
HAL Id: tel-04082245
https://hal.science/tel-04082245v1

Submitted on 25 Apr 2023 (v1), last revised 26 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Probing few and many-body physics in a planar Bose
gas: atom-dimer interactions and zero-temperature

superfluid fraction
Chloé Maury

To cite this version:
Chloé Maury. Probing few and many-body physics in a planar Bose gas: atom-dimer interactions and
zero-temperature superfluid fraction. Quantum Gases [cond-mat.quant-gas]. Sorbonne Université,
2023. English. �NNT : �. �tel-04082245v1�

https://hal.science/tel-04082245v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Laboratoire Kastler Brossel Collège de France
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préparée par
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et présidé par Chiara Fort.
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Abstract

Dimensionality plays an important role in physical systems. A gas of ultracold atoms con-
fined in a two-dimensional geometry has very different thermodynamic properties from those
observed in a three-dimensional gas. In this thesis, we present experiments performed on a
gas of ultracold bosons trapped in two dimensions and interacting weakly with each other.
First, we describe this system with a mean-field approach and present the experimental setup
that allows us to study it. Then, we describe two experiments dealing with two distinct top-
ics, both conducted in the superfluid regime at near zero temperature. We first describe the
creation of dimers by microwave-induced photoassociation of atoms trapped in a flat-bottom
potential. This experiment allows us to characterise the interaction potential of our atomic
species, rubidium 87. We also characterise the interactions between the dimers created and
the bath of free atoms. In a third part, we impose a breaking of translational invariance
on our zero-temperature gas of bosons by creating a spatially modulated potential in one
of the two directions of the atomic cloud. We show with two distinct measurements that
the superfluid density, equal to the total density for a homogeneous gas, decreases when the
translational invariance is broken. We measure the sound velocity in the direction parallel
and perpendicular to the spatial modulation on the one hand, and estimate the superfluid
fraction according to a definition introduced by Leggett in 1970 on the other hand. We then
observe a superfluid fraction which decreases as the modulation amplitude increases.

Résumé

La dimensionnalité joue un rôle important dans les systèmes physiques. Un gaz d’atomes
froids confiné dans une géométrie à deux dimensions a des propriétés thermodynamiques
très différentes de celles observées dans un gaz à trois dimensions. Dans cette thèse, nous
présentons des expériences réalisées sur un gaz de bosons ultra-froids confinés à deux di-
mensions et interagissant faiblement entre eux. Dans un premier temps, nous décrivons ce
système avec une approche de champ moyen et nous présentons le dispositif expérimental
qui nous permet de l’étudier. Ensuite, nous décrivons deux expériences traitant deux sujets
distincts, toutes deux menées dans le régime superfluide à température quasi-nulle. Nous
commençons par décrire des expériences de création de dimères par photoassociation induite
par la radiation d’un champ micro-ondes sur des atomes piégés dans un potentiel à fond
plat. Cette expérience nous permet de caractériser le potentiel d’interaction de notre espèce
atomique, le rubidium 87. Nous caractérisons aussi l’interaction entre les dimères créés et
le bain d’atomes libres. Dans une troisième partie, nous imposons une brisure d’invariance
par translation à notre gaz de bosons à température nulle en créant un potentiel spatiale-
ment modulé dans une des deux directions du nuage atomique. Nous montrons par deux
mesures distinctes que la densité superfluide, égale à la densité totale pour un gaz homogène,
décrôıt lorsque l’invariance par translation est brisée. Nous mesurons la vitesse de son dans
la direction parallèle et perpendiculaire à la modulation spatiale d’une part, et nous estimons
la fraction superfluide d’après une définition introduite par Leggett en 1970 d’autre part.
Nous observons alors une fraction superfluide qui décrôıt lorsque l’amplitude de modulation
augmente.
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Introduction

Over the past three decades, quantum gases have become an essential platform for the
study of quantum phenomena that are observable only at low energy scales. Atomic cooling
techniques now make it possible to bring the temperature, and hence the energy, of dilute
atomic assemblies down enough so that their de Broglie wavelength becomes of the order
of the interatomic distance. Reaching this so-called quantum degeneracy with bosonic
particles allowed to study Bose-Einstein condensation: a state of matter characterised by
the accumulation of particles in their ground state, predicted in 1925 by Einstein for ideal
Bose gases [1]. The first three-dimensional gaseous Bose-Einstein condensates were observed
in 1995 with alkali atoms [2–4]. Remarkably, atoms in three-dimensional cold dilute gases
experience weak interactions which do not prevent the emergence of a large condensate
fraction. This contrasts with cold liquid helium where, despite the presence of a superfluid
phase, strong interactions limit the condensate fraction to a few percent of the whole system,
even at zero temperature [5–7].
As a macroscopic fraction of the atoms occupy the lowest energy state, Bose-Einstein
condensates are well described by a single macroscopic wave function. Interactions in dilute
gases can be described quantitatively using a mean-field approach, i.e. by considering their
average effect. In this context, the behaviour of the macroscopic wave function is captured
by a non-linear Schrödinger equation, also known as the Gross-Pitaevskii equation. The
first observations of Bose-Einstein condensates led to numerous experiments to characterise
their main features [8]. Among the first experiments, their wave-like properties has been
experimentally proved via the observation of interferences between two condensates [9] and
the existence of long-range coherence was also probed [10].
Quantum degeneracy was also reached for Fermi gases [11–13]. In this case, there is no
condensation as it would violate Pauli principle but the emergence of a so-called Fermi sea,
where the atoms occupy the lowest energy states.

Although dilute cold gases were initially limited to short-range and weak interactions,
researchers soon found a way to overcome both those limitations. On the one hand, the
production of Bose-Einstein condensates with atomic species of large magnetic moment
experiencing magnetic dipole-dipole interactions, as chromium, erbium or dysprosium, has
made long-range interactions available for cold atom experiments [14, 15]. Long-range
interactions have also been implemented using Rydberg excitations and cavity-mediated
excitations [16,17]. On the other hand, the strength of short-range interactions can be tuned
thanks to Fano-Feshbach resonances [18,19]. These resonances exist for bosons and fermions
and they allowed to eventually reach the strongly-interacting regime [20,21], with attractive
and repulsive interactions. For instance, the crossover from a Bose-Einstein condensate
of weakly bound molecules to a superfluid of Cooper pairs was observed in Fermi gases
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by tuning the interaction strength [22, 23]. Using Fano-Feshbach resonances also allows
to study quantum gases in the so-called unitary regime, where the s-wave interactions are
described by a scattering length a larger than the interparticle distance. This regime is
particularly interesting for studying few-body physics as the corresponding eigenstates show
universal features. For instance, Fermi gases close to unitarity show a universal relation
between the atom-atom scattering length and the atom-dimer scattering length. On the
other hand, in the case of bosons, this regime is the birthplace of the Efimov effect which
predicts the presence of an infinite number of three-body bound states [24]. Outside the
unitary regime, few-body interactions has been mostly studied through inelastic collisions
and atom-exchange reactions. The existence of a Van der Waals universality for atom-dimer
interactions remains an open question that we will address later in the manuscript.
The cold atoms toolbox was also enlarged by the ability to tune the potentials that the
atoms feel. For instance, advances in lasers and optics made possible the loading of ultracold
atoms in optical potentials. First, the dimensionality of the system can be controlled by
confining a three-dimensional cold gas along one, two or three directions. This experimental
breakthrough allowed to study ultracold gases in one and two dimensions for which the
long-range order leading to condensation at finite temperature is destroyed by thermal and
quantum fluctuations. Dilute cold gases with weak interactions in two dimensions do not
show long-range order but experience a superfluid phase transition of infinite order, called
the Berezinskii-Kosterlitz-Thouless transition [25–27], describing the emergence of a quasi-
long-range order below a critical temperature. Confining ultracold atoms in one dimension
made possible the realisation of Tonks-Girardeau gases, for which repulsive interactions are
dominant and force the bosonic atoms to mimic Fermi gases properties [28,29].
Without even considering the reduction of the dimensionality, the ability to impose tunable
potentials allows researchers to study non-trivial effects. For instance, using optical lattices
allowed to impose periodic arrangement and led to the realisation of the Fermi- and
Bose-Hubbard model [30] or to the observation of the superfluid-Mott insulator quantum
phase-transition for bosons [31–34]. Finally, the introduction of spatial light modulators
completed this toolbox and researchers are now able to imprint optical potentials of
arbitrary shape. In particular, the emergence of homogeneous potentials simplified the in-
terpretation of results in cold atomic physics, limited by non-trivial density distributions [35].

In this thesis, we present experiments performed on a weakly-interacting Bose gas
trapped in two dimensions. As mentioned above, this system does not exhibit condensation
at finite temperature but still a transition to a superfluid phase. This transition is said to be
of infinite order as all the thermodynamic quantities and their derivatives are continuous and
because it does not rely on the breaking of a symmetry. The emergence of a quasi-long-range
order and a superfluid phase when the temperature decreases is made possible by the
pairing of topological defects, called vortices, below the critical temperature whereas isolated
vortices proliferate above the critical temperature. This pairing manifests itself by a change
of long-range behaviour of the spatial first order correlation function from an exponential
decay to an algebraic decay. The superfluid regime describes a phase where a fraction of the
gas shows superfluid properties, i.e. experiences frictionless flow for instance. In Galilean
two-dimensional (2D) systems, the whole cloud is superfluid at zero temperature. The
increase of the temperature comes with a reduction of the superfluid fraction, as part of
the fluid becomes normal and can dissipate energy. The superfluid fraction decreases down
to the critical point but stays finite. When going beyond the critical point however, the
superfluid fraction jumps suddenly to zero. While the thermal superfluid transition is now
well known, there remain other effects to explore. For instance, discussions have been opened
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about superfluid flows in the presence of a breaking of translation invariance, in the context
of supersolidity [36]. This question will be the subject of the second part of the manuscript.
A direct observation of the microscopic dynamics underlying the Berezinskii-Kosterlitz-
Thouless was provided by the observation of the interference pattern between two released
atomic planes [37]. The authors analysed the contrast of such fringes across the transition
and observed a sudden decrease that they interpreted as a jump of the superfluid density.
At high temperature, they observed dislocations in the interference patterns which they
attributed to the proliferation of unbound vortices. On the other hand, the experimental
measurement of the first order correlation function decay above and below the critical point
in 2D quantum systems has been challenging and remained elusive for a long time [37–44].
Recently, researchers indirectly determined the first order correlation function expected for
2D homogeneous Bose gases by performing matter-wave interferometry on two harmonically-
trapped ultracold clouds [45]. Concerning the superfluid fraction, there exists no direct
experimental measurement. Two remarkable indirect measurements were performed first in
2D films of liquid helium 4 with torsion pendula [46] and more recently in a 2D homogeneous
weakly-interacting Bose gas through the measurement of the speed of sound [47].
Another important feature of weakly-interacting 2D Bose gas is its scale invariance, which
simplifies the derivation and therefore the experimental probing of its equation of state
for instance. Indeed, its equation of state, giving the phase space density D for example,
depends on the ratio µ/kBT of its chemical potential µ and temperature T whereas the
equations of state in other dimensions depend on both those parameters independently. The
equation of state was studied experimentally and its scale invariance probed [48–50].
In our group, we study weakly-interacting 2D Bose gases trapped in a flat-bottom optical
potential, i.e. we work with homogeneous atomic clouds. In addition to this homogeneous
trap, we also use spatial light modulators for shaping the in-plane confinement at wish
and/or for imprinting additional potentials of local perturbations [51]. When combined
with a two-photon optical transition, these spatial light modulators are also used to shape
the density distribution of the spin components in binary mixtures [52, 53]. Although
working with rubidium 87 prevents the use of Fano-Feshbach resonances at low magnetic
fields, the presence of a so-called clock transition in the electronic ground state and the
development of a hight-precision spectroscopy allowed us to highlight non-trivial effects as
the presence of magnetic dipole-dipole interactions in our 2D binary mixture [54]. This
high-precision spectroscopy tool was also used to measure Tan’s contact in a bi-dimensional
gas [55]. Recently, we also performed photoassociation spectroscopy and few-body physics
measurements, which will be detailed in the manuscript.

In this manuscript, I present the two last results we obtained. These two results
head toward different aspects of the cold atoms physics and are the result of a team effort.
The first result I describe is the probing of few-body physics through microwave-induced
photoassociation of the least-bound dimers of rubidium 87. This study allows to characterise
the interatomic potential and the atom-dimer interactions of ultracold bosons. It also paves
the way to the implementation of microwave-induced Fano-Feshbach resonances.
Coming back to many-body physics, I describe how the breaking of translational invariance
affects the superfluid behaviour of a weakly-interacting 2D Bose gas at zero temperature.
This work experimentally tests the prediction made by Leggett in 1970 for supersolids [36].
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Detailed content of this manuscript

General features of the two-dimensional Bose gas

Chapter 1. I describe the weakly-interacting two-dimensional Bose gas in a
mean-field approach and the theoretical framework to study this system at low
temperature. I also briefly introduce the work I performed during my thesis but
which is not detailed in this manuscript.

Chapter 2. I introduce the experimental setup used to produce planar Bose gases
of rubidium 87. I also describe the toolbox we developed to control this ultracold
gas.

Microwave photoassociation of 87Rb dimers and measurement of atom-dimer
interactions

Chapter 3. I describe the interatomic potential and interactions at play for ul-
tracold bosonic gases. I focus on the bound states of these potentials: I derive a
simple model to study them with rubidium 87 and detail the experimental detec-
tion of the Zeeman sub-levels of the least-bound rovibrational state of rubidium
87.

Chapter 4. The experimental probing of atom-dimer interactions is detailed.
We describe these cold interactions in a mean-field approach and measure the
associated atom-dimer scattering length.

Zero-temperature superfluid fraction in a density-modulated 2D Bose gas

Chapter 5. I introduce the analysis performed by Leggett in 1970 on a possible
superfluid behaviour in solids. I apply the same analysis for a weakly-interacting
2D Bose gas at zero temperature and experiencing the breaking of translational
invariance. The resulting superfluid fraction is analytically linked to the sound
velocity in such a system.

Chapter 6. I describe the experimental probing of the zero-temperature super-
fluid fraction with the measurement of sound velocity in a density-modulated pla-
nar Bose gases. I finally compare these results with the measurement of Leggett’s
integral from the density profiles of the same system.
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General features of the two-dimensional Bose gas
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1
Physics of the two-dimensional Bose gas

A celebrating consequence of Bose statistics is Bose-Einstein condensation and, as an in-
troduction, we describe in Sec. 1.1 this phenomenon and its conditions of occurrence. In
particular, we discuss the effect of dimensionality. In this thesis, we study a planar Bose gas
brought to quantum degeneracy and experiencing weak interactions, which does not exhibit
condensation at finite temperature. We derive a mean-field description of this system in
Sec. 1.2. Its main properties are described in Sec. 1.3 where we demonstrate the existence of
a quasi-long-range order. We detail the resulting infinite order phase transition in Sec. 1.4.
This transition, from a short-range order to a quasi-long-range order, is called the Berezinskii-
Kosterlitz-Thouless (BKT) transition. Finally, we write in Sec. 1.5 the equation of state of a
2D Bose gas with short-range interactions in these different regimes. The reader will find a
more complete description of the 2D ultracold Bose gas characteristics in Refs [56,57].

1.1 Introduction to Bose-Einstein condensation

Bose-Einstein condensation is a phase transition characterised by the accumulation of par-
ticles in the single-particle ground state below a certain critical temperature. It was first
introduced by Einstein in 1925 for three-dimensional (3D) ideal Bose gases [1].
This result can be established by considering N non-interacting and non-relativistic bosons
of mass m in a 3D box of size L × L × L with periodic boundary conditions. The Hamil-
tonian consists then only in kinetic-energy contribution and writes H =

∑
p̂2
i /2m with p̂i

the momentum of the particle i. The single-particle eigenstates are plane waves Ψp(r) =
L−3/2 exp(ip · r/ℏ) with corresponding energies εp = p2/2m. At thermal equilibrium, in the
grand canonical ensemble, the total atom number N reads:

N =
∑

p

Np, Np =
1

exp[(εp − µ)/kBT ]− 1
, (1.1)

with the Boltzmann constant kB, the temperature T and the chemical potential µ < 0
(ε0 = 0). Einstein’s original result was derived by considering separately the atom number in
the ground state N0 and the atom number in the excited states Nexc =

∑
p ̸=0Np, such that

N = N0 +Nexc. In the thermodynamic limit, obtained when both N and L3 grow to infinity
while keeping N/L3 constant, the spatial density of the atoms in the excited states writes:

n3D,exc =
1

λ3th
Li3/2 (exp(µ/kBT )) . (1.2)

We introduced the thermal wavelength λth = h/
√
2πmkBT and the polylog function Liα(x) =∑∞

j=1 x
j/jα. This polylog function increases monotonically with the chemical potential µ and

13
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Figure 1.1: Normalised first-order correlation function g1(r) ≡ G1(r)/G1(0) of a 3D ideal gas
(a) and a 2D ideal gas (b) for D3D,2D = 0.3, 3, 10 (dotted, dashed and solid line respectively).

is bounded to the finite value Li3/2(1) = 2.612.. when µ = 0. The phase-space density (PSD)
D3D,exc = λ3thn3D,exc saturates and we thus find Einstein’s result: when the density in the
excited states reaches its maximum value, the bosons accumulate in the ground state and a
condensate forms.

In practice, particles in dense clouds interact and the interactions modify the eigenstates of
the system, thus invalidating Einstein’s criterion. A more general criterion for Bose-Einstein
condensation was proposed by Penrose and Onsager in 1956 [58] for liquid helium, which ap-
plies to both interacting and non-interacting gases. This approach is based on the spectrum
of the one-body density operator ρ̂1 and condensation occurs when its largest eigenvalue is
finite in the infinite distance limit. Equivalently, we commonly evaluate this criterion with
the long-distance behaviour of the one-body correlation function G1(r1, r2) ≡ ⟨r1| ρ̂1|r2⟩, also
defined as the Fourier transform of the momentum distribution Np. The condensation is then
associated with a long-range order defined as a regime where the correlation function takes
a finite value in the infinite distance limit.

The consistence between the two condensation criteria mentioned above is demonstrated
by calculating the one-body correlation function of the 3D ideal gas of bosons, shown in
Fig. 1.1.a and written:

G3D
1 (r) =

N0

L3
+

1

λ3th

∞∑

j

exp(jµ/kBT − πr2/2jλ2th)
j3/2

, (1.3)

where we assumed translation invariance and defined r = r1 − r2. The second term of this
last equation is the contribution of the excited states and is a sum of Gaussian functions,
with different amplitudes and widths

√
jλth which increase with j. In the infinite distance

limit r → +∞, this sum vanishes and we are left with the ground state contribution N0/L
3.

For large-enough densities, N0 becomes macroscopic and the one-body correlation function
tends to a finite value at infinite distances. The coherence length, i.e. the characteristic decay
length of G1, is infinite and condensation occurs.
Remarkably, the addition of weak interactions in 3D cold gases does not prevent conden-
sation. The first direct observations of 3D gaseous Bose-Einstein condensates (BEC) were
reported in 1995 [2–4].

Similarly, these condensation criteria can be evaluated in two dimensions. Dimensionality
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plays an important role in physical systems, in particular in the occurrence and characteris-
tics of their phase transitions. Although condensation occurs at zero temperature for both
ideal and weakly-interacting 2D gases [59], the two criteria elaborated above show that there
is no condensation in ideal 2D gases at finite temperature. The PSD D2D = λ2thn2D of excited
states writes in 2D:

D2D,exc = − ln(1− exp(µ/kBT )), (1.4)

and can take arbitrary large values when µ→ 0−. Hence, the ground state population never
becomes macroscopic. On the other hand, the one-body correlation function

G2D
1 (r) =

1

λ2th

+∞∑

j=1

exp(jµ/kBT − πr2/jλ2th)
j

(1.5)

goes to zero in the large distance limit, as shown in Fig. 1.1. This results stands also for 2D
weakly-interacting systems at finite temperature as demonstrated by the Mermin-Wagner-
Hohenberg (MWH) theorem [60,61]: in dimensions lower or equal to 2, infinite systems with
short-range interactions cannot undergo long-range order at finite temperature if their order
parameter is continuous. Although coherence can be established for ideal and interacting
gases in finite systems if the PSD is large enough, this theorem prohibits the existence of a
true condensate at finite temperature. However, the presence of local interactions introduces
a phase transition of a different nature associated to the emergence of a so-called quasi-long-
range order and a superfluid component.

1.2 Description of a two-dimensional cold gas

We aim at studying the behaviour of weakly-interacting 2D ultracold gases. Experimentally,
the 2D regime is usually realised by starting from a 3D gas whose degree of freedom in one
of the three directions is frozen afterwards. In practice, there are two types of regime in 2D
which are set by the vertical thickness of the cloud ℓz and the characteristic range of the
interactions. For atoms of rubidium 87 (87Rb), this range is given by the van der Waals
radius1 RvdW = 82.3 a0, where a0 is the Bohr radius. The true 2D regime is reached when
the particles motion is strictly reduced to the (x, y) plane, i.e. when the characteristic range
of interaction, RvdW, is much larger than the vertical thickness ℓz of the system. In this case,
the scattering amplitude is energy dependent. On the opposite, a quasi-2D regime exists
when RvdW ≪ ℓz, if the thermal energy and interaction energy per particle are lower than
the energy difference between the ground state and the first exciting state of the vertical
trapping. In this regime, the microscopic motion along the frozen direction is still possible
and the collisions then conserve their 3D character.
The experiments described in this thesis are performed in the quasi-2D regime. Therefore,
we first introduce interactions in a 3D Bose gas and derive its equation of motion in the case
of weak interactions using a classical field formalism. Then, we transpose these equations to
a 2D geometry and finally discuss their validity in the context of our experimental platform.
We exclude from the discussion any consideration about the internal state.

1We use the convention:

RvdW =
1

2

(
2mrC6

ℏ2

)1/4

(1.6)

where mr is the reduced mass (mr = m/2 here) and C6 = 4635 a.u for 87Rb [62]. (1 a.u. = 9.55× 10−80 J.m6).
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1.2.1 Short-range interactions

We now take into account interactions, first in a 3D dilute cloud, and we consider short-range
interactions. We will assume that these interactions, between two particles at positions ri
and rj , are well described by the contact potential2

U(ri − rj) = g(3D)δ(3D)(ri − rj), (1.8)

where g(3D) = 4πℏ2a/m is a coupling strength defined from the 3D s-wave scattering length
a, obtained from the real inter-atomic potential. The use of the latter potential is possible
because, for ultracold Bose gases, only low-energy collisions are relevant [63]. We enter this
s-wave regime when the characteristic range of the interactions, RvdW, is much smaller than
the thermal wavelength λth. For temperatures of the order of 1mK or less, the thermal
wavelength is of several hundreds of nanometres. Collisions then occur between particles
with zero relative angular momentum, in the s-wave channel, which is fully described by the
constant a in 3D.
For 87Rb atoms in the electronic ground state, the 3D interaction parameter is positive
g(3D) > 0 and atoms therefore undergo repulsive interactions. This is a necessary condition
to form stable atomic clouds and avoid collapse.

1.2.2 Classical field formalism

We consider a gas of N ≫ 1 identical bosons with binary interactions described by the
potential U(ri − rj). Particles experience a potential V (r) and their Hamiltonian writes in
the first quantization formalism:

Ĥ =
N∑

i

[
p̂2
i

2m
+ V (r̂i)

]
+

1

2

∑

i ̸=j

U(r̂i − r̂j), (1.9)

where we have introduced the position and the momentum operators r̂ and p̂. We now define
Ψ̂(r), the operator which annihilates a particle at position r, and its hermitian conjugate
Ψ̂†(r) which creates a particle at position r. We write the Hamiltonian in second quantization
as follows:

Ĥ =

∫ (
ℏ2

2m
∇Ψ̂†(r) · ∇Ψ̂(r) + Ψ̂†(r)V (r)Ψ̂(r)

)
d3r

+
1

2

∫ ∫
Ψ̂†(r1)Ψ̂†(r2)U(r1 − r2)Ψ̂(r2)Ψ̂(r1) d

3r1d
3r2. (1.10)

Thermal equilibrium of a N -body system is usually described by its density matrix ρ̂. How-
ever, the presence of the pair-wise interaction term in this N -body system makes the deter-
mination of ρ̂ too complicated.

In the following, we adopt a classical field point-of-view. This formalism is a mean-field
approach and allows us to easily solve the N -body problem. It relies on two assumptions.

2The inter-atomic potential in Eq. (1.8) is actually ill-defined when acting on a wave function ψ showing a
singularity at the origin and in this case we can write a pseudo-potential Upp as

Upp[ψ(r)] = g3Dδ3D
∂

∂r
[rψ(r)]

∣∣∣∣
r=0

. (1.7)

This pseudo-potential is the same as the contact potential when acting on regular functions.
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The first one states that the atoms are considered to occupy mostly the same single-particle
state described by a macroscopic wave function ψ. We remind that in the zero-temperature
regime, both 3D and 2D weakly-interacting ultracold gases form a true condensate [59], which
means that this assumption is at least true for T = 0. We then use the Hartree ansatz and
write the many-body quantum state |ΦN ⟩ as a product of the single-particle wave function
ψ:

⟨r1, ..., rN |ΦN ⟩ ∝ ψ(r1)...ψ(rN ), (1.11)

where the wave function ψ is normalized as follows:

∫
|ψ(r)|2 d3r = N. (1.12)

The second hypothesis stipulates that one can neglect the granularity of the quantum field
and we then treat ψ with classical-field equations.
Therefore, the problem simplifies to the deduction of a density of probabilities P[ψ] which
best reproduces the density matrix ρ̂, i.e.:

⟨Â⟩ = Tr[Âρ̂] =

∫
P[ψ]A[ψ] d[ψ], (1.13)

for a class of “reasonable” observables Â. Applying this formalism to Eq. (1.10), we describe
the thermal equilibrium of the 3D ultracold gas with contact interactions thanks to the energy
functional

E[ψ] =

∫ (
ℏ2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 + g(3D)

2
|ψ(r)|4

)
d3r. (1.14)

Experimentally, we obtain a 2D geometry by imposing to the particles a tight confinement
along one of the three directions, here the vertical one, and the motion of the atoms along
the vertical axis z is then frozen. We assume that the particles lie in the ground state of the
vertical confinement. Assuming also that the energy difference between the ground state and
the first excited state of the vertical confinement is larger than the thermal energy kBT and
the interaction energy per particle Ei/N , we use the ansatz:

ψ(r) = ϕ(x, y)χ0(z), (1.15)

where χ0 is the single-particle ground state wave function along the frozen direction z, while
ϕ is the in-plane single-particle wave function. The condition of normalisation Eq.(1.12) then
writes:

∫
|ϕ(r)|2 d2r = N,

∫
|χ0(z)|2 dz = 1, (1.16)

and the in-plane density writes n(r) = |ϕ(r)|2. We obtain an energy functional describing
the motion in the (x, y) plane (up to a constant):

E[ϕ] =

∫ (
ℏ2

2m
|∇ϕ(r)|2 + V (r)|ϕ(r)|2 + g(2D)

2
|ϕ(r)|4

)
d2r, (1.17)

with the introduction of the parameter

g(2D) = g(3D)

∫
|χ0(z)|4 dz, (1.18)
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which describes the interactions strength in 2D. The three terms of Eq. (1.17) describe re-
spectively the kinetic energy Ek, the potential energy Ep and the interaction energy Ei in
the 2D case.
Note that we transposed here a mean-field description of 3D collisions to a 2D system, and it
is not straight-forward to conclude that the 2D interaction parameter is energy-independent
when considering the 2D problem.

1.2.3 Quasi-two-dimensional regime in our experimental platform

In our experimental platform, the vertical confinement is ensured by a harmonic potential
V (z) = mω2

zz
2/2 of frequency ωz/2π and the ground state of the system is Gaussian in the

vertical direction:

χ0(z) =
1

(πℓ2z)
1/4

exp
(
−z2/2ℓ2z

)
. (1.19)

The vertical thickness of the cloud is then written ℓz =
√
ℏ/mωz and, with our typical

trapping frequencies, reaches a few hundreds of nanometres ℓz ∼ 180 nm.
As mentioned earlier, the experiments are then performed in the quasi-2D regime ℓz ≫ RvdW.
The analysis of binary interactions in this regime has been performed by Petrov et al. [64,65]
and the authors find the following two-dimensional coupling strength:

g(2D) =
ℏ2

m

√
8π

1

ℓz/a− ln(πq2ℓ2z)/
√
2π
, (1.20)

with q2 = 2mµ/ℏ2. The energy dependence persists, hence the coupling strength depends on
the density of the condensate. However, we perform our experiments with rubidium 87, for
which the 3D scattering length is close to the range of the interaction potential a ∼ RvdW.
We study then a configuration with ℓz ≫ a and therefore the logarithm term has a negligible
contribution. The coupling simplifies to the constant

g(2D) =
ℏ2

m

√
8πa

ℓz
, (1.21)

which corresponds to the result expected from Eq. (1.18) using Eq. (1.19). Remarkably, the
interactions in the quasi-2D regime can thus be described by a dimensionless parameter
defined as g̃ = mg(2D)/ℏ2 =

√
8πa/ℓz.

Finally, we work in the weak interaction regime, defined by g̃ ≪ 1 [56], and the interactions
remain repulsive g̃ > 0. The possible occupation of the excited states of the harmonic
potential has been studied in Ref. [66], and it has been shown that this can lead to a reduction
of g̃ by a few percent only within our experimental parameters (aℓzn≪ 1).

Work performed during my thesis and not detailed in this manuscript

Although the contact interactions are dominant in our system, we observed more exotic
interactions such as magnetic dipole-dipole interactions (MDDI) [54]. These interac-
tions are commonly studied with atom species with large magnetic moment in the
ground state. While we work with alkali atoms, for which the magnetic moment is
of the order of ≲ 1 Bohr magneton µB, we demonstrated the non-negligible presence
of MDDI in a mixture of two magnetic-field insensitive states. We used a high reso-
lution Ramsey interferometric method on the so-called clock-transition between these
two states and interpreted the effect of MDDI as a modification of the inter-species
scattering length.
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From now on, we drop the notation (2D) and all quantities are assumed to be 2D except for
the 3D s-wave scattering length a.

1.2.4 Description at zero temperature for uniform gases

We dedicate this section to the specific case of 2D weakly-interacting Bose gases at zero
temperature, at equilibrium in the dilute regime. Under these conditions, the ground state
is a true condensate and the Hartree ansatz Eq. (1.11) is known to be valid. We minimize
the energy functional Eq. (1.17) after introducing the chemical potential µ = ∂E/∂N , a
Lagrangian multiplier, to satisfy the condition of normalisation of the macroscopic wave
function ϕ Eq.(1.16). We obtain the stationary Gross-Pitaevskii equation (GPE), also known
as the nonlinear Schrödinger equation (NLSE):

− ℏ2

2m
∇2ϕ+ V (r)ϕ+

ℏ2

m
g̃|ϕ|2ϕ = µϕ. (1.22)

This equation, valid for T = 0, also gives an appropriate description of the system at low
temperature in the degenerate regime, when the PSD is large enough D ≫ 1.

We focus our interest on uniform gases which are the subject of this thesis. In practice,
we confine the atoms in a potential V (r) constant and equal to zero over the size of the
sample and with sharp edges.

Ground state At equilibrium, the ground state of the system is the solution of Eq. (1.22)
with the minimum energy. We study the bulk of a uniform 2D gas at zero temperature
and, as Ei ≫ Ek, we neglect the kinetic part of the GPE. This approximation defines the
Thomas-Fermi regime and leads to:

ℏ2

m
g̃|ϕ|2 = µ. (1.23)

Therefore, in this regime, the in-plane density n = |ϕ|2 is uniform. Naturally, this regime is
only valid in the bulk, and the kinetic energy cannot be neglected at the edges. The density
|ϕ|2 then varies smoothly from n to zero over a distance ξ called the healing length:

ξ =
1√
2g̃n

, (1.24)

which results from the balance between the kinetic and interaction energies. This distance
therefore gives the characteristic length scale of the interactions.

Excitation spectrum In uniform systems, the elementary excitations are deduced from
Bogoliubov analysis [67]. This approach is purely phononic and does not take into account
other excitations such as vortices for example. The excitation modes are defined by real
frequencies ωk in the context of repulsive interactions and are associated with plane waves of
wave vector k of norm k. The energy spectrum

ℏωk =
ℏ2

2m

√
k2(k2 + 4g̃n) (1.25)

describes two distinct regimes separated by a characteristic wave vector kc = 1/ξ. In the
high-k limit k ≫ kc, one enters the free-particle regime, whereas for k ≪ kc the relation of
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Figure 1.2: Bogoliubov excitation spectrum (solid purple line), with the phononic regime
(k ≪ kc) and its linear relation ωk = cBk (dashed black line) and the free-particle regime
(k ≫ kc) described by a quadratic relation of dispersion (dotted black line). The momentum
is expressed in units of kc.

dispersion Eq. (1.25) is linear ωk ∼ cBk and phonons propagate with the so-called Bogoliubov
speed of sound :

cB =
ℏ
m

√
g̃n. (1.26)

The excitations spectrum is represented in Fig. 1.2 and the sound modes have been observed
experimentally in 2D [47,68,69].

In our experimental platform, described in the next chapter, the healing length is ξ ∼ 0.2 µm
for the largest density achievable and the corresponding Bogoliubov speed of sound is cB ∼
3mm/s.

1.3 Some properties

Although the 2D weakly-interacting gas does not exhibit condensation, we will now see that
its symmetry properties make it an interesting system.

1.3.1 Scale invariance

Symmetries in physical systems generally constrain their behaviour and are exploited to sim-
plify many problems. Remarkably, the 2D homogeneous system with short-range interactions,
when described by a classical field theory, presents an interesting feature when it undergoes
a dilatation of length by a factor λ > 0.
Indeed, the action S[ϕ] associated with the GPE (with V (r) = 0) is kept invariant for a
transformation in which the length ℓ, the time t and the wave function ϕ are rescaled as
follows:

ℓ→ ℓ′ = ℓ/λ,

t→ t′ = t/λ2,

ϕ(r)→ ϕ′(r′, t′) = λϕ(r, t).

(1.27)

This property is due to the adimensionality of the interaction parameter g̃: the interaction
energy Ei does not introduce any new length scale. Therefore, the interaction energy Ei

and the kinetic energy Ek scale in the same way under Eq. (1.27) and they are transformed
as E → λ2E. As the energy functional is only rescaled by a constant factor, the laws
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governing the system are unchanged. This property, known as scale invariance, has important
consequences and we can demonstrate that the equation of state of the system depends on the
single parameter3 µ/kBT [57]. The study of GPE solutions also highlights the scale invariance
of the 2D ultracold gas. Indeed, using the transformation Eq. (1.27), we can deduce a new
solution ϕ′ of the GPE Eq. (1.22) from a previously known ϕ.
Scale invariance and its dynamical consequence in 2D harmonic potentials have been discussed
earlier in the team for breathers [70]. Another situation where scale invariance plays a crucial
role is in the context of localised stationary solutions of the GPE. In the presence of repulsive
interactions and without confinement, there do not exist such solutions, so-called solitary
solutions. In the case of attractive interactions, such stationary solitary solutions exist, even
if they are weakly unstable. Among them, the so-called Townes soliton is a real nodeless
localised stationary solution of zero-energy. Remarkably, the scale invariance property of the
2D system implies that there is no size condition to form a Townes soliton. Indeed, the only
conditions yielding these solitons are to have the right shape for the wave function ϕ and
a fixed atom number NT = 5.85/g̃. Townes solitons were observed in quasi-2D samples of
caesium atoms with attractive interactions by Chen & Hung [71,72]. The authors confirmed
that Townes solitons arise from samples of any size and observed the expected scaling of NT

with g̃.

Work performed during my thesis and not detailed in this manuscript

During my thesis and simultaneously with the work by Chen & Hung, we studied the
physics of mixtures of two non-miscible species, |1⟩ and |2⟩, with repulsive intra- and
inter-species interactions. In particular, we considered a minority component |2⟩ of
density n2 immersed in a majority component |1⟩ of density n1. We showed that in
the limit of weak depletions, i.e. when n2 ≪ n1, the system is well described by a one-
component GPE with effective attractive interactions, due to the non-miscibility of the
two species. This platform is then adapted to the study of solitary waves. In order to
observe Townes solitons, the minority component must have the right atom number
N = NT and the right profile. We have deterministically imprinted Townes solitons [52]
in our two-component 2D ultracold sample. We confirmed the scale invariance of such
solutions of the GPE with the observation of Townes solitons of various sizes. Thanks
to the presence of tunable magnetic dipole-dipole interactions in our mixture (see
Sec. 1.2.3), we also confirmed the scaling of the Townes atom number NT with the
effective interaction parameter.
Recently, we also carried out a numerical study of the two-component system [53]. We
confirmed the presence of localised and stationary states for any atom number N larger
than the Townes atom numberNT. As the atom numberN increases, we leave the weak
depletion regime N/NT ≲ 1.05. For small but finite depletions 1.05 < N/NT < 1.5, the
additional length scale induced by the presence of the bath |1⟩ is no longer negligible.
This introduces a weak non-local correction to the GPE which breaks scale invariance.
However, it stabilises the system and we numerically find stationary solutions with
Townes-like profiles. By further increasing the atom number N/NT ≳ 1.5, the one-
component GPE is no longer suitable. We use then two coupled GPEs while we enter
the spin-domain regime. Together with this phase diagram, we studied the excitation
spectrum of the stationary solutions when N > NT. In particular, we have shown
the absence of localised excitation modes in the region 1.45 ≲ N/NT ≲ 3.5, called a

3In one and three dimension, the equation of state depends on the chemical potential µ and the temperature
T separately.
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self-evaporation region.
The reader can find a complete description of this work in Ref. [73].

1.3.2 Quasi-long-range order

We emphasised in the introduction to 2D systems that condensation does not occur at finite
temperature for non-interacting and interacting 2D gases. However, the presence of repulsive
weak interactions restores the notion of order in the system. We now describe some properties
of the system at low temperature that lead to the definition of a quasi-long-range order.

Reduction of the density fluctuations When the temperature of an interacting system
is sufficiently low (or equivalently when the PSD is large enough), the interaction energy Ei

becomes dominant. This leads to a reduction of the density fluctuations which come with an
energy cost. Indeed, the interaction energy in our system is calculated from Eq. (1.17) and is
written:

Ei =
ℏ2L2

2m
g̃⟨n2(r)⟩. (1.28)

The energy cost is then directly proportional to the density fluctuations which we usually
characterise by the (normalised) second-order correlation function

g2(r1, r2) ≡
1

n2
⟨n(r1)n(r2)⟩. (1.29)

This function, also called the density-density correlation function, evaluates the probability
to find a particle at a position r1 knowing that a second particle has been detected at a
position r2 and depends on the distance r = |r1 − r2|. The quantity g2(0) then represents
the probability to find two particles at the same position. For ideal Bose gases, g2(0) = 2
and this reflects a tendency towards atoms bunching (g2(0) > 1) whereas for thermal Fermi
gases g2(0) = 0, which indicates a tendency towards atoms anti-bunching (g2(0) < 1).
When the density fluctuations are totally suppressed, one finds g2(0) = 1. In this configu-
ration, the only degree of freedom left for the classical field ϕ is its phase θ. This regime
is called the quasi-condensate regime or pre-superfluid regime [64, 74, 75] and has been ob-
served experimentally in non-uniform systems [38,49,76]. We stress that the definition of the
quasi-condensate includes the suppression of density fluctuations only and that there is no
extended phase coherence in the system, as observed in Ref. [38].

Work performed during my thesis and not detailed in this manuscript

In practice, g2(0) is ill-defined for 2D interacting gases and the correct observable
to study the probability to find two particles close to each other is Tan’s contact
C ≡ ∂E/∂a. Indeed, g2(r) is expected to diverge in the short distance limit. Initially
defined by Tan in 2008 for strongly-interacting Fermi gases [77–79], the two-body
contact has been measured recently, in our group, in a uniform 2D weakly-interacting
Bose gas across the superfluid transition [55]. We measured the change of internal
energy for a small modification of the scattering length using Ramsey spectroscopy.
Our results are in good agreement with the theoretical predictions in the limiting case
of deeply degenerate and normal gases and recent calculations performed by A. Rançon
& N. Dupuis [80].
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First-order correlation function The emergence of phase ordering in interacting gases is
studied through the infinite distance behaviour of the first-order correlation function following
Penrose and Onsager criterion. We therefore need to calculate G1 in the quasi-condensate
regime. In the low-temperature phase, we can apply the same Bogoliubov treatment as used
for the zero temperature case in Sec.1.2.4. Indeed, only long-wavelength phase perturbations
are significant [56] and this approach was justified by Castin & Mora for quasi-condensates
in 2D in Refs. [81, 82]. The macroscopic wave function is written ϕ =

√
n exp(iθ) with a

fixed density n and a fluctuating phase θ. The normalised first-order correlation function
g1(r) = G1(r)/G1(0) yields within this formalism:

g1(r) ≈ exp[−⟨θ(r2)− θ(r1)⟩2]. (1.30)

The computation of the phase variations (performed introducing a UV cut-off at λth in the
population of the excitation modes) shows that the decay of g1 in the quasi-condensate regime
is different than the exponential decay expected in the thermal regime. Indeed, g1 decays
algebraically:

g1(r) ≈
(
λth
r

)α

, α =
1

Ds
, (1.31)

and the exponent α depends on the non-zero superfluid PSD Ds of the system. It still
vanishes for infinite distances which is consistent with MWH theorem, but this slow decay of
the correlations defines a quasi-long-range order and is represented in Fig. 1.3. For large D,
phase coherence is established over a macroscopic distance. This has great consequences for
finite-size systems for which the correlation function can have a finite value over the whole
sample.

1.4 Berezenskii-Kosterlitz-Thouless phase transition

The 2D Bose gas with short-range interactions does not exhibit Bose-Einstein condensation.
However, we have shown that a notion of order is restored below a critical temperature Tc,
including the appearance of a quasi-condensate and a quasi-long-range order. In the following,
we give a phenomenological description of superfluidity and describe the mechanism allowing
the 2D Bose gas to evolve from a normal fluid at low PSD to a superfluid at high PSD. This
phase transition is studied with the Berezenskii-Kosterlitz-Thouless mechanism derived in
1972 [25,26,83], originally for the two-dimensional XY spin model.

Superfluidity In a very simplified way, superfluidity is often described as an absence of
viscosity. First interpreted as a property of helium at low temperature in 1938 by Kapitza [5]
and Allen & Misener [6] simultaneously, it was introduced after the measurement of the flow
of liquid helium II through capillarities. In 1941, Landau gave a first explanation of this
phenomenon by showing that a fluid can move at a velocity v without friction against static
walls if its elementary excitation spectrum ε(p) satisfies the criterion v < minp→0 ε(p)/p, p
being the fluid momentum [84].
In practice, superfluidity relies on subtle definitions and one has to go beyond Landau crite-
rion. Some established properties of superfluidity are given here, but the reader will find a
more complete description of this phenomenon in Refs. [85–87]. Let us mention two funda-
mental properties that characterise a superfluid state [88, 89]. These properties are deduced
from thought experiments which consist in describing how the state of a fluid in a cylindrical
or toric container varies as a function of its rotating velocity around the central axis. First,
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if we place a classical fluid in such a container rotating with an angular frequency Ω, it will
acquire a velocity v(r) = Ω × r through viscous force between the walls and the atoms. In
contrast, if we consider a superfluid, a non negligible fraction of the fluid must stay at rest
in the Galilean frame of the laboratory, at least under a critical frequency Ω < Ωc. This
criterion imposes a certain stiffness of the superfluid state. This phenomenon is associated
to a reduction of the moment of inertia compared to the classical fluid and has been observed
for the first time with liquid helium [90]. Second, if the container rotates with an angular
frequency Ω > Ωc such that the superfluid is now in rotation, and the rotation of the con-
tainer is stopped, the motion of the superfluid will continue for a long time. In this sense,
the superfluid state is metastable: while its energy would be minimised if it were static, it
continues to rotate. For ultracold atomic gases, the flow can last for several tens of seconds.
In contrast, a normal fluid set in motion in a static container will stop in a few seconds due
to the roughness of the walls.
The two-fluid model gives a useful framework to characterise the properties of a superfluid.
It consists in describing the quantum gas or fluid as a superposition of two components:
a superfluid component of density ns and velocity vs which does not carry entropy, and a
normal component of density nn and velocity vn. We emphasise that the superfluid fraction
ns/n is not necessarily equal to the condensed fraction in systems exhibiting condensation.
In the quasi-condensate regime, the macroscopic wave function is written ϕ =

√
n exp(iθ) and

the superfluid velocity is defined as vs = ℏ∇θ/m. This definition shows that the superfluid
component rotational ∇× vs(r) is zero except where θ(r) is singular. On the other hand, if
the fluid is placed in a container of rigid walls or trapped in a time-independent potential,
the normal velocity is zero when the container is at rest and equal to vn = Ω× r when the
container has an angular velocity Ω, i.e. ∇× vn = Ω [85].
We briefly describe two equivalent formalisms to quantitatively study superfluid states, which
are demonstrated in Refs. [8, 85]. Superfluidity can be established by applying a momentum
constraint on the Hamiltonian, which corresponds to work in the moving frame. In this con-
text, only the normal component of density nn reacts to the perturbation. This method is
equivalent, within a gauge transformation, to impose a so-called twisted boundary condition
(TBC) in one direction of space for finding the eigenstates ϕ of the systems. For instance, in
a 2D system of size L× L we would impose:

ϕ(x+ L, y) = exp(iΘ)ϕ(x, y), ϕ(x, y + L) = ϕ(x, y), Θ≪ 1. (1.32)

Let us consider the fraction of atoms ns/n remaining motionless in a container in rotation
with an angular frequency Ω < Ωc. As mentioned above, this stiffness is associated with a
reduction of the moment of inertia in comparison with a normal fluid, which can be evaluated
via a free energy cost ∆F = F(Ω) − F(0), for having a part of the fluid that stays at rest.
Considering TBC, we can show that this energy cost is related to the superfluid fraction by
∆F(Θ) = ℏ2Θ2ns/2m [85].

Destruction of the phase ordering Phase ordering is limited by the presence of topolog-
ical defects which are vortices. A vortex defines a zero in the wave function ϕ around which
the phase rolls in an integer multiple of 2π, called the topological charge q of the vortex. The
density n(r) is then depleted over a distance given by the healing length ξ and the phase
field θ(r) undergoes a strong change over short distances. Therefore, we understand that the
presence of many vortices makes impossible the presence of a phase order.
The BKT phase transition in 2D relies on the fact that, under a critical temperature Tc,
the creation of isolated vortices is not favourable and they survive in the system only by
forming pairs of vortices with opposite charges q, called vortex-anti-vortex pairs. These pairs
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Figure 1.3: (a) Superfluid fraction ns/n computed from the Monte Carlo simulations of
Prokof’ev & Svistunov [91] with g̃ = 0.15. (b) Normalised first-order correlation function for
an ideal 2D Bose gas (dashed line) and a weakly-interacting 2D Bose gas (solid line) with
D = 10. For the interacting gas with g̃ = 0.15 and according to the Monte Carlo simulations,
D = 10 corresponds to a superfluid fraction of ns/n = 0.77. We indicate with a red point in
(a) the system shown in (b). We used a total density n = 100 µm−2, fixing T = 350 nK, and
the decay of g1 at large distances is computed using Eq. (1.31). The extrapolation to short
distances (dotted line) is not physical but reminds g1(0) = 1.

do not affect the coherence and the thermodynamic properties are essentially determined by
phonon modes. Above Tc, isolated vortices of random charges proliferate and prevent any
long-distance phase coherence from occurring, making this transition a topological transition.

A superfluid transition Across this transition, and going to low temperatures, a super-
fluid fraction ns ≤ n appears. This superfluid fraction is not easy to determine and was
computed by Prokof’ev, Ruebenacker & Svistunov using Monte-Carlo simulations [91, 92].
We have reproduced ns from their results in figure Fig. 1.3. They also characterised the crit-
ical point of this transition and found the critical PSD Dc and the critical chemical potential
µc using the definitions of Fisher et al. [93]:

Dc = ln

(
ξD
g̃

)
, (1.33)

µc =
g̃

π
ln

(
ξµ
g̃

)
, (1.34)

where the constants ξD = 380(3) and ξµ = 13.2(4) are calculated numerically. The transition
is continuous for all the thermodynamic quantities but the superfluid PSD Ds = λ2thns, which
undergoes a jump from zero to Ds = 4 at the critical point. This superfluid PSD sets the
exponent of the algebraic decay of the correlation function g1 in Eq. (1.31) and it therefore
lies between 0 and 1/4.

The quasi-long-range order was observed in cold atoms for the first time by Hadzibabic
et al. in 2006 [37], whereas the superfluid fraction was recently measured via the measure-
ment of the speed of sound modes in a homogeneous 2D sample [47]. In 2015, Fletcher et
al. studied the critical point of the BKT transition in a harmonically trapped 2D Bose gas
as a function of the interaction strength g̃ [94]. They found this critical point to be in good
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Figure 1.4: Equation of state of the weakly-interacting 2D Bose gas. We obtain a numerical
EoS (solid black line) by interpolating the points from the Hartree-Fock limit (dashed orange
line) together with the Monte Carlo simulations of Prokof’ev & Svistunov (purple points)
and the Thomas-Fermi regime (dotted red line). The computation is performed with an
interaction parameter g̃ = 0.15 and the critical PSD Dc = 7.3 is represented by the solid grey
line.

agreement with the classical field predictions and showed that it converges to the BEC critical
point in the limit of vanishing interactions. As explained above, the first-order correlation
function is an interesting observable to attest the presence of quasi-coherence. The recent
work of Sunami et al. [45] reports a measurement of g1 in an 2D homogeneous gas. They
performed wave-matter interferometry and confirmed the expected change in the decay of g1
at the critical point. A similar but unpublished study was performed in our group in 2019
and reported in Ref. [43].

1.5 Equation of state

All the thermodynamic quantities of a system can be calculated from its equation of state
(EoS). There exists no analytical form of the EoS of the 2D Bose gas, however, thanks to its
scale invariance property, the thermodynamic variables and thus the EoS depends only on
the quantity µ/kBT :

D = D
(

µ

kBT

)
. (1.35)

We study independently the two limiting cases of very degenerate gases D ≫ 1 and thermal
clouds D ≪ 1.

Thomas-Fermi regime We have already presented this regime in Sec. 1.2.4. Deeply de-
generate gases (D ≫ 1) are well described by the GPE Eq. (1.22). We neglect the effect of
kinetic energy and the EoS reads:

D =
2π

g̃

µ

kBT
. (1.36)

Hartee-Fock regime The Hartree-Fock regime describes clouds far from degeneracy D ≪
1. Under these conditions, the interactions in and between the condensed and thermal part
of the cloud are taken into account. For weakly-interacting gases, the EoS is then given



1.6. CONCLUSION 27

by the ideal gas Eq. (1.4), where we add to the chemical potential a mean field correction
µ→ µ− 2ℏ2g̃n/m (the minus sign stands for the repulsive interactions):

D = − ln

[
1− exp

(
µ

kBT

)
exp

(
− g̃D
π

)]
. (1.37)

Furthermore, the EoS was measured and the results of Prokof’ev & Svistunov were con-
firmed for quasi-condensates [48, 49]. In practice, we use their data together with the two
limiting cases described above to determine a numerical form of the total EoS:

D = D
(

µ

kBT

)
, (1.38)

which is represented in Fig. 1.4 with the Monte-Carlo results.

1.6 Conclusion

We have introduced the theoretical framework to describe 2D Bose gases with short-range
and weak interactions. These interactions are treated with a contact potential and the deriva-
tion of the energy functional of the system is achieved in the classical formalism. We have
presented some interesting properties of this system, such as the presence of scale invariance
and the emergence of quasi-long-range order for deeply degenerate gases. Indeed, the 2D
weakly-interacting gas presents a phase transition from a superfluid state at very low tem-
perature to a normal gas at higher temperatures. The intermediate regime, called fluctuation
regime, shows a reduction of density fluctuations and the emergence of a quasi-condensate
together with a superfluid fraction below a critical temperature. We have also described
the mechanism behind this superfluid transition, called the Berezinskii-Korterlitz-Thouless
transition.





2
Preparation of an ultracold Bose gas in a planar
geometry

The experimental platform on which the results presented in this thesis were collected was
built almost 10 years ago with the aim of studying the properties of Bose gases in two
dimensions with homogeneous density profiles. The construction was already completed
before I joined the team. Therefore, in this chapter, I describe the physical system under
study in Sec.2.1 and refer to the section Sec.2.2 for details about the experimental techniques.
A full account of the construction can be found in Refs. [95, 96] and subsequent updates in
Refs. [43, 97].

2.1 Overview

As an introduction, we summarize in this section the main features of our system which will
be more detailed in the following sections.
Optical cooling and trapping requires lasers with a specific wavelength addressing the elec-
tronic transitions of the chosen atomic species. Because of their simple electronic structure,
Alkali atoms are popular for ultracold gases experiments. Among them, rubidium 87 (87Rb)
is one of the most common to prepare and study Bose-Einstein condensates.
After following a traditional cooling scheme (see Sec. 2.2.2 for more details), 1.5×105 cold
atoms are trapped in a 2D flat-bottom potential. They lie in a vertical harmonic trap
V (z) = mω2

zz
2/2 of angular frequency ωz = 2π · 3.6(1) kHz created with an optical accordion

of wavelength 532 nm (calibration detailed in Sec.2.2.4). The atoms occupy the lowest energy
level and their vertical density profile is a Gaussian of thickness ℓz = 181(2) nm. We ensure
that the quasi-2D regime is reached by setting ℏωz higher than both the thermal energy
kBT and the interaction energy per particle Ei/N . The 2D trap is closed by an in-plane
confinement made of light hard-walls provided by a blue-detuned laser beam of wavelength
532 nm sent to a digital micro-mirrors device (DMD). A more complete description of this
2D box potential, so-called green box, is given in Sec. 2.2.3. The DMD is mounted in direct
imaging so that the binary pattern on the mirrors is imaged onto the atoms and we are able
to imprint grey-levels pattern on the atoms following a simple process detailed in Sec. 2.2.5.
The 2D density profile of the sample is then tunable and we can imprint arbitrary continuous
profiles or perturbations on our atomic sample. We can also tune the 2D density n from
100 µm−2 to 5 µm−2: we partially transfer the atoms in a different level and blast them with
a resonant light pulse.
The temperature of the cloud is set by the tunable height of the green box light walls from
∼ 150 nK to ≲ 20 nK and is measured in situ (see Sec. 2.2.7). Therefore, we have access

29
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to a large range of PSD D by simultaneously changing the temperature T and the critical
temperature Tc ∝ n and we can study the characteristics of the sample across the BKT phase
transition.
Three pairs of coils along x, y and z are used to generate magnetic fields of any direction and
amplitude up to ∼ 10 G. Usually, a vertical magnetic field of a few Gauss (with fluctuations
of ∼ 1mG) is applied and defines the quantization axis.
Our experiments are carried out in the two hyperfine levels f = 1 and f = 2 of the 87Rb
electronic ground state 2S1/2. They are separated by ∼ 6.834GHz and, in the presence of an
external magnetic field, they split into three and five Zeeman sub-levels of angular momen-
tum projection mf = −1, 0, 1 and mf = −2,−1, 0, 1, 2 respectively. The electronic states of
interest are fully described in Sec. 2.2.1.
The atomic sample can be prepared in any of the eight Zeeman states or in a superposition of
these states thanks to successive microwave (mw) induced one-photon coherent transfers be-
tween the two hyperfine levels. The manipulation of the internal state is described in Sec.2.2.6.
Among the eight sub-levels, two are magnetic insensitive at first order: |f = 1,mf = 0⟩ and
|f = 2,mf = 0⟩, which facilitates their use. The so-called clock transition between these
two states is used, for example, to perform Ramsey spectroscopy with a resolution of 1Hz.
Otherwise, we work mainly in the hyperfine level f = 1 to benefit from its long lifetime
τ ∼ 10 s compared to the f = 2 lifetime τ ∼ 100ms. Therefore, the preferred configuration
is to work with atoms in |f = 1,mf = 0⟩ to combine long lifetime and magnetic field insen-
sitivity. In this case, the 2D interaction parameter is written g̃11 =

√
8πa11/ℓz = 0.150(2)

with a11 = 100.9(1) a0 the 3D scattering length from [98]. Finally, we image the cloud in
situ with absorption imaging with 1 µm resolution, described in Sec.2.2.8, and record density
distributions as shown in Fig. 2.1.

10 µm 0.0

0.8

OD(a)

0.0

0.5

1.0
OD(b)

Figure 2.1: Two-dimensional density profiles realised in our experiment. (a) The typical
homogeneous profile in a 40 µm× 40 µm square. (b) An example of arbitrary density profile:
azimutal density gradient imprinted on the atoms using the grey-level feedback loop. The
optical depth (OD) is defined in Sec. 2.2.8.

2.2 Experimental methods and calibrations

2.2.1 87Rb electronic structure

As an Alkali, 87Rb has only one electron occupying its valence layer, so its electronic spin
s = 1/2. Its nuclear properties are characterised by a nuclear spin i = 3/2. The 87Rb
electronic ground state is then 2S1/2 and its first excited state separates into two fine levels
2P1/2 and 2P3/2 [99]. The electronic transitions to these fine levels are labelled D1 (2S1/2 →
2P1/2) and D2 (2S1/2 → 2P3/2) and their wavelengths are λ1 = 795 nm and λ2 = 780 nm
respectively. The excited level 2P3/2 is used for cooling schemes and splits into four hyperfine
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Figure 2.2: Electronic structure of 87Rb atoms. The fine and hyperfine structure and first
order Zeeman splitting are detailed for levels of interest only.

levels f ′ = 0, 1, 2, 3. Moreover, all the interesting physics is performed in the 2S1/2 two
hyperfine levels f = 1 and f = 2, separated by Ehfs ∼ 6.834GHz. In the presence of a
magnetic field, these hyperfine levels experience Zeeman splitting and separate into three
and five sub-levels of angular momentum projections mf = −1, 0, 1 and mf = −2,−1, 0, 1, 2
respectively. These energy shifts with the magnetic field can be determined by the Breit-Rabi
formula and read as follows:

∆Ef,mf
= E(f,mf , B ̸= 0)−E(f, 0, 0) = µBgimfB+

Ehfs

2

(
±
√

1 +
4mfξ

2i+ 1
+ ξ2 ∓

√
1 + ξ2

)

(2.1)
where the signs are assigned to f = 2 and f = 1 respectively. Ehfs is the hyperfine structure
energy splitting, µB the Bohr magneton, gi and gj the Landé factors of i and j = s + l
respectively, and ξ stands for ξ = µB(gj − gi)B/Ehfs. For low magnetic fields, one gets the
linear Zeeman shift ∆Ef,mf

= gfmfµBB, where gf = ±1/2 is the Landé factor associated
with hyperfine levels and represented in Fig. 2.2. The 87Rb electronic structure is shown in a
summary diagram Fig. 2.2 where only the relevant levels are indicated.

2.2.2 Preparation of a 3D ultracold cloud

Before transferring the atoms into a 2D box, we follow a classical cooling scheme, summarised
in Fig. 2.3, to obtain a 3D degenerate cloud.
We start by cooling 5×109 atoms to 250 µK in a 3D magneto-optical trap (MOT) loaded in
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Figure 2.3: Experimental sequence to prepare a 2D homogeneous ultracold atomic sample.

a glass cell under vacuum. We proceed by switching on a magnetic trap. We perform an RF-
evaporative cooling and obtain 2.2×107 atoms at ∼ 20 µK. This step facilitates the transfer of
the atoms into an optical dipole trap (ODT) where we perform a second evaporative cooling
and obtain a degenerate 3D cloud of 5× 105 atoms with a temperature of ∼ 80 nK. Passing
through this ODT serves mainly to load a large atom number in a cloud of small Thomas-
Fermi radius to facilitate the transfer into the green box. The following paragraphs detail
the individual cooling steps. Each tool and device presented is remotely controlled by the
Cicero Generation computer software which handles all the experimental steps sequentially.

87Rb vapour The experimental sequence starts with an oven heating rubidium rock pieces
in a vacuum system with a pressure of 10−7mbar. A commercial 2D magneto-optical trap
(MOT) cools down the formed vapour in a glass cell. A D2-line resonant light beam, labelled
P in Fig.2.4.a, pushes only the 87Rb atoms in a glass tube, along the x axis, towards a second
glass cell located 30 cm away. All subsequent steps are carried out in the last glass cell.

3D magneto-optical trap We proceed by loading 5×109 atoms into a 3D MOT. The
quadrupolar magnetic field is provided by anti-Helmholtz coils (MC1 and MC2 in Fig. 2.4.b)
in the horizontal plane along the y axis, near the cell. The magnetic gradient is at maximum
22 G/cm. In the mean time, three pairs of counter-propagating light beams light up: one
along the horizontal y axis and two in a xz plane with an angle of 60◦ with respect to the
vertical axis (see M1, M2 and M3 in Fig. 2.4). They are all slightly red-detuned from the
D2-line to produce a viscous force on the atoms and trap them at the centre of the MOT.
The MOT is on during 7 s and cools the atoms to 250 µK. After that, the atoms are optically
pumped in the hyperfine level f = 1.

Magnetic trap We pursue by switching on a quadrupolar magnetic field, with a maximum
gradient of 240G/cm, generated by two water-cooled anti-Helmholtz coils in the vertical
direction. This creates a magnetic trap for atoms in |f = 1,mf = −1⟩ only, so that we load
∼ 1/3 of the total atom number. We increase the collision rate by compressing the trap
and then perform an evaporating cooling using a radio-frequency (RF) ramp of final value
2.5MHz. The atoms with the largest energy are transferred to the untrapped states and are
eventually lost while the remaining atoms thermalise. The RF ramp lasts 12 s and we obtain
at the end 2.2× 107 atoms at ∼ 20 µK.

Optical crossed beams trap Near the end of the RF evaporation, an optical trap is
loaded. Two beams with an angle of 120◦ are turned on in the horizontal plane and cross
a few micrometres below the magnetic-trap centre. They are red-detuned from the D2-line
to a 1064 nm wavelength to attract the atoms in the intensity maxima. Each arm has a
power of 3W, a horizontal waist of 90 µm and a vertical waist of 30 µm. The magnetic trap
is decompressed by decreasing the magnetic gradient, and the atoms are transferred into
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this optical dipole trap. A small magnetic gradient is maintained to compensate gravity.
Thereafter, we perform an optical evaporation by slowly decreasing the light beam powers
for 3 s. We obtain a degenerate 3D cloud of 5× 105 atoms with a temperature of ∼ 80 nK.
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Figure 2.4: Experimental setup from the side view (a), the front view (b) and the top view (c).
The 87Rb atoms are pushed to the cell with a light beam (P) resonant with the D2 line. They
are loaded in a MOT created by one pair of coils (MC1/2) and three pairs of beams (M1/2/3).
The two quadrupole coils (Q1/2) produce the next magnetic trap. We then switch on two
dipolar trap beams (D1/2) before ramping up the green box. The in-plane confinement is
ensured by a vertical beam reflected by a DMD and an optical microscope. The atoms are
vertically trapped in an optical accordion (Acc.) formed by two parallel beams separated by
a distance d going through an aspheric lens (L1), interfering on the atoms with an angle θ
as shown in (d), and finally passing through a second lens (L2) to image them. The atomic
cloud is imaged either on the vertical axis (VI) or on the horizontal axis (HI).
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2.2.3 Transfer to a 2D flat-bottom optical box

Following the proposal of [100], the atoms are transferred from the red dipole trap to the
central node of a blue-detuned vertical optical lattice [43, 101] of initial fringe spacing i =
12 µm. This lattice, called the accordion, is produced from two beams of wavelength 532 nm
interfering on the atoms with a variable angle θ. We vary the fringe spacing by tuning the
angle θ thanks to a translation stage setting the distance d between the beams before the
lens as shown in Fig. 2.4.d. A feedback loop controls the phase of the interference pattern so
that the central node does not move from shot-to-shot.
Meanwhile, we raise light-walls to confine the atoms in the horizontal plane. These are made
using a DMD shined with a repulsive light beam of wavelength 532 nm. The DMD (Texas
Instrument model DLP7000), mounted in direct imaging, is a 1024 × 768 array of squared
mirrors with sides of 13.7 µm. The mirrors can be individually set to two positions: (1) the
light is reflected to the atoms, (0) the light is deflected in another direction. When reflected
to the atoms, the light passes through a microscope objective of numerical aperture 0.4 and
the effective1 side of the mirrors is of 0.2 µm on the atomic plane. Therefore, we imprint any
binary image on the DMD mirrors and the in-plane confinement takes a tunable shape.
To reach the 2D regime, the atomic vertical degree of freedom must be frozen. To this end,
we adiabatically reduce the fringe spacing i to 2 µm. Because the light is blue-detuned, it
repels the atoms and compresses the 3D cloud into a planar Bose gas. Finally, we produce a
quasi-2D uniform Bose gas.

2.2.4 Measurement of the cloud vertical thickness

As we introduced earlier in Sec. 1.2.3, the atoms are trapped in a single node of a vertical
blue-detuned optical lattice approximated by a harmonic potential V (z) = 1

2mω
2
zz

2 of fre-
quency ωz/2π. They occupy the lowest energy level, thus their profile is Gaussian in the
vertical direction z and its vertical thickness writes ℓz =

√
ℏ/mωz. The precise knowledge

of the angular frequency ωz allows us to estimate the dimensionless 2D interaction param-
eter (g̃ ∝ a/ℓz) and to verify that the quasi-2D regime is reached. Indeed, ℏωz must be
higher than both the thermal energy kBT and the interaction energy per particle Ei/N .We
perform parametric heating to characterize the frequency trap ωz/2π. After evaporation in
the green box potential and thermalisation of the cloud, we modulate the accordion beams
power around their mean value. We fix the amplitude of the modulation to be low and vary
its frequency ωm/2π. We observe the maximal atom loss for a power modulation frequency
twice larger than the trap frequency ωm = 2ωz as shown in Fig. 2.5.

In our typical configuration, we work with an accordion frequency of ωz/2π = 3.6(1) kHz
which corresponds to a vertical thickness ℓz = 180(2) nm and the atoms are in the hyper-
fine level f = 1 in which they experience long lifetimes. Therefore, using the 3D scattering
length a11 = 100.9(1) a0 from [98], we get a weakly interacting 2D Bose gas of interaction
parameter g̃11 =

√
8πa11/ℓz = 0.149. Our typical uncertainty on the interaction parameter

is ∆g̃ = 0.002.

2.2.5 Shaping the density profile

The atoms are confined in the horizontal plane in between light hard-walls produced with a
DMD. We use a similar DMD, shined with a light beam of wavelength 532 nm, to imprint

1The light passes through a telescope composed of a lens and the microscope objective so the pattern on
the DMD is imaged onto the atoms with a magnification of ∼ 1/70.
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Figure 2.5: Atom losses induced by the parametric heating. We modulate the power of the
accordion beams with an amplitude of modulation of a few percent of their final value with
a frequency ωm/2π during 400 ms and measure the atom number N remaining in the trap.
We observe an asymmetric signal due to the anharmonicity of the vertical trapping potential.
Indeed, atoms with higher kinetic energy need less energy to be ejected of the trap and can
fall off even for ωm ≲ 2ωz. Therefore, we determine the accordion frequency by taking the
frequency on the hard-side right edge, shown with the red disk background: ωm = 2π ·7.2 kHz.

additional potentials on the cloud without changing the height of the green box potential.
Furthermore, as the effective mirrors size onto the atoms (0.2 µm) is smaller than the optical
resolution (∼ 1 µm), we generate optical potentials of controllable intensity. Indeed, we
discretise the DMD surface in macro-cells of several adjacent mirrors and set the effective
size of these macro-cells smaller than the optical resolution. The density of pixels (0) and (1)
on a given macro-cell is averaged to grey levels of light intensity over the sample. Therefore,
we convert any continuous profile into a binary image with a dithering algorithm following
the error diffusion method [102] and imprint it on the atoms.

Work performed during my thesis and not detailed in this manuscript

We recently developed a feedback loop to control the imprinting of these grey level
patterns accurately [51,97]. We work in the Thomas-Fermi regime, where the chemical
potential reads µ = gn (see Eq.(1.36)). In a sample of global chemical potential µ0, we
apply an optical potential V (x, y) of spatial scale much larger than the healing length
ξ. This perturbation locally modifies the chemical potential to µ(x, y). We can then
apply the local density approximation (LDA) and the density profile reads:

n(x, y) =
1

g
(µ0 − V (x, y)) . (2.2)

Thus, the figure of merit of the feedback loop is computed from the density profile.

An initial binary profile binary_0, which can be either a blank image or an
initial guess based on the target density profile target, is defined to be projected
onto the atoms. The initial density profile density_0 is then measured. The
feedback loop (shown in Fig. 2.6) starts with the computation of the local error
error_0 = density_0 - target which we filter with a Gaussian to remove high
frequency noise. This error is converted into a binary image via the error diffusion
algorithm and reshaped to the DMD dimensions in an array called binary_error_0.
The next binary image (here binary_1) to be printed on the atoms is then calculated
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Figure 2.6: Diagram of the grey levels iterative loop. The first row represents the initialisation
while the second row describes a loop. Dithering time steps are represented with half-dashed
arrows and green arrows mean imprinting the image on the atoms via the DMD.

with the recursive step: binary_(n+1) = binary_n + K*binary_error_n, where K

is a spacial-dependent gain taking into account the Gaussian envelope of the beam
intensity and whose amplitude is adjusted by hand. One projects back binary_(n+1)

onto the atoms, measures density_(n+1) and computes error_(n+1). If the
target accuracy is not reached one goes on and computes binary_error_(n+1) and
binary_(n+2) etc...
Usually, we set the number of averaged images to 10 to measure the density profiles
density_n to get rid of the optical shot noise and we observe that the global error
decreases for the first 10-15 steps of the loop.

2.2.6 Manipulation of the internal state

We perform the interesting physics in the eight Zeeman sub-levels of the two hyperfine levels
f = 1 and f = 2 of the 87Rb electronic ground state. We mostly work in the f = 1 level,
composed of three Zeeman sub-levels of angular momentum mf = −1, 0, 1 in order to take
advantage of its long lifetime τ ∼ 10 s. Usually, we choose to work in the magnetic-insensitive
state |f = 1,mf = 0⟩. However, the cloud is prepared in the state |f = 1,m = −1⟩ and we
must therefore coherently transfer the atoms within the hyperfine level f = 1. Furthermore,
the ability to manipulate the internal state allows us to create superpositions of states and
to study mixtures [52,73,97].

Coherent coupling A coherent field induces Rabi oscillations between two states |1⟩ and
|2⟩ separated in energy when close to the resonance of the transition |1⟩ ↔ |2⟩. Shining a
coherent field of frequency ν detuned from the resonance frequency ν0 by δ = 2π(ν−ν0) for a
time t transfers the atoms initially in the state |1⟩ into a superposition of states: c1|1⟩+c2|2⟩.
The populations p1 = |c1|2 and p2 = |c2|2 of the states |1⟩ and |2⟩ read:

p2 =
Ω2
0

Ω2
0 + δ2

sin2
(√

Ω2
0 + δ2

t

2

)
, p1 = 1− p2, (2.3)
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Figure 2.7: Clebsch-Gordan coefficients for
the magnetic dipole transitions of polariza-
tion σ+ (∆mf = +1), π (∆mf = 0) and σ−

(∆mf = −1).

Transition Ω0 [kHz] mw chain

|1,−1⟩ → |2, 0⟩ 9.5 RS1
|1, 0⟩ → |2,−1⟩ 8 RS2
|1, 0⟩ → |2, 0⟩ 38.5 RS2
|1, 0⟩ → |2,+1⟩ 16.5 RS1

Table 2.1: Microwave coupling strengths
for the most commonly used transitions as-
sociated to its mw chain in the presence of
a vertical magnetic field.

where Ω0 is the frequency describing the coupling strength between the two states and induced
by the microwave pulse. At resonance (δ = 0), a full transfer is achieved after a so-called
π-pulse when t = π/Ω0.

Microwave transfers The two hyperfine levels of the electronic ground state of the 87Rb,
f = 1 and f = 2, are separated by ∼ 6.834GHz. Therefore, a microwave (mw) of appropriate
frequency provides a one-photon coherent transfer from a state in one hyperfine level to a
state in the other hyperfine level while respecting ∆mf = 0,±1. Furthermore, when external
magnetic fields of 0 to 10 G are applied, the Zeeman sub-levels of the same hyperfine level
separate by a few MHz and a one-photon RF transition can be used to transfer the atoms.
However, RF transitions are less convenient2 so transfers between two states of the same
hyperfine level are performed by doing successive mw pulses. These mw have wavelengths of
a few centimetres, which means that the whole cloud is reached homogeneously, and they do
not induce momentum transfer.
Two mw antennas are installed on the experimental setup, close to the glass cell. The first
one is placed in the horizontal plane on the x axis. The second one is a one-loop antenna
of diameter ∼ 1 cm located in the horizontal plane on a diagonal axis. They are connected
to different mw chains which have been modified during my thesis and are now composed
of a synthesizer (both Rohde and Schwarz SMB100AV) followed by an amplification system.
We place a mw switch (PMC SW1AD-15) before each amplification system to control the
mw pulses duration and a circulator (Aerotek H13-1FFF) after the amplification systems to
protect it from reflections on the antenna. The signal of the first mw chain (labelled RS1) is
amplified by a pre-amplifier (Mini-Circuit ZJL-7G+) and a 10 W amplifier (Khune KU PA
700) before radiating to the atoms. The second chain (RS2) benefits of a greater amplification
thanks to a water-cooled 50 W amplifier (RF Lambda RFLUPA05G08GA). The amplitudes
of the respective fields are ∼ 10 mG and ∼ 30 mG and their tomography is detailed in ap-
pendix A. Both mw chains are remotely controlled by GPIB connections and their frequencies
are stabilised by a common 10MHz reference oscillator.

2The RF antenna present on our setup provides lower coupling strengths (< 5 kHz) than mw. Furthermore,
to recover a two-level atom picture one has to generate external magnetic fields large enough so that the Zeeman
second-order effect is no longer negligible. Originally, adiabatic transfers were performed [96] but proved to
be less stable and practical than mw pulses.



38 CHAPTER 2. PREPARATION OF THE ATOMIC SAMPLE

10 µm

(a) (b)

−1.5 −1 −0.5 0 0.5

0

10

20

µ/kBT

D

Figure 2.8: Temperature calibration using the equation of state. (a) Example of CCD image
we use for thermometry. A flat potential is additionally imprinted at the centre of the cloud
and its height is varied. We measure the density n in the depleted area, circled in red, as a
function of this height V and the density n0 of the non-perturbed part, outside the circle. (b)
We rescale both n and V (blue points) to match a numerical form of the equation of state
(solid black line) and find in this example T = 83.5 nK. The bulk density n0 = 43 µm−2 gives
the bulk PSD (dashed grey line) D = 17.9 while the critical PSD (solid grey line) is Dc = 7.8.

Coupling strengths and stability In the usual configuration, a vertical magnetic field
is applied to the atoms. On the other hand, the experiment is surrounded by fluctuating
magnetic fields mostly due to the Parisian metro. These fluctuations must be corrected to
ensure the stability of magnetic-field sensitive transitions and therefore we use a compensa-
tion loop. The magnetic field of the external environment is measured in a separate room.
This magnetic field is then converted into a current that is sent through a coil generating a
compensation magnetic field. Finally, we obtain a peak-to-peak variation of ∼ 1 mG of the
vertical magnetic field on the atoms which corresponds to fluctuations of magnetic-sensitive
transition frequencies ≲ 1 kHz at first-order.
The mw coupling strengths provided by both mw chains are large enough (≳ 5 kHz) to pre-
vent atom number fluctuations and are written in Tab. 1.1 for the usual transitions, the others
can be easily found using the Clebsch-Gordan coefficients in Fig. 2.7.

Microwave spectroscopy These mw induced transfers represent a powerful spectroscopic
tool. In particular, we perform Ramsey spectroscopy with a resolution of 1Hz on the
magnetic-field insensitive transition |f = 1,mf = 0⟩ ↔ |f = 2,mf = 0⟩. The large cou-
pling strength provided by the RS2 mw chain also allowed us to carry out single-photon mw
photoassociation to create weakly-bound 87Rb dimers in their electronic ground state, which
will be the subject of Part II.

2.2.7 Temperature and PSD of the sample

The temperature of the cloud is set by the height of the light hard-walls of the in-plane
confinement in the green box. We therefore perform optical evaporative cooling to tune
the temperature from ∼ 150 nK to ≲ 20 nK. A wide range of PSD D is also available by
simultaneously changing the temperature T and the critical temperature Tc ∝ n.
We measure the temperature of the sample from in-situ images using a numerical form of the
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2D Bose gas equation of state described in Sec. 1.5:

D = D
(

µ

kBT

)
. (2.4)

Following the method of [103], we imprint on the sample a flat disk-shaped repulsive potential
of height V and small diameter compared to the size of the cloud (see Sec.2.2.5). In the local
density approximation, the local depletion of the cloud ∝ V is adjusted by varying the
light power on the dedicated DMD and does not affect the height of the in-plane confinement
potential. We vary V and measure the density n in the depleted region. We fit the parameters
(µ, T ) to rescale the data and match the equation of state Eq. (2.4) and an example is shown
in Fig.2.8. Measuring the density n0 in the unperturbed region gives the critical temperature
Tc and we access the PSD D = DcTc/T .

2.2.8 Imaging system

Absorption imaging We perform absorption imaging by sending a light pulse of intensity
I and wavelength λ onto the sample, addressing the closed transition f = 2→ f ′ = 3 shown
in Fig. 2.2. Atoms initially in a |f = 2⟩ state scatter light in all directions, while the cameras
collect the photons in the forward direction only. Thus, the region occupied by the atoms
leaves a shadow on the image. We work in the low saturation regime: the pulse intensity I is
lower than the saturation intensity Isat = ℏω3

LΓ/12πc
2 (we fix I/Isat < 0.2), with ωL/2π the

laser frequency, Γ the linewidth of the transition and c the speed of light in vacuum.

Imaging axes and resolution We image the atoms on three axes and two of them are in
the horizontal plane. The former is mainly used to image the side of the 2D cloud or clouds
in time of flight (ToF) while the latter is used as a control camera and does not operate for
the science presented in this thesis. In practice, most images are taken along the vertical
axis with a low noise CCD camera (Princeton Instruments, Pixis 1024 BR Excelon) with a
magnification of 11 and a pixel size of 1.15 µm on the atoms. The light beam passes through
the microscope of numerical aperture 0.4 so that our optical resolution is ∼ 1 µm.

Two-dimensional density profile The vertical imaging provides in-situ images of the 2D
density profile n(x, y) =

∫
n3D(x, y, z) dz from the 3D atomic density n3D. Theoretically, in

the low saturation regime, the light intensity collected on cameras in the presence of atoms
Ic,a follows a Beer-Lambert law:

Ic,a = I exp

(
−
∫
σlightn3D(x, y, z) dz

)
+ Ibgd. (2.5)

This equation contains σlight the light-scattering cross section and Ibgd a residual background
intensity. In a two-level model, the light-scattering cross-section is given by σlight = σ0 =
3λ2/2π. However in the case of 87Rb, one must take into account the complex structure of
the addressed transition. This is done simply pondering the light-scattering cross section by
the average of the Clebsh-Gordan coefficient for π-transitions ϵ = 7/15: σlight = ϵσ0. In the
absence of atoms, the collected intensity writes:

Ic,0 = I + Ibgd. (2.6)

One defines the optical depth OD as:

OD =

∫
σlightn3D(x, y, z) dz = − log

(
Ic,a − Ibgd
Ic,0 − Ibgd

)
. (2.7)
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Figure 2.9: Ramsey spectroscopy. (a) Sequence diagram in the Bloch sphere representation.
(b) Ramsey oscillations of the population in |2⟩ centred on ν0 for a non-interacting atomic
cloud (black squares) and shifted by ∆ν for our weakly interacting gas (violet circles). Figure
reproduced from [73].

Therefore, by taking two images: one with and one without atoms, we access the density
n(x, y):

n(x, y) =

∫
n3D(x, y, z) dz =

1

σlight
OD. (2.8)

This Beer-Lambert law is a single-atom model and cannot apply for dense clouds. Indeed,
when the condition nλ2th ≪ 1 is not fulfilled, the light pulse can excite collective modes and
the OD is not linear with the density n anymore. Therefore, we work in the linear regime,
imposing OD ≲ 1.5. Moreover, in practice, the experimental environment affects the imag-
ing and the last relation must be multiplied by a correction factor. The calibration of this
correction factor is performed with a Ramsey spectroscopy described in Sec. 2.2.9.

Most of the experiments are conducted in f = 1 although this hyperfine level is not res-
onant with the imaging beam. Therefore, we perform a partial coherent transfer to f = 2
(detailed in Sec. 2.2.6) just before the imaging process.

2.2.9 Calibration of the density with Ramsey spectroscopy

The 2D density of the sample is a tunable quantity that we measure via in-situ absorp-
tion imaging described in Sec. 2.2.8. In practice, this imaging process is affected by the
experimental environment, such as surrounding magnetic fields, which modifies the sim-
ple relation Eq. (2.8). A correction factor is embedded in the light cross-scattering sec-
tion σlight which we calibrate with Ramsey spectroscopy on the hyperfine clock-transition
|f = 1,mf = 0⟩ → |f = 2,mf = 0⟩ labelled here |1⟩ → |2⟩.
Indeed, the atoms experience in the two states involved, |1⟩ and |2⟩, repulsive interactions
characterised by dimensionless parameters g̃11 and g̃22 and inter-species repulsive interactions
of associated strength g̃12. As demonstrated in the supplemental material of [55], the presence
of interactions results in an additional phase shift ∆ν in the Ramsey signal.
In a zero-temperature picture, this mean-field shift ∆ν is given by the difference of chemical
potential h∆ν = µ2 − µ1 where the chemical potentials (µ1, µ2) read:

µ1 =
ℏ2

m

n

2
(g̃11 + g̃12) , (2.9)

µ2 =
ℏ2

m

n

2
(g̃22 + g̃12) , (2.10)
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where n is the initial density3. The mean-field shift is therefore written:

∆ν =
ℏ

4πm
∆g̃ n, ∆g̃ = g̃22 − g̃11. (2.11)

The Ramsey spectroscopy consists of two mw pulses separated by a duration τ = 10 ms
addressing the hyperfine transition with a Bohr frequency ≃ ν0 and a coupling strength Ω.
The duration t of both pulses is set to t = 2Ω/π ≃ 25 µs so that an atom initially in |1⟩ expe-
riences a π

2 -pulse. We scan the coherent field frequency ν and measure the population in |2⟩
right after the second pulse. The sequence of mw pulses is displayed in Bloch representation
in figure Fig. 2.9.a.
We first look at a sample of non-interacting atoms: we perform a Ramsey sequence after a
time-of-flight long enough (2 ms) to suppress the interactions. The atoms, initially in the

state |1⟩, find themselves in a superposition of state (c1|1⟩+ c2|2⟩)
⊗

N after the first mw
induced π

2 -pulse. During the free-evolution, the two populations get dephased with a total
rate δ = 2π(ν−ν0) so that, after the second pulse, the population in |2⟩ oscillates with δ and
is maximal for δ = 0. From this measurement, we determined ν0.
Afterwards, we perform a similar Ramsey sequence on the atoms trapped in the green box, in
order to measure the shift of resonance ∆ν induced by the interactions. Both measurements
are presented in Fig. 2.9.b.
The density n is then determined from Eq. (2.11) and compared to the optical depth of the
same initial sample to calibrate σlight with Eq. (2.8).
The high precision of this calibration relies on the high-resolution of the spectroscopy (1Hz)
and on the precise knowledge of g̃ ∝ a/ℓz. Indeed, the vertical thickness of the cloud is
measured with a precision of a few nanometres. On the other hand, the aij are obviously in-
dependent of the fluctuations of the experimental parameters and relatively well known [98].
We estimate that their values are known with an accuracy < 1 a0.

2.3 Conclusion

In this chapter, we presented the atomic system and the different techniques we use to control
it. Following a standard cooling scheme we obtain a 3D degenerate cloud that we transfer
afterwards into a 2D optical trap. We shape the density profile of the atoms at will using
DMDs and grey-levels intensity. We also manipulate their internal state using mw. Our mw
system is a powerful spectroscopic tool and we use Ramsey spectroscopy with a resolution of
1Hz to calibrate the cloud density, which we vary from 100 µm−2 to 5 µm−2. The temperature
of the atoms can be adjusted from ∼ 150 nK to ∼ 20 nK. Therefore, we control the phase
space density over a wide range and study the properties of the atoms across the BKT phase
transition.

3The equations Eq. (2.9) and Eq. (2.10) actually depend on the densities n1 and n2 in |1⟩ and |2⟩ after
we perform a first mw pulse on the transition |1⟩ → |2⟩. However we perform this calibration imposing
n1 = n2 = n/2 by using π/2-pulses.





Part II

Microwave photoassociation of pairs of 87Rb atoms

and measurement of atom-dimer interactions
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3
87Rb least-bound dimers

Interactions between particles in cold atom physics were briefly introduced in Chapter 1. In
particular, we discussed their importance in 2D cold systems, in which they allow for the
rising of a quasi-long-range order.
In this chapter, we describe the interaction potential and its eigenstates in the context of
ultracold collisions. In particular, we will discuss the importance of bound states - describing
dimers - for the characterisation of interaction potentials and the control of interactions in
cold atomic samples. In a second part, we describe the spectroscopy by microwave-induced
photoassociation that we performed on the least-bound dimer of 87Rb during my thesis.

3.1 Binary interactions and dimers

This section is dedicated to the description of interactions in a dilute ultracold gas of neutral
atoms, where the three-body interactions are then negligible. We consider binary interactions
only and neglect magnetic dipole-dipole interactions. The interaction potential describes first
the scattering properties of two atoms. In the low-energy regime, the relevant scattering
process occurs in the s-wave, which is characterized by a single parameter: the scattering
length a. As mentioned in Chapter 1, this length defines, in this regime, the strength of
the interactions. Furthermore, there exist bound states of the interaction potential, which
describe dimers and are the focus of this chapter and the next one. Here, we emphasis the
importance of such bound states to characterise the interaction potential and introduce the
universal relation linking the energy of the least-bound states to the scattering length a.
Finally, we discuss some scattering resonances, in particular the ones known as Feshbach
resonances, as examples of experimental use of weakly bound dimers.

3.1.1 The interaction potential

We consider the interaction potential between two identical atoms in their electronic ground
state. Working with ultracold gases considerably simplifies the study of collisions under the
action of this potential. For temperatures ≲ 1 µK, the thermal wavelength λth (≳ 100 nm)
of the atoms is large compared to the typical size of a dimer (≲ 1 nm). The ultracold atoms
are delocalised and this leads to a smoothing of the interaction potential, i.e. the latter is
not distinguished in detail as its range and spatial variation scale are much lower than λth.
In these conditions, we will show that the interaction potential is described by only a few
numbers, as already outlined in Sec. 1.2.1. We first focus in the long-distance behaviour of
the interaction potential, which will be shown to be the important part to describe the least-
bound dimers, and then describe the short-distance potential, also called here core potential.

45



46 CHAPTER 3. 87RB LEAST-BOUND DIMERS

Long-distance behaviour: van der Waals interactions We consider two atoms whose
centres of mass are separated by a distance r. We focus here on the large-distance regime,
where r is larger than the typical size of the electronic clouds of the atoms (a few angströms)
so that they do not overlap. In this configuration, there is no position in space for which the
electronic wave functions of the two atoms are both non-zero and non-negligible. Therefore,
there is no possible exchange of electrons between the atoms. We write then the interac-
tion potential as the electromagnetic interaction between the two separated atoms A and
B, treated with a multipolar expansion. The first and dominant term is the dipole-dipole
interaction

Udip =
1

4πε0r3
[dA · dB − 3(u · dA)(u · dB)] , (3.1)

where ε0 is the vacuum permittivity, u the unitary vector connecting the atoms and dA (resp.
dB) is the dipole operator associated with the atom A (resp. B). The dipole operator dX

reads

dX =
∑

j

q(rj − rX) (3.2)

where we sum the contributions of all the electrons j, at position rj and with elementary
charge q, of an atom X = {A,B} whose centre of mass is at rX .
Let us consider the Hamiltonian Ĥ0 of the isolated atoms A and B individually. We note
its eigenstates |ψn⟩ and the corresponding energies En, with E0 < En>0. We study the
potential Udip as a perturbation of Ĥ0. At first order, because the mean electric dipole for an
isolated atom in its ground state is always zero, there is no displacement of E0 and everything
happens like the two atoms do not “see” each other. At second order, the displacement in

energy ∆E
(2)
0 writes:

∆E
(2)
0 = −

∑

n

|⟨ψ0|Udip|ψn⟩|2
En − E0

. (3.3)

This second order displacement is the only dominant term and, because it is negative, lowers
the ground state energy E0. The energy ∝ U2

dip varies then as 1/r6 and is written

V (r) = −C6

r6
. (3.4)

This formulation was proposed in 1930 by London [104] and describes the so-called Van der
Waals interactions. The positive coefficient C6 depends on the atomic species considered and
can be numerically calculated through the computation of the wave functions of the atomic
states and the estimation of the matrix element of the dipole operator. Mitroy et al. [62]
estimated this coefficient for most of the alkali-metals, together with the coefficients C8 and
C10 corresponding to the contributions of the next terms in the multipolar expansion of the
electromagnetic interaction, which write −C2n/r

2n.
The van der Waals interactions are associated with a characteristic range, RvdW, over which
they have a non-negligible effect. For a given wave packet, the potential energy is significantly
larger than the kinetic energy induced by the localisation for distances r ≲ RvdW where

RvdW =
1

2

(
2mrC6

ℏ2

)1/4

, (3.5)

with mr the reduced mass (mr = m/2 for homonuclear atoms). This characteristic range is
associated with an energy scale EvdW = ℏ2/(2mrR

2
vdW).
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Core potential When the distance between the atoms becomes shorter, their electronic
clouds overlap. We first discuss the form of the expected potential V (r) phenomenologically.
At long distances, which we already discussed, the potential is expected to be attractive
V ′(r) < 0 and must tend to zero for r → +∞. At smaller distances, the potential decreases
to a minimum value at a distance rmin. Beyond this value, the electronic clouds repel each
other and the potential increases, becomes repulsive V ′(r) > 0 and tends to a large value
while r → 0.
The determination of this potential was first achieved with the simplest atom: hydrogen (H).
Indeed, considering two H atoms, it becomes a four-body problem with one proton and one
electron per atom. As we will discuss later, the problem is easily reduced to a two-body
problem under simple assumptions.
We give an outline of the resolution for H atoms. As we now look at the internal degrees of
freedom of the atoms, we define here the quantities that will be useful to us. We consider
the interactions between two neutral atoms of hydrogen in their electronic ground state. The
problem involves then two protons, labelled A and B, at positions rA and rB and two elec-
trons, labelled 1 and 2, at positions r1 and r2. As we treat alkali atoms in their electronic
ground states, the orbital angular momentum of their electron is zero ℓ1 = ℓ2 = 0 and so
is the orbital angular momentum of the electronic pair L = 0. The electronic spins of the
electrons 1 and 2 are written respectively ŝ1 and ŝ2, and we define the total electronic spin
of the atomic pair as Ŝ = ŝ1 + ŝ2. Similar definitions apply to the nuclear spins of the nuclei
A and B, îA and îB and the total nuclear spin Î = îA + îB.

The so-called Born-Oppenheimer approximation, which relies on the large difference between
the proton mass mp and the electron mass me ∼ mp/1800, enables the reduction of this
four-body problem to a two-body problem. Indeed, electrons being much lighter, they evolve
in shorter characteristic times than protons. The electronic observables adjust almost instan-
taneously to the slower evolution of the nucleus. Therefore, we first assume that the nuclei
are fixed and look for the eigenstates of the electrons in the Coulombian field created by the
nuclei. Once we know their energy, we use it as an effective potential energy V (|rA − rB|)
for the nucleus Hamiltonian written as

Ĥ =
p̂2A
2mp

+
p̂2B
2mp

+ V̂ (|rA − rB|), (3.6)

where the two first terms are the kinetic energies of the nuclei A and B of momentum p̂A

and p̂B.

After having decomposed the problem in an electronic and nuclear part, one must study
the electronic Hamiltonian

Ĥe =
p̂21
2me

+
p̂22
2me

+ V̂C + 2Ei. (3.7)

The first two terms are the kinetic energies of the electrons 1 and 2 of momentum p̂1 and p̂2

while V̂C is the Coulombian potential. The last term is a constant with Ei = 13.6 eV being
the H ionisation energy, here to set the zero in energy when the atoms are at an infinite
distance, in their ground state. A good approximation for the electronic energy levels is
obtained following the Heitler-London method [105] which relies on the following variational
argument: as the distance between the nuclei rAB = |rA − rB| becomes infinite, the ground
state of Ĥe consists in two degenerate states with a possible eigenbasis given by:

ΨI(r1, r2) = ϕA(r1)ϕB(r2) ΨII(r1, r2) = ϕA(r2)ϕB(r1). (3.8)
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The single-particle wave function ϕA (resp. ϕB) describes one electron in the ground state
1s localised around the nucleus A (resp. B), and the electrons 1 and 2 can be localised
around the nucleus A or B. The calculations of the energies at each distance rAB can then
be summarised as follows: one looks for linear combinations Ψ = αΨI + βΨII which give
extrema of the average energy. This procedure reveals two solutions: a symmetric and an
antisymmetric combinations ΨI ± ΨII. These extremal energies can be written in a form of
an effective potential Veff,± for the motion of the nuclei. This effective potential writes as two
contributions: a “direct” energy and “exchange” energy term. The direct energy corresponds
to the matrix element of Ĥe where each electron stays around its original proton, and the
exchange energy corresponds to matrix elements where the atoms exchange their electrons.
This last contribution is null when the electronic clouds do not overlap.

Electrons are indistinguishable fermionic particles of spin s = 1/2. Given a quantization
axis, the electrons have two possible spin states: |↑⟩ ≡ |ms = 1/2⟩ and |↓⟩ ≡ |ms = −1/2⟩,
where ms is the projection of ŝ on the quantization axis. The Pauli principle stipulates that
the state of the electrons must be antisymmetric by exchange. Therefore, the spin state must
have a symmetry opposite to the orbital part one. For the symmetric potential Veff,+ one
finds the so-called singlet (S = 0) spin state (|↑, ↓⟩ − |↓, ↑⟩)/

√
2 while the potential Veff,− is

associated with triplet (S = 1) spin states: |↑, ↑⟩, |↓, ↓⟩, (|↑, ↓⟩+ |↓, ↑⟩)/
√
2.

Numerical calculations show that Veff,± tend to zero in the infinite distance limit while they
diverge for rAB → 0. The potential Veff,− is a decreasing function of rAB, always positive
and higher than Veff,+ < Veff,−. The other one, Veff,+ presents a negative minimum at a finite
distance rmin. They define, with their respective spin states, an anti-bonding orbital and a
bonding orbital respectively.
We emphasize that here we restricted the single-particle test functions ϕ to wave functions
associated with 1s states. This first approximation excludes van der Waals interactions.
Indeed, we calculated earlier the energy displacement induced by such interactions within
perturbation theory, and one can also compute the first-order state vector. Considering H
atoms in their electronic ground state 1s, one can show that the perturbed state at first
order implies p-states. As we did not include p-states in the test functions, the van der Waals
interactions are not described by the potential Veff,±. Opening the basis of test functions
ϕ, allowing for p-states for instance, leads to a more accurate model. The van der Waals
interactions can then be taken into account and their presence restores the attractiveness of
the anti-bonding orbital, which now presents a minimal value (under the dissociation limit),
even if it is still less deep than the bonding orbital. This last one is also made deeper by the
van der Waals interactions.

In this discussion, we let apart the spin dimension of the nucleus. However, nuclei have usu-
ally a non-zero magnetic moment which interact with the magnetic moment of the electron.
The coupling between the electron and nucleus spin angular momentum is called hyperfine
coupling and splits the ground state into hyperfine levels, described by their total angular
momentum f = |i − s|, ..., |i + s|. Moreover, as electrons, nuclei are indistinguishable parti-
cles. Therefore, their spin must be taken into account in the symmetries of the problem to
satisfy Pauli principle. In practice, it is easier to consider the total angular momentum f to
attribute spins states to their orbital part Veff,±. When f is an integer, the wave function
of the atomic pair must be symmetric by exchange, otherwise it must be anti-symmetric by
exchange. Note that, a priori, the different channels {fj ; fj′} are coupled, as the hyperfine
Hamiltonian does not commute with the Hamiltonian giving the orbitals.
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3.1.2 Scattering states and bound states

In the previous section, we described the interaction potential V (r) between two particles
separated by a distance r. This potential goes from repulsive to attractive with increasing r
and presents a minimum value for a distance rmin. Its long-distance tail is dominated by van
der Waals interactions. We also presented a method to calculate the core potential, which
brings out the presence of two potential energies: a singlet potential and a triplet potential.
Thanks to this knowledge, one can solve the two-body Hamiltonian Eq.(3.6). The eigenstates
with energies larger than V (+∞) are called the stationary scattering states and describe col-
lisions between the two particles. These states can be calculated with the so-called scattering
theory which is extensively treated in quantum physics textbooks [106]. For an isotropic
potential, binary collisions can be described by a scattering amplitude f(k) decomposed into
contributions of independent scattering channels with well-defined angular momenta ℓ. Each
channel is associated with a scattering amplitude fℓ(k), k being their relative wave vec-
tor, and can be treated independently. For ultracold atoms, the wavelength λth is typically
a few hundred nanometres and is much larger than the potential range b. In this regime
λth ∼ 1/k ≫ b, and for polarized bosons, only the s-wave associated with ℓ = 0 contributes
and the collisions are well-described at first order by one parameter: the scattering length

a = − lim
k→0

f0(k). (3.9)

The scattering length can be determined thanks to the scattering state at the dissociation
limit (E = 0), whose wave function asymptotic behaviour writes ∝ 1/r − 1/a. Its value can
be positive, negative, equal to zero or even infinite.
Since the low-energy properties of the interaction potential are characterised by a only, we
can simplify the binary collision model by replacing the real potential by a much simpler
regularised contact-potential as written in Sec. 1.2.1 in the 3D case:

V̂pp[ψ(r)] = gδ(r)
∂

∂r
[rψ(r)], g =

2πℏ2

mr
a. (3.10)

This potential yields the same scattering length a and the same isotropic scattering amplitude
f(k) at first order.

Let us now turn to the eigenstates with energies lower than V (+∞). These are bound states
of the dimer and are the centre of this chapter. Their energies are related to the scattering
properties: it can be demonstrated that the scattering amplitude f(k) diverges when eval-
uated for an energy equal to the energy of a bound state [63]. The energies of the bound
states can then be calculated by looking at the poles of f(k). At first order and for s-waves
only, one finds one bound state of energy

E = − ℏ2

2mra2
, (3.11)

when the scattering length is positive a > 0 and no bound states for negative values of the
scattering length a < 0. By construction, the pseudo-potential Eq. (3.10) gives the same
result. In practice, the atomic species used in cold atoms platforms have many bound states.
However, Eq. (3.11) gives a good approximation of the position of the least-bound state, for
any potential, when it is close to the dissociation limit. Moreover, the scattering length a
diverges when a new bound state is very close to the dissociation limit or appears, i.e. if we



50 CHAPTER 3. 87RB LEAST-BOUND DIMERS

modify the potential parameters (depth or position rmin) until the total number of bound
states is increased by one.
From a chemical point-of-view, dimers are formed thanks to the covalent bond, which only
exists when there are exchange interactions at play, and thus when the electronic clouds
overlap. This covalent bound is prohibited for noble gases or alkaline-earth metals whose
valence layer is complete. However, the van der Waals potential enables the formation of
stable weakly bound dimers and, for instance, the dimer He2 was indirectly observed in
1994 [107]. These weakly bound states have interesting properties and, as we will see later,
they are of great experimental interest, both from a spectroscopic point-of-view and for
controlling interactions in cold atomic gases. Considering a realistic potential, the least-
bound states are essentially localised in the range where the van der Waals interactions are
dominant. In 1970, LeRoy and Bernstein [108] used a semi-classical approach [109] to show
that, as long as the potential has a van der Waals tail, it is not necessary to know the
repulsive short-range potential to find the energies of the least-bound states. The calculation
of the bound states wave functions in the real potential show that these wave functions are
“phase locked” for r ≲ RvdW, i.e. they oscillate with the same spatial phase Φ. The short-
range potential effect is only to fix this spatial phase. Therefore, as long as Φ is known
and/or measured, the potential can be described by a van der Waals potential with any core
potential. The position of the potential minimum rmin can be adjusted to set the phase Φ on
the wave functions. The energies of the least-bound states in such a potential are universal
and write:

Ej ≈ −28.65(jd − j)3EvdW, jd ∝ Φ, (3.12)

where j is an integer and indicates the j-th bound state with j < jd and Ej−1 < Ej .
The wave function of the state at the dissociation limit E = V (+∞) appears to undergo the
same spatial phase locking than the wave functions of the least-bound states. As a conse-
quence, the scattering length a, given by the asymptotic wave function at the dissociation
limit, depends also on the spatial phase Φ of the wave functions, for any potential with a
van der Waals tail [110]. More precisely, a depends on Φ and on RvdW which defines the
most probable value of a: ā ∼ 0.956RvdW

1. Therefore, knowing Φ allows us to calculate the
scattering length and the bound states energies. In other words, once we know one element
of the ensemble:

{a,Ejmax , Ejmax−1 , ...}, (3.13)

one can deduce the others. For instance, measuring the position of a single bound state is
sufficient to have a good approximation of the scattering length and the position of the other
least-bound states.

3.1.3 Dimers and spectroscopy of the bound states

Molecular physics is a field of research in its own right for which methods to create and
observe molecules have been developed. Because of their complex internal structure, it is
difficult to prepare and trap ultracold molecules. We first highlight some examples of such
preparations. For instance, ultracold molecules can be prepared in magnetic traps thanks to
laser ablation of solids before being cooled by elastic collisions with a cold atomic gas [111].
This method apply for paramagnetic molecules2 only. Another method to trap cold molecules

1The scattering length a writes indeed a = ā [1− tan(Φ− π/8)]. The evolution of a/ā with respect with Φ
shows that a ∼ ā for most values of Φ, making ā the most probable value of a.

2Molecules are paramagnetic when they possess unpaired electrons. When an external magnetic field is
applied, the paramagnetic molecules are aligned with the magnetic field.
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Figure 3.1: (a) Optical one-colour photoassociation of two atoms in their electronic ground
state |g⟩ to a dimer in an electronic excited state |e⟩. (b) Two-colour photoassociation creating
dimer in the electronic ground bound state.

is to use their electric dipole moment properties. Starting with a molecular beam (prepared
in a closed valve and cooled in contact with a cold buffer-gas), the molecules are decelerated
with a quasi-static inhomogeneous electric field and then trapped in a electrostatic trap [112].
The trapped molecules can be observed with fluorescence imaging (using a transition to an
excited molecular state) or after being ionised.

Dimers can also be formed from cold atom physics platforms. Taking advantage of the
technical progresses made on the atomic cooling schemes, cold molecules have been formed
by photoassociation of pairs of ultracold atoms [113–116], first introduced in this context by
Thorsheim et al. [117]. The first observation of cold molecules created following this method
has been reported by Fioretti et al. [118]. This process associates two free atoms A and B
with a photon whose energy ℏωγ is equal to the energy difference between the collisional
channel of A and B and a specific rovibrational state of the excited molecule AB, as shown
in Fig. 3.1.a. It can be summarised as:

A+B + ℏωγ = AB. (3.14)

Photoassociation has a particular interest in ultracold atoms platforms as the kinetic energy
of the atoms is negligible. The kinetic energy spread is suppressed and we therefore observe
narrow lines, which ensures a larger precision on the measurement of bound states energy.
Moreover, the creation of the dimer results from low-temperature collisions, which are mostly
limited to s-waves for bosonic systems. Photoassociation produces then molecules in low ro-
tational levels. Finally, photoassociation allows to create shallow dimers for which the atoms
remains at large interatomic distances. As the electronic clouds of the two atoms do not over-
lap, the behaviour of these so-called long-range molecules are expected to be well-determined
by the properties of the atoms which constitute it [115]. From an experimental point of view,
we define two domains for photoassociation: the optical domain for which the corresponding
photoassociations imply optical transitions, and the radio-frequency (rf) and microwave (mw)
domain for which photoassociation is performed on transitions whose frequencies are of the
order of the megahertz and gigahertz respectively.
First photoassociations were performed in the optical domain, to create, from two atoms
in their electronic ground state |g⟩, dimers in an electronic excited state |e⟩, as shown in
Fig. 3.1.a. Optical photoassociation benefits from the large coupling strengths accessible,
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however, the dimers formed in electronic excited state have short lifetimes. They can sponta-
neously decay to an electronic ground bound state or the two atoms can separate and acquire
a large kinetic energy. Sample of long-lived cold molecules can be produced by waiting for the
electronically excited molecules to spontaneously decay to an electronic ground bound states.
However, it is difficult to target a given final state. Two-colour photoassociation appears
then to be a useful tool to target rovibrational bound states of energy below the collisional
channel energy threshold, allowing for the pairing of two atoms in their electronic ground
state. In this case, two laser pulses of angular frequencies ωγ1 and ωγ2 > ωγ1 are sent onto
the atomic pair, see Fig. 3.1.b. The first one couples the pair to an electronic excited bound
state, playing the role of an intermediate state. The frequency of the second pulse is set to
couple the intermediate state to a bound state placed at an energy ε below the continuum.
In the rf and mw regime, the transitions remain in the electronic ground state and one-photon
transitions can address the different hyperfine levels of the electronic ground state. Photoas-
sociation creates then long-lived cold molecules. However, unless the rf and/or mw fields are
generated directly on atom chips, the free-bound coupling strengths are smaller than the ones
achievable with optical transitions.
Finally, one can create dimers in the ground state by resonantly coupling the free atomic pair
and the bound state. This is achieved with the application of an external magnetic field, for
magnetic moments of the spin-state channels which are different.

Photoassociation has been performed on most of the alkali atoms [119–128]. As mentioned
earlier, knowing the position of the bound states just below the dissociation limit enables the
study of the properties of the potential at large distance and the corresponding scattering
length [129–131]. Spectroscopy measurement could confirm the van der Waals universality
discussed above in Sec. 3.1.2. Indeed, the measurement of many weakly bound state ener-
gies of the same atomic species shows that they are well-predicted by Eqs. (3.12) and (3.13).
More specifically, all the measured energies match this model for a single spatial phase Φ.
High-resolution two-colour photoassociation performed on ytterbium isotopes also allowed
to improve this model by taking into account the contributions of the other terms of the
multipolar development (see Sec. 3.1.1) [132].

3.1.4 Fano-Feshbach resonances: using weakly bound states to control in-
teractions in ultracold gases

We have already mentioned the scattering resonances for which the scattering length diverges.
We have highlighted the existence of resonances at the dissociation limit. This resonance oc-
curs if the least-bound dimer is close to the dissociation limit. For instance, caesium in
zero-magnetic field is naturally in this configuration. Its triplet scattering length has been
measured at a ∼ 130 nm and found to be 25 times the most probable value ā ∼ 5 nm obtained
from the universal van der Waals model [133]. The presence of this resonance induces atom
losses due to inelastic collisions and prevents condensation under these conditions.

We will now describe another type of scattering resonances called Fano-Feshbach reso-
nances (FFR). They were introduced by Feshbach in 1958 [134, 135] and Fano in 1961 [136]
for nuclear and atomic physics respectively. In the context of quantum gases, FFR were first
mentioned for the hydrogen atom [137,138] before their transposition to alkaline systems was
proposed in the 1990s [139, 140]. They are an essential tool in the physics of ultracold gases
as they allow to tune the interaction strength. Thanks to FFR, we can reach the strongly-
interacting regime for which the scattering length is of the order of the distance between the
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Figure 3.2: Scheme of a two channels FFR. The potential V1(r) (violet line) describes the
open channel. The potential V2(r) (black line) has a bound state and represents the closed
channel. The pair of atoms have initially an energy close to V1(+∞) ∼ 0 here. The energy
gap Ef between the bound state and the initial free state is also represented.

particles. On the other hand, they allow to reduce the interactions strength to study ideal
gases. We can also reach the unitary regime, for which the scattering length is infinite. These
resonances have been widely studied and the reader will find more complete discussions in
Refs. [141, 142]. Here, we will limit ourselves to giving a phenomenological model of these
resonances in order to underline the role of bound states in this process.
Fano-Feshbach resonances involve at least two channels, and we will discuss a simple model
with two channels involved and represented in Fig. 3.2. We consider two cold atoms colliding
with s-wave interactions. They have an initial energy close to the dissociation threshold of a
potential V1(r), describing the open channel. The second channel involved is described by a
potential V2(r) and is closed, i.e. the asymptotic value of its potential V2(+∞) is much larger
than the initial atoms energy ∼ V1(+∞). If the coupling between these two channels is large
enough during the collision, it can modify the phase shift δ0 associated with the open channel
and thus the corresponding scattering length a. Furthermore, if the closed channel presents
a bound state whose energy Ef is close to the incident energy of the atoms, dimers may
be temporarily formed during the collision. The occupation of the bound state generates a
rapid and considerable variation of the phase shift δ0 and scattering length a. This variation
can be scanned by tuning the energy gap between the bound state and the incident energy
Ef − V1(+∞)3. This can be achieved by applying an external field when the two channels
have different magnetic moments. It works similarly to the magneto-association we already
discussed, but now one fixes the magnetic field to obtain a given value of a. In this case, a
phenomenological model is commonly used to describe the variation of the scattering length
which writes:

a = abgd

(
1− B1

B −B0

)
. (3.16)

The background scattering length, i.e. the scattering length far from the resonance in the
open channel is written abgd. The parameters B0 and |B1| are magnetic fields representing
respectively the position of the resonance and its width. The scattering length is zero for

3In practice, the resonance does not occur when the gap Ef − V1(+∞) is reduced to zero but for Ef +∆ =
V1(+∞). The energy shift ∆ is a shift of the closed channel induced by the coupling between the free and
the bound states. In the case of magneto-association, the coupling strength depends on the atomic species
involved. The relation between the energy gap and the magnetic field writes

Ef +∆ = δµ(B −B0), (3.15)

where δµ is the difference between the magnetic moments of the atomic pair and the bound state.
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Figure 3.3: Observation of a Feshbach resonance in an ultracold atomic sample of sodium by
scanning the magnetic field around 900G. (a) Atom losses induced by the inelastic collisions.
(b) Rapid variation of the normalised scattering length calculated from the interaction energy.
The interaction energy is measured with a ballistic expansion of the gas. The solid line is the
prediction of the simple model Eq. (3.16). Figure extracted from [18].

B = B0 +B1.
The first experimental observations of FFR were performed in 1998 by two groups, at MIT [18]
and at the University of Austin [19]. We illustrate this phenomenon with the results of the
MIT group, shown in Fig. 3.3. They observed a FFR in a sodium Bose-Einstein condensate
at a magnetic field ∼ 900G. They scanned the magnetic field around the resonance and
measured the atomic losses and the interaction energy with a ballistic expansion of the gas.
They deduced the scattering length from the interaction energy and showed the divergence
of the latter, together with an increase of atomic losses due to inelastic collisions.

The FFR induced by magneto-association depends strongly on the atomic species since the
wave functions of the incident and bound states determine the coupling strength. This lim-
itation can be overcome by using other methods. Indeed, one can couple an atomic pair to
the bound state of a closed channel with light or microwave pulses. In these cases, the cou-
pling does not depend on the species but on the amplitude of the applied field. The energy
difference Ef − V1(+∞) is scanned by adjusting the field frequency.
Optical FFR was first proposed by Fedichev et al. [143] and is carried out with one- or two-
photon transitions [144, 145]. In the first case, it couples a pair of atoms in their electronic
ground state to a closed channel where one of them is in an electronic excited state. In the sec-
ond case, an electronically excited state is used as an intermediate state to couple the pair of
atoms to a closed channel where the atoms are also in their electronic ground state. However,
this method is limited by atom losses due to spontaneous emission in the electronic excited
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Figure 3.4: Ground states of the molecular energy potential V of the 87Rb dimers with respect
with the distance R between the centre of mass of the atoms. The so-called anti-bonding
orbital 3Σu presents a negative minimum for R ∼ 11 a0. The bonding orbital 1Σg is much
deeper and presents a minimum for R ∼ 8 a0. The three entry channels of the free 87Rb
atoms in their ground state at zero-magnetic field are represented in the inset and the two
upper potentials, {f = 1; f = 2} and {f = 2; f = 2}, converge adiabatically to the 3Σu

potential. This figure is extracted from [149].

state. The radio-frequency- or microwave-induced FFR, proposed by [146–148], does not suf-
fer from this problem since it does not involve electronically excited states. For this type of
FFR, because the wavelength of the field is much larger than the interaction potential range,
the amplitude of the scattering length modification depends on the amplitude of the field, on
one hand, and on the overlap between the incident and bound states on the other [63]. To
maximise the overlap, the potentials describing the channels must be significantly different.
For alkali atoms, this condition is fulfilled when they have different weights on the singlet and
triplet potentials and if the singlet and triplet scattering lengths are significantly different.

3.2 Production and characterization of 87Rb dimers

In this manuscript, our interest is focused on 87Rb -87Rb dimers. As an alkaline, its valence
layer has only one electron in the ground state. The core layers play a minor role in the
determination of the interaction potential. The situation is then very similar to the hydrogen
case that we described in the previous section Sec. 3.1.1. For 87Rb, the coupling between
the electronic spin angular momentum s = 1/2 and the nucleus spin angular momentum
i = 3/2 leads to a splitting of the ground state into two hyperfine levels f = 1 and f = 2.
The pairs can then have three different energies associated with the channels {f = 1; f = 1},
{f = 1; f = 2} and {f = 2; f = 2}. The total angular momentum taking integer values, the
wave functions of an atomic pair must be symmetric by exchange of one electron. As for the
hydrogen, we find an anti-bonding and a bonding orbital associated with a triplet and a singlet
electronic spin state respectively. These potentials are written in the language of molecular
spectroscopy 3Σ+

u and 1Σ+
g , expressing the properties of the electronic wave functions. The

notation Σ specifies that the pair of atoms has a zero projection of the total orbital angular
momentum on the diatomic axis. The indexes “g” (gerade) and “u” (ungerade) refer to the
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Channel n Two-colour rf

{f = 2; f = 2} -1 -25.045(3)

{f = 1; f = 2} -1
-24.984(3)
-26.055(5)

{f = 1; f = 1} -1 -24.242(5)
-2 -636.0094(12)

Table 3.1: Energies in MHz of the weakly bound state of 87Rb dimers with zero orbital angular
momentum, at zero-magnetic field, observed with two-colour photoassociation and rf-induced
photoassociation. The values n designates the index of the rovibrational state counted from
the dissociation limit. Values are extracted from [152–154] and [155] respectively.

symmetry after the inversion with respect to the center of the molecular axis and the exponent
corresponds to 2S + 1. These two molecular potentials are represented in Fig. 3.4 and were
characterised by Deiß et al. [150]. The so-called singlet and triplet potentials are described by
a scattering length as and at respectively, as explained in Sec. 3.1.2. A numerical resolution
of 87Rb potentials parametrised with existing measurements of the least-bound states shows
that they happen to have very close scattering lengths as = 90.0(2) a0, at = 98.99(2) a0 [151].
At large inter-atomic distance, relevant for the least-bound states, the molecular potentials
do not have a well-defined singlet or triplet character. The 87Rb singlet and triplet potentials
shown in Fig. 3.4 are indeed mixed for r > 20 a0. They are well-described by a van der Waals
potential V (r) = −C6/r

6 with C6 = 4635 a.u.4 [62].

We introduced in a previous section the photoassociation as a useful spectroscopic tool and
we present now the results of two research groups on the free-bound state transition spectra
of the electronic ground state of 87Rb. Two-color photoassociation in a 87Rb Bose-Einstein
condensate has been performed, for instance, in the group of Heinzen in Austin [152–154].
They measured some selected least-bound dimers of two hyperfine channels {f = 1; f = 1}
and {f = 2; f = 2} of the electronic ground state. They observed narrow lines of width
∼ 1.5 kHz which confirms the interest of performing this measurement in ultracold atomic
platforms. More recently, researchers in Melbourne reported the first rf-induced observa-
tion of the 87Rb least-bound rovibrational state, with zero orbital angular momentum, of
the hyperfine channel {f = 1; f = 2} [155]. They measured two levels 24.984(3)MHz and
26.055(5)MHz below the continuum at zero-magnetic field. They also partially measured the
Zeeman sub-levels diagram of this bound state. These measurements are reported in table
3.1 for a zero-magnetic field.
We complete these results using mw-induced photoassociation and propose a simple model to
describe the hyperfine and Zeeman diagrams of a rovibrational bound state with zero orbital
angular momentum.

3.2.1 Model for the energy levels of 87Rb least-bound dimers

We derived a simple model to describe the hyperfine and Zeeman splitting of any 87Rb 2

rovibrational state with zero orbital angular momentum as long as it is weakly bound, in a
sense that its binding energy must be much smaller than the hyperfine structure of an atomic
pair.
These energy diagrams have already been numerically computed using coupled-channels equa-

4Here, a.u. stands for atomic unity and writes in SI: 1 a.u. = 9.55× 10−80 J.m6.
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tions [148] and quantum defect theory [147,156,157]. The first method consists in diagonal-
ising the total asymptotic (r → +∞) Hamiltonian in a basis of symmetric states before using
the resulting wave functions to expand the collisions complex wave functions. Afterwards,
the extended wave functions are inserted into the Schrödinger equation, leading to coupled-
channels equations which yield energy of the bound states. The quantum defect theory is a
faster method to obtain the free-bound resonances position. This methods relies on the van
der Waals universality that we introduced before. The interactions are described by the van
der Waals potential only. The short-range potential - for which the depths of and splitting
between the singlet and triplet potentials are larger than the hyperfine splitting, Zeeman
splitting and initial collision energy - is described by a simple parametrisation, imposing an
appropriate boundary condition at short distances. This model relies then on three param-
eters: the singlet and triplet scattering lengths and the van der Waals potential range. The
model proposed here is phenomenological and much simpler to compute.
We consider two atoms of 87Rb, labelled 1 and 2, in their electronic ground state and charac-
terised by their electronic and nuclear spins, {s1 = 1/2, i1 = 3/2} and {s2 = 1/2, i2 = 3/2}.
The 87Rb electronic ground state, fully described in Sec.2.2.1, splits into two hyperfine levels
f = 1 and f = 2 of degeneracy 2f + 1. We write the Hamiltonian Ĥ acting on atomic pairs
and whose eigenvectors are bound state levels. As mentioned in Sec. 3.1.1, at low energy,
two collision channels are involved and associated with a singlet potential 1Σg and a triplet
potential 3Σu. We introduce in the Hamiltonian an effective coupling between these two
potentials to take into account the small difference of scattering lengths. We assume that the
hyperfine channels {f1; f2} are not coupled by this singlet-triplet coupling. Indeed, the two
least-bound states are expected to be ∼ 25MHz and ∼ 630MHz below the continuum (see
Tab. 3.1), so the binding energies are much lower than the hyperfine splitting ∼ 6.8GHz.

The energy diagram of an atomic pair is composed of three multiplicities according to the
hyperfine levels involved. These multiplicities labelled A, B and C are each separated by the
hyperfine splitting Ahfs ∼ h · 6.8GHz. The lowest-energy multiplicity A describes pairs with
both atoms in f = 1, multiplicity B describes pairs with an atom in each hyperfine level
{f = 1; f = 2} while the highest-energy multiplicity C defines pairs of two atoms in f = 2.
When the interatomic distance decreases, these free pairs can form weakly bound dimers de-
scribed by their total angular momentum F = |f1− f2|, ..., |f1 + f2|. The hyperfine diagrams
of the three multiplicities are shown in Fig. 3.5. Considering s-wave collisions only, one has
to select states that are symmetric by exchange. Thus, only even values of F are retained in
multiplicities A and C, while in multiplicity C, F can take the values 1, 2 or 3. Again, these
levels are of degeneracy 2F + 1 and, considering states symmetric by exchange only, we are
left with thirty-six levels: {1 + 5 = 6} levels in multiplicity A, {3 + 5 + 7 = 15} levels in B
and {1 + 5 + 9 = 15} levels in C.

We write the Hamiltonian acting on pairs of free atoms as the sum of three contributions:

Ĥ = Ĥhfs + ĤZ + Ĥst. (3.17)

The first term, Ĥhfs, is the hyperfine coupling between the magnetic momenta of a nucleus
and its attached electron. The second one, ĤZ, is the Zeeman term accounting for magnetic
coupling with a non-zero magnetic field B, while the last term is a phenomenological coupling
between the singlet and the triplet states which takes into account the small differences in
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their scattering length. These three terms read:

Ĥhfs =
Ahfs

2

(
ŝ1 · î1 + ŝ2 · î2

)
, (3.18)

ĤZ =
µBB

ℏ

[
gS(ŝ1,z + ŝ2,z) + gI (̂i1,z + î2,z)

]
, (3.19)

Ĥst = Astŝ1 · ŝ2 =
Ast

2

(
Ŝ2 − 3

2

)
, (3.20)

where Ahfs and Ast are the hyperfine coupling strength and the singlet-triplet coupling
strength respectively. The latter, Ast, may a priori be different for each multiplicity. The
singlet-triplet coupling Eq. (3.20) is treated as a perturbation within a single multiplicity as
Ast ≪ Ahfs. We write the state of the free pair of atoms 1 and 2 in the decoupled basis:

|σ1, ι1; σ2, ι2⟩ ≡ |s1 = 1/2, σ1, i1 = 3/2, ι1; s2 = 1/2, σ2, i2 = 3/2, ι2⟩. (3.21)

The projections on the quantization axis z of the electronic spin angular momentum s = 1/2
and the nucleic spin angular momentum i = 3/2 are written σ = ±1/2 and ι = ±1/2, ±3/2.
We use all the 64 atomic pairs |f1,mf1 ; f2,mf2⟩ = |f1,mf1⟩ ⊗ |f2,mf2⟩ to diagonalise the

Hamiltonian Ĥ and select afterwards the thirty-six states symmetric by exchange. The
hyperfine levels are given in this basis in appendix A.

Hyperfine diagram At zero-magnetic field, the Hamiltonian reads Ĥ = Ĥhfs+Ĥst. As we
already mentioned, the hyperfine term Ĥhfs gives three energy multiplicities, each separated
by Ahfs ∼ h · 6.8GHz. The two terms commute with F̂ so F is an appropriate quantum
number. The singlet-triplet coupling, treated as a perturbation within a multiplicity, leads
to the following lift of degeneracy:

� in multiplicity A: the levels F = 0 and F = 2 are respectively shifted by −A(A)
st /8 and

A
(A)
st /16.

� in multiplicity B, one finds the levels F = 1 and F = 3 to be pure electronic spin-triplet

shifted by A
(B)
st /4. The level F = 2 is lowered by −A(B)

st /8.

� in multiplicity C: the levels F = 0, F = 2 and F = 4 are respectively shifted by

−3A(C)
st /8, −3A

(C)
st /16 and A

(C)
st /4. The level F = 4 is a pure electronic spin-triplet.

We defined a singlet-triplet coupling strength Ast per multiplicities as they may differ from
one another. Note that in our computation, we consider them equal. The energy diagram at
zero magnetic field is presented in Fig. 3.5.a.

Zeeman diagam If we now apply an external magnetic field B, the levels split into 2F +1
Zeeman sub-levels. By adding the Zeeman term Eq.(3.19) to the Hamiltonian, F is no longer
an appropriate quantum number, but its projection on the quantization axis mF remains a
good quantum number to describe the sub-levels. As ĤZ is linear in Ŝz and Îz it cannot
couple two sub-spaces such as ∆F ≥ 2. Thus, in multiplicities A and C the hyperfine levels
are not coupled together and consequently, the Zeeman sub-levels are linear with B. However,
in the multiplicity B we observe a less trivial behaviour.
In all the multiplicities, we could identify at least one state whose energy is independent of the
magnetic field. For the multiplicities A and C, there are two and three magnetic-insensitive
states, which is a direct consequence of the fact that the Zeeman coupling induces linear
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Figure 3.5: (a) Hyperfine diagram scheme. (b) Zeeman diagram of a rovibrational wealky
bound state numerically calculated from the simple model Eq. (3.17). We fix the hyperfine
splitting constant to Ahfs = h · 6.834 682GHz, measured on the clock transition |f = 1,mf =
0⟩ → |f = 2,mf = 0⟩ on our setup. The singlet-triplet coupling is set to 3Ast/8 = h · 1MHz
to be consistent with the splitting measured for the least-bound state of the multiplicity B,
labelled n = −1 in Tab. 3.1, 3Ast/8 = h · 1.074(5)MHz [155]. Note that, in practice, there
is no guarantee that the three multiplicities experience the same singlet-triplet coupling.
Moreover, the weakly bound states that are lower in energy, n < −1, are expected to have
larger couplings Ast

5. The blue lines represent the magnetic-insensitive levels. The three
frames have a same vertical scale and their height is 10MHz.

variations with B for these multiplicities. In the last multiplicity, B, we found one magnetic-
insensitive state. This state, called |Ψ0⟩, will be of particular interest in our experimental
exploration. It is a pure electronic spin-triplet and writes in the decoupled basis:

|Ψ0⟩ =
1√
2

[
|1/2, 1/2; −1/2 − 1/2⟩+ | − 1/2, −1/2; 1/2 1/2⟩

]
. (3.22)

Its total angular momentum F is not well-defined as it is a combination of the F = 1 and
F = 3 levels, written in the coupled basis:

|Ψ0⟩ =
√

3

5
|F = 3,mF = 0⟩ −

√
2

5
|F = 1,mF = 0⟩. (3.23)
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In conclusion, this perturbative model suits well the case of 87Rb atoms as the singlet and
triplet potentials have similar scattering lengths. It provides the hyperfine and Zeeman en-
ergy diagram of a weakly bound rovibrational state with zero orbital angular momentum
with two free parameters: an offset energy level E0 and a singlet-triplet parameter Ast. Note
that this model relies only on internal variables and says nothing about the radial part of the
dimer wave functions. We assumed that an approximate characterisation of the radial part
is provided by the scattering lengths associated with the atomic hyperfine channels: a11, a12
and a22.
What happens if we want to model strongly bound states? As the binding energy becomes
larger, the bound state may be too deep in the potential and the assumption Ast ≪ Ahfs is
no longer valid. The singlet-triplet coupling cannot be treated as a perturbation.

We present in the following sections our work on the study of weakly bound dimers. Thanks
to our high-resolution mw spectroscopic tool, we photoassociate free pairs of atoms to the
two least-bound states n = −1,−2 of the multiplicity B. Using the internal degree of free-
dom of the atoms, we were able to measure the fifteen Zeeman sub-levels of the least-bound

rovibrational state n = −1 and provide an accurate estimate of E0 and A
(B)
st by comparing

our result with the simple model we have developed above. Note that, as we work on a single
multiplicity, we diagonalize the singlet-triplet coupling over the whole ensemble of states and
then restrict the energies to the multiplicity B. Moreover, this allows to take into account
the Zeeman quadratic effect which couples the different multiplicities.

3.2.2 Microwave-induced photoassociation spectroscopy of the 87Rb least
bound dimers

The energy levels of a free pair of 87Rb atoms in their electronic ground state is composed of
three multiplicities, introduced in the previous section, separated by the hyperfine splitting
Ahfs ∼ 6.8GHz. Microwave single-photon transitions can then address lines with ∆mF =
0,±1 connecting different multiplicities:

{f = 1; f = 1}
{f = 2; f = 2}

}
↔ {f = 1; f = 2}. (3.24)

In practice, the short lifetime of atoms in the hyperfine level f = 2, τ ∼ 100ms, makes it
difficult to search for bound states from free pairs other than {f = 1; f = 1}. We then
mostly limit ourselves to the transitions {f = 1; f = 1} → {f = 1; f = 2} and thus to the
spectroscopy of the multiplicity B.

Microwave-induced photoassociation We write the magnetic field created by the elec-
tromagnetic wave of frequency ν = ω/2π:

Bω(t) =
Bω

2
ε exp(−iωt) + c.c. (3.25)

and introduce the real amplitude Bω of the field and the complex unit vector ε = (ε+, ε−, ε0)
characterising the orientation of the field for a given quantization axis. This quantization

5A list of the predicted bound states of the 87Rb potential has been given in Wynar thesis (page 171) [153].

Using these results we find, for n = −1: A
(A)
st = h · 4.8MHz, for n = −2: A

(A)
st = h · 42.7MHz, for n = −3:

A
(A)
st = h · 133MHz, for n = −4: A

(B)
st = h · 165MHz and for n = −5: A

(C)
st = 1102MHz.
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Figure 3.6: Relevant levels for atom pairs in the hyperfine sub-levels f = 1 and f = 2
of 87Rb. The dissociation limits of molecular state manifolds, represented by dashed lines,
are separated by h · 6.8GHz. The molecular potentials are represented by thick continuous
lines, together with the values of the total angular momentum F of the dimers. The mw
transitions (violet arrows) address the least-bound rovivrational levels n = −1 and n = −2
of the {f = 1; f = 2} branch respectively, with zero orbital angular momentum, from the
free pair level |f = 1; f = 1⟩.

axis is set by the direction of the external static magnetic field B, whose amplitude and
direction are tunable. For most of the experiments we performed, the static magnetic field is
vertical. We use two mw chains and antennas, described in Sec. 2.2.6, to address free-bound
transitions of polarisation σ−, π and σ+. The two antennas have different field amplitudes
and orientations. We characterise the amplitude of the field for a given polarisation P by the
quantity BP

ω = |BωεP |. The amplitudes of the two antennas for the three polarisations with
a vertical magnetic field are given in Tab. 3.2.

mw chain σ− π σ+

RS1 2 8 12
RS2 8 31 4

Table 3.2: Amplitude BP
ω in mG of the microwave field shined by the two antennas, labelled

RS1 and RS2, for the different transition polarisations P and a vertical external static mag-
netic field B, when using the 10W (RS1) and the 50W (RS2) amplifiers at full power.

We photoassociate two atoms in the hyperfine level f = 1 to the least-bound states of
the multiplicity B, as shown in Fig. 3.6. We shine a mw field on a uniform quasi-2D atomic
sample of tunable surface density na and vertical thickness ℓz = 180(2) nm. The in-plane
profile of the sample is shaped as a flat disk of radius r = 20 µm and is shown in Fig. 3.7.a.
We set the temperature to be the lowest achievable in our platform T ≲ 20 nK. The initial
kinetic energy of the atoms is then negligible and collisions occur in the s-wave. When the
frequency of the mw field shined on the atoms is resonant with a free-bound transition, we
observe atom losses due to the creation of dimers. After the mw excitation, we partially
transfer the atoms into the hyperfine level f = 2 with a resonant mw pulse. We measure the



62 CHAPTER 3. 87RB LEAST-BOUND DIMERS

optical density (OD) in f = 2 and calculate the surface density na(ν) of the atoms in the
f = 1 hyperfine level from this measurement. Since we create dimers from the association of
two atoms, we expect the density na to undergo two-body losses and its evolution in time to
follow:

dna
dt

= −βn2a, (3.26)

where β is the time-independent loss coefficient6. We consider durations δt of the mw exci-
tations short-enough to induce small depletions of the atomic cloud. The excitation strength
is low enough so that we do not observe coherent oscillations between the atomic and the
molecular state, as was observed with Strontium atoms [159]. The photoassociation signal is
thus described thanks to a Fermi golden rule. We define the depletion of the surface density
δna/na = (na(ν) − na)/na as a more convenient observable to quantify the atomic losses,
which are expected to scale as:

δna/na ∝ −βnaδt. (3.27)

The least-bound rovibrational state of the multiplicity B We now detail the spec-
troscopy of the least-bound rovibrational state n = −1 that we performed with mw-induced
photoassociation, which is represented in Fig. 3.6.
By starting from an atomic sample prepared in the Zeeman sub-level |f = 1,mf = 0⟩, to
benefit from its long lifetime τ ∼ 10 s and its magnetic-field-insensitivity, we can address the
levels of a bound state with a total angular momentum projection mF = 0,±1. The energy
diagram of the multiplicity B, calculated with our simple model, is shown in Fig.3.5.b. There
are nine lines out of the fifteen corresponding to these mF , three for each value. We measured
the positions of three of them, with mF = 0,±1, by shining a mw field during ≲ 1 s. A typical
signal of dimer creation by photoassociation is shown in Fig. 3.7.b. The losses are fitted with
a Lorentzian function written:

na(ν) = na

[
1 +

δna/na

1 + [2(ν − νm)/Γ]2
]
, (3.28)

with four free parameters: the surface density off resonance na, the depletion δna/na, the
full width at the half maximum depletion Γ and the frequency νm for which the depletion is
maximal. The dimer energy from the initial state energy is then set by h · νm. We varied the
static magnetic field amplitude from ∼ 0.75G to ∼ 1.75G and measured the Zeeman shift of
the three lines, as shown in Fig. 3.7.c. We observed depletions δna/na lower than ≲ 15% and
width lower than ≲ 2 kHz. The individual data of the lines are presented in appendix A.

Among these three lines, we observed the magnetic-insensitive bound state |Ψ(n=−1)
0 ⟩ we

introduced earlier in Sec. 3.2.1. As its total angular momentum projection is zero mF = 0,
we address this line with a transition of polarisation π, for which our microwave intensity is
maximum, see Tab. 3.2. For an initial density na = 75 µm−2 of atoms in |f = 1,mf = 0⟩,
a mw excitation of 115ms creates a depletion of 14% in the sample. The width of the line
is always smaller than 1 kHz and, as there is no magnetic broadening of the line at first

order, it can give an indication of the lifetime of the dimer. This specific state |Ψ(n=−1)
0 ⟩ and

properties will be the centre of next chapter.
The three lines measured from |f = 1,mf = 0⟩ are sufficient to compare the model derived
in Sec. 3.2.1 with our experimental measurement, as a first approximation. We fit the model
to our data using a least-squares method and two free parameters: the spin-triplet energy
at B = 0, E0, and the singlet-triplet coupling Ast. The model matches our three lines with

6This two-atom pictures stands for many-body systems if the loss coefficient is large enough [158].
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Figure 3.7: (a) Homogeneous atomic sample (bar length: 10 µm). (b) Typical microwave
photoassociation signal. The atoms are initially prepared in |1, 0⟩ and shined by a mw field
of frequency ν. The depletion, maximal at ν = νm, indicates the creation of dimers. The solid
line is a fit to the data, using Eq. (3.28). (c) Energy diagram of the multiplicity B showing
the three lines measured from |f = 1,mf = 0⟩ (blue points) and the fitted model (solid lines).
The corresponding total angular momentum projection is indicated on the right. The red

line indicates the magnetic-insensitive state |Ψ(n=−1)
0 ⟩ and the grey lines are forbidden from

|f = 1,mf = 0⟩ by the electronic selection rules.

N 1 3 4 5 9 10 11 14 15

mF -1 0 1 -1 0 -1 1 0 1
Ω/Ω0 < 0.05 < 0.05 < 0.05 0.21 1 < 0.05 0.34 < 0.05 < 0.05

Table 3.3: Total angular momentum projection mF of the nine lines allowed by the selection
rules if starting from a sample in |f = 1,mf = 0⟩ and their relative coupling Ω/Ω0 to
|f = 1,mf = 0⟩ for a vertical magnetic field. We attribute to each level of the multiplicity B
a number (N) standing for its position in the energy scale at large magnetic field (B ∼ 2G),
N = 1 being the lowest in energy. The three coloured columns correspond to the transitions
we observed. We chose the mw antenna maximising Ω/Ω0 for each individual line. The values
given in this table are computed with B = 2G. In practice, Ω/Ω0 is magnetic field dependent
but changes for only a few percent over the range of magnetic field we explored.

E0 = h · −24.985(3)MHz and Ast = h · 2.875(11)MHz and is shown in Fig. 3.7.c with the
experimental points. The energy of a pair of atoms in |f = 2,mf = 0⟩ at B = 0 defines the
zero of energy and the errors are computed with a bootstrap analysis.
Once we have a first fit of the experimental values, we can determine what are the other
accessible states and their energies. The diagonalisation of the Hamiltonian Eq. (3.17), in
addition to giving the dimers energies, gives the angular part of their eigenstates. Using the
calibration of the mw field tomography, we can compute the matrix Ŵ coupling a pair of
atoms to a molecular level of the multiplicity B. The coupling of the microwave field to the
electronic degree of freedom of a pair of atoms of 87Rb in the electronic ground state (L = 0)
writes:

Ŵ =
µBgs
ℏ

Ŝ ·Bω(t). (3.29)

The matrix elements ⟨final| Ŵ |initial⟩ = ℏΩ do not give a complete information about the
overlap of the states as we do not have any information on the radial part of the initial state
|initial⟩ and final state |final⟩. However, their relative values can still be useful to predict the

strength of the lines. The transition |f = 1,mf = 0; f = 1,mf = 0⟩ → |Ψ(n=−1)
0 ⟩ has the

strongest coupling Ω0, so we define for each line a relative coupling strength Ω/Ω0. The rela-
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Figure 3.8: (a) Microtraps used for microwave spectroscopy with binary mixtures (bar length:
10 µm). (b) Typical photoassociation signal when the initial state is a binary mixture pre-
pared in a homogeneous potential (violet squares) and in microtraps (black diamonds). We
photoassociate a pair of atoms |f = 1,mf = −1; f = 1,mf = +1⟩ to a dimer with mF = 0.
The depletions is 7% in a uniform disk and 23% in microtraps. The shift of the line centre
comes from the difference of density in the homogeneous cloud and the microtraps, and will
be explained in the next chapter. The mw excitation duration is 5 s and we image only the
component |f = 1,mf = −1⟩. (c) We verify that the centre and width of the line are the
same while imaging the other component |f = 1,mf = +1⟩ (blue points) in microtraps.

tive coupling elements between a pair of atoms in |f = 1,mf = 0⟩ and the nine lines allowed
by the selection rules are given in Tab.3.3. The coupling with the six unobserved lines are at
least five times smaller than the coupling to the lines we measured. It therefore appears that
we cannot photoassociate these dimers with the setup described above. In order to confirm
this statement, we scanned the mw frequency around the predicted frequency of an allowed
transition of smaller coupling. Since we do not observe the bound state, we can set a lower
limit on the coupling elements enabling the observation of dimers with our experiment7.
Once this lower limit is known, one can find which initial state in the hyperfine level f = 1
has the highest coupling to which dimer. In practice, we can prepare each pure state or
binary mixture in the f = 1 manifold with a sequence of mw pulses. It is more convenient
to prepare pure states as this reduces the number of mw pulses and ensures better stability.
Moreover, in mixtures, the atoms have different magnetic moments so the two components
can spatially separate in the presence of a residual magnetic field gradient. As the overlap
of the components diminishes, the probability to photoassociate the atoms to a bound state
strongly decreases. We therefore privileged pure initial states while searching for the remain-
ing bound state levels. However, some of them can be addressed from mixtures only. In this
case, we prepared the atomic sample in an array of microtraps of size ∼ 5 µm, to prevent
phase separation. An in-situ image of such preparation is shown in Fig. 3.8, as well as a
photoassociation signal from a mixture state with and without microtraps. We see clearly
that the microtraps preparation allows us to observe signals with larger amplitudes as the
depletion is increased from ∼ 5% to ∼ 20%. Indeed, the density in each microtrap is larger
and the two components overlap. We also imaged both components to check that the deple-
tion and the line centre are the same, the lines do indeed overlap and are shown in Fig. 3.8.c.

Finally, we could detect the fifteen Zeeman sub-levels of the least bound state n = −1 as a
function of the magnetic field amplitude. The error on the resonance frequency νm is always
≲ 1 kHz. The simple model we derived allowed us to predict the position of these sub-levels
from the measurement of a few lines. We could fit our data and adjust the prediction after

7By combining all our photoassociation measurement, it appears that our limit is given by Ω/Ω0 ∼ 0.16.



3.2. PRODUCTION AND CHARACTERIZATION OF 87RB DIMERS 65

each new measurement. The tomography of our two mw fields allowed us to find the best
initial state and mw antenna to photoassociate each level.
The full Zeeman diagram of the multiplicity B is shown in Fig. 3.9. The fit of the model
to our complete data set gives the position of the triplet at E0 = −24.985(1)MHz from the
continuum of |f = 1,mf = 0; f = 2,mf = 0⟩ at B = 0. The singlet-triplet coupling is
Ast = h · 2.875(5)MHz so the energy splitting between the F = 1, 3 and F = 2 manifolds at
B = 0 is 3Ast/8 = h · 1.078(2)MHz. These results are in good agreement with the measure-
ment of Mordovin [155], given in Tab. 3.1. We define the distance between our experimental
results and the best fitted diagram as:

σ =

√
1

Npoints

∑

i

(
νm,i − ν(fit)i

)2
, (3.30)

where νm,i is the measured resonance frequency, ν
(fit)
i the resonance frequency from the fit and

Npoints is the total number of experimental points. We obtain σ = 3.7 kHz. The distribution
of distances between the measured values and the fit is shown in Fig. 3.10 for each individual
value of the magnetic field and the global diagram. We give in appendix A the experimental
parameters used for the measurement of each level and the experimental points together with
their distance from fit.

The second-least-bound rovibrational state of multiplicity B We also scanned our
mw frequency further below the free pair energy of |f = 1; f = 2⟩ to find the second-least-
bound rovibrational state, labelled n = −2. Similarly, we prepare the atomic sample in the
hyperfine level f = 1 and the corresponding transition is also represented in Fig. 3.6.
The rovibrational state n = −2 with zero orbital angular momentum of the multiplicity A
was observed by Wynar & Freeland et al. [152] and its position is reported in Tab. 3.1. As
the scattering length in the hyperfine levels f = 1 and f = 2 are very close ∼ 100 a0, the
position of this bound state in A gave us a good approximation of the position of the similar
bound state in B.
We were able to measure one Zeeman sub-level of the n = −2 bound state. We prepared
a uniform cloud of atoms in the state |f = 1,mf = 0⟩ and photoassociated atom pairs to

the magnetic-insensitive level |Ψ(n=−2)
0 ⟩. We used the mw chain RS2, which has the largest

field intensity for π-transitions, and whose amplifier has a large bandwidth. We observed
atom losses, signature of the photoassociation, −642.219(1)MHz below the continuum of
|f = 1; f = 2⟩. The overlap between the bound and free states is much smaller than for
the n = −1 rovibrational state: the duration of the mw excitation was set to t = 10 s to
observe a depletion in the atomic sample of δna/na ∼ 15%. The amplifier power was set
to 0.76 times its maximum and this duration is the longest it can stand without undergoing
thermal problems. As already mentioned, the coupling strength Ω0 indicates that this line
is the strongest for our setup. Taking into account the line broadening due to the difference
of magnetic moment of the free and bound states, we concluded that it was impossible with
our experiment to measure the other Zeeman sub-levels. However, as we were able to observe
the magnetic-insensitive one, which has a narrow linewidth, we can compare its properties to
the n = −1 magnetic-insensitive level. This will be presented in the next chapter.

Comparison to universal models In the first section of this chapter, we discussed the
universality of the bound states energy. The 87Rb least-bound state is not close enough to
the dissociation threshold (i.e. the scattering length is not large enough) for the universal
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relation Eq. (3.11):

E = − ℏ2

2mra2
(3.31)

to give a good approximation of its energy. Indeed, the latter expression predicts the least-
bound state to have an energy of ∼ −h · 4MHz, where we measured ∼ −h · 25MHz. We also
described the van der Waals universality: if the interatomic potential has many bound states
and is well-described by a van der Waals potential at large-distance, then the least-bound
states energies are given by Eq. (3.12):

Ej ≈ −28.65(jd − j)3EvdW. (3.32)

The integer j indicates the j-th bound state with Ej−1 < Ej . In practice, jd is not an integer
but its integer part, E[ jd ], gives the total number of bound states. Using these notations,
the energies of the two least-bound states n = −1 and n = −2 correspond to j = E[ jd ] and
j = E[ jd ]− 1 respectively and they write:

E(n) = −28.65 [jd − E[ jd ]− (n+ 1)]3EvdW. (3.33)

Using the value of C6 = 4635 a.u. and the energies of the two least-bound states E(n=−1) =
h · 24.985MHz and E(n=−2) = h · 642.219MHz, we find:

E(n=−1) −→ jd − E[ jd ] = 0.522, (3.34)

E(n=−2) −→ jd − E[ jd ] = 0.540. (3.35)

The two values of jd − E[ jd ] are close but not equal. This mismatch is explained by the
fact that the van der Waals model relies only on the first term of the multipolar expansion
of the electromagnetic interactions between the two atoms, as mentioned in Sec. 3.1.1. The
discrepancy between the two values should vanish by taking into account the effect of the
other terms of the expansion. If we take the average value jd − E[ jd ] ≈ 0.531, we find
two energies distant by ∼ 1MHz and ∼ 11MHz from the energies E(n=−1) and E(n=−2)

respectively.
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Figure 3.9: Zeeman diagram of the least bound state of the 87Rb {f = 1; f = 2} manifold.
The different color of the experimental points represent the initial atomic state from which
photoassociation is performed. It could be either a pure sample of atoms in |f = 1,mf =
0,±1⟩ (monochrome points) or a binary mixture of two of these hyperfine states (bi-chrome
points). The value of the projection of the total angular momentum mF is shown on the
right of each level. Solid lines are a fit with the phenomenological model with only two free
parameters: the energy of the triplet at B = 0, E0, and the splitting between the F = 1, 3
and the F = 2 manifold at B = 0.
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Figure 3.10: (a)-(e) Histograms of the distance between the experimental points and the fit for
individual values of the magnetic field: 0.75G, 1G, 1.25G, 1.5G and 1.75G. (f) Histograms
of the distance between the experimental points and the fit for all the magnetic field values
probed. The histograms are normalised and the bar width is fixed to 1.5 kHz.
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3.3 Conclusion

In this chapter, we first introduced the interaction potential. We derived of the interaction
potential for the simplest atom pair: H2. We then briefly discussed its extension to alkali
atoms. The calculation of these potentials shows the existence of two channels: a singlet
potential and a triplet potential. In the case of ultracold gases, the relevant eigenstates are
described by a few numbers: the scattering length a, which fully describes the collisions, and
the range RvdW of the van der Waals potential, dominant at large interatomic distance, which
defines the weakly bound dimers relative energies. This allows us to simplify the expression
of the interaction potential. Remarkably, the so-called van der Waals universality emphasises
that these numbers, i.e the scattering length and the positions of the weakly bound states,
define an ensemble which can be known from the measurement of one of its elements. This
property motivates the study of the energy positions of the least-bound states of the atomic
species, as they provide information on their interaction potentials and scattering properties.
We described therefore an experimental method to study the spectroscopy of bound states:
the photoassociation. Originally introduced with optical excitations to photoassociate atoms
with excited or ground state molecules, radio-frequency- and microwave-induced photoasso-
ciation is also used to study ground state molecules. We also briefly discussed the role of the
least-bound states in scattering resonances, such as Fano-Feshbach resonances.
We performed high-resolution mw-induced photoassociation in the electronic ground state of
87Rb. We photoassociate pairs of atoms initially in the hyperfine level f = 1 to dimers with
one atom in f = 1 and the other in f = 2 and with zero orbital angular momentum. We mea-
sured the complete Zeeman diagram of the least-bound rovibrational state and one Zeeman
sub-level of the second-least-bound rovibrational state. We introduced a phenomenological
model to describe a rovibrational state and its hyperfine and Zeeman diagram. This model
is then fitted to our data with two free parameters: an energy offset and a coupling between
the singlet and triplet potentials. It reproduces well our measurement and can be used to
predict the positions of the Zeeman sub-levels, based on the knowledge of some of them.



4
High-precision photoassociation and
measurement of the atom-dimer interaction

In a sample hosting isolated atoms and dimers at very low temperature, binary interac-
tions between atoms and dimers are described as s-wave interactions and are associated with
an atom-dimer scattering length aad. The existence of a universal relation between atom-
atom and atom-dimer scattering lengths in bosonic systems remains an open question. For
fermionic systems close to the unitary regime, however, the scattering length a is sufficient to
calculate the atom-dimer scattering length aad. The three-body fermionic system has been
studied for homo- and heteronuclear Fermi-Fermi mixtures [160–164] or Bose-Fermi mix-
tures [165–167] and the atom-dimer scattering length has been shown to depend on a and the
mass balance. Effects of confinement on aad were also studied [168, 169]. Furthermore, the
dimer-dimer scattering length add is also determined by the scattering length a [170,171].
In the case of bosonic systems, many works have focused on the vicinity of a scattering
resonance |a| → +∞. This regime is of particular interest to study the Efimov effect [24]
which predicts the presence of an infinite number of three-body bound states, or trimers,
whose energy levels follow a geometric scaling determined by a three-body parameter. The
atom-dimer scattering length aad is indeed of particular interest to look for Efimov trimers
and parameters, as an atom-dimer scattering resonance is expected when a trimer merges
into the two-body continuum. First studied in the case of 4He [172, 173] and subsequently
generalised to other species [174–176], aad depends on a and the three-body parameter in
this regime and for low-energy collisions.
The existence of a van der Waals universal relation between a and aad, i.e. a relation that does
not require knowledge of the core potential, was discussed by Giannakeas & Greene [177].
They computed the atom-dimer scattering length for two separable potentials: a pure van der
Waals potential, with then an infinity of bound states, and a van der Waals potential with a
soft-core and of tunable number of bound states b. The authors showed that the atom-dimer
scattering length computed with the soft-core potential converges to the one computed with
the van der Waals potential for b ≳ 5. A similar work was performed by Mestrom et al. using
adiabatic hyperspherical representation and binary collisions described by a Lennard-Jones
potential (V (r) = C12/r

12 − C6/r
6) [178].

Experimental characterisation of atom-dimer interactions are mostly performed by measuring
the inelastic losses in atom-dimer mixtures [179–189]. Atom-exchange reactions A2 + B →
A+AB have also been observed [190–193]. Atom-dimer line shifts and broadening as a func-
tion of the scattering length a have also been observed with light-heavy fermion dimers in
a bath of heavy fermions. The computation of the atom-dimer scattering amplitude in such
systems showed the important role of p-waves in the scattering process [194]. More recently,
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elastic collisions have also been studied for sympathetic cooling of molecules [195].

In this chapter, we describe features of interactions between atoms and dimers created by
mw-induced photoassociation and present a hight-precision measurement of the associated
atom-dimer scattering length aad. The photoassociation spectroscopy of the two least-bound
rovibrational states (n = −1,−2) of 87Rb, pairing an atom in the hyperfine level f = 1 with
another in f = 2, showed the existence of a Zeeman sub-level magnetic-insensitive at first

order, labelled |Ψ(n)
0 ⟩. While working at near zero temperature already eliminates the broad-

ening of the line due to the kinetic energy distribution, the magnetic field insensitivity of this
state further reduces the width of this line by eliminating the broadening due to magnetic
fluctuations. This state is then of particular interest to perform high-precision measurement
of its energy displacement with respect to the atomic bath characteristics for instance.
In the first section, we characterise the magnetic-insensitive lines M|n|: |f = 1,mf = 0; f =

1,mf = 0⟩ → |Ψ(n)
0 ⟩. We observe a density-dependence of these lines that we attribute to

atom-dimer interactions and from which we deduce, in the second section, the atom-dimer
scattering length aad. Finally, we briefly discuss the possibility of observing mw-induced
Feshbach resonances.

4.1 High-precision photoassociation spectroscopy

We detail, in this section, the measurement of the frequency shift of the lines M1 and M2 with
the density and their typical width. We deduce from these measurements the lifetime and
creation rate of the molecules. Taking advantage of the narrow linewidths of these transitions,
we also characterise the photoassociation signal and its scaling with the probed experimental
parameters.

4.1.1 Creation rate of the dimers

As described in Sec.3.2.2, we perform photoassociation and observe the creation of molecules
through the atomic losses. In order to characterise the creation rate of the dimers, let us
distinguish the different loss mechanisms at play.
First, considering an assembly of free atoms in the hyperfine level f = 1, there exist two loss
mechanisms: three-body recombinations and one-body losses due to background collisions.
These loss mechanisms are well-known and were studied by Burt et al. [196]. If we now
consider an atomic cloud of free atoms in the hyperfine level f = 2, they undergo as well
losses due to three-body recombinations [197] and background collisions but, in addition, they
experience hyperfine-changing two-body collisions. These two-body collisions are induced by
dipole-dipole interactions and involve hyperfine transitions |f = 2⟩ → |f = 1⟩. The collision
partners are then lost due to the release of the kinetic energy ∼ h · 6.8GHz in the process.
We now come back to the case where we create dimers by pairing one atom in f = 1 with
another in f = 2 from an initial cloud of free atoms in f = 1. Once the dimer is created,
the two paired atoms are not detected anymore by our imaging and the dimer can decay via
inelastic collisions with free atoms or undergo hyperfine relaxation following the same process
described for atoms in f = 2. Therefore, the loss of free atoms in the initial state due to the
creation of dimers scale as two-body losses.

Here, we aim at characterising the losses due to the creation of dimers only. We then study
the atom losses in the state |1⟩ ≡ |f = 1,mf = 0⟩ with and without photoassociation.
Atoms in |1⟩ with low density na mostly experience background collisions scaling as one-body
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Figure 4.1: Atom losses in state |1⟩ (black squares (a)-(b)) are well-described by one-body
losses (solid black lines) at low densities. In the presence of a mw field resonant with the line
to n = −1 (a) and n = −2 (b), the creation of dimers induces two-body losses (violet points)
adjusted with Eq. (4.2) (solid violet lines).

losses. The evolution of the surface density in time is then written - excluding the creation
of dimers:

dna
dt

= −1

τ
na, na(t) = na(0) exp(−t/τ), (4.1)

where τ is the characteristic lifetime of the atoms. Equivalently, the evolution of the surface
density na when shining a mw field of frequency ν close to resonance with a bound state n,
i.e including the losses due to creation of dimers, writes:

dna
dt

∣∣∣∣
mw

= −β(n)n2a −
1

τ
na, na(t) =

na(0) exp(−t/τ)
1 + na(0)β(n)τ [1− exp(−t/τ)] (4.2)

where β(n) is the time-independent loss coefficient of the bound state n and characterises the
actual two-body losses due to the creation of dimers.
We prepare a sample of atoms in the state |1⟩ with an initial surface density na(t = 0) ∼
20 µm−2 and measure its surface density evolution while shining a resonant mw field and no
mw field. The results are shown in Fig. 4.1 with fits to the data. We first extract the lifetime
τ from a fit to the data without mw field using Eq. (4.1) and inject it in Eq. (4.2) to fit the
data obtained with resonant mw. The evolution of na, in the presence of a mw field whose
frequency ν is resonant to the transitions M|n|, is well-described by two-body losses. We find
τ = 105 s, β(n=−1) = 3.5 · 10−2

µm2.s−1 and β(n=−2) = 4/3 · 7 · 10−4
µm2.s−1, where the factor

4/3 corrects for the reduced power of the amplifier used for addressing the level n = −2 (see
previous chapter). We confirm that the coupling between the free state |1; 1⟩ and the bound
state n = −1 is much larger than the one with the state n = −2 as the loss coefficient β(n=−1)

is ∼ 40 times larger than β(n=−2).

The lifetime measurement of atoms in |1⟩, shown in Fig. 4.1, is valid for low densities. For
higher densities, as mentioned above, atoms in |1⟩ undergo three-body losses, so the losses
are faster than predicted with τ = 105 s. However, for short probing times ≲ 300ms, the
effect of three-body losses at high densities remains negligible.

4.1.2 Density dependence of the bound state energies

The least-bound state n = −1 When starting with free atoms in state |1⟩, the coupling

with the bound state |Ψ(n=−1)
0 ⟩ is the largest achievable with our mw antennas1 and allows

1The relative coupling strengths are given in appendix A for all the lines.
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Figure 4.2: Density dependence of the line M1. (a) Photoassociation signals for an initial
density na = 27 µm−2 (empty points) and for an initial density na = 100 µm−2 (filled points).
The depletion is fixed to 8%. (b) Variation of the resonant frequency ∆ν(n=−1) with the
initial density na. The probing time is adjusted to keep a depletion constant to 8% (blue
points), 14% (black diamonds) and 20% (violet squares). The data collapse onto a single
curve, adjusted by a linear function (black solid line).

us to observe photoassociation lines with depletions δna/na ∼ 10% with mw excitations of
duration δt ≲ 250ms. Because the probing times are short, we work in a perturbative regime.
Moreover, as shown in the previous section, there are almost no one-body losses of atoms in
|1⟩ within this duration. As the depletion is exclusively due to the creation of dimers and
remains small, it ensures that the modification of the density during the mw excitation is
negligible. These experimental conditions, added to the fact that we work with a uniform
in-plane density na, allows us to measure, with high precision, the effect of the density on
the linewidth and the line frequency. More precisely:

(i) the in-plane density is uniform so there is no additional broadening.

(ii) the one-body losses during the excitation duration δt are close to zero, so the depletion
we observe is only due to dimer creation. The density measured after shining an off-
resonance mw field is then equal to the initial density na(t = 0) = na(t = δt).

(iii) we work with small depletions so that the density of the sample does not change sig-
nificantly during the mw excitation, even when the frequency ν is close to resonance.

We vary the surface density na from 20 µm−2 to 100 µm−2 and measure the resonant fre-
quency of the transition M1. We adjust the excitation duration δt to fix the depletion δna/na
at resonance. The loss signal is fitted with the Lorentzian function Eq. (3.28) and we extract
the centre of the line νm for which the depletion is maximum and its full width at half maxi-
mum Γ. We measure the variation of the peak frequency ∆ν(n=−1) = νm−ν0 with the surface
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Figure 4.3: Density dependence of the line |2; 2⟩ → |Ψ(n=−1)
0 ⟩ which is represented in (a)

with the transition M1b . The variation of the resonance frequency ∆ν(n=−1),b with the initial
density of atoms in |2⟩ is shown in (b). The depletion is fixed to 8%. The solid black curve
is a linear fit to the data.

density na and introduce the resonant frequency in the zero density limit ν0 = νm(na = 0).
Fixing the depletion to δna/na ∼ 8%, we observe a linear shift of ∆ν with the surface den-
sity na of the atomic sample, which goes up to ∆ν(n=−1) ∼ 800Hz for na = 100 µm−2. We
performed the same measurement for two other depletion values: δna/na ∼ 14%, 20%. The
three curves are shown in Fig. 4.2. The duration of the excitation lies within the range 50-
255ms depending on the density na and the depletion δna/na. All the data collapse on a
same curve, which confirms that the chosen depletions are small enough to stay in the pertur-
bative regime. We fit a linear function to all the data and find ν0 = −24.984 23(2)MHz, from
the hyperfine level |f = 1; f = 2⟩ at zero magnetic field, and ∆ν(n=−1)/na = −7.3(3)Hz·µm2.

We perform a similar measurement by addressing the state |Ψ(n=−1)
0 ⟩ from a cold sample

of atoms in |2⟩ ≡ |f = 2,mf = 0⟩, as represented by the transition M1b in Fig. 4.3.a . In
Chapter 3, this possibility had been eliminated because of the short lifetime of the atoms in
the hyperfine level f = 2. Indeed, the atomic gas in |2⟩ experiences two- and one-body losses
and their characteristic lifetime is ∼ 100ms. Therefore, if we use mw excitations of similar
durations on atoms in |2⟩, the atomic density would be strongly reduced by hyperfine relax-
ation and the condition (ii) is no longer valid. However, it appears that the coupling strength
of the line M1b is stronger than the M1 one: shining the mw field during 4-9ms is long enough

to observe the transition |2; 2⟩ → |Ψ(n=−1)
0 ⟩ with a depletion δna/na ∼ 8%. Within this range

of excitation durations, the atom losses without mw are negligible and we can measure the
variation ∆ν(n=−1),b of the peak frequency with the surface density. The experimental data
are shown in Fig. 4.3.b and we find a linear shift of slope ∆ν(n=−1),b/na = 8.1(9)Hz·µm2

with ν0,b = −24.984 59(5)MHz. The change of sign in the frequency variation comes from
the fact that the frequency of the transition M1b is larger than the atom-atom transition
frequency, whereas the transition M1 has a smaller frequency than the atom-atom transition
(see Fig. 4.3.a).

The second least-bound state n = −2 We reported in Sec. 3.2.2 the measurement of
the magnetic-insensitive level of the second least-bound state, labelled n = −2. The cou-

pling strength of the line M2 ≡ |1; 1⟩ → |Ψ(n=−2)
0 ⟩ was, however, much smaller. We remind
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Figure 4.4: Variation of the resonance frequency of the line M2 with the density. The horizon-
tal error bars indicate the density range scanned during the excitation because of one-body
background collisions of free atoms. For initial densities higher than na ≳ 30 µm−2 (empty
diamonds), the off-resonance losses reaches ≳ 15% for a probing time of δt = 10 s and the
variation stops being linear. We measure the frequency shift for small densities (black full
diamonds) by adjusting a linear function to the data (solid line).

that the probing time was 10 s and that we set the amplifier to three quarters of its max-
imum value, to prevent heating of the amplifier. Since we need much longer probing time
(δt = 10 s) to observe the transition M2, the presence of off-resonance three-body losses in |1⟩
invalidates the condition (ii) for large densities. Indeed, for an initial surface density larger
than na ≳ 30 µm−2 the atoms losses without mw for δt = 10 s are larger than ≳ 15%. We
therefore restrict ourselves to the density range 10-30 µm−2 to study the shift of the reso-
nance frequency ∆ν(n=−2) with the density. We fix the excitation time to δt = 10 s as the
depletion at resonance is always ∼ 15% for the densities that we probe and the results are
shown in Fig. 4.4. We observe again a linear shift with the density and a fit with a linear
function gives ∆ν(n=−2)/na = 32(1)Hz·µm2 and ν0 = −642.219 27(2)MHz. We also probed
atomic samples with larger densities: as the density increases, the range of density explored
during the excitation broadens. We observe a “saturation” of the peak frequency shift and
the variation with density stops being linear. The interpretation of these data is complex
and we do not take them into account in our study.

As for the least-bound state (n = −1), we expect the transition |2; 2⟩ → |Ψ(n=−2)
0 ⟩ to have

a stronger coupling. However, even considering dimer creation ten times faster, the probing
duration would be too long (δt = 1 s) to avoid large two-body atomic losses in |2⟩ and thus
we did not try (yet) to observe this transition.

A similar shift of the resonance with the density was observed by the group of D.J.Heinzen
[152, 153] for the n = −2 bound state of the multiplicity {f = 1; f = 1}. We interpret,
as they did, this density-dependence within a mean-field approach, although in our case,
working with mw-induced photoassociation and homogeneous clouds simplifies greatly the
problem and allows to a better precision. In the next paragraph, we complete the description

of our photoassociation signal and the characterization of the state |Ψ(n=−1)
0 ⟩, whose position

was measured precisely and deep in the perturbative regime. The mean-field interpretation
of the density-shift described above is detailed further below, in Sec. 4.2.
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Figure 4.5: Variation of the line width Γ with the initial density na of the transitions M1

(blues points), M1b (black diamonds) and M2 (violet squares).

4.1.3 Characterisation of the photoassociation signal and lifetime of the
dimer

We described in Sec. 3.2.2 and Sec. 4.1.1 the photoassociation signal with a Fermi golden rule
considering two-body losses:

δna/na ∝ naδt, (4.3)

when neglecting the effect of the other loss mechanisms than photoassociation.We expect
therefore the ratio

S1 =
δna/na
naδt

(4.4)

to be constant for a given transition. In practice, however, we observed that the width of
the transitions is also density-dependent. We show in Fig. 4.5 the evolution of the linewidth
of the three transitions to the two magnetic-insensitive bound states: M1, M1b and M2.
We observe line widths always smaller than ≲ 1 kHz for the probed densities. This finite
width can be attributed to the lifetime of the dimers. They can decay through two channels:
via two-body inelastic collisions with free atoms or undergoing dipolar relaxation, the two
atoms then separate by releasing the hyperfine energy. The width Γ of the three free-bound
transitions collapse onto a single curve, however with a significant noise level. The lowest
width we measure is Γ = 300(104)Hz for a density of na ∼ 20 µm−2.
The coupling between a stable state and an unstable state, here the molecular state of finite
lifetime ∝ 1/Γ, affects the stability of the stable state (here the atomic state) and thus its
loss rate [198]. The linewidth of the molecular state therefore contributes to δna/na and, at
resonance δna/na ∝ 1/Γ (see [198] for a complete demonstration). This dependence, hidden
in Eq.(4.3), must be taken into account explicitly since the linewidth Γ varies with the density.
The scaling of the losses is then described by:

δna/na ∝ naδt/Γ, S2 =
δna/naΓ

naδt
, (4.5)

where Γ = Γ(na) and the ratio S2 should be constant for all the probed densities and de-
pletions. We calculate S1 and S2 for each individual point and show them, for the three
transitions of interest, in Fig. 4.6. We observe as expected a variation of S1 with the density,
which vanishes when taking into account the variation of the linewidth with the density in
S2. The constant S2 takes different values for the three transitions as they undergo different
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Figure 4.6: Variation of S1 (black squares) and S2 (violet points) with the initial density
na for the transitions M1 (a), M1b (b) and M2 (c). The quantities are calculated with the
individual parameters of each points.

coupling strengths. We find S2(n=−1),b
/S2(n=−1)

∼ 11 and2 S2(n=−1)
/S2(n=−2)

∼ 3/4 · 33 and
validate our Fermi gold rule approach.

4.2 Atom-dimer interaction and scattering length

We observed in Sec. 4.1.2 a clear dependence of the resonance frequency of the atom-dimer
transition on the density na of the atomic bath. We interpret it as a feature of atom-dimer
interactions with a mean-field approach and measure the associated atom-dimer scattering
length aad.

Atoms and dimer density distributions We consider an initial sample of ultracold
atoms in |1⟩ or |2⟩. The surface density na is uniform and we recall that the atoms are
vertically confined in a harmonic potential of frequency ωz/2π of which they occupy the
ground state, labelled nz = 0. The vertical density profile is then a Gaussian, which yields
the 3D density profile:

ρa(z) =
na
ℓz
√
π
exp(−z2/ℓ2z),

∫
ρa(z) dz = na, (4.6)

with ℓz =
√
ℏ/mωz. We photoassociate pairs of these atoms to produce dimers. We decom-

pose the initial and final states to their centre of mass (com) and relative (rel) motion states,
|com⟩ ⊗ |rel⟩:

|initial⟩ = |K, nz = 0⟩ ⊗ |ϕk⟩, (4.7)

|final⟩ = |K, n′z = 0⟩ ⊗ |ϕd⟩, (4.8)

where K and k are wave vectors in the horizontal plane, ϕk is the scattering state of the
quasi-2D problem [65], and n′z is the vibrational number associated with the level of the
vertical harmonic potential occupied by the dimer. We assume that the oscillation angular
frequency of the dimer in the vertical trap ω′

z is equal to the atoms one, ωz = ℏ/(mℓ2z), which
corresponds to a doubled spring constant if the dimer mass writes md = 2m. If this were not
the case and ω′

z ̸= ωz, we would expect to observe a comb of photoassociation lines, resulting
from the projection of |nz⟩ into the dimer eigenbasis |n′z⟩. As we observe single lines with no

2S2(n=−2)
is weighted by 3/4 to take into account that the amplifier power is ∼ 3/4 the power used to

address the other transitions.
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side-bands, the centre of mass is not affected by the mw field and we write n′z = nz = 0.
The centre of mass motion states writes the same whether the atoms are interacting or not,
so we focus on the non-interacting system for simplicity. A non-interacting pair of atoms,
labelled 1 and 2, is described by the following Hamiltonian and wave function:

Ĥ =
∑

j=1,2

[
p̂2j
2m

+
1

2
mω2

zz
2
j

]
, Ψ(z1, z2) =

1

ℓz
√
π
exp[−(z21 + z22)/(2ℓ

2
z)], (4.9)

where the first term of the Hamiltonian is the kinetic energy and the second one the potential
energy. We define the centre of mass and reduced variables:

Z =
1

2
(z1 + z2), z = z1 − z2, P = p1 + p2, p =

1

2
(p1 − p2), (4.10)

in order to decompose the Hamiltonian and the wave function into two contributions, the
centre of mass and the relative motions:

Ĥ = Ĥcom + Ĥrel, Ĥcom =
P 2

2M
+

1

2
Mω2

zZ
2, Ĥrel =

p̂2

2mr
+

1

2
mrω

2
zz

2, (4.11)

Ψ(Z, z) =
1

ℓz
√
π
exp[−Z2/ℓ2z] exp[−z2/(4ℓ2z)]. (4.12)

We find then the probability distribution of the centre of mass of two particles, narrower by
a factor

√
2 than the single atom distribution Eq. (4.6):

fd(Z) =

√
2

ℓz
√
π
exp(−2Z2/ℓ2z),

∫
fd(Z) dZ = 1, (4.13)

and write the dimer 3D density in the sample of area S: ρd(Z) = fd(Z)/S.

Resonance frequency of the photoassociation The photoassociation rate is described
by the Fermi golden rule Eq. (4.5). This process: (i) brings the energy coupling the free
and bound state in the zero-density limit to the sample, couples two free atoms to a dimer
and therefore (ii) removes two free atoms of the initial state to create a dimer, (iii) which
interacts with the atom bath. We assume that the density of molecules is small enough to
neglect dimer-dimer interactions. We write the energies provided by the photoassociation:

(i) hν0: the zero-density limit energy coupling the free and bound state,

(ii) −2µa: since it removes two atoms of the bath, with the atomic chemical potential
µa = gaana,

(iii) Ead = gad
∫
ρa(z)fd(z) dz: the atom-dimer interaction energy.

The atomic interaction parameter gaa writes

gaa =
ℏ2

m

√
8π

ℓz
af1f2 , (4.14)

with af1f2 the scattering length describing the collision between an atom in the hyperfine
level f1 and an atom in the hyperfine level f2. We also introduced the atom-dimer interaction
parameter gad which we write, assuming s-wave interactions because of the low temperature:

gad =
2πℏ2

Mr
aad, Mr =

m ·md

m+md
=

2m

3
, (4.15)
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with Mr the reduced mass of the system {atom + dimer} and aad the s-wave atom-dimer
scattering length. We calculate the atom-dimer interaction energy using Eqs. (4.6) and (4.13)
and find:

Ead = gad

√
2

3

na
ℓz
√
π
= µa

√
3

2

aad
af1f2

. (4.16)

The variation of the resonance frequency ∆ν = νm(na)− ν0 then reads:

h∆ν = Ead − 2µa = µa

(√
3

2

aad
af1f2

− 2

)
. (4.17)

This derivation leads to a linear density-dependence of the photoassociation resonance fre-
quency from which we can calculate the atom-dimer scattering length:

aad =
2√
3
af1f2

(
2 +

h∆ν

µa

)
, µa = gaana. (4.18)

We calibrate the chemical potential µa with an independent experiment, using Ramsey inter-
ferometry as described in Sec. 2.2.9. We measure the mean-field shift ∆νa of the magnetic-
insensitive atomic transition |1⟩ → |2⟩:

h∆νa = µa
a22 − a11
af1f2

, (4.19)

and the values of the scattering lengths are estimated from [98] to a11 = 100.9 a0, a22−a11 =
−6 a0, and a12 − a11 = −2 a0. We insert this result into Eq. (4.18) and obtain an expression
independent of any systematic error on the density calibration:

aad =
4√
3
af1f2 +

2√
3

∆ν

∆νa
(a22 − a11) (4.20)

Results We performed Ramsey interferometry in the same experimental conditions as for
photoassociation, and found ∆νa/na = −0.52(1)Hz·µm2. Combining this result with the
three measured atom-dimer frequency shifts given in Sec. 4.1.2, we find:

M1: a
(n=−1)
ad = 184(2) a0, (4.21)

M1b: a
(n=−1),b
ad = 165(7) a0, (4.22)

M2: a
(n=−2)
ad = 21(7) a0. (4.23)

These three atom-dimer scattering lengths are remarkably different from the impulse scatter-
ing length aimpulse

ad , calculated by summing independently the scattering amplitudes of each
atom of the dimer with an atom of the bath. Considering an atomic bath in the hyper-
fine level f1, the dimers created by the photoassociation are composed of two atoms in the
hyperfine level f1 and f2 respectively and the impulse scattering length yields:

aimpulse
ad =

Mr

mr
(af1f1 + af1f2), (4.24)

aimpulse
ad [M1] =

4

3
(a11 + a12), (4.25)

aimpulse
ad [M1b ] =

4

3
(a22 + a12), (4.26)
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First introduced for nucleon physics [199], it predicts aimpulse
ad [M1] = 266 a0 and a

impulse
ad [M1b ] =

258 a0 while addressing the bound state |Ψ(n=−1)
0 ⟩ from |1⟩ and |2⟩ respectively. Studies on

Fermi-Fermi and Bose-Fermi mixtures have also led to results differing from aimpulse
ad . Zhang et

al. proposed an explanation for this discrepancy for Fermi dimers colliding with Bosons [167]:
by noting that the Born approximation at first order gives the same result, they suggest that
the discrepancy may come from higher orders. For instance, the Fermi dimer could survive
many collisions with the bosonic bath, or could break into the scattering state after a first
collision and then recombine after a second collision.
The scattering lengths describing the interaction of |Ψ(n=−1)

0 ⟩ and a bath of atoms in |1⟩
and |2⟩ are close to each other, like the atom-atom scattering length describing these baths,
a1 and a2. These similarities, combined, could be consistent with the existence of a “van
der Waals universal relation” linking the atom-dimer scattering length aad to the atomic
scattering length af , for the least-bound states. However, the large difference between the

atom-dimer scattering length of the states |Ψ(n=−1)
0 ⟩ and |Ψ(n=−2)

0 ⟩ interacting with a bath
of atoms in state |1⟩ reveals the importance of the radial wave function of the dimer in the
scattering process.
We have previously mentioned a similar measurement performed by the group of D.J.Heinzen,
in the second-to-least bound state (n = −2) of the multiplicity A ({f = 1; f = 1}) [152]. They
deduced the scattering length aad = −180(150)a0 from the density shift they observed, but
the inhomogeneity of the atomic sample makes the analysis more involved.

4.3 Microwave-induced Feshbach resonances

The existence of a magnetic-insensitive shallow bound state with a strong mw coupling to the
atomic state |1⟩ (which is also magnetic-insensitive) encourages the search for a mw-induced
Feshbach resonance, introduced by Papoular et al. [146]. Since we have in hand a high-
resolution spectroscopic tool composed of our two mw antennas, we indeed tried to observe
such resonance.
We performed Ramsey interferometry on the magnetic-insensitive transition |1⟩ → |2⟩ with
the mw antenna RS1, as described in Sec.2.2.9, while dressing the atoms in |1⟩ with a second
mw field, provided by the antenna labelled RS2, with frequency νd. We remind that in the
presence of interactions in the quantum gas, the transition frequency of |1⟩ → |2⟩ is shifted
from its Bohr frequency. The frequency shift of the atomic transition, using mw π/2-pulses,
follows Eq. (4.19) which writes here:

h∆νa = µa
a2 − a1
a1

. (4.27)

We start with an ultracold sample of atoms in |1⟩ of fixed surface density na and perform Ram-
sey interferometry. We send two mw π/2-pulses separated by a probing time fixed to 10ms
to avoid phase separation of the two species |1⟩ and |2⟩. During the Ramsey spectroscopy,
we dress the atoms with a mw field of frequency νd, and measure the atomic frequency shift
∆νa. We scan the frequency νd around the resonance frequency of the transition M1 and,
from the measurement of ∆νa, calculate the scattering length of atoms in |1⟩, a1.
The probing time must be short enough to keep low enough the atomic losses due to the
production of dimers. In this case, the variation of the atomic density is negligible and does
not affect the measurement of a1. As we already show in Eq. (4.5), the losses depend on the
density and the probing duration so that, for a given excitation time, the lower the density
the lower the losses. However, the Ramsey signal is also proportional to the density, so that
a balance must be found between these two criteria.
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Unfortunately, we were not able to observe a resonance of the scattering length a1 by following
this protocol. We can confidently set an upper bound of the possible signal to ∆a1 ≲ 0.1 a0.
However, our study of the least-bound states paves the way to the observation of mw-induced
FRs on more suitable atomic species, whose triplet and singlet scattering lengths have more
distant values (as caesium, sodium or potassium), or on atom chips experimental setups to
benefit from stronger mw field [200].

4.4 Conclusion

We have taken advantage of the presence of a magnetic-insensitive state |Ψ(n)
0 ⟩ in rovibra-

tional bound states of 87Rb to perform high-precision measurement of the photoassociation
signals. We calibrated the dimer creation rate for the two least-bound states n = −1, −2.
We validated the Fermi golden rule, used to characterise the photoassociation losses, and
ensured that we perform all the measurements in a perturbative regime. Remarkably, our
measurement is precise enough to observe a clear dependence of the resonance frequency and
the linewidth of the transitions with the density of the atomic sample. We interpreted this
density-dependence as a consequence of the interaction between the dimers and the atomic
bath. We derived a mean-field model and measured the atom-dimer scattering lengths aad
associated with the three transitions M1, M1b and M2. Our measurement of the interaction

of atoms in states |1⟩ or |2⟩ with the least-bound state |Ψ(n=−1)
0 ⟩ motivates the existence of a

universal relation between the atom-dimer scattering length aad and the scattering length a,
in the limit of shallow bound states. The combination with the measurement on the second-
to-least bound state |Ψ(n=−2)

0 ⟩ shows the influence of the radial wave function. Finally, we
proposed an experimental protocol for the observation of microwave-induced Feshbach reso-
nances. Despite the precision of our measurements and our large mw couplings, we were not
able to observe such a resonance.



Part III

Zero-temperature superfluid fraction in a

density-modulated 2D Bose gas
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5
Superfluidity in spatially modulated systems at
zero temperature

Fundamental properties of superfluid states of matter, discovered in 1938, are subtle and
diverse. They are usually characterised by a reduction of the moment of inertia and a fric-
tionless flow. These latter conditions describing the emergence of a superfluid state are so
general that, in the 1970’s, the question of superfluidity was raised for solids, i.e. spatially
ordered systems whose density n(r) shows strong variations over distances of the order of the
atomic spacing. The possibility of Bose-Einstein condensation in a crystalline solid at low
temperature had already been studied by Chester, and the author had demonstrated that a
crystalline solid can exhibit a Bose-Einstein condensate if it has a finite fraction of vacan-
cies [201]. Later in 1970, Leggett went further and emphasised that an insulating solid could
show a so-called non-classical rotational inertia1 and that the associated superfluid fraction
fs would be bounded from above to a low value [36]. Considering N atoms in dimension D
in a system of size LD which undergoes a breaking of translational invariance in the direction
x1, i.e for instance a density modulation along x1, Leggett estimated the superfluid fraction
by evaluating the change of energy of the system as an answer to twisted boundary conditions
(TBC) along x1: ϕ(x1+L, x2, ..., xD) = exp(iθ)ϕ(x1, x2, ..., xD), and finds the following upper
bound for the superfluid fraction:

fs ≤
LD+1

N
∫

dx1
n(x1)

. (5.1)

In the case of an atomic cloud of homogeneous density, this relation simplifies to fs ≤ 1.
These discussions introduced the notion of a supersolid state of matter which describes a
quantum state where particles form a spatially ordered structure, implying a spontaneous
breaking of translational symmetry, but also show superfluid properties as they flow with
zero viscosity for instance [202–204]. First predicted for solid helium, the observation of such
state and/or properties has been an experimental challenge and has remained elusive for a
long time [205–208]. Recently, observations of supersolid properties were reported in ultra-
cold quantum gases experiments. First, two experimental groups observed simultaneously the
emergence of supersolid properties by “crystallising” an ultracold gas while maintaining the
inherent superfluidity of the Bose-Einstein condensate (BEC). The group from ETH Zurich
coupled a BEC to the modes of two optical cavities, enhancing the atomic interactions such
that the atoms spontaneously crystallised [209]. After atomic BECs were predicted to present
a stripe phase with supersolid properties in the presence of spin-orbit coupling [210–214], re-
searchers at MIT created an effective spin-orbit coupling on a two-component BEC which

1This refers to the decrease of the moment of inertia compared to a classical fluid, mentioned above.
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produced the predicted density modulation of this stripe phase [215]. Supersolid phases have
been observed later in dipolar Bose gases for which supersolidity arises from the competition
of dipole-dipole and contact interactions without external enhancement [216–218]. While the
first observations of such supersolid phase were one-dimensional, robust 2D supersolids were
produced recently, also in dipolar gases [219,220].

Although this area of research has received a lot of attention and despite recent observations,
the historical result of Leggett Eq. (5.1) has never been tested experimentally. However, this
result stands for density modulated quantum gases without necessarily imposing to work
with supersolid phases and should then give an estimate of the superfluid fraction in systems
where the breaking of the translational symmetry is not spontaneous but externally imposed.
In this chapter, we propose an experimental protocol to measure the superfluid fraction in
a 2D density-modulated ultracold Bose gas and compare it to the upper bound found by
Leggett Eq. (5.1). This work was performed in collaboration with theoreticians at the Uni-
versity of Trento, S. Stringari and S. Roccuzzo.
In a first section, we derive the result of Leggett for a weakly-interacting 2D Bose gas at zero
temperature and with a density modulation imposed by an external potential. Leggett’s result
is a static estimate of superfluidity, whereas superfluidity is intrinsically linked to the notion
of transport. For this reason, we compare Leggett’s integral with a measure of transport in
the same system system. At finite temperature, the superfluid fraction and, by extension, the
superfluid transition can be probed by measuring the propagation of sound in a system, i.e.
phonon excitations. In the second section, we briefly summarise the results on sound prop-
agation gathered for quantum gases. Afterwards, we write the expected zero-temperature
sound velocities in a 2D density-modulated system from a thermodynamic model. Finally,
gathering our results, we propose an experimental protocol, well-adapted to our experimental
setup, to probe the superfluid fraction upper bound derived by Leggett. The implementation
of this protocol and the results obtained will be the subject of the next chapter.

5.1 Superfluid fraction in a 2D modulated planar Bose gas

We consider a 2D Bose gas of N weakly-interacting atoms of mass m and at zero temperature
T = 0. The interactions are described by the dimensionless parameter g̃. The gas is confined
in a potential V (r) that we consider here periodic along the direction y with a period λ, but
homogeneous in the direction x. We describe the atomic cloud with a classical field ψ(r)
normalised as ∫

|ψ(r)|2 d2r = N, (5.2)

and whose energy functional reads:

E[ψ] =

∫ [
ℏ2

2m
|∇ψ|2 + ℏ2

2m
g̃|ψ(r)|4 + V (r)|ψ(r)|2

]
d2r. (5.3)

The classical field approach was introduced in Chapter1 and, at zero temperature, the ground
state ψ0 of the system satisfies the Gross-Pitaevskii (GP) equation introduced in Eq. (1.22)

− ℏ2

2m
∇2ψ0 +

ℏ2

m
g̃|ψ0|2ψ0(r) + V (r)ψ0(r) = µ0ψ0(r), (5.4)

where µ0 is the chemical potential.

In this section, we are interested in the estimate of the Leggett integral in the presence
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of the periodic potential. As mentioned in Chapter 1, superfluidity can be established either
by imposing a constraint on the momentum of the system, i.e. placing ourselves in the moving
frame, or by using twisted boundary conditions (TBC). Both methods are equivalent within a
gauge transformation. In the first instance, we derive Leggett’s analysis and therefore use the
TBC as he originally did. Anticipating on the next section, we use the gauge transformation
to write the relation between the superfluid fraction fs of the system in the presence of a
density modulation and the associated effective mass m∗.

5.1.1 Leggett’s integral for a zero-temperature weakly-interacting Bose gas

We study the effect of the modulation along the y-axis on the superfluid character of the sam-
ple by imposing TBC. We determine the energy variation created by imposing an infinitesimal
phase twist θ on the field ψ along the direction y, such that:

ψ(x+ L, y) = ψ(x, y), ψ(x, y + L) = exp(iθ)ψ(x, y), (5.5)

where L × L is the area of the cloud and L is a multiple of the potential period λ. This
energy difference between the “twisted” ground state and the “untwisted” ground state ψ0

of the system defines the superfluid fraction fs as [85]:

E(θ) = E(0) +
ℏ2θ2N
2mL2

fs,y +O(θ4). (5.6)

Note that following this definition, the superfluid fraction fs is a tensor. We work on the
proper basis of this tensor, given by the axes x and y here, so its off-diagonal terms are
zero. More precisely, considering twisted boundary conditions along y gives access to the
component fs,y while twisting the boundary conditions along x yields the superfluid com-
ponent fs,x. In this section, we consider a zero-temperature anisotropic system where the
potential V (r) is spatially-modulated along y and homogeneous along x. As the density
is kept homogeneous along the x-axis, the superfluid fraction component along x is equal
to2 fs,x = 1. We then study the component of the superfluid fraction tensor fs,y along the
spatial modulation and look for the increase of energy E(θ) when twisting the field ψ along y.

In a density-phase approach, we look for the ground state ψθ, satisfying the TBC, written as:

ψθ(r) = aθ(r) exp[iSθ(r)], (5.7)

where aθ(r) is a real function satisfying periodic boundary conditions with a20(r) = ψ2
0(r) =

n0(r) and Sθ(r) is a phase profile. We define the associated velocity field as

vθ(r) =
ℏ
m
∇Sθ. (5.8)

Using Eq. (5.3) and Eq. (5.7), the energy functional Eq. (5.6) writes for such a twisted wave
function:

E(θ) =

∫ [
ℏ2

2m
|∇aθ|2 +

ℏ2

2m
g̃|aθ|4 + V (r)|aθ|2 +

m

2
v2
θ(r)a

2
θ(r)

]
d2r. (5.9)

2This is a result of Landau two-fluids model but the analysis we perform on the modulated axis in this
chapter also applies to the x-axis, along which the potential V is homogeneous, and leads to the same result
fs,x = 1.
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In order to find the expression of the superfluid fraction, we minimize the energy functional
E(θ). We introduce two Lagrangian variables µ and β to take into account the two constraints
imposed by the normalisation Eq. (5.2) and the definition of the velocity field Eq. (5.8):

∫
a2θ(r) d

2r = N, (5.10)

∫ L

0
vθ(r) · ey dy =

ℏ
m
θ, (5.11)

and we keep only the twisted direction y, since the other one is invariant by translation. We
minimize then the energy functional

E[aθ] + L

[
m

2

∫ L

0
v2θ(y)a

2
θ(y) dy − µ

∫ L

0
a2θ(y) dy − β

∫ L

0
vθ(y) dy

]
, (5.12)

where E[aθ] embeds the terms where only aθ contributes. The minimization of the latter
energy functional with respect to vθ yields the velocity field

vθ(y) =
β

ma2θ(y)
=

β

mn0(y)

Eq. (5.11)−−−−−−→ vθ(y) =
ℏθ

mn0(y)

1∫ dy
n0(y)

, (5.13)

where we wrote aθ(y) at the zero-th order in θ. By re-introducing the other axis, we find the
contribution of the velocity field to E(θ) (Eq. (5.9)):

m

2

∫
v2
θ(r)a

2
θ(r) d

2r =
ℏ2θ2

2m

L∫ dy
n0(y)

. (5.14)

The minimization of Eq. (5.12) with respect to aθ leads to the following equation:

− ℏ2

2m

d2aθ
dy2

+
ℏ2

m
g̃a3θ +

(
V +

m

2
v2θ

)
aθ − µaθ = 0. (5.15)

This equation can be understood as the GP equation Eq. (5.4) with a source term mv2θ/2.
We remind that the GP equation is minimised for ψ0 = a0, i.e. when the boundary condition
along y is not twisted θ = 0. We look then for a solution of Eq. (5.15) in powers of θ with
the form

aθ = a0 + δaθ, (5.16)

where δaθ accounts for the corrections due to the source term. The latter is of order two
in θ (see Eq. (5.13)) and thus the correction δaθ will be of order θ2 at least. The change
a0 → a0 + δaθ has then no contribution of order θ2 to E[ψ] Eq. (5.3), since the contributions
will be of order θ4 at least.
Finally, there is no additional contribution of order two or less in θ coming from the mini-
mization with respect to aθ and E(θ)− E(0) then writes

E(θ)− E(0) =
ℏ2θ2

2m

L∫ dy
n0(y)

. (5.17)

The superfluid fraction component fs,y is then given by

fs,y =
L3

N
∫ dy

n0(y)

=
1

⟨n0⟩⟨1/n0⟩
, (5.18)
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with

⟨n0⟩ =
N

L2
=

1

L

∫
n0(y) dy, ⟨1/n0⟩ =

1

L

∫
dy

n0(y)
. (5.19)

We find that the superfluid fraction fs,y in a weakly-interacting 2D Bose gas of modulated
density at T = 0, and therefore described by the Gross-Pitaevskii equation, is given by the
integral that Leggett found as an upper limit on the superfluid fraction studying solids.

5.1.2 Effective mass

We discussed the derivation of the superfluid fraction in the general case of an anisotropic
system, with a potential inhomogeneous in y but homogeneous in the other direction (x).
We now take into account the periodicity of the potential along y, characterised by a spatial
period λ. In this context, one can write the solution of the GP equation with the so-called
Bloch form:

ψq(r) = exp(iq · r)uq(r), q = qey, (5.20)

with q the quasi-momentum defined over the first Brillouin zone |q| ≤ π/λ and where uq(x)
is a periodic function, of same periodicity than the potential, and solution of

(p̂+ ℏq)2

2m
uq(r) +

ℏ2

m
|uq(r)|2uq(r) + V (r)uq(r) = µ(q)uq(r). (5.21)

In this case, the transport in the system is given by the Bloch band structure. We consider
here the zone around q ∼ 0, where the band curvature is fully characterised by the effective
mass m∗

y, defined from a variation in the energy Eq. (5.21) due to a small change in q around
q = 0:

E(q) = E(0) +
ℏ2q2N
2m∗

y

+O(q3). (5.22)

In order to link this formalism to the result previously obtained with TBC, we perform a
well-known gauge transform to write solutions of the GPE ψ̃ from the solutions respecting
TBC ψ:

ψ̃(r) = exp(iA · r/ℏ)ψ(r), A = −ℏθ
L
ey, (5.23)

such that ψ̃ satisfies periodic boundary conditions:

ψ̃(x+ L, y) = ψ̃(x, y), ψ̃(x, y + L) = ψ̃(x, y). (5.24)

The GP equation satisfied by ψ̃θ = exp(iA · r/ℏ)ψθ(r) then writes

(p̂−A)2

2m
ψ̃θ(r) +

ℏ2

m
|ψ̃θ(r)|2ψ̃θ(r) + V (r)ψ̃θ(r) = µθψ̃θ(r), (5.25)

with p̂ = −iℏ∇.
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The functions ψ̃θ and uq satisfy now the same periodic boundary conditions and normal-
ization condition. Moreover, the equations Eq. (5.21) and Eq. (5.25) are similar within the
substitution

ℏq ey ←→ −A =
ℏθ
L
ey. (5.26)

The general relation Eq. (5.6) used in the previous section can be written with this substitu-
tion:

θ

L
←→ q, E(θ)− E(0) =

ℏ2θ2N
2mL2

fs,y ←→ E(q)− E(0) =
ℏ2q2N
2m

fs,y, (5.27)

and we obtain by identification with Eq. (5.22):

fs,y =
m

m∗
y

. (5.28)

Finally, we find that in the case of a periodic density-modulation the Leggett integral Eq.(5.18)
is equal to the ratio of the mass m and effective mass m∗

y along the spatially-modulated di-
rection.

5.2 Sound propagation in quantum gases

We introduced in Chapter 1 the notion of sound in quantum gases at zero temperature from
the Bogoliubov excitation spectrum

ℏωk =
ℏ2

2m

√
k2(k2 + 4g̃n). (5.29)

The frequencies ωk of the excitation modes associated with plane waves of wave vector k
describe, in the low-k regime k ≪ kc ∼ 1/ξ, the propagation of phonons and simplify to the
linear relation ωk ∼ c0k where c0 = ℏ

√
g̃n/m is the so-called Bogoliubov speed of sound.

In the case of finite temperature, the superfluid dynamics can be described by the two-fluid
model, introduced in 1938 by Tisza [221] and later studied by Landau in 1941 [84]. Su-
perfluids are treated as the superposition of a superfluid and a normal component and the
model assumes a local thermodynamic equilibrium ensured by collisions. First introduced for
helium, this hydrodynamic model predicts the existence of two sounds: a first sound describ-
ing a density wave for which the superfluid and normal component oscillate in phase and a
second sound describing a temperature wave for which the superfluid and normal component
oscillate out of phase. The velocity of these sounds depends on the equation of state of the
system and on the superfluid fraction fs.
Such sound waves were predicted in ultracold strongly interacting Fermi gases [222] and were
experimentally observed [69, 223, 224]. These systems exhibit sound waves similar to those
encountered in liquid helium. The existence of the first and second sound was also pre-
dicted for 3D weakly-interacting Bose gases [225] although their nature is strongly modified
due to the compressibility of the system. Indeed, the second sound is mainly an oscillation
of the superfluid component alone and can be understood as a continuation of Bogoliubov
sound. In the limit of dilute Bose gases, this second sound can be related to the superfluid
fraction [225, 226]. In the case of 2D weakly-interacting Bose gases, the first and second
sound are expected to show a discontinuity at the critical point of the BKT phase transi-
tion [227, 228]. The thermodynamic functions of a 2D Bose gas are continuous across the
phase transition which makes the measurement of the sound velocity a nice way to determine
its critical point. Sound propagation has been observed in Bose gases [68, 229–231], and a
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recent experiment in a 2D geometry probed the first and the second sound across the BKT
transition [47]. The authors used then the equation of state of the weakly-interacting 2D
Bose gas to deduce the superfluid fraction of the atomic cloud. It consists in the first indirect
measurement of the superfluid fraction over the transition in 2D Bose gases3.
In a different context, experiments have been performed with density-modulated superfluid
quantum gases to measure the critical velocity for which the frictionless flow vanishes [232].
Superfluids were loaded in moving optical lattices and experiments showed clear signals of
the existence of a critical velocity [233–235]. First interpreted as a classical superfluid-
insulator transition, they revealed the existence of dynamical instabilities [236–242], which
have subsequently been a subject of research [243–246]. The existence of Josephson cur-
rents were also probed [247, 248]. Other works have highlighted the effect of interactions
and/or disorder [249]. In the following, we study the dynamics of a 2D Bose gas loaded in
a one-dimensional lattice. However, the experiments described in the following chapter are
in a different regime than the cases mentioned above, being far from the tight-binding limit
and considering relative atoms-lattice velocities much lower than the Laudau critical velocity
vL ∼ 2mm/s.

We aim at writing here the relation between the sound velocity and the superfluid frac-
tion in a 2D Bose gas of modulated density along one direction and at zero temperature
T = 0. We write in the following a simple model of thermodynamics describing the system
in the presence of a sound wave.
We take into account the small but finite thickness dz of the system along the z-axis and
describe it as a cloud of N atoms of mass m in a rectangular box of volume V = L× L× dz
with dz ≪ L. The potential V (r) is periodic in y with a period λ and homogeneous in
the other directions. The average particle density is written n = N/V. We first remind
some thermodynamics relations for a fluid at T = 0 which link the pressure P , the chemical
potential µ, the free energy F and the entropy S:

P = F(n), µ = G(n), dF = −SdT − PdV + µdN. (5.30)

We now consider a slice of area A in the plane (x, z) and of thickness δy along the y-axis. This
atomic slab is of mesoscopic scale and containsNslab = n(y, t)Aδy atoms with 1≪ Nslab ≪ N .
In order to study the propagation of a sound wave of wave vector q = qey, we choose the
thickness of the slice as λ≪ δy ≪ 2π/q and apply the Newton’s equation on the modulated
axis y. We describe then the pressure forces on the two faces (x, z) of the atomic slab,
placed at ±δy/2, and the displacement of these faces which creates a deformation of the slab
without losses of atoms. The atomic slab in the modulated direction has a velocity v(y, t) and
a kinetic energy per particle ofm∗

yv
2/2, where the use of the effective massm∗

y comes from the
presence of the modulation. The total effective mass of the slab is written m∗

slab = m∗
yNslab.

The equations of motion yield:

m∗
slab

∂v

∂t
= A

[
P (y − δy

2
, t)− P (y + δy

2
, t)

]
, (5.31)

δV(t+ dt)− δV(t) = A

[
v(y − δy

2
, t)− v(y − δy

2
, t)

]
dt, (5.32)

3Note that there exists no direct measurement of the superfluid fraction yet.
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and they simplify to

m∗
yn(y, t)

∂v

∂t
= −∂P

∂y
, (5.33)

δV(t+ dt)− δV(t)
dt

= Aδy
∂v

∂y
. (5.34)

The deformation of the atomic slab is associated to a change of pressure following Eq. (5.30)
so the equation of motion Eq. (5.34) can be written as:

dP = −nF ′(n)
dV
V ,

∂P

∂t
= −nF ′(n)

∂v

∂y
. (5.35)

Finally, by combining the equations of motion Eq. (5.33) and Eq. (5.35) we obtain the wave
equation

m∗
y

F ′(n)
∂2v

∂t2
=
∂2v

∂x2
, (5.36)

describing the propagation of sound along the y-axis with a velocity

c2y =
F ′(n)
m∗

y

. (5.37)

This leads us to a relation linking the sound velocity and the superfluid fraction along y
Eq. (5.28):

c2y = fs,y
F ′(n)
m

. (5.38)

The same analysis is performed along the x-axis. The only difference is that the poten-
tial is homogeneous in this direction, so the equation of motion Eq. (5.33) is written with
m∗

x = m. The sound velocity along the x-axis cx reads then c2x = F ′(n)/m.
Therefore, the ratio of the speed of sound along and perpendicular to the periodic modulation
is independent of F ′(n), i.e. independent of the equation of state and writes

c2y
c2x

=
m

m∗
y

. (5.39)

Rigorously, the ratio Eq. (5.39) is equal to the ratio of the superfluid fraction components

c2y
c2x

=
m∗

x

m∗
y

=
fs,y
fs,x

. (5.40)

In our particular case, the potential is modulated along y only and homogeneous along the
x-axis, hence we have m∗

x = m and fs,x = 1, so that the ratio of the sound velocities actually
gives the superfluid fraction along y:

c2y
c2x

= fs,y. (5.41)

In the following, we write the superfluid fraction along y: fs ≡ fs,y as we always have
fs,x = 1.
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5.3 Discussion

In this chapter, we applied the analysis performed by Leggett in 1970 in the context of
supersolidity [36] to the case of a weakly-interacting 2D Bose gas at zero temperature and
whose density profile n is modulated along y. We found that the superfluid fraction fs in this
system is given by the upper bound found by Leggett for the superfluid fraction in solids:

fs =
L

N
∫ dy

n(y)

. (5.42)

The superfluid density depends on the density profile n0 of the atomic cloud and more pre-
cisely on the density profile along the modulation n0(y). We also showed that this superfluid
fraction is given by the ratio of the effective mass m∗

y along the modulated direction and the
mass m:

fs =
m

m∗
y

. (5.43)

In a second section, we briefly discussed the sound propagation in quantum gases and derived a
simple model to describe the sound propagation in the density-modulated weakly-interacting
2D Bose gas at T = 0. This simple model led us to a relation between the sound velocity
along the two axes of the cloud and the ratio of the effective masses:

(
cy
cx

)2

=
m

m∗
y

. (5.44)

The experimental setup, described in Chapter 2, allows us to produce a density-modulated
gas at T ∼ 0. This provides an experimental method to test the equality deduced from
Eq. (5.43) and Eq. (5.44):

L

N
∫ dy

n(y)

?
=

(
cy
cx

)2

, (5.45)

which links Leggett’s integral to a transport quantity.
On the one hand, the Leggett integral Eq. (5.42) can be calculated from in-situ measurement
of the density profile n of the atomic sample. On the other hand, we propose to measure
the sound velocities cy and cx along the modulation and perpendicular to the modulation
respectively. The description of the experimental method and the analysis we have performed,
together with the experimental results, is the subject of the next chapter.





6
Measurement of the superfluid fraction in a
density-modulated ultracold Bose gas at zero
temperature

The uniform 3D or 2D weakly-interacting Bose gas at zero temperature exhibits Bose-Einstein
condensation and superfluid properties. In the two-fluid model, the superfluid density ns
is predicted to be equal to the total density, i.e. the superfluid fraction is fs = 1. We
demonstrated in the previous chapter, by applying the same analysis as Leggett in 1970
[36], that in the presence of a breaking of translational invariance due to a periodic density
modulation, the superfluid density is not equal to the total density and the superfluid fraction
depends on the amplitude of the modulation. Leggett’s results have never been proved
experimentally and we describe in this chapter the first comparison of this result to a transport
measurement.
In the first section, we describe the experimental protocol to measure the speed of sound in our
planar Bose gas. Afterwards, we explain how we impose a density modulation to the atoms
and calibrate their response. Finally, Leggett’s integral is measured in the density-modulated
atomic cloud from the speed of sound and from the in-situ density profiles.

6.1 Sound velocity measurement

Before getting to the heart of the matter, we describe in this section our experimental protocol
to measure the sound velocity in a planar ultracold gas. This protocol is independent of the
in-plane density profile.
The speed of sound in quantum gases has been the centre of interest of many experimental
groups and we already mentioned in the previous chapter some remarkable experiments.
Usually, the measurement of the sound velocity is performed by creating an excitation in the
system and by monitoring its evolution. The excitation is created with a local deformation on
the potential, which can be dynamically driven in time and space or adiabatically imposed and
then removed abruptly1 [47, 68, 69, 224]. The properties of the sound modes are determined
from the time evolution of the density distribution, for instance by monitoring the position
of the centre of mass.

1The results of these two protocols were recently numerically compared for a 2D Bose gas across the BKT
transition [250].
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Figure 6.1: Magnitude of the total magnetic field Btot after subtracting the magnetic field at
the centre of the cloud ∆Btot = Btot(x, y, z)− Btot(0, 0, 0) (a) along both axes of the cloud,
when the quadrupolar field B1 is centred of the atoms and (b) when we apply a bias field of
0G (solid curve), 125mG (dashed curve) and 250mG (dotted curve) to shift the quadrupolar
field centre along y. In (a) the difference between the x and y axes comes from the fact that
the MOT coils, used to create the quadrupolar field, are oriented along the y-axis, and thus
generate a stronger gradient in this direction.

6.1.1 Excitation of the atomic cloud

Sound propagation in a uniform 2D Bose gas has been studied in 2018 in our group [68].
This measurement was performed by modifying locally the bottom of the 2D box potential.
The deformation (shaped as a potential step) was optically imprinted onto the atoms with an
intensity modulator (see Chapter 2 for details). Two experimental protocols were explored:
a driven regime protocol for which a time-dependent modulation is imposed to the system,
or a quench protocol for which the free evolution of the system after a rapid perturbation of
the density is monitored.
The protocol we present here will be implemented on atomic clouds whose in-plane density
is modulated. We use a quench protocol with a different profile from the ones of 2018, as
we imprint here a linear perturbation so that it is uniform across the atomic cloud2. We
prepare the atoms in a magnetic-sensitive state and we adiabatically raise a magnetic field
gradient which creates a linear perturbation. The abrupt extinction of the magnetic field
gradient creates an excitation of the atomic cloud. This method has been implemented in
other groups [47,251] and is detailed in the following.

Magnetic-induced excitation We prepare the atoms in the magnetic-sensitive state |f =
1,mf = −1⟩ and cool them down to the minimal temperature accessible T ≲ 20 nK. The
atoms are confined in the horizontal plane (xy) in a box shaped as a square of side L = 40 µm.
A vertical magnetic field B = 3G is applied and defines the quantization axis.

2Note that the ideal case would be to imprint the fundamental mode of the box potential, i.e. a sine
perturbation. This could be performed by using the independent DMD with grey levels for instance. However,
this DMD will be used to create a spatially-modulated potential onto the atoms (see Sec. 6.2) and it would
be experimentally too challenging to imprint both the spatial modulation and the excitation from a single
DMD. A third DMD could be installed on our setup, but this possibility was ruled out for practical reasons.
Moreover, as we work in the perturbative regime, it does not matter that we do not imprint the fundamental
mode.
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Figure 6.2: Magnetic excitation. (a) Density of the cloud in the 2D box potential at rest.
The density is homogeneous n(x, y) = n0 over the whole sample. (b)-(c) Density of the cloud
when the box potential is tilted along the y (resp. x) axis. The density is linear along y with
∂n(x, y)/∂x = 0 and ∂n(x, y)/∂y = 2nE/L (resp. x).
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Figure 6.3: In-situ image (right) and profiles of the atomic cloud (left) in the presence of a
gradient along the x-axis with B̄2x ∼ 200mG. Scale bar length: 10 µm.

In addition, we generate a quadrupolar magnetic field on the atoms, using the MOT coils3

(see Chapter 2). We define a coordinate system (ex, ey, ez) centred on the atomic cloud and
the quadrupolar field, centred in Cgrad ≡ (x0, y0, z0), writes:

B1(x, y, z) = b′0

(
−x− x0

2
ex + (y − y0)ey −

z − z0
2

ez

)
, (6.1)

where b′0 is a static magnetic field gradient. The total magnetic field on the atoms is thus
the sum of the quadrupolar field and the vertical field Btot(x, y, z) = Bez +B1(x, y, z). The
potential felt by the atoms depends on the norm of the total magnetic field Btot = |Btot|
and reads:

Vmag = −gfµBBtot. (6.2)

The magnitude of the magnetic field close to the atoms when the quadrupolar field is centred
on the cloud is shown in Fig. 6.1.a and is not linear but quadratic. However, the value of the
gradient b′0 is chosen small enough so that, in this configuration, the effective curvature of
the potential across the cloud is small compared to its height. Indeed, we fix b′0 so that the
in-plane frequencies of the harmonic trap are ωx/2π, ωy/2π < 1Hz, which corresponds to a
modification of the potential of 0.2%. In order to create a non-negligible magnetic field tilt
over the atomic cloud, we adiabatically move the centre Cgrad of the quadrupolar field. We
use bias coils placed near the glass-cell to create additional small static magnetic fields on

3Note that we could have directly generated the magnetic field B in the horizontal plane with anti-Helmholtz
coils but we need to keep a strong vertical field for technical reasons.
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the axes x and y. This additional magnetic field writes:

B2 = B̄2xex + B̄2yey, (6.3)

where B̄2x and B̄2y are algebraic values. In order to have a proper control on the amplitude
and direction of the displacement of the quadrupole field, we use bipolar power supply (High-
Finesse BCS 2/10) to control the magnetic field generated by the bias coils.
As the distance between the centre of the atomic cloud and the centre of the quadrupolar
field increases, the tilt of the potential increases along the direction of the displacement. In
Fig. 6.1.b, we show the magnetic field felt by the atoms when we generate a bias field of 0,
125, and 250mG along the y-axis. The magnetic field at the centre of the cloud and the
amplitude of the gradient on the atoms increases. In Fig. 6.1.b, we display the magnitude
of the magnetic field over a range of 150 · L to highlight the shift of the quadrupolar field
centre. In practice, the curvature of the magnetic field over the atomic cloud is negligible and
the variation of the magnetic field is mostly linear. A scheme of the density profiles Fig. 6.2
displays the cloud at rest and in the presence of magnetic field gradient. We also show in
figure Fig. 6.3 an image of the atoms in the presence of the magnetic field gradient.

We excite the atoms as follows: we adiabatically ramp up the current in the MOT and
bias coils during 50ms and generate a magnetic gradient on the atoms. We hold the atoms in
the tilted potential during 100ms and then instantaneously switch off the current in the bias
coils. The magnetic gradient is subsequently switched off in ∼ 1ms as we shift back abruptly
the quadrupolar field to the centre of the atomic cloud.
We characterise the strength of the excitation by comparing the tilt of the box potential to
its height. In practice, we compute the height of the magnetic potential Vmag at half the side
box, using Eq. (6.2), and compare it to the chemical potential µ0 of the unperturbed atomic
cloud. The excitation is then characterised by the quantity E defined as

E =
|δVmag|/2

µ0
, δVmag = −gfµBδBtot, δBtot = b′αL, (6.4)

where b′α is the gradient along the axis α ∈ {x, y} and the total magnetic field is Btot =
Bez +B1 +B2.

Calibration of the magnetic field gradient The characterisation of the excitation
strength requires the measurement of the magnetic field gradient across the cloud. We mea-
sure this gradient by performing Ramsey interferometry. Let us assume that the strongest
gradient axis is α ∈ {x, y}. We start from an atomic cloud in |f = 1,mf = −1⟩ in the presence
of the quadrupolar field B1 and we perform Ramsey interferometry on the magnetic-field-
sensitive transition |f = 1,mf = −1⟩ → |f = 2,mf = 0⟩. More precisely, we send two
microwave pulses of duration δt = 10 µs separated by a duration τ ≫ δt, and we assume
that the atoms do not move during τ . The atoms do not feel the same magnetic field along
the axis α, so the shift δ to the resonance |f = 1,mf = −1⟩ → |f = 2,mf = 0⟩ is spatially
dependent. The transfer probability depends on δ and thus on space. After the second mw
pulse, we observe interference fringes of spatial period i and angle θ = π/2 with respect to
the strongest direction of the gradient and resulting force. The probability to transfer the
atoms into |f = 2,mf = 0⟩ writes:

P(α) = cos2
(
Vmag(α)τ

ℏ

)
, (6.5)
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Figure 6.4: Measured OD after Ramsey interferometry on the transition |f = 1,mf = −1⟩ →
|f = 2,mf = 0⟩. (a) The quadrupolar field is shifted along the y-axis by varying B̄2y and
fixing B̄2x ∼ 0.3G. (b) The quadrupolar is shifted along the x-axis by varying B̄2x and fixing
B̄2y ∼ 0.1G. The components of the bias field B̄2x and B̄2y are indicated for each image
together with the duration τ between the Ramsey pulses. The magnitude and orientation of
the resulting force is indicated with a red arrow. The longest arrow corresponds to a gradient
b′y = 19 µG/µm.

where, considering a linear magnetic field, the potential is written as follows:

Vmag(α) = −gfµBb′αα. (6.6)

We measure the fringe spacing i of the Ramsey interferometry pattern and deduce the mag-
netic field gradient b′α from the periodicity of Eq. (6.5):

b′α =
ℏπ
gfµB

1

iτ
. (6.7)

In practice, we adjust the duration separating the mw pulses τ , from a few to a tens of
milliseconds, to have four or five fringes on the cloud for each gradient we probe. We show in
Fig. 6.4 the typical Ramsey signals4 obtained when we vary the components of the magnetic
field B2 individually. This method allows us also to measure the direction of the resulting
force Fmag = −∇Vmag, as we obtain the direction of the wave vector of the Ramsey fringes
by performing Fourier transform. While we shift the quadrupolar field along the axis α,
the resulting force Fmag may not be aligned along α because of the presence of residual
magnetic fields. In this case, the fringes are not perpendicular to the axis α. We correct
these imperfections with the bias coils perpendicular to the α-axis.

6.1.2 Sound propagation

As already mentioned, the atoms are prepared in the state |f = 1,mf = −1⟩ at the lowest
temperature achievable with our cooling steps T ≲ 20 nK. The surface density in the flat-

4As the in-situ images can be misleading, we emphasise that there is no periodic density modulation yet
and those are interference patterns only.
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Figure 6.5: Oscillations of the centre of mass along the x-axis (resp y-axis), ⟨x⟩ (resp ⟨y⟩),
when the excitation propagates along x (resp. y) (black points) (resp (blue squares)). The
solid lines are fit to the data, adjusted using the function Eq. (6.8). The centre of mass
oscillates at a frequency νx = 27.4(2)Hz when we excite the atoms along the x direction and
at a frequency νy = 27.6(2)Hz when we excite them along the y direction. These frequencies
correspond to a sound velocity c = 2.2(2)mm/s. Vertical errorbars are standard errors of the
mean.

bottom box is fixed to n0 = 60(1) µm−2. We adiabatically ramp up the quadrupolar field B1

and the bias field B2 oriented along an axis α ∈ {x, y}. We choose the magnetic field B2 so
that the gradient felt by the atoms is b′α = 3.4 µG/µm, which corresponds to an excitation
(see Eq. (6.4)) E ∼ 4%. We hold the atoms in this configuration for 100ms and then we
abruptly switch off B2, exciting the atoms along α. The extinction of the bias field set the
time origin t = 0. We let the atomic cloud oscillate for a duration t and then partially transfer
the atoms to |f = 2,mf = 0⟩ where we measure the optical density (OD). We obtain the
surface density profile in |f = 1,mf = −1⟩ from this OD.
The density profiles are integrated along the direction perpendicular to the excitation. We
obtain a 1D density profile n(α) from which we calculate the position of the centre of mass.
The centre of mass ⟨α⟩ oscillates in time as the excitation propagates back and forth. The
frequency of the oscillations ν is then proportional to the sound velocity c = 2Lν. A typical
evolution of the centre of mass is shown in Fig. 6.5 for an excitation along the x-axis and an
excitation along the y-axis. We fit a damped oscillation ⟨α⟩(t) to the data with:

⟨α⟩(t) = A exp

(
−Γt

2

)[
Γ

2ω
sin(ωt) + cos(ωt)

]
, (6.8)

with an amplitude A, a damping parameter Γ and a frequency ν = ω/2π. In Fig. 6.5, we find
that the centre of mass oscillates at a frequency νx = 27.4(2)Hz and νy = 27.6(2)Hz when
we excite the atoms in the x and y direction respectively. These almost equal frequencies
correspond to a sound velocity of c = 2.20(1)mm/s. As we work at near zero temperature
and in a homogeneous cloud here, this sound velocity is expected to match Bogoliubov sound
velocity cB = ℏ

√
g̃n0/m. In this particular case, we assume c = cB to calibrate our mean

density5 and find n0 = 60.0(3) µm−2.

5We also performed a Ramsey spectroscopy on the clock transition, as described in Chapter 2, to calibrate
independently the density. This calibration gives a similar result but appears to be less robust: Indeed, we
generate a stronger vertical magnetic field than usual (B = 3G) and thus we have a larger uncertainty on the
Ramsey interferometry result.
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In practice, one can argue that the excitation imposed to the atoms may excite many spatial
modes. The oscillations of the density defect along the excited axis α can be decomposed
into Fourier series:

n(α)− n̄(α) =
+∞∑

j=1

Aj(t) cos(j
π

L
α), (6.9)

where Aj(t) is the amplitude of the j-th mode6. The resulting oscillations of the centre of
mass thus includes the contributions of many excited modes, whereas we are interested in
the fundamental mode only, whose amplitude is given by:

A1(t) =
2

L

∫ L

0
[n(α)− n̄(α)] cos(π

L
α) dα. (6.10)

As a safety check, we also measured the coefficient A1(t). We verified that, for the range
of excitation magnitudes we use, the oscillation frequencies of A1(t) and ⟨α⟩(t) are always
similar within errorbars.

6.2 Density-modulated 2D Bose gases

Our main goal in this chapter is to probe the superfluid fraction in a density-modulated gas
at zero temperature. In this section, we describe how we break translational invariance in
the bulk by imprinting a periodic potential:

V (y) = V0 sin

(
2π

λ
y

)
, V0 ≥ 0, (6.11)

of spatial period λ, onto a cold uniform atomic cloud. Afterwards, we calibrate the response
of the atoms to this modulated potential.

6.2.1 Imprinting a modulated density profile

Atoms are initially trapped in a 2D flat-bottom potential and we use an independent DMD
to shine onto the atoms a repulsive light of wavelength 532 nm and whose intensity profile
is shaped as a sine7. The effective waist of the light beam on the atomic plane w = 85 µm
is large compared to the atomic cloud, so that the intensity profile over the atoms is almost
uniform for a uniform DMD pattern.
In practice, the DMD behaviour depends on the working regime. Here we will work deep in
the grey-level regime as we will imprint a continuous modulation. We therefore need a large
density of mirrors turned “off” in order to locally imprint grey values. In this context, one
can show that the DMD plays the role of an amplitude modulator [102]. More specifically,
the light intensity sent onto the atoms scales quadratically with the reflectance of the DMD.
Therefore, we shape the intensity profile of the light as a sine by dithering the following
pattern on the DMD:

I(x, y) =
√
β + γ sin

(
2π

λ
y

)
, (6.12)

where the axes x and y are the atomic image plane coordinates. The profile I is dithered
using the error diffusion algorithm. We choose β = 0.5 and γ = 0.4 in order to avoid defects

6We choose the cosine basis to ensure that the velocity field cancels on the edges of the box.
7We do not use the atomic response to the potential for correcting its profile, i.e. we do not perform any

feedback loop between the atomic and potential profiles as discussed in Ref. [51].
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Figure 6.6: DMD pattern to imprint a sine on the atoms. (a) Continuous pattern I (see
Eq. (6.12)) with β = 0.5 and γ = 0.4. (b) Dithered pattern Idithered actually displayed on the
DMD.

at the minima and maxima of the signal and so that 0 < I(x, y) < 1. There is then a small
light offset onto the atoms at the minima, but the subsequent scattering rate remains low.
We show in Fig. 6.6 the pattern I we generate, and the dithered pattern Idithered displayed
on the DMD.

There are two imaging systems on the setup allowing us to characterise the intensity profile
that we send onto the atoms and the resulting potential. First, the green light beam at
532 nm used to create the modulated potential is collected on a control camera (see Fig. 6.7).
This camera (A) is placed on the conjugate plane of the atoms so that we image the light
intensity profile imprinted on the atoms. This imaging system has a resolution ≲ 1 µm and
a magnification 3.2. Second, our usual vertical absorption imaging of wavelength 780 nm
is used to image the atomic density profiles (see Fig. 6.7). This imaging system (B) has a
similar resolution ≲ 1 µm and a magnification 11. We first use the control camera (A) to im-
age the light intensity profile on the atomic plane and verify that we design well the potential.

We vary the light intensity and show in Fig. 6.8 the intensity profiles imaged on the control
camera with a lattice of period λ = 4 µm. As expected, we observe a sinusoidal modulation
of the intensity along y. When we increase the light intensity on the DMD, the contrast
C = (Imax − Imin)/(Imax + Imin) of the fringes increases linearly, Imax,min being the intensity
maxima and minima. We verified that we imprint a sine for all the range of intensities used.
Moreover, we checked that we observed a sinusoidal modulation of the intensity for different
lattice spacings. As the lattice period increases, the number of periods over the cloud de-
creases and the measurement of the contrast may be less robust. We therefore probed two
lattice spatial phases ϕ and ϕ + π, for lattice spacings λ ≥ 8 µm, and we verified that the
measured contrast is phase independent. For each of those patterns, we varied the intensity
of the light shined on the DMD and measured the contrast of the fringes on the camera
control. We show in Fig. 6.9 the contrast on the control camera for a given intensity with
respect to the different lattice spacings we probed. For lattices with period λ ≥ 4 µm, we find
a mean contrast C̄ = 0.75(1) close to the expected value C = γ/β = 0.8. For a lattice spacing
of 2 µm, the contrast is attenuated. The pattern on the control camera starts indeed to blur,
as a result of the finite optical resolution of our imaging.
As a conclusion, we observe the expected sine profile for a large range of intensities and
lattice spacings λ. The results we will present in this chapter were obtained with a lattice
spacing of 4 µm, for which we do not observe any loss of contrast on the control camera.
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Figure 6.7: Representation of the optical system used to create and image the sinusoidal
potential. We shine a DMD with a light beam of intensity I and wavelength 532 nm (green).
The green light reflected towards the atoms has a spatially modulated intensity profile. The
light passes through a first microscope objective of numerical aperture (NA) 0.4 before it
reaches the atoms. Afterwards, the green light goes through a second microscope objective
of same NA and is finally collected on a control camera. This camera (A) is placed on the
image plane of the microscope so that we image the light intensity profile seen by the atoms.
This imaging has a resolution ≲ 1 µm and a magnification of 3.2. The green light is mixed
with a red light beam of wavelength 780 nm used to perform absorption imaging of the atoms.
This red light beam passes through the two microscope objectives before being collected on a
second camera (B). This imaging system has a similar resolution ≲ 1 µm and a magnification
of 11.

Finally, we have to calibrate the potential depth V0. A first method would be to estimate
V0 from the intensity I and the waist w of the light beam, however, it would lead to large
systematic errors. Indeed, the light passes through a DMD and a microscope objective before
reaching the atoms (see Fig. 6.7), which makes difficult to estimate the real light intensity on
the atomic plane. We then prefer to calibrate the potential depth from the atomic response.
This calibration is performed with the usual absorption imaging (see Fig.6.7) and detailed in
the following section. The atomic density profiles are however imaged with a different camera
and light beam so the imaged profiles are affected differently by the finite spatial resolution.
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Figure 6.8: (a)-(c) Images of the intensity profiles on the control camera for a light intensity
ratio of 1, 2 and 3 respectively (scale bar: 10 µm on the atomic plane). The colorbar indicates
the normalised number of counts by pixel N . (d)-(e) Averaged one-dimensional profiles along
the modulation for a light intensity ratio 1, 2 and 3 respectively. The black solid lines are
sine functions adjusted to the data.
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Figure 6.9: Contrast of the fringes C on the control camera for a given intensity I as a function
of the lattice periods λ (filled points). For large lattice spacings, we also imprinted lattices
with a π-phase shift (empty points) and we confirm that the contrast is phase-independent.



6.2. DENSITY-MODULATED 2D BOSE GASES 103

0 20 40 60 80 100
0

0.5

1

1.5

µ
0
=
g
n
0

Perturbative
regime

Calibration

V0 (nK)

C a

Figure 6.10: Atomic contrast Ca of the density profile for λ = 4 µm as a function of the
potential depth V0, obtained from GP simulations (solid line) performed in the group and
the perturbative model (dotted line) described by Eq. (6.14). The shaded area represents the
perturbative regime used to perform the calibration. The dashed vertical line indicates the
value of µ0.

6.2.2 Atomic response

In order to calibrate the potential depth, we image the density profile n at zero temperature
and deep in the Thomas-Fermi regime. In a regime where the spatial scale of the perturbation
is much larger than the healing length ξ ∼ 0.2 µm, i.e with lattices of large period and low
light intensities, one can usually apply the local density approximation (LDA), which yields:

n(y) =
µ0 − V (y)

g
=
µ0
g

+
V0
g

sin

(
2π

λ

)
, (6.13)

where µ0 = gn0 is the unperturbed chemical potential. Therefore, the density profiles ob-
tained within LDA match the potential. For instance, here we would have expected to image
density profiles with sinusoidal modulations. For the modulated potentials we consider, how-
ever, the spatial scale of the perturbation is too large and we must add some correcting terms
to this simple model. We distinguish two regimes:

� the regime of small amplitudes of modulation with lattice spacings λ large compared
to the camera pixelsize 1.15 µm, where the deviations from the LDA are small.

� the rest of the parameter diagram, where LDA fails.

Protocol The idea is the following: we calibrate the potential depth in the first regime, i.e.
in the regime of shallow potentials. There, the Gross-Pitaevskii (GP) result (obtained from
numerical simulations performed in the group) is well-approximated by static perturbation
theory [87]. This perturbative derivation (see appendix B) yields a potential depth V0 linearly
dependent on the contrast Ca of the density profile but dependent also on the wave vector of
the lattice k = 2π/λ:

V0 =

(
µ0 +

ℏ2k2

4m

)
Ca. (6.14)

We show in Fig. 6.10 the contrast Ca, obtained from this perturbative relation and from the
GP simulations for a lattice of period λ = 4 µm. Fixing the mean density to n0 = 60 µm−2,
we find that the two curves are superimposed up to V0 ∼ 0.6µ0.
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Figure 6.11: (a) Contrast Ca = n1/n0 for a lattice spacing of λ = 4 µm (blue points), λ = 8 µm
(violet pentagons), λ = 16 µm (black diamonds) and λ = 32 µm (red squares), as a function
of the light intensity8I. (a)-(c) Distance (rms) d from the adjusted sine function Eq. (6.15)
and the measured density profiles n(y) with respect with the intensity I for a lattice spacing
of λ = 4, 8, 16, 32 µm respectively. Data extracted from a preliminary analysis.

Experimentally, one can then calibrate the potential depth by measuring the contrast of
density profiles from which we calculate V0 with Eq. (6.14) up to V0 ∼ 0.6µ0 (i.e. V0 ∼ 30 nK
in Fig. 6.10), where the perturbative regime ends.

Measurement on density profiles We image the atoms in spatially modulated potentials
created with various lattice spacings and light intensities. In practice, we prepare the atoms
in the state |f = 1,mf = −1⟩ at a temperature T ≲ 20 nK. We imprint the sine potential
with a given light intensity I and spacing λ. After a waiting time of 100ms, we partially
transfer the atoms in the state |f = 2,mf = 0⟩. We measure the OD in |f = 2,mf = 0⟩ and
calculate the density profile n(x, y) from this measurement. The profiles are then integrated
along the x direction, along which the density is uniform.
In order to extract the amplitude of modulation, we assume that the density profile is well-
described by a sine and we adjust the following function to the modulated profile n(y):

n0 + n1 sin

(
2π

λ
y

)
, (6.15)

where n1 is the amplitude of the modulation and n0 the mean density. This function is
expected to fit the profiles n(y) for V0 ≪ µ0, and thus this approximation is suitable for the
regime used for the calibration. We show in Fig. 6.13 a catalogue of density profiles observed
for lattice spacings λ = 4, 8, 16, 32 µm and two different light intensities. In every case, we
observe a modulation of the surface density n(x, y) with the period λ.
The atomic contrast Ca = n1/n0 measured using Eq. (6.15) is displayed in Fig. 6.11 for four
different lattice spacings. The depletion increases linearly in the regime of low intensities and
then saturates. We remind that the fit function Eq. (6.15) is suitable for the low amplitude
regime only and we show in Fig. 6.11.b-c-d-e the rms distance d between the sinusoidal fit
to the data and the density profiles. We observe that d increases strongly when the atomic
contrast saturates. For higher light intensities, the sine function does not capture the whole
density profile and this is why we obtain depletions n1/n0 > 1.

8The intensity I of the light beam is collected by a photodiode and hence proportional to a voltage.
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Figure 6.12: Potential depth V0 for a given intensity I, extracted in the linear regime V0 <
0.6µ0, as a function of the lattice period and for two different lattice phases ϕ. The potential
measured for λ = 4 µm is ∼ 30% smaller than the potential measured with lattices of period
λ ≥ 8 µm. Indeed, the amplitude of the modulation n1 measured with a lattice of period
λ = 4 µm is attenuated by our finite imaging resolution and gives an artificially smaller
potential. Thus, the potential depth is calibrated from the lattices of large periods (λ ≥ 8 µm)
and its value is represented with the horizontal black dashed line together with its standard
deviation (violet shade). We also verified that this value is independent of the lattice phase
ϕ. Data extracted from a preliminary analysis.

Calculation of the potential depth We calculate the potential depth V0 in the linear
regime, i.e up to V0 < 0.6µ0, using the perturbative model and the measured values of n1/n0:

V0 =

(
µ0 +

ℏ2k2

4m

)
n1
n0
, (6.16)

and we extrapolate it for large depletions. The potential depth for a given intensity I is
shown in Fig. 6.12 as a function of the lattice spacing. As we apply the correction to the
LDA, depending on the wave vector k, we expect to correct the large difference between the
depletion for a lattice of spacing λ = 4 µm and lattices of larger spacing, observed in Fig.6.11.
The potential measured with the perturbative model for lattice spacings λ ≥ 8 µm are similar.
However, the discrepancy with the lattice of period λ = 4 µm remains, as the measured value
is ∼ 30% smaller. We confirmed previously by using our first imaging system (control camera
A) that the light intensity profile I reaching the atoms has the same mean and contrast for
lattices of period λ ≥ 4 µm. We thus interpret this deviation as a limitation of the finite
spatial resolution of the second imaging system (B), at 780 nm, which artificially reduces
the amplitude n1 measured for lattices of small period and hence decreases the potential
depth. Finally, we assume that the atoms feel the same potential depth for all lattices of
period λ ≥ 4 µm and thus calibrate V0 using the atomic response to lattice potentials of large
spacing λ ≥ 8 µm. We therefore find a linear relation between the potential depth V0 and the
light intensity I yielding V0 = (54.4 · I) nK.

Attenuation of the density modulation by our imaging system The attenuation
of the density signal can be understood by considering that the two imaging systems are
well-described by a Gaussian point spread function (PSF) written:

P =
1

2πσ2
exp

(
−r2/2σ2

)
, r = (x, y). (6.17)
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In this case, a sine profile written as Eq. (6.15) would undergo the following attenuation:

P ⊗ n(y) −→ nPSF(y) = n0 + n1 exp

(
−k

2σ2

2

)
sin

(
2π

λ
y

)
. (6.18)

We adjusted the depletion n1/n0 measured with the absorption imaging (B) with the function
Eq. (6.18) and we find σ780 = 0.53(6) µm. This value is close to the ones usually measured on
the experiment. The difference between the two imaging systems can be explained first by
the light wavelength difference as there is less diffraction with a 532 nm light than a 780 nm
light. Moreover, the modelling of absorption imaging of atoms is always challenging, as we
do not completely control the dynamics of the atoms during the imaging light pulse.

To summarize, we verified that we imprint the good potential, i.e. a sinusoidal modula-
tion, on the light intensity profiles. We also used the atoms in the regime of shallow lattice
potentials to calibrate the potential depth they feel. We can finally move to the heart of the
chapter and measure the superfluid fraction in a density-modulated weakly-interacting 2D
Bose gas at zero temperature.
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Figure 6.13: Images of the atomic cloud in a periodic potential of period λ = 4 µm (a)-(b),
λ = 8 µm (c)-(d), λ = 16 µm (e)-(f) and λ = 32 µm (g)-(h) (scale bar: 10 µm). The average
profiles in the direction x (black squares) and y (blue points) are shown on the left. The
blue solid lines are fit to the data in the y-axis, using a sine function. The light intensity is
doubled between the left and the right columns. Here, the in-plane confinement is a square
box of side L = 32 µm.
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6.3 Breaking translational invariance in a superfluid

We probe the zero-temperature superfluid fraction in a density-modulated planar Bose gas
with two experimental protocols. In the first part of this section, we describe the mea-
surement of the sound propagation along the two axes of an atomic cloud modulated by
a one-dimensional sinusoidal potential. We vary the potential depth V0 of the lattice and
deduce Leggett’s integral (as defined in Ref. [36] and derived for our system in the previous
chapter) from the sound velocities along and perpendicular to the modulation:

fs =

(
cy
cx

)2

. (6.19)

Afterwards, we describe the measurement of Leggett’s integral from the density profiles n:

fs =
L

N
∫ dy

n(y)

. (6.20)

This measurement requires to work with in-situ images of the density-modulated cloud. As
mentioned in the previous section, measured density profiles are affected by our finite spa-
tial resolution and therefore we cannot directly compute Leggett’s integral. We describe an
analysis method which allows us to restore the signal and extract a partial measurement of
Leggett’s integral.

Experimentally, we take two data sets for a given potential depth: we measure the equi-
librium density profile and then perform a measurement of the sound velocity in the same
conditions using the protocol described in Sec. 6.1. The preparation of the atomic sample is
therefore the same for both experiments. The atoms are cooled down to T ≲ 20 nK in the
magnetic-sensitive state |f = 1,mf = −1⟩. After letting the atoms thermalize, we adiabati-
cally switch on the lattice potential

V (y) = V0 sin

(
2π

λ
y

)
, (6.21)

with a given potential depth V0 and a lattice period λ = 4 µm. The mean density is fixed to
n0 = 60(1) µm−2 for all potential depths probed.

6.3.1 Sound propagation in a gas of modulated density

We study sound propagation in a density-modulated atomic sample by following the exper-
imental protocol described in Sec. 6.1. After having prepared the atoms in the modulated
potential Eq. (6.21) of potential depth V0, we adiabatically switch on a linear magnetic field
along the density modulation (y-axis) which tilts the potential felt by the atoms. At a time
t = 0 we abruptly switch off the magnetic field gradient and we monitor the atomic response
to this excitation for a duration t ∼ 200ms. We perform the same experiment by generating
a magnetic excitation along the x-axis, i.e perpendicular to the density modulation.
The evolution of the position of the centre of mass is measured along each axis and we report
in Fig. 6.14.a an example of measured signals. The position of the centre of mass oscillates
and we obtain the sound velocity c in both directions by measuring its oscillation frequency
ν = c/2L. We show in Fig. 6.14.b the sound velocities along the modulation cy and perpen-
dicular to the modulation cx as a function of the potential depth V0. As expected, the sound
velocity along the density modulation decreases when the potential depth increases, as the
depletion of the atomic cloud and the effective mass m∗ becomes larger. We observe a slight
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Figure 6.14: Sound propagation. (a) Oscillations of the centre of mass along the x (black
squares) and y directions (blue points) after a magnetic excitation of the cloud. Vertical
errorbars are standard errors of the mean. (b) Sound velocities along the density modulation
(blue points) and perpendicular to the modulation (black squares) as a function of the ampli-
tude V0 of the sine potential. Horizontal errorbars are standard deviations smaller than the
size points. Vertical errorbars of 1Hz are estimated from a statistical error. Data extracted
from a preliminary analysis.

increase of the sound velocity along the axis perpendicular to the modulation because of the
modification of the density distribution9.
Finally, we report in Fig. 6.16 the superfluid fraction obtained from the measurement of the
sound velocity as a function of the potential depth V0 normalised to the chemical potential
µ0 and discuss our measurement in section Sec. 6.3.3.

6.3.2 Leggett’s integral from density profiles

The measurement of the superfluid fraction following Leggett’s integral Eq. (6.20) requires
to measure the density profile n(y) at equilibrium. After the preparation of the atoms in
|f = 1,mf = −1⟩ in the presence of the periodic potential V (y) of potential depth V0, we
take ten images of the atomic cloud by partially transferring it in the state |f = 2,mf = 0⟩.
The density profiles are calculated from the OD measured in |f = 2,mf = 0⟩, as usual.
As mentioned in the section Sec. 6.2, our absorption imaging is limited by the finite spatial
resolution for a lattice period of λ = 4 µm and we are not able to properly measure the
amplitude of the modulation on the atoms. This prohibits a direct numerical integration of
the raw density profiles. We propose here a method to correct the effect of the finite spatial
resolution. This method relies on the relation established in Sec. 6.2 between the potential
depth V0 and the real amplitude of the modulation nc1 in the limit of low potential depth:

V0 =

(
g +

ℏ2k2

4mn0

)
nc1. (6.22)

In Sec. 6.2.2, we calibrated the potential depth V0 for a given light intensity I. Therefore we
use this calibrated value to compute a correction factor r = nc1/n1 to the measured amplitude

9In the previous chapter, we showed that the speed of sound depends on the density via the pressure
P = F(n). Indeed, in the homogeneous direction, the speed of sound writes cx = F ′(n)/m and thus depends
on the density distribution.
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Figure 6.15: Corrected contrast Ca = nc1/n0 induced by a periodic potential of period λ =
4 µm as a function of the potential depth V0 (blue points). We obtain depletions larger than
1 for large potential depths because the contribution of higher harmonics on the density
profiles are filtered out by the absorption imaging system. The solid black line is the result of
Gross-Pitaevskii simulations without spatial filtering of the density profiles. As expected, the
depletion saturates to one. The dashed black line is the result of Gross-Pitaevskii simulations
where the density profile is filtered and we extract the contribution of the fundamental mode
only, as for the experimental data. The dotted black lines is the perturbative model Eq.(6.16)
used to calibrate the potential V0 and the correction factor r. This calibration was performed
on potential values up to V0 < 0.6µ0 with the same mean density n0. The limit of the
calibration regime is represented by the vertical grey dotted line. The grey vertical dashed
line indicates the value of the chemical potential µ0 of the atoms without modulation and
with the same mean density n0. Errorbars are standard deviations and horizontal errorbars
are smaller than the point size. Data extracted from a preliminary analysis.

n1 following:

V0 =

(
g +

ℏ2k2

4mn0

)
rn1. (6.23)

The correction factor r, defined for a 4 µm-period lattice, is then calculated in the perturba-
tive regime and extrapolated for all probed potential depths. We find r = 1.45(9).
As emphasised earlier, we fit the density profiles n(y) with a sine function in the perturba-
tive regime. For deeper lattices, this approximation breaks and the density profiles can be
decomposed in Fourier series. There are therefore two important points to consider:

� The correction of the atomic signal amplitude allows us to correct the amplitude of
the fundamental spatial mode only, i.e. the sine contribution of period λ. Indeed, the
calibration of the correction factor is performed in the perturbative regime where the
contribution of the higher harmonics is negligible and is not taken into account.

� Moreover, experimental access to the higher harmonic amplitudes is in all cases com-
promised by the fact that our optical resolution ∼ 1 µm is not small compared to the
period of the first harmonic λ/2 = 2 µm. In conclusion, the absorption imaging system
acts as a low pass filter and our measurement of Leggett’s integral is therefore limited
to the effect of the spatial density modulation with the period λ.

We show in Fig. 6.15 the corrected contrast Ca = nc1/n0 as a function of the potential depth
V0, for the complete experimental data set. The data are compared to numerical GP sim-
ulations performed in the group, for which the depletion saturates at one. We also show
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numerical GP simulations where the depletion n1/n0 is obtained by keeping the fundamental
mode only of the density profile, as for the experimental data. We also display the result
of the perturbative expansion Eq. (6.16). By construction, the data taken with V0 < 0.6µ0
lies on the perturbative result (superimposed with the GP simulation in this regime). When
the potential depth V0 increases, the corrected depletion follows the result obtained from the
fundamental mode of the GP simulations. For potential depths larger than µ0, we obtain
depletions larger than one nc1/n0 > 1 because the effect of the higher harmonics in the density
response are filtered out.

In summary, we are able to restore the signal of the fundamental spatial mode. For each
potential depth probed, we fit the density profiles n(y) with the sine function:

n0 + n1 sin

(
2π

λ
y

)
. (6.24)

We obtain the mean density (experimentally fixed to n0 = 60(1) µm−2) and the measured
amplitude n1, from which we calculate the corrected amplitude nc1 = rn1. Assuming that we
have a sinusoidal density modulation of period λ, mean n0 and amplitude nc1, the computation
of Leggett’s integral Eq. (6.20) is analytic and yields:

fs =

√
1−

(
nc1
n0

)2

. (6.25)

In the next section, we show in Fig.6.16 the superfluid fraction computed with Eq.(6.25) and
compare it to the result obtained from the sound measurement.

6.3.3 Final result and discussion

The superfluid fraction, given by Leggett’s integral in our system, is probed for different
potential depths and with two methods: by measuring the sound velocities along the modu-
lated and homogeneous density profiles, and by measuring the density profiles. The results
of these two measurements are shown in Fig. 6.16 as a function of the normalised potential
depth V0/µ0. While the superfluid fraction is predicted to be fs = 1 in a zero-temperature
homogeneous superfluid, we observe a superfluid fraction decreasing when the potential depth
increases. The results from the two measurements are in good agreement up to V0/µ0 ∼ 1.15.
The discrepancy for larger depths can be explained by the fact that the superfluid fraction
extracted from the in-situ analysis is performed on a signal spatially filtered by the absorp-
tion imaging, where only the fundamental spatial mode of the density profile is taken into
account. The experimental data are compared to GP simulations with the full density profile
and GP simulations with a filtered signal, keeping the fundamental modulation only. On the
one hand, Leggett’s integral measured from the speed of sound agrees well with the GP sim-
ulations calculated with the complete density signal. On the other hand, results from density
profiles are closer to the GP simulations obtained with the filtered density, as expected. For
potential depth V0/µ0 ≳ 1.15, the depletion of the atomic cloud is nc1/n0 ≥ 1, as shown in
Fig. 6.15. Therefore, Leggett’s integral is not defined, and the superfluid fraction obtained
from in-situ profiles is manually set to zero. Finally, even with a partial measurement of
in-situ density profiles, we observe Leggett’s integral decreasing when the translational in-
variance is broken.
These two protocols provide a robust measurement of the reduction of the superfluid fraction
down to fs ∼ 0.3 in the presence of a density-modulation and at zero temperature, and could
be improved with minor experimental modifications.
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Figure 6.16: Superfluid fraction fs in a density-modulated 2D Bose gas at zero temperature
as a function of the potential depth V0 normalised to the chemical potential µ0. The su-
perfluid fraction is extracted from sound propagation (violet squares) and from the estimate
of Leggett’s integral on in-situ images (red points). The measurement on in-situ images is
partial as we extract only the fundamental mode of the spatial modulation. The superfluid
fraction measured from in-situ images is set to zero at large lattice amplitudes V0/µ0 ≳ 1.15.
Indeed, for large values the spatially filtered contrast goes beyond one and Leggett’s integral
is not defined anymore. The sound measurement gives finite superfluid fraction for all the
lattice amplitudes probed. The superfluid fraction is also displayed for the GP simulations
on filtered density profiles (dashed line) and for GP simulations with the complete density
signal (solid line). Data extracted from a preliminary analysis.

6.4 Conclusion

In this chapter we have probed the superfluid fraction in a zero-temperature weakly-interacting
2D Bose gas experiencing a breaking of translational invariance.
Superfluidity is intrinsically linked to the notion of transport and we started by describing
an experimental protocol to measure the sound velocity in our atomic sample. We excite the
atoms at rest with a linear perturbation of their potential, uniform over the atomic cloud.
This perturbation is created with a magnetic field gradient. When switching off abruptly the
magnetic field gradient, the position of the centre of mass of the atomic cloud oscillates in
time with a frequency yielding the sound velocity.
In a second section, we detailed how, starting from a homogeneous planar Bose gas, we im-
pose a density modulation by optically imprinting a sinusoidal lattice of period λ = 4 µm. We
characterised the light intensity profiles sent onto the atoms and we calibrated the potential
depth of the lattice using the atomic response to this potential.
In the last section, we described the measurement of the sound velocity along and perpendic-
ular to the density modulation. We observe that the speed of sound along the perturbation
decreases when the potential depth increases. This behaviour is expected as the speed of
sound is inversely proportional to the effective mass, which increases with the potential
depth. We also detailed the estimate of Leggett’s integral, derived in the previous chapter for
our system, from the density profiles. This calculation requires to work on the in-situ images
of the density profiles. These profiles are spatially filtered out by our absorption imaging,
and thus the estimation of the density profiles is partial.
However, we could compare the superfluid fraction obtained from the speed of sound ratio to
Leggett’s integral over a large range of potential depths. We confirmed that, in the presence
of a spatially-modulated potential breaking translational invariance, the zero-temperature
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superfluid fraction decreases when the amplitude of the modulation increases. These results
were also compared to Gross-Pitaevskii simulations performed in the team, with which they
are in good agreement.





Conclusion

In this thesis, I emphasised the diversity of physics approachable through cold atom experi-
mental platforms by describing two results obtained in different contexts.

The first part of the thesis is dedicated to the general features of the 2D weakly-interacting
Bose gas. In Chapter 1, the theoretical framework of the two-dimensional weakly-interacting
Bose gas is described through a classical field approach. The weak interactions at play in
our quasi-2D Bose gas are taken into account in a contact potential describing 3D collisions.
The emergence of the superfluid phase and the restoration of a quasi-long-range order thanks
to repulsive interactions is also described. The experimental setup that we use to produce
planar Bose gases of repulsive weak interactions is detailed in Chapter 2. I gave a description
of the large toolbox that we use to fully control the geometry of the atomic cloud, its density
and temperature and finally I introduced our microwave chains allowing for high-precision
spectroscopy measurements.

In the second part of this manuscript, I described our recent measurement on the least-
bound dimers of rubidium 87. In Chapter 3, I first introduced the interatomic potential for
hydrogen and alkali atoms. In the context of ultracold gases, these potentials are described by
a few numbers as the s-wave scattering length a and the range of the van der Waals potential
RvdW. We highlighted the relation between the scattering states, fully described by a, and
the positions of the least-bound states, given by RvdW when van der Waals interactions are
dominant at large interatomic distance. This so-called van der Waals universality allows a
simpler characterisation of the interatomic potential. Finally, we focused on the least-bound
states or rubidium 87. These states are of large physical interest in ultracold physics as they
allow to tune the atomic interaction strength via Fano-Feshbach resonances. We presented
a simple model to describe the hyperfine and Zeeman levels of a given least-bound rovibra-
tional state. We then described the detection via mw-induced photoassociation of the whole
Zeeman diagram of the least-bound state of 87Rb, composed of one atom in the hyperfine
level f = 1 and one atom in the hyperfine level f = 2. Adjusting our simple model to these
data, we could estimate the coupling strength between the triplet potential and the singlet
potential.
In Chapter 4, we focused on one particular state of the Zeeman diagram which has the speci-
ficity to be magnetic-field-insensitive. The energy dependence of this state on the density of
the atomic bath is highlighted thanks to a high-precision spectroscopy. We used a mean-field
approach to interpret these results as the effect of atom-dimer interactions and measured the
associated atom-dimer scattering length aad. Finally, we measured this atom-dimer scatter-
ing length for two atomic baths and for the second-to-least bound state with one atomic bath.
The perturbative model we derived can be used for any atomic species as long as their hy-
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perfine coupling is large compared to the depth of the least-bound states. It allows to detect
precisely bound states after the measurement of only a few bound states of the same multi-
plicity. We measured the atom-dimer scattering lengths far from the universal regime, yet, we
obtain two close values when probing it with two different atomic baths of close atom-atom
scattering lengths. This result is consistent with the existence of a van der Waals universality
for atom-dimer interactions with bosons. Finally, we were not able to observe mw-induced
Fano-Feshbach with our setup and atomic species, but these measurements pave the way for
investigation with more suitable atomic species as sodium, potassium or caesium or for atom
chips experimental setups which benefit from stronger mw fields.

The third part of this manuscript is dedicated to the zero-temperature superfluid fraction in
a weakly-interacting 2D Bose gas when we impose a breaking of translational invariance. In
Chapter 5, I introduced the original analysis performed by Leggett in 1970 in the context of
supersolids. We applied the same analysis for our atomic systems, i.e. we studied the su-
perfluid fraction defined within the framework of twisted boundary conditions for a 2D Bose
gas in the presence of a potential spatially-modulated along one direction. We demonstrated
that in the context of systems described by the Gross-Piteavskii equation, the integral found
by Leggett as an upper-bound on the superfluid fraction in solids gives the actual superfluid
fraction. By further constraining the modulation to be periodic, we linked this superfluid
fraction to sound velocity along and perpendicular to the periodic spatial-modulation.
In Chapter 6, we described the experimental testing of Leggett’s integral. We imposed a
sinusoidal density-modulation to our atomic sample and used two experimental protocols:
we excited the atoms and measured the sound velocity along both axis and, starting from
a similar system, we measured Leggett’s integral from the in-situ profile of the sample. We
observed the superfluid fraction decreasing when increasing the amplitude of the density
modulation. The two experimental protocols gave results in good agreement, although the
measurement of Leggett’s integral from density profiles is limited by our imaging system.
A first improvement would be to work on the experimental setup to have a better resolu-
tion. Furthermore, the comparison of Leggett’s superfluid fraction definition with a transport
measurement now done, one might want to get rid of the periodicity constraint on the density-
modulation to study Leggett’s integral with more exotic potentials. This possibility should be
carefully considered, as new constraints may arise. The comparison of Leggett’s integral and
sound velocities with more complex potentials as superlattice have been numerically studied
in the group and led to encouraging results, although the experimental implementation of
such systems is not trivial. Finally, this measurement can also reopen the discussion of the
validity of Leggett’s result in actual supersolids.
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A
Zeeman diagram: parameters and data set

A.1 Model

We derived in Chapter 3 a simple model to describe the hyperfine and the Zeeman dia-
gram of a rovibrational state loosely bound. The Hamiltonian acting on free pairs of atoms
|f1,mf1 ; f2,mf2⟩ is a sum of three contributions:

Ĥ = Ĥhfs + ĤZ + Ĥst, (A.1)

the hyperfine splitting Ĥhfs, the Zeeman term ĤZ and a singlet-triplet coupling Ĥst. In order
to diagonalise the Hamiltonian Eq. (A.1), one writes the atom pairs states in the decoupled
basis:

|f1,mf1 ; f2,mf2⟩ → |σ1, ι1; σ2, ι2⟩ ≡ |s1 = 1/2, σ1, i1 = 3/2, ι1; s2 = 1/2, σ2, i2 = 3/2, ι2⟩,
(A.2)

where the projections on the quantization axis z of the electronic spin angular momentum
s = 1/2 and the nucleic spin angular momentum i = 3/2 are written σ = ±1/2 and ι =
±1/2, ±3/2. We give therefore the hyperfine levels |f,mf ⟩ of an atom of 87Rb in its electronic
ground state in the decoupled basis in Tab.A.1.

|f,mf ⟩ |σ, ι⟩

|1,+1⟩ −
√
3/2| − 1/2, 3/2⟩+ 1/2|1/2, 1/2⟩

|1, 0 ⟩ 1/
√
2
[
|1/2, −1/2⟩+ | − 1/2, 1/2⟩

]

|1,−1⟩
√
3/2|1/2, −3/2⟩ − 1/2| − 1/2, −1/2⟩

|2,+2⟩ |1/2, 3/2⟩
|2,+1⟩ 1/2| − 1/2, 3/2⟩+

√
3/2|1/2, 1/2⟩

|2, 0 ⟩ 1/
√
2
[
|1/2, −1/2⟩ − | − 1/2, 1/2⟩

]

|2,−1⟩ 1/2|1/2, −3/2⟩+
√
3/2| − 1/2, −1/2⟩

|2,−2⟩ | − 1/2, −3/2⟩

Table A.1: Table of the hyperfine levels of an atom of 87Rb in its electronic ground state in
the coupled basis (first column) and in the decoupled basis (second column).

119



120 APPENDIX A. ZEEMAN DIAGRAM: PARAMETERS AND DATA SET

A.2 Coupling to a microwave field

We performed mw-induced photoassociation to measure the Zeeman diagram of the least-
bound state n = −1 of the branch {f = 1; f = 2} of 87Rb. The magnetic field created by the
microwave of frequency ν = ω/2π is written in a basis (ex, ey, ez):

Bω(t) =
1

2
[Bω,x exp(iϕx)ex +Bω,y exp(iϕy)ey +Bω,z exp(iϕz)ez] exp(−iωt) + c.c., (A.3)

where the variables Bω,j and ϕj are amplitudes and phases respectively. The real amplitude
writes B2

ω = B2
ω,x + B2

ω,y + B2
ω,z and we introduce the complex unit vector ε = (εx, εy, εz)

whose component along the axis α writes εα = |εα| exp(iϕα). Using these notations, the field
equivalently reads:

Bω(t) =
Bω

2
ε exp(−iωt) + c.c. (A.4)

The coupling of such field to the electronic degree of freedom of atoms of 87Rb in their
electronic ground state writes:

Ŵ =
µBgs
ℏ

ŝ ·Bω(t), (A.5)

with ŝ the electronic spin of the atoms.

We compute the matrix elements of Ŵ for atomic transitions between the two hyperfine
levels f = 1→ f = 2 of the ground state. The comparison of these matrix elements with the
measured Rabi frequency of the corresponding transitions will then give the value of Bωε in
Eq. (A.4) and thus the mw field tomography.
We write the field Bω(t) in the spherical basis (e+, e−, e0), for convenience. The basis change
(ex, ey, ez)↔ (e+, e−, e0) is written:

e+ = −ex + iey√
2

, e− =
ex − iey√

2
, e0 = ez, ex =

e− − e+√
2

, ey = i
e+ + e−√

2
. (A.6)

The unit vector ε writes ε = (ε+, ε−, ε0) in the spherical basis an its components are trans-
posed from one basis to another following:

ε+ =
−εx + iεy√

2
, ε− =

εx + iεy√
2

ε0 = εz, εx =
ε− − ε+√

2
, εy = −iε+ + ε−√

2
. (A.7)

The coupling Hamiltonian Eq. (A.5) reads in the spherical basis:

Ŵ =
µBgs
ℏ

Bω

2

(
1√
2
(S−ε− − S+ε+) + Szε0

)
exp(−iωt) + c.c., (A.8)

with the rising and lowering operators s± = sx±isy. We decompose the coupling Hamiltonian
in three contributions: Ŵ+, Ŵ− and Ŵ0 corresponding to σ+ (∆mf = +1), σ− (∆mf = −1)
and π (∆mf = 0) transitions respectively. They are written in the frame rotating with the
mw:

Ŵ+ = −µBgs
ℏ

Bω

2

1√
2
[S+ε+ exp(−iωt) + c.c.] , (A.9)

Ŵ− = −µBgs
ℏ

Bω

2

1√
2
[S−ε− exp(−iωt) + c.c.] , (A.10)

Ŵ0 = −
µBgs
ℏ

Bω

2
[Szεz exp(−iωt) + c.c.] . (A.11)
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mw chain Bω (mG) |εx| |εy| |εz| ϕx − ϕz ϕy − ϕz
RS1 15 0.58 0.60 0.55 0.04π 0.42π
RS2 32 0.25 0.10 0.96 0.43π 0.09π

Table A.2: Tomography of the mw fields Eq. (A.4) produced by the two antennas installed
on our experimental setup.

We consider the transitions between the hyperfine levels |f = 1, mf = 0⟩ → |f = 2, mf =
0,±1⟩ and, using their expression in the decoupled basis (see Tab. A.1), we compute their
associated Rabi frequencies:

Ωσ+ =
µBgs
ℏ2

Bω|ε+|√
2
| ⟨2, 1|S+|1, 0⟩| =

µBgs
ℏ

Bω

√
3|ε+|
4

, (A.12)

Ωσ− =
µBgs
ℏ2

Bω|ε−|√
2
| ⟨2,−1|S−|1, 0⟩| =

µBgs
ℏ

Bω

√
3|ε−|
4

, (A.13)

Ωπ =
µBgs
ℏ2

Bω|ε+|| ⟨2, 0|Sz|1, 0⟩| =
µBgs
ℏ

Bω
|ε0|
2
. (A.14)

(A.15)

We measure these three Rabi frequencies while applying a static external field B along the
space directions α ≡ x, y, z. We obtain then nine Rabi frequencies and, as the global phase
of the mw field is not accessible, we only need five parameters to know the field tomography :
(Bω, |εx|, |εy|, |εz|, (ϕx−ϕz), (ϕy−ϕz)). These parameters are calculated using the following
equations:

η ≡ µBgs
ℏ

Bω = 2

√∑

α

(Ωα
π)

2, (A.16)

|εαj | =
2

η
Ω
αj
π , (A.17)

ϕαj − ϕαk
= arcsin

(
8

3

(Ωαl
σ+

)2 − (Ωαl
σ−)

2

|εj ||εk|η2

)
. (A.18)

We defined Ωα
P as the Rabi frequency of a transition of polarisation P with an external static

magnetic field along the axis α.

We performed this field tomography calibration for the two antennas installed in our ex-
perimental setup and we give in Tab.A.2 the results we obtained.

A.3 Experimental parameters

The atoms are initially prepared in the hyperfine level f = 1, in pure states or binary mixtures
of the sub-levels. The atomic sample has a homogeneous in-plane profile when prepared in
pure states. In the case of binary mixtures, we prepare the sample is an array of microtraps
of size ∼ 5 µm in order to prevent spatial separation of the two components due to residual
magnetic field gradients. We give in Tab.A.3 the experimental parameters we used to observe
the fifteen levels of the n = −1 rovibrational state. We precise for each: its total angular
momentum projection mF , the initial state from which we photoassociate the atoms, the
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mF N Initial state Cloud P BP
ω (mG) Ω/Ω0 δt (s) δna/na (%) Γ (kHz)

3 12 |+ 1; +1⟩ Bulk σ+ 12 0.48 5 33 3.2

2
7 |+ 1;+1⟩ Bulk π 31 0.85 1 20 3.6
13 |+ 1; 0⟩ Patches σ+ 12 0.39 10 17 2.9

1
4 |+ 1;+1⟩ Bulk σ− 23 0.37 5 24 3.1
11 |0; 0⟩ Bulk σ+ 12 0.34 0.5 9 1.8
15 | − 1; +1⟩ Patches σ+ 12 0.35 5 22 2.7

0
3 | − 1;+1⟩ Patches π 31 0.55 5 21 2.7
9 |0; 0⟩ Bulk π 31 1 0.115 14 0.8
14 | − 1; +1⟩ Patches π 31 0.66 2.5 25 6

-1
1 | − 1;+1⟩ Patches σ− 8 0.18 10 23 3.7
5 |0; 0⟩ Bulk σ− 8 0.21 1 11 1.5
10 | − 1; −1⟩ Bulk σ+ 12 0.19 10 21 1.8

-2
2 | − 1; 0⟩ Patches σ− 8 0.19 10 13 6
8 | − 1; −1⟩ Bulk π 31 0.85 0.5 14 2.3

-3 6 | − 1; −1⟩ Bulk σ− 8 0.21 5 17 3.5

Table A.3: Experimental parameters used to determine the Zeeman diagram of the least-
bounded rovibrational state. Sub-levels are sorted by projection of the total angular mo-
mentum mF . We attribute to each level a number (N) standing for its position in the
energy scale at large magnetic field, N= 1 being the lowest in energy. Atoms are originally
in the |f = 1,mf ⟩ hyperfine state of the electronic ground state and the different pairs
of initial states are labelled with the notation |mf1 ;mf2⟩. When starting from pure states
|mf1 ;mf2 = mf1⟩, loss spectroscopy is performed on a uniform planar gas while the measure-
ment is done in small patches array for mixtures. The polarisation of the microwave field
which drives a given atom pair to dimer transition is labelled P. We send microwave pulses
during a fixed time δt for a given Zeeman level. Their amplitude in the polarisation P is
given by BP

ω . The orientation of the external magnetic is perpendicular to the plane for all
levels but N= 4, for which we rotate it into the plane to obtain a larger coupling strength.
Two different antennas and microwave sources are used in this work and for each transition
we chose the one giving the largest excitation strength Ω/Ω0. The two last columns give the
measured average depletion δna/na and full width at half maximum Γ.

cloud shape, the polarisation of the transition P and the corresponding mw field amplitude
BP

ω = |BωεP |. The matrix elements ℏΩ = ⟨final| Ŵ |initail⟩, extracted from our model, do
not give a complete information on the overlap between the bound and free states. Indeed,
we consider only the angular part of the wave functions and do not have any information on
their radial part. We give however the relative elements Ω/Ω0, normalized with respect to
the coupling Ω0 of the strongest line: M1. Finally, we give the duration of the excitation t
and the typical measured depletion and line width.

A.4 Data set

We measured the fifteen sub-levels of the Zeeman diagram of the least-bound state n = −1
of the multiplicity {f = 1; f = 2} over ∼ 2G. We give in Tab. A.4 the initial state and
the measured position of the dimers from the energy of a free pair in |f = 1; f = 2⟩ at
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zero-magnetic field. We also give for each experimental point the distance between the dimer
energy measured and the dimer energy predicted by our simple model using our best fit to
the data.

N Initial state B = 0.75 G B = 1 G B = 1.25 G B = 1.5 G B = 1.75 G

12 |+ 1;+1⟩ -24.462 -24.587 -24.118 -23.947 -23.778
-2 1 -2 -7 -10

7 |+ 1;+1⟩ -25.616 -25.553 -25.516 -25.485 -25.468
-3 0 -2 2 -1

13 |+ 1; 0⟩ -24.380 -23.790 -23.146
2 5 8

4 |+ 1;+1⟩ -26.214 -26.354 -26.505 -26.664 -26.827
1 1 0 4 3

11 |0; 0⟩ -24.595 -24.431 -24.267 -24.097 -23.928
1 3 -1 3 2

15 | − 1;+1⟩ -23.640 -22.642 -21.624
-5 -3 -12

3 | − 1;+1⟩ -26.712 -27.356 -28.027
-0 4 5

9 |0; 0⟩ -24.985 -24.985 -24.985 -24.985 -24.985
0 0 0 0 0

14 | − 1;+1⟩ -24.338 -23.694 -23.020
-1 -5 -3

1 | − 1;+1⟩ -27.097 -28.068 -29.078
0 0 11

5 |0; 0⟩ -25.698 -25.876 -26.049 -26.223 -26.394
0 -2 1 -2 2

10 | − 1;−1⟩ -24.822 -24.685 -24.538 -24.381 -24.221
-1 -2 -2 -4 -4

2 | − 1; 0⟩ -26.926 -27.569 -28.235
-5 -3 -6

8 | − 1;−1⟩ -25.180 -25.208 -25.225 -25.240 -25.251
-1 -2 0 -1 -1

6 | − 1;−1⟩ -25.511 -25.686 -25.856 -26.031 -26.202
3 2 3 1 3

Table A.4: Zeeman diagram measurement. The atomic sample is prepared in the hyperfine
level f = 1 manifold. The initial state from which we performed photoassociation can be
either a pure state or a binary mixture of the f = 1 sub-levels and is given for each bound
level, labelled N from the lowest energy. We write it as |mf1 ,mf2⟩ ≡ |f1 = 1,mf1 ; f2 = 1,mf2⟩
for convenience. We give the position of the dimers in MHz with respect with the free pair
|f1 = 1; f2 = 2⟩ at zero-magnetic field (first sub-row) and its deviation in kHz from the fit
(second sub-row). All errorbars are estimated at 1 kHz.





B
Linear response to a periodic potential

In the second part of this manuscript, we imposed a breaking of translational invariance in
our atomic sample by imprinting a periodic potential of period λ:

V (y) = V0 cos

(
2π

λ
y

)
. (B.1)

We calibrate the potential depth V0 using the response from the atomic density profile to
lattices with large periods and small depths. We relate the density perturbation to the po-
tential depth using linear response theory, see Ref. [87].

For a system of N particles with coordinates ri, the perturbation to the many-body Hamil-
tonian write:

W =

N∑

i=1

V0 cos(kyi) (B.2)

=
V0
2

[
N∑

i=1

exp[−ikyi] + c.c.

]
(B.3)

=
V0
2

[
ρk + ρ†k

]
(B.4)

where k = 2π/λ ey is the wave vector or the lattice potential and ρk is the Fourier component
of the density operator

ρk =

N∑

i=1

exp[−ik · ri]. (B.5)

In the context of linear response theory, this Hamiltonian corresponds to a perturbation
G = ρk of strength λ = −V0/2, where we used the notations of [87] (Eq. (7.1)). The perturbed
density profile is expected to be of the form

n(x, y) = n0 + n1 cos(ky), (B.6)

and our goal is the relate the contrast n1/n0 with V0.
Linear theory gives us access to the δ⟨ρk⟩, so that it is natural to consider

⟨cos(ky)⟩ = ⟨ 1
N

N∑

i=1

cos(kyi)⟩ =
1

2N

(
δ⟨ρk⟩+ δ⟨ρ†k⟩

)
. (B.7)
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On the one hand we have:

⟨cos(ky)⟩ =
∫ L
0 cos(ky)n(x, y) dy
∫ L
0 n(x, y) dy

=
n1
2n0

, (B.8)

where L is the size of the system and is a multiple of the period λ.

On the other hand, δ⟨ρk⟩ is the fluctuation of the system induced by the periodic perturbation
and is determined by the dynamic polarizability χ defined in [87] (Eq. (7.2)) as:

δ⟨ρ†k⟩ = λχ
ρ†k,ρk

(0) + λ∗χ
ρ†k,ρ

†
k
(0), (B.9)

where we recall that λ = −V0/2. Using this definition we find

⟨cos(ky)⟩ = − V0
4N

[
χρk,ρk(0) + χ

ρk,ρ
†
k
(0) + χ

ρ†k,ρk
(0) + χ

ρ†k,ρ
†
k
(0)
]

(B.10)

= − V0
4N

[
χ
ρ†k
(0) + χρk(0)

]
, (B.11)

where we used the relation χρk,ρk(0) = χ
ρ†k,ρ

†
k
(0) = 0 given in [87] (Eq. (7.3)) and the notation

χF ≡ χF †,F .

The linear density response function has been studied in the context of the weakly-interacting
gas of bosons and in this case, one can show that (see Eqs. (7.24) and (7.90) of Ref. [87]):

χ
ρ†k
(0) = χρk(0) =

Nℏ2k2

mε2(k)
(B.12)

where ε(k) is the Bogoliubov excitation spectrum, suitable for zero-temperature gases:

ε2(k) =
ℏ2k2

2m

(
ℏ2k2

2m
+ 2gn0

)
. (B.13)

Finally, using our previous result Eq. (B.8), we find that in the perturbative regime the
contrast of the density profile in the presence of a periodic potential writes

n1
n0

= − V0
ℏ2k2
4m + gn0

. (B.14)
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Y. -Q. Zou, B. Bakkali-Hassani, C. Maury, É. Le Cerf, S. Nascimbene, J. Dalibard and
J. Beugnon, Physical Review Letters 125, 233604, (December 2020).

− Tan’s two-body contact across the superfluid transition of a planar Bose gas, Y.-Q. Zou,
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Strongly Interacting 1D Superfluid to a Mott Insulator”; Phys. Rev. Lett. 92, p. 130403
(2004). Cited on page 8

[33] I. B. Spielman, W. D. Phillips & J. V. Porto; “Mott-Insulator Transition in a Two-
Dimensional Atomic Bose Gas”; Phys. Rev. Lett. 98, p. 080404 (2007). Cited on page 8
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[70] R. Saint-Jalm, P. Castilho, É. L. Cerf, B. Bakkali-Hassani, J.-L. Ville,
S. Nascimbene, J. Beugnon & J. Dalibard; “Dynamical Symmetry and Breathers
in a Two-Dimensional Bose Gas”; Physical Review X 9 (2019). Cited on page 21

[71] C.-A. Chen & C.-L. Hung; “Observation of Universal Quench Dynamics and Townes
Soliton Formation from Modulational Instability in Two-Dimensional Bose Gases”;
Phys. Rev. Lett. 125, p. 250401 (2020). Cited on page 21

[72] C.-A. Chen & C.-L. Hung; “Observation of Scale Invariance in Two-Dimensional
Matter-Wave Townes Solitons”; Phys. Rev. Lett. 127, p. 023604 (2021).

Cited on page 21

[73] B. Bakkali-Hassani; Testing scale invariance in a two-dimensional Bose gas : prepa-
ration and characterization of solitary waves; Theses; Sorbonne Université (2021);
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