Natasha Alechina

Leila Amgoud

Giuseppe Perelli

Lau

Francesco Bellardinelli

Sylvain Bouveret

Andreas Herzig

Wojtek Jamroga

Jonathan Ben-Naim

Giuseppe De Giacomo

Umberto Grandi

Jérôme Lang

Emiliano Lorini

DSE Dominant Strategy Equilibria ET Epistemic State Transition GDL Game

An auction is a popular mechanism that aggregates participants' bids into a social decision, usually expressed in terms of allocations and payments. Automated agents are widely used in auction-based markets, but they are usually designed to act on a specific context. Those agents cannot switch between different kinds of markets. For doing so, they should be able to "understand" the auction rules and reason about their own valuations and about other players' private information valuations. This limitation inspires the development of a lightweight logic-based language for representing the rules of an auction market, which will then allow automated general players to reason strategically in different environments.

Another important problem is the design of new auctions and, more generally, mechanisms. The challenge here is to aggregate individual preferences, while choosing a socially desirable outcome and reaching an equilibrium despite the fact that agents can lie about their preferences. Although logic-based languages have been widely considered in the context of Multi-Agent Systems (MAS), the use of formal methods and strategic reasoning for Automated Mechanism Design (AMD) has not been much explored yet.

This thesis investigates an application of logics and strategic reasoning for Game Theory and MAS. In particular, we propose the use of formal methods for the specification, design and evaluation of mechanisms, with focus on auctions. This thesis addresses such challenges by introducing logic-based approaches for representing and designing auction-based markets with strategic players.

Firstly, for providing a foundation for general and automated auction playing in MAS, we propose a framework for representing auctions, denoted Auction Description Language (ADL). ADL addresses important dimensions of auction-based markets and is general enough to represent most auction settings. We illustrate the generality of ADL by modelling a number of representative auctions. We extend ADL with knowledge operators and an action modality for characterizing bounded rational behavior of bidders when reasoning about the effect of actions and other agents' rationality.

Second, we propose a novel approach for reasoning and designing new auctions (and, in general, preference aggregation mechanisms) based on formal methods. Such approach for AMD aims to automatically generate mechanisms from their specifications and verify them in relation to target economical properties. For verifying mechanisms, we propose a new variant of Strategy Logic (SL) with quantitative semantics and epistemic operators. We demonstrate how it can express key concepts from Economic Theory, including Nash equilibrium, strategyproofness and individual rationality, which are at first importance when designing new auctions and when agents need to reason about their properties. We also introduce a quantitative semantics for SL with natural strategies and imperfect information which enables reasoning about mechanisms based on the complexity of strategies. The ii analysis of mechanisms and their strategies boils-down to model checking formulas from those SL variants. Finally, we offer a novel perspective on the design of mechanisms by rephrasing the AMD problem in terms of synthesis from specifications in Quantitative SL. This approach enables automatically generating optimal mechanisms from a quantitative logical specification, which may include not only game rules but also requirements over the strategic behavior of participants and quality of the outcome.

Resumé

Une enchère est un mécanisme compétitif qui permet d'allouer un ensemble de ressources auprès d'un ensemble d'agents. Ce mécanisme agrège les offres effectuées par les participants à l'enchère dans le but de produire une décision sociale caractérisée en termes d'allocations et de paiements. Les agents automatisés sont largement utilisés sur les marchés basés sur les enchères, mais ils sont généralement conçus pour agir dans un contexte spécifique. Pour passer d'un type de marché à un autre, les agents doivent être capables de "comprendre" les règles de l'enchère et de raisonner sur leurs valuations ainsi que sur les valeurs privées des autres joueurs. De fait, il est nécessaire de définir un langage simple permettant de représenter les règles d'un marché aux enchères, qui permettra ensuite à des joueurs généraux automatiques de raisonner stratégiquement dans différents environnements. Cet aspect stratégique, notion centrale de la théorie des jeux et des systèmes multi-agents, est de première importance dans la caractérisation des mécanismes d'enchères.

Un problème de première importance concerne la conception de nouvelles enchères, ou plus généralement, de nouveaux mécanismes. En effet, un des principaux objectifs consiste à agréger les offres individuelles tout en garantissant un résultat socialement souhaitable. La dimension stratégique est donc au coeur de la conception de mécanismes. Alors que les langages logiques ont été largement considérés dans le contexte des Systèmes Multi-Agents (SMA), l'utilisation de méthodes formelles et de raisonnement stratégique pour la Conception Automatique de Mécanismes a été à peine étudiée.

Cette thèse explore l'application des logiques pour la description et la conception de mécanismes d'enchères. Ces derniers placent la dimension stratégique en leur coeur et nous proposons l'utilisation de méthodes formelles pour la spécification, la conception et l'évaluation de mécanismes intégrant cette dimension.

Dans un premier temps, afin de fournir une fondation pour les joueurs d'enchères généraux et automatisés dans les SMA, nous proposons un formalisme pour représenter les enchères, appelé Auction Description Language (ADL). ADL traite des dimensions importantes des marchés basés sur des enchères et est suffisamment général pour représenter la plupart des contextes d'enchères. Nous montrons qu'en enrichissant ADL avec un opérateur de connaissance et une modalité d'action pour caractériser le comportement rationnel limité des enchérisseurs, les agents enchérisseurs peuvent raisonner sur l'effet des actions ainsi que sur la rationalité des autres agents.

Dans un second temps, nous proposons une nouvelle approche pour le raisonnement et la conception de nouvelles enchères basée sur des méthodes formelles. Cette approche vise à générer des mécanismes à partir de leurs spécifications et à les vérifier par rapport à des propriétés économiques objectives. Nous proposons une nouvelle variante de Strategy Logic (SL) avec une sémantique quantitative et des opérateurs épistémiques. Nous montrons comment elle permet d'exprimer des concepts essentiels de la théorie de l'économie, notamment l'équilibre de Nash et la manipulation stratégique, qui sont de première importance lors de la conception de nouvelles enchères et lorsque les agents doivent raisonner sur leurs propriétés. Nous introduisons aussi SL avec des stratégies naturelles, qui permet de raisonner sur les mécanismes en fonction de la complexité des stratégies. L'analyse des mécanismes et des stratégies se résume donc à la vérification de formule en SL dans des modèles représentant des enchères. Enfin nous proposons la reformulation du problème de la conception de mécanismes en termes de synthèse de spécifications logiques. Cette approche permet de générer automatiquement des mécanismes optimaux à partir d'une spécification, qui peut inclure non seulement les règles du jeu mais aussi des exigences sur le comportement stratégique des participants.

Introduction

An auction is a popular mechanism that aggregates participants' bids into a social decision, usually expressed in terms of allocations and payments. The goal of an auction is to determinate the winners and their payments, when the precise price of the items considered in the market is unknown or unclear. Classical examples of such items include art pieces, jewelry and antiques. According to [START_REF] Chevaleyre | Issues in Multiagent Resource Allocation[END_REF], auctions are characterized by having a centralized allocation procedure that specify trades of items and by considering monetary transfers (that is, payments). Being centralized means a single entity decides on the final allocation of resources amongst agents. The central entity in an auction is the auctioneer and the reporting of preferences takes the form of bidding. Agents are not required to reveal their true preferences during bidding, but they may bid whatever they believe to fit their own interests.

The importance of Auction Theory is many-fold. From a practical point of view, they are used for negotiating a large number of goods and services, property, and financial instruments [START_REF] Klemperer | Auction theory: A guide to the literature[END_REF]. Moreover, new auctions-based markets are being designed for considering novel trading and allocation problems, including, for instance, e-commerce advertising [START_REF] Liu | Neural auction: End-to-end learning of auction mechanisms for e-commerce advertising[END_REF], smart grids [START_REF] Li | Towards differential privacy-based online double auction for smart grid[END_REF], smart contracts on blockchain [START_REF] Galal | Verifiable sealed-bid auction on the ethereum blockchain[END_REF] and renewable energy technologies [START_REF] Rubio-Domingo | The future investment costs of offshore wind: An estimation based on auction results[END_REF]. From an empirical perspective, auctions provide a valuable testing-ground for Economic Theory. The interest in experimental work on auction has been prominent in the literature [START_REF] Klemperer | Auction theory: A guide to the literature[END_REF]. Finally, auctions are also relevant for theoretical reasons. For instance, they have been important in developing the understanding of price formation. In fact, as pointed by [START_REF] Krishna | Auction Theory[END_REF], auctions are used precisely because the seller is unsure about the values that bidders attach to the object being sold and the uncertainty regarding values is an inherent feature of auctions. Additionally, auction-theoretic models and techniques also apply to mechanisms without monetary transfers and can help develop models of oligopolistic pricing [START_REF] Klemperer | Auction theory: A guide to the literature[END_REF].

Automated agents are widely used in auction-based markets but software agents are usually designed to act on a specific context (see, for instance, auto-bidding frameworks in online advertising [START_REF] Wen | A cooperative-competitive multi-agent framework for auto-bidding in online advertising[END_REF]). Those agents cannot switch between different kinds of markets. For doing so, they should be able to "understand" the auction rules and reason about their own valuations and also about other players' private information valuations. This limitation inspires the development of a lightweight logic-based language for representing the rules of an auction market, which will then allow automated general players to reason strategically in different Chapter 1. Introduction environments.

More than describing, the design and evaluation of new auctions (and, more generally, mechanisms) is a central problem in multiagent settings [START_REF] Conitzer | Complexity of mechanism design[END_REF]. In such setting, we need to be able to aggregate individual preferences, which are conflicting when agents are self-interested. More importantly, the mechanism should choose a socially desirable outcome and reach an equilibrium despite the fact that agents can lie about their preferences [START_REF] Asselin | A technique for large automated mechanism design problems[END_REF]. Automating the process of creating and evaluating mechanisms has numerous advantages, as stated by [START_REF] Sandholm | Automated mechanism design: A new application area for search algorithms[END_REF]:

• It can be used in settings beyond the classes of problems that have been already studied in manual mechanism design, which is a clear link with the general dimension of auctions;

• It can yield better mechanisms (in relation to the quality of the outcome and/or avoiding strategic manipulation) because it can be constructed over the particulars of the setting. This is the case, for instance, when designing auctions for selling airport landing slots or rights to transmit signals over specific bands (spectrum auctions);

• It shifts the burden of designing a mechanism from humans to a machine, which may be a difficult and time-consuming task when considering complex aggregation problems and strategic solution concepts.

Although logic-based languages have been widely used for verification [START_REF] Clarke | Model checking[END_REF] and synthesis [START_REF] David | Program synthesis: challenges and opportunities[END_REF] of Multi-Agent Systems (MAS), the use of formal methods for reasoning about auctions under strategic behavior as well as automated mechanism design has not been much explored yet. An advantage in adopting such perspective lies in the high expressivity and generality of logics for strategic reasoning [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF]. Moreover, by relying on precise semantics, formal methods provide tools for rigorously analysing the correctness of systems, which is important to improve trust in mechanisms generated by machines. The problem of formally reasoning about mechanisms is, however, nontrivial: it requires to consider quantitative information (e.g., utilities and payments), private information about the participant's preferences, and complex strategic concepts (such as strategy dominance and equilibria).

This thesis addresses such challenges by introducing logic-based approaches for representing and designing auction-based markets with strategic players. Our motivation is two fold: first, we aim to provide a foundation for general and automated auction playing in MAS, by establishing a logical framework to create a good balance between expressive power and computational efficiency. Second, we propose a novel approach based on formal methods for (i) reasoning about auctions under strategic behavior and (ii) Automated Mechanism Design. Such approach aims to automatically generate auctions from their specifications and verify them in relation to target economical properties.

Background and Context 5

Background and Context

This section gives an overview of the context and the main related works to which this thesis is related.

Representation of Auctions

There are numerous variants of auctions depending on the parameters considered, including the number of distinct items and copies as well as the number of sellers and buyers [START_REF] Klemperer | Auction theory: A guide to the literature[END_REF][START_REF] Krishna | Auction Theory[END_REF]. For a fixed set of parameters, the protocol, i.e., the bidding, payment and allocation rules, may also differ. Building intelligent agents that can switch between different auctions and process their rules is a key issue for building automated auction-based marketplaces. In this scenario, the auctioneer should at first allow participants to express their preferences and second describe the rules governing the market.

A number of bidding languages have been proposed for conveniently expressing preferences, specially when considering combinatorial settings [START_REF] Nisan | Bidding languages[END_REF]. Such languages focus on compactly representing the space of possible bids over combinations of items. In this work we are interested on the representation of auction rules. For a comparative overview of classical bidding languages (e.g., OR and XOR languages), the reader may refer to [START_REF] Nisan | Bidding and allocation in combinatorial auctions[END_REF].

In relation to the formal representation of auction rules, we recall the descriptive auction language [START_REF] Rolli | A Descriptive Auction Language[END_REF], which allows the specification of auctions by allowing players to bid using the XOR language. Rule-based approaches have also being used for representing single-dimensional auctions [START_REF] Lochner | Rule-based specification of auction mechanisms[END_REF] and negotiation protocols [START_REF] Bădică | Rule-based automated price negotiation: Overview and experiment[END_REF]. Similarly, negotiation protocols have being handled with meta-languages [START_REF] Hudert | Negotiating SLAs-An approach for a generic negotiation framework for WS-agreement[END_REF], the Extensible Markup Language (Hudert et al., 2009a) and rule-markup languages [START_REF] Dobriceanu | Adding a declarative representation of negotiation mechanisms to an agent-based negotiation service[END_REF].

Since the above languages lack a precise semantics, Wooldridge andParsons (2000a, 2000b) motivate and compare the use of different logical languages for specifying negotiation protocols. In the context of General Game Playing (GGP), the Game Description Language (GDL) was designed for specifying game rules while maintaining a tractable complexity [START_REF] Genesereth | General game playing[END_REF]. The use of languages inspired on GDL for describing market-based protocols have been studied in the context of negotiation [START_REF] Jonge | Using GDL to represent domain knowledge for automated negotiations[END_REF][START_REF] De Jonge | GDL as a unifying domain description language for declarative automated negotiation[END_REF] and single-item markets [START_REF] Thielscher | From General Game Descriptions to a Market Specification Language for General Trading Agents[END_REF]. Such approaches lack a clear link between the language, the mechanism formalization and the agents' preferences, which is a key aspect for enabling reasoning about auctions.

Automated Mechanism Design

Designing an auction in such manner to ensure features of the outcome alongside with a desirable behavior of the participants is a key challenge in Economics. In fact, this problem is known as Mechanism Design: the formulation of game-like Chapter 1. Introduction systems whose equilibria satisfy some desired properties, usually expressed in terms of incentive, utility or social welfare. Traditionally, mechanisms have been formulated and verified by human specialists, who use their knowledge and experience for defining the game rules. Creating and verifying mechanisms which will be played by strategic agents can be a very difficult and time-consuming task. [START_REF] Sandholm | Automated mechanism design: A new application area for search algorithms[END_REF] introduced Automated Mechanism Design (AMD), whose goal is to automatically create mechanisms for solving a specific preference aggregation problem. AMD is usually handled as an optimization and domain-oriented problem. Most solutions used on the literature are based on machine learning, which include, for instance, neural networks [START_REF] Shen | Automated mechanism design via neural networks[END_REF][START_REF] Dütting | Optimal auctions through deep learning[END_REF] and statistical techniques [START_REF] Narasimhan | Automated mechanism design without money via machine learning[END_REF]. A number of works explore computed-aided verification of auctions [START_REF] Caminati | Sound auction specification and implementation[END_REF][START_REF] Barthe | Computer-aided verification for mechanism design[END_REF][START_REF] Kerber | An introduction to mechanized reasoning[END_REF], where the process is assisted by a reasoner. In the context of fully-automatic verification, [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF] and [START_REF] Wooldridge | Logic for automated mechanism design-a progress report[END_REF] advocate the use of Alternating-time Temporal Logic (ATL) [START_REF] Alur | Alternating-time temporal logic[END_REF] to reason about mechanisms. The main limitation in these works is the purely qualitative setting and the impossibility of expressing key strategic concepts such as dominance in the logic.

Logics for Strategic Reasoning

This thesis is also related to the long-established logical approach to systems verification [START_REF] Clarke | Model checking[END_REF] and synthesis [START_REF] David | Program synthesis: challenges and opportunities[END_REF]. In the recent years much progress has been made in the field of logics for strategic reasoning. Pioneering work includes the Coalition Logic [START_REF] Pauly | A modal logic for coalitional power in games[END_REF] and the aforementioned ATL [START_REF] Alur | Alternating-time temporal logic[END_REF]. These logics use coalition modalities to specify strategic abilities of groups of agents, an important notion in Mechanism Design. A logic for reasoning about composite strategies in turn-based games is introduced by [START_REF] Ramanujam | Dynamic logic on games with structured strategies[END_REF], where strategies are treated as programs that are combined by connectives from propositional dynamic logic. The Strategy Logic (SL) [START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF] subsumes ATL and considers explicit manipulation of strategies. This feature allows expressing important concepts in games, such as Nash equilibria. A recent quantitative extension of SL, denoted SL[F] [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], introduces values in models and functions in the language, enabling the reasoning about key game-theoretic concepts such as utilities and preferences. Several works have also considered extensions of SL with imperfect information [START_REF] Belardinelli | Verification of multi-agent systems with public actions against strategy logic[END_REF][START_REF] Berthon | Strategy logic with imperfect information[END_REF][START_REF] Cermák | Practical verification of multi-agent systems against SLK specifications[END_REF], which is also an important feature when modeling auctions with private valuations.

Contribution

This thesis addresses the problem of modelling and analyzing auction mechanisms for MAS using logics and strategic reasoning. The main contributions of this work

Contribution

can be summarized as follows:

1. We provide a framework for representing auctions, denoted Auction Description Language (ADL). ADL addresses important dimensions of auction-based markets and is general enough to represent most auction settings. We illustrate the generality of ADL by modelling a number of representative auctions;

2. We demonstrate how ADL can be used for the automated verification of direct mechanisms and for automatically checking well-formedness of auction descriptions;

3. We extend ADL with knowledge operators and an action modality (denoted Epistemic ADL, or simply ADLK) for providing a ground for the design of general auction players and characterizing their rational behavior when reasoning about the effect of actions and other players rationality;

4. We propose a new variant of Strategy Logic with quantitative features, imperfect information and epistemic operators, that we call SLK[F];

5. We demonstrate how SLK[F] can express the implementation of social choice functions and be used for automatically verifying a number of important properties often required in auctions, or more generally in mechanism design. We also show how we can express properties relating agents' revenues with respect to their beliefs about other agents' preferences;

6. We show that verifying a mechanism in relation to classical properties boilsdown to model checking a SLK[F] formula and we prove it can be done in Pspace for memoryless strategies;

7. We introduce a quantitative semantics for SL with natural strategies and imperfect information (denoted NatSL [F]) which provides a new perspective for formal verification and design of novel mechanisms based on the complexity of strategies;

8. We prove that the model-checking problem for NatSL[F] is Pspace-complete and that NatSL[F] has incomparable distinguishing and expressive power to SL[F];

9. We offer a novel perspective on the design of mechanisms by rephrasing the AMD problem in terms of synthesis from SL[F] specifications. This approach enables automatically generating optimal mechanisms from a quantitative logical specification, which may include not only game rules but also requirements over the strategic behavior of participants and quality of the outcome; 10. We solve the synthesis problem for SL[F] by investigating the related satisfiability problem in two cases: when the number of actions is bounded, and when agents play in turn.

Part I

Representing Auctions

Chapter 2

Logic for Auction Specification

In this chapter we aim at proposing a language with clear semantics to enable the representation of auctions as well as the reasoning about its rules. Auctions may differ in several ways, from the setting considered to the availability of an expressive bidding language. According to the classification proposed by [START_REF] Kalagnanam | Auctions, bidding and exchange design[END_REF], let us first recall the six core dimensions of auctions:

1. Resources: the auction may involve a single item or multiple items, with single or multiple units of each item. The type of the item may also be considered, i.e., the item may be a multi-attribute commodity, that is, the item may be characterized by more attributes than just the price (such as the service time, quality, and payment terms);

2. Market structure: the auction may be distinguished based on whether it has single or multiple buyers and/or sellers. In single-sided auctions, there is either a single seller selling resources to multiple buyers (i.e., forward auctions), or a single buyer sourcing resources from multiple suppliers (i.e., reverse auctions).

In a double auction, there are multiple suppliers selling resources to multiple buyers. Finally, an exchange is a generalization of double auctions, where the participants trade items;

3. Preference structure: the participants' preferences define their utilities over different outcomes (e.g., marginal utility, quasi-linear utility); 4. Bid structure: it refers to the flexibility with which participants can express their preferences. The bid structure ranges from simple statements of willingness to accept a given selling price to complex bids that state prices, quantities, bundles, and logical connectives. In single-dimensional auctions, only one attribute is considered (e.g., the price offered for a good). On the other hand, multi-dimensional auctions handle a number of attributes in the bid (e.g., quality, delivery date) [START_REF] Parsons | Auctions and bidding: A guide for computer scientists[END_REF]; 5. Market clearing: in relation to the method for matching the supply to demand, an auction may be single-sourcing (i.e., matching pairs of buyers and sellers) or multi-sourcing (i.e., matching multiple sellers with a single buyer, or viceversa);

6. Information feedback: auctions may also differ on whether they are direct (i.e., one-stage protocols without information feedback) or indirect mechanisms (i.e., protocols where agents can adjust their bids in response to information feedback).

In the spirit of General Game Playing (GGP) [START_REF] Genesereth | General game playing[END_REF] where games are described with the help of the Game Description Language (GDL), we propose the Auction Description Language (ADL). Such logical language builds upon bidding languages, and hence provides a natural way to represent a wide range of protocols, ranging from single-units auctions to iterative combinatorial exchanges [START_REF] Parkes | ICE: An Iterative Combinatorial Exchange[END_REF]. As for GDL, we propose a precise semantics based on statetransition models, that gives a clear meaning to auction rules. With ADL, we can use different bidding languages for describing the set of possible actions, including the Tree-Based Bidding Language [START_REF] Parkes | ICE: An Iterative Combinatorial Exchange[END_REF], which generalizes known languages such as XOR and OR [START_REF] Nisan | Bidding and allocation in combinatorial auctions[END_REF] to combinatorial exchange. To the best of our knowledge, ADL is the first framework offering a unified perspective on an auction mechanism and it offers two benefits: (i) with this language, one can represent many kinds of auctions in a compact way and (ii) the precise statetransition semantics can be used to derive key properties.

Related Work

Our work is rooted in the key contributions on Auction Theory [START_REF] Nisan | Bidding and allocation in combinatorial auctions[END_REF][START_REF] Nisan | Bidding languages[END_REF][START_REF] Xia | Solving the combinatorial double auction problem[END_REF][START_REF] Krishna | Auction Theory[END_REF]. All these works adopt a mechanism design perspective: they focus on designing and evaluating protocols and bidding languages. ADL has a different purpose. It is designed to represent auction protocols and to allow a modular definition of actions sets, which may be characterized by a bidding language. ADL can be used to automatically derive properties for these protocols. ADL is also a tool for mechanism design, since it is a well-suited framework for testing new auctions.

Auction-Based Markets

To the best of our knowledge, almost all contributions on the computational representation of auctions focus on the implementation of the winner determination problem. For instance, [START_REF] Baral | Declarative specification and solution of combinatorial auctions using logic programming[END_REF] show how the winner determination for a combinatorial auction can be encoded in a logic program. A hybrid approach mixing linear programming and logic programming has been proposed by [START_REF] Lee | A hybrid approach of linear programming and logic modeling for the market core of sealed bid auctions[END_REF]: they focus on sealed-bid auctions and show how qualitative reasoning helps to refine the optimal quantitative solutions. [START_REF] Giovannucci | A graphical formalism for mixed multi-unit combinatorial auctions[END_REF] explore a graphical formalism to compactly represent the winner determination problem for multi-unit combinatorial auctions. Linear Logic has also been used for modeling combinatorial auctions [START_REF] Porello | Modelling combinatorial auctions in linear logic[END_REF]. The authors explore the representation of bids and the winner determination. However, there is no temporal operator to allow reasoning on iterative auctions.

The descriptive auction language [START_REF] Rolli | A Descriptive Auction Language[END_REF] allows a formal specification of auctions. Agents can only bid through XOR combinations of items. Although the XOR language is widely used, the specification approach is more flexible when the bidding language is not fixed for all protocols. In fact, as stated by [START_REF] Nisan | Bidding languages[END_REF], the choice of a bidding language should aim to find a balance between expressivity (i.e., being able to express every preference function) and simplicity (i.e., being intuitive and computationally efficient). There are numerous auction types that do not require the expressive power of the XOR language and can be implemented with simpler bidding languages. For instance, in a Dutch auction, agents may simply say whether they accept the current selling price or not.

A rule-based scripting language for representing single-dimensional auctions have been proposed by [START_REF] Lochner | Rule-based specification of auction mechanisms[END_REF]. Since it is single-dimensional, bids are composed exclusively by prices. On the other hand, the framework Multiple criteria English Reverse Auctions [START_REF] Bellosta | A framework for multiple criteria english reverse auctions[END_REF][START_REF] Bellosta | A unified framework for multiple criteria auction mechanisms[END_REF] characterizes bids with vectors of attributes and criteria. Their framework allows to represent English reverse auctions that differ in relation to model for aggregating bidders' preferences and the information feedback provided to participants.

Negotiation Protocols

A related problem to auction specification is the one of representing negotiation protocols. As noted by [START_REF] Meyer | Logical foundations of negotiation: Outcome, concession and adaptation[END_REF] negotiation is investigated from different perspectives, such as economics, psychology, computer science and others. Consequently, there is no agreement in relation to its definition and the distinction between negotiation and auctions may be vague. Although some authors consider auctions as types of negotiation protocols, in this work we consider them related, but rather distinct, types of allocation procedures.

As mentioned before, by auctions we refer to centralized mechanisms that specify trades of items and payments based on the bidders' reported preferences. On the other hand, we consider that in negotiation protocols, allocations emerge as the result of a sequence of local negotiation steps. That is, they describe the negotiation over resources in a distributed setting. Another important difference is that negotiation protocols for exchanging goods may not depend on monetary transfer. [START_REF] Bădică | Rule-based automated price negotiation: Overview and experiment[END_REF] discuss how rule-based approaches can be used to automated negotiation. The paper focuses on experimental results for concurrent negotiation and do not address the generality of their approach. [START_REF] Hudert | Negotiating SLAs-An approach for a generic negotiation framework for WS-agreement[END_REF] propose a framework to enable negotiations according to bilateral and multilateral protocols using a meta-language to define protocols based on a set of attributes and parameters. In a subsequent work, the authors propose a language based on Extensible Markup Language for meta-negotiating the choice of negotiation protocols and for instantiating and parameterizing the system used for conducting the chosen protocol (Hudert et al., 2009a). Similarly, rule-markup languages have also been used for the declarative representation of negotiations [START_REF] Dobriceanu | Adding a declarative representation of negotiation mechanisms to an agent-based negotiation service[END_REF].

Due to the lack of a precise semantics, the approaches considered up to here are too poor to enable reasoning. This limitation motivates the study of negotiation protocols with logic-based languages. In two papers, Wooldridge and Parsons (2000a,b) briefly compare the use of different languages for negotiation, including propositional logic, a language for electronic commerce and a negotiation metalanguage. They consider simple protocols with multi-attribute negotiation of single goods. Even in this setting, the problems of determining if agreement has been reached and determining if a particular protocol will terminate are computationally hard. A basic logical framework for negotiation has also been proposed by [START_REF] Meyer | Logical foundations of negotiation: Outcome, concession and adaptation[END_REF]. In the two agents setting, the work explores modes of negotiation from which an agreement over an outcome can be reached when the participants are rational, cooperative and truthful.

Game Description Language

The Game Description Language (GDL) is the official language used for the GGP competition [START_REF] Genesereth | General game playing[END_REF]. To incorporate imperfect information games, GDL has been extended to GDL-II [START_REF] Thielscher | A general game description language for incomplete information games[END_REF] and GDL-III [START_REF] Thielscher | GDL-III: A description language for epistemic general game playing[END_REF]. GDL-II and GDL-III aim at describing the rules of an imperfect information game, but do not provide tools for reasoning about how a player infers information based on these rules. All these logics face decidability and tractability issues: their expressive power prevents them from being implemented realistically in an artificial agent. [START_REF] Jiang | Epistemic GDL: A logic for representing and reasoning about imperfect information games[END_REF] propose an epistemic extension of GDL (E-GDL) to represent and reason about imperfect information games. Their language allows us to represent the rules in the imperfect information setting. A key characteristic of E-GDL is that it manages the balance between expressiveness and computational complexity of model checking (∆ P 2). GDL has also been extended for defining, comparing and combining strategies in (Zhang and Thielscher, 2015a,b). This extension includes the dual connectives prioritised disjunction and prioritised conjunction for expressing preferences when combining strategies.

The use of GDL-based languages for describing market-based protocols has also been studied. [START_REF] Jonge | Using GDL to represent domain knowledge for automated negotiations[END_REF] discuss the use of GDL for modeling negotiation. The main advantage is being able to apply the existing domain-independent techniques from GGP. For instance, the Monte Carlo Tree Search algorithm has been adapted for negotiations in non-zero-sum games [START_REF] Jonge | Automated negotiations for general game playing[END_REF]. In another paper, they propose the use of GDL as a unifying language for defining general and complex negotiation domains (de [START_REF] De Jonge | GDL as a unifying domain description language for declarative automated negotiation[END_REF].

The Market Specification Language proposed by [START_REF] Thielscher | From General Game Descriptions to a Market Specification Language for General Trading Agents[END_REF] is also based on GDL. The work focuses on representing single item auctions through a set of rules and then interpreting an auction-instance with the help of a statebased semantics. However, the main limit is the lack of a clear link between the language, the mechanism formalization and the agents' preferences, which prevents the evaluation of GDL-based specifications as mechanisms.

Auction Description Language

Let us now define the Auction Description Language (ADL), which is a framework for specification of auction-based markets composed by a state-transition model and a logical language. To encode an auction, we first define its signature, which specifies the participants (the agents), the goods being traded and the propositions and variables describing each state of the auction: Definition 2.1. An auction signature S is a tuple (N, G, B, Φ, Y, I, F), where:

• N = {1, ..., n} is a nonempty finite set of agents (or bidders);

• G = {1, ..., m} is a finite set of good 1 types;

• B is a nonempty finite set of bids (or actions);

• Φ is a finite set of atomic propositions specifying features of a state;

• Y is a finite set of numerical variables specifying numerical features of a state;

• I ⊆ Z is an interval of the form [z min , z max] denoting the value range for any countable component of the framework, where z min ∈ Z, z max ∈ Z, z min ≤ 0 and z max ≥ 0;

• F ⊆ {f : B a × I b → I | a, b ∈ I ⪰0
} is a set of state-independent functions of possibly different arities.

We assume I is equipped with a partial order 2 ⪯, capturing the standard lessthan-or-equal relation over its elements. By convenience, we assume 0 ∈ I and denote I ⪰0 = [0, z max] and I ≻0 = (0, z max] as the non-negative and positive parts of I, respectively. Similarly, I ⪯0 = [z min , 0] and I ≺0 = [z min , 0) denote the non-positive and negative parts of I.

Hereafter, we will fix an auction signature S and all concepts will be based on this signature, except if stated otherwise. Note that z min and z max , in the definition of I, should be large enough to represent the total supply of goods being traded as well as the cumulative available money among agents. Throughout the rest of this chapter, we assume that is the case. Values outside I are rounded to the nearest value z min or z max . We assume that F contains the functions sum(z

1 , z 2) = min(z max , z 1 +z 2), sub(z 1 , z 2) = max(z min , z 1 -z 2), times(z 1 , z 2) = min(z max , z 1 •z 2),
denoting the addition, subtraction and multiplication of two integers z 1 , z 2 ∈ I, respectively. . Similarly, we also assume F contains the functions

max(z 1 , z 2) = z 1 if z 2 ⪯ z 1 z 2 otherwise
1 Throughout this thesis the terms "item" and "good" are used interchangeably.

2 A partial order is a relation that is reflexive, antisymmetric, and transitive.

16

Chapter 2. Logic for Auction Specification

and min(z 1 , z 2) = z 1 if z 1 ⪯ z 2 z 2 otherwise
capturing the maximum and minimum among two integers z 1 , z 2 ∈ I. Given a sequence (z i) i∈N ∈ I n and a 2-ary function f ∈ F such that f : I × I → I, we will use the following shortcut:

f i∈N (z i) = f (z 1 , f (z 2 , f (..., f (z n-1 , z n))))
A trade is a tuple (λ i,j) j∈G,i∈N ∈ I nm , where λ i,j denotes the number of units j being traded by agent i. A trade specifies which items each agent is selling and/or buying. A positive trade expresses how many units of a good type are purchased and a negative trade represents how many units are sold. Similarly, a positive payment denotes how much a buyer will pay and a negative payment expresses how much a seller will receive.

A tuple of objects indexed by agents in N is called a profile. In a profile, we may omit the index set and we write it in bold, e.g., λ for (λ i) i∈N and (λ j) j∈G for (λ i,j) j∈G,i∈N . Given a profile o, we let o r be the component of agent r and o -r be (o i) i̸ =r . Let us now present the model and the language's syntax and semantics.

Syntax

Let L Z be the set of numerical terms, with each z ∈ L Z defined as follows:

z ::= z | var | f (β, ..., β, z, ..., z)
where β ∈ B is a bid, z ∈ I is an integer, var ∈ Y is a numerical variable and f ∈ F is a function3 .

The logical language for ADL is denoted by L ADL and a formula φ in L ADL is defined by the following Backus-Naur Form (BNF) grammar:

φ ::= p | initial | terminal | legal i (β) | does i (β) | ¬φ | φ ∧ φ | ⃝φ | z ≤ z where p ∈ Φ is an atomic proposition, i ∈ N is an agent, β ∈ B is a bid, and z ∈ L Z is a numerical term.
Intuitively, initial and terminal specify the initial terminal states, resp.; legal i (β) asserts that agent i is allowed to take action β at the current state and does i (β) asserts that agent i takes action β at the current state. The formula ⃝φ means "φ holds at the next state". The formula z 1 ≤ z 2 means that the numerical term z 1 is smaller or equal to the numerical term z 2 .

We use the standard abbreviations from propositional logic, such as φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ → ψ for ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ). We take ⊤ to be an abbreviation for some fixed propositional tautology such as p ∨ ¬p, and let ⊥ be an abbreviation of ¬⊤. We also use abbreviations for comparison operators, such as

z 1 = z 2 for z 1 ≤ z 2 ∧ z 2 ≤ z 1 , z 1 < z 2 for z 1 ≤ z 2 ∧ ¬(z 1 = z 2), z 1 ̸ = z 2 for ¬(z 1 = z 2), z 1 ≥ z 2 for z 2 ≤ z 1 and z 1 > z 2 for z 1 ≥ z 2 ∧ z 1 ̸ = z 2 .
The extension of the comparison operators to multiple arguments is straightforward.

Assume the bids β = (β i) i∈N , where β i ∈ B is a bid associated to the agent i ∈ N. The formula does(β) = def i∈N does i (β i) represents that the agents in N perform the joint action β.

Semantics

As for GDL, the semantics of ADL is based on state-transition models. This is more suitable for describing the dynamics than stable models that were initially considered for GDL and GGP [START_REF] Genesereth | General game playing[END_REF]. Such models allows us to represent the key aspects of an auction, at first the legal bids and the transitions among states. Definition 2.2. A state-transition-model (ST-model for short) M is a tuple (W, w, T, L, U, π Φ , π Y), where:

• W is a nonempty set of states; • π Φ : W → 2 Φ is the valuation function for the state propositions;

• w ∈ W is the initial state; • T ⊆ W is a set of terminal states; • L ⊆ W × N × B is
• π Y : W × Y → I, is the valuation function for the numerical variables.

A path represents a run or execution of an auction protocol. Formally, Definition 2.3. Given an ST-model M = (W, w, T, L, U, π Φ , π Y), a path is a sequence of states and joint actions w

0 d 1 →w 1 d 2 → . . . d t →w t d t+1 → . . . such that for any t ≥ 1: (i) w 0 = w; (ii) w t ̸ = w 0 ; (iii) d t i ∈ L(w t-1 , i) for any i ∈ N, (iv) w t = U(w t-1 , d t); and (v) if w t-1 ∈ T, then w t-1 = w t .
For any path δ, let δ[t] denote the t-th state of δ, θ(δ, t) denote the joint action performed at stage t of δ, θ i (δ, t) denote the action of agent i performed at stage t of δ, and δ[0, t] denote the finite prefix w

d 1 →w 1 d 2 →... d t →w t . A path δ is complete if δ[e]
∈ T, for some e > 0. After reaching a terminal state δ[e], for any e ′ > e, δ[e ′] = δ[e]. Finally, for a given model M, any state w such that there exists a complete path δ of M such that w ∈ δ will be called a reachable state of M.

Chapter 2. Logic for Auction Specification

The semantics for ADL is given in two steps. First, we define function f Z to compute the meaning of numerical terms z ∈ L Z in some specific state. Next, a formula φ ∈ L ADL is interpreted with respect to a stage in a path. Definition 2.4. Given an ST-model M, we define function f Z : L Z × W → I, assigning any z ∈ L Z and state w ∈ W to a number in I:

f Z (z, w) =        π Y (w, z) if z ∈ Y f (β 1 , ..., β n , f Z (z 1 , w), ..., f Z (z m , w)) if z = f (β 1 , ..., β n , z 1 , ..., z m) z if z ∈ I
where n, m ∈ I ⪰0 .

Definition 2.5. Let M be an ST-Model. Given a path δ of M, a stage t on δ and a formula φ ∈ L ADL , we say φ is true (or satisfied) at t of δ under M, denoted by M, δ, t |= φ, according to the following definition:

M, δ, t |= p iff p ∈ π Φ (δ[t]) M, δ, t |= ¬φ iff M, δ, t ̸ |= φ M, δ, t |= φ 1 ∧ φ 2 iff M, δ, t |= φ 1 and M, δ, t |= φ 2 M, δ, t |= initial iff δ[t] = w M, δ, t |= terminal iff δ[t] ∈ T M, δ, t |= legal i (β) iff β ∈ L(δ[t], i) M, δ, t |= does i (β) iff θ i (δ, t) = β M, δ, t |= ⃝φ iff M, δ, t + 1 |= φ M, δ, t |= z 1 ≤ z 2 iff f Z (z 1 , δ[t]) ⪯ f Z (z 2 , δ[t]) A formula φ is globally true through δ, denoted by M, δ |= φ, if M, δ, t |= φ for any stage t of δ. A formula φ is globally true in an ST-model M, written M |= φ, if M, δ |= φ for all paths δ in M. Finally, let Σ be a set of formulae in L ADL , then M is a model of Σ if M |= φ for all φ ∈ Σ.
Similar to Epistemic GDL [START_REF] Jiang | Epistemic GDL: A logic for representing and reasoning about imperfect information games[END_REF], the following propositions hold:

Proposition 2.1. Let M be an ST-model, for each agent i ∈ N and each action β ∈ B,

1. M |= does i (β) → ¬does i (β ′), for any β ′ ∈ B such that β ′ ̸ = β 2. M |= β ′ ∈B does i (β ′) 3. M |= does i (β) → legal i (β) 4. M |= ¬ ⃝ initial 5. M |= terminal ∧ φ → ⃝φ, for any φ ∈ L ADL 6. M |= initial → ¬terminal
Proof. Let M be an ST-model, δ be a path, t ≥ 0 be an stage in δ, i ∈ N be an agent and β ∈ B be an action. For Statement 1, assume M, δ, t

|= does i (β) iff θ i (δ, t) = β. Then for any β ′ ∈ B such that β ′ ̸ = β, θ i (δ, t) ̸ = β ′ and M, δ, t |= ¬does i (β ′). Statement 2 follows from the definition of δ, since θ i (δ, t) ∈ L(δ[t], i) and L(δ[t], i) ⊆ B, we have M, δ, t |= β ′ ∈B does i (β ′).
Let us verify Statement 3. Assume M, δ, t |= does i (β), then θ i (δ, t) = β and by the definition of δ, β ∈ L(δ[t], i) and M, δ, t |= legal i (β).

We consider Statement 4. By the path definition, for all t > 0, δ[t] ̸ = w. Thus,

δ[t + 1] ̸ = w and M, δ, t + 1 |= ¬initial. It follows that M, δ, t |= ¬ ⃝ initial. We now verify Statement 5. Assume M |= terminal ∧ φ, for some φ ∈ L ADL . Then δ[t] ∈ T and δ[t + 1] = δ[t]. Thus, M, δ, t + 1 |= φ and M, δ, t |= ⃝φ.
Finally, we consider Statement 6. Assume for the sake of contradiction that M, δ, t |= initial ∧ terminal. Then, δ[t] = w and δ[t] ∈ T. By the path definition, it should be the case that t = 0. Due to the loop on terminal states, it follows that w 0 = w 1 , which is a contradiction with the path requirement w t ′ ̸ = w 0 , for any t ′ ≥ 1.

Statements 1 and 2 specify an agent performs exactly one action in each state. Furthermore, if she does an action, then it must be legal (Statement 3). As a consequence from the path construction, we have that no state can be followed by the initial one (Statement 4) and any formula that holds in a terminal state also holds in the subsequent state (Statement 5). Finally, if a state is the initial one then it is not a terminal state (Statement 6).

We also have tautologies related to the partial order ⪯:

Observation. Let M be an ST-model, i ∈ N be an agent, z = (z 1 , z 2 , . . . , z n) be a list of numerical terms (i.e., z ∈ L n Z) and f ∈ F be any function such that f :

I n → I, for some n ∈ I ≻0 , 1. M |= z 1 ℜ z 1 , for ℜ ∈ {≤, ≥, =} 2. M |= z 1 ℜ z 2 ∧ z 2 ℜ z 1 → z 1 = z 2 , for ℜ ∈ {≤, ≥, =} 3. M |= z 1 ℜ z 2 ∧ z 2 ℜ z 3 → z 1 ℜ z 3 , for ℜ ∈ {≤, ≥, =} 4. M |= z i = z j ↔ f (z i , z -i) = f (z j , z -i), for any 1 ≤ i ≤ n 5. M |= z 1 = z 2 ↔ z 2 = z 1 6. M |= z 1 ℜ z 2 → ¬(z 2 ℜ z 1), for ℜ ∈ {<, >}
Proof. Statements 1-6 follow from the definition of ⪯ and the abbreviations for the comparison operators.

Chapter 2. Logic for Auction Specification

Statements 1, 2 and 3 are a consequence from ⪯ being reflexive, antisymmetric and transitive, respectively. Two numerical terms are equal if and only if the value obtained after applying f is equal for both terms (Statement 4). Statement 5 says that the equality operator is symmetric and Statement 6 states that the operators representing the relations smaller-than and greater-than are asymmetric.

Requirements for representing verifiable auctions

For verifying a protocol expressed in ADL with respect to mechanism properties, its signature S = (N, G, B, Φ, Y, I, F) must comply with the following requirements:

• F should include a function v i : B×I nm → I for each agent i ∈ N, where v i (β, λ)

denotes the value of β given a joint trade λ ∈ I nm , i.e., v i (β, λ) represents the value reported for trade λ under i's bid β4 ;

• There are no duplicate bids in B, that is, there are no two bids β,

β ′ ∈ B, such that β ̸ = β ′ and v i (β, λ) = v i (β ′ , λ)
, for any trade λ ∈ I nm and any agent i;

• Each payment and trade should be represented as a numerical variable, that is, {pay i , trade i,j : i ∈ N, j ∈ G} ⊆ Y. The variables pay i and trade i,j denote the value in a state of agent i's payment and her trade for the good j (that is, the number of units of j being bought or sold by i), respectively.

Other functions may as well be included in F. For instance, for indirectly representing market clearing with ADL, one may encode a winner determination function, such that it assigns bids and allocations to trades. Such function is not a compulsory requirement for the bidding language, since we can also directly represent the market clearing through L ADL -rules5 .

Verification of ADL-Descriptions

In this section, we explore the general evaluation of auction-based protocols. First, we recall concepts from mechanism design and present their formulation in ADL.

As for GDL, we then define well-formulated protocol descriptions.

Direct Mechanisms

A mechanism aggregates agents' preferences and decides for an outcome (e.g., an allocation of goods, a result of an election, etc) [START_REF] Conitzer | Complexity of mechanism design[END_REF]. Auctions are a type of mechanism, in which the outcome is described in terms of trades and monetary transfers among the participants. According to a given objective, the goal of Mechanism Design is to design a game (i.e., the mechanism) such that an outcome with desirable features is reached, despite the agents' self interests [START_REF] Sandholm | Automated mechanism design: A new application area for search algorithms[END_REF]. The objective of a mechanism can include, for instance, truthfulness of agents (i.e., strategyproofness), maximization of social welfare (i.e., efficiency), voluntary participation (i.e., individual rationality), and so on.

Let us recall concepts from economics and show how to represent some classical but important objectives (hereafter called properties) in ADL, namely budgetbalance, efficiency, individual rationality and strategyproofness. As we focus on auctions, we denote the mechanism outcome as a pair (λ, p), where λ = (λ j) j∈G is a trade (describing the items being exchanged among the agents) and p i is the payment for agent i.

The preference of an agent i in N over a trade λ is modeled by a preference function ϑ i : I nm → I, where ϑ i ∈ V i and V i is a finite set of possible preference functions for i. We call V i the preference space of i. We classically assume that the utility of agent i over an outcome (λ, p) is quasi-linear (i.e., the utility's dependence on the payment is separable and linear)6 , defined as ϑ i (λ) -p i .

We use the value reported in a bid for a given trade to assess whether the bid represents the agent's preference function.

Definition 2.6. Let B be an action set and V i be the preference space of agent

i ∈ N. A bid β ∈ B represents a preference function ϑ i ∈ V i , denoted by β ∼ i ϑ i , iff v i (β, λ) = ϑ i (λ), for all trade λ ∈ I nm .
Similarly, an action set may represent a preference space. In this case, exactly one bid in the action set should represent a preference function.

Definition 2.7. Given a set of actions B and a preference space V i of agent i ∈ N, we say B represents V i , denoted by B ≈ i V i iff for each ϑ i ∈ V i there exists a unique bid β ∈ B such that β ∼ i ϑ i and for each bid β ∈ B there exists a preference function

ϑ i ∈ V i such that β ∼ i ϑ i . If B ≈ i V i , for each ϑ i ∈ V i we let β ϑ i denote the bid β ∈ B such that β ∼ i ϑ i , that is, β ϑ i is the bid that represents ϑ i . Given a preference profile ϑ, let β ϑ = (β ϑ i) i∈N denote the profile of bids representing ϑ.
Notice not all elements of I are feasible values for trades, for instance in a traditional English auction, the trade for each agent should be either 0 or 1 while the interval I could include greater values for encoding the payments. In the following, the possible choices considered for trades in the mechanism are denoted Λ ⊆ I nm .

An indirect mechanism describes the available actions for each agent and an outcome function that maps vectors of actions (also know as strategies) into outcomes. In a direct mechanism, each agent's available action consists on reporting preferences from her preference space [START_REF] Jackson | Optimization and Operations Research -Volume III, chapter Mechanism Theory[END_REF]. Formally, a direct mechanism is defined as follows [START_REF] Nisan | Algorithmic Game Theory[END_REF]:

22

Chapter 2. Logic for Auction Specification Definition 2.8. A direct mechanism (s, p) specifies a social choice function s : i∈N V i → Λ and a profile of payment functions p, where p i : i∈N V i → I denotes the amount agent i pays (or receives).

Regardless whether a protocol is multi-or single-stage, we view each step w e d e+1 →w e+1 of a path w 0

d 1 →w 1 d 2 → . . . d t →w t d t+1
→ . . . in an ST-model M as a direct mechanism, where e ≥ 0 and the social choice and payments are encoded by the update and valuation functions in M. Formally, Definition 2.9. Given a preference space profile V , an ST-model M and a state w ∈ W such that L(w, i) ≈ i V i for each i ∈ N, and let the set of possible trades be defined as

Λ = {(π Y (w ′ , trade i,j)) i∈N,j∈G : w ′ = U(w, β ϑ) & ϑ ∈ i∈N V i }.
Then state w is a direct mechanism (s, p), where for each ϑ ∈ i∈N V i , the outcome is denoted by the valuation of the numerical variables regarding trades and payments in the state w ′ = U(w, β ϑ). The social choice function is

s(ϑ) = (λ j) j∈G
where λ i,j = π Y (w ′ , trade i,j) for each agent i and good j. The payment function for agent i is

p i (ϑ) = π Y (w ′ , pay i)
The state w ′ = U(w, β ϑ) in the above definition is called an outcome state. Any reachable state in an ST-model is an outcome state, except the initial state. For the next subsections, we fix an ST-Model M and a preference space profile V such that L(w, i) ≈ i V i for each agent i and state w ∈ W.

Budget-balanced mechanisms

A mechanism is strongly budget-balanced (SBB) if the cumulative payment among the bidders is zero, for every preference they may have [START_REF] Mishra | A simple budget-balanced mechanism[END_REF]. A mechanism where there is no monetary deficit, that is, where only the designer can earn revenue, is called weakly budget-balanced (WBB) [START_REF] Mishra | A simple budget-balanced mechanism[END_REF]. This condition is a relaxation from SBB, where the cumulative payment among the bidders cannot be negative.

Definition 2.10. A direct mechanism (s, p) is strongly budget-balanced (resp. weakly budget-balanced) if for each ϑ ∈ i∈N V i , i∈N p i (ϑ) = 0 (resp. i∈N p i (ϑ) ≥ 0)
We denote the condition of a state being SBB by the following ADL-formula:

SBB = def sum i∈N (pay i) = 0
The formula WBB is defined similarly: WBB = def sum i∈N (pay i) ≥ 0 Remind we consider that each stage in M represents a direct mechanism. The STmodel M is SBB (resp. WBB) if that is the case for all outcome states of all paths in M, that is, if M |= ⃝SBB (resp. M |= ⃝WBB).

Similarly, we could represent conditions for the balance of trades. Balance of supply-demand requires the cumulative of trades for each good to be exactly zero [START_REF] Larsen | Distributed control of the power supply-demand balance[END_REF]. Mechanisms with free disposal allow trades to sell more items than are purchased [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF], that is, the cumulative of trades for each good must be at most zero.

Strategyproof mechanisms

A mechanism is strategyproof (SP), or incentive compatible, if each agent i prefers reporting her real preference ϑ i than reporting any other preference ϑ ′ i , since ϑ i gives her at least the same utility [START_REF] Nisan | Algorithmic Game Theory[END_REF].

Definition 2.11. A direct mechanism (s, p) is strategyproof if for every agent i ∈ N, every preference profile ϑ and every

ϑ ′ i ∈ V i , ϑ i (s(ϑ)) -p i (ϑ) ≥ ϑ i (s(ϑ ′ i , ϑ -i)) -p i (ϑ ′ i , ϑ -i)
Now we reformulate this condition in terms of states from an ST-model. Let V i denote the preference space for each agent i.

Given the ST-model M, a path δ in M and a stage t ≥ 0 in δ, such that L(δ[t], i) ≈ i V i for each i. For any preference profile ϑ, let δ ϑ denote a path such that δ[0, t] = δ ϑ [0, t] and θ(δ ϑ , t) = β ϑ (i.e., M, δ ϑ , t |= does(β ϑ)). In other words, δ ϑ is a path with the same prefix as δ, but one in which agents report the preferences ϑ in δ ϑ [t] instead of the actions they perform in δ [t].

We say that δ[t] is strategyproof if for every i ∈ N, every preference profile ϑ and every ϑ ′ i ∈ V i , we have that, for some

x ∈ I, M, δ ϑ , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) = x and M, δ (ϑ ′ i ,ϑ -i) , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) ≤ x M is strategyproof if each stage t ≥ 0 of each path δ in M is strategyproof.

Efficient mechanisms

A mechanism is efficient (EF) if the social choice function maximizes the (utilitarian) social welfare [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF], i.e., the cumulative preference among the agents. Definition 2.12. A direct mechanism (s, p) is efficient if for every preference profile ϑ,

i∈N ϑ i (s(ϑ)) = max λ∈Λ i∈N ϑ i (λ)
Let us express this condition in terms of an ST-model M. The following formula determines whether the current trade maximizes the social welfare:

EF(β) = def sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ)))
We say M is EF if, after performing a joint action, the trade in the outcome state maximizes agents' preferences, that is M |= does(β) → ⃝EF(β), for every β ∈ B n .

Individually rational mechanisms

A mechanism is (ex-post) individually rational (IR), if agents always get nonnegative utility [START_REF] Nisan | Algorithmic Game Theory[END_REF]. Given a reported preference, in an IR mechanism, the agent's utility when participating is at least as good as if she did not participate (assuming the utility of non-participation is zero). Individual rationality is also known as voluntary participation since it expresses the idea that agents are not forced to participate in the mechanism [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF].

Definition 2.13. A direct mechanism (s, p) is individually rational if for every agent i ∈ N, every ϑ ∈ r∈N V r , ϑ i (s(ϑ)) -p(ϑ) ≥ 0
We use the following ADL-formula to denote whether a state is IR:

IR(β) = def i∈N sub(v i (β i , (trade j) j∈G), pay i) ≥ 0
The ST-model M is IR if performing a joint action leads to an individually rational state, that is, M |= does(β) → ⃝IR(β), for every β ∈ B n .

The properties described in this section are classical in mechanism design, since they describe desirable features of the outcome. The objective of a mechanism may include a combination of different properties. However, well-known impossibility results restrict the feasible combination of such properties: no mechanism can be efficient, strongly budget-balanced and individual-rational [START_REF] Myerson | Efficient mechanisms for bilateral trading[END_REF] and no mechanism can be efficient, incentive compatible and strongly budget-balanced [START_REF] Green | Incentives in public decision-making[END_REF].

In this chapter, we describe how to verify ST-models by considering that each stage is a direct mechanism, that is, an iterative protocol is treated as a sequence of (independent) direct mechanisms. The revelation principle [START_REF] Nisan | Algorithmic Game Theory[END_REF] states that any indirect mechanism that implements a function in dominant strategies can be converted into a strategyproof direct mechanism. For this reason, considering direct mechanisms is of first interest.

If we want to verify an ST-model M as an (unique) indirect mechanism, we need to evaluate properties considering the final outcome, that is, on the terminal states of each path. The classical approach in mechanism design requires properties to hold in strategic equilibrium rather than for all possible outcomes. As ADL does not involve quantification over strategies, we need meta-reasoning to capture the strategic equilibrium for a given solution concept (such as Nash or dominant strategy equilibrium). The reader may refer to [START_REF] Nisan | Algorithmic Game Theory[END_REF] for a discussion on the problem of finding strategic equilibria.

In the next subsection, we will focus on properties that ensure well-formed descriptions in ADL. This properties are not related to the mechanism outcome but require protocols to be playable and eventually end. [START_REF] Love | General game playing: Game description language specification[END_REF] introduced constraints for games used in GGP. This constraints constitute desirable features of games described in GDL by ensuring their descriptions to be meaningful (or well-formed), in the sense that games are playable, eventually terminate and are weakly winnable by any player.

Well-Formed Protocols

We rephrase the constraints for termination and playability in terms of STmodels. First, termination refers to whether each path from an ST-model reaches a terminal state.

Definition 2.14. An ST-model M terminates if each path δ in M is complete, that is, δ[t] ∈ T, for some t > 0.
Playability means there is a legal action for each agent to take in each moment of the auction. Definition 2.15. An ST-model M is playable if L(w, i) ̸ = ∅ for each reachable state w ∈ W and agent i ∈ N.

Weak winnability means that, for each agent, there is a sequence of joint actions that leads to a terminal state where the goal value is maximal. In the logical formulations of GDL, weak winnability means that every player has a chance to win [START_REF] Zhang | A logic for reasoning about game descriptions[END_REF][START_REF] Ruan | Verification of games in the game description language[END_REF], that is, there exists a path to a winning state. In ADL, weak winnability follows from our assumption that each stage represents a direct mechanism. Since we understand the agent's preferences as represented by legal actions, there exists a joint action in each stage leading to a state that maximizes her utility among the possible outcomes. Hence, we do not focus on weak winnability for determining whether a protocol is well-formed.

A well-formed protocol is a set of rules in ADL whose model is an ST-model that satisfies both termination and playability. Definition 2.16. Given an ST-Model M and a finite set of ADL-formulae Σ ⊂ L ADL , Σ is a well-formed protocol over M if M is a model of Σ, M terminates and it is playable.

It is possible to have different descriptions that are well-formed with respect to the same model (e.g., due to redundancy). In fact, a given auction description may also be sound in respect to several models. Investigating minimal descriptions is an interesting non trivial open question. A potential path is to characterize the minimum equivalent of an original ST-model, that is, the canonical model. This problem was explored for GDL [START_REF] Jiang | Game equivalence and bisimulation for game description language[END_REF], where they use the notion of bisimulation equivalence between ST-models. In a recent paper, Zhang [START_REF] Zhang | Behavioural equivalence of game descriptions[END_REF] investigates the equivalence of two GDL-descriptions when they describe games behaviorally the same.

The automated verification of strategyproofness and termination requires metareasoning over the possible paths of a ST-Model. However, for a number properties (such as efficiency and individual rationality), the problem of analyzing a stage as a direct mechanism boils down to model checking ADL-formulae.

Model Checking

Now we examine the complexity of the problem of deciding whether an ADL formula is true with respect to a model, a path, and a stage in the path.

Definition 2.17. The model-checking problem for ADL is the following: Given an ST-Model M, a path δ in M, a stage t ≥ 0 in δ and a formula φ ∈ ADL, determine whether M, δ, t |= φ or not.

In the next sections, we show that the model-checking problem for ADL is decidable in polynomial-time deterministic Turing machine (Ptime) when functions in F can be computed in polynomial time.

Upper Bound

Let φ ∈ be a formula and M be an ST-Model over S. We say that ψ is a subformula of φ if either (i) ψ = φ; (ii) φ is of the form ¬φ, or ⃝ψ and ψ is a subformula of φ; or (iii) φ is of the form φ ∧ φ ′ and ψ is a subformula of either φ or φ ′ . We denote Subformula(φ) as the set of all subformulae of φ.

Theorem 2.1. Assuming that functions in F can be computed in polynomial time, the model-checking problem for ADL is in Ptime.

Proof. Assume the functions in F can be computed in polynomial time. Algorithm modelCheck works in the following way: first it gets all subformulae of φ and orders them in a vector S by ascending length. Thus, S(|φ|) = φ, i.e., the position |φ| in S corresponds to the formula φ itself, and if φ i is a subformula of φ j then i < j. An induction on S labels each subformula φ i depending on whether or not φ i is true in δ[j] under M. Since functions in F can be computed in polynomial time, if φ i does not have any subformula, its truth value is obtained directly from the model. Since S is ordered by formulae length, if φ i is either of the form φ ′ ∧ φ ′′ or ¬φ ′ the algorithm labels φ i according to the label assigned to φ ′ and/or φ ′′ . If φ i is of the form ⃝φ ′ then its label is recursively defined according to φ ′ truth value in the stage t + 1. As Algorithm modelCheck visits each subformula at most once, Algorithm 1 modelCheck (M, δ, t, φ) Input: an ST-model M = (W, w, T, L, U, π Φ , π Y), a path δ in M, a stage t ≥ 1 in δ and a formula φ ∈ L ADL .

Output

isT rue[i] ← isT rue[i] ∧ modelCheck(M, δ, j + 1, φ ′) 12:
case φ is atomic

13: isT rue[i] ← M, δ, t |= φ 14: return isT rue[|φ|]
and the number of subformulas is not greater than the size of φ, the algorithm can clearly be implemented in a polynomial-time deterministic Turing machine with Ptime.

Lower Bound

Now let us characterize a lower bound of the complexity of model-checking ADL. To do so, we reduce the model-checking problem for GDL, which is known to be Ptime (consequence of Lemma 2 by [START_REF] Jiang | Epistemic GDL: A logic for representing and reasoning about imperfect information games[END_REF]). This reduction is computable in logarithmic space in the size of the input.

Theorem 2.2. The model-checking problem for ADL is Ptime-hard.

Proof. First, we recall GDL definitions. By convenience, we refer to the GDL formalization presented in [START_REF] Jiang | Game equivalence and bisimulation for game description language[END_REF]. Let S GDL = (N, B, Φ) be a game signature, where Φ is a propositional set, N is a set of agents, and B is the action set. Let M GDL = (W, w, T, L, U, g, π Φ) be a GDL model over S GDL , where W, w, T, L and π Φ are defined in the same way as in a ADL model (see Definition 2.2), U : W × B |N| → W \ { w} is the update function and g : N → 2 W is the goal function.

A path δ in M GDL is an infinite sequence of states and joint actions, defined in the same way as Definition 2.3. Let δ be a path in M GDL , a formula φ in L GDL is defined by the following BNF:

φ ::= p | initial | terminal | legal r (a) | wins(r) | does r (a) | ¬φ | φ ∧ φ | ⃝φ
where p ∈ Φ, r ∈ N and a ∈ B.

Chapter 2. Logic for Auction Specification

For any stage t ≥ 0 and formula φ ∈ L GDL , the semantics of L GDL are similar to Definition 2.5, except by the following case: M GDL , δ, t |= wins(r) iff δ[t] ∈ g(r).

Given a stage t > 0 and a formula φ ∈ L GDL , we show how to construct an ADL model M ADL , such that M, δ, t |= φ iff M GDL , δ, t |= φ.

Let S ADL = (N, ∅, A, Φ ′ , ∅, [0, 0], ∅) be the auction signature, where Φ ′ = Φ ∪ {wins(r) : r ∈ N}. We define the ADL model M ADL = (W, w, T, L, U, π ′ Φ , ∅), where W, w, T and U are the same as in M GDL . The valuation function for state propositions is defined as follows:

π ′ Φ (w) = π Φ (w) ∪ {wins(r) : w ∈ g(r) & r ∈ N}, for each w ∈ W.
Since U(w, d) ∈ W, for each w ∈ W and d ∈ B |N| , we have that U is an update function in accordance with Definition 2.2. Furthermore, if δ is a path in M GDL then it is a path in M ADL . Since {wins(r) : r ∈ N} ⊆ Φ ′ , we have that L GDL ⊆ L ADL .

Given φ ∈ L GDL , if φ is not in the form wins(r), then it is straightforward that M GDL , δ, t |= φ iff M ADL , δ, t |= φ. Now we consider the case were φ ∈ L GDL is in the form wins(r), for some r ∈ N. Assume M GDL , δ, t |= wins(r

) iff δ[t] ∈ g(r) iff wins(r) ∈ Φ ′ (δ[t]) iff M ADL , δ, t |= wins(r).
Theorem 2.2 shows that Algorithm modelCheck is optimal when the functions in F can be computed in polynomial time. As for GDL, the ST-model may have an exponential size with respect to the number of atomic propositions used (e.g., the number of agents and items).

Conclusion

ADL is useful for representing the rules of an auction as well as for verifying a number of properties. For discussing its generality, we refer again to the six auction dimensions from [START_REF] Kalagnanam | Auctions, bidding and exchange design[END_REF]'s classification:

1. Resources: ADL can represent auction variants with single and multiple units as well as multiple types of goods;

2. Market structure: ADL represents single and double-sided auctions in addition to exchange protocols. However, we cannot represent dynamic sets of agents and goods;

3. Preference structure: as we are concerned with the general representation of auctions, we focus on how agents can express their preferences rather than on the underlying structures of their utility functions. Following the literature on Mechanism Design [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF], we consider agents with quasilinear utilities. In such a case, the agents' utilities are based on a preference function over the outcomes and her payment. For a discussion on the hierarchy of preference functions, the reader may refer to [START_REF] Feige | A unifying hierarchy of valuations with complements and substitutes[END_REF]; 4. Bid structure: ADL can be used alongside different bidding languages. We define requirements for the bidding set. In the next chapter, we illustrated how to employ different bidding structures in ADL;

5. Market clearing: ADL can encode single and multi-sourcing auctions;

6. Information feedback: in ADL, direct mechanisms are described by a one-stage protocol and indirect mechanisms are represented by iterative protocols.

Hence, ADL addresses all these dimensions and is general enough to represent most settings. Notice that, similar to GDL, ADL focuses on deterministic and perfect information protocols. GDL-II is an extension for handling imperfect information [START_REF] Thielscher | GDL-II[END_REF] and may be considered for auctions such as iterative sealed-bid auctions. These are however less common.

Different from the related work [START_REF] Rolli | A Descriptive Auction Language[END_REF], our proposal is flexible and not restricted to a specific bidding language, as one may use different bidding languages with ADL for defining distinct protocols.

Beyond the auction setting, ADL is also able to represent several kinds of resource allocation problems: as noticed by [START_REF] Chevaleyre | Issues in Multiagent Resource Allocation[END_REF], auctions can be seen as a subdivision of allocation mechanisms. The main characteristics of an auction are (i) central authority (the auctioneer), (ii) monetary transfer among participants, and (iii) agents' preferences expressed through bids. All these key features are expressible in ADL.

Similar to ADL, the semantics of GDL is based on fixed paths. Thus, constraints for well-formed descriptions cannot be encoded through formulae using the standard formulation of GDL. [START_REF] Zhang | A logic for reasoning about game descriptions[END_REF] proposes a GDL-based modal logic to enable reasoning over game descriptions, with which one can express conditions such as playability, termination and winnability. However, the work does not investigate the complexity of verifying formulae in this modal logic. [START_REF] Ruan | Verification of games in the game description language[END_REF] use ATL [START_REF] Alur | Alternating-time temporal logic[END_REF] to reason about GDL-specified games. They prove that the problem of interpreting ATL formulae over propositional GDL descriptions is Exptime-complete and show how to use ATL for the verification of well-formedness conditions, which might or might not hold on various games. Deciding whether a GDL description is well-formed is undecidable in general, since deciding whether a description leads to games that always terminates would solve the halting problem for a Turing machine [START_REF] Saffidine | The game description language is turing complete[END_REF].

As shown in Section 2.3, we can encode different properties of direct mechanisms as ADL-formulae (e.g., individual rationality and budget balance). Although we cannot represent strategyproofness and the constraints for well-formed descriptions entirely as ADL-formulae, we are still able to infer them by meta-reasoning over the model specification.

Other logical languages are suitable for encoding properties. Termination and playability, for instance, can be written as ATL-formulae [START_REF] Alur | Alternating-time temporal logic[END_REF]. As SL [START_REF] Chatterjee | Strategy logic[END_REF] includes quantification over strategies, it allows the evaluation of games in strategic equilibria. Therefore, it can be used to encode properties Chapter 2. Logic for Auction Specification for indirect mechanisms as logical formulae, as we shall see in Chapter 5. However, the expressivity of such languages brings a computational cost. The model-checking problem for ATL * with perfect information is in Pspace in the memoryless case and deterministic double exponential time with perfect recall [START_REF] Schobbens | Alternating-time logic with imperfect recall[END_REF]. As for SL, the model-checking is NonElementary with respect to the size of the specification. More specifically, it is k-Expspace-hard in the alternation number k of quantifications in the specification [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF]. The model-checking problem for ADL is in Ptime in the size of the formula. For this reason, we believe ADL provides a reasonable cost-benefit for expressing and evaluating general auctions. As a drawback for ATL, SL and ADL, representing auctions as concurrent game structures or state-transition models may require exponential size.

In the next chapter, we illustrate the use of ADL for specifying different, although representative, types of auctions: a simultaneous ascending auction, a Vickrey-Clarke-Groves mechanism and an iterative combinatorial exchange.

Chapter 3

Representative Auctions in ADL

In the previous chapter, we proposed ADL a logical language for the specification of auctions. We also characterized the well-formedness of auction descriptions and showed how to evaluate properties of direct mechanisms using ADL. Now, we illustrate the generality of ADL by modeling different auction-based markets. We focus on two auction types: simultaneous ascending auction and combinatorial exchange as we believe they are representative to demonstrate the expressive power of ADL. The first generalizes English auctions to multiple items and uses a simple bidding language for stating the price an agent is willing to pay for each item. The second type, combinatorial exchange, is a generalization of combinatorial and double-sided auctions. In this case, we show how to use a tree-based bidding language for elicitation of preferences over logical combinations of goods in two-sided markets. We consider an one-shot and an iterative variants of this auction type. Finally, each of those protocols is evaluated in terms of their well-formedness and the properties from direct mechanisms described in Section 2.3.

Simultaneous Ascending Auction

Let us now consider the simultaneous ascending auction (SAA), which is a singleside and single-unit protocol similar to the traditional English auction, except that several goods are sold at the same time, and that the participants simultaneously bid for any number of goods they want. According to [START_REF] Cramton | Simultaneous Ascending Auctions[END_REF]:

"The simultaneous ascending auction (and its variants) will remain the best method for auctioning many related items in a wide range of circumstances, even settings where some of the goods are complements for some bidders."

To represent the SAA with n types of goods and m agents, we first describe the auction signature, written S sa = (N, G, B, Φ, Y, I, F), where N = {1, ..., m}, G = {1, ..., n}, Φ = {sold j , bid i,j : j ∈ G & i ∈ N}, Y = {price, price j , trade i,j , pay i : j ∈ G & i ∈ N} and I ⊂ N. The propositions sold j and bid i,j represent whether the good j was sold and whether i is bidding for j, resp. The variables price and price j specify the current price for any unsold good and the selling price for j, resp. Agents may specify the value they are willing to pay for each good in a given state. The action set is defined as follows: B = {(p 1 , ..., p m) : p j ∈ I ⪰0 , 1 ≤ j ≤ m}, where p j denotes the price for good j. F includes the functions previously introduced Chapter 3. Representative Auctions in ADL (e.g., sum(z 1 , z 2), max(z 1 , z 2)). It also contains v i : B × I nm → I, for each agent i ∈ N. This function is defined as follows:

v i ((p 1 , ..., p m), λ) = j∈G λ i,j • p j
for a trade λ ∈ I nm and a bid (p 1 , ..., p m) ∈ B.

Each instance of a SAA is specific and defined with respect to B, I and the constant values inc, m, n ∈ I ≻0 and start ∈ I ⪰0 , representing the number of agents and the quantity of distinct good types, the bid increment, and the starting price, respectively. Then, the rules of an SAA are formulated by ADL-formulae as shown in Figure 3.1.

1. initial ↔ price = start ∧ j∈G price j = start ∧ i∈N (¬bid i,j ∧ trade i,j = 0) 2. sold j ↔ i∈N trade i,j = 1, for each j ∈ G 3. terminal ↔ ¬initial ∧ j∈G (sold j ∨ i∈N ¬bid i,j) 4. ⃝(trade i,j = 1 ↔ bid i,j ∧ r∈N\{i} ¬bid r,j), for each i ∈ N, j ∈ G 5. ⃝(trade i,j = 0 ↔ ¬(bid i,j ∧ r∈N\{i} ¬bid r,j)), for each i ∈ N, j ∈ G
6. legal i (p 1 , ..., p m) ↔ j∈G (p j = 0 ∧ trade i,j = 0) ∨ (p j = sum(price, inc)∧ ¬sold j) ∨ (p j = price j ∧ trade i,j = 1) , for each i ∈ N, p 1 , ..., p m ∈ {x : 0 ≤ x < z max -inc} 7. ¬terminal ∧ price = x → ⃝price = sum(x, inc), for each x ∈ I ⪰0 8. ¬terminal ∧ price j = x → ⃝((price j = x ∧ sold j) ∨ (price j = sum(x, inc) ∧ ¬sold j)), for each j ∈ G, x ∈ I ⪰0 9. ⃝bid i,j ↔ (does i (p 1 , ..., p m) ∧ p j ̸ = 0) ∨ (bid i,j ∧terminal), for each i ∈ N, j ∈ G and some p 1 , ..., p m ∈ I ⪰0 10. pay i = sum j∈G (times(price j , trade i,j)), for each i ∈ N In the initial state, no agent is bidding, no trade is performed and the prices have the value start (Rule 1). A good is sold if it is traded to some agent (Rule 2). In a terminal state, all the goods are either sold or no one is bidding for them (Rule 3). A good will be traded to an agent in the next state if she is currently the only active bidder for this item, otherwise there is no trade (Rules 4-5). For each good, an agent can either bid the value 0, an increment on the current price (for unsold goods) or repeat her winning bid for this good (Rule 6). In a non-terminal state, the propositions and numerical variables are updated as follows: (i) the current price increases, (ii) the selling price increases for unsold goods, and (iii) the active bidders for each good are updated with respect to their bids (Rules 7-9). The payment for an agent is the cumulative value of the selling price for her traded goods (Rule 10). Let Σ sa be the set of Rules 1-10.

Representing as a model

Next, we address the model representation of the SAA. Let M sa be the set of STmodels M sa defined for any constant values start ∈ I ⪰0 and inc, n, m ∈ I ≻0 . Each M sa is defined as follows:

• W = {⟨(b j) j∈G , (λ j) j∈G , p, (p j) j∈G ⟩ : b i,j , λ i,j ∈ {0, 1} & p, p j ∈ I ⪰0 & i ∈ N & j ∈ G}
, where b i,j denotes whether agent i is bidding for good j, λ i,j specifies the number of goods with type j traded for agent i, p denotes the current price and p j represents the selling price for j;

• w = ⟨0, ..., 0, 0, ..., 0, start, start, ..., start⟩, in the initial state, there is no trade or active agent and the prices are start;

• T = {w : w = ⟨(b j) j∈G , (λ j) j∈G , p, (p j) j∈G ⟩ ∈ W \ { w} & for all j ∈ G, either (i)
λ i,j = 1 for some i ∈ N or (ii) bid i,j = 0, for all i ∈ N}, the terminal states are the ones where every good was sold or there is no bidder interested on purchasing it;

• L = {(w, i, (p j) j∈G) : i ∈ N & w = ⟨(b j) j∈G , (λ j) j∈G , p, (p j) j∈G ⟩ ∈ W & for all j ∈ G, and all 0 ≤ p j < z max -inc such that either (i) p j = 0 & λ i,j = 0 or (ii) p j = p + inc & λ r,j ̸ = 1, for all r ∈ N or (iii) p j = p j & λ i,j = 1}, that is, agents can choose to raise their bid or to give up of unsold goods, if an agent bought a good, she must keep her bid for it;

• For every w = ⟨(b j) j∈G , (λ j) j∈G , p, (p j) j∈G ⟩ in W and all d ∈ B m , U is defined as follows: if w ∈ T then U(w, d) = w. Otherwise, U(w, d) = ⟨(b ′ j) j∈G , (λ ′ j) j∈G , p ′ , (λ j) j∈G ⟩, where for every i ∈ N and j ∈ G each component is updated as follows,

(i). b ′ i,j = 1 iff d i ̸ = 0; and b ′ i,j = 0 otherwise; (ii). λ ′ i,j = 1 iff b ′ i,j = 1 and for all r ∈ N \ {i}, b ′ i,j ̸ = 1; and λ ′ i,j = 0 otherwise; (iii). p ′ = p + inc;
(iv). p ′ j = p j + inc iff λ ′ r,j = 0 for all r ∈ N; and p ′ j = p j otherwise.

• For each w = ⟨(b j) j∈G , (λ j) j∈G , p, (p j) j∈G ⟩ in W, i ∈ N and j ∈ G, (i). π Y (w, trade i,j) = λ i,j ;

(ii). π Y (w, price) = p;

(iii). π Y (w, price j) = p j ;

(iv). π Y (w, pay i) = j∈G p j • λ i,j

• For each w ∈ W, π Φ (w) = {sold j :

λ i,j = 1 & j ∈ G & i ∈ N} ∪ {bid i,j : b i,j = 1 & j ∈ G & i ∈ N}.
Hereafter, we assume an instance of M sa ∈ M sa and Σ sa for some start ∈ I ⪰0 and inc, n, m ∈ I ≻0 .

Example 3.1. Let M sa ∈ M sa , such that start = 1 and inc = 1. We assume there are two agents in N, denoted by i and s, and two types of goods in G, denoted by a and b. Figure 3.2 illustrates a path in M sa , showing the value of the numerical variables and the propositions that hold in each state. For convenience, we omit the numerical variables when their value is 0. In state w 0 , agents r and s bid for good a, but only agent r bids for good b. In state w 1 , since r is the only bidder for b, it is sold to her. Agent r cannot change her bid for b and s can no longer bid for it. In w 1 , only agent s accepts to increase her bid for a. In state w 2 , a is sold to s. Since all the goods were sold, this state is terminal.

w price = 1 ∧ price a = 1 ∧ price b = 1 legal r ((p a , p b)) ∧ legal s ((p ′ a , p ′ b)), where p a , p ′ a , p b , p ′ b ∈ {0, 2} w 0 L initial π Y does r ((2, 2)) and does s ((2, 0)) bid r,a ∧ bid r,b ∧ bid s,a ∧ sold b π Y L π Φ w 1 trade r,b = 1 ∧ pay r = 2 price = 3 ∧ price a = 3 ∧ price b = 2 bid r,b ∧ bids, a ∧ sold a ∧ sold b π Y terminal L π Φ w 2 legal r ((0, 2)) ∧ legal s ((3, 0)) trade r,b = 1 ∧ pay r = 2 trade s,a = 1 ∧ pay s = 3 price = 4 ∧ price a = 3 ∧ price b = 2 T legal r ((p a , 2)) ∧ legal s ((p ′ a , 0)), where p a , p ′ a ∈ {0, 3}
does r ((0, 2)) and does s ((3, 0)) does r ((0, 2)) and does s ((3, 0)) Figure 3.2: A Path in M sa , with 2 bidders and 2 goods

Evaluating the protocol

Let us now evaluate the protocol. First, we show that Σ sa is a sound representation of M sa .

Lemma

(w, price) = start, π Y (w, price j) = start, bid i,j ̸ ∈ π Φ (w) and trade i,j = 0, for all i ∈ N and j ∈ G. Thus, M sa , δ, t |= initial iff M sa , δ, t |= price = start ∧ j∈G (price j = start ∧ i∈N (¬bid i,j ∧ trade i,j = 0)). Now we verify Rule 2. Let j ∈ G be a good type. Assume M sa , δ, t |= sold j iff sold j ∈ π Φ (δ[t]) iff π Y (δ[t], trade i,j) = 1 for some j ∈ G iff M sa , δ, t |= i∈N trade i,j = 1. Next, we consider Rule 3. Assume M sa , δ, t |= terminal iff δ[t] ̸ = w and for all j ∈ G, either M sa , δ, t |= trade r,j = 1 for some r ∈ N or M sa , δ, t |= ¬bid i,j for all i ∈ N. By Rule 2, M sa , δ, t |= terminal iff M sa , δ, t |= ¬initial ∧ j∈G (sold j ∨ j∈G ¬bid i,j). Now we verify Rule 9. Let i ∈ N and j ∈ G. Assume M sa , δ, t |= (does i (p 1 , ..., p m) ∧ p j ̸ = 0) ∨ (bid i,j ∧ terminal), for some p 1 , ..., p m ∈ I ⪰0 . We next prove for the two cases. First, assume M sa , δ, t |= bid i,j ∧ terminal. Then bid i,j ∈ π Φ (δ[t]) and δ[t] ∈ T. By the update function, δ[t + 1] = δ[t] and M sa , δ, t + 1 |= bid i,j , i.e.,
M sa , δ, t |= ⃝bid i,j . In the second case, assume does i (p 1 , ..., p m) ∧ p j ̸ = 0. By the update function, bid i,j ∈ π Φ (δ[t + 1]) and thus M sa , δ, t |= ⃝bid i,j .

The remaining rules are verified in a similar way.

Next, we show that no good can be bought by two different agents, i.e., given any two agents and a good, one of them will have her trade equal to zero. When a good is sold, it will still be sold in the next state. Proposition 3.1. For each j ∈ G and each i, r ∈ N such that i ̸ = r,

1. M sa |= trade i,j = 0 ∨ trade r,j = 0 2. M sa |= sold j → ⃝sold j 3. M sa |= ¬sold j → price = price j Proof. Given a path δ in M sa , any stage t of δ and a good type j ∈ G, let i, r ∈ N, such that i ̸ = r. Let us consider Statement 1. If δ[t] = w, then M sa , δ, t |= trade i,j = 0 ∧ trade r,j = 0 (see Rule 1). Otherwise, by the path definition, δ[j] = U(δ[t -1], θ(δ, t -1)). Let us suppose for the sake of contradiction that M sa , δ, t ̸ |= trade i,j = 0∨trade r,j = 0. Since W construction defines trade i,j , trade r,j ∈ {0, 1}, we have M sa , δ, t |= trade i,j = 1∧trade r,j = 1. Thus, M sa , δ, t-1 |= ⃝trade i,j . By Rule 4, M sa , δ, t -1 |= ⃝(bid i,j ∧ s∈N\{i} ¬bid s,j). Thereby, M sa , δ, t -1 ̸ |= ⃝(bid r,j ∧ s∈N\{r} ¬bid s,j) and M sa , δ, t -1 ̸ |= ⃝trade r,j=1 . Thus, M sa , δ, t ̸ |= trade r,j = 1, which is a contradiction. For Statement 2. Assume M sa , δ, t |= sold j . Then, M sa , δ, t |= trade i,j = 1 for some agent i ∈ N. From Rule 6, θ i (δ, t) = (p 1 , . . . , p m) with p j = π Y (δ[t], price j) and θ r (δ, t) = (p ′ 1 , . . . , p ′ m)
with p ′ j = 0, for all agent r ̸ = i. By Rule 9, we have M sa , δ, t |= bid i,j ∧ r∈N\{i} ¬bid r,j . Thus, it follows from Rules 2 and 4 that M sa , δ, t |= ⃝trade i,j = 1 and M sa , δ, t |= ⃝sold j .

For Statement 3, notice all prices in the initial state have the same value (Rule 1) and the current price and the price for unsold items are increased by the same amount in each turn (Rule 7 and 8). Assume M sa , δ, t |= ¬sold j . Since M sa |= sold j → ⃝sold j , there is no stage t ′ < t such that M sa , δ, t ′ |= sold j and thus M sa , δ, t |= price = price j .

Each path in M sa reaches a terminal state, and thus the protocol satisfies the termination condition. Furthermore, M sa satisfies playability, that is, there is always a legal action for each agent to take. Thus, Σ sa is well-formed over M sa .

Theorem 3.1. Σ sa is a well-formed protocol over the ST-model M sa .

Proof. Since M sa is a model of Σ sa (see Lemma 3.1), we have to show that for each path δ in M sa and each agent i ∈ N, 1. δ is a complete path;

t, if δ[t] ̸ ∈ T, then π Y (δ[t + 1], price) = π Y (δ[t], price) + inc.
For the sake of contradiction, let us assume δ is not complete. Let i ∈ N be an agent. By the definition of L, (p 1 , ..., p m) ∈ L(δ[t], i), for all 0 ≤ p j < z max -inc and j ∈ G, such that either (i)

p j = 0 & π Y (δ[t], trade i,j) = 0, or (ii) p j = price + inc & π Y (δ[t], trade r,j) = 0 for all r ∈ N, or (iii) p j = price j & π Y (δ[t], trade r,j) = 0. Since π Y (δ[t + 1], price) > π Y (δ[t]
, price), there will be a stage e ≥ 0 in δ, where the condition (ii) will not be true for any 0 ≤ p j < z max -inc. Thus, for each good j, it will be the case that i bids 0 for it or the good was assigned to her (i.e., π Y (δ[e], trade i,j) = 1). From Rules 3 and 9 in Σ sa , it follows that δ[e + 1] ∈ T. Thus, δ is a complete path, which is a contradiction.

We now consider Statement 2. Given a path δ in M sa and a stage t in δ, we show that there is a legal action for agent i in δ

[t]. For each j ∈ G, let p j = 0 if π Y (δ[t], trade i,j) = 1. Otherwise, let p j = π Y (δ[t], price j). By L definition, we have (p 1 , ..., p m) ∈ L(δ[t], i). Thus, M sa , δ, t |= a∈B legal i (a).
From being a single-side auction where all agents are buyers, it follows that there is no monetary deficit in M sa , but it is not strongly budget-balanced. Proposition 3.2. M sa |= ⃝WBB and M sa ̸ |= ⃝SBB Proof. Suppose a path δ in M sa and a stage t in δ. Note that each trade can be either 0 or 1 and the price for a good is at least 0, i.e., π Y (δ[t], trade i,j) ∈ {0, 1} and π Y (δ[t], price j) ∈ I ⪰0 . It follows from Rule 10 that M sa , δ, t |= pay i ≥ 0 for each agent i and M sa , δ, t |= sum i∈N (pay i) ≥ 0. Thus, M sa |= ⃝WBB.

We will prove M sa is not strongly budget-balanced with a counter-example. Given an agent i, let δ be a path in M sa such that θ i (δ, 0) = (start, 0, . . . , 0) and θ s (δ, 0) = (0, . . . , 0) for each agent s ̸ = i. Since (start, 0, . . . , 0) ∈ L(δ[0], i) and (0, . . . , 0) ∈ L(w, s), there exists such path in M sa . Since

δ[0] ̸ ∈ T, π Y (δ[0], price) = π Y (δ[0], price j) = start and sold j ̸ ∈ π Φ (δ[0]
) for each j, it follows from Rules 7 and 8, that all prices are increased by the constant inc > 0, that is M sa , δ, 1 |= price = sum(start, inc)∧ j∈G price j = sum(start, inc). By Rule 9, we have that agent i is only bidding for the good 1, that is, M sa , δ, 1 |= bid i,1 ∧ j∈G\{1} ¬bid i,j . All other agents are not bidding for any good, i.e., M sa , δ, 1 |= j∈G ¬bid s,j , for each s ̸ = i. From Rules 4 and 10, we have M sa , δ,

1 |= trade i,1 = 1 ∧ pay i = price 1 ∧ s∈N\{i} p s = 0. Since π Y (δ[1], price 1) > 0, we have M sa , δ, 1 ̸ |= sum s∈N (pay s) = 0 and M sa ̸ |= ⃝SBB.
The simultaneous ascending auction is only efficient on states preceding the terminal one.

Proposition 3.3. Given a joint action β ∈ B n , 1. M sa ̸ |= does(β) → ⃝EF(β) 2. M sa |= does(β) → ⃝(terminal → EF(β))
Proof. Given a path δ in M sa , we first consider Statement 1. We prove M sa is not efficient with a counter-example. Our purpose is to show that there exists a joint action

β such that M sa , δ, 0 |= does(β) ∧ ¬ ⃝ EF(β). That is, M sa , δ, 0 |= does(β) ∧ ¬ ⃝ sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ))).
As we consider the initial state of δ, M sa , δ, 0 |= price = start ∧ j∈G price j = start ∧ i∈N (¬bid i,j ∧ trade i,j = 0). Thus, no good was sold, that is, M sa , δ, 0 |= j∈G ¬sold j . Let i and r be two distinct agents in N with i ̸

= r. From the definition of L, L(δ[0], i) = L(δ[0], r) and (p 1 , . . . , p m) ∈ L(δ[0], i) if p j = 0 or p j = sum(start, inc) for each good j. Let us assume M sa , δ, 0 |= does(β) for β ∈ B n such that β i = β r = (start + inc, 0, . . . , 0) and β s = (0, . . . , 0) for each s ∈ N \ {i, r}. Since β i ∈ L(δ[0], i), β r ∈ L(δ[0], r) and β s ∈ L(δ[0], s)
, there exists such path in M sa . Thus, M sa , δ, 1 |= bid i,1 ∧ bid r,1 . Notice bid i ′ ,j does not hold in δ[1] for any other pair (i ′ , j) ̸ = (i, 1) and (i ′ , j) ̸ = (s, 1). From Rules 4 and 5, we have M sa , δ,

1 |= i ′ ∈N,j∈G trade i ′ ,j = 0. Recall the valuation of each agent i ′ is v ′ i ((p 1 , ..., p m), λ) = j∈G λ i ′ ,j • p j for a trade λ ∈ I nm and a bid (p 1 , ..., p m) ∈ B. Since each trade has the value 0 in δ[1], it follows that M sa , δ, 1 |= sum i∈N (v i (β i , (trade j) j∈G)) = 0.
However, let λ ∈ I nm be a trade such that λ i,1 = 1 and λ i ′ ,j = 0 for all other pair (i ′ , j) ̸ = (i, 1). It is easy to see that λ ∈ Λ. The value of this trade for i is

v i (β i , λ) = Chapter 3. Representative Auctions in ADL start + inc and v ′ i (β ′ i , λ) = 0 for each i ′ ̸ = i. Thus, we have i∈N (v i (β i , λ)) = start + inc, M sa , δ, 1 |= ¬sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ))) and M sa , δ, 0 |= ¬ ⃝ EF(β).
For Statement 2, let β ∈ B n be a joint action and t ≥ 0 be a stage of δ. From the definition of M sa we have that each trade can be only 0 or 1. That is, if λ ∈ Λ then λ i,j ∈ {0, 1} for each agent i and good j. Assume M sa |= does(β) and M sa , δ, t |= ⃝terminal. We intend to show that M sa |= ⃝EF(β

), i.e., M sa , δ, t |= ⃝sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ)))).
We focus on the case where δ[t] ̸ ∈ T. Let i be an agent in N and let (p 1 , . . . , p m) denote i's action in β. Recall function v i ((p 1 , . . . , p m), λ) = j∈G p j • λ i,j , for a trade λ ∈ I nm . Since the value for each good in v i depends only on its reported value in i's bid and its trade for i, we show that the part of v i ((p 1 , . . . , p m), λ) corresponding to each good j (i.e., p j • λ i,j) is maximized when

λ i,j = π Y (δ[t], trade i,j).
From the definition of B, we have that the reported value for j in i's bid is at least zero, i.e., p j ≥ 0. We check for two cases:

1. If p j = 0, then λ ij • p j = 0, for any trade λ ∈ Λ. Thus, M sa , δ, t + 1 |= times(p j , trade i,j) = max(times(p j , 0), times(p j , 1)); 2. If p j > 0, then M sa , δ, t + 1 |= bid i,j . Since δ[t + 1] ∈ T, it should be the case that M sa , δ, t + 1 |= sold j .
From Rule 2, we know the trade for good j is one for some agent, i.e., M sa , δ, t + 1 |= r∈N trade r,j = 1. Because M sa , δ, t + 1 |= bid i,j , it should be the case that the agent who have a trade for j is i (see Rules 4 and 5), that is, M sa , δ, t + 1 |= trade i,j = 1. Hence, M sa , δ, t + 1 |= times(p j , 1) = max(times(p j , 0), times(p j , 1)).

It follows that

M sa , δ, t + 1 |= sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ))))
or simply, M sa , δ, t |= ⃝ef (β).

The case where δ[t] ∈ T, follows from the loop on the path definition.

The auction described by M sa is individually rational, since agents pay at most their bids.

Theorem 3.2. Given a joint action β ∈ B n , M sa |= does(β) → ⃝IR(β)
Proof. Given a path δ in M sa and a stage t, assume M sa , δ, t |= does(β) for some β ∈ B n . We consider first the case where δ[t] ̸ ∈ T. Let i ∈ N be an agent and (p 1 , . . . , p m) denote the bid of i in the joint action β. Let us consider the good j ∈ G. We denote by

pr j = π Y (δ[t + 1], price j) the price of good j in δ[t + 1] and by λ = (π Y (δ[t + 1], trade s,j ′)) j ′ ∈G,s∈N the trade in δ[t + 1]. Recall function v i ((p 1 , . . . , p m), λ) = j∈G λ i,j • p j .
Similarly, by Rule 10, we have that the payment for agent i in δ

[t + 1] is π Y (δ[t + 1], pay i) = j∈G pr j • λ i,j .
We have θ i (δ, t) = (p 1 , . . . , p m). Notice inc, p j ∈ I ⪰0 by the definition of S sa . According with the action legality (Rule 6), the value of p j can be either zero, the price of j in δ [t] or the current price incremented by inc. For each of the three cases, we show that the part of i's payment corresponding to j is equal to the part of v i ((p 1 , . . . , p m), λ) corresponding to j:

• If p j = 0, agent i chosen to not bid for good j. By Rules 5 and 9, M sa , δ, t+1 |= ¬bid i,j ∧ trade i,j = 0. Thus, we have

λ i,j • p j = pr j • λ i,j = 0. • If p j = π Y (δ[t], price j)
, by the definition of L, it must be the case that the good was already sold to agent i, that is M sa , δ, t |= trade i,j = 1 ∧ sold j . Since good j is sold, Rule 6 ensure other agents can only bid the value 0 for j, and thus, M sa , δ, t + 1 |= r∈N\{i} ¬bid r,j . By Rules 4 and 9, we have

M sa , δ, t + 1 |= bid i,j ∧ trade i,j = 1. Since good j is sold, its price in δ[t] is the same as in δ[t] (Rule 8), that is M sa , δ, t |= price j = p j . Thus, we have λ i,j • p j = pr j • λ i,j = pr j . • Let prevprice = π Y (δ[t], price). If p j = prevprice + inc, then M sa , δ, t + 1 |= bid i,j .
From the legality definition, it should be the case that j is not sold, that is M sa , δ, t |= ¬sold j ∧ price j = sum(prevprice j , inc). From Statement 3 of Proposition 3.1, we have M sa , δ, t |= price = price j . The value of trade i,j depends on the actions of other agents in δ[t]. From Rules 5 and 4, we have M sa , δ, t+1 |= trade i,j = 0∨trade i,j = 1. In the first case, λ i,j •p j = pr j •λ i,j = 0. Otherwise, the trade has the value 1 and λ i,j • p j = pr j • λ i,j = pr j , since p j = pr j = prevprice + inc.

It follows that M sa , δ, t + 1 |= v r (β, (trade j) j∈G) = pay r and M sa , δ, t + 1 |= sub(v r (β, (trade j) j∈G), pay r) ≥ 0. Thus, M sa , δ, t |= ⃝IR(β).

If δ[t] ∈ T, the loop in the path definition ensures M sa , δ, t |= ⃝IR(β) if and only if M sa , δ, t |= IR(β).

Under the assumption that each stage in M sa is a (direct) mechanism for which the legality set represents the agents' preference spaces, the SAA is strategyproof. As it is only legal to accept or decline to raise the current price for unsold goods (represented by bidding the value 0 or price+inc), there is no utility improvement if the agent accepts when she would prefer to decline (and vice-versa). When a good is sold for an agent, there is only one value that is legal to bid for the good bought, and thus the agent cannot strategize.

Proposition 3.4. M sa is strategyproof. Proof. Given a path δ in M sa and a stage t ≥ 0 in δ, such that L(δ[t], i) ≈ i V i . Let ϑ ∈ i∈N V i be a preference profile and δ ϑ denote a path such that δ[0, t] = δ ϑ [0, t] and θ(δ ϑ , t) = β ϑ . We let ϑ ′ i ∈ V i denote a preference of agent i, ϑ ′ = (ϑ ′ i , ϑ -i) and δ ϑ ′ be a path such that δ[0, t] = δ ϑ ′ [0, t], θ i (δ ϑ ′ , t) = β ϑ ′ i and θ r (δ ϑ ′ , t) = β ϑr for each agent r ̸ = i.
In the stage t of δ ϑ , the agents report their (truthful) preferences ϑ, i.e., M sa , δ ϑ , t |= does(β ϑ). On the other hand, in the stage t of δ ϑ ′ , the agent i reports her (untruthful) preference ϑ ′ i and each agent r

̸ = i reports ϑ r , i.e., M sa , δ ϑ ′ , t |= does i (β ϑ ′ r) ∧ r∈N\{i} does r (β ϑr). For some x ∈ I, we have to show M sa , δ ϑ , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) = x and M sa , δ ϑ ′ , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) ≤ x.
That is, agent i's utility in δ ϑ ′ is not better than in δ ϑ . Remind the legal actions in δ[t] represent her preference space, i.e., L(δ

[t], i) ≈ i V i . Notice the value of a bid (p 1 , ..., p m) given a trade λ is v i ((p 1 , ..., p m), λ) = j∈G λ i,j • p j . Similarly, the payment in δ[t] is π Y (δ[t], pay i) = j∈G π Y (δ[t], trade i,j) • π Y (δ[t], price j).
Since there is no dependence among goods in v i and in i's payment, we consider the part of i's utility corresponding to j in δ ϑ and δ ϑ ′ . Thus, we need to show that (i) M sa , δ ϑ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = x j (ii) M sa , δ ϑ ′ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) ≤ x j for some x j ∈ I and each good j ∈ G.

We denote

β ϑ i = (p 1 , . . . , p m) and β ϑ ′ i = (p ′ 1 , . . . , p ′ m).
According to the legality definition, the values of p j and p ′ j can be either the price of j in δ[t], zero, or the price in δ[t] incremented by inc > 0. Let us consider each case:

• Assume p j = π Y (δ[t], price j) iff M sa , δ, t |= trade i,j = 1 (w.r.t the defi- nition of L). That is, p j = π Y (δ[t]
, price j) when good j was already bought by agent i. Thus, it is not legal for i to bid any other value for

j, i.e., (p ′ 1 , . . . , p ′ j) ∈ L(δ[t], i) iff p j = p ′ j .
Thereby, it is easy to see that M sa , δ ϑ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = p j and also M sa , δ ϑ ′ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = p j .

• Assume agent i declines to raise her bid for good j, that is, p j = 0.

By Rules 5 and 9, we have M sa , δ ϑ , t |= ⃝trade i,j = 0 and M sa , δ ϑ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = 0. By the legality definition, it should be the case that M sa , δ, t |= ¬trade i,j = 0 and p ′ j is either 0 or π Φ (δ[t], price) + inc. If p ′ j = 0, then M sa , δ ϑ ′ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = 0. Otherwise, the value of trade i,j in δ ϑ ′ [t + 1] will be either 0 or 1, depending on the joint bid

β ϑ ′ . -If M sa , δ ϑ ′ , t |= ⃝trade i,j = 1, then M sa , δ ϑ ′ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = sub(0, price j). Since π Y (δ ϑ ′ [t + 1], price j) ≥ 0, we have sub(times(trade i,j , p j), times(trade i,j , price j)) ≤ 0.
-Otherwise, the trade for good j is zero (i.e., M sa , δ ϑ ′ , t |= ⃝trade i,j = 0) and M sa , δ ϑ ′ , t |= ⃝sub(times(trade i,j , p j), times(trade i,j , price j)) = 0.

• The proof for the case p j = π Y (δ[t], price) + inc is similar to the previous case.

It follows that M sa , δ ϑ , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) = x and M sa , δ ϑ ′ , t |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) ≤ x, where x ∈ I.
We conclude the section by discussing variants of non-combinatorial auctions. When the number of good types is one (that is, |G| = 1), Σ sa corresponds to the Japanese-English auction. For representing the standard variant of the English auction, one should define the legality rule such that agents are also allowed to bid any price above the current price. Furthermore, the price in the next state should be updated according to the highest bid in the current one. The Dutch auction is also similar to Σ sa . The key difference is that in the Dutch auction the bidding value should decrease at each round until at least one agent accepts to pay the current price. As we saw in this section, with the ADL description of a given auction, we are able to formally analyze it, both in relation to domain-specific properties, well-formedness of its protocol and from a mechanism design perspective.

Combinatorial Exchange

We now consider two protocols for combinatorial exchange: a one-shot protocol and a multi-stage variant. We consider the setting with multiple goods and multiple copies of each good. Agents hold an initial allocation of goods and can trade items with each other. Remind a trade denotes the number of goods being exchanged among the agents in a state. With allocation we refer to the number of goods the agents initially have.

Both protocols use the Tree-Based Bidding Language (TBBL) for defining its action set. TBBL [START_REF] Parkes | ICE: An Iterative Combinatorial Exchange[END_REF][START_REF] Lubin | Ice: An expressive iterative combinatorial exchange[END_REF]) is a language designed for Combinatorial Exchange. It allows to represent buyers and sellers demands in the same structure. We adopt TBBL as it is a highly expressive and compact language. TBBL is general enough to represent any kind of utility function (full expressivity), like OR-like bidding languages [START_REF] Boutilier | Bidding languages for combinatorial auctions[END_REF]. It is even more expressive in the sense that it is able to mix preferences for buying and selling bundles in the same framework. In relation to which kind of utility functions this framework is able to represent concisely, [START_REF] Cavallo | TBBL: A tree-based bidding language for iterative combinatorial exchanges[END_REF] compares TBBL with XOR and OR* bidding languages with this respect, and shows that TBBL is more compact, in the sense that there are valuation functions that admit an exponentially larger representation in these latter languages than in TBBL.

Tree-Based Bidding Language

The bidding language we present in this section, denoted L TBBL , only differs from the original definition of TBBL in the fact that we assume all language components and related optimization problems are bounded by I. Definition 3.1. A formula in L TBBL is called a bid-tree (or simply a bid) and is Chapter 3. Representative Auctions in ADL generated by the following BNF:

β ::= ⟨z, j, z⟩ | IC x y (β, z)
where β ::= β, β | β is a nonempty bid list, j ∈ G, z ∈ I, y ≤ x and y, x ∈ I ⪰0 .

A bid in the form ⟨q, j, v⟩ is called a leaf and represents that the agent is willing to buy (or sell) q units of the good j and pay (or receive) v. The interval-choose (IC) operator defines a range on the number of child nodes that must be satisfied. Thus, a bid IC x y (β, v) indicates the agent is willing to pay (or receive) v for the satisfaction of at least y and at most x of the children nodes β. The IC operator can express logical connectors. For instance, IC 1 1 (β, v) is equivalent to the XOR operator applied to the bids in the list β. Let z = | β| (i.e., the list size), IC z z (β, v) is equivalent to an AND operator and IC 1 z (β, v) is equivalent to an OR operator. For simplicity, we hereafter use the corresponding shortcuts XOR(β, v), AND(β, v) and OR(β, v).

For instance, in Figure 3.3, agent i reports her willingness to buy 1 unit of a paying 2€ or 2 units of a for 5€ or to sell 1 unit of b receiving 2€. Agent s bids an exclusive disjunction for either (i) to sell one unit of a and receive 3€; or (ii) to sell 2 units of a receiving 4€ and to buy one unit of b paying 2€. The node representing the condition (ii) has an additional value of 1.

OR

Sell 1 b, -2 € Buy 2 a, 5 € Buy 1 a, 2 € Sell 1 a, -3 € XOR βi = OR ((⟨1, a, 2⟩, ⟨2, a, 5⟩, ⟨-1, b, -2⟩), 0) βs = XOR((⟨-1, a, -3⟩, AND(⟨-2, a, -4⟩, ⟨1, b, 1⟩), 1), 0)
Buy 1 b, 2 € Sell 2 a, -4 € AND, 1 € Figure 3.3: Examples of tree-bids β i and β s reported by agents i and s, resp.

Hereafter, we introduce some extra notations to characterize solutions and winners. Let β i ∈ L TBBL be a bid-tree from bidder i, the set Node(β i) denotes all nodes in the tree β i , that is, all its inner bids, including

β i itself. Formally, if β i is in the form ⟨q, j, v⟩, then Node(β i) = {β i }. Otherwise, β i is in the form IC x y (β, v ′) and Node(β i) = {β i } ∪ Node(β1) ∪ • • • ∪ Node(βz), where z = | β| and βk is the k-th element of β. Let α ∈ Node(β i), the set Child(α) ⊂ Node(β i) denotes the children of node α. If α is in the form IC x y (β, v), then Child(α) = { β1 , ..., βz }, where z = | β|.
Otherwise, Child(α) = {}. The leaves of a bid-tree β i are denoted by Leaf(

β i) = {⟨q, j, v⟩ ∈ Node(β i) : q ∈ I, v ∈ I & j ∈ G}. The value specified at node α is denoted by b i (α) ∈ I. If α is in the form ⟨q, j, v⟩, then b i (α) = v. Otherwise, α is in the form IC x y (β, v ′) and b i (α) = v ′ .
Finally, the quantity of units of the good j specified at a leaf α = ⟨q, j, v⟩ is denoted by q(α, j) = q. For any other j ′ ̸ = j ∈ G, q(β, j ′) = 0. For any node α ̸ ∈ Leaf(β i) and j ∈ G, q(α, j) = 0. If α is not a leaf (i.e., α ∈ Node(β i) \ Leaf(β i)), then it is in the form IC x y (β) and we denote by x β and y β the interval-choose constraints x and y, respectively.

Trade value and valid solutions

Given a bid-tree β i from agent i, the value of a trade λ ∈ I nm is defined as the sum of the values in all satisfied nodes, where the set of satisfied nodes is chosen to provide the maximal total value. Let sat i (α) ∈ {0, 1} denote whether a node α ∈ Node(β i) is satisfied and sat i = {α : sat i (α) = 1, for all α ∈ Node(β i)} denote the nodes satisfied in a solution.

A solution sat i is valid for a tree β i and trade λ i , written sat i ∈ valid(β i , λ i) if the following rules R1 and R2 hold [START_REF] Lubin | Ice: An expressive iterative combinatorial exchange[END_REF]:

x β sat i (α) ≤ γ∈Child(α) sat i (γ) ≤ y β sat i (α) ∀α ∈ Node(β i) \ Leaf(β i) (R1) α∈Leaf(β i) q i (α, j)sat i (α) ≤ λ i,j , ∀j ∈ G (R2)
Rule R1 ensures that no more and no less than the appropriate number of children are satisfied for any node that is satisfied. Rule R2 requires that the total increase in quantity of each item across all satisfied leaves is no greater than the total number of units traded. The total value of trade λ ∈ I nm for agent i, given her bid β i , is defined as the solution to the following problem:

v i (β i , λ) = max sat i β∈Node(β i) b i (β) • sat i (β) s.t. rules R1, R2 hold

Winner determination

Given an auction signature, the bid-trees β = (β i) i∈N and an allocation X = (x i,j) j∈G,i∈N , where β i ∈ L TBBL denotes the bid from agent i ∈ N and x i,j ∈ I ⪰0 represents how many copies of j agent i initially holds.

Definition 3.2. The winner determination (WD) defines a pair (λ, sat) obtained by the solution to the following mixed-integer program [START_REF] Lubin | Ice: An expressive iterative combinatorial exchange[END_REF]:

WD(β, X) : max λ,sat i∈N β∈Node(β i) b i (β) • sat i (β) s.t. λ i,j + x i,j ≥ 0, ∀i ∈ N, j ∈ G (C1) i∈N λ i,j ≤ 0, ∀j ∈ G (C2) sat i ∈ valid(β i , λ i), ∀i ∈ N (C3) sat i (β) ∈ {0, 1}, λ i,j ∈ I (C4)
where sat = (sat i) i∈N . Constraint C1 ensures that the trade λ is feasible given X, that is, no agent sells more items then she initially hold. Constraint C2 provides free disposal and allows trades to sell more items than are purchased (but not viceversa). Constraint C3 ensures that each trade for an agent i is valid given her bidtree. Constraint C4 defines the range for trades and node satisfaction. We denote by WD λ (β, X) a function that obtains the trade λ in the solution WD(β, X) = (λ, sat).

Similarly, WD λ i,j (β, X) captures the number of units of j traded by agent i in WD λ (β, X).

If there are two or more solutions for WD(β, X), the trade WD λ (β, X) will be chosen w.r.t. some total order among the elements of I nm . This tie-breaking order is omitted to avoid overloading the notation. In the examples, we assume this order is compatible with the Pareto dominance relation [START_REF] Voorneveld | Characterization of pareto dominance[END_REF].

We denote noop = def ⟨0, j, 0⟩ as the action of not bidding, for some arbitrary j ∈ G. Lemma 3.2. For each agent i ∈ N, each bid-tree β ∈ L TBBL and each λ ∈ I nm , v i (noop, λ) = 0.

Proof. Remind noop denotes a leaf bid ⟨0, j, 0⟩, where j ∈ G. Thus, b i (noop) = 0. Let λ ∈ I nm . The value of λ given noop, i.e., v i (noop, λ), is the maximal sum of b i (β)•sat i (β) in a solution sat i , for all β ∈ Node(noop). Since Node(noop) = {noop} and b i (noop) = 0, for any solution sat i , v i (noop, λ) = 0.

Next, we illustrate how to represent protocols with TBBL in ADL.

Vickrey-Clarke-Groves Mechanism

Using TBBL to determinate the action set, let us now represent the Vickrey-Clarke-Groves (VCG) mechanism in ADL. This mechanism chooses the outcome maximizing the reported preferences [START_REF] Krishna | Auction Theory[END_REF]. Each agent's payment corresponds to the damage she causes the other players, that is, the difference in the social welfare of others with and without her participation [START_REF] Nisan | Algorithmic Game Theory[END_REF]. We detail the rules specification and the semantic representation. Then, we revisit mechanism properties and evaluate whether the protocol is well-formed.

To represent a VCG mechanism in the combinatorial exchange setting, we first describe its signature, written S vcg = (N, G, B, Φ, Y, I, F), where N = {1, ..., n}, G = {1, ..., m}, B ⊆ L TBBL , Φ = {bidRound}, Y = {trade i,j , pay i : i ∈ N, j ∈ G}, and I ⊂ Z. Finally, F contains the functions v i (β, λ), WD λ (β, X) and WD λ i,j (β, X) described in the previous section as well as the functions denoting basic mathematical operations (e.g., sum(z 1 , z 2)). We also assume F contains the function WD -r λ : B n × I nm → I nm for any two agents i and r. WD -r λ is defined exactly like WD λ except that the set N in the winner determination (see Def. 3.2) is replaced by N \ {r} and that the resulting trade for agent r and each good j is equal to zero.

Each instance of a VCG is specific and is defined with respect to B, I and the constant values n, m ∈ I ≻0 (the size of N and G, resp.), and X = (x j) j∈G , where x i,j ∈ I ⪰0 , for each i ∈ N and j ∈ G. Each constant x i,j represents the number of units of j initially held by agent i. The rules of VCG are represented by ADLformulae as shown in Figure 3.4. In the initial state, the trade and payment are zero for every agent and good (Rule 1). Any state that is not initial is terminal (Rule 2). The proposition bidRound helps to distinguish the initial state from the terminal state where no trade or payment were assigned to any agent (e.g, when all agents bid noop). Once in a terminal state, players can only do noop. Otherwise, they can bid any β ∈ B (Rules 3 and 4). After performing a joint bid, in the next state each agent receives a trade for each good, which is assigned by the winner determination over the initial allocation and their bids (Rule 5). After a joint bid in the initial state, the payment for agent i will be the difference in the others' welfare with and without her participation (Rule 6). Finally, the proposition bidRound is always false in the next state (Rule 7).

1. initial → bidRound ∧ i∈N (pay i = 0 ∧ j∈G trade i,j = 0) 2. terminal ↔ ¬initial 3. terminal → legal i (noop), for each i ∈ N 4. initial → legal i (β), for each i ∈ N, β ∈ B 5. does(β) ∧ initial → ⃝(i∈N,j∈G trade i,j = WD λ i,j (β, X)), for each β ∈ B n 6. does(β) ∧ ¬terminal ∧ p i = sub(sum r∈N\{i} (v r (β r , WD -i λ (β, X))), sum r∈N\{i} (v r (β r , WD λ (β, X)))) → ⃝pay i = p i , for each p i ∈ I, β ∈ B n and i ∈ N 7. ⃝¬bidRound
Notice we could as well represent winner determination explicitly in ADL by capturing the trade maximizing the social welfare among all trades that satisfy constraints C1-C4 (Definition 3.2). For instance, constraint C1 can be written in L ADL as feasible((λ j) j∈G) = def i∈N,j∈G sum(λ i,j , x i,j) ≥ 0. We illustrate VCG with an indirect representation of the winner determination for succincteness and clarity of Σ vcg .

Representing as a model

Next, we address the model representation. Let M vcg be the set of ST-models M vcg defined for any B ⊆ L TBBL , I ⊂ Z, and the constants n, m ∈ I ≻0 and X = (x j) j∈G , where x i,j ∈ I ⪰0 , for each i ∈ N and j ∈ G. Each M vcg is defined as follows:

• W = {⟨b, (λ j) j∈G , p⟩ : b ∈ {0, 1} & p i , λ i,j ∈ I & i ∈ N & j ∈ G};
• w = ⟨1, 0, ..., 0, 0, ..., 0⟩;

• T = W \ { w};

• L = {(w, i, noop) : i ∈ N & w ∈ T} ∪ {(w, i, β) : β ∈ B & i ∈ N};
• U is defined as follows: for all w = ⟨b, (λ j) j∈G , p⟩ ∈ W and for all d ∈ B m :

-If w = w, then U(w, d) = ⟨0, (λ ′ j) j∈G , p ′ ⟩⟩,
where each component is updated as follows, for each i ∈ N and j ∈ G. The number of units j traded for agent i is given by the winner determination: λ ′ i,j = WD λ i,j (d, X). The payment for i is the difference between the social welfare of others with and without i's participation:

p ′ i = r∈N\{i} v r (d r , WD -i λ (d, X)) - r∈N\{i} v r (d r , WD λ (d, X)) -Otherwise, U(w, d) = w. • For each w ∈ W, i ∈ N and j ∈ G, π Y (w, trade i,j) = λ i,j ; π Y (w, pay i) = p i ; and π Φ (w) = {bidRound : b = 1}.
Hereafter, we assume an instance of M vcg ∈ M vcg and Σ vcg for some B ⊆ L TBBL , I ⊂ Z, n, m ∈ I ≻0 and x i,j ∈ I ⪰0 , where i ∈ N, j ∈ G.

Example 3.2. Let M vcg ∈ M vcg such that the sets of agents and goods are the same from Example 3.1 and the initial allocation is as follows: x i,a = 0, x i,b = 1, x s,a = 2 and x s,b = 0 (i.e., at the beginning of the auction, agent i has 1 unit of b and agent s has 2 units of a). Figure 3.5 illustrates a path in M vcg , where the agents perform the bids previously introduced in Figure 3.3. In state w 0 , all the payments and trades are zero. Their joint bid leads to state w 1 , where the trade obtained by the winner determination is (2, -1, -2, 1). The tie-breaking ensures that the trade is unique. Thus, in w 1 agent i has 2 units of a and agent s has 1 unit of b. Since w 1 is terminal, the agents can only bid noop.

w legal i (β) ∧ legal s (β), for each β ∈ B w0 π Φ L initial π Y terminal L w1 legal i (noop) ∧ legal s (noop) trade i,a = 2 ∧ trade i,b = -1 trade s,a = -2 ∧ trade s,b = 1 pay i = 2 ∧ pay s = -3
T does i (noop) and does s (noop) does i (OR ((⟨1, a, 2⟩, ⟨2, a, 5⟩, ⟨-1, b, -2⟩), 0)) and does s (XOR((⟨-1, a, -3⟩, AND(⟨-2, a, -4⟩, ⟨1, b, 1⟩), 1), 0)) bidRound Figure 3.5: A Path in M vcg , with 2 bidders and 2 goods

Evaluating the protocol

As for SAA, let us now evaluate the protocol representing a VCG mechanism. First, Lemma 3.3 shows that M vcg is a sound representation of Σ vcg .

Lemma 3.3. M vcg is an ST-model and it is a model of Σ vcg .
Proof. (Sketch) It is routine to check that M vcg is actually an ST-model. Given a path δ in M vcg and a stage t of δ, we need to show that M vcg , δ, t |= φ, for each φ ∈ Σ vcg .

Let us verify Rule 1. Assume M vcg , δ, t |= initial, then δ[t] = w, i.e., δ[t] = ⟨1, 0, ..., 0, 0, ..., 0⟩. By the definitions of π Y and π Φ , π Φ (w) = {bidRound}, π Y (w, pay i) = 0 and π Y (w, trade i,j) = 0 for all i ∈ N and j ∈ G. Thus, M vcg , δ, t |= bidRound ∧ i∈N pay i = 0 ∧ j∈G trade i,j = 0. Now we verify Rule 4. Assume M vcg , δ, t |= initial, then δ[t] = w and for all i ∈ N and β ∈ B, (w, i, β) ∈ L. Thus, M vcg , δ, t |= legal i (β).

Then we consider Rule 5.

M vcg , δ, t |= does(β) ∧ initial, for β ∈ B m , i.e., M vcg , δ, t |= i∈N does(β i) and M vcg , δ, t |= initial. Thus, θ i (δ, t) = β i for all i ∈ N. The update function U defines δ[t+1] such that π Y (δ[t+1], trade i,j) = WD λ i,j (β, X), for each i ∈ N and j ∈ G. Thus, M vcg , δ, t + 1 |= i∈N,j∈G trade i,j = WD λ i,j (β, X) and also M vcg , δ, t |= ⃝(i∈N,j∈G trade i,j = WD λ i,j (β, X)). Using the abbreviation, M vcg , δ, t |= ⃝(i∈N trade i = WD λ i (β, X)).
The remaining rules are verified in a similar way.

Next, we show Σ vcg is a well-formed protocol, that is, each path in M vcg reaches a terminal state and there is a legal action for each agent in all reachable states. Theorem 3.3. Σ vcg is a well-formed protocol over the ST-model M vcg .

Proof. Since M vcg is a model of Σ vcg (see Lemma 3.3), we have to show that for each path δ in M vcg and each agent i ∈ N, 1. δ is a complete path; Statement 2 is straightforward from Rules 3 and 4 from Σ vcg .

The next lemma shows that if an agent bids noop in an initial state, her payment will be zero. Furthermore, if the payment is zero in a terminal state, it will be zero in the succeeding state.

Lemma 3.4. For each agent i ∈ N, M vcg |= initial ∧ does i (noop) → ⃝pay i = 0 ∧ j∈G trade i,j ≥ 0
Proof. Straightforward from Lemma 3.2, Rule 6 from Σ vcg and Rule R2 from the definition of b i .

We then focus on properties from Mechanism Design, that is budget balance, individual rationality, efficiency and strategyproofness. These results for VCG have already been proved [START_REF] Krishna | Auction Theory[END_REF][START_REF] Nisan | Algorithmic Game Theory[END_REF]) and here we show how they are rephrased and verified with ADL. First, due to the VCG payments, M vcg is not budget balanced. Proof. We show M vcg ̸ |= ⃝WBB and M vcg ̸ |= ⃝SBB by showing a counter example. Given two distinct agents i, r in N and a good j in G, let δ be a path in M vcg such that θ i (δ, 0) = ⟨1, j, 5⟩ and θ r (δ, 0) = ⟨-1, j, -3⟩. For any other agent s ∈ N \ {i, r}, θ s (δ, 0) = noop. Since this actions are legal in the initial state δ[0], there exists such path.

By Rule 5 and the definition of function WD λ , we have that M vcg , δ, 1 |= (trade i,j = 1∧trade r,j = -1) and M vcg , δ, 1 |= trade s,j ′ = 0 for all pairs (s, j ′) ̸ = (i, j) and (s, j ′) ̸ = (r, j). That is, the good j is sold by r and bought by i. The social welfare of all agents other than i is -3 and the social welfare of all agents other than r is 5. If either i or r did not participate, there would be no trade and the social welfare would be zero. Thus, by Rule 6, the payments for i and r are 3 and -5, resp., that is, M vcg , δ, 1 |= pay i = 3 ∧ pay r = -5. The other agents' do not have payments on δ[1], i.e., M vcg , δ, 1 |= s∈N\{i,r} pay s = 0. Then, M vcg , δ, 1 |= sum i∈N (pay i) < 0. Thus we have that M vcg , δ, 0 ̸ |= ⃝SBB and M vcg , δ, 0 ̸ |= ⃝WBB.

After the agents report their preferences, M vcg chooses the trade maximizing the social welfare (i.e., the cumulative of values for the trade given the agents' bids).

Proposition 3.6. Given a joint action

β ∈ B n , M vcg |= does(β) → ⃝EF(β) Proof. (Sketch) Since M vcg |= initial → ⃝terminal and δ[t + 1] = δ[t] when- ever δ[t]
∈ T, it suffices to show that M vcg , δ, 0 |= does(β) → ⃝EF(β), for any joint action β ∈ B n . Assume M vcg , δ, 0 |= does(β), by Rule 5 we have that M vcg , δ, 1 |= i∈N,j∈G trade i,j = WD λ i,j (β, X). By the definition of the winner determination function WD λ (β, X) (and consequently function WD λ i,j for each agent i and good j), we have that the trade (π Y (δ[1], trade i,j)) j∈G,i∈N maximizes the cumulative value among the agents. That is, M vcg , δ,

1 |= sum i∈N (v i (β i , (trade j) j∈G)) = max λ∈Λ (sum i∈N (v i (β i , λ))) and M vcg , δ, 0 |= does(β) → ⃝EF(β).
The VCG mechanism is individually rational when the agents' preferences over trades are non-negative [START_REF] Nisan | Algorithmic Game Theory[END_REF].

Proposition 3.7. Given a joint action β ∈ B n , if ϑ i (λ) ≥ 0 for all λ ∈ I nm , ϑ i ∈ V i and i ∈ N, then M vcg |= does(β) → ⃝IR(β).
Proof. Let β ∈ B n be a joint action and δ be a path in M vcg . Since M vcg |= initial → ⃝terminal and δ

[t + 1] = δ[t] whenever δ[t] ∈ T, it suffices to show that M vcg , δ, 0 |= does(β) → ⃝IR(β). Assume M vcg , δ, 0 |= does(β)
and that the preferences represented by L(δ[1], i) are non-negative for every agent and possible trade. That is, v i (β, λ) ≥ 0 for any bid β, trade λ and agent i.

Let λ = (λ j) j∈G denote the trade performed after the agents report β, where

λ i,j = π Y (δ[1], trade i,j) = WD λ i,j (β, X)
for each good j and agent i. We denote by λ -i = WD -i λ (β, X) the trade that would happen if i did not participate. The utility of agent i in δ [1]

is u i = v(β i , λ) -π Y (δ[1], pay i).
According to the payment definition (Rule 6), agent i's utility in δ[1] is

u i = v i (β i , λ) - r∈N\{i} v r (β r , λ -i) - r∈N\{i} v r (β r , λ) or u i = v i (β i , λ) - r∈N\{i} v r (β r , λ -i) + r∈N\{i} v r (β r , λ)
or simply

u i = r∈N v r (β r , λ) - r∈N\{i} v r (β r , λ -i) Thus, agent i's utility is non-negative if r∈N\{i} v r (β r , λ) ≥ r∈N v r (β r , λ -i)
Assume for contradiction that this is not the case, that is,

r∈N\{i} v r (β r , λ -i) > r∈N\{i} v r (β r , λ) Since v r (β r , λ -i) ≥ 0, then we have r∈N v r (β r , λ -i) ≥ r∈N\{i} v r (β r , λ -i) > r∈N\{i} v r (β r , λ)
which is a contradiction since λ is the efficient trade (see Proposition 3.6). Thus, M vcg , δ, 1 |= r∈N sub(v r (β r , (trade j) j∈G), pay r) ≥ 0 and M vcg , δ, 0 |= ⃝IR(β).

The VCG mechanism is also strategyproof [START_REF] Nisan | Algorithmic Game Theory[END_REF], because the bid of an agent does not influence her payment.

Theorem 3.4. M vcg is strategyproof. Proof. Given a path δ in M vcg and a stage t ≥ 0 in δ, such that L(δ[t], i) ≈ i V i . Since M vcg |= initial → ⃝terminal and δ[t + 1] = δ[t] whenever δ[t]
∈ T, it suffices to show consider the case where t = 0.

Let ϑ ∈ i∈N V i be a preference profile and δ ϑ denote a path such that δ

[0] = δ ϑ [0] and θ(δ ϑ , 0) = β ϑ . We let ϑ ′ i ∈ V i denote a preference of agent i, ϑ ′ = (ϑ ′ i , ϑ -i) and δ ϑ ′ be a path such that δ[0] = δ ϑ ′ [0], θ i (δ ϑ ′ , 0) = β ϑ ′ i and θ r (δ ϑ ′ , 0) = β ϑr for each agent r ̸ = i. That is, M vcg , δ ϑ , 0 |= does(β ϑ) and M vcg , δ ϑ ′ , 0 |= does i (β ϑ ′ r) ∧ r∈N\{i} does r (β ϑr). Let u ϑ i ∈ I such that M vcg , δ ϑ , 0 |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) = u ϑ i holds.
As we saw in the proof of Proposition 3.7, agent i's utility in δ ϑ [1] is simply

u ϑ i = r∈N v r (β ϑr , λ) - r∈N\{i} v r (β ϑr , λ -i)
where λ = (λ j) j∈G denote the trade performed in δ ϑ [1] with λ i,j = π Y (δ ϑ [1], trade) = WD λ i,j (β, X) for each good j and agent i, and λ -i = WD -i λ (β, X) is the trade that would happen if i did not participate in the auction.

Notice that the bid of i has no impact in r∈N\{i} v r (β r , λ -i) by the definition of WD -i λ . Thus, it means that the bid maximizing i's utility is the one that maximize

r∈N v r (β r , λ)
which, by definition, is the case when she bids truthfully. That is, u ϑ i is the maximum utility i obtains in the succeeding stages of all paths starting in δ

[0]. Thus, M vcg , δ ϑ , 0 |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) = u ϑ i and for any ϑ ′ , M vcg , δ ϑ ′ , 0 |= ⃝sub(v i (β ϑ i , (trade j) j∈G), pay i) ≤ u ϑ i .
We conclude the section by discussing variants of combinatorial exchange. In combinatorial auctions, there are two types of participants: buyers and sellers. The main difference to a combinatorial exchange is that buyers can only demand for non-negative quantities and prices while sellers can only ask for non-positive quantities and prices. These restrictions can be easily encoded in ADL by including a proposition for denoting the participants' types and defining legality rules based on their types. In Section 3.1, we exemplify the representation of a single-sided auction. Restricting the number of participants with the type buyer (or similarly seller) to one is an alternative way of encoding single-sided auctions. Multi-unit auctions with single items can be represented for different market structures (e.g., the single-sided setting) by restricting the number of good types to one (that is, |G| = 1). In the next section, we show how to represent an iterative protocol in ADL using a slightly different version of TBBL.

Iterative Combinatorial Exchange

We conclude the section on combinatorial exchange by considering an iterative protocol, denoted ICE. The protocol is a simplified and first-price version of the mechanism presented in [START_REF] Parkes | ICE: An Iterative Combinatorial Exchange[END_REF]. In this auction, bidders report an interval of prices they are willing to pay (or receive) for a trade. For ensuring termination, agents need to refine their bids, that is, to shrink the value interval reported in their previous bid. For expressing such conditions, we consider the TBBL extension with value bounds, denoted L TBBL+ . In this variant proposed by Lubin et. al [START_REF] Lubin | Ice: An expressive iterative combinatorial exchange[END_REF], agents report a pair of valuation bounds in each node of their bid. The syntax of L TBBL+ is obtained by replacing the value v of a leaf node ⟨q, j, v⟩ by the lower bound v ∈ I and upper bound v ∈ I with v ≤ v. The bounds v and v denote the minimum and maximum price the bidder considers acceptable to pay (or receive) for q units of j, respectively. Bid nodes with IC operators are similarly updated to include value bounds.

Given an agent i ∈ N, a bid β ∈ L TBBL+ and a trade λ ∈ I nm , the functions v i (β, λ), v i (β, λ), b i (β), b i (β) are defined with the same semantics from the functions v i and b i introduced in Section 3.2. Since the lower bound is no greater than the upper bound, we have that b i (β) ≤ b i (β) and v i (β, λ) ≤ v i (β, λ). For representing this ICE protocol with ADL, we first fix a constant ε ∈ [0, 1] for estimating the weight of the bounds in the value of a bid given a trade (i.e., function v i). If ε = 1, the bid value is based only on its lower bounds. Likewise, the upper bounds determinate the bid value when ε = 0. Next, we describe the auction signature, written S ice = (N, G, B, {}, Y, I, F), where N = {1, ..., n}, G = {1, ..., m}, B ⊆ L TBBL+ , Y = {trade i,j , pay i : i ∈ N, j ∈ G}, and

I ⊂ Z. If ⟨q, j, v, v⟩ is a bid in B, we assume ⟨q, j, v ′ , v ′ ⟩ ∈ B for any v ′ ≥ v and v ′ ≤ v such that v ′ ≤ v ′ . Similarly, if IC x y (β, v, v) ∈ B, we assume IC x y (β, v ′ , v ′) ∈ B for any v ′ ≥ v and v ′ ≤ v such that v ′ ≤ v ′ .
F contains the basic mathematical operations as well as the following functions:

v i : B × I nm → I, WD ε λ i,j : B n × I nm → I, eq : B × B → [0, 1
] and uncert : B → I. We next describe each of those functions.

Given an agent i, the value of bid β ∈ L TBBL+ given a trade λ ∈ I nm is defined as follows:

v i (β, λ) = ⌈ε • v i (β, λ)⌉ + ⌊(1 -ε) • v i (β, λ)⌋
Notice the rounding of the terms1 ensure the result will not be smaller than the lower bound neither greater than the upper bound.

Chapter 3. Representative Auctions in ADL

Assuming a joint bid β ∈ L n TBBL+ and an initial allocation X ∈ I nm ⪰0 , function WD ε λ i,j (β, X) is defined exactly as function WD λ i,j (β, X) defined in Section 3.2.1.2, except that the winner determination is replaced by the following:

WD ε (β, X) : arg max λ,sat i∈N β∈Node(β i) (⌈εb i (β) • sat i (β)⌉ + (1 -ε)b i (β) • sat i (β)) s.t. Constraints C1 -C4 hold (see Def. 3.2)
Given two bids β, γ ∈ L TBBL+ , eq(β, γ) denotes whether they are equivalent on structure, in the sense of differing only on their valuation bounds, and it is defined as follows:

• If β is in the form ⟨q, j, v, v⟩ and γ = ⟨q, j, v ′ , v ′ ⟩ for some v ′ , v ′ ∈ I, then eq(β, γ) = 1; • If β is in the form IC x y (β, v, v), γ = IC x y (β′ , v ′ , v ′) for some v ′ , v ′ ∈ I and each βk ∽ β′ k , for each 0 < k i ≤ | β|, then eq(β, γ) = 1; • Otherwise, eq(β, γ) = 0.
The difference among the bounds of a node represents its uncertainty. That is, the higher the bound difference, the less precise the node is about the agents' preference. The actual willingness-to-pay (or receive), is unknown except when the lower and upper bounds are the same [START_REF] Parkes | ICE: An Iterative Combinatorial Exchange[END_REF]. We define function uncert(⟨q, j, v, v⟩) = vv and uncert(IC x y (β, v, v)) = vv + 0<k≤| β| uncert(βk) for capturing the uncertainty of bid in L TBBL+ .

Each instance of ICE is specific and is defined with respect to B, I and the constant values ε ∈ [0, 1], n, m ∈ I ≻0 (the size of N and G, resp.), and X = (x j) j∈G , where x i,j ∈ I ⪰0 , for each i ∈ N and j ∈ G. The rules of a ICE are represented by ADL-formulae as shown in Figure 3.6.

In the initial state, there is no payment or trade for any agent (Rule 1) and agents can report any bid (Rule 2). After performing a bid, an agent is allowed to report any bid that has the same structure and less uncertainty than her last bid. When the bid has no uncertainty (i.e., for each node, its lower and upper bounds are the same), the agent must repeat her bid in the next turn (Rules 3 and 4). When there is no uncertainty in all bids performed in a state, the next state is terminal (Rule 5). The agents pay their reported values according to their trade in a given state (Rule 6). Finally, the agents' trades are computed in each round using the winner determination given their bids and their initial allocation (Rule 7).

Representing as a model

Next, we address the model representation. Let M ice be the set of ST-models M ice defined for any B ⊆ L TBBL+ , I ⊂ Z, and the constants n, m ∈ I ≻0 and X = (x j) j∈G , where x i,j ∈ I ⪰0 , for each i ∈ N and j ∈ G. Each M ice is defined as follows:

1. initial → i∈N (pay i = 0 ∧ j∈G trade i,j = 0) 2. initial → legal i (β), for each i ∈ N, β ∈ B 3. does i (β) ∧ eq(β, γ) ∧ uncert(γ) < uncert(β) → ⃝legal i (γ), for each i ∈ N, β, γ ∈ B 4. does i (β) ∧ uncert(β) = 0 → ⃝legal i (β), for each i ∈ N and β ∈ B 5. (i∈N does i (β i) ∧ uncert(β i) = 0) → ⃝terminal, for each β ∈ B n 6. does i (β) → ⃝pay i = v i (β, (trade j) j∈G), for each i ∈ N and β ∈ B 7. does(β) → ⃝(i∈N,j∈G trade i,j = WD ε λ i,j (β, X)), for each β ∈ B n Figure 3.6: An Iterative Combinatorial Exchange represented by Σ • W = {⟨(λ j) j∈G , p, lastbid⟩ : lastbid i ∈ B & p i , λ i,j ∈ I & i ∈ N & j ∈ G};
• w = ⟨0, ..., 0, 0, ..., 0, noop, ..., noop⟩;

• T = {⟨(λ j) j∈G , p, lastbid⟩ : uncert(lastbid i) = 0 & lastbid i ∈ B & p i , λ i,j ∈ I & i ∈ N & j ∈ G}}; • L = {(w, i, β) : i ∈ N & β ∈ B} ∪ {(⟨(λ j) j∈G , p, lastbid⟩, i, β) : eq(β, lastbid i) & uncert(β) < uncert(lastbid i) & β, lastbid r ∈ B & p r , λ r,j ∈ I & r, i ∈ N & j ∈ G};
• U is defined as follows: for all w = ⟨(λ j) j∈G , p, lastbid⟩ ∈ W and for all d ∈ B m :

-If w ̸ ∈ T, then U(w, d) = ⟨(λ ′ j) j∈G , p ′ , d⟩⟩,
where each component is updated as follows, for each i ∈ N and j ∈ G:

λ ′ i,j = WD ε λ i,j (d, X) and p ′ i = v i (d i , (λ ′ j) j∈G). -Otherwise, U(w, d) = w.
• For each w ∈ W, i ∈ N and j ∈ G, the valuation of numerical variables is as follows: π Y (w, trade i,j) = λ i,j and π Y (w, pay i) = p i .

Hereafter, we assume an instance of M ice ∈ M ice and Σ ice for some B ⊆ L TBBL+ , I ⊂ Z, n, m ∈ I ≻0 and x i,j ∈ I ⪰0 , where i ∈ N, j ∈ G.

Example 3.3. Let M ice ∈ M ice , where (i) there are only two agents, denoted by r and s, (ii) there is only one good type, denoted by a, and (iii) x r,a = 1 and x s,a = 0, i.e, agent r holds 1 unit of a and agent s has none. Figure 3.5 illustrates a path in M ice . In the initial state w 0 , agent r says she wants to sell a for a price between 10€ and 20€ and agent s reports her willingness to buy it for a price between 15€ and 25€. In state w 1 , the agents are informed of the provisional trade and payments. Agent s changes her bid to specify she is willing to receive exactly 15€ for selling a. By her turn, agent r specifies a value range 18€ to 20€ for buying a. In w 2 , only s can change her bid, since there is no uncertainty in r's bid. Then, s reports her willingness to pay exactly 18€. State w 3 is terminal because there was no uncertainty in the bids reported on w 2 . The good is traded and the agents pay (and receive) their asking prices.

π Y L w 1 trade r,a = -1 ∧ pay r = -15 trade s,a = 1 ∧ pay s = 20 π Y terminal L w 3 T legal r (⟨-1, a, v r , v r ⟩) ∧ legal s (⟨1, a, v s , v s ⟩) for any v r , v r , v s , v s ∈ I such that v r -v r < 10 and v s -v s < 10 legal r (β) ∧ legal s (β), for each β ∈ A does r (⟨-1, a, -15, -15⟩) and does s (⟨1, a, 18, 20⟩) trade r,a = -1 ∧ pay r = -15 trade s,a = 1 ∧ pay s = 18 π Y L w 2 trade r,a = -1 ∧ pay r = -15 trade s,a = 1 ∧ pay s = 19 legal r (⟨-1, a, -15, -15⟩) ∧ legal s (⟨1, a, v s , v s ⟩) for any v s , v s ∈ I such that v s -v s < 2 does r (⟨-1, a, -15, -15⟩) and does s (⟨1, a, 18, 18⟩) legal r (⟨-1, a, -15, -15⟩) ∧ legal s (⟨1, a, 18, 18⟩)
does r (⟨-1, a, -15, -15⟩) and does s (⟨1, a, 18, 18⟩)

Figure 3.7: A path in M ice where two agents trade a good

Evaluating the protocol

Now we focus on the evaluation of Σ ice and M ice . First, Lemma 3.5 shows the soundness of Σ ice over M ice .

Lemma 3.5. M ice is an ST-model and it is a model of Σ.

Proof. The proof is similar to those for Lemmas 3.1 and 3.3.

Since M ice is playable and terminates, Σ ice is well-formed.

Theorem 3.5. Σ ice is a well-formed protocol over M ice .

Proof. Since M ice is a model of Σ ice , we show that for each path δ in M ice , each stage t ≥ 0 in δ and each agent i ∈ N,

1. δ is a complete path; 2. M ice , δ, t |= β∈B legal i (β).
First, we consider Statement 2. By the definition of L TBBL+ , uncert(β) ≥ 0 for each bid β ∈ B. According to the legality definition, uncert(θ i (δ, t)) < uncert(θ i (δ, t -1)) or uncert(θ i (δ, t)) = 0. That is, either the bid reported by i in δ[t] has less uncertainty than the one she reported in δ[t -1] or it has no uncertainty. In the case of no uncertainty, θ i (δ, t) = θ i (δ, e) for each e ≥ t. Since the uncertainty decreases in each turn until being equal to zero, there exists a stage e ≥ 0 such that M ice , δ, e |= does i (β) ∧ uncert(β) = 0 for each agent i. By Rule 5, it follows that the next stage in δ is terminal, that is, M ice , δ, e |= ⃝terminal.

We now verify Statement 2. If δ[t] = w, then M ice , δ, t |= legal i (β) for each β ∈ B (Rule 2). Otherwise, t > 0 and M ice , δ, t -1 |= does i (β) for some β ∈ B. By the definition of L TBBL+ , uncert(β) ≥ 0. If uncert(β) = 0, then M ice , δ, t |= legal i (β) (Rule 4). Finally, if uncert(β) < 0, by the definition of B, there must exist a bid γ such that eq(β, γ) and uncert(γ) < uncert(β). According to Rule 3 of Σ ice , M ice , δ, t |= legal i (γ).

The cumulative of payments cannot be smaller than zero. However the auction may have positive transfers. Now we consider weak budget-balance. Let δ be a path in M ice , t ≥ 0 a stage in δ and i ∈ N. By the definition of v i , we have that an empty trade is valuated zero, i.e., v i (θ i (δ, 0), (0, . . . , 0)) = 0. Thus, r∈N v r (θ r (δ, 0), (0, . . . , 0)) = 0. Notice the empty trade (0, • • • , 0) satisfies Constraints C1-C4 from the winner determination. Among the trades satisfying those constraints, WD ε selects the trade (λ j) j∈G that maximizes the cumulative value among all agents, Thus, the cumulative value cannot be smaller than zero. Since the agents' pay the value of their bids, it follows that M ice , δ, t |= ⃝sub i∈N (pay i) ≥ 0. ICE is individually rational, since agents pay their reported preferences. Proposition 3.9. Given a joint action β ∈ B n , M ice |= does(β) → ⃝IR(β).

Proof. The proof is straightforward since M ice |= does i (β i) → ⃝pay i = v i (β i , (trade j) j∈G), for each i ∈ N and β i ∈ B.

The protocol is efficient since the winner determination maximizes the social welfare given the reported bids.

Proposition 3.10. Given a joint action

β ∈ B n , M ice |= does(β) → ⃝EF(β)
Proof. (Sketch) The proof is similar to the proof for Proposition 3.10.

Since the players' bids influence their payments, they can manipulate the price and the auction is not strategyproof. Proposition 3.11. M ice is not strategyproof.

Proof. (Sketch)

We show M ice is not strategyproof with a counterexample. Assume the path δ illustrated in Figure 3.7 and consider stage 2. We have θ s (δ, 2) = ⟨1, a, 18, 18⟩. Since the agents pay their reported valuation, in δ[3], the utility of agent s given her bid is zero, i.e., M ice , δ, 3 |= sub(v s (⟨1, a, 18, 18⟩, (trade j) j∈G), pay s) = 0. Let δ ′ be a path in M ice defined exactly like δ, except by the actions performed by s in each stage t ≥ 2, which is defined as θ s (δ, t) = ⟨1, a, 16, 16⟩. Then, M, δ ′ , 3 |= ⃝sub(v i (⟨1, a, 18, 18⟩, (trade j) j∈G), pay s) = 2 and M, δ ′ , 3 ̸ |= ⃝sub(v s (⟨1, a, 18, 18⟩, (trade j) j∈G), pay s) ≤ 0.

Conclusion

This chapter demonstrated the usefulness of ADL for representing a number of auction-based markets, which include features from single and multi-stage protocols, multiple items, multiple copies of those items and exchange protocols (which generalize double-sided auctions). We also evaluated such auctions in relation to the well-formedness of their ADL-descriptions in addition to economical properties by interpreting them as direct mechanisms.

In the previous chapter, we saw that we can verify most of such properties by model-checking ADL-formulae. Since Algorithm modelCheck (see Section 2.4) calls the functions in F in a polynomial number of times (according to on the formula length), the complexity of computing functions in F will affect its complexity. For instance, the winner determination problem for combinatorial auctions is NP-hard, which is then the complexity of computing the winner determination functions for TBBL [START_REF] Lubin | Ice: An expressive iterative combinatorial exchange[END_REF]. In that case, the model-checking problem for ADL is in ∆ P 2 , since modelCheck consults a NP-oracle a polynomial number of times.

Chapter 4

Actions, Knowledge and Rationality

In the two previous chapters, we focused on the auctioneer perspective by providing tools to specify and verify auction descriptions. In this chapter, we consider the player's perspective and our goal is to show how an agent may reason about their knowledge of other agents' valuations for eliciting her bid in an auction. Specifically, we show that computing a rational bid requires to assume that other agents are also bidding rationally. Following [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF], we understand 'rational' as 'not playing dominated actions'.

The interplay between knowledge, belief and rationality in the context of strategic reasoning is considered in Epistemic Game Theory [START_REF] Bonanno | Epistemic foundations of game theory[END_REF][START_REF] Lorini | A minimal logic for interactive epistemology[END_REF]. More precisely, this field shows how dominated strategies may be eliminated in an iterative manner [START_REF] Aumann | Backward induction and common knowledge of rationality[END_REF]. These contributions however require perfect reasoners, who can reason about higher-order knowledge at arbitrary depth, which is unrealistic. Chen et al. (2015) abandon this hypothesis and characterize level-k rationality by means of iterated deletion of strictly dominated strategies. Their approach no longer require perfect reasoners for building strategic bidders considering uncertain information but do not propose a full logic detailing the impact of bounded rationality.

We first extend ADL with knowledge operators from Epistemic GDL [START_REF] Jiang | Epistemic GDL: A logic for representing and reasoning about imperfect information games[END_REF] and the action modality from the GDL variant proposed in (Zhang and Thielscher, 2015a), which extends GDL with three modalities for representing and reasoning about actions and game strategies. We establish an axiomatic system for the logic and prove its soundness and completeness using variable forgetting technique. We demonstrate how to the logic can be used for creating strategies and verifying properties of strategies

Our extension aims at providing the ground for the design of general auction players. Second, we characterize (bounded) rationality along two dimensions: (i) the impact of the level of higher-order knowledge about other agents and (ii) the impact of looking-ahead beyond the next action to be executed. We also explore the complexity of model-checking for evaluating rationality.

Epistemic Auction Description Language

In this section, we introduce a logical framework for reasoning about auction protocols while considering imperfect information. The framework is based on a sim-plified version of ADL (see Section 2.2) and Epistemic GDL [START_REF] Jiang | On axiomatization of epistemic gdl[END_REF] and is denoted Epistemic Auction Description Language (ADLK). Definition 4.1. An auction signature S is a tuple (N, I, B, Φ, Y), where:

• N = {1, 2, . . . , n} is a nonempty finite set of agents;

• I ⊂ Z is a finite subset of integer numbers representing the range of valuations, bids and payments;

• B = i∈N A i , where each A i consists of a nonempty finite set of actions performed by agent i ∈ N and

A i ∩ A s = ∅ if i ̸ = s.
For convenience, we may write a i for denoting an action in A i ;

• Φ = {p, q, . . . } is a finite set of atomic propositions for specifying individual features of a state;

• Y = {y 1 , y 2 , . . . } is a finite set of numerical variables for specifying numerical features of a state.

We assume a total order among the agents in N, denoted by ≺, where r ≺ i means that agent i precedes agent i in ≺; it will be used to break ties in winner determination. Throughout the rest of this section, we fix an auction signature S and all concepts will be based on this signature, except if stated otherwise. We still consider a semantics based on state-transition models. Differently from the ST-models presented on Chapter 2, these models consider a set of initial states and contain equivalence relations for indicating states that are indistinguishable for each agent.

Definition 4.2. An epistemic state transition ET-model M is a tuple (W, W ι , T, {R i } i∈N , U, π Φ , π Y), where:

• W is a finite nonempty set of states;

• W ι ⊆ W is a set of initial states; • T ⊆ W \ W ι is a set of terminal states; • R i ⊆ W × W is
an equivalence relation for agent i, indicating the states that are indistinguishable for i;

• U : W × (i∈N A i) → W is an update function, specifying the transitions for each combination of joint actions;

• π Φ : W → 2 Φ is the valuation function for the state propositions;

• π Y : W × Y → I is the valuation function for the numerical variables.

Epistemic Auction Description Language 59

For a group of agents C ∈ 2 N \ {∅}, we write d C ∈ i∈C A i to denote a joint action of the agents in C. We denote by d i the individual action for agent i ∈ C in the joint action d C . When C = N then we omit N and simply write d instead of d N . Let R i (w) denote the set of all states that agent i cannot distinguish from w, i.e., R i (w) = {v ∈ W : wR i v}.

Unlike the previous chapters, we adopt a notion of moves instead of paths. Our notion of move resembles the turn-based definition proposed by Zhang and Thielscher (2015a,b). For every w ∈ W and d ∈ i∈N A i , we call (w, d) a move. Given a group of agents C ∈ 2 N \ {∅}, we write (w, ⟨d C , d -C ⟩) instead of (w, d) when we want to talk about C's part in (w, d), where d -C ∈ s∈N\C A s denotes the actions of all the agents except those in C in the joint action d. Definition 4.3. Two moves (w, d) and (v, e) are equivalent for agent i, written (w, d) ≈ i (v, e), iff wR i v and

d i = e i .
Clearly relation ≈ i is reflexive, transitive and symmetric. Differently from standard GDL, our semantics is based on moves instead of paths. This allows the agent to reason about the effects of actions without exploring all ways the game could proceed (i.e., all the reachable states in each complete path where she takes this action). In ADLK, we define the action execution modality in games with synchronous moves. The idea of move-based semantics and action modalities stems from the proposal of Zhang and Thielscher (2015a). Their approach is restricted to turn-based games, where only one action can be performed at a given state.

Syntax

First, we introduce ADLK syntax, a simplified version of ADL with epistemic operators and action modality. Let z ∈ L Z be a numerical term defined as follows:

z ::= t | sum(z, z) | sub(z, z) | min(z, z) | max(z, z) | times(z, z) | y
where t ∈ I, y ∈ Y . The meaning of numerical terms is the natural one; for instance, the term min(z 1 , z 2) specifies the minimum value between z 1 and z 2 . Finally, y denotes the value of the variable y ∈ Y in the current state.

A formula in ADLK, denoted φ ∈ L ADLK , is defined by the following BNF:

φ ::= p | z ⊗ z | r ≺ r | initial | terminal | does(a i) | ¬φ | φ ∧ φ | K i φ | [d C]φ where p ∈ Φ, i ∈ N, ⊗ ∈ {>, <, =}, a i ∈ B, C ∈ 2 N \ {∅}, d C ∈ i∈C A i and z ∈ L Z .
Other connectives ∨, →, ↔, ⊤ and ⊥ are defined by ¬ and ∧ in the standard way. The comparison operators ≤, ≥ and ̸ = are defined by ∨, >, < and =. The extension of the operators >, < and = and numerical terms max(z 1 , z 2), min(z 1 , z 2), sum(z 1 , z 2) to multiple arguments is straightforward. The formula r 1 ≺ r 2 denotes the tie-breaking priority of r 1 over r 2 . Intuitively, initial and terminal specify the initial and the terminal states, respectively; does(a i) asserts that agent i takes action a i at the current move. The epistemic operator K i is taken from the Epistemic Logic [START_REF] Fagin | Reasoning about knowledge[END_REF]. The formula K i φ is read as "agent i knows that φ". The action execution operator comes from the GDL variant with action modalities (Zhang and Thielscher, 2015a) and the formula [d C]φ means that if joint action d C is executed, φ will be true next. The abbreviation does(d C) specifies that each agent in C performs her respective action in d C , that is, does

(d C) = def i∈C does(d i)
As Zhang and Thielscher (2015a), we use the action modality to define the temporal operator ⃝:

⃝φ = def d∈ i∈N A i (does(d) ∧ [d]φ)
The formula ⃝φ reads "φ will be true next". We also use the following abbreviation from Epistemic Logic: K i φ = def ¬K i ¬φ where K i φ represents that "φ is compatible with agent i's knowledge". Given j > 0 and C ∈ 2 N \ {∅}, we write

σ C = (i∈C A i) j for a sequence of joint actions for C. The i-th joint action in σ C is noted σ C i . Finally, define [σ C] j φ, for |σ C | = j by induction of j: [σ C] 1 φ = def [σ C]φ [σ C] j+1 φ = def [σ C][σ C j]φ
The formula [σ C] j φ means that if the group C followed the sequence of joint actions described by σ C for the next j stages, then φ would hold.

Semantics

The semantics for ADLK is given in two steps. First, function f interprets the meaning of numerical terms z ∈ L Z . Next, a formula φ ∈ L ADLK is interpreted with respect to a move. In Definition 4.4, we specify function f to evaluate the meaning of any z ∈ L Z in a move.

Definition 4.4. Let M be an ET-Model. Define Function f : W ×(i∈N A i)×L Z → Z, assigning any w ∈ W, d ∈ i∈N A i , and z ∈ L Z to a number in Z:
If z is on the form sum(z ′ , z ′′), sub(z ′ , z ′′), min(z ′ , z ′′), max(z ′ , z ′′) or times(z ′ , z ′′), then f (w, d, z) is defined through the application of the corresponding mathematical operators and functions over f (w, d, z ′) and f (w, d, z ′′). Otherwise,

f (w, d, z) = z if z ∈ I and f (w, d, z) = π Y (w, z) if z ∈ Y .
Definition 4.5. Let M be an ET-Model. Given a move (w, d), where w ∈ W and d ∈ i∈N A i , and a formula φ ∈ L ADL , we say that φ is true in the move (w, d) under M , denoted by M |= (w,d) φ, according to the following rules:

M |= (w,d) p iff p ∈ π Φ (w) M |= (w,d) ¬φ iff M ̸ |= (w,d) φ M |= (w,d) φ 1 ∧ φ 2 iff M |= (w,d) φ 1 and M |= (w,d) φ 2 M |= (w,d) initial iff w ∈ W ι M |= (w,d) terminal iff w ∈ T M |= (w,d) r 1 ≺ r 2 iff r 1 ≺ r 2 M |= (w,d) does(a i) iff d i = a i M |= (w,d) z 1 ⊗ z 2 iff f (w, d, z 1) ⊗ f (w, d, z 2), where ⊗ ∈ {>, <, =} M |= (w,d) K i φ iff for every v ∈ W and e ∈ s∈N A s , if (w, d) ≈ i (v, e), then M |= (v,e) φ M |= (w,d) [b C]φ iff M |= (U (w,e),c) φ, where e = ⟨b C , d -C ⟩, for every c ∈ i∈N A i A formula φ is globally true in an ET-Model M, written M |= φ, if M |= (w,d) φ for all w ∈ W and d ∈ i∈N A i . Finally, let Σ be a set of formulas in L ADLK , then M is a model of Σ if M |= φ for all φ ∈ Σ.
Each K i is a normal modal operator. It satisfies that if all i-accessible worlds agree on φ then i knows either φ or ¬φ. If φ is true then i knows that φ. It follows from the equivalence relation ≈ i that agent i knows the actions she performs. This is similar to the uniform strategies in Alternating-time Temporal Epistemic Logic [START_REF] Jamroga | Agents that know how to play[END_REF] and Dynamic Epistemic Logic [START_REF] Van Benthem | Games in dynamic-epistemic logic[END_REF].

Proposition 4.2. For any agent

i ∈ N, action a i ∈ A i , formula φ ∈ L ADLK , number of steps j > 0, group of agents C ∈ 2 N \ {∅} and σ i ∈ (i∈C A i) j : 1. M |= does(a i) → K i does(a i) 2. If M |= [σ C] j φ then M |= K i [σ C] j φ 3. If M |= [σ C] j K i φ then M |= K i [σ C] j φ
Let us now illustrate how to represent an auction-based protocol in ADLK, namely, a Dutch auction. First, we show the syntactical representation through ADLK-formulas. Later, we address the semantical representation.

Dutch Auction with Private Valuations

In a Dutch auction, the auctioneer starts by proposing a high asking price. The price is decreased until it reaches a predefined reserve price or some bidder shows interest at purchasing the good. The auction then ends and the object is sold at the given price to the bidder who signaled her interest [START_REF] Krishna | Auction Theory[END_REF].

Let S dut be an auction signature and starting, reserve ∈ N, dec, n ∈ N \ {0} be constant values. The constants starting, reserve, dec, n represent the starting and reserve prices, the decrement in each round and the number of agents, respectively. The auction signature is defined as follows: S dut = (N, I, B, Φ, Y), where N = {1, . . . , n}, I = {0, . . . , starting}, B = {bid i , wait i : i ∈ N}, Φ = {winner i : i ∈ N} and Y = {pay i , ϑ i : i ∈ N}. The numerical variables pay i and ϑ i specify the payment and the private valuation for an agent i.

Syntactical Representation

The rules of the Dutch auction are formulated by ADLK-formulas as shown in In an initial state, the price starts at starting and there is no winner (Rule 1). If an agent is a winner, she pays the current price. Otherwise, she does not pay anything (Rules 2 and 3). The terminal state is reached when it is not possible to decrease the price anymore or there is a winner (Rule 4). While not in the terminal state, the price either decreases if no agent bids or the price is settled if some agent accepted to purchase the good (Rules 5 and 6). If only one agent accepts, she is marked as the winner. In case two or more agents bid, the winner is assigned according to the tie-breaking rule. Rules 7 and 8 ensure no proposition or numerical variable change its value after a terminal state. Finally, Rule 9 specifies that each agent is aware of how much she valuates the good. Let Σ dut be the set of Rules 1-9.

: i ∈ N} 9. K i (ϑ i = x) ∨ K i ¬(ϑ i = x), for each x ∈ I and i ∈ N

Model Representation

Let us address the model representation of the Dutch auction. Let us define M dut as the class of models M dut defined for a signature S dut and the constants starting, reserve, dec and n.

Each M dut = (W, W ι , T, {R i } i∈N , U, π Φ , π Y) is defined as follows: • W = {⟨pr, buyer, θ 1 , . . . , θ n ⟩ : 0 ≤ pr ≤ starting & buyer ∈ N ∪ {none} & 0 ≤ val i ≤ starting for each i ∈ N}; • W ι = {⟨starting, none, val 1 , . . . , val n ⟩ : 0 ≤ val i ≤ starting for each i ∈ N}; • T = {⟨pr, buyer, θ 1 , . . . , θ n ⟩ : 0 ≤ pr ≤ starting & buyer ∈ N & 0 ≤ val i ≤ starting for each i ∈ N} ∪ {⟨pr, buyer, θ 1 , . . . , θ n ⟩ : pr -dec < reserve & buyer ∈ N ∪ {none} & 0 ≤ val i ≤ starting for each i ∈ N};
• For each agent i ∈ N and for any two states w = ⟨pr, buyer, θ 1 , . . . , θ n ⟩ and v = ⟨pr ′ , buyer ′ , val ′ 1 , . . . , val ′ n ⟩ in W, the relation R i is defined as follows: wR i v iff (i) pr = pr ′ ; (ii) buyer = buyer ′ ; and (iii) val i = val ′ i .

• For all states w = ⟨pr, buyer, θ 1 , . . . , θ n ⟩ and all joint actions d = (a i) i∈N , such that w ∈ W and a i ∈ {bid i , wait i }, we define U as follows:

-If w ̸ ∈ T, then U(w, d) = ⟨pr ′ , buyer ′ , θ 1 , . . . , θ n ⟩, such that the components pr ′ and buyer ′ are defined as follows: (i) pr ′ = pr-dec if a i = wait i , for all i ∈ N; otherwise pr ′ = pr; (ii) buyer ′ = i if a i = bid i for some i ∈ N and for all s ∈ N such that s ̸ = i, either a s = wait s or i ≺ s; otherwise, buyer ′ = none; -Otherwise, U(w, d) = w.

• Finally, for each state w = ⟨pr, buyer, θ 1 , . . . , θ n ⟩, such that w ∈ W, let

π Φ (w) = {winner i : buyer = i & i ∈ N}; π Y (w, price) = pr. For each agent i ∈ N, let π Y (w, ϑ i) = val i and π Y (w, pay i) = pr if buyer = i. Otherwise, π Y (w, pay i) = 0.
Let us assume a model M dut ∈ M dut and Σ dut for some S dut and the constants starting, reserve ∈ N, dec, n ∈ N \ {0}.

Proposition 4.3. M dut is an ET-Model and M dut |= Σ dut , i.e., M dut is a model of Σ dut .
That is, M dut is a sound representation of Σ dut . Notice that as M dut is not the unique model for Σ dut , thereby, the completeness does not hold. It follows from Prop. 4.1 and 4.3 that each agent knows the auction rules denoted by Σ dut , that is, M dut |= i∈N (K i Σ dut). In the next section, we define rationality in ADLK.

Rationality in Auctions

To characterize rationality of auction players, we assume {ϑ i , pay i : i ∈ N} ⊆ Y and {winner i : i ∈ N} ⊆ Φ, where ϑ i , pay i and winner i specify the agents valuation, payment and whether she won the auction, resp. Let ut ∈ I, we denote whether the utility of agent i ∈ N is equal to ut in a single good and unit auction according to the truth value of the following formula:

utility i = ut = def (ut = sub(ϑ i , pay i) ∧ winner i) ∨ (ut = -pay i ∧ ¬winner i)
Note that we can extend the notion of utility to multiple units and goods by including numerical variables representing the agents' allocations and their valuations for such allocations. In this work, we focus on epistemic reasoning about action choice and rationality of auction players.

Similar to the strong strategy dominance [START_REF] Lorini | A minimal logic for interactive epistemology[END_REF], we say an action a i of an agent i is a strongly dominated action if and only if, there exists another action b i of i such that, for all actions a -i of the other agents, playing b i while others play a -i leads to a better utility than playing a i while others play a -i . In ADLK, the agents' utility is captured in a move of a model and the action choice operator allows us to compare what would have happened if a group of agents took a given joint action.

Bounded Rationality

We adapt the weak rationality formalization by [START_REF] Lorini | A minimal logic for interactive epistemology[END_REF] to ADLK formulas. Different from his approach, we consider levels of rationality instead of common knowledge. Our notion of k-order rationality is based on (Chen et al., 2015): an agent is k-order rational if she is weakly rational and knows all agents are (k -1)order rational.

GDL-based languages explicit the stages of a game execution through paths (or runs). The game starts from an initial state and the succeeding states are defined according to the agents' joint actions. Since GDL agents choose "on-the-fly strategies" during the game, the players should be able to evaluate the current state of the game and to decide which action they will execute.

Adopting these features from GDL in ADLK allows us to explicitly model information feedback, which is a key feature in the design of iterative auctions [START_REF] Parkes | Iterative Combinatorial Auctions[END_REF]. For instance, in ADLK, we can describe auctions where the agents are assigned to allocations and payments at any stage, which may be different from their final assignments in the terminal state. For this reason, instead of defining utilities as a function to strategy profiles as in ATL [START_REF] Alur | Alternating-time temporal logic[END_REF], we model the agents' utility as being dependent on the current state of the auction.

We rephrase the rationality notions proposed by Chen et al. (2015) and [START_REF] Lorini | A minimal logic for interactive epistemology[END_REF]. Our definitions generalize such notions by, at first, considering k-order of knowledge and, second, by taking into account state-based utilities and exploring bounded sequences of actions. A rational agent plays according to her utility after

Rationality in Auctions 65

performing an action. When reasoning about iterative auctions, the agent considers her utility after playing according to a sequence of j actions. Since most auctionbased markets are finite (in the sense that the auction finishes eventually), it is reasonable to assume the agents only need to include in their reasoning which actions may occur in the next j steps. Given a fixed number of steps j > 0, we inductively define that an agent is k-order rational, for k ≤ j. The base case is that any agent is 0-order rational, that is, Rat(i, 0, j) = def ⊤. For all k > 0, we define:

Rat(i, k + 1, j) = def WR(i, j) ∧ K i s∈N Rat(s, k, j)
That is, an agent is (k + 1)-order rational if she is weakly rational when looking j stages ahead and knows every other agent is k rational. Weak rationality is defined by: WR(i, j) = def

a i ∈A i does(a i) → ρ i ∈(A i) j-1 WRAction(i, (a i , ρ i), j)
where

WRAction(i, σ i , j) = def χ i ∈(A i) j σ -i ∈(s̸ =i A s) j K i does(σ -i 1) ∧ ut,ut ′ ∈I ([χ i , σ -i] j utility i = ut ′ ∧ [σ i , σ -i] j utility i = ut ∧ ut ′ ≤ ut)
An agent a i is weakly rational when reasoning j stages ahead if when she performs an action a i , there exists a sequence of j actions starting by a i that is weakly rational for her to follow over j stages. Finally, it is weakly rational for agent i to follow a sequence of actions σ i for j steps, noted WRAction(i, σ i , j), if for every other sequence of actions χ i there exists a sequence of joint actions σ -i that i considers possible to be executed such that her utility after following σ i for j steps is at least as good as her utility after following χ i . Notice that if j is large enough to reach terminal states, the state-based utilities represent strategy-based utility functions. Our definition of rationality requires to assume that all agents are rational: as soon as one is known to be non-rational, it is no longer possible to be k-order rational, for k > 1. This requirement entails that looking ahead without considering knowledge leads to consider all actions as rational:

Proposition 4.4. For every ET-Model M, state w ∈ W, joint action d ∈ i∈N A i , agent i ∈ N and j > 0, it holds that M |= (w,d) does(d i) ∧ Rat(i, 0, j).

Next, considering higher-order knowledge enables us to eliminate strongly dominated actions.

Theorem 4.1. For any ET-Model

M, state w ∈ W, joint action d ∈ i∈N A i , k > 0, j > 0, agent i ∈ N and action a i ∈ A i , if M |= (w,d) does(a i) ∧ Rat(i, k, j) then M |= (w,d) does(a i) ∧ Rat(i, k -1, j).

Chapter 4. Actions, Knowledge and Rationality

Proof. Assume M |= (w,d) does(a i)∧Rat(i, k, j). Thus, M |= (w,d) does(a i)∧WR(i, j)∧

K i (s∈N Rat(s, k -1, j)). Since R i is reflexive, it follows that M |= (w,d) does(a i) ∧ Rat(i, k -1, j).
Note that increasing j may not enable the elimination of actions. The larger j, the more stages will be considered. Ideally, j should be large enough to reach terminal states. However, termination may not be ensured in auction protocols and real world players usually have time restrictions to decide their actions.

Bounded Rationality in the Dutch Auction

Let us consider the Dutch auction from Section 4.1.3. Consider a specific instance M dut in M dut , such that there are only two players i and s whose valuation for the good being auctioned is 7 and 4, respectively. The auctioneer starts by proposing the price 10 and in each round the price is decreased by 1. Formally, N = {i, s}, I = {0, . . . , 10}, B = {bid i , wait i , bid s , wait s }, Φ = {winner i , winner s } and Y = {pay i , ϑ i , pay s , ϑ s }. Let M dut be the model defined by the signature S dut = (N, I, B, Φ, Y) and the constants starting = 10, dec = 1, reserve = 0 and n = 2. We consider the initial state w 0 ∈ W ι , such that π Y (w 0 , ϑ i) = 7 and π Y (w 0 , ϑ s) = 4.

Due to the starting price and the decrement, the auction is ensured to end after 10 stages. We therefore focus on the case j = 10. If the auction reaches a terminal state before 10 stages, the update function ensures a loop in the terminal state. Since the auction ends at the first bid, we write bidAfter(i, m) as the sequence of actions σ i , such that σ i i = wait i for i < m ≤ j and σ i i = bid i for m ≤ i ≤ j. The sequence is read "i bids after m steps". Let onlywait(i) be the sequence of j actions wait i . We use a similar notation for expressing agent s's sequence of actions. Let d be a joint action, we will examine which sequences of actions are rational for each agent to follow. We assume the Dutch auction protocol Σ dut and the tie-breaking ordering are common knowledge among the agents in N.

If the agents are 0-order rational, that is, if M dut |= (w 0 ,d) Rat(i, 0, j)∧Rat(s, 0, j), then both agents consider possible that any sequence of joint actions will be taken. If we now consider 1st-order rationality for i, that is M dut |= (w 0 ,d) Rat(i, 1, j), then i is not going to follow any sequence of actions that are strongly dominated in j steps. The weakly rational sequences of actions for i are those where she waits until the price is below her private valuation (e.g, bidAfter(i, 4), bidAfter(i, 5), and so on). The sequence of actions onlywait(i) is not rational for i. The weakly rational actions for agent s when M dut |= (w 0 ,d) Rat(s, 1, j) are defined similarly. Figure 4.2 illustrates the utilities each agent considers possible to achieve when playing a weakly rational sequence of actions.

For k > 1, which actions a k-order rational agent considers possible her opponents will take depends on her knowledge about their valuations. For instance, let us consider the case where it is common knowledge that (2 ≤ ϑ s ≤ starting)∧(2 ≤ ϑ i ≤ w 4,0 [bidAfter(i, 4), bidAfter(s, 0)] utility i = 1

• • •

[bidAfter(i, 4), bidAfter(s, 1)] utility i = 1 w 4,1 w 10,9

[bidAfter(i, 10), bidAfter(s, 9)] utility i = 0 w 10,10

[bidAfter(i, 10), bidAfter(s, 10)] utility i = 7 The utilities agents i and s consider possible to obtain when they are 1st-order rational starting), i.e., we have M dut |= (2 ≤ ϑ s ≤ starting) ∧ (2 ≤ ϑ i ≤ starting). By Proposition 4.1, both agents then know their opponent has a valuation between 2 and the starting price. If the agent s is 2nd-order rational, she will know the sequence of actions onlywait(i) is not weakly rational for i. Due to the tie-breaking rule, if both agents bid at the same stage, agent i wins. Thus, agent s cannot win by waiting for the price to reach zero and it is not weakly rational to perform bidAfter(s, 10). If i is 3rd-order rational, she knows that s knows onlywait(i) is not rational for her and consequently, that it cannot be the case that s will bidAfter(s, 10). If the agents are 4th-order rational, they will not consider possible that the good is not sold before the price be zero. Thus, a similar reasoning will happen due tie-breaking when the price is 1. Finally, Figure 4.3 illustrates the utilities each agent considers possible when she is 7th-order rational. Since agents are uncertain about which value between 2 and starting represents the valuation of their opponents, raising the order of rationality beyond 7 would not modify the actions they consider possible to be taken by their opponent. [bidAfter(i, 4), bidAfter(s, 0)] utility i = 1

• • •

[bidAfter(i, 4), bidAfter(s, 1)] utility i = 1 w 4,1 w 8,8

[bidAfter(i, 8), bidAfter(s, 8)] utility i = 5 w 8,9

[bidAfter(i, 8), bidAfter(s, 9)] utility i = 0

Model Checking

Now we examine the upper bound of the complexity of deciding whether an ADLKformula is true with respect to a model and a move. To prove this bound, we provide a model-checking algorithm and analyze its complexity. Let φ ∈ L ADLK be a formula and M = (W, W ι , T,

{R i } i∈N , U, π Φ , π Y) be an ET-Model over S. We say that ψ is a subformula of φ if either (i) ψ = φ; (ii) φ is of the form ¬φ, K i φ or [d C]φ
isT rue[i] ← M |= (w,d) φ 12: case φ is of the form [b C]φ ′ 13: e C ← ⟨b C , d -C ⟩ 14: for each c ∈ i∈N A i do 15: isT rue[i] ← isT rue[i] ∧ epistM odelCheck(M, U(w, e), c, φ ′) 16: case φ is of the form K i φ ′ 17:
for each v ∈ R i (w) and each e ∈ i∈N A i with e i = d i do 18:

isT rue

[i] ← isT rue[i] ∧ epistM odelCheck(M, v, e, φ ′) 19: return isT rue[|φ|]
S(|φ|) = φ, i.e., the position |φ| in S corresponds to the formula φ itself, and if φ i is a subformula of φ j then i < j. An induction on S labels each subformula φ i depending on whether or not φ i is true in M at the move (w, d). If φ i does not have any subformula, its truth value is obtained directly from the model. Since S is ordered by formulas length, if φ i is either of the form φ ′ ∧ φ ′′ or ¬φ ′ the algorithm labels φ i according to the label assigned to φ ′ and/or φ ′′ . If φ i is of the form [b C]φ ′ then its label is recursively defined according to φ ′ truth value in the updated state given the joint action ⟨b C , d -C ⟩, for any joint action to be taken in the next move. Since we compare with every joint action, this is done in an exponential number of steps, based on the size of the set of agents (i.e., according to |B| n , where n = |N|).

Finally, the case where φ i is in the form K i φ ′ is recursively defined according to the truth value of φ ′ in all moves that are equivalent to (w, d). Similar to the previous case, since we compare with all possible moves and all states in R i (w) ⊆ W, this step is done in an exponential number of steps (i.

Conclusion

In this chapter, we presented Epistemic Auction Description Language (ADLK), a language to allow reasoning about knowledge, rationality and action choice in auctions. ADLK extend ADL with epistemic operators and action modalities as in the GGP competition, real world bidders may have time restrictions to decide their actions. Thus, we characterized and explored bounded rationality in relation to the level of higher-order knowledge about other agents and stages to look-ahead beyond the current state.

With ADLK, we can reason about agents' action choices over a finite number of auction stages, but it does not contemplate agents' strategies in a general sense (that is, functions describing what to do in each possible moment of a game). In the second part of this thesis, we investigate strategic reasoning in auctions and explore how to create and verify mechanisms which will be played by strategic agents. We provide a new perspective for Automated Mechanism Design, grounded on formal methods and logic-based automated reasoning.

Part II

Strategic Reasoning in Mechanism Design

Chapter 5

Verification of Mechanisms

Let us recall the problem of Mechanism Design, which consists on creating games that aggregate agents' preferences towards a single joint decision. When participants act rationally (in the game theoretical sense), such games should ensure a preferable behavior of the players as well as desirable features of the decision [START_REF] Nisan | Algorithmic Game Theory[END_REF].

Bearing in mind that the mechanism analysis is usually a manual process, we investigate their verification in relation to complex properties involving strategic agents through formal methods. In this context, the paper "Logic for Mechanism Design -A Manifesto" [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF] is of particular interest. The authors argue that strategic logics developed for the formal verification of multiagent systems (MAS) could be good candidates as formal frameworks to reason about mechanisms. They consider Alternating-time Temporal Logic (ATL) [START_REF] Alur | Alternating-time temporal logic[END_REF] and show with two case-studies based on voting systems that some relevant properties for the verification of such systems can be expressed in this logic. They conclude with a research agenda in which they detail features that are missing in ATL to make it really fit for mechanism verification: "We need to incorporate more game-theoretic notions in the logics we use. While the logics discussed are capable of capturing some game theoretic notions, they are still too close to their computer science origins. For example, players' preferences, strategies, equilibrium notions, are all notions which so far are inadequately represented both in the underlying semantic models and in the logical languages used. It is also still an open question whether we will eventually end up with one generalpurpose logic which functions as a standard, much the way first-order logic or modal logic do in computer science." [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF] In this chapter we argue that Strategy Logic [START_REF] Chatterjee | Strategy logic[END_REF]) is a good candidate for a general-purpose logic for mechanism design, specially when considering auction-based markets. More precisely, we propose a new variant of the logic with quantitative features, imperfect information and epistemic operators, that we call SLK [F]. Because it is enough for many auction scenarios, we focus on memoryless strategies, that do not depend on the past but only on the current state. We start by presenting the related work on automated mechanism design and logics for strategic reasoning. Next, we propose SLK[F] and show how it can be used for reasoning about auction mechanisms. Finally, we investigate the model-checking problem for this language and conclude the chapter

Related Work

In this section we present the related work on computer-aided and fully-automatic approaches for mechanism design and we recall logic-based languages for reasoning about strategic abilities in MAS.

Automated Mechanism Design

Traditionally, mechanisms have been formulated by specialists, who use their knowledge and experience for defining the game rules. Conitzer and Sandholm (2003) introduced Automated Mechanism Design (AMD), whose goal is to automatically create mechanisms for solving a specific preference aggregation problem.

AMD is usually tackled from an optimization and/or data-driven point of view. For instance, neural networks have been used to learn mechanisms that optimize a given parameter, such as revenue [START_REF] Shen | Automated mechanism design via neural networks[END_REF][START_REF] Dütting | Optimal auctions through deep learning[END_REF]. Statistical machine learning techniques have also been considered in domains without money [START_REF] Narasimhan | Automated mechanism design without money via machine learning[END_REF]. [START_REF] Vorobeychik | Constrained automated mechanism design for infinite games of incomplete information[END_REF] proposes a black-box optimization algorithm for evaluating candidate mechanisms. Evolutionary search methods have also been used by [START_REF] Niu | A grey-box approach to automated mechanism design[END_REF] to optimize double auctions, while [START_REF] Asselin | A technique for large automated mechanism design problems[END_REF] addresses AMD through linear programming and optimization. By treating AMD as an engineering problem, [START_REF] Phelps | Evolutionary mechanism design: a review[END_REF] focus on evolutionary and iterative approaches to mechanism design.

In relation to automating the analysis of mechanisms, some works from computer-aided verification [START_REF] Caminati | Sound auction specification and implementation[END_REF][START_REF] Barthe | Computer-aided verification for mechanism design[END_REF][START_REF] Kerber | An introduction to mechanized reasoning[END_REF] express mechanisms in high-level specification languages, which can express rich features including probabilistic aspects. The drawback of this high expressivity is that, in contrast with model checking, verification is then not fully automatic, but only assisted by a reasoner such as Isabelle or Coq. [START_REF] Troquard | Reasoning about Social Choice Functions[END_REF] show how to reason about voting rules properties such as strategyproofness in a formalism that allows fully automatic verification. However, the logic they use can only model one-shot mechanisms and thus does not capture multi-stage auctions such as Dutch auctions.

A related topic is normative systems Ågotnes et al. (2007), which defines constraints (in terms of obligations and permissions) on the behaviour of agents. [START_REF] Bulling | Norm-based mechanism design[END_REF] investigates how concepts from mechanism design can be used to analyse the enforcement of norms with preferences modelled using Lineartime Temporal Logic (LTL).

The works closest to ours are [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF][START_REF] Wooldridge | Logic for automated mechanism design-a progress report[END_REF] which, as we already discussed, advocate the use of strategic logics to reason about (possibly multi-stage) mechanisms by considering ATL [START_REF] Alur | Alternating-time temporal logic[END_REF]. They discuss that ATL lacks the ability to reason about quantitative aspects such as preferences, and game-theoretic concepts such as equilibria. [START_REF] Okada | Sat-based automated mechanism design for false-name-proof facility location[END_REF] uses Boolean Satisfiability for modeling mechanisms for false-name-proof facility location. Their approach is restricted to one type of mechanism and does not handle strategic, temporal and quantitative specifications. Another related approach are Boolean games [START_REF] Harrenstein | Boolean games[END_REF], which aims at providing models that are easy to build with actions determined by the agents' control of propositional variables. Finally, [START_REF] Gutierrez | Equilibrium design for concurrent games[END_REF] considers system specifications given in LTL [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF], and studies the implementation of a mechanism to ensure a given temporal logic property in equilibrium.

Logics for Strategic Reasoning

Our work is rooted in a rich line of work on logics for strategic reasoning, starting with the aforementioned ATL [START_REF] Alur | Alternating-time temporal logic[END_REF], the foundational language for strategic reasoning in MAS. ATL has been extended in various directions, considering for instance strategy contexts [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF] or adding imperfect information and epistemic operators [START_REF] Jamroga | Comparing variants of strategic ability[END_REF]. The first order extension of ATL [START_REF] Belardinelli | Abstraction-based verification of infinitestate reactive modules[END_REF] allows one to capture some quantitative aspects. The authors demonstrate how an English auction may be represented, and strategic properties such as manipulation and collusion verified. However, key strategic concepts such as dominance can not be expressed in the logic. Strategy Logic (SL) [START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF] was then proposed which, by treating strategies as first-order variables, can express complex game-theoretic concepts.

SL has been extended to handle imperfect information, hierarchical information and knowledge operators [START_REF] Berthon | Strategy logic with imperfect information[END_REF][START_REF] Belardinelli | Verification of multi-agent systems with public actions against strategy logic[END_REF][START_REF] Maubert | Reasoning about knowledge and strategies under hierarchical information[END_REF], but none of these logics can account for quantitative aspects. We denote by Epistemic Strategy Logic (SLK) the logic resulted of augmenting SL with knowledge operators [START_REF] Maubert | Reasoning about knowledge and strategies under hierarchical information[END_REF]. Recently, SL[F] [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF] was introduced as a quantitative extension of SL. By introducing quantitative values in the models and functions in the language, it enables the reasoning about all key concepts involved in auctions: utilities, payments, goods and quantities. In this chapter we merge both lines by combining quantitative aspects and imperfect information in SLK [F].

Indeed SL[F], which subsumes ATL, is expressive enough to express complex solution concepts such as Nash equilibrium and properties about quantities. This language thus allows for specifications that contain constraints on mechanism properties (for instance, in Auction Design, the efficiency and budget-balance). Its quantitative semantics, with satisfaction values that reflect how well a model satisfies a formula, also allows us to investigate the constructions of mechanisms that approximate such properties, which is not possible with standard SL.

A key assumption of the present contribution is that agents have only partial observability of the global state of the system, as it is often the case in real-life applications. Contexts of imperfect information have been extensively considered in the literature on formal verification [START_REF] Dima | Model-checking ATL under imperfect information and perfect recall semantics is undecidable[END_REF][START_REF] Kupferman | Synthesis with incomplete informatio[END_REF][START_REF] Jamroga | Constructive knowledge: what agents can achieve under imperfect information[END_REF][START_REF] Reif | The complexity of two-player games of incomplete information[END_REF][START_REF] Bulling | Comparing variants of strategic ability: how uncertainty and memory influence general properties of games[END_REF]. Generally speaking, imperfect information immediately entails higher complexity of game solving. In multi-player games, the complexity can go up to being nonelementary [START_REF] Pnueli | On the Synthesis of a Reactive Module[END_REF], or even undecidability when considered in the context of memoryful strategies [START_REF] Dima | Model-checking ATL under imperfect information and perfect recall semantics is undecidable[END_REF]. Hence, it is of interest to analyse imperfect information systems where agents have finite or bounded memory, in order to retrieve a decidable model checking problem. [START_REF] Herzig | Epistemic boolean games based on a logic of visibility and control[END_REF] analyse epistemic boolean games in a computationally grounded dynamic epistemic logic with the model-checking in in Pspace.

In relation to the modeling, specification, and reasoning about strategies of bounded-memory agents, [START_REF] Ågotnes | A logic of strategic ability under bounded memory[END_REF] investigate strategic abilities of agents with bounded memory, while [START_REF] Belardinelli | Approximating perfect recall when model checking strategic abilities[END_REF] consider bounded memory as an approximation of perfect recall. On a related direction, temporal and strategic logics have been extended to handle agents with bounded resources [START_REF] Alechina | A logic for coalitions with bounded resources[END_REF][START_REF] Alechina | Resource-bounded alternating-time temporal logic[END_REF]Bulling and Farwer, 2010a,b). Issues related to bounded rationality are also investigated in [START_REF] Barlo | Bounded memory with finite action spaces[END_REF][START_REF] Hörner | How robust is the folk theorem?[END_REF][START_REF] Gupta | Making the best of limited memory in multi-player discounted sum games[END_REF]. Also relevant for the present contribution are papers that study explicit representations of strategies. This category is much richer and includes extensions of ATL * with explicit reasoning about actions and strategies [START_REF] Van Der Hoek | A logic for strategic reasoning[END_REF][START_REF] Ågotnes | Action and knowledge in alternating-time temporal logic[END_REF][START_REF] Walther | Alternating-time temporal logic with explicit strategies[END_REF][START_REF] Herzig | Alternating-time temporal logic with explicit programs[END_REF], as well as logics that combine features of temporal and dynamic logic [START_REF] Harel | Process logic: Expressiveness, decidability, completeness[END_REF][START_REF] Novák | Code patterns for agent oriented programming[END_REF]. [START_REF] Duijf | Representing strategies[END_REF] present a variant of STIT logic1 , that enables reasoning about strategies and their execution in the object language. Also, plans in agent-oriented programming are in fact rule-based descriptions of strategies. In particular, reasoning about agent programs using strategic logics was investigated in [START_REF] Bordini | Verifying multiagent programs by model checking[END_REF][START_REF] Alechina | A logic of agent programs[END_REF][START_REF] Alechina | Reasoning about agent execution strategies[END_REF][START_REF] Dastani | Reasoning about strategies of multi-agent programs[END_REF][START_REF] Yadav | Reasoning about agent programs using ATLlike logics[END_REF].

The work in (Jamroga et al., 2019a,b) proposed to model "human-friendly" strategies by lists of condition-action pairs with bounded complexity. This was in contrast to "combinatorial" strategies, defined as functions from (sequences of) states to actions, and typically used in the semantics of MAS logics [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Pauly | Game logic-an overview[END_REF][START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF]. It was argued in (Jamroga et al., 2019a,b) that natural strategies provide better models of behavior for agents with limited memory and computing capacity, such as humans or simple bots. The concept have been already used to redefine some security requirements for voting protocols in [START_REF] Jamroga | Natural strategic abilities in voting protocols[END_REF].

Quantitative Epistemic Strategy Logic 77

Quantitative Epistemic Strategy Logic

SL[F] [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF] introduces quantitative aspects in SL, but it lacks the ability to handle imperfect information inherent to the mechanism scenarios that we aim at modeling, where agents may ignore other agents' preferences for instance. We thus introduce SLK[F], which extends SL[F] with imperfect information and knowledge operators. A notable difference is that while SL[F] considers all values to be in [0,1], we slightly generalize the setting to allow for negative values in [-1,0] as well. This allows us to naturally capture, for instance, double-sided auctions, where sellers are agents with negative types, allocations and payments, while positive value are used for buyers.

For the remainder of this thesis, we fix a set of atomic propositions AP, a set of agents N and a set of strategy variables Var, except when stated otherwise. We let n be the number of agents in N. Finally, let F ⊆ {f : [-1, 1] m → [-1, 1] | m ∈ N} be a set of functions over [-1, 1] of possibly different arities that will parameterise the logics we consider.

Definition 5.1. The syntax of SLK[F] is defined by the following grammar:

φ ::= p | ∃s i . φ | (i, s i)φ | K i φ | f (φ, . . . , φ) | Xφ | φUφ where p ∈ AP, s i ∈ Var, i ∈ N, and f ∈ F.
The intuitive reading of the operators is as follows: ∃s i . φ means that there exists a strategy for agent i such that φ holds; (i, s i)φ means that when strategy s i is assigned to agent i, φ holds; K i φ means that agent i knows that φ holds; X and U are the usual temporal operators "next" and "until". The meaning of f (φ 1 , . . . , φ n) depends on the function f . We use ⊤, ∨, and ¬ to denote, respectively, function 1, function x, y → max(x, y) and function x → -x.

Remark 5.1. In [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], values are meant to represent degrees of truth value in [0, 1] where 0 corresponds to "false" and 1 corresponds to "true", as in Fuzzy Logics. In this setting, negation ¬ is the function x → 1 -x. Here we consider instead values in [-1, 1]. This does not affect the semantics of the logic, nor the model-checking problem, and it allows us to consider negative quantities. For instance, a positive value may denote that an agent is receiving something, while a negative value represents that she is giving something. The main difference is that "false" now corresponds to -1, and negation is function x → -x.

A variable is free in formula φ if it is bound to an agent without being quantified upon, and an agent i is free in φ if φ contains a temporal operator (X or U) that is not in the scope of any binding for i. The set of free variables and agents in φ is written free(φ), and a formula φ is a sentence if free(φ) = ∅.

The strategy quantifier ∃s i . φ quantifies on strategies for agent i. Except in its original formulation [START_REF] Chatterjee | Strategy logic[END_REF], variants of SL do not specify for which agent a strategy is at the level of strategy quantification, and this allows assigning the same strategy to different agents. However in the imperfect-information setting, we need to know with respect to which observation relation a strategy should be uniform. In [START_REF] Berthon | Strategy logic with imperfect information[END_REF] this is done by parameterizing strategy quantifiers with observation relations. Here we adopt a slightly less general but more intuitive notation, by parameterizing directly with the agent who will use the strategy. This is enough for our purposes, because we will not need to share a same strategy between different agents, and we consider that the observation relation for each agent is fixed, as reflected by the following definition.

Definition 5.2. A weighted concurrent game structure with imperfect information

(wCGSii) is a tuple G = ({B i } i∈N , V, δ, ℓ, V ι , {∼ i } i∈N) where
• B i is a finite set of actions for agent i;

• V is a finite set of positions;

• δ : V × (i∈N B i) → V is a transition function; • ℓ : V × AP → [-1, 1] is a weight function; • V ι ⊆ V is a set of initial positions; • ∼ i ⊆ V ×V is an equivalence relation called the observation relation of agent i.
For a collection of objects indexed by agents in N, we may omit the index set and write, e.g., {∼ i } for {∼ i } i∈N . We will also often write o for a tuple of objects (o i) i∈N , one for each agent, and such tuples are called profiles. Given a profile o and i ∈ N, we let o i be agent i's component, and o -i is (o r) r̸ =i . Similarly, we let N -i = N \ {i}. This notation is also used in the subsequent chapters.

Action profiles

In a position v ∈ V , each player i chooses an action a i ∈ B i , and the game proceeds to position δ(v, a) where a is the action profile (a i) i∈N .

Plays A play π = v 0 v 1 v 2 . . . is an infinite sequence of positions such that for every i ≥ 0 there exists an action profile a such that δ(v i , a) = v i+1 . We write π i = v i for the position at index i in play π.

Strategies A (memoryless) strategy for agent i is a function σ : V → B i that maps each position to an action. A strategy σ for agent i is uniform if, for all positions v, v ′ such that v ∼ i v ′ , we have σ(v) = σ(v ′). We let Str i be the set of uniform strategies for agent i, and Str = ∪ i∈N Str i . Because there are finitely many positions, Str is finite.

Assignments An assignment A : N ∪ Var → Str is a function from players and variables to strategies. For an assignment A, an agent i and a strategy σ for i, A[i → σ] is the assignment that maps i to σ and is otherwise equal to A, and A[s → σ] is defined similarly, where s is a variable.

Outcomes For an assignment A and a position v, we let Out(A, v) be the unique play that starts in v and follows the strategies assigned by A. Formally, Out(A, v) is the play v 0 v 1 . . . such that v 0 = v and for all i ≥ 0, v i+1 = δ(v i , a) where for all i ∈ N, a i = A(i)(v 0 . . . v i).

Definition 5.3. Let G = ({B i } i∈N , V, δ, ℓ, V ι , {∼ i } i∈N) be a wCGSii, and A an assignment. The satisfaction value φ G A (v) ∈ [-1, 1] of an SLK[F] formula φ in a position v is defined as follows, where π denotes Out(v, A):

p G A (v) = ℓ(v, p) ∃s i . φ G A (v) = max σ∈Str i φ G A[s i →σ] (v) (i, s i)φ G A (v) = φ G A[i →A(s i)] (v) K i φ G A (v) = min v ′ ∼ i v φ G A (v ′) f (φ 1 ,. . . , φ m) G A (v) = f (φ 1 G A (v), . . . , φ m G A (v)) Xφ G A (v) = φ G A (π 1) φ 1 Uφ 2 G A (v) = sup i≥0 min φ 2 G A (π i), min 0≤j<i φ 1 G A (π j)
If φ is a sentence, its satisfaction value does not depend on the assignment, and we write φ G (v) for φ G A (v) where A is any assignment. We also let φ G = min v∈Vι φ G (v).

We can define the following classic abbreviations:

⊥ = def ¬⊤, φ ∧ φ ′ = def ¬(¬φ ∨ ¬φ ′), φ → φ ′ = def ¬φ ∨ φ ′ , Fψ = def
⊤Uψ, Gψ = def ¬F¬ψ and ∀s. φ = def ¬∃s. ¬φ, and check that they correspond to the intuition. For instance, ∧ corresponds to min, Fψ computes the supremum of the satisfaction value of ψ over all future points in time, Gψ computes the infimum of these values2 , and ∀s. φ minimizes the value of φ over all possible strategies s.

Remark 5.2. In the particular case where atomic propositions only take values in {-1, 1} and F consists of the functions x → -x (negation) and x, y → max(x, y) (disjunction), SLK[F] corresponds to usual Boolean-valued SLK with memoryless agents.

Reasoning about Auction Mechanisms

We now show how SLK[F] can be used to express important concepts and properties from mechanism design.

Social Choice Functions

We first recall social choice functions, used to formalize how to choose one outcome among several alternatives, based on individual preferences of the agents.

Let Alt be a finite set of alternatives. Since our focus is on characterizing mechanisms with monetary transfers, we assume that each alternative in Alt is of the form α = (x, p) where x ∈ X is a choice from a finite set of choices X , and p i ∈ [-1, 1] is a payment for agent i.

For each agent i ∈ N, let also Θ i ⊂ [-1, 1] be a finite set of possible types for i. The type of an agent determines her preferences over the alternatives via the utility function introduced later on. Each type is an abstraction of the agents' preference and not its explicit representation3 . We let Θ = i∈N Θ i , and we note θ = (θ i) i∈N ∈ Θ for a type profile, which assigns a type θ i to each agent i. The type θ i of an agent i determines how she values each choice x ∈ X ; this is represented by a valuation function

v i : X × Θ i → [-1, 1].
Example 5.1. For instance, in a one-sided auction with one good, a choice describes who wins the good. This can be modelled by letting X = {-1, 1} N , and considering that choice (x i) i∈N represents that agent i wins the good if x i = 1. In a two-sided auction (i.e., with buyers and sellers) with multiple copies of a good, a choice describes how many items each agent sells or buys. We then let X = [-1, 1] N , and a choice (x i) i∈N means that agent i buys x i items if x i ≥ 0, and sells -x i items if

x i ≤ 0 (values are normalized in [-1,1]).
The type θ i of agent i reflects how much the agent desires the good. In one-sided auctions with choices defined as X = {-1, 1} N as in Example 5.1, one could define the valuation of agent i as v i (x, θ i) = x i • θ i . With this definition, a type θ i close to 1 models an agent very interested in the good, who will have a high valuation if she receives it, the good, and a low one if she does not. A type close to -1 represents an agent who strongly does not want of this good, who has high valuation if she does not receive the good, and low valuation if she does. Finally, type 0 represents an indifferent agent, who receives valuation 0 in all possible choices.

In double-sided auctions with multiple goods (of a same type), with choices modeled as X = [-1, 1] N , a positive type indicates the quantity an agent is willing to buy, while a negative type denotes a selling quantity. When defining the valuation of agent i as v i (x, θ i) = x i •θ i , the sign of this value indicates if the outcome corresponds to what the agent intended to do (selling or buying), and its norm indicates the extent of her satisfaction or dissatisfaction.

The (quasi-linear) utility of agent i with type θ i for an alternative α = (x, p) is defined as

u i (α, θ i) = v i (x, θ i) -p i
That is, the utility for agent i is the difference between how much she valuates the choice x and her payment p i . Definition 5.4. A social choice function (SCF) s : Θ → Alt is a function that, given a type profile θ, chooses an alternative s(θ) ∈ Alt. We can split a social choice function as follows: s = (x, {p i }), where x : Θ → X is a choice function and for each i, p i : Θ → [-1, 1] is a payment function for agent i.

Example 5.2. The first-price social choice function s fp = (x, {p i }) is defined as follows. The allocation choice is defined as x(θ) = (x 1 , . . . , x n), where x i = 1 if θ i is the highest type in θ and x i = 0 otherwise. In case two agents i ̸ = r have the highest type, x i = 1 iff i ≺ r. The payment function for agent i is defined as p i (θ) = x i • θ i .

In the next sections, we describe how to represent mechanisms as wCGSii and how to determinate whether a wCGSii implements a SCF.

Mechanisms as wCGSii

While social choice functions describe what is the desired outcome given agents' preferences (types), a mechanism describes agents' actions and their outcome. A mechanism consists of a description of the agents' possible actions, and a description of the alternatives that result from them. Some mechanisms are "one-shot", meaning that the final alternative is reached after each agent has chosen one action, while others may contain multiple stages. Also they may involve agents holding some private information. Weighted concurrent game structures can very naturally model complex one-shot or multi-stage mechanisms with imperfect information, and we provide a general definition of mechanisms as a class of concurrent game structures with special atomic propositions to represent types, allocations, payments etc.

Since we focus on allocation problems (in particular, auctions), choices X represent allocations of goods of different types from the set G = {1, . . . , m}. An allocative choice [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]) is a tuple (x i) i∈N ∈ X where x i = (x i,1 , . . . , x i,m) denotes the allocation for agent i, and x i,j ∈ [-1, 1] is the amount of goods of type j allocated to agent i (normalized in [-1, 1]). Note that, in the case of one type of goods (m = 1), we obtain X = [-1, 1] N as in Example 5.1. Definition 5.5. Let AP ⊇ {all i,j , pay i , terminal, type i : i ∈ N, j ∈ G} be a set of atomic propositions, where all i,j , type i , pay i denote, respectively, how many units of the good j are allocated to agent i, the type of i, and her payment. The proposition terminal specifies whether a state is terminal. A mechanism is a wCGSii over the atomic propositions AP that satisfies the following: (i) there is one initial position v θ ι for each possible type profile θ ∈ Θ;

(ii) types remain unchanged through transitions, i.e. if δ(v, a) = v ′ then ℓ(v, type i) = ℓ(v ′ , type i) for each i;

(iii) each agent knows her own type:

if v ∼ i v ′ , then ℓ(v, type i) = ℓ(v ′ , type i);
(iv) every play eventually reaches a terminal position, i.e., a sink4 where proposition terminal has value 1;

Chapter 5. Verification of Mechanisms

(v) in all non-terminal positions, terminal has value -1.

A type profile θ together with a strategy profile σ determines a unique terminal position v(θ, σ), which is the terminal position reached from v θ ι via σ. The values of propositions all i,j and pay i in terminal position v(θ, σ) encode an alternative that we write G[θ, σ].

We now illustrate with an example how this formal definition of mechanisms captures complex iterative mechanisms with quantitative aspects and imperfect information.

Example 5.3 (Dutch auction). A Dutch auction is an iterative protocol with decreasing price; hereafter we assume the single good and single unit case. As introduced in Chapter 4, the auctioneer initially proposes a high asking price. This price is gradually lowered until some bidder accepts to purchase the good. The auction then ends and the object is sold to this bidder at the given price [START_REF] Krishna | Auction Theory[END_REF]. In case of draw, the winner is determined with respect to an arbitrary order ≺ among the agents.

Let us fix a price decrement dec ∈ (0, 1] and, for each agent i ∈ N, (i) a finite set of possible types Θ i ⊂ [0, 1], and (ii) her real type

θ i ∈ Θ i . Agent i's valuation is v i (x) = x i • θ i .
Define the mechanism G dut = ({B i }, V, δ, ℓ, V ι , {∼ i }) over AP = {price, all i , pay i , terminal, type i : i ∈ N}, where:

• B i = {bid, wait} for each i ∈ N,
• V consists of positions of the form ⟨pr, {x i }, ter, {θ i }⟩ with pr ∈ {1 -x • dec : 0 ≤ x ≤ 1 dec } denoting the current price, ter ∈ {-1, 1} denoting whether the position is terminal, x i ∈ {0, 1} specifying the allocation for agent i, and θ i ∈ Θ i specifying her type.

In an initial position, the price starts at 1 and all the allocations are zero. That is, the set of initial positions is

V ι = {⟨1, 0, . . . , 0, 0, θ 1 , . . . , θ n ⟩ ∈ V }.
In non-terminal states, the transition function keeps decreasing the price pr as long as it is above zero and every agent performs the action of waiting. If an agent i bids, the good is assigned to her (x i = 1). Since there is only one unit of the good, ties are decided according to the order ≺. If the price remains unchanged in the transition, the state is marked as terminal (ter = 1). The transition function defines a loop for terminal states, ensuring no change occurs in the auction afterwards (see Figure 5.1 for a partial illustration). Formally, for each position v = ⟨pr, {x i }, ter, {θ i }⟩ and joint action a = (a i) i∈N , transition δ(v, a) is defined as follows:

• If ter = -1, δ(v, a) = ⟨pr ′ , {x ′ i }, ter ′ , {θ i }⟩ where: pr ′ =       
prdec if prdec ≥ 0 and a i = wait for all i ∈ N pr otherwise

x ′ i =       
1 if a i = bid and for all i ′ ̸ = i

either a i ′ = wait or i ≺ i ′ 0 otherwise ter ′ =    1 if pr ′ = pr, -1 otherwise • Otherwise, δ(v, a) = v.
For each v = ⟨pr, {x i }, ter, {θ i }⟩ and each i ∈ N, the weight function is defined as follows:

ℓ(v, price) = pr, ℓ(v, all i) = x i , ℓ(v, pay i) = x i • pr, ℓ(v, terminal) = ter, and ℓ(v, type i) = θ i .
Finally, for each agent i ∈ N and for any two positions v = ⟨pr, {x i }, ter,

{θ i }⟩ and v ′ = ⟨pr ′ , {x ′ i }, ter ′ , {θ ′ i } i∈N ⟩ in V , the observation relation ∼ i is defined as follows: v ∼ i v ′ if (i) pr = pr ′ ; (ii) x r = x ′ r , for all r ∈ N; (iii) θ i = θ ′ i ; and (iv) ter = ter ′ .
Observation relations ∼ i capture the fact that agents do not know other agents' preferences, and thus their actions cannot depend on them. This is reflected in SLK[F] by the notion of uniform strategy.

We now show how important concepts of mechanism design can be expressed in SLK [F].

Implementation of Social Choice Functions

For analysing a mechanism, we use concepts of Game Theory, such as the implementation of social choice functions. The implementation of a SCF says whether the alternative the equilibrium solution of the mechanism corresponds to the alternative chosen by the SCF. In order to define it formally, we first introduce basic concepts and functions.

Fix a mechanism G. The goal of an agent is to maximize her utility, which is equal to the value of the SLK[F] formula util i = def v i ((all 1,1 , . . . , all n,m), type i) -pay i in the terminal situation.

In this section we assume that F contains the function . Terminal states are in red. We only represent one initial state and thus we omit types, which are the same in all states. Action bid is written b and wait is w. Finally, we did not represent ties (bid, bid) or loops.

-: (x, y) → min(1, max(-1, x -y)) ⟨1, (0, 0)⟩ ⟨ 2 3 , (0, 0)⟩ ⟨1, (1, 0)⟩ ⟨1, (0, 1)⟩ ⟨ 1 3 , (0, 0)⟩ ⟨ 2 3 , (1, 0)⟩ ⟨ 2 3 , (0, 1)⟩ ⟨0, (0, 0)⟩ ⟨ 1 3 , (1, 0)⟩ ⟨ 1 3 , (0,
as well as the valuation function v i for each agent i, and for readability we use the infix notation x -y in the formula. We also assume that F contains the comparison function

≤ : (x, y) →    1 if x ≤ y,
-1 otherwise, the comparison function < (defined similarly, with < instead of ≤), the equality function

= : (x, y) →    1 if x = y, -1 otherwise,
and the n-ary sum function

: x 1 , . . . , x n → min(1, max(-1, k x k))
Finally we assume that types, allocations, payments and valuations are normalized so that all values remain in [-1, 1].

We recall two classical concepts of equilibria, Nash equilibria and dominant strategy equilibria, classically used to define implementation. Nash Equilibria A strategy profile σ = (σ i) i∈N is a Nash equlibrium (NE) if no agent can increase her utility with a unilateral change of strategy [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]. Just as Strategy Logic can express Nash equilibria for Boolean objectives, SLK[F] can express Nash equilibria with quantitative objectives. Define the formula

NE(s) = def i∈N ∀t. (N -i , s -i)(i, t)F(terminal ∧ util i) ≤ (N, s)F(terminal ∧ util i)
where s = (s i) i∈N is a profile of strategy variables. The following, stated in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], establishes that this formula is correct.

Lemma 5.1. For every assignment A, we have that NE(s

) G A (v) = 1 iff (A(s i)) i∈N is a NE in G from v.

Dominant Strategy Equilibria

A strategy σ i is a dominant strategy (DS) for agent i if it weakly maximizes her utility, for all possible strategies of other agents. Define the formula

DS(s i , i) = def ∀t. (i, t i)(N -i , t -i)F(terminal ∧ util i) ≤(i, s i)(N -i , t -i)F(terminal ∧ util i) For an assignment A, it holds that DS(s i , i) G A (v) = 1 iff A(s i) is a dominant strategy for i in G from position v.
A strategy profile σ = (σ i) i∈N is a dominant strategy equilibrium (DSE) if each σ i is a dominant strategy for agent i [START_REF] Nisan | Algorithmic Game Theory[END_REF]. Define

DSE(s) = def i∈N DS(s i , i)
Similarly to Nash equilibria, the following holds.

Lemma 5.2. For every assignment A, we have that DSE(s)

G A (v) = 1 iff (A(s i)) i∈N is a DSE in G from v.
Remark 5.3. For verifying the uniqueness of a Nash equilibrium, we can check whether there exist two assignments

A ̸ = A ′ such that DSE(s) G A (v) = DSE(s) G A ′ (v) = 1.
Implementation Informally, a mechanism implements a social choice function if the alternative chosen in equilibrium strategies is the same as the one chosen by the social choice function, for all possible agent preferences; in case of multiple equilibria it is required that there exist one equilibrium that agrees with the social choice function [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]. Different equilibrium concepts may be used, including Nash equilibria and dominant strategy equilibrium. Hereafter, we focus on these two concepts.

Definition 5.6. Let E ∈ {NE, DSE} be a solution concept and s a social choice function. A mechanism G E-implements s if for all type profiles θ ∈ Θ there exists an E-equilibrium σ in G from v θ ι such that G[θ, σ] = s(θ).

Let us again consider Dutch auctions but from the social choice function perspective.

Example 5.4. Under the assumption that a Nash equilibrium exists, the Dutch auction (see Example 5.3) is known to implement the first-price social choice function [START_REF] Krishna | Auction Theory[END_REF] introduced in Example 5.2.

For a social choice function s = (x, {p i }) and a type profile θ, define the SLK[F] formula

φ s(θ) = def i∈N (pay i = p i ∧ j∈G all i,j = x i,j)
where x(θ) = ((x i,1 , . . . , x i,m)) i∈N , p i (θ) = p i , and values p i , x i,j are constants (0-ary functions) in F.

Define also, for E ∈ {NE, DSE},

φ impl (s, E, θ) = def ∃s. E(s) ∧ F(terminal ∧ φ s(θ))
This formula says that there exists an E-equilibrium that leads to choice s(θ). It can thus be used to express that a mechanism implements a given social choice function:

Theorem 5.1. A mechanism G E-implements a SCF s iff for every type profile θ ∈ Θ, φ impl (s, E, θ) G (v θ ι) = 1.
Proof. Fix a solution concept E ∈ {NE, DSE}, a social choice function s = (x, {p i }), a mechanism G, any assignment A and any type profile θ ∈ Θ. For each agent i ∈ N and good type j ∈ G, let x i,j and p i be constants in [-1, 1] denoting the alternative chosen by s, that is x(θ) = ((x i,1 , . . . , x i,m)) i∈N , and p i (θ) = p i .

Assume G E-implements s. By definition there exists a strategy profile σ that is an E-equilibrium solution in G from v θ ι and such that G[θ, σ] = s(θ). It follows that:

First, because the SLK[F] formula E(s) correctly characterises E-equilibria (lemma 5.1 and 5.2), letting A σ :

s i → σ i we have that E(s) G Aσ (v θ ι) = 1. Second, the fact that G[θ, σ] = s(θ) implies that in the terminal position v terminal = v(θ, σ) (which is reached from v θ
ι via σ), we have ℓ(v terminal , all i,j) = x i,j and ℓ(v terminal , pay i) = p i , for each i ∈ N and j ∈ G. Therefore, we have

i∈N (pay i = p i ∧ j∈G all i,j = x i,j) G Aσ (v terminal) = 1 or simply φ s(θ) G Aσ (v terminal) = 1. By the semantics of F, it follows that F(terminal ∧ φ s(θ)) G Aσ (v θ ι) = 1. Therefore, ∃s. E(s) ∧ F(terminal ∧ φ s(θ)) G A (v θ ι) = 1 (the maximal value 1 is attained for strategy profile σ) and φ impl (s, E, θ) G A (v θ ι) = 1.
Conversely, assume ∃s. E(s) ∧ F(terminal ∧ φ s(θ)) G A (v θ ι) = 1. By the semantics of the strategy quantifier, there exists a strategy profile σ such that

E(s) ∧ F(terminal ∧ φ s(θ)) G Aσ (v θ ι) = 1, where A σ : s i → σ i . It follows that E(s) G Aσ (v θ ι) = 1 and F(terminal ∧ φ s(θ)) G Aσ (v θ ι) = 1.
The former implies that σ is an E-equilibrium, and since terminal has value -1 in all non-terminal positions, the latter implies that in the terminal position

v terminal = v(θ, σ) we have φ s(θ) G Aσ (v terminal) = 1 This in turn means that G[θ, σ] = s(θ), hence G E-implements s.
Notice that if there is no σ such that σ is an E-equilibrium solution in G, we have that G does not E-implements the SCF s, and

φ impl (s, E, θ) G A (v θ ι) = -1.
In the next section, we show how to express and verify properties of social choice functions by evaluating SLK[F] formulas on mechanisms that implement them. We will use the following parameterized formula to capture in a mechanism some equilibrium that implements the social function, and check a property of the resulting alternative. For a social choice function s, a type profile θ ∈ Θ, an equilibrium type E ∈ {NE, DSE} and a formula φ expressing a property of the final alternative, define

Capture-alt(s, E, θ, φ) = def ∃s. E(s) ∧ F(terminal ∧ φ s(θ) ∧ φ)

Mechanism Properties

We show how SLK[F] can express a variety of important notions in mechanism design.

A direct-revelation mechanism, such as Vickrey auction, is a non-iterative protocol where the agents' possible actions are their possible types. That is, a mechanism G is a direct revelation one if initial positions lead directly to terminal positions, and B i = Θ i for each i. Equivalently, it is a social choice function, as it maps type profiles to alternatives, and every social choice function can be seen as a direct-revelation mechanism [START_REF] Jackson | Optimization and Operations Research -Volume III, chapter Mechanism Theory[END_REF].

Strategyproofness One of the core challenges in mechanism design is to ensure that an agent would prefer "telling the truth" by reporting her real type rather than any other [START_REF] Nisan | Algorithmic Game Theory[END_REF]. Mechanisms that ensure this property are called strategy-proof (SP) or incentive-compatible.

In a direct-revelation mechanism G, we let θi be the truth-revealing strategy for i, defined as θi (v θ ι) = θ i . Definition 5.7. A direct-revelation mechanism G is strategy-proof if (θi) i∈N is a dominant strategy equilibrium from v θ ι , for all θ ∈ Θ. Strategyproofness of a direct-revelation mechanism G can be expressed in SLK[F] by verifying whether the SLK[F]-formula DSE(s) characterizing dominant strategy equilibrium has satisfaction value 1 on G, where s denotes the joint strategy in which each agent truthfully reports her type. The following holds:

Proposition 5.1. A direct-revelation mechanism G is strategyproof iff DSE(s) G A (v θ ι)
= 1 for all θ ∈ Θ, where A(s i) = θi for each i. Proof. Fix a direct revelation mechanism G. We have that B i = Θ i for each i, and G is strategy-proof iff, for each initial position v θ ι , the truth revealing strategy θi is a dominant strategy for each i ∈ N. By the semantics of formula DS(s), for any type profile θ, each strategy θi is dominant from

v θ ι iff DS(s) G A θi (v θ ι) = 1
, where A θi : s → θi . So for a type profile θ, all strategies θi are dominant from

v θ ι iff DSE(s) G A (v θ ι) = 1, where A : s i → θi for all i.
Individual rationality Individual rationality (IR) expresses the idea that an agent has an incentive to participate [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF], that is, she can ensure to always get nonnegative utility. Hereafter we express in SLK[F] the notion of (ex-post) individual rationality [START_REF] Nisan | Algorithmic Game Theory[END_REF].

Definition 5.8. A SCF s = (x, {p i }) is individually rational if for every θ ∈ Θ, v i (x(θ)) -p i (θ) ≥ 0 for each agent i.
Let us define the following formula:

IR = def i∈N 0 ≤ util i
Given a mechanism that E-implements a SCF s, checking that s satisfies IR amounts to checking that formula IR has satisfaction value one in the E-equilibrium that implements s, for every possible type profile θ.

Proposition 5.2. Let s be a SCF, E ∈ {NE, DSE}, and G a mechanism that Eimplements s. s is individually rational iff Capture-alt(s, E, θ, IR) G (v θ ι) = 1 for all θ ∈ Θ.

Proof. Fix a solution concept E ∈ {NE, DSE}, a social choice function s, a mechanism G that E-implements s, any assignment A and any type profile θ ∈ Θ.

Assume s is individually rational. Because G implements s there exists a strategy profile σ that is an E equilibrium from v θ ι and such that G[v θ ι , σ] = s(θ). Let v terminal = v(θ, σ). Since s is individually rational, we have that IR G A (v terminal) = 1. Therefore, using σ as witness, we obtain that ∃s.

E(s) ∧ F(terminal ∧ φ s(θ) ∧ IR) G A (v θ ι) = 1.
The converse is proved in a similar way.

Efficiency A social choice function is efficient (EF) if it chooses the allocation maximizing the social welfare, i.e., the total value over all agents [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]. Definition 5.9. A social choice function s

= (x, {p i }) is allocatively efficient if for all θ ∈ Θ, i∈N v i (x(θ), θ i) = max x∈X i∈N v i (x, θ i) Define formula Eff = def i∈N v i (all 1,1 , . . . , all n,m , type i) = maxv θ
where, for each θ, maxv θ = max x∈X i∈N v i (x, θ i) is a constant in F. In a terminal position, it means that the social welfare of the allocation it encodes is maximal.

The following proposition shows how one can determinate whether a SCF s is efficient by verifying the satisfaction value of the formula Eff in a mechanism that implements s.

Proposition 5.3. Let s be a SCF, E ∈ {NE, DSE}, and G a mechanism that E- implements s. s is allocativelly efficient iff Capture-alt(s, E, θ, Eff) G (v θ ι) = 1 for all θ ∈ Θ.
Proof. Analogous to the proof of Proposition 5.2.

Budget-Balance Budget-balance focuses on the monetary transfer between buyers and sellers. Strong budget-balance (SBB) requires strict balance in this transfer. The no-deficit condition, or weak budget-balance (WBB), characterizes no monetary loss. We recall the notions of strong and weak budget balance [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]): Definition 5.10. A social choice function s = (x, {p i }) is strongly budget-balanced (resp., weakly budget-balanced) if i∈N p i (θ) = 0 (resp., i∈N p i (θ) ≥ 0) for all θ ∈ Θ.

Define formula SBB = def 0 = i∈N pay i and define WBB similarly, with ≤ instead of =.

Again, we can prove that Proposition 5.4. Let s be a SCF, E ∈ {NE, DSE}, and G a mechanism that Eimplements s. It holds that s is SBB iff Capture-alt(s, E, θ, SBB) G (v θ ι) = 1 for all θ ∈ Θ, and similarly for WBB.

Proof. Analogous to the proof for Proposition 5.2.

Example 5.5. A Dutch auction is WBB, because the bid price is non-negative, and it is IR because the strategy of waiting in every position leads to zero utility, and thus any equilibrium would not have a negative utility. One can check that in the mechanism G dut from Example 5.3, with the first-price social choice function s fp , for any type profile θ we have Capture-alt(s fp , NE, θ, IR)

G dut (v θ ι) = 1 and Capture-alt(s fp , NE, θ, WBB) G dut (v θ ι) = 1.
Pareto Optimality A social choice function is Pareto optimal (PO) if it chooses an alternative for which no other alternative is strongly preferred by at least one agent, and weakly preferred by all others [START_REF] Parkes | Iterative combinatorial auctions: Achieving economic and computational efficiency[END_REF]. Formally:

Definition 5.11. A social choice function s = (x, {p i }) is Pareto optimal if, for all θ ∈ Θ, for all i ∈ N and for all α ̸ = s(θ), if u i (α, θ i) > u i (s(θ), θ i) then there exists an agent r ∈ Ag such that u r (α, θ r) < u r (s(θ), θ r).

For every alternative α ∈ Alt, every type profile θ and agent i, let utilalt i,α : θ i → u i (α, θ i) be a function in F. Define formula (recall formula util i , defined in Section 5.3.3):

PO = def i∈N,α∈Alt util i < utilalt α,i (type i) → (r∈N utilalt α,r (type i) < util r)
As for Proposition 5.2, we can prove: Proposition 5.5. Let s be a SCF, E ∈ {NE, DSE}, and G a mechanism that E-

implements s. It holds that s is PO iff Capture-alt(s, E, θ, PO) G (v θ ι) = 1 for all θ ∈ Θ.
Proof. Analogous to the proof of Proposition 5.2.

Revenue Benchmarks with Knowledge

Let us now go further by considering the interplay between the agents' epistemic state and mechanism properties. To do so, we focus on the auctioneer's revenue, i.e., the total payment among the agents. Guaranteeing a revenue is an important issue in Mechanism Design [START_REF] Krishna | Auction Theory[END_REF]. To address this problem, Chen andMicali (2015, 2016) exhibit an auction mechanism based on "possibilistic beliefs", i.e., beliefs an agent may hold about other agents' types. The mechanism then sets a clear link between the revenue and the agents' epistemic state. We show that this can be represented in a natural way in SLK[F].

Second-belief benchmark

Let us consider the second-belief benchmark (Chen and Micali, 2015) for single good mechanisms. Given a set of possible type profiles Θ, a set B i ⊂ Θ denotes a belief for agent i about all agents' types.

Given a tuple S ∈ [-1, 1] n , let 2nd-max(S) be the second maximum value in S, and assume that 2nd-max ∈ F. Given a correct belief profile B (i.e., a profile in which the true type is considered possible), the second-belief benchmark (for single-good auctions) is defined as follows:

2 nd (B) = def 2nd-max(smv i 1 (B), . . . , smv in (B))
where smv i (B) = def min θ∈B i (max r∈N (θ r)) denotes the sure maximum value according to i.

Let G be a mechanism. To each position v ∈ V we can associate a correct belief B i (v) for each agent i as follows:

B i (v) = def ({ℓ(v ′ , type b) : v ′ ∼ i v}) r∈N . We then let B(v) = (B i (v)) i∈N .
The sure maximum value for an agent and the second-belief benchmark in a position correspond to the semantics of the following epistemic SLK[F]-formulas:

φ smv i = def K i max i ′ ∈N (type i ′) φ 2nd = def 2nd-max(φ smv i 1 , . . . , φ smv in)
It follows directly that:

Proposition 5.6. Given a mechanism G, a position v and a belief profile

B(v), it holds that φ 2nd G (v) = 2 nd (B(v)).
Proof. Fix an assignment A. We have that φ 2nd

G A (v) = 2nd-max(φ smv i 1 , . . . , φ smv in) G A (v). By the semantics of K i , φ smv i denotes the minimum value of max i∈N (type i) G A (v ′), for all v ′ ∼ i v. Since B i (v) = ({ℓ(v ′ , type b) : v ′ ∼ i v}) r∈N , it holds that φ smv i G A (v) = min θ∈B i (max r∈N (θ r)). Therefore, φ 2nd G A (v) = 2nd-max(smv i 1 (B), . . . , smv in (B)) or simply φ 2nd G A (v) = 2 nd (B(v)).
Chen and Micali (2015) design a reward-based single-stage mechanism that ensures that, in equilibrium, the revenue is greater than the second belief minus ε, where ε > 0 is a reward factor associated to the mechanism. In this one-stage mechanism, agents' beliefs are constant. But should we devise a multi-stage mechanism to achieve a similar result, one may ask the question whether the revenue in equilibrium is (modulo ε) greater than the initial second belief, or the last second belief (before termination) for instance. Such properties can be expressed in SLK[F], as we show for the latter one (the former one is easier). Define formulas

φ revenue = def F(terminal ∧ i∈N (p i)) φ last-2nd = def F(Xterminal ∧ φ 2nd)
which compute the final revenue and the second belief before the last round, respectively. Now to check whether a given mechanism satisfies the property in all equilibria of a given kind E ∈ {NE, DSE}, one can check whether the following formula has value 1 on this mechanism:

φ 2nd,ε = def ∀s. E(s) → (φ last-2nd -ε ≤ φ revenue)
Best-belief benchmark for combinatorial auctions [START_REF] Chen | Leveraging possibilistic beliefs in unrestricted combinatorial auctions[END_REF] propose the best-belief benchmark for combinatorial auctions. This benchmark maximizes, over all agents, the maximum revenue each one would be sure to obtain if she were to sell all her currently allocated goods to her opponents, based on her beliefs about their preferences over bundles of goods.

Similar to the second-belief benchmark, one could express the best-belief benchmark using SLK[F]-formulas. The main difference is that the formula would consider the agents beliefs' about each other's valuations over possible choices. Notice that bundles can be easily encoded as the allocative choices introduced on Section 5.3.2.

Model Checking

In this section we show that model checking SLK[F] with imperfect information and memoryless agents is no harder than model checking LTL or classical SL with memoryless agents. Let us first define formally the quantitative model-checking problem for SLK[F].

Definition 5.12. The model-checking problem for SLK[F] consists in deciding, given a sentence φ, wCGSii G, position v in G and predicate P ⊆ [-1, 1], whether φ G (v) ∈ P .

For quantitative LTL (LTL[F]) model checking is in Pspace [START_REF] Almagor | Formally reasoning about quality[END_REF], and so is model checking SLK with memoryless agents [START_REF] Cermák | Practical verification of multi-agent systems against SLK specifications[END_REF]. We show that it is also the case for SLK[F], as long as the functions f ∈ F can be computed in polynomial space. Otherwise, they become the computational bottleneck.

Theorem 5.2. Assuming that functions in F can be computed in polynomial space, model checking SLK[F] with imperfect information and memoryless agents is Pspace-complete.

Proof. We first show that each recursive call only needs at most polynomial space. First, observe that each assignment A can be stored in space O ((|free(φ)

| + |N|) • |V | • log |B|).
Next, for the base case it is clear that p G A (v) can be computed in constant space. For strategy quantification ∃s i . φ G A (v), besides the recursive call to φ G A[s →σ] (v) we need space O(|V | • log |B|) to store the current strategy and the current maximum value computed. The case for

K i φ G A (v) is clear. For f (φ 1 , . . . , φ m) G A (v)
, by assumption f is computed in polynomial space. For Xφ G A (v), we only need to observe that the next position in Out(A, v) is computed in constant space.

Finally we detail how

φ 1 Uφ 2 G A (v) is computed. Let π = Out(v, A)
. Since G has finitely many positions, there exist two indices k < l such that π k = π l , and since strategies depend only on the current position, the suffix of π starting at index l is equal to the suffix starting at index k. So there exist

ρ 1 = v 0 . . . v k-1 and ρ 2 = v k . . . v l-1 such that π = ρ 1 • ρ ω 2 . It follows that φ 1 Uφ 2 G A (v) = sup i≥0 min φ 2 G A (π i), min 0≤j<i φ 1 G A (π j) = max 0≤i<l min φ 2 G A (π i), min 0≤j<i φ 1 G A (π j)

Conclusion 93

This can be computed by a while loop that increments i, computes φ 2 G A (π i), min 0≤j<i φ 1 G A (π j) and their minimum, records the result if it is bigger than the previous maximum, and stops upon reaching a position that has already been visited. This requires to store the current value of min 0≤j<i φ 1 G A (π j), the current maximum, and the list of positions already visited, which are at most |V |.

Next, the number of nested recursive calls is at most |φ|, so the total space needed is bounded by |φ| times a polynomial in the size of the input, and is thus polynomial.

When the set of possible type profiles is finite, as it is the case here, our results from the previous section show that verifying key properties SP, IR, EF, BB and PO on mechanisms can be done by model checking SLK[F] formulas for all type profiles of interest.

Conclusion

In this chapter, we demonstrate how Strategy Logic provides a formal framework expressive enough to reason about core concepts from Mechanism Design in an intuitive way. The ability of SL to naturally express key strategic concepts such as Nash equilibria, and the possibility to extend it with quantitative aspects and epistemic operators, as we do with SLK[F], make it a perfect candidate to become a standard logic for mechanism design, as called for in [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF].

We demonstrate the usefulness of SLK[F] with auctions because they "provide a good example of mechanisms which are sufficiently complex to demonstrate the usefulness of formal verification" [START_REF] Pauly | Logic for mechanism design-a manifesto[END_REF]. We used allocations and payments due to our focus on auctions, but it is enough to replace them with abstract choices to capture any kind of deterministic mechanisms. In addition we showed how SLK[F] allows capturing properties that are central in the design of many types of mechanisms other than auctions, including efficiency and Pareto optimality.

We considered the setting of imperfect information about the agents' types. One line for future work is to explore mechanisms with incomplete information (that is, Bayesian mechanisms), in which there is a commonly known probability distribution over the possible types for each agent.

The present setting is enough to model many kinds of auctions where memoryless strategies are sufficient to represent the bidders' behavior, such as one-shot or English auctions. However, when participating in sequential auctions, agents could gather information by observing other agents' and act based on what happened in previous steps of the game [START_REF] Jeitschko | Learning in sequential auctions[END_REF]. In the next chapter we explore such scenario and investigate strategic reasoning in mechanism design when the participants have limited resources and, in special, bounded memory.

Chapter 6

Mechanisms and Natural Strategies

As discussed on the previous chapter, a number of logic-based languages have been recently introduced to reason about the strategic abilities of autonomous agents in multi-agent systems (MAS). Still, verification tools and techniques are comparatively less developed for data-driven and data-intensive systems1 , that is, contexts where the data content of processes, or agents, is key to model and account for the evolution of the system [START_REF] Belardinelli | Verification of agent-based artifact systems[END_REF][START_REF] Montali | Verification of data-aware commitment-based multiagent system[END_REF]. This is the case also for online advertising, where search engines sell ad placements for keywords continuously through auctions. This problem can be seen as an infinitely repeated game since the auction is executed whenever a user performs a query with the keyword. As advertisers may frequently change their bids, the game will have a large set of equilibria with potentially complex strategies, thus making the specification and verification of keyword auctions a complex problem to solve for current model checking methods. This issue is stressed by [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF]:

"In principle, the sets of equilibria in such repeated games can be very large, with players potentially punishing each other for deviations. The strategies required to support such equilibria are usually quite complex, however, requiring precise knowledge of the environment and careful implementation. In theory, advertisers could implement such strategies via automated robots, but in practice they may not be able to: bidding software must first be authorized by the search engines, and search engines are unlikely to permit strategies that would allow advertisers to collude and substantially reduce revenues."

In this chapter, we investigate the use of natural strategies for reasoning about equilibria in keyword auctions. We directly build on the research by (Jamroga et al., 2019a,b) on natural strategies. We generalize their approach by considering quantitative semantics for both natural strategies and the logic, which is more suitable for reasoning about mechanisms with monetary transfer (e.g., auctions). We also consider SL instead of ATL, due to its expressive power.

In our case, the bidding strategy in an auction should be executable for a simple artificial agent, as well as reasonably transparent to the human user, which makes natural strategies a good match. Moreover, natural strategies provide a way to define complexity (and hence also "simplicity") metrics for various functionality, security, and usability properties in MAS. By focusing on simple strategies, one can make the verification of equilibrium properties decidable, or even tractable, despite the prohibitive complexity of the general problem. This is especially evident for strategies with memory, which normally make the synthesis and model checking problems undecidable [START_REF] Dima | Model-checking ATL under imperfect information and perfect recall semantics is undecidable[END_REF][START_REF] Vester | Alternating-time temporal logic with finite-memory strategies[END_REF].

By leveraging on natural strategies, we introduce SL with quantitative semantics and natural strategies and imperfect information, denoted NatSL [F]. In a first step, we show how to model strategies for repeated keyword auctions and take advantage of the model for proving properties evaluating this game. In a second step, we study the logic in relation to the distinguishing power, expressivity, and model-checking complexity for strategies with and without recall.

Natural Strategies

We first present the notion of uniform natural strategies from [START_REF] Jamroga | Natural strategic ability under imperfect information[END_REF]. Natural strategies are conditional plans, represented through an ordered list of condition-action rules [START_REF] Jamroga | Natural strategic ability under imperfect information[END_REF]. The intuition is that the first rule whose condition holds in the history of the game is selected, and the corresponding action is executed. As we are considering the setting of imperfect information, the conditions are regular expressions over weighted epistemic (WE) formulas.

Given an agent i, the WE formulas over Φ, denoted WE(Φ), are prefixed by K i and then possibly combined by functions in F. That is, formulas in WE(Φ) are conditions on i's knowledge and are expressed by the following BNF:

ψ ::= ⊤ | K i φ | f (ψ, . . . , ψ) φ ::= p | f (φ, . . . , φ) | K r φ
where f ∈ F is a function, p ∈ Φ is an atomic proposition and r ∈ N is an agent.

The semantics of natural strategies (and, as we shall see, NatSL[F]) are interpreted over concurrent game structures [START_REF] Jamroga | Natural strategic ability under imperfect information[END_REF]. Such structures are similar to the ones defined in Chapter 5, but include a legality function describing the availability of actions in each state. Definition 6.1. A weighted concurrent game structure with imperfect information and legality (wCGSl) is a tuple G = (B, V, L, δ, ℓ, V ι , {∼ i } i∈N) where:

• B is a finite set of actions;

• L : N × V → 2 B is a legality function, defining the availability of actions;

• δ is a transition function assigning a successor state v ′ = δ(v, (a i) i∈N) to each state v ∈ V and any tuple of actions (a i) i∈N , where a i ∈ L(i, v);

and the remaining components are defined exactly as the homonyms components in wCGSii (see Definition 5.2).

We require that the wCGSl is uniform, that is v

∼ i v ′ implies L(i, v) = L(i, v ′).
In a state v ∈ V , each player i chooses an available action a i ∈ L(i, v), and the game proceeds to state δ(v, a) where a is the action profile (a i) i∈N .

Plays A play π = v 0 v 1 v 2 . . . is an infinite sequence of states such that for every i ≥ 0 there exists an action profile a such that δ(v i , a) = v i+1 . We write π i = v i for the state at index i in play π.

History A history h = v 0 v 1 v 2 . . . v n
is a finite sequence of states. The last element of a history is denoted by last(h) = v n . Finally, H G denotes the set of all histories in the wCGSl G.

Given a wCGSl G, a state v ∈ V and a WE(Φ) formula φ, we inductively define the satisfaction value of φ in v, denoted φ (v), as follows:

p (v) = ℓ(v, p) K i φ (v) = min v ′ ∼ i v φ (v ′) f (φ 1 ,. . . , φ m) (v) = f (φ 1 (v), . . . , φ m (v))
The semantics for the knowledge modality is the standard in the literature on fuzzy epistemic logic (see, for instance, [START_REF] Maruyama | A reasoning system for fuzzy distributed knowledge representation in multi-agent systems[END_REF] and Chapter 5). Let Reg(WE(Φ)) be the set of regular expressions over the weighted epistemic conditions WE(Φ), defined with the constructors •, ∪, * representing concatenation, nondeterministic choice, and finite iteration, respectively. Given a regular expression r and the language L(r) on words generated by r, a history h is consistent with r iff there exists b ∈ L(r) such that |h| = |b| and b

[i] (h[i]) = 1, for all 0 ≤ i ≤ |h|.
Intuitively, a history h is consistent with a regular expression r if the i-th weighted epistemic condition in r "holds" in the i-th state of h (for any position i in h).

A uniform natural strategy with recall σ i for agent i is a sequence of pairs (r, a), where r ∈ Reg(WE(Φ)) is a regular expression, and a is an action available in last(h), for all histories h ∈ H G consistent with r. The last pair on the sequence is required to be (⊤*, a), with a ∈ L(i, v) for every v ∈ V and some a ∈ B.

A uniform memoryless natural strategy is a special case of natural strategy in which each condition is a weighted epistemic formula (i.e., no regular operators are allowed).

Natural strategies are uniform in the sense they specify the same actions in indistinguishable states (see [START_REF] Jamroga | Natural strategic ability under imperfect information[END_REF]). We define Str ρ i to be the set of uniform natural strategies for agent i and Str ρ = ∪ i∈N Str ρ i , where ρ ∈ {ir, iR} 2 . Let size(σ i) denote the number of guarded actions in σ i , cond i (σ i) be the ith guarded condition on σ i , cond i (σ i)[j] be the j-th WE formula of the guarded condition σ i , and act i (σ i) be the corresponding action. Finally, match(h, σ i) is the smallest index i ≤ size(σ i) such that for all 0 ≤ j ≤ |last(h)|, cond i (σ i)[j] (h[j]) = 13 and act i (σ i) ∈ L(i, last(h)). In other words, match(h, σ i) matches the state last(h) with the first condition in σ i that holds in h, and action available in last(h).

Measurement of Natural Strategies. The complexity of the strategy σ is the total size of its representation and is denoted as follows:

compl(σ) = def (r,a)∈σ |r|
where |r| is the number of symbols in r, except by parentheses. If r is a n-ary function in F, then |r| = n + 1. See (Jamroga et al., 2019a) for other metrics for the measuring the complexity of natural strategies.

Quantitative Natural Strategy Logic

Standard SL[F] [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF] considers combinatorial strategies, that is, strategies are functions mapping histories (or states) to actions. For reasoning about intuitive and simple strategies, we introduce SL[F] with natural strategies and imperfect information, denoted NatSL[F]. SL[F] and NatSL[F] have similar syntax and semantics, the main difference is that the quantification of strategies in NatSL[F] is defined for natural strategies with bounded complexity.

Throughout this chapter, let ρ ∈ {ir, iR} denote whether the semantics considers memoryless or recall strategies.

Assignments. An assignment A : N ∪ Var → Str ρ is a function from players and variables to strategies. For an assignment A, an agent i and a strategy σ for i, A[i → σ] is the assignment that maps i to σ and is otherwise equal to A, and A[s → σ] is defined similarly, where s is a variable.

Outcomes. For an assignment A and a state v we let Out(A, v) be the unique play that starts in v and follows the strategies assigned by A.

Formally, Out(A, v) is the play v 0 v 1 . . . such that v 0 = v and for all i ≥ 0, v i+1 = δ(v i , a) where for all i ∈ N, a i = act match(v i ,A(i)) (A(i)).
Definition 6.2. The syntax of NatSL[F] is defined as follows:

φ ::= p | ∃s ≤k i . φ | (i, s i)φ | f (φ, . . . , φ) | Xφ | φUφ where p ∈ AP, s i ∈ Var ∪ Str ρ i , k ∈ Z, i ∈ N, and f ∈ F.
The intuitive reading of the operators is as follows: ∃s ≤k i . φ means that there exists a strategy with complexity less or equal than k for agent i such that φ holds. The remaining operators correspond to the ones defined for SLK[F] (see Chapter 5).

A variable is free in formula φ if it is bound to an agent without being quantified upon, and an agent i is free in φ if φ contains a temporal operator (X or U) that is not in the scope of any binding for i. The set of free variables and agents in φ is written free(φ), and a formula φ is a sentence if free(φ) = ∅. The strategy quantifier ∃s ≤k i . φ quantifies on strategies for agent i.

Definition 6.3. Let G = (B, V, δ, ℓ, V ι , {∼ i } i∈N) be a wCGSl, and A an assignment. The satisfaction value φ G,ρ A (v) ∈ [-1, 1] of a NatSL[F]
formula φ in a state v is defined as follows, where π denotes Out(v, A):

p G,ρ A (v) = ℓ(v, p) ∃s ≤k i . φ G,ρ A (v) = max σ∈{α∈Str ρ i :compl(α)≤k} φ G,ρ A[s i →σ] (v) (i, s i)φ G,ρ A (v) = φ G,ρ A[i →A(s i)] (v) if s i ∈ Var (i, σ i)φ G,ρ A (v) = φ G,ρ A[i →σ i] (v) if σ i ̸ ∈ Var f (φ 1 ,. . . , φ m) G,ρ A (v) = f (φ 1 G,ρ A (v), . . . , φ m G,ρ A (v)) Xφ G,ρ A (v) = φ G,ρ A (π 1) φ 1 Uφ 2 G,ρ A (v) = sup i≥0 min φ 2 G,ρ A (π i), min 0≤j<i φ 1 G,ρ A (π j)
If φ is a sentence, its satisfaction value does not depend on the assignment, and we write φ G,ρ (v) for φ G,ρ A (v) where A is any assignment. We also let φ G,ρ = min vι∈Vι φ G,ρ (v ι). The abbreviations ⊥, φ → φ ′ , φ ∧ φ ′ , Fψ, Gψ, and ∀s ≤k φ are defined in the standard way (see Section 7.1).

In the next section, we show how to use NatSL[F] for reasoning about mechanisms by considering the case of repeated keyword auctions.

Repeated Keyword Auctions

Modeling mechanisms with monetary transfer and private valuations require handling quantitative features and imperfect information. Memoryless strategies are enough for mechanisms in which all relevant information is encoded in the current state (e.g., English auction). In repeated auctions, agents may, as well, use information from the previous states for choosing their strategies.

We now focus on using NatSL[F] to model and verify repeated keyword auctions and related strategies. Repeated keyword auctions are used by online search engines, such as Google and Yahoo, for selling advertising slots when users perform a search with a keyword [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. For example, if a store buys a slot for the keyword "computer", when a user searches this term, the store's sponsored link will be shown for her. For a keyword of interest, the advertisers (bidders) submit a bid stating the maximum amount she is willing to pay for a click on her sponsored link. When a user submits a query, an auction is run to determinate the slot allocation among the advertisers bidding on the keyword of interest. The most common mechanism for keyword auctions is the Generalized Second Price (GSP) [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF], in which the agents are allocated slots in decreasing order of bids and the payment for the slot s is the bid of the agent allocated to the slot s + 1.

We assume that F contains the function ≤ : (x, y) → 1 if x ≤ y and ≤ : (x, y) → -1 otherwise; and for readability we use the infix notation x ≤ y in the formula. We also assume that F contains the equality = and comparison functions <, >, ≥ (defined similarly). Finally, we assume F contains functions -, , ×, \, min, max and argmax with the standard meaning (for details, see Chapter 5).

Let us fix a price increment inc ∈ (0, 1], a set of slots S = {1, . . . , m}, where m ∈ N \ {0}. Each slot has a click-through rate θ 1 > . . . > θ m , where θ s ∈ [0, 1] is the probability that the user will click on the advertisement in slot s. The agents in N are the advertisers, each one having a private valuation v i ∈ v i for a click, where v i ⊂ [0, 1] is a finite set of possible valuations. We assume the valuations are distinct, that is, if i ̸ = i ′ , then v i ̸ = v i ′ . We denote by ≺ an arbitrary order among the agents in N, used in case of ties. The atomic propositional set is Φ = {all i,s , pay s , ϑ i : i ∈ N, s ∈ S}, where all i,s represents whether agent i is allocated to slot s, pay s denotes the price of slot s and ϑ i denotes i's valuation. Define G GSP = (B, V, L, δ, ℓ, V ι , {∼ i } i∈N), where:

• B = {0 + x × inc : 0 ≤ x ≤ 1
inc }, where b ∈ B denotes a bid with price b for a click; given a = (a i) i∈N , let rank a = (i 1 , . . . , i n) be the sequence of distinct agents in N ordered by their bid, that is, i < j if a i i > a i j or a i i = a i j and i i ≺ i j for i, j ∈ {1, . . . , n} with i ̸ = j. In case of draws, the sequence is determined with respect to ≺. We let rank a (i) denote the agent in the i-th position of the sequence rank a .

• V = {⟨al 1 , . . . , al m , pr 1 , . . . , pr m , (vl i) i∈N ⟩ :

al s ∈ N ∪ {none} & pr s ∈ B & vl i ∈ v i & i ∈ N & 1 ≤ s ≤ m},
where each state represents the current slot allocation and prices, with al s , pr s , and vl i denoting the winner of slot s, the price per click of s and i's valuation, resp.;

• For each i ∈ N and v ∈ V , L(i, v) = B;

• For each v ∈ V and a = (a i) i∈N such that a i ∈ L(i, v), the transition function uses the agent's bids to chose the next allocations and prices and is defined as follows: i. ℓ(v, all i,s) = 1 if al s = i, and ℓ(v, all i,s) = 0 otherwise;

δ(v, (a i) i∈N) = ⟨al ′ 1 , . . . ,
ii. ℓ(v, pay s) = pr s ; and

iii. ℓ(v, ϑ i) = vl i .

• In an initial state, the prices are 0 and the slots are allocated to none, that is, V ι = {⟨none, . . . , none, 0, . . . , 0, vl 1 , . . . , vl n ⟩ ∈ V };

• For each agent i and two states v = ⟨al 1 , . . . , al m , pr 1 , . . . , pr m , (vl i) i∈N ⟩ and

v ′ = ⟨al ′ 1 , . . . , al ′ m , pr ′ 1 , . . . , pr ′ m , (vl ′ i) i∈N ⟩ in V , the observation relation ∼ i is such that if v ∼ i v ′ then (i) al s = al s ′ , for each 1 ≤ s ≤ m; (ii) p s = p s ′ , for each 1 ≤ s ≤ m; (iii) vl i = vl ′ i .
Notice there is exactly one initial state for each possible valuation profile in (i∈N v i). Additionally, valuations remain unchanged after the initial state. We use the constant 1 s as the value in [-1, 1] representing the slot s. The utility of agent i when she is assigned to slot s is denoted by the formula util i,s = def θ s × (ϑ i -pay s). The utility for agent i in a state depends on her actual allocation, that is, util i = def s∈S all i,s × util i,s

Solution Concepts for GSP

In this section, we show how NatSL[F] can be used for the verification of mechanisms with natural strategies. Bearing in mind our motivating example, we aim at rephrasing conditions and properties usually considered in the analysis of keyword auctions [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF][START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF][START_REF] Varian | Position auctions[END_REF].

Nash equilibrium

Since auctions are noncooperative, the solution concept in the pure strategy setting usually considered is the Nash equilibrium (NE). As we previously discussed, NE captures the notion of stable solution: a strategy profile is NE if no player can improve her utility through an unilateral change of strategy [START_REF] Nisan | Algorithmic Game Theory[END_REF]. With NatSL[F], we restrict the range of strategies to simple ones, as it enables us to reason about artificial agents with limited capabilities and human-friendly strategies. Let σ = (σ i) i∈N be a profile of strategies and k > 0 and define the formula

NE(σ, k) = def i∈N ∀t. ≤k (N -i , σ -i)(i, t)Xutil i ≤ (N, σ)Xutil i
The formula NE(σ, k) means that, for every agent and alternative strategy t of complexity at most k, binding to t when everyone else binds to their strategies in σ leads to at most the same utility as when she also binds to her strategy in σ. In relation to strategies with complexity at most k, the strategy profile σ leads to a NE in the next state of v if NE(σ, k) G,ρ A (v) = 1. Predicting outcomes of a keyword auction is a difficult task given the infinite nature of NE continuum [START_REF] Yuan | Competitive analysis of bidding behavior on sponsored search advertising markets[END_REF]. For this reason, refined solution concepts have been proposed to reduce the NE continuum to subsets. Edelman et al. 2007 studied the subset called locally envy-free equilibrium (LEFE), in which no advertiser can improve her utility by exchanging her current slot to the one ranked one position above, given the current prices.

Locally envy free equilibrium

Let σ = (σ i) i∈N be a profile of strategies, we define the formula

LEFE(σ) = def i∈N (N, σ)X LEF i wins ∧ LEF i loses]
where LEF i wins = def 1<s≤m (all i,s = 1 → util i,s ≥ util i,s-1) indicates that when an agent is allocated to a slot, she does not prefer to switch to the slot right above and LEF i loses = def (s∈S all i,s = 0) → 0 ≥ util i,m denotes that agents who were not assigned to any slot do not prefer to get the last slot. LEFE(σ) means that, for any agent, when everyone follows the strategies in σ, it holds that (i) if she wins s, her utility for s is greater than for slot s -1 (at current prices) and (ii) if she does not get any slot, then her utility for the last slot is at most zero. Strategy profile σ leads to LEFE in the next state of v if LEFE(σ) G,ρ A (v) = 1. Based on [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF][START_REF] Varian | Position auctions[END_REF], we have that any LEFE is also a NE: Proposition 6.1. For any complexity k ≥ 0, state v ∈ V , ρ ∈ {iR, ir} and strategy profile σ = (σ i) i∈N with σ

i ∈ Str ρ i for each agent i ∈ N, LEFE(σ) → NE(σ, k) G GSP ,ρ (v) = 1.
Proof sketch. Let A be an assignment, k ≥ 0 be a complexity bound for strategies, v ∈ V be a state, ρ ∈ {iR, ir}, and σ = (σ i) i∈N be a profile of ρ-strategies. Assume LEFE(σ) G GSP ,ρ (v,σr) denotes the action performed by r in v if she follows σ r . By definition, ℓ(v σ , all r,s) = 1 iff r = rank b (s) is the winner of slot s and her payment is ℓ(v σ , pay s) = b rank b (s+1). For each slot s ∈ {1, . . . , min(m, n)}, we consider whether its winner i = rank b (s) could improve her utility by deviating to strategy t ∈ {α ∈ Str ρ i : compl ρ (α) ≤ k}. The case for agents who were not assigned any slot is proved similarly. Denote by b = match(v, t) ∈ B the action that i would take if she followed t and v (σ -i ,t) = δ(v, (b -i , b)) the next reached state from v when she follows t and others play according to σ.

A (v) = 1. Let v σ = δ(v, b) where b = (b r) r∈N and b r = act match
-i , σ ρ -i)(i, t)Xutil i = (N, σ)Xutil i G GSP ,ρ A (v) = 1.
The same holds when 1 < s < m for b ∈ [ℓ(v σ , pay s), ℓ(v σ , pay s-1)] and when s = m for b ≤ ℓ(v σ , pay m). In the remaining cases, i would change her position in rank b with other agent. By the results of [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF] (see Lemma 1), the outcome given by bids b is a stable assignment, that is, no advertiser can profitably rematch by changing her position with any other advertiser. Thus, (N

-i , σ -i)(i, t)Xutil i ≤ (N, σ)Xutil i G GSP ,ρ A (v) = 1.
As LEFE is still an equilibrium continuum, [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF] characterize an equilibrium in which the slot allocation and payments coincide with the ones in the dominant-strategy equilibrium (DSE) of the Vickrey-Clarke-Groves (VCG) mechanism.

Let v = (v i) i∈N be a valuation profile. Truthfully reporting v is the DSE of VCG [START_REF] Nisan | Algorithmic Game Theory[END_REF]. For each slot s and agent i, the allocation rule for VCG in the keyword auction is the same as under GSP [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF]:

all * i,s (v) = 1 if rank v (s) = i and s ≤ n. Otherwise, all * i,s (v) = 0. The payment for the last slot m is pay * m (v) = θ m • v rankv(m+1) if m + 1 ≤ n and pay * m = 0 otherwise. For the remaining slots 1 ≤ s < m, pay * s (v) = (θ s -θ s+1) • v rankv(s+1) + pay * s+1 (v).
We assume pay * s (v) and all * s,i (v) are functions in F.

VCG outcome

The following formula denotes whether the allocation and payments in the next state are the same as the ones for the VCG when agents bid truthfully:

φ VCG (σ) = def (N, σ)X s∈S (pay s = pay * s (ϑ) ∧ i∈N all s,i = all * s,i (ϑ))
If a strategy profile leads to the VCG outcome, then it is a LEFE: Proposition 6.2. For any state v ∈ V , ρ ∈ {iR, ir} and strategy profile σ = (σ i) i∈N with σ i ∈ Str ρ i for each i, φ VCG (σ) → LEFE(σ) G GSP ,ρ (v) = 1.

Proof sketch. Let A be an assignment, v ∈ V be a state, ρ ∈ {iR, ir} and σ = (σ i) i∈N be a profile of ρ-strategies. We denote v = (v i) i∈N where

v i = ℓ(v, ϑ i). Assume φ VCG (σ) G GSP ,ρ A (v) = 1, then we have (N, σ)X s∈S (pay s = pay * s (ϑ) ∧ i∈N all s,i = all * s,i (ϑ)) G GSP ,ρ A (v) = 1.
We denote by v σ = δ(v, b) the state succeeding v when agents follow σ, where b = (b r) r∈N and b r = act match (v,σr) . Let s > 1 be a slot and i be an agent. By the definition of φ VCG , ℓ(v σ , all s,i) = 1 if rank v (s) = i and s ≤ n. Otherwise, all * i,s = 0. Given that allocations in v σ are the same as in the (truthful) outcome of VCG, it must be the case that rank b (s) = rank v (s). Thus, agents were allocated by descending order of their valuations (recall the valuations are distinct).

According to the weight function, each agent is allocated to at most one slot. We consider first the case in which i is not allocated to any slot, i.e., max s ′ ∈S (ℓ(v σ , all i,s ′)) = 0. This case happens when m < n, that is, there are no enough slots for all agents. The utility of i for the slot m is util

i,m = θ m (v i -ℓ(v σ , pay m)). By the definition of pay * m , util i,m = θ m (v i -θ m v rank v(m+1)). That is, util i,m = θ m v i -θ 2 m v rank v(m+1) . Since v i < v rank b (m+1) , we have that util i,m < 0. Thus, 0 > util i,m G GSP ,ρ A (v σ) = 1 and LEF loses G GSP ,ρ A (v σ) = 1.
Now we verify the case i was assigned to a slot 1 < s ≤ m. Assume for the sake of contradiction, that util i,s-1 > util i,s G GSP ,ρ A (v σ) = 1. Then, in the game induced by VCG, i would have an incentive to switch her bid with the agent in slot s -1, which is a contradiction since the bidding v i is the dominant strategy for i in VCG.

In fact, from [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF][START_REF] Varian | Position auctions[END_REF] the VCG payments are the lower bound of locally envy-free equilibrium. Thus, in any other locally envy-free equilibrium the total revenue obtained by GSP is at least as high as the one obtained by VCG in equilibrium. Corollary 6.1. For any state v ∈ V , ρ ∈ {iR, ir} and strategy profile

σ = (σ i) i∈N with σ i ∈ Str ρ i for each agent i, LEFE(σ) → s∈S (pay s) ≥ s∈S (pay * s) G GSP ,ρ (v) = 1.
The solution concepts characterized in this section are considered in a single stage of the game. Since the auction is repeated, advertisers can change their bids very frequently and one may investigate whether the prices stabilize and at what values [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF]. Stable bids must be best responses to each other, that is, the bids form an (one-shot) equilibrium. [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF] raises the problem on whether there exists a "natural bidding strategy" for the advertisers that would lead to equilibrium.

Convergence The concept of convergence or stabilization can be easily encoded in NatSL[F]: we say a wCGSl G converge to a property φ if the initial states lead to φ being eventually always the case. Formally, a wCGSl converge to a condition φ if FG(φ) G,ρ A (v ι) = 1 for each initial state v ι ∈ V ι .

Natural Strategies for GSP

Given agent i and the wCGSl G GSP , we exemplify strategies for i in a repeated keyword auction. For readability, we omit the epistemic operator K i from an epistemic condition K i φ when the satisfaction value of φ is known by i in all states. A common approach for an advertiser is to assume that all the other bids will remain fixed in the next round and target the slot that maximizes her utility at current prices. This mechanism allows a range of bids that will result in the same outcome from i's perspective, so a number of strategies are distinguished by the bid choice within this range.

Balanced bidding

In the balanced bidding strategy (BB) [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF], the agent bids so as to be indifferent between successfully winning the targeted slot at its current price, or winning a slightly more desirable slot at her bid price. The natural strategy representing balanced bidding for agent i is denoted BB i and is constructed in three parts. First, include the guarded actions (BB i,1 (b), b) for each action b ∈ B. Second, include (BB i,2 (b, s), b) for each b ∈ B and 1 < s ≤ m. Third, the last guarded action is (⊤, 0). The condition BB i,1 (b) refers to the case in which the slot maximizing i's utility is the top slot and b is (ϑ i + pay 1)/2:

BB i,1 (b) = def b = ϑ i + pay 1 2 ∧ 1 argmax s∈S(util i,s) = 1
Condition BB i,2 (b, s) denotes the case in which the slot s ̸ = 1 maximizes i's utility and b is the bid value that is high enough to force the prices paid by her competitors to rise, but not so high that she would mind getting a higher slot at a price just below b.

BB i,2 (b, s) = def util i,s = θ s-1 × (ϑ i -b) ∧ 1 argmax s ′ ∈S (util i,s ′) = 1 s
Notice the guarded action BB i,2 (b, s) is defined for s > 1 since it compares the utility with the one for s -1. The case s = 1 is treated by the guarded action BB i,1 (b). Given a valuation profile v = (v i) i∈N , let η x be the agent in the x-th position of rank v (that is, η x is the agent with x-th highest valuation). We let b ηx (v) be a function in F defined as follows:

b ηx (v) =      θ x θ x-1 • b rankv(x+1) (v) + (1 - θ x θ x-1)v ηx if x ≥ m + 1 v ηx if 2 ≤ x ≤ m
If BB = (BB i) i∈N converges to the equilibrium with VCG outcomes, the agent with the highest valuation, that is η 1 , bids any value above b η 2 (v). The equilibrium bid for i ̸ = η 1 is b i (v) [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. When there are two slots and all players update their bids according to BB, the game converges to the equilibrium with VCG outcome. However, this is not the case for more than two slots [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. Proposition 6.3. For any initial state v ι ∈ V ι , state v ∈ V , and 1 < x ≤ n, the following holds, where v = (ℓ(v, ϑ i)) i∈N : Proof sketch. Statement (1) is derived in [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF] from the results of [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF]. Notice that when each agent i is bound to the natural strategy BB i , they will update their bids simultaneously in every state reachable form v. Thus, it corresponds to the synchronous setting described by [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. The proof for Statements (2) and (3) are very similar to the one provided in the analysis of the synchronous setting by [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF].

1. If φ VCG (BB) G GSP ,ir (v) = 1, then act match(v,BBη x) = b ηx (v) and act match(v,BBη 1) > b η 2 (v);

Restricted BB

The restricted balanced bidding strategy (RBB) [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF] is a variation of BB in which the agent only targets slots that are not better than her current slot. The natural strategy representing RBB for agent i is denoted RBB i and is constructed as follows. Finally, the last guarded action is (⊤, 0). Let s i = min(m, s ′ ∈S s ′ × all i,s ′) be the slot assigned to agent i or the last slot if there is no such slot. We define RBB i,1 (b) and RBB i,2 (b, s):

RBB i,1 (b) = def b = ϑ i + pay 1 2 ∧ 1 argmax s∈S&s≥s i (util i,s) = 1 RBB i,2 (b, s) = def util i,s = θ s-1 × (ϑ i -b) ∧ 1 argmax s ′ ∈S&s ′ ≥s i (util i,s ′) = 1 s
Similar to the results in [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF], we have that if all agents follow the restricted balanced-bidding strategy, the auction converge to the VCG equilibrium outcome. RBB always converge: Proposition 6.4. For any initial state v ι ∈ V ι , state v ∈ V , and 1 < x ≤ n, the following holds, where v = (ℓ(v, ϑ i)) i∈N :

1. If φ VCG (RBB) G GSP ,ir (v) = 1, then act match(v,RBBη x) = b ηx (v) and act match(v,RBBη 1) > b η 2 (v); 2. FG(φ VCG (RBB)) G GSP ,ir (v ι) = 1.
Proof sketch. Statement (1) is a derivation from the results presented in [START_REF] Edelman | Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords[END_REF]. For Statement (2), the proof is similar to the one provided in [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. The proof idea is the following. First bound the number of steps until convergence of the price of slot m and the set of players who will not be allocated slots. After this step, no losing player can afford a slot and their bids do not interfere with the convergence of the top m agents. The second stage of the proof is to show that the allocation of the top m players converges to a fixed point (in which they are sorted by their valuations). Then, for 1 ≤ i ≤ m, the proof inductively considers the allocation of slots [i + 1, m]. A subset of slots is called stable if the allocation is in order of decreasing values and if agent η j is the player currently allocated slot j, then her last bid is in accordance with b η j (ϑ) for every j ∈ [i + 1, m]. While the current setting is not a fixed point of RBB, the proof proceeds by characterizing the number of rounds taken for increasing the size of the maximal stable set.

Knowledge grounded RBB

The knowledge grounded RBB strategy (KBB) is a variation of RBB in which the agent uses her knowledge about the valuation of the player currently at her target slot to ground her bid value. The idea is to avoid bidding more than what she knows her opponent valuates the slot. The natural strategy representing KBB for agent i is denoted KBB i is constructed in three steps. First, include the guarded actions (KBB i,1 (b, c, r), c) for each b, c ∈ B and agent r ̸ = i. Second, include (KBB i,2 (b, s, c, r), c) for each b, c ∈ B, slot 1 < s ≤ m and agent r ̸ = i. Finally, include the guarded actions from RBB i . The conditions KBB i,1 (b, c, r) and KBB i,2 (b, s, c, r) are defined as follows:

KBB i,1 (b, c, r) = def K i RBB i,1 (b) ∧ all r,1 = 1 ∧ c = min(ϑ r , b) KBB i,2 (b, s, c, r) = def K i RBB i,2 (b, s) ∧ all r,s = 1 ∧ c = min(ϑ r , b)
The prices under KBB are at most the same as under RBB:

Proposition 6.5. For any state v ∈ V , slot s ∈ S and agent i ∈ N, (N, KBB)pay s ≤ (N, RBB)pay s G GSP ,ir (v) = 1.

Proof. Consequence from the construction of KBB.

Remark 6.1. With natural strategies, we can easily construct a strategy in which agent η x plays according to b ηx (v) (for 1 < x ≤ n) and agent η 1 bids b η 2 + inc when she knows others' valuations.

BB with recall Since BB may not converge to the VCG equilibrium outcome due to loops on the slot allocation and prices, we construct a strategy that behaves according to BB while there is no repetition in the outcome and follows RBB otherwise. Hereafter, we show that this strategy with recall prevents the loops that hinder the convergence of BB. Define the set of weighted conditions Ψ = { s∈S (pay s = pr s ∧ i∈N all i,s = al maximizes the utility among slots that are better or equal to i's current slot. By the other hand, the condition followed by BBR i in v chose the action b that maximizes among all slots. Thus, since the actions are different, b has the greatest estimated utility assuming the others repeat their previous bids. As it is in fact the case, by the definition of σ iR -i and σ ir -i , i's is assigned to s in the next state and her utility is the one estimated, that is Xutil i

G GSP ,iR A (v) = util i,s G GSP ,iR A (v). Thus, (N -i , σ iR -i)(i, BBR i)Xutil i G GSP ,iR (v) > (N -i , σ ir -i)(i, RBB i)Xutil i G GSP ,ir A (v).
Remark 6.2. In vindictive bidding [START_REF] Zhou | Vindictive bidding in keyword auctions[END_REF], the agent bids as high as possible to raise the payment of the advisor in the slot right below hers. Since there is the risk that a change in other agents' bids could result in paying a higher price than expected, the player could use memory to balance the use of aggressive bids. Strategies with recall could also be used for managing budget. For strategies on budget-constrained keyword auctions the reader may refer to [START_REF] Zhou | Budget constrained bidding in keyword auctions and online knapsack problems[END_REF].

In the next sections, we move our focus to the analysis of NatSL[F] and we provide technical results in terms of expressivity and model-checking complexity.

Expressivity

In relation to SL [F] with combinatorial strategies, NatSL[F] introduces a new, broader class of human-friendly strategies and a language for expressing properties of agents that use such strategies. Clearly, strategies with quantitative conditions can be used to obtain goals that would not be achievable otherwise. On the other hand, bounded natural strategies of NatSL[F] may not achieve some goals that can be enforced with combinatorial strategies of SL [F]. In this section, we show that the expressive power of NatSL[F] is incomparable to that of SL [F]. In other words, there are properties of quantitative games with natural strategies that cannot be equivalently translated to properties based on combinatorial strategies, and vice versa. From this, we conclude that reasoning about human-friendly strategies offers an inherently different view of a multi-agent system from the "standard" one.

Expressive and Distinguishing Power

We first adapt the notions of distinguishing power and expressive power to the quantitative case as follows4 . Definition 6.4 (Distinguishing power of real-valued logics). Let L 1 = (L 1 , • 1) and L 2 = (L 2 , • 2) be two logical systems with syntax L 1 , L 2 and real-valued semantics • 1 , • 2 over the same class of models M. We say that L 2 is at least as distinguishing as L 1 (written: L 1 ⪯ d L 2) iff for every pair of models M, M ′ ∈ M, if there exists a formula

φ 1 ∈ L 1 such that φ 1 M 1 ̸ = φ 1 M ′ 1 , then there is also φ 2 ∈ L 2
propositions, each natural strategy must specify the same decision in q 1 , q 2 . Thus, both players have exactly the same available natural strategies in G 2 and G ′ 2 , and hence (G 2 , q 0) and (G ′ 2 , q 0) produce the same valuations of NatSL[F] formulas. On the other hand, we have that ∃s 2 ∀s 1 (1, s 1)(2, s 2)Fwin of SL[F] holds in (G 2 , q 0), but not in (G ′ 2 , q 0).

The following is an immediate consequence.

Model Checking

In Proof. For the lower-bound we recall that LTL[F] model checking is Pspacecomplete [START_REF] Almagor | Formally reasoning about quality[END_REF]. For the upper-bound, to verify that a given NatSL[F] formula φ is satisfied over a wCGSl G at a state v ∈ V under assignments A over uniform natural strategies with recall, we make use of a recursive function as is done in [START_REF] Cermák | Practical verification of multi-agent systems against SLK specifications[END_REF]. We start by showing that each recursive call only needs at most polynomial space. First, observe that each assignment A has a strategy s a for each agent a ∈ Ag5 . We know that each strategy s a that can be assigned to agent a is bounded, and we have that compl(s a) ≤ k. Finally, we detail how

φ 1 Uφ 2 G,ρ A (v) is computed. Let π = Out(v, A)
. Since G has finitely many states, there exist two indices g < l such that π g = π l , and since strategies are bounded by k, the suffix of π starting at index l is equal to the suffix starting at index g. So there exist ρ

1 = v 0 . . . v g-1 and ρ 2 = v g . . . v l-1 such that π = ρ 1 • ρ ω 2 . It follows that φ 1 Uφ 2 G,ρ A (v) = sup i≥0 min φ 2 G,ρ A (π i), min 0≤j<i φ 1 G,ρ A (π j) = max 0≤i<l min φ 2 G,ρ A (π i), min 0≤j<i φ 1 G,ρ A (π j)
This can be computed by a while loop that increases i, computes φ 2 G,ρ A (π i) and min 0≤j<i φ 1 G,ρ A (π j), their minimum, and records the result if it is bigger than the previous maximum. This requires to store the current value of min 0≤j<i φ 1 G,ρ A (π i), the current maximum, and the list of states already visited, which are at most k•|V |.

Finally, the number of nested recursive calls is at most |φ|, so the total space needed is bounded by |φ| times a polynomial in the size of the input, and is thus polynomial.

Since memoryless natural strategies are a special case of natural strategies with recall, we obtain the following result. Corollary 6.3. Assuming that functions in F can be computed in polynomial space, model checking NatSL[F] with imperfect information, memoryless natural strategies, and k as parameter of the problem is Pspace-complete.

Conclusion

In this chapter we have introduced Natural Strategy Logic with quantitative semantics and imperfect information (NatSL[F]) for reasoning about strategic ability in auctions. Natural strategies only require remembering a limited number of significant situations. Instead of specifying instructions for every history, they provide instructions for conditions. NatSL[F] provides a tool for mechanism design and offers a new perspective for formal verification and design of novel mechanisms and strategies.

Memoryless strategies are enough for several types of mechanisms, as all relevant information is encoded in the current state (for instance, an English auction). In repeated auctions, agents may, as well, use information from the previous instances of the game for choosing their strategies. One relevant problem in repeated auctions is whether the bid prices are going to stabilize and at which price (that is, convergence to an equilibrium). We demonstrated the usefulness of our approach by modelling and evaluating strategies for repeated keyword auctions. NatSL[F] allows for the verification of these strategies in order to provide formal guarantees of correctness as well as improve trust in automated bidders.

In terms of technical results, we proved that the model checking problem for NatSL[F] is Pspace-complete, that is, no harder than model checking for the much less expressive language of quantitative LTL (LTL[F]). We also showed that NatSL[F] has incomparable distinguishing and expressive power to SL[F]. This means that the characterizations based on simple bounded strategies offer an inherently different view of auctions and mechanism design from characterizations using combinatorial strategies of arbitrary complexity. Surprisingly, this aspect has never been studied for natural strategies, not even for the original proposal of NatATL (Jamroga et al., 2019a).

Up to now, we considered logic-based approaches for the formal verification of mechanisms when faced with strategic agents. In the next chapter, we go further on the AMD problem, by addressing the automated construction of mechanisms from logical specifications. at the level of strategy quantification, which allows assigning the same strategy to different agents. Thus, ∃s. φ means that there exists a strategy s such that φ holds.

A variable is free in formula φ if it is bound to an agent without being quantified upon, and an agent i is free in φ if φ contains a temporal operator (X or U) not in the scope of any binding for i. The set of free variables and agents in φ is written free(φ), and a formula φ is a sentence if free(φ) = ∅. Definition 7.2. A weighted concurrent game structure (wCGS) is a tuple G = (B, V, v ι , δ, ℓ) where each component is defined exactly as the homonyms components in wCGSii (see Definition 5.2) 1 .

Remark 7.1. Because we are interested in synthesizing mechanisms of finite size, we restrict attention to finite models. Studying satisfiability of SL[F] for potentially infinite models would be of interest too as SL, and thus also SL[F], do not enjoy the finite-model property (indeed, SL is more expressive than ATL with strategy context, which does not have the finite-model property; see [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF]). We leave this question for future work.

Action profiles, plays and assignments for SL[F] are defined analogously to the definitions from Chapter 5. By its turn, strategies are now defined over histories.

Histories A history h is a finite prefix of a play, last(h) is the last position of history h, |h| is the length of h and Hist is the set of histories.

Strategies A (perfect recall) strategy is a function σ : Hist → B that maps each history to an action. We let Str be the set of strategies.

Outcomes For an assignment A and a history h, we let Out(A, h) be the unique play that continues h following the strategies assigned by A. Formally, Out(A, h) is the play hv 0 v 1 . . . such that for all i ≥ 0, v i = δ(v i-1 , a) where for all i ∈ N, a i = A(i)(hv 0 . . . v i-1), and v -1 = last(h). Definition 7.3. Let G = (B, V, δ, ℓ, V ι) be a wCGS, and A an assignment. The satisfaction value φ G A (h) ∈ [-1, 1] of an SL[F] formula φ in a history h is defined as follows, where π denotes Out(A, h):

p G A (h) = ℓ(last(h), p) ∃s. φ G A (h) = max σ∈Str φ G A[s →σ] (h) (i, s)φ G A (h) = φ G A[i →A(s)] (h) f (φ 1 ,. . . , φ m) G A (h) = f (φ 1 G A (h), . . . , φ m G A (h)) Xφ G A (h) = φ G A (π |h|+1) φ 1 Uφ 2 G A (h) = sup i≥0 min φ 2 G A (π |h|+i), min 0≤j<i φ 1 G A (π |h|+j)
1 Notice that, differently from a wCGSii, a wCGSdoes not contain observation relations.

Satisfiability and Synthesis of SL[F] 117

If φ is a sentence, its satisfaction value does not depend on the assignment, and we write φ G (h) for φ G A (h) where A is any assignment. We also let φ G = φ G (v ι).

As in Chapter 5, we use classic abbreviations. We also use Aφ as a shorthand for a universal quantification on strategies and bindings for all agents, followed by φ; this simulates the universal path quantifier of CTL * .

Satisfiability and Synthesis of SL[F]

We investigate the following satisfiability problem for SL[F].

Definition 7.4. The satisfiability problem for SL[F] takes a sentence φ ∈ SL[F] and a threshold ε > -1, and decides whether there exists a wCGS G such that φ G ≥ ε.

The satisfiability problem for SL was proved undecidable in [START_REF] Mogavero | Reasoning about strategies: on the satisfiability problem[END_REF], but the proof there considers models with infinitely many actions. However it is also known to be undecidable when considering finite models, i.e., models with both finitely many states and finitely many actions, as we do. Indeed, it has been shown in [START_REF] Troquard | On satisfiability in ATL with strategy contexts[END_REF][START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF] that satisfiability of ATL with strategy context (ATL sc) is undecidable for finite models. Since ATL sc can be expressed in SL [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF] and SL in SL[F], by taking F = {⊤, ∨, ¬} [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], we obtain the following result.

Proposition 7.1. The satisfiability problem for SL[F] is undecidable as soon as F contains ⊤, ∨ and ¬.

However satisfiability of SL is known to be decidable when restricted to turnbased systems or systems with a bounded number of actions [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF]. We show that in these cases satisfiability is decidable for SL[F] as well. To do so we first recall Booleanly-quantified CTL * (BQCTL * [F]) and solve its satisfiability problem, and we then show that for bounded actions or turn based systems satisfiability of SL[F] reduces to that of BQCTL * [F].

Booleanly-Quantified CTL * [F]

The logic BQCTL * [F] [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], a quantitative extension of QCTL * (Laroussinie and Markey, 2014), itself an extension of CTL * with quantifiers on atomic proposition. In BQCTL * [F] the semantics is quantitative, but the quantifiers on propositions consider only Boolean values. To be consistent with SL[F] we consider [-1,1] as range of values instead of [0,1] as in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF]. This changes nothing to the results presented there.

The syntax of BQCTL * [F] is defined by:

φ ::= p | ∃p. φ | Eψ | f (φ, . . . , φ) ψ ::= φ | Xψ | ψUψ | f (ψ, . . . , ψ)
where p ranges over AP and f over F.

Eψ is the quantitative counterpart to the path quantifier of CTL * , and it maximizes the value of ψ over all branches. Formulas of type φ are called state formulas, those of type ψ are called path formulas, and BQCTL * [F] consists of all the state formulas defined by the grammar. We again use ⊤, ∨, and ¬ to denote functions 1, max and -x, as well as classic abbreviations already introduced for SL[F].

Definition 7.5. A weighted Kripke structure (wKS) is a tuple S = (S, s ι , R, ℓ) where S is a set of states, s ι ∈ S is an initial state, R ⊆ S × S is a left-total2 transition relation, and ℓ : S → [-1, 1] AP is a weight function.

A path in S is an infinite word λ = s 0 s 1 . . . over S such that s 0 = s ι and (s i , s i+1) ∈ R for all i. Finite prefixes of paths are histories, and we let h S be the set of all histories in S. We also let Val S = {ℓ(s)(p) | s ∈ S and p ∈ AP} be the finite set of values appearing in S.

Given finite nonempty sets X of directions and V ⊆ [-1, 1] of possible values, a V AP -labeled X-tree, (or (V AP , X)-tree for short, or V AP -tree when directions are understood), is a pair t = (τ, ℓ) where τ ⊆ X + is closed under non-empty prefixes, all nodes u ∈ τ start with the same direction r, called the root, and have at least one child u • d ∈ τ , and ℓ : τ → V AP is a weight function. We let Val t ⊆ V be the image of ℓ on τ . A branch λ = u 0 u 1 . . . is an infinite sequence of nodes such that for all i ≥ 0, u i+1 is a child of u i . For i ≥ 0, λ ≥i denotes the suffix of λ that starts at node u i , and we let Br(u) be the set of branches that start in node u.

A binary tree is a X-tree where |X| = 2. A tree is regular if it is the unfolding of some finite Kripke structure.

Let p ∈ AP. A p-labeling for a V-tree t = (τ, ℓ) is a mapping ℓ p : τ → {-1, 1}. The composition of t with ℓ p is the (V ∪ {-1, 1}) AP -tree defined as t ⊗ ℓ p = def (τ, ℓ ′), where ℓ ′ (u)(p) = ℓ p (u) and ℓ ′ (u)(q) = ℓ(u)(q) for q ̸ = p.

Finally, the tree unfolding of a weighted Kripke structure S with state set S is the Val AP S -labeled S-tree t S = (h S , ℓ ′), where ℓ ′ (u) = ℓ(last(u)) for every u ∈ h S . Different semantics exist for QCTL * , which differ on how proposition quantification is interpreted. Notably, in the structure semantics, labelings for quantified propositions are defined directly on the states of the structure, while in the tree semantics, labelings are defined on the tree unfolding (see [START_REF] Laroussinie | Quantified CTL: expressiveness and complexity[END_REF] for more on the different semantics for QCTL *). In this paper we focus on the tree semantics, which allows capturing perfect-recall strategies. Definition 7.6 (Semantics). Consider a finite set V ⊆ [-1, 1] of possible values. The satisfaction value φ t (u) of a BQCTL * [F] state formula φ in a node u of a V AP -tree t = (τ, ℓ), and the satisfaction value ψ t (λ) of a path formula ψ along some branch λ of t, are defined inductively as follows:

p t (u) = ℓ(u)(p) ∃p. φ t (u) = sup ℓp : τ →{-1,1} φ t⊗ℓp (u) Eψ t (u) = sup λ∈Br(u) ψ t (λ) f (φ 1 , . . . , φ n) t (u) = f (φ 1 t (u), . . . , φ n t (u)) φ t (λ) = φ t (λ 0) Xψ t (λ) = ψ t (λ ≥1) ψ 1 Uψ 2 t (λ) = sup i≥0 min(ψ 2 t (λ ≥i), min 0≤j<i ψ 1 t (λ ≥j)) f (ψ 1 , . . . , ψ n) t (λ) = f (ψ 1 t (λ), . . . , ψ n t (λ))
For a tree t with root r we write φ t for φ t (r), for a weighted Kripke structure S we write φ S for φ t S .

Deciding BQCTL * [F] Satisfiability

As for SL[F], we define the quantitative satisfiability problem for BQCTL * [F] as follows.

Definition 7.7. The satisfiability problem for BQCTL * [F] takes a formula φ ∈ BQCTL * [F] and a threshold ε > -1, and decides whether there exists a wKS S s.t. φ t S ≥ ε.

Satisfiability for QCTL * with structure semantics is undecidable [START_REF] French | Quantified propositional temporal logic with repeating states[END_REF], but decidable for the tree semantics (Laroussinie and Markey, 2014) which we consider in this paper. Relying on the automata construction developed in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF] to model check BQCTL * [F], we show that satisfiability is also decidable for

BQCTL * [F]. Theorem 7.1. Satisfiability of BQCTL * [F] is decidable.
In the rest of the section we sketch the proof of this theorem, and refer to Appendix B for the full proof.

The lower bounds are inherited from the satisfiability problem for QCTL * (Laroussinie and Markey, 2014). The reduction is direct with threshold ε = 1.

For the upper bounds, the first step is to show that one can restrict attention to structures with binary branching, i.e., where each state has at most two successor states.

Given a finite wKS S, by adding dummy nodes labeled with proposition p int one can build a wKS S with binary branching that simulates S; given a BQCTL * [F] formula φ, one can then define a formula φ that ignores these dummy nodes and has same satisfaction value on S as φ on S. Definition 7.8. Given a finite set V ⊂ [-1, 1] such that {-1, 1} ⊆ V, the Vsatisfiability problem for SL[F] is the restriction of the satisfiability problem to V-weighted wCGS.

We establish the following results: Theorem 7.2. Let V be a finite set of values and B a finite set of actions. Then V-satisfiability of SL[F] over B-wCGS is decidable.

Proof. We use a slight modification of the proof in [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF] which shows how, when the number of actions is bounded, one can reduce the satisfiability problem for SL to that for QCTL * .

Let B = {a 1 , . . . , a n } and N = {i 1 , . . . , i m }. First, consider the formula

Φ Bool = AG i∈N,a∈B
Bool(mov a i)

This formula has value 1 in a tree if propositions mov a i only take Boolean values in all nodes of the tree, otherwise it has value -1. Define also

Φ edge = AG   (a∈B N E 1 Xmov a) ∧ AX(a∈B N mov a)  
where mov a stands for i∈N (mov a i i ∧ a ′ ̸ =a i ¬mov a ′ i), and

E 1 Xφ = EXφ ∧ ∀p.(EX(φ ∧ p) → AX(φ → p))
expresses the existence of a unique successor that satisfies φ (where φ is a formula that only takes Boolean values). When all propositions mov a i have Boolean value, Φ edge can only take value 1 or -1 in a tree, and this value is 1 if and only if the tree is the unfolding of some wCGS where in every position, proposition mov a i has value 1 if agent i played action a in the last move, and -1 otherwise.

Consider now the following translation from SL[F] to BQCTL * [F ∪ {Bool}]. For every SL[F] formula φ and partial function V : N → Var, we inductively define the BQCTL * [F] formula φ V . The translation is identical to the one in [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF], but for completeness we give the cases for strategy quantification and binding, as well as temporal operators.

∃s. φ

V = ∃p a 1 s . . . ∃p an s .AG   a∈B p a s ∧ a ′ ̸ =a ¬p a ′ s   ∧ φ V (i, s)φ V = φ V [i →s] Xφ V = A ψ V out → (X φ V) φUψ V = A ψ V out → (φ V U ψ V)
where ψ V out = G i∈N a∈B (p a V (i) → Xmov a i). Finally we let Φ = Φ Bool ∧ Φ edge ∧ Φ ∅ . We have that for every finite wCGSG there exists a finite wKS S such that Φ G = Φ S , where S is obtained by partially unfolding G to place propositions mov a i appropriately. Conversely, for every finite S such that Φ S > -1 we have that Φ Bool ∧ Φ edge S = 1 and thus S encodes a finite wCGSG such that Φ G = Φ S . Theorem 7.3. Let V be a finite set of values. Then V-satisfiability of SL[F] over turn-based wCGS is decidable.

Proof. Again, we adapt the proof from [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF]. We assume that in a turn-based wCGS, each position is labelled with a proposition turn i where i is the owner of the position. We use formula

φ tb = AG   i∈N Bool(turn i) ∧ i∈N (turn i ∧ i ′ ̸ =i ¬turn i ′)  
that has Boolean value, and has value 1 if and only if propositions turn i only take Boolean values (-1 or 1), and exactly one of them has value 1 in each node.

We now define the following translation from SL[F] to BQCTL * [F], where V : N → Var is a partial function.

∃s. φ

V = ∃mov s .AG(E 1 Xmov s ∧ φ V) (i, s)φ V = φ V [i →s] Xφ V = A ψ V out → (X φ V) φUψ V = A ψ V out → (φ V U ψ V)
where ψ V out = G(i∈N (turn i → Xmov i)). Finally, formula Φ has value greater than ε in some turn-based wCGSif and only if formula φ tb ∧ Φ ∅ has value greater than ε in some tree.

Concerning complexity, for Theorems 7.1, 7.2 and 7.3 the problems are (k + 1)-Exptime-complete where k is the maximal number of nested quantifiers on propositions (for BQCTL * [F]) or strategies (for SL[F]). Blocks of successive quantifiers can be counted as one if they are all existential or all universal, so that an existential quantification on a strategy profile for all agents just adds one exponential for instance.

Automated Synthesis of Optimal Mechanism

We describe how we can use our algorithm for SL[F] satisfiability to synthesize mechanisms that optimally satisfy the specification, in the sense that they achieve the best possible satisfaction value for the specification.

Satisfiability and Synthesis of SL[F]

123 First, we observe that the algorithms developed in the previous section for the satisfiability problem of SL[F] in the case of bounded actions or turn-based systems can be tweaked to actually return a satisfying wCGS when one exists. Indeed classic algorithms to solve emptiness of parity tree automata can produce a witness regular tree accepted by the automaton (see for instance [START_REF] Pnueli | On the Synthesis of a Reactive Module[END_REF], and from such a regular tree in our setting we can infer a witness wCGS. In particular, once we have a regular tree represented as a finite transition system with states labelled with atomic propositions, one easily obtains the desired wCGS by seeing states as positions and keeping the same labelling for "normal" atomic propositions. Concerning transitions, in the case of bounded actions, the labelling for "special" propositions mov c a induces a transition function for action profiles. In the turn-based case, turns are described by the labelling for the "special" propositions turn a ; one can then use one action for each possible position, and a dummy action for inactive agents, to represent possible choices of agents and define the transition function. Finally one can remove the dummy internal positions (labelled with p int) introduced in the reduction to binary branching. The synthesis procedure produces models with abstract actions, but their "real world" meaning can be recovered thanks to the propositions labelling (assuming the specification was precise enough).

Second, it is proved in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF]) that given a finite set V of possible values for atomic propositions and a formula φ ∈ SL[F] there is only a finite number of possible satisfaction values φ can take in any wCGS, and we can compute an over-approximation of this set. Output: a wCGS G such that Φ G is maximal

1: Compute Val Φ,V 2: Let ν 1 , . . . , ν n be a decreasing enumeration of Val Φ,V 3: for i ← 1 to n do 4:
Solve V-satisfiability for Φ and ε = ν i 5:

if there exists G such that Φ G ≥ ν i then return G

Consider now Algorithm 3. This algorithm synthesizes a wCGS that maximizes the satisfaction value of the given SL[F] specification, in all cases where the satisfiability problem for SL[F] can be solved and a witness produced. In particular, it works in the case of bounded actions and the case of turn-based systems. We now show how this can be used to solve automated mechanism design.

Synthesis for Mechanism Design

This section aims to motivate the use of synthesis of SL[F] for mechanism design. We first recall basic concepts used to formalize mechanisms, which determine how to choose one option among several alternatives, based on agents' strategies. Since many mechanisms describe monetary transfers, we assume that each alternative is a tuple (x, p) where x ∈ X is a choice from a finite set of choices X ⊂ [-1, 1], and p i ∈ [-1, 1] is the payment for agent i. For each agent i ∈ N, let also Θ i ⊂ [-1, 1] be a finite set of possible types for i. We let Θ = i∈N Θ i , and we note θ = (θ i) i∈N ∈ Θ for a type profile, which assigns a type θ i to each agent i. The type θ i of an agent i determines how she values each choice x ∈ X ; this is represented by a valuation function v

i : X × Θ i → [-1, 1].
In this section we assume that F contains the constant θ i and the function v i for each agent i and type θ i ∈ Θ i . We also assume that F contains the difference function -, the n-ary sum function , the equality function = and the comparison functions ≤, >, < and ̸ =. For readability we use the infix notation x -y. These functions are defined with the standard meaning. Finally, we assume that types, payments and valuations are normalized so that all values remain in [-1, 1].

A mechanism consists of a description of the agents' possible strategies, and a description of the alternatives that result from them. Similar to Chapter 5 3 , we can represent mechanisms as wCGS and verify their equilibrium outcome in relation to a number of economic properties. Definition 7.9. Let AP ⊇ {choice, pay i , terminal : i ∈ N}, where choice and pay i denote respectively the choice elected by the mechanism, and the payment of agent i. The proposition terminal specifies whether a position is terminal. A mechanism G is a wCGS over the atomic propositions AP that satisfies the following:

(i) every play eventually reaches a terminal position, i.e., a sink;

(ii) in all non-terminal positions, terminal has value -1.

Characterizing Properties with SL[F]

SL[F] can express a variety of important notions in mechanism design, such as strategyproofness, individual rationality, efficiency, budget-balance, Pareto optimality, and different kinds of game-theoretic equilibria (see Chapter 5). We recall the formulas for some of these notions. Let θ = (θ i) i∈N be a type profile in Θ.

First define util i (θ i) = def v i (choice, θ i) -pay i . This is an SL[F] formula, whose value in a terminal position is equal to the agent's utility, which she tries to maximize.

We recall that the SL[F] formula for encoding individual rationality is

IR(θ) = def i∈N 0 ≤ util i (θ i)
3 The definitions in this chapter are simplified since we do not encode imperfect information in the wCGS.

Synthesis for Mechanism Design 125

Similarly, efficiency is expressed as follows:

EF(θ) = def i∈N v i (choice, θ i) = maxv θ
where maxv θ = max x∈X i∈N v i (x, θ i) is a constant in F. In a terminal position, it means that the social welfare is maximal.

We also recall the SL[F]-formula that characterizes Nash equilibria:

NE(s, θ) = def i∈N ∀t. (N -i , s -i)(i, t)F(terminal ∧ util i (θ i)) ≤(N, s)F(terminal ∧ util i (θ i))
where s = (s i) i∈N is a profile of strategy variables.

The following formula maximizes the value of φ in the terminal positions of all Nash equilibria: Max-Nash(φ, θ) = def ∃s. NE(s, θ) ∧ F(terminal ∧ φ)

We now use these formulas to illustrate our approach to mechanism synthesis. To avoid detailing tie-breaking rules, in the examples we assume agents have distinct types, that is θ i ̸ = θ r for any r ̸ = i and θ ∈ Θ. Given an agent i, we let wins i ∈ (-1, 1] be a constant value denoting the choice in which i is the winner, with wins i ̸ = wins r for any r ̸ = i. We consider the choice set X = {wins i : i ∈ N} ∪ {-1}, where -1 specifies the case where there is no winner at the end of the game. In the examples we let each valuation function v i be defined as v i (θ i , x) = θ i if x = wins i , and v i (θ i , x) = 0 otherwise. That is, the valuation of an agent depends only on her type and whether she won.

Action-bounded Mechanisms

Action-bounded mechanisms are of great interest since the amount of resources available is often limited. For instance, the actions in a market could consist in bids representing discrete monetary values bounded by the participants' budget. Besides that, there are games where the available budget is limited due to fairness constraints, e.g., sports clubs negotiating the hiring of professional players. Furthermore, a number of mechanisms have small range of available actions. For instance, in the Dutch and Japanese auctions, players can only bid "accept" or "reject" in each turn. In this section, we illustrate the synthesis problem with such restriction by considering rules based on the Japanese auction.

Example 7.1. The Japanese auction is an ascending protocol in which the price is repeatedly raised by the auctioneer until only one bidder remains. The remaining bidder wins the item at the final price [START_REF] Klemperer | Auction theory: A guide to the literature[END_REF]. Let us fix a price increment inc > 0. There are only two possible actions, accept (acc) or decline (dec), so that the set B = {acc, dec} is indeed bounded. Furthermore, we let • In an initial position, the price starts at 0, the item is unsold and there is no winner or active bidder. That is, the initial positions is v ι = {⟨0, none, (-1, . . . , -1), -1⟩}.

• If the item is unsold, the transition function increases the price p as long as it is under 1 and there is at least one active bidder. If there is only one bidder, she is assigned as the winner. When the item is sold or the price reaches 1, the atomic propositions remain unchanged after the transition. Formally, for each position v = ⟨pr, buyer, θ 1 , . . . , θ n ⟩ and joint action a = (a i) i∈N , transition δ(v, a) is defined as follows:

-If s = -1 and p + inc ≤ 1, δ(v, a) = ⟨pr ′ , buyer ′ , θ 1 , . . . , θ n ⟩ where: It is straightforward to see that Rules J1-J8 are true in any position v ∈ V and assignment A. For J9, let π ∈ Hist be a history of length i. We show that there exists a strategy profile σ such that ∃s. NE(s, θ)∧F(terminal∧(IR(θ)∧EF(θ))) G jpn (π) = 1. For each agent i, let σ i be a strategy defined as follows: σ i (last(π)) = acc iff v i (wins i , θ i) ≥ ℓ(last(π), price) + inc; and σ i (v) = dec otherwise.

p ′ = p + inc winner ′ =        i if a i =
For seeing this strategy is a Nash equilibrium, let A be an assignment such that A(i) = σ i and A ′ be an assignment equal to A, except by the strategy associated to agent i (that is, A ′ (i) ̸ = A(i)).

The definition of G jpn ensures the agents utility can be different from zero only in terminal positions. Furthermore, as this value depends only on the immediately preceding position and action, we consider the agent's utility after each transition. Let θ = (θ i) i∈N be a type profile in Θ. If A ′ (i)(last(π)) = acc when v i (wins i , θ i) < ℓ(last(π), price) + inc, then Xutil i (θ i)

G jpn A ′ (π) ≤ 0 ≤ Xutil i (θ i) G jpn
A (π), since by doing the action acc the agent would be risking to get the item at a higher price than her valuation. Assume A ′ (i)(π) = acc and v i (wins i , θ i) < ℓ(last(π), price) + inc. By the definition of σ i , A(i)(last(π)) = dec then Xutil i (θ i) G jpn A ′ (π) ≤ 0 and Xutil i (θ i) G jpn A (π) = 0, since by doing the action acc the agent would be risking to get the item at a higher price than her valuation. Now consider the case in which A ′ (i)(last(π)) = dec and v i (wins i , θ i) ≥ ℓ(last(π), price) + inc. By definition, A(i)(last(π)) = acc. Thus, Xutil i (θ i) G jpn A ′ (π) = 0, while Xutil i (θ i) G jpn A (π) ≥ 0, since by doing the action dec the agent would not win the item, whereas doing the action acc could lead to winning at a price lower than her valuation. The other cases are proven similarly. Since no agent can improve her utility through a unilateral change of strategy, the strategy profile σ = (σ i) i∈N is a Nash equilibrium. Furthermore, no agent i following the strategy σ i can have a negative utility, since she chooses the action dec whenever the price would became higher than her valuation. From Rule J1, we have Fterminal G jpn (π). Finally, since the agents have distinct valuations, following σ would lead to a position in which the item is assigned to the agent who valuates it the most. If no agent had a valuation for winning the item grater than 0, no winner would be assigned and the social welfare would be 0. Thus, ∃s. NE(s, θ) ∧ F(terminal ∧ (IR(θ) ∧ EF(θ))) G jpn (π) = 1.

Such an optimal mechanism is produced by Algorithm 3.

Turn-based Mechanisms

The turn-based restriction captures asynchronous bidding behaviour, which is considered, for instance, for investigating the convergence of bidding strategies for sequential keyword auctions [START_REF] Cary | Greedy bidding strategies for keyword auctions[END_REF]. Additionally, in a number of mechanisms, such as picking sequences [START_REF] Bouveret | Manipulating picking sequences[END_REF] and circle auctions [START_REF] Schreiber | Game Balance[END_REF], agents play in turns. Hereby, we exemplify the synthesis of a turned-based mechanism. In this example we also show how Algorithm 3 can be used to maximize the social welfare.

Example 7.2. The English auction is an ascending auction in which the participants are allowed to outbid the last bidder by proposing a highest price. The auction ends when no agent is willing to raise the last bid. The highest bidder wins the item at her proposed price [START_REF] Nisan | Algorithmic Game Theory[END_REF].

In this specification, let us consider two agents, with N = {i 1 , i 2 }. We let -i denote the opponent of i ∈ N. Furthermore, we let Φ = {price, initial, choice i , bid i , turn i , pay i , terminal : i ∈ N}, where price denotes the current price, initial denotes whether the position is the initial one, turn i specifies whether it is i's turn and bid i specifies the value of i's bid.

The following SL[F]-formulae are a partial description of a two-player turnedbased variant of the English auction. Rule E1 says that proposition initial implies it is the turn of agent i 1 , the position is not terminal and the bids are zero. Rule E2 defines the price as the highest bid among the two players. Rule E3 specifies the turn taking. Rules E4-E6 specify the choice of winner: when an agent outbids her opponent, she is the (temporary) winner. If she bids lower, the game ends and the opponent wins. Finally, if someone bids 1, the auction ends and the winner is the player who had the turn. The value of formula E7 is the social welfare in the best NE for type profile θ.

E1. AG(initial → turn i 1 ∧ ¬turn i 2 ∧ ¬terminal ∧ i∈N (bid i = 0)) E2. AG(price = max(bid i 1 , bid i 2)) E3. AG ¬terminal → i∈N (turn i → ¬Xturn i ∧ ¬turn i → Xturn i) E4. AG ¬terminal → i∈N (bid -i < Xbid i ∧ turn i → Xchoice = wins i) E5. AG ¬terminal → i∈N (bid -i ≥ Xbid i ∧ turn i → X(choice = wins -i) ∧ terminal)

E6. AG i∈N (bid i = 1 ∧ turn i ∧ X(choice = wins i) ∧ terminal) E7. Max-Nash(i∈N v i (choice, θ i), θ)

Letting Σ eng (θ) be the conjunction of Rules E1-E7 alongside with the payment rules in Σ jpn (Rules J7-J8), we have: Proposition 7.3. There exists a wCGS-mechanism G eng such that Σ eng (θ) Geng = max x∈X i∈N v i (x, θ i), for each type profile θ ∈ Θ.

Proof. We construct a wCGS-mechanism G eng in which Σ eng has the satisfaction value equal to one, for any history and assignment. Let 0 > inc > 1 be a constant value and the action set be defined as B = {1 -x • inc : 0 ≤ x ≤ 1 inc ∪ {0}, where each action denotes the value the agent is willing to pay for the item. Let G eng = (B, V, δ, ℓ, v ι) over AP = {price, initial, choice i , bid i , turn i , pay i , terminal : i ∈ N}, where:

• V consists of positions of the form ⟨(b i) i∈N , own, winner, tr⟩ with b i ∈ B denoting the value of i's bid and own ∈ N specifying the owner of the position and tr ∈ {-1, 1} denoting whether the position is terminal;

• In an initial position, the bids are 0, i 1 has the turn and it is not a terminal position. That is, the initial position is v ι = {⟨(0, 0), i 1 , i 1 , -1⟩}.

• For each position v = ⟨(b i) i∈N , own, winner, tr⟩ and joint action a = (a i) i∈N , transition δ(v, a) is defined as follows:

- It is straightforward to see that Rules E1-E7 and Rules J7-J8 have the satisfaction value 1 for any history in Hist and assignment A.

Let θ ∈ Θ. The proof for Rule E7 proceeds similarly to the proof for Rule J9 (Proposition 7.2), by noticing the strategy profile in which the agents' raise their bid the minimum possible (up to their valuation) in each turn is a Nash equilibrium. Furthermore, since this equilibrium is efficient, Rule E7 will have the satisfaction value equal to the maximum social welfare, that is Σ eng (θ) Geng = max x∈X i∈N v i (x, θ i).

As a result, Algorithm 3 applied to θ∈Θ Σ eng (θ) returns a mechanism that satisfies all the rules E1-E7 and J7-J8, and in which the minimal social welfare in all possible type profiles is as high as possible.

Complexity

The synthesis problem in these examples can be solved in 3-Exptime. The complexity is dominated by Rules J9 and E7, which express the existence of NE. Without them the complexity would be in 2-Exptime. Most importantly, the complexity is only in the size of the formula, which is typically rather small.

Approximate mechanisms

The well-known results of [START_REF] Green | Incentives in public decision-making[END_REF] and [START_REF] Myerson | Efficient mechanisms for bilateral trading[END_REF] show the impossibility of defining mechanisms whose equilibrium is efficient while having strict balance of monetary transfers. These impossibility results motivate the design of mechanisms that attempt to circumvent this problem by approximating or relaxing target properties. The quantitative semantics of SL[F] and Algorithm 3 enable synthesizing mechanisms that approximate efficiency by maximizing social welfare.

Conclusion

We propose a novel approach for Automated Mechanism Design in which mechanisms can be automatically generated (or synthesized) from partial or complete specifications in a rich logical language. The great expressiveness of the specification language SL[F] makes our approach of automated synthesis very general, unlike previous proposals. Another advantage of our work is the use of formal methods techniques, which are developed to guarantee their correctness by construction. While mechanism synthesis from SL[F] specifications is undecidable, we solve it in two cases: when the number of actions is bounded, and when agents play in turn. We achieve this thanks to reductions to the satisfiability problem for BQCTL * [F], which we prove to be decidable. These two restrictions still preserve enough expressiveness to model relevant scenarios of mechanism synthesis, which we illustrate with examples based on auctions. The high complexity of the synthesis problem is only in the size of the formula, which is typically rather small as we saw in the examples.

The mechanism generated by Algorithm 3 does not need to be unique. The algorithm returns an arbitrary mechanism that maximizes the satisfaction value of the specification. Choosing the best mechanism (e.g., in terms of compactness of the wCGS) when the solution is not unique is an interesting open problem.

We also notice that some aspects of AMD could be expressed in SL with standard Boolean-valuated semantics. However, the quantitative semantics of SL[F] makes it possible to synthesise mechanisms that approximate a specification (satisfy it as much as possible), or maximize some value (such as social welfare in an equilibrium), which is not possible with SL.

Chapter 8

Conclusion

This thesis investigated an application of logics and strategic reasoning for Game Theory and Multi-Agent Systems. In particular, we propose the use of formal methods for the specification, design and evaluation of auctions-based markets and, more generally, preference aggregation mechanisms. In this final chapter, we summarize the contribution of each chapter and discuss perspectives for future work.

Summary of Contributions and Discussion

The first part of this thesis handled the problem of representing auctions using logical languages. In Chapter 2, we have presented the Auction Description Language (ADL), a unified framework for representing auction protocols. Our work is at the frontier of auction theory and knowledge representation. ADL provides tools for automated verification of properties for direct mechanisms. We showed how stages in a state transition model may represent direct mechanisms and be evaluated as such. The majority of properties that we considered (noting that at the evaluating a stage in an ST-model essentially boils down to model-checking ADL-formulae) can be checked in Ptime when the functions considered can be computed in polynomial time. Thus, ADL enables reasoning about important aspects for designing and playing auctions, while having a reasonable complexity cost.

ADL addresses important dimensions of auction-based markets and is general enough to represent most auction settings. In Chapter 3, we illustrated its usefulness by showing how to represent a number of representative auctions, which include features from single and multi-stage protocols, multiple items, multiple copies of those items and exchange protocols (which generalize double-sided auctions). We evaluate such protocols in relation to the well-formedness of their descriptions and the aforementioned properties of direct mechanisms.

In Chapter 4, we extended ADL to allow reasoning about knowledge and action choice. The resulting language (denoted ADLK), includes epistemic operators and action modalities and is aimed for the design of General Auction Players and the characterization of their rational behavior when reasoning about actions and other players' rationality. Since real world players may have time restrictions to decide their actions, we explore bounded rationality in relation to the level of higher-order knowledge about other agents and bounded looking-ahead beyond the next state. However, the inclusion of new operators came with a computational cost, as the model-checking problem for ADLK is in Exptime.

The main limitation of ADL is the semantics based on fixed paths, that is, non-alternating executions of an auction. This means it is not possible to encode through ADL-formulae conditions that compare the effect of different strategic behavior. An example of such condition is strategyproofness, where one should contrast the agents' utility after truthfully reporting her preference and after lying. Here, we demonstrated the use of meta-reasoning over the state-transition model for comparing alternative executions of an auction. Furthermore, evaluating indirect mechanisms requires capturing the terminal outcomes (that is, the final trades and payments) in strategic equilibrium. Complex solution concepts, such as Nash and dominant strategy equilibrium, cannot be encoded through ADL-formulae. Logics focused on strategic reasoning are more suitable for considering this problem (e.g., ATL with Strategy Contexts [START_REF] Brihaye | ATL with strategy contexts and bounded memory[END_REF] and SL [START_REF] Chatterjee | Strategy logic[END_REF]). Finding a balance between expressivity and complexity is an open question, as such expressive languages face decidability issues and high complexity for modelchecking (e.g., the satisfiability problem of SL is undecidable and its complexity for model-checking is NonElementary).

The second part of this thesis investigated strategic reasoning and formal methods for Automated Mechanism Design (AMD). Chapter 5 proposes the use of a strategic logic for the verification of mechanisms. The logic considered is a new variant of Strategy Logic with quantitative features, imperfect information and epistemic operators, that we called SLK [F]. We first showed how mechanisms can be cast as concurrent-game structures. We then showed how SLK[F] can express that a mechanism implements a social choice function, a fundamental concept in mechanism design. This then allowed us to express in SLK[F] whether a mechanism satisfies desired properties related to the expected behavior of the participants as well as to the quality of the chosen outcome. We illustrated this with a number of important properties often required in auctions, or more generally in mechanism design: strategyproofness, individual rationality, efficiency, budget-balance and Pareto optimality [START_REF] Nisan | Algorithmic Game Theory[END_REF]. We also considered epistemic aspects and showed how, thanks to the epistemic operators in SLK[F], we can express properties relating agents' revenues with their beliefs about other agents' preferences. Verifying that a mechanism satisfies a property then consists of model checking an SLK[F] formula, which we show can be done in Pspace for memoryless strategies (and is thus a Pspace-complete problem).

Still in the context of formal verification of auctions and mechanisms, in Chapter 6 we consider the problem of reasoning about strategies that are human-readable while also being machine processable. We introduced a quantitative semantics for SL with Natural Strategies and imperfect information (denoted NatSL[F]) and argued it provides a new perspective for the verification and design of novel mechanisms based on the complexity of strategies. First, we focused our attention on an interesting type of repeated mechanism: the keyword ad auction. We show how to model popular strategies for this game using NatSL[F] and proved properties pertaining to this game. In a second stage, we analysed our novel variant of SL in relation with its distinguishing power, expressivity, and complexity of the model 8.2. Perspectives and Future Work 135 checking problem, for natural strategies with and without recall. We proved that the model-checking problem for NatSL[F] is Pspace-complete and that NatSL[F] has incomparable distinguishing and expressive power to SL[F] with standard combinatorial strategies of arbritrary complexity. This means that NatSL[F] allows to express properties that cannot be captured in SL[F] (and vice-versa).

Finally, in Chapter 7 we proposed a new approach for AMD, which offers a novel perspective on the design of mechanisms. Our approach enables automatically generating optimal mechanisms from a quantitative logical specification, which may include not only game rules but also requirements over the strategic behavior of participants and quality of the outcome. We rephrased the AMD problem in terms of synthesis from SL[F] specifications. To solve this synthesis problem we investigated the related satisfiability problem for SL[F], which had not been studied so far. We show that, as for classic SL [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF] the problem is undecidable but can be solved in two cases: when the number of actions is bounded, and when agents play in turn. In both cases, we show that the complexity is not worse than the standard Boolean-valuated SL. We then illustrated the relevance of mechanism synthesis in these two cases with examples based on Auction Design. An advantage of this approach is that it can be used to approximate target properties and therefore minimize the effects entailed by economic impossibility results.

Perspectives and Future Work

There are many directions from this work that we believe would be worth investigating in the future. In most of this thesis, we put the emphasis on the auctioneer and mechanism designer. A first direction is to design a ADL-based general auction player that can interpret and reason about the rules of an auction-based market. In such case, search optimization techniques used for General Game Playing (see, for instance [START_REF] Finnsson | Generalized monte-carlo tree search extensions for general game playing[END_REF][START_REF] Wang | A search optimization method for rule learning in board games[END_REF]) may be adapted for considering utility optimization in auctions.

It is also an interesting line of work to develop the axiomatic system for ADL and prove its soundness and completeness with respect to the semantics based on state transition models. It would require a combination of techniques used for Epistemic GDL [START_REF] Jiang | Epistemic GDL: A logic for representing and reasoning about imperfect information games[END_REF] and first-order logic with dependent types [START_REF] Rabe | First-order logic with dependent types[END_REF].

In relation to AMD, the use of the probabilistic extension of SL [START_REF] Aminof | Probabilistic strategy logic[END_REF] would allow handling stochastic features often present in auctions. Going from deterministic setting to a more general and probabilistic one is challenging due to several aspects. First, the wide and heterogeneous range of settings considered in the literature obscures the path for a general and formal approach to verification. The setting may consider deterministic or randomized mechanisms, incomplete information about agents' types (Bayesian mechanisms), mixed or pure strategies and iterative protocols (indirect mechanisms). Second, considering Bayesian mechanisms brings out different methods for evaluating a mechanism according to the time-line for revealing the incomplete information as the game is run.

We studied the verification of mechanisms under memoryless combinatorial strategies and Natural Strategies with bounded recall. This setting is enough to capture many kinds of auctions (such as one-shot or English auctions) where memoryless strategies are sufficient to represent the bidders' behaviour since all the relevant information can be encoded in a state. However, when participating in repeated auctions, agents could gather information from other agents' behaviour and act based on what happened in previous instances of the game. An interesting direction is, then, to investigate the use of strategies with recall for learning other players' valuations based on their behavior. For such situations we can study the model-checking problem for SLK[F] with memoryful strategies. In the qualitative setting already, imperfect information yields undecidability, but known decidable cases exist [START_REF] Berthon | Strategy logic with imperfect information[END_REF][START_REF] Belardinelli | Verification of multi-agent systems with public actions against strategy logic[END_REF], which should be considered also in the quantitative case.

We believe the automated synthesis of mechanisms is a promising and powerful tool for AMD. However, the high expressiveness of SL[F] may not always be needed for simple classes of mechanisms, and one may consider fragments of it to achieve better complexity. Therefore, an interesting direction for future work is to study the complexity of synthesizing from SL[F]-fragments, inspired from the SL-fragments One-Goal SL [START_REF] Mogavero | Reasoning about strategies: on the satisfiability problem[END_REF][START_REF] Cermák | Verifying and synthesising multi-agent systems against one-goal strategy logic specifications[END_REF] and Simple-Goal SL (Belardinelli et al., 2019), for instance. These fragments are usually computationally easier than full SL, and we can hope that similar results can be established in the quantitative setting. On a related vein, we can study the translation of ADL to SL[F]-formulae, so as to include the auction description in the mechanism specification. In this setting, SL[F] formulae can be used to express requirements of well-formed auction descriptions.

The problems contemplated in this thesis are also worth investigating from an empirical perspective. One direction is to explore the interplay between agents' bounded rationality and the auctioneer revenue so as to understand the impact of bounded rationality on mechanism design. An implementation of a model checker for NatSL[F] would enable the empirical evaluation of natural strategies and auctions played by participants with restricted memory. Finally, experimental results could be used to assess the practical relevance of our proposed approaches, especially in relation to mechanism synthesis from SL[F] specification due to the high theoretical complexity of the problem.

 a legality relation, describing the legal actions at each state, we let L(w, i) = {β ∈ B | (w, i, β) ∈ L} be the set of all legal actions for agent i at state w; • U : W × B n → W is an update function, given d ∈ B n , let d i be the individual action for agent i in the joint action d;

Figure 3 . 1 :

 31 Figure 3.1: Simultaneous Ascending Auction represented by Σ sa

 2. M sa |= a∈B legal i (a). Let us start by verifying Statement 1. Remind start ∈ I ⪰0 and inc ∈ I ≻0 . Let δ be a path in M sa . In δ[0], π Y (δ[0], price) = start. By the update function, for any stage

Figure 3

 3 Figure 3.4: Vickrey-Clarke-Groves mechanism represented by Σ vcg

 2. M vcg |= a∈B legal i (a). Given a path δ in M vcg and a stage t of δ. Let us verify Statement 1. We show that M vcg |= initial → ⃝terminal. Assume M vcg , δ, t |= initial. Then, δ[t] = w. By the path definition, for any j ≥ 1, δ[j] ̸ = w. By the construction of T, we have T = W \ { w}. Thus, M vcg , δ, t + 1 |= terminal and M vcg , δ, t |= ⃝terminal.

 Proposition 3.5. M vcg ̸ |= ⃝SBB and M vcg ̸ |= ⃝WBB.

 r (⟨-1, a, -20, -10⟩) and does s (⟨1, a, 15, 25⟩)

 Proposition 3.8. M ice ̸ |= ⃝SBB and M ice |= ⃝WBB. Proof. (Sketch) Considering strong budget-balance, notice the path δ illustrated at Figure 3.7 is a counterexample. For instance, in the last stage we have M ice , δ, 3 |= sum i∈N (pay i) = 3 and thus M ice ̸ |= ⃝sum i∈N (pay i) = 0 and M ice ̸ |= ⃝SBB.

Proposition 4. 1 .

 1 Let M be an ET-Model, i ∈ N be an agent and φ ∈ L ADLK be a formula, then M |= φ → K i φ if and only if for all w, v ∈ W and all d, e ∈ i∈N A i such that (w, d) ≈ i (v, e), M |= (w,d) φ iff M |= (v,e) φ.

 ↔ price = starting ∧ i∈N ¬winner i 2. winner i → pay i = price, for each i ∈ N 3. ¬winner i → pay i = 0, for each i ∈ N 4. terminal ↔ sub(price, dec) < reserve ∨ i∈N winner i 5. ¬terminal ∧ price = x ∧ i∈N does(wait i) → ⃝(price = sub(price, dec) ∧ i∈N ¬winner i), for each x ∈ I 6. ¬terminal ∧ price = x ∧ does(bid i) ∧ s̸ =i,s∈N (¬does(bid s) ∨ i ≺ s) → ⃝(winner i ∧ s̸ =i,s∈N ¬winner s), for each x ∈ I and each i ∈ N 7. terminal ∧ y = x → ⃝y = x, for each y ∈ Y and each x ∈ I 8. terminal ∧ win → ⃝win, for each win ∈ {winner i , ¬winner i

Figure 4 . 1 :

 41 Figure 4.1: Dutch auction represented by Σ dut

Figure

 Figure 4.2: The utilities agents i and s consider possible to obtain when they are 1st-order rational

Figure 4 . 3 :

 43 Figure 4.3: The utilities agents i and s consider possible to obtain when they are 7th-order rational and M dut |= (2 ≤ ϑ s ≤ starting) ∧ (2 ≤ ϑ i ≤ starting)

 e., according to |W| × |B| n , where n = |N|). As Algorithm epistM odelCheck visits each subformula at most once, and the number of subformulas is not greater than the size of φ, the algorithm can clearly be implemented in O(|W| × |B| m), where m = |N| × |φ|. It follows that checking agent rationality is exponential in the quantity of agents, 70 Chapter 4. Actions, Knowledge and Rationality the order of rationality and how many rounds are considered. Corollary 4.1. Given an ET-model M, a state w ∈ W, a joint action d ∈ i∈N A i , an agent i, j > 0 and k > 0, the problem of checking whether M |= (w,d) Rat(i, k+1, j) is in O(|W| × |B| nkj), where n = |N|.

 Figure 5.1: Part of the mechanism for the Dutch auction with two agents and decrement dec = 13 . Terminal states are in red. We only represent one initial state and thus we omit types, which are the same in all states. Action bid is written b and wait is w. Finally, we did not represent ties (bid, bid) or loops.

 If s = 1, any b ≥ ℓ(v σ , pay s) does not change the outcome of the auction and (N

2.

 If m = 2, then FG(φ VCG (BB)) G GSP ,ir (v ι) = 1; m ≥ 3, then FG(φ VCG (BB)) G GSP ,ir (v ι) ̸ = 1.

 First, include the guarded actions (RBB i,1 (b), b) for each action b ∈ B. Second, include (RBB i,2 (b, s), b) for each b ∈ B and 1 < s ≤ m.

 i,s) : pr s ∈ B & al i,s ∈ {0, 1}}. The natural strategy representing balanced bidding with recall for agent i is denoted BBR i and is constructed as follows. First, include the guarded actions (BBR i,1 (ψ, b), b) for each action b ∈ B and condition ψ ∈ Ψ. Second, include (BBR i,2 (ψ, b, s), b) for each ψ ∈ Ψ, b ∈ B and 1 < s ≤ m. Third, include (BBR i,3 (ψ, b), b) for each action b ∈ B. Fourth, include (BBR i,4 (b, s), b) for each b ∈ B and 1 < s ≤ m. Finally, the last guarded action is (⊤*, 0).

Lemma 7. 3 (

 3 [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF]). Let V ⊂ [-1, 1] be a finite set of values with {-1, 1} ⊆ V and let φ be anSL[F] sentence. The set Val φ,V = { φ G | G is a V-weighted wCGS} is finite, and one can compute a set Val φ,V of size at most |V| |φ| such that Val φ,V ⊆ Val φ,V . Algorithm 3 synthesis(Φ, V) Input: a SL[F] specification Φ and a set of possible values for atomic propositions V.

-

 acc and a r = dec for all r ̸ = i Otherwise, δ(v, a) = v.• For each v = ⟨pr, buyer, θ 1 , . . . , θ n ⟩ and each i ∈ N, the weight function is defined as follows:ℓ(v, price) = p, ℓ(v, choice) = wins winner iff winner ̸ = none and ℓ(v, wins i) = -1 otherwise,ℓ(v, bid i) = b i , ℓ(v, sold) = s, ℓ(v, initial i) = 1 iff v = v ι and ℓ(v, initial i) = -1 otherwise,ℓ(v, pay i) = p iff wins i = winner and ℓ(v, pay i) = 0 otherwise, and ℓ(v, terminal i) = 1 iff s = -1 and p + inc ≤ 1 and ℓ(v, terminal i) = -1 otherwise.

 If tr = -1, δ(v, a) = ⟨(b ′ i) i∈N , own ′ , winner, tr ′ ⟩ where: a own , b -own) = 1 or a own ≤ b -own -1 otherwise -Otherwise, δ(v, a) = v. • For each v = ⟨(b i) i∈N ,own, winner, tr⟩ and each i ∈ N, the weight function is defined as follows:ℓ(v, price) = max(b i 1 , b i 2), ℓ(v, initial i) = 1 iff v = v ι and ℓ(v, initial i) = -1 otherwise, ℓ(v, choice) = wins winner , ℓ(v, bid i) = b i , ℓ(v, turn i) = 1 iff own = i and ℓ(v, turn i) = -1 otherwise,ℓ(v, pay i) = ℓ(v, price) iff wins i = winner and ℓ(v, pay i) = 0 otherwise, and ℓ(v, terminal i) = tr.

 It is routine to check that M sa is actually an ST-model. Given a path δ, any stage t of δ in M sa , we need to show that M sa , δ, t |= φ, for each φ ∈ Σ sa . Let us verify Rule 1. Assume M sa , δ, t |= initial iff δ[t] = w. By the definition of w, π Φ and π Y , we have π Y

3.1. M sa is an ST-model and it is a model of Σ sa .

Proof.

(Sketch)

 Input: an ET-model M = (W, W ι , T, {R i } i∈N , U, π Φ , π Y), a state w of W, a joint action d ∈ i∈N A i and a formula φ ∈ L ADLK .

	4.3. Model Checking	69
	Algorithm 2 epistM odelCheck(M, w, d, φ)
		Output: true if M |= (w,d) φ, and false otherwise
	1: S ← Sub(φ) ordered by ascending length
	2: Let isT rue[1, . . . , |φ|] be a boolean array initiated with true values
	3: for i ← 1 to |φ| do
	4:	φ ← S[i]
	5:	switch the formula type of φ do
	6:	case φ is of the form φ ′ ∧ φ ′′
	7:	isT rue[i] ← isT rue[getIndex(S, φ ′)] ∧ isT rue[getIndex(S, φ ′′)]
	8:	case φ is of the form ¬φ ′
	9:	
	10:	case φ is atomic
	11:	

and ψ is a subformula of φ; or (iii) φ is of the form φ ∧ φ ′ and ψ is a subformula of either φ or φ ′ . Denote Sub(φ) as the set of all subformulas of φ. Theorem 4.2. The following problem is in O(|W| × |B| m), where m = |N| × |φ|: Given an ET-Model M, a state w ∈ W, a joint action d ∈ i∈N A i and a formula φ ∈ L ADLK , determine whether M |= (w,d) φ or not. Proof. Algorithm 2, named epistM odelCheck, works in the following way: first it gets all subformulas of φ and orders them in a vector S by ascending length. Thus, isT rue[i] ← ¬isT rue[getIndex(S, φ ′)]

 For each agent i, slot s ∈ S and state v = ⟨al 1 , . . . , al m , pr 1 , . . . , pr m , (vl i) i∈N ⟩, the weight function is defined as follows:

	pr s =	a ranka(s+1) if s + 1 ≤ n 0 otherwise
	•	
		al ′ m , pr ′ 1 , . . . , pr ′ m , (vl i) i∈N ⟩, where for each
	agent i and slot s,	
	al s =	rank a (s) if s ≤ n none otherwise

 Theorem 6.1.NatSL[F] and SL[F] have incomparable distinguishing power over the class of pointed wCGSl (in both ir and iR semantics). NatSL[F] and SL[F] have incomparable expressive power over the class of pointed wCGSl (in both ir and iR semantics).

	Corollary 6.2.

 this section we show that the model checking problem for NatSL[F] with imperfect information is no harder than model checking LTL or classic SL with memoryless agents. First of all, we define formally the quantitative model-checking problem for NatSL[F]. Given ρ ∈ {ir, iR}, the model-checking problem for NatSL[F] consists in deciding, for a given sentence φ, wCGSl G, state v ∈ V and predicate P ⊆ [-1; 1], whether φ G,ρ (v) ∈ P .

	Definition 6.6.

Now, we have all the ingredients to prove the following result. Theorem 6.2. Assuming that functions in F can be computed in polynomial space, model checking NatSL[F] with imperfect information, natural strategies with recall, and k as parameter of the problem is Pspace-complete.

 to store the current strategy and the current maximum value computed. For f (φ 1 , . . . , φ m) G,ρ A (v), by assumption f is computed in polynomial space. For XφG,ρ A (v), we only need to observe that the next state in Out(v, A) is computed in constant space.

	O(|k| • |B|)
	Thus, each
	strategy can be stored in O(k • |Act|) and, by consequence, any assignment can be
	stored in space O((|Ag| • |free(φ)|) • (k • |Act|)).
	Now, we can analyse the recursive function. For the base case, p G,ρ A (v) can
	be computed in constant space via the weight function. For strategy quantifi-
	cation ∃s ≤k i . φ G,ρ A (v), besides the recursive call to φ G,ρ A[s →σ] (v) we need space

Notice f (.) may be 0-ary.

For instance, assume the bid β ="buy one apple for 2€ or two for 3€". We can define a bid value function vi(β, λ) such that the bid vi(β, λ) = 2 when λ i,apple = 1 and vi(β, λ) = 3 when λ i,apple = 2. Other examples are given in the next chapter.

A winner determination function is shown in Section 3.2.1.2 and the protocol presented in Section 3.1 has the market clearing represented through L ADL -rules.

Quasilinearity of utilities refers to the fact that the utility function is a linear combination of the preference valuation function and the price paid by the agent. However, the preference function ϑi itself can be general.

3.1. Simultaneous Ascending Auction

We denote by ⌊x⌋ the greatest integer less than or equal to x ∈ R and ⌈x⌉ the least integer greater than or equal to x ∈ R.

Also known as the logic of "Seeing to it That", first proposed by[START_REF] Belnap | Seeing to it that: A canonical form for agentives[END_REF].

The supremum of a set is its least upper bound and the infimum is its greatest upper bound.

The meaning of a type depends on the problem being considered and it should not be necessarily understood in the numerical/ordinal sense. We assume the sets of possible types are finite, as done in the literature[START_REF] Sandholm | Automated mechanism design: A new application area for search algorithms[END_REF].

A sink is a position that loops for all action profiles.

"[Model checking] is mainly appropriate to control-intensive applications and less suited for data-intensive applications"(Baier and Katoen,

2008, p. 15).

As usual in the verification process, we denote imperfect recall with r, perfect recall with R, imperfect information with i, and perfect information with I.

Note that, we considered the case in which the condition have the same length of the history. There is also the case in which the condition is shorter than the history. This is due to the usage of the finite iteration operator. In the latter case, we need to check a finite number of times the same weighted epistemic formula in different states of the history. For more details on this aspect see(Jamroga et al., 2019a,b).

Cf.,e.g.,[START_REF] Wang | On expressive power and class invariance[END_REF] for a detailed discussion of standard notions of expressivity.

Note that, as defined in Section

6.2, we consider only complete assignments. Thus, we can assume that a strategy is assigned for each agent.

i.e., for all s ∈ S, there exists s ′ such that (s, s ′) ∈ R.

Acknowledgments

Abbreviations Chapter 6. Mechanisms and Natural Strategies

Now we define each guarded condition in BBR i . If the current allocation and payments have already happen in the past, i plays according to the restricted bidding strategy:

If there was no repetition on the payments and slot allocation, she plays according to the balanced bidding strategy:

When all agents follow the strategy profile BBR = (BBR i) i∈N , the game converges to the VCG equilibrium outcome. Proposition 6.6. For any initial state v ι ∈ V ι , state v ∈ V , and 1 < x ≤ n, the following holds, where v = (ℓ(v, ϑ i)) i∈N :

Proof sketch. Statement (1) follows from Propositions 6.3 and 6.4. Statement (2) is proven by contradiction. Assume the game does not converge to the VCG equilibrium outcome. Let A be an assignment and π = Out(v ι , A) be the play starting in v ι and follows the strategies assigned by A. Since G GSP has finitely many states, there exist two indices g < l such that π g = π l . Thus, for every ψ ∈ Ψ, ψ G GSP ,iR (π g) = ψ G GSP ,iR (π l). Then, the game proceeds according to RBB strategy. That is, for any index j ≥ l and agent i, act match(π l ,BBR i) = act match(π l ,RBB i) .

From Proposition 6.4, it follows that FG(φ VCG (BBR)) G GSP ,iR

When other agents are inactive (i.e., they repeat their last action), if BBR i selects a different bid from the one assigned by RBB i , the utility of i in the next state is greater under BBR i . Proposition 6.7. Let ρ ∈ {ir, iR} and v = δ(v ′ , a), for some state v ′ ∈ V and action profile a = (a) i∈N . Given an agent i ∈ N, let σ ρ -i = (σ ρ r) r∈N -i be a ρstrategy profile, where the strategy σ ρ r of agent r is such that

Proof sketch. Assume the actions assigned by BBR i and RBB i are different, that is,

A

(v) = 1 for some slot s > 1. Notice that RBB i selected the action act match(v,RBB i) that 110 Chapter 6. Mechanisms and Natural Strategies

1 is obtained by fixing p to hold only in q 1 , q ′ 1 . Underscore fits any action label

In other words, if there is a formula of L 1 discerning M from M ′ , then there must be also a formula of L 2 doing the same. Definition 6.5 (Expressive power of real-valued logics). L 2 is at least as expressive as L 1 (written: L 1 ⪯ e L 2) iff for every φ 1 ∈ L 1 there exists φ 2 ∈ L 2 such that, for every model M ∈ M, we have φ 1

In other words, every formula of L 1 has a translation in L 2 that produces exactly the same truth values on models in M.

It is easy to see that L 1 ⪯ e L 2 implies L 1 ⪯ d L 2 . Thus, by transposition, we also get that

In the remainder, M is the class of pointed weighted games, i.e., pairs (G, v) where G is a wCGSl and v is a state in G.

Expressivity of NatSL[F] vs. SL[F]

NatSL[F] and SL[F] are based on different notions of strategic ability. The former refers to "natural" strategies, represented as mappings from regular expressions over epistemic formulas to actions. The latter uses "combinatorial" strategies, represented by mappings from sequences of states to actions. Each natural strategy can be translated to a combinatorial one, but not vice versa. Consequently, SL[F] can express that a given coalition has a combinatorial strategy to achieve their goal (which is not expressible in NatSL[F]). On the other hand, NatSL[F] allows expressing that a winning natural strategy does not exist (which cannot be captured in SL [F]). Now we show that NatSL[F] allows to express properties of MAS that cannot be captured in SL [F], and vice versa. Proposition 6.8. NatSL[F] ̸ ⪯ d SL[F] in both ir and iR semantics.

Expressivity 111

Proof sketch. Consider model G 1 in Figure 6.1, with agents N = {1, 2}, actions

available at all positions, and propositions AP = {p, win}. Both propositions are qualitative (that is, the propositions have only values in {-1,1}). For each proposition, the states where it evaluates to 1 are indicated; otherwise its truth value is assumed to be -1. The outgoing transitions in q ′ 1 , q ′′ 1 (resp. q ′ 2) are exact copies of those at q 1 (resp. q 2). Moreover, model G ′ 1 is obtained by fixing proposition p to hold only in q 1 , q ′ 1 , but not in q ′′ 1 . As all the propositions are qualitative, formulas of NatSL[F] and SL[F] evaluate to -1 or 1. Note also that the sets of ir and iR strategies in each model coincide, so we can concentrate on the ir case w.l.o.g.

Let G †σ denote the model obtained by fixing the (memoryless) strategy σ in G. In order to prove that (G 1 , q 0) and (G ′ 1 , q 0) satisfy the same formulas of SL[F], it suffices to observe that:

1. For every strategy σ 1 of agent 1 in G 1 , there is σ ′ 1 in G ′ 1 such that agent 2 has the same strategic abilities in (G ′ 1 †σ 1 , q 0) and (G ′ 1 †σ 1 , q 0) (and vice versa). For instance, playing c 1 in G obtains the same abilities of 1 as playing a 1 in G ′ .

2. Analogously for strategies of agent 2, e.g., strategy

On the other hand, the formula

in both ir and iR semantics.

Proof sketch. Consider models G 2 and G ′ 2 in Figure 6.2. They have isomorphic action/transition structures, the only difference being the indistinguishability of states q 1 , q 2 in G ′ 2 (but not in G 2). Since the two states have the same valuations of Chapter 7

Synthesis of Mechanisms

In the spirit of the long-established logical approach to systems verification [START_REF] Clarke | Model checking[END_REF] and synthesis [START_REF] David | Program synthesis: challenges and opportunities[END_REF], in this chapter we propose a new approach to Automated Mechanism Design (AMD). More precisely, we show how AMD can be rephrased as a synthesis problem where mechanisms are automatically synthesized from a partial or complete specification in a high-level logical language. We solve the problem in two cases: when the number of actions is bounded, and when agents play in turn.

We consider Quantitative Strategy Logic (SL[F]) [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], which allows for specifications that contain constraints on mechanism properties (for instance, the efficiency and budget-balance). Its quantitative semantics, with satisfaction values that reflect how well a model satisfies a formula, also allows us to investigate the constructions of mechanisms that approximate such properties, which is not possible with standard Strategy Logic (SL) [START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF].

Unlike Chapter 5, in which we consider strategies without memory, we consider strategies with perfect recall, as in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF]. The main reason is that for memoryless strategies satisfiability, and thus synthesis, is undecidable already for SL, even for bounded actions or turn-based systems [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF]. Considering perfect recall strategies means that the systems we synthesize satisfy the strategic aspects of the specification assuming that agents' actions can depend on the past. For similar reasoning, we restrict our attention to wCGS with perfect information (in opposition to the imperfect information setting considered at Chapters 5-6). Let Φ be a BQCTL * [F] formula and ε > -1 a threshold. Let also Φ be the corresponding formula on structures with binary branching, and φ 2 = ¬p int ∧AGF¬p int . Consider also function Bool such that Bool(x) = 1 if x ∈ {-1, 1}, and -1 otherwise, which we use to check that propositions take only Boolean values -1 or 1. We can prove the following: Lemma 7.2. There exists a (finite) wKS S such that Φ S ≥ ε if and only if there exists a regular binary tree t such that AGBool(p int) ∧ φ 2 ∧ Φ t ≥ ε.

Quantitative Strategy Logic

It is shown in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF] that we can build an automaton A that accepts binary trees t on which the satisfaction value of AGBool(p int) ∧ φ 2 ∧ Φ belongs to [ε, 1] (we refer to (Pin, 2021, Chapter 8) for standard definitions and results on tree automata). The number of states of the automaton is (k + 1)exponential in the nesting depth of the formula, and its index k-exponential. From Lemma 7.2 and the fact that every regular tree language contains a regular tree it follows that A is nonempty if and only if there exists a finite wKS S such that Φ t ≥ ε. The emptiness of A can be tested in time polynomial in the number of states and exponential in the index. The overall complexity is thus (k + 1)exponential in time.

Decidable Cases for SL[F] Satisfiability

In the qualitative setting, satisfiability of ATL with strategy context and SL are known to be decidable in two cases: when the number of possible actions is bounded, and when agents play in turns. With respect to bounded actions, we call B-wCGS a wCGS whose set of actions is B. Concerning turn-based systems, intuitively a wCGS is turn-based when in every position there is a unique agent who can determine the next position by the choice of its action. Formally, a wCGS G = (B, V, v ι , δ, ℓ) is turn-based if for every position v ∈ V there exists a unique agent i such that for every successor v ′ ∈ {δ(v, a) | a ∈ B N } there is an action a such that δ(v, a) = v ′ for all joint actions a where a i = a. We call owner of a position the agent that can choose the successor.

We show that, as for SL, the satisfiability problem for SL[F] is decidable when the number of actions is bounded (a priori) or systems are turn-based, if in addition we restrict to models in which atomic propositions take values in a given finite set of possible values. Remind we consider a finite model, which has a finite (and thus bounded) number of actions. However the set of all finite models contains models with arbitrarily large sets of actions. The bound on the number of actions is put on the set of models considered for the satisfiability problem. Given a set V ⊆ [-1, 1] of possible values with {-1, 1} ⊆ V, we call V-weighted wCGS a wCGS whose weight function takes values in V. Φ = {price, sold, initial, choice, bid i , pay i , terminal : i ∈ N}, where price denotes the current price, initial denotes whether the position is the initial one, sold specifies whether the item was sold, and bid i specifies whether i is an active bidder.

The following SL[F]-formulae are a partial description of a mechanism, inspired by the Japanese auction. Similar rules for encoding auctions through ADL can be seen in Chapter 3. Rule J1 says that proposition initial implies the position is not terminal and the price is zero. Additionally, the auction will eventually reach a position in which terminal will be true and that proposition initial can only be true in the initial position. Rule J2 says the good is sold whenever the proposition choice does not have the value -1. Rules J3-J4 specifies the price update. Rule J5 chooses a player as the winner if she is the only one bidding for the item. When no agent can be chose as the winner, the choice is -1 (Rule J6). Rules J7-J8 specify the payment for each agent, which is either equal to the price or zero, depending on whether the agent won the auction. Rule J9 specifies that for all type profiles there should exist a NE whose outcome is IR and EF.

J1. AG((initial

We denote by Σ jpn the conjunction of Rules J1-J9. Algorithm 3 constructs a wCGS that maximizes the satisfaction value of Σ jpn . We show that this value is 1, meaning that there exists a mechanism that is individually rational and efficient for some Nash equilibrium, for all type profiles.

Proposition 7.2. There exists a wCGS-mechanism

Proof. We construct a wCGS-mechanism G jpn in which Σ jpn has the satisfaction value equal to one, for any position and assignment.

Let G jpn = (B, V, δ, ℓ, v ι) over AP = {price, sold, initial, wins i , bid i , pay i , terminal : i ∈ N}, where:

• V consists of positions of the form ⟨pr, buyer, θ 1 , . . . , θ n ⟩ with p ∈ {0 + x • inc : 0 ≤ x ≤ 1 inc } denoting the current price, winner ∈ N ∪ {none} denoting the current winner, b i ∈ {-1, 1} specifying whether i is an active bidder, and s ∈ {-1, 1} specifying whether the item was sold.

Complexity classes

Let us recall some classical notations in the theory of computational complexity. For all k, n ∈ N, we first define the iterated exponential functions exp 0 (n) = n and exp k+1 (n) = 2 exp k (n).

By Ptime (respectively, NP) we denote the class of languages (i.e., decision problems) decidable in polynomial-time deterministic (respectively, nondeterministic) Turing machines. ∆ P 2 denotes the class of languages each of which is decidable in a polynomial-time deterministic Turing machine with a polynomial number of queries to an NP language as an oracle.

We note Pspace (respectively, Expspace) for the class of problems solvable in polynomial space (respectively, exponential space), and for each k ∈ N, we let k-Exptime be the class of problems that can be solved in time exp k+1 (n) for some constant c ∈ N (where n is the size of the input).

We also define the class Elementary of elementary problems, where:

If a problem is decidable but not elementary it is NonElementary.

Appendix B

Satisfiability of BQCTL * [F]

We now present the full proof for the satisfiability of BQCTL * [F].

Additional definitions

A tree t = (τ, ℓ) is complete if for all node u ∈ τ and direction d ∈ X, we have u • d ∈ τ . Given a V AP -labeled X-tree t = (τ, ℓ), we let t = (τ , ℓ) be the only

, and for all u ∈ τ \ τ , ℓ(u) = {•}, where • is a fresh symbol that labels artificial nodes added to make the tree complete. Similarly, every V AP ∪ {•}-tree t induces a unique V AP -tree t obtained by removing each subtree rooted in a node labeled with •.

We refer the reader to (Pin, 2021, Chapter 8) for standard definitions and results for automata on infinite trees.

Reduction to binary branching

We first show that the satisfiability problem for BQCTL * [F] in finite structures can be reduced to the same problem restricted to structures with binary branching. The proof is a simple adaptation to the quantitative setting of the one in [START_REF] Laroussinie | Quantified CTL: expressiveness and complexity[END_REF] for QCTL * . We sketch the proof, and refer the reader to [START_REF] Laroussinie | Quantified CTL: expressiveness and complexity[END_REF] for details.

For every wKS S we can define a wKS S with binary branching that simulates wKS: for each state of S with k successors, S contains a binary tree with k leaves, one for each successor. Internal nodes are dummy nodes, labelled with a fresh atomic proposition p int . More precisely, p int has value 1 in internal nodes, and -1 in normal states of S. Now for every formula φ ∈ BQCTL * [F] we can define inductively a formula φ such that φ S = φ S . We only give the inductive case for temporal operators, all other cases distribute over the operators:

We have the following: Let nd(φ) be the maximal number of nested quantifiers on propositions in φ. The following result was established in [START_REF] Bouyer | Reasoning about Quality and Fuzziness of Strategic Behaviours[END_REF], for the tree semantics of BQCTL * [F]: Proposition B.1. Let V ⊂ [-1, 1] be a finite set of values such that {-1, 1} ⊆ V, and let D be a finite set of directions. For every BQCTL * [F] state formula φ and predicate P ⊆ (-1, 1], one can construct an APT A V,P φ over (V AP ∪ {•})-trees such that for every V AP -labeled D-tree t, A V,P φ accepts t if and only if φ t ∈ P.

The APT A V,P φ is of size at most (nd(φ) + 1)-exponential in |φ|, and its index is at most nd(φ)-exponential in |φ|.

From this result we obtain that satisfiability of BQCTL * [F] formulas is decidable.

Theorem B.1. The satisfiability problem for BQCTL * [F] is nonelementary decidable. For formulas of nesting depth at most k, the problem is (k + 1)-Exptimecomplete.

Proof. The lower bounds are inherited from the satisfiability problem for QCTL * [START_REF] Laroussinie | Quantified CTL: expressiveness and complexity[END_REF]. The reduction is direct with threshold ε = 1.

For membership, let Φ be a BQCTL * [F] formula and ε > -1 a threshold. Let Φ be the corresponding formula on structures with binary branching, and let φ 2 = ¬p int ∧ AGF¬p int .

Lemma B.2.

There exists a (finite) wKS S such that Φ S ≥ ε if and only if there exists a regular binary tree t such that AGBool(p int) ∧ φ 2 ∧ Φ t ≥ ε.

Proof. If there exists S such that Φ S ≥ ε, then by Lemma B.1 Φ S ≥ ε. Also by construction we have AGBool(p int) S = 1 and φ 2 S = 1, so that AGBool(p int) ∧ φ 2 ∧ Φ t ≥ ε, where t = t S is the regular tree obtained by unfolding S.

For the other direction assume there exists a regular binary tree t such that AGBool(p int) ∧ φ 2 ∧ Φ t ≥ ε. There exists a wKS S ′ with binary branching of which t is the unfolding. Since ε > -1 and AGBool(p int) ∧ φ 2 can only take values 1 or -1, we have that AGBool(p int) ∧ φ 2 S ′ = 1. It follows that Φ S ′ ≥ ε and that S ′ = S for some S. By Lemma B.1 we have that Φ S = Φ S ≥ ε.

Now from Proposition B.1 with P = [ε, 1] and φ = AGBool(p int) ∧ φ 2 ∧ Φ we can build an automaton A over (V AP ∪ {•})-labeled binary trees such that for every V AP -labeled binary tree t, A accepts t if and only if Φ t ≥ ε. From Lemma B.2 and the fact that every regular tree language contains a regular tree it follows that A is nonempty if and only if there exists a finite wKS S such that Φ t ≥ ε. The emptiness of A can be tested in time polynomial in the number of states and Appendix C

Published work

The work presented in this thesis is based on the following publications: