,j . By Rules 4 and 9, we have
Msa, δ, t + 1 |= bidi,j ∧ tradei,j = 1. Since good j is sold, its price in δ[t] is
the same as in δ[t] (Rule 8), that is Msa, δ, t |= pricej = pj . Thus, we have
λi,j · pj = prj · λi,j = prj .

• Let prevprice = πY(δ[t],price). If pj = prevprice + inc, then Msa, δ, t + 1 |=
bidi,j . From the legality definition, it should be the case that j is not sold,
that is Msa, δ, t |= ¬soldj ∧ pricej = sum(prevpricej , inc). From Statement 3
of Proposition 3.1, we have Msa, δ, t |= price = pricej . The value of tradei,j
depends on the actions of other agents in δ[t]. From Rules 5 and 4, we have
Msa, δ, t+1 |= tradei,j = 0∨tradei,j = 1. In the first case, λi,j ·pj = prj ·λi,j = 0.
Otherwise, the trade has the value 1 and λi,j · pj = prj · λi,j = prj , since
pj = prj = prevprice+ inc.

It follows that Msa, δ, t + 1 |= vr(β, (tradej)j∈G) = payr and Msa, δ, t + 1 |=
sub(vr(β, (tradej)j∈G),payr) ≥ 0. Thus, Msa, δ, t |=⃝IR(β).

If δ[t] ∈ T, the loop in the path definition ensures Msa, δ, t |= ⃝IR(β) if and
only if Msa, δ, t |= IR(β).

Under the assumption that each stage in Msa is a (direct) mechanism for which
the legality set represents the agents’ preference spaces, the SAA is strategyproof.
As it is only legal to accept or decline to raise the current price for unsold goods
(represented by bidding the value 0 or price+ inc), there is no utility improvement if
the agent accepts when she would prefer to decline (and vice-versa). When a good
is sold for an agent, there is only one value that is legal to bid for the good bought,
and thus the agent cannot strategize.

Proposition 3.4. Msa is strategyproof.

Proof. Given a path δ in Msa and a stage t ≥ 0 in δ, such that L(δ[t], i) ≈i Vi. Let
ϑ ∈

∏
i∈N Vi be a preference profile and δϑ denote a path such that δ[0, t] = δϑ[0, t]

and θ(δϑ, t) = βϑ. We let ϑ′
i ∈ Vi denote a preference of agent i, ϑ′ = (ϑ′

i, ϑ−i) and
δϑ′ be a path such that δ[0, t] = δϑ′ [0, t], θi(δϑ′ , t) = βϑ′

i
and θr(δϑ′ , t) = βϑr for each

agent r ̸= i.



40 Chapter 3. Representative Auctions in ADL

In the stage t of δϑ, the agents report their (truthful) preferences ϑ, i.e.,
Msa, δϑ, t |= does(βϑ). On the other hand, in the stage t of δϑ′ , the agent
i reports her (untruthful) preference ϑ′

i and each agent r ̸= i reports ϑr, i.e.,
Msa, δϑ′ , t |= doesi(βϑ′

r) ∧
∧

r∈N\{i} doesr(βϑr).
For some x ∈ I, we have to show Msa, δϑ, t |=⃝sub(vi(βϑi , (tradej)j∈G), payi) =

x and Msa, δϑ′ , t |=⃝sub(vi(βϑi , (tradej)j∈G),payi) ≤ x.
That is, agent i’s utility in δϑ′ is not better than in δϑ. Remind the legal actions

in δ[t] represent her preference space, i.e., L(δ[t], i) ≈i Vi. Notice the value of a
bid (p1, .. ., pm) given a trade λ is vi((p1, .. ., pm),λ) = ∑

j∈G λi,j · pj . Similarly, the
payment in δ[t] is πY(δ[t],payi) = ∑

j∈G πY(δ[t], tradei,j) · πY(δ[t],pricej). Since
there is no dependence among goods in vi and in i’s payment, we consider the part
of i’s utility corresponding to j in δϑ and δϑ′ . Thus, we need to show that

(i) Msa, δϑ, t |=⃝sub(times(tradei,j , pj), times(tradei,j ,pricej)) = xj

(ii) Msa, δϑ′ , t |=⃝sub(times(tradei,j , pj), times(tradei,j , pricej)) ≤ xj

for some xj ∈ I and each good j ∈ G.
We denote βϑi = (p1, . . . , pm) and βϑ′

i
= (p′

1, . . . , p
′
m). According to the legality

definition, the values of pj and p′
j can be either the price of j in δ[t], zero, or the

price in δ[t] incremented by inc > 0. Let us consider each case:

• Assume pj = πY(δ[t], pricej) iff Msa, δ, t |= tradei,j = 1 (w.r.t the defi-
nition of L). That is, pj = πY(δ[t], pricej) when good j was already
bought by agent i. Thus, it is not legal for i to bid any other value for
j, i.e., (p′

1, . . . , p
′
j) ∈ L(δ[t], i) iff pj = p′

j . Thereby, it is easy to see that
Msa, δϑ, t |= ⃝sub(times(tradei,j , pj), times(tradei,j ,pricej)) = pj and also
Msa, δϑ′ , t |=⃝sub(times(tradei,j , pj), times(tradei,j , pricej)) = pj .

• Assume agent i declines to raise her bid for good j, that is, pj = 0.
By Rules 5 and 9, we have Msa, δϑ, t |= ⃝tradei,j = 0 and Msa, δϑ, t |=
⃝sub(times(tradei,j , pj), times(tradei,j ,pricej)) = 0. By the legality defini-
tion, it should be the case that Msa, δ, t |= ¬tradei,j = 0 and p′

j is either 0
or πΦ(δ[t], price) + inc. If p′

j = 0, then Msa, δϑ′ , t |=⃝sub(times(tradei,j , pj),
times(tradei,j ,pricej)) = 0. Otherwise, the value of tradei,j in δϑ′ [t + 1] will
be either 0 or 1, depending on the joint bid βϑ′ .

– If Msa, δϑ′ , t |= ⃝tradei,j = 1, then Msa, δϑ′ , t |=
⃝sub(times(tradei,j , pj), times(tradei,j ,pricej)) = sub(0, pricej).
Since πY(δϑ′ [t + 1], pricej) ≥ 0, we have sub(times(tradei,j , pj),
times(tradei,j ,pricej)) ≤ 0.

– Otherwise, the trade for good j is zero (i.e., Msa, δϑ′ , t |=⃝tradei,j = 0)
and Msa, δϑ′ , t |=⃝sub(times(tradei,j , pj), times(tradei,j , pricej)) = 0.

• The proof for the case pj = πY(δ[t], price)+ inc is similar to the previous case.



3.2. Combinatorial Exchange 41

It follows that Msa, δϑ, t |= ⃝sub(vi(βϑi , (tradej)j∈G), payi) = x and
Msa, δϑ′ , t |=⃝sub(vi(βϑi , (tradej)j∈G),payi) ≤ x, where x ∈ I.

We conclude the section by discussing variants of non-combinatorial auctions.
When the number of good types is one (that is, |G| = 1), Σsa corresponds to the
Japanese-English auction. For representing the standard variant of the English
auction, one should define the legality rule such that agents are also allowed to bid
any price above the current price. Furthermore, the price in the next state should
be updated according to the highest bid in the current one. The Dutch auction is
also similar to Σsa. The key difference is that in the Dutch auction the bidding value
should decrease at each round until at least one agent accepts to pay the current
price. As we saw in this section, with the ADL description of a given auction,
we are able to formally analyze it, both in relation to domain-specific properties,
well-formedness of its protocol and from a mechanism design perspective.

3.2 Combinatorial Exchange

We now consider two protocols for combinatorial exchange: a one-shot protocol and
a multi-stage variant. We consider the setting with multiple goods and multiple
copies of each good. Agents hold an initial allocation of goods and can trade items
with each other. Remind a trade denotes the number of goods being exchanged
among the agents in a state. With allocation we refer to the number of goods the
agents initially have.

Both protocols use the Tree-Based Bidding Language (TBBL) for defining its
action set. TBBL (Parkes et al., 2005; Lubin et al., 2008) is a language designed
for Combinatorial Exchange. It allows to represent buyers and sellers demands
in the same structure. We adopt TBBL as it is a highly expressive and compact
language. TBBL is general enough to represent any kind of utility function (full
expressivity), like OR-like bidding languages (Boutilier and Hoos, 2001). It is even
more expressive in the sense that it is able to mix preferences for buying and selling
bundles in the same framework. In relation to which kind of utility functions this
framework is able to represent concisely, Cavallo et al. (2005) compares TBBL with
XOR and OR* bidding languages with this respect, and shows that TBBL is more
compact, in the sense that there are valuation functions that admit an exponentially
larger representation in these latter languages than in TBBL.

3.2.1 Tree-Based Bidding Language

The bidding language we present in this section, denoted LTBBL, only differs from
the original definition of TBBL in the fact that we assume all language components
and related optimization problems are bounded by I.

Definition 3.1. A formula in LTBBL is called a bid-tree (or simply a bid) and is



42 Chapter 3. Representative Auctions in ADL

generated by the following BNF:

β ::= ⟨z, j, z⟩ | ICx
y(β̄, z)

where β̄ ::= β̄,β | β is a nonempty bid list, j ∈ G, z ∈ I, y ≤ x and y, x ∈ I⪰0.

A bid in the form ⟨q, j, v⟩ is called a leaf and represents that the agent is willing
to buy (or sell) q units of the good j and pay (or receive) v. The interval-choose
(IC) operator defines a range on the number of child nodes that must be satisfied.
Thus, a bid ICx

y(β̄, v) indicates the agent is willing to pay (or receive) v for the
satisfaction of at least y and at most x of the children nodes β̄. The IC operator
can express logical connectors. For instance, IC1

1(β̄, v) is equivalent to the XOR
operator applied to the bids in the list β̄. Let z = |β̄| (i.e., the list size), ICz

z(β̄, v)
is equivalent to an AND operator and IC1

z(β̄, v) is equivalent to an OR operator.
For simplicity, we hereafter use the corresponding shortcuts XOR(β̄, v), AND(β̄, v)
and OR(β̄, v).

For instance, in Figure 3.3, agent i reports her willingness to buy 1 unit of a
paying 2€ or 2 units of a for 5€ or to sell 1 unit of b receiving 2€. Agent s bids an
exclusive disjunction for either (i) to sell one unit of a and receive 3€; or (ii) to sell
2 units of a receiving 4€ and to buy one unit of b paying 2€. The node representing
the condition (ii) has an additional value of 1.

OR

Sell 1 b, -2 €Buy 2 a, 5 €Buy 1 a, 2 €

Sell 1 a, -3 €

XOR
βi = OR ((⟨1, a, 2⟩, ⟨2, a, 5⟩, ⟨−1, b, −2⟩), 0)

βs = XOR((⟨−1, a, −3⟩, AND(⟨−2, a, −4⟩, ⟨1, b, 1⟩), 1), 0)

Buy 1 b, 2 €Sell 2 a, -4 €

AND, 1 €

Figure 3.3: Examples of tree-bids βi and βs reported by agents i and s, resp.

Hereafter, we introduce some extra notations to characterize solutions and win-
ners. Let βi ∈ LTBBL be a bid-tree from bidder i, the set Node(βi) denotes all nodes
in the tree βi, that is, all its inner bids, including βi itself. Formally, if βi is in the
form ⟨q, j, v⟩, then Node(βi) = {βi}. Otherwise, βi is in the form ICx

y(β̄, v′) and
Node(βi) = {βi} ∪ Node(β̄1) ∪ · · · ∪ Node(β̄z), where z = |β̄| and β̄k is the k-th
element of β̄.

Let α ∈ Node(βi), the set Child(α) ⊂ Node(βi) denotes the children of node
α. If α is in the form ICx

y(β̄, v), then Child(α) = {β̄1, .. ., β̄z}, where z = |β̄|.



3.2. Combinatorial Exchange 43

Otherwise, Child(α) = {}. The leaves of a bid-tree βi are denoted by Leaf(βi) =
{⟨q, j, v⟩ ∈ Node(βi) : q ∈ I, v ∈ I & j ∈ G}. The value specified at node α is
denoted by bi(α) ∈ I. If α is in the form ⟨q, j, v⟩, then bi(α) = v. Otherwise, α is
in the form ICx

y(β̄, v′) and bi(α) = v′. Finally, the quantity of units of the good j

specified at a leaf α = ⟨q, j, v⟩ is denoted by q(α, j) = q. For any other j′ ̸= j ∈ G,
q(β, j′) = 0. For any node α ̸∈ Leaf(βi) and j ∈ G, q(α, j) = 0. If α is not a leaf
(i.e., α ∈ Node(βi) \ Leaf(βi)), then it is in the form ICx

y(β̄) and we denote by xβ

and yβ the interval-choose constraints x and y, respectively.

3.2.1.1 Trade value and valid solutions

Given a bid-tree βi from agent i, the value of a trade λ ∈ Inm is defined as the
sum of the values in all satisfied nodes, where the set of satisfied nodes is chosen
to provide the maximal total value. Let sati(α) ∈ {0, 1} denote whether a node
α ∈ Node(βi) is satisfied and sati = {α : sati(α) = 1, for all α ∈ Node(βi)} denote
the nodes satisfied in a solution.

A solution sati is valid for a tree βi and trade λi, written sati ∈ valid(βi, λi) if
the following rules R1 and R2 hold (Lubin et al., 2008):

xβsati(α) ≤
∑

γ∈Child(α)
sati(γ) ≤ yβsati(α)

∀α ∈ Node(βi) \ Leaf(βi) (R1)∑
α∈Leaf(βi)

qi(α, j)sati(α) ≤ λi,j , ∀j ∈ G (R2)

Rule R1 ensures that no more and no less than the appropriate number of children
are satisfied for any node that is satisfied. Rule R2 requires that the total increase in
quantity of each item across all satisfied leaves is no greater than the total number
of units traded.

The total value of trade λ ∈ Inm for agent i, given her bid βi, is defined as the
solution to the following problem:

vi(βi,λ) = max
sati

∑
β∈Node(βi)

bi(β) · sati(β)

s.t. rules R1, R2 hold

3.2.1.2 Winner determination

Given an auction signature, the bid-trees β = (βi)i∈N and an allocation X =
(xi,j)j∈G,i∈N, where βi ∈ LTBBL denotes the bid from agent i ∈ N and xi,j ∈ I⪰0
represents how many copies of j agent i initially holds.

Definition 3.2. The winner determination (WD) defines a pair (λ, sat) obtained



44 Chapter 3. Representative Auctions in ADL

by the solution to the following mixed-integer program (Lubin et al., 2008):

WD(β, X) : max
λ,sat

∑
i∈N

∑
β∈Node(βi)

bi(β) · sati(β)

s.t. λi,j + xi,j ≥ 0,∀i ∈ N, j ∈ G (C1)∑
i∈N

λi,j ≤ 0,∀j ∈ G (C2)

sati ∈ valid(βi, λi), ∀i ∈ N (C3)
sati(β) ∈ {0, 1}, λi,j ∈ I (C4)

where sat = (sati)i∈N. Constraint C1 ensures that the trade λ is feasible given X,
that is, no agent sells more items then she initially hold. Constraint C2 provides
free disposal and allows trades to sell more items than are purchased (but not vice-
versa). Constraint C3 ensures that each trade for an agent i is valid given her bid-
tree. Constraint C4 defines the range for trades and node satisfaction. We denote by
WDλ(β, X) a function that obtains the trade λ in the solution WD(β, X) = (λ, sat).
Similarly, WDλi,j (β, X) captures the number of units of j traded by agent i in
WDλ(β, X).

If there are two or more solutions for WD(β, X), the trade WDλ(β, X) will be
chosen w.r.t. some total order among the elements of Inm. This tie-breaking order
is omitted to avoid overloading the notation. In the examples, we assume this order
is compatible with the Pareto dominance relation (Voorneveld, 2003).

We denote noop =def ⟨0, j, 0⟩ as the action of not bidding, for some arbitrary
j ∈ G.

Lemma 3.2. For each agent i ∈ N, each bid-tree β ∈ LTBBL and each λ ∈ Inm,
vi(noop,λ) = 0.

Proof. Remind noop denotes a leaf bid ⟨0, j, 0⟩, where j ∈ G. Thus, bi(noop) = 0.
Let λ ∈ Inm. The value of λ given noop, i.e., vi(noop,λ), is the maximal sum of
bi(β)·sati(β) in a solution sati, for all β ∈ Node(noop). Since Node(noop) = {noop}
and bi(noop) = 0, for any solution sati, vi(noop,λ) = 0.

Next, we illustrate how to represent protocols with TBBL in ADL.

3.2.2 Vickrey–Clarke–Groves Mechanism

Using TBBL to determinate the action set, let us now represent the Vick-
rey–Clarke–Groves (VCG) mechanism in ADL. This mechanism chooses the out-
come maximizing the reported preferences (Krishna, 2009). Each agent’s payment
corresponds to the damage she causes the other players, that is, the difference in
the social welfare of others with and without her participation (Nisan et al., 2007).
We detail the rules specification and the semantic representation. Then, we revisit
mechanism properties and evaluate whether the protocol is well-formed.



3.2. Combinatorial Exchange 45

To represent a VCG mechanism in the combinatorial exchange setting, we first
describe its signature, written Svcg = (N,G,B,Φ,Y, I,F), where N = {1, .. ., n},
G = {1, .. .,m}, B ⊆ LTBBL, Φ = {bidRound}, Y = {tradei,j , payi : i ∈ N, j ∈ G},
and I ⊂ Z. Finally, F contains the functions vi(β,λ), WDλ(β, X) and WDλi,j (β, X)
described in the previous section as well as the functions denoting basic mathe-
matical operations (e.g., sum(z1, z2)). We also assume F contains the function
WD−r

λ : Bn × Inm → Inm for any two agents i and r. WD−r
λ is defined exactly like

WDλ except that the set N in the winner determination (see Def. 3.2) is replaced
by N \ {r} and that the resulting trade for agent r and each good j is equal to zero.

Each instance of a VCG is specific and is defined with respect to B, I and the
constant values n,m ∈ I≻0 (the size of N and G, resp.), and X = (xj)j∈G, where
xi,j ∈ I⪰0, for each i ∈ N and j ∈ G. Each constant xi,j represents the number
of units of j initially held by agent i. The rules of VCG are represented by ADL-
formulae as shown in Figure 3.4.

1. initial→ bidRound ∧∧
i∈N(payi = 0 ∧ ∧

j∈G tradei,j = 0)

2. terminal↔ ¬initial

3. terminal→ legali(noop), for each i ∈ N

4. initial→ legali(β), for each i ∈ N, β ∈ B

5. does(β)∧ initial→ ⃝(∧i∈N,j∈G tradei,j = WDλi,j (β,X)), for each β ∈ Bn

6. does(β) ∧ ¬terminal ∧ pi = sub(sumr∈N\{i}(vr(βr,WD−i
λ (β,X))),

sumr∈N\{i}(vr(βr,WDλ(β,X)))) → ⃝payi = pi, for each pi ∈ I, β ∈ Bn

and i ∈ N

7. ⃝¬bidRound

Figure 3.4: Vickrey–Clarke–Groves mechanism represented by Σvcg

In the initial state, the trade and payment are zero for every agent and good
(Rule 1). Any state that is not initial is terminal (Rule 2). The proposition
bidRound helps to distinguish the initial state from the terminal state where no
trade or payment were assigned to any agent (e.g, when all agents bid noop). Once
in a terminal state, players can only do noop. Otherwise, they can bid any β ∈ B
(Rules 3 and 4). After performing a joint bid, in the next state each agent receives
a trade for each good, which is assigned by the winner determination over the ini-
tial allocation and their bids (Rule 5). After a joint bid in the initial state, the
payment for agent i will be the difference in the others’ welfare with and without
her participation (Rule 6). Finally, the proposition bidRound is always false in the
next state (Rule 7).

Notice we could as well represent winner determination explicitly in ADL by



46 Chapter 3. Representative Auctions in ADL

capturing the trade maximizing the social welfare among all trades that satisfy
constraints C1-C4 (Definition 3.2). For instance, constraint C1 can be written in
LADL as feasible((λj)j∈G) =def

∧
i∈N,j∈G sum(λi,j , xi,j) ≥ 0. We illustrate VCG with

an indirect representation of the winner determination for succincteness and clarity
of Σvcg.

3.2.2.1 Representing as a model

Next, we address the model representation. Let Mvcg be the set of ST-models Mvcg

defined for any B ⊆ LTBBL, I ⊂ Z, and the constants n,m ∈ I≻0 and X = (xj)j∈G,
where xi,j ∈ I⪰0, for each i ∈ N and j ∈ G. Each Mvcg is defined as follows:

• W = {⟨b, (λj)j∈G, p⟩ : b ∈ {0, 1} & pi, λi,j ∈ I & i ∈ N & j ∈ G};

• w̄ = ⟨1, 0, .. ., 0, 0, .. ., 0⟩;

• T = W \ {w̄};

• L = {(w, i,noop) : i ∈ N & w ∈ T} ∪ {(w̄, i, β) : β ∈ B & i ∈ N};

• U is defined as follows: for all w = ⟨b, (λj)j∈G,p⟩ ∈W and for all d ∈ Bm:

– If w = w̄, then U(w,d) = ⟨0, (λ′
j)

j∈G,p
′⟩⟩, where each component is up-

dated as follows, for each i ∈ N and j ∈ G. The number of units j traded
for agent i is given by the winner determination: λ′

i,j = WDλi,j (d,X).
The payment for i is the difference between the social welfare of others
with and without i’s participation:

p′
i =

∑
r∈N\{i}

vr(dr,WD−i
λ (d,X))−

∑
r∈N\{i}

vr(dr,WDλ(d,X))

– Otherwise, U(w,d) = w.

• For each w ∈ W, i ∈ N and j ∈ G, πY(w, tradei,j) = λi,j ; πY(w, payi) = pi;
and πΦ(w) = {bidRound : b = 1}.

Hereafter, we assume an instance of Mvcg ∈Mvcg and Σvcg for some B ⊆ LTBBL,
I ⊂ Z, n,m ∈ I≻0 and xi,j ∈ I⪰0, where i ∈ N, j ∈ G.
Example 3.2. Let Mvcg ∈Mvcg such that the sets of agents and goods are the same
from Example 3.1 and the initial allocation is as follows: xi,a = 0, xi,b = 1, xs,a = 2
and xs,b = 0 (i.e., at the beginning of the auction, agent i has 1 unit of b and agent
s has 2 units of a). Figure 3.5 illustrates a path in Mvcg, where the agents perform
the bids previously introduced in Figure 3.3. In state w0, all the payments and
trades are zero. Their joint bid leads to state w1, where the trade obtained by the
winner determination is (2,−1,−2, 1). The tie-breaking ensures that the trade is
unique. Thus, in w1 agent i has 2 units of a and agent s has 1 unit of b. Since w1
is terminal, the agents can only bid noop.



3.2. Combinatorial Exchange 47

w̄

legali(β) ∧ legals(β), for each β ∈ B
w0

πΦ

L

initial

πY

terminal

L
w1

legali(noop) ∧ legals(noop)

tradei,a = 2 ∧ tradei,b = −1
trades,a = −2 ∧ trades,b = 1
payi = 2 ∧ pays = −3

T

doesi(noop) and doess(noop)

doesi(OR ((⟨1, a, 2⟩, ⟨2, a, 5⟩, ⟨−1, b,−2⟩), 0)) and
doess(XOR((⟨−1, a,−3⟩,AND(⟨−2, a,−4⟩, ⟨1, b, 1⟩), 1), 0))

bidRound

Figure 3.5: A Path in Mvcg, with 2 bidders and 2 goods

3.2.2.2 Evaluating the protocol

As for SAA, let us now evaluate the protocol representing a VCG mechanism. First,
Lemma 3.3 shows that Mvcg is a sound representation of Σvcg.

Lemma 3.3. Mvcg is an ST-model and it is a model of Σvcg.

Proof. (Sketch) It is routine to check that Mvcg is actually an ST-model. Given a
path δ in Mvcg and a stage t of δ, we need to show that Mvcg, δ, t |= φ, for each
φ ∈ Σvcg.

Let us verify Rule 1. Assume Mvcg, δ, t |= initial, then δ[t] = w̄, i.e.,
δ[t] = ⟨1, 0, .. ., 0, 0, .. ., 0⟩. By the definitions of πY and πΦ, πΦ(w̄) = {bidRound},
πY(w̄, payi) = 0 and πY(w̄, tradei,j) = 0 for all i ∈ N and j ∈ G. Thus,
Mvcg, δ, t |= bidRound ∧∧

i∈N payi = 0 ∧∧
j∈G tradei,j = 0.

Now we verify Rule 4. Assume Mvcg, δ, t |= initial, then δ[t] = w̄ and for all
i ∈ N and β ∈ B, (w̄, i,β) ∈ L. Thus, Mvcg, δ, t |= legali(β).

Then we consider Rule 5. Mvcg, δ, t |= does(β) ∧ initial, for β ∈ Bm, i.e.,
Mvcg, δ, t |=

∧
i∈N does(βi) and Mvcg, δ, t |= initial. Thus, θi(δ, t) = βi for all i ∈ N.

The update function U defines δ[t+1] such that πY(δ[t+1], tradei,j) = WDλi,j (β,X),
for each i ∈ N and j ∈ G. Thus, Mvcg, δ, t + 1 |= ∧

i∈N,j∈G tradei,j = WDλi,j (β,X)
and also Mvcg, δ, t |=⃝(∧i∈N,j∈G tradei,j = WDλi,j (β,X)). Using the abbreviation,
Mvcg, δ, t |=⃝(∧i∈N tradei = WDλi(β, X)).

The remaining rules are verified in a similar way.

Next, we show Σvcg is a well-formed protocol, that is, each path in Mvcg reaches
a terminal state and there is a legal action for each agent in all reachable states.

Theorem 3.3. Σvcg is a well-formed protocol over the ST-model Mvcg.



48 Chapter 3. Representative Auctions in ADL

Proof. Since Mvcg is a model of Σvcg (see Lemma 3.3), we have to show that for
each path δ in Mvcg and each agent i ∈ N,

1. δ is a complete path;

2. Mvcg |=
∨

a∈B legali(a).

Given a path δ in Mvcg and a stage t of δ. Let us verify Statement 1. We show
that Mvcg |= initial→⃝terminal. Assume Mvcg, δ, t |= initial. Then, δ[t] = w̄. By
the path definition, for any j ≥ 1, δ[j] ̸= w̄. By the construction of T, we have
T = W \ {w̄}. Thus, Mvcg, δ, t+ 1 |= terminal and Mvcg, δ, t |=⃝terminal.

Statement 2 is straightforward from Rules 3 and 4 from Σvcg.

The next lemma shows that if an agent bids noop in an initial state, her payment
will be zero. Furthermore, if the payment is zero in a terminal state, it will be zero
in the succeeding state.

Lemma 3.4. For each agent i ∈ N, Mvcg |= initial ∧ doesi(noop) → ⃝payi =
0 ∧∧

j∈G tradei,j ≥ 0

Proof. Straightforward from Lemma 3.2, Rule 6 from Σvcg and Rule R2 from the
definition of bi.

We then focus on properties from Mechanism Design, that is budget balance,
individual rationality, efficiency and strategyproofness. These results for VCG have
already been proved (Krishna, 2009; Nisan et al., 2007) and here we show how they
are rephrased and verified with ADL. First, due to the VCG payments, Mvcg is not
budget balanced.

Proposition 3.5. Mvcg ̸|=⃝SBB and Mvcg ̸|=⃝WBB.

Proof. We show Mvcg ̸|=⃝WBB and Mvcg ̸|=⃝SBB by showing a counter example.
Given two distinct agents i, r in N and a good j in G, let δ be a path in Mvcg such
that θi(δ, 0) = ⟨1, j, 5⟩ and θr(δ, 0) = ⟨−1, j,−3⟩. For any other agent s ∈ N \ {i, r},
θs(δ, 0) = noop. Since this actions are legal in the initial state δ[0], there exists such
path.

By Rule 5 and the definition of function WDλ, we have that Mvcg, δ, 1 |=
(tradei,j = 1∧trader,j = −1) and Mvcg, δ, 1 |= trades,j′ = 0 for all pairs (s, j′) ̸= (i, j)
and (s, j′) ̸= (r, j). That is, the good j is sold by r and bought by i. The social
welfare of all agents other than i is −3 and the social welfare of all agents other than
r is 5. If either i or r did not participate, there would be no trade and the social
welfare would be zero. Thus, by Rule 6, the payments for i and r are 3 and −5, resp.,
that is, Mvcg, δ, 1 |= payi = 3∧ payr = −5. The other agents’ do not have payments
on δ[1], i.e., Mvcg, δ, 1 |=

∧
s∈N\{i,r} pays = 0. Then, Mvcg, δ, 1 |= sumi∈N(payi) < 0.

Thus we have that Mvcg, δ, 0 ̸|=⃝SBB and Mvcg, δ, 0 ̸|=⃝WBB.

After the agents report their preferences, Mvcg chooses the trade maximizing the
social welfare (i.e., the cumulative of values for the trade given the agents’ bids).



3.2. Combinatorial Exchange 49

Proposition 3.6. Given a joint action β ∈ Bn, Mvcg |= does(β)→⃝EF(β)

Proof. (Sketch) Since Mvcg |= initial → ⃝terminal and δ[t + 1] = δ[t] when-
ever δ[t] ∈ T, it suffices to show that Mvcg, δ, 0 |= does(β) → ⃝EF(β), for
any joint action β ∈ Bn. Assume Mvcg, δ, 0 |= does(β), by Rule 5 we have that
Mvcg, δ, 1 |=

∧
i∈N,j∈G tradei,j = WDλi,j (β,X). By the definition of the winner deter-

mination function WDλ(β,X) (and consequently function WDλi,j for each agent i
and good j), we have that the trade (πY(δ[1], tradei,j))j∈G,i∈N maximizes the cumu-
lative value among the agents. That is, Mvcg, δ, 1 |= sumi∈N(vi(βi, (tradej)j∈G)) =
maxλ∈Λ(sumi∈N(vi(βi,λ))) and Mvcg, δ, 0 |= does(β)→⃝EF(β).

The VCG mechanism is individually rational when the agents’ preferences over
trades are non-negative (Nisan et al., 2007).

Proposition 3.7. Given a joint action β ∈ Bn, if ϑi(λ) ≥ 0 for all λ ∈ Inm, ϑi ∈ Vi
and i ∈ N, then Mvcg |= does(β)→⃝IR(β).

Proof. Let β ∈ Bn be a joint action and δ be a path in Mvcg. Since Mvcg |=
initial → ⃝terminal and δ[t + 1] = δ[t] whenever δ[t] ∈ T, it suffices to show
that Mvcg, δ, 0 |= does(β) → ⃝IR(β). Assume Mvcg, δ, 0 |= does(β) and that the
preferences represented by L(δ[1], i) are non-negative for every agent and possible
trade. That is, vi(β,λ) ≥ 0 for any bid β, trade λ and agent i.

Let λ = (λj)j∈G denote the trade performed after the agents report β, where
λi,j = πY(δ[1], tradei,j) = WDλi,j (β,X) for each good j and agent i. We denote by
λ−i = WD−i

λ (β,X) the trade that would happen if i did not participate.
The utility of agent i in δ[1] is ui = v(βi,λ) − πY(δ[1],payi). According to the

payment definition (Rule 6), agent i’s utility in δ[1] is

ui = vi(βi,λ)−
( ∑

r∈N\{i}
vr(βr,λ

−i)−
∑

r∈N\{i}
vr(βr,λ)

)
or

ui = vi(βi,λ)−
∑

r∈N\{i}
vr(βr,λ

−i) +
∑

r∈N\{i}
vr(βr,λ)

or simply
ui =

∑
r∈N

vr(βr,λ)−
∑

r∈N\{i}
vr(βr,λ

−i)

Thus, agent i’s utility is non-negative if∑
r∈N\{i}

vr(βr,λ) ≥
∑
r∈N

vr(βr,λ
−i)

Assume for contradiction that this is not the case, that is,
∑

r∈N\{i}
vr(βr,λ

−i) >
∑

r∈N\{i}
vr(βr,λ)

Since vr(βr,λ
−i) ≥ 0, then we have



50 Chapter 3. Representative Auctions in ADL

∑
r∈N

vr(βr,λ
−i) ≥

∑
r∈N\{i}

vr(βr,λ
−i) >

∑
r∈N\{i}

vr(βr,λ)

which is a contradiction since λ is the efficient trade (see Proposition 3.6). Thus,
Mvcg, δ, 1 |=

∧
r∈N sub(vr(βr, (tradej)j∈G),payr) ≥ 0 and Mvcg, δ, 0 |=⃝IR(β).

The VCG mechanism is also strategyproof (Nisan et al., 2007), because the bid
of an agent does not influence her payment.

Theorem 3.4. Mvcg is strategyproof.

Proof. Given a path δ in Mvcg and a stage t ≥ 0 in δ, such that L(δ[t], i) ≈i Vi.
Since Mvcg |= initial→⃝terminal and δ[t+ 1] = δ[t] whenever δ[t] ∈ T, it suffices
to show consider the case where t = 0.

Let ϑ ∈
∏

i∈N Vi be a preference profile and δϑ denote a path such that δ[0] =
δϑ[0] and θ(δϑ, 0) = βϑ. We let ϑ′

i ∈ Vi denote a preference of agent i, ϑ′ = (ϑ′
i, ϑ−i)

and δϑ′ be a path such that δ[0] = δϑ′ [0], θi(δϑ′ , 0) = βϑ′
i

and θr(δϑ′ , 0) = βϑr for
each agent r ̸= i. That is, Mvcg, δϑ, 0 |= does(βϑ) and Mvcg, δϑ′ , 0 |= doesi(βϑ′

r) ∧∧
r∈N\{i} doesr(βϑr).

Let uϑi ∈ I such that Mvcg, δϑ, 0 |=⃝sub(vi(βϑi , (tradej)j∈G), payi) = uϑi holds.
As we saw in the proof of Proposition 3.7, agent i’s utility in δϑ[1] is simply

uϑi =
∑
r∈N

vr(βϑr ,λ)−
∑

r∈N\{i}
vr(βϑr ,λ

−i)

where λ = (λj)j∈G denote the trade performed in δϑ[1] with λi,j = πY(δϑ[1],
trade) = WDλi,j (β,X) for each good j and agent i, and λ−i = WD−i

λ (β,X) is the
trade that would happen if i did not participate in the auction.

Notice that the bid of i has no impact in ∑
r∈N\{i} vr(βr,λ

−i) by the definition of
WD−i

λ . Thus, it means that the bid maximizing i’s utility is the one that maximize
∑
r∈N

vr(βr,λ)

which, by definition, is the case when she bids truthfully. That is, uϑi is the max-
imum utility i obtains in the succeeding stages of all paths starting in δ[0]. Thus,
Mvcg, δϑ, 0 |= ⃝sub(vi(βϑi , (tradej)j∈G), payi) = uϑi and for any ϑ′, Mvcg, δϑ′ , 0 |=
⃝sub(vi(βϑi , (tradej)j∈G), payi) ≤ uϑi .

We conclude the section by discussing variants of combinatorial exchange. In
combinatorial auctions, there are two types of participants: buyers and sellers.
The main difference to a combinatorial exchange is that buyers can only demand
for non-negative quantities and prices while sellers can only ask for non-positive
quantities and prices. These restrictions can be easily encoded in ADL by including
a proposition for denoting the participants’ types and defining legality rules based
on their types. In Section 3.1, we exemplify the representation of a single-sided
auction. Restricting the number of participants with the type buyer (or similarly



3.2. Combinatorial Exchange 51

seller) to one is an alternative way of encoding single-sided auctions. Multi-unit
auctions with single items can be represented for different market structures (e.g.,
the single-sided setting) by restricting the number of good types to one (that is,
|G| = 1). In the next section, we show how to represent an iterative protocol in
ADL using a slightly different version of TBBL.

3.2.3 Iterative Combinatorial Exchange

We conclude the section on combinatorial exchange by considering an iterative
protocol, denoted ICE. The protocol is a simplified and first-price version of the
mechanism presented in (Parkes et al., 2005). In this auction, bidders report an
interval of prices they are willing to pay (or receive) for a trade. For ensuring
termination, agents need to refine their bids, that is, to shrink the value interval
reported in their previous bid. For expressing such conditions, we consider the
TBBL extension with value bounds, denoted LTBBL+. In this variant proposed by
Lubin et. al (Lubin et al., 2008), agents report a pair of valuation bounds in each
node of their bid. The syntax of LTBBL+ is obtained by replacing the value v of
a leaf node ⟨q, j, v⟩ by the lower bound v ∈ I and upper bound v ∈ I with v ≤ v.
The bounds v and v denote the minimum and maximum price the bidder considers
acceptable to pay (or receive) for q units of j, respectively. Bid nodes with IC
operators are similarly updated to include value bounds.

Given an agent i ∈ N, a bid β ∈ LTBBL+ and a trade λ ∈ Inm, the functions
vi(β, λ), vi(β, λ), bi(β), bi(β) are defined with the same semantics from the functions
vi and bi introduced in Section 3.2. Since the lower bound is no greater than the
upper bound, we have that bi(β) ≤ bi(β) and vi(β, λ) ≤ vi(β, λ). For representing
this ICE protocol with ADL, we first fix a constant ε ∈ [0, 1] for estimating the
weight of the bounds in the value of a bid given a trade (i.e., function vi). If
ε = 1, the bid value is based only on its lower bounds. Likewise, the upper bounds
determinate the bid value when ε = 0. Next, we describe the auction signature,
written Sice = (N,G,B, {},Y, I,F), where N = {1, .. ., n}, G = {1, .. .,m}, B ⊆
LTBBL+, Y = {tradei,j , payi : i ∈ N, j ∈ G}, and I ⊂ Z. If ⟨q, j, v, v⟩ is a bid in B,
we assume ⟨q, j, v′, v′⟩ ∈ B for any v′ ≥ v and v′ ≤ v such that v′ ≤ v′. Similarly,
if ICx

y(β̄, v, v) ∈ B, we assume ICx
y(β̄, v′, v′) ∈ B for any v′ ≥ v and v′ ≤ v such

that v′ ≤ v′. F contains the basic mathematical operations as well as the following
functions: vi : B × Inm → I, WDε

λi,j : Bn × Inm → I, eq : B × B → [0, 1] and
uncert : B → I. We next describe each of those functions.

Given an agent i, the value of bid β ∈ LTBBL+ given a trade λ ∈ Inm is defined
as follows:

vi(β,λ) = ⌈ε · vi(β,λ)⌉+ ⌊(1− ε) · vi(β,λ)⌋

Notice the rounding of the terms1 ensure the result will not be smaller than the
lower bound neither greater than the upper bound.

1We denote by ⌊x⌋ the greatest integer less than or equal to x ∈ R and ⌈x⌉ the least integer
greater than or equal to x ∈ R.



52 Chapter 3. Representative Auctions in ADL

Assuming a joint bid β ∈ Ln
TBBL+ and an initial allocation X ∈ Inm

⪰0, function
WDε

λi,j (β, X) is defined exactly as function WDλi,j (β, X) defined in Section 3.2.1.2,
except that the winner determination is replaced by the following:

WDε(β, X) : arg max
λ,sat

∑
i∈N

∑
β∈Node(βi)

(⌈εbi(β) · sati(β)⌉+
⌊
(1− ε)bi(β) · sati(β)

⌋
)

s.t. Constraints C1− C4 hold (see Def. 3.2)

Given two bids β,γ ∈ LTBBL+, eq(β,γ) denotes whether they are equivalent on
structure, in the sense of differing only on their valuation bounds, and it is defined
as follows:

• If β is in the form ⟨q, j, v, v⟩ and γ = ⟨q, j, v′, v′⟩ for some v′, v′ ∈ I, then
eq(β,γ) = 1;

• If β is in the form ICx
y(β̄, v, v), γ = ICx

y(β̄′, v′, v′) for some v′, v′ ∈ I and each
β̄k ∽ β̄′

k, for each 0 < ki ≤ |β̄|, then eq(β,γ) = 1;

• Otherwise, eq(β,γ) = 0.

The difference among the bounds of a node represents its uncertainty. That
is, the higher the bound difference, the less precise the node is about the agents’
preference. The actual willingness-to-pay (or receive), is unknown except when the
lower and upper bounds are the same (Parkes et al., 2005). We define function
uncert(⟨q, j, v, v⟩) = v−v and uncert(ICx

y(β̄, v, v)) = v−v +∑
0<k≤|β̄| uncert(β̄k) for

capturing the uncertainty of bid in LTBBL+.
Each instance of ICE is specific and is defined with respect to B, I and the

constant values ε ∈ [0, 1], n,m ∈ I≻0 (the size of N and G, resp.), and X = (xj)j∈G,
where xi,j ∈ I⪰0, for each i ∈ N and j ∈ G. The rules of a ICE are represented by
ADL-formulae as shown in Figure 3.6.

In the initial state, there is no payment or trade for any agent (Rule 1) and
agents can report any bid (Rule 2). After performing a bid, an agent is allowed
to report any bid that has the same structure and less uncertainty than her last
bid. When the bid has no uncertainty (i.e., for each node, its lower and upper
bounds are the same), the agent must repeat her bid in the next turn (Rules 3 and
4). When there is no uncertainty in all bids performed in a state, the next state is
terminal (Rule 5). The agents pay their reported values according to their trade in
a given state (Rule 6). Finally, the agents’ trades are computed in each round using
the winner determination given their bids and their initial allocation (Rule 7).

3.2.3.1 Representing as a model

Next, we address the model representation. Let Mice be the set of ST-models Mice

defined for any B ⊆ LTBBL+, I ⊂ Z, and the constants n,m ∈ I≻0 and X = (xj)j∈G,
where xi,j ∈ I⪰0, for each i ∈ N and j ∈ G. Each Mice is defined as follows:



3.2. Combinatorial Exchange 53

1. initial→ ∧
i∈N(payi = 0 ∧ ∧

j∈G tradei,j = 0)

2. initial→ legali(β), for each i ∈ N, β ∈ B

3. doesi(β)∧ eq(β,γ)∧uncert(γ) < uncert(β)→⃝legali(γ), for each i ∈ N,
β,γ ∈ B

4. doesi(β) ∧ uncert(β) = 0→⃝legali(β), for each i ∈ N and β ∈ B

5. (∧i∈N doesi(βi) ∧ uncert(βi) = 0)→⃝terminal, for each β ∈ Bn

6. doesi(β)→⃝payi = vi(β, (tradej)j∈G), for each i ∈ N and β ∈ B

7. does(β)→⃝(∧i∈N,j∈G tradei,j = WDε
λi,j (β,X)), for each β ∈ Bn

Figure 3.6: An Iterative Combinatorial Exchange represented by Σ

• W = {⟨(λj)j∈G,p, lastbid⟩ : lastbidi ∈ B & pi, λi,j ∈ I & i ∈ N & j ∈ G};

• w̄ = ⟨0, .. ., 0, 0, .. ., 0,noop, .. ., noop⟩;

• T = {⟨(λj)j∈G, p, lastbid⟩ : uncert(lastbidi) = 0 & lastbidi ∈ B & pi, λi,j ∈ I
& i ∈ N & j ∈ G}};

• L = {(w̄, i,β) : i ∈ N & β ∈ B} ∪ {(⟨(λj)j∈G,p, lastbid⟩, i, β) : eq(β, lastbidi)
& uncert(β) < uncert(lastbidi) & β, lastbidr ∈ B & pr, λr,j ∈ I & r, i ∈ N &
j ∈ G};

• U is defined as follows: for all w = ⟨(λj)j∈G,p, lastbid⟩ ∈ W and for all
d ∈ Bm:

– If w ̸∈ T, then U(w,d) = ⟨(λ′
j)

j∈G,p
′,d⟩⟩, where each component is

updated as follows, for each i ∈ N and j ∈ G: λ′
i,j = WDε

λi,j (d,X) and
p′

i = vi(di, (λ′
j)

j∈G).

– Otherwise, U(w,d) = w.

• For each w ∈ W, i ∈ N and j ∈ G, the valuation of numerical variables is as
follows: πY(w, tradei,j) = λi,j and πY(w,payi) = pi.

Hereafter, we assume an instance of Mice ∈Mice and Σice for some B ⊆ LTBBL+,
I ⊂ Z, n,m ∈ I≻0 and xi,j ∈ I⪰0, where i ∈ N, j ∈ G.
Example 3.3. Let Mice ∈ Mice, where (i) there are only two agents, denoted by r
and s, (ii) there is only one good type, denoted by a, and (iii) xr,a = 1 and xs,a = 0,
i.e, agent r holds 1 unit of a and agent s has none. Figure 3.5 illustrates a path in
Mice. In the initial state w0, agent r says she wants to sell a for a price between 10€
and 20€ and agent s reports her willingness to buy it for a price between 15€ and



54 Chapter 3. Representative Auctions in ADL

25€. In state w1, the agents are informed of the provisional trade and payments.
Agent s changes her bid to specify she is willing to receive exactly 15€ for selling
a. By her turn, agent r specifies a value range 18€ to 20€ for buying a. In w2,
only s can change her bid, since there is no uncertainty in r’s bid. Then, s reports
her willingness to pay exactly 18€. State w3 is terminal because there was no
uncertainty in the bids reported on w2. The good is traded and the agents pay
(and receive) their asking prices.

w̄

w0

L
initial

doesr(⟨−1, a,−20,−10⟩) and doess(⟨1, a, 15, 25⟩)

πY

L

w1

trader,a = −1 ∧ payr = −15
trades,a = 1 ∧ pays = 20

πY
terminal

L
w3

T

legalr(⟨−1, a, vr, vr⟩) ∧ legals(⟨1, a, vs, vs⟩)
for any vr, vr, vs, vs ∈ I
such that vr − vr < 10 and vs − vs < 10

legalr(β) ∧ legals(β), for each β ∈ A

doesr(⟨−1, a,−15,−15⟩) and doess(⟨1, a, 18, 20⟩)

trader,a = −1 ∧ payr = −15
trades,a = 1 ∧ pays = 18

πY

L

w2

trader,a = −1 ∧ payr = −15
trades,a = 1 ∧ pays = 19
legalr(⟨−1, a,−15,−15⟩) ∧ legals(⟨1, a, vs, vs⟩)
for any vs, vs ∈ I
such that vs − vs < 2

doesr(⟨−1, a,−15,−15⟩) and doess(⟨1, a, 18, 18⟩)

legalr(⟨−1, a,−15,−15⟩) ∧ legals(⟨1, a, 18, 18⟩)

doesr(⟨−1, a,−15,−15⟩) and doess(⟨1, a, 18, 18⟩)

Figure 3.7: A path in Mice where two agents trade a good

3.2.3.2 Evaluating the protocol

Now we focus on the evaluation of Σice and Mice. First, Lemma 3.5 shows the
soundness of Σice over Mice.



3.2. Combinatorial Exchange 55

Lemma 3.5. Mice is an ST-model and it is a model of Σ.

Proof. The proof is similar to those for Lemmas 3.1 and 3.3.

Since Mice is playable and terminates, Σice is well-formed.

Theorem 3.5. Σice is a well-formed protocol over Mice.

Proof. Since Mice is a model of Σice, we show that for each path δ in Mice, each
stage t ≥ 0 in δ and each agent i ∈ N,

1. δ is a complete path;

2. Mice, δ, t |=
∨

β∈B legali(β).

First, we consider Statement 2. By the definition of LTBBL+, uncert(β) ≥ 0
for each bid β ∈ B. According to the legality definition, uncert(θi(δ, t)) <

uncert(θi(δ, t − 1)) or uncert(θi(δ, t)) = 0. That is, either the bid reported by i
in δ[t] has less uncertainty than the one she reported in δ[t − 1] or it has no un-
certainty. In the case of no uncertainty, θi(δ, t) = θi(δ, e) for each e ≥ t. Since the
uncertainty decreases in each turn until being equal to zero, there exists a stage
e ≥ 0 such that Mice, δ, e |= doesi(β)∧ uncert(β) = 0 for each agent i. By Rule 5, it
follows that the next stage in δ is terminal, that is, Mice, δ, e |=⃝terminal.

We now verify Statement 2. If δ[t] = w̄, then Mice, δ, t |= legali(β) for each β ∈ B
(Rule 2). Otherwise, t > 0 and Mice, δ, t − 1 |= doesi(β) for some β ∈ B. By the
definition of LTBBL+, uncert(β) ≥ 0. If uncert(β) = 0, then Mice, δ, t |= legali(β)
(Rule 4). Finally, if uncert(β) < 0, by the definition of B, there must exist a bid
γ such that eq(β,γ) and uncert(γ) < uncert(β). According to Rule 3 of Σice,
Mice, δ, t |= legali(γ).

The cumulative of payments cannot be smaller than zero. However the auction
may have positive transfers.

Proposition 3.8. Mice ̸|=⃝SBB and Mice |=⃝WBB.

Proof. (Sketch) Considering strong budget-balance, notice the path δ illustrated at
Figure 3.7 is a counterexample. For instance, in the last stage we have Mice, δ, 3 |=
sumi∈N(payi) = 3 and thus Mice ̸|=⃝sumi∈N(payi) = 0 and Mice ̸|=⃝SBB.

Now we consider weak budget-balance. Let δ be a path in Mice, t ≥ 0 a stage
in δ and i ∈ N. By the definition of vi, we have that an empty trade is valuated
zero, i.e., vi(θi(δ, 0), (0, . . . , 0)) = 0. Thus, ∑

r∈N vr(θr(δ, 0), (0, . . . , 0)) = 0. Notice
the empty trade (0, · · · , 0) satisfies Constraints C1-C4 from the winner determina-
tion. Among the trades satisfying those constraints, WDε selects the trade (λj)j∈G
that maximizes the cumulative value among all agents, Thus, the cumulative value
cannot be smaller than zero. Since the agents’ pay the value of their bids, it follows
that Mice, δ, t |=⃝subi∈N(payi) ≥ 0.



56 Chapter 3. Representative Auctions in ADL

ICE is individually rational, since agents pay their reported preferences.

Proposition 3.9. Given a joint action β ∈ Bn, Mice |= does(β)→⃝IR(β).

Proof. The proof is straightforward since Mice |= doesi(βi) → ⃝payi = vi(βi,
(tradej)j∈G), for each i ∈ N and βi ∈ B.

The protocol is efficient since the winner determination maximizes the social
welfare given the reported bids.

Proposition 3.10. Given a joint action β ∈ Bn, Mice |= does(β)→⃝EF(β)

Proof. (Sketch) The proof is similar to the proof for Proposition 3.10.

Since the players’ bids influence their payments, they can manipulate the price
and the auction is not strategyproof.

Proposition 3.11. Mice is not strategyproof.

Proof. (Sketch) We show Mice is not strategyproof with a counterexample. As-
sume the path δ illustrated in Figure 3.7 and consider stage 2. We have θs(δ, 2) =
⟨1, a, 18, 18⟩. Since the agents pay their reported valuation, in δ[3], the utility of
agent s given her bid is zero, i.e., Mice, δ, 3 |= sub(vs(⟨1, a, 18, 18⟩, (tradej)j∈G),
pays) = 0. Let δ′ be a path in Mice defined exactly like δ, except by the actions
performed by s in each stage t ≥ 2, which is defined as θs(δ, t) = ⟨1, a, 16, 16⟩.
Then, M, δ′, 3 |= ⃝sub(vi(⟨1, a, 18, 18⟩, (tradej)j∈G), pays) = 2 and M, δ′, 3 ̸|=
⃝sub(vs(⟨1, a, 18, 18⟩, (tradej)j∈G),pays) ≤ 0.

3.3 Conclusion

This chapter demonstrated the usefulness of ADL for representing a number of
auction-based markets, which include features from single and multi-stage proto-
cols, multiple items, multiple copies of those items and exchange protocols (which
generalize double-sided auctions). We also evaluated such auctions in relation to
the well-formedness of their ADL-descriptions in addition to economical properties
by interpreting them as direct mechanisms.

In the previous chapter, we saw that we can verify most of such properties by
model-checking ADL-formulae. Since Algorithm modelCheck (see Section 2.4) calls
the functions in F in a polynomial number of times (according to on the formula
length), the complexity of computing functions in F will affect its complexity. For
instance, the winner determination problem for combinatorial auctions is NP-hard,
which is then the complexity of computing the winner determination functions for
TBBL (Lubin et al., 2008). In that case, the model-checking problem for ADL is in
∆P

2 , since modelCheck consults a NP-oracle a polynomial number of times.



Chapter 4

Actions, Knowledge and
Rationality

In the two previous chapters, we focused on the auctioneer perspective by providing
tools to specify and verify auction descriptions. In this chapter, we consider the
player’s perspective and our goal is to show how an agent may reason about their
knowledge of other agents’ valuations for eliciting her bid in an auction. Specifically,
we show that computing a rational bid requires to assume that other agents are
also bidding rationally. Following (Aumann, 1995), we understand ‘rational’ as ‘not
playing dominated actions’.

The interplay between knowledge, belief and rationality in the context of strate-
gic reasoning is considered in Epistemic Game Theory (Bonanno, 2015; Lorini,
2016). More precisely, this field shows how dominated strategies may be eliminated
in an iterative manner (Aumann, 1995). These contributions however require per-
fect reasoners, who can reason about higher-order knowledge at arbitrary depth,
which is unrealistic. Chen et al. (2015) abandon this hypothesis and characterize
level-k rationality by means of iterated deletion of strictly dominated strategies.
Their approach no longer require perfect reasoners for building strategic bidders
considering uncertain information but do not propose a full logic detailing the im-
pact of bounded rationality.

We first extend ADL with knowledge operators from Epistemic GDL (Jiang
et al., 2016) and the action modality from the GDL variant proposed in (Zhang and
Thielscher, 2015a), which extends GDL with three modalities for representing and
reasoning about actions and game strategies. We establish an axiomatic system
for the logic and prove its soundness and completeness using variable forgetting
technique. We demonstrate how to the logic can be used for creating strategies and
verifying properties of strategies

Our extension aims at providing the ground for the design of general auction
players. Second, we characterize (bounded) rationality along two dimensions: (i) the
impact of the level of higher-order knowledge about other agents and (ii) the im-
pact of looking-ahead beyond the next action to be executed. We also explore the
complexity of model-checking for evaluating rationality.

4.1 Epistemic Auction Description Language

In this section, we introduce a logical framework for reasoning about auction pro-
tocols while considering imperfect information. The framework is based on a sim-



58 Chapter 4. Actions, Knowledge and Rationality

plified version of ADL (see Section 2.2) and Epistemic GDL (Jiang et al., 2017) and
is denoted Epistemic Auction Description Language (ADLK).

Definition 4.1. An auction signature S is a tuple (N, I,B,Φ,Y), where:

• N = {1, 2, . . . , n} is a nonempty finite set of agents;

• I ⊂ Z is a finite subset of integer numbers representing the range of valuations,
bids and payments;

• B = ⋃
i∈N Ai, where each Ai consists of a nonempty finite set of actions per-

formed by agent i ∈ N and Ai∩As = ∅ if i ̸= s. For convenience, we may write
ai for denoting an action in Ai;

• Φ = {p, q, . . . } is a finite set of atomic propositions for specifying individual
features of a state;

• Y = {y1, y2, . . . } is a finite set of numerical variables for specifying numerical
features of a state.

We assume a total order among the agents in N, denoted by ≺, where r ≺ i

means that agent i precedes agent i in ≺; it will be used to break ties in winner
determination. Throughout the rest of this section, we fix an auction signature S
and all concepts will be based on this signature, except if stated otherwise. We
still consider a semantics based on state-transition models. Differently from the
ST-models presented on Chapter 2, these models consider a set of initial states and
contain equivalence relations for indicating states that are indistinguishable for each
agent.

Definition 4.2. An epistemic state transition ET-model M is a tuple
(W,Wι,T, {Ri}i∈N,U,πΦ,πY), where:

• W is a finite nonempty set of states;

• Wι ⊆W is a set of initial states;

• T ⊆W \Wι is a set of terminal states;

• Ri ⊆W×W is an equivalence relation for agent i, indicating the states that
are indistinguishable for i;

• U : W × (∏i∈N Ai) → W is an update function, specifying the transitions for
each combination of joint actions;

• πΦ : W→ 2Φ is the valuation function for the state propositions;

• πY : W×Y→ I is the valuation function for the numerical variables.



4.1. Epistemic Auction Description Language 59

For a group of agents C ∈ 2N \ {∅}, we write dC ∈
∏

i∈C Ai to denote a joint
action of the agents in C. We denote by di the individual action for agent i ∈ C in
the joint action dC. When C = N then we omit N and simply write d instead of
dN. Let Ri(w) denote the set of all states that agent i cannot distinguish from w,
i.e., Ri(w) = {v ∈W : wRiv}.

Unlike the previous chapters, we adopt a notion of moves instead of paths.
Our notion of move resembles the turn-based definition proposed by Zhang and
Thielscher (2015a,b). For every w ∈ W and d ∈

∏
i∈N Ai, we call (w, d) a move.

Given a group of agents C ∈ 2N \ {∅}, we write (w, ⟨dC, d-C⟩) instead of (w, d) when
we want to talk about C’s part in (w, d), where d-C ∈

∏
s∈N\C As denotes the actions

of all the agents except those in C in the joint action d.

Definition 4.3. Two moves (w, d) and (v, e) are equivalent for agent i, written
(w, d) ≈i (v, e), iff wRiv and di = ei.

Clearly relation ≈i is reflexive, transitive and symmetric. Differently from stan-
dard GDL, our semantics is based on moves instead of paths. This allows the agent
to reason about the effects of actions without exploring all ways the game could
proceed (i.e., all the reachable states in each complete path where she takes this
action). In ADLK, we define the action execution modality in games with syn-
chronous moves. The idea of move-based semantics and action modalities stems
from the proposal of Zhang and Thielscher (2015a). Their approach is restricted to
turn-based games, where only one action can be performed at a given state.

4.1.1 Syntax

First, we introduce ADLK syntax, a simplified version of ADL with epistemic oper-
ators and action modality. Let z ∈ LZ be a numerical term defined as follows:

z ::= t | sum(z, z) | sub(z, z) | min(z, z) | max(z, z) | times(z, z) | y

where t ∈ I, y ∈ Y . The meaning of numerical terms is the natural one; for instance,
the term min(z1, z2) specifies the minimum value between z1 and z2. Finally, y
denotes the value of the variable y ∈ Y in the current state.

A formula in ADLK, denoted φ ∈ LADLK, is defined by the following BNF:

φ ::= p | z ⊗ z | r ≺ r | initial | terminal | does(ai) | ¬φ | φ ∧ φ | Kiφ | [ dC ]φ

where p ∈ Φ, i ∈ N, ⊗ ∈ {>,<,=}, ai ∈ B, C ∈ 2N \ {∅}, dC ∈
∏

i∈C Ai and
z ∈ LZ . Other connectives ∨,→,↔,⊤ and ⊥ are defined by ¬ and ∧ in the standard
way. The comparison operators ≤, ≥ and ̸= are defined by ∨, >,< and =. The
extension of the operators >,< and = and numerical terms max(z1, z2),min(z1, z2),
sum(z1, z2) to multiple arguments is straightforward. The formula r1 ≺ r2 denotes
the tie-breaking priority of r1 over r2.

Intuitively, initial and terminal specify the initial and the terminal states, re-
spectively; does(ai) asserts that agent i takes action ai at the current move. The



60 Chapter 4. Actions, Knowledge and Rationality

epistemic operator Ki is taken from the Epistemic Logic (Fagin et al., 2003). The
formula Kiφ is read as “agent i knows that φ”. The action execution operator comes
from the GDL variant with action modalities (Zhang and Thielscher, 2015a) and
the formula [ dC ]φ means that if joint action dC is executed, φ will be true next.
The abbreviation does(dC) specifies that each agent in C performs her respective
action in dC, that is,

does(dC) =def
∧
i∈C

does(di)

As Zhang and Thielscher (2015a), we use the action modality to define the temporal
operator ⃝:

⃝φ =def

∨
d∈

∏
i∈N Ai

(does(d) ∧ [ d ]φ)

The formula ⃝φ reads “φ will be true next”. We also use the following ab-
breviation from Epistemic Logic: K̂iφ =def ¬Ki¬φ where K̂iφ represents that “φ
is compatible with agent i’s knowledge”. Given j > 0 and C ∈ 2N \ {∅}, we write
σC = (∏i∈C Ai)j for a sequence of joint actions for C. The i-th joint action in σC is
noted σC

i . Finally, define [ σC ]j φ, for |σC| = j by induction of j:

[ σC ]1 φ =def [ σC ]φ
[ σC ]j+1 φ =def [ σC ][ σC

j ]φ

The formula [ σC ]j φ means that if the group C followed the sequence of joint
actions described by σC for the next j stages, then φ would hold.

4.1.2 Semantics

The semantics for ADLK is given in two steps. First, function f interprets the
meaning of numerical terms z ∈ LZ . Next, a formula φ ∈ LADLK is interpreted with
respect to a move. In Definition 4.4, we specify function f to evaluate the meaning
of any z ∈ LZ in a move.

Definition 4.4. Let M be an ET-Model. Define Function f : W×(∏i∈N Ai)×LZ →
Z, assigning any w ∈W, d ∈ ∏

i∈N Ai, and z ∈ LZ to a number in Z:
If z is on the form sum(z′, z′′), sub(z′, z′′), min(z′, z′′), max(z′, z′′) or

times(z′, z′′), then f(w, d, z) is defined through the application of the corresponding
mathematical operators and functions over f(w, d, z′) and f(w, d, z′′). Otherwise,
f(w, d, z) = z if z ∈ I and f(w, d, z) = πY (w, z) if z ∈ Y .

Definition 4.5. Let M be an ET-Model. Given a move (w, d), where w ∈W and
d ∈

∏
i∈N Ai, and a formula φ ∈ LADL, we say that φ is true in the move (w, d)



4.1. Epistemic Auction Description Language 61

under M , denoted by M |=(w,d) φ, according to the following rules:

M |=(w,d) p iff p ∈ πΦ(w)
M |=(w,d) ¬φ iff M ̸|=(w,d) φ

M |=(w,d) φ1 ∧ φ2 iff M |=(w,d) φ1 and M |=(w,d) φ2

M |=(w,d) initial iff w ∈Wι

M |=(w,d) terminal iff w ∈ T
M |=(w,d) r1 ≺ r2 iff r1 ≺ r2

M |=(w,d) does(ai) iff di = ai

M |=(w,d) z1 ⊗ z2 iff f(w, d, z1)⊗ f(w, d, z2),where ⊗ ∈ {>,<,=}
M |=(w,d) Kiφ iff for every v ∈W and e ∈

∏
s∈N As, if (w, d) ≈i (v, e),

then M |=(v,e) φ

M |=(w,d) [ bC ]φ iff M |=(U(w,e),c) φ, where e = ⟨bC, d−C⟩, for every
c ∈

∏
i∈N Ai

A formula φ is globally true in an ET-Model M, written M |= φ, if M |=(w,d) φ

for all w ∈ W and d ∈
∏

i∈N Ai. Finally, let Σ be a set of formulas in LADLK, then
M is a model of Σ if M |= φ for all φ ∈ Σ.

Each Ki is a normal modal operator. It satisfies that if all i-accessible worlds
agree on φ then i knows either φ or ¬φ. If φ is true then i knows that φ.

Proposition 4.1. Let M be an ET-Model, i ∈ N be an agent and φ ∈ LADLK be a
formula, then M |= φ → Kiφ if and only if for all w, v ∈ W and all d, e ∈

∏
i∈N Ai

such that (w, d) ≈i (v, e), M |=(w,d) φ iff M |=(v,e) φ.

It follows from the equivalence relation ≈i that agent i knows the actions she
performs. This is similar to the uniform strategies in Alternating-time Temporal
Epistemic Logic (Jamroga and van der Hoek, 2004) and Dynamic Epistemic Logic
(Van Benthem, 2001).

Proposition 4.2. For any agent i ∈ N, action ai ∈ Ai, formula φ ∈ LADLK, number
of steps j > 0, group of agents C ∈ 2N \ {∅} and σi ∈ (∏i∈C Ai)j:

1. M |= does(ai)→ Kidoes(ai)

2. If M |= [σC ]j φ then M |= Ki[ σC ]j φ

3. If M |= [σC ]jKiφ then M |= Ki[ σC ]jφ

Let us now illustrate how to represent an auction-based protocol in ADLK,
namely, a Dutch auction. First, we show the syntactical representation through
ADLK-formulas. Later, we address the semantical representation.



62 Chapter 4. Actions, Knowledge and Rationality

4.1.3 Dutch Auction with Private Valuations

In a Dutch auction, the auctioneer starts by proposing a high asking price. The
price is decreased until it reaches a predefined reserve price or some bidder shows
interest at purchasing the good. The auction then ends and the object is sold at
the given price to the bidder who signaled her interest (Krishna, 2009).

Let Sdut be an auction signature and starting, reserve ∈ N, dec, n ∈ N \ {0} be
constant values. The constants starting, reserve, dec, n represent the starting and
reserve prices, the decrement in each round and the number of agents, respectively.
The auction signature is defined as follows: Sdut = (N, I,B,Φ,Y), where N =
{1, . . . , n}, I = {0, . . . , starting}, B = {bidi,waiti : i ∈ N}, Φ = {winneri : i ∈ N} and
Y = {payi, ϑi : i ∈ N}. The numerical variables payi and ϑi specify the payment
and the private valuation for an agent i.

4.1.3.1 Syntactical Representation

The rules of the Dutch auction are formulated by ADLK-formulas as shown in Figure
4.1.

1. initial↔ price = starting ∧
∧

i∈N ¬winneri

2. winneri → payi = price, for each i ∈ N

3. ¬winneri → payi = 0, for each i ∈ N

4. terminal↔ sub(price, dec) < reserve ∨
∨

i∈N winneri

5. ¬terminal ∧ price = x ∧
∧

i∈N does(waiti) → ⃝(price = sub(price, dec) ∧∧
i∈N ¬winneri), for each x ∈ I

6. ¬terminal ∧ price = x ∧ does(bidi) ∧
∧

s ̸=i,s∈N(¬does(bids) ∨ i ≺ s) →
⃝(winneri ∧

∧
s ̸=i,s∈N ¬winners), for each x ∈ I and each i ∈ N

7. terminal ∧ y = x→⃝y = x, for each y ∈ Y and each x ∈ I

8. terminal ∧ win→⃝win, for each win ∈ {winneri,¬winneri : i ∈ N}

9. Ki(ϑi = x) ∨ Ki¬(ϑi = x), for each x ∈ I and i ∈ N

Figure 4.1: Dutch auction represented by Σdut

In an initial state, the price starts at starting and there is no winner (Rule 1).
If an agent is a winner, she pays the current price. Otherwise, she does not pay
anything (Rules 2 and 3). The terminal state is reached when it is not possible to
decrease the price anymore or there is a winner (Rule 4). While not in the terminal
state, the price either decreases if no agent bids or the price is settled if some agent
accepted to purchase the good (Rules 5 and 6). If only one agent accepts, she
is marked as the winner. In case two or more agents bid, the winner is assigned



4.1. Epistemic Auction Description Language 63

according to the tie-breaking rule. Rules 7 and 8 ensure no proposition or numerical
variable change its value after a terminal state. Finally, Rule 9 specifies that each
agent is aware of how much she valuates the good. Let Σdut be the set of Rules 1-9.

4.1.3.2 Model Representation

Let us address the model representation of the Dutch auction. Let us define
Mdut as the class of models Mdut defined for a signature Sdut and the constants
starting, reserve, dec and n. Each Mdut = (W,Wι,T, {Ri}i∈N,U,πΦ,πY) is defined
as follows:

• W = {⟨pr, buyer, θ1, . . . , θn⟩ : 0 ≤ pr ≤ starting & buyer ∈ N ∪ {none} &
0 ≤ vali ≤ starting for each i ∈ N};

• Wι = {⟨starting, none, val1, . . . , valn⟩ : 0 ≤ vali ≤ starting for each i ∈ N};

• T = {⟨pr, buyer, θ1, . . . , θn⟩ : 0 ≤ pr ≤ starting & buyer ∈ N & 0 ≤ vali ≤
starting for each i ∈ N}∪{⟨pr, buyer, θ1, . . . , θn⟩ : pr−dec < reserve & buyer ∈
N ∪ {none} & 0 ≤ vali ≤ starting for each i ∈ N};

• For each agent i ∈ N and for any two states w = ⟨pr,buyer, θ1, . . . , θn⟩ and
v = ⟨pr′, buyer′, val′1, . . . , val′n⟩ in W, the relation Ri is defined as follows: wRiv
iff (i) pr = pr′; (ii) buyer = buyer′; and (iii) vali = val′i.

• For all states w = ⟨pr, buyer, θ1, . . . , θn⟩ and all joint actions d = (ai)i∈N, such
that w ∈W and ai ∈ {bidi,waiti}, we define U as follows:

– If w ̸∈ T, then U(w, d) = ⟨pr′, buyer′, θ1, . . . , θn⟩, such that the compo-
nents pr′ and buyer′ are defined as follows: (i) pr′ = pr−dec if ai = waiti,
for all i ∈ N; otherwise pr′ = pr; (ii) buyer′ = i if ai = bidi for some i ∈ N
and for all s ∈ N such that s ̸= i, either as = waits or i ≺ s; otherwise,
buyer′ = none;

– Otherwise, U(w, d) = w.

• Finally, for each state w = ⟨pr,buyer, θ1, . . . , θn⟩, such that w ∈ W, let
πΦ(w) = {winneri : buyer = i & i ∈ N}; πY(w,price) = pr. For each agent
i ∈ N, let πY(w, ϑi) = vali and πY(w,payi) = pr if buyer = i. Otherwise,
πY(w, payi) = 0.

Let us assume a model Mdut ∈Mdut and Σdut for some Sdut and the constants
starting, reserve ∈ N, dec, n ∈ N \ {0}.

Proposition 4.3. Mdut is an ET-Model and Mdut |= Σdut, i.e., Mdut is a model of
Σdut.

That is, Mdut is a sound representation of Σdut. Notice that as Mdut is not the
unique model for Σdut, thereby, the completeness does not hold. It follows from
Prop. 4.1 and 4.3 that each agent knows the auction rules denoted by Σdut, that
is, Mdut |=

∧
i∈N(KiΣdut). In the next section, we define rationality in ADLK.



64 Chapter 4. Actions, Knowledge and Rationality

4.2 Rationality in Auctions

To characterize rationality of auction players, we assume {ϑi,payi : i ∈ N} ⊆ Y

and {winneri : i ∈ N} ⊆ Φ, where ϑi,payi and winneri specify the agents valuation,
payment and whether she won the auction, resp. Let ut ∈ I, we denote whether the
utility of agent i ∈ N is equal to ut in a single good and unit auction according to
the truth value of the following formula:

utilityi = ut =def (ut = sub(ϑi,payi) ∧ winneri) ∨ (ut = −payi ∧ ¬winneri)

Note that we can extend the notion of utility to multiple units and goods by includ-
ing numerical variables representing the agents’ allocations and their valuations for
such allocations. In this work, we focus on epistemic reasoning about action choice
and rationality of auction players.

Similar to the strong strategy dominance (Lorini, 2016), we say an action ai of
an agent i is a strongly dominated action if and only if, there exists another action bi

of i such that, for all actions a−i of the other agents, playing bi while others play a−i

leads to a better utility than playing ai while others play a−i. In ADLK, the agents’
utility is captured in a move of a model and the action choice operator allows us to
compare what would have happened if a group of agents took a given joint action.

4.2.1 Bounded Rationality

We adapt the weak rationality formalization by Lorini (2016) to ADLK formulas.
Different from his approach, we consider levels of rationality instead of common
knowledge. Our notion of k-order rationality is based on (Chen et al., 2015): an
agent is k-order rational if she is weakly rational and knows all agents are (k − 1)-
order rational.

GDL-based languages explicit the stages of a game execution through paths
(or runs). The game starts from an initial state and the succeeding states are
defined according to the agents’ joint actions. Since GDL agents choose “on-the-fly
strategies” during the game, the players should be able to evaluate the current state
of the game and to decide which action they will execute.

Adopting these features from GDL in ADLK allows us to explicitly model infor-
mation feedback, which is a key feature in the design of iterative auctions (Parkes,
2006). For instance, in ADLK, we can describe auctions where the agents are as-
signed to allocations and payments at any stage, which may be different from their
final assignments in the terminal state. For this reason, instead of defining utilities
as a function to strategy profiles as in ATL (Alur et al., 2002), we model the agents’
utility as being dependent on the current state of the auction.

We rephrase the rationality notions proposed by Chen et al. (2015) and Lorini
(2016). Our definitions generalize such notions by, at first, considering k-order of
knowledge and, second, by taking into account state-based utilities and exploring
bounded sequences of actions. A rational agent plays according to her utility after



4.2. Rationality in Auctions 65

performing an action. When reasoning about iterative auctions, the agent considers
her utility after playing according to a sequence of j actions. Since most auction-
based markets are finite (in the sense that the auction finishes eventually), it is
reasonable to assume the agents only need to include in their reasoning which
actions may occur in the next j steps. Given a fixed number of steps j > 0, we
inductively define that an agent is k-order rational, for k ≤ j. The base case is that
any agent is 0-order rational, that is, Rat(i, 0, j) =def ⊤. For all k > 0, we define:

Rat(i, k + 1, j) =def WR(i, j) ∧ Ki
( ∧

s∈N
Rat(s, k, j)

)
That is, an agent is (k + 1)-order rational if she is weakly rational when looking j
stages ahead and knows every other agent is k rational. Weak rationality is defined
by:

WR(i, j) =def
∧

ai∈Ai

(
does(ai)→

∨
ρi∈(Ai)j−1

WRAction(i, (ai, ρi), j)
)

where

WRAction(i, σi, j) =def

∧
χi∈(Ai)j

( ∨
σ-i∈(

∏
s ̸=i As)j

(
K̂idoes(σ-i

1 )∧

∨
ut,ut′∈I

([χi, σ-i ]j utilityi = ut′ ∧ [ σi, σ-i ]j utilityi = ut ∧ ut′ ≤ ut)
))

An agent ai is weakly rational when reasoning j stages ahead if when she performs
an action ai, there exists a sequence of j actions starting by ai that is weakly rational
for her to follow over j stages. Finally, it is weakly rational for agent i to follow
a sequence of actions σi for j steps, noted WRAction(i, σi, j), if for every other
sequence of actions χi there exists a sequence of joint actions σ-i that i considers
possible to be executed such that her utility after following σi for j steps is at least
as good as her utility after following χi.

Notice that if j is large enough to reach terminal states, the state-based utilities
represent strategy-based utility functions. Our definition of rationality requires to
assume that all agents are rational: as soon as one is known to be non-rational,
it is no longer possible to be k-order rational, for k > 1. This requirement entails
that looking ahead without considering knowledge leads to consider all actions as
rational:

Proposition 4.4. For every ET-Model M, state w ∈W, joint action d ∈
∏

i∈N Ai,
agent i ∈ N and j > 0, it holds that M |=(w,d) does(di) ∧ Rat(i, 0, j).

Next, considering higher-order knowledge enables us to eliminate strongly dom-
inated actions.

Theorem 4.1. For any ET-Model M, state w ∈ W, joint action d ∈
∏

i∈N Ai,
k > 0, j > 0, agent i ∈ N and action ai ∈ Ai, if M |=(w,d) does(ai)∧Rat(i, k, j) then
M |=(w,d) does(ai) ∧ Rat(i, k − 1, j).



66 Chapter 4. Actions, Knowledge and Rationality

Proof. Assume M |=(w,d) does(ai)∧Rat(i, k, j). Thus, M |=(w,d) does(ai)∧WR(i, j)∧
Ki(

∧
s∈N Rat(s, k − 1, j)). Since Ri is reflexive, it follows that M |=(w,d) does(ai) ∧

Rat(i, k − 1, j).

Note that increasing j may not enable the elimination of actions. The larger
j, the more stages will be considered. Ideally, j should be large enough to reach
terminal states. However, termination may not be ensured in auction protocols and
real world players usually have time restrictions to decide their actions.

4.2.2 Bounded Rationality in the Dutch Auction

Let us consider the Dutch auction from Section 4.1.3. Consider a specific in-
stance Mdut in Mdut, such that there are only two players i and s whose valuation
for the good being auctioned is 7 and 4, respectively. The auctioneer starts by
proposing the price 10 and in each round the price is decreased by 1. Formally,
N = {i, s}, I = {0, . . . , 10},B = {bidi,waiti,bids,waits},Φ = {winneri,winners}
and Y = {payi, ϑi, pays, ϑs}. Let Mdut be the model defined by the signature
Sdut = (N, I,B,Φ,Y) and the constants starting = 10, dec = 1, reserve = 0 and
n = 2. We consider the initial state w0 ∈ Wι, such that πY(w0, ϑi) = 7 and
πY(w0, ϑs) = 4.

Due to the starting price and the decrement, the auction is ensured to end after
10 stages. We therefore focus on the case j = 10. If the auction reaches a terminal
state before 10 stages, the update function ensures a loop in the terminal state.
Since the auction ends at the first bid, we write bidAfter(i,m) as the sequence of
actions σi, such that σi

i = waiti for i < m ≤ j and σi
i = bidi for m ≤ i ≤ j. The

sequence is read “i bids after m steps”. Let onlywait(i) be the sequence of j actions
waiti. We use a similar notation for expressing agent s’s sequence of actions. Let d
be a joint action, we will examine which sequences of actions are rational for each
agent to follow. We assume the Dutch auction protocol Σdut and the tie-breaking
ordering are common knowledge among the agents in N.

If the agents are 0-order rational, that is, if Mdut |=(w0,d) Rat(i, 0, j)∧Rat(s, 0, j),
then both agents consider possible that any sequence of joint actions will be taken.
If we now consider 1st-order rationality for i, that is Mdut |=(w0,d) Rat(i, 1, j), then
i is not going to follow any sequence of actions that are strongly dominated in j

steps. The weakly rational sequences of actions for i are those where she waits until
the price is below her private valuation (e.g, bidAfter(i, 4),bidAfter(i, 5), and so on).
The sequence of actions onlywait(i) is not rational for i. The weakly rational actions
for agent s when Mdut |=(w0,d) Rat(s, 1, j) are defined similarly. Figure 4.2 illustrates
the utilities each agent considers possible to achieve when playing a weakly rational
sequence of actions.

For k > 1, which actions a k-order rational agent considers possible her oppo-
nents will take depends on her knowledge about their valuations. For instance, let us
consider the case where it is common knowledge that (2 ≤ ϑs ≤ starting)∧(2 ≤ ϑi ≤



4.2. Rationality in Auctions 67

w4,0

[bidAfter(i, 4), bidAfter(s, 0)]
utilityi = 1

· · ·

[bidAfter(i, 4), bidAfter(s, 1)]
utilityi = 1

w4,1

w10,9

[bidAfter(i, 10), bidAfter(s, 9)]
utilityi = 0

w10,10

[bidAfter(i, 10), bidAfter(s, 10)]
utilityi = 7

· · ·

· · ·

(a) Agent i

[bidAfter(i, 10), bidAfter(s, 10)]
utilitys = 0

[bidAfter(i, 10), bidAfter(s, 9)]
utilitys = 3

[bidAfter(i, 8), bidAfter(s, 7)]
utilitys = 1

(b) Agent s

[bidAfter(i, 0), bidAfter(s, 7)]
utilitys = 0

w0,7

w8,7

w10,9

w10,10

Figure 4.2: The utilities agents i and s consider possible to obtain when they are
1st-order rational

starting), i.e., we have Mdut |= (2 ≤ ϑs ≤ starting) ∧ (2 ≤ ϑi ≤ starting). By Propo-
sition 4.1, both agents then know their opponent has a valuation between 2 and the
starting price. If the agent s is 2nd-order rational, she will know the sequence of
actions onlywait(i) is not weakly rational for i. Due to the tie-breaking rule, if both
agents bid at the same stage, agent i wins. Thus, agent s cannot win by waiting for
the price to reach zero and it is not weakly rational to perform bidAfter(s, 10). If i
is 3rd-order rational, she knows that s knows onlywait(i) is not rational for her and
consequently, that it cannot be the case that s will bidAfter(s, 10). If the agents are
4th-order rational, they will not consider possible that the good is not sold before
the price be zero. Thus, a similar reasoning will happen due tie-breaking when the
price is 1. Finally, Figure 4.3 illustrates the utilities each agent considers possible
when she is 7th-order rational. Since agents are uncertain about which value be-
tween 2 and starting represents the valuation of their opponents, raising the order
of rationality beyond 7 would not modify the actions they consider possible to be
taken by their opponent.



68 Chapter 4. Actions, Knowledge and Rationality

· · ·

(a) Agent i

[bidAfter(i, 8), bidAfter(s, 7)]
utilitys = 1

[bidAfter(i, 7), bidAfter(s, 7)]
utilitys = 0

(b) Agent s

[bidAfter(i, 0), bidAfter(s, 7)]
utilitys = 0

w0,7

w7,7

w8,7

w4,0

[bidAfter(i, 4), bidAfter(s, 0)]
utilityi = 1

· · ·

[bidAfter(i, 4), bidAfter(s, 1)]
utilityi = 1

w4,1

w8,8

[bidAfter(i, 8), bidAfter(s, 8)]
utilityi = 5

w8,9

[bidAfter(i, 8), bidAfter(s, 9)]
utilityi = 0

Figure 4.3: The utilities agents i and s consider possible to obtain when they are
7th-order rational and Mdut |= (2 ≤ ϑs ≤ starting) ∧ (2 ≤ ϑi ≤ starting)

4.3 Model Checking

Now we examine the upper bound of the complexity of deciding whether an
ADLKformula is true with respect to a model and a move. To prove this bound,
we provide a model-checking algorithm and analyze its complexity. Let φ ∈ LADLK
be a formula and M = (W,Wι,T, {Ri}i∈N,U,πΦ,πY) be an ET-Model over S. We
say that ψ is a subformula of φ if either (i) ψ = φ; (ii) φ is of the form ¬φ, Kiφ

or [ dC ]φ and ψ is a subformula of φ; or (iii) φ is of the form φ ∧ φ′ and ψ is a
subformula of either φ or φ′. Denote Sub(φ) as the set of all subformulas of φ.

Theorem 4.2. The following problem is in O(|W| × |B|m), where m = |N| × |φ|:
Given an ET-Model M, a state w ∈ W, a joint action d ∈

∏
i∈N Ai and a formula

φ ∈ LADLK, determine whether M |=(w,d) φ or not.

Proof. Algorithm 2, named epistModelCheck, works in the following way: first it
gets all subformulas of φ and orders them in a vector S by ascending length. Thus,



4.3. Model Checking 69

Algorithm 2 epistModelCheck(M,w, d, φ)
Input: an ET-model M = (W,Wι,T, {Ri}i∈N,U,πΦ,πY), a state w of W, a

joint action d ∈
∏

i∈N Ai and a formula φ ∈ LADLK.
Output: true if M |=(w,d) φ, and false otherwise

1: S ← Sub(φ) ordered by ascending length
2: Let isTrue[1, . . . , |φ|] be a boolean array initiated with true values
3: for i← 1 to |φ| do
4: φ← S[i]
5: switch the formula type of φ do
6: case φ is of the form φ′ ∧ φ′′

7: isTrue[i]← isTrue[getIndex(S, φ′)] ∧ isTrue[getIndex(S, φ′′)]
8: case φ is of the form ¬φ′

9: isTrue[i]← ¬isTrue[getIndex(S, φ′)]
10: case φ is atomic
11: isTrue[i]← M |=(w,d) φ

12: case φ is of the form [ bC ]φ′

13: eC ← ⟨bC, d-C⟩
14: for each c ∈

∏
i∈N Ai do

15: isTrue[i]← isTrue[i] ∧ epistModelCheck(M,U(w, e), c, φ′)
16: case φ is of the form Kiφ

′

17: for each v ∈ Ri(w) and each e ∈
∏

i∈N Ai with ei = di do
18: isTrue[i]← isTrue[i] ∧ epistModelCheck(M, v, e, φ′)
19: return isTrue[|φ|]

S(|φ|) = φ, i.e., the position |φ| in S corresponds to the formula φ itself, and if
φi is a subformula of φj then i < j. An induction on S labels each subformula φi

depending on whether or not φi is true in M at the move (w, d). If φi does not
have any subformula, its truth value is obtained directly from the model. Since S is
ordered by formulas length, if φi is either of the form φ′ ∧ φ′′ or ¬φ′ the algorithm
labels φi according to the label assigned to φ′ and/or φ′′. If φi is of the form [ bC ]φ′

then its label is recursively defined according to φ′ truth value in the updated state
given the joint action ⟨bC, d-C⟩, for any joint action to be taken in the next move.
Since we compare with every joint action, this is done in an exponential number of
steps, based on the size of the set of agents (i.e., according to |B|n, where n = |N|).
Finally, the case where φi is in the form Kiφ

′ is recursively defined according to the
truth value of φ′ in all moves that are equivalent to (w, d). Similar to the previous
case, since we compare with all possible moves and all states in Ri(w) ⊆ W, this
step is done in an exponential number of steps (i.e., according to |W| × |B|n, where
n = |N|). As Algorithm epistModelCheck visits each subformula at most once,
and the number of subformulas is not greater than the size of φ, the algorithm can
clearly be implemented in O(|W| × |B|m), where m = |N| × |φ|.

It follows that checking agent rationality is exponential in the quantity of agents,



70 Chapter 4. Actions, Knowledge and Rationality

the order of rationality and how many rounds are considered.

Corollary 4.1. Given an ET-model M, a state w ∈W, a joint action d ∈
∏

i∈N Ai,
an agent i, j > 0 and k > 0, the problem of checking whether M |=(w,d) Rat(i, k+1, j)
is in O(|W| × |B|nkj), where n = |N|.

4.4 Conclusion

In this chapter, we presented Epistemic Auction Description Language (ADLK),
a language to allow reasoning about knowledge, rationality and action choice in
auctions. ADLK extend ADL with epistemic operators and action modalities as in
the GGP competition, real world bidders may have time restrictions to decide their
actions. Thus, we characterized and explored bounded rationality in relation to the
level of higher-order knowledge about other agents and stages to look-ahead beyond
the current state.

With ADLK, we can reason about agents’ action choices over a finite number
of auction stages, but it does not contemplate agents’ strategies in a general sense
(that is, functions describing what to do in each possible moment of a game). In the
second part of this thesis, we investigate strategic reasoning in auctions and explore
how to create and verify mechanisms which will be played by strategic agents. We
provide a new perspective for Automated Mechanism Design, grounded on formal
methods and logic-based automated reasoning.



Part II

Strategic Reasoning in
Mechanism Design





Chapter 5

Verification of Mechanisms

Let us recall the problem of Mechanism Design, which consists on creating games
that aggregate agents’ preferences towards a single joint decision. When partic-
ipants act rationally (in the game theoretical sense), such games should ensure a
preferable behavior of the players as well as desirable features of the decision (Nisan
et al., 2007).

Bearing in mind that the mechanism analysis is usually a manual process, we
investigate their verification in relation to complex properties involving strategic
agents through formal methods. In this context, the paper “Logic for Mechanism
Design - A Manifesto” (Pauly and Wooldridge, 2003) is of particular interest. The
authors argue that strategic logics developed for the formal verification of multi-
agent systems (MAS) could be good candidates as formal frameworks to reason
about mechanisms. They consider Alternating-time Temporal Logic (ATL) (Alur
et al., 2002) and show with two case-studies based on voting systems that some
relevant properties for the verification of such systems can be expressed in this
logic. They conclude with a research agenda in which they detail features that are
missing in ATL to make it really fit for mechanism verification:

“We need to incorporate more game-theoretic notions in the logics we
use. While the logics discussed are capable of capturing some game the-
oretic notions, they are still too close to their computer science origins.
For example, players’ preferences, strategies, equilibrium notions, are
all notions which so far are inadequately represented both in the under-
lying semantic models and in the logical languages used. It is also still
an open question whether we will eventually end up with one general-
purpose logic which functions as a standard, much the way first-order
logic or modal logic do in computer science.” (Pauly and Wooldridge,
2003)

In this chapter we argue that Strategy Logic (Chatterjee et al., 2010) is a good
candidate for a general-purpose logic for mechanism design, specially when consid-
ering auction-based markets. More precisely, we propose a new variant of the logic
with quantitative features, imperfect information and epistemic operators, that we
call SLK[F ]. Because it is enough for many auction scenarios, we focus on memo-
ryless strategies, that do not depend on the past but only on the current state. We
start by presenting the related work on automated mechanism design and logics
for strategic reasoning. Next, we propose SLK[F ] and show how it can be used for



74 Chapter 5. Verification of Mechanisms

reasoning about auction mechanisms. Finally, we investigate the model-checking
problem for this language and conclude the chapter

5.1 Related Work

In this section we present the related work on computer-aided and fully-automatic
approaches for mechanism design and we recall logic-based languages for reasoning
about strategic abilities in MAS.

5.1.1 Automated Mechanism Design

Traditionally, mechanisms have been formulated by specialists, who use their knowl-
edge and experience for defining the game rules. Conitzer and Sandholm (2003)
introduced Automated Mechanism Design (AMD), whose goal is to automatically
create mechanisms for solving a specific preference aggregation problem.

AMD is usually tackled from an optimization and/or data-driven point of view.
For instance, neural networks have been used to learn mechanisms that optimize
a given parameter, such as revenue (Shen et al., 2019; Dütting et al., 2019). Sta-
tistical machine learning techniques have also been considered in domains without
money (Narasimhan et al., 2016). Vorobeychik et al. (2007) proposes a black-box
optimization algorithm for evaluating candidate mechanisms. Evolutionary search
methods have also been used by Niu et al. (2012) to optimize double auctions,
while Asselin et al. (2006) addresses AMD through linear programming and opti-
mization. By treating AMD as an engineering problem, Phelps et al. (2010) focus
on evolutionary and iterative approaches to mechanism design.

In relation to automating the analysis of mechanisms, some works from
computer-aided verification (Caminati et al., 2015; Barthe et al., 2016; Kerber et al.,
2016) express mechanisms in high-level specification languages, which can express
rich features including probabilistic aspects. The drawback of this high expressivity
is that, in contrast with model checking, verification is then not fully automatic,
but only assisted by a reasoner such as Isabelle or Coq. Troquard et al. (2011)
show how to reason about voting rules properties such as strategyproofness in a
formalism that allows fully automatic verification. However, the logic they use can
only model one-shot mechanisms and thus does not capture multi-stage auctions
such as Dutch auctions.

A related topic is normative systems Ågotnes et al. (2007), which defines con-
straints (in terms of obligations and permissions) on the behaviour of agents.
Bulling and Dastani (2016) investigates how concepts from mechanism design can
be used to analyse the enforcement of norms with preferences modelled using Linear-
time Temporal Logic (LTL).

The works closest to ours are (Pauly and Wooldridge, 2003; Wooldridge et al.,
2007) which, as we already discussed, advocate the use of strategic logics to reason
about (possibly multi-stage) mechanisms by considering ATL (Alur et al., 2002).
They discuss that ATL lacks the ability to reason about quantitative aspects such



5.1. Related Work 75

as preferences, and game-theoretic concepts such as equilibria. Okada et al. (2019)
uses Boolean Satisfiability for modeling mechanisms for false-name-proof facility
location. Their approach is restricted to one type of mechanism and does not handle
strategic, temporal and quantitative specifications. Another related approach are
Boolean games (Harrenstein et al., 2001), which aims at providing models that
are easy to build with actions determined by the agents’ control of propositional
variables. Finally, Gutierrez et al. (2019) considers system specifications given in
LTL (Vardi, 1996), and studies the implementation of a mechanism to ensure a given
temporal logic property in equilibrium.

5.1.2 Logics for Strategic Reasoning

Our work is rooted in a rich line of work on logics for strategic reasoning, start-
ing with the aforementioned ATL (Alur et al., 2002), the foundational language
for strategic reasoning in MAS. ATL has been extended in various directions, con-
sidering for instance strategy contexts (Laroussinie and Markey, 2015) or adding
imperfect information and epistemic operators (Jamroga and Bulling, 2011). The
first order extension of ATL (Belardinelli and Lomuscio, 2016) allows one to cap-
ture some quantitative aspects. The authors demonstrate how an English auction
may be represented, and strategic properties such as manipulation and collusion
verified. However, key strategic concepts such as dominance can not be expressed
in the logic. Strategy Logic (SL) (Chatterjee et al., 2010; Mogavero et al., 2014)
was then proposed which, by treating strategies as first-order variables, can express
complex game-theoretic concepts.

SL has been extended to handle imperfect information, hierarchical information
and knowledge operators (Berthon et al., 2021; Belardinelli et al., 2020; Maubert and
Murano, 2018), but none of these logics can account for quantitative aspects. We
denote by Epistemic Strategy Logic (SLK) the logic resulted of augmenting SL with
knowledge operators Maubert and Murano (2018). Recently, SL[F ] (Bouyer et al.,
2019) was introduced as a quantitative extension of SL. By introducing quantitative
values in the models and functions in the language, it enables the reasoning about
all key concepts involved in auctions: utilities, payments, goods and quantities. In
this chapter we merge both lines by combining quantitative aspects and imperfect
information in SLK[F ].

Indeed SL[F ], which subsumes ATL, is expressive enough to express complex
solution concepts such as Nash equilibrium and properties about quantities. This
language thus allows for specifications that contain constraints on mechanism prop-
erties (for instance, in Auction Design, the efficiency and budget-balance). Its
quantitative semantics, with satisfaction values that reflect how well a model sat-
isfies a formula, also allows us to investigate the constructions of mechanisms that
approximate such properties, which is not possible with standard SL.

A key assumption of the present contribution is that agents have only partial
observability of the global state of the system, as it is often the case in real-life
applications. Contexts of imperfect information have been extensively considered



76 Chapter 5. Verification of Mechanisms

in the literature on formal verification (Dima and Tiplea, 2011; Kupferman and
Vardi, 2000; Jamroga and Ågotnes, 2007; Reif, 1984; Bulling and Jamroga, 2014).
Generally speaking, imperfect information immediately entails higher complexity
of game solving. In multi-player games, the complexity can go up to being non-
elementary (Pnueli and Rosner, 1989), or even undecidability when considered in the
context of memoryful strategies (Dima and Tiplea, 2011). Hence, it is of interest to
analyse imperfect information systems where agents have finite or bounded memory,
in order to retrieve a decidable model checking problem. Herzig et al. (2016) analyse
epistemic boolean games in a computationally grounded dynamic epistemic logic
with the model-checking in in Pspace.

In relation to the modeling, specification, and reasoning about strategies of
bounded-memory agents, Ågotnes and Walther (2009) investigate strategic abilities
of agents with bounded memory, while Belardinelli et al. (2018) consider bounded
memory as an approximation of perfect recall. On a related direction, temporal
and strategic logics have been extended to handle agents with bounded resources
(Alechina et al., 2009, 2010; Bulling and Farwer, 2010a,b). Issues related to bounded
rationality are also investigated in (Barlo et al., 2008; Hörner and Olszewski, 2009;
Gupta et al., 2015).

Also relevant for the present contribution are papers that study explicit rep-
resentations of strategies. This category is much richer and includes extensions
of ATL∗ with explicit reasoning about actions and strategies (van der Hoek et al.,
2005; Ågotnes, 2006; Walther et al., 2007; Herzig et al., 2014), as well as logics that
combine features of temporal and dynamic logic (Harel and Kozen, 1982; Novák
and Jamroga, 2009). Duijf and Broersen (2016) present a variant of STIT logic1,
that enables reasoning about strategies and their execution in the object language.
Also, plans in agent-oriented programming are in fact rule-based descriptions of
strategies. In particular, reasoning about agent programs using strategic logics
was investigated in (Bordini et al., 2006; Alechina et al., 2007, 2008; Dastani and
Jamroga, 2010; Yadav and Sardiña, 2012).

The work in (Jamroga et al., 2019a,b) proposed to model “human-friendly”
strategies by lists of condition-action pairs with bounded complexity. This was
in contrast to “combinatorial” strategies, defined as functions from (sequences of)
states to actions, and typically used in the semantics of MAS logics (Alur et al.,
2002; Pauly and Parikh, 2003; Chatterjee et al., 2010; Mogavero et al., 2014). It was
argued in (Jamroga et al., 2019a,b) that natural strategies provide better models of
behavior for agents with limited memory and computing capacity, such as humans
or simple bots. The concept have been already used to redefine some security
requirements for voting protocols in (Jamroga et al., 2020).

1Also known as the logic of “Seeing to it That”, first proposed by Belnap and Perloff (1990).



5.2. Quantitative Epistemic Strategy Logic 77

5.2 Quantitative Epistemic Strategy Logic

SL[F ] (Bouyer et al., 2019) introduces quantitative aspects in SL, but it lacks the
ability to handle imperfect information inherent to the mechanism scenarios that we
aim at modeling, where agents may ignore other agents’ preferences for instance.
We thus introduce SLK[F ], which extends SL[F ] with imperfect information and
knowledge operators. A notable difference is that while SL[F ] considers all values
to be in [0,1], we slightly generalize the setting to allow for negative values in [-1,0] as
well. This allows us to naturally capture, for instance, double-sided auctions, where
sellers are agents with negative types, allocations and payments, while positive value
are used for buyers.

For the remainder of this thesis, we fix a set of atomic propositions AP, a set of
agents N and a set of strategy variables Var, except when stated otherwise. We let
n be the number of agents in N. Finally, let F ⊆ {f : [−1, 1]m → [−1, 1] | m ∈ N}
be a set of functions over [−1, 1] of possibly different arities that will parameterise
the logics we consider.

Definition 5.1. The syntax of SLK[F ] is defined by the following grammar:

φ ::= p | ∃si. φ | (i, si)φ | Kiφ | f(φ, . . . , φ) | Xφ | φUφ

where p ∈ AP, si ∈ Var, i ∈ N, and f ∈ F .

The intuitive reading of the operators is as follows: ∃si. φ means that there
exists a strategy for agent i such that φ holds; (i, si)φ means that when strategy si
is assigned to agent i, φ holds; Kiφ means that agent i knows that φ holds; X and U
are the usual temporal operators “next” and “until”. The meaning of f(φ1, . . . , φn)
depends on the function f . We use ⊤, ∨, and ¬ to denote, respectively, function 1,
function x, y 7→ max(x, y) and function x 7→ −x.
Remark 5.1. In (Bouyer et al., 2019), values are meant to represent degrees of
truth value in [0, 1] where 0 corresponds to “false” and 1 corresponds to “true”, as
in Fuzzy Logics. In this setting, negation ¬ is the function x 7→ 1 − x. Here we
consider instead values in [−1, 1]. This does not affect the semantics of the logic,
nor the model-checking problem, and it allows us to consider negative quantities.
For instance, a positive value may denote that an agent is receiving something,
while a negative value represents that she is giving something. The main difference
is that “false” now corresponds to −1, and negation is function x 7→ −x.

A variable is free in formula φ if it is bound to an agent without being quantified
upon, and an agent i is free in φ if φ contains a temporal operator (X or U) that
is not in the scope of any binding for i. The set of free variables and agents in φ is
written free(φ), and a formula φ is a sentence if free(φ) = ∅.

The strategy quantifier ∃si. φ quantifies on strategies for agent i. Except in its
original formulation (Chatterjee et al., 2010), variants of SL do not specify for which
agent a strategy is at the level of strategy quantification, and this allows assigning
the same strategy to different agents. However in the imperfect-information setting,



78 Chapter 5. Verification of Mechanisms

we need to know with respect to which observation relation a strategy should be
uniform. In (Berthon et al., 2021) this is done by parameterizing strategy quantifiers
with observation relations. Here we adopt a slightly less general but more intuitive
notation, by parameterizing directly with the agent who will use the strategy. This
is enough for our purposes, because we will not need to share a same strategy
between different agents, and we consider that the observation relation for each
agent is fixed, as reflected by the following definition.

Definition 5.2. A weighted concurrent game structure with imperfect information
(wCGSii) is a tuple G = ({Bi}i∈N, V, δ, ℓ, Vι, {∼i}i∈N) where

• Bi is a finite set of actions for agent i;

• V is a finite set of positions;

• δ : V × (∏i∈N Bi)→ V is a transition function;

• ℓ : V ×AP→ [−1, 1] is a weight function;

• Vι ⊆ V is a set of initial positions;

• ∼i ⊆ V ×V is an equivalence relation called the observation relation of agent i.

For a collection of objects indexed by agents in N, we may omit the index set
and write, e.g., {∼i} for {∼i}i∈N. We will also often write o for a tuple of objects
(oi)i∈N, one for each agent, and such tuples are called profiles. Given a profile o

and i ∈ N, we let oi be agent i’s component, and o−i is (or)r ̸=i. Similarly, we let
N−i = N \ {i}. This notation is also used in the subsequent chapters.

Action profiles In a position v ∈ V , each player i chooses an action ai ∈ Bi, and
the game proceeds to position δ(v,a) where a is the action profile (ai)i∈N.

Plays A play π = v0v1v2 . . . is an infinite sequence of positions such that for every
i ≥ 0 there exists an action profile a such that δ(vi,a) = vi+1. We write πi = vi for
the position at index i in play π.

Strategies A (memoryless) strategy for agent i is a function σ : V → Bi that
maps each position to an action. A strategy σ for agent i is uniform if, for all
positions v, v′ such that v ∼i v

′, we have σ(v) = σ(v′). We let Str i be the set of
uniform strategies for agent i, and Str = ∪i∈NStr i. Because there are finitely many
positions, Str is finite.

Assignments An assignment A : N ∪ Var → Str is a function from players and
variables to strategies. For an assignment A, an agent i and a strategy σ for i,
A[i 7→ σ] is the assignment that maps i to σ and is otherwise equal to A, and
A[s 7→ σ] is defined similarly, where s is a variable.



5.3. Reasoning about Auction Mechanisms 79

Outcomes For an assignment A and a position v, we let Out(A, v) be the unique
play that starts in v and follows the strategies assigned by A. Formally, Out(A, v)
is the play v0v1 . . . such that v0 = v and for all i ≥ 0, vi+1 = δ(vi,a) where for all
i ∈ N, ai = A(i)(v0 . . . vi).

Definition 5.3. Let G = ({Bi}i∈N, V, δ, ℓ, Vι, {∼i}i∈N) be a wCGSii, and A an as-
signment. The satisfaction value JφKG

A(v) ∈ [−1, 1] of an SLK[F ] formula φ in a
position v is defined as follows, where π denotes Out(v,A):

JpKG
A(v) = ℓ(v, p)

J∃si. φKG
A(v) = max

σ∈Str i
JφKG

A[si 7→σ](v)

J(i, si)φKG
A(v) = JφKG

A[i7→A(si)](v)

JKiφKG
A(v) = min

v′∼iv
JφKG

A(v′)

Jf(φ1,. . . , φm)KG
A(v) = f(Jφ1KG

A(v), . . . , JφmKG
A(v))

JXφKG
A(v) = JφKG

A(π1)

Jφ1Uφ2KG
A(v) = sup

i≥0
min

(
Jφ2KG

A(πi), min
0≤j<i

Jφ1KG
A(πj)

)
If φ is a sentence, its satisfaction value does not depend on the assignment,

and we write JφKG(v) for JφKG
A(v) where A is any assignment. We also let JφKG =

minv∈VιJφKG(v).
We can define the following classic abbreviations: ⊥ =def ¬⊤,

φ ∧ φ′ =def ¬(¬φ ∨ ¬φ′), φ→ φ′ =def ¬φ ∨ φ′, Fψ =def ⊤Uψ, Gψ =def ¬F¬ψ
and ∀s. φ =def ¬∃s.¬φ, and check that they correspond to the intuition. For
instance, ∧ corresponds to min, Fψ computes the supremum of the satisfaction
value of ψ over all future points in time, Gψ computes the infimum of these
values2, and ∀s. φ minimizes the value of φ over all possible strategies s.
Remark 5.2. In the particular case where atomic propositions only take values in
{−1, 1} and F consists of the functions x 7→ −x (negation) and x, y 7→ max(x, y)
(disjunction), SLK[F ] corresponds to usual Boolean-valued SLK with memoryless
agents.

5.3 Reasoning about Auction Mechanisms

We now show how SLK[F ] can be used to express important concepts and properties
from mechanism design.

5.3.1 Social Choice Functions

We first recall social choice functions, used to formalize how to choose one outcome
among several alternatives, based on individual preferences of the agents.

2The supremum of a set is its least upper bound and the infimum is its greatest upper bound.



80 Chapter 5. Verification of Mechanisms

Let Alt be a finite set of alternatives. Since our focus is on characterizing
mechanisms with monetary transfers, we assume that each alternative in Alt is of
the form α = (x,p) where x ∈ X is a choice from a finite set of choices X , and
pi ∈ [−1, 1] is a payment for agent i.

For each agent i ∈ N, let also Θi ⊂ [−1, 1] be a finite set of possible types
for i. The type of an agent determines her preferences over the alternatives via
the utility function introduced later on. Each type is an abstraction of the agents’
preference and not its explicit representation3. We let Θ = ∏

i∈N Θi, and we note
θ = (θi)i∈N ∈ Θ for a type profile, which assigns a type θi to each agent i. The type
θi of an agent i determines how she values each choice x ∈ X ; this is represented by
a valuation function vi : X ×Θi → [−1, 1].

Example 5.1. For instance, in a one-sided auction with one good, a choice describes
who wins the good. This can be modelled by letting X = {−1, 1}N, and considering
that choice (xi)i∈N represents that agent i wins the good if xi = 1. In a two-sided
auction (i.e., with buyers and sellers) with multiple copies of a good, a choice
describes how many items each agent sells or buys. We then let X = [−1, 1]N, and
a choice (xi)i∈N means that agent i buys xi items if xi ≥ 0, and sells −xi items if
xi ≤ 0 (values are normalized in [-1,1]).

The type θi of agent i reflects how much the agent desires the good. In one-sided
auctions with choices defined as X = {−1, 1}N as in Example 5.1, one could define
the valuation of agent i as vi(x, θi) = xi · θi. With this definition, a type θi close to 1
models an agent very interested in the good, who will have a high valuation if she
receives it, the good, and a low one if she does not. A type close to -1 represents
an agent who strongly does not want of this good, who has high valuation if she
does not receive the good, and low valuation if she does. Finally, type 0 represents
an indifferent agent, who receives valuation 0 in all possible choices.

In double-sided auctions with multiple goods (of a same type), with choices
modeled as X = [−1, 1]N, a positive type indicates the quantity an agent is willing to
buy, while a negative type denotes a selling quantity. When defining the valuation of
agent i as vi(x, θi) = xi ·θi, the sign of this value indicates if the outcome corresponds
to what the agent intended to do (selling or buying), and its norm indicates the
extent of her satisfaction or dissatisfaction.

The (quasi-linear) utility of agent i with type θi for an alternative α = (x,p) is
defined as

ui(α, θi) = vi(x, θi)− pi

That is, the utility for agent i is the difference between how much she valuates
the choice x and her payment pi.

Definition 5.4. A social choice function (SCF) s : Θ → Alt is a function that,
given a type profile θ, chooses an alternative s(θ) ∈ Alt. We can split a social

3The meaning of a type depends on the problem being considered and it should not be necessarily
understood in the numerical/ordinal sense. We assume the sets of possible types are finite, as done
in the literature (Sandholm, 2003).



5.3. Reasoning about Auction Mechanisms 81

choice function as follows: s = (x, {pi}), where x : Θ→ X is a choice function and
for each i, pi : Θ→ [−1, 1] is a payment function for agent i.

Example 5.2. The first-price social choice function sfp = (x, {pi}) is defined as fol-
lows. The allocation choice is defined as x(θ) = (x1, . . . , xn), where xi = 1 if θi is
the highest type in θ and xi = 0 otherwise. In case two agents i ̸= r have the highest
type, xi = 1 iff i ≺ r. The payment function for agent i is defined as pi(θ) = xi · θi.

In the next sections, we describe how to represent mechanisms as wCGSii and
how to determinate whether a wCGSii implements a SCF.

5.3.2 Mechanisms as wCGSii

While social choice functions describe what is the desired outcome given agents’
preferences (types), a mechanism describes agents’ actions and their outcome. A
mechanism consists of a description of the agents’ possible actions, and a description
of the alternatives that result from them. Some mechanisms are “one-shot”, mean-
ing that the final alternative is reached after each agent has chosen one action, while
others may contain multiple stages. Also they may involve agents holding some pri-
vate information. Weighted concurrent game structures can very naturally model
complex one-shot or multi-stage mechanisms with imperfect information, and we
provide a general definition of mechanisms as a class of concurrent game structures
with special atomic propositions to represent types, allocations, payments etc.

Since we focus on allocation problems (in particular, auctions), choices X
represent allocations of goods of different types from the set G = {1, . . . ,m}.
An allocative choice (Parkes and Ungar, 2001) is a tuple (xi)i∈N ∈ X where
xi = (xi,1, . . . , xi,m) denotes the allocation for agent i, and xi,j ∈ [−1, 1] is the
amount of goods of type j allocated to agent i (normalized in [−1, 1]). Note that, in
the case of one type of goods (m = 1), we obtain X = [−1, 1]N as in Example 5.1.

Definition 5.5. Let AP ⊇ {alli,j ,payi, terminal, typei : i ∈ N, j ∈ G} be a set of
atomic propositions, where alli,j , typei, payi denote, respectively, how many units of
the good j are allocated to agent i, the type of i, and her payment. The proposition
terminal specifies whether a state is terminal. A mechanism is a wCGSii over the
atomic propositions AP that satisfies the following:

(i) there is one initial position vθ
ι for each possible type profile θ ∈ Θ;

(ii) types remain unchanged through transitions, i.e. if δ(v,a) = v′ then
ℓ(v, typei) = ℓ(v′, typei) for each i;

(iii) each agent knows her own type: if v ∼i v
′, then ℓ(v, typei) = ℓ(v′, typei);

(iv) every play eventually reaches a terminal position, i.e., a sink4 where proposi-
tion terminal has value 1;

4A sink is a position that loops for all action profiles.



82 Chapter 5. Verification of Mechanisms

(v) in all non-terminal positions, terminal has value -1.

A type profile θ together with a strategy profile σ determines a unique terminal
position v(θ,σ), which is the terminal position reached from vθ

ι via σ. The values
of propositions alli,j and payi in terminal position v(θ,σ) encode an alternative that
we write G[θ,σ].

We now illustrate with an example how this formal definition of mechanisms
captures complex iterative mechanisms with quantitative aspects and imperfect
information.

Example 5.3 (Dutch auction). A Dutch auction is an iterative protocol with decreas-
ing price; hereafter we assume the single good and single unit case. As introduced
in Chapter 4, the auctioneer initially proposes a high asking price. This price is
gradually lowered until some bidder accepts to purchase the good. The auction then
ends and the object is sold to this bidder at the given price (Krishna, 2009). In
case of draw, the winner is determined with respect to an arbitrary order ≺ among
the agents.

Let us fix a price decrement dec ∈ (0, 1] and, for each agent i ∈ N, (i) a finite
set of possible types Θi ⊂ [0, 1], and (ii) her real type θi ∈ Θi. Agent i’s valuation
is vi(x) = xi · θi.

Define the mechanism Gdut = ({Bi}, V, δ, ℓ, Vι, {∼i}) over AP = {price, alli,payi,

terminal, typei : i ∈ N}, where:

• Bi = {bid,wait} for each i ∈ N,

• V consists of positions of the form ⟨pr, {xi}, ter, {θi}⟩ with pr ∈ {1− x · dec :
0 ≤ x ≤ 1

dec} denoting the current price, ter ∈ {−1, 1} denoting whether
the position is terminal, xi ∈ {0, 1} specifying the allocation for agent i, and
θi ∈ Θi specifying her type.

In an initial position, the price starts at 1 and all the allocations are zero. That
is, the set of initial positions is Vι = {⟨1, 0, . . . , 0, 0, θ1, . . . , θn⟩ ∈ V }.

In non-terminal states, the transition function keeps decreasing the price pr as
long as it is above zero and every agent performs the action of waiting. If an agent
i bids, the good is assigned to her (xi = 1). Since there is only one unit of the good,
ties are decided according to the order ≺. If the price remains unchanged in the
transition, the state is marked as terminal (ter = 1). The transition function defines
a loop for terminal states, ensuring no change occurs in the auction afterwards (see
Figure 5.1 for a partial illustration). Formally, for each position v = ⟨pr, {xi}, ter,
{θi}⟩ and joint action a = (ai)i∈N, transition δ(v,a) is defined as follows:



5.3. Reasoning about Auction Mechanisms 83

• If ter = −1, δ(v,a) = ⟨pr′, {x′
i}, ter′, {θi}⟩ where:

pr′ =


pr− dec if pr− dec ≥ 0 and

ai = wait for all i ∈ N
pr otherwise

x′
i =


1 if ai = bid and for all i′ ̸= i

either ai′ = wait or i ≺ i′

0 otherwise

ter′ =

1 if pr′ = pr,
−1 otherwise

• Otherwise, δ(v,a) = v.

For each v = ⟨pr, {xi}, ter, {θi}⟩ and each i ∈ N, the weight function is defined
as follows: ℓ(v,price) = pr, ℓ(v, alli) = xi, ℓ(v,payi) = xi · pr, ℓ(v, terminal) = ter,
and ℓ(v, typei) = θi.

Finally, for each agent i ∈ N and for any two positions v = ⟨pr, {xi}, ter, {θi}⟩
and v′ = ⟨pr′, {x′

i}, ter′, {θ′
i}i∈N⟩ in V , the observation relation ∼i is defined as

follows: v ∼i v
′ if (i) pr = pr′; (ii) xr = x′

r, for all r ∈ N; (iii) θi = θ′
i ; and (iv)

ter = ter′.
Observation relations ∼i capture the fact that agents do not know other agents’

preferences, and thus their actions cannot depend on them. This is reflected in
SLK[F ] by the notion of uniform strategy.

We now show how important concepts of mechanism design can be expressed in
SLK[F ].

5.3.3 Implementation of Social Choice Functions

For analysing a mechanism, we use concepts of Game Theory, such as the imple-
mentation of social choice functions. The implementation of a SCF says whether
the alternative the equilibrium solution of the mechanism corresponds to the alter-
native chosen by the SCF. In order to define it formally, we first introduce basic
concepts and functions.

Fix a mechanism G. The goal of an agent is to maximize her utility, which is
equal to the value of the SLK[F ] formula

utili =def vi((all1,1, . . . , alln,m), typei)− payi

in the terminal situation.
In this section we assume that F contains the function

− : (x, y) 7→ min(1,max(−1, x− y))



84 Chapter 5. Verification of Mechanisms

⟨1, (0, 0)⟩

⟨23 , (0, 0)⟩⟨1, (1, 0)⟩ ⟨1, (0, 1)⟩

⟨13 , (0, 0)⟩⟨23 , (1, 0)⟩ ⟨23 , (0, 1)⟩

⟨0, (0, 0)⟩⟨13 , (1, 0)⟩ ⟨13 , (0, 1)⟩

w,w

w,w

w,w

b,w

b,w

b,w

w
,b

w
,b

w
,b

Figure 5.1: Part of the mechanism for the Dutch auction with two agents and
decrement dec = 1

3 . Terminal states are in red. We only represent one initial state
and thus we omit types, which are the same in all states. Action bid is written b
and wait is w. Finally, we did not represent ties (bid,bid) or loops.

as well as the valuation function vi for each agent i, and for readability we use the
infix notation x−y in the formula. We also assume that F contains the comparison
function

≤ : (x, y) 7→

1 if x ≤ y,
−1 otherwise,

the comparison function < (defined similarly, with < instead of ≤), the equality
function

= : (x, y) 7→

1 if x = y,

−1 otherwise,

and the n-ary sum function∑
: x1, . . . , xn 7→ min(1,max(−1,

∑
k

xk))

Finally we assume that types, allocations, payments and valuations are normalized
so that all values remain in [−1, 1].

We recall two classical concepts of equilibria, Nash equilibria and dominant
strategy equilibria, classically used to define implementation.



5.3. Reasoning about Auction Mechanisms 85

Nash Equilibria A strategy profile σ = (σi)i∈N is a Nash equlibrium (NE) if no
agent can increase her utility with a unilateral change of strategy (Parkes and Ungar,
2001). Just as Strategy Logic can express Nash equilibria for Boolean objectives,
SLK[F ] can express Nash equilibria with quantitative objectives. Define the formula

NE(s) =def
∧
i∈N
∀t.

[
(N−i, s−i)(i, t)F(terminal ∧ utili) ≤ (N, s)F(terminal ∧ utili)

]
where s = (si)i∈N is a profile of strategy variables. The following, stated in (Bouyer
et al., 2019), establishes that this formula is correct.

Lemma 5.1. For every assignment A, we have that JNE(s)KG
A(v) = 1 iff (A(si))i∈N

is a NE in G from v.

Dominant Strategy Equilibria A strategy σi is a dominant strategy (DS) for
agent i if it weakly maximizes her utility, for all possible strategies of other agents.
Define the formula

DS(si, i) =def ∀t.
[
(i, ti)(N−i, t−i)F(terminal ∧ utili)
≤(i, si)(N−i, t−i)F(terminal ∧ utili)

]
For an assignment A, it holds that JDS(si, i)KG

A(v) = 1 iff A(si) is a dominant
strategy for i in G from position v.

A strategy profile σ = (σi)i∈N is a dominant strategy equilibrium (DSE) if each
σi is a dominant strategy for agent i (Nisan et al., 2007). Define

DSE(s) =def
∧
i∈N

DS(si, i)

Similarly to Nash equilibria, the following holds.

Lemma 5.2. For every assignment A, we have that JDSE(s)KG
A(v) = 1 iff

(A(si))i∈N is a DSE in G from v.

Remark 5.3. For verifying the uniqueness of a Nash equilibrium, we can check
whether there exist two assignments A ̸= A′ such that JDSE(s)KG

A(v) =
JDSE(s)KG

A′(v) = 1.

Implementation Informally, a mechanism implements a social choice function
if the alternative chosen in equilibrium strategies is the same as the one chosen
by the social choice function, for all possible agent preferences; in case of multiple
equilibria it is required that there exist one equilibrium that agrees with the social
choice function (Parkes and Ungar, 2001). Different equilibrium concepts may be
used, including Nash equilibria and dominant strategy equilibrium. Hereafter, we
focus on these two concepts.



86 Chapter 5. Verification of Mechanisms

Definition 5.6. Let E ∈ {NE,DSE} be a solution concept and s a social choice
function. A mechanism G E-implements s if for all type profiles θ ∈ Θ there exists
an E-equilibrium σ in G from vθ

ι such that G[θ,σ] = s(θ).

Let us again consider Dutch auctions but from the social choice function per-
spective.

Example 5.4. Under the assumption that a Nash equilibrium exists, the Dutch
auction (see Example 5.3) is known to implement the first-price social choice func-
tion (Krishna, 2009) introduced in Example 5.2.

For a social choice function s = (x, {pi}) and a type profile θ, define the SLK[F ]
formula

φs(θ) =def
∧
i∈N

(payi = pi ∧
∧

j∈G
alli,j = xi,j)

where x(θ) = ((xi,1, . . . , xi,m))i∈N, pi(θ) = pi, and values pi, xi,j are constants (0-ary
functions) in F .

Define also, for E ∈ {NE,DSE},

φimpl(s,E,θ) =def ∃s.E(s) ∧ F(terminal ∧ φs(θ))

This formula says that there exists an E-equilibrium that leads to choice s(θ).
It can thus be used to express that a mechanism implements a given social choice
function:

Theorem 5.1. A mechanism G E-implements a SCF s iff for every type profile
θ ∈ Θ, Jφimpl(s,E,θ)KG(vθ

ι ) = 1.

Proof. Fix a solution concept E ∈ {NE,DSE}, a social choice function s = (x, {pi}),
a mechanism G, any assignment A and any type profile θ ∈ Θ. For each agent i ∈ N
and good type j ∈ G, let xi,j and pi be constants in [-1, 1] denoting the alternative
chosen by s, that is x(θ) = ((xi,1, . . . , xi,m))i∈N, and pi(θ) = pi.

Assume G E-implements s. By definition there exists a strategy profile σ that
is an E-equilibrium solution in G from vθ

ι and such that G[θ,σ] = s(θ). It follows
that:

First, because the SLK[F ] formula E(s) correctly characterises E-equilibria
(lemma 5.1 and 5.2), letting Aσ : si 7→ σi we have that JE(s)KG

Aσ
(vθ

ι ) = 1.
Second, the fact that G[θ,σ] = s(θ) implies that in the terminal position

vterminal = v(θ,σ) (which is reached from vθ
ι via σ), we have ℓ(vterminal, alli,j) =

xi,j and ℓ(vterminal,payi) = pi, for each i ∈ N and j ∈ G. Therefore,
we have J

∧
i∈N(payi = pi ∧

∧
j∈G alli,j = xi,j)KG

Aσ
(vterminal) = 1 or simply

Jφs(θ)KG
Aσ

(vterminal) = 1. By the semantics of F, it follows that JF(terminal ∧
φs(θ))KG

Aσ
(vθ

ι ) = 1.
Therefore, J∃s.E(s) ∧ F(terminal ∧ φs(θ))KG

A(vθ
ι ) = 1 (the maximal value 1 is

attained for strategy profile σ) and Jφimpl(s,E,θ)KG
A(vθ

ι ) = 1.



5.3. Reasoning about Auction Mechanisms 87

Conversely, assume J∃s.E(s) ∧ F(terminal ∧ φs(θ))KG
A(vθ

ι ) = 1. By the se-
mantics of the strategy quantifier, there exists a strategy profile σ such that
JE(s) ∧ F(terminal ∧ φs(θ))KG

Aσ
(vθ

ι ) = 1, where Aσ : si 7→ σi. It follows that
JE(s)KG

Aσ
(vθ

ι ) = 1 and JF(terminal ∧ φs(θ))KG
Aσ

(vθ
ι ) = 1. The former implies that

σ is an E-equilibrium, and since terminal has value -1 in all non-terminal po-
sitions, the latter implies that in the terminal position vterminal = v(θ,σ) we
have Jφs(θ)KG

Aσ
(vterminal) = 1 This in turn means that G[θ,σ] = s(θ), hence G

E-implements s.
Notice that if there is no σ such that σ is an E-equilibrium solution in G, we

have that G does not E-implements the SCF s, and Jφimpl(s,E,θ)KG
A(vθ

ι ) = −1.

In the next section, we show how to express and verify properties of social
choice functions by evaluating SLK[F ] formulas on mechanisms that implement
them. We will use the following parameterized formula to capture in a mechanism
some equilibrium that implements the social function, and check a property of the
resulting alternative. For a social choice function s, a type profile θ ∈ Θ, an
equilibrium type E ∈ {NE,DSE} and a formula φ expressing a property of the final
alternative, define

Capture-alt(s,E,θ, φ) =def ∃s.E(s) ∧ F(terminal ∧ φs(θ) ∧ φ)

5.3.4 Mechanism Properties

We show how SLK[F ] can express a variety of important notions in mechanism
design.

A direct-revelation mechanism, such as Vickrey auction, is a non-iterative proto-
col where the agents’ possible actions are their possible types. That is, a mechanism
G is a direct revelation one if initial positions lead directly to terminal positions, and
Bi = Θi for each i. Equivalently, it is a social choice function, as it maps type profiles
to alternatives, and every social choice function can be seen as a direct-revelation
mechanism (Jackson, 2009).

Strategyproofness One of the core challenges in mechanism design is to ensure
that an agent would prefer “telling the truth” by reporting her real type rather
than any other (Nisan et al., 2007). Mechanisms that ensure this property are
called strategy-proof (SP) or incentive-compatible.

In a direct-revelation mechanism G, we let θ̂i be the truth-revealing strategy for
i, defined as θ̂i(vθ

ι ) = θi.

Definition 5.7. A direct-revelation mechanism G is strategy-proof if (θ̂i)i∈N is a
dominant strategy equilibrium from vθ

ι , for all θ ∈ Θ.

Strategyproofness of a direct-revelation mechanism G can be expressed in
SLK[F ] by verifying whether the SLK[F ]-formula DSE(s) characterizing dominant
strategy equilibrium has satisfaction value 1 on G, where s denotes the joint strategy
in which each agent truthfully reports her type. The following holds:



88 Chapter 5. Verification of Mechanisms

Proposition 5.1. A direct-revelation mechanism G is strategyproof iff
JDSE(s)KG

A(vθ
ι ) = 1 for all θ ∈ Θ, where A(si) = θ̂i for each i.

Proof. Fix a direct revelation mechanism G. We have that Bi = Θi for each i, and
G is strategy-proof iff, for each initial position vθ

ι , the truth revealing strategy θ̂i is
a dominant strategy for each i ∈ N. By the semantics of formula DS(s), for any
type profile θ, each strategy θ̂i is dominant from vθ

ι iff JDS(s)KG
Aθ̂i

(vθ
ι ) = 1, where

Aθ̂i
: s 7→ θ̂i. So for a type profile θ, all strategies θ̂i are dominant from vθ

ι iff
JDSE(s)KG

A(vθ
ι ) = 1, where A : si 7→ θ̂i for all i.

Individual rationality Individual rationality (IR) expresses the idea that an
agent has an incentive to participate (Parkes and Ungar, 2001), that is, she can
ensure to always get nonnegative utility. Hereafter we express in SLK[F ] the notion
of (ex-post) individual rationality (Nisan et al., 2007).

Definition 5.8. A SCF s = (x, {pi}) is individually rational if for every θ ∈ Θ,
vi(x(θ))− pi(θ) ≥ 0 for each agent i.

Let us define the following formula:

IR =def
∧
i∈N

0 ≤ utili

Given a mechanism that E-implements a SCF s, checking that s satisfies IR amounts
to checking that formula IR has satisfaction value one in the E-equilibrium that
implements s, for every possible type profile θ.

Proposition 5.2. Let s be a SCF, E ∈ {NE,DSE}, and G a mechanism that E-
implements s. s is individually rational iff JCapture-alt(s,E,θ, IR)KG(vθ

ι ) = 1 for
all θ ∈ Θ.

Proof. Fix a solution concept E ∈ {NE,DSE}, a social choice function s, a mecha-
nism G that E-implements s, any assignment A and any type profile θ ∈ Θ.

Assume s is individually rational. Because G implements s there exists a strategy
profile σ that is an E equilibrium from vθ

ι and such that G[vθ
ι ,σ] = s(θ). Let

vterminal = v(θ,σ). Since s is individually rational, we have that JIRKG
A(vterminal) =

1. Therefore, using σ as witness, we obtain that J∃s.E(s) ∧ F(terminal ∧ φs(θ) ∧
IR)KG

A(vθ
ι ) = 1.

The converse is proved in a similar way.

Efficiency A social choice function is efficient (EF) if it chooses the allocation
maximizing the social welfare, i.e., the total value over all agents (Parkes and Ungar,
2001).

Definition 5.9. A social choice function s = (x, {pi}) is allocatively efficient if for
all θ ∈ Θ, ∑

i∈N
vi(x(θ), θi) = max

x∈X

∑
i∈N

vi(x, θi)



5.3. Reasoning about Auction Mechanisms 89

Define formula

Eff =def
∑
i∈N

vi(all1,1, . . . , alln,m, typei) = maxvθ

where, for each θ, maxvθ = maxx∈X
∑

i∈N vi(x, θi) is a constant in F . In a terminal
position, it means that the social welfare of the allocation it encodes is maximal.

The following proposition shows how one can determinate whether a SCF s is
efficient by verifying the satisfaction value of the formula Eff in a mechanism that
implements s.

Proposition 5.3. Let s be a SCF, E ∈ {NE,DSE}, and G a mechanism that E-
implements s. s is allocativelly efficient iff JCapture-alt(s,E,θ,Eff)KG(vθ

ι ) = 1 for
all θ ∈ Θ.

Proof. Analogous to the proof of Proposition 5.2.

Budget-Balance Budget-balance focuses on the monetary transfer between buy-
ers and sellers. Strong budget-balance (SBB) requires strict balance in this transfer.
The no-deficit condition, or weak budget-balance (WBB), characterizes no mone-
tary loss. We recall the notions of strong and weak budget balance (Parkes and
Ungar, 2001):

Definition 5.10. A social choice function s = (x, {pi}) is strongly budget-balanced
(resp., weakly budget-balanced) if ∑

i∈N pi(θ) = 0 (resp., ∑
i∈N pi(θ) ≥ 0) for all

θ ∈ Θ.

Define formula

SBB =def 0 =
∑
i∈N

payi

and define WBB similarly, with ≤ instead of =.
Again, we can prove that

Proposition 5.4. Let s be a SCF, E ∈ {NE,DSE}, and G a mechanism that E-
implements s. It holds that s is SBB iff JCapture-alt(s,E,θ,SBB)KG(vθ

ι ) = 1 for all
θ∈Θ, and similarly for WBB.

Proof. Analogous to the proof for Proposition 5.2.

Example 5.5. A Dutch auction is WBB, because the bid price is non-negative, and
it is IR because the strategy of waiting in every position leads to zero utility, and
thus any equilibrium would not have a negative utility. One can check that in
the mechanism Gdut from Example 5.3, with the first-price social choice function
sfp, for any type profile θ we have JCapture-alt(sfp,NE,θ, IR)KGdut(vθ

ι ) = 1 and
JCapture-alt(sfp,NE,θ,WBB)KGdut(vθ

ι ) = 1.



90 Chapter 5. Verification of Mechanisms

Pareto Optimality A social choice function is Pareto optimal (PO) if it chooses
an alternative for which no other alternative is strongly preferred by at least one
agent, and weakly preferred by all others (Parkes and Ungar, 2001). Formally:

Definition 5.11. A social choice function s = (x, {pi}) is Pareto optimal if, for all
θ ∈ Θ, for all i ∈ N and for all α ̸= s(θ), if ui(α, θi) > ui(s(θ), θi) then there exists
an agent r ∈ Ag such that ur(α, θr) < ur(s(θ), θr).

For every alternative α ∈ Alt, every type profile θ and agent i, let utilalti,α :
θi 7→ ui(α, θi) be a function in F . Define formula (recall formula utili, defined in
Section 5.3.3):

PO =def
∧

i∈N,α∈Alt

(
utili < utilaltα,i(typei)→ (

∨
r∈N

utilaltα,r(typei) < utilr)
)

As for Proposition 5.2, we can prove:

Proposition 5.5. Let s be a SCF, E ∈ {NE,DSE}, and G a mechanism that E-
implements s. It holds that s is PO iff JCapture-alt(s,E,θ,PO)KG(vθ

ι ) = 1 for all
θ∈Θ.

Proof. Analogous to the proof of Proposition 5.2.

5.3.5 Revenue Benchmarks with Knowledge

Let us now go further by considering the interplay between the agents’ epistemic
state and mechanism properties. To do so, we focus on the auctioneer’s revenue,
i.e., the total payment among the agents. Guaranteeing a revenue is an important
issue in Mechanism Design (Krishna, 2009). To address this problem, Chen and
Micali (2015, 2016) exhibit an auction mechanism based on “possibilistic beliefs”,
i.e., beliefs an agent may hold about other agents’ types. The mechanism then sets
a clear link between the revenue and the agents’ epistemic state. We show that this
can be represented in a natural way in SLK[F ].

Second-belief benchmark Let us consider the second-belief benchmark (Chen
and Micali, 2015) for single good mechanisms. Given a set of possible type profiles
Θ, a set Bi ⊂ Θ denotes a belief for agent i about all agents’ types.

Given a tuple S ∈ [−1, 1]n, let 2nd-max(S) be the second maximum value in
S, and assume that 2nd-max ∈ F . Given a correct belief profile B (i.e., a profile
in which the true type is considered possible), the second-belief benchmark (for
single-good auctions) is defined as follows:

2nd(B) =def 2nd-max(smvi1(B), . . . , smvin(B))

where smvi(B) =def minθ∈Bi(maxr∈N(θr)) denotes the sure maximum value accord-
ing to i.



5.3. Reasoning about Auction Mechanisms 91

Let G be a mechanism. To each position v ∈ V we can associate a correct belief
Bi(v) for each agent i as follows: Bi(v) =def ({ℓ(v′, typeb) : v′ ∼i v})r∈N. We then
let B(v) = (Bi(v))i∈N. The sure maximum value for an agent and the second-belief
benchmark in a position correspond to the semantics of the following epistemic
SLK[F ]-formulas:

φsmv
i =def Ki max

i′∈N
(typei′)

φ2nd =def 2nd-max(φsmv
i1 , . . . , φsmv

in )

It follows directly that:

Proposition 5.6. Given a mechanism G, a position v and a belief profile B(v), it
holds that Jφ2ndKG(v) = 2nd(B(v)).

Proof. Fix an assignment A. We have that Jφ2ndKG
A(v) = J2nd-max(φsmv

i1 ,

. . . , φsmv
in )KG

A(v). By the semantics of Ki, φsmv
i denotes the minimum value of

Jmaxi∈N(typei)KG
A(v′), for all v′ ∼i v. Since Bi(v) = ({ℓ(v′, typeb) : v′ ∼i v})r∈N,

it holds that Jφsmv
i KG

A(v) = minθ∈Bi(maxr∈N(θr)). Therefore, Jφ2ndKG
A(v) =

2nd-max(smvi1(B), . . . , smvin(B)) or simply Jφ2ndKG
A(v) = 2nd(B(v)).

Chen and Micali (2015) design a reward-based single-stage mechanism that en-
sures that, in equilibrium, the revenue is greater than the second belief minus ε,
where ε > 0 is a reward factor associated to the mechanism. In this one-stage mech-
anism, agents’ beliefs are constant. But should we devise a multi-stage mechanism
to achieve a similar result, one may ask the question whether the revenue in equi-
librium is (modulo ε) greater than the initial second belief, or the last second belief
(before termination) for instance. Such properties can be expressed in SLK[F ], as
we show for the latter one (the former one is easier). Define formulas

φrevenue =def F(terminal ∧
∑
i∈N

(pi))

φlast−2nd =def F(Xterminal ∧ φ2nd)

which compute the final revenue and the second belief before the last round, re-
spectively. Now to check whether a given mechanism satisfies the property in all
equilibria of a given kind E ∈ {NE,DSE}, one can check whether the following
formula has value 1 on this mechanism:

φ2nd,ε =def ∀s.E(s)→ (φlast−2nd − ε ≤ φrevenue)

Best-belief benchmark for combinatorial auctions Chen and Micali (2016)
propose the best-belief benchmark for combinatorial auctions. This benchmark
maximizes, over all agents, the maximum revenue each one would be sure to obtain
if she were to sell all her currently allocated goods to her opponents, based on her
beliefs about their preferences over bundles of goods.



92 Chapter 5. Verification of Mechanisms

Similar to the second-belief benchmark, one could express the best-belief bench-
mark using SLK[F ]-formulas. The main difference is that the formula would consider
the agents beliefs’ about each other’s valuations over possible choices. Notice that
bundles can be easily encoded as the allocative choices introduced on Section 5.3.2.

5.4 Model Checking

In this section we show that model checking SLK[F ] with imperfect information
and memoryless agents is no harder than model checking LTL or classical SL with
memoryless agents. Let us first define formally the quantitative model-checking
problem for SLK[F ].

Definition 5.12. The model-checking problem for SLK[F ] consists in deciding,
given a sentence φ, wCGSii G, position v in G and predicate P ⊆ [−1, 1], whether
JφKG(v) ∈ P .

For quantitative LTL (LTL[F ]) model checking is in Pspace (Almagor et al.,
2016), and so is model checking SLK with memoryless agents (Cermák et al., 2018).
We show that it is also the case for SLK[F ], as long as the functions f ∈ F can
be computed in polynomial space. Otherwise, they become the computational
bottleneck.

Theorem 5.2. Assuming that functions in F can be computed in polynomial
space, model checking SLK[F ] with imperfect information and memoryless agents is
Pspace-complete.

Proof. We first show that each recursive call only needs at most polynomial space.
First, observe that each assignment A can be stored in space O((|free(φ)| + |N|) ·
|V | · log |B|). Next, for the base case it is clear that JpKG

A(v) can be computed
in constant space. For strategy quantification J∃si. φKG

A(v), besides the recursive
call to JφKG

A[s 7→σ](v) we need space O(|V | · log |B|) to store the current strategy
and the current maximum value computed. The case for JKiφKG

A(v) is clear.
For Jf(φ1, . . . , φm)KG

A(v), by assumption f is computed in polynomial space. For
JXφKG

A(v), we only need to observe that the next position in Out(A, v) is computed
in constant space.

Finally we detail how Jφ1Uφ2KG
A(v) is computed. Let π = Out(v,A). Since

G has finitely many positions, there exist two indices k < l such that πk = πl,
and since strategies depend only on the current position, the suffix of π starting at
index l is equal to the suffix starting at index k. So there exist ρ1 = v0 . . . vk−1 and
ρ2 = vk . . . vl−1 such that π = ρ1 · ρω

2 . It follows that

Jφ1Uφ2KG
A(v) = sup

i≥0
min

(
Jφ2KG

A(πi), min
0≤j<i

Jφ1KG
A(πj)

)
= max

0≤i<l
min

(
Jφ2KG

A(πi), min
0≤j<i

Jφ1KG
A(πj)

)



5.5. Conclusion 93

This can be computed by a while loop that increments i, computes Jφ2KG
A(πi),

min0≤j<iJφ1KG
A(πj) and their minimum, records the result if it is bigger than the

previous maximum, and stops upon reaching a position that has already been vis-
ited. This requires to store the current value of min0≤j<iJφ1KG

A(πj), the current
maximum, and the list of positions already visited, which are at most |V |.

Next, the number of nested recursive calls is at most |φ|, so the total space
needed is bounded by |φ| times a polynomial in the size of the input, and is thus
polynomial.

When the set of possible type profiles is finite, as it is the case here, our results
from the previous section show that verifying key properties SP, IR, EF, BB and
PO on mechanisms can be done by model checking SLK[F ] formulas for all type
profiles of interest.

5.5 Conclusion

In this chapter, we demonstrate how Strategy Logic provides a formal framework
expressive enough to reason about core concepts from Mechanism Design in an
intuitive way. The ability of SL to naturally express key strategic concepts such
as Nash equilibria, and the possibility to extend it with quantitative aspects and
epistemic operators, as we do with SLK[F ], make it a perfect candidate to become a
standard logic for mechanism design, as called for in (Pauly and Wooldridge, 2003).

We demonstrate the usefulness of SLK[F ] with auctions because they “provide
a good example of mechanisms which are sufficiently complex to demonstrate the
usefulness of formal verification” (Pauly and Wooldridge, 2003). We used alloca-
tions and payments due to our focus on auctions, but it is enough to replace them
with abstract choices to capture any kind of deterministic mechanisms. In addition
we showed how SLK[F ] allows capturing properties that are central in the design
of many types of mechanisms other than auctions, including efficiency and Pareto
optimality.

We considered the setting of imperfect information about the agents’ types. One
line for future work is to explore mechanisms with incomplete information (that is,
Bayesian mechanisms), in which there is a commonly known probability distribution
over the possible types for each agent.

The present setting is enough to model many kinds of auctions where memory-
less strategies are sufficient to represent the bidders’ behavior, such as one-shot or
English auctions. However, when participating in sequential auctions, agents could
gather information by observing other agents’ and act based on what happened
in previous steps of the game (Jeitschko, 1998). In the next chapter we explore
such scenario and investigate strategic reasoning in mechanism design when the
participants have limited resources and, in special, bounded memory.





Chapter 6

Mechanisms and Natural
Strategies

As discussed on the previous chapter, a number of logic-based languages have been
recently introduced to reason about the strategic abilities of autonomous agents in
multi-agent systems (MAS). Still, verification tools and techniques are compara-
tively less developed for data-driven and data-intensive systems1, that is, contexts
where the data content of processes, or agents, is key to model and account for
the evolution of the system (Belardinelli et al., 2014; Montali et al., 2014). This
is the case also for online advertising, where search engines sell ad placements for
keywords continuously through auctions. This problem can be seen as an infinitely
repeated game since the auction is executed whenever a user performs a query with
the keyword. As advertisers may frequently change their bids, the game will have a
large set of equilibria with potentially complex strategies, thus making the specifi-
cation and verification of keyword auctions a complex problem to solve for current
model checking methods. This issue is stressed by Edelman et al. (2007):

“In principle, the sets of equilibria in such repeated games can be very
large, with players potentially punishing each other for deviations. The
strategies required to support such equilibria are usually quite complex,
however, requiring precise knowledge of the environment and careful
implementation. In theory, advertisers could implement such strategies
via automated robots, but in practice they may not be able to: bidding
software must first be authorized by the search engines, and search en-
gines are unlikely to permit strategies that would allow advertisers to
collude and substantially reduce revenues.”

In this chapter, we investigate the use of natural strategies for reasoning about
equilibria in keyword auctions. We directly build on the research by (Jamroga
et al., 2019a,b) on natural strategies. We generalize their approach by considering
quantitative semantics for both natural strategies and the logic, which is more
suitable for reasoning about mechanisms with monetary transfer (e.g., auctions).
We also consider SL instead of ATL, due to its expressive power.

In our case, the bidding strategy in an auction should be executable for a simple
artificial agent, as well as reasonably transparent to the human user, which makes
natural strategies a good match. Moreover, natural strategies provide a way to

1“[Model checking] is mainly appropriate to control-intensive applications and less suited for
data-intensive applications" (Baier and Katoen, 2008, p. 15).



96 Chapter 6. Mechanisms and Natural Strategies

define complexity (and hence also “simplicity”) metrics for various functionality,
security, and usability properties in MAS. By focusing on simple strategies, one can
make the verification of equilibrium properties decidable, or even tractable, despite
the prohibitive complexity of the general problem. This is especially evident for
strategies with memory, which normally make the synthesis and model checking
problems undecidable (Dima and Tiplea, 2011; Vester, 2013).

By leveraging on natural strategies, we introduce SL with quantitative semantics
and natural strategies and imperfect information, denoted NatSL[F ]. In a first step,
we show how to model strategies for repeated keyword auctions and take advantage
of the model for proving properties evaluating this game. In a second step, we study
the logic in relation to the distinguishing power, expressivity, and model-checking
complexity for strategies with and without recall.

6.1 Natural Strategies

We first present the notion of uniform natural strategies from (Jamroga et al.,
2019b). Natural strategies are conditional plans, represented through an ordered
list of condition-action rules (Jamroga et al., 2019b). The intuition is that the
first rule whose condition holds in the history of the game is selected, and the
corresponding action is executed. As we are considering the setting of imperfect
information, the conditions are regular expressions over weighted epistemic (WE)
formulas.

Given an agent i, the WE formulas over Φ, denoted WE(Φ), are prefixed by Ki
and then possibly combined by functions in F . That is, formulas in WE(Φ) are
conditions on i’s knowledge and are expressed by the following BNF:

ψ ::= ⊤ | Kiφ | f(ψ, . . . , ψ)

φ ::= p | f(φ, . . . , φ) | Krφ

where f ∈ F is a function, p ∈ Φ is an atomic proposition and r ∈ N is an agent.
The semantics of natural strategies (and, as we shall see, NatSL[F ]) are inter-

preted over concurrent game structures (Jamroga et al., 2019b). Such structures are
similar to the ones defined in Chapter 5, but include a legality function describing
the availability of actions in each state.

Definition 6.1. A weighted concurrent game structure with imperfect information
and legality (wCGSl) is a tuple G = (B, V,L, δ, ℓ, Vι, {∼i}i∈N) where:

• B is a finite set of actions;

• L : N× V → 2B is a legality function, defining the availability of actions;

• δ is a transition function assigning a successor state v′ = δ(v, (ai)i∈N) to each
state v ∈ V and any tuple of actions (ai)i∈N, where ai ∈ L(i, v);



6.1. Natural Strategies 97

and the remaining components are defined exactly as the homonyms components
in wCGSii (see Definition 5.2).

We require that the wCGSl is uniform, that is v ∼i v
′ implies L(i, v) = L(i, v′).

In a state v ∈ V , each player i chooses an available action ai ∈ L(i, v), and the game
proceeds to state δ(v,a) where a is the action profile (ai)i∈N.

Plays A play π = v0v1v2 . . . is an infinite sequence of states such that for every
i ≥ 0 there exists an action profile a such that δ(vi,a) = vi+1. We write πi = vi for
the state at index i in play π.

History A history h = v0v1v2 . . . vn is a finite sequence of states. The last element
of a history is denoted by last(h) = vn. Finally, HG denotes the set of all histories
in the wCGSl G.

Given a wCGSl G, a state v ∈ V and a WE(Φ) formula φ, we inductively define
the satisfaction value of φ in v, denoted JφK(v), as follows:

JpK(v) = ℓ(v, p)
JKiφK(v) = min

v′∼iv
JφK(v′)

Jf(φ1,. . . , φm)K(v) = f(Jφ1K(v), . . . , JφmK(v))

The semantics for the knowledge modality is the standard in the literature on
fuzzy epistemic logic (see, for instance, (Maruyama, 2021) and Chapter 5). Let
Reg(WE(Φ)) be the set of regular expressions over the weighted epistemic con-
ditions WE(Φ), defined with the constructors ·,∪, * representing concatenation,
nondeterministic choice, and finite iteration, respectively. Given a regular expres-
sion r and the language L(r) on words generated by r, a history h is consistent with
r iff there exists b ∈ L(r) such that |h| = |b| and Jb[i]K(h[i]) = 1, for all 0 ≤ i ≤ |h|.
Intuitively, a history h is consistent with a regular expression r if the i-th weighted
epistemic condition in r “holds” in the i-th state of h (for any position i in h).

A uniform natural strategy with recall σi for agent i is a sequence of pairs (r, a),
where r ∈ Reg(WE(Φ)) is a regular expression, and a is an action available in
last(h), for all histories h ∈ HG consistent with r. The last pair on the sequence is
required to be (⊤*, a), with a ∈ L(i, v) for every v ∈ V and some a ∈ B.

A uniform memoryless natural strategy is a special case of natural strategy in
which each condition is a weighted epistemic formula (i.e., no regular operators are
allowed).

Natural strategies are uniform in the sense they specify the same actions in
indistinguishable states (see (Jamroga et al., 2019b)). We define Strρ

i to be the set
of uniform natural strategies for agent i and Strρ = ∪i∈NStrρ

i , where ρ ∈ {ir, iR}2.
Let size(σi) denote the number of guarded actions in σi, condi(σi) be the i-

th guarded condition on σi, condi(σi)[j] be the j-th WE formula of the guarded
2As usual in the verification process, we denote imperfect recall with r, perfect recall with R,

imperfect information with i, and perfect information with I.



98 Chapter 6. Mechanisms and Natural Strategies

condition σi, and acti(σi) be the corresponding action. Finally, match(h, σi) is the
smallest index i ≤ size(σi) such that for all 0 ≤ j ≤ |last(h)|, Jcondi(σi)[j]K(h[j]) =
13 and acti(σi) ∈ L(i, last(h)). In other words, match(h, σi) matches the state
last(h) with the first condition in σi that holds in h, and action available in last(h).

Measurement of Natural Strategies. The complexity of the strategy σ is the
total size of its representation and is denoted as follows:

compl(σ) =def
∑

(r,a)∈σ

|r|

where |r| is the number of symbols in r, except by parentheses. If r is a n-ary
function in F , then |r| = n + 1. See (Jamroga et al., 2019a) for other metrics for
the measuring the complexity of natural strategies.

6.2 Quantitative Natural Strategy Logic

Standard SL[F ] (Bouyer et al., 2019) considers combinatorial strategies, that is,
strategies are functions mapping histories (or states) to actions. For reasoning
about intuitive and simple strategies, we introduce SL[F ] with natural strategies
and imperfect information, denoted NatSL[F ]. SL[F ] and NatSL[F ] have similar
syntax and semantics, the main difference is that the quantification of strategies in
NatSL[F ] is defined for natural strategies with bounded complexity.

Throughout this chapter, let ρ ∈ {ir, iR} denote whether the semantics considers
memoryless or recall strategies.

Assignments. An assignment A : N ∪ Var → Strρ is a function from players
and variables to strategies. For an assignment A, an agent i and a strategy σ for
i, A[i 7→ σ] is the assignment that maps i to σ and is otherwise equal to A, and
A[s 7→ σ] is defined similarly, where s is a variable.

Outcomes. For an assignment A and a state v we let Out(A, v) be the unique
play that starts in v and follows the strategies assigned by A. Formally, Out(A, v)
is the play v0v1 . . . such that v0 = v and for all i ≥ 0, vi+1 = δ(vi,a) where for all
i ∈ N, ai = actmatch(vi,A(i))(A(i)).

Definition 6.2. The syntax of NatSL[F ] is defined as follows:

φ ::= p | ∃s≤k
i . φ | (i, si)φ | f(φ, . . . , φ) | Xφ | φUφ

3Note that, we considered the case in which the condition have the same length of the history.
There is also the case in which the condition is shorter than the history. This is due to the usage
of the finite iteration operator. In the latter case, we need to check a finite number of times the
same weighted epistemic formula in different states of the history. For more details on this aspect
see (Jamroga et al., 2019a,b).



6.3. Repeated Keyword Auctions 99

where p ∈ AP, si ∈ Var ∪ Strρ
i , k ∈ Z, i ∈ N, and f ∈ F .

The intuitive reading of the operators is as follows: ∃s≤k
i . φ means that there

exists a strategy with complexity less or equal than k for agent i such that φ holds.
The remaining operators correspond to the ones defined for SLK[F ] (see Chapter 5).

A variable is free in formula φ if it is bound to an agent without being quantified
upon, and an agent i is free in φ if φ contains a temporal operator (X or U) that
is not in the scope of any binding for i. The set of free variables and agents in
φ is written free(φ), and a formula φ is a sentence if free(φ) = ∅. The strategy
quantifier ∃s≤k

i . φ quantifies on strategies for agent i.

Definition 6.3. Let G = (B, V, δ, ℓ, Vι, {∼i}i∈N) be a wCGSl, and A an assignment.
The satisfaction value JφKG,ρ

A (v) ∈ [−1, 1] of a NatSL[F ] formula φ in a state v is
defined as follows, where π denotes Out(v,A):

JpKG,ρ
A (v) = ℓ(v, p)

J∃s≤k
i . φKG,ρ

A (v) = max
σ∈{α∈Strρ

i :compl(α)≤k}
JφKG,ρ

A[si 7→σ](v)

J(i, si)φKG,ρ
A (v) = JφKG,ρ

A[i7→A(si)](v) if si ∈ Var

J(i, σi)φKG,ρ
A (v) = JφKG,ρ

A[i7→σi](v) if σi ̸∈ Var

Jf(φ1,. . . , φm)KG,ρ
A (v) = f(Jφ1K

G,ρ
A (v), . . . , JφmKG,ρ

A (v))
JXφKG,ρ

A (v) = JφKG,ρ
A (π1)

Jφ1Uφ2K
G,ρ
A (v) = sup

i≥0
min

(
Jφ2K

G,ρ
A (πi), min

0≤j<i
Jφ1K

G,ρ
A (πj)

)
If φ is a sentence, its satisfaction value does not depend on the assignment, and

we write JφKG,ρ(v) for JφKG,ρ
A (v) where A is any assignment. We also let JφKG,ρ =

minvι∈VιJφKG,ρ(vι). The abbreviations ⊥, φ → φ′, φ ∧ φ′, Fψ, Gψ, and ∀s≤k
φ are

defined in the standard way (see Section 7.1).
In the next section, we show how to use NatSL[F ] for reasoning about mecha-

nisms by considering the case of repeated keyword auctions.

6.3 Repeated Keyword Auctions

Modeling mechanisms with monetary transfer and private valuations require han-
dling quantitative features and imperfect information. Memoryless strategies are
enough for mechanisms in which all relevant information is encoded in the cur-
rent state (e.g., English auction). In repeated auctions, agents may, as well, use
information from the previous states for choosing their strategies.

We now focus on using NatSL[F ] to model and verify repeated keyword auctions
and related strategies. Repeated keyword auctions are used by online search engines,
such as Google and Yahoo, for selling advertising slots when users perform a search
with a keyword Cary et al. (2007). For example, if a store buys a slot for the keyword



100 Chapter 6. Mechanisms and Natural Strategies

“computer”, when a user searches this term, the store’s sponsored link will be shown
for her. For a keyword of interest, the advertisers (bidders) submit a bid stating
the maximum amount she is willing to pay for a click on her sponsored link. When
a user submits a query, an auction is run to determinate the slot allocation among
the advertisers bidding on the keyword of interest. The most common mechanism
for keyword auctions is the Generalized Second Price (GSP) Cary et al. (2007), in
which the agents are allocated slots in decreasing order of bids and the payment for
the slot s is the bid of the agent allocated to the slot s+ 1.

We assume that F contains the function ≤ : (x, y) 7→ 1 if x ≤ y and ≤ : (x, y) 7→
−1 otherwise; and for readability we use the infix notation x ≤ y in the formula.
We also assume that F contains the equality = and comparison functions <, >, ≥
(defined similarly). Finally, we assume F contains functions −, ∑, ×, \, min, max
and argmax with the standard meaning (for details, see Chapter 5).

Let us fix a price increment inc ∈ (0, 1], a set of slots S = {1, . . . ,m}, where
m ∈ N \ {0}. Each slot has a click-through rate θ1 > . . . > θm, where θs ∈ [0, 1]
is the probability that the user will click on the advertisement in slot s. The
agents in N are the advertisers, each one having a private valuation vi ∈ vi for
a click, where vi ⊂ [0, 1] is a finite set of possible valuations. We assume the
valuations are distinct, that is, if i ̸= i′, then vi ̸= vi′ . We denote by ≺ an arbitrary
order among the agents in N, used in case of ties. The atomic propositional set
is Φ = {alli,s,pays, ϑi : i ∈ N, s ∈ S}, where alli,s represents whether agent i is
allocated to slot s, pays denotes the price of slot s and ϑi denotes i’s valuation.
Define GGSP = (B, V,L, δ, ℓ, Vι, {∼i}i∈N), where:

• B = {0 + x × inc : 0 ≤ x ≤ 1
inc}, where b ∈ B denotes a bid with price b for

a click; given a = (ai)i∈N, let ranka = (i1, . . . , in) be the sequence of distinct
agents in N ordered by their bid, that is, i < j if aii > aij or aii = aij and
ii ≺ ij for i, j ∈ {1, . . . , n} with i ̸= j. In case of draws, the sequence is
determined with respect to ≺. We let ranka(i) denote the agent in the i-th
position of the sequence ranka.

• V = {⟨al1, . . . , alm, pr1, . . . , prm, (vli)i∈N⟩ : als ∈ N ∪ {none} & prs ∈ B &
vli ∈ vi & i ∈ N & 1 ≤ s ≤ m}, where each state represents the current slot
allocation and prices, with als, prs, and vli denoting the winner of slot s, the
price per click of s and i’s valuation, resp.;

• For each i ∈ N and v ∈ V , L(i, v) = B;

• For each v ∈ V and a = (ai)i∈N such that ai ∈ L(i, v), the transition function
uses the agent’s bids to chose the next allocations and prices and is defined
as follows: δ(v, (ai)i∈N) = ⟨al′1, . . . , al′m, pr′

1, . . . , pr
′
m, (vli)i∈N⟩, where for each

agent i and slot s,

als =
{
ranka(s) if s ≤ n
none otherwise



6.3. Repeated Keyword Auctions 101

prs =
{
aranka(s+1) if s+ 1 ≤ n
0 otherwise

• For each agent i, slot s ∈ S and state v = ⟨al1, . . . , alm, pr1, . . . , prm, (vli)i∈N⟩,
the weight function is defined as follows:

i. ℓ(v, alli,s) = 1 if als = i, and ℓ(v, alli,s) = 0 otherwise;
ii. ℓ(v,pays) = prs; and
iii. ℓ(v, ϑi) = vli.

• In an initial state, the prices are 0 and the slots are allocated to none, that
is, Vι = {⟨none, . . . , none, 0, . . . , 0, vl1, . . . , vln⟩ ∈ V };

• For each agent i and two states v = ⟨al1, . . . , alm, pr1, . . . , prm, (vli)i∈N⟩ and
v′ = ⟨al′1, . . . , al′m, pr′

1, . . . , pr
′
m, (vl′i)i∈N⟩ in V , the observation relation ∼i is

such that if v ∼i v
′ then (i) als = als′ , for each 1 ≤ s ≤ m; (ii) ps = ps′ , for

each 1 ≤ s ≤ m; (iii) vli = vl′i .

Notice there is exactly one initial state for each possible valuation profile in
(∏i∈N vi). Additionally, valuations remain unchanged after the initial state. We use
the constant 1

s as the value in [−1, 1] representing the slot s. The utility of agent i
when she is assigned to slot s is denoted by the formula utili,s =def θs× (ϑi− pays).
The utility for agent i in a state depends on her actual allocation, that is,

utili =def
∑
s∈S

alli,s × utili,s

6.3.1 Solution Concepts for GSP

In this section, we show how NatSL[F ] can be used for the verification of mecha-
nisms with natural strategies. Bearing in mind our motivating example, we aim at
rephrasing conditions and properties usually considered in the analysis of keyword
auctions (Cary et al., 2007; Edelman et al., 2007; Varian, 2007).

6.3.1.1 Nash equilibrium

Since auctions are noncooperative, the solution concept in the pure strategy setting
usually considered is the Nash equilibrium (NE). As we previously discussed, NE
captures the notion of stable solution: a strategy profile is NE if no player can
improve her utility through an unilateral change of strategy (Nisan et al., 2007).
With NatSL[F ], we restrict the range of strategies to simple ones, as it enables
us to reason about artificial agents with limited capabilities and human-friendly
strategies. Let σ = (σi)i∈N be a profile of strategies and k > 0 and define the
formula

NE(σ, k) =def
∧
i∈N
∀t.≤k [

(N−i, σ−i)(i, t)Xutili ≤ (N,σ)Xutili
]



102 Chapter 6. Mechanisms and Natural Strategies

The formula NE(σ, k) means that, for every agent and alternative strategy t of
complexity at most k, binding to t when everyone else binds to their strategies in
σ leads to at most the same utility as when she also binds to her strategy in σ. In
relation to strategies with complexity at most k, the strategy profile σ leads to a
NE in the next state of v if JNE(σ, k)KG,ρ

A (v) = 1.
Predicting outcomes of a keyword auction is a difficult task given the infinite

nature of NE continuum (Yuan et al., 2017). For this reason, refined solution
concepts have been proposed to reduce the NE continuum to subsets. Edelman et
al. 2007 studied the subset called locally envy-free equilibrium (LEFE), in which
no advertiser can improve her utility by exchanging her current slot to the one
ranked one position above, given the current prices.

6.3.1.2 Locally envy free equilibrium

Let σ = (σi)i∈N be a profile of strategies, we define the formula

LEFE(σ) =def
∧
i∈N

(N,σ)X
[
LEFi

wins ∧ LEFi
loses]

where LEFi
wins =def

∧
1<s≤m(alli,s = 1 → utili,s ≥ utili,s−1) indicates that when an

agent is allocated to a slot, she does not prefer to switch to the slot right above
and LEFi

loses =def (∧s∈S alli,s = 0)→ 0 ≥ utili,m denotes that agents who were not
assigned to any slot do not prefer to get the last slot.

LEFE(σ) means that, for any agent, when everyone follows the strategies in σ,
it holds that (i) if she wins s, her utility for s is greater than for slot s − 1 (at
current prices) and (ii) if she does not get any slot, then her utility for the last
slot is at most zero. Strategy profile σ leads to LEFE in the next state of v if
JLEFE(σ)KG,ρ

A (v) = 1.
Based on (Edelman et al., 2007; Varian, 2007), we have that any LEFE is also

a NE:

Proposition 6.1. For any complexity k ≥ 0, state v ∈ V , ρ ∈ {iR, ir} and
strategy profile σ = (σi)i∈N with σi ∈ Strρ

i for each agent i ∈ N, JLEFE(σ) →
NE(σ, k)KGGSP ,ρ(v) = 1.

Proof sketch. Let A be an assignment, k ≥ 0 be a complexity bound for strategies,
v ∈ V be a state, ρ ∈ {iR, ir}, and σ = (σi)i∈N be a profile of ρ-strategies. Assume
JLEFE(σ)KGGSP ,ρ

A (v) = 1. Let vσ = δ(v, b) where b = (br)r∈N and br = actmatch(v,σr)
denotes the action performed by r in v if she follows σr. By definition, ℓ(vσ, allr,s) = 1
iff r = rankb(s) is the winner of slot s and her payment is ℓ(vσ, pays) = brankb

(s+1).
For each slot s ∈ {1, . . . ,min(m, n)}, we consider whether its winner i = rankb(s)
could improve her utility by deviating to strategy t ∈ {α ∈ Strρ

i : complρ(α) ≤ k}.
The case for agents who were not assigned any slot is proved similarly. De-
note by b̄ = match(v, t) ∈ B the action that i would take if she followed t and
v(σ−i,t) = δ(v, (b−i, b̄)) the next reached state from v when she follows t and others
play according to σ.



6.3. Repeated Keyword Auctions 103

If s = 1, any b̄ ≥ ℓ(vσ, pays) does not change the outcome of the auction
and J(N−i, σ

ρ
−i)(i, t)Xutili = (N,σ)XutiliKGGSP ,ρ

A (v) = 1. The same holds when
1 < s < m for b̄ ∈ [ℓ(vσ,pays), ℓ(vσ,pays−1)] and when s = m for b̄ ≤ ℓ(vσ, paym).
In the remaining cases, i would change her position in rankb with other agent.
By the results of Edelman et al. (2007) (see Lemma 1), the outcome given by
bids b is a stable assignment, that is, no advertiser can profitably rematch by
changing her position with any other advertiser. Thus, J(N−i, σ−i)(i, t)Xutili ≤
(N,σ)XutiliKGGSP ,ρ

A (v) = 1.

As LEFE is still an equilibrium continuum, Edelman et al. (2007) characterize
an equilibrium in which the slot allocation and payments coincide with the ones
in the dominant-strategy equilibrium (DSE) of the Vickrey–Clarke–Groves (VCG)
mechanism.

Let v = (vi)i∈N be a valuation profile. Truthfully reporting v is the DSE of
VCG (Nisan et al., 2007). For each slot s and agent i, the allocation rule for
VCG in the keyword auction is the same as under GSP (Edelman et al., 2007):
all∗i,s(v) = 1 if rankv(s) = i and s ≤ n. Otherwise, all∗i,s(v) = 0. The payment for
the last slot m is pay∗

m(v) = θm · vrankv(m+1) if m + 1 ≤ n and pay∗
m = 0 otherwise.

For the remaining slots 1 ≤ s < m, pay∗
s(v) = (θs − θs+1) · vrankv(s+1) + pay∗

s+1(v).
We assume pay∗

s(v) and all∗s,i(v) are functions in F .

6.3.1.3 VCG outcome

The following formula denotes whether the allocation and payments in the next
state are the same as the ones for the VCG when agents bid truthfully:

φVCG(σ) =def (N, σ)X
[ ∧

s∈S

(pays = pay∗
s(ϑ) ∧

∧
i∈N

alls,i = all∗s,i(ϑ))
]

If a strategy profile leads to the VCG outcome, then it is a LEFE:

Proposition 6.2. For any state v ∈ V , ρ ∈ {iR, ir} and strategy profile σ = (σi)i∈N
with σi ∈ Strρ

i for each i, JφVCG(σ)→ LEFE(σ)KGGSP ,ρ(v) = 1.

Proof sketch. Let A be an assignment, v ∈ V be a state, ρ ∈ {iR, ir} and
σ = (σi)i∈N be a profile of ρ-strategies. We denote v = (vi)i∈N where vi = ℓ(v, ϑi).
Assume JφVCG(σ)KGGSP ,ρ

A (v) = 1, then we have J(N,σ)X
[ ∧

s∈S(pays = pay∗
s(ϑ) ∧∧

i∈N alls,i = all∗s,i(ϑ))
]
KGGSP ,ρ
A (v) = 1. We denote by vσ = δ(v, b) the state succeed-

ing v when agents follow σ, where b = (br)r∈N and br = actmatch(v,σr). Let s > 1 be
a slot and i be an agent. By the definition of φVCG, ℓ(vσ, alls,i) = 1 if rankv(s) = i
and s ≤ n. Otherwise, all∗i,s = 0.

Given that allocations in vσ are the same as in the (truthful) outcome of VCG,
it must be the case that rankb(s) = rankv(s). Thus, agents were allocated by
descending order of their valuations (recall the valuations are distinct).

According to the weight function, each agent is allocated to at most one
slot. We consider first the case in which i is not allocated to any slot, i.e.,



104 Chapter 6. Mechanisms and Natural Strategies

maxs′∈S(ℓ(vσ, alli,s′)) = 0. This case happens when m < n, that is, there
are no enough slots for all agents. The utility of i for the slot m is utili,m =
θm(vi−ℓ(vσ, paym)). By the definition of pay∗

m, utili,m = θm(vi−θmvrankv(m+1)). That
is, utili,m = θmvi − θ2

mvrankv(m+1) . Since vi < vrankb(m+1), we have that utili,m < 0.
Thus, J0 > utili,mKGGSP ,ρ

A (vσ) = 1 and JLEFlosesK
GGSP ,ρ
A (vσ) = 1.

Now we verify the case i was assigned to a slot 1 < s ≤ m. Assume for the
sake of contradiction, that Jutili,s−1 > utili,sKGGSP ,ρ

A (vσ) = 1. Then, in the game
induced by VCG, i would have an incentive to switch her bid with the agent in slot
s− 1, which is a contradiction since the bidding vi is the dominant strategy for i in
VCG.

In fact, from (Edelman et al., 2007; Varian, 2007) the VCG payments are the
lower bound of locally envy-free equilibrium. Thus, in any other locally envy-free
equilibrium the total revenue obtained by GSP is at least as high as the one obtained
by VCG in equilibrium.

Corollary 6.1. For any state v ∈ V , ρ ∈ {iR, ir} and strategy profile
σ = (σi)i∈N with σi ∈ Strρ

i for each agent i, JLEFE(σ) → ∑
s∈S(pays) ≥∑

s∈S(pay∗
s)KGGSP ,ρ(v) = 1.

The solution concepts characterized in this section are considered in a single
stage of the game. Since the auction is repeated, advertisers can change their bids
very frequently and one may investigate whether the prices stabilize and at what
values (Edelman et al., 2007). Stable bids must be best responses to each other, that
is, the bids form an (one-shot) equilibrium. Cary et al. (2007) raises the problem
on whether there exists a “natural bidding strategy” for the advertisers that would
lead to equilibrium.

Convergence The concept of convergence or stabilization can be easily encoded
in NatSL[F ]: we say a wCGSl G converge to a property φ if the initial states lead
to φ being eventually always the case. Formally, a wCGSl converge to a condition
φ if JFG(φ)KG,ρ

A (vι) = 1 for each initial state vι ∈ Vι.

6.3.2 Natural Strategies for GSP

Given agent i and the wCGSl GGSP , we exemplify strategies for i in a repeated
keyword auction. For readability, we omit the epistemic operator Ki from an epis-
temic condition Kiφ when the satisfaction value of φ is known by i in all states. A
common approach for an advertiser is to assume that all the other bids will remain
fixed in the next round and target the slot that maximizes her utility at current
prices. This mechanism allows a range of bids that will result in the same outcome
from i’s perspective, so a number of strategies are distinguished by the bid choice
within this range.



6.3. Repeated Keyword Auctions 105

6.3.2.1 Balanced bidding

In the balanced bidding strategy (BB) (Cary et al., 2007), the agent bids so as to
be indifferent between successfully winning the targeted slot at its current price,
or winning a slightly more desirable slot at her bid price. The natural strategy
representing balanced bidding for agent i is denoted BBi and is constructed in
three parts. First, include the guarded actions (BBi,1(b), b) for each action b ∈ B.
Second, include (BBi,2(b, s), b) for each b ∈ B and 1 < s ≤ m. Third, the last
guarded action is (⊤, 0). The condition BBi,1(b) refers to the case in which the slot
maximizing i’s utility is the top slot and b is (ϑi + pay1)/2:

BBi,1(b) =def b = ϑi + pay1
2 ∧ 1

argmaxs∈S(utili,s)
= 1

Condition BBi,2(b, s) denotes the case in which the slot s ̸= 1 maximizes i’s
utility and b is the bid value that is high enough to force the prices paid by her
competitors to rise, but not so high that she would mind getting a higher slot at a
price just below b.

BBi,2(b, s) =def utili,s = θs−1 × (ϑi − b) ∧
1

argmaxs′∈S(utili,s′) = 1
s

Notice the guarded action BBi,2(b, s) is defined for s > 1 since it compares the
utility with the one for s − 1. The case s = 1 is treated by the guarded action
BBi,1(b).

Given a valuation profile v = (vi)i∈N, let ηx be the agent in the x-th position
of rankv (that is, ηx is the agent with x-th highest valuation). We let bηx(v) be a
function in F defined as follows:

bηx(v) =


θx

θx−1
· brankv(x+1)(v) + (1− θx

θx−1
)vηx if x ≥ m + 1

vηx if 2 ≤ x ≤ m

If BB = (BBi)i∈N converges to the equilibrium with VCG outcomes, the agent
with the highest valuation, that is η1, bids any value above bη2(v). The equilibrium
bid for i ̸= η1 is bi(v) (Cary et al., 2007). When there are two slots and all players
update their bids according to BB, the game converges to the equilibrium with
VCG outcome. However, this is not the case for more than two slots (Cary et al.,
2007).

Proposition 6.3. For any initial state vι ∈ Vι, state v ∈ V , and 1 < x ≤ n, the
following holds, where v = (ℓ(v, ϑi))i∈N:

1. If JφVCG(BB)KGGSP ,ir(v) = 1, then actmatch(v,BBηx ) = bηx(v) and
actmatch(v,BBη1 ) > bη2(v);

2. If m = 2, then JFG(φVCG(BB))KGGSP ,ir(vι) = 1;



106 Chapter 6. Mechanisms and Natural Strategies

3. If m ≥ 3, then JFG(φVCG(BB))KGGSP ,ir(vι) ̸= 1.

Proof sketch. Statement (1) is derived in (Cary et al., 2007) from the results of
Edelman et al. (2007). Notice that when each agent i is bound to the natural
strategy BBi, they will update their bids simultaneously in every state reachable
form v. Thus, it corresponds to the synchronous setting described by Cary et al.
(2007). The proof for Statements (2) and (3) are very similar to the one provided
in the analysis of the synchronous setting by Cary et al. (2007).

6.3.2.2 Restricted BB

The restricted balanced bidding strategy (RBB) (Cary et al., 2007) is a variation
of BB in which the agent only targets slots that are not better than her current
slot. The natural strategy representing RBB for agent i is denoted RBBi and is
constructed as follows. First, include the guarded actions (RBBi,1(b), b) for each
action b ∈ B. Second, include (RBBi,2(b, s), b) for each b ∈ B and 1 < s ≤ m.
Finally, the last guarded action is (⊤, 0). Let si = min(m,∑s′∈S s

′ × alli,s′) be the
slot assigned to agent i or the last slot if there is no such slot. We define RBBi,1(b)
and RBBi,2(b, s):

RBBi,1(b) =def b = ϑi + pay1
2 ∧ 1

argmaxs∈S&s≥si(utili,s) = 1

RBBi,2(b, s) =defutili,s = θs−1 × (ϑi − b) ∧
1

argmaxs′∈S&s′≥si(utili,s′) = 1
s

Similar to the results in (Cary et al., 2007), we have that if all agents follow the
restricted balanced-bidding strategy, the auction converge to the VCG equilibrium
outcome. RBB always converge:

Proposition 6.4. For any initial state vι ∈ Vι, state v ∈ V , and 1 < x ≤ n, the
following holds, where v = (ℓ(v, ϑi))i∈N:

1. If JφVCG(RBB)KGGSP ,ir(v) = 1, then actmatch(v,RBBηx ) = bηx(v) and
actmatch(v,RBBη1 ) > bη2(v);

2. JFG(φVCG(RBB))KGGSP ,ir(vι) = 1.

Proof sketch. Statement (1) is a derivation from the results presented in (Edelman
et al., 2007). For Statement (2), the proof is similar to the one provided in (Cary
et al., 2007). The proof idea is the following. First bound the number of steps until
convergence of the price of slot m and the set of players who will not be allocated
slots. After this step, no losing player can afford a slot and their bids do not interfere
with the convergence of the top m agents. The second stage of the proof is to show
that the allocation of the top m players converges to a fixed point (in which they
are sorted by their valuations). Then, for 1 ≤ i ≤ m, the proof inductively considers



6.3. Repeated Keyword Auctions 107

the allocation of slots [i + 1,m]. A subset of slots is called stable if the allocation
is in order of decreasing values and if agent ηj is the player currently allocated slot
j, then her last bid is in accordance with bηj (ϑ) for every j ∈ [i+ 1,m]. While the
current setting is not a fixed point of RBB, the proof proceeds by characterizing
the number of rounds taken for increasing the size of the maximal stable set.

6.3.2.3 Knowledge grounded RBB

The knowledge grounded RBB strategy (KBB) is a variation of RBB in which
the agent uses her knowledge about the valuation of the player currently at her
target slot to ground her bid value. The idea is to avoid bidding more than
what she knows her opponent valuates the slot. The natural strategy represent-
ing KBB for agent i is denoted KBBi is constructed in three steps. First, include
the guarded actions (KBBi,1(b, c, r), c) for each b, c ∈ B and agent r ̸= i. Second,
include (KBBi,2(b, s, c, r), c) for each b, c ∈ B, slot 1 < s ≤ m and agent r ̸= i. Fi-
nally, include the guarded actions from RBBi. The conditions KBBi,1(b, c, r) and
KBBi,2(b, s, c, r) are defined as follows:

KBBi,1(b, c, r) =def Ki
(
RBBi,1(b) ∧ allr,1 = 1 ∧ c = min(ϑr, b)

)
KBBi,2(b, s, c, r) =def Ki

(
RBBi,2(b, s) ∧ allr,s = 1 ∧ c = min(ϑr, b)

)
The prices under KBB are at most the same as under RBB:

Proposition 6.5. For any state v ∈ V , slot s ∈ S and agent i ∈ N,
J(N,KBB)pays ≤ (N,RBB)paysKGGSP ,ir(v) = 1.

Proof. Consequence from the construction of KBB.

Remark 6.1. With natural strategies, we can easily construct a strategy in which
agent ηx plays according to bηx(v) (for 1 < x ≤ n) and agent η1 bids bη2 + inc when
she knows others’ valuations.

BB with recall Since BB may not converge to the VCG equilibrium outcome
due to loops on the slot allocation and prices, we construct a strategy that be-
haves according to BB while there is no repetition in the outcome and follows
RBB otherwise. Hereafter, we show that this strategy with recall prevents the
loops that hinder the convergence of BB. Define the set of weighted conditions
Ψ = {∧s∈S(pays = prs ∧

∧
i∈N alli,s = ali,s) : prs ∈ B & ali,s ∈ {0, 1}}. The natural

strategy representing balanced bidding with recall for agent i is denoted BBRi and
is constructed as follows. First, include the guarded actions (BBRi,1(ψ, b), b) for
each action b ∈ B and condition ψ ∈ Ψ. Second, include (BBRi,2(ψ, b, s), b) for
each ψ ∈ Ψ, b ∈ B and 1 < s ≤ m. Third, include (BBRi,3(ψ, b), b) for each action
b ∈ B. Fourth, include (BBRi,4(b, s), b) for each b ∈ B and 1 < s ≤ m. Finally, the
last guarded action is (⊤*, 0).



108 Chapter 6. Mechanisms and Natural Strategies

Now we define each guarded condition in BBRi. If the current allocation and
payments have already happen in the past, i plays according to the restricted bidding
strategy:

BBRi,1(ψ, b) =def ⊤* · ψ · ⊤* · (ψ ∧RBBi,1(b))

BBRi,2(ψ, b, s) =def ⊤* · ψ · ⊤* · (ψ ∧RBBi,2(b, s))

If there was no repetition on the payments and slot allocation, she plays accord-
ing to the balanced bidding strategy:

BBRi,3(ψ, b) =def ⊤* ·BBi,1(b)

BBRi,4(ψ, b, s) =def ⊤* ·BBi,2(b, s)

When all agents follow the strategy profile BBR = (BBRi)i∈N, the game con-
verges to the VCG equilibrium outcome.

Proposition 6.6. For any initial state vι ∈ Vι, state v ∈ V , and 1 < x ≤ n, the
following holds, where v = (ℓ(v, ϑi))i∈N:

1. If JφVCG(BBR)KGGSP ,iR(v) = 1, then actmatch(v,BBRηx ) = bηx(v) and
actmatch(v,BBRη1 ) > bη2(v);

2. JFG(φVCG(BBR))KGGSP ,iR(vι) = 1.

Proof sketch. Statement (1) follows from Propositions 6.3 and 6.4. Statement (2)
is proven by contradiction. Assume the game does not converge to the VCG equi-
librium outcome. Let A be an assignment and π = Out(vι,A) be the play start-
ing in vι and follows the strategies assigned by A. Since GGSP has finitely many
states, there exist two indices g < l such that πg = πl. Thus, for every ψ ∈ Ψ,
JψKGGSP ,iR(πg) = JψKGGSP ,iR(πl). Then, the game proceeds according to RBB strat-
egy. That is, for any index j ≥ l and agent i, actmatch(πl,BBRi) = actmatch(πl,RBBi).
From Proposition 6.4, it follows that JFG(φVCG(BBR))KGGSP ,iR

A (vι) = 1.

When other agents are inactive (i.e., they repeat their last action), if BBRi
selects a different bid from the one assigned by RBBi, the utility of i in the next
state is greater under BBRi.

Proposition 6.7. Let ρ ∈ {ir, iR} and v = δ(v′,a), for some state v′ ∈ V and
action profile a = (a)i∈N. Given an agent i ∈ N, let σρ

−i = (σρ
r )r∈N−i be a ρ-

strategy profile, where the strategy σρ
r of agent r is such that actmatch(v,σρ

r ) = ar.
If actmatch(v,BBRi) ̸= actmatch(v,RBBi), then J(N−i, σ

iR
−i )(i, BBRi)XutiliKGGSP ,iR(v) >

J(N−i, σ
ir
−i)(i, RBBi)XutiliKGGSP ,ir(v).

Proof sketch. Assume the actions assigned by BBRi and RBBi are different, that is,
actmatch(v,BBRi) ̸= actmatch(v,RBBi), then it must be the case that actmatch(v,BBRi) =
b such that Jutili,s = θs−1 × (ϑi − b)∧ (argmaxs′∈S(utili,s′))−1 = s−1KGGSP ,ir

A (v) = 1
for some slot s > 1. Notice that RBBi selected the action actmatch(v,RBBi) that



6.4. Expressivity 109

maximizes the utility among slots that are better or equal to i’s current slot. By the
other hand, the condition followed by BBRi in v chose the action b that maximizes
among all slots. Thus, since the actions are different, b has the greatest estimated
utility assuming the others repeat their previous bids. As it is in fact the case, by the
definition of σiR

−i and σir
−i, i’s is assigned to s in the next state and her utility is the

one estimated, that is JXutiliKGGSP ,iR
A (v) = Jutili,sKGGSP ,iR

A (v). Thus, J(N−i, σ
iR
−i )(i,

BBRi)XutiliKGGSP ,iR(v) > J(N−i, σ
ir
−i)(i, RBBi)XutiliKGGSP ,ir

A (v).

Remark 6.2. In vindictive bidding (Zhou and Lukose, 2007), the agent bids as high
as possible to raise the payment of the advisor in the slot right below hers. Since
there is the risk that a change in other agents’ bids could result in paying a higher
price than expected, the player could use memory to balance the use of aggressive
bids. Strategies with recall could also be used for managing budget. For strategies
on budget-constrained keyword auctions the reader may refer to Zhou et al. (2008).

In the next sections, we move our focus to the analysis of NatSL[F ] and we
provide technical results in terms of expressivity and model-checking complex-
ity.

6.4 Expressivity

In relation to SL[F ] with combinatorial strategies, NatSL[F ] introduces a new,
broader class of human-friendly strategies and a language for expressing properties
of agents that use such strategies. Clearly, strategies with quantitative conditions
can be used to obtain goals that would not be achievable otherwise. On the other
hand, bounded natural strategies of NatSL[F ] may not achieve some goals that
can be enforced with combinatorial strategies of SL[F ]. In this section, we show
that the expressive power of NatSL[F ] is incomparable to that of SL[F ]. In other
words, there are properties of quantitative games with natural strategies that can-
not be equivalently translated to properties based on combinatorial strategies, and
vice versa. From this, we conclude that reasoning about human-friendly strategies
offers an inherently different view of a multi-agent system from the “standard” one.

6.4.1 Expressive and Distinguishing Power

We first adapt the notions of distinguishing power and expressive power to the
quantitative case as follows4.

Definition 6.4 (Distinguishing power of real-valued logics). Let L1 = (L1, J·K1)
and L2 = (L2, J·K2) be two logical systems with syntax L1, L2 and real-valued se-
mantics J·K1, J·K2 over the same class of models M. We say that L2 is at least as
distinguishing as L1 (written: L1 ⪯d L2) iff for every pair of models M,M ′ ∈M, if
there exists a formula φ1 ∈ L1 such that Jφ1KM

1 ̸= Jφ1KM ′

1 , then there is also φ2 ∈ L2

4Cf.,e.g., (Wang and Dechesne, 2009) for a detailed discussion of standard notions of expres-
sivity.



110 Chapter 6. Mechanisms and Natural Strategies

q0

q1

p
q′

1p q′′
1p q′

2 q2

q3 win
q4

(a1,
_)

(b 1,
_)

(c1 ,_
)

(d
1 ,_)

(e1 , _)

(_
, a

2 )

(_, b2)

(_
, a

2)(_, b2)

Figure 6.1: Model G1. Its counterpart G′
1 is obtained by fixing p to hold only in

q1, q
′
1. Underscore fits any action label

with Jφ2KM
2 ̸= Jφ2KM ′

2 . In other words, if there is a formula of L1 discerning M from
M ′, then there must be also a formula of L2 doing the same.

Definition 6.5 (Expressive power of real-valued logics). L2 is at least as expressive
as L1 (written: L1 ⪯e L2) iff for every φ1 ∈ L1 there exists φ2 ∈ L2 such that, for
every model M ∈ M, we have Jφ1KM

1 = Jφ2KM
2 . In other words, every formula of

L1 has a translation in L2 that produces exactly the same truth values on models
in M.

It is easy to see that L1 ⪯e L2 implies L1 ⪯d L2. Thus, by transposition, we
also get that L1 ̸⪯d L2 implies L1 ̸⪯e L2.

In the remainder, M is the class of pointed weighted games, i.e., pairs (G, v)
where G is a wCGSl and v is a state in G.

6.4.2 Expressivity of NatSL[F ] vs. SL[F ]

NatSL[F ] and SL[F ] are based on different notions of strategic ability. The former
refers to “natural” strategies, represented as mappings from regular expressions
over epistemic formulas to actions. The latter uses "combinatorial" strategies, rep-
resented by mappings from sequences of states to actions. Each natural strategy
can be translated to a combinatorial one, but not vice versa. Consequently, SL[F ]
can express that a given coalition has a combinatorial strategy to achieve their goal
(which is not expressible in NatSL[F ]). On the other hand, NatSL[F ] allows ex-
pressing that a winning natural strategy does not exist (which cannot be captured
in SL[F ]). Now we show that NatSL[F ] allows to express properties of MAS that
cannot be captured in SL[F ], and vice versa.

Proposition 6.8. NatSL[F ] ̸⪯d SL[F ] in both ir and iR semantics.



6.4. Expressivity 111

q0

q1 q2

q3
win

q4

(a1,
_) (b1 ,_)

(_
,a

2 )

(_, b2 )

(_
,a

2
)(_, b2)

q0

q1 q2

q3
win

q4

(a1,
_) (b1 ,_)

(_
,a

2 )

(_, b2 )

(_
,a

2
)(_, b2)

1

Figure 6.2: Models G2 (left) and G′
2 (right)

Proof sketch. Consider model G1 in Figure 6.1, with agents N = {1, 2}, actions
B1 = {a1, b1, c1, d1, e1} and B2 = {a2, b2} available at all positions, and propositions
AP = {p,win}. Both propositions are qualitative (that is, the propositions have
only values in {-1,1}). For each proposition, the states where it evaluates to 1 are
indicated; otherwise its truth value is assumed to be −1. The outgoing transitions
in q′

1, q
′′
1 (resp. q′

2) are exact copies of those at q1 (resp. q2). Moreover, model G′
1

is obtained by fixing proposition p to hold only in q1, q
′
1, but not in q′′

1 . As all the
propositions are qualitative, formulas of NatSL[F ] and SL[F ] evaluate to −1 or 1.
Note also that the sets of ir and iR strategies in each model coincide, so we can
concentrate on the ir case w.l.o.g.

Let G†σ denote the model obtained by fixing the (memoryless) strategy σ in G.
In order to prove that (G1, q0) and (G′

1, q0) satisfy the same formulas of SL[F ], it
suffices to observe that:

1. For every strategy σ1 of agent 1 in G1, there is σ′
1 in G′

1 such that agent 2 has
the same strategic abilities in (G′

1†σ1, q0) and (G′
1†σ1, q0) (and vice versa). For

instance, playing c1 in G obtains the same abilities of 1 as playing a1 in G′.

2. Analogously for strategies of agent 2, e.g., strategy a2a2a2b2b2 in G1 can be
simulated by strategy a2a2b2b2b2 in G′

1.

On the other hand, the formula ∃s≤2
2 ∀s

≤1
1 (1, s1)(2, s2)Fwin of NatSL[F ] holds

in (G1, q0), but not in (G′
1, q0). The winning natural strategy for agent 2 in G1 is(

(⊤∗p, a2), (⊤∗, b2)
)
; clearly, it does not succeed in G′

1.

Proposition 6.9. SL[F ] ̸⪯d NatSL[F ] in both ir and iR semantics.

Proof sketch. Consider models G2 and G′
2 in Figure 6.2. They have isomorphic

action/transition structures, the only difference being the indistinguishability of
states q1, q2 in G′

2 (but not in G2). Since the two states have the same valuations of



112 Chapter 6. Mechanisms and Natural Strategies

propositions, each natural strategy must specify the same decision in q1, q2. Thus,
both players have exactly the same available natural strategies in G2 and G′

2, and
hence (G2, q0) and (G′

2, q0) produce the same valuations of NatSL[F ] formulas.
On the other hand, we have that ∃s2∀s1(1, s1)(2, s2)Fwin of SL[F ] holds in

(G2, q0), but not in (G′
2, q0).

The following is an immediate consequence.

Theorem 6.1. NatSL[F ] and SL[F ] have incomparable distinguishing power over
the class of pointed wCGSl (in both ir and iR semantics).

Corollary 6.2. NatSL[F ] and SL[F ] have incomparable expressive power over the
class of pointed wCGSl (in both ir and iR semantics).

6.5 Model Checking

In this section we show that the model checking problem for NatSL[F ] with imper-
fect information is no harder than model checking LTL or classic SL with memory-
less agents. First of all, we define formally the quantitative model-checking problem
for NatSL[F ].

Definition 6.6. Given ρ ∈ {ir, iR}, the model-checking problem for NatSL[F ]
consists in deciding, for a given sentence φ, wCGSl G, state v ∈ V and predicate
P ⊆ [−1; 1], whether JφKG,ρ(v) ∈ P .

Now, we have all the ingredients to prove the following result.

Theorem 6.2. Assuming that functions in F can be computed in polynomial space,
model checking NatSL[F ] with imperfect information, natural strategies with recall,
and k as parameter of the problem is Pspace-complete.

Proof. For the lower-bound we recall that LTL[F ] model checking is Pspace-
complete (Almagor et al., 2016). For the upper-bound, to verify that a given
NatSL[F ] formula φ is satisfied over a wCGSl G at a state v ∈ V under assign-
ments A over uniform natural strategies with recall, we make use of a recursive
function as is done in (Cermák et al., 2018). We start by showing that each recur-
sive call only needs at most polynomial space. First, observe that each assignment
A has a strategy sa for each agent a ∈ Ag5. We know that each strategy sa that
can be assigned to agent a is bounded, and we have that compl(sa) ≤ k. Thus, each
strategy can be stored in O(k · |Act|) and, by consequence, any assignment can be
stored in space O((|Ag| · |free(φ)|) · (k · |Act|)).

Now, we can analyse the recursive function. For the base case, JpKG,ρ
A (v) can

be computed in constant space via the weight function. For strategy quantifi-
cation J∃s≤k

i . φKG,ρ
A (v), besides the recursive call to JφKG,ρ

A[s 7→σ](v) we need space

5Note that, as defined in Section 6.2, we consider only complete assignments. Thus, we can
assume that a strategy is assigned for each agent.



6.6. Conclusion 113

O(|k| · |B|) to store the current strategy and the current maximum value computed.
For Jf(φ1, . . . , φm)KG,ρ

A (v), by assumption f is computed in polynomial space. For
JXφKG,ρ

A (v), we only need to observe that the next state in Out(v,A) is computed
in constant space.

Finally, we detail how Jφ1Uφ2K
G,ρ
A (v) is computed. Let π = Out(v,A). Since G

has finitely many states, there exist two indices g < l such that πg = πl, and since
strategies are bounded by k, the suffix of π starting at index l is equal to the suffix
starting at index g. So there exist ρ1 = v0 . . . vg−1 and ρ2 = vg . . . vl−1 such that
π = ρ1 · ρω

2 . It follows that

Jφ1Uφ2K
G,ρ
A (v) = sup

i≥0
min

(
Jφ2K

G,ρ
A (πi), min

0≤j<i
Jφ1K

G,ρ
A (πj)

)
= max

0≤i<l
min

(
Jφ2K

G,ρ
A (πi), min

0≤j<i
Jφ1K

G,ρ
A (πj)

)
This can be computed by a while loop that increases i, computes Jφ2K

G,ρ
A (πi) and

min0≤j<iJφ1K
G,ρ
A (πj), their minimum, and records the result if it is bigger than the

previous maximum. This requires to store the current value of min0≤j<iJφ1K
G,ρ
A (πi),

the current maximum, and the list of states already visited, which are at most k·|V |.
Finally, the number of nested recursive calls is at most |φ|, so the total space

needed is bounded by |φ| times a polynomial in the size of the input, and is thus
polynomial.

Since memoryless natural strategies are a special case of natural strategies with
recall, we obtain the following result.

Corollary 6.3. Assuming that functions in F can be computed in polynomial space,
model checking NatSL[F ] with imperfect information, memoryless natural strategies,
and k as parameter of the problem is Pspace-complete.

6.6 Conclusion

In this chapter we have introduced Natural Strategy Logic with quantitative se-
mantics and imperfect information (NatSL[F ]) for reasoning about strategic ability
in auctions. Natural strategies only require remembering a limited number of sig-
nificant situations. Instead of specifying instructions for every history, they provide
instructions for conditions. NatSL[F ] provides a tool for mechanism design and
offers a new perspective for formal verification and design of novel mechanisms and
strategies.

Memoryless strategies are enough for several types of mechanisms, as all rele-
vant information is encoded in the current state (for instance, an English auction).
In repeated auctions, agents may, as well, use information from the previous in-
stances of the game for choosing their strategies. One relevant problem in repeated
auctions is whether the bid prices are going to stabilize and at which price (that is,
convergence to an equilibrium). We demonstrated the usefulness of our approach



114 Chapter 6. Mechanisms and Natural Strategies

by modelling and evaluating strategies for repeated keyword auctions. NatSL[F ]
allows for the verification of these strategies in order to provide formal guarantees
of correctness as well as improve trust in automated bidders.

In terms of technical results, we proved that the model checking problem for
NatSL[F ] is Pspace-complete, that is, no harder than model checking for the
much less expressive language of quantitative LTL (LTL[F ]). We also showed that
NatSL[F ] has incomparable distinguishing and expressive power to SL[F ]. This
means that the characterizations based on simple bounded strategies offer an in-
herently different view of auctions and mechanism design from characterizations
using combinatorial strategies of arbitrary complexity. Surprisingly, this aspect
has never been studied for natural strategies, not even for the original proposal of
NatATL (Jamroga et al., 2019a).

Up to now, we considered logic-based approaches for the formal verification of
mechanisms when faced with strategic agents. In the next chapter, we go further
on the AMD problem, by addressing the automated construction of mechanisms
from logical specifications.



Chapter 7

Synthesis of Mechanisms

In the spirit of the long-established logical approach to systems verification (Clarke
et al., 2018) and synthesis (David and Kroening, 2017), in this chapter we pro-
pose a new approach to Automated Mechanism Design (AMD). More precisely, we
show how AMD can be rephrased as a synthesis problem where mechanisms are
automatically synthesized from a partial or complete specification in a high-level
logical language. We solve the problem in two cases: when the number of actions
is bounded, and when agents play in turn.

We consider Quantitative Strategy Logic (SL[F ]) (Bouyer et al., 2019), which
allows for specifications that contain constraints on mechanism properties (for in-
stance, the efficiency and budget-balance). Its quantitative semantics, with sat-
isfaction values that reflect how well a model satisfies a formula, also allows us
to investigate the constructions of mechanisms that approximate such properties,
which is not possible with standard Strategy Logic (SL) (Chatterjee et al., 2010;
Mogavero et al., 2014).

Unlike Chapter 5, in which we consider strategies without memory, we consider
strategies with perfect recall, as in Bouyer et al. (2019). The main reason is that
for memoryless strategies satisfiability, and thus synthesis, is undecidable already
for SL, even for bounded actions or turn-based systems Laroussinie and Markey
(2015). Considering perfect recall strategies means that the systems we synthesize
satisfy the strategic aspects of the specification assuming that agents’ actions can
depend on the past. For similar reasoning, we restrict our attention to wCGS with
perfect information (in opposition to the imperfect information setting considered
at Chapters 5-6).

7.1 Quantitative Strategy Logic

Let us first recall SL[F ] (Bouyer et al., 2019) syntax and semantics. As in the
previous chapters, we slightly generalize the setting to consider values in [−1, 1].

Definition 7.1. The syntax of SL[F ] is defined by the grammar

φ ::= p | ∃s. φ | (i, s)φ | f(φ, . . . , φ) | Xφ | φUφ

where p ∈ AP, s ∈ Var, i ∈ N, and f ∈ F .

SL[F ] syntax and intuition are similar to SLK[F ], but it does not contain epis-
temic operators. Furthermore, SL[F ] does not specify for which agent a strategy is



116 Chapter 7. Synthesis of Mechanisms

at the level of strategy quantification, which allows assigning the same strategy to
different agents. Thus, ∃s. φ means that there exists a strategy s such that φ holds.

A variable is free in formula φ if it is bound to an agent without being quantified
upon, and an agent i is free in φ if φ contains a temporal operator (X or U) not in
the scope of any binding for i. The set of free variables and agents in φ is written
free(φ), and a formula φ is a sentence if free(φ) = ∅.

Definition 7.2. A weighted concurrent game structure (wCGS) is a tuple G =
(B, V, vι, δ, ℓ) where each component is defined exactly as the homonyms components
in wCGSii (see Definition 5.2)1.

Remark 7.1. Because we are interested in synthesizing mechanisms of finite size, we
restrict attention to finite models. Studying satisfiability of SL[F ] for potentially
infinite models would be of interest too as SL, and thus also SL[F ], do not enjoy the
finite-model property (indeed, SL is more expressive than ATL with strategy context,
which does not have the finite-model property; see Laroussinie and Markey (2015)).
We leave this question for future work.

Action profiles, plays and assignments for SL[F ] are defined analogously to the
definitions from Chapter 5. By its turn, strategies are now defined over histories.

Histories A history h is a finite prefix of a play, last(h) is the last position of
history h, |h| is the length of h and Hist is the set of histories.

Strategies A (perfect recall) strategy is a function σ : Hist → B that maps each
history to an action. We let Str be the set of strategies.

Outcomes For an assignment A and a history h, we let Out(A, h) be the unique
play that continues h following the strategies assigned by A. Formally, Out(A, h)
is the play hv0v1 . . . such that for all i ≥ 0, vi = δ(vi−1,a) where for all i ∈ N,
ai = A(i)(hv0 . . . vi−1), and v−1 = last(h).

Definition 7.3. Let G = (B, V, δ, ℓ, Vι) be a wCGS, and A an assignment. The
satisfaction value JφKG

A(h) ∈ [−1, 1] of an SL[F ] formula φ in a history h is defined
as follows, where π denotes Out(A, h):

JpKG
A(h) = ℓ(last(h), p)

J∃s. φKG
A(h) = max

σ∈Str
JφKG

A[s 7→σ](h)

J(i, s)φKG
A(h) = JφKG

A[i7→A(s)](h)

Jf(φ1,. . . , φm)KG
A(h) = f(Jφ1KG

A(h), . . . , JφmKG
A(h))

JXφKG
A(h) = JφKG

A(π|h|+1)
Jφ1Uφ2KG

A(h) = sup
i≥0

min
(
Jφ2KG

A(π|h|+i), min
0≤j<i

Jφ1KG
A(π|h|+j)

)
1Notice that, differently from a wCGSii, a wCGSdoes not contain observation relations.



7.2. Satisfiability and Synthesis of SL[F ] 117

If φ is a sentence, its satisfaction value does not depend on the assignment,
and we write JφKG(h) for JφKG

A(h) where A is any assignment. We also let JφKG =
JφKG(vι).

As in Chapter 5, we use classic abbreviations. We also use Aφ as a shorthand
for a universal quantification on strategies and bindings for all agents, followed by
φ; this simulates the universal path quantifier of CTL∗.

7.2 Satisfiability and Synthesis of SL[F ]
We investigate the following satisfiability problem for SL[F ].

Definition 7.4. The satisfiability problem for SL[F ] takes a sentence φ ∈ SL[F ]
and a threshold ε > −1, and decides whether there exists a wCGS G such that
JφKG ≥ ε.

The satisfiability problem for SL was proved undecidable in (Mogavero et al.,
2017), but the proof there considers models with infinitely many actions. However
it is also known to be undecidable when considering finite models, i.e., models
with both finitely many states and finitely many actions, as we do. Indeed, it has
been shown in (Troquard and Walther, 2012; Laroussinie and Markey, 2015) that
satisfiability of ATL with strategy context (ATLsc) is undecidable for finite models.
Since ATLsc can be expressed in SL (Laroussinie and Markey, 2015) and SL in SL[F ],
by taking F = {⊤,∨,¬} (Bouyer et al., 2019), we obtain the following result.

Proposition 7.1. The satisfiability problem for SL[F ] is undecidable as soon as F
contains ⊤, ∨ and ¬.

However satisfiability of SL is known to be decidable when restricted to turn-
based systems or systems with a bounded number of actions (Laroussinie and
Markey, 2015). We show that in these cases satisfiability is decidable for SL[F ]
as well. To do so we first recall Booleanly-quantified CTL∗ (BQCTL∗[F ]) and solve
its satisfiability problem, and we then show that for bounded actions or turn based
systems satisfiability of SL[F ] reduces to that of BQCTL∗[F ].

7.2.1 Booleanly-Quantified CTL∗[F ]

The logic BQCTL∗[F ] (Bouyer et al., 2019), a quantitative extension of
QCTL∗ (Laroussinie and Markey, 2014), itself an extension of CTL∗ with quan-
tifiers on atomic proposition. In BQCTL∗[F ] the semantics is quantitative, but the
quantifiers on propositions consider only Boolean values. To be consistent with
SL[F ] we consider [-1,1] as range of values instead of [0,1] as in (Bouyer et al.,
2019). This changes nothing to the results presented there.

The syntax of BQCTL∗[F ] is defined by:

φ ::= p | ∃p. φ | Eψ | f(φ, . . . , φ)
ψ ::= φ | Xψ | ψUψ | f(ψ, . . . , ψ)



118 Chapter 7. Synthesis of Mechanisms

where p ranges over AP and f over F .
Eψ is the quantitative counterpart to the path quantifier of CTL∗, and it maxi-

mizes the value of ψ over all branches. Formulas of type φ are called state formulas,
those of type ψ are called path formulas, and BQCTL∗[F ] consists of all the state
formulas defined by the grammar. We again use ⊤, ∨, and ¬ to denote functions
1, max and −x, as well as classic abbreviations already introduced for SL[F ].

Definition 7.5. A weighted Kripke structure (wKS) is a tuple S = (S, sι, R, ℓ)
where S is a set of states, sι ∈ S is an initial state, R ⊆ S × S is a left-total2
transition relation, and ℓ : S → [−1, 1]AP is a weight function.

A path in S is an infinite word λ = s0s1 . . . over S such that s0 = sι and
(si, si+1) ∈ R for all i. Finite prefixes of paths are histories, and we let hS be the
set of all histories in S. We also let ValS = {ℓ(s)(p) | s ∈ S and p ∈ AP} be the
finite set of values appearing in S.

Given finite nonempty sets X of directions and V ⊆ [−1, 1] of possible values,
a VAP-labeled X-tree, (or (VAP, X)-tree for short, or VAP-tree when directions are
understood), is a pair t = (τ, ℓ) where τ ⊆ X+ is closed under non-empty prefixes,
all nodes u ∈ τ start with the same direction r, called the root, and have at least
one child u · d ∈ τ , and ℓ : τ → VAP is a weight function. We let Valt ⊆ V be the
image of ℓ on τ . A branch λ = u0u1 . . . is an infinite sequence of nodes such that
for all i ≥ 0, ui+1 is a child of ui. For i ≥ 0, λ≥i denotes the suffix of λ that starts
at node ui, and we let Br(u) be the set of branches that start in node u.

A binary tree is a X-tree where |X| = 2. A tree is regular if it is the unfolding
of some finite Kripke structure.

Let p ∈ AP. A p-labeling for a V-tree t = (τ, ℓ) is a mapping ℓp : τ → {−1, 1}.
The composition of t with ℓp is the (V ∪{−1, 1})AP-tree defined as t⊗ℓp =def (τ, ℓ′),
where ℓ′(u)(p) = ℓp(u) and ℓ′(u)(q) = ℓ(u)(q) for q ̸= p.

Finally, the tree unfolding of a weighted Kripke structure S with state set S is
the ValAP

S -labeled S-tree tS = (hS , ℓ
′), where ℓ′(u) = ℓ(last(u)) for every u ∈ hS .

Different semantics exist for QCTL∗, which differ on how proposition quantifi-
cation is interpreted. Notably, in the structure semantics, labelings for quantified
propositions are defined directly on the states of the structure, while in the tree se-
mantics, labelings are defined on the tree unfolding (see (Laroussinie and Markey,
2014) for more on the different semantics for QCTL∗). In this paper we focus on
the tree semantics, which allows capturing perfect-recall strategies.

Definition 7.6 (Semantics). Consider a finite set V ⊆ [−1, 1] of possible values.
The satisfaction value JφKt(u) of a BQCTL∗[F ] state formula φ in a node u of a
VAP-tree t = (τ, ℓ), and the satisfaction value JψKt(λ) of a path formula ψ along

2i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.



7.2. Satisfiability and Synthesis of SL[F ] 119

some branch λ of t, are defined inductively as follows:

JpKt(u) = ℓ(u)(p)
J∃p. φKt(u) = sup

ℓp : τ→{−1,1}
JφKt⊗ℓp(u)

JEψKt(u) = sup
λ∈Br(u)

JψKt(λ)

Jf(φ1, . . . , φn)Kt(u) = f(Jφ1Kt(u), . . . , JφnKt(u))
JφKt(λ) = JφKt(λ0)

JXψKt(λ) = JψKt(λ≥1)
Jψ1Uψ2Kt(λ) = sup

i≥0
min(Jψ2Kt(λ≥i), min

0≤j<i
Jψ1Kt(λ≥j))

Jf(ψ1, . . . , ψn)Kt(λ) = f(Jψ1Kt(λ), . . . , JψnKt(λ))

For a tree t with root r we write JφKt for JφKt(r), for a weighted Kripke structure
S we write JφKS for JφKtS .

7.2.2 Deciding BQCTL∗[F ] Satisfiability

As for SL[F ], we define the quantitative satisfiability problem for BQCTL∗[F ] as
follows.

Definition 7.7. The satisfiability problem for BQCTL∗[F ] takes a formula φ ∈
BQCTL∗[F ] and a threshold ε > −1, and decides whether there exists a wKS S s.t.
JφKtS ≥ ε.

Satisfiability for QCTL∗ with structure semantics is undecidable (French, 2003),
but decidable for the tree semantics (Laroussinie and Markey, 2014) which we con-
sider in this paper. Relying on the automata construction developed in (Bouyer
et al., 2019) to model check BQCTL∗[F ], we show that satisfiability is also decidable
for BQCTL∗[F ].

Theorem 7.1. Satisfiability of BQCTL∗[F ] is decidable.

In the rest of the section we sketch the proof of this theorem, and refer to
Appendix B for the full proof.

The lower bounds are inherited from the satisfiability problem for
QCTL∗ (Laroussinie and Markey, 2014). The reduction is direct with threshold
ε = 1.

For the upper bounds, the first step is to show that one can restrict attention to
structures with binary branching, i.e., where each state has at most two successor
states.

Given a finite wKS S, by adding dummy nodes labeled with proposition pint one
can build a wKS S̃ with binary branching that simulates S; given a BQCTL∗[F ]
formula φ, one can then define a formula φ̃ that ignores these dummy nodes and
has same satisfaction value on S̃ as φ on S.



120 Chapter 7. Synthesis of Mechanisms

Lemma 7.1. For every BQCTL∗[F ] formula φ and every finite wKS S, JφKS =
Jφ̃KS̃ .

Let Φ be a BQCTL∗[F ] formula and ε > −1 a threshold. Let also Φ̃ be the corre-
sponding formula on structures with binary branching, and φ2 = ¬pint∧AGF¬pint.
Consider also function Bool such that Bool(x) = 1 if x ∈ {−1, 1}, and −1 otherwise,
which we use to check that propositions take only Boolean values −1 or 1. We can
prove the following:

Lemma 7.2. There exists a (finite) wKS S such that JΦKS ≥ ε if and only if there
exists a regular binary tree t such that JAGBool(pint) ∧ φ2 ∧ Φ̃Kt ≥ ε.

It is shown in (Bouyer et al., 2019) that we can build an automaton A that
accepts binary trees t on which the satisfaction value of AGBool(pint) ∧ φ2 ∧ Φ̃
belongs to [ε, 1] (we refer to (Pin, 2021, Chapter 8) for standard definitions and
results on tree automata). The number of states of the automaton is (k + 1)-
exponential in the nesting depth of the formula, and its index k-exponential. From
Lemma 7.2 and the fact that every regular tree language contains a regular tree
it follows that A is nonempty if and only if there exists a finite wKS S such that
JΦKt ≥ ε. The emptiness of A can be tested in time polynomial in the number
of states and exponential in the index. The overall complexity is thus (k + 1)-
exponential in time.

7.2.3 Decidable Cases for SL[F ] Satisfiability

In the qualitative setting, satisfiability of ATL with strategy context and SL are
known to be decidable in two cases: when the number of possible actions is bounded,
and when agents play in turns. With respect to bounded actions, we call B-wCGS a
wCGS whose set of actions is B. Concerning turn-based systems, intuitively a wCGS
is turn-based when in every position there is a unique agent who can determine the
next position by the choice of its action. Formally, a wCGS G = (B, V, vι, δ, ℓ) is
turn-based if for every position v ∈ V there exists a unique agent i such that for
every successor v′ ∈ {δ(v,a) | a ∈ BN} there is an action a such that δ(v,a) = v′

for all joint actions a where ai = a. We call owner of a position the agent that can
choose the successor.

We show that, as for SL, the satisfiability problem for SL[F ] is decidable when
the number of actions is bounded (a priori) or systems are turn-based, if in addition
we restrict to models in which atomic propositions take values in a given finite set
of possible values. Remind we consider a finite model, which has a finite (and thus
bounded) number of actions. However the set of all finite models contains models
with arbitrarily large sets of actions. The bound on the number of actions is put on
the set of models considered for the satisfiability problem. Given a set V ⊆ [−1, 1] of
possible values with {−1, 1} ⊆ V, we call V-weighted wCGS a wCGS whose weight
function takes values in V.



7.2. Satisfiability and Synthesis of SL[F ] 121

Definition 7.8. Given a finite set V ⊂ [−1, 1] such that {−1, 1} ⊆ V, the V-
satisfiability problem for SL[F ] is the restriction of the satisfiability problem to
V-weighted wCGS.

We establish the following results:

Theorem 7.2. Let V be a finite set of values and B a finite set of actions. Then
V-satisfiability of SL[F ] over B-wCGS is decidable.

Proof. We use a slight modification of the proof in Laroussinie and Markey (2015)
which shows how, when the number of actions is bounded, one can reduce the
satisfiability problem for SL to that for QCTL∗.

Let B = {a1, . . . , an} and N = {i1, . . . , im}. First, consider the formula

ΦBool = AG
∧

i∈N,a∈B
Bool(mova

i )

This formula has value 1 in a tree if propositions mova
i only take Boolean values in

all nodes of the tree, otherwise it has value -1. Define also

Φedge = AG

(
∧

a∈BN

E1Xmova) ∧AX(
∨

a∈BN

mova)


where mova stands for ∧

i∈N(movai
i ∧

∧
a′ ̸=ai ¬mova′

i ), and

E1Xφ = EXφ ∧ ∀p.(EX(φ ∧ p)→ AX(φ→ p))

expresses the existence of a unique successor that satisfies φ (where φ is a formula
that only takes Boolean values). When all propositions mova

i have Boolean value,
Φedge can only take value 1 or -1 in a tree, and this value is 1 if and only if the tree
is the unfolding of some wCGS where in every position, proposition mova

i has value
1 if agent i played action a in the last move, and −1 otherwise.

Consider now the following translation from SL[F ] to BQCTL∗[F ∪ {Bool}]. For
every SL[F ] formula φ and partial function V : N→ Var, we inductively define the
BQCTL∗[F ] formula φ̂V . The translation is identical to the one in Laroussinie and
Markey (2015), but for completeness we give the cases for strategy quantification
and binding, as well as temporal operators.

∃̂s. φ
V

= ∃pa1
s . . . ∃pan

s .AG

 ∨
a∈B

pa
s ∧

∧
a′ ̸=a

¬pa′
s

 ∧ φ̂V

(̂i, s)φ
V

= φ̂V [i7→s]

X̂φ
V = A

[
ψ V

out → (Xφ̂V )
]

φ̂Uψ
V

= A
[
ψ V

out → (φ̂V Uψ̂V )
]



122 Chapter 7. Synthesis of Mechanisms

where ψ V
out = G

∧
i∈N

∧
a∈B(pa

V (i) → Xmova
i ).

Finally we let Φ̂ = ΦBool ∧ Φedge ∧ Φ̂∅. We have that for every finite wCGSG
there exists a finite wKS S such that JΦKG = JΦ̂KS , where S is obtained by partially
unfolding G to place propositions mova

i appropriately. Conversely, for every finite
S such that JΦ̂KS > −1 we have that JΦBool ∧ ΦedgeKS = 1 and thus S encodes a
finite wCGSG such that JΦKG = JΦ̂KS .

Theorem 7.3. Let V be a finite set of values. Then V-satisfiability of SL[F ] over
turn-based wCGS is decidable.

Proof. Again, we adapt the proof from Laroussinie and Markey (2015). We assume
that in a turn-based wCGS, each position is labelled with a proposition turni where
i is the owner of the position. We use formula

φtb = AG

 ∧
i∈N

Bool(turni) ∧
∨
i∈N

(turni ∧
∧
i′ ̸=i
¬turni′)


that has Boolean value, and has value 1 if and only if propositions turni only take
Boolean values (-1 or 1), and exactly one of them has value 1 in each node.

We now define the following translation from SL[F ] to BQCTL∗[F ], where V :
N→ Var is a partial function.

∃̂s. φ
V

= ∃movs.AG(E1Xmovs ∧ φ̂V )

(̂i, s)φ
V

= φ̂V [i7→s]

X̂φ
V = A

[
ψ V

out → (Xφ̂V )
]

φ̂Uψ
V

= A
[
ψ V

out → (φ̂V Uψ̂V )
]

where ψ V
out = G(∧i∈N(turni → Xmovi)). Finally, formula Φ has value greater than

ε in some turn-based wCGSif and only if formula φtb ∧ Φ̂∅ has value greater than
ε in some tree.

Concerning complexity, for Theorems 7.1, 7.2 and 7.3 the problems are (k+ 1)-
Exptime-complete where k is the maximal number of nested quantifiers on propo-
sitions (for BQCTL∗[F ]) or strategies (for SL[F ]). Blocks of successive quantifiers
can be counted as one if they are all existential or all universal, so that an existen-
tial quantification on a strategy profile for all agents just adds one exponential for
instance.

7.2.4 Automated Synthesis of Optimal Mechanism

We describe how we can use our algorithm for SL[F ] satisfiability to synthesize
mechanisms that optimally satisfy the specification, in the sense that they achieve
the best possible satisfaction value for the specification.



7.2. Satisfiability and Synthesis of SL[F ] 123

First, we observe that the algorithms developed in the previous section for the
satisfiability problem of SL[F ] in the case of bounded actions or turn-based systems
can be tweaked to actually return a satisfying wCGS when one exists. Indeed classic
algorithms to solve emptiness of parity tree automata can produce a witness regular
tree accepted by the automaton (see for instance Pnueli and Rosner (1989)), and
from such a regular tree in our setting we can infer a witness wCGS. In particular,
once we have a regular tree represented as a finite transition system with states
labelled with atomic propositions, one easily obtains the desired wCGS by seeing
states as positions and keeping the same labelling for “normal” atomic propositions.
Concerning transitions, in the case of bounded actions, the labelling for “special”
propositions movc

a induces a transition function for action profiles. In the turn-based
case, turns are described by the labelling for the “special” propositions turna; one
can then use one action for each possible position, and a dummy action for inactive
agents, to represent possible choices of agents and define the transition function.
Finally one can remove the dummy internal positions (labelled with pint) introduced
in the reduction to binary branching. The synthesis procedure produces models
with abstract actions, but their “real world” meaning can be recovered thanks to
the propositions labelling (assuming the specification was precise enough).

Second, it is proved in (Bouyer et al., 2019) that given a finite set V of possible
values for atomic propositions and a formula φ ∈ SL[F ] there is only a finite number
of possible satisfaction values φ can take in any wCGS, and we can compute an
over-approximation of this set.

Lemma 7.3 (Bouyer et al. (2019)). Let V ⊂ [−1, 1] be a finite set of values
with {−1, 1} ⊆ V and let φ be an SL[F ] sentence. The set Valφ,V = {JφKG |
G is a V-weighted wCGS} is finite, and one can compute a set Ṽalφ,V of size at
most |V||φ| such that Valφ,V ⊆ Ṽalφ,V .

Algorithm 3 synthesis(Φ,V)
Input: a SL[F ] specification Φ and a set of possible values for atomic propo-

sitions V.
Output: a wCGS G such that JΦKG is maximal

1: Compute ṼalΦ,V
2: Let ν1, . . . , νn be a decreasing enumeration of ṼalΦ,V
3: for i← 1 to n do
4: Solve V-satisfiability for Φ and ε = νi

5: if there exists G such that JΦKG ≥ νi then
return G

Consider now Algorithm 3. This algorithm synthesizes a wCGS that maximizes
the satisfaction value of the given SL[F ] specification, in all cases where the satis-
fiability problem for SL[F ] can be solved and a witness produced. In particular, it
works in the case of bounded actions and the case of turn-based systems. We now
show how this can be used to solve automated mechanism design.



124 Chapter 7. Synthesis of Mechanisms

7.3 Synthesis for Mechanism Design

This section aims to motivate the use of synthesis of SL[F ] for mechanism design.
We first recall basic concepts used to formalize mechanisms, which determine how
to choose one option among several alternatives, based on agents’ strategies. Since
many mechanisms describe monetary transfers, we assume that each alternative is
a tuple (x,p) where x ∈ X is a choice from a finite set of choices X ⊂ [−1, 1], and
pi ∈ [−1, 1] is the payment for agent i. For each agent i ∈ N, let also Θi ⊂ [−1, 1] be
a finite set of possible types for i. We let Θ = ∏

i∈N Θi, and we note θ = (θi)i∈N ∈ Θ
for a type profile, which assigns a type θi to each agent i. The type θi of an agent
i determines how she values each choice x ∈ X ; this is represented by a valuation
function vi : X ×Θi → [−1, 1].

In this section we assume that F contains the constant θi and the function vi
for each agent i and type θi ∈ Θi. We also assume that F contains the difference
function −, the n-ary sum function ∑, the equality function = and the comparison
functions ≤, >, < and ̸=. For readability we use the infix notation x − y. These
functions are defined with the standard meaning. Finally, we assume that types,
payments and valuations are normalized so that all values remain in [−1, 1].

A mechanism consists of a description of the agents’ possible strategies, and a
description of the alternatives that result from them. Similar to Chapter 53, we can
represent mechanisms as wCGS and verify their equilibrium outcome in relation to
a number of economic properties.
Definition 7.9. Let AP ⊇ {choice,payi, terminal : i ∈ N}, where choice and payi
denote respectively the choice elected by the mechanism, and the payment of agent
i. The proposition terminal specifies whether a position is terminal. A mechanism
G is a wCGS over the atomic propositions AP that satisfies the following:

(i) every play eventually reaches a terminal position, i.e., a sink;

(ii) in all non-terminal positions, terminal has value -1.

7.3.1 Characterizing Properties with SL[F ]

SL[F ] can express a variety of important notions in mechanism design, such as strat-
egyproofness, individual rationality, efficiency, budget-balance, Pareto optimality,
and different kinds of game-theoretic equilibria (see Chapter 5). We recall the
formulas for some of these notions. Let θ = (θi)i∈N be a type profile in Θ.

First define utili(θi) =def vi(choice, θi) − payi. This is an SL[F ] formula, whose
value in a terminal position is equal to the agent’s utility, which she tries to maxi-
mize.

We recall that the SL[F ] formula for encoding individual rationality is

IR(θ) =def
∧
i∈N

0 ≤ utili(θi)

3The definitions in this chapter are simplified since we do not encode imperfect information in
the wCGS.



7.3. Synthesis for Mechanism Design 125

Similarly, efficiency is expressed as follows:

EF(θ) =def
∑
i∈N

vi(choice, θi) = maxvθ

where maxvθ = maxx∈X
∑

i∈N vi(x, θi) is a constant in F . In a terminal position, it
means that the social welfare is maximal.

We also recall the SL[F ]-formula that characterizes Nash equilibria:

NE(s,θ) =def
∧
i∈N
∀t.

[
(N−i, s−i)(i, t)F(terminal ∧ utili(θi))

≤(N, s)F(terminal ∧ utili(θi))
]

where s = (si)i∈N is a profile of strategy variables.
The following formula maximizes the value of φ in the terminal positions of all

Nash equilibria:

Max-Nash(φ,θ) =def ∃s.NE(s,θ) ∧ F(terminal ∧ φ)

We now use these formulas to illustrate our approach to mechanism synthesis.
To avoid detailing tie-breaking rules, in the examples we assume agents have distinct
types, that is θi ̸= θr for any r ̸= i and θ ∈ Θ. Given an agent i, we let winsi ∈ (−1, 1]
be a constant value denoting the choice in which i is the winner, with winsi ̸= winsr
for any r ̸= i. We consider the choice set X = {winsi : i ∈ N} ∪ {−1}, where
−1 specifies the case where there is no winner at the end of the game. In the
examples we let each valuation function vi be defined as vi(θi, x) = θi if x = winsi,
and vi(θi, x) = 0 otherwise. That is, the valuation of an agent depends only on her
type and whether she won.

7.3.2 Action-bounded Mechanisms

Action-bounded mechanisms are of great interest since the amount of resources
available is often limited. For instance, the actions in a market could consist in
bids representing discrete monetary values bounded by the participants’ budget.
Besides that, there are games where the available budget is limited due to fair-
ness constraints, e.g., sports clubs negotiating the hiring of professional players.
Furthermore, a number of mechanisms have small range of available actions. For
instance, in the Dutch and Japanese auctions, players can only bid “accept” or
“reject” in each turn. In this section, we illustrate the synthesis problem with such
restriction by considering rules based on the Japanese auction.

Example 7.1. The Japanese auction is an ascending protocol in which the price is
repeatedly raised by the auctioneer until only one bidder remains. The remain-
ing bidder wins the item at the final price (Klemperer, 1999). Let us fix a price
increment inc > 0. There are only two possible actions, accept (acc) or decline
(dec), so that the set B = {acc,dec} is indeed bounded. Furthermore, we let



126 Chapter 7. Synthesis of Mechanisms

Φ = {price, sold, initial, choice, bidi,payi, terminal : i ∈ N}, where price denotes the
current price, initial denotes whether the position is the initial one, sold specifies
whether the item was sold, and bidi specifies whether i is an active bidder.

The following SL[F ]-formulae are a partial description of a mechanism, inspired
by the Japanese auction. Similar rules for encoding auctions through ADL can be
seen in Chapter 3. Rule J1 says that proposition initial implies the position is not
terminal and the price is zero. Additionally, the auction will eventually reach a
position in which terminal will be true and that proposition initial can only be true
in the initial position. Rule J2 says the good is sold whenever the proposition choice
does not have the value −1. Rules J3-J4 specifies the price update. Rule J5 chooses
a player as the winner if she is the only one bidding for the item. When no agent
can be chose as the winner, the choice is −1 (Rule J6). Rules J7-J8 specify the
payment for each agent, which is either equal to the price or zero, depending on
whether the agent won the auction. Rule J9 specifies that for all type profiles there
should exist a NE whose outcome is IR and EF.

J1. AG((initial→ price = 0 ∧ ¬sold ∧ ¬terminal) ∧ (XG¬initial ∧ F terminal))

J2. AG(sold↔ choice ̸= −1)

J3. AG((¬sold ∧ price + inc ≤ 1)→ (price + inc = Xprice ∧ ¬Xterminal))

J4. AG((sold ∨ price + inc > 1)→ (price = Xprice ∧Xterminal))

J5. AG(choice = winsi ↔ bidi ∧
∧

r ̸=i ¬bidi)

J6. AG(choice = −1↔ ¬(∨i∈N(bidi ∧
∧

r ̸=i ¬bidi)))

J7. AG
( ∧

i∈N(choice = winsi → payi = price)
)

J8. AG
( ∧

i∈N(choice ̸= winsi → payi = 0)
)

J9. ∧
θ∈Θ Max-Nash(IR(θ) ∧ EF(θ),θ)

We denote by Σjpn the conjunction of Rules J1-J9. Algorithm 3 constructs a
wCGS that maximizes the satisfaction value of Σjpn. We show that this value is
1, meaning that there exists a mechanism that is individually rational and efficient
for some Nash equilibrium, for all type profiles.

Proposition 7.2. There exists a wCGS-mechanism Gjpn such that JΣjpnKGjpn = 1.

Proof. We construct a wCGS-mechanism Gjpn in which Σjpn has the satisfaction
value equal to one, for any position and assignment.

Let Gjpn = (B, V, δ, ℓ, vι) over AP = {price, sold, initial,winsi,bidi,payi, terminal :
i ∈ N}, where:

• V consists of positions of the form ⟨pr,buyer, θ1, . . . , θn⟩ with p ∈ {0 +x · inc :
0 ≤ x ≤ 1

inc} denoting the current price, winner ∈ N ∪ {none} denoting the
current winner, bi ∈ {−1, 1} specifying whether i is an active bidder, and
s ∈ {−1, 1} specifying whether the item was sold.



7.3. Synthesis for Mechanism Design 127

• In an initial position, the price starts at 0, the item is unsold and there
is no winner or active bidder. That is, the initial positions is vι =
{⟨0, none, (−1, . . . ,−1),−1⟩}.

• If the item is unsold, the transition function increases the price p as long as it
is under 1 and there is at least one active bidder. If there is only one bidder,
she is assigned as the winner. When the item is sold or the price reaches 1,
the atomic propositions remain unchanged after the transition. Formally, for
each position v = ⟨pr, buyer, θ1, . . . , θn⟩ and joint action a = (ai)i∈N, transition
δ(v,a) is defined as follows:

– If s = −1 and p + inc ≤ 1, δ(v,a) = ⟨pr′, buyer′, θ1, . . . , θn⟩ where:

p′ = p + inc

winner′ =


i if ai = acc and ar = dec

for all r ̸= i
none otherwise

b′
i =

1 if ai = acc
−1 otherwise

s′ =

1 if winner′ ̸= none

−1 otherwise

– Otherwise, δ(v,a) = v.

• For each v = ⟨pr, buyer, θ1, . . . , θn⟩ and each i ∈ N, the weight function is
defined as follows:

– ℓ(v,price) = p,
– ℓ(v, choice) = winswinner iff winner ̸= none and ℓ(v,winsi) = −1 other-

wise,
– ℓ(v,bidi) = bi,
– ℓ(v, sold) = s,
– ℓ(v, initiali) = 1 iff v = vι and ℓ(v, initiali) = −1 otherwise,
– ℓ(v,payi) = p iff winsi = winner and ℓ(v,payi) = 0 otherwise, and
– ℓ(v, terminali) = 1 iff s = −1 and p + inc ≤ 1 and ℓ(v, terminali) = −1

otherwise.

It is straightforward to see that Rules J1-J8 are true in any position v ∈ V and
assignmentA. For J9, let π ∈ Hist be a history of length i. We show that there exists
a strategy profile σ such that J∃s.NE(s,θ)∧F(terminal∧(IR(θ)∧EF(θ)))KGjpn(π) =
1. For each agent i, let σi be a strategy defined as follows: σi(last(π)) = acc iff
vi(winsi, θi) ≥ ℓ(last(π), price) + inc; and σi(v) = dec otherwise.



128 Chapter 7. Synthesis of Mechanisms

For seeing this strategy is a Nash equilibrium, let A be an assignment such that
A(i) = σi and A′ be an assignment equal to A, except by the strategy associated
to agent i (that is, A′(i) ̸= A(i)).

The definition of Gjpn ensures the agents utility can be different from zero only
in terminal positions. Furthermore, as this value depends only on the immediately
preceding position and action, we consider the agent’s utility after each transition.
Let θ = (θi)i∈N be a type profile in Θ. If A′(i)(last(π)) = acc when vi(winsi, θi) <
ℓ(last(π),price)+ inc, then JXutili(θi)KGjpn

A′ (π) ≤ 0 ≤ JXutili(θi)KGjpn
A (π), since by do-

ing the action acc the agent would be risking to get the item at a higher price than
her valuation. Assume A′(i)(π) = acc and vi(winsi, θi) < ℓ(last(π), price) + inc.
By the definition of σi, A(i)(last(π)) = dec then JXutili(θi)KGjpn

A′ (π) ≤ 0 and
JXutili(θi)KGjpn

A (π) = 0, since by doing the action acc the agent would be risking
to get the item at a higher price than her valuation. Now consider the case in
which A′(i)(last(π)) = dec and vi(winsi, θi) ≥ ℓ(last(π),price) + inc. By definition,
A(i)(last(π)) = acc. Thus, JXutili(θi)KGjpn

A′ (π) = 0, while JXutili(θi)KGjpn
A (π) ≥ 0,

since by doing the action dec the agent would not win the item, whereas doing the
action acc could lead to winning at a price lower than her valuation. The other cases
are proven similarly. Since no agent can improve her utility through a unilateral
change of strategy, the strategy profile σ = (σi)i∈N is a Nash equilibrium. Fur-
thermore, no agent i following the strategy σi can have a negative utility, since she
chooses the action dec whenever the price would became higher than her valuation.
From Rule J1, we have JFterminalKGjpn(π). Finally, since the agents have distinct
valuations, following σ would lead to a position in which the item is assigned to
the agent who valuates it the most. If no agent had a valuation for winning the
item grater than 0, no winner would be assigned and the social welfare would be 0.
Thus, J∃s.NE(s,θ) ∧ F(terminal ∧ (IR(θ) ∧ EF(θ)))KGjpn(π) = 1.

Such an optimal mechanism is produced by Algorithm 3.

7.3.3 Turn-based Mechanisms

The turn-based restriction captures asynchronous bidding behaviour, which is con-
sidered, for instance, for investigating the convergence of bidding strategies for
sequential keyword auctions (Cary et al., 2007). Additionally, in a number of mech-
anisms, such as picking sequences (Bouveret and Lang, 2014) and circle auctions
(Schreiber and Romero, 2021), agents play in turns. Hereby, we exemplify the syn-
thesis of a turned-based mechanism. In this example we also show how Algorithm 3
can be used to maximize the social welfare.

Example 7.2. The English auction is an ascending auction in which the participants
are allowed to outbid the last bidder by proposing a highest price. The auction ends
when no agent is willing to raise the last bid. The highest bidder wins the item at
her proposed price (Nisan et al., 2007).

In this specification, let us consider two agents, with N = {i1, i2}. We let −i
denote the opponent of i ∈ N. Furthermore, we let Φ = {price, initial, choicei,



7.3. Synthesis for Mechanism Design 129

bidi, turni,payi, terminal : i ∈ N}, where price denotes the current price, initial
denotes whether the position is the initial one, turni specifies whether it is i’s turn
and bidi specifies the value of i’s bid.

The following SL[F ]-formulae are a partial description of a two-player turned-
based variant of the English auction. Rule E1 says that proposition initial implies
it is the turn of agent i1, the position is not terminal and the bids are zero. Rule
E2 defines the price as the highest bid among the two players. Rule E3 specifies
the turn taking. Rules E4-E6 specify the choice of winner: when an agent outbids
her opponent, she is the (temporary) winner. If she bids lower, the game ends and
the opponent wins. Finally, if someone bids 1, the auction ends and the winner is
the player who had the turn. The value of formula E7 is the social welfare in the
best NE for type profile θ.

E1. AG(initial→ turni1 ∧ ¬turni2 ∧ ¬terminal ∧∧
i∈N(bidi = 0))

E2. AG(price = max(bidi1 , bidi2))

E3. AG
(
¬terminal→ ∧

i∈N(turni → ¬Xturni ∧ ¬turni → Xturni)
)

E4. AG
(
¬terminal→ ∧

i∈N(bid−i < Xbidi ∧ turni → Xchoice = winsi)
)

E5. AG
(
¬terminal → ∧

i∈N(bid−i ≥ Xbidi ∧ turni → X(choice = wins−i) ∧
terminal)

)
E6. AG

( ∧
i∈N(bidi = 1 ∧ turni ∧X(choice = winsi) ∧ terminal)

)
E7. Max-Nash(∑i∈N vi(choice, θi),θ)

Letting Σeng(θ) be the conjunction of Rules E1-E7 alongside with the payment
rules in Σjpn (Rules J7-J8), we have:

Proposition 7.3. There exists a wCGS-mechanism Geng such that JΣeng(θ)KGeng =
maxx∈X

∑
i∈N vi(x, θi), for each type profile θ ∈ Θ.

Proof. We construct a wCGS-mechanism Geng in which Σeng has the satisfaction
value equal to one, for any history and assignment. Let 0 > inc > 1 be a constant
value and the action set be defined as B = {1−x · inc : 0 ≤ x ≤ 1

inc ∪{0}, where each
action denotes the value the agent is willing to pay for the item. Let Geng = (B, V,
δ, ℓ, vι) over AP = {price, initial, choicei, bidi, turni,payi, terminal : i ∈ N}, where:

• V consists of positions of the form ⟨(bi)i∈N, own,winner, tr⟩ with bi ∈ B de-
noting the value of i’s bid and own ∈ N specifying the owner of the position
and tr ∈ {−1, 1} denoting whether the position is terminal;

• In an initial position, the bids are 0, i1 has the turn and it is not a terminal
position. That is, the initial position is vι = {⟨(0, 0), i1, i1,−1⟩}.

• For each position v = ⟨(bi)i∈N, own,winner, tr⟩ and joint action a = (ai)i∈N,
transition δ(v,a) is defined as follows:



130 Chapter 7. Synthesis of Mechanisms

– If tr = −1, δ(v,a) = ⟨(b′
i)i∈N, own′,winner, tr′⟩ where:

b′
i =

ai if own = ie
bi otherwise

own′ =

i if own ̸= ie
−i otherwise

winner′ =

i if ai > b−i

−i otherwise

tr′ =


1 if max(aown,b−own) = 1 or

aown ≤ b−own

−1 otherwise

– Otherwise, δ(v,a) = v.

• For each v = ⟨(bi)i∈N, own,winner, tr⟩ and each i ∈ N, the weight function is
defined as follows:

– ℓ(v,price) = max(bi1 , bi2),

– ℓ(v, initiali) = 1 iff v = vι and ℓ(v, initiali) = −1 otherwise,

– ℓ(v, choice) = winswinner,

– ℓ(v,bidi) = bi,

– ℓ(v, turni) = 1 iff own = i and ℓ(v, turni) = −1 otherwise,

– ℓ(v,payi) = ℓ(v,price) iff winsi = winner and ℓ(v,payi) = 0 otherwise,
and

– ℓ(v, terminali) = tr.

It is straightforward to see that Rules E1-E7 and Rules J7-J8 have the satisfac-
tion value 1 for any history in Hist and assignment A.

Let θ ∈ Θ. The proof for Rule E7 proceeds similarly to the proof for Rule
J9 (Proposition 7.2), by noticing the strategy profile in which the agents’ raise
their bid the minimum possible (up to their valuation) in each turn is a Nash
equilibrium. Furthermore, since this equilibrium is efficient, Rule E7 will have the
satisfaction value equal to the maximum social welfare, that is JΣeng(θ)KGeng =
maxx∈X

∑
i∈N vi(x, θi).

As a result, Algorithm 3 applied to ∧
θ∈Θ Σeng(θ) returns a mechanism that

satisfies all the rules E1-E7 and J7-J8, and in which the minimal social welfare in
all possible type profiles is as high as possible.



7.4. Conclusion 131

Complexity The synthesis problem in these examples can be solved in 3-
Exptime. The complexity is dominated by Rules J9 and E7, which express the
existence of NE. Without them the complexity would be in 2-Exptime. Most im-
portantly, the complexity is only in the size of the formula, which is typically rather
small.

Approximate mechanisms The well-known results of Green and Laffont (1979)
and Myerson and Satterthwaite (1983) show the impossibility of defining mecha-
nisms whose equilibrium is efficient while having strict balance of monetary trans-
fers. These impossibility results motivate the design of mechanisms that attempt
to circumvent this problem by approximating or relaxing target properties. The
quantitative semantics of SL[F ] and Algorithm 3 enable synthesizing mechanisms
that approximate efficiency by maximizing social welfare.

7.4 Conclusion

We propose a novel approach for Automated Mechanism Design in which mech-
anisms can be automatically generated (or synthesized) from partial or complete
specifications in a rich logical language. The great expressiveness of the specifica-
tion language SL[F ] makes our approach of automated synthesis very general, unlike
previous proposals. Another advantage of our work is the use of formal methods
techniques, which are developed to guarantee their correctness by construction.

While mechanism synthesis from SL[F ] specifications is undecidable, we solve
it in two cases: when the number of actions is bounded, and when agents play
in turn. We achieve this thanks to reductions to the satisfiability problem for
BQCTL∗[F ], which we prove to be decidable. These two restrictions still preserve
enough expressiveness to model relevant scenarios of mechanism synthesis, which
we illustrate with examples based on auctions. The high complexity of the synthesis
problem is only in the size of the formula, which is typically rather small as we saw
in the examples.

The mechanism generated by Algorithm 3 does not need to be unique. The
algorithm returns an arbitrary mechanism that maximizes the satisfaction value of
the specification. Choosing the best mechanism (e.g., in terms of compactness of
the wCGS) when the solution is not unique is an interesting open problem.

We also notice that some aspects of AMD could be expressed in SL with standard
Boolean-valuated semantics. However, the quantitative semantics of SL[F ] makes
it possible to synthesise mechanisms that approximate a specification (satisfy it as
much as possible), or maximize some value (such as social welfare in an equilibrium),
which is not possible with SL.





Chapter 8

Conclusion

This thesis investigated an application of logics and strategic reasoning for Game
Theory and Multi-Agent Systems. In particular, we propose the use of formal meth-
ods for the specification, design and evaluation of auctions-based markets and, more
generally, preference aggregation mechanisms. In this final chapter, we summarize
the contribution of each chapter and discuss perspectives for future work.

8.1 Summary of Contributions and Discussion

The first part of this thesis handled the problem of representing auctions using log-
ical languages. In Chapter 2, we have presented the Auction Description Language
(ADL), a unified framework for representing auction protocols. Our work is at the
frontier of auction theory and knowledge representation. ADL provides tools for
automated verification of properties for direct mechanisms. We showed how stages
in a state transition model may represent direct mechanisms and be evaluated as
such. The majority of properties that we considered (noting that at the evaluating
a stage in an ST-model essentially boils down to model-checking ADL-formulae) can
be checked in Ptime when the functions considered can be computed in polyno-
mial time. Thus, ADL enables reasoning about important aspects for designing and
playing auctions, while having a reasonable complexity cost.

ADL addresses important dimensions of auction-based markets and is general
enough to represent most auction settings. In Chapter 3, we illustrated its usefulness
by showing how to represent a number of representative auctions, which include
features from single and multi-stage protocols, multiple items, multiple copies of
those items and exchange protocols (which generalize double-sided auctions). We
evaluate such protocols in relation to the well-formedness of their descriptions and
the aforementioned properties of direct mechanisms.

In Chapter 4, we extended ADL to allow reasoning about knowledge and action
choice. The resulting language (denoted ADLK), includes epistemic operators and
action modalities and is aimed for the design of General Auction Players and the
characterization of their rational behavior when reasoning about actions and other
players’ rationality. Since real world players may have time restrictions to decide
their actions, we explore bounded rationality in relation to the level of higher-order
knowledge about other agents and bounded looking-ahead beyond the next state.
However, the inclusion of new operators came with a computational cost, as the
model-checking problem for ADLK is in Exptime.



134 Chapter 8. Conclusion

The main limitation of ADL is the semantics based on fixed paths, that is,
non-alternating executions of an auction. This means it is not possible to en-
code through ADL-formulae conditions that compare the effect of different strategic
behavior. An example of such condition is strategyproofness, where one should
contrast the agents’ utility after truthfully reporting her preference and after lying.
Here, we demonstrated the use of meta-reasoning over the state-transition model for
comparing alternative executions of an auction. Furthermore, evaluating indirect
mechanisms requires capturing the terminal outcomes (that is, the final trades and
payments) in strategic equilibrium. Complex solution concepts, such as Nash and
dominant strategy equilibrium, cannot be encoded through ADL-formulae. Log-
ics focused on strategic reasoning are more suitable for considering this problem
(e.g., ATL with Strategy Contexts (Brihaye et al., 2009) and SL (Chatterjee et al.,
2010)). Finding a balance between expressivity and complexity is an open question,
as such expressive languages face decidability issues and high complexity for model-
checking (e.g., the satisfiability problem of SL is undecidable and its complexity for
model-checking is NonElementary).

The second part of this thesis investigated strategic reasoning and formal meth-
ods for Automated Mechanism Design (AMD). Chapter 5 proposes the use of a
strategic logic for the verification of mechanisms. The logic considered is a new
variant of Strategy Logic with quantitative features, imperfect information and
epistemic operators, that we called SLK[F ]. We first showed how mechanisms can
be cast as concurrent-game structures. We then showed how SLK[F ] can express
that a mechanism implements a social choice function, a fundamental concept in
mechanism design. This then allowed us to express in SLK[F ] whether a mechanism
satisfies desired properties related to the expected behavior of the participants as
well as to the quality of the chosen outcome. We illustrated this with a number
of important properties often required in auctions, or more generally in mecha-
nism design: strategyproofness, individual rationality, efficiency, budget-balance
and Pareto optimality (Nisan et al., 2007). We also considered epistemic aspects
and showed how, thanks to the epistemic operators in SLK[F ], we can express prop-
erties relating agents’ revenues with their beliefs about other agents’ preferences.
Verifying that a mechanism satisfies a property then consists of model checking an
SLK[F ] formula, which we show can be done in Pspace for memoryless strategies
(and is thus a Pspace-complete problem).

Still in the context of formal verification of auctions and mechanisms, in Chapter
6 we consider the problem of reasoning about strategies that are human-readable
while also being machine processable. We introduced a quantitative semantics
for SL with Natural Strategies and imperfect information (denoted NatSL[F ]) and
argued it provides a new perspective for the verification and design of novel mech-
anisms based on the complexity of strategies. First, we focused our attention on
an interesting type of repeated mechanism: the keyword ad auction. We show how
to model popular strategies for this game using NatSL[F ] and proved properties
pertaining to this game. In a second stage, we analysed our novel variant of SL
in relation with its distinguishing power, expressivity, and complexity of the model



8.2. Perspectives and Future Work 135

checking problem, for natural strategies with and without recall. We proved that
the model-checking problem for NatSL[F ] is Pspace-complete and that NatSL[F ]
has incomparable distinguishing and expressive power to SL[F ] with standard com-
binatorial strategies of arbritrary complexity. This means that NatSL[F ] allows to
express properties that cannot be captured in SL[F ] (and vice-versa).

Finally, in Chapter 7 we proposed a new approach for AMD, which offers a novel
perspective on the design of mechanisms. Our approach enables automatically gen-
erating optimal mechanisms from a quantitative logical specification, which may
include not only game rules but also requirements over the strategic behavior of
participants and quality of the outcome. We rephrased the AMD problem in terms
of synthesis from SL[F ] specifications. To solve this synthesis problem we investi-
gated the related satisfiability problem for SL[F ], which had not been studied so
far. We show that, as for classic SL (Laroussinie and Markey, 2015) the problem is
undecidable but can be solved in two cases: when the number of actions is bounded,
and when agents play in turn. In both cases, we show that the complexity is not
worse than the standard Boolean-valuated SL. We then illustrated the relevance of
mechanism synthesis in these two cases with examples based on Auction Design. An
advantage of this approach is that it can be used to approximate target properties
and therefore minimize the effects entailed by economic impossibility results.

8.2 Perspectives and Future Work

There are many directions from this work that we believe would be worth investi-
gating in the future. In most of this thesis, we put the emphasis on the auctioneer
and mechanism designer. A first direction is to design a ADL-based general auction
player that can interpret and reason about the rules of an auction-based market.
In such case, search optimization techniques used for General Game Playing (see,
for instance (Finnsson, 2012; Wang et al., 2018)) may be adapted for considering
utility optimization in auctions.

It is also an interesting line of work to develop the axiomatic system for ADL and
prove its soundness and completeness with respect to the semantics based on state
transition models. It would require a combination of techniques used for Epistemic
GDL (Jiang et al., 2016) and first-order logic with dependent types (Rabe, 2006).

In relation to AMD, the use of the probabilistic extension of SL (Aminof et al.,
2019) would allow handling stochastic features often present in auctions. Going from
deterministic setting to a more general and probabilistic one is challenging due to
several aspects. First, the wide and heterogeneous range of settings considered in
the literature obscures the path for a general and formal approach to verification.
The setting may consider deterministic or randomized mechanisms, incomplete in-
formation about agents’ types (Bayesian mechanisms), mixed or pure strategies
and iterative protocols (indirect mechanisms). Second, considering Bayesian mech-
anisms brings out different methods for evaluating a mechanism according to the
time-line for revealing the incomplete information as the game is run.



136 Chapter 8. Conclusion

We studied the verification of mechanisms under memoryless combinatorial
strategies and Natural Strategies with bounded recall. This setting is enough to
capture many kinds of auctions (such as one-shot or English auctions) where mem-
oryless strategies are sufficient to represent the bidders’ behaviour since all the
relevant information can be encoded in a state. However, when participating in
repeated auctions, agents could gather information from other agents’ behaviour
and act based on what happened in previous instances of the game. An interesting
direction is, then, to investigate the use of strategies with recall for learning other
players’ valuations based on their behavior. For such situations we can study the
model-checking problem for SLK[F ] with memoryful strategies. In the qualitative
setting already, imperfect information yields undecidability, but known decidable
cases exist (Berthon et al., 2021; Belardinelli et al., 2020), which should be consid-
ered also in the quantitative case.

We believe the automated synthesis of mechanisms is a promising and powerful
tool for AMD. However, the high expressiveness of SL[F ] may not always be needed
for simple classes of mechanisms, and one may consider fragments of it to achieve
better complexity. Therefore, an interesting direction for future work is to study the
complexity of synthesizing from SL[F ]-fragments, inspired from the SL-fragments
One-Goal SL (Mogavero et al., 2017; Cermák et al., 2015) and Simple-Goal SL (Be-
lardinelli et al., 2019), for instance. These fragments are usually computationally
easier than full SL, and we can hope that similar results can be established in the
quantitative setting. On a related vein, we can study the translation of ADL to
SL[F ]-formulae, so as to include the auction description in the mechanism speci-
fication. In this setting, SL[F ] formulae can be used to express requirements of
well-formed auction descriptions.

The problems contemplated in this thesis are also worth investigating from an
empirical perspective. One direction is to explore the interplay between agents’
bounded rationality and the auctioneer revenue so as to understand the impact of
bounded rationality on mechanism design. An implementation of a model checker
for NatSL[F ] would enable the empirical evaluation of natural strategies and auc-
tions played by participants with restricted memory. Finally, experimental results
could be used to assess the practical relevance of our proposed approaches, espe-
cially in relation to mechanism synthesis from SL[F ] specification due to the high
theoretical complexity of the problem.



Appendix A

Complexity classes

Let us recall some classical notations in the theory of computational complexity.
For all k, n ∈ N, we first define the iterated exponential functions exp0(n) = n and
expk+1(n) = 2expk(n).

By Ptime (respectively, NP) we denote the class of languages (i.e., decision
problems) decidable in polynomial-time deterministic (respectively, nondeterminis-
tic) Turing machines. ∆P

2 denotes the class of languages each of which is decidable
in a polynomial-time deterministic Turing machine with a polynomial number of
queries to an NP language as an oracle.

We note Pspace (respectively, Expspace) for the class of problems solvable
in polynomial space (respectively, exponential space), and for each k ∈ N, we let
k-Exptime be the class of problems that can be solved in time expk+1(n) for some
constant c ∈ N (where n is the size of the input).

We also define the class Elementary of elementary problems, where:

Elementary =
⋃

k∈N
k-Exptime

If a problem is decidable but not elementary it is NonElementary.





Appendix B

Satisfiability of BQCTL∗[F ]

We now present the full proof for the satisfiability of BQCTL∗[F ].

Additional definitions

A tree t = (τ, ℓ) is complete if for all node u ∈ τ and direction d ∈ X, we have
u · d ∈ τ . Given a VAP-labeled X-tree t = (τ, ℓ), we let t = (τ , ℓ) be the only
VAP ∪ {•}-labeled X-tree such that for all u ∈ τ , ℓ(u) = ℓ(u), and for all u ∈ τ \ τ ,
ℓ(u) = {•}, where • is a fresh symbol that labels artificial nodes added to make
the tree complete. Similarly, every VAP ∪ {•}-tree t induces a unique VAP-tree t
obtained by removing each subtree rooted in a node labeled with •.

We refer the reader to (Pin, 2021, Chapter 8) for standard definitions and results
for automata on infinite trees.

Reduction to binary branching

We first show that the satisfiability problem for BQCTL∗[F ] in finite structures can
be reduced to the same problem restricted to structures with binary branching. The
proof is a simple adaptation to the quantitative setting of the one in (Laroussinie and
Markey, 2014) for QCTL∗. We sketch the proof, and refer the reader to (Laroussinie
and Markey, 2014) for details.

For every wKS S we can define a wKS S̃ with binary branching that simulates
wKS: for each state of S with k successors, S̃ contains a binary tree with k leaves,
one for each successor. Internal nodes are dummy nodes, labelled with a fresh
atomic proposition pint. More precisely, pint has value 1 in internal nodes, and −1
in normal states of S.

Now for every formula φ ∈ BQCTL∗[F ] we can define inductively a formula φ̃
such that JφKS = Jφ̃KS̃ . We only give the inductive case for temporal operators, all
other cases distribute over the operators:

X̃φ = X [pintU(¬pint ∧ φ̃)]

φ̃Uφ′ = (pint ∨ φ̃)U(¬pint ∧ φ̃′)

We have the following:

Lemma B.1. For every BQCTL∗[F ] formula φ and every finite wKS S, JφKS =
Jφ̃KS̃ .



140 Appendix B. Satisfiability of BQCTL∗[F ]

Deciding satisfiability of BQCTL∗[F ]

Let nd(φ) be the maximal number of nested quantifiers on propositions in φ. The
following result was established in (Bouyer et al., 2019), for the tree semantics of
BQCTL∗[F ]:

Proposition B.1. Let V ⊂ [−1, 1] be a finite set of values such that {−1, 1} ⊆ V,
and let D be a finite set of directions. For every BQCTL∗[F ] state formula φ and
predicate P ⊆ (−1, 1], one can construct an APT AV,P

φ over (VAP ∪{•})-trees such
that for every VAP-labeled D-tree t,

AV,P
φ accepts t if and only if JφKt ∈ P.

The APT AV,P
φ is of size at most (nd(φ) + 1)-exponential in |φ|, and its index

is at most nd(φ)-exponential in |φ|.

From this result we obtain that satisfiability of BQCTL∗[F ] formulas is decidable.

Theorem B.1. The satisfiability problem for BQCTL∗[F ] is nonelementary decid-
able. For formulas of nesting depth at most k, the problem is (k + 1)-Exptime-
complete.

Proof. The lower bounds are inherited from the satisfiability problem for
QCTL∗ (Laroussinie and Markey, 2014). The reduction is direct with threshold
ε = 1.

For membership, let Φ be a BQCTL∗[F ] formula and ε > −1 a threshold. Let
Φ̃ be the corresponding formula on structures with binary branching, and let φ2 =
¬pint ∧AGF¬pint.

Lemma B.2. There exists a (finite) wKS S such that JΦKS ≥ ε if and only if there
exists a regular binary tree t such that JAGBool(pint) ∧ φ2 ∧ Φ̃Kt ≥ ε.

Proof. If there exists S such that JΦKS ≥ ε, then by Lemma B.1 JΦ̃KS̃ ≥ ε. Also by
construction we have JAGBool(pint)KS̃ = 1 and Jφ2KS̃ = 1, so that JAGBool(pint)∧
φ2 ∧ Φ̃Kt ≥ ε, where t = tS is the regular tree obtained by unfolding S̃.

For the other direction assume there exists a regular binary tree t such that
JAGBool(pint) ∧ φ2 ∧ Φ̃Kt ≥ ε. There exists a wKS S ′ with binary branching of
which t is the unfolding. Since ε > −1 and AGBool(pint)∧φ2 can only take values
1 or -1, we have that JAGBool(pint)∧φ2KS′ = 1. It follows that JΦ̃KS′ ≥ ε and that
S ′ = S̃ for some S. By Lemma B.1 we have that JΦKS = JΦ̃KS̃ ≥ ε.

Now from Proposition B.1 with P = [ε, 1] and φ = AGBool(pint) ∧ φ2 ∧ Φ̃ we
can build an automaton A over (VAP∪{•})-labeled binary trees such that for every
VAP-labeled binary tree t, A accepts t if and only if JΦKt ≥ ε. From Lemma B.2
and the fact that every regular tree language contains a regular tree it follows
that A is nonempty if and only if there exists a finite wKS S such that JΦKt ≥ ε.
The emptiness of A can be tested in time polynomial in the number of states and



141

exponential in the index (Löding, 2021). The overall complexity is thus (k + 1)-
exponential in time.

Actually, observing the construction in (Bouyer et al., 2019) one sees that se-
quences of consecutive quantifiers on propositions can be treated in only one expo-
nential, if they are all existential or all universal.





Appendix C

Published work

The work presented in this thesis is based on the following publications:

• Chapter 2 and 3 are based on:

– Mittelmann, M. and Perrussel, L. (2020c). Game description logic with
integers: A GDL numerical extension. In Proceedings of the Interna-
tional Symposium on Foundations of Information and Knowledge Sys-
tems (FoIKS 2020), volume 12012, pages 191–210. Springer

– Mittelmann, M. and Perrussel, L. (2020a). Auction description language
(ADL): general framework for representing auction-based markets. In
Proceedings of the European Conference on Artificial Intelligence (ECAI
2020), volume 325, pages 825–832. IOS Press

– Mittelmann, M., Bouveret, S., and Perrussel, L. (2021a). A general
framework for the logical representation of combinatorial exchange proto-
cols (extended abstract). In Proceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2021), pages
1602–1604. ACM

– Mittelmann, M., Bouveret, S., and Perrussel, L. (2022a). Represent-
ing and reasoning about auctions. Autonomous Agents and Multi-Agent
Systems, 36(1):20

• Chapter 4 is based on:

– Mittelmann, M. and Perrussel, L. (2020b). An epistemic logic for reason-
ing about strategies in general auctions. In Proceedings of the Workshops
of the International Conference on Logic Programming, volume 2678

– Mittelmann, M., Herzig, A., and Perrussel, L. (2021b). Epistemic rea-
soning about rationality and bids in auctions. In Proceedings of the
European Conference on Logics in Artificial Intelligence (JELIA 2021),
volume 12678, pages 116–130. Springer

• Chapter 5 is based on:

– Maubert, B., Mittelmann, M., Murano, A., and Perrussel, L. (2021).
Strategic reasoning in automated mechanism design. In Proceedings of
the International Conference on Principles of Knowledge Representation
and Reasoning (KR 2021), pages 487–496



144 Appendix C. Published work

• Chapter 6 is based on:

– Belardinelli, F., Jamroga, W., Malvone, V., Mittelmann, M., Murano,
A., and Perrussel, L. (2022). Reasoning about human-friendly strate-
gies in repeated keyword auctions. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2022), pages 1602–1604. IFAAMAS

• Chapter 7 is based on:

– Mittelmann, M., Maubert, B., Murano, A., and Perrussel, L. (2022b).
Automated synthesis of mechanisms. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2022) - to appear



Bibliography

Ågotnes, T. (2006). Action and knowledge in alternating-time temporal logic. Syn-
these, 149(2):377–409.

Ågotnes, T., Van Der Hoek, W., Rodríguez-Aguilar, J. A., Sierra, C., and
Wooldridge, M. J. (2007). On the logic of normative systems. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI 2007),
volume 7, pages 1175–1180.

Ågotnes, T. and Walther, D. (2009). A logic of strategic ability under bounded
memory. Journal of Logic, Language and Information, 18(1):55–77.

Alechina, N., Dastani, M., Logan, B., and Meyer, J.-J. C. (2007). A logic of
agent programs. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI 2007), pages 795–800, Vancouver. AAAI Press.

Alechina, N., Logan, B., Dastani, M., and Meyer, J.-J. C. (2008). Reasoning about
agent execution strategies. In Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), pages 1455–1458,
Estoril. IFAAMAS.

Alechina, N., Logan, B., Nga, N., and Rakib, A. (2009). A logic for coalitions with
bounded resources. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 659–664, Pasadena. AAAI Press.

Alechina, N., Logan, B., Nguyen, H., and Rakib, A. (2010). Resource-bounded
alternating-time temporal logic. In Proceedings of International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 481–488,
Toronto. IFAAMAS.

Almagor, S., Boker, U., and Kupferman, O. (2016). Formally reasoning about
quality. Journal of the ACM, 63(3):24:1–24:56.

Alur, R., Henzinger, T. A., and Kupferman, O. (2002). Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713.

Aminof, B., Kwiatkowska, M., Maubert, B., Murano, A., and Rubin, S. (2019).
Probabilistic strategy logic. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI 2019).

Asselin, F., Jaumard, B., and Nongaillard, A. (2006). A technique for large auto-
mated mechanism design problems. In Proceedings of the International Confer-
ence on Intelligent Agent Technology (IAT 2006).

Aumann, R. (1995). Backward induction and common knowledge of rationality.
Games and Economic Behavior, 8:6––19.



146 Bibliography

Bădică, C., Ganzha, M., and Paprzycki, M. (2006). Rule-based automated price
negotiation: Overview and experiment. In Artificial Intelligence and Soft Com-
puting (ICAISC 2006), pages 1050–1059, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking (Representation
and Mind Series). The MIT Press, Cambridge.

Baral, C. and Uyan, C. (2001). Declarative specification and solution of combina-
torial auctions using logic programming. In Logic Programming and Nonmotonic
Reasoning, pages 186–199, Berlin, Heidelberg. Springer.

Barlo, M., Carmona, G., and Sabourian, H. (2008). Bounded memory with finite
action spaces. Sabanci University, Universidade Nova de Lisboa and University
of Cambridge, 1(1).

Barthe, G., Gaboardi, M., Arias, E., Hsu, J., Roth, A., and Strub, P.-Y. (2016).
Computer-aided verification for mechanism design. In Conference on Web and
Internet Economics.

Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V., and Murano, A. (2019).
Strategy logic with simple goals: Tractable reasoning about strategies. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2019).

Belardinelli, F., Jamroga, W., Malvone, V., Mittelmann, M., Murano, A., and Per-
russel, L. (2022). Reasoning about human-friendly strategies in repeated keyword
auctions. In Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2022), pages 1602–1604. IFAAMAS.

Belardinelli, F. and Lomuscio, A. (2016). Abstraction-based verification of infinite-
state reactive modules. In Proceedings of the European Conference on Artificial
Intelligence (ECAI 2016).

Belardinelli, F., Lomuscio, A., and Malvone, V. (2018). Approximating perfect
recall when model checking strategic abilities. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning (KR 2018),
pages 435–444. AAAI Press.

Belardinelli, F., Lomuscio, A., Murano, A., and Rubin, S. (2020). Verification of
multi-agent systems with public actions against strategy logic. Artificial Intelli-
gence, 285.

Belardinelli, F., Lomuscio, A., and Patrizi, F. (2014). Verification of agent-based
artifact systems. Journal of Artificial Intelligence Research, 51:333–376.

Bellosta, M. ., Kornman, S., and Vanderpooten, D. (2005). A framework for multiple
criteria english reverse auctions. In IEEE/WIC/ACM International Conference
on Intelligent Agent Technology, pages 633–639.



Bibliography 147

Bellosta, M.-J., Kornman, S., and Vanderpooten, D. (2008). A unified framework
for multiple criteria auction mechanisms. Web Intelligence and Agent Systems,
6(4):401–419.

Belnap, N. and Perloff, M. (1990). Seeing to it that: A canonical form for agentives.
In Knowledge representation and defeasible reasoning, pages 167–190. Springer.

Berthon, R., Maubert, B., Murano, A., Rubin, S., and Vardi, M. (2021). Strategy
logic with imperfect information. ACM Transactions on Computational Logic,
22(1).

Bonanno, G. (2015). Epistemic foundations of game theory. In H. van Ditmarsch,
J.Y.Halpern, W. v. d. H. and Kooi, B., editors, Handbook of Logics for Knowledge
and Belief, chapter 9, pages 411––450. College Publications.

Bordini, R., Fisher, M., Visser, W., and Wooldridge, M. (2006). Verifying multi-
agent programs by model checking. Autonomous Agents and Multi-Agent Sys-
tems, 12(2):239–256.

Boutilier, C. and Hoos, H. H. (2001). Bidding languages for combinatorial auctions.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), pages 1211–1217. Morgan Kaufmann.

Bouveret, S. and Lang, J. (2014). Manipulating picking sequences. In Proceedings
of the European Conference on Artificial Intelligence (ECAI 2014).

Bouyer, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., and Perelli, G.
(2019). Reasoning about Quality and Fuzziness of Strategic Behaviours. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2019).

Brihaye, T., Da Costa, A., Laroussinie, F., and Markey, N. (2009). ATL with
strategy contexts and bounded memory. In International Symposium on Logical
Foundations of Computer Science, pages 92–106. Springer.

Bulling, N. and Dastani, M. (2016). Norm-based mechanism design. Artificial
Intelligence, 239:97–142.

Bulling, N. and Farwer, B. (2010a). Expressing properties of resource-bounded
systems: The logics RTL* and RTL. In Proceedings of Computational Logic in
Multi-Agent Systems (CLIMA 2010), page 22–45, Berlin. Springer-Verlag.

Bulling, N. and Farwer, B. (2010b). On the (un-)decidability of model checking
resource-bounded agents. In Proceedings of the European Conference on Artificial
Intelligence (ECAI 2010), volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 567–572, Amsterdam. IOS Press.



148 Bibliography

Bulling, N. and Jamroga, W. (2014). Comparing variants of strategic ability: how
uncertainty and memory influence general properties of games. Journal of Au-
tonomous Agents and Multi-Agent Systems, 28(3):474–518.

Caminati, M., Kerber, M., Lange, C., and Rowat, C. (2015). Sound auction specifi-
cation and implementation. In ACM Conference on Economics and Computation.

Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A. R., Mathieu,
C., and Schwarz, M. (2007). Greedy bidding strategies for keyword auctions.
In Proceedings of the 8th ACM Conference on Electronic Commerce (EC 2007),
page 262–271, New York. Association for Computing Machinery.

Cavallo, R., Parkes, D. C., Juda, A. I., Kirsch, A., Kulesza, A., Lahaie, S., Lubin,
B., Michael, L., and Shneidman, J. (2005). TBBL: A tree-based bidding language
for iterative combinatorial exchanges. In Multidisciplinary Workshop on Advances
in Preference Handling, Edinburgh.

Cermák, P., Lomuscio, A., Mogavero, F., and Murano, A. (2018). Practical verifi-
cation of multi-agent systems against SLK specifications. Information and Com-
putation, 261:588–614.

Cermák, P., Lomuscio, A., and Murano, A. (2015). Verifying and synthesising
multi-agent systems against one-goal strategy logic specifications. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI 2015).

Chatterjee, K., Henzinger, T. A., and Piterman, N. (2010). Strategy logic. Infor-
mation and Computation, 208(6):677–693.

Chen, J. and Micali, S. (2015). Mechanism design with possibilistic beliefs. Journal
of Economic Theory, 156:77–102.

Chen, J. and Micali, S. (2016). Leveraging possibilistic beliefs in unrestricted com-
binatorial auctions. Games, 7(4).

Chen, J., Micali, S., and Pass, R. (2015). Tight revenue bounds with possibilistic
beliefs and level-k rationality. Econometrica, 83(4):1619–1639.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N.,
Padget, J., Phelps, S., Rodríguez-Aguilar, J. A., and Sousa, P. (2006). Issues in
Multiagent Resource Allocation. Informatica, 30(1):3–31.

Clarke, E., Grumberg, O., Kroening, D., Peled, D., and Veith, H. (2018). Model
checking. MIT press.

Conitzer, V. and Sandholm, T. (2002). Complexity of mechanism design. In Pro-
ceedings of the 18th Conference in Uncertainty in Artificial Intelligence (UAI
2002), University of Alberta, Edmonton, pages 103–110. Morgan Kaufmann.



Bibliography 149

Cramton, P. (2011). Simultaneous Ascending Auctions, chapter 4. American Cancer
Society.

Dastani, M. and Jamroga, W. (2010). Reasoning about strategies of multi-agent
programs. In Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2010), pages 625–632, Richland. International
Foundation for Autonomous Agents and Multiagent Systems.

David, C. and Kroening, D. (2017). Program synthesis: challenges and opportuni-
ties. Philosophical Transactions of the Royal Society A, 375(2104):20150403.

de Jonge, D. and Zhang, D. (2021). GDL as a unifying domain description language
for declarative automated negotiation. Autonomous Agents and Multi-Agent Sys-
tems, 35(1):13.

Dima, C. and Tiplea, F. (2011). Model-checking ATL under imperfect information
and perfect recall semantics is undecidable. CoRR, abs/1102.4225.

Dobriceanu, A., Biscu, L., and Badica, C. (2007). Adding a declarative represen-
tation of negotiation mechanisms to an agent-based negotiation service. In 2007
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology - Workshops, pages 471–474.

Duijf, H. and Broersen, J. (2016). Representing strategies. In Proceedings of Inter-
national Workshop on Strategic Reasoning (SR), pages 15–26, New York. Open
Publishing Association.

Dütting, P., Feng, Z., Narasimhan, H., Parkes, D., and Ravindranath, S. S. (2019).
Optimal auctions through deep learning. In Proceedings of the International
Conference on Machine Learning (ICML 2019).

Edelman, B., Ostrovsky, M., and Schwarz, M. (2007). Internet advertising and the
generalized second-price auction: Selling billions of dollars worth of keywords.
American Economic Review, 97(1):242–259.

Fagin, R., Moses, Y., Halpern, J. Y., and Vardi, M. Y. (2003). Reasoning about
knowledge. MIT press.

Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier, B., and Syrgkanis, V.
(2015). A unifying hierarchy of valuations with complements and substitutes. Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI 2015), 29(1).

Finnsson, H. (2012). Generalized monte-carlo tree search extensions for general
game playing. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI 2012).

French, T. (2003). Quantified propositional temporal logic with repeating states.
In Proceedings of the 10th International Symposium on Temporal Representation



150 Bibliography

and Reasoning, 2003 and Fourth International Conference on Temporal Logic
(TIME 2003).

Galal, H. S. and Youssef, A. M. (2019). Verifiable sealed-bid auction on the ethereum
blockchain. In Financial Cryptography and Data Security, pages 265–278, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Genesereth, M. and Thielscher, M. (2014). General game playing. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers.

Giovannucci, A., Cerquides, J., Endriss, U., and Rodríguez-Aguilar, J. A. (2010).
A graphical formalism for mixed multi-unit combinatorial auctions. Autonomous
Agents and Multi-Agent Systems, 20(3):342–368.

Green, J. and Laffont, J.-J. (1979). Incentives in public decision-making. Elsevier
North-Holland.

Gupta, A., Schewe, S., and Wojtczak, D. (2015). Making the best of limited mem-
ory in multi-player discounted sum games. Electronic Proceedings in Theoretical
Computer Science, 193:16–30.

Gutierrez, J., Najib, M., Perelli, G., and Wooldridge, M. J. (2019). Equilibrium
design for concurrent games. In 30th International Conference on Concurrency
Theory (CONCUR 2019).

Harel, D. and Kozen, D. (1982). Process logic: Expressiveness, decidability, com-
pleteness. Journal of Computer and System Sciences, 25(2):144–170.

Harrenstein, P., van der Hoek, W., Meyer, J.-J., and Witteveen, C. (2001). Boolean
games. In Proceedings of the 8th Conference on Theoretical Aspects of Rationality
and Knowledge, pages 287–298.

Herzig, A., Lorini, E., Maffre, F., and Schwarzentruber, F. (2016). Epistemic
boolean games based on a logic of visibility and control. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages
1116–1122.

Herzig, A., Lorini, E., Maffre, F., and Walther, D. (2014). Alternating-time tempo-
ral logic with explicit programs. In Proceedings of Workshop on Logical Aspects
of Multi-Agent Systems (LAMAS), Paris. IFAAMAS.

Hörner, J. and Olszewski, W. (2009). How robust is the folk theorem? The
Quarterly Journal of Economics, 124(4):1773–1814.

Hudert, S., Eymann, T., Ludwig, H., and Wirtz, G. (2009a). A negotiation protocol
description language for automated service level agreement negotiations. 2009
IEEE Conference on Commerce and Enterprise Computing (CEC 2009), pages
162–169.



Bibliography 151

Hudert, S., Ludwig, H., and Wirtz, G. (2009b). Negotiating SLAs-An approach for
a generic negotiation framework for WS-agreement. Journal of Grid Computing,
7(2):225–246.

Jackson, M. O. (2009). Optimization and Operations Research -Volume III, chapter
Mechanism Theory. EOLSS Publications.

Jamroga, W. and Ågotnes, T. (2007). Constructive knowledge: what agents can
achieve under imperfect information. J. Applied Non-Classical Logics, 17(4):423–
475.

Jamroga, W. and Bulling, N. (2011). Comparing variants of strategic ability. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2011), pages 252–257. AAAI Press.

Jamroga, W., Kurpiewski, D., and Malvone, V. (2020). Natural strategic abilities
in voting protocols. In Socio-Technical Aspects in Security and Trust - 10th Inter-
national Workshop (STAST 2020), volume 12812 of Lecture Notes in Computer
Science, pages 45–62, Berlin. Springer.

Jamroga, W., Malvone, V., and Murano, A. (2019a). Natural strategic ability.
Artificial Intelligence, 277:103170.

Jamroga, W., Malvone, V., and Murano, A. (2019b). Natural strategic ability un-
der imperfect information. In Proceedings of the International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS 2019), page 962–970, Rich-
land. International Foundation for Autonomous Agents and Multiagent Systems.

Jamroga, W. and van der Hoek, W. (2004). Agents that know how to play. Funda-
menta Informaticae, 63(2-3):185–219.

Jeitschko, T. D. (1998). Learning in sequential auctions. Southern Economic Jour-
nal, pages 98–112.

Jiang, G., Perrussel, L., and Zhang, D. (2017). On axiomatization of epistemic gdl.
In International Workshop on Logic, Rationality and Interaction, pages 598–613,
Berlin, Heidelberg. Springer.

Jiang, G., Perrussel, L., Zhang, D., Zhang, H., and Zhang, Y. (2019). Game equiv-
alence and bisimulation for game description language. In PRICAI 2019: Trends
in Artificial Intelligence - 16th Pacific Rim International Conference on Artificial
Intelligence, volume 11670, pages 583–596. Springer.

Jiang, G., Zhang, D., Perrussel, L., and Zhang, H. (2016). Epistemic GDL: A logic
for representing and reasoning about imperfect information games. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI 2016).



152 Bibliography

Jiang, G., Zhang, D., Perrussel, L., and Zhang, H. (2021). Epistemic GDL: A logic
for representing and reasoning about imperfect information games. Artificial
Intelligence, 294:103453.

Jonge, D. d. and Zhang, D. (2016). Using GDL to represent domain knowledge
for automated negotiations. In Autonomous Agents and Multi-Agent Systems:
AAMAS 2016 Workshops, Visionary Papers, Singapore, pages 134–153, Cham.
Springer International Publishing.

Jonge, D. d. and Zhang, D. (2017). Automated negotiations for general game
playing. In Proceedings of the 16th Conference on Autonomous Agents and Multi-
Agent Systems, (AAMAS 2017), São Paulo, pages 371–379. ACM.

Kalagnanam, J. and Parkes, D. C. (2004). Auctions, bidding and exchange design.
In Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business
Era, pages 143–212, Boston, MA. Springer US.

Kerber, M., Lange, C., and Rowat, C. (2016). An introduction to mechanized
reasoning. Journal of Mathematical Economics, 66:26 – 39.

Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of Eco-
nomic Surveys, 13(3):227–286.

Krishna, V. (2009). Auction Theory. Academic Press.

Kupferman, O. and Vardi, M. Y. (2000). Synthesis with incomplete informatio. In
Advances in Temporal Logic, pages 109–127. Springer, Berlin.

Laroussinie, F. and Markey, N. (2014). Quantified CTL: expressiveness and com-
plexity. Logical Methods in Computer Science, 10(4).

Laroussinie, F. and Markey, N. (2015). Augmenting ATL with strategy contexts.
Information and Computation, 245:98–123.

Larsen, G. K. H., van Foreest, N. D., and Scherpen, J. M. A. (2013). Distributed
control of the power supply-demand balance. IEEE Transactions on Smart Grid,
4(2):828–836.

Lee, H. G. and Lee, R. (1997). A hybrid approach of linear programming and
logic modeling for the market core of sealed bid auctions. Annals of Operations
Research, 75.

Li, D., Yang, Q., Yu, W., An, D., Zhang, Y., and Zhao, W. (2020). Towards dif-
ferential privacy-based online double auction for smart grid. IEEE Transactions
on Information Forensics and Security, 15:971–986.

Liu, X., Yu, C., Zhang, Z., Zheng, Z., Rong, Y., Lv, H., Huo, D., Wang, Y., Chen,
D., Xu, J., Wu, F., Chen, G., and Zhu, X. (2021). Neural auction: End-to-end
learning of auction mechanisms for e-commerce advertising. In Proceedings of the



Bibliography 153

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
3354–3364.

Lochner, K. M. and Wellman, M. P. (2004). Rule-based specification of auction
mechanisms. Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004), 2:818–825.

Löding, C. (2021). Automata on infinite trees. In Pin, J., editor, Handbook of
Automata Theory, pages 265–302. European Mathematical Society Publishing
House, Zürich, Switzerland.

Lorini, E. (2016). A minimal logic for interactive epistemology. Synthese,
193(3):725–755.

Love, N., Genesereth, M., and Hinrichs, T. (2006). General game playing: Game
description language specification. Technical Report LG-2006-01, Stanford Uni-
versity, Stanford, CA.

Lubin, B., Juda, A. I., Cavallo, R., Lahaie, S., Shneidman, J., and Parkes, D. C.
(2008). Ice: An expressive iterative combinatorial exchange. Journal of Artificial
Intelligence Research, 33:33–77.

Maruyama, Y. (2021). A reasoning system for fuzzy distributed knowledge rep-
resentation in multi-agent systems. In 2021 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pages 1–6, New York. IEEE.

Maubert, B., Mittelmann, M., Murano, A., and Perrussel, L. (2021). Strategic
reasoning in automated mechanism design. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning (KR 2021),
pages 487–496.

Maubert, B. and Murano, A. (2018). Reasoning about knowledge and strategies
under hierarchical information. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018), pages 530–
540. AAAI Press.

Meyer, T., Foo, N., Kwok, R., and Zhang, D. (2004). Logical foundations of ne-
gotiation: Outcome, concession and adaptation. Proceedings of the National
Conference on Artificial Intelligence, pages 293–298.

Mishra, D. and Sharma, T. (2018). A simple budget-balanced mechanism. Social
Choice and Welfare, 50(1):147–170.

Mittelmann, M., Bouveret, S., and Perrussel, L. (2021a). A general framework
for the logical representation of combinatorial exchange protocols (extended ab-
stract). In Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2021), pages 1602–1604. ACM.



154 Bibliography

Mittelmann, M., Bouveret, S., and Perrussel, L. (2022a). Representing and reason-
ing about auctions. Autonomous Agents and Multi-Agent Systems, 36(1):20.

Mittelmann, M., Herzig, A., and Perrussel, L. (2021b). Epistemic reasoning about
rationality and bids in auctions. In Proceedings of the European Conference on
Logics in Artificial Intelligence (JELIA 2021), volume 12678, pages 116–130.
Springer.

Mittelmann, M., Maubert, B., Murano, A., and Perrussel, L. (2022b). Automated
synthesis of mechanisms. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 2022) - to appear.

Mittelmann, M. and Perrussel, L. (2020a). Auction description language (ADL):
general framework for representing auction-based markets. In Proceedings of the
European Conference on Artificial Intelligence (ECAI 2020), volume 325, pages
825–832. IOS Press.

Mittelmann, M. and Perrussel, L. (2020b). An epistemic logic for reasoning about
strategies in general auctions. In Proceedings of the Workshops of the Interna-
tional Conference on Logic Programming, volume 2678.

Mittelmann, M. and Perrussel, L. (2020c). Game description logic with integers:
A GDL numerical extension. In Proceedings of the International Symposium
on Foundations of Information and Knowledge Systems (FoIKS 2020), volume
12012, pages 191–210. Springer.

Mogavero, F., Murano, A., Perelli, G., and Vardi, M. Y. (2014). Reasoning about
strategies: On the model-checking problem. ACM Transactions on Computational
Logic (TOCL), 15(4):1–47.

Mogavero, F., Murano, A., Perelli, G., and Vardi, M. Y. (2017). Reasoning about
strategies: on the satisfiability problem. Logical Methods in Computer Science,
13(1).

Montali, M., Calvanese, D., and De Giacomo, G. (2014). Verification of data-aware
commitment-based multiagent system. In Proceedings of the 14th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2014),
pages 157–164, Richland. International Foundation for Autonomous Agents and
Multiagent Systems.

Myerson, R. B. and Satterthwaite, M. A. (1983). Efficient mechanisms for bilateral
trading. Journal of Economic Theory, 29(2):265–281.

Narasimhan, H., Agarwal, S. B., and Parkes, D. C. (2016). Automated mechanism
design without money via machine learning. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2016).

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In ACM Con-
ference on Electronic Commerce, pages 1–12.



Bibliography 155

Nisan, N. (2004). Bidding languages. Combinatorial Auctions, pages 1–19.

Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V. (2007). Algorithmic Game
Theory. Cambridge University Press.

Niu, J., Cai, K., Parsons, S., Fasli, M., and Yao, X. (2012). A grey-box approach to
automated mechanism design. Electronic Commerce Research and Applications,
11(1):24–35.

Novák, P. and Jamroga, W. (2009). Code patterns for agent oriented program-
ming. In Proceedings of the International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2009), pages 105–112, Richland. International
Foundation for Autonomous Agents and Multiagent Systems.

Okada, N., Todo, T., and Yokoo, M. (2019). Sat-based automated mechanism
design for false-name-proof facility location. In Proceedings of the International
Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2019).

Parkes, D. C. (2006). Iterative Combinatorial Auctions. In Combinatorial Auctions.
MIT Press.

Parkes, D. C., Cavallo, R., Elprin, N., Juda, A., Lahaie, S., Lubin, B., Michael, L.,
Shneidman, J., and Sultan, H. (2005). ICE: An Iterative Combinatorial Exchange.
In Proceedings of the 6th ACM Conference on Electronic Commerce (EC 2005),
pages 249–258, New York. Association for Computing Machinery.

Parkes, D. C. and Ungar, L. H. (2001). Iterative combinatorial auctions: Achieving
economic and computational efficiency. University of Pennsylvania Philadelphia,
PA.

Parsons, S., Rodriguez-Aguilar, J. A., and Klein, M. (2011). Auctions and bidding:
A guide for computer scientists. ACM Computing Surveys, 43(2).

Pauly, M. (2002). A modal logic for coalitional power in games. Journal of logic
and computation, 12(1):149–166.

Pauly, M. and Parikh, R. (2003). Game logic-an overview. Studia Logica, 75(2):165–
182.

Pauly, M. and Wooldridge, M. (2003). Logic for mechanism design–a manifesto. In
Workshop on Game Theory and Decision Theory in Agent Systems (GTDT).

Phelps, S., McBurney, P., and Parsons, S. (2010). Evolutionary mechanism design:
a review. Autonomous agents and multi-agent systems, 21(2):237–264.

Pin, J.-É. (2021). Handbook of Automata Theory. European Mathematical Society
Publishing House, Zuerich.



156 Bibliography

Pnueli, A. and Rosner, R. (1989). On the Synthesis of a Reactive Module. In
Symposium on the Principles of Programming Languages (POPL 1989), pages
179–190, New York. ACM.

Porello, D. and Endriss, U. (2010). Modelling combinatorial auctions in linear
logic. In Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2010), page 71–78. AAAI Press.

Rabe, F. (2006). First-order logic with dependent types. In Proceedings of the In-
ternational Joint Conference on Automated Reasoning, pages 377–391. Springer.

Ramanujam, R. and Simon, S. (2008). Dynamic logic on games with structured
strategies. In Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2008), page 49–58. AAAI Press.

Reif, J. H. (1984). The complexity of two-player games of incomplete information.
Journal of Computer and System Sciences, 29(2):274–301.

Rolli, D., Luckner, S., Gimpel, H., and Weinhardt, C. (2006). A Descriptive Auction
Language. Electronic Markets, 16(1):51–62.

Ruan, J., Van Der Hoek, W., and Wooldridge, M. (2009). Verification of games in
the game description language. Journal of Logic and Computation, 19(6):1127–
1156.

Rubio-Domingo, G. and Linares, P. (2021). The future investment costs of offshore
wind: An estimation based on auction results. Renewable and Sustainable Energy
Reviews, 148:111324.

Saffidine, A. (2014). The game description language is turing complete. IEEE
Transactions on Computational Intelligence and AI in Games, 6(4):320–324.

Sandholm, T. (2003). Automated mechanism design: A new application area for
search algorithms. In Principles and Practice of Constraint Programming – CP
2003, pages 19–36, Berlin, Heidelberg. Springer Berlin Heidelberg.

Schobbens, P.-Y. (2004). Alternating-time logic with imperfect recall. Electronic
Notes in Theoretical Computer Science, 85(2):82–93.

Schreiber, I. and Romero, B. (2021). Game Balance. CRC Press.

Shen, W., Tang, P., and Zuo, S. (2019). Automated mechanism design via neural
networks. In Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2019).

Thielscher, M. (2010). A general game description language for incomplete informa-
tion games. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI
2010), pages 994–999.



Bibliography 157

Thielscher, M. (2011). GDL-II. KI - Künstliche Intelligenz, 25(1):63–66.

Thielscher, M. (2017). GDL-III: A description language for epistemic general game
playing. Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI 2017), pages 1276–1282.

Thielscher, M. and Zhang, D. (2010). From General Game Descriptions to a Mar-
ket Specification Language for General Trading Agents, pages 259–274. Springer
Berlin Heidelberg.

Troquard, N., van der Hoek, W., and Wooldridge, M. (2011). Reasoning about
Social Choice Functions. Journal of Philosophical Logic, 40(4):473––498.

Troquard, N. and Walther, D. (2012). On satisfiability in ATL with strategy con-
texts. In Proceedings of the European Conference on Logics in Artificial Intelli-
gence (JELIA 2012).

Van Benthem, J. (2001). Games in dynamic-epistemic logic. Bulletin of Economic
Research, 53(4):219–248.

van der Hoek, W., Jamroga, W., and Wooldridge, M. (2005). A logic for strategic
reasoning. In Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2005), pages 157–164, New York. Association
for Computing Machinery.

Vardi, M. Y. (1996). An automata-theoretic approach to linear temporal logic.
Logics for concurrency, pages 238–266.

Varian, H. R. (2007). Position auctions. International Journal of industrial Orga-
nization, 25(6):1163–1178.

Vester, S. (2013). Alternating-time temporal logic with finite-memory strategies.
In Proceedings of International Symposium on Games, Automata, Logics, and
Formal Verification (GandALF 2013), EPTCS, pages 194–207, Borca di Cadore.
Open Publishing Association.

Voorneveld, M. (2003). Characterization of pareto dominance. Operations Research
Letters, 31(1):7 – 11.

Vorobeychik, Y., Reeves, D. M., and Wellman, M. P. (2007). Constrained auto-
mated mechanism design for infinite games of incomplete information. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence (UAI 2007).

Walther, D., van der Hoek, W., and Wooldridge, M. (2007). Alternating-time
temporal logic with explicit strategies. In Proceedings of the Conference on The-
oretical Aspects of Rationality and Knowledge (TARK XI), pages 269–278, New
York. Association for Computing Machinery.



158 Bibliography

Wang, H., Tang, Y., Liu, J., and Chen, W. (2018). A search optimization method
for rule learning in board games. In Pacific Rim International Conference on
Artificial Intelligence, pages 174–181. Springer.

Wang, Y. and Dechesne, F. (2009). On expressive power and class invariance.
CoRR, abs/0905.4332.

Wen, C., Xu, M., Zhang, Z., Zheng, Z., Wang, Y., Liu, X., Rong, Y., Xie, D.,
Tan, X., Yu, C., et al. (2022). A cooperative-competitive multi-agent frame-
work for auto-bidding in online advertising. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining, pages 1129–1139.

Wooldridge, M., Ågotnes, T., Dunne, P., and Van der Hoek, W. (2007). Logic for
automated mechanism design-a progress report. In Proceedings of AAAI Confer-
ence on Artificial Intelligence (AAAI 2007).

Wooldridge, M. and Parsons, S. (2000a). Languages for negotiation. In Proceedings
of the 14th European Conference on Artificial Intelligence (ECAI 2000), page
393–397, NLD. IOS Press.

Wooldridge, M. and Parsons, S. (2000b). On the use of logic in negotiation. In
Proceedings of the Autonomous Agents Workshop on Agent Communication Lan-
guages and Conversation Protocols.

Xia, M., Stallaert, J., and Whinston, A. B. (2005). Solving the combinatorial double
auction problem. European Journal of Operational Research, 164(1):239–251.

Yadav, N. and Sardiña, S. (2012). Reasoning about agent programs using ATL-
like logics. In Proceedings of the European Conference on Logics in Artificial
Intelligence (JELIA 2012), pages 437–449, Berlin. Springer Berlin Heidelberg.

Yuan, Y., Wang, F.-Y., and Zeng, D. (2017). Competitive analysis of bidding
behavior on sponsored search advertising markets. IEEE Transactions on Com-
putational Social Systems, 4(3):179–190.

Zhang, D. (2018). A logic for reasoning about game descriptions. In AI 2018:
Advances in Artificial Intelligence, pages 38–50, Cham. Springer International
Publishing.

Zhang, D. (2020). Behavioural equivalence of game descriptions. In Australasian
Joint Conference on Artificial Intelligence, pages 307–319. Springer.

Zhang, D. and Thielscher, M. (2015a). A logic for reasoning about game strate-
gies. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (AAAI 2015), January 25-30, 2015, Austin, Texas, pages 1671–1677. AAAI
Press.

Zhang, D. and Thielscher, M. (2015b). Representing and reasoning about game
strategies. Journal of Philosophical Logic, 44(2):203–236.



Bibliography 159

Zhou, Y., Chakrabarty, D., and Lukose, R. (2008). Budget constrained bidding
in keyword auctions and online knapsack problems. In Internet and Network
Economics, pages 566–576, Berlin, Heidelberg. Springer Berlin Heidelberg.

Zhou, Y. and Lukose, R. (2007). Vindictive bidding in keyword auctions. ACM
International Conference Proceeding Series, 258:141–146.


	Abbreviations
	Introduction
	Background and Context
	Representation of Auctions
	Automated Mechanism Design
	Logics for Strategic Reasoning

	Contribution
	Outline of Chapters

	I Representing Auctions
	Logic for Auction Specification
	Related Work
	Auction-Based Markets
	Negotiation Protocols
	Game Description Language

	Auction Description Language
	Syntax
	Semantics

	Verification of ADL-Descriptions
	Direct Mechanisms
	Well-Formed Protocols

	Model Checking
	Upper Bound
	Lower Bound

	Conclusion

	Representative Auctions in ADL
	Simultaneous Ascending Auction
	Representing as a model
	Evaluating the protocol

	Combinatorial Exchange
	Tree-Based Bidding Language
	Vickrey–Clarke–Groves Mechanism
	Iterative Combinatorial Exchange

	Conclusion

	Actions, Knowledge and Rationality
	Epistemic Auction Description Language
	Syntax
	Semantics
	Dutch Auction with Private Valuations

	Rationality in Auctions
	Bounded Rationality
	Bounded Rationality in the Dutch Auction

	Model Checking
	Conclusion


	II Strategic Reasoning in Mechanism Design
	Verification of Mechanisms
	Related Work
	Automated Mechanism Design
	Logics for Strategic Reasoning

	Quantitative Epistemic Strategy Logic
	Reasoning about Auction Mechanisms
	Social Choice Functions
	Mechanisms as wCGSii
	Implementation of Social Choice Functions
	Mechanism Properties
	Revenue Benchmarks with Knowledge

	Model Checking
	Conclusion

	Mechanisms and Natural Strategies
	Natural Strategies
	Quantitative Natural Strategy Logic
	Repeated Keyword Auctions
	Solution Concepts for GSP
	Natural Strategies for GSP

	Expressivity
	Expressive and Distinguishing Power
	Expressivity of NatSL[F] vs. SL[F]

	Model Checking
	Conclusion

	Synthesis of Mechanisms
	Quantitative Strategy Logic
	Satisfiability and Synthesis of SL[F]
	Booleanly-Quantified CTL*[F]
	Deciding BCTL*[F] Satisfiability
	Decidable Cases for SL[F] Satisfiability
	Automated Synthesis of Optimal Mechanism

	Synthesis for Mechanism Design
	Characterizing Properties with SL[F]
	Action-bounded Mechanisms
	Turn-based Mechanisms

	Conclusion

	Conclusion
	Summary of Contributions and Discussion
	Perspectives and Future Work

	Complexity classes
	Satisfiability of BQCTL*[F]
	Published work
	Bibliography


