
HAL Id: tel-04081771
https://hal.science/tel-04081771

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COFFEE: A FRAMEWORK SUPPORTING
EXPRESSIVE VARIABILITY MODELING AND

FLEXIBLE AUTOMATED ANALYSIS
Angela Villota

To cite this version:
Angela Villota. COFFEE: A FRAMEWORK SUPPORTING EXPRESSIVE VARIABILITY MOD-
ELING AND FLEXIBLE AUTOMATED ANALYSIS. Computer Science [cs]. Paris 1, 2022. English.
�NNT : �. �tel-04081771�

https://hal.science/tel-04081771
https://hal.archives-ouvertes.fr

COFFEE: A FRAMEWORK SUPPORTING EXPRESSIVE VARIABILITY
MODELING AND FLEXIBLE AUTOMATED ANALYSIS

ÁNGELA VILLOTA GÓMEZ

A Thesis Submitted for the Degree of Doctor of Philosophy in Computer Science

Centre de Recherche en Informatique

Université Paris 1 - Panthéon Sorbonne

Defended the 18th January, 2022

Members of the jury

Nicole LEVY Laboratoire CEDRIC, CNAM President

Camille SALINESI Paris 1 Panthéon-Sorbonne University Advisor

Raul MAZO ENSTA Bretagne Co-Advisor

David BENAVIDES University of Sevilla Reviewer

Roberto LOPEZ-HERREJÓN University of Montreal Reviewer

Don BATORY The University of Texas at Austin Examiner

Daniel DIAZ Paris 1 Panthéon-Sorbonne University Examiner

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I
have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Ángela Villota Gómez
18th January, 2022

ii

In the loving memory of my abuelo Guillermo,
I was that curious, and stubborn tomboy because you were my accomplice.

You planted the seed, so I grew up to be the woman I become, I love you 3000.

“A los que buscan
aunque no encuentren.

A los que avanzan
aunque se pierdan.

A los que viven
aunque mueran.”

Mario Benedetti

iii

Abstract

Keywords: variability modeling, variability analysis, variability management, modeling languages,
variability-intensive systems.

Modeling variability and automated analysis of variability models are tasks that come to-
gether. Nowadays, it is unrealistic to think about modeling variability without automated

support for detecting model’s anomalies and guide the configuration and derivation of products.
The introduction of the FODA [KCH+90] language in the early 90’s, marked the beginning of a
fruitful development of languages, methods, and tools to describe the common and variable charac-
teristics on families of systems. Also, the industrial application of variability modeling techniques
on different types of variability-intensive systems came along with the automation of the analysis
strategies. The size of the models, i.e., the number of variable items and constraints, makes the
configuration and the anomalies detection unfeasible tasks for humans. Consequently, there is
a universe of languages, notations, transformations, algorithms, and tools supporting modeling
and analysis tasks. Regretfully, this diversity brings issues and challenges in porting or sharing
variability models among tools because of the lack of standards to represent variability. This diversity
is even present among tools supporting variations of the same modeling language, as in feature-
based notations, where the differences impact the expressiveness and the automation of analysis tasks.

At some point, during the exploration phase of the Ph.D., I wondered why the community that con-
tinually invests its efforts on providing methods, techniques, and tools for managing variability had
somehow overlooked the reuse and variability management in their own proposals and contributions.
It seems that the engineering of tools supporting variability modeling and analysis overlooks the reuse
management and variability managing techniques. Tool engineers are continually re-implementing
the transformations and analyses as they use specific representations, transformation rules, and
technologies.

This thesis offers a variability management view to the tasks concerning variability modeling
and analysis from the point of view of the Programming Languages Engineering. The Co�ee

Framework is a constraint-based framework that supports variability modeling and analysis about
variability models, two of the main tasks in the management of variability-intensive systems. This
thesis addresses the interoperability between variability management tools, the diversity among
variability modeling languages, and the strong dependencies in the automated analysis of variability
models. To solve these problems using intermediate representations, encodings, and transformations,
this thesis presents two original contributions. First, this thesis defines, formalizes, implements,
and evaluates an expressive variability modeling language (the High-Level Variability Language).

iv

v

Second, this research includes a proposal of a three-step transformation framework to provide flexible,
multi-language, and multi-solver support for automated analysis of variability models.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Traduction française du résumé
Mots-clés: modélisation de la variabilité, analyse de la variabilité, gestion de la variabilité, langages
de modélisation, systèmes à forte variabilité.

La modélisation de la variabilité et l’analyse automatisée des modèles de variabilité sont des
tâches qui vont de pair. De nos jours, il est irréaliste de penser à modéliser la variabilité sans un

support automatisé pour détecter les anomalies du modèle et guider la configuration et la dérivation
des produits. L’introduction du langage FODA [KCH+90] au début des années 90 a marqué le début
d’un développement fructueux de langages, de méthodes et d’outils pour décrire les caractéristiques
communes et variables des familles de systèmes. De même, l’application industrielle des techniques
de modélisation de la variabilité sur différents types de systèmes à forte variabilité s’est accompagnée
de l’automatisation des stratégies d’analyse. La taille des modèles, c’est-à-dire le nombre d’éléments
variables et de contraintes, rend la configuration et la détection des anomalies des tâches irréalisables
pour les humains. Par conséquent, il existe un univers de langages, de notations, de transformations,
d’algorithmes et d’outils supportant les tâches de modélisation et d’analyse. Malheureusement, cette
diversité entraîne des problèmes et des défis dans le portage ou le partage des modèles de variabilité
entre les outils en raison du manque de normes pour représenter la variabilité. Cette diversité est
même présente parmi les outils supportant des variations du même langage de modélisation, comme
dans les notations basées sur les caractéristiques, où les différences ont un impact sur l’expressivité
et l’automatisation des tâches d’analyse.
À un moment donné, pendant la phase d’exploration du doctorat, je me suis demandé pourquoi
la communauté qui investit continuellement ses efforts pour fournir des méthodes, des techniques
et des outils de gestion de la variabilité avait en quelque sorte négligé la réutilisation et la gestion
de la variabilité dans ses propres propositions et contributions. Il semble que l’ingénierie des outils
supportant la modélisation et l’analyse de la variabilité néglige la gestion de la réutilisation et les
techniques de gestion de la variabilité. Les ingénieurs d’outils réimplémentent continuellement les
transformations et les analyses lorsqu’ils utilisent des représentations, des règles de transformation
et des technologies spécifiques.
Cette thèse propose une vision de la gestion de la variabilité pour les tâches concernant la modélisation
et l’analyse de la variabilité. Co�ee est un cadre basé sur les contraintes qui supporte la modélisation
de la variabilité et l’analyse des modèles de variabilité, deux des principales tâches de la gestion des
systèmes à forte variabilité. Cette thèse aborde l’interopérabilité entre les outils de gestion de la
variabilité, la diversité entre les langages de modélisation de la variabilité et les fortes dépendances
dans l’analyse automatisée des modèles de variabilité. Pour résoudre ces problèmes en utilisant des
langages intermédiaires, cette thèse présente deux contributions originales. Premièrement, cette
thèse définit, formalise, implémente et évalue un langage de modélisation de variabilité expressif (le
High-Level Variability Language). Deuxièmement, cette recherche inclut une proposition d’un cadre
de transformation en trois étapes pour fournir un support flexible, multi-langage et multi-solveur

vi

vii

pour l’analyse automatisée des modèles de variabilité.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Acknowledgments

Nine months before starting the PhD, I had the chance to stumble with a Philip H. Knight’s quote
that reads:

There comes a time in every life when the past recedes and the future opens. It’s that moment when
you turn to face the unknown. Some will turn back to what they already know. Some will walk
straight ahead into uncertainty. I can’t tell you which one is right. But I can tell you which one is
more fun.

This quote well summarizes my journey, I’ve been facing the unknown in every sense, and I had a
hell of fun!!

I want to thank my supervisor and co-supervisor Professors Camille Salinesi and Raúl Mazo. Camille
thanks for your total support and confidence, for your caring and life advice, your insights, your
always helpful remarks, and especially for teaching me the research path and its endeavors. Raúl
thanks for your warm welcome to the lab, your teachings, your valuable insights about this project,
and your friendship.

I want to thank the committee members, professors Nicole Levy, Daniel Diaz, David Benavides, Don
Batory, and Roberto Erick Lopez-Herrejón for dedicating their invaluable time to evaluate my work.
To the reviewers of this dissertation, David Benavides and Roberto Lopez-Herrejón, I appreciate
your time in reviewing my dissertation and providing valuable feedback. Your helpful and insightful
feedback will help me grow as a professional and researcher.

I would also like to thank the financial supporters of my PhD studies: Colfuturo, Universidad
Icesi, and the Centre de RecheRche en Informatique (CRI) - University of Paris 1. Many thanks to
my friends and colleagues at Universidad Icesi their encouragement, and continuous support were
indispensable for the whole process.

I would like to thank to my colleagues and administrative staff at the CRI, professors Daniel Diaz,
Benedicte Le Grande, Rebecca DeKenere, Jaques Robin, and all des amies du labo! (the lab’s
friends) Asmaa, Ali, David, Fabrice, Danny, Juan Carlos, Elena E., Elena K, Housseim, Sabrine,
and Stephane. It was a pleasure to share with you.

To the friends I made in the research path, Don Batory, David Benavides, and Jose Galindo, thanks
for your kind disposition, for always being there to answer my questions, and for all the talks and
ideas.

To my family and friends, thank you for your support and confidence. Thanks to Lolo, Andresito,
Fabio, and Juan Manuel for being there, for all the readings and talks, for listening and discussing

viii

ix

all my ideas and thoughts. Thanks to Jaime Chavarriaga for his generous guide and actively
collaborating in my research. Special thanks to Luisa Rincón. I am aware of how fortunate I’ve been
to find such a friend and partner in crime like her. I am very grateful for her presence in my life,
and mere thanks are not enough. To Luisa, here’s my promise to keep searching for new adventures
together in the years to come.

To my beloved children, Juan Martín and Julieta, thank you for your support and patience, for all
the times your beautiful smiles gave me comfort, strength, and courage. Thank you, my dears, for
all the nights your cuddles gave me peace and rest.

And last but not least, thanks to my husband Gerardo M. Sarria M. for walking along with me,
holding my hand. Gracias Mau por ser la balandra de mis sueños, la gaveta donde guardo todos mis
pensamientos, el cofre donde se esconde mi sonrisa, en donde moran mis ansias y mis recuerdos.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Contents

List of Figures xiv
List of Tables xvi

I Motivation and context 2

1 Introduction 3
1.1 Context 3
1.2 Problem statement and scope 5

1.2.1 Variability Modeling 6
1.2.2 Variability Analysis 9
1.2.3 Research Objective and Research Questions 11

1.3 Research method 13
1.3.1 Design Science Research 13
1.3.2 Research Phases 14

1.4 Summary of contributions 18
1.4.1 Publications 19
1.4.2 Tools 19

1.5 Road Map of the Dissertation 20
1.6 Summary 21

2 State of Research 22
2.1 Motivation 22
2.2 Research Method 23

2.2.1 Research Questions and Scope 24
2.2.2 Conduct Search for Primary Studies 25
2.2.3 Screening Papers - Inclusion/Exclusion Criteria 26
2.2.4 Data Extraction and Mapping Study Process 26
2.2.5 Threats to Validity 27

2.3 Classification Framework 28
2.3.1 Modeling-centered Facets 28
2.3.2 Transformation-centered Facets 32
2.3.3 Support-centered Facets 34

2.4 Classification and Mapping 37
2.4.1 What variability concepts are modeled as constraints? 38
2.4.2 What types of constraint systems are used to encode variability models for analysis purposes? 39

x

xi Contents

2.4.3 What are the characteristics of the solvers supporting variability management? 43
2.4.4 What are the characteristics of the variability-management tools? 47

2.5 Lessons Learned 49
2.5.1 Variability Modeling 49
2.5.2 Transforming Variability Models into Constraint Programs 49
2.5.3 Solvers Supporting Variability Management 50
2.5.4 Software tools supporting constraints in SPLE 50

2.6 Concluding Remarks 54

II Studies and Results 55

3 From the Evaluation of the HLCL Framework Towards Co�ee 56
3.1 Motivation and Challenges 56

3.1.1 Running Example 58
3.2 Ontological Expressiveness Theory 59
3.3 A Foundational Ontology for Variability 60
3.4 Design of the Evaluation 62

3.4.1 Goal and Research Questions 62
3.4.2 Hypothesis 63
3.4.3 Threats to validity 63

3.5 Conduction 64
3.5.1 Representation mapping 64
3.5.2 Interpretation mapping 68
3.5.3 Measuring the potential ontological deficiencies 68
3.5.4 Results 69

3.6 Lessons Learned 71
3.6.1 Clarity vs Abstraction 71
3.6.2 Ontological (in)Completeness 71
3.6.3 What About Time for Variability Modeling? 71
3.6.4 The Theoretical Evaluation Framework 72

3.7 Summary of the Practical Evaluation 72
3.8 Towards the Co�ee framework 74

3.8.1 Co�ee’s Overview 75
3.8.2 The Variability Space 75
3.8.3 The Transition Step 76
3.8.4 The Constraints Space 76

3.9 Summary 77

4 Variability Modeling and Variability Analysis in Co�ee 78
4.1 Motivation and Challenges 78

4.1.1 Variability Modeling Concerns 78

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Contents xii

4.1.2 Variability Analysis Concerns 81
4.1.3 Examples in this Chapter 81

4.2 An Introduction to HLVL 82
4.2.1 Models in HLVL 82
4.2.2 Options, Domains, and Variants 83
4.2.3 Variability Relations 85
4.2.4 What about other variability Languages? 89

4.3 Formal Syntax 93
4.3.1 Rules for Models 93
4.3.2 Rules for Options and Domains 94
4.3.3 Rules for Variability Relations 95
4.3.4 Expressions Language 97
4.3.5 Well-Formedness Rules 97

4.4 Formal Semantics 99
4.4.1 The HLVL(x) Sublanguages 99
4.4.2 Operational Semantics 102

4.5 Summary 109
4.5.1 The High-Level Variability Language 109
4.5.2 Logical representation for variability models in HLVL 110

III Results Analysis, Discussion, and Outlook 112

5 Evaluation, Discussion, and Outlook 113
5.1 Ontological Analysis of the Expressiveness of HLVL 113

5.1.1 Design of the Evaluation 113
5.1.2 Conduction 115
5.1.3 Results and Answering the Evaluation Questions 120

5.2 Flexibility in the Co�ee’s Transformation Framework 122
5.2.1 The Encoding Layer 123
5.2.2 The Intermediate Representation Layer 124
5.2.3 The Analysis Layer 124
5.2.4 Workflow: from Modeling to Analysis 125
5.2.5 Evaluation 126

5.3 Co�ee Under Different Eyes 127
5.3.1 Comparison of HLVL and other textual languages 128
5.3.2 Applicability and Usefulness of Co�ee 129

5.4 Summary 132

6 Concluding Remarks and future Work 133
6.1 A Summary of the Dissertation 133
6.2 Discussion and Limitations 134

Coffee

xiii Contents

6.2.1 About the Constraint-based Approaches for Variability Management 134
6.2.2 HLVL as Modeling and Intermediate Language for Variability 135
6.2.3 About HLVL’s Expressiveness 137

6.3 Future work 139
6.3.1 Extending Co�ee 139
6.3.2 Extending HLVL to Reach Ontological Completeness 140
6.3.3 Research perspectives 140

Appendices 142

IV Appendix 142

A Systematic Mapping Study: Protocol and Artifacts 143
A.1 Search Terms 143
A.2 List of selected venues for manual search 143
A.3 Data Extraction Instruments 144

A.3.1 Data Extraction Process 144
A.3.2 Data Extraction Questionnaire 144

A.4 Bibliometric Information 145
A.4.1 Bibliographic questions 145
A.4.2 Results relevant authors and fora 145
A.4.3 Results for types of research and evaluation 147

References 151

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Figures

1 Illustration d’un exemple de modèles de variabilité de partage des conflits xxiii
2 Cadre de transformation en deux étapes soutenant l’analyse de la variabilité. Adapté de [GBT+18]. xxv
3 Design Science Research Cycles from [Hev07] xxx

1.1 Illustration of an example of the conflicts sharing variability models 8
1.2 Two-step transformation framework supporting variability analysis. Adapted from [GBT+18]. 10
1.3 Design Science Research Cycles from [Hev07] 13

2.1 Systematic mapping study process [PVK15] 23
2.2 Distribution of the usage of solver-provided domains. 43
2.3 Distribution of the number of solvers reported by the primary studies. 43
2.4 Results of the classification regarding the solving paradigm. 44
2.5 Solvers used to support variability management and the number of publications citing them. 45

3.1 Defects in a conceptual modeling languages, taken from [WW93]. 60
3.2 A CCP Store Accessed by four agents 65
3.3 The HLCL framework. 73
3.4 Overview of the Co�ee Framework 75

4.1 Variability models using different languages. 79
4.2 Summary of the running example from Chapter 3 82
4.3 Defining a set of features as choices in HLVL 84
4.4 Attributes in HLVL 85
4.5 Examples of inclusion/exclusion relations in HLVL 87
4.6 Elements and variants in HLVL 87
4.7 Examples of hierarchy one-to-one relations with [0, 1] and [1, 1] multiplicities 88
4.8 Examples of hierarchy one-to-one relations to link options and attributes 88
4.9 Examples of hierarchy one-to-one relations to declare multiplicities with local semantics 88
4.10 Example of hierarchies one-to-many groups in HLVL 89
4.11 Declaring visibility relations in HLVL 89
4.12 Orthogonal Variability Model (OVM) for the RFW product line. Adapted from [RFBRC+12] 90
4.13 Representing variation points and variants with choices and enumerations in HLVL 90
4.14 Defining mandatory variation points in HLVL 91
4.15 Modeling OVM links in HLVL 91
4.16 Constraint expressions in HLVL 91
4.17 Dopler Model for the Dopler tool-suite taken from [MGH+11] 92

xiv

xv List of Figures

4.18 Constraint expressions in HLVL 92
4.19 Constraint expressions in HLVL 93
4.20 HLVL(x) Sublanguages 101
4.21 Variability models using different languages. 102
4.22 Example, extract of the parking assistant system (PAS) in HLVL 105

5.1 Co�ee Framework - Conceptual model 122
5.2 Structure of the encoding layer. 123
5.3 Structure of the intermediate representation layer. 124
5.4 Structure of the analysis layer. 125
5.5 Co�ee Framework - Workflow 126

A.1 Data extraction process 144
A.2 Distribution of documents retrieved per source. 146
A.3 Amount of publications per type of venue. 146
A.4 Relevant authors in the research area. 148
A.5 Most cited papers. 149
A.6 Distribution of the publications per type of research. 149
A.7 Distributions of documents per level of evidence. 149
A.8 Research type and evaluation level regarding the type of system. 150

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables

1 Résumé des outils xxxvi

1.1 Summary of implemented tools 19

2.1 Classification scheme with multiple facets and their associated categories. 29
2.2 List of publications proposing or extending transformation rules. 33
2.3 Classification of publications regarding the modeling paradigm. 38
2.4 Results of the classification regarding the SPLE constraints. 40
2.5 Transformation rules and supported concepts. 41
2.6 Solvers used to support variability management. 45
2.7 Constraint-based variability management tools. 47
2.8 A global overview of tools supporting variability management. 52

3.1 HLCL specification for the Parking Assistant System 59
3.2 Summary of the Ontology [AGWH12] 61
3.3 Measures of potential ontological deficiencies [RRIG09] 62
3.4 Hypotheses 63
3.5 Core constructs of the High-Level Constraint Language. 64
3.6 Representation mapping between ontological constructs and HLCL constructs. 66
3.7 Examples of valid products in the Movement Control System (PAS) product line. 67
3.8 Constraints mapping variability patterns. 67
3.9 Interpretation mapping between ontological constructs and HLCL constructs. 68

4.1 Formal syntax of HLVL in EBNF 94
4.2 Mapping between support levels and tool’s contexts. 107
4.3 Expressiveness Levels in the HLVL(x) sublanguages. In the table, • represents total support, partial

support, and ? conditional support. 110

5.1 Research questions for the ontological analysis of the HLVL. 114
5.2 Hypotheses 115
5.3 Representation mapping between the structural elements in the foundational ontology and HLVL

constructs. 116
5.4 Representation mapping between the variability patterns in the foundational ontology and HLVL

constructs. 118
5.5 Interpretation mapping between ontological constructs and HLVL constructs. In the table, • represents

a mapping, partial mapping. 119

xvi

xvii List of Tables

5.6 Metrics to measure the ontological defects in HLVL. 121
5.7 Repositories 127
5.8 Comparison of the main capabilities of textual variability modeling languages 128
5.9 Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL. 129
5.9 Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL. 130
5.9 Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL. 131
5.9 Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL. 132

A.1 Search terms 143
A.2 Selected venues 143
A.3 Most frequent venues 147
A.4 Summary of the evaluation categories 150

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Introduction en Français

Une fois que vous avez appris la variabilité, vous la voyez partout.

Ce chapitre fournit au lecteur un aperçu de la recherche présentée dans cette thèse. Pour commencer, le
chapitre présente le contexte et délimite la portée de cette recherche et l’énoncé du problème. Les sections
suivantes décrivent les détails de la recherche avec les questions de recherche, les objectifs de recherche et la
méthodologie. Finalement, le chapitre se termine par un résumé des contributions et de la feuille de route de
cette thèse.

Contexte
Les principes de la réutilisation des logiciels apparaissent dès les premières années du génie logiciel et sont en
constante évolution. Par exemple, le concept de familles de programmes de David Parnas date de 1976 [Par76].
Dans ses travaux, Parnas envisageait déjà une philosophie de réutilisation lorsqu’il a décrit un processus de
développement d’un ensemble de programmes en identifiant leurs caractéristiques communes et les conférant
des propriétés individuelles. L’idée principale de la réutilisation est de prendre un élément tel qu’il est, sans le
retraiter. Ainsi, les avantages de la réutilisation sont d’économiser du temps, de l’argent et des ressources. Ces
avantages sont la raison pour laquelle la réutilisation est une alternative pour répondre à la demande croissante
de systèmes logiciels complexes préservant la qualité et développés dans des délais de mise sur le marché plus
courts.

Cependant, pour répondre à ces attentes, la réutilisation doivent être planifiées et axées sur la stratégie. Cette
prise de conscience a propulsé l’essor des approches d’analyse de domaine pour l’identification systématique des
caractéristiques communes dans les systèmes connexes. Le rapport de Kyo Kang, Feature Oriented Domain
Analysis (FODA), constitue une étape importante dans l’analyse de domaine et la réutilisation systématique
[KCH+90]. Dans ce rapport ont été étudiées les approches précédentes afin de définir une méthode et des
outils pour aider les praticiens de l’analyse de domaine. Cependant, la contribution la plus importante du
rapport de Kang est l’introduction des modèles de caractéristiques comme langage graphique pour décrire les
caractéristiques et les fonctionnalités communes et variables dans une collection de systèmes logiciels apparentés.

Ce qui a commencé comme une bonne pratique, puis une méthode, est devenu un paradigme pour développer
des systèmes logiciels. Le début des années 2000 a vu la consolidation des stratégies de réutilisation systématique
dans l’Ingénierie des Lignes de Produits logiciels (SPLE par le sigle en anglais). Le SPLE est le paradigme
permettant de produire des systèmes logiciels à grande échelle en utilisant une base technique commune et, en
même temps, en répondant aux besoins individuels des clients.

xviii

xix List of Tables

Au cours des 20 dernières années, l’Ingénierie des Lignes de Produits Logiciel a suscité un intérêt considérable
de la part de la communauté des chercheurs. Plusieurs publications font état de réalisations importantes
et de l’expérience acquise lors de l’introduction de lignes de produits logiciels dans l’industrie du logiciel
[MP14]. De nombreuses expériences réussies de l’application des principes de l’Ingénierie des Lignes de Produits
Logiciels dans des contextes industriels sont répertoriées dans le “Product Line Hall of Fame” 1. Des exemples
de cas industriels réussis sont, par exemple, le cas de Boeing [Sha98, DS00], Hewlett-Packard [TCO00], et
Lucent Technologies [ADD+00], entre autres. Selon Clements et Northrop [CN01], ces entreprises ont fait état
d’avantages importants, par exemple, elles ont constaté des gains allant jusqu’à décupler la productivité et
la qualité, une réduction des coûts allant jusqu’à 60 %, une diminution des besoins en main-d’œuvre allant
jusqu’à 87 % et une réduction du délai de mise sur le marché (nouvelles variantes) allant jusqu’à 98 %. Plus les
systèmes sont intensifs en logiciels, plus ils peuvent bénéficier de la stratégie SPLE.

La l’Ingénierie des Lignes de Produits Logiciel consiste à concevoir simultanément un ensemble de produits
ou de services logiciels appelés lignes de produits. Une ligne de produits est une collection de produits similaires
partageant des caractéristiques communes et répondant aux exigences d’une mission ou d’un segment de marché
particulier. Les produits d’une ligne de produits logiciels sont assemblés à partir d’un ensemble commun d’actifs
de base d’une manière prescrite [CN01]. Le concept de variabilité est au cœur de La SPLE car l’identification
des points communs et de la variabilité est un prérequis majeur pour l’ingénierie des lignes de produits logiciels.

Definition 1 Variabilité est la capacité d’un système, d’un actif ou d’un environnement de développement à
supporter la production d’un ensemble d’artefacts qui diffèrent les uns des autres de manière planifiée [BC05].

Cette définition est fréquemment associée à la variabilité logicielle. La variabilité logicielle permet de spécifier
des artefacts logiciels qui ne sont pas entièrement définis au moment de la conception. Alors, la variabilité
logicielle peut être interprétée comme un changement planifié ou anticipé [GWT+14]. La variabilité logicielle
est légèrement différente de la variabilité de la ligne de produit.

Definition 2 Variabilité de la ligne de produits décrit les variations entre les systèmes d’une ligne de produits.
Ces variations peuvent se manifester en termes de fonctionnalités, de propriétés et d’exigences de qualité
[MPH+07].

La variabilité du logiciel et la variabilité de la ligne de produit sont gérées différemment. La variabilité logicielle
peut être documentée sur les artefacts logiciels, les modèles et est prise en charge par la plupart des langages de
modélisation et de programmation. Par exemple, pensez aux superclasses abstraites, aux interfaces facilitant
différentes implémentations ou à la compilation conditionnelle (par exemple, à l’aide de #ifdefs) [MP14]. D’autre
part, la définition de ce qui varie et de ce comment il varie au niveau de la ligne de produit nécessite des
décisions explicites de la part de la direction du produit et des autres parties prenantes. L’ensemble des activités
et des tâches nécessaires pour soutenir la spécification et la réalisation de la variabilité de la ligne de produits
est appelé gestion de la variabilité.

Definition 3 Gestion de la variabilité est l’ensemble des activités et des tâches permettant de définir et
d’exploiter la variabilité tout au long du cycle de vie d’une ligne de produits logiciels [PBvdL05].

1Disponible sur https://splc.net/fame.html

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://splc.net/fame.html

List of Tables xx

La gestion de la variabilité couvre les processus et les outils de modélisation, d’exploitation, de mise en
œuvre et d’évolution de la variabilité. La modélisation de la variabilité permet et soutient la communication,
la discussion, la gestion et l’analyse de la variabilité des lignes de produits. La modélisation de la variabilité
consiste en la définition d’un modèle de variabilité. Les modèles de variabilité représentent explicitement les
caractéristiques et fonctionnalités communes et variables des produits d’une ligne de produits. Ces modèles
sont créés à l’aide de langages de variabilité. La recherche sur la modélisation de la variabilité comprend la
proposition de plusieurs langages et outils de modélisation qui ont été proposés dans le milieu universitaire
et l’industrie [BSL+13]. Le modèles de caractéristiques de Kang et ses notations dérivées sont le langage de
variabilité le plus fréquemment utilisé. Depuis l’introduction du rapport FODA, plus de 40 dialectes différents
de modèles de caractéristiques ont été proposés [BSRC10].

La recherche présentée dans cette thèse étudie la diversité dans la modélisation de la variabilité d’un point
de vue ontologique et pratique. Du point de vue ontologique, cette thèse a étudié différents langages de
modélisation pour définir un glossaire des concepts présents dans le langage de variabilité et étudie l’application
de la théorie de l’expressivité ontologique aux langages de modélisation de la variabilité. D’un point de vue
pratique, cette thèse présente un langage de modélisation de la variabilité textuelle visant l’expressivité du point
de vue ontologique et la flexibilité pour représenter les concepts présents dans les langages de variabilité avec
différents styles de modélisation. Cette thèse fournit une implémentation du langage en utilisant Xtext [Xte] et
l’évaluation du langage en considérant la théorie de l’expressivité ontologique. L’évaluation a également pris en
compte les scénarios et les besoins définis pour un langage de modélisation de la variabilité standard [BC19].

L’exploitation et la mise en œuvre de la variabilité sont des tâches qui nécessitent la transformation et le
traitement des modèles de variabilité pour obtenir des informations. Cette transformation et ce traitement des
modèles de variabilité sont connus sous le nom d’analyse de variabilité, une tâche importante pour la gestion
de la variabilité. L’analyse de la variabilité englobe les méthodes, les outils et les techniques concernant la
configuration, la vérification, les tests et la dérivation des modèles de variabilité [BSRC10]. Les techniques
d’analyse ont fait l’objet d’études au cours des 20 dernières années. Un catalogue complet des techniques
d’analyse peut être trouvé dans des revues de littérature telles que les travaux de Benavides et al. [BSRC10] et
Galindo et al. [GBT+18].

La définition et l’implémentation du langage de modélisation dans cette thèse inclut également la formalisation
de la sémantique opérationnelle et la conception et l’implémentation du cadre supportant l’analyse de variabilité.
Il existe une relation intrinsèque entre la modélisation et l’analyse de variabilité, et un compromis bien documenté
entre l’expressivité et le support d’analyse dans les outils de gestion de la variabilité. Ainsi, cette thèse inclut
une proposition d’un cadre de transformation en trois étapes pour fournir une flexibilité concernant les règles de
transformation, et les outils de résolution. Par conséquent, le cadre développé dans cette thèse est un cadre
multi-langage et multi-solveur.

L’évolution des modèles de variabilité tient compte du fait que le développement et le déploiement de lignes de
produits logiciels ne sont pas le résultat d’un effort ponctuel, mais le résultat d’un processus d’ingénierie itératif.
Entre les itérations, les modèles de variabilité évoluent en introduisant des changements ou en étendant un des
produits, ou toute la ligne de produits. Ainsi, les approches de gestion de la variabilité incluent également le
support des tâches d’évolution, comme dans les travaux de Pleuss et al. [PBD+12], et de Montalvillo et al.

Coffee

xxi List of Tables

[MD16]. L’évolution des modèles de variabilité sort du cadre de cette thèse.

Enoncé du problème et domaine d’application
Les méthodes, techniques et outils de gestion de la variabilité ont été appliqués à des systèmes logiciels qui
ne sont pas identifiés comme des lignes de produits logiciels mais qui traitent de la variabilité. Ces systèmes
sont connus sous le nom de variability-intensive systèmes parce que la gestion de la variabilité est une activité
d’ingénierie essentielle lors du développement de ces systèmes [Ben19]. Par exemple, considérons les écosystèmes
logiciels, tels que l’écosystème Android [CN01], et les systèmes IoT auto-adaptatifs tels que, les systèmes
d’irrigation intelligents [ASS+19], entre autres.

Le support des tâches de gestion de la variabilité pour les systèmes à forte variabilité pose des nouveaux défis
dans le domaine. Cette thèse est liée aux défis concernant l’ingénierie des outils de gestion de la variabilité, en
particulier, les préoccupations liées à la modélisation et l’analyse. La modélisation de la variabilité et l’analyse
des modèles de variabilité sont les deux faces d’une même pièce. La modélisation de la variabilité sans analyse
est inconcevable car les outils de modélisation aident le modélisateur à définir des modèles de haute qualité,
sans défaut et maintenables. Cette assistance est obtenue par l’automatisation des tâches d’analyse telles que la
détection des défauts, la correction du modèle et la configuration du produit, entre autres. Les sous-sections
suivantes présentent les défis de la modélisation et de l’analyse de la variabilité.

Modélisation de la variabilité

La modélisation de la variabilité est un sujet largement étudié. La recherche dans ce domaine comprend plusieurs
langages de modélisation de la variabilité qui ont été proposés dans le milieu universitaire et dans l’industrie
[BSL+13]. La plupart des recherches dans ce domaine se concentrent sur les langages de modélisation basés sur
les caractéristiques depuis l’introduction du FODA [KCH+90]. Cependant, d’autres approches de modélisation
existent, comme les langages basés sur les points de variation [PBvdL05], les langages basés sur les décisions
[DGR11], les langages orientés vers les objectifs [MFTR+15], et les langages basés sur les contraintes [SMDD10].
Il existe également des approches industrielles qui peuvent être utilisées pour décrire la variabilité, telles que
Kconfig [ZC], Pure::variants [psG], Gears [Kru07], et le langage de modélisation version-option de Renault
[ACF10]. Ces nombreuses propositions ont contribué à la création d’un univers de langages, de notations, de
transformations et d’outils permettant la création de modèles de variabilité.

L’absence de standards est la principale raison pour laquelle la modélisation de la variabilité repose sur plusieurs
langages et outils de modélisation spécifiques au domaine. La plupart de ces outils sont développés et enseignés
in-house, et ne sont souvent utilisés que par les quelques personnes associées à l’équipe de développement.Cette
diversité de langages et d’outils entraîne une faible portabilité des modèles et des problèmes d’interopérabilité
entre les outils d’ingénierie SPLE. L’une des mauvaises conséquences est que les outils de modélisation nécessitent
de nombreux analyseurs et transformations qui peuvent entraîner une perte d’expressivité.

Conscients de la nécessité d’un langage de variabilité standard qui capture de manière exhaustive la variabilité
dans les systèmes à forte variabilité, au moins trois initiatives ont vu le jour ces dernières années. La première
est la proposition du langage commun de variabilité (CVL) comme langage standard pour la modélisation de la

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxii

variabilité [Hau]. Cette initiative menée par Øystein Haugen, Andrzej Wasowski et Krzysztof Czarnecki est allée
jusqu’à être considérée comme une norme par l’Object Management Group (OMG). Cependant, la tentative
de définir le CVL comme un langage standard n’a pas été couronnée de succès en raison de conflits de droits
d’auteur.

Une deuxième initiative est la spécification du Variability Exchange Language (VEL) [ApsGtFIfOCSF] en
tant que langage générique pour échanger des informations sur la variabilité entre les outils de gestion de la
variabilité et les outils de développement de systèmes. La spécification du VEL est l’un des résultats du projet
SPES_XT qui réunit des partenaires industriels tels que Daimler AG, pure-systems GmbH et le Fraunhofer
Institute for Open Communication Systems FOKUS. Une version préliminaire de la spécification de VEL est
destinée à être normalisée au sein de l’Organization for the Advancement of Structured Information Standards
(OASIS)2.

La troisième initiative est plus récente. Au cours des deux dernières années, la communauté MODEVAR a été
créée autour de l’idée de définir un langage textuel standard pour représenter les modèles de caractéristiques.
Cette initiative est toujours en cours et des experts ont organisé un workshop pour discuter des questions
telles que les scénarios d’utilisation, les problèmes d’expressivité et le support d’analyse afin de parvenir à un
consensus. Il s’agit d’une communauté très active qui, à ce jour, a apporté trois contributions importantes à la
standardisation des langages de modélisation des caractéristiques (1) une collection de scénarios d’utilisation
d’un langage standard de modélisation des caractéristiques [BC19]; (2) un ensemble de niveaux de langage pour
caractériser les concepts de modélisation et l’expressivité des langages basés sur les caractéristiques [TSS19]; et
(3) une syntaxe concrète/abstraite pour un langage standard basé sur les caractéristiques proposé dans la thèse
de maîtrise de Dominic Engelhardt [Eng20] et présenté à la dernière conférence SPLC [SFE+21].

Une leçon a été tirée de ces initiatives: le développement d’un langage standard pour la variabilité est un
effort intensif car la communication de la variabilité à l’aide de modèles nécessite de prendre en compte trois
niveaux conceptuels: le paradigme de modélisation, le langage de modélisation, et le syntaxe concrète de l’outil
de modélisation.

Le paradigme de modélisation est l’approche adoptée pour créer un modèle. Tout comme les paradigmes
de programmation, les paradigmes de modélisation déterminent les principales caractéristiques des différents
langages de modélisation. Les paradigmes de modélisation de la variabilité sont, par exemple, la modélisation
basée sur les caractéristiques, la modélisation basée sur les décisions, la modélisation basée sur les objectifs
et la modélisation basée sur les contraintes, entre autres. Le paradigme de modélisation définit la sémantique
de l’unité de variabilité, la structure du modèle et le processus de configuration. Voyons ces différences entre
deux paradigmes, la modélisation basée sur les caractéristiques et la modélisation basée sur les décisions. Dans
les langages basés sur les caractéristiques, les caractéristiques sont l’unité de variabilité, elles représentent les
artefacts qui peuvent être inclus ou non dans une configuration. Les modèles de caractéristiques sont des
structures arborescentes avec une racine unique et des relations inter-arborescentes fréquemment représentées
textuellement pour une meilleure lisibilité. En revanche, les langages basés sur les décisions ont les décisions et
les actifs comme unités de variabilité. Les modèles de décision sont des modèles de type graphis. Le processus

2
https://www.oasis-open.org/

Coffee

https://www.oasis-open.org/

xxiii List of Tables

de configuration consiste à choisir parmi des options disponibles dans les décisions, à ouvrir ou à fermer d’autres
décisions au cours du processus.

Le language définit l’ensemble des concepts de modélisation, des éléments syntaxiques, de la sémantique et
des règles de bonne forme en tant qu’ensemble d’outils pour définir les modèles de variabilité. Les langages sont
associés à un paradigme de modélisation. Par exemple, le Textual Variability Language (TVL) [CBH11] est un
langage de modélisation basé sur les caractéristiques. Certains langages peuvent être considérés comme des
extensions d’autres, comme le langage de caractéristiques basé sur les attributs de FeatureIDE [TKB+14], qui
étend le langage FODA proposé par Kang [KCH+90].

La syntaxe concrète de l’outil correspond aux interprétations et à la mise en œuvre que les ingénieurs des
outils donnent aux langages de modélisation de la variabilité. Contrairement à ce que l’on pourrait croire, il
arrive que la syntaxe concrète des outils de modélisation ne soit pas exactement la même. Prenons par exemple
les outils SPLOT et VariaMos. Ces deux outils prennent en charge les modèles de base, c’est-à-dire les modèles
définis dans le rapport du FODA. Les arbres de caractéristiques de SPLOT sont des structures imbriquées
similaires aux arbres de répertoires d’un gestionnaire de fichiers, avec des contraintes textuelles entre les arbres
écrites sous forme d’expressions en CNF. En revanche, VariaMos fournit un toile de dessin pour spécifier les
arbres de caractéristiques. VariaMos représente les caractéristiques en utilisant des ellipses plutôt que des
rectangles comme dans d’autres outils. De plus, VariaMos introduit une construction graphique appelée bundle
pour représenter les parents-enfants lorsqu’il y a plus d’une caractéristique enfant.

Decisions

Features
Features REFAS

A B C D
Figure 1: Illustration d’un exemple de modèles de variabilité de partage des conflits

Les problèmes concernant la portabilité et le partage des modèles de variabilité sont une conséquence de
la variabilité à chacun des trois niveaux conceptuels de modélisation. La Figure 1 illustre un exemple de
ces problèmes. Tout d’abord, considérons l’ingénieur A et l’ingénieur C , tous deux créent un modèle de
variabilité en utilisant le même paradigme mais deux outils différents. Ils rencontrent des incompatibilités au

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxiv

niveau de la syntaxe concrète, puisque l’un dessine un arbre avec des boîtes comme nœuds, et l’autre crée une
structure arborescente imbriquée remplissant un formulaire dans un navigateur. À ce niveau, le partage n’est
pas bidirectionnel car il est possible de télécharger des modèles SPLOT dans FeatureIDE mais pas dans l’autre
sens. Les problèmes de partage à ce niveau peuvent être résolus en créant des analyseurs syntaxiques permettant
le téléchargement de modèles écrits à l’aide d’autres outils. Cependant, en l’absence d’un langage commun pour
le partage des modèles, les ingénieurs des outils doivent développer autant d’analyseurs syntaxiques qu’il existe
d’outils.

Imaginons maintenant que le téléchargement de modèles dans les deux sens soit résolu. Il reste des problèmes
pour permettre le partage de modèles entre l’ingénieur A et l’ingénieur C . Il y a toujours la possibilité que
leurs modèles ne soient pas compatibles au niveau du language. Dans l’exemple, l’ingénieur A utilise un outil
supportant les attributs et les contraintes complexes dans ses modèles. Comme l’outil utilisé par l’ingénieur
C ne supporte pas les attributs ni les contraintes complexes, il est fort probable que l’analyse syntaxique des
modèles de A vers les modèles de C entraîne une perte d’expressivité.

Dans l’exemple, les ingénieurs A et C utilisent des outils sous le même paradigme puisque tous deux créent
des modèles de fonctionnalités. Considérons maintenant le problème lorsque le partage implique des modèles
conçus sous différents paradigmes. Mettons dans l’image les ingénieurs B et D . L’ingénieur B utilise REFAS
[MFTR+15], un langage de modélisation dérivé des modèles de buts, conçu pour décrire la variabilité dans les

systèmes auto-adaptatifs. En contraste, l’ingénieur D utilise Dopler [DGR11], un langage de modélisation
basé sur la décision. Au niveau du paradigme, le problème va au-delà de l’analyse syntaxique d’une syntaxe
concrète à une autre, ou de la perte d’expressivité lors du passage d’un langage plus expressif à un langage
moins expressif. Pour permettre le partage de modèles entre les ingénieurs B et D , il doit exister un encodage
permettant de mapper les unités de variabilité dans les deux paradigmes, c’est-à-dire de transformer les goals
en decisions, et de décrire les relations et les contraintes entre ces unités de variabilité. Ainsi, au niveau du
paradigme, la complexité du problème augmente en raison du besoin de nombreux analyseurs syntaxiques et la
perte d’expressivité dans le processus d’analyse syntaxique est toujours présente, mais les combinaisons dans le
mapping entre les langages et outils compatibles explosent.

Pour résumer, la définition d’un langage de variabilité standard doit tenir compte de ce qui suit:

• La définition d’un élément variable abstrait capable de représenter des éléments variables de différents
paradigmes de modélisation.

• La définition d’une structure flexible pour supporter des modèles avec des structures différentes.

• La définition d’un ensemble expressif de relations de variabilité et d’un langage de contraintes pour éviter
la perte d’expressivité pendant l’analyse syntaxique.

Par conséquent, la conception d’un langage standard de modélisation de la variabilité doit tenir compte de la
variabilité des langages actuels de modélisation de la variabilité en ce qui concerne les trois niveaux conceptuels,
à savoir le paradigme, le langage et la syntaxe concrète. La dernière considération, mais non la moins importante,
est celle des personnes car les standards ne peuvent pas être imposés. Les langages deviennent des standards
parce que les gens les utilisent et parce que les ingénieurs d’outils incluent des fonctionnalités compatibles avec

Coffee

xxv List of Tables

les standards dans leurs outils. Il est particulièrement difficile de convaincre une communauté de passer d’une
approche à une autre, surtout lorsqu’elle dispose de cas de succès avec des lignes de produits déployés résolvant
les problèmes pour lesquels ils ont été conçus. L’adoption d’un nouveau langage de modélisation ne se fera pas
tant que la nouvelle proposition n’aura pas prouvé son efficacité à résoudre le problème de l’échange de modèles
et que les outils disponibles n’incluront pas l’exportation/importation de modèles dans une représentation
standardisée.

Analyse de la variabilité

L’analyse de variabilité englobe les méthodes, les outils et les techniques utilisés pour extraire des informations
des modèles de variabilité [BSRC10]. Les tâches d’analyse sont essentielles pour développer et maintenir les
systèmes à forte variabilité, en particulier pour préserver la qualité du modèle qui a un impact important sur la
qualité des produits d’une famille de produits. La communauté ELPS reconnaît que l’analyse de la variabilité
est une tâche irréalisable pour les humains et qu’elle a donc besoin du soutien fourni par des mécanismes et
des techniques automatisés. Dans les établissements industriels, les modèles de variabilité peuvent avoir des
centaines ou des milliers d’éléments. Lorsque le nombre d’éléments variables dans un modèle augmente, le
nombre de produits augmente de façon exponentielle. Par exemple, les gammes de véhicules produites par le
constructeur français Renault peuvent donner lieu à 1021 de possibles configurations [ACF10]. Sans analyse
automatisée, les outils de gestion de la variabilité ne sont que des applications de dessin spécialisées.

Au cours des 20 dernières années, plusieurs travaux ont contribué à doter les outils de gestion de la variabilité
de mécanismes d’analyse pour automatiser différentes tâches. Par exemple, il existe des mécanismes d’analyse
pour introduire des étapes dans le processus de configuration [WDSB09]; tester et gérer des lignes de produits
[PSK+10]; détecter des anomalies [TBD+08, SM12]; trouver les causes de ces anomalies [FBGR13]; suggérer
un ensemble de modifications pour supprimer les défauts [TBD+08]; et effectuer des opérations multimodèles
[ACLF13, GDR+15] telles que la composition de modèles par des mécanismes de melange des modeles et
d’agrégation. Benavides et al. présente un catalogue complet d’opérations d’analyse dans son étude systématique
[BSRC10] poursuivie dans l’ouvrage de Galindo et al. [GBT+18].

Le support d’outils pour les techniques de modélisation et d’analyse de la variabilité profite de l’utilisation d’un
cadre de transformation en deux étapes fréquemment signalé dans la littérature [MBC09, TKB+14, BSRC10,
GBT+18]. La Figure 2 illustre le cadre de transformation en deux étapes adapté de [GBT+18].

Analysis
result

Operation

Model
Data

Logic paradigm

1 2

Translation Solver

Figure 2: Cadre de transformation en deux étapes soutenant l’analyse de la variabilité. Adapté de [GBT+18].

Dans le premier pas décrit dans la Figure 1.2, les modèles de variabilité sont encodés dans une représentation
logique en utilisant une collection de règles de transformation spécifiques. La représentation logique consiste en
une collection de variables et une collection de relations entre ces variables représentées sous forme de formules

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxvi

logiques ou de contraintes. Dans le second pas, un solveur off-the-shelf est utilisé pour résoudre le problème de
satisfaction composé par la représentation logique et quelques contraintes supplémentaires pour produire un
résultat d’une tâche d’analyse particulière. Il n’existe pas de représentation logique unique pour les modèles
de variabilité. Les modèles de variabilité peuvent être représentés à l’aide de nombreux paradigmes logiques
différents tels que les problèmes de satisfiabilité (SAT); [Bat05, MBC09, TKB+14]; Problèmes de satisfiabilité
modulo théories (SMT) [UKB10, KAT16]; problèmes de satisfaction de contraintes (CSP) [BTRC05a]; et
programmation logique avec contraintes (CLP) [SMD+11a, KOD13].

Si les modèles de variabilité sont représentés à l’aide de différents paradigmes logiques, ce n’est pas seulement
parce que les chercheurs dans ce domaine sont continuellement à la recherche de représentations logiques
mieux adaptées aux modèles de variabilité. Cette diversité de paradigmes logiques est principalement une
conséquence du trade-off entre l’expressivité du langage de modélisation et la complexité du paradigme logique
nécessaire pour représenter ces modèles [MP14, BSRC10, EKS13, GBT+18]. En d’autres termes, les langages
plus expressifs posent des défis importants aux mécanismes d’analyse car ils nécessitent des paradigmes logiques
plus complexes. Par exemple, les formules logiques en CNF codent les modèles de caractéristiques basiques
de manière directe [MBC09]. En contraste, d’autres langages de modélisation supportant les attributs, la
cardinalité des caractéristiques et les contraintes complexes requièrent des variables numériques et des contraintes
arithmétiques et sont fréquemment encodés en tant que problèmes de satisfaction de contraintes [EKS13].

Deux situations problématiques naissent de cette diversité dans les représentations logiques. Premièrement,
l’utilisation d’un paradigme logique plus complexe pour mieux capturer le langage de modélisation peut avoir
un impact sur la performance du mécanisme d’analyse. Une représentation plus complexe d’un modèle de
variabilité (encodage) contient généralement un plus grand nombre de variables avec des domaines plus larges
et des contraintes plus complexes, c’est-à-dire des variables avec des domaines numériques et des expressions
arithmétiques et relationnelles. Deuxièmement, différentes représentations logiques nécessitent différentes règles
de transformation et donc différentes implémentations des opérations d’analyse. Ensuite, l’ingénierie des outils
s’accompagne généralement d’une mise en œuvre interne de l’ensemble de la chaîne de transformation. Par
conséquent, il existe plusieurs versions du même cadre d’analyse implémenté de différentes manières. La
réimplémentation du cadre d’analyse contribue en quelque sorte au partage et à la portabilité des outils de
gestion de la variabilité et néglige le consensus de la communauté concernant les opérations d’analyse, c’est-à-dire
qu’il existe un catalogue [BSRC10] et une formalisation [DBS+17] de la sémantique des opérations d’analyse.

Après le choix d’un paradigme logique, l’étape suivante n’est pas simple. La forte dépendance entre
l’expressivité du langage et le paradigme logique a un impact sur la sélection des technologies pour les outils
de gestion de la variabilité de l’ingénierie. De plus, cette décision doit prendre en compte un large espace de
possibilités entre les règles de transformation et les outils de résolution. Par exemple, les outils codant les
modèles en tant que formules logiques peuvent utiliser des règles issues d’un large ensemble de propositions
telles que Mannion [Man02], van Deursen [VK02], Batory [Bat05], et Mendonć a [MBC09], pour n’en citer que
quelques-unes. Parallèlement, ces outils peuvent exploiter les caractéristiques des solveurs SAT ou BDD tels
que SAT4J, Buddy, PicatSat et SPASS-SATT, entre autres. Ensuite, les questions quel ensemble de règles
de transformation et quels outils de résolution doivent être incluse dans l’implémentation de la chaîne de
transformation? sont des questions auxquelles on répond en fonction de l’expérience de l’équipe d’ingénieurs.
Par conséquent, il existe plusieurs versions du cadre en deux étapes mises en œuvre de différentes manières, car

Coffee

xxvii List of Tables

l’ingénierie des outils produit une mise en œuvre interne de l’ensemble de la chaîne de transformation.

Une leçon que j’appris en faisant partie de l’équipe d’ingénierie de la suite d’outils VariaMos [MSD12a,
MMFR+15] au Centre de Recherche en Informatique, est que la chaîne de transformation peut être réimplémentée
plusieurs fois dans un outil lorsqu’il intègre différents langages de variabilité ou différents solveurs même s’il
n’y a qu’un seul paradigme logique. Les modèles de variabilité dans VariaMos sont représentés en utilisant la
programmation logique par contraintes et peuvent être résolus avec n’importe quel solveur dérivé de Prolog.
Cependant, l’ajout d’un nouveau langage de modélisation dans VariaMos implique la définition des règles
d’encodage d’un modèle en tant que problème de contrainte en CLP. En plus, l’inclusion d’un nouveau solveur
dérivé de Prolog dans l’outil demande la définition et l’implémentation de l’analyse d’un modèle dans sa
représentation CLP en un code lisible par le solveur. Ce dernier point est dû au fait qu’il existe des différences
dans la syntaxe concrète des solveurs dérivés de Prolog.

La prise de conscience des besoins et des avantages de la définition d’une norme pour les langages de
modélisation de la variabilité a laissé de côté la diversité concernant le paradigme logique et les outils de
résolution supportant les tâches d’analyse. Cependant, des efforts supplémentaires devraient être investis pour
construire des repères concernant les règles de transformation et les outils de résolution ainsi que la construction
collaborative d’une bibliothèque standard pour les tâches d’analyse qui profite des connaissances produites par la
communauté de recherche. De plus, il est important de prendre en compte la diversité de ces préoccupations afin
de pouvoir adapter la chaîne de transformation à de nouvelles représentations logiques, règles de transformation
et outils de résolution.

Objectif et Questions de Recherche

Cette thèse aborde les problèmes concernant l’interopérabilité entre les outils de gestion de la variabilité, la
diversité des langages de modélisation de la variabilité et le couplage fort dans le cadre supportant les tâches
d’analyse. Pour contribuer à la résolution de ces problèmes du point de vue des langages intermédiaires, cette
thèse aborde l’objectif de recherche suivant.

Objectif de recherche.

Explorer l’utilisation des langages intermédiaires pour faciliter l’interopérabilité des outils de gestion de la
variabilité en concevant un cadre basé sur les contraintes supportant un langage de variabilité expressif et un
mécanisme d’analyse automatisé flexible. Pour atteindre l’objectif de recherche, les trois questions de recherche
suivantes ont été abordées.

Questions de recherche

RQ1: Comment l’utilisation d’un langage unifié de modélisation de la variabilité peut faciliter l’interopérabilité
entre les outils de gestion de la variabilité?

La recherche présentée dans cette thèse développe l’hypothèse de l’utilisation de représentations intermédiaires
comme mécanismes de découplage. Ainsi, la solution aux problèmes d’interopérabilité du point de vue de la

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxviii

modélisation de la variabilité, considère la conception et l’implémentation d’un langage expressif de modélisation
de la variabilité capable d’unifier les langages actuels et de représenter les relations de variabilité de manière
exhaustive. Ce langage peut être utilisé comme une représentation intermédiaire pour encoder les langages
de modélisation de la variabilité afin de partager et de porter les modèles entre les outils. L’expressivité est
la caractéristique la plus importante du langage proposé car il doit englober les constructions de variabilité
de différents langages et outils. En d’autres termes, les constructions du langage doivent être suffisantes pour
encoder les modèles produits dans les outils actuels, en évitant toute perte d’expressivité dans le processus
d’encodage. En outre, le langage doit fournir des constructions pour modéliser les relations de variabilité qui
sont moins courantes mais potentiellement utiles pour décrire la variabilité. La RQ1 peut être affinée dans les
sous-questions suivantes.

RQ1.1 D’un point de vue théorique, quelles sont les caractéristiques d’un langage expressif de modélisation
de la variabilité?

RQ1.2 Quelles sont les caractéristiques d’un langage de modélisation de la variabilité pour être considéré
comme un format d’échange dans différents outils de modélisation?

RQ1.3 Comment définir un langage de modélisation de la variabilité en évitant la dépendance de l’implémentation?

These subquestions will guide the design of an expressive variability modeling language centered on expres-
siveness, considering the community it is designed for, and the approach required to define a language whose
syntax and semantics are independent from any particular implementation.

RQ2: Comment les représentations intermédiaires supportent l’analyse automatisée des modèles de variabilité
avec une approche flexible?

Les cadres supportant l’analyse automatisée des modèles de variabilité sont limités par le compromis entre
l’expressivité et les capacités d’analyse, et le couplage entre les paradigmes logiques et les outils de résolution.
Cependant, les tâches d’analyse des modèles de variabilité sont essentielles pour la gestion de la variabilité. Donc,
tout langage de modélisation nécessite la définition d’un cadre d’analyse. Le langage de modélisation que cette
thèse se propose de définir n’est pas l’exception. En suivant l’hypothèse centrale d’exploiter les représentations
intermédiaires des modèles de variabilité, cette thèse vise à développer un mécanisme d’analyse englobant
l’expressivité du langage de modélisation d’une manière indépendante du solveur. Pour assurer l’indépendance
du solveur, cette thèse exploite les avantages des différentes représentations logiques et des solveurs. La QR2
peut être raffinée dans les sous-questions suivantes.

RQ2.1 Quelle représentation logique est la mieux adaptée pour encoder des modèles de variabilité décrits
avec un langage de modélisation expressif?

RQ2.2 Quel ensemble de règles de transformation devrait être considéré pour encoder les modèles de
variabilité?

RQ2.3 Quelles sont les caractéristiques du langage abstrait utilisé pour encoder les modèles de variabilité en
tant que problèmes de satisfaction de contraintes pouvant être résolus par différents solveurs?

Coffee

xxix List of Tables

Les réponses à ces questions sont utiles pour concevoir et évaluer l’approche de prise en charge des tâches
d’analyse des modèles de variabilité dans le langage de modélisation de la variabilité hautement expressif.

RQ3: Comment les représentations intermédiaires peuvent-elles être intégrées dans un cadre pour faciliter
l’interopérabilité des outils de gestion de la variabilité?

Les première et deuxième questions portent sur la manière de résoudre des problèmes particuliers concernant la
modélisation et l’analyse de la variabilité. Cette question porte sur l’intégration des propositions de modélisation
et d’analyse en tant que cadre pour la gestion de la variabilité. La RQ3 peut être affinée dans les sous-questions
suivantes.

RQ3.1 Comment soutenir le flux de travail de la gestion de la variabilité, de la modélisation à la réponse à
des questions d’analyse particulières?

RQ3.2 Comment les outils de gestion de la variabilité peuvent-ils interagir ou être intégrés dans le flux de
travail proposé par le cadre?

Cette recherche étudie les modèles de modélisation et d’analyse de la variabilité comme deux préoccupations
différentes. La RQ3 et ses sous-questions associées consolident ces préoccupations dans un cadre où la variabilité
entre les outils de modélisation et d’analyse n’est pas un problème pour le partage et le portage des modèles de
variabilité.

Méthode de recherche
Le travail de recherche global pour cette thèse a été exécuté selon les principes de la Design Science Research.
(DSR). Les sous-sections suivantes présentent brièvement la DSR, décrivent les étapes de la recherche rapportée
dans cette thèse et comment ces étapes répondent au processus et aux principes de la DSR.

Design Science Research

La DSR est un paradigme de recherche fréquemment utilisé pour la recherche dans le domaine des systèmes
d’information. La DSR consiste en la conception et l’évaluation d’artefacts destinés à résoudre des problèmes
organisationnels identifiés [HMPR04]. Ces artefacts sont développés et utilisés dans un contexte qui comprend
des personnes, des organisations et des systèmes techniques (environnement du problème). Le cadre de recherche
proposé par Hevner et al. dans [HMPR04] englobe trois cycles d’activités étroitement liés. La Figure 3 présente
le cadre de recherche de la science du design tel que décrit par Hevner et al. dans [Hev07].

Le cycle de conception est au cœur du projet DSR. Ce cycle est une itération entre la construction et
l’évaluation des artefacts de conception. La Figure 3 illustre le cycle de conception central et la manière dont
il relie les cycles de pertinence et de rigueur. Le cycle de pertinence consiste à identifier et à représenter les
opportunités et les problèmes dans l’environnement de l’application. Ce cycle produit l’ensemble des exigences
utilisées comme critères d’acceptation pour évaluer les artefacts produits dans le processus de recherche. Le
cycle de fondement fournit aux chercheurs les théories scientifiques, les méthodes d’ingénierie, les expériences

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxx

Environment Design Science Research Knowledge Base

Application Domain Foundations

Problems & Opportunities
Organizational Systems
Technical Systems
People

Scientific Theories and Methods
Experiences & Expertise

Meta-Artefacts
Design Products &
Design Processes

Relevance Cycle
Requirements
Field Testing

Rigor Cycle
Grounding

Additions to KB
Evaluate

Build Design &
Artifacts and
Processes

Design
Cycle

Figure 3: Design Science Research Cycles from [Hev07]

et l’expertise qui servent de fondements à la recherche. Ce cycle reçoit également les ajouts à la base de
connaissances produits dans le cycle de conception.

Phases de recherche

Le projet de recherche présenté dans cette thèse comporte deux phases: la phase d’exploration et la phase de
définition. Chaque phase constitue une itération du cycle de conception central exécuté pour répondre aux
questions de recherche.

La phase d’exploration consistait en la conceptualisation, l’exploration et l’évaluation du cadre HLCL.

Le cadre HLCL tire son nom du High-Level Constraint Language, un langage abstrait permettant de représenter
des modèles de variabilité à partir de différentes notations, développé au Centre de Recherche en Informatique.
Le cadre HLCL est intégré aux premières implémentations de la suite d’outils VariaMos [MMFR+15] et a
évolué grâce aux recherches de Djebbi & Salinesi, Salinesi et al., Mazo et al. et Munoz-Fernandez et al..
[DS08, SMD+11a, MSD11, MFTR+15].

La motivation de commencer par une exploration du cadre HLCL est double. Premièrement, l’hypothèse de
l’applicabilité des représentations intermédiaires développée dans cette thèse est compatible avec la prémisse
d’inclure une étape supplémentaire pour représenter les modèles de variabilité en utilisant un langage de
contraintes abstrait. Deuxièmement, le cadre HLCL s’est avéré utile pour représenter différents langages de
variabilité [SMD+11a, MSD+12b, MFTR+15], et pour supporter la vérification et la configuration des modèles
de variabilité dans ces langages [MSD+12b, SM12, MFTR+15]. Cependant, ce cadre et son implémentation
dans la suite d’outils VariaMos font partie de l’écosystème des outils de gestion de la variabilité non compatibles.
Ensuite, l’évaluation de l’étendue du cadre HLCL d’un point de vue pratique et formel était primordiale pour
une meilleure compréhension du problème et de ses perspectives de solution. La phase d’exploration comprenait
trois activités principales détaillées comme suit.

Activity 1. Conceptualisation et revue de la littérature. Cette recherche a débuté par une étude sur les
cadres de transformation basés sur les contraintes prenant en charge les tâches de gestion de la variabilité.
Cette conceptualisation visait à répondre aux questions sur les limites des cadres basés sur les contraintes
pour la gestion de la variabilité. Voici la liste des activités incluses dans la conceptualisation.

Traduit avec www.DeepL.com/Translator (version gratuite)

Coffee

xxxi List of Tables

A.1. 1. Étude systématique de literature sur l’application des contraintes dans l’ingénierie des lignes de
produits. Le premier pas dans la conceptualisation a consisté à définir un cadre de classification pour réaliser
une revue de literature systématique. Cette étude de literature a suivi les directives de l’Evidence-Based
Software Engineering, en particulier les directives de Petersen et al. [PVK15]. L’objectif de cette étude est
de comprendre la portée des approches basées sur les contraintes dans le cycle de vie des systèmes à forte
variabilité. Le Chapitre 2 présente la conception, l’exécution et les résultats de cette étude.

A.1. 2. Raffinement du cadre HLCL. La deuxième étape de la conceptualisation a consisté à appliquer les
concepts appris dans la définition d’un modèle conceptuel pour le cadre HLCL. Les modèles conceptuels
sont des vues simplifiées abstraites d’un système utilisées pour aider les gens à comprendre ou à expliquer
le système qu’ils représentent. Le cadre HLCL a été intégré dans l’outil VariaMos et présenté dans des
publications précédentes. Cependant, ce cadre manquait d’une définition conceptuelle. Le raffinement de
ce cadre est présenté dans le Chapitre 3.

Activity 2. Évaluation pratique. La deuxième étape de la phase d’exploration comprend la conception,
l’implémentation et l’évaluation d’une notation graphique basée sur les contraintes pour décrire les modèles de
variabilité. Cette notation graphique a été appelée Graphes de Contraintes. L’objectif de l’évaluation pratique
consistait à expérimenter les difficultés rencontrées par un ingénieur lors de l’implémentation/extension des
capacités de modélisation et d’analyse dans un outil de gestion de la variabilité particulier. A ce stade, j’ai
conçu et développé l’inclusion des graphes de contraintes comme l’un des langages de modélisation dans la
suite d’outils VariaMos et l’implémentation et l’évaluation d’un algorithme de vérification. Voici la liste des
sous-activités incluses dans l’évaluation pratique.

A.2. 1. Définition et mise en œuvre des graphes de contraintes comme notation graphique pour le HLCL.
Les graphes de contraintes représentent graphiquement les modèles de variabilité décrits en HLCL [MVSD].
Cette représentation graphique a été implémentée en JAVA et incluse dans la version stand-alone de
la suite d’outils VariaMos en suivant l’approche de métamodélisation proposée par Munoz-Fernandez et
al. [MFTR+15].

A.2. 2. Implémentation et évaluation de MEDIC3. MEDIC est un algorithme de vérification qui permet
de détecter les contraintes incohérentes et de représenter graphiquement la manière dont ces contraintes
sont liées. Ces informations guident les concepteurs dans leur prise de décision lors du débogage et de la
correction des modèles de variabilité. MEDIC a été implémenté en JAVA et inclus dans la version stand-
alone de la suite d’outils VariaMos. Une évaluation de la précision et des performances de MEDIC-PLM a
été réalisée et nous avons fourni des preuves expérimentales que la méthode fournit rapidement les sources
d’incohérences et qu’elle est extensible aux modèles industriels.

Les résultats de l’évaluation pratique ont été exclus de cette thèse car ils n’ont pas eu d’impact sur les
décisions concernant la conception du cadre ou de l’une de ses parties. Par ailleurs, la proposition de graphe
de contraintes, son implémentation, l’algorithme de vérification et son évaluation sont le sujet principal d’une
publication à venir intitulée “MEDIC: Method to Diagnose Inconsistent Product Line Models using Constraint
Graphs” qui sera soumise au journal of Requirements Engineering [MVSD].

3MEDIC est l’abréviation de Method to Diagnose Inconsistent Product Line Models using Constraint Graphs

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxxii

Activity 3. Évaluation théorique. Cette étape est appelée évaluation théorique car elle est fondée sur la
théorie de l’expressivité ontologique introduite par Wand & Weber [WW93]. La théorie de l’expressivité
ontologique est un cadre d’évaluation bien fondé, également appliqué pour évaluer d’autres langages de
modélisation tels que le modèle entité-relation [SMN+10]; UML [BJM08], le langage i? [GFG12]; et BPMN
[RRIG09].

A.3. 1. Évaluation ontologique de l’expressivité de la HLCL en tant que langage de modélisation. L’étape
finale de la conceptualisation a consisté en la conception et l’exécution d’une évaluation ontologique visant
à mesurer l’expressivité de la HLCL en tant que langage de modélisation. Cette évaluation a également
pris en compte les métriques de Recker et al. pour évaluer l’expressivité ontologique par l’achèvement et la
clarté: (1) le degré de déficit, (2) le degré d’excès, (3) le degré de redondance et (4) le degré de superposition
[RRIG09]. Le Chapitre 3 présente la conception, l’exécution et les résultats.

Les résultats des évaluations ont montré plusieurs failles dans la proposition originale. L’approche de
représentation intermédiaire dans le cadre HLCL est utile pour intégrer différents langages de variabilité dans
un seul outil. Par exemple, VariaMos fournit une interface graphique pour décrire la variabilité d’un système
unique en utilisant différentes vues et plus d’une notation [MMFR+15]. Toutefois, les avantages du cadre HLCL
pour le support de différentes notations et de différents solveurs ne compensent pas les inconvénients concernant
les facteurs clés suivants.

1. Le HLCL présente des imperfections, un manque de usabilite et de readabilite. À un certain point,
l’utilisation de ce langage ressemble au remplacement d’un langage de programmation par un langage
d’assemblage: quels que soient ses avantages, travailler avec des programmes d’assemblage à grande échelle
sans un langage de plus haut niveau et plus abstrait est une tâche irréalisable. De plus, du point de
vue de l’implémentation, l’approche consistant à fournir une représentation abstraite interne limite les
contraintes, les fonctions et les opérateurs disponibles pour représenter les modèles de variabilité, limitant
ainsi le niveau d’expressivité du langage de modélisation.

2. L’extensibilité de l’outil implémentant ce cadre, à savoir l’inclusion de nouveaux langages et de nouveaux
solveurs, nécessite la définition et l’implémentation de nouvelles règles de transformation. L’ajout d’un
nouveau langage de modélisation dans l’outil implique la définition des règles d’encodage des langages de
variabilité en représentations HLCL. De plus, l’inclusion d’un nouveau solveur demande la définition des
règles pour obtenir un encodage lisible par le solveur. Enfin, l’utilisation d’une représentation intermédiaire
ne résout pas la réimplémentation de la chaîne de transformation.

3. La représentation intermédiaire des modèles de variabilité à l’aide de la HLCL n’offre pas une indépendance
complète du solveur. En effet, l’utilisation de plusieurs solveurs dans la HLCL n’est pas pratique car elle
nécessite une transformation supplémentaire pour encoder les représentations HLCL en code lisible par les
solveurs. Ainsi, l’inclusion de nouveaux solveurs implique la définition et la mise en œuvre de nouvelles
règles de transformation.

4. La représentation intermédiaire des modèles de variabilité à l’aide de HLCL ne résout pas les problèmes
de portabilité et de partage des modèles entre les outils. Les modèles de variabilité initialement décrits
dans différentes notations et ensuite encodés dans des représentations HLCL sont utiles pour être analysés

Coffee

xxxiii List of Tables

de manière intégrée dans le même outil [DTS+14, MFTR+15]. Toutefois, le cadre HLCL reproduit les
problèmes de portabilité à l’intérieur de la layer de représentation intermédiaire comme une conséquence
de la définition et de l’implémentation in-house de le langage. La HLCL est un sous-groupe de la
programmation par contraintes contenant les opérateurs et les expressions employés pour encoder les
modèles de variabilité. Par conséquent, une représentation standard de la programmation par contraintes
pourrait être un meilleur candidat pour encoder les modèles en tant que contraintes d’une manière
indépendante du solveur.

La deuxième itération du cycle de conception a pris en compte les résultats obtenus dans la phase d’exploration.
Les paragraphes suivants décrivent comment les problèmes du cadre HLCL ont été abordés dans la conception,
la mise en œuvre et l’évaluation du cadre présenté dans cette thèse.

La phase de conception est la deuxième itération du cycle de conception. Cette phase a couvert la conception,
l’implémentation et l’évaluation du cadre Co�ee. Ce cadre traite séparément les préoccupations de modélisation
et les préoccupations d’analyse comme deux parties d’un seul cadre. La conception du cadre exploite l’hypothèse
développée dans cette thèse selon laquelle l’introduction de représentations intermédiaires facilite l’interopérabilité
entre les outils et le couplage dans les implémentations des outils. Ensuite, la deuxième itération englobe les
activités suivantes. Notez que les activités énumérées ci-dessous n’ont pas été réalisées de manière séquentielle.

Activity 4. Modélisation conceptuelle du cadre Co�ee Le modèle conceptuel du cadre a été proposé et
affiné de manière itérative au cours de la phase de conception. Le Chapitre 3 décrit le modèle conceptuel et
présente ses composants.

Activity 5. Conception et évaluation du High-Level Variability Language (HLVL) HLVL est la propose de cette
thèse pour un langage textuel de modélisation de la variabilité suffisamment expressif et flexible pour être
considéré comme un langage intermédiaire pour échanger des modèles et faciliter la portabilité des modèles et
les problèmes de partage entre les outils de modélisation. La conception et l’évaluation ont consisté en les
sous-activités suivantes.

A.5. 1. Definition de la syntaxe, de la sémantique et des caractéristiques de HLVL. Les décisions prises
dans la conception de HLVL sont les conséquences des résultats et des enseignements tirés de la phase
d’exploration. La conception du langage a pris en compte les concepts de modélisation recueillis lors
de la revue de la littérature, les critères d’expressivité ontologique, la caractérisation des langages de
variabilité textuelle, les différents paradigmes de modélisation et les échanges avec les experts du domaine.
Le Chapitre 4 détaille HLVL et ses caractéristiques.

A.5. 2. Évaluation ontologique de l’expressivité de la HLVL. La dernière étape de la définition du langage
de modélisation a consisté à effectuer une évaluation ontologique. Cette évaluation a pour objectif de
garantir l’expressivité du HLVL (cf. Chapitre 5). Ainsi, le langage proposé serait capable d’encoder la
plupart des langages de modélisation de la variabilité sans perte d’expressivité.

Activity 6. Conception et évaluation du cadre d’analyse. Après avoir abordé le problème de la représentation
des modèles de variabilité à l’aide d’un langage intermédiaire sans perte d’expressivité, l’étape suivante
consistait à fournir un cadre d’analyse des modèles HLVL. Les sous-activités réalisées pour définir, mettre en

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxxiv

œuvre et évaluer le cadre d’analyse sont les suivantes.

A.6. 1. Définition de la sémantique opérationnelle de HLVL. L’idée générale qui sous-tend la sémantique
opérationnelle est de définir les étapes du calcul de la sortie à partir de segments de programme ou de code
[Plo81, Läm18]. Donc, la sémantique opérationnelle de HLVL est une collection de règles de transformation
appliquées pour transformer un modèle en une représentation logique pour effectuer des questions de
satisfiabilité sur les solveurs. Le Chapitre 4 présente la sémantique opérationnelle pour chaque construction
du langage en considérant différentes représentations logiques et différents solveurs.

A.6. 2. Démonstration de la faisabilité du cadre d’analyse sensible au contexte. La définition du cadre
d’analyse a été complétée par la définition de l’architecture et l’implémentation d’un prototype. La précision
de la solution a été mesurée en comparant l’ensemble des configurations obtenues avec une implémentation
de Co�ee et celles obtenues avec d’autres outils de gestion de la variabilitè. Le Chapitre 5 décrit les
particularités de l’implémentation et discute des résultats obtenus.

Résumé des contributions
Cette thèse aborde les problèmes d’interopérabilité entre les outils de gestion de la variabilité, la diversité des
langages de modélisation de la variabilité et les fortes dépendances dans l’analyse automatisée des modèles
de variabilité. Pour résoudre ces problèmes en utilisant des langages intermédiaires, cette thèse présente les
contributions originales suivantes:

1. Une étude systématique de literature sur le sujet des outils de gestion de la variabilité supportés par des
cadres basés sur les contraintes (Chapitre 2). Pour cela, un cadre d’analyse et de comparaison de la
littérature associée est développé, composé de multiples facettes concernant les concepts de modélisation
de la variabilité traduits en contraintes, les systèmes de contraintes utilisés pour encoder les modèles de
variabilité, les règles de transformation pour encoder les modèles de variabilité en tant que problèmes de
satisfaction de contraintes et les solveurs supportant les tâches d’analyse.

2. Un cadre théorique pour évaluer l’expressivité des langages de variabilité du point de vue ontologique. Ce
cadre d’évaluation est fondé sur la théorie de l’expressivité ontologique [WW93] et son application aux
langages de modélisation de la variabilité proposée par Asadi et al.. [AGWH12]. Le cadre d’évaluation
s’appuie également sur l’ontologie fondamentale de la variabilité incluse dans les travaux de Reinhartz-
Berger et al.. [RBSW11] et les métriques permettant de déterminer les critères de complétude et de
clarté introduites par Recker et al. [RRIG09]. Ce cadre a été appliqué pour évaluer l’expressivité de la
programmation par contraintes pour représenter les modèles de variabilité (Chapitre 3) et le langage de
modélisation proposé dans cette thèse.

3. La définition d’un cadre de transformation basé sur les contraintes appelé Co�ee (Chapitre 3). La
définition et l’implémentation de ce cadre intègrent les contributions précédentes, en traitant les problèmes
de variabilité et d’analyse séparément, mais en considérant ces problèmes comme faisant partie d’une seule
proposition. Co�ee est un cadre à quatre niveaux contenant une collection de méthodes et d’artefacts
permettant d’encoder les modèles de variabilité en HLVL, d’encoder les modèles HLVL en problèmes de

Coffee

xxxv List of Tables

satisfaction de contraintes, et d’effectuer des tâches d’analyse en utilisant l’infrastructure indépendante du
solveur.

4. La conception et la définition formelle d’un langage textuel de modélisation de la variabilité appelé langage
de variabilité de haut niveau, HLVL en abrégé (Chapitre 4). L’objectif principal de la conception du HLVL

est de fournir aux ingénieurs de domaine un langage textuel riche pour modéliser la variabilité dans des
contextes académiques et industriels. Les principales caractéristiques du langage sont sa expressivité
du point de vue ontologique et sa flexibilité pour représenter les concepts présents dans les langages
de variabilité avec différents styles de modélisation. Ce langage peut être utilisé comme langage de
modélisation de la variabilité et comme représentation intermédiaire d’autres langages de variabilité.
L’idée générale est que les modèles de variabilité peuvent être encodés en HLVL comme une forme
intermédiaire et peuvent être interprétés sur d’autres outils réduisant les problèmes d’interopérabilité et
de partage.

5. La définition de la sémantique opérationnelle de HLVL sous la forme de règles d’inférence considérant le
contexte de la transformation (Chapitre 4). Cette sémantique opérationnelle traite du compromis entre
expressivité et analysabilité en encodant les modèles HLVL en problèmes de satisfaction à l’aide de deux
paradigmes logiques. De plus, les modèles de variabilité sont encodés dans une seconde représentation
intermédiaire utilisant une représentation générique des contraintes qui fournit une solution indépendante du
solveur. Ainsi, cette proposition prend en compte différents niveaux d’expressivité, règles de transformation,
paradigmes de résolution et outils de résolution.

Publications

Cette thèse étend et réutilise le contenu d’articles publiés, en cours de révision ou en préparation. Chaque
chapitre de cette thèse fait référence à la publication ou au manuscrit correspondant. La liste des publications
est la suivante:

• Ángela Villota, Raúl Mazo, and Camille Salinesi. A CP-Based Framework for Product Line Engineering.
Forum Jeunes Chercheurs du congrés INFORSID (2016). Actes du 8 e Forum Jeunes Chercheurs congrés
INFORSID.

• Raul Mazo, Ángela Villota, Camille Salinesi and Daniel Diaz. MEDIC: Method to Diagnose Inconsistent
Product Line Models using Constraint Graphs. To be submitted to the Requirements Engineering journal.

• Ángela Villota, Raúl Mazo, and Camille Salinesi. On the Ontological Expressiveness of the High-Level
Constraint Language for Product Line Specification. In: Khendek F., Gotzhein R. (eds) System Analysis
and Modeling. Languages, Methods, and Tools for Systems Engineering. SAM 2018. Lecture Notes in
Computer Science, vol 11150. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-01042-3_4

• Ángela Villota, Raúl Mazo, and Camille Salinesi. 2019. The High-Level Variability Language: An
Ontological Approach. In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume B (SPLC ’19). Association for Computing Machinery, New York, NY, USA, 162-169.
DOI: https://doi.org/10.1145/3307630.3342401.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://doi.org/10.1007/978-3-030-01042-3_4
https://doi.org/10.1145/3307630.3342401

List of Tables xxxvi

• Ángela Villota, Raúl Mazo,Camille Salinesi and Daniel Diaz. Constraints in Software Product Line
Engineering: a Classification Framework and Systematic Mapping Study. Manuscript in preparation.

Outils

Trois outils différents ont été développés au cours du doctorat. Ces outils font partie des artefacts développés à
différentes étapes de la recherche, comme indiqué dans la section . Le tableau 1 présente les liens vers les dépôts
GitHub des outils.

Table 1: Résumé des outils

Outil Disponible sur

MEDIC Dossier personnel, https://github.com/angievig/VARIAMOS,

https://github.com/angievig/MEDIC_TESTS

Dossier du VariaMos, https://github.com/SPLA/VARIAMOS

HLVL Editor Dossier personnel, https://github.com/angievig/Coffee/tree/master/HLVL

Co�ee Platform Dossier du projet, https://github.com/coffeeframework

MEDIC. La conception, la mise en œuvre, l’évaluation, le rapport et le déploiement de la méthode de diagnostic
des modèles de lignes de produits incohérents à l’aide de graphiques de contraintes (MEDIC). Ce travail a été
réalisé au cours des premières étapes du doctorat, lorsque je développais une représentation graphique pour
le langage de contraintes de haut niveau. À la suite de cette première exploration, j’ai inclus les graphes de
contraintes comme notation pour décrire la variabilité dans la suite d’outils VariaMos. De plus, j’ai développé
MEDIC, un algorithme de diagnostic pour détecter les ensembles incohérents sur un modèle de variabilité
spécifié comme un graphe de contraintes. L’algorithme de diagnostic a également été intégré dans la version
autonome de la suite d’outils VariaMos. De plus, l’expérimentation et le benchmark liés à la conception et au
développement de MEDIC font partie d’un article de journal à venir.

HLVL Editor. Cet outil prend en charge la grammaire et la sémantique opérationnelle d’une première version
du langage de variabilité de haut niveau présenté et discuté lors de la conférence MODEVAR. Cet éditeur a été
implémenté en java en utilisant la technologie Xtext.

Co�ee Platform. Pour prendre en charge l’analyse automatisée associée à différents langages de variabilité,
une architecture microservices de Coffee a été dessinée et développée. Dans cette version microservices du cadre,
chaque niveau a été mis en œuvre à l’aide de Java et d’une API REST, puis placé dans un conteneur pour
être déployé dans le swarm Docker situé à l’université Icesi de Cali. La conception et la mise en œuvre de la

Coffee

https://github.com/angievig/VARIAMOS
https://github.com/angievig/MEDIC_TESTS
https://github.com/SPLA/VARIAMOS
https://github.com/angievig/Coffee/tree/master/HLVL
https://github.com/coffeeframework

xxxvii List of Tables

plateforme de microservices Coffee font partie d’un projet financé par l’Université Icesi avec la collaboration
d’étudiants du laboratoire i2t.

Feuille de route de la dissertation
Cette dissertation contient six chapitres divisés en trois parties, suivis d’une annexe contenant des informations
auxiliaires.

Partie 1, Motivation et Contexte. Cette partie regroupe les chapitres délimitant le contexte de la recherche,
la méthode, et l’état de la recherche associée à cette thèse.

CH 2. État de la recherche présente une étude systématique et un cadre de classification de la recherche
existante liée aux cadres basés sur les contraintes supportant la modélisation et l’analyse de la variabilité.
Ce chapitre présente un résumé des concepts de modélisation de la variabilité, des règles de transformation
pour encoder les modèles dans des paradigmes logiques, et des solveurs utilisés dans l’analyse automatisée des
modèles de variabilité.

Partie 2, Etudes et Résultats. La deuxième partie de cette thèse présente deux chapitres contenant les études
concernant l’objectif principal de cette thèse: l’expressivité de la modélisation de la variabilité et le support
d’analyse aux langages expressifs de modélisation de la variabilité.

CH 3. De l’évaluation du High-Level Constraint cadre au cadre Co�ee résume les résultats obtenus lors
de l’évaluation du cadre HLCL réalisée pendant la phase d’exploration. Ce chapitre se concentre sur la
conception, l’exécution et les résultats de l’analyse ontologique des contraintes comme langage de modélisation
de la variabilité. Et plus particulièrement, comment les résultats obtenus ainsi que l’expérience acquise lors de
la phase d’exploration ont contribué à la modélisation conceptuelle du cadre Co�ee. Le chapitre se termine
par une présentation générale du cadre.

CH 4. Modélisation de la variabilité et analyse de la variabilité dans Co�ee présente le langage de variabilité
de haut niveau (High-Level Variability Language -HLVL), sa définition formelle, sa sémantique opérationnelle
et le flux de travail allant des modèles de variabilité au processus d’analyse. Tout d’abord, le Chapitre 4
introduit le langage, décrit ses caractéristiques, présente la syntaxe et la sémantique formelles du langage.
Deuxièmement, le chapitre explique comment Co�ee prend en charge l’analyse automatisée en utilisant un
cadre de transformation en trois étapes pour fournir un support flexible, multi-langage et multi-solveur pour
l’analyse automatisée des modèles de variabilité spécifiés en HLVL. Le cadre de transformation proposé dans
ce chapitre, est décrit sous la forme de règles d’inférence dans la définition de la sémantique opérationnelle de
HLVL.

Partie 3, Analyse des résultats, discussion et perspectives. La dernière partie de cette thèse analyse et discute
les résultats.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

List of Tables xxxviii

CH 5. Evaluation, Discussion, et Perspectives présente les évaluations utilisées pour démontrer l’expressivité
du langage de modélisation et la flexibilité du cadre supportant l’analyse de variabilité.

CH 6. Conclusions clôt cette dissertation avec un résumé des résultats par rapport à chaque question de
recherche, discute de l’impact de cette recherche, et présente les perspectives pour les travaux futurs.

Annexe. L’annexe A présente des informations supplémentaires produites lors de l’exécution de l’étude de
literature systématique.

Résumé
Ce chapitre a présenté le contexte, l’énoncé du problème, les défis relevés, les objectifs et un aperçu des
contributions de cette thèse.

Coffee

1 List of Tables

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Part I

Motivation and context

2

Chapter 1
Introduction

Once you learn about variability, you see variability everywhere.

This chapter provides the reader with an overview of the research presented in this thesis. To start, the chapter
presents the context and delineates the scope of this research and the problem statement. The following sections
describe the particulars of the research with the research questions, research objectives, and methodology.
Finally, the chapter closes with a summary of the contributions and road map of this dissertation.

1.1 Context
The principles of software reuse appear in the early years of software engineering and are continually evolving.
For instance, David Parnas’ program families concept dates from 1976 [Par76]. In his work, Parnas already
considered a reuse philosophy when he described a process for developing a set of programs identifying their
common characteristics and providing them with individual properties. The main idea of reuse is to take an
item as it is, without reprocessing. Thus, the advantages of reuse are to save time, money, and resources. These
advantages are the reason why reuse is an alternative to answer the increasing demand of quality-preserving
complex software systems developed in shorter times-to-market.

However, to meet these expectations, reuse strategies should be planned and strategy-driven. This realization
propelled the rise of domain analysis approaches for the systematic identification of common characteristics
in related systems. A milestone on domain analysis and systematic reuse is Kyo Kang’s Feature Oriented
Domain Analysis (FODA) report [KCH+90]. This report studies previous approaches to define a method and
tools to support domain analysis practitioners. Yet, the most important contribution of Kang’s report is the
introduction of Feature Models as the graphical language to describe the common and variable characteristics
and functionalities in a related collection of software systems.

What started as a good practice, then a method, became a paradigm to develop software systems. The early
2000’s saw the consolidation of systematic reuse strategies into Software Product Line Engineering (SPLE).
SPLE is the paradigm to produce software systems at a large-scale using a common technical base and, at the
same time, answering individual customer’s needs [PBvdL05].

3

1.1. Context 4

In the past 20 years, SPLE has attracted significant interest from the research community. Several publications
report significant achievements and experience gained by introducing software product lines in the software
industry [MP14]. Many successful experiences of the application of SPLE principles on industrial settings are
listed on “Product Line Hall of Fame” 1. Examples of successful industrial cases are, for instance, the case of
Boeing [Sha98, DS00], Hewlett-Packard [TCO00], and Lucent Technologies [ADD+00], among others. According
to Clements and Northrop [CN01], these companies reported important benefits, for example, they found gains
by as much as tenfold in productivity and quality, cost reduction by as much as 60%, decrease labor needs by as
much as 87%, and decrease time to market (new variants) by as much as 98%. The more software-intensive
systems become, the more they can benefit from the SPLE strategy.

SPLE consists in simultaneously engineering a collection of software products or services called product
lines. A product line is a collection of similar products sharing common characteristics and satisfying the
requirements of a particular mission or market segment. Products in a software product line are assembled from
a common set of core assets in a prescribed way [CN01]. Central to SPLE is the concept of variability because
the identification of commonality and variability is a major prerequisite for software product line engineering.

Definition 1.1 Variability is the ability of a system, an asset, or a development environment to support the
production of a set of artifacts that differ from each other in a preplanned fashion [BC05].

This definition is frequently associated with software variability. Software variability allows the specification of
software artifacts that are not fully defined at design time. Then, software variability can be interpreted as
planned or anticipated change [GWT+14]. Software variability is slightly different from product line variability.

Definition 1.2 Product line Variability describes the variations between systems in a product line. These
variations can be in terms of functionalities, properties, and quality requirements [MPH+07].

Software variability and product line variability are managed differently. Software variability can be documented
on software artifacts, models and is supported by most modeling and programming languages. For instance,
consider abstract superclasses, interfaces facilitating different implementations, or conditional compilation (e.g.,
using #ifdefs) [MP14]. On the other hand, defining what does vary and how it varies at the product line level
requires explicit decisions from product management and other stakeholders. The set of activities and tasks
needed to support the specification and realization of product line variability is called variability management.

Definition 1.3 Variability Management is the set of activities and tasks supporting the definition and exploita-
tion of variability throughout the life-cycle of a software product line [PBvdL05].

Variability management covers the processes and tools for modeling, exploiting, implementing, and evolving
variability. Modeling variability empowers and supports the communication, discussion, management, and
analysis of product line variability [MP14]. Modeling variability consists on the definition of a variability
model. Variability models explicitly represent the common and variable characteristics and functionalities
among products in a product line. These models are created using variability languages. Research on variability
modeling includes the proposal of several languages and modeling tools that have been proposed in academia

1Available at https://splc.net/fame.html

Coffee

https://splc.net/fame.html

5 Chapter 1. Introduction

and industry [BSL+13]. Kang’s feature models and its derived notations are the most frequently used variability
language. Since the introduction of the FODA report, over 40 different feature model dialects have been
proposed [BSRC10].

The research presented in this dissertation studies the diversity in variability modeling from an ontological
and practical point of view. From the ontological point of view, this thesis studied different modeling languages
to define a glossary of concepts present in variability language and studies the application of the theory of
ontological expressiveness to variability modeling languages. From a practical point of view, this thesis presents
a textual variability modeling language aiming expressiveness from the ontological point of view and flexibility
to represent concepts present in variability languages with different modeling styles. This thesis provides one
implementation of the language using Xtext [Xte] and the language’s evaluation considering the theory of
ontological expressiveness. The evaluation also considered the scenarios and needs defined to for a standard
variability modeling language [BC19].

Exploiting and implementing variability are tasks that require the transformation an processing of variability
models to obtain information. This transformation and processing of variability models is known as variability
analysis, a significant task for managing variability. Variability analysis encircles the methods, tools, and
techniques concerning the configuration, verification, testing, and derivation of variability models [BSRC10].
Analysis techniques have been the subject of study in the last 20 years. A comprehensive catalog of analysis
techniques can be found in literature reviews such as the works of Benavides et al. [BSRC10] and Galindo et
al. [GBT+18].

The definition and implementation of the modeling language in this thesis includes also the formalization of
the operational semantics and the design and implementation of the framework supporting variability analysis.
There exist an intrinsic relation between modeling and variability analysis, and a well documented trade-off
between expressiveness and analysis support in variability management tools. Thus, this dissertation includes a
proposal of a three-step transformation framework to provide flexibility regarding the transformation rules, and
solving tools. Therefore, the framework developed in this thesis is a multi-language and multi-solver framework.

The evolution of variability models considers that to develop and deploy software product lines is hardly the
output of a one-shot effort, but the result of an iterative engineering process. Between iterations, variability
models evolve by introducing changes or extending one of the products, or all the product line. Thus, variability
management approaches also include the support of evolution tasks, as in the works of Pleuss et al. [PBD+12],
and Montalvillo et al. [MD16]. The evolution of variability models it out of the scope of this thesis.

The research presented in this dissertation is grounded on the theory, concepts and techniques from the
Programming Languages Engineering. Then, the conception, design, and implementation of the framework
included the development of intermediate representations, encodings, and transformations.

1.2 Problem statement and scope
Variability management methods, techniques, and tools have been applied to software systems that are not
identified as software product lines but deal with variability. These systems, are known as variability-intensive
systems because variability management is a core engineering activity when developing these systems [Ben19].

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.2. Problem statement and scope 6

For example, consider software ecosystems, such as the Android ecosystem [CN01], and self-adaptive IoT systems
such as, smart irrigation systems [ASS+19], among others.

The support of variability management tasks for variability-intensive systems poses new challenges in the area.
This thesis is related to the challenges concerning the engineering of variability management tools, particularly,
the concerns related to modeling and analysis. Modeling variability and analyzing variability models are two
sides of the same coin. Variability modeling without analysis is inconceivable because modeling tools assist
the modeler to define a high-quality, defect-free, and maintainable models. This assistance is achieved by the
automation of analysis tasks such as the defect detection, model correction and product configuration, among
others. The following subsections present the challenges on variability modeling and variability analysis.

1.2.1 Variability Modeling

Variability modeling is an extensively studied subject. Research in this subject includes several variability
modeling languages that have been proposed in academia and industry [BSL+13]. Most research in the area
focuses on feature-based modeling languages since the introduction of FODA [KCH+90]. However, other
modeling approaches exist, such as variation point-based languages [PBvdL05], decision-based languages
[DGR11], goal-oriented languages [MFTR+15], and constraint-based languages [SMDD10]. Also, there exists
industrial approaches that can be used to describe variability, such as Kconfig [ZC], Pure::variants [psG],
Gears [Kru07], and Renault’s version-option modeling language [ACF10]. These numerous proposals have
contributed to a universe of languages, notations, transformations, and tools supporting the creation of variability
models.

The lack of standards is the main cause that variability modeling relies upon the several existing domain-
specific languages and modeling tools. Most of these tools, are developed and taught in-house, and frequently
are used only by the few people associated with the development team. This diversity of languages and
tools causes low portability in models and interoperability issues between SPL engineering tools. One of the
poor consequences is that modeling tools require numerous parsers and transformations that might cause
expressiveness loss.

Well aware of the need for a standard variability language that comprehensively captures the variability in
variability-intensive systems, at least three initiatives had emerged in the past years. The first is the proposal of
the Common Variability Language (CVL) as a standard language for variability modeling [Hau]. This initiative
led by Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki went as further as to be considered as
a standard by the Object Management Group (OMG). However, the attempt to define CVL as a standard
language did not succeed given to copyright conflicts.

A second initiative is the specification of the Variability Exchange Language (VEL) [ApsGtFIfOCSF] as
a generic language to exchange variability information between variability management tools and systems
development tools. The specification of VEL is one of the results of the SPES_XT that gathers industrial
partners such as Daimler AG, pure-systems GmbH, and the Fraunhofer Institute for Open Communication
Systems FOKUS. A draft version of the specification of VEL is intended to be standardized within the

Coffee

7 Chapter 1. Introduction

Organization for the Advancement of Structured Information Standards (OASIS)2.

The third initiative is more recent. In the past two years, the MODEVAR community3 was created around
the idea to set a standard textual language to represent feature models. This initiative is still a work in process
where experts have organized a workshop to discuss issues such as usage scenarios, expressiveness issues, and
analysis support to get a consensus. This is a very active community that to the day has three important
contributions to the standardization of feature modeling languages (1) a collection of scenarios of usage of a
standard feature modeling language [BC19]; (2) a set of language levels for characterize the modeling concepts
and expressiveness of feature-based languages [TSS19]; and (3) a concrete/abstract for a standard feature-based
language proposed in the master thesis of Dominic Engelhardt [Eng20] and presented in the latest SPLC
conference [SFE+21].

There is one lesson learned from these initiatives: developing a standard language for variability is an
effort-intensive endeavor because the communication of variability using models requires to consider three
conceptual levels: the modeling paradigm, the modeling language, and the concrete syntax of the modeling tool.

The modeling paradigm is the approach to create a model. Similarly to programming paradigms, modeling
paradigms define the main characteristics of the different modeling languages. Variability modeling paradigms
are, for instance, feature-based modeling, decision-based modeling, goal-based modeling, and constraint-based
modeling, among others. The modeling paradigm defines the semantics of the variability unit, the structure
of the model, and the configuration process. Let’s see these differences between two paradigms, feature-based
modeling and decision-based modeling. In feature-based languages, features are the variability unit, they
represent artifacts that can be included or not in a configuration. Feature models are tree-like structures
with a single root with cross-tree relations frequently represented textually for better readability. In contrast,
decision-based languages have decisions and assets as variability units. Decision models are graph-like models
composed of decisions and assets linked to those decisions. The configuration process consists of deciding about
the available options in the decisions, opening, or closing other decisions during the process.

The language defines the set of modeling concepts, syntactic elements, semantics, and well-formedness rules
as toolset for defining variability models. Languages are associated with a modeling paradigm. For example,
the Textual Variability Language (TVL) [CBH11] is a feature-based modeling language. Some languages can
be considered extensions of others, as the attribute-based feature language of FeatureIDE [TKB+14], which
extends the FODA language proposed by Kang [KCH+90].

The concrete syntax of the tool corresponds to the interpretations and implementation that tool-engineers give
to variability modeling languages. Contrary to what could be expected, sometimes, the concrete syntax among
modeling tools is not exactly the same. For example, consider the SPLOT and VariaMos tools. Both tools
support basic-feature models, i.e., as defined in the FODA report. Feature trees in SPLOT are nested structures
in a similar way to directory trees in a file manager with textual cross-tree constraints written as expressions
in CNF. In contrast, VariaMos provides a drawing canvas to specify feature trees. VariaMos depicts features
using ellipses instead of rectangles as in other tools. Moreover, VariaMos introduces a graphical construct called

2
https://www.oasis-open.org/

3
https://modevar.github.io/

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://www.oasis-open.org/
https://modevar.github.io/

1.2. Problem statement and scope 8

bundle to represent parent-children when there are more than one children features.

Decisions

Features
Features REFAS

A B C D
Figure 1.1: Illustration of an example of the conflicts sharing variability models

The issues regarding the portability and sharing of variability models are a consequence of the variability at
each of the three modeling conceptual levels. Figure 1.1 illustrates an example of these issues. First, consider
engineer A and engineer C , both of them are creating a variability model using the same paradigm but two
different tools. They are experiencing incompatibilities at the concrete syntax level, since one is drawing a
tree with boxes as nodes, and the other is creating a nested tree-like structure filling a form in a browser. At
this level, the sharing is not bidirectional as it is possible to upload SPLOT models in FeatureIDE but not in
the other direction. Sharing problems at this level can be solved by creating parsers enabling the upload of
models written using other tools. However, without an common language for sharing models, tool engineers
must develop as many parsers as tools exist.

Now, let’s imagine that the upload of models in both directions is solved. There are still issues to allow the
sharing of models between engineer A and engineer C . There is always the chance that their models are not
compatible at the language level. In the example, engineer A uses a tool supporting attributes and complex
constraints within his models. Since the tool used by engineer C does not support attributes nor complex
constraints, there is a big chance the parsing from A ’s models to C ’s models causes expressiveness loss.

In the example, engineers A and C use tools under the same paradigm since both are creating feature
models. Now, consider the problem when the sharing involves models designed under different paradigms.
Let’ include in the picture engineers B and D . Engineer B uses REFAS [MFTR+15], a modeling language

derived from goal models, designed to describe variability in self-adaptive systems. In contrast, engineer D

uses Dopler [DGR11], a decision-based modeling language. At the paradigm level, the problem goes beyond the
parsing between a concrete syntax to another, or the expressiveness loss when moving from a more expressive
language to a less expressive one. To allow the sharing of models between engineers B and D there must

Coffee

9 Chapter 1. Introduction

exist an encoding for mapping the variability units in both paradigms, i.e., transform goals into decisions,
and to describe the relations and constraints between those variability units. Thus, at the paradigm level the
complexity of the problem increases because of the need for numerous parsers and the expressiveness loss in the
parsing process still holds but the combinations in the mapping among compatible languages and tools explodes.

To summarize, the definition of a standard variability language must consider:

• The definition of an abstract variable item capable of representing variable items from different modeling
paradigms.

• The definition of a flexible structure to support models with different structures.

• The definition of an expressive set of variability relations and constraint language to avoid expressiveness
loss during the parsing.

In consequence, the design of a standard variability modeling language must consider the variability of current
variability modeling languages regarding the three conceptual levels, i.e., paradigm, language and concrete
syntax. A last but not least consideration is people because standards cannot be imposed. Languages become
standards because people use them and tool engineers include standard-compatible features in their tools. It is
particularly difficult to convince a community to move from one approach to another, specially when they have
successful cases with product lines deployed solving the problems they were designed for. The adoption of a new
modeling language wont happen until the new proposal has proven to be effective to solve the model exchange
problem and when the available tools include the export/import of models in a standardized representation.

1.2.2 Variability Analysis

Variability analysis encircles the methods, tools, and techniques used to extract information from variability
models [BSRC10]. Analysis tasks are central to develop and maintain variability intensive systems, particularly,
to preserve the quality of the model which highly impacts the quality of products in a product family. The
SPLE community acknowledges that variability analysis is an unfeasible task for humans and therefore requires
the support provided by automated mechanisms and techniques. In industrial settlements, variability models
may have hundreds or thousands of elements, as the number of variable items in a model grows, the number of
products increases exponentially. For instance, the vehicle product lines produced by the French manufacturer
Renault can lead to 1021 configurations [ACF10]. Without automated analysis, variability management tools
are just specialized diagramming applications.

Over the past 20 years, several works have contributed to provide variability management tools with analysis
mechanisms to automate different task. For instance, there exist analysis mechanisms for introducing steps
in the configuration process [WDSB09]; testing and managing product lines [PSK+10]; detecting anomalies
[TBD+08, SM12]; finding the causes of such anomalies [FBGR13]; suggesting a set of changes to remove defects
[TBD+08]; and performing multimodel operations [ACLF13, GDR+15] such as composing models through
merge and aggregation mechanisms. Benavides et al. present a comprehensive catalog of analysis operations in
their systematic review [BSRC10] continued in Galindo et al.’s work [GBT+18].

Tooling support for variability modeling and analysis techniques profit the usage of a two-step transformation

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.2. Problem statement and scope 10

framework frequently reported in the literature [MBC09, TKB+14, BSRC10, GBT+18]. Figure 1.2 illustrates
the two-step transformation framework adapted from [GBT+18].

Analysis
result

Operation

Model
Data

Logic paradigm

1 2

Translation Solver

Figure 1.2: Two-step transformation framework supporting variability analysis. Adapted from [GBT+18].

In the first step depicted in Figure 1.2, variability models are encoded into a logic representation using a
collection of specific transformation rules. The logic representation consists of a collection of variables and a
collection of relations between these variables represented as logic formulas or constraints. In the second step, one
off-the-shelf solver is used to solve the satisfaction problem composed by the logic representation and some extra
constraints to produce a result of a particular analysis task. There is no a unique logic representation for variability
models. Variability models can be represented using many different logic paradigms such as as Satisfiability
Problems (SAT) [Bat05, MBC09, TKB+14]; Satisfiability Modulo Theories (SMT) problems [UKB10, KAT16];
Constraint Satisfaction Problems (CSP) [BTRC05a]; and Constraint Logic Programming (CLP) [SMD+11a,
KOD13].

Variability models are represented using different logic paradigms not just because researchers in this area
are continually searching for logic representations better suited for variability models. This diversity of logic
paradigms, is mainly a consequence of the trade-off between the expressiveness of the modeling language and the
complexity of the logic paradigm needed for represent such models [MP14, BSRC10, EKS13, GBT+18]. That is,
more expressive languages pose significant challenges to analysis mechanisms because they require more complex
logic paradigms. For instance, logic formulas in CNF encode basic feature models straightforwardly [MBC09].
In contrast, other modeling languages supporting attributes, feature cardinality, and complex constraints
require integer variables and arithmetic constraints and are frequently encoded as constraint satisfaction
problems [EKS13].

Two problematic situations derive from this diversity in logic representations. First, the usage of a more
complex logic paradigm to better capture the modeling language may impacts the performance of the analysis
mechanism. A more complex representation of a variability model (encoding) usually contains a greater number
of variables with larger domains and more complex constraints, i.e., variables with integer domains and arithmetic
and relational expressions. Second, different logic representations require different transformation rules and
therefore different implementations of the analysis operations. Then, tool engineering usually comes with an
in-house implementation of the entire transformation chain. Therefore, there exist several versions of the same
framework implemented in different ways. The reimplementation of the analysis framework somehow contributes
to the sharing and portability of variability management tools and overlooks the community consensus regarding
analysis operations, e.g., there is a catalog [BSRC10] and a formalization [DBS+17] of the semantics of the
analysis operations.

After a logic paradigm is chosen, the next step is not straightforward. The strong dependency between the
language’s expressiveness and the logic paradigm impacts the selection of technologies for engineering variability

Coffee

11 Chapter 1. Introduction

management tools. Moreover, this decision must consider a broad space of possibilities between transformation
rules and solving tools. For instance, tools encoding models as logic formulas can use rules from a large set of
proposals such as Mannion [Man02], van Deursen [VK02], Batory [Bat05], and Mendonć a [MBC09] to mention
some. At the same time, these tools can exploit the characteristics of SAT or BDD solvers such as SAT4J,
Buddy, PicatSat, and SPASS-SATT, among other solvers. Then, the questions which set of transformation rules
and which solving tools should be included in the implementation of the transformation chain? are questions that
are answered regarding the experience of the engineering team. In consequence, there exist several versions of
the two-step framework implemented in different ways as tool engineering produces an in-house implementation
of the entire transformation chain.

A lesson I learned as part of the engineering team of the VariaMos tool-suite [MSD12a, MMFR+15] at the
Centre de Recherche en Informatique, is that the transformation chain can be re-implemented several times
in one tool when it integrates different variability languages or different solvers even if there is only one logic
paradigm. Variability models in VariaMos are represented using constraint logic programming and can be solved
with any of the Prolog-derived solvers. However, the addition of a new modeling language in VariaMos involves
the definition of the rules for encoding a model as a constraint problem in CLP. In addition, the inclusion of a
new Prolog-derived solver in the tool demands the definition and implementation for parsing a model in its
CLP representation into a solver-readable code. The late because there exist differences in the concrete syntax
of the Prolog-derived solvers.

The awareness about the needs and advantages of defining a standard for variability modeling languages left
behind the diversity concerning the logic paradigm and solving tools supporting analysis tasks. However, further
efforts should be invested to build benchmarks regarding transformation rules and solving tools as well as the
collaborative construction of a standard library for analysis tasks that profits from the knowledge produced by
the research community. Moreover, it is important to consider the diversity in these concerns to be able to
adapt the transformation chain to new logic representations, transformation rules and solving tools.

1.2.3 Research Objective and Research Questions

This thesis addresses the problems regarding the interoperability between variability management tools, the
diversity among variability modeling languages, and the strong coupling in the framework supporting analysis
tasks. To contribute in solving these problems from an intermediate languages point of view, this thesis addresses
the following research objective.

Research Objective.

Explore the usage of intermediate languages to ease the interoperability of variability management tools by
designing a constraint-based framework supporting an expressive variability language and a flexible automated
analysis mechanism. To achieve the research objective, the following three research questions were addressed.

Research Questions

RQ1: How the usage of a unified variability modeling language can ease the interoperability among variability
management tools?

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.2. Problem statement and scope 12

The research presented in this dissertation elaborates over the hypothesis of the usage of intermediate
representations as decoupling mechanisms. Thus, the solution to interoperability problems from the variability
modeling point of view, considers the design and implementation of an expressive variability modeling language
able to unify current languages and represent variability relations in a comprehensive way. This language should
be used as modeling language and as an intermediate representation to encode variability modeling languages
for sharing and porting models among tools. Expressiveness is the most important characteristic of the proposed
language because it must encompass the variability constructs from different languages and tools. That is, the
language constructs must be sufficient to encode models produced in current tools avoiding expressiveness loss
in the encoding process. Also, the language should provide constructs to model variability relations than are
less common but potentially useful for describing variability. RQ1 can be refined in the following subquestions.

RQ1.1 From a theoretical perspective, what are the characteristics of an expressive variability modeling
language?

RQ1.2 What are the characteristics of a variability modeling language for being considered as exchange
format in different modeling tools?

RQ1.3 How to define a variability modeling language avoiding the implementation dependency?

These subquestions will guide the design of an expressive variability modeling language centered on expres-
siveness, considering the community it is designed for, and the approach required to define a language whose
syntax and semantics are independent from any particular implementation.

RQ2: How intermediate representations support the automated analysis of variability models with a flexible
approach?

The frameworks supporting automated analysis of variability models are limited by the trade-off between
expressiveness and analysis capabilities, and the coupling among logic paradigms and the solving tools. However,
analysis tasks over variability models are critical for variability management. Thus, any modeling language
requires the definition of an analysis framework. The resulting modeling language this thesis intends to define is
not the exception. Following the central hypothesis of exploiting intermediate representations of variability
models, this thesis aims to develop an analysis mechanism encompassing the expressiveness of the modeling
language in a solver-independent way. To provide solver independence, this thesis exploits the advantages of
different logic representations and solvers. RQ2 can be refined in the following subquestions.

RQ2.1 Which logic representation is best suited for encoding variability models described with an expressive
modeling language?

RQ2.2 Which set of transformation rules should be considered to encode variability models?

RQ2.3 What are the characteristics of the abstract language used for encoding variability models as constraint
satisfaction problems solvable by different solvers?

The answers to these questions are useful to design and evaluate the approach for supporting analysis tasks to
analyze variability models in the high-expressive variability modeling language.

Coffee

13 Chapter 1. Introduction

RQ3: How intermediate representations can be integrated in a framework to ease the interoperability of
variability management tools?

The first and second questions are about how to solve particular problems about variability modeling and
analysis. This question is about the integration of the modeling and analysis proposals as a framework for
variability management. RQ3 can be refined in the following subquestions.

RQ3.1 How to support the variability management workflow from modeling to answering particular analysis
questions?

RQ3.2 How can variability management tools interact or be integrated into the proposed workflow of the
framework?

This research studies the modeling and variability analysis models as two different concerns. RQ3 and its
associated subquestions consolidate these concerns in one framework where the variability among modeling and
analysis tools is not an issue for sharing and porting variability models.

1.3 Research method
The overall research work for this thesis has been executed under the principles of Design Science Research
(DSR). The following subsections briefly presents DSR, describe the stages of the research reported in this thesis
and how those stages meet the DSR process and principles.

1.3.1 Design Science Research

DSR is a research paradigm frequently used for research in the Information Systems domain. DSR consists in
the design and evaluation of artifacts intended to solve identified organizational problems [HMPR04]. These
artifacts are developed and used in a context that includes people, organizations, and technical systems (problem
environment). The research framework proposed by Hevner et al. in [HMPR04] encompasses three closely
related cycles of activities. Figure 1.3 presents the Design Science Research framework as depicted by Hevner et
al. in [Hev07].

Environment Design Science Research Knowledge Base

Application Domain Foundations

Problems & Opportunities
Organizational Systems
Technical Systems
People

Scientific Theories and Methods
Experiences & Expertise

Meta-Artefacts
Design Products &
Design Processes

Relevance Cycle
Requirements
Field Testing

Rigor Cycle
Grounding

Additions to KB
Evaluate

Build Design &
Artifacts and
Processes

Design
Cycle

Figure 1.3: Design Science Research Cycles from [Hev07]

The design cycle is the core of the DSR project. This cycle iterates between the construction and evaluation
of design artifacts. Figure 1.3 illustrates the central design cycle and how it connects both, the relevant and the
rigor cycles. The relevance cycle consists in identifying and representing opportunities and problems in the

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.3. Research method 14

application environment. This cycle produces the set of requirements used as acceptance criteria to evaluate
the artifacts produced in the research process. The rigor cycle provides researchers with the scientific theories,
engineering methods, experiences, and expertise that serves as research foundations. This cycle also receives the
additions to the knowledge base produced in the design cycle.

1.3.2 Research Phases

The research project reported in this thesis contains two phases: the exploration phase and the definition phase.
Each phase constitutes one iteration of the central design cycle executed to answer the research questions.

The exploration phase consisted of the conceptualization, exploration, and evaluation of the state-of-the-
art HLCL framework. The HLCL framework takes its name from the High-Level Constraint Language, an
abstract language to represent variability models from different notations developed at the Centre de Recherche
en Informatique. The HLCL framework is embedded on early implementations of the VariaMos tool-suite
[MMFR+15] and evolved through the research of Djebbi & Salinesi, Salinesi et al., Mazo et al., and Munoz-
Fernandez et al. [DS08, SMD+11a, MSD11, MFTR+15].

The motivation to start with an exploration of the HLCL framework is twofold. First, the hypothesis of the
applicability of intermediate representations developed in this thesis is compatible with the premise to include one
extra-step to represent variability models using an abstract constraint language. Second, the HLCL framework
had proven useful for representing different variability languages [SMD+11a, MSD+12b, MFTR+15], and for
supporting verification and configuration of variability models in those languages [MSD+12b, SM12, MFTR+15].
However, this framework and its implementation in the VariaMos tool suite are part of the ecosystem of
non-compatible variability management tools. Then, the evaluation of the extent of the HLCL framework from
a practical and formal perspective were primordial to a better understanding of the problem and its perspectives
for solution. The exploration phase included three main activities detailed as follows.

Activity 1. Conceptualization and literature review. This research started with a study on constraint-based
transformation frameworks supporting variability management tasks. This conceptualization aimed to answer
questions about the limitations of constraint-based frameworks for variability management. The following is
the list of activities included in the conceptualization.

A.1. 1. Systematic mapping study on the application of constraints in product line engineering. The first
step in the conceptualization consisted of defining a classification framework to perform a systematic
mapping study. This mapping study followed the guidelines from the Evidence-Based Software Engineering,
particularly the guidelines from Petersen et al. [PVK15]. The aim of this study is to understand the reach
of constraint-based approaches in the life-cycle of variability intensive systems. Chapter 2 presents the
design, execution and results of this study.

A.1. 2. Refinement of the HLCL framework. The second step in the conceptualization was to apply the
learned concepts in the definition of a conceptual model for the HLCL framework. Conceptual models are
abstract simplified views of a system used to help people to understand or explain the system it represents.
The HLCL framework had been embedded in the VariaMos tool and introduced in previous publications.

Coffee

15 Chapter 1. Introduction

However, this framework lacked of a conceptual definition. The refinement of this framework is presented
in Chapter 3.

Activity 2. Practical evaluation. The second stage in the exploration phase includes designing, implementing,
and evaluating a constraint-based graphical notation for describing variability models. This graphical notation
was called Constraint Graphs. The practical evaluation’s objective consisted of experiencing the difficulties
faced by a tool engineer when implementing/extending the modeling and analysis capabilities in a particular
variability management tool. At this stage, I designed and developed the inclusion of constraint graphs as one
of the modeling languages in the VariaMos tool-suite and the implementation and evaluation of a verification
algorithm. The following is the list of sub-activities included in the practical evaluation.

A.2. 1. Definition and implementation of constraint graphs as a graphical notation for HLCL. Constraint
graphs graphically represent variability models described in the HLCL [MVSD]. This graphical representa-
tion was implemented in JAVA and included in the stand alone version of the VariaMos tool-suite following
the metamodeling approach proposed by Munoz-Fernandez et al. [MFTR+15].

A.2. 2. Implementation and evaluation of MEDIC4. MEDIC is a verification algorithm designed to detect
inconsistent constraints and graphically depict how these constraints are related. This information guides
designers on decision making when debugging and correcting variability models. MEDIC was implemented
in JAVA and included in the stand alone version of the VariaMos tool-suite. An evaluation of the accuracy
and performance of MEDIC-PLM was performed and we provided experimental evidence that the method
quickly provides the sources of inconsistencies and it is scalable to industry models.

The results of the practical evaluation were excluded from this dissertation since they did not impacted the
decisions about the design of the framework or any of its parts. Also, the constraints graph proposal, its
implementation, the verification algorithm and its evaluation are the main subject of an incoming publication
titled “MEDIC: Method to Diagnose Inconsistent Product Line Models using Constraint Graphs” to be
submitted to the journal of Requirements Engineering [MVSD].

Activity 3. Theoretical evaluation. This step is called theoretical evaluation because it is grounded on the
theory of ontological expressiveness introduced by Wand & Weber [WW93]. The theory of ontological
expressiveness is a well-founded evaluation framework also applied to evaluate other modeling languages such
as the entity-relation model [SMN+10]; UML [BJM08], the i? language [GFG12]; and BPMN [RRIG09].

A.3. 1. Ontological evaluation of the expressiveness of the HLCL as a modeling language. The final step in
the conceptualization consisted in the design and execution of an ontological evaluation aiming to measure
the expressiveness of the HLCL as a modeling language. This evaluation also considered Recker et al.’s
metrics to evaluate ontological expressiveness through completion and clarity: (1) degree of deficit, (2)
degree of excess, (3) degree of redundancy, and (4) degree of overlap [RRIG09]. Chapter 3 presents the
design, execution, and results.

The results of the evaluations showed several flaws in the original proposal. The intermediate representation
approach in the HLCL framework is useful for integrating different variability languages in one single tool.

4MEDIC is short for Method to Diagnose Inconsistent Product Line Models using Constraint Graphs

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.3. Research method 16

For example, VariaMos provides a graphical interface to describe variability of a single system using different
views and more than one notation [MMFR+15]. However, the benefits of the HLCL framework for supporting
different notations and solvers do not compensate for the drawbacks regarding the following key factors.

1. The HLCL exhibits incompleteness, lack of usability, and readability. At some point, to use this language
resembled replacing a programming language by assembly language: regardless of its benefits, to work
with large scale assembly programs without a higher level, more abstract language is an unfeasible
task. Additionally, from the implementation point of view, the approach to provide an in-house abstract
representation limits the constraints, functions, and operators available to represent variability models,
therefore, limiting the expressiveness level of the modeling language.

2. The extensibility of the tool implementing this framework, namely the inclusion of new languages and
new solvers, requires the definition and implementation of new transformation rules. The addition of a
new modeling language in the tool involves the definition of the rules for encoding variability languages
into HLCL representations. Additionally, the inclusion of a new solver demands the definition of the rules
for obtaining a solver-readable encoding. Then, the usage of an intermediate representation does not solve
the reimplementation of the transformation chain.

3. The intermediate representation of variability models using HLCL does not provide full-solver independence.
Indeed, the usage of multiple solvers in the HLCL is unpractical because it requires an extra transformation
step to encode HLCL representations into solver-readable code, as shown in Figure 3.3. Thus, the inclusion
of new solvers involves the definition and implementation of new transformation rules.

4. The intermediate representation of variability models using HLCL does not solve the issues regarding
the portability and sharing of models between tools. Variability models initially described in different
notations and later encoded into HLCL representations are useful for being analyzed in an integrated way
in the same tool [DTS+14, MFTR+15]. However, the HLCL framework replicates the portability issues
inside the intermediate representation layer as a consequence of the in-house definition and implementation
of the HLCL. HLCL is a subset of constraint programming containing the operators and expressions
employed to encode variability models. Therefore, a standard representation of constraint programming
may be a better candidate to encode models as constraints in a solver-independent way.

The second iteration of the design cycle considered the results obtained in the exploration phase. The following
paragraphs describe how the issues in the HLCL framework were addressed in the design, implementation and
evaluation of the framework presented in this dissertation.

The design phase is the second iteration of the design cycle. This phase covered the design, implementation,
and evaluation of the Co�ee framework. This framework deals separately with the modeling concerns and
analysis concerns as two parts of a single framework. The framework’s design exploits the hypothesis developed
in this thesis that introducing intermediate representations eases the interoperability between tools and the
coupling in tool’s implementations. Then, the second iteration encircles the following activities. Mind that the
activities listed below were not performed sequentially.

Activity 4. Conceptual modeling the Coffee framework. The conceptual model of the framework was proposed

Coffee

17 Chapter 1. Introduction

and iteratively refined during the design phase. Chapter 3 describes the conceptual model and presents its
components.

Activity 5. Design, implementation, and evaluation of the High-Level Variability Language (HLVL) HLVL is
the proposal of this thesis for a textual variability modeling language expressive and flexible enough to be
considered as modeling language itself and as an intermediate language to exchange models and ease the
portability of models and sharing issues between modeling tools. The design, implementation, and evaluation
consisted of the following subactivities.

A.5. 1. Definition of the syntax, semantics and characteristics for HLVL. The decisions taken in the
design of HLVL are consequences of results and lessons learned in the exploration phase. The language’s
design considered the modeling concepts gathered on the literature review, the criteria for ontological
expressiveness, the characterization of textual variability languages, the different modeling paradigms, and
the interchange with experts in the area. Chapter 4 details HLVL and its characteristics.

A.5. 2. Implementation of the HLVL’s platform. Implementation of the editor and tools to describe
variability models using the HLVL’s syntax. The software components produced in this activity rely on
Xtext, Xtend, and Java technologies. Chapter 5 presents the implementation of the HLVL’s platform and
its integration to the proposed framework.

A.5. 3. Ontological evaluation of the expressiveness of the HLVL. The final step in the definition of
the modeling language was to perform an ontological evaluation. This evaluation aims to ensure the
expressiveness of HLVL (cf. Chapter 5). Thus, the proposed language would be able to encode most
variability modeling languages without expressiveness loss.

Activity 6. Design and evaluation of the analysis framework. After addressing the problem of representing
variability models using an intermediate language without expressiveness loss, the next step was to provide a
framework to analyze HLVL models. The following are the subactivities performed to define, implement, and
evaluate the analysis framework.

A.6. 1. Definition of the Operational Semantics of HLVL. The general idea underlying operational semantics
is to define the steps in the computation of the output from program phrases or code segments [Plo81, Läm18].
Thus, the operational semantics of HLVL is a collection of transformation rules applied to transform a model
into a logic representation to perform satisfiability questions on solvers. Chapter 4 presents the operational
semantics for each language construct considering different logic representations and solvers.

A.6. 2. Demonstration of the feasibility of the context-aware analysis framework. The analysis framework’s
definition was completed with the definition of the architecture and the implementation of a prototype. The
accuracy of the solution was measured comparing the set of configurations obtained with an implementation
of Co�ee and the ones obtained with other management tools. Chapter 5 describes the particulars of the
implementation and discusses the obtained results.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

1.4. Summary of contributions 18

1.4 Summary of contributions
This thesis addresses the problems regarding the interoperability between variability management tools, the
diversity among variability modeling languages, and the strong dependencies in the automated analysis of
variability models. To solve these problems using intermediate languages, this thesis presents the following
original contributions:

1. A systematic mapping study in the subject of variability management tools supported by constraint-based
frameworks (Chapter 2). For this, a framework to analyze and compare the related literature is developed,
consisting of multiple facets regarding the variability modeling concepts translated into constraints, the
constraint systems used to encode variability models, the transformation rules to encode variability models
as constraint satisfaction problems and the solvers supporting analysis tasks.

2. A theoretical framework to evaluate the expressiveness of variability languages from the ontological
perspective. This evaluation framework is grounded on the theory of ontological expressiveness [WW93]
and its application for variability modeling languages proposed by Asadi et al. [AGWH12]. Also, the
evaluation framework relies on the the foundational ontology for variability included in the works of
Reinhartz-Berger et al. [RBSW11] and the metrics for determining the criteria for completeness and
clarity introduced by Recker et al. [RRIG09]. This framework was applied to evaluate the expressiveness
of constraint programming for representing variability models (Chapter 3) and the modeling language
proposed in this thesis.

3. The definition of a constraint-based transformation framework called Co�ee (Chapter 3). The definition
and implementation of the framework integrate the previous contributions, dealing with the variability
concerns and the analysis concerns separately but considering those concerns as a part of a single proposal.
Co�ee is a four-layered framework containing a collection of methods and artefacts to encode variability
models in HLVL, to encode HLVL models into constraint satisfaction problems, and to perform analysis
tasks using the solver-independent infrastructure.

4. The design and formal definition of a textual variability modeling language called the High Level Variability
language, HLVL for short (Chapter 4). The main goal of designing HLVL is to provide domain engineers with
a rich textual language to model variability in academic and industrial contexts. The main characteristics
of the language are its expressiveness from the ontological point of view and its flexibility to represent
concepts present in variability languages with different modeling styles. This language, can be used as
variability modeling language, and as intermediate representation of other variability languages. The
general idea is that variability models can encoded in HLVL as an intermediate form and can be interpreted
on other tools reducing the interoperability and sharing issues.

5. The definition of the operational semantics of HLVL in the form of inference rules considering the
context of the transformation (Chapter 4). This operational semantics deals with the trade-off between
expressiveness and analyzability by encoding HLVL models into satisfaction problems using two logical
paradigms. Also, variability models are encoded in a second intermediate representation using a generic
constraint representation provides a solver-independent solution. Thus, this proposal considers different
expressiveness levels, transformation rules, solving paradigms, and solving tools.

Coffee

19 Chapter 1. Introduction

1.4.1 Publications

This thesis extends and reuses contents of papers that are published, under review, or in preparation. Each
chapter in this dissertation references the corresponding publication or manuscript. The following is the list of
publications:

• Ángela Villota, Raúl Mazo, and Camille Salinesi. A CP-Based Framework for Product Line Engineering.
Forum Jeunes Chercheurs du congrés INFORSID (2016). Actes du 8 e Forum Jeunes Chercheurs congrés
INFORSID.

• Raul Mazo, Ángela Villota, Camille Salinesi and Daniel Diaz. MEDIC: Method to Diagnose Inconsistent
Product Line Models using Constraint Graphs. To be submitted to the Requirements Engineering journal.

• Ángela Villota, Raúl Mazo, and Camille Salinesi. On the Ontological Expressiveness of the High-Level
Constraint Language for Product Line Specification. In: Khendek F., Gotzhein R. (eds) System Analysis
and Modeling. Languages, Methods, and Tools for Systems Engineering. SAM 2018. Lecture Notes in
Computer Science, vol 11150. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-01042-3_4

• Ángela Villota, Raúl Mazo, and Camille Salinesi. 2019. The High-Level Variability Language: An
Ontological Approach. In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume B (SPLC ’19). Association for Computing Machinery, New York, NY, USA, 162-169.
DOI: https://doi.org/10.1145/3307630.3342401.

• Ángela Villota, Raúl Mazo,Camille Salinesi and Daniel Diaz. Constraints in Software Product Line
Engineering: a Classification Framework and Systematic Mapping Study. Manuscript in preparation.

1.4.2 Tools

Three different tools were developed during the Ph.D. These tools, are part of the artifacts developed at different
stages of the research as reported in Section 1.3. Table 1.1presents the links to the tools’ GitHub repositories.

Table 1.1: Summary of implemented tools

Tool Available at

MEDIC Personal Repository https://github.com/angievig/VARIAMOS,

https://github.com/angievig/MEDIC_TESTS

VariaMos Repository https://github.com/SPLA/VARIAMOS

HLVL Editor Personal repository https://github.com/angievig/Coffee/tree/master/HLVL

Co�ee Platform Project’s repository https://github.com/coffeeframework

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://doi.org/10.1007/978-3-030-01042-3_4
https://doi.org/10.1145/3307630.3342401
https://github.com/angievig/VARIAMOS
https://github.com/angievig/MEDIC_TESTS
https://github.com/SPLA/VARIAMOS
https://github.com/angievig/Coffee/tree/master/HLVL
https://github.com/coffeeframework

1.5. Road Map of the Dissertation 20

MEDIC. The design, implementation, evaluation, report, and deployment of the Method to Diagnose Incon-
sistent Product Line Models using Constraint Graphs (MEDIC). This work was carried out during the first
stages of the Ph.D. when I was developing a graphical representation for the High-Level Constraint Language.
As a result of this early exploration, I included the constraint graphs as a notation to describe variability in
the VariaMos tool suite. Additionally, I developed MEDIC, a diagnosis algorithm to detect inconsistent sets
on a variability model specified as a constraint graph. The diagnosis algorithm was also integrated into the
stand-alone version of the VariaMos tool suite. Moreover, the experimentation and benchmark related to the
design and development of MEDIC are part of an upcoming journal paper.

HLVL Editor. This tool supports the grammar and the operational semantics for an early version of the High-
Level Variability Language presented and discussed at the MODEVAR [VMS19]. This editor was implemented
in java using the Xtext technology.

Co�ee Platform. To support automated analysis associated to different variability languages, a microservices
architecture of Coffee was designed and developed. In this microservices version of the framework, each level
was implemented using Java and a REST API, then packed in a container to be deployed in the Docker swarm
located at Icesi University in Cali. The design and implementation of the Coffee microservices platform is part
of a project funded by Universidad Icesi with the colaboration of students from the i2t Lab.

1.5 Road Map of the Dissertation
This dissertation contains six chapters divided in three parts followed by an Appendix with auxiliary information.

Part 1, Motivation and Context. This part gathers the chapters delineating the research context, method, and
the state of the research associated to this thesis.

Chapter 2. State of Research presents a systematic review and a classification framework of the existing
research related to constraint-based frameworks supporting variability modeling and analysis. This chapter
presents a summary of the variability modeling concepts, transformation rules to encode models into logic
paradigms, and the solvers used in the automated analysis of variability models.

Part 2, Studies and Results. The second part of this dissertation presents three chapters containing the studies
concerning the main focus of this thesis: expressiveness of variability modeling and analysis support to expressive
variability modeling languages.

CH 3. From the Evaluation of the High-Level Constraint Framework to the Co�ee Framework summarizes
the results obtained in the evaluation of the HLCL framework performed during the exploration phase. This
chapter focuses on the design, execution and results of the ontological analysis for constraints as variability
modeling language. And more particularly, how the obtained results together with the experience obtained
on the exploration phase contributed to the conceptual modeling of the Co�ee framework. The chapter
closes with an overview of the framework.

Coffee

21 Chapter 1. Introduction

CH 4. Variability Modeling and Variability Analysis in Co�ee presents the High-Level Variability Language
HLVL its formal definition, operational semantics, and workflow from variability models to analysis process.
First, Chapter 4 introduces the language, describes its characteristics, presents the formal syntax and semantics
of the language. Second, the chapter explains how Co�ee supports automated analysis using a three-step
transformation framework to provide flexible, multi-language, and multi-solver support for automated analysis
of variability models specified in HLVL. The transformation framework proposed in this chapter, is described
in the form of inference rules in the definition of the operational semantics of HLVL.

Part 3, Results analysis, discussion and outlook. The last part of this dissertation further analyses and discuss
the results.

CH 5. Evaluation, Discussion, and Outlook presents the evaluations used to demonstrate the expressiveness
in the modeling language and the flexibility of the framework supporting variability analysis.

CH 6. Conclusions closes this dissertation with a summary of the results with respect to each research
question, discusses the impact of this research, and presents the perspective for future work.

Appendix. Appendix A presents additional information produced in the execution of the systematic mapping
study.

1.6 Summary
This chapter presented the context, the problem statement, addressed challenges, goals, and a contributions
overview of this dissertation.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Chapter 2
State of Research

This chapter shares contents with the following papers:
• Constraints in Software Product Line Engineering: a Classification Framework and Systematic

Mapping Study. Manuscript in preparation.
• The High-Level Variability Language: an ontological approach [VMS19]

This chapter presents a systematic literature study on constraint-based transformation frameworks supporting
variability management tasks. The aim of this study is to understand the reach of constraint-based approaches
in the life-cycle of variability intensive systems. The chapter is divided in four main sections. The first section
presents the research method designed following the guidelines from Petersen et al. [PVK15]. The second
section describes the classification framework. The third section presents the results and the answers to the
research questions. To close, the fourth section presents the discussion and perspectives of the results.

2.1 Motivation
In Evidence-Based Software Engineering (EBSE) research methods, systematic mapping studies are defined
methods to build a classification scheme and structure a field of interest [PFMM08]. As Petersen et al. emphasize,
once the number of publications in a research area reflects a rapid increase, an analysis of existing works becomes
important for a better understanding of that area and for identifying research gaps. In the domain of variability
management there are several detailed literature reviews. However, most of them are centered on tools using
feature-oriented languages. The most relevant literature reviews to this work are described as follows.

• Benavides et al. [BSRC10] and Galindo et al. [GBT+18]. In their paper, Benavides et al. presents
(1) an overview of the different approaches supporting analysis tasks for feature models; (2) a set of
transformation rules to encode feature-oriented models into logic expressions and constraint problems; and
(3) a comprehensive catalog of analysis operations for feature-oriented models. This work was continued
and extended in Galindo et al.’s work . This extension considered publications from 2010 and 2017 and
considering other variability-intensive systems different than software product lines.

• Lopez-Herrejón et al.’s two systematic mapping studies about search-based methods [LHLE15] and testing
[LHFRE15] on Software Product Lines. These works consider constraint approaches in the collection of

22

23 Chapter 2. State of Research

techniques for search-based methods and combinatorial interaction testing techniques for software product
lines.

• Two literature reviews about tools for variability management [ACF14, MTS+14]. Alves et al.’s systematic
literature provides an overview of the management tools that can be used as support the developing of
software product lines, while Meinicke et al. present a literature review about the tools for supporting
software product lines. These literature review contain an overview and a classification of tools for
analyzing variability models and as a set of desirable characteristics for product variability management
tools.

• The literature reviews by Eichelberger & Schmidt’s and ter Beek et al. [EKS13, ES15, tBSE19]. In
[EKS13], Eichelberger & Schmidt systematically analyze feature-oriented languages and discussing the
trade-off between the expressiveness of the modeling language and the complexity of the logic paradigm
needed for represent such models. Also, Eichelberger & Schmidt present in [ES15] a survey on textual
variability modeling languages. This survey presents a classification scheme to describe the capabilities of
textual variability modeling languages. Ter Beek et al. in [tBSE19] updated the later review consolidating
the classification scheme and including three textual languages.

The mapping study developed in this chapter aims to analyze and categorize the peer-reviewed literature,
their contributions, and corresponding applications. Also, this mapping study covers literature with variability
described in different modeling paradigms. Consequently, this chapter provides a clear view on (1) which
variability concepts are modeled with constraints; (2) how variability models are transformed into constraints;
and (3) how variability management is supported by solvers and variability-management tools. The outcomes of
this systematic mapping study are:

• Identifying the variability modeling concepts expressed as constraints.

• Characterizing the constraint-based software tools, and solvers used for variability management.

• Providing the practitioners with guidelines about the tools, techniques, and applications of constraint-based
approaches for variability management.

2.2 Research Method
The design of this mapping study follows the guidelines and methods proposed by Petersen et al. [PVK15] and
the recommendations for building systematic literature reviews proposed by Kitchenham et al. in [KPP+02].
Figure 2.1 depicts the five step process to conduct a systematic mapping study [PFMM08]. The following
subsections detail how each of the five steps were applied in this study, most artifacts, such as tables and list
are gathered in Appendix A.

1. Definition of
 research questions

Review scope

2. Conduct
search

All papers

3. Screening
of papers

Relevant
papers

4. Keyboarding
using abstracts

Classification
scheme

5. Data extraction
and mapping process

Systematic mapOutput

Stages

Figure 2.1: Systematic mapping study process [PVK15]

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.2. Research Method 24

2.2.1 Research Questions and Scope

The following research questions guide the current literature review1:

SMS.Q1 What variability concepts are modeled as constraints (described directly as constraints or transformed
into constraints)?
This questions drives the literature review to elicitate the variability modeling requirements. This question
was divided into the following three sub-questions:

• What is/are the paradigm(s) used to describe variability?

• What are the variability’s concepts used by the variability language used in the specification?

• Does the model specification include new constraints (different from the provides by the variability
notation)? What is the purpose of the inclusion of the new constraints?

SMS.Q2 What types of constraint systems (i.e., variables, domains, and constraints) are used to encode
variability models and for analysis purposes?
This question drives the literature review to understand the diversity in the transformation framework
supporting analysis tasks. This question was also divided into two sub-questions as follows.

• Which rules were applied to transform variability models into constraints?

• What are the types of the constraints and domains used in the transformation?

SMS.Q3 What are the characteristics of the solvers supporting variability management?
The support provided by solvers is relevant to delineate the nature of the solving needs in the area. SMS.Q3
produces the following subquestions:

• Do publications report the use of a solver?

• Which solver?

• What is the solver’s paradigm?

• How is the solver implemented? (as a library, language, stand-alone tool)

SMS.Q4 What are the characteristics of the variability-management tools?
This question is relevant to characterize constraint-based tools frequently for variability management. SMS.Q4
produces the following subquestions:

• Does the publication relates a constraint-based software-tool, or presents the implementation of a
software-tool?

• What is the name of the tool?

• What is the type of tool?

• What is the software tool used for?

1These questions are coded with the prefix SMS to indicate that they are in addition to the main research questions and are
addressed only in this chapter through the study of literature

Coffee

25 Chapter 2. State of Research

The research questions do not address variability modeling languages as the works in Eichelberger & Schmidt
[ES15] and Ter Beek, Schmidt, and Eichelberger [tBSE19] already define a classification scheme to describe
the capabilities of variability modeling languages. Moreover, these literature reviews represent a basis for
discussing future options and challenges towards the design of variability modeling languages. Consequently, the
evaluation of the modeling language proposed in this thesis will consider classification scheme in [ES15, tBSE19]
to compare the language against other proposals.

To conclude, the collection of questions and subquestions the systematic review process to analyze and
classify the research involving the constraint-based approaches in the life-cycle of variability intensive systems.
Additionally, the 13 subquestions conform the extraction questionnaire (See Appendix A).

2.2.2 Conduct Search for Primary Studies

The search considered the concordance of search strings in the title, abstract, and keywords of the studies
published since 1997. This year was chosen because is the year of the publication of the report for the first
Product Line Practice Workshop organized by the Software Engineering Institute (SEI).

Defining Search Terms

Based on the objective of finding publications discussing the application of constraint-based approaches in the
life-cycle of variability intensive systems, the search strings were built using three sets of terms. Table A.1 in
Appendix A presents the list of terms. Two search strings resulted from combining the sets of terms using the
logic operator AND.

1. The string produced from combining the first and second set of terms.

2. The string produced from combining the first and third set of terms.

The first group of terms in Table A.1 contains the set of terms related to variability management (i.e., modeling
and analysis). These terms were selected considering the terms used in secondary studies in the variability
management domain [ACF14, MTS+14, MP14]. The second group contains keywords regarding constraint-based
approaches. These terms were selected based on constraint programming, constraint logic programming and
satisfiability solvers. Finally, the third group of terms contains a list of solvers validated by experts.

Search Strategy

The search and selection of the set of relevant studies was conducted in three steps:

1. Manual Search. The search of relevant publications started by conducting a manual search over a
collection of conferences, workshops, and journals related to software engineering, software product line,
and constraint-based approaches. This manual search was useful for refining the search strings and testing
the inclusion/exclusion criteria. Table A.2 in Appendix A presents the list of selected venues. This list,
includes the venues from secondary studies in the SPLE domain [BSRC09, BSRC10, MP14, LC13] and
others relevant for constraint-based approaches.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.2. Research Method 26

2. Automated Search. The second step in the search strategy was an automated search introducing the
search strings into the search engines provided by Scopus and Web of Science (WoS). The selection of
Scopus and WoS instead of every particular database is justified because the search service provided by
Scopus indexes journals and proceedings of conferences residing in digital libraries in computer science
(i.e.: ACM Digital Library, IEEE-Xplore, Science Direct, Springer). Also, WoS allows the automated
search over journals and specialized publications in the computer science area.

3. Snowball Search. The search strategy has a complementary step with a snowball search. The snowball
search consisted of three activities (1) scanning the references in each paper (2) searching for related
papers using Google Scholar (3) examining the publications listed in DBLP for a set of frequent Authors.
This study consider a frequent author to each author whose name appears in five or more publications
in the collection of relevant papers (no matter the order of the names in the publication). To avoid
duplicates and redundancies, the snowball search considered the set of publications after applying the
exclusion/inclusion criteria to the papers obtained in previous steps.

2.2.3 Screening Papers - Inclusion/Exclusion Criteria

The screening of the papers at this stage allowed the elimination of publications complying with the search
strings but irrelevant to the systematic mapping study. Therefore, this stage requires an inspection of the title,
abstract, introduction, conclusion and in special cases, the entire paper until no doubts were left about its
selection. The following are the inclusion/exclusion criteria:

• The systematic mapping study includes publications with clear applications of constraint-based approaches
in the variability management context.

• The systematic mapping study excludes publications written in a language different to English and written
in the form of editorial, abstract, keynotes, and posters.

• The study includes publications of the same author with similar content. Publications of the same author
with similar contents are considered as independent studies and are relevant to understand the evolution
of the authors’ work.

• Secondary studies are gathered but not included in the list of selected documents. Secondary studies
are recorded to be used as references to evaluate the relevance of this systematic mapping study and to
analyze the related work.

As a result, this staged produced a collection of 137 relevant papers, out of which 87 belong to conference
proceedings, 28 are journal articles, 22 come from workshop proceedings, and ten are book chapters.

2.2.4 Data Extraction and Mapping Study Process

The data extraction of each paper followed a three-step process. This process was evaluated and tuned through
the conduction of a pilot review. This pilot included twenty papers randomly selected. As a result, the
instruments were adjusted. Section A.3 in Appendix A presents the extraction instruments.

Coffee

27 Chapter 2. State of Research

In the first step, the extraction of data is guided by answering the data-extraction questionnaire (cf. Section A.3,
Appendix A). The questionnaire contains a list of short-questions answered by assigning a predefined label
or category in the classification framework. This process caused the iterative extension of the classification
framework. The following section provides a detailed description of the classification framework and its
contributions for this chapter.

The objective of the second and third step was to gather bibliometric data. The second step required to
gather information about the authors, such as, the affiliation and countries. The third step was useful to ensure
the completion of bibliographic information in bibtex format.

2.2.5 Threats to Validity

Threats to validity of this mapping study are analyzed according to the following aspects: descriptive validity,
theoretical validity, and reliability accordingly to Petersen et al. definitions in [PVK15].

Descriptive validity refers to the accuracy and objectivity of the information gathered during the review
stage. To reduce the potential bias while recording the data, measures were taken during the review process and
regarding the information recording instruments. First, the protocol of this study includes a process to review
and extract the information of each paper in a systematically way. This process contains a series of steps to
ensure the recording of the relevant information and that all questions obtain an answer. Additionally, the review
process was assessed and adjusted during a pilot review. Second, the research questions were divided into an
extended set of questions where the answer is one or more elements in a predefined set. The reader may observe
that each facet in the classification framework corresponds to one of the extended questions (cf. Table 2.1).
Many iterations over the classification framework allowed us to adjust attributes and domains when needed.
This chapter presents the final version of the resulting framework.

Theoretical validity is determined by the ability to capture what the study intends to capture [PVK15]. This
mapping study ensures the theoretical validity by performing a suitable selection of primary studies. To that
end, measures were taken during different stages such as the search strings construction, search, and filtering
of the papers following a predefined set of inclusion/exclusion criteria. To address the threats regarding the
selection of search strings, this study presents a carefully selected collection of search terms from variability
management and constraints domains. From the variability management point of view, the selection included
search terms based on previous literature reviews, such as, [BSRC09, BSRC10, MP14, LC13]. Furthermore, the
constraint programming terms were selected based on keywords suggested by domain experts.

Another threat to validity comes from how the search for primary sources was carried out. To address the
threats regarding the search stage, this study proposes a three-level search including manual search, automated
search, and snowballing search. The manual search covered the most relevant venues in software product lines
and constraints domains. Also, the automated search with the help of Scopus and WoS search engines covered
the conferences and journals from different digital libraries, and specialized publications in the computer science
area. Finally, the collection of selected publications included the publications obtained by snowball searching
and a manual search over DBLP profiles of the most frequent authors in the set of publications.

To decrease the threats regarding the filtering process, the study incorporated the inclusion/exclusion criteria

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.3. Classification Framework 28

in the protocol and the reviewing process. The integration of inclusion/exclusion criteria as a measure ensures
the consistent filtering of all publications. Nevertheless, the first filtering was based mainly on the occurrence of
search strings on the titles and keywords, as well as a succinct read of the abstracts. In consequence, some
relevant papers related to the topic might have not been included.

Reliability refers to the accuracy of the conclusions drawn in relation to the data collected [PVK15].This
study reduced the possible bias in the interpretation of data, by conducting a series of assessment meetings.
These meetings allowed the main author of the thesis and her collaborators to evaluate and discuss the results
and conclusions. After all authors agree, the results and conclusions were included in the report.

2.3 Classification Framework
The classification framework is a hierarchical structure inspired in the works of Rolland et al. [RAC+98] and
Livari [Iiv89]. The hierarchical structure of the framework contains three levels: views, facets, and categories.
Views represent subjects, they associate the facets to a specific focus in the classification. A facet represents a
classification criterion that is related to a set of categories.

Table 2.1 summarizes the classification framework. It contains three views: modeling, transformation, and
support. Their brief introduction is presented below:

• The modeling view relates the facets associated to syntax and semantics of variability (i.g. concepts,
aspects, tasks, processes).

• The transformation view gathers the facets related to the constraint systems and rules employed in the
transformation of variability models into constraints.

• The support view is used in the classification of the constraint-based software tools employed to support
variability management.

The next subsection provides a detailed description of the set of facets in the classification.

2.3.1 Modeling-centered Facets

The facets and categories in the expressiveness view answer the first research question (SMS.Q1). Three facets
compose the expressiveness view: the modeling paradigm, the modeling concepts, and the variability enhance
facets. The modeling concepts facet contains the glossary of variability modeling concepts obtained in this
literature review and published in the paper [VMS19].

Modeling Paradigm

The modeling paradigm is the approach employed to capture variability in the form of models, programs or
code. The modeling paradigm defines the semantics of the variability unit, the structure of the model, and the
configuration process. Variability is documented in one of the following paradigms:

1. Feature-oriented models, where the variability unit are features. Feature-oriented models comprehend
numerous languages derived from FODA [KCH+90].

Coffee

29 Chapter 2. State of Research

Table 2.1: Classification scheme with multiple facets and their associated categories.

View Facet Categories

Variability
modeling

Modeling paradigm feature-oriented, variation point-oriented, decision-oriented, constraint-oriented,
goal-oriented, UML-based.

Modeling concepts vari-
ability units

Type-Boolean, Type-non-Boolean, single-valuation, multiple-valuations, single-
instance, multiple-instances, attributes, attached-info.

Modeling concepts vari-
ability relationships

Commonality, decomposition one-to-one, decomposition one-to-many, simple,
propositional, first-order, relational, arithmetic.

Variability-
enhancement

Visibility, conditioned inclusion, conditioned exclusion, quantified implication,
global, traceability, soft-constraints, NFRQ, time.

Transformation
Constraint Systems Integers, Booleans, Real numbers, symbolic, special variables.

Transformation Rules Ri, 1 i 23

Support
Solver implementation Programming language, library, tool.

Solving paradigm SAT, BDD, SMT, ILP, MILP, CSP, CLP, extended.

Software-tool - Type language, algorithm, tool, or variability-management tool

Software-tool - evolu-
tion

Use, extend. propose.

Software-tool - imple-
mentation

Prototype, Plugin, Stand-Alone, Web-Application

Software-tool - function Analysis, verification, configuration, testing, derivation, simulation, synthesis

2. Variation point-oriented models, where variation points and variants are the variability units. Variation
point-oriented models document variability in a different and dedicated model separating the variability
documentation from the documentation of the software development artifacts [PBvdL05].

3. Decision-oriented models, that use the concept of decisions and dependencies among decisions to describe
variability in the form of decision models or tables [DGR11].

4. Constraint-oriented models, that use constraint-expressions directly to describe variability (not trans-
formed).

5. Goal-oriented variability models, use goals as variability unit to represent variability for self-adaptive
software systems [SMD+12]. These models define the relationships between a system and its environment
to produce configurations at runtime.

6. UML-based variability models, include variability information within the documentation of the software
development artifacts using UML or extending the UML syntax [LDSSHC15b].

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.3. Classification Framework 30

Modeling Concepts

The modeling concepts in variability languages enable the modeler to answer two questions about the variability-
intensive system to be modeled: what does vary? and how does it vary? [PBvdL05]. Modeling concepts in
variability languages are tools (1) to identify and document the variable items in a system; (2) to identify
the set of possible options or variants associated to variable items in the system; (3) to identify the rules for
determining how items can be combined into new configurations; and finally (4) to produce variability models.
Modeling concepts are grouped in the facets related to variability units and related to the variability relations.

Variability Units Facet. Variability units are the key concept used to model variability in a language [CGR+12].
They represent variable items in a system or domain, that is, those aspects that must be chosen by the customer
or engineer in a configuration process. For example, features are the variability units in feature models, decisions
in decision models, and variation points, variants are the units in OVM models. The following are the categories
for the variability units facet:

1. Regarding the type. The type of a variability unit is defined by the number of variants it is associated with.
There are two categories regarding type: Boolean and non-Boolean. Variability units are Boolean when
they are associated with exactly two variants: {selected, unselected}, as in feature models. Non-Boolean
variability units have more than two variants. For example, numeric features in feature-oriented models,
or decisions in decision models.

2. Regarding the number of valuations. The number of valuations is the amount of variants a variable item
is assigned in the configuration process. There are two categories regarding number of valuations: single
and multiple. Single valuation units are associated with only one value in the set of variants. For instance,
features are linked either to the selected or unselected value, but not both. Multiple valuation units can
be associated to more than one variant after the configuration process. For instance, industrial languages,
such as Gears, allows the units to be declared as sets, or records that can be assigned to more than one
value [Kru07].

3. Regarding the multiplicity. Multiplicity represents the number of instances a unit may appear in a config-
uration. Some variability languages allow annotations affecting the variability units using multiplicities in
a UML style. There are two categories regarding the multiplicity: single-instance and multiple-instance.
Single-instance units have a unique instance in the configuration. Multiple-instance units may have more
than one instance.

4. Attributes. Attributes are labels linked to variability units. They are not variability units by themselves,
as they represent properties or particular characteristics of variable items in a system. There is no
consensus on a notation to define attributes. Most proposals agree that their definition should include a
type, a name, a domain, and optionally a value. [BSRC10].

5. Attached information. Attached information does not modify the semantic of the model. However, some
languages allow the introduction of comments or labels attached to the variability units to provide extra
information.

Coffee

31 Chapter 2. State of Research

Variability Relationships Facet. The variability relationships determine the rules to select and recombine items
into new products. Variability relations are often presented as dependencies or constraints and are usually
denoted graphically (i.e., using arrows) or textually (i.e., logic formulas, OCL). Variability models contain more
than one variability relationships. These relations can be classified as follows:

• Commonality relationships are rules for defining items that always appear in any configuration. This rule
is implicit in some languages, e.g., root feature in feature models, or non-existent as in decision models.

• Hierarchy-Decomposition relationships are n-ary relations where one item plays the role of parent, and the
other are the children. This parent-child relation imposes a constraint in the configuration because no child
can be part in a configuration without the inclusion of its parent. There are two types of decompositions:

1. On-to-one decompositions relate pairs of items. There are two types of decompositions: mandatory
and optional. In mandatory decompositions, the child is included in all products in which its parent
appears. Instead, in optional decompositions, the child can be optionally included in all products in
which its parent appears.

2. One-to-many decompositions relate one parent and a group of children. This relation restricts the
minimum and the maximum number of children that may be included in a configuration when their
parent is selected.

• Constraint expressions are used to include complex rules between variable items in a model. These
constraint expressions are often used to specify extra-functional information or to include contextual rules
[KOD13]. Regarding the operators in the expressions there are five categories of constraint expressions as
follows:

1. Simple constraints, where the language provides the constructs to define the inclusion/exclusion of
items e.g., requires and excludes.

2. Propositional constraints, where the language supports expressions in propositional logic.

3. First-order constraints, that are included to support expressions in first-order logic.

4. Relational constraints, that are included to support relational operations.

5. Arithmetic constraints, where the language includes arithmetic operators usually to introduce
calculations containing attributes and non-Boolean variability units [KOD10b].

Variability-enhance Facet

A limited number of primary studies in the review included new constructs or constraints to enhance variability
descriptions. This facet presents seven categories grouped by constructs and constraints.

Constructs. The following are the categories of variability relationships expressed with language constructs:

1. Visibility constraints, that are relationships conditioning the availability of other variability items. Visibility
relations are considered a type of hierarchical relations because they are used to compartmentalize items,

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.3. Classification Framework 32

as in different views, e.g., for different stakeholders [CGR+12]. Visibility relations are a common construct
in decision-oriented languages such as Dopler [DGR11].

2. Conditional inclusion/exclusion relationships, that are rules for restricting the inclusion/exclusion of
variable items given a condition. Languages such as CO-OVM[DTS+14], and extended-feature models in
[KOD13] allow the usage of complex expressions to condition the inclusion/exclusion of variable items
using logic expressions.

3. Quantified requires, that is a relationship introduced by Quinton et al. [QRD13] and revisited in other
studies. This relationship conditions the number of instances of a variable item required to include another.

Constraints. The following are the classification of the types of constraints included in variability models to
enhance the variability specification:

1. Global constraints are used for incorporating constraints among attributes and features, regardless the
tree structure of variability models [KOD10a].

2. Traceability constraints are relations between features and sets of artifacts implementing the corresponding
features [MRM+12].

3. Soft-constraints are relations between elements and values, which satisfaction is desirable rather than
required. They represent context rules in self-adaptive systems modeled as dynamic software product
lines [SMD+12], [MFTR+15].

4. Optimization constraints are constraints related to an objective function that should be maximized or
minimized (or both in multi-objective optimization problems).

5. Non-Functional Requirement Constraints (NFRQ) are expressions used in domain analysis, for specifying
variability requirements when extra-functional information is included.

6. Time constraints are constraints introduced to declare relationships that affect the order or time a
variability item is configured.

2.3.2 Transformation-centered Facets

The transformation centered facets contains the categories to answer the second research question (SMS.Q2).
Two facets compose the transformation view: the constraint system and the transformation rules facets. The
following subsections present the facets and their categories.

Constraint System

A constraint system specifies the types of variables and kinds of constraints a solver can handle in terms of
sets, functions, and predicates [SR90]. The constraint system facet classifies the publication regarding the type
of variables and constraints used to formulate constraint problems. Variability models are transformed into
constraint satisfaction problems using the following constraint systems:

Coffee

33 Chapter 2. State of Research

1. Constraint systems over integers where the variables may range in a set of positive integers also known as
finite domains. These constraint systems use arithmetic and relational operators and global constraints
provided by the solver.

2. Constraint systems over Booleans where the variables in the constraint problem may range over Booleans
in the set of values is {True, False} or equivalently, in the integer domain {0, 1}. Boolean variables have
constraints expressed using logic formulas.

3. Constraint systems with variables ranging over Real numbers. Solvers with the capability to deal with
variables ranging over Real numbers require special algorithms or techniques, such as interval arithmetic,
or linear programming algorithms.

4. Constraint systems where the variables may contain non-numeric values ranging over symbolic domains.
The constraints in these systems are often provided by solver’s special packages or libraries.

5. Constraint systems with special variables, such as sets and records. Similarly to symbolic domains, the
constraints for sets and records are provided by special packages or libraries.

Transformation Rules

As recurrently explained above, the encoding of the variability model as a constraint programs is a requisite to
perform variability analysis. The categories in the transformation rules facet corresponds to the list of documents
containing new proposals or extensions of transformation rules. Table 2.2 presents the list of publications, each
with its first author, the publication year and the title of the publication.

Table 2.2: List of publications proposing or extending transformation rules.

Id Reference First author Year Title

R1 [SS02] M. H. Sørensen 2002 From Type Inference to Configuration.

R2 [Man02] M. Mannion 2002 Using First-Order Logic for Product Line Model Validation.

R3 [VK02] A. van Deursen 2002 Domain-specific Language Design Requires Features Descriptions.

R4 [ZZM04] W. Zhang 2004 A Propositional Logic-Based Method for Verification of Feature Models.

R5 [BTRC05a] D. Benavides 2005 Automated Reasoning on Feature Models.

R6 [Bat05] D. Batory 2005 Feature Models, Grammars, and Propositional Formulas.

R7 [SZFW05] J. Sun 2005 Formal Semantics and Verification for Feature Modeling.

R8 [BSTRC06a] D. Benavides 2006 A First Step Towards a Framework for the Automated Analysis of Feature Models.

R9 [BSTRC06b] D. Benavides 2006 Using Java CSP Solvers in the Automated Analyses of Feature Models.

R10 [CW07] K. Czarnecki 2007 Feature Diagrams and Logics: There and Back Again.

R11 [DS07] O. Djebbi 2007 RED-PL, a Method for Deriving Product Requirements from a Software Product
Line Requirements Model.

Continue on the next page

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.3. Classification Framework 34

Table 2.2: Transformation rules and supported concepts. (cont.).

Id Reference First author Year Title

R12 [DS08] O. Djebbi 2008 Towards an Automatic PL Requirements Configuration through Constraints
Reasoning.

R13 [EPAH08] O. A. Elfaki 2008 Knowledge Based Method to Validate Feature Models.

R14 [FO09] R. Finkel 2009 Reasoning About Conditional Constraint Specifications.

R15 [WNS09] L. Wang 2009 Constraint Satisfaction Approach on Product Configuration with Cost Estimation.

R16 [KOD10b] A. Karataş 2010 Mapping Extended Feature Models to Constraint Logic Programming over Finite
Domains.

R17 [RFBC10] F. Roos-Frantz 2010 Automated Analysis of Orthogonal Variability Models using Constraint Program-
ming.

R18 [SMDD10] C. Salinesi 2010 Using Integer Constraint Solving in Reuse Based Requirements Engineering.

R19 [CBH11] A. Classen 2011 A Text-based Approach to Feature Modelling: Syntax and Semantics of TVL.

R20 [DFH11] D. Dhungana 2011 Configuration of Cardinality-based Feature Models Using Generative Constraint
Satisfaction.

R22 [MGH+11] R. Mazo 2011 Using Constraint Programming to Verify DOPLER Variability Model.

R23 [SMD+12] P. Sawyer 2012 Constraint Programming as Means to Manage Configurations in Self-Adaptive
Systems.

R24 [SHTB07] P. Schobbens 2007 Generic Semantics of Feature Diagrams.

R25 [BSTRC07] D. Benavides 2007 FAMA: Tooling a framework for the Automated Analysis of Feature Models.

R26 [TMV+16] A. Tidstam 2016 Formulating constraint satisfaction problems for the inspection of configuration
rules.

R27 [WLS+16] M. Weckesser 2016 Mind the gap! automated anomaly detection for potentially unbounded cardinality-
based feature models.

R28 [MOP+19] D. Munoz 2019 Uniform Random Sampling Product Configurations of Feature Models That Have
Numerical Features.

2.3.3 Support-centered Facets

The Support view gathers the facets and categories to answer the third and fourth research questions (SMS.Q3).
Three facets compose the support view: the implementation approach facet, the solving paradigm facet and the
software tool facet. The next subsections will expand the description of the facets and its categories.

Implementation approach

This facet drives the classification of primary studies regarding the approach used for implementing the solver.
There are three categories to classify a solver regarding the implementation approach:

Coffee

35 Chapter 2. State of Research

1. Solvers provide implementations using programming languages that include the notion of constraint and
solving techniques. These programming languages include a solver and provide the APIs for calling the
procedures and queries to the solver as native constructs in the language.

2. Solvers may be implemented as libraries provided by languages where the constraint satisfaction is not
one of the main concepts, for instance, there is the CHOCO library for Java and GECODE for C++.

3. Solvers can be implemented as software-tools. In this sense the solver is an external black-box that
communicates with the principal program by a defined interface. For instance, solvers implemented as
tools such as Yices, PicoSAT, and Z3.

Solving paradigm.

This facet drives the classification to determine he paradigm employed for modeling and solve the constraint
satisfaction problems. The solving paradigm is related to the approach to encode variability models into
constraint satisfaction problems for analysis purposes. The following are the four categories in the solving
paradigm facet:

1. Solvers specially designed to solve propositional Satisfiability Problems (SAT). Solving SAT problems is
to decide if there is a truth assignment under which a given propositional formula (written in conjunctive
normal form) evaluates to true. The SAT problem is formulated as follows (from [CLRS09]): an instance
of SAT is a boolean formula f composed of:

(a) n boolean variables: x1, x2, . . . , xn;

(b) m boolean connectives: any boolean function with one or two inputs and one output, such as ^
(AND), _ (OR), ¬ (NOT), ! (implication), $ (if and only if); and

(c) parentheses.

A truth assignment for a boolean formula f is a set of values for the variables of f . A satisfying assignment
is a truth assignment that causes a formula f to evaluate to True. A formula with a satisfying assignment
is a satisfiable formula. The satisfiability problem asks whether a given boolean formula is satisfiable:
SAT = {hfi : f is a satisfiable boolean formula}.

2. Solvers for Binary Decision Diagrams (BDD), these solvers also solve the satisfiability problem. The
particular characteristic of BDD solvers is that the input is a logic formula represented as a data structure
(binary decision diagram). BDD solvers provide functionalities as determine satisfiability and obtain the
number of possible solutions.

3. Satisfiability Modulo Theory (SMT) solvers solve a generalized form of SAT problems. SMT solvers
combine propositional logic with domain-specific reasoning. Therefore, input formulas are evaluated with
respect to combinations of theories such as arithmetic, uninterpreted functions, data structures, etc. In
general, SMT solvers determine if a ground first order formula is satisfiable regarding a background theory
incrementing the expressiveness by including variables ranging in different domains than Booleans.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.3. Classification Framework 36

4. Solvers for Integer Linear Programming (ILP) and Mixed Integer Linear Programming (MILP). These
ILP and MILP are common approaches to solve optimization constraint problems with Real and Integer
variables [BDRG10, Hei13]. The goal for solving a linear-programming problem is to optimize a linear
function subject to a set of linear inequalities. Formally, from [CLRS09], given a set of real numbers
a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, we define a linear function f on those variables by
f(x1, x2, . . . , xn) = a1x1+a2x2+ · · ·+anxn =

Pn
j=1(ajxj). If b is a real number and f is a linear function,

then the equation f(x1, x2, . . . , xn) b and f(x1, x2, . . . , xn) � b are linear inequalities, also called linear
constraints. Therefore, a linear-programming problem is the problem of either minimizing or maximizing
a linear function subject to a finite set of linear constraints.

5. Solvers for Constraint Satisfaction Problem (CSP). CSP solvers combine inference and search techniques
to find one or more solutions to constraint satisfaction problems. Formally, from [RvBW06], given a set
of variables X = {x1, . . . , xn} and a set of domains D = {D1, . . . , Dn}, a CSP P is defined as a triple
hX,D, Ci where C is a set of constraints on X. Each constraint c in C is a relation defined on a sequence
of k variables X(c) = (xi1, . . . , xik). Constraints can be specified extensionally by the list of its satisfying
tuples, or intensionally by a formula that is the characteristic function of the constraint.

6. Solvers for Constraint Logic Programming (CLP). CLP is an approach used to solve constraint satisfaction
problems combining two declarative paradigms: constraint solving and logic programming [RvBW06].
Then, CLP solvers includes the rules, predicates, unification and resolution from the logic programming
paradigm within the propagation and search techniques from CSP solvers. The mixture of paradigms in
CLP provides powerful tools to the modeling and solving of constraint problems.

7. Extended solvers, gathers the solvers for not so frequently used approaches such as Answer Set Programming
(ASP-SAT) and Quantified SAT (QSAT), among others. Answer set programming solvers are used to
specify variability in a conditional fashion and later configure products with the help of Alloy [FO09].
QSAT solvers are employed to solve satisfiability problems with quantified formulas [MRM+12].

Software tool

This facet guides the classification of other software-tools (different than solvers) used for supporting variability
management. In this section a software tool is defined as a software element in the form of compilable or
executable code or application employed in the development, repair, or management of a variability intensive
system. The following are the categories in the software-tool facet:

Regarding the evolution of the software tool, a publication in the review may belong to one of the following
categories:

1. Use, when the work uses a constraint-based software tool for variability management that is not the main
contribution in the publication.

2. Extend, when the publication includes the contribution as an extension of an existent software tool.

3. Propose, when the publication introduces a software tool.

Coffee

37 Chapter 2. State of Research

Regarding the type of software a software-tool reported in a publication belongs to one of the following
categories:

1. Variability-management tool.

2. Modeling language.

Regarding its implementation a software-tool in a publication may be classified as:

1. A prototype, or a tool that serves as a feasibility test to assess the practicality of the proposal in the
publication.

2. Plugin, that is a software solution presented as a piece or constituent of other development tools, such as
Integrated Development Languages (IDE).

3. Stand-alone tools or programs that can work offline, i.e., does not necessarily require network connection
to function.

4. Web applications or tools that require a browser and internet connection to work properly.

Regarding the functionality provided by the tool. The categories are the following:

1. Variability modeling when the software tool provides a mechanism to document variability either graphically
or textually.

2. Analysis when the software tool provides any of the analysis operations.

3. Verification is a particular case of analysis. Verification is the evaluation to determine if a product, service,
or system complies with a regulation, requirement, specification, or imposed condition [PMI13].

4. Product configuration is the activity of solving the software product line model and searching the set of
components that meet the constraints in the variability models and, the customers’ requirements.

5. Testing a variability intensive system is a process that solves one of two problems: (1) test case generation
[UGKB08] or (2) product generation [PSK+10].

6. Derivation is the complete process of constructing a product from product family software assets.

7. Simulation is a process linked to dynamic software product lines or self-adaptive systems where the tool
validates the planned reconfiguration and includes the valid configurations in a feedback-loop [MFTR+15].

8. Synthesis is the process to obtain a feature model from a specification in the form of logic formulas [CW07].

2.4 Classification and Mapping
This section presents the classification and mapping of the publications gathered in the search stage with respect
to the classification framework described in Section 2.3. The search stage produced a collection of 137 relevant
publications. The classification included the recording of the bibliographic information for each document
summarized in Appendix A.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.4. Classification and Mapping 38

2.4.1 What variability concepts are modeled as constraints?

This section presents the mapping and classification of publications regarding the modeling-centered facets in
the framework, question SMS.Q1, and its derived subquestions. However, the first result of this classification is
the glossary of modeling concepts described in in Section 2.3.1 as part of the classification framework. The
two subsections below answer the questions regarding the modeling paradigms and the extension of variability
languages with new constructs and constraint expressions.

Modeling paradigms

Table 2.3 shows the classification of the primary sources regarding the modeling paradigm used to describe
variability. The rows in the table represent one of the categories in the modeling paradigm facet described
in Section 2.3.1. Each row contains the list of publications and the number of documents using a paradigm.
Not surprisingly, feature-oriented models are the most frequent paradigm with 119 publications. The second
most frequent paradigm is constraint-oriented models with 30 publications, followed by variation point oriented
models with 14 publications. The least used methods are decision-oriented models, UML-based models, and
goal-oriented methods. These results confirm that feature-oriented methods are the most used paradigm to
represent variability. Note that the sum of the amounts in the third column in Table 2.3 is greater than 137.
The latter is because a publication can report more than one paradigm. For instance, consider the work of
Munoz-Fernandez et al. [MFTR+15] using different modeling paradigms to represent variability.

Table 2.3: Classification of publications regarding the modeling paradigm.

Method Publications #

Constraint-based [SS02], [FO09], [WN09], [SDD+09], [WNS09], [MSD11], [SMD+11b], [SM12], [MSD12a],
[MSD+12b], [tBLP13], [ZKY+14], [WZZ15], [OGRT15], [tBLLLV15a], [tBLLLV15b],
[tBLLLV16], [GMS15], [LDSSH15], [LDSSHC15a], [LDSSHC15b], [TMV+16], [SYP01],
[VK02][MPH+07], [EPAH08], [EPAH09a], [EPAH09b], [EFV+13], [ASS+19]

30

UML-based [GMS15], [LDSSH15], [LDSSHC15a], [LDSSHC15b] 4

Decision-based [MGH+11], [NBE12], [DFH11], [DGR11] 4

Variation point-based [MPH+07], [EPAH08], [EPAH09a], [EPAH09b], [RFBC10], [SMDD10], [SMD+11b], [SM12],
[RFBRC+12], [EFV+13], [MDSD14], [Kru07], [SKES18], [DTS+14]

14

Continue on the next page

Coffee

39 Chapter 2. State of Research

Table 2.3: Classification of publications regarding the modeling paradigm. (cont.).

Method Publications #

Feature-based [SYP01], [ZZM04], [Bat05], [BTRC05a], [BTRC05b], [CK05], [SZFW05], [BSTRC06a],
[BSTRC06b], [ZMZ06], [TBRC06], [BSTRC07], [CW07], [DS07], [DSD07], [MPH+07],
[TBKC07], [WSWN07], [WSC+07], [DS08], [MWCC08], [EPAH08], [Seg08], [TBD+08],
[UGKB08], [WSWN08], [WSB+08], [ZYZJ08], [CHH09], [MBC09], [MWC09], [EPAH09a],
[EPAH09b], [SRM09], [STJ09], [TBK09], [TC09], [WZZ09], [WDSB09], [YZZM09],
[BDRG10], [KOD10a], [KOD10b], [PSK+10], [SMD10], [SMDD10], [SK10], [SGW10],
[UKB10], [Wan10], [WBS+10], [ACLF11], [CBH11], [DFH11], [HBG11], [MSDL11],
[MLHS+11] [MCHB11], [MHG+11], [PLP11], [SMD+11b], [TBG13], [ZZM11], [ACSW12],
[GRF+12], [MRM+12], [PRM+12], [SM12], [XHSC12], [ACL13], [BDA+13], [BTCS13],
[FBGR13], [Hei13], [HPP+13], [KOD13], [LHCF+13], [MGSH13], [EFV+13], [QRD13],
[RR13], [SH13], [ASN14], [APM+14], [BNB14], [BLL+13], [CWD+14], [GTBW14], [JBMS14],
[MZM+14], [QPB+14], [WGS+14], [AGV15], [LGCR15], [MMFR+15], [MFTR+15],
[RGM+15], [OGRT15], [tBLLLV15a], [tBLLLV15b], [DMSEB15], [HPHLT15], [DKL+16],
[DBN16], [GAT+16], [HMGB16], [KTS16], [MBD+16], [NC16], [NN16], [SWK+16], [TC16],
[tBLLLV16], [WLS+16], [QRD13], [SRD16] , [SRD17] [MOP+19], [HPF20a], [SFE+21]

119

Goal-oriented [DS07], [DSD07], [DS08], [SMD+12] , [DMSEB15], [MFTR+15] [MBD+16] 7

Elements for Enhancing Variability

Table 2.4 presents the classification of the primary studies with respect to the usage of constructs or constraints
to enhance variability descriptions. Each row in the table presents one of the categories described in Section 2.3.1,
the references to the publications and the total number of publications. Accordingly, 64 publications in the
collection of selected publications present variability models enhanced with constructs or constraints. From
these 64 publications, 18 employ constraints to optimize an objective function, and other 17 studies include
Non-functional information in the variability model via constraints. Given these data, the 46% of the selected
publications include constraints to enrich variability models. Thus, these results confirm the need of a mechanism
for increasing the expressiveness in variability models.

2.4.2 What types of constraint systems are used to encode variability models for analysis
purposes?

This section presents the mapping and classification of publications regarding the transformation-centered facets
in the framework, question SMS.Q2, and its derived subquestions. The following two subsections show the
results retrieved consequently with the two subsections and the two facets in the transformation view.

Transformation Rules

The first result concerning the rules to encode variability models is that not all the primary sources propose
their own set of transformation rules. Instead, there is a set of well-known (and cited) publications introducing
transformation rules, or syntactic rules to encode variability models into constraints or formulas. Table 2.5

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.4. Classification and Mapping 40

Table 2.4: Results of the classification regarding the SPLE constraints.

Type Category Publications #

C
on

st
ru

ct Quantified implies [QRD13], [SRD16] 2

Conditioned inclu-
sion/exclusion

[DTS+14], [KOD13], [Kru07] 3

Visibility [EPAH09a], [FO09], [STJ09], [SMDD10], [tBLP13], [JBMS14], [WN09], [WNS09],
[PRM+12], [NBE12], [MGH+11]

11

C
on

st
ra

in
ts

Global [KOD10a]. 1

Traceability [MRM+12] 1

Time [BLL+13], [WZZ15], [SRD17], [ASS+19] 4

Soft [BDRG10], [SMD+12], [MZM+14], [MMFR+15], [MFTR+15], [DMSEB15],
[MBD+16]

7

NFRQ [BTRC05a], [WSWN07], [WSC+07], [WSWN08], [WBS+10], [BDRG10], [RFBC10],
[MHG+11], [SMD+12], [RFBRC+12], [APM+14], [WGS+14], [DMSEB15],
[MFTR+15], [OGRT15], [DKL+16], [MBD+16]

17

Optimization [WSWN07], [WSWN08], [SGW10], [MHG+11], [GRF+12], [Hei13], [SH13],
[GTBW14], [WN09], [WNS09], [PRM+12], [RFBRC+12], [EPAH08], [EPAH09b],
[LDSSH15], [LDSSHC15a], [LDSSHC15b], [OGRT15]

18

recalls the list of publications of documents containing new proposals or extensions of transformation rules
described in Section 2.3.2. Each row in Table 2.5 represent a publications in the list. The columns in the table
contain the following data:

1. An identifier between R1 and R27 in accordance with Section 2.3.2.

2. The reference of the publication.

3. If the set of rules extends other rules, the third column contains the identifier of the extended publication.

4. The collection of variability modeling concepts that can be encoded as constraint problems applying the
current set of rules.

5. The collection of studies using the set of transformation rules.

To explain the contents in Table 2.5, consider for example the rules in R5 [BTRC05a]. These rules introduce
a set of rules to transform a feature model into a constraint program and perform feature model analysis. In
this first proposal, authors recall that as future work, they would include rules for cross-reference constraints
(includes/excludes). Later, in rules R8 [BSTRC06b], Benavides et al. extend their first proposal including rules
for cross-reference constraints. More recently, other publications such as [TBD+08, WSWN08, WGS+14] use
the rules introduced in [BSTRC06b] without further changes.

Coffee

41 Chapter 2. State of Research

Table 2.5: Transformation rules and supported concepts.

Id Reference Extends Im
pl

ic
at

io
n

M
ut

ex

H
ie

ra
rc

hy
on

e-
to

-o
ne

H
ie

ra
rc

hy
on

e-
to

-m
an

y

N
on

-B
oo

le
an

T
re

e-
st

ru
ct

ur
e

M
ul

ti
pl

ic
it
y

A
tt

ri
bu

te
s

C
om

pl
ex

em
pr

es
si

on
s

Publications #

R1 [SS02] • • • o o o o o [SS02] 1

R2 [Man02] • • • o • o o o [Man02], [TC09] 2

R3 [VK02] • • • o • o o o [VK02] 1

R4 [ZZM04] • • • o • o o o [ZZM04], [ZMZ06], [ZYZJ08],
[YZZM09], [ZZM11]

5

R5 [BTRC05a] • • • • • o o o [BTRC05a], [BTRC05b] 2

R6 [Bat05] • • • • o • o o • [Bat05], [TBKC07], [MWC09],
[MBC09], [CHH09],[STJ09], [TBK09],
[BDRG10], [TBG13], [RR13],
[ASN14], [LGCR15], [CK05],
[MWCC08],[MPH+07], [Wan10],
[ACSW12], [LHCF+13], [HPP+13],
[CWD+14], [AGV15], [Seg08],
[KTS16]

23

R7 [SZFW05] • • • o • o o o [SZFW05] 1

R8 [BSTRC06a] R5 • • • • • o • o [BSTRC06a], [TBRC06], [WSB+08],
[TBD+08], [WDSB09], [WBS+10],
[SGW10], [WGS+14], [Hei13],
[BLL+13], [PLP11], [LHCF+13],
[HPP+13], [CWD+14], [AGV15],
[TC09] , [Seg08], [DBN16], [MBD+16],
[NC16], [NN16], [OGRT15], [TC16]

23

R9 [BSTRC06b] R9 • • • • • • o • • [BSTRC06b], [WSWN07], [WSC+07],
[WSWN08], [GTBW14]

5

R10 [CW07] • • • • o • o o • [CW07], [XHSC12], [PLP11], [Wan10],
[ACSW12], [BDA+13], [ZKY+14],
[JBMS14], [TC09], [Seg08]

10

R11 [DS07] • • • • • • o o • [DS07], [DSD07], [SDD+09], [SRM09],
[APM+14], [BNB14]

6

R12 [DS08] R11 • • • • • • o • • [DS08], [SM12], [SH13] 3

R13 [EPAH08] • • • • • o o o • [EPAH08] [EPAH09a], [EPAH09b],
[EFV+13]

4

Continue on the next page

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.4. Classification and Mapping 42

Table 2.5: Transformation rules and supported concepts. (cont.).

Id Reference Extends Im
pl

ic
at

io
n

M
ut

ex

H
ie

ra
rc

hy
on

e-
to

-o
ne

H
ie

ra
rc

hy
on

e-
to

-m
an

y

N
on

-B
oo

le
an

T
re

e-
st

ru
ct

ur
e

M
ul

ti
pl

ic
it
y

A
tt

ri
bu

te
s

C
om

pl
ex

em
pr

es
si

on
s

Publications #

R14 [FO09] • • • o o o o o [FO09] 1

R15 [WNS09] • • • • o • o o • [WNS09], [WN09], [WZZ15] 3

R16 [KOD10b] R6 • • • • • • • • • [KOD10a], [KOD10b], [KOD13] 3

R17 [RFBC10] R9 • • • • • • o o o [RFBC10], [RFBRC+12], [MBD+16] 3

R18 [SMDD10] • • • • • • • • • [SMDD10], [MLHS+11], [SMD10],
[MSDL11], [SMD+11b], [MSD12a],
[MSD+12b], [RGM+15], [MSD11]

9

R19 [CBH11] R6 • • • • • • o • • [CBH11] 1

R20 [DFH11] R6 • • • • • • • o • [DFH11], [NBE12] [BDA+13],
[ZKY+14]

4

R22 [MGH+11] • • • • • • o o • [MGH+11], [MDSD14], [MBD+16],
[QRD13], [QRD13], [DTS+14],
[ASS+19]

7

R23 [SMD+12] • • • • • • o o • [SMD+12], [MFTR+15], [DMSEB15],
[MMFR+15]

4

R24 [SHTB07] • • • • • • o o • [SHTB07] [PSK+10], [HBG11],
[MRM+12], [tBLP13], [MPH+07],
[JBMS14], [tBLLLV15a],
[tBLLLV15b], [HMGB16], [tBLLLV16]

11

R25 [BSTRC07] R9 • • • • • • • • • [BSTRC07], [FBGR13], [BTCS13],
[QRD13], [QPB+14]

5

R26 [TMV+16] • • • • • • o o • [TMV+16] 1

R26 [WLS+16] • • • • • • • o • [WLS+16], [SWK+16] 2

R27 [WLS+16] • • • • • • o • • [WLS+16], [SWK+16] 2

R28 [MOP+19] R6 • • • • • • o • o [MOP+19] 1

Constraint Systems

Figure 2.2 summarizes the classifications regarding the constraint systems used in the reviewed publications.
The results show that 84 publications in the collection of selected papers use Boolean variables and Boolean
constraints to represent variability models. Then, the constraint system over boolean is the most frequently used.
Constraint systems with integer variables and constraints are the second most frequent constraint systems in the

Coffee

43 Chapter 2. State of Research

review with 72 publications. At the other end of the spectrum, the least frequently used constraint systems are
symbolic domains (1 publication), and constraint systems with special variables (2 publications). Additionally,
a small number of publications (8 publications) use constraint systems with Real numbers. Eight studies did
not report the information about the implementation of the corresponding approaches. To conclude, it should
be noted that the results in Figure 2.2 show a preference for Boolean variables and Boolean constraints.

1

8

8

72

84

0 20 40 60 80 100

Symbolic

Real

None

Integers (FD)

Boolean

Publications

Ty
pe

s
of

 d
om

ai
ns

Figure 2.2: Distribution of the usage of solver-provided domains.

2.4.3 What are the characteristics of the solvers supporting variability management?

This section presents the mapping and classification of publications regarding the support-centered facets in the
framework, question SMS.Q3, and its derived subquestions. Consequently, the two subsections below presents
the classification regarding the two facets centered on solvers.

Figure 2.3 displays the results regarding the number of solvers reported by the primary studies. The majority
of the reviewed studies uses one single solver (59%) and the 26% of the publications do not report any solver at
all. Therefore, this 26% falls in the category None. The remaining 15% of publications report the usage of more
than one solver distributed as follows: 8% studies use two solvers, 4% use three solvers, and 3% use more than
three solvers.

None
26%

One
59%

Two
8%

Three
3%

More than
three
4%

None One Two Three More than three

Figure 2.3: Distribution of the number of solvers reported by the primary studies.

Solving paradigm

Figure 2.4 summarizes the results of the classification regarding the solving paradigm. This figure has two
subfigures. Figure 2.4a shows the number of solving paradigms reported by the primary studies. Figure 2.4b
depicts the most used solving paradigms to encode variability models to perform analysis tasks.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.4. Classification and Mapping 44

As shown in Figure 2.4a, most publications report the usage of a single solving paradigm for encoding
variability models (63%). However, these results also show the usage of more than one solving paradigm in the
16% of the papers. The distribution of the number of solving paradigms for encoding variability models is the
following: 10% of the approaches employ exactly two paradigms; the most common combination of paradigms
being Constraint Satisfaction Problems (CSP) and integer linear programming solvers (ILP). Additionally, 5% of
the primary studies use three solving paradigms with CSP, Binary Decision Diagrams (BDD), and Satisfiability
Problems (SAT) as the most frequent combination of paradigms. Particularly, only one publication [PLP11]
reported the usage of more than three paradigms as the authors report the comparison of approaches for
automated analysis of feature models. The remaining 21% of the publications report the usage of solvers, but
not provide plus information about solver names, nor paradigms.

Figure 2.4b shows the frequency of each solving paradigm. In accordance with the evidence, variability
models are most frequently encoded as satiasfibility problems (SAT, 42 studies), constraint satisfaction problems
(CSP, 40 studies), and Constraint logic Programming Problems (CLP, 22 studies). On the other hand, the
least common paradigms are the two special cases of SAT problems: Q-SAT (quantified SAT problems) and
ASP-SAT (answer set satisfiability problems) with one and three studies, respectively.

None.	
21%	

One.	
63%	

Two.	10%	
Three.	
5%	

More	
than	
three.	
1%	

None	 One	 Two	 Three	 More	than	three	

(a) Distribution of the number of solving paradigms reported
by primary studies.

1
3
4
6

10
11

22
40
42

0 10 20 30 40 50
QSAT

ASP-SAT
MIPL
ILP
SMT
BDD
CLP
PBS
SAT

Publications

Pa
ra
di
gm

s

(b) Most used solving paradigms for variability management.

Figure 2.4: Results of the classification regarding the solving paradigm.

List of solvers

This literature review gathered evidence for the usage of 36 solvers supporting variability management tasks.
Table 2.6 and Figure 2.5 present the results. On the one hand, Table 2.6 list the information of those 36 solvers.
Each row in the table presents the name of the solver, the solving paradigm, approach used for implementing
the solver and an URL to find more information.

Figure 2.5 presents the list of solvers together with the number of publications citing them. The figure depicts
a bar graph instead of a pie chart, because some proposals use more than one solver. Accordingly, the most
used solvers are Sat4j (21 studies), CHOCO (18 studies), and GNU Prolog (13 studies). At the other end of the
spectrum, there are other 25 solvers used by one, two or three works. One particular case is the Prolog language
because in the reviewed publications there are at least three different implementations of the language: GNU
Prolog, SWI Prolog, and SICStus Prolog. Other studies just mention the Prolog language without referencing

Coffee

45 Chapter 2. State of Research

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2

3
3

4
4

5
5

8
9
9

10
13

18
21

0 2 4 6 8 10 12 14 16 18 20 22 24
BuDDy

CirQit
Configit SW

Cream
Cudd
DLV

Eclipse
Excel

Gecode
LazyFD
LpSolve

Ms solver fundation
Mistral
Pyopt

SPASS-SATT
Yices
Clasp
Cplex

Flatzinc
Gurobi
Picosat
Prolog

Python constraints
GLPK

OPL-IBM
Maude

SWI-prolog
Minisat

SICStus prolog
Alloy

JaCoP
Z3

JavaBDD
GNU Prolog

Choco
SAT4j

Publications

So
lv

er
s

fo
r S

PL

Figure 2.5: Solvers used to support variability management and the number of publications citing them.

a particular implementation. Considering these three different implementations as one single language, it is
possible to conclude that Prolog based solvers are the most used solvers form variability management.

Table 2.6: Solvers used to support variability management.

Solver Paradigm Implementation URL

Alloy-analyzer SAT Language http://alloy.mit.edu/alloy/

Buddy BDD Library http://buddy.sourceforge.net/manual/main.html

Choco PBS Library http://choco-solver.org/

CirQit QSAT Tool http://www.cs.utoronto.ca/ alexia/cirqit/

Clasp ASP, SAT Library, tool http://www.cs.uni-potsdam.de/clasp/

Configit SW DBB Tool http://configit.com/about/history/

CPLEX Opti-
mizer

ILP, MILP Tool http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/index.html

Cream PBS Library http://bach.istc.kobe-u.ac.jp/cream/

Cudd BDD Tool http://vlsi.colorado.edu/ fabio/

Continue on the next page

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.4. Classification and Mapping 46

Table 2.6: Solvers used to support variability management. (cont.).

Solver Paradigm Implementation URL

DLV CLP Language http://www.dlvsystem.com/

ECLiPSe CLP Language https://sourceforge.net/projects/eclipse-clp/

Excel ILP Tool https://support.office.com/en-us/excel

MinizincFlatZinc Multi Language http://www.minizinc.org/

Gecode PBS Library http://www.gecode.org/

GLPK MILP Library https://www.gnu.org/software/glpk/

GNU Prolog CLP Language http://www.gprolog.org/

Gurobi ILP, MILP Library http://www.gurobi.com/index

JaCoP PBS Library http://jacop.osolpro.com/

JavaBDD BDD Library http://javabdd.sourceforge.net/

LazyFD SAT �� ��

LpSolve MILP Library http://lpsolve.sourceforge.net/5.5/

Maude SAT Language http://maude.cs.illinois.edu/w/images/0/0d/Maude-book.pdf

Minisat SAT Tool http://minisat.se/

Mistral PBS Library http://homepages.laas.fr/ehebrard/mistral.html

MSDN PBS, LP Library https://msdn.microsoft.com/en-us/library/ff524509(v=vs.93).aspx

OPL-IBM PBS, LP Language http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

Picosat SAT Library https://pypi.python.org/pypi/pycosat

Prolog CLP Language ��

Pyopt COP Library http://www.pyopt.org/

Python con-
straints

PBS Library https://labix.org/python-constraint

SAT4j SAT Library http://www.sat4j.org/

SICStus prolog CLP Language https://sicstus.sics.se/

SPASS-SATT SAT Tool http://www.mpi-inf.mpg.de/departments/automation-of-
logic/software/spass-workbench/classic-spass-theorem-prover/tutorial/

Swi Prolog CLP Language http://www.swi-prolog.org/

Yices SMT Library, tool http://yices.csl.sri.com/

Z3 SMT Tool https://github.com/Z3Prover/z3

Coffee

47 Chapter 2. State of Research

2.4.4 What are the characteristics of the variability-management tools?

The first result regarding the usage of software tools is that not all the reviewed publications provide evidence
of the implementation of their proposals. Nevertheless, most of them, the 80% of the selected publications
present evidence of the usage of constraint-based software by (1) explicitly presenting a software element
as a contribution of the publication; or (2) including a results section containing the results obtained from
experiments related to the implementation and execution of the contribution of the publication. The results
presented in Tables 2.7 summarizes the characteristics of the most relevant software tools in the domain.

Software Tools

Table 2.7 contains the characteristics of 15 software tools that report the usage of constraint programming to
perform variability management tasks. Each row in the table contains a software tool. The columns in the table
contain the following data: An identifier between R1 and R27 in accordance with Section 2.3.2.

1. The name of the tool and the year of the publication.

2. The modeling paradigms supported by the tool.

3. The type of implementation in accordance with the categories in the support facet described in Section 2.3.3.

4. The functionalities related with variability management provided by the tool. Section 2.3.3 describes the
categories in this column.

5. Four features the tool may have: Graphical User’s Interface (GUI), open source code, user’s documentation,
and examples. These columns contain a • if the tool has the feature and � in the opposite case.

6. The URL of the tool.

The frequency of feature-oriented models as supported paradigm in Table 2.7 confirms that feature models are
the preferred paradigm for modeling variability. However, other paradigms, such as, decision-oriented models
and variation point-oriented models are also present.

Table 2.7: Constraint-based variability management tools.

Name Year Paradigm Imp. Functionality G
U

I

O
pe

n
so

ur
ce

U
se

r
do

c.

E
xa

m
pl

es

URL

AHEAD 2004 Feature models Stand-
alone

Modeling, Configu-
ration, Derivation

• • • • http://www.cs.utexas.edu/

users/schwartz/ATS.html

CardyGAn 2016 Feature models Plug-in,
Eclipse

Modeling, Analysis,
Configuration

• • • • https://github.com/

Echtzeitsysteme/cardygan

ClaferMOO 2012 Feature models Stand-
alone

Non-Functional
Properties

• • • • https://github.com/gsdlab/

claferMooStandalone

Continue on the next page

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html
https://github.com/Echtzeitsysteme/cardygan
https://github.com/Echtzeitsysteme/cardygan
https://github.com/gsdlab/claferMooStandalone
https://github.com/gsdlab/claferMooStandalone

2.4. Classification and Mapping 48

Table 2.7: Constraint-based variability management tools (cont.).

Name Year Paradigm Imp. Function G
U

I

O
pe

n
so

ur
ce

U
se

r
do

c.

E
xa

m
pl

es

URL

DecisionKing 2007 Decision mod-
els

Plug-in • � � � �

FaMa 2007 Feature models Variability
manage-
ment tool

Modeling, Verifica-
tion, Configuration

• • • • http://www.isa.us.es/fama/

?FaMa_Framework

FeatureIDE 2005 Feature models Plugin,
Eclipse

Modeling, Configu-
ration, Verification

• • • • http://wwwiti.cs.uni-

magdeburg.de/iti_db/

research/featureide/

Fuji 2011 Feature models Stand-
alone

Derivation, verifica-
tion

� � • • http://fosd.net/fuji

Gears 2007 Variation point
models

Variability
manage-
ment tool

Modeling, Configu-
ration, Verification

• � • • https://biglever.com/

solution/gears/

HOLMES 2001 UML Prototype Modeling, configu-
ration

• � � � �

Kesit 2008 Feature models Stand-
alone

Testing � � � � �

Pacogen 2011 Feature models Stand-
alone

Testing ! • � � http://people.rennes.

inria.fr/Arnaud.Gotlieb/

resources/Pacogen/Pacogen.

html

ProVelines 2013 Variation point
models

Stand-
alone

Verification • • • • https://projects.info.

unamur.be/fts/provelines/

Pure::variants 2006 Variation point
models

Variability
manage-
ment tool

Modeling, Verifica-
tion, Configuration,
Derivation

• � • • http://www.pure-systems.

com/pure_variants.49.0.

html

SPLOT 2009 Feature models Variability
manage-
ment tool

Modeling, Verifica-
tion, Configuration.

• • • • http://www.splot-research.

org/

VariaMos 2012 Multi paradigm Variability
manage-
ment tool

Modeling, Verifica-
tion, Configuration,
simulation.

• • • • http://variamos.com/home/

VMWare 2007 Feature models Prototype Model Checking,
verification

� � � � �

Coffee

http://www.isa.us.es/fama/?FaMa_Framework
http://www.isa.us.es/fama/?FaMa_Framework
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://fosd.net/fuji
https://biglever.com/solution/gears/
https://biglever.com/solution/gears/
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
https://projects.info.unamur.be/fts/provelines/
https://projects.info.unamur.be/fts/provelines/
http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html
http://www.splot-research.org/
http://www.splot-research.org/
http://variamos.com/home/

49 Chapter 2. State of Research

2.5 Lessons Learned
The objective of this systematic mapping study was to provide an overview of the research of the constraint-
oriented approaches used in variability management with a particular emphasis on the information and
characteristics of the variability represented as constraint problems. Section 2.4 presented the results of the
classification. This section answers the research questions, highlights the most relevant results, and discuss the
conclusions obtained from this study.

2.5.1 Variability Modeling

This review considered two complementary approaches to determine the variability concepts: the modeling
paradigm, and the variability concepts in the modeling language.

First, the conduction of this systematic mapping study identified similarities among the ground characteristics
of variability languages. These similarities include the characteristics of the variability units, the set of variability
relationships, the structure of the model, the configuration semantics, etc. Then, the inclusion of the concept of
modeling paradigm seemed natural to delineate the similarities among variability languages. Following, this
thesis defined the modeling paradigm as the approach employed to capture variability in the form of models,
programs or code. From that point, similar languages were mapped to modeling paradigms.

Second, when observed under the lens of modeling paradigms, variability modeling languages showed differences
in terms of syntactic elements and syntactic rules. However, the languages in different modeling paradigms
have similarities regarding their semantics. The similarities among the semantics are evident when no matter
the paradigm, all reviewed modeling languages are encoded using a constraint-based formalism. Then, this
mapping study starts to consider the term variability concept to name different syntactic elements with similar
or equivalent semantics. As result, the classification framework includes a glossary describing most of the
concepts used to represent variability (cf. Section 2.3.1).

2.5.2 Transforming Variability Models into Constraint Programs

Transforming variability models into constraint programs is the first step to automate the analysis tasks. The
mapping and analysis of the selected publications showed that each reviewed publication can either propose,
extend, or use a set of transformation rules. The reader should note that the majority of reviewed documents
use the transformation rules proposed by other authors. Then, this work concluded that there is a a well-known
assortment of transformation rules and proceeded to characterize them.

Table 2.2 lists the set of publication that propose or extend a set of transformation rules. This table
was included in the transformation framework to classify each publication regarding the rules used in the
development of a constraint-based approach. Then, the results in Section 2.4.2 presents the Table 2.5 where the
transformation rules are mapped with the supported variability concepts and the publications using those rules.
In this sense, Table 2.5 provides information about the constraints that could be obtained by using a particular
set of transformation rules.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.5. Lessons Learned 50

The obtained results reinforce the idea that constraints are a flexible, expressive and suitable approach to
encode variability for analysis purposes, capturing the information on current variability models and allowing
the inclusion of more problem-related information. Nevertheless, the apparition of many different rules for the
same purpose suggests that there is still a gap in the construction of a unified transformation approach able
to gather the advantages of the different proposals, as well as useful for including new variability information
shaped as constraints.

2.5.3 Solvers Supporting Variability Management

The results regarding the analysis and classification regarding solvers showed that variability management is
supported by different specialized solvers, solving paradigms, and constraint systems. The results in Section 2.4.3
showed that the usage of solvers is diverse. Table 2.6 lists 36 different solvers used to support variability
management. There is no preference in the implementation of these solvers, because the implementation of
these 36 solvers ranges between solvers implemented as libraries, tools, or provided by programming languages.

The transformation rules reported in Table 2.5 produced constraint problems in Boolean, Integer, Real and
Symbolic constraint systems. Meanwhile, the solving paradigm in the reviewed papers ranges over a variety
of paradigms such as ILP, MILP, SAT, SMT, BDD, CSP, and CLP. In the case of the support for different
constraint systems, the results showed that most of the publications use the variables and constraints provided
by the solver. Then, there is no implementation of specialized constraint systems for supporting variability
management. To the best of our knowledge, there is no one solving parading or solver specially designed for
supporting variability management. Nevertheless, considering that each different paradigm and solver has its
strengths, it would be useful to drive the research efforts to combine paradigms for exploiting the advantages and
strengths of distinct paradigms and solvers for the problems and situations inherent to variability management.

2.5.4 Software tools supporting constraints in SPLE

Another result of this mapping study is the evidence of the support of variability management in different
types of tools. Moreover, most of the publications report the development or usage of a software tool aiming
to a variety of applications. However, there is no tool supporting variability management in an holistic way.
Consequently, to summarize the results regarding tools and to provide a global view that serves as a start point
for practitioners in the area, this section presents the Table 2.8. This table synthesizes the results considering
the functionality of the tools and the following information:

• A list of the solvers supporting each type of functionality. The solvers in this list come from Table 2.6.

• A list of tools. This list also contains a reference to the publications classified in the topmost evaluation
level category for each software tool. Categories for the evaluation level are described in the scale proposed
by Petersen et al. [PVK15] and described as follows:

– None. No empirical evidence, the evidence may be provided from observations, demonstration or arguments.

– Toy-example. The evidence is obtained by demonstration on toy-examples.

– Academic. The evidence is obtained by working out on case studies employed on other publications or
repositories.

Coffee

51 Chapter 2. State of Research

– Academic (Big-set). Evidence obtained using case studies reported as real life size, or big. These cases are
randomly generated or obtained from public repositories.

– Industrial. Evidence obtained using case studies inspired from industrial partners.

– Industrial practice. The contributions of the publication is used in an industrial context.

• The evaluation level of publications including the references to publications.

• Additional information or special remarks.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

2.5.
Lessons

Learned
52

Table 2.8: A global overview of tools supporting variability management.

Application Variability
system

Solvers Software tools Evaluation Level Additional information

Analisys SPL, DSPL,
PL.

Alloy-analyzer, Buddy, Choco,
CirQit, Clasp, Configit SW,
Cream, Cudd, GLPK, GNU
Prolog, JaCoP, JavaDBB, Min-
isat, Mistral, OPL-IBM, Pi-
cosat, Prolog, SAT4j, SICStus
prolog, Swi Prolog, Z3.

FaMa (industrial)
[RFBRC+12], FeatureIDE
(academic) [TBK09],
Pure::variants (academic)
[Wan10], TVL (DSL) (in-
dustrial) [CBH11, BDA+13],
S.P.L.O.T (academic big-set)
[MBC09], VariaMos (academic)
[MMFR+15]

Industrial [RFBRC+12,
MZM+14, LGCR15,
CBH11, BDA+13],

Variability Analysis is often executed
together with configuration, derivation,
specification and simulation. Analysis
is one of the most frequent functional-
ities reported in the reviewed publica-
tions.

Configuration PL, SPL,
DSPL, CS.

Alloy-analyzer, Choco, Clasp,
Configit SW, DLV, ECLiPSe
, FlatZinc, Gecode, GNU Pro-
log, JaCoP, JavaBDD, LazyFD,
Minisat, SAT4j, SICStus Pro-
log, Z3.

AHEAD (academic) [Bat05],
ClaferMOO (academic)
[ZKY+14], FaMa (aca-
demic) [WGS+14], Famil-
iar (academic) [ACLF11],
Pure::variants (academic)
[Wan10], S.P.L.O.T. (aca-
demic) [MBC09], VariaMos
(industrial-practice) [MDSD14]

Industrial-practice
[WSB+08, MDSD14],
Industrial[BNB14,
STJ09, XHSC12,
BLL+13, SMDD10,
SMD+11b].

Configuration is often reported together
with analysis, specification, simulation,
verification. Configuration is the sec-
ond most frequent functionality re-
ported by the selected publications.

Derivation SPL, DSPL,
PL.

Choco, Excel, GNU Prolog, Pi-
cosat

Fuji repository (academic)
[ASN14]

Industrial-practice
(anonymous tool)
[DSD07], Academic
[ASN14, SGW10]

Derivation is often implements together
analysis, also is one of the less frequent
activities.

Continue on the next page

C
offee

53
C

hapter
2.

State
of

R
esearch

Table 2.8: A global overview of constraint-based approaches for variability management. (cont.).

Application Variability
system

Solvers Software tools Evaluation Level Additional information

Variability
Modeling

SPL, DSPL,
PL, CS.

Alloy-analyzer, Choco, CirQit,
Clasp, GNU Prolog, JavaBDD,
LPSolve, Maude, Minisat, Swi
Prolog, SAT4j, Z3.

VariaMos (industrial)
[MSDL11], academic
[MMFR+15], S.P.L.O.T.
(academic big-set) [MBC09],
Familiar (academic) [ACLF11],
FeatureIDE (academic)
[TBK09], Clafer (industrial)
[CBH11], TVL (academic)
[BDA+13], FLAN (academic)
[tBLP13].

Industrial-practice
[WSB+08], Industrial
[MSDL11, CBH11,
BLL+13, SMDD10,
SMD+11b]

Variability Modeling is a functional-
ity often implemented together with
analysis, configuration, and simulation.
Most of the support is provided by
domain specific languages (Familiar,
Clafer, TVL, FLAN). The specification
is also supported by formalization such
as formal semantics for feature models
[MCHB11] and configuration problems
[CHH09].

Verification SPL, PL Alloy-analyzer, Choco, GNU
Prolog, Minisat, Maude, Pro-
log, SAT4j, Swi Prolog, Z3.

AHEAD (academic) [TBKC07],
Decision King (academic)
[TBG13], FLAN (academic)
[tBLP13], VariaMos (indus-
trial) [MLHS+11, SMD+11b].

Industrial, [MLHS+11,
SMDD10, SMD+11b],
Academic big-set
[SM12, MSD+12b].

This activity is often implemented to-
gether with specification and configura-
tion.

Testing SPL, PL Alloy-analyzer, Choco, Minisat,
SAT4j, SPASS-SAT, Yices, Z3

AHEAD (academic)
[UGKB08], Kesit (aca-
demic) [UGKB08, UKB10],
FeatureIDE (academic)
[AGV15], Pacogen (industrial)
[MGSH13].

Industrial
[MGSH13, PSK+10],
Academic big-set
[HPP+13, GTBW14].

Most publications aim to solve test-
ing related problems without including
other activities.

Simulation DSPL GNU Prolog, Swi Prolog VariaMos (academic big-set)
[MFTR+15, MMFR+15]

Academic big-set
[MFTR+15], acaedmic
[MMFR+15]

Proposals aiming to solve simulation
related problems are scarce, and both
of them deal with the simulation of
DSPLs

Synthesis SPL JavaBDD, SAT4j Anonymous tool (academic big-
set)[ACSW12]

Academic big-set
[ACSW12].

Synthesize a constraint program is to
obtain a feature model from a formal
specification. Two documents [CW07,
ACSW12] contain proposals to perform
synthesis.

C
o

�
e

e:
a

fram
ew

ork
supporting

expressive
variability

m
odeling

and
flexible

autom
ated

analysis

2.6. Concluding Remarks 54

2.6 Concluding Remarks
This chapter presented the results of a systematic mapping study on the application of constraint-based
approaches in the life-cycle of variability intensive systems.

The process to conduct the systematic literature review followed the guidelines and recommendations from
Petersen et al. [PVK15] and Kitchenham et al. [KPP+02]. As result, the search and filtering stages identified
137 papers published between 2000 and 2020.

Section 2.3 presents the classification framework used for analyzing and extracting data. The classification
framework is structured in a hierarchical fashion with three views and twelve facets. The hierarchical structure of
the classification framework guided the reviewing and reporting process. Table 2.1 summarizes the classification
framework.

The definition of the classification framework was an iterative process resulting in a framework that synthesizes
the knowledge gathered from dozens of papers regarding variability management using any constraint-based
approach. Notably, this framework presents a glossary of variability modeling concepts. These modeling concepts
serve as a guide of what are the modeling requirements in the community, considering what pieces of research
are already using in their models. The glossary also includes concepts, such as the quantified implies, that may
be considered as particularities of modeling languages. However, this framework includes these concepts as they
could represent as well new trends in the design of variability modeling languages.

The collection of concepts in Section 2.3.1 contributes to describe variability-intensive systems more accurately.
Nevertheless, to the best of our knowledge, there are not initiatives aiming to integrate all these concepts
in an unified language. One of the possible reasons is the trade-off between expressiveness and the analysis
capabilities of the language. However, an unified variability modeling language may improve the expressiveness
and accuracy of variability specifications.

The literature review evidenced the diversity in the approaches to encode variability models as constraint
satisfaction problems. The results showed that there are at least 23 different publications containing a set
of transformation rules or an extension to a set of rules. One challenge in the research area is to consider
this diversity and develop an standard analysis library. The development of a standard analysis library shall
propel the usage of variability management tools and unite the variability community efforts to provide a robust
common analysis core.

There are two types of tools supporting constraint-based approaches: solvers and other software tools. Despite
there is no one solver specially designed for variability management, there is broad support for solving constraint
problems. Also, there is no a particular solving paradigm for variability management. On the contrary, this
mapping study showed that solvers in variability management range in a variety of paradigms, constraint
systems and implementations. One challenge regarding solvers is to address the difficulty of exploiting the
strengths of multiple solvers while solving a single complex problem.

Coffee

Part II

Studies and Results

55

Chapter 3
From the Evaluation of the HLCL Framework Towards Co�ee

This chapter shares content with the paper On the Ontological Expressiveness of the High-Level Constraint
Language for Product Line Specification [VMS18]

This chapter serves of three goals. First, it presents the results of evaluating the HLCL framework emphasizing
on the theoretical evaluation of the High-Level Constraint Language (HLCL), the core of the HLCL framework.
This theoretical evaluation measures the language’s expressiveness as a variability modeling language. Second,
the reader will find the discussion concerning the evaluation’s results, and the drawbacks addressed by the
contributions in this thesis. Finally, the chapter closes presenting the conceptual model of Co�ee and an
overview of each layer within the framework.

The following sections present (1) an overview of the theory grounding the evaluation, i.e., the theory of
ontological expressiveness; (2) the design and execution of the theoretical evaluation following a GQM approach;
(3) the analysis and discussion of the evaluation, and (4) an overlook of the Co�ee Framework.

3.1 Motivation and Challenges
The first phase in the development of this thesis included the evaluation of the state-of-the-art HLCL framework.
This framework takes its name from the High-Level Constraint Language (HLCL), an abstract language proposed
to represent variability models from different notations developed at the Centre de Recherche en Informatique
(CRI). The HLCL framework evolved through the research of Djebbi & Salinesi, Salinesi et al., Mazo et al.,
and Munoz-Fernandez et al. [DS08, SMD+11a, MSD11, MFTR+15]. This framework is the core of early
implementations of the VariaMos tool-suite [MMFR+15], also developed by the CRI.

The idea of including one extra-step to represent variability models using an abstract constraint language
developed in the HLCL framework is consistent to the hypothesis of the applicability of intermediate representations
developed in this thesis. Hence, the research presented in this thesis started with an evaluation of the HLCL
framework.

The HLCL framework had proven useful for representing different variability languages [SMD+11a, MSD+12b,
MFTR+15], and for supporting analysis tasks such as verification and configuration of variability models in
those languages [MSD+12b, SM12, MFTR+15]. However, the HLCL framework and its implementation in the

56

57 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

VariaMos tool suite are part of the ecosystem of non-compatible variability management tools. Then, the
evaluation of the extent of the HLCL framework is primordial for better understanding its drawbacks and explore
the solution perspectives.

The evaluation conducted covered two complementary perspectives: the engineering of a variability manage-
ment tool, and the evaluation of the HLCL’s expressiveness. The first perspective consisted on the participation
of the author of this thesis as a member of the team engineering the VariaMos Tool suite at the CRI. The main
goal of this participation was the design and implementation of a graphical representation of the high-level
constraint language as modeling language called the Constraint Graphs. Additionally, the exercise of engineer-
ing a variability management tool included the development and evaluation of a method to identify and fix
inconsistencies on variability models represented as constraint graphs. The proposal and its evaluation are part
of an upcoming publication [MVSD].

The second perspective consisted on the evaluation of the HLCL as modeling language for variability-intensive
systems. HLCL was previously evaluated regarding it’s capability to encode other variability languages,
i.e., feature-oriented languages [SMD+11a, MSD+12b]; variation point oriented languages; decision-oriented
languages [MSD+12b]; and goal-oriented languages [SMD+12, MFTR+15]. However, the question: Is HLCL
expressive enough to encompass any product line model? is still unanswered. Considering that the previous
evaluations of HLCL followed a practical point of view, and the universality of the research question, we opted to
provide an evaluation from a theoretical point of view. Then, this theoretical evaluation required the definition
of an evaluation framework capable to answer questions, such as, Which are the characteristics of an expressive
variability modeling language? and How to measure the expressiveness in a variability modeling language?.
To tackle this challenge, this thesis composed an evaluation framework grounded on the theory of ontological
expressiveness [WW93] and its extension to variability modeling languages [AGWH12].

First, the theory of ontological expressiveness is based on the observation that models of information systems
are essentially models of real-world systems and has already been used to evaluate the expressiveness of
conceptual modeling languages such as the entity-relation model [SMN+10]; UML [BJM08], the i? language
[GFG12]; and BPMN [RRIG09].

Second, the application of the theory of ontological expressiveness requires a mapping between a reference
ontology and the constructs of the language under evaluation. This study uses Asadi et al.’s ontology as
reference to perform the mapping. This ontology divides concepts between structural concepts and variability
patterns. At this point, the challenge was to answer questions such as, which constraints can be used to map
structural concepts and variability patterns? and What is the semantics of such constraints?

The results in the evaluation demonstrated many problematic situations with the HLCL framework. The
ontological evaluation showed the HLCL weakness as variability modeling language and the practical evaluation
showed that the transformation framework supporting analysis of HLCL variability representations did not
solve the interoperability issues. In consequence, the final part of this chapter shows the contribution of this
dissertation to solve the questions about How intermediate representations can be integrated in a framework to
ease the interoperability of variability management tools?

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.1. Motivation and Challenges 58

3.1.1 Running Example

To illustrate the steps in the ontological study, the following paragraphs present an example of a hypothetical
case of a car’s Parking Assistant System (PAS). This example is a simplified extract of the feature model in
[SMDD10, SMD+11a, MSDL11]. The example consists on the description of the case and a feature model to
illustrate the example in Figure 4.1c. Additionally, Table 3.1 shows the specification of the PAS using HLCL
and some examples of the products as solutions of the constraint program.

A car’s Parking Assistant System (PAS) assists drivers to park, helping them to detect obstacles, control the
speed and correct the trajectory. The PAS is composed of a processor, an internal memory slot, some sensors,
and optionally some feedback devices. Sensors are used to measure the speed and position of a car through speed
sensors and position sensors. A PAS may contain speed sensors and position sensors, this simplified example
will not constraint the number of sensors. Feedback can be visual, auditory or vibratory, and a single product
can have at most two kinds of feedback. When a speed sensor is included in a configuration, then vibratory
feedback must be excluded, and vice versa. To compute the location of a car, the PAS uses the processor that
can have one to seven cores. The size of the internal memory can have one of the values in the set {2GB, 4GB,
8GB, 16GB, 32GB}. Additionally, the size of the memory depends on the number of cores in a processor, the
pair hcores; memory sizei can have the following values h0;0i, h1;2i, h2;4i, h3;8i, h4;16i, h5;32i.

Parking Assistant System

Processor Memory

Name: size
 Domain: integers

Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Excludes
Requires

Mandatory
Optional

OR Alternative
feature Attribute

Speed
sensorSensors

Position
sensor

Feedback

Visual

Audio

[1, 2]

Vibration

(a)

Sensor
Feedback
Processor
Memory

(b)

Table 3.1 contains the variables and constraints used to represent the PAS product line using HLCL with the
extra constraint C0 : PAS = 1 encoding the root feature. The resulting constraint satisfaction problem has
396 solutions or representations of valid products. Each solution is a set of pairs variable, value (xi, vi). In
a solution, a pair (xi, vi) where vi is equal to one represents the inclusion of the component associated with
variable xi in the product. The PAS example includes non-Boolean variables for those cases when additional
information related to components should be considered, as in the case of the cores of a processor and the size
of the memory. Thus, this additional information is represented using integer variables with domains ranging in
the set of values presented in the description of the PAS. The domains of Cores and Size contain a zero to
represent those products with no processor, nor memory. For instance, a valid product can be represented by
the set P = {Processor, Cores=1, Memory, Size=2, Sensors, PositionSensors}. This example does not
show the variables excluded from the product because they are assigned to zero in the corresponding solution
(more examples in Table 3.7).

Coffee

59 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

Table 3.1: HLCL specification for the Parking Assistant System

Variables and domains

[PAS, Sensors, SpeedSensors, PositionSensors, Processor, Feedback, Visual, Audio, Vibration, Memory] 2 {0, 1} ^
Size 2 {0, 2, 4, 8, 16, 32} ^ Cores 2 {0..7}

Constraints

C0 : PAS = 1 , C1 : PAS = Sensors , C2 : PAS � Processor, C3 : PAS � Memory , C4 : PAS � Feedback,

C5 : (Memory > 0) , (Size > 0), C6 : (Processor > 0) , (Cores > 0),

C7 : Feedback Visual + Audio+ Vibration 2⇤ Feedback,

C8 : Sensors SpeedSensors + PositionSensors Sensors, C9 : Vibration + SpeedSensors 1

C10 : Memory = Processor

C11 : Relation (Cores, Size) [(0,0), (1,2), (2,4), (3,8), (4,16), (5,32)],

3.2 Ontological Expressiveness Theory
The ontological expressiveness theory is a framework to analyze the expressiveness of conceptual modeling
languages [WW93]. This theory is based on the observation that conceptual models of information systems are,
essentially, models of real-world systems. The theory of ontological expressiveness has served as foundation to
evaluate the expressiveness of conceptual modeling languages such as the entity-relation model [SMN+10]; UML
[BJM08], the i? language [GFG12]; and BPMN [RRIG09]. The evaluation of a conceptual modeling language
requires a mapping of the language’s constructs with respect to a foundational ontology [WW93, Gui13]. In
conceptual modeling, a foundational ontology is understood as a formally and philosophically well-founded model
of categories that can be used to articulate conceptualizations in specific engineering models [GFG12]. The
mapping between ontological constructs and language constructs should focus on two sets: the set of ontological
constructs and the set of language constructs, as presented in Fig. 3.1 This mapping considers two steps: the
representation mapping and the interpretation mapping [WW93]. On the one hand, representation mapping
serves to determine whether and how an ontological construct is represented using the language constructs. On
the other hand, interpretation mapping describes whether and how a language construct stands for a real-world
construct. To conclude about the expressiveness of the examined language, it is decisive to determine the
presence or absence of any of the four observable defects in conceptual modeling languages: construct deficit,
construct excess, construct redundancy and construct overload.

Fig. 3.1 shows the defects in conceptual modeling languages. If a language has construct deficit, then the
language is ontologically incomplete. The ontological clarity of the language is undermined if a language has
either construct excess, construct redundancy, or construct overload. The presence or absence of these defects
can be measured with the metrics of potential ontological deficiencies proposed by Recker et al. [RRIG09] and
described in Section 3.4.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.3. A Foundational Ontology for Variability 60

Construct Redundancy Construct OverloadConstruct Deficit Construct Excess

Ontological
constructs

Language
constructs

Figure 3.1: Defects in a conceptual modeling languages, taken from [WW93].

3.3 A Foundational Ontology for Variability
Three criteria were taken into account to select an ontology for evaluating the HLCL. The first criterion is the
type of the language to be analyzed. As suggested by Guizzardi et al. in [Gui13], the type of the language
(i.e., domain-independent, domain-specific) is the most important criterion for selecting the reference model
in an ontological analysis. Domain-independent languages are compared to domain-independent foundational
ontologies such as BWW [WW93] or UFO [GFG08]. Instead, domain-specific languages should be compared
using domain-specific ontologies. HLCL has a duality with respect to this first criterion given that variability
languages should be domain-independent but also have particular characteristics regarding variability. Therefore,
the selected ontology should include domain-independent constructs along with variability related constructs.
Thus, the second criterion is the ability to represent different variability relations. To the best of our knowledge,
there exist two ontologies with concepts from a domain-independent ontology (BWW) that also include variability
concepts: Reinhartz-Berger et al. [RBSW11] and Asadi et al. [AGWH12]. However, in Reinhartz-Berger et
al.’s variability is oriented to the behavior of the system, and the variability concepts in Asadi et al. are of
general purpose. The third criterion is the use of the ontology in similar studies. To the best of our knowledge,
the ontology of Asadi et al. is the only one used to evaluate ontological expressiveness in variability languages
(i.e., FODA and OVM). For the aforementioned reasons, the ontology proposed by Asadi et al. is selected for
the ontological analysis of the HLCL.

Asadi et al.’s ontology groups concepts into variability sources and variability patterns. A variability source
is an element in which variability may happen. The concepts considered as variability sources correspond to
things, properties, lawful state space, lawful event space, and history in the BWW ontology [WW93]. Table 3.2
presents the concepts and their definitions. This table includes the definition of concepts state, state law, and
event because they are relevant for the understanding and mapping of the lawful state space and lawful event
space. Also, the definitions of lawful state space and lawful event space are highlighted in the table to denote
that the next highlighted rows contain concepts and definitions subjacent to each concept.

A variability pattern represents the different types of variability that can be observed in different products
in a particular product line. Variability patterns are derived from a series of similarity classes regarding the
variability sources. This dissertation describes the variability patterns included in the ontology (Table 3.2)
introducing first the definitions of similarity and equivalence, and then explaining the four variability patterns.
A more detailed description is available in [AGWH12]. Let S = {s1, s2, . . . , sm} be a set of elements belonging
to a product P1 and T = {t1, t2, . . . , tn} be a set of elements in product P2.

Coffee

61 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

Definition 3.1 Equivalence. S is equivalent to T (S ⌘ T) iff there is a mapping between S and T .

Definition 3.2 Similarity. S is similar to T with respect to an equivalence subset p, denoted as S ⇠=p T , iff
there exists S0, T 0 such as S0 ⇢ S and T 0 ⇢ T , then S0 ⌘ T 0. In other words, the concept of similarity refers to
elements that are common to products in a product line.

Definition 3.3 Full Similarity One-Side. Two products are fully similar one-side when they satisfy the similarity
relation and an equivalence can be established w.r.t. subsets of S or T . Let S0, T 0 be two subsets, S0 ⇢ S and
T 0 ⇢ T , then either S0 ⌘ T or T 0 ⌘ S.

Definition 3.4 Partial Similarity. Two products are similar when they satisfy the similarity relation.

Definition 3.5 Dissimilarity. Two products are completely dissimilar if no similarity relation can be established.

Definition 3.6 Ordering. Variability regarding ordering appears when two products S, T have a similarity
relation but they are dissimilar with respect to an ordering relation. Thus, there exists the ordered sets S0, T 0

such as S0 ⇢ S and T 0 ⇢ T and S0 ⌘ T 0 but S0 and T 0 are dissimilar with respect to their order.

Table 3.2: Summary of the Ontology [AGWH12]

Concepts Definition

V
ar

ia
bi

lit
y

so
ur

ce

St
ru

ct
ur

e

Things A thing is an elementary unit. The real-world is made up of things. A composite thing
may be made up of other things (composite or primitive).

Properties Things possess properties. A property is modeled via a function that maps the thing to
some value.

Lawful state space The lawful state space is the set of states of a thing that comply with the state laws of
the thing.

State The state of a thing is the vector of values for all attribute functions of a thing.

State law A state law restricts the values of the properties of a thing to a subset that is deemed
lawful because of natural laws or human laws. A law is considered a property.

P
ro

ce
ss

Lawful event space The lawful event space is the set of all events in a thing that are lawful.

Event An event is a change in state of a thing.

History It is the chronologically-ordered states that a thing traverses in time.

V
ar

ia
bi

lit
y

pa
tt

er
n

Full similarity one-side Two products S, T are fully similar one-side when they satisfy the similarity relation,
and an equivalence relation can be established w.r.t. subsets of S or T.

Partial similarity Two products are similar when they satisfy the similarity relation.

Dissimilarity Occurs when no similarity relation can be established.

Ordering variability Occurs when two products differ by an order relation.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.4. Design of the Evaluation 62

3.4 Design of the Evaluation
The first step in the evaluation of the HLCL expressiveness is to define the specific goal, questions, and associated
metrics to answer the research questions by using the Goal-Question-Metric (GQM) approach [BCR94].

The metrics in this experiment are the four measures of potential ontological deficiencies proposed by Recker
et al. [RRIG09]: the degree of deficit, the degree of excess, the degree of redundancy, and the degree of overload.
Table 3.3 presents how to calculate each measure.

Table 3.3: Measures of potential ontological deficiencies [RRIG09]

Metric Formula Definition

M1: Degree of Deficit (DoD) DoD = #not mapped ontological constructs
#ontological constructs The ratio of ontological con-

structs that cannot map to
any language construct.

M2: Degree of Excess (DoE) DoE = #not mapped language constructs
#language constructs The ratio of language con-

structs that cannot map any
ontological construct

M3: Degree of Redundancy (DoR) DoR = #lang.const.mapping the same ont.const.
#language constructs The ratio of constructs in

the modeling language map-
ping the same ontological
constructs.

M4: Degree of Overlap (DoO) DoO = #lang.const.mapping many ont.const.
#languageconstructs The ratio of language con-

structs mapping more than
one ontological construct.

3.4.1 Goal and Research Questions

The main goal of this study is to evaluate the HLCL with respect to its completeness and clarity from the point
of view of the expressiveness in the context of an ontological analysis. The following are the research questions
each paired with their correspondent metrics.

Q1. Does HLCL map all the constructs in the ontological model? This question serves to determine the
completeness or incompleteness (construct deficit) of the HLCL using the degree of deficit (DoD).

Q2. Are there any HLCL constructs that cannot be mapped into ontological constructs? This question is
related to determine if the HLCL has construct excess using the degree of excess (DoE). Therefore, it contributes
to elaborate an explanation about the clarity of the language.

Q3. Is the mapping a one-to-one relation? This question serves to determine if the HLCL has construct
redundancy and construct overload using the degree of redundancy and degree of overload (DoR, DoO). Thus,
together with Q2, Q3 leads to conclude about the clarity of the language.

Coffee

63 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

3.4.2 Hypothesis

The refinement of the stated questions relies on the analysis of three hypotheses, each one with null and
alternative forms, related to Recker et al.’s metrics, as synthesized in Table 3.4.

Table 3.4: Hypotheses

Question Null hypothesis Alternative hypothesis Defect

Q1
H10: All ontological constructs were
mapped to HLCL constructs.

H11: One or more ont. construct can-
not be mapped to HLCL constructs.

C
on

st
ru

ct
 D

efi
ci

t Ontology Language

H10 : DoD = 0% H11 : DoD > 0%

Q2

H20: All the HLCL constructs were
mapped.

H21: One or more HLCL const. cannot
be mapped to ont. constructs.

C
on

st
ru

ct
 E

xc
es

s Ontology Language

H20 : DoE = 0% H21 : DoE > 0%

Q3

H30: The map is one-to-one. H31: The map is NOT one-to-one.

R
ed

un
da

nc
y

Ontology Language Ontology Language

C
on

s.
 O

ve
rlo

ad

H30 : DoR = 0% ^DoO = 0% H31 : DoR > 0% _DoO > 0%

3.4.3 Threats to validity

The following section discuss the limitations of this study by elaborating the threats to validity and the strategies
used to minimize their effects [KPP+02].

The validity of the results may be affected by the selection of the ontology and the mapping between the
language and the ontology. To mitigate the bias in selecting the ontology, the evaluation included a literature
review searching for foundational ontologies containing domain-independent and variability-related constructs.
The following step was to study the concepts in the selected ontologies as well as the purpose and application of
the ontology. As a result, the Asadi et al.’s ontology was selected. Though this ontology may not be complete
as it contains a subset of the constructs from BWW [WW93], the variability patterns included in the ontology
describes the possible cases of variability in a product line [AGWH12]. Moreover, one of the conclusions of the
evaluation is that similar results can be produced evaluating the HLCL expressiveness using other foundational
ontologies along with Asadi et al.’s variability patterns. This conclusion considered that the results regarding
HLCL’s completeness are the product of the difficulties of HLCL to represent ontological constructs related to
the sequence of events and temporal constraints. In the case of the HLCL’s clarity, overlapping and overload will
be present as long as the generic construct constraints is used to map all variability constructs in the ontology.

To decrease the threats regarding the mapping between the language and the ontology the analysis was
conducted in three steps. First, I as main researcher, separately mapped the HLCL constructs against ontological
constructs to create a first mapping draft. Second, Prof. Mazo an I met to discuss and defined a second draft.
Third, a last discussion section with both supervisors produced a third version of the mapping. By reaching a
consensus at the end of this process, we procured to increase the reliability and validity of the mapping.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.5. Conduction 64

3.5 Conduction
The mapping between the HLCL constructs (Table 3.5) and the ontological constructs (Table 3.2) was performed
in two steps. The first step consisted on a representation mapping to determine whether and how ontological
constructs are represented via a language construct. The second step is to define the interpretation mapping to
determine whether and how a grammatical construct stands for a real-world construct and answer the research
questions. To close, this section uses the results in the interpretation mapping to measure the potential potential
ontological deficiencies in the language applying the Recker et al.’s metrics. The following paragraphs describe
the representation mapping illustrating it with examples of constraints in the running example: PAS product
line (cf, Section 3.1.1).

Table 3.5: Core constructs of the High-Level Constraint Language.

Construct Definition

Variables Represent product line elements. A variable has a domain, and it is paired with a value at a given time.

Domain The domain of variables can be Boolean, integer, interval, enumeration or string.

Values Represent the elements in the domains.

Constraint Constraints are relations over a set of variables C(x1, x2, . . . , xn) producing sets of values {v1, v2, . . . , vn}
where vi is assigned to each variable xi

3.5.1 Representation mapping

The description of the representation mapping follows the separation of concerns in Asadi et al.’s ontology. Then,
the description presents first the mapping of the sources of variability followed by the mapping of variability
patterns.

Mapping the Sources of Variability.

Things and properties were mapped to variables in HLCL. The ontological model defines things as elementary
units that have properties. Those properties represent a particular characteristic of a thing. In HLCL, elements
in a product line (e.g., feature, requirement, design fragment, component or any other reusable artifact) are
represented by variables associated with Boolean domains. The information related to structural elements
(things) are the attributes. These attributes are represented using variables with domains of different types,
regarding the possible values of the attribute (attributes, values [BSRC10]). In this example, each component
in the PAS is mapped to Boolean variables ranging in {0, 1} and the attribute Size representing the size of the
internal memory is mapped to a variable with domain {0, 2, 4, 8, 16, 32}. For each attribute, a constraint in
the form (structural_element > 0) , (attribute > 0) should be introduced. Therefore, when an element is
selected, all its attributes are entailed and vice versa (e.g., C5 and C6 in Table 3.1).

In the ontological model, the lawful state space is an ontological construct defining the set of states of a thing
complying with the state laws of the thing. The mapping considers first the state of a thing representing the

Coffee

65 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

possible values of its attributes. In HLCL, the domain of a variable represents the set of possible values for
such variable. Thus, the state of a thing maps to the set containing the domains of the variable(s) used for
representing a thing and its attributes. Second, the mapping considers the state law that is a rule that restricts
the values of the attributes of a thing. In HLCL, constraints are expressions that represent rules restricting the
domains of variables. Hence, the state laws are mapped to the constraints over the variables representing the
state of a particular thing. Finally, the conclusion is that the lawful state space can be mapped to the set of
values (in the domain) agreeing with the constraints in the model. For instance, consider the attribute Cores in
the example in Table 3.1 its domain (state) is defined as the integers in the interval [0, 7]. However, considering
C10 and the domain of the attribute Size, the lawful state space for Cores is the set {0, 1, 2, 3, 4, 5}.

The mapping of the lawful event space is based on the notion that constraints are not just as the rules in the
domain of a system but also as agents in the computational model of the Concurrent Constraints Programming
(CCP). CCP is a model for specifying concurrent systems in terms of constraints proposed by Saraswat in
[SR90]. In this model, constraints represent partial information about the shared variables of the system that
resides in a store. This store can be accessed by agents with two basic operations: ask and tell. Figure 3.2
shows the classic example of four agents interacting with the store.

STORE

x > 0 x = 100?

x < 100 30 < x > 50?

Figure 3.2: A CCP Store Accessed by four agents

The agents at the left tell the store that the variable x will be instanced between the values 0 and 100. When
the agent at the top-right asks if x is equal to 100, the answer will be no, but when the fourth agent asks if x is
between 30 and 50, it will be blocked because there is not enough information to answer that. The agent will
wait until some other agent tells the store something else about the variable.

Now, for the mapping, recall the lawful event space as the set of all events in a thing that are lawful (with
respect to the state laws). The mapping considers that (1) an event is defined as a change in the state of a
thing that can be internal or external, (2) states were mapped to HLCL domains in previous mappings. Thus,
events are mapped to constraints because they are the HLCL constructs that continually produce changes in the
domain of variables. More particularly, the mapping considers constraints that trigger other constraints like C5,
C6, and C10 in the example in Table 3.1. In these constraints, the selection of the memory (Memory = 1) triggers
other constraints that will change the domain of variables Size, Processor, and Cores. Now, considering
that the lawful state space is represented by sets of values satisfying the constraints, the lawful event space is
mapped to the constraints in the HLCL model.

The mapping determined a lack of representation for the ontological construct history. Asadi et al. ontology
defines history as the chronologically-ordered states that a thing traverses in time. In HLCL as in other

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.5. Conduction 66

constraint languages based in CCP [SR90] there exist two moments: first, when the problem is specified and all
the possible values in the domain of a variable are defined; second, when the solver determines which values
satisfy all the constraints in the problem. Then, a value associated with a variable does not change in time.
Therefore, HLCL does not have constructs to specify the sequence of changes in the values assigned to variables.

Table 3.6 presents a summary of the representation mapping of the sources of variability following the format
of Asadi’s et al. ontology.

Table 3.6: Representation mapping between ontological constructs and HLCL constructs.

Concepts Mapping - Rationale

V
ar

ia
bi

lit
y

so
ur

ce

St
ru

ct
ur

e

Things Boolean Variables - Elements in a product line (e.g., feature, requirement, design fragment,
component or any other reusable artifact) are represented by variables associated with
Boolean domains.

Properties Variables - The information related to things (e.g., attribute) are represented using
variables with domains ranging in the possible values of the attribute. An element is linked
to its attributes by a constraint in the form (structural_element > 0) , (attribute > 0).

Lawful state space Values (in the domain) that respect the constraints in the model.

State Domains of variables representing attributes. This mapping considers that the state is
the set of values for an attribute.

State law Constraints - State laws as the rule that restricts the values of the attributes of a thing
are mapped to the constraints over the variables representing the attributes of a particular
thing.

P
ro

ce
ss

Lawful event space Constraints over the variables to representing the state of a thing.

Event Constraints - Considering that events are changes in the state of a thing and states were
mapped to domains, events are mapped to constraints that trigger other constraints and
produces changes in the domains of elements and attributes.

History No HLCL construct can map this ontological construct.

Mapping the Variability Patterns.

The variability patterns are observable characteristics of the products in a product line. This mapping considers
how the constraints in the HLCL can be used to specify variability relations that generate products where
the variability patterns are observable. This mapping included constraints representing variability in previous
publications [SMD+11a, MSD+12b] To illustrate this mapping, Table 3.7 shows a subset of the valid products
in the running example and particular instances of constraints mapping variability patterns in Table 3.8.

Full Similarity One-Side. This pattern can be mapped to constraints in HLCL used for representing optional
relations [KCH+90]. Within an optional relation, it is possible to find products including an element, or not.
Then, the use of optional relations causes the inclusion of two or more products with the full similarity one-side
property in the set of solutions. For example, consider products P1 and P3 in Table 3.7 and P 0

3 ⇢ P3 where
P 0
3 = {Processor, Cores=1, Memory, Size=2, Sensors, SpeedSensors}. Then all items in P1 are also in

P 0
3, then P 0

3 ⌘ P1. Optional relations can be represented with boolean and integer constraints. For instance, in

Coffee

67 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

Table 3.7: Examples of valid products in the Movement Control System (PAS) product line.

P1 : {Processor, Cores=1, Memory, Size=2, Sensors, SpeedSensors}

P2 : {Sensors, PositionSensors, Feedback, Visual, Audio}

P3 : {Processor, Cores=1, Memory, Size=2, Sensors, PositionSensors, Feedback, Audio, Vibration}

P4 : {Processor, Cores=3, Memory, Size=8, Sensors, SpeedSensors}

P5 : {Processor, Cores=1, Memory, Size=2, Sensors, SpeedSensors, Feedback, Visual}

the PAS example, C2 to C4 are optional relations. Other examples of constraints used to represent optional
relations in HLCL are in Table 3.8.

Table 3.8: Constraints mapping variability patterns.

Variability
Pattern

Constraint HLCL Constructs Semantics

Full
similarity
one-side

(1)C) P
Constraints with Boolean domains,
and logic operators.

If P is selected then C may be
selected, but if C is present, then P

is present too.

(2)C P
Constraints with integer domains,
arithmetic operators.

Partial
similarity

(1)P , C1 _ · · · _ Cn
Constraints with Boolean domains,
and logic operators.

If P is selected then one or more Ci

are selected.

(2)(C1) P) ^ · · · ^ (Cn) P)

^ P � 1) C1 + · · ·+Cn � m

^ P � 1) C1 + · · ·+ Cn n

Constraints with integer domains,
and Boolean, arithmetic operators.

If P is selected then at least m and
at most n Ci are selected.

Dissimilarity
(C1) P) ^ . . . ^ (Cn) P)

^ P � 1) C1 + · · · + Cn � 1

^ P � 1) C1 + · · ·+ Cn 1

Constraints with integer domains,
and logic, arithmetic operators.

If P is selected then, one or zero Ci

are also selected.

Ordering vari-
ability

No HLCL construct can map this ontological construct.

Partial Similarity. This pattern can be mapped to constraints in HLCL used for representing variability
relations that produce products sharing common elements. The most common variability relations with this
characteristic are OR-relations and group cardinality hm,ni relations [CHE05]. Table 3.8 shows how to represent
OR and group cardinality in HLCL. For instance, consider C8 that represents a group with cardinality h1, 2i
and C9 representing a group with cardinality h1, ⇤i. These constraints produce valid products such as P3 and P5

exhibiting partial similarity where they share some items {Processor, Cores=1, Memory, Size=2, Sensors,
Feedback}. Note that it is not possible to produce a full similarity with P3 and P5 (not even a full similarity
one-side).

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.5. Conduction 68

Table 3.9: Interpretation mapping between ontological constructs and HLCL constructs.

Constructs

Ontology

Variability Sources Variability Patterns

T
hi

ng
s

P
ro

pe
rt

ie
s

L
aw

fu
l

st
at

e
sp

ac
e

L
aw

fu
l

ev
en

t
sp

ac
e

H
is

to
ry

Fu
ll

si
m

ila
ri

ty
on

e-
si

de

P
ar

ti
al

si
m

i-
la

ri
ty

D
is

si
m

ila
ri

ty

O
rd

er
in

g
va

ri
-

ab
ili

ty

H
L
C

L

Variables • •

Domains •

Values •

Constraints • • • •

Dissimilarity. To produce completely dissimilar products, the variability model should not contain constraints
that enforces the inclusion of an item in all products of the product line (e.g., mandatory). Then, this mapping
does not consider the core items in the product line. The dissimilarity pattern can be mapped to constraints
in HLCL used for representing variability relations such as alternative (XOR) [KCH+90], or group cardinality
h1, 1i [CHE05]. These relations produce products without common elements. For instance, without considering
the Sensors that are always selected, products P2 and P4 do not have common elements as a consequence of
the optional relations C2, C3 and the alternative relation in C8. Table 3.8 shows how to represent alternative
and group cardinality h1, 1i in HLCL.

Ordering This variability pattern cannot be mapped in HLCL because there are no constraints to determine
the order of the selection of values for variables. In addition, under the concurrent constraint programming
model, it is not possible to establish an ordering for the application of constraints [SR90].

3.5.2 Interpretation mapping

The interpretation mapping determines whether and how a grammatical construct stands for a real-world
construct. Accordingly, Table 3.9 presents the interpretation mapping. Rows in Table 3.9 represent the HLCL
constructs, and columns represent the ontological constructs. A bullet is depicted when the HLCL construct in
the row maps the ontological construct in the column.

3.5.3 Measuring the potential ontological deficiencies

The potential ontological deficiencies of the HLCL are measured by calculating the four metrics proposed by
Recker et al. [RRIG09] presented in Table 3.3. The calculations as follows:

M1: Degree of Deficit (DoD). M1 is calculated by dividing the number of not mapped ontological constructs
over the total number of ontological constructs. Thus the DoD is calculated as follows:

Coffee

69 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

DoD =
#not mapped ontological constructs

#ontological constructs
= 0.22

Where the number of ontological constructs is nine and the number of not mapped ontological constructs
is two. The latter because ontological constructs history and variability ordering were not mapped to any
language construct. In consequence, HLCL exhibits a 22% of degree of deficit. Following Recker et al.’s
proposal, the complement of the DoD represents the level of ontological completeness. Then, HLCL’s
completeness level is 78%.

M2: Degree of Excess (DoE). M2 is calculated by dividing the number of not mapped language constructs over
the total number of language constructs. Thus the DoE is calculated as follows:

DoE =
#not mapped language constructs

#language constructs
= 0

All the language constructs were mapped. Then, HLCL has zero degree of excess (DoE 0%).

M3: Degree of Redundancy (DoR). To calculate M3 we divide the number of language constructs mapping the
same ontological construct over the total number of language constructs. The DoR is calculated as follows:

DoR =
#lang.const.mapping the same ont.const.

#language constructs
= 0.5

Where the number of language constructs is four and the number of language constructs mapping the
same ontological construct is two. Table3.9 shows that both language constructs, Domains and Values,
map the ontological construct Lawful state space. Then, the HLCL’s degree of redundancy is 50%.

M4: Degree of Overlap (DoO). M4 is calculated by dividing the number of language constructs mapping more
than one ontological construct over the total number of language constructs. The DoR is calculated as
follows:

DoO =
#lang.const.mapping many ont.const.

#languageconstructs
= 0.5

Where the number of language constructs is four and the number of language constructs mapping more
than one ontological construct is two. As depicted in Table3.9, the language constructs: Variables and
Constraints map more than one ontological construct. Then, HLCL’s degree of overlap is 50%.

3.5.4 Results

Q1: Does HLCL map all the constructs in the ontological model?

Both the representation and interpretation mapping showed a construct deficit for representing the ontological
constructs: history and ordering (highlighted columns in Table 3.9). Moreover, HLCL does not support the
design of product line models where explicit consideration is given to sequence and order in the product line.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.5. Conduction 70

Accordingly, HLCL users will encounter difficulties in meeting the potential need for explicit represent constraints
such as: “element E1 must be selected before E2”. Regarding the results of Asadi et al. in [AGWH12], a similar
deficiency was also found to exist in FMs and OVM. Consequently, neither HLCL, FMs nor OVM can represent
history and ordering.

Q2: Are there any HLCL constructs that cannot be mapped into ontological constructs?

All constructs in HLCL were mapped to the elements in the ontology proposed by Asadi et al. [AGWH12].
Hence, HLCL does not present construct excess.

Q3: Is the set of mapped constructs a one-to-one relation?

The mapping of ontological constructs to language constructs is not one-to-one. Table 3.9 shows that it is not
possible to have a one-to-one mapping considering the difference in the number of constructs (HLCL has four
constructs, the ontology has nine constructs). In consequence, the absence of a one-to-one mapping causes
two defects: (1) there is one ontological construct mapping to more than one HLCL constructs (construct
redundancy), and (2) there are HLCL constructs mapped to different ontological constructs (construct overload).
These two defects are also observable in Table 3.9. First, columns in Table 3.9 serve to identify which ontological
constructs are mapped to more than one HLCL construct. Thus, columns with more than one bullet are
instances of construct redundancy. In the table, one instance of construct redundancy is observable, the mapping
(lawful state space ! domains, values). Second, rows in Table 3.9 are used to find which HLCL constructs
are mapped to more than one ontological construct. Therefore, rows with more than one bullet are instances
of construct overload. As seen in the table, two of the four HLCL constructs are involved in more than one
mapping: variables and constraints.

Ontological Completeness and Clarity

To discuss about the ontological completeness and clarity, recall the metrics measuring the potential ontological
deficiencies calculated in Section 3.5.3. The Recker’s et al. Degree of Deficit (DoD), is the measure usually
used to conclude about the level of ontological completeness in a conceptual modeling language. Under this
idea, the lower the DoD, the higher the level of ontological completeness. HLCL exhibits a 22% of degree of
deficit. Therefore, HLCL completeness level is 78%. This result means that HLCL closely represents the general
principles of variability under the Asadi et al. ontological framework. To evaluate the ontological clarity of
HLCL, the Degrees of Excess (DoE), Redundancy (DoR) and Overlap (DoO) were calculated. HLCL exhibits a
low degree of excess (DoE 0%), and medium degrees of redundancy and overload (DoR, DoO 50%). On the
one hand, a low DoE is a desirable situation as it prevents user confusion due to the need to ascribe meaning
to constructs that do not appear to have real-world meaning. On the other hand, the levels of redundancy
and overload indicate that HLCL might be unclear and will produce potentially ambiguous representations of
real-world domains.

Coffee

71 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

3.6 Lessons Learned
The analysis of the results obtained in this evaluation of the HLCL under the theory of ontological expressiveness
contributes to taking forward the discussion of HLCL’s expressiveness. The results of the evaluation should be
analyzed from two different perspectives: clarity and completeness.

3.6.1 Clarity vs Abstraction

HLCL presents a medium level of clarity due to its levels of redundancy and overload. This redundancy and
overload levels depend on the number of constructs in HLCL and especially in the repeated use of constraints for
mapping variability patterns. The constraint construct is a generic construct that represents a set of expressions.
The mapping presented in Section 3.5.1 includes particular instances of constraints to explicitly demonstrate
how HLCL constructs represent variability patterns in the ontology. To enhance the clarity of the new language,
it needs a set of constructs containing expressions mapping frequently used variability relations. These new
constructs would be considered syntactic sugar as they can be removed without any effect on the expressive
power of the language.

3.6.2 Ontological (in)Completeness

Ontological incompleteness arises because it is not possible to map any HLCL construct with the ontological
constructs related to time: history and ordering. A similar observation was reported by Asadi et al. after
analyzing FMs and OVMs [AGWH12]. In their study, Asadi et al. concluded that both languages lack variability
completeness as they do not have any construct for representing order. This conclusion is not surprising given
that the formalisms associated with these variability languages (e.g., first-order logic and concurrent constraint
programming [BSRC10]) do not model time. Indeed, the lack of expressiveness concerning the notion of time is
not inherent only to these three languages. To the best of our knowledge, there is no product line notation
including constructs for modeling time in product lines. Therefore, the gap in the HLCL’s expressiveness
demonstrated in this study, reflects a gap in the state of the art of the product line notations. Consequently,
the inclusion of time as a native concept in variability languages should be considered as a challenge in the
design of a new variability language.

3.6.3 What About Time for Variability Modeling?

The notion of time in computational models represents the sequence of changes in the state of a system. Time can
be used in product line notations to specify variability in process or behavior and also variation between product
releases. To address these, notations require sophisticated elements able to represent temporal constraints aiming
to (1) enhance variability, (2) schedule changes, and (3) sequence constraints. Temporal constraints enhance
variability languages by allowing to represent preferences regarding the moment of activation of an element in a
product line including constraints such as “element A is activated before/after the activation of element B”, “in
the next time unit, element A is activated”, or “element A is activated after three units of time”. These temporal
and scheduling constraints are particularly relevant to Dynamic Software Product Lines (DSPLs). The goal of
the DSPL is to build systems that dynamically adapt themselves to fluctuations in user needs, environmental

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.7. Summary of the Practical Evaluation 72

conditions, and resource constraints at runtime. In this context, temporal constraints might be useful for
including rules to schedule reconfigurations (adaptations). The inclusion of temporal constraints might enable
the use of constraints such as: “the reconfiguration starts at time x”, “the reconfiguration occurs during event E”,
“a reconfiguration will occur eventually”. Sequence constraints are useful to perform staged configuration where
it is necessary to produce a series of intermediate configurations compelling to a collection of requirements. For
instance, Burdek et al. in [BLL+13] include temporal constraints to perform staged configuration to determine
an order relationship between configuration stages. In their work, Burdek et al. include time constraints in a
feature-based notation.

3.6.4 The Theoretical Evaluation Framework

Many works have applied the theory of ontological expressiveness to evaluate conceptual modeling languages
such as the entity-relation model [SMN+10]; UML [BJM08]; the i? language [GFG12]; and BPMN [RRIG09] to
mention a few. In the domain of product lines, there are two well-known works [RBSW11, AGWH12] using the
theory of ontological expressiveness, both of them using the BWW ontology [WW93] as a basis and extending
it to accomplish their purposes. First, Reinhartz-Berger et al. [RBSW11] included a set of constructs to
analyze process variability and later to determine variability in terms of software behavior. Second, Asadi et
al. [AGWH12] included a collection of variability patterns aiming to provide a framework for evaluating the
ontological expressiveness of variability modeling languages. In their work, Asadi et al. use their framework to
evaluate two variability languages: FMs and OVM.

The evaluation framework conformed to conduct the ontological evaluation is a collateral result of the design
and conduction of the ontological evaluation presented in this chapter. This evaluation applies the theory of
ontological expressiveness to provide a theoretical analysis of HLCL as a variability modeling language in order
to determine its ability to represent variability in real-world domain models. To the best of our knowledge,
there is no evaluation of the expressiveness of a language that abstracts product line constraints as HLCL
does. The particulars of the evaluation and the generality of the research questions tackled in this evaluation
resulted in the composition of different elements that could be reused to evaluate other variability modeling
languages. For instance, Achtaich et al. [ARS+19] apply the evaluation framework defined in this chapter
to assess the expressiveness of their modeling language for defining variability in the context of self-adaptive
systems. Moreover, this framework will be used in Chapter 5 to evaluate the variability language proposed in
this thesis.

3.7 Summary of the Practical Evaluation
The last step in the evaluation of the HLCL framework consisted in actively getting involved on the engineering
team supporting the VariaMos tool-suite. This participation aimed to get the insight and experience the
problematic situation associated to design software solutions for supporting variability modeling and analysis.

The VariaMos tool-suite [MMFR+15] is a variability management tool which provides tooling support for
modeling and reasoning in different variability modeling languages. This tool embeds the HLCL framework a
joint contribution of many research works [DS08, SMD+11a, MSD11, MFTR+15]developed at the Centre de

Coffee

73 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

Recherche en Informatique. This framework exploits the idea of relying on an intermediate language unifying
existing notations to provide genericity to the methods, techniques, and tools used for modeling, analysis,
and configuration. Figure 3.3 depicts a conceptual model and refinement of the HLCL framework derived from
theoretical background and the experience of work as part of the engineering team.

Constraint program
in a solver's language

HLCL
representation

Compiler Solver

Solver1

SolverN

FODA

OVM

Dopler

language

...

Variability
language

T'a

T'b

T'c

T'n

... ...

T1(HLCL)

Tn(HLCL)

Analysis
result

Operation

21 Translation Intermediate representation 3 Reasoning

Figure 3.3: The HLCL framework.

The inclusion of the intermediate representation causes the inclusion of an extra-step in the transformation
framework as shown in Figure 3.3. First, a collection of rules are applied to encode variability models into
HLCL representations using the rules in [SMD+11a, MSD+12b]. Second, the variability model encoded in the
HLCL generic representation goes through a compilation process to produce a solver compatible representation.
This step is crucial to support different solvers for reasoning purposes. Finally, the reasoning task is completed
by executing the query using a constraint solver.

The intermediate representation approach in the HLCL framework is useful for integrating different variability
languages in one single tool. The VariaMos tool-suite provides a graphical interface to describe variability of a
single system using different views and more than one notation. These different views are later integrated in a
single model represented in HLCL to support reasoning providing several analysis and verification operations
[MMFR+15]. However, the benefits of the HLCL framework for supporting different notations and solvers do not
compensate for the drawbacks regarding the following key factors.

1. The intermediate language exhibits incompleteness, lack of usability, and readability. At some point, to
use this language resembled replacing a programming language by assembly language: regardless of its
benefits, to work with large scale assembly programs without a higher level, more abstract language is an
unfeasible task. Additionally, from the point of view of the implementation, the approach to provide an
in-house abstract representation limits the constraints, functions, and operators available to represent
variability models. Therefore, limiting the expressiveness level of the modeling language.

2. The intermediate representation of variability models using HLCL does not provide full-solver independence.
Indeed, the usage of multiple solvers in the HLCL is unpractical because it requires an extra transformation
step to encode HLCL representations into solver-readable code, as shown in Figure 3.3. Thus, the inclusion
of new solvers involves the definition and implementation of new transformation rules.

3. The intermediate representation of variability models using HLCL does not solve the issues regarding

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.8. Towards the Co�ee framework 74

the portability and sharing of models between tools. Variability models initially described in different
notations and later encoded into HLCL representations are useful for being analyzed in an integrated
way in the same tool [DTS+14, MFTR+15]. However, sharing models encoded in HLCL between different
tools is unpractical because of the loss of variability information in the transformation.

4. The extensibility of the tool implementing this framework, namely the inclusion of new languages and
new solvers, requires the definition and implementation of new transformation rules. The addition of a
new modeling language in the tool involves the definition of the rules for encoding variability languages
into HLCL representations. Additionally, the inclusion of a new solver demands the definition of the rules
for obtaining a solver-readable encoding. Then, the usage of an intermediate representation does not solve
the reimplementation of the transformation chain.

The inclusion of an intermediate representation in the transformation chain provides an extra level of
abstraction for designing a tool supporting different modeling languages and solving tools. In practice, the HLCL
framework does not ease the difficulties to share and port variability models between tools. Thus, VariaMos and
any implementation of this framework need external parsers to import models from other tools. Furthermore, the
HLCL framework replicates the portability issues inside the intermediate representation layer as a consequence of
the in-house definition and implementation of the HLCL. HLCL is a subset of constraint programming containing
the operators and expressions employed to encode variability models. Therefore, a standard representation of
constraint programming may be a better candidate to encode models as constraints in a solver-independent way.

3.8 Towards the Co�ee framework
The results of the evaluations showed that the benefits of the HLCL framework for supporting different notations
and solvers do not solve the problematic situation addressed in this thesis. Moreover, these results point to a new
direction on the objective to use intermediate languages to ease the interoperability of variability management
tools by designing a constraint-based framework supporting an expressive variability language and a flexible
automated analysis mechanism.

The results of the evaluation showed that there exist two different concerns in the goal of providing a
constraint-based framework for variability modeling and reasoning. On the one hand, there exist concerns
regarding the variability modeling. These concerns are centered on how variability languages should be designed
to provide enough expressiveness and abstraction to the modeler. On the other side, there exist concerns related
to constraint programming and its connection to the variability language for providing a reasoning mechanism
encompassing the expressiveness of the modeling language in a solver-independent way. At this point in the
research, two questions pointing two different directions were raised by the results of this study: is it appropriate
to pursue the usage of a generic constraint-based language as intermediate variability representation? or should
analysis concerns be treated separately from the modeling concerns? even if they are so intrinsically related? We
opted to continue this work in the second direction and design the Co�ee framework with two intermediate
representations, one for variability and one for analysis.

Coffee

75 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

3.8.1 Co�ee’s Overview

Co�ee is a constraint-based framework that contributes to ease the persistent issues concerning variability
modeling and reasoning about variability models.

This proposal exploits the usage of intermediate representations of variability models that can be portable
and shared by different tools. This intermediate representation, accompanied by a flexible transformation
mechanism, enables Co�ee to exploit the advantages of different solving paradigms and solvers.

Variability space

1

Constraints space

HLVL
representation

R5
R1

R7

R2

R8

R4
R1

R5

R6

R3

R5

R1
R6

Analysis
result

Generic
Constraint

Representation

Analysis

Solver

...

Solver1

SolverN

Operation

32 Intermediate representation

f(HLVL,
context)

FODA

OVM

Dopler

language

...

Encoding

Figure 3.4: Overview of the Co�ee Framework

This section presents an overview of the constraint-based framework for supporting expressive variability
modeling, and flexible variability analysis the Co�ee framework.

Figure 3.4 presents the conceptual model of Co�ee. The design of this framework continued the premise
of including intermediate representations. Similarly to the HLCL framework, Co�ee includes an intermediate
representation layer and an extra step in the transformation chain. What is different in Co�ee is that this
additional layer encodes variability models using two intermediate representations: one variability centered
representation for modeling and a second constraint centered representation for automated analysis. This
separation of languages answers to the separation between modeling and analysis concerns reported in the
evaluation. Figure 3.4 illustrates how each part of the framework belongs either to the variability space,
i.e., colored in blue, or to the constraints space, i.e., colored in orange. The only exception is a transition step,
colored in brown, interconnecting both spaces. This transition space represents the flexible transformation
mechanism to encode variability models into constraint satisfaction problems. The following subsections describe
the variability space, the constraint space, and the transition step.

3.8.2 The Variability Space

The variability space encircles the elements of the framework designed to address the issues regarding the the
lack of standards and its impact in the low portability of variability models and the interoperability issues
between variability management tools. This space encompasses the High-Level Variability Language (HLVL), the
intermediate representation designed to fulfill the ontological expressiveness and to cope with basic and complex
concepts from variability modeling languages, and to work with/for/in combination with most languages and
tools. HLVL is a textual variability modeling language, with features that makes it a candidate to be used as
exchange format among variability management tools. HLVL is the major contribution of Co�ee and become
the angular element in the variability space. Chapter 4 details the design of HLVL.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

3.8. Towards the Co�ee framework 76

As shown in Figure 3.4, the variability space contains two parts.

1. An Encoding step, also called models’ parsing defining the transformation patterns to obtain an HLVL

representation of variability models written in machine-readable format.

2. The HLVL representation containing the language’s infrastructure proposed for specifying variability
models in HLVL (e.g., syntax, editor, etc.).

Parsing other languages into HLVL models

Definition 3.7 Semantic equivalence. Semantic equivalence is when we have two variability models in two
languages, but the models mean the same in terms of configurations.

3.8.3 The Transition Step

The transition step between the variability space and the constraints space consist in the transformation
to encode HLVL models into a Generic Constraint Representation (GCR). The transformation rules and the
mapping function f(HLV L, context) are illustrated as a box in Figure 3.4. This transition step contains the
rules conforming the HLVL’s operational semantics defined in Chapter 4.

3.8.4 The Constraints Space

The constraints space contains the elements in Co�ee to support a solver-independent reasoning mechanism. The
design of the constraints space develops the idea that a generic solver-independent intermediate representation
of variability models favors the usage of solvers as plug&play tools. Several approaches relates the usage of one
or many off-the-shelf solvers to support the reasoning in their tools as if they are interchangeable. However,
as it has been discussed before, there exists a strong dependency between the elements in the transformation
framework. Thus, new rules and parsers must be designed and implemented to support new solvers.

To address this issue, Co�ee uses a standard representation of constraint programming compatible with
several solvers able to be extended externally, i.e., without including transformation steps in the chain. Figure 3.4,
depicts the following elements in the constraints space:

1. The Constraint Generic Representation layer containing the infrastructure for processing the variability
models represented as constraint problems. MiniZinc [NSB+07] is the technology selected to provide an
implementation to the CGR. MiniZinc is a solver-independent modeling language supporting most of the
solvers used for reasoning about variability models.

2. The Solving layer is used to execute solvers compatible with the MiniZinc tool-chain and therefore, able
to read MiniZinc representations of variability models. In addition, this layer is in charge of parsing the
output obtained from the solver to produce the analysis results.

Coffee

77 Chapter 3. From the Evaluation of the HLCL Framework Towards Co�ee

3.9 Summary
This chapter reported the results of the first stage in the research presented in this dissertation and the
contributions resulting from this stage.

First, Sections 3.2, 3.3, and 3.4 present the evaluation framework to measure the expressiveness of variability
modeling languages. This framework is grounded on the theory of ontological expressiveness [WW93], using a
foundational ontology for variability languages combining the works of Asadi et al. [AGWH12] and Reinhartz-
Berger et al. [RBSW11]. In addition, the evaluation process follows the GQM approach considering the metrics
to evaluate ontological expressiveness and clarity in a conceptual modeling language developed in the works by
Recker et al. [RRIG09].

Second, Section 5.1.2 presents the application of the evaluation framework to the High-Level Constraint
Language, the results obtained, the discussion and conclusions. These results point to new challenges in
the research presented in this thesis and pointed a new direction. Additionally, Section 4.5 summarizes the
experience on the engineering a variability management tool, and signals the drawbacks discussed and shared
among the community. From this point on, the concerns regarding variability modeling and variability analysis
were treated independently in the thesis.

Finally, Section 3.8 presents the conceptual model of the Co�ee framework, the original proposal developed in
this thesis. Co�ee solves the interoperability among modeling tools introducing an expressive textual variability
modeling language called the High-Level Variability Language. Also, in Co�ee the strong coupling and lack
of flexibility in the transformation framework are solved by introducing a Generic Constraint Representation
together with a context-aware transformation framework.

The next chapter details the components of the Co�ee framework starting from the variability language.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Chapter 4
Variability Modeling and Variability Analysis in Co�ee

This chapter shares content with the paper The High-Level Variability Language: an ontological ap-
proach [VMS19]

The previous chapter presented the process and results produced in the first stage of this research and
closed with the introduction of Co�ee, a framework designed to solve the issues in variability modeling and
analysis using intermediate representations. The framework’s design complies with the separation of concerns
regarding variability modeling and variability analysis. This separation of concerns is reflected in the framework’s
structural division among the variability and constraint spaces.

This chapter presents the elements within the variability and constraint spaces and how these elements
are orchestrated in Co�ee to support variability modeling and variability analysis. The following sections
present (1) the characteristics and formal definition of the High-Level Variability language; and (2) the HLVL’s
operational semantics as the core for supporting variability analysis in a flexible and multi-solver fashion.

4.1 Motivation and Challenges
Modeling variability and analyzing variability models are entwined activities. Variability modeling requires
automated analysis to produce high-quality, defect-free, and maintainable models. However, as evidenced in
Chapter 3, variability modeling and analysis concerns should be treated separately. Accordingly, the following
subsections present the challenges on variability modeling and variability analysis considering the separation of
variability modeling and analysis concerns.

4.1.1 Variability Modeling Concerns

Variability languages enable the modeler to answer two questions about the system to be modeled: what does
vary? and how does it vary? [PBvdL05]. These languages provide a collection of constructs enabling the
modeler (1) to identify and document the variable items; (2) to identify the set of possible options or variants
associated to variable items in the system; and (3) to define the rules for determining how variable items can be
combined into new configurations.

78

79 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

Different modeling approaches have been proposed since the introduction of FODA, such as, variation-point-
oriented languages [PBvdL05], decision-oriented languages [DGR11], constraint-oriented languages [SMDD10]
and industrial languages (e.g., Kconfig [ZC], Gears [Kru07]). These proposals have contributed to a universe of
languages, notations, transformations, and tools supporting the creation of variability models. Then, variability
modeling relies upon existing domain-specific languages and modeling tools. These tools are developed and
taught in-house and frequently are used only by the few people associated with the development team, as we
ourselves had experienced with the development of the VariaMos tool suite [MMFR+15].

This diversity of modeling paradigms, languages, tools, representations (graphical or textual) is the main
cause of the lack of standards for modeling variability, lack of portability of variability models, interoperability
between modeling tools, and the difficulty task of share models for comparisons and benchmarking. However,
Variability modeling languages are neither completely different nor completely the same. Let’s take a look to
Figure 4.1 containing four variability models written in different languages: FODA [KCH+90], Dopler [DGR11],
OVM [PBvdL05], and TVL [CBH11].

V
V1: Medium-

class car

VP

Mandatory Optional

V

Variant Mandatory Optional
[min, max]

Alternative
Requires Excludes

VP

VP

VP1: Type
 of vehicle

VP

VP2: Activation

VP

VP3:
Confort functions

VP

VP4: Other
signs

VP
VP5:

Prohibition signs

V
V2: Upper-
class car

V
V3: Small
truck(3, 5t)

V
V4: Big

truck(7, 5t)

1, 1

V
V5: Switchable

V
V6: Durable

1, 1
V

V7: No stopping
warning

V

V8: Overspeed
warning

V V11: No
vehicles

V
V9: Road w/right

of way start

V
V12: No

cars

V
V10: City limitMAX

(a) Orthogonal Variability Model (OVM) [PBvdL05]

What to buy?
(name: scope; expected val 1:1):

{"assemble yourself", "complete suite"})

Which tools?
(name: tools; expected val 1:3):

{"CW", "DK", "PK"})

Include glossary?
(name: glossary;

expected val: bool)

Default resolution?
(name: resolution; expected val 1:1):

{"800x600", })

Width?
(name: width;

expected val: number)

!"#$%&'()*+!(,#--#.$/001200.3#+4&,#5!6+4#-#/00

Decision effect Validity Cond.

5!6+4#7-#/00#88
5!6+4#9-#:2/0 ;(,+<!,'$+(()'=#.>?.3

Visibility Cond.

!'@<A&,$';(B&3 ';(B&#--.<''&CD)&#E(*%'&)".

Decision

(b) Dopler Modeling Language (DoplerML)
[DGR11]

Parking Assistant System

Processor Memory

Name: size
 Domain: integers

Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Excludes
Requires

Mandatory
Optional

OR Alternative
feature Attribute

Speed
sensorSensors

Position
sensor

Feedback

Visual

Audio

[1, 2]

Vibration

Variability unit Variability relationVariant

(c) FODA [KCH+90] with the extension proposed in
[BTRC05a].

(d) Textual Variablity Language TVL [CBH11].

Figure 4.1: Variability models using different languages.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.1. Motivation and Challenges 80

Similarities. All four models contain syntactic elements or constructs (graphical, textual or both) representing
the things that vary (i.e., variability units, examples highlighted in blue), the possible choices (i.e., variants,
examples highlighted in orange), and the rules for combining these variable items into products (i.e., variability
relations, examples highlighted in violet). Moreover, some of these constructs share or have similar semantics.
Other constructs even share their names as in FODA and OVM models.

Differences. The models in Figure 4.1 have (1) different modeling paradigms, i.e., feature models, variation-
point models, and decision models; (2) different expressiveness levels, e.g., some support boolean and non-boolean
information and cardinalities, others do not; (3) different structures, e.g., hierarchical tree-shaped, graph-shaped,
and nested blocks; (4) different types of variability units, e.g., associated to Boolean, and non-Boolean variants;
(5) heterogeneous rules, e.g., cross-tree constraints, visibility, and validity conditions, and constraints; among
others.

Nevertheless, all the variability languages used in the example have been transformed in constraint satisfaction
problems to perform analysis, most of them with the same transformation rules. Following the idea that despite
the interoperability issues, the diversity in the modeling approaches also causes richer models and dedicated
tools, this chapter presents the High-Level Variability Language (HLVL), the proposal developed in this thesis
for a unified variability modeling language that supports basic and complex concepts from different variability
modeling languages and is able to work with/for/in combination with most languages and tools. To achieve the
goals of defining HLVL, this research tackled the following challenges.

CH1. To determine the expressiveness level of the modeling language. Two sources were considered to determine
the expressiveness level of HLVL. On the one hand, the glossary of variability modeling concepts surveyed
in the literature review and reported in Chapter 2. On the other hand, the criteria for ontological
expressiveness from the ontological analysis reported in Chapter 3. With these inputs in consideration,
this chapter presents the decisions regarding which variability concepts does the HLVL support and why.

CH2. The definition of the characteristics of a variability modeling language for being used for modeling
variability and for being considered as exchange format. The design of HLVL is centered on the language
expressiveness and its capabilities to support most current languages. However, the design of the
language raises other questions such as (1)which modeling paradigms should HLVL support ; (2) what are
the characteristics of the language’s concrete syntax ; and (3) does HLVL meet the scenarios considered in
the initiatives to propose a modeling standard [BC19]?

CH3. The definition of a variability modeling language avoiding implementation-dependency
To avoid implementation-dependency, the semantics of HLVL should present the rules to determine
the meaning of a variability model in terms of the set of valid configurations independently of the
implementation. This is achieved by the definition of the language formal semantics which is the hallmark
of precision and unambiguity and a prerequisite for efficient and safe tool automation [SHTB07]. Thus,
this chapter answers the questions about (1) what does a variability model specified in the HLVL language
mean?; and (2) what is the approach to represent a formal semantics of the language to unveil the
language’s behavior of any particular implementation?.

Coffee

81 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

4.1.2 Variability Analysis Concerns

Similar to other state-of-the-art approaches, variability analysis in Co�ee requires the transformation of
variability models into logic representations to perform satisfiability questions on solvers. As the representation
of variability models in a logic paradigm is crucial to support most variability management tasks [MBC09,
TKB+14, BSRC10, GBT+18].

The question, Which set of transformation rules should be considered to encode variability models into
constraint satisfaction problems? is recurrent when engineering variability management tools. Several sets of
rules can be applied to encode variability models for analysis purposes. For instance, the literature review
conducted in this thesis, i.e., Chapter 2, describes 25 types of transformation rules. Furthermore, other literature
reviews, such as [BSRC10, GBT+18], reference at least 16 different publications containing rules to transform
variability models into constraint programs.

The answer to the latter question is: it depends, as it happens that the complexity of the logic paradigm and
the set of transformation rules depend on the expressiveness of the modeling language. This situation is the
so-called trade-off between expressiveness and analysis [MP14, BSRC10, EKS13, GBT+18]. Hence, there is no
particular way to encode variability models into constraint problems but a collection of transformation rules
that may apply regarding the set of variability concepts supported by the language.

Following this idea, dealing with the complexity of the logic paradigm and the transformation rules poses a
significant challenge in the design of the automated analysis support in Coffee, since the main characteristic of
HLVL is expressiveness. Therefore, to provide a flexible transformation framework that works with different logic
representations and solving tools, the following challenges were added to the ones explained in the previous
section.

CH4. To define the logic representation and transformation rules for encoding variability models in HLVL for
analysis purposes. Two questions guide the definition of the logic representation and transformation
rules: What is the approach to encode HLVL models without impact the expressiveness of the language?
Which logic representations and transformations rules are better suited for models in HLVL?

CH5. To define the intermediate representation used for encoding variability models in the selected logic
representation. The design of the transformation framework develops the hypothesis to encode variability
models using an intermediate representation to enable the multi-solver support. Then, the idea is
to replace the HLCL to support different types of solvers and avoid the implementation dependence
evidenced in the evaluation. Then, what intermediate representation for constraint satisfaction problems
can be used in the implementation of the transformation framework?

4.1.3 Examples in this Chapter

This chapter presents three examples to describe the language constructs and to illustrate how HLVL can be
used to model characteristics of different variability modeling languages.

The main example is the fictional case of a car’s Parking Assistant System (PAS), described in Chapter 3.The
PAS is a system that assists drivers for parking their vehicles using sensors and feedback devices for controlling

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 82

the speed and correct the car’s trajectory. This example describes the basic scenario that will grow as the
chapter includes modeling concepts. Then, the extensions are cumulative. Figure 4.2 recalls the definition of the
running example and presents a graphical depiction of the example in the graphical FODA [KCH+90] language
with the extension proposed by Benavides et al. [BTRC05a].

The PAS is composed of a processor, an internal memory slot,
some sensors, and optionally some feedback devices. A PAS may
contain zero or more speed sensors and position sensors. Feedback
can be visual, auditory or vibratory, and a single product can have
at most two kinds of feedback. When a speed sensor is included
in a configuration, then vibratory feedback must be excluded, and
vice versa. The PAS uses a processor that can have one to seven
cores. The size of the internal memory is a value in the set {2GB,
4GB, 8GB, 16GB, 32GB}. The size of the memory depends on
the number of cores in a processor, the pair hcores; memory sizei
can have the following values h0;0i, h1;2i, h2;4i, h3;8i, h4;16i,
h5;32i.

Parking Assistant System

Processor Memory

Name: size
 Domain: integers

Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Excludes
Requires

Mandatory
Optional

OR Alternative
feature Attribute

Speed
sensorSensors

Position
sensor

Feedback

Visual

Audio

[1, 2]

Vibration

Figure 4.2: Summary of the running example from Chapter 3

Other Illustrating Examples

The examples in Figure 4.1 presented in the motivation to compare variability languages will be used to illustrate
how specific constructs of different languages can be represented using HLVL in the following sections.

1. Figure 4.1a depicts an excerpt of the Radio Frequency Warner System (the RFW product line) taken from
[RFBRC+12] and written in OVM. This fictional system is used to assist drivers providing information
about relevant traffic signs that are equipped with a radio-frequency identification tag (RFID).

2. Figure 4.1b shows an excerpt of the dopler model describing the variability of the Dopler tool suite taken
from [MGH+11].

4.2 An Introduction to HLVL

This section informally presents the HLVL language focusing on the language’s constructs and their semantics.
Then, the following paragraphs illustrate the language using the running example and providing code snippets.
The section closes presenting how HLVL can be used to represent variation-point-oriented languages and
decision-oriented languages.

4.2.1 Models in HLVL

Variability models in HLVL are defined in terms of options, domains, and variability relations, the major concepts
in the language. Models in HLVL have an identifier followed by two non-empty blocks containing the definitions

Coffee

83 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

regarding variable items and their relations. The first block contains the options and domains for representing
what varies in a particular system. The second block contains the variability relation as the rules to define how
options vary given the rules in a particular domain.

The following example shows an extract of the parking assistant system product line containing two options
and one relation. In the example, the options represent the optional inclusion of a processor and a memory and
the relation represents implication between those options.⌥ ⌅

1 model Parking_Assistant_System

2 options:

3 choice memory, processor

4 relations:

5 r2: implies(processor, memory)⌃ ⇧
4.2.2 Options, Domains, and Variants

The variability units in HLVL are called options, they represent the variable items in a system that must be
chosen or defined in a configuration process. For instance, the inclusion of a processor, the type of the screen,
and the number of feedback devices are options in the running example. Each option is associated with a
domain, representing the set of available choices an option can be bound to, in the configuration process. These
available options are called variants. For example, the domain of the type of screen in the PAS product line has
three variants, the set of available choices for the screen, that is, monochromatic, color, or high-resolution.
The following sections present the domains and the types of options in HLVL.

Domains

HLVL supports boolean and non-boolean domains. Domain definitions contain the keyword domain and the
set of variants described by extension using intervals or lists of values. Examples of domains defined as lists
are the available sizes of memory [2, 4, 8, 16, 32], and the set of types of screen [’basic’, ’color’,
’highRes’]. An example of domains defined as intervals is the number of cores in a processor defined as 1..7.
Section 4.3 presents the formal syntax with the rules to describe domains.

Options

HLVL supports three types of options to describe variability-intensive systems: single-choice options, multiple-
choice options, and attributes.

Single-choice options are options bounded to exactly one variant in the domain during the configuration
process. HLVL differentiates single-choice options considering the number of alternatives in the domain between
choices and enumerations.

• Choices are single-choice options with exactly two alternatives. They are useful to represent Boolean
variability units. Choices are special cases where there is no need to declare the alternatives in the domain
because they will be encoded to boolean domains. In this way, choices can represent binary options such

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 84

as (1) to include/exclude an element from a product; (2) to answer yes/no, or true/false to a question or
decision; and (3) to support/not support a particular characteristic in a configuration, among others. The
keyword choice followed by an identifier declares a choice in a model.

Choices can be used for representing many variability units, for instance, features in feature-oriented
models, variation points and variants in OVM models, and boolean decisions in decision oriented-models,
among others. The following example shows how each feature in the PAS feature diagram is represented
by a choice.

⌥ ⌅
1 model Parking_Assistant_System

2 options:

3 choice memory, processor, sensor,

speedSensor, positionSensor,

feedback, audio, vibration,

visual⌃ ⇧

Parking Assistant System

Processor Memory

Name: size
 Domain: integers

Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Excludes
Requires

Mandatory
Optional

OR Alternative
feature Attribute

Speed
sensorSensors

Position
sensor

Feedback

Visual

Audio

[1, 2]

Vibration

Figure 4.3: Defining a set of features as choices in HLVL

• Enumerations are single-choice options with more than two variants in the domain. They are useful to
represent non-boolean variable items, such as, numeric features in feature-oriented models and decisions
with a single choice in decision-oriented models. Enumerations are defined using the keyword enum,
followed by one identifier and a domain. The following code snippet shows two enum options in the PAS
product line.⌥ ⌅

1 enum screen domain: [’basic’, ’color’, ’highRes’]

2 enum speakerType domain: 1..5 comment: {"What is the speaker type?"}⌃ ⇧
The first line in the example shows the variability of the type of screen represented as a non-numeric
enum with alternatives ’basic’, ’color’, and ’high-resolution’. In line two, the example shows
the declaration of the variability in the type of speaker, represented as a numeric enum ranging in the
interval 1..5. This example also shows that options may contain a comment to introduce annotations.

Multiple-choice options are options bounded to one or more variants in the domain during the configuration
process. To declare multiple-choice options, HLVL provides the keyword set. Sets in this language can be used
to represent decisions with more than one variant selected. The following example illustrates the inclusion of a
multiple-choice option named consistencyChecker to model that some configurations of the PAS contain one
or more consistency checker devices, one per type of sensor.⌥ ⌅

1 set consistencyChecker domain: [’posChecker’, ’speedChecker’]⌃ ⇧
In the previous example, the option consistencyChecker can be bound in the configuration to vari-

antsposChecker, speedChecker, or both {consistencyChecker, posChecker}.

Coffee

85 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

Attributes are particular elements in variability modeling languages. They represent properties or particular
characteristics of variable items in a system. For instance, the size of the memory and the number of cores in a
processor in the PAS. Many variability modeling languages include the concept of attributes, yet, there is no
consensus on a notation to define attributes. Most proposals agree that their definition should include a type, a
name, a domain, and optionally a value [BSRC10]. Differently than options, attributes can appear as operands
in constraint expressions, then, it is important to include the syntactic elements to represent attributes. In
HLVL, attribute declarations contain the keyword att followed by a type, a name, and a domain. The following
example shows the declaration of cores and size.

⌥ ⌅
1 // attributes
2 att integer cores domain: 1..7

3 att integer size domain: [2, 8, 16, 32]⌃ ⇧
Name: size

 Domain: integers
Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Figure 4.4: Attributes in HLVL

A note about Multiplicity. Options in HLVL can represent variable items that repeat themselves in a configu-
ration, i.e., have multiple instances with global semantics as described in [MCHB11]. Syntactically, an option
may be declared with an interval to denote the allowable number of items in a configuration as shown in the
following example:

⌥ ⌅
1 choice processor [0,4]

2 enum screen [0,2]

3 domain: [’basic’, ’color’, ’highRes’]⌃ ⇧
Let’s suppose that the PAS may contain at most four proces-
sors and two screens. This example shows how this can be
declared including the annotation [min,max] indicating the
minimum and maximum number of variable items.

4.2.3 Variability Relations
Variability relations in HLVL are the rules to decide which variants, from the option’s domain, should be selected
in the configuration process. The language provides three types of variability relations:

• Rules for describing how the selection of a variant implies/excludes the selection of another variant or set
of variants.

• Rules for describing hierarchies, parent-child relations involving single and multiple children.

• Rules to restrict the visibility of other variability relations.

The following subsections describe the different types of variability relations in the language.

Exclusion/Implication Relations.

Exclusion/Implication rules are useful for defining the system’s variability in terms of which variants are
compatible or require other specific variants, as well as which ones are not compatible at all. These rules can be
described either using keywords or constraint expressions.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 86

Constraint expressions are enough to define simple and complex exclusion/implication relations. However,
the results in Chapter 3 showed that constraint expressions by themselves undermine the ontological clarity
of the language. For example, the modeler will face confusion about the different options for representing a
particular exclusion/inclusion relation. To ease this situation, the language provides the keywords to describe
recurrent exclusion/exclusion relations. These keywords provide the modeler with constructs to represent
common variability relations between Boolean options or choices as they are the variable units encoding features
and variation points.

Keywords. HLVL provides three keywords to describe recurrent exclusion/exclusion relations on choices: common,
mutex, and implies.

The keyword common is used to explicitly declare that a choice will be selected in all configurations. This
construct can be used to define the root feature in feature-oriented models or mandatory variation points in
variation-point-oriented languages. In HLVL, this is expressed as follows:

1 common(sensors, PAS)

The keyword mutex can be used to declare two types of conditional exclusion: mutual exclusion and guarded
exclusion.

• Mutual exclusion is the relation where two choices cannot be part of the same configuration, similar to the
mutual exclusion or excludes operator in feature-oriented and variation-point-oriented languages. In the
running example, the mutual exclusion of the speed sensor and the position sensor is written as follows:

1 mutex(speedSensor, positionSensor)

• Guarded exclusion is a relation containing a complex condition to exclude a group of choices. That is,
whenever the condition is satisfied the group of choices wont be included in a configuration. For example,
this type of relation can be used to define that sporadic clients cannot use the payment by gift card and
debit card functionalities in HLVL as follows: ejemplo pendiente

The keyword implies can be used to represent three types of conditional inclusion: implication, guarded
implication, and quantified implication.

• Implication is a binary relation among two choices to describe that the inclusion/selection of a choice implies
the inclusion of another. This behavior shares the semantics of the requires operator in feature-oriented
and variation-point-oriented languages. The following example shows how to define the implication relation
between a processor and a memory device in the running example:

1 implies(processor, memory)

2 implies(memory, processor)

• Guarded implication is a relation stating a complex condition to be validated for the inclusion/activation
of a group of choices. Then, whenever the condition is satisfied, the group of choices are present in the
configurations.

Coffee

87 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

• Quantified implication describe conditions regarding the number of instances of an element that are
required to include a number of instances of another element. This type of relation, introduced by Quinton
et al. [QRD13], is useful when the model includes the concept of multiple instances of the same choice.
For example, let’s include a made-up constraint in the problem: if there is at least two feedback sensors
and at most four, then at most 2 processors are required. This is written in HLVL as follows:

1 imp3: [2, 4] feedback implies [1, 5] processor

Figure 4.5 gathers the examples of the inclusion/exclusion relations described above.

⌥ ⌅
1 common(PAS)

2 mutex(speedSensor, positionSensor)

3 implies(processor, memory)

4 implies(memory, processor)

5 [2, 4] feedback implies [1, 5] processor⌃ ⇧

Speed sensorVibration

Processor Memory

Parking Assistant System

Figure 4.5: Examples of inclusion/exclusion relations in HLVL

Constraint Expressions. Constraint expressions in HLVL are useful for including complex rules between options
in the variability model using logic, relational, arithmetic and global operators. Constraint expressions start with
the keyword expression followed by an expression written in the HLVL’s expression language summarized with
the formal syntax of the language in Section 4.3. The expression language serves also to define the conditions in
other variability relations, such as, conditional exclusion/inclusion, and visibility relations. Let’s take a look to
a constraint expression in the running example that can be written in different ways regarding the option’s type
(e.g., Boolean, numeric, etc). Figure 4.6 shows the different ways to describe the mutual exclusion in the PAS
system where the system does not use a speed sensor when it also contains a vibrating feedback device.

⌥ ⌅
1 e1: expression(speedSensor >=1 => positionSensor = 0)

2 e2: expression(⇠(selected(speedSensor) AND selected(positionSensor)))

3 e3: expression(⇠selected(speedSensor) OR ⇠selected(speedSensor))

4 e4: expression(speedSensor + positionSensor <= 1)⌃ ⇧ Speed sensor

Vibration

Figure 4.6: Elements and variants in HLVL

Hierarchy and Parent-Child Relationships

Although HLVL is not a language where hierarchical relations are essential for composing models, it offers a set
of constructs to describe one-to-one (parent-child), and one-to-many (parent-children) relations.

One-to-one relations are represented with the keyword decomposition followed by the names of the parent
and child options together with a multiplicity (i.e., , multiplicities are also called cardinalities [BSRC10]). This

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 88

multiplicity is an annotation in the form [min,max] used to bound the number of instances on each child option.
The following are three forms to use one-to-one parent-child relationships to describe particular situations in
variability modeling.

1. Decompositions with multiplicities [1, 1] and [0, 1] are special cases to represent the constructs mandatory
and optional, respectively [CHE05]. Mandatory and optional are basic constructs present in most feature-
oriented and variation-point-oriented languages. In the running example, the relations stating that the
inclusion of processor, feedback, and memory are optional and the inclusion of sensors is mandatory are
written in HLVL as shown in Figure 4.7.

⌥ ⌅
1 decomposition(PAS, [processor, memory, feedback],[0,1])

2 decomposition(PAS, [sensors],[1,1])⌃ ⇧
Parking Assistant System

Processor

Memory

Sensors

Feedback

Figure 4.7: Examples of hierarchy one-to-one relations with [0, 1] and [1, 1] multiplicities

2. Decompositions with multiplicity [1, 1] are also used to associate options to its attributes. Our running
example contains two attributes cores, and size declared as decompositions in Figure 4.8. The inclusion
of these decompositions enable the qualified names processors.cores, and memory.size to be used as
identifiers in constraint expressions or conditions.

⌥ ⌅
1 decomposition(processor, [cores], [1,1])

2 decomposition(memory, [size], [1,1])⌃ ⇧
Processor Memory

Name: size
 Domain: integers

Values: [2, 4, 8, 16, 32]

Name: cores
 Domain: integers

Value: 1..7

Figure 4.8: Examples of hierarchy one-to-one relations to link options and attributes

3. Decomposition with multiplicities in the form [m,n] where n > 1 can be used to represent options that
have multiple instances with local semantics as described in [MCHB11]. For example, let’s include in the
example some rules regarding the number of position sensors and speed sensors. Figure 4.9 shows how to
use cardinalities to include two multiplicity declarations for defining that the PAS supports between zero
and three speed sensors and zero and two position sensors.

⌥ ⌅
1 decomposition(sensors,[speedSensor],[0,3])

2 decomposition(sensors,[positionSensor],[0,2])⌃ ⇧
Speed
sensorSensors

Position
sensor

[0, 3]

[0, 2]

Figure 4.9: Examples of hierarchy one-to-one relations to declare multiplicities with local semantics

Coffee

89 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

One-to-many hierarchical relations are represented with the keyword group. These relations contain the
identifier of the parent option, the children option’s identifiers, and a multiplicity, also called group cardinality.
This multiplicity is used to specify the minimum and the maximum number of children in the group that can
appear in a configuration. The language provides the symbol * to be included in multiplicities in the form
[1,*] to denote that at least one, and at most the total number of children can be selected/included in the
configuration. Figure 4.10 shows how to model a group relation between the feedback devices in the running
example.

⌥ ⌅
1 group(feedback, [audio, vibration, visual],[1,2])⌃ ⇧

Feedback

Visual

Audio

[1, 2]

Vibration

Figure 4.10: Example of hierarchies one-to-many groups in HLVL

Visibility

Visibility relations in HLVL are rules to condition the availability (i.e., hide) of a group of options and their
relations with similar semantics than visibility rules in decision models [DHR10]. These relations are declared
starting with the keyword visibility followed by a constraint expression and the identifiers of the options this
condition hides. For example, let’s imagine that a controller device used to check the consistency of the sensors
and feedback devices should be included when the number of sensors and feedback devices is greater than four.
Figure 4.11 shows how to describe a visibility relation in HLVL. This example does not have a graphical depiction
since FODA-related languages do not include constructs to model visibility.⌥ ⌅

1 visibility((instances(positionSensor) +

2 instances(speedSensor) +

3 instances(visual) +

4 instances(audio) +

5 instances(vibration)) >= 4, [

consistencyChecker])⌃ ⇧
Figure 4.11: Declaring visibility relations in HLVL

4.2.4 What about other variability Languages?

The previous section introduced the language and its constructs using an example originally presented as a
feature model in the extended notation of Benavides et al. [BTRC05a]. This example served to demonstrate
the HLVL can be used for modeling feature-oriented models. The following subsections show, through examples,
how specific constructs of variation-point-oriented and decision-oriented languages can be represented as well
with the HLVL constructs described before.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 90

Modeling Variation-Point Languages in HLVL

To illustrate how to encode variation-point oriented languages in HLVL, recall the Radio Frequency Warner
system (RFW) product line written in OVM and presented at the begging of this chapter in Figure 4.1a and
depicted again in Figure 4.12 to ease the reading. This figure depicts an excerpt of the Radio Frequency Warner
System (the RFW product line) taken from [RFBRC+12] and written in OVM. This fictional system is used
to assist drivers providing information about relevant traffic signs that are equipped with a radio-frequency
identification tag (RFID).

V
V1: Medium-

class car

VP

VP1: Type
 of vehicle

VP

VP2: Activation

VP
VP3:

Confort functions

VP

VP4: Other
signs

VP
VP5:

Prohibition signs

V
V2: Upper-
class car

V
V3: Small
truck(3, 5t)

V
V4: Big

truck(7, 5t)

1, 1

V
V5: Switchable

V
V6: Durable

1, 1
V

V7: No stopping
warning

V

V8: Overspeed
warning

V V11: No
vehicles

V
V9: Road w/right

of way start

V
V12: No

cars

V
V10: City limitMAX

VP

Mandatory Optional

V

Variant Mandatory Optional
[min, max]

Alternative
Requires Excludes

VP

Figure 4.12: Orthogonal Variability Model (OVM) for the RFW product line. Adapted from [RFBRC+12]

Variation Points (VP) and variants can be modeled using different types of options in HLVL, such as, choices
and enumerations. For example, the variation point VP5 and its variants V11 and V12 in the running example
can be modeled as choices as shown in Figure 4.13. Variation points and variants linked with alternative [1..1]

are special cases that can be modeled using both choices and enumerations. Line 4 in the example shows how
to model VP2 as an enumeration with the list of variant’s ids as domain. This encoding works because in the
configuration process enumerations are bounded to only one value in their domain.

⌥ ⌅
1 choice VP5 comment:{"Prohibition signs"}

2 choice V11 comment:{"No vehicles"}

3 choice V12 comment:{"No cars"}

4 enum VP2 domain: [’V5’, ’V6’] comment:{"Activation"}⌃ ⇧

VP

VP2: Activation

V
V5: Switchable

V
V6: Durable

1, 1VP
VP5:

Prohibition signs

V V11: No
vehicles

V
V12: No

cars

Figure 4.13: Representing variation points and variants with choices and enumerations in HLVL

Figure 4.13 shows how each variation point and variant has an identifier and a description for extra information.
These descriptions, were included using the keyword comment in the definition of the element that allows the
modeler to label or comment the delaration.

Mandatory variation points are items that are always bounded in a configuration. The construct common

explicitly defines that a set of elements must be bounded in the configuration. In the example, VP1, VP2, and
VP3 are mandatory, this is expressed in HLVL as shown in Figure 4.14.

The links between variation points and its variants (i.e., mandatory, optional, and alternative) represent
one-to-one and one-to-many hierarchical relations. On the one hand, mandatory and optional links can be

Coffee

91 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

⌥ ⌅
1 common(VP1, VP2, VP3)⌃ ⇧

VP

VP1: Type
 of vehicle

VP

VP2: Activation

VP

VP3:
Confort functions

Figure 4.14: Defining mandatory variation points in HLVL

represented in HLVL using the decomposition construct. On the other hand, alternative [m,n] links can be
represented using the group construct. For instance, Figure 4.15 shows the optional relation between VP5 and
V11, V12, and the alternative relation between VP1 and V1, V2, V3, V4.

⌥ ⌅
1 decomposition(VP5, [V11, V12], [0,1])

2 group(VP1, [V1, V2, V3, V4], [1,1])⌃ ⇧
V

V1: Medium-
class car

VP

VP1: Type
 of vehicle

V
V2: Upper-
class car

V
V3: Small
truck(3, 5t)

V
V4: Big

truck(7, 5t)

1, 1

VP
VP5:

Prohibition signs

V V11: No
vehicles

V
V12: No

cars

Figure 4.15: Modeling OVM links in HLVL

Constraints in OVM models can be represented with the constructs expression, implies, and mutex. Line
1 in Figure 4.16 shows the representation of the implication relationship between V8 and V10. More complex
constraints are required when the modeler choose to represent alternative [1..1] relations using enumeration.
In this case, the constraints in the OVM model can be represented with constraint expressions and guarded
implications as shown in the example depicted in Figure 4.16.

⌥ ⌅
1 implies(V8, V10)

2 expression(VP1 =’big truck’ => VP2 =’durable’)

3 implies(VP1 =’medium-class car’, [V11,V12])⌃ ⇧ V
V1: Medium-

class car

V V11: No
vehicles

V
V12: No

cars

V
V8: Overspeed

warning

V
V10: City limitMAX

V
V4: Big

truck(7, 5t)

V
V6: Durable

Figure 4.16: Constraint expressions in HLVL

HLVL can also encode other variation-point-oriented languages and OVM extensions. For instance, the
attributes in Roos et al. [RFBC10, RFBRC+12] can be included using choices, attributes and decompositions.
Also, the special constraints included in the proposal of Dumiterscu et al. [DTS+14] are supported by HLVL’s
expression language.

Modeling Decision Models in HLVL

The following paragraphs describe how to encode decision-oriented languages using HLVL. This description will
be illustrated using the dopler model describing the variability of the Dopler tool-suite presented in Section 4.1.1
and depicted for better readability in Figure 4.17.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.2. An Introduction to HLVL 92

Decision-oriented languages have two variability units called decisions and assets. Decisions are variable
items containing many pieces of information. Decisions contain types, cardinalities, and attributes. Decision
types range between Boolean, String, Number, and Enumeration. The cardinality in a decision defines the
minimum and maximum number of values to be selected. The attributes in a decision contain annotations,
useful to present the questions that guide the configuration process. Consider the decision highlighted in blue in
Figure 4.17, it is a decision of type enumeration with cardinality 1:1 and the annotation What to buy?.

What to buy?
(name: scope; expected val 1:1):

{"assemble yourself", "complete suite"})

Which tools?
(name: tools; expected val 1:3):

{"CW", "DK", "PK"})

Include glossary?
(name: glossary;

expected val: bool)

Default resolution?
(name: resolution; expected val 1:1):

{"800x600", })

Width?
(name: width;

expected val: number)

!"#$%&'()*+!(,#--#.$/001200.3#+4&,#5!6+4#-#/00

Decision effect Validity Cond.

5!6+4#7-#/00#88
5!6+4#9-#:2/0 ;(,+<!,'$+(()'=#.>?.3

Visibility Cond.

!'@<A&,$';(B&3 ';(B&#--.<''&CD)&#E(*%'&)".

Decision

Figure 4.17: Dopler Model for the Dopler tool-suite taken from [MGH+11]

Decisions with cardinality 1 : 1 can be modeled using choices or enumerations. Boolean decisions are encoded
to choices and the other type are encoded to enumerations. Figure 4.18 shows the representation of two 1 : 1

decision in the running example: scope and glossary. Decisions with cardinality 1 : N can be represented
using sets in HLVL. For example, line 3 in Figure 4.18 shows how the decision tools, its three variants, and its
cardinality are represented in HLVL.

⌥ ⌅
1 enumeration scope domain: [’assemble yourself’, ’complete suite’

] comment: "What to buy?"

2 choice glossary comment:"Include glossary?"

3 set tools domain: [’confWizard’,’decisionKing’,’projectKing’]

comment:"Which tools?"⌃ ⇧

What to buy?
(name: scope; expected val 1:1):

{"assemble yourself", "complete suite"})

Which tools?
(name: tools; expected val 1:3):

{"CW", "DK", "PK"})

Include glossary?
(name: glossary;

expected val: bool)

Figure 4.18: Constraint expressions in HLVL

Figure 4.19 depicts three examples of variability relations in Dopler models: visibility conditions, decision
effects, and validity conditions. Visibility conditions in decision models are modeled in HLVL using the
visibility construct. In the example, we use the visibility construct to describe that the decision about the
resolution becomes visible when the user decides to include the configuration wizard tool. Decision effects in
dopler models describe dependencies between decisions as rules triggering values for other decisions. The second
line in the example shows the constraint expressions representing the rule determining that the selection of the
resolution triggers the value of the width. Validity conditions are the rules restricting the range of the values
which can be assigned to a decision. In HLVL, these rules are written using constraint expressions. For example,
Figure 4.19, line 3 shows the validity condition restricting the width as a number between [800, 1680].

Coffee

93 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

⌥ ⌅
1 visibility(confWizard=true, [resolution])

2 expression((resolution=’800x600’) => width = 800))

3 expression(width >= 800 AND width <= 1680)⌃ ⇧

Which tools?
(name: tools; expected val 1:3):

{"CW", "DK", "PK"})

Default resolution?
(name: resolution; expected

val 1:1):{"640x480",
"800x600","960x720"})

Width?
(name: width;

expected val: number)

!"#$%&'()*+!(,#--#./001200.3#+4&,#5!6+4#-#/00

5!6+4#7-#/00#
88

5!6+4#9-#:2/0 ;(,+<!,'$+(()'=.>?.3

Figure 4.19: Constraint expressions in HLVL

4.3 Formal Syntax
This section presents the formal syntax using a context free grammar in the extended Backus-Naur Form
(EBNF) as follows:

• Production rules have the form left = right; where left is a non-terminal, right is a combination of
non-terminals, terminals, and symbols. The semicolon is the termination symbol.

• Non-terminals are enclosed in angular brackets as in hoptioni. Non-terminals are named using the Camel
case naming convention1.

• Terminal symbols are enclosed in double quotes. Terminal symbols colored in purple correspond to
keywords.

• The symbols ?, ⇤, and + represent shortcuts. S? means that S is optional, S+ means that S appears at
least once, and S⇤ means that S appears zero or many times.

• The rules for declaring options use the non-terminal hnamei representing identifiers. Section 4.3.5 describes
the well-formedness rules for defining identifiers, literals, and other syntactic categories.

• The rules for declaring variability relations use metavariables such as Ei, Ci, Si representing names for
different types of options and Ri for representing relation’s names.

Table 4.1 presents a summary of the most important production rules in the language. The following subsections
describe the production rules and the syntactic categories in the table.

4.3.1 Rules for Models

The starting non-terminal is hmodeli. A model in HLVL has an identifier followed by two non-empty blocks
containing options and relations as shown in production rule 4.1.

hmodeli = model hnamei options: hoptionsi+ relations: hrelationi+ (4.1)

1Camel case is the practice of writing phrases without spaces or punctuation, indicating the separation of words with a single
capitalized letter

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.3. Formal Syntax 94

Table 4.1: Formal syntax of HLVL in EBNF

hmodeli = model hnamei options: hoptionsi+ relations: hrelationi+ 4.1

hoptionsi = choice hnamei hmultiplicityi? hcommenti? | 4.2

enum hnamei hmultiplicityi? domain: hdomaini hcommenti? | 4.3

set hnamei hmultiplicityi? domain: hdomaini hcommenti? | 4.4

att htypeihnameidomain: hdomaini hcommenti? | 4.5

atthtypeihnameiis hliterali hcommenti? 4.6

hdomaini = hnumericLiterali".."hnumericLiterali | 4.7

"[" hliterali("," hliterali)⇤ "]" 4.8

hrelationi = hnamei ":" hvariabilityRelationi 4.9

hvariabilityRelationi = common"(" C1("," Ck)
⇤
")"| 4.10

mutex "(" C1 "," C2 ")" | 4.11

mutex"(" hconstraintExpressioni "," C1("," Ck)
⇤
")" | 4.12

implies "(" C1 "," C2 ")" | 4.13

implies"(" hconstraintExpressioni "," C1("," Ck)
⇤
")" | 4.14

hmultiplicityi C1 implies hmultiplicityi C2 | 4.15

expression "(" hconstraintExpressioni ")"| 4.16

decomposition"("P "," "[" C1("," Ck)
⇤
"]" "," hmultiplicityi | 4.17

group"("P "," "[" C1(","Ck)
⇤
"]" "," hmultiplicityi | 4.18

visibility "(" hconstraintExpressioni "," "[" C1(","Ck)
⇤
"]" 4.19

The first block is the options block that contains the keyword options: and at least one variable item. The
second block is the variability relations block containing the keyword relations: and at least one variability
relation.

4.3.2 Rules for Options and Domains

There exists five rules to declare options in HLVL. Options can be defined either as a choice, enumeration, set, or
attribute. In the case of attributes, they can be associated to a domain, or a single value. Rules 4.2 to 4.6 show
the productions to define options.

Coffee

95 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

hoptionsi = choice hnamei hmultiplicityi? hcommenti? | (4.2)

enum hnamei hmultiplicityi? domain: hdomaini hcommenti? | (4.3)

set hnamei hmultiplicityi? domain: hdomaini hcommenti? | (4.4)

att htypeihnameidomain: hdomaini hcommenti? | (4.5)

atthtypeihnameiis hliterali hcommenti? (4.6)

Each option’s declaration starts with a keyword to differentiate its type, followed by the option’s unique name,
and a domain. Non-terminals hmultiplicityi and hcommenti are optional and they are defined in Section 4.3.5
along with other syntactic categories such as names, literals, and types.

Rules 4.5 and 4.6 are used to define attributes. Each attribute is associated to a type, a name and a domain.
HLVL supports boolean, integer and symbolic data types. Also, it is possible to associate an attribute to only
one value with the construct is as shown in rule 4.6.

The following rules present the two different ways to declare domains, as intervals and as lists.

hdomaini = hnumericLiterali".."hnumericLiterali | (4.7)

"["hliterali(","hliterali)⇤"]" (4.8)

On the one hand, intervals can be used only to define domains containing numeric literals (cf. Rule 4.7). On
the other hand, lists may contain symbolic or numeric literals with the restriction that all literals belong to the
same type (cf. Rule 4.8). As described in Section 4.2 there is no need to declare domains for choices as they
always represent Boolean variants.

4.3.3 Rules for Variability Relations

Variability relations are named. These names are useful for referencing purposes. Then, each variability relation
contains an identifier and a variability relation.

hrelationi = hnamei":"hvariabilityRelationi (4.9)

In general, variability relations contain a keyword and a set of parameters enclosed by parenthesis and/or
brackets. HLVL provides ten constructs to declare variability expressions. The following production rules describe
how to derive variability relations in HLVL. Note that, these rules use metavariables such as Ci, Pi, and Ci for

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.3. Formal Syntax 96

naming elements and Ri for naming variability relations.

hvariabilityRelationi = common "(" C1 ("," Ck)
⇤ ")" | (4.10)

mutex"(" C1 "," C2 ")" | (4.11)

mutex"(" hconstraintExpressioni "," C1 (","Ck)
⇤ ")" | (4.12)

implies"(" C1 "," C2 ")" | (4.13)

implies"(" hconstraintExpressioni "," C1 (","Ck)
⇤ ")" | (4.14)

hmultiplicityi C1 implies hmultiplicityi C2 | (4.15)

expression "(" hconstraintExpressioni ")" | (4.16)

decomposition"("P "," "[" C1 ("," Ck)
⇤ "]" "," hmultiplicityi | (4.17)

group"("P "," "[" C1 ("," Ck)
⇤ "]" "," hmultiplicityi | (4.18)

visibility"(" hconstraintExpressioni "," "[" C1 ("," Ck)
⇤ "]" (4.19)

The common construct, defined in Rule 4.10, declares a collection of choices (Oi) separated by a comma. The
choices under this relation will appear in all configurations.

Rules 4.11 and 4.12 present the two forms to declare a mutual exclusion. The first rule declares the mutual
exclusion of two choices, while the second contains a constraint expression that conditions exclusion of the set
of elements choices in brackets.

Rules 4.13, 4.14, and 4.15 define the three ways to declare implication relations among choices. Rule 4.13
presents the simple implication which applies to a pair of choices. Rule 4.14 defines the guarded implication. This
relation conditions the inclusion of a set of choices separated by a comma and enclosed in brackets. Rule 4.15
defines the quantified implication. Quantified implications start with a pair multiplicity-choice, followed by the
keyword implies, and a second pair multiplicity-choice to close. The quantified implication appears in the
model when it contains options with multiple instances.

Rule 4.16 presents the expression construct. Constraint expressions define complex rules among options.
These expressions are written in the HLVL’s expressions language (cf. Section 4.3.4).

Rule 4.17 defines the syntax of the decomposition construct. Decomposition relations contain a parent
option, a set of children options enclosed in brackets, and a multiplicity annotation. Multiplicities are defined
according to Rule 4.35 described with the other well-formedness rules in Section 4.3.5.

Rule 4.18 defines the syntax of the group construct. A group relation contains the keyword group followed
by the identifier of one parent option, a set of children’s identifiers enclosed in brackets, and a multiplicity. This
multiplicity specifies the minimum and the maximum number of children in a configuration when the parent is
included.

Rule 4.19 presents the visibility construct. A visibility relation contains a constraint expression and a set
of identifiers enclosed in brackets.

Coffee

97 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

4.3.4 Expressions Language

HLVL provides an expressions language for representing constraint expressions in HLVL. A constraint expression
is an infix expression built using values, names and operators. Constraint expressions are always evaluated to
boolean values. The following production rules define the expressions language.

hexpressioni = ⇠ hboolExpi | hboolExpi | hrelationali (4.20)

hboolExpi = hbooleanLiterali | hnamei | hboolExpihlogicOpihboolExpi | (4.21)

hrelationali = harithmeticihrelationalOpiharithmetici (4.22)

harithmetici = hnamei | hnumericLiterali | harithmeticiharithmeticOpiharithmetici | (4.23)

hunaryFunctioni"("harithmetici")" |

hbinaryFunctioni"("harithmetici","harithmetici")"

hlogicOpi = AND | OR | => | <=> (4.24)

hRelationalOpi = = | != | > | >= | < | <= (4.25)

harithmeticOpi = + | - | * | / | mod (4.26)

hunaryFunctioni = abs | sqrt (4.27)

hbinaryFunctioni = pow | min | max (4.28)

Constraint expressions defined in Rule 4.20 are a boolean expressions or its negation. Boolean expressions can
be composed using logic operators or relational expressions. Rules 4.21 to 4.28 describe the syntax of boolean
expressions using logic operations, relational expressions, and basic arithmetic expressions.

4.3.5 Well-Formedness Rules

This section presents a set of rules a modeler has to adhere in order to produce valid scripts and cannot be
represented using a free-context grammar.

Naming Rules.

The rules to naming the options and variability relationships are similar to the rules in programming languages.
First, names can have letters, digits, underscore and cannot start with digits, special characters, contain spaces
or use keywords.

hnamei = hIDi | hIDi.hIDi (4.29)

hIDi = ("a".."z" | "A".."Z")("a".."z" | "A".."Z" | "_" | "0".."9")⇤

Names have to be unique within their scope. The following rules prevents a number of potential naming
conflicts

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.3. Formal Syntax 98

• The model, options and variability relations have unique names.

• Enumeration values in enum options. Furthermore, no enumeration values may have the name of the
model, options or attributes.

• Names should be declared before their use.

• HLVL is a case sensitive language.

Qualified Names. The link between options and attributes enable the use of qualified names. Qualified names
can be used inside a constraint expression, they start with the name of the option followed by a dot and the
name of the attribute as described in Rule 4.29

Literals and Types

The Literals are the values that can be used in expressions or as variants in a domain. The HLVL supports
Boolean literals, numeric literals and symbolic literals. The following are the rules to define literals in the
language.

hliterali = hbooleanLiterali | hnumericLiterali | hsymbolicLiterali (4.30)

hbooleanLiterali = "true" | "false" (4.31)

hnumericLiterali = hintegeri | hreali (4.32)

hsymbolicLiterali = "’"hstringi"’" (4.33)

HLVL is strongly typed, and does not support type casting. Type correctness is defined as follows.

• Constraint expressions should be evaluated as Boolean values.

• Variants in a domain are literals of the same type.

• Expressions involving enumerations may only use values defined in the domain of the enumeration.

• The types associated to attributes are as follows:

htypei = "boolean" | "integer" | "real" | "symbol" (4.34)

Other Rules

Multiplicities in the for [m,n], m <= n are present when declaring options, quantified implication, decompo-
sitions, and groups. They denote the minimum and maximum number of elements that could be number of
instances or number of children in configurations. Multiplicities are defined as follows.

hmultiplicityi = "["hintegeri","hintegeri"]" (4.35)

Coffee

99 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

Comments are annotations optionally included when declaring options. These annotations provide extra
information about the option and are particular useful to represent decisions in decision-oriented languages.
The following rule defines comments.

hcommenti = "comment:" hstringi (4.36)

4.4 Formal Semantics
The language semantics defines the meaning of a program, an expression, a model, or anything composed
using the language’s syntax. This meaning is a social construct known and well-understood by the target
community [HR04]. In the variability modeling domain, the semantics of variability models are the set of
valid configurations represented by the model [SHTB07, BHST04, DHR10]. These semantics, known as the
configuration semantics, are usually described following the Harel & Rumple guidelines, as in the works of
Schobbens et al. [SHTB07, BHST04], Dhungana et al. [DHR10], and Berger et al. [Ber12], among others.

There is another approach for defining the language semantics. This approach defines the semantics as the
set of transformation rules to map variability models into constraint problems, such as SAT-problems, SMT
problems, and constraint satisfaction problems, among others [BSRC10]. These transformation rules are called
the operational semantics. The operational semantics of a language were first introduced by Gordon Plotkin in
[Plo81] as a way to formalize the behavior of the language’s constructs [SR90]. This formalization is desirable
because it provides a clear and unambiguous language, independent of any implementation. Moreover, this
formalization can be used to structure the language’s implementation and answer questions about the interaction
of a language such as, What does the compiler do? and How is the source code executed/evaluated/processed
to obtain an answer?

The design of the HLVL’s semantics considered a mixture of both approaches. Then, the remaining of this
section presents (1) the concept-driven approach that guided the design of the operational semantics; (2) the
elements connecting the operational semantics and the configuration semantics (i.e., semantic domain and
semantic function); and (3) the definition of the inference rules in the operational semantics of HLVL.

4.4.1 The HLVL(x) Sublanguages

The following subsections present the concept of sublanguage in the context of this thesis and the approach to
define such sublanguages.

A Concept-Driven Approach

The idea of studying a language in terms of its underlying concepts was introduced by Abelson & Sussman [AS96]
and later developed by Van Roy & Haridi [VRH04]. This idea consists of studying programming paradigms
by introducing simple concepts and incrementally explain more sophisticated ones. Furthermore, Van Roy &
Haridi organized the concepts into simple languages called kernel languages. Then, they map programming
languages and paradigms to the closely related kernel languages to teach programming from a concept point of
view instead of from a language point of view.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.4. Formal Semantics 100

The design of HLVL shares Abelson & Sussman’s view to study languages in terms of their underlying concepts.
Consequently, HLVL’s design followed an ontological approach aiming to (1) conceptualize and structure
knowledge about variability modeling concepts; (2) study the commonality and variability among modeling
languages; and (3) define a set of constructs that comprehensively represent variability concepts and modeling
paradigms. Also, the design of HLVL’s operational semantics follows Van Roy & Haridi’s idea to assemble
sublanguages by gathering sets of similar concepts to handle the expressiveness/analysis trade-off.

Van Roy & Haridi’s map programming languages to one or more kernel languages to study programming
paradigms in terms of its underlying concepts instead of the particularities of a language. The definition of the
HLVL(x) sublanguages is consistent with this proposal. Particular variability modeling languages are mapped
to one or more HLVL(x) sublanguages they are compatible with. This, mapping is useful to understand the
expressiveness of the modeling language, its analysis requirements, and the definition and implementation of
parsers. This idea will be developed in Chapter 5 in the description of the implementation of the analysis
framework prototype.

Sublanguages and Support Levels

An HLVL(x) sublanguage is a set of constructs defining an expressiveness capability. These sublanguages are
organized in a layered fashion, starting for a simple base language and successively adding new constructs.
Sublanguages have a distinctive name inside the parenthesis, that is the reason why the complete set of
sublanguages is called HLVL(x).

A support level indicates the type of solver required to support automated analysis for models in a particular
sublanguage. Figure 4.21 summarizes how the sublanguages and support levels are organized according to this
approach. Each container corresponds to a support level and solid boxes represent sublanguages. The inner box
contains a simple variability language and successive boxes add concepts incrementally. Also, Figure 4.21 shows
that a support level may contain more than one sublanguage.

The decision regarding which constructs to gather in a particular sublanguage considered (1) how these
constructs support the concepts in the variability glossary; and (2) how they impacted the needs/limitations for
automated analysis. The support levels and sublanguages are described as follows.

Level 1. Boolean Support contains the sublanguage whose models are represented as constraint problems with
Boolean variables and Boolean constraints. This level supports the first sublanguage.

HLVL(bool) is the most basic variability language with choices for representing boolean variable items,
hence its name. This sublanguage supports commonality, implication, mutex, parent-children
relationships with limited multiplicities and constraint expressions over booleans and logic operators.
This sublanguage is compatible with Basic FODA and OVM models and tools, such as, S.P.L.O.T
[MBC09] and Batory’s Tree Grammars [Bat05].

Level 2. Integer Support contains a set of sublanguages requiring support for integer variables, constraints,
arithmetic and relational operations. The following are the sublanguages supported by this level.

HLVL(att) adds attributes and extends the expression language with numeric literals, arithmetic and rela-
tional operators. The inclusion of attributes has two important consequences. First, attributes enable

Coffee

101 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

Level 1 - Boolean support

Level 2 - integer support

Level 3 - real support

Level 4 - complex

Choice Common
Implication
Mutual Exclusion
Decomposition [0,1] [1,1]
Group [n,m]

Expressions
 (logic operators)

HLVL(bool)

Attribute

HLVL(att)

Expressions

Multiplicity
HLVL(mult)

Expressions
Decomposition[m,n]

Quantified implication

Set

HLVL(set)

Enumeration
+ Real numbers

HLVL(num + real)

Expressions
+ Real numbers

Enumeration

HLVL(num)

Expressions

Attribute
+ Real Numbers

HLVL(att + real)

Expressions
+ Real numbers

Variability unit Variability Relation Expressions languageSublanguageSupport level

Other
extension

Unit

 Relation

Expression

Expressions
+ set operations

Figure 4.20: HLVL(x) Sublanguages

the usage of qualified names. Second, attributed models require more complex logic representations.
This sublanguage is compatible with other attributted-based languages, e.g., attributed-based feature
models, attributed-based variation-point-oriented models [RFBC10], and tools like FeatureIDE.

HLVL(num) extends the basic language with enumerations and expressions with numeric literals, arith-
metic and relational operators, excluding real numbers. This sublanguage supports decision-oriented
languages (e.g., DoplerML [DGR11]), feature-oriented languages with numeric features [MOP+19],
and other languages with complex data types, such as, IVML [SKES18], and TVL [CBH11].

HLVL(multi) includes the constructs for options with multiple instances in a configuration.

Level 3. Real-numbers Support is the level supporting languages with numeric variables and arithmetic expres-
sions with float numbers. This level supports the following languages.

HLVL(att+ real) includes the same constructs than HLVL(att) plus real numbers support.

HLVL(num+ real) include the same constructs than HLVL(num) plus real numbers support.

Level 4. Complex CCP Support is the level that gathers languages requiring solvers supporting particular
constraint systems, e.g., Sets, Records, and Tuples, and extended constraint satisfaction problems, such
as annotations, and logic quantifiers. This space may contain sublanguages in the future HLVL extensions.

HLVL(set) is the language allowing the usage of sets and expressions with operations over sets. Sets
are multivaluated options, that is, options that can have more than one value in the configuration.
Though sets are partially supported by previous levels, sets operations are supported only with
solvers supporting constraint systems over sets.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.4. Formal Semantics 102

Orthogonal Constructs

No sublanguage contains the constructs before, visibility, and the conditional implies, and conditional
mutex, since those constructs do not have an effect on the expressiveness of the sublanguages. Then, those
language constructs are somewhat orthogonal to all sublanguages and may be combined with any of them [TSS19].

4.4.2 Operational Semantics

The study of variability languages in terms of their concepts and the organization of those concepts into
sublanguages and support levels is the preamble to define HLVL’s operational semantics. Figure 4.21 illustrates
the idea underlying the definition of HLVL’s operational semantics taking into consideration the HLVL(x)

sublanguages.

C4

C2

C3

C1

C9

C6
C7

C8

Variability concepts Constraints

R1
R2

R3

R4

R5

R6 R7

R8

C5

C10

R11

R9

R10

R12
R13

R13

R14

R15
R16

f(c4,Q1)

f(c4,Q2)

S1
S2

S3
S4

S5

S6 S7

S8
S9

S10

Solvers

(a) Reasoning using sub-languages in Co�ee

R5
R1

R7

R2

R8R4
R1

R5

R6

C4
C1

C5

C6

HLVL(1)
C3

C5

C1
C6

HLVL(2)

HLVL sublaguages

C5
C1

C7

C2

C8

HLVL(x)

R5
R6

R14
R11

f(HLVL(1),c)

R3

R8R10
R15

Operational semantics

f(HLVL(1),c')

GCR

(b) Reasoning using sub-languages in Co�ee

Figure 4.21: Variability models using different languages.

The operational semantics in a variability language works as a function f : Construct, Context⇥Constraints,
where a language construct Ci is encoded in a constraint regarding the context Q of the transformation. This
context is defined at design time considering the logic paradigm and solvers supported by a particular tool.
Figure 4.21a illustrates how the transformation function applied to the same concept may produce different
constraints that are supported by solvers with different characteristics.

For example, consider the concepts in FODA models and two different tool-contexts, i.e., S.P.L.O.T, and
the stand-alone version of VariaMos tool-suite. In Figure 4.21a the concept C4 (e.g., mutual exclusion) is
transformed in two different constraints R5, R3 (e.g., ¬(A^B), A+B 1) because the context Q1 of S.P.L.O.T
uses SAT solvers and CNF representations, while context Q2, the VariaMos tool-suite, relies on CLP Prolog
solvers and HLCL representations.

Figure 4.21b illustrates the idea in the approach developed in this thesis. This approach exploits the HLVL(x)

sublanguages. The transformation function examines the context of the model and the context of the tool and

Coffee

103 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

decides which transformation rules should be applied to procure a constraint satisfaction problem compatible
with both contexts.

To provide a flexible multi-solver transformation, variability models are encoded into a Generic Constraint
Representation (GCR). This generic representation is a solver-readable notation capable of representing constraint
satisfaction problems with different constraint systems and compatible with different solvers. Thus, there is no
need to encode the constraint representations into particular solver’s input. In other words, GCR resembles
what DIMACS representation is for SAT solvers but for different types of solvers.

Semantic domain

The semantic domain is a representation of the meaning given to a program, an expression, or model in a
particular language. As described above, the meaning provided by the language semantics agrees with the
community consensus. In the exercise to formally define the language semantics it is necessary to also define
the semantic domain as a mathematical representation of this meaning.

The community in the variability modeling domain agrees that the semantic of variability models is the set of
configurations derived from the model. Then, the semantic domain is a representation of this configuration set.
A common practice is to represent the semantic domain using the mathematical definition of sets, Cartesian
products, and power sets [SHTB07, DHR10, Ber12]. For instance, Schobbens et al. [SHTB07] defined the
semantic domain S of feature-oriented languages in terms of their definition of product lines which are also
defined in terms of products. That is, S = product lines. In their definition, a product p is a set of feature
names p 2 PFnames, an a product line pl is a set of products, pl 2 PPFnames.

In concordance with the semantics of variability languages, Definitions 4.1, 4.2, and 4.3 present the semantic
domain of HLVL’s in terms of valuations and configurations as follows.

Definition 4.1 Valuation. A valuation is a pair hek, vi where ek is an element in the model, ek 2 E, v is a
variant in the set of variants associated to ek, v 2 Vk , # : ek ! Vk. Valuations represent the match up between
an element and one of its variant.

Definition 4.2 Configuration. A configuration C is a set of valuations holding the constraints in the model.
C = {c | c is a valuation} A configuration C is full iff there is a pair hek, vi for each element ek in the model,
otherwise C is a partial configuration.

Definition 4.3 HLVL’s Semantic domain S. The semantic domain of HLVL is the set of all valid configura-
tions (full) represented by a model. S = P(C).

To produce the set of all valid configurations represented by a model HLVL models are transformed into
Constraint Satisfaction Problems (CSP). A CSP is defined by a set of problem variables (i.e., the unknowns)
where each variable is associated with a domain of values and a set of constraints. A constraint is a logic relation
between several variables restricting the values that these variables can simultaneously take. Solving a CSP
consists in finding a set of valuations that satisfy all the constraints. Formally, a CSP is defined as follows.

Definition 4.4 Constraint Satisfaction Problem (CSP), taken from [RvBW06]. A CSP is represented by a
tuple (V,D,C) where V = {V1, V2, . . . , Vn} is a set of variables, D = {D1, D2, . . . , Dn} is a set of domains for

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.4. Formal Semantics 104

the variables, and C = {C1, C2, . . . , Cm} is a set of constraints.

The variables in a constraint problem may range over Booleans when the set of values is {True, False}
or equivalently, in the integer domain {0..1}. Thus, when variables range over Booleans, the constraints are
expressed using Boolean expressions. From this stand-point, solving the question whether a boolean expression
is satisfiable, is equivalent to answer the question whether the corresponding Boolean CSP is consistent [Apt03].
Then, from now on SAT problems are considered CSP over Boolean constraint systems.

Semantic Mapping

The semantic mapping associates expressions in the language, or the language’s abstract syntax to their meaning
in the semantic domain M : L ! S. Often, the semantic function inductively defines the semantic map for
complex expressions in terms of the simpler ones. For instance, in their proposal, Schobbens et al. [SHTB07]
start with the definition of the set of feature names P . Then, they map products to sets of feature names
c 2 PP . and finally, they map product lines pl as the power set of products pl 2 PPP

The semantic mapping in this thesis maps variability models in HLVL to constraint satisfaction problems. As
explained above, instead of choosing a single logic representation, a single set of transformation rules, and a
single type of solver, this thesis proposes using the logic representation and transformation rules that better fit
a particular model.

Then, the semantic mapping uses inference rules [Plo81] to decide the suitable set of transformation rules.
Inference rules are relationships stating that if, a set of conditions are obtained, then a set of conclusions can be
deducted. This concept comes from the natural deduction in logic and proof theory. In general, inference rules
are presented in the form:

conditions

conclusions

The following definitions are relevant to specify the conditions and conclusions in the inference rules for
HLVL’s operational semantics. They formally define the context of a model, the support level of a model and the
context of a tool. To illustrate these definitions, consider the HLVL model of the extract of the parking assistant
system (PAS) presented in Figure 4.22 and a context of implementation supporting a SAT solver and a CLP
solver (e.g., SAT4J and GNUProlog).

Definition 4.5 The context of a model QM is the set of HLVL(x) sublanguages required to support the constructs
in M .

In the example, the context of the model is the set QM = {HLV L(bool), HLV L(att)} because all the
constructs in the model are contained in those sublanguages.

Definition 4.6 The support level of a model SM is the highest support level of the sublanguages in the context
QM of the model.

The support level of the model in the example is SM = Level2 because is the highest support level in the
context of the model.

Coffee

105 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

⌥ ⌅
1 model Parking_Assistant_System

2 options:

3 choice memory, processor, sensors, speedSensor, positionSensor, feedback, audio,

vibration, visual

4 att integer cores domain: 1..7

5 att integer size domain: [2, 8, 16, 32]

6 relations:

7 r1: common(sensors)

8 r2: group(feedback, [visual, audio, vibration], [1,2])

9 r3: group(sensors, [speedSensor, positionSensor], [1,*])

10 r4: decomposition(memory, [size], [1,1])

11 r5: decomposition(processor, [cores], [1,1])

12 r6: implies(memory, procesor)

13 r7: implies(procesor, memory)⌃ ⇧
Figure 4.22: Example, extract of the parking assistant system (PAS) in HLVL

Definition 4.7 The context of a tool QT is the set of support levels provided by the solvers available in the
tool.

The context of the tool in the example is QT = {Level1, Level2} because the solvers in the tool support
constraint satisfaction problems over with constraint systems over Booleans and Integers.

General Inference Rule

The following general rule examines the context of a model M, the minimum support level of the model, and
the context of the tool to produce a transformation function T (M), formally:

Definition 4.8 General Inference Rule. Given a model M and its context QM , the set of transformation rules
is decided according to the rule:

SM , QT

T (M)

Where

• SM is the support level required for QM .

• QT is the context of the tool.

• T (M) is the resulting transformation function.

The resulting transformation function T (M) represents a set of transformation rules that applied to non-
orthogonal constructs in HLVL produces a constraint satisfaction problem compatible with (1) the support level
required by the sentences in the model; and (2) the support level provided by the tool.

Inference Rules for Non-Orthogonal Constructs

The following definitions present the six inference rules considering the minimum support required by the
context of an HLVL(x) sublanguage and the context provided by a tool. The inference rules for non-orthogonal

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.4. Formal Semantics 106

constructs produce T (M) represented as a set of Ri transformation rules. These Ri reference the collection
of transformation rules characterized in the systematic mapping study presented in Chapter 2. To further
information about the definition and characterization of each Ri, the reader may review Table 2.5 in Chapter 2.

Definition 4.9 Rule for Boolean models and Level 1 support. Given a model M with QM = {HLV L(bool)},
SM = Level1 and a tool with QT = {Level1}. M is a model with boolean items, FODA-related variability
relations. Tools supporting Level 1 usually provide SAT and BDD solvers. The CSP encoding M is obtained by
applying any of the rules in the set T (M) obtained by the following rule:

{Level1}, {Level1}
T (M) 2 {R1, R2, . . . , R7, R24}

Definition 4.10 Rule for Boolean models and Level 2 support. Given a model M with QM = {HLV L(bool)},
SM = Level1 and a tool with QT = {Level2}. M is a model with boolean items and FODA-related variability
relations. Tools supporting Level 2 provide SMT, CLP, and CCP solvers. The CSP encoding M is obtained by
applying any of the rules in the set T (M) obtained by the following rule:

{Level1}, {Level2}
T (M) 2 {R18, R22}

Definition 4.11 Rule for Non-Boolean models and Level 1 support. Given a model M with QM = {HLV L(bool),

HLV L(att), HLV L(num), HLV L(mult), }, SM = Level2 and a tool with QT = {Level1}. M is a model with
boolean and non-boolean items, FODA-related variability relations, attributes, arithmetic expressions, multiplici-
ties, and the tool supports SAT and BDD solvers. The CSP encoding M is obtained by applying any of the rules
in the set T (M) as follows:

{Level2}, {Level1}
T (M) 2 {R10,R28}

Definition 4.12 Rule for Non-Boolean models and Level 2 support. Given a model M with QM = {HLV L(bool),

HLV L(att), HLV L(num), HLV L(bool), HLV L(mult), }, SM = Level2 and a tool with QT = {Level2}. M is
a model with boolean and non-boolean items, FODA-related variability relations, attributes, arithmetic expres-
sions, multiplicities. Tools supporting Level 2 can work with SMT, CLP, and CCP solvers. The CSP encoding
M is obtained by applying any of the rules in the set T (M) obtained by the following rule:

{Level2}, {Level2}
T (M) 2 {R8, R9, R11, R12, R16, R17, R18, R25, R26, R27}

Definition 4.13 Rule for Non-Boolean real models and Level 3 support. Given a model M with QM =

{HLV L(bool), HLV L(att), HLV L(num), HLV L(bool), HLV L(mult), HLV L(num+real), HLV L(att+real)},
SM = Level3 and a tool with QT = {Level3}. M is a model with boolean and non-boolean items integer or reals,
FODA-related variability relations, attributes, arithmetic expressions, multiplicities. Tools supporting Level 3
provide solvers for linear programming, mixed linear programming, and CCP supporting constraint systems over
real numbers. The CSP encoding M is obtained by applying any of the rules in the set T (M) obtained by the

Coffee

107 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

following rule:
{Level2}, {Level2}

T (M) 2 {R22, R23, R16}

Definition 4.14 Rule for Non-Boolean integer models and Level 4 support. Given a model M with QM =

{HLV L(bool), HLV L(att), HLV L(num), HLV L(bool), HLV L(mult), HLV L(set)}, SM = Level2 and a tool
with QT = {Level4}. M is a model with boolean and integer items, FODA-related variability relations, attributes,
arithmetic expressions, multiplicities. Tools supporting Level 4 provide solvers for specialized constraint systems
and extensions of the CCP paradigm. The CSP encoding M is obtained by applying any of the rules in the set
T (M) obtained by the following rule:

{Level2}, {Level2}
T (M) 2 {R15, R20}

To summarize, Table 4.2 maps the support levels and the tool’s contexts. Each cell in the table represents
one of the inference rules for non-orthogonal constructs. To illustrate how the inference rules and Table 4.2
work, recall the example presented in Figure 4.22 and its hypothetical context, e.g., a tool supporting SAT4J
and GNUProlog. The application of the inference rules results in T (M) 2 {R1, R2, R3} since the context of
the model requires a support level SM = Level2 and the compatible solver is GNUProlog a Level 2 solver
for constraint logic programming. Now, any framework implementation can use any of the Ri rules for the
transformation. The following chapter, Chapter 5, presents the architecture and prototype of the transformation
framework using different transformation rules to support analysis tasks.

Table 4.2: Mapping between support levels and tool’s contexts.

Support level and solvers Level 1- Boolean Level 2 - Integer Level 3 - Real Level 4 - Complex
CSP

T
oo

l’s
C

on
te

xt

Level 1 SAT, BDD T (M) 2 { R1, R2,
. . . , R7, R24}

T (M) 2 {R10,
R28}

Level 2 SMT,
CLP, CCP-
integer

T (M) 2 { R22,
R18}

T (M) 2 {R8, R9,
R11, R12, R16,
R17, R18, R25,
R26, R27}

Level 3 CCP-real,
LP

T (M) 2
{R22, R23, R16}

Level 4 Complex
CCP

T (M) 2 {
R15,R20}

Inference Rules for Orthogonal Constructs

HLVL has three orthogonal constructs: visibility, conditional mutex and conditional implies. The inclusion of
any of those constructs in the model do not have an effect on the expressiveness of the sublanguages and may
be combined with any of them. Whenever one of these constructs appears in a model, the general inference
rule is applied and the resulting constraint satisfaction problem is extended with the constraints produced with
respect to individual inference rules.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.4. Formal Semantics 108

The inference rules for orthogonal constructs use the following notation for constraint satisfaction problems:

• Let P be the constrain satisfaction problem produced by the application of the general inference rule to a
model M , that is, T (M) = P . P is triple P = (V,D,C) where V = {V1, V2, . . . , Vn} is the set of variables,
D = {D1, D2, . . . , Dn} is the set of domains associated to those variables, and C = {C1, C2, . . . , Cm} is
the set of constraints.

• P.V , P.D, P.C are references to the set of variables, domains, and constraints in P , respectively.

• B is a Boolean variable with domain in {true, false}

• The constraint v =⇠ represents that the variable v is undetermined.

Conditional Implication The conditional implication contains a constraint expression conditioning the inclusion
of a set of choices. This variability relation is encoded using Boolean variables and reified constraints. Those
variables and constraints are included in the CSP as shown in the following rule.

Definition 4.15 Conditional Implication Rule. Given a model M containing the conditional implication with
a constraint expression CE and a set of k choices C1, C2, . . . , Ck, the CSP P is extended as follows:

himplies(CE , [C1, C2, . . . , Ck])i
P.V [B, P.D [{true, false}, P.C ^B , CE ^B , Ci, 1 i k

Conditional Mutex Similarly to the previous rule, the conditional mutex also contains a constraint expression,
but it conditions the exclusion of a set of choices. This variability relation is also encoded using reified constraints
according to the following rule.

Definition 4.16 Conditional Mutex Rule. Given a model M containing the conditional mutex with a constraint
expression CE and a set of k choices C1, C2, . . . , Ck, the CSP P is extended as follows:

hmutex(CE , [C1, C2, . . . , Ck])i
P.V [B, P.D [{true, false}, P.C ^B , CE ^ ¬(B ^ Ci), 1 i k

Visibility Visibility relations hide or enable a group of options and their relations considering the entailment
of a constraint expression. To encode this variability relation some Boolean variables and reified constraints are
added to the CSP. Also, the following rule includes the symbol ⇠ in the domain of each option to represent that
an option is undefined.

Definition 4.17 Visibility Rule. Given a model M containing the visibility relation with a constraint expression
CE and a set of k options O1, O2, . . . , Ok, the CSP P is extended according to the rule.

hvisibility(CE , [O1, O2, . . . , Ok])i
P.V [B, P.D [{true, false}, P.C ^B , CE ^B , Oi 6=⇠ ^ 8 c 2 P.C|Oi is a variable in c,B , c

Coffee

109 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

The constraint Oi 6=⇠ defines that if the constraint expression CE , true is entailed, the option Oi must
not be undefined.

4.5 Summary
This chapter unveiled the constituent elements of Co�ee, the framework proposed in this thesis to ease
the interoperability between tools and the coupling inside tool’s implementations. The following subsections
summarizes the characteristics of the contribution and address most questions formulated in Section 4.1. The
remaining questions will be answer in the evaluation chapter (cf. Chapter 5).

4.5.1 The High-Level Variability Language

The High-Level Variability Language (HLVL) is an expressive and extensible textual language that can be used as
a modeling and an intermediate language for variability. HLVL was designed following an ontological approach,
i.e., by defining their elements considering the meaning of the concepts existing on different variability languages.
This proposal not only provides a unified language based on a comprehensive analysis of the existing ones, but
also sets foundations to build tools that support different notations and their combination in a concept-driven
approach.

HLVL’s expressiveness

As recurrently mentioned in this dissertation, the language’s expressiveness is the main concern from the
variability modeling point of view. Then, the definition of the set of variability concepts supported by the
language considering the trade-off between expressiveness and analysis capabilities was one of the challenges
tackled in this chapter.

Two sources were considered to determine the expressiveness level of HLVL. On the one hand, there is the
glossary of variability modeling concepts surveyed in the literature review and reported in Chapter 2. On the
other hand, are the results and lessons learned form the ontological evaluation presented in Chapter 3. More
particularly, the structural elements and variability patterns in Asadi et al.’s ontology [AGWH12] and the
completeness and clarity metrics proposed bye Recker et al. [RRIG09].

Table 4.3 presents the variability concepts in the glossary as columns and HLVL(x) sublanguages in the rows.
The intersections in the table map each sublanguage with the concepts using the symbols • to denote total
support, and for partial support. The final row in the table summarizes all the concepts supported in HLVL

and includes the support for the orthogonal variability relationships. Also, the last row contains the symbol ?

to highlight that the expressiveness in the conditions in guarded implication/mutex is limited to the supported
expressions language. The column in grey depicts that the expressions language in HLVL does not support
first-order logic, an item to be considered in future extensions.

The evaluation and discussion about HLVL’s ontological expressiveness is presented in Chapter 5.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

4.5. Summary 110

Table 4.3: Expressiveness Levels in the HLVL(x) sublanguages.
In the table, • represents total support, partial support, and ? conditional support.

Language

Variability Units Variability Relations

Type Valu Multi Other Common relations Expressions Special relations

B
oo

le
an

N
on

-B
oo

le
an

Si
ng

le
V
al

ua
ti

on

Se
t

of
V
al

ua
ti

on
s

Si
ng

le
In

st
an

ce

M
ul

ti
pl

e
In

st
an

ce
s

A
tt

ri
bu

te
s

A
tt

ac
he

d
In

fo

C
om

m
on

al
it
y

Im
pl

ic
at

io
n

M
ut

ex

H
ie

ra
rc

hy
on

e-
to

-o
ne

H
ie

ra
rc

hy
on

e-
to

-m
an

y

P
ro

po
si

ti
on

al

F
ir

st
-O

rd
er

R
el

at
io

na
l

A
ri

th
m

et
ic

Q
ua

nt
ifi

ed
im

pl
ic

at
io

n

H
ie

ra
rc

hy
vi

si
bi

lit
y

C
on

di
ti

on
ed

m
ut

ex

C
on

di
ti

on
ed

im
pl

ic
at

io
n

HLVL(bool) • • • • • • • • •

HLVL(att)

HLVL(mult) • •

HLVL(num) •

HLVL(att+ real) • • •

HLVL(num+ real) • • •

HLVL(set) •

HLVL • • • • • • • • • • • • • • • • • • ? ?

4.5.2 Logical representation for variability models in HLVL

Two factors drove the design of the Co�ee’s analysis support. First, the decision to use constraint satisfaction
problems as logic representations of variability models. Second, the hypothesis to encode variability models
using an intermediate representation to enable the multi-solver support.

Although variability models in HLVL are encoded into constraint satisfaction problems, this thesis does not
choose a single logic paradigm and transformation rules because the transformation considers different constraint
systems. A constraint system specifies the types of variables and kinds of constraints a solver can handle in
terms of sets, functions, and predicates [SR90]. Thus, constraint satisfaction problems over different constraint
systems provide a flexible transformation framework. From this standpoint, a constraint satisfaction problem is
a generic form for other satisfiability problems, such as SAT, SMT, and CLP, among others.

The flexible transformation framework using multiple logic representations and transformation rules was
achieved by designing and implementing of the language’s operational semantics following a concept-driven
approach. This approach included the definition of (1) six HLVL(x) sublanguages each grouping a set of
modeling concepts; (2) four support levels considering the analysis requirements of the sublanguages; (1) a set
of orthogonal constructs; (3) a set of definitions to characterize the context of model and a tool in terms of
its expressiveness and analysis needs; and (4) three inference rules that examine the context of the model and

Coffee

111 Chapter 4. Variability Modeling and Variability Analysis in Co�ee

the context of the tool. Then, the inference rules and decides which transformation rules should be applied
to procure a constraint satisfaction problem compatible with both contexts. These four elements together
conform the Co�ee’s context-aware transformation framework. This context-aware framework can encode a
variability models in HLVL into a constraint satisfaction problem over the constraint system that meets the
model’s expressiveness needs.

The final design decision to provide a multi-solver solution was to define the intermediate representation used
to encode the constraint satisfaction problems produced by the context-aware transformation. This intermediate
representation is what this proposal called the Generic Constraint Representation (GCR). The objective to
include GCR as an intermediate representation is to avoid any solver’s concrete syntax, similarly to the HLCL
framework. However, HLCL was not an option because it is an in-house implementation of an abstract syntax
for Constraint Logic Programming.

Instead, the implementation of the framework uses MiniZinc, a solver-independent modeling language
supporting most of the solvers used for reasoning about variability models [NSB+07]. Also, MiniZinc is
compatible with Sat Solvers, SMT solvers, CSP solvers, supports real-number arithmetic, and constraint systems
over sets. Moreover, constraint satisfaction problems modeled in MiniZinc are intuitive and readable since the
syntax of the notation is simple, concise, and does not include tags or extra information.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Part III

Results Analysis, Discussion, and Outlook

112

Chapter 5
Evaluation, Discussion, and Outlook

This chapter presents the evaluation conducted to demonstrate the expressiveness of the High-Level Variability
Language and the flexibility of the framework supporting automated analysis of variability models written in
HLVL.

The following sections present (1) the ontological analysis of the expressiveness of HLVL; and (2) the feasibility
of the proposal by implementing the framework and show its flexibility; and (3) the evaluation of Co�ee

considering the characterizations and scenarios proposed by experts in the community [ES15, tBSE19, BC19].

5.1 Ontological Analysis of the Expressiveness of HLVL

This section presents the ontological evaluation of HLVL. This evaluation aims to measure the ontological
expressiveness of HLVL using the evaluation framework presented in Chapter 3. The evaluation framework
applies the theory of ontological expressiveness to provide a theoretical analysis of variability modeling languages
in order to determine its ability to represent variability in real-world domain models. This framework is grounded
on the theory of ontological expressiveness [WW93], using a foundational ontology for variability languages
combining the works of Asadi et al. [AGWH12] and Reinhartz-Berger et al. [RBSW11].

The framework in Chapter 3 is a Goal-Question-Metric (GQM) approach [BCR94]. The framework provides
both, the elements to design the evaluation, the foundational ontology, and a conduction process. The following
subsections present the design of the evaluation adjusted to the HLVL, the conduction of the ontological analysis,
and the obtained results.

5.1.1 Design of the Evaluation

The design of the theoretical framework provides the goals, metrics, research questions, and hypothesis to
evaluate the ontological expressiveness of variability modeling languages. The following are the elements of the
evaluation.

Goal. The goal of the evaluation is to evaluate HLVL with respect to its completeness and clarity from the point
of view of the expressiveness in the context of an ontological analysis.

Metrics. The metrics in this evaluation are the four measures of potential ontological deficiencies proposed by
Recker et al. [RRIG09]. Table 3.3 presents how to calculate each measure.

113

5.1. Ontological Analysis of the Expressiveness of HLVL 114

M1 Degree of Deficit (DoD), calculated as the ratio ontological constructs that cannot map to any language
construct.

M2 Degree of Excess (DoE), calculated as the ratio language constructs that cannot map any ontological
construct.

M3 Degree of Redundancy (DoR), as the ratio of constructs in the modeling language mapping the same
ontological constructs.

M4 Degree of Overlap (DoO), calculated as the ratio of language constructs mapping more than one ontological
construct.

Questions. Table 5.1 presents the research questions1, each paired with their rationale and correspondent
metrics.

Table 5.1: Research questions for the ontological analysis of the HLVL.

Question Rationale Metric

EQ1. Does HLVL map all the constructs
in the ontological model?

This question serves to determine the completeness or incom-
pleteness of the HLVL.

DoD

EQ2. Are there any HLVL constructs
that cannot be mapped into ontological
constructs?

This question is related to determine if the HLVL has construct
excess. Also,it contributes to elaborate an explanation about
the clarity of the language.

DoE

EQ3. Is the mapping a one-to-one re-
lation?

This question serves to determine if the HLVL has construct
redundancy and construct overload. EQ3 contributes with
EQ2 to conclude about the clarity of the language.

DoR, DoO

Hypothesis. The refinement of the stated questions relies on the analysis of three hypotheses, each one with
null and alternative forms, related to Recker’s et al. metrics, as synthesized in Table 5.2.

Threats to validity in the evaluation

Chapter 3 previously discusses that the validity of the results may be affected by the selection of the ontology
and the mapping between the language and the ontology. As this evaluation applies the framework presented in
Chapter 3 and uses the same foundational ontology, the threats regarding the selection of the ontology were
addressed already. Now, to address the threats regarding the mapping between the language and the ontology
this analysis was also conducted in iterative steps. It is worth noting that the design of the language was
impacted by the results in Chapter 3, then the language constructs were designed to avoid the defects reported
in the previous evaluation.

1These questions are coded with the prefix E to indicate that they are in addition to the main research questions and are
addressed only in this chapter through the evaluation

Coffee

115 Chapter 5. Evaluation, Discussion, and Outlook

Table 5.2: Hypotheses

Question Null hypothesis Alternative hypothesis Defect

EQ1
H10: All ontological constructs were
mapped to HLVL constructs.

H11: One or more ontological construct
cannot be mapped to any HLVL con-
struct.

C
on

st
ru

ct
 D

efi
ci

t Ontology Language

H10 : DoD = 0% H11 : DoD > 0%

EQ2

H20: All the HLVL constructs were
mapped.

H21: One or more HLVL construct can-
not be mapped to any ontological con-
structs.

C
on

st
ru

ct
 E

xc
es

s Ontology Language

H20 : DoE = 0% H21 : DoE > 0%

EQ3

H30: The map is one-to-one. H31: The map is NOT one-to-one.

R
ed

un
da

nc
y

Ontology Language Ontology Language

C
on

s.
 O

ve
rlo

ad

H30 : DoR = 0% ^DoO = 0% H31 : DoR > 0% _DoO > 0%

5.1.2 Conduction

The mapping of the HLVL against the foundational ontology requires two mappings: the representation mapping
and the interpretation mapping. The representation mapping determines whether and how ontological constructs
are represented using the language constructs. The interpretation mapping determines whether and how a
grammatical construct stands for a real-world construct and answer the research questions. The following
subsection presents the representation mapping and interpretation mapping.

Representation mapping

The representation mapping describes first the mapping of the sources of variability followed by the mapping of
variability patterns. Table 5.3 presents a summary of the representation mapping of the sources of variability
following the format of Asadi’s et al. ontology.

Mapping the Sources of Variability. As shown in Table 5.3, the sources of variability are divided in two groups:
the structure elements and the process elements. The mapping of the sources in variability in the ontology is
the following:

Things. The ontological model defines things as elementary units that have properties. In HLVL, variable items in
a model are represented by options. Then, things are mapped to options. Options offer much possibilities
to model elements in a system than the boolean variables in the mapping presented in Chapter 3.

Properties. Accordingly to the ontology, properties are linked to things, as they represent a particular charac-
teristic of a thing. This definition is consistent to attributes that represent particular characteristics of
variable items in a system.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.1. Ontological Analysis of the Expressiveness of HLVL 116

Table 5.3: Representation mapping between the structural elements in the foundational ontology and HLVL

constructs.

Concepts Mapping - Rationale

V
ar

ia
bi

lit
y

so
ur

ce

St
ru

ct
ur

e

Things Options - the variability units in HLVL are called options, they represent the variable items in
a system that must be chosen or defined in a configuration process.

Properties Attributes - HLVL attributes represent properties or particular characteristics linked to options.

Lawful state space Variants in the domain of the options and attributes that comply with the variability relations
in the model.

State Domains of the options and attributes. This mapping considers that the state is the set of
variants for options and attributes.

State law Constraint expressions - the constraint expressin in HLVL are the rules restricting the variants
in the domains of the attributes in the model.

P
ro

ce
ss

Lawful event space Variability relations - variability relations in the HLVL model causing the changes in the
options’ state.

History Visibility (partially) - the variability relationship provides three states: (1) deactivated, (2)
activated-undefined, and (3) activated-defined.

lawful state space. The ontological model defines the lawful state space as an ontological construct defining the
set of states of a thing complying with the state laws of the thing. To explain this mapping considering
that things were mapped to options and properties to attributes, the mapping reviews the definitions of
state and state law.

State. The state of a thing represents the possible values of a thing’s attributes. In HLVL, the domain of
an option or attribute is a set of possible values that can be associated with the option or attribute .
Thus, the state of a thing maps to the set of variants in the domains of the option/attribute used for
representing a thing and its attributes.

State law. The ontology defines the state law as a rule that restricts the values of the attributes of a
thing. In HLVL, once defined and linked to an option, attributes can appear as operands in constraint
expressions. Then, the constraint expressions are the constructs that represent the rules restricting
the domains of attributes. Hence, the state laws are mapped to the constraint expressions over the
attributes representing the state of a particular thing.

The conclusion is that the lawful state space can be mapped to the set of variants in the domain of the
attributes agreeing with the constraint expressions in the model.

Lawful event space. The ontology defines this construct as the set of all events in a thing that are lawful (with
respect to the state laws). The following mapping considers that an event is defined as a change in the
state of a thing that can be internal or external. The HLVL’s semantics consider two changes in the state
of the options. First, the state of an option is undefined before the configuration. Second, the state of an
option options is defined when the configuration determines the pairs (option, variant), such pairs satisfy
all the constraints in the model. Now, considering that the defined options and the pairs (option, variant)

Coffee

117 Chapter 5. Evaluation, Discussion, and Outlook

meet all the variability relations in the model, the lawful event space is mapped to the set of variability
relations in the HLVL model.

History The ontology defines history as the chronologically-ordered states that a thing traverses in time. HLVL

partially maps this ontological construct using the visibility operator. The inclusion of the visibility
operator introduces a new change in the state of an option.The visibility operator hides one or more
options such that the options are excluded from the configuration process until the visibility condition
meets. Consequently, the inclusion of the visibility operator causes the following sequence of states:
(1) deactivated, (2) activated-undefined, and (3) activated-defined. The mapping is partial because the
semantics of the language do not consider more states or changes in the pairs (option, variant) during the
configuration.

Mapping the Variability Patterns. The variability patterns are observable characteristics of the products in a
variability-intensive system. The variability patterns defined in Chapter 3 were defined for Boolean variability
units and the configurational semantics where a product is a set of selected variable items represented by their
names. To be consistent to the configurational semantics of HLVL, the following mapping requires adjustments
in the definition of equivalence as follows.

Definition 5.1 Equivalence. Let S and T be two products. S is equivalent to T (S ⌘ T) iff there is a
mapping between S and T where 8 pair (option, variant) 2 S there is one, and only one, equivalent pair
(option, variant) 2 T

Also, to provide a better readability of the following mapping, recall the definition of similarity from Chapter 3.

Definition 3.2 Similarity. S is similar to T with respect to an equivalence subset p, denoted as S ⇠=p T , iff
there exists S0, T 0 such as S0 ⇢ S and T 0 ⇢ T , then S0 ⌘ T 0. In other words, the concept of similarity refers to
elements that are common to products in a product line.

Table 5.4 presents a summary of the representation mapping of the variability patterns in Asadi’s et al.
ontology. The mapping of the four variability patterns considers that these patterns should be observable
excluding the set of common or core variable items in a variability model. Then. the mapping excludes the
constructs common and decomposition with cardinality [1,1], as they can be used to describe commonality.

Full Similarity One-Side. Two products S, T are full similarly one-side when they satisfy the similarity relation,
and an equivalence relation can be established, in such a way that a subset of S is equivalent to T or vice
versa. This pattern can be mapped to the HLVL constructs that associate two or more options where the
association of one option to a particular variant, defines the valuations in the other options. Then, the
variability relations decomposition and implies map the pattern.

Partial Similarity. Two products are partially similar when they have equivalent subsets of pairs (option, variant).
This pattern can be mapped to constructs in HLVL that produce products sharing subsets of equivalent
pairs (option, variant), different from the core options. The construct group representing hierarchical
relations between one parent and many children with cardinality different than [1, 1] map to this pattern.
Partial similarity can also be observed inside the options defined using the construct set, as they can be

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.1. Ontological Analysis of the Expressiveness of HLVL 118

Table 5.4: Representation mapping between the variability patterns in the foundational ontology and HLVL

constructs.

Pattern Mapping - Rationale

Full Similarity One-Side decomposition, implies - The inclusion of these constructs in a model makes it possible to find
products with the full similarity one-side property in the set of solutions.

Partial Similarity group with cardinality [n,m] and options declares with the keyword set - These constructs produce
products sharing subsets of equivalent pairs (option, variant), different from the core options. Also,
the pattern may be found among the sets of variants linked to the options defined using the construct
set.

Dissimilarity group with cardinality [1,1], mutex , and options declared as enum - These constructs produce
products that do not share options or with options paired to different variants in the enumeration’s
domain.

Ordering No construct in HLVL can map this ontological construct.

bounded to one or more variants in the domain during the configuration process.

Dissimilarity. Two products are completely dissimilar if no similarity relation can be established. The reader
may consider that, there is no two completely dissimilar products because variability models contain
a set of common or core variable items. This pattern can be mapped to the group with cardinality
[1,1], mutex and enum constructs that represent hierarchical one-to-many relations, mutual exclusion,
and options declared as enumerations, respectively. These constructs produce products that do not share
options or with options paired to different variants in the enumeration’s domain.

Ordering The ordering pattern occurs when two products have a similarity relation but they differ by an order
relation. This pattern cannot be mapped to any variability relation in HLVL since none of the constructs
cause an order relation in the sets of pairs (option, variant) representing the products configured from
a variability model in HLVL. Moreover, under the concurrent constraint programming model, it is not
possible to establish an order relation over the set of valuations solving a CCP [SR90].

Interpretation mapping

The interpretation mapping determines whether and how a grammatical construct stands for a real-world
construct. Table 5.5 presents the interpretation mapping. The rows in the table represent the constructs in
HLVL excluding the constructs used to describe commonality. The columns in the table represent the ontological
constructs. The light gray cells in Table 5.5 represents a mapping. The cells may contain a bullet to denote
full support of an ontological construct and a half-empty bullet for partially support an ontological construct.
The last column in in Table 5.5 in dark gray highlights that there is no language support for the the ordering
pattern.

Coffee

119 Chapter 5. Evaluation, Discussion, and Outlook

Table 5.5: Interpretation mapping between ontological constructs and HLVL constructs.
In the table, • represents a mapping, partial mapping.

Constructs
Variability Sources Variability Patterns

T
hi

ng
s

P
ro

pe
rt

ie
s

L
aw

fu
l

st
at

e
sp

ac
e

L
aw

fu
l

ev
en

t
sp

ac
e

H
is

to
ry

Fu
ll

si
m

ila
ri

ty
on

e-
si

de

P
ar

ti
al

si
m

i-
la

ri
ty

D
is

si
m

ila
ri

ty

O
rd

er
in

g

Options •

Attributes - att •

Domains •

Variants •

Constraint expressions expression •

Visibility visibility

Hierarchy one-to-one decomposition •

Implication implies •

Hierarchy one-to-many group

Options- set •

Mutex mutex •

Options- enum •

Measuring the potential ontological deficiencies

The potential ontological deficiencies of HLVL are measured using the interpretation mapping depicted in
Table 5.5 and Recker et al.’s metrics [RRIG09]. The following calculations consider that the number of
ontological constructs is nine and the number of language constructs is twelve.

M1: Degree of Deficit (DoD). M1 is calculated by dividing the number of not mapped ontological constructs
over the total number of ontological constructs as follows:

DoD =
#not mapped ontological constructs

#ontological constructs
= 0.11

The number of not mapped ontological constructs is one because HLVL does not have constructs mapping
the variability pattern for ordering. Consequently, HLVL exhibits 11% of the degree of deficit (1/9 ⇥
100). Following Recker et al.’s proposal, the complement of the DoD represents the level of ontological
completeness. Then, HLVL’s completeness level is 89%.

M2: Degree of Excess (DoE). M2 is calculated by dividing the number of not mapped language constructs over
the total number of language constructs as follows:

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.1. Ontological Analysis of the Expressiveness of HLVL 120

DoE =
#not mapped language constructs

#language constructs
= 0

All the language constructs were mapped. Then, HLVL has zero degree of excess (DoE 0%).

M3: Degree of Redundancy (DoR). To calculate M3 we divide the number of language constructs mapping the
same ontological construct over the total number of language constructs as follows:

DoR =
#lang.const.mapping the same ont.const.

#language constructs
= 0.66

To obtain the number of language constructs mapping the same ontological construct, we count the
number of columns in Table5.5 containing more than one mapping (or partial mapping). The following is
the list of redundant mappings.

1. Two language constructs map the lawful state-space: Domains and variants.

2. Two language constructs map the full-similarity one-side: decomposition and implies.

3. Two language constructs map the partial similarity: group and option.

4. Two language constructs map the dissimilarity: mutex and enum.

There are eight constructs (four pairs) mapping the same ontological construct. Then, to compute M3,
we divide eight over twelve, the total number of language constructs. Consequently, HLVL’s degree of
redundancy is 66%.

M4: Degree of Overlap (DoO). M4 is calculated by dividing the number of language constructs mapping more
than one ontological construct over the total number of language constructs as follows:

DoO =
#lang.const.mapping many ont.const.

#languageconstructs
= 0.08

There is only one language construct mapping more than one ontological construct. Table 5.5 shows that
the group construct maps the partial similarity and the dissimilarity patterns. Then, considering the
twelve language constructs, HLVL’s degree of overlap is 8%.

5.1.3 Results and Answering the Evaluation Questions

The first step to answer the questions and review the hypothesis of the evaluation is to apply the defined metrics
and calculate the degree of the ontological defects present in the HLVL language, Table 5.6 presents those results
in the column labeled HLVL. The second step is to answer the questions in this evaluation. Each answer also
includes a comparison to the results obtained in the ontological evaluation in Chapter 3 depicted in the table
under the label HLCL.

Coffee

121 Chapter 5. Evaluation, Discussion, and Outlook

Table 5.6: Metrics to measure the ontological defects in HLVL.

Metric Formula HLVL HLCL

Degree of Deficit (DoD) DoD = #not mapped ontological constructs
#ontological constructs 11% 22%

Degree of Excess (DoE) DoE = #not mapped language constructs
#language constructs 0% 0%

Degree of Redundancy (DoR) DoR = #lang.const.mapping the same ont.const.
#language constructs 66% 50%

Degree of Overlap (DoO) DoO = #lang.const.mapping many ont.const.
#languageconstructs 8% 50%

EQ1: Does HLVL map all the constructs in the ontological model?

Three elements are relevant to answer this question: the results in the representation mapping, the results
in the interpretation mapping, and the degree of deficit. The representation mapping, more particular the
mapping of the variability patterns in Table 5.4 shows HLVL’s construct deficit as it does not provide a construct
mapping the ordering pattern. The interpretation mapping confirms the language’s construct deficit as depicted
in Table 5.5 where the last column does not have any mapping. Accordingly to the Recker et al.’s metrics
depicted in Table 5.6, the construct deficit in HLVL is 11%.

Thorough the visibility operator, the modelers are now capable to describe relations where a condition is
enforced before a set of options and their relations are considered for configuration. However, these constraints
do not establish an order relation in the set of pairs (option, variant) that represent a product. This limitation
in the language is consistent to the limitations in the formalism used to provide its configurational semantics.
Since, the concurrent constraint programming model does not support an order or partial order relation among
the set of valuations solving a CCP [SR90].

EQ2: Are there any HLVL constructs that cannot be mapped into ontological constructs?

All the language constructs, except the ones used to define commonality, were mapped to one or more elements
in the ontology proposed by Asadi et al. [AGWH12]. Thus, HLVL degree of excess is 0%.

EQ3: Is the mapping a one-to-one relation?

The mapping of ontological constructs to language constructs is not one-to-one for the following reasons. First,
there is a difference of three constructs between the language and the ontology, as the ontology has nine
constructs and the language has twelve. Then, it is not possible to have a one-to-one mapping between HLVL

and the ontology, and zero degree of excess at the same time. Second, Table 5.5 shows four cases where two
language constructs map a single ontological construct (e.g., domains, variants ! lawful state space). Thus,
HLVL exhibits a 66% of degree of redundancy. Third, Table 5.5 shows that one language construct maps two
ontological constructs, i.e., group !partial similarity, dissimilarity. Then, the language has an eight percent of
degree of overlap. The later results causes two ontological defects in HLVL: construct redundancy, and construct
overload.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.2. Flexibility in the Co�ee’s Transformation Framework 122

Ontological Completeness and Clarity

The completeness and the clarity of the language are measured using the potential ontological deficiencies
obtained from Recker et al.’s metrics and calculated on Section 5.1.2. On the one hand, the Degree of Deficit
(DoD) measures the level of ontological incompleteness in a conceptual modeling language. Then, the lower the
DoD, the higher the level of ontological completeness. Accordingly to the results in Table 5.6, the completeness
of HLVL is 89%. This result means that the language closely represents the general principles of variability under
the Asadi et al. ontological framework.

On the other hand, the Degrees of Excess (DoE), Redundancy (DoR) and Overlap (DoO) measure the clarity
of the language. The results are as follows:

1. HLVL does not have any degree of excess (DoE 0%).

2. The degrees of redundancy is 66%.

3. The degree of overlaping is 8%.

On the one hand, a low DoE is a desirable situation as it prevents user confusion due to the need to
ascribe meaning to constructs that do not appear to have real-world meaning. On the other hand, the levels
of redundancy and overload indicate that HLCL might be unclear and will produce potentially ambiguous
representations of real-world domains.

5.2 Flexibility in the Co�ee’s Transformation Framework
This section presents the implementation of the three layers in Co�ee and how those layers interact to produce
a flexible and multi-solver transformation framework. To describe the implementation proposal, the reader may
recall the conceptual model of the framework introduced in Chapter 3 and depicted again in Figure 5.1.

Variability space

1

Constraints space

HLVL
representation

R5
R1

R7

R2

R8

R4
R1

R5

R6

R3

R5

R1
R6

Analysis
result

Generic
Constraint

Representation

Analysis

Solver

...

Solver1

SolverN

Operation

32 Intermediate representation

f(HLVL,
context)

FODA

OVM

Dopler

language

...

Encoding

Figure 5.1: Co�ee Framework - Conceptual model

Chapter 3 presented Co�ee conceptually divided in two spaces, the variability space and the constraints space.
These spaces contain artifacts focusing in one of the two concerns: variability modeling and variability analysis
supported by constraint programming. The communication between those two spaces is called the transition
step. This transition step represents the transformation function that produces a constraint satisfaction problem
from a variability in HLVL with respect to the context.

Coffee

123 Chapter 5. Evaluation, Discussion, and Outlook

For implementation purposes, the framework is divided in three layers, each representing one step in
the conceptual model. The three layers in the implementation are: the encoding layer, the intermediate
layer, and the analysis layer. The following subsections describe the design and implementation of each
module and its contained layers. This section closes with a description of the workflow in the three layers
of Co�ee. The software produced in the implementation can be found in the GitHub repository: https:
//github.com/orgs/coffeeframework/repositories

5.2.1 The Encoding Layer

The encoding layer provides the libraries and tools to obtain an HLVL representation from variability models
written in a machine-readable format. Figure 5.2 presents the structure of the implementation of the encoding
layer in the module called ModelParsers. This module contains two sets of components divided into abstract
libraries and concrete parsers.

The abstract libraries are the components implementing the transformation patterns compatible to the
variability concepts in the HLVL(x) sublanguages. In this sense, the abstract libraries must be instantiated
considering the expressiveness of the source language. To guide the engineering process, the components in the
abstract libraries share the names with the HLVL(x) sublanguages. Then, the first step to implement a concrete
parser is to identify the mapping between the source language and the corespondent HLVL(x) sublanguage. The
main idea is to abstract the programmer of the equivalences between the concepts in the product line notations
and the HLVL constructs. At the same time, to provide a toolkit of transformation patterns that are ready to
instantiate and use in their own parser. In this sense, the programmer should be more focused on working in the
processing of the variability language that they already knows, instead of a variability language that is recently
learning. Then, before starting to code a parser the programmer must decide which HLVL(x) sublanguage is
best suited for their needs.

Figure 5.2: Structure of the encoding layer.

The concrete parsers in Figure 5.2 are examples of implementations available at the GitHub repository. These
concrete parsers extend one or more abstract libraries. Each concrete parser has its own project in the repository
with a set of unitary test wrapped in a maven project. Figure 5.2 depicts two extension points. The extension
points in the structure of the ModelParsers module consider the changes produced in the module caused either

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://github.com/orgs/coffeeframework/repositories
https://github.com/orgs/coffeeframework/repositories

5.2. Flexibility in the Co�ee’s Transformation Framework 124

by the extension of HLVL or by the implementation of a new parser, i.e., to support a new tool. An extension in
the language implies also the creation or the modification of the abstract libraries to support the new language
constructs. Likewise, the exchange of Co�ee with a new modeling tool produces the creation of a new parser.

5.2.2 The Intermediate Representation Layer

In the intermediate representation layer resides the implementation of the two intermediate languages and the
transition step. This layer is implemented in a module called the HLVLImplementation. This module contains
(1) the components implementing the HLVL’s infrastructure for specifying variability models,e.g., syntax, editor,
among others; and (2) the components implementing the context-aware transformation of HLVL models into
Generic Constraint Representation (GCR).

Figure 5.3: Structure of the intermediate representation layer.

The components in this layer are implemented or auto-generated using Xtext, Xtend and Java technologies.
Then, the structure of this layer is consistent with the architecture of Xtext projects. The most important
component in the HLVLImplementation is the Generator, since this is the component in charge of applying
the context-aware transformation to produce the GCR code. The GCR representation is crucial to provide a
multi-solver solution as it is allow the framework to avoid any solver’s concrete syntax.

The current implementation of the framework uses MiniZinc as the implementation of the GCR. MiniZinc is
a solver-independent modeling language supporting most of the solvers involved in variability management and
reported in Chapter 2. Moreover, MiniZinc is compatible with Sat Solvers, SMT solvers, CSP solvers, supports
real-number arithmetic, and constraint systems over sets. Also, constraint satisfaction problems modeled in
MiniZinc are intuitive and readable since the syntax of the notation is simple, concise, and does not include
tags or extra information.

5.2.3 The Analysis Layer

The analysis layer gathers the components and libraries to analyze a variability model described in GCR. These
component is responsible for collecting the GCR implementation and the context of the available solvers in order
to decide a suitable solver to perform the analysis tasks. Figure 5.4 presents the structure of the implementation
of the analysis layer in the module called Analysis.

Coffee

125 Chapter 5. Evaluation, Discussion, and Outlook

Figure 5.4: Structure of the analysis layer.

Figure 5.4 shows how the module groups the components into implemented components, external libraries
and one extension point. The implemented components group contains a Compiler, an Executor, and a
SolverParser that are in charge to decide the solver considering the context, execute the MiniZinc tools and
process the output to obtain the analysis output. The external libraries in the Analysis module allow the
execution of the MiniZinc tool-chain with the solver selected by the compiler, the GCR representation, and
the configuration parameters. These libraries are available at https://github.com/siemens/JMiniZinc. The
extension point, is designed to implement more analysis operations. Currently, the support of analysis operations
in Co�ee is limited to determine if a model is valid, enumerate solutions, and configure and evaluate partial
configurations.

5.2.4 Workflow: from Modeling to Analysis

Figure 5.5 depicts the path of a variability model from the very beginning of the modeling process in the
encoding layer to obtain an analysis output in the analysis layer.

The workflow starts by producing a variability model in HLVL, the first language in Co�ee. The model can
be produced by (1) encoding a model specified in an external variability language; (2) using a text editor and
modeling directly in HLVL. Figure 5.5 depicts the model in HLVL as a file with hlvl extension. However, using
the Xtext infrastructure, the model may be produced in abstract syntax in the EMF exchange format.

The second step in the workflow is to process the model using the HLVLParser component. This component
applies the transformation rules and produces the logic representation of the variability model. This logic
representation is written in the GCR, the second intermediate representation in Co�ee. The GCR representation
is embedded in a json file to be transferred to the analysis layer.

The Third step starts with the variability model in GCR, and the solving context recorded in a json file.
The solving context is the information concerning the available solvers, i.e., already installed an configured, to
perform analysis operations. Those two files are the input for the compiler to decide which solver will be used
in the next step. Then, the compiler calls the executor to call the external libraries and execute the MiniZinc
chain, i.e., FlatZinc and solver. The output is then processed by the solverParser component that produces

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://github.com/siemens/JMiniZinc

5.2. Flexibility in the Co�ee’s Transformation Framework 126

HLVLParser

GRC.json

Encoding Intermediate
representation

1
Analysis32

Variability
Model

LanguageParser

Model.hlvl

Compiler

SolverParserExecutor

Solvers.json

JMiniZinc

Minizinc

output. json

Variability space Constraints space

Figure 5.5: Co�ee Framework - Workflow

the final analysis output, again using the json exchange format.

Why there is no solver depicted in the scheme of the Analysis layer?

Solvers are a key part in the variability analysis. However, this approach does not require one particular solver.
Moreover, solvers were not included as a component in the framework as they are considered part of the context
where the framework is executed. The information of the context, that is, the register of the available solvers
and their characteristics is recorded using a text file in json format.

5.2.5 Evaluation

The evaluation of the implementation considered functional testing. Functional testing is one of the design
evaluation methods proposed by Hevner et al.to evaluate design science artifacts [HMPR04]. The development
of the software components followed the Test-Driven-Development (TDD) process. Then, each piece of software
has a set of unitary tests most of them implemented using the JUnit framework. The latter because the
implementation used Java and Maven technologies.

The functional tests included the implementation of transformation rules for models with context QM =

{HLV L(bool), HLV L(att), HLV L(num)} and a support level QT = {Level1, Level2}. Then, the models in the
test cases for these functional tests may contain boolean and non-boolean options. Also, the test environment
considered the implementation and configuration of three solvers: Gecode, Sat4J and PicatSat. Table 5.7
presents the list of repositories with the available code. Each row in the table presents the implementation
layer, the name of the component, a description and the url of the GitHub repository.

Demo and test-cases

The last row in Table 5.7 presents the repository containing the test cases and documentation to execute a
demo of the Coffee framework.

Coffee

127 Chapter 5. Evaluation, Discussion, and Outlook

Table 5.7: Repositories

Layer Component - Type Description Available at

E
nc

od
in

g
la

ye
r

Bool, abstract library Software component implementing the transformation
patterns to parse into HLVL models described using tools
supporting the HLVL(bool) sublanguage

https://

github.com/

coffeeframework/

BasicHlvlPackage

Integer, abstract library Software component implementing the transformation
patterns to parse into HLVL models described using tools
supporting the HLVL(bool), HLVL(num), HLVL(att) sublan-
guages

https://

github.com/

coffeeframework/

AttHlvlPackage

In
te

rm
ed

ia
te

la
ye

r

HLVL grammar, validator
and generator

This is the software component implementing the syn-
tax and semantics of HLVL. This component uses Xtext
technologies. Therefore, it complies with the Xtext ar-
chitecture for domain-specific languages. The component
provides an eclipse-based editor, a stand-alone parser, and
a maven package to integrate the language in other tools
such as web applications.

https://

github.com/

coffeeframework/

HLVL

A
na

ly
si

s
la

ye
r

Reasoning, compiler, ex-
ecutor

This is the software component implementing the analysis
layer. This component wraps the compiler, the executor,
and the libraries to use the MiniZinc tool-chain to pro-
vide a generic constraint representation and multi-solver
support.

https://

github.com/

coffeeframework/

ReasoningModel

D
em

o

Co�ee’s Demonstration This repository contains the test-cases and documentation
to run a demonstration of the framework.

https://

github.com/

coffeeframework/

DemoCoffee

5.3 Co�ee Under Different Eyes
The following subsections present two comparisons of this proposal using the characterizations proposed by
other authors [ES15, tBSE19, BC19].

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://github.com/coffeeframework/BasicHlvlPackage
https://github.com/coffeeframework/BasicHlvlPackage
https://github.com/coffeeframework/BasicHlvlPackage
https://github.com/coffeeframework/BasicHlvlPackage
https://github.com/coffeeframework/AttHlvlPackage
https://github.com/coffeeframework/AttHlvlPackage
https://github.com/coffeeframework/AttHlvlPackage
https://github.com/coffeeframework/AttHlvlPackage
https://github.com/coffeeframework/HLVL
https://github.com/coffeeframework/HLVL
https://github.com/coffeeframework/HLVL
https://github.com/coffeeframework/HLVL
https://github.com/coffeeframework/ReasoningModel
https://github.com/coffeeframework/ReasoningModel
https://github.com/coffeeframework/ReasoningModel
https://github.com/coffeeframework/ReasoningModel
https://github.com/coffeeframework/DemoCoffee
https://github.com/coffeeframework/DemoCoffee
https://github.com/coffeeframework/DemoCoffee
https://github.com/coffeeframework/DemoCoffee

5.3. Co�ee Under Different Eyes 128

5.3.1 Comparison of HLVL and other textual languages

The following comparison applies a classification scheme to characterize textual languages form the literature
reviews proposed by Eichelberger & Schmidt’s and ter Beek et al.. The classification scheme was first introduced
by Eichelberger & Schmidt in [ES15] and later updated by ter Beek, Schmidt, and Eichelberger in [tBSE19].

Table 5.8 shows a comparison of the main capabilities of the textual variability modeling languages selected
by ter Beek et al. in [tBSE19]. This comparison considers the level of support of the languages for the following
dimensions: configurable elements, constraint support, configuration support, scalability support, and language
characteristics.

Table 5.8: Comparison of the main capabilities of textual variability modeling languages

forms of variation data types constraint expressions configurations

Language op
ti

on
al

al
te

rn
at

iv
e

m
ul

ti
pl

e

ex
te

ns
io

n

at
ta

ch
ed

in
fo

ca
rd

in
al

it
ie

s

re
fe

re
nc

es

pr
ed

efi
ne

d

de
ri

ve
d

us
er

-d
efi

ne
d

si
m

pl
e

pr
op

os
it

io
na

l

fir
st

-o
rd

er

re
la

ti
on

al

ar
it

hm
et

ic

de
fa

ul
t

va
lu

es

as
si

gn
va

lu
es

pa
rt

ia
l

co
m

pl
et

e

co
m

po
si

ti
on

fo
rm

al
se

m
an

ti
cs

FDL + + + � � ⇤ � � � � + � � � � + � � � � +

Forfamel + + + + + + + � � � � + + + + � + � + � ⇤

Tree Grammars + + + � � + � � � � � + � � � � � � � � �

VSL + + + + + + + + � + + ? ? � ? + + + + + �

SXFM + + + � � + � � � � � ? � � � � � � � � �

FAMILIAR + + + � � � ⇤ + + � � + � � � � + + + + �

TVL + + + ? + + + + � + � + � + + � + � � + ⇤

CLAFER + + + + + + + + + + + + + + + � + + + + ⇤

VELVET ⇤ + + + + + + + � � � + � + � + + + ⇤ + �

IVML + + + + + ⇤ + + + � � + + + + + + + ⇤ � �

PYFML + + + � + ⇤ � � � + + + � + + + + + � � �

VM + + + � + + � + � � + + � + + + + + ⇤ + �

HLVL + + + + + + + + � � + + � + + � + + + ⇤ +

+; Direct support, ⇤: Indirect support, ?: Unclear support, �: No support.

Configurable elements include optional and alternative variability, multiple selection of features, feature
modeling extension, attached information to the basic variability unit (usually feature attributes), feature and
group cardinalities, references to other configurable elements, and data types (either predefined, derived or user-

Coffee

129 Chapter 5. Evaluation, Discussion, and Outlook

defined). Constraint expressions support deals with the level of expressiveness, from simple dependencies, and
propositional logic, to first-order logic and extensions such as relational or arithmetic expressions. Configurations
has to do with both capabilities of setting values (default values and value assignment) and levels of configuration
(partial and complete). Finally, scalability is provided via composition whereas the language characteristics
described by formal semantics. Table 5.8 also shows that HLVL supports all of the dimensions. It only lacks
support on derived and user-defined data types, first-order logic, and the definition of default values in the
configuration.

Note that HLVL’s scalability support via composition is highlighted in green and classified as indirect because
this capability of the language is currently explored in a satellite project conducted by two students under the
direction of Angela Villota. The project is discussed in the future work section in Chapter 6.

5.3.2 Applicability and Usefulness of Co�ee

This section contrast Co�ee against the requirements and scenarios defined by Berger & Collet [BC19].These
scenarios and requirements were defined for a unified feature notation and its tool support. Yet the language
proposed in this thesis is multiparadigm, this comparison serves to evaluate the applicability and usefulness of
HLVL as exchange language and Co�ee as framework to communicate different variability management tools.

Berger & Collet propose 14 usage scenarios, each associated to a set of requirements. Table 5.9 presents the
scenarios, their requirements and a rationale of how Co�ee satisfies, or not each requirement. Some of these
scenarios replicate requirements, hence they were included once in the table.

Table 5.9: Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL.

Usage Scenario Requirement HLVL Satisfied

1. Exchange

⇧ Serializable concrete syntax. HLVL does provide a serializable concrete syntax

⇧ Documented abstract and concreted
syntax to realize importers and ex-
porters.

The concrete syntax of HLVL has a formal definition
in EBNF. Also, Co�ee provides the definition and de-
scription of the HLVL(x) sublanguages and a mapping
between them and the encoding libraries

⇧ Library for serialization/deserialization
for tool vendors.

Co�ee provides a set of abstract libraries in Java lan-
guage to encode variabiity models into HLVL, but not
backwards. Also, the repository offers the four con-
crete libraries used in the evaluation

⇧ Extensibility of the language and infor-
mation about its extensions.

The artifacts in the definition and implementation of
HLVL allow its extension.

⇧ Concepts to store tool-specific data. The language provides the comment to link external
information to the model specification.

⇧ Independency of the tool-specific data. The parsing of comments is already considered on the
encoding library.

2. Storage

⇧ Abstract syntax definition in a meta-
modeling notation for automated process-
ing.

HLVL provides a formal syntax in EBNF that together
with its Xtext implementation provides the EMF
metamodel of the language

⇧ Concise and succinct textual syntax. The language has programming-like syntax without
the verbosity of other XML-based syntaxes

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.3. Co�ee Under Different Eyes 130

Table 5.9: Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL.

Usage Scenario Requirement HLVL Satisfied

⇧ Textual syntax with common technol-
ogy for defining concrete syntaxes (e.g.
ANTLR, Xtext).

HLVL provides an Xtext implementation.

3. Teaching and
learning

⇧ Typical visual concrete syntax of fea-
ture models.

The language support feature modeling does not pro-
vide a visual syntax.

⇧ Provision of feature models examples
(real-world and toy models).

The language definition and implementation comes
with a set of toy models, but does not provide real-
world examples.

⇧ Concrete textual notation to illustrate
how to scale models.

Scalability of models is a work in progress

4. Writing, read-
ing, editing

⇧ Simple and human-readable textual con-
crete syntax.

The language’s concrete syntax resembles the syntax
of declarative programming languages where elements
and relations are the most important concepts.

⇧ Language definition independent of a
particular generation technology.

The Xtext implementation of HLVL allows the frame-
work to provide: (1) textual editors with syntax
highlighting and autocomplete functions (2) stan-
dard textual editors and a stand-alone parser (3)
use the editor as an Eclipse or IntelliJ plugin com-
patibility; and (4) EMF/Ecore dependency

⇧ Use of standard text editors.

⇧ Model instances editable in standard
IDEs (e.g. Eclipse, IntelliJ, IDEA, . . .).

⇧ Language’s parser easy to integrate in
other tool chains.

The encoding layer in Co�ee provides parsers in Java

5. Model genera-
tion

⇧ Translation of the complete semantics
into a representation in formal language.

The framework provides a formal syntax and seman-
tics

⇧ Generation of instances in the original
language’s syntax. Co�ee does not provide a tool to generate

variability models for sampling or testing⇧ Interactive instance generation, show-
ing conflicting constraints and counter-
examples.

6. Domain model-
ing

⇧ Conventions and defaults in the lan-
guage.

HLVL includes options and variability relations fre-
quently used in variability modeling.

⇧ Textual syntax inspired by existing lan-
guages.

The syntax of the language resembles the syntax of
declarative programming languages.

7. Configuration

⇧ Adequate syntax for configurations by
non-technical stakeholders. The framework allows the input of list of pairs

(option/attributes, variants/values) and therefore,
it supports partial configuration

.

⇧ Configuration based on selection of fea-
tures as well as value selection.

⇧ Support partial configuration.

⇧ Default configurations or exemplary
configurations.

The framework does not provide default configura-
tions

⇧ Support by inference engine requiring
different types of constraints.

The language provides the visibility constraints that
translated to reified constraints may drive the config-
uration process.

8. Benchmarking

⇧ Designed for tool support, and several
implementations available.

Xtext implementation with EM metamodels with
great tool support.

Coffee

131 Chapter 5. Evaluation, Discussion, and Outlook

Table 5.9: Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL.

Usage Scenario Requirement HLVL Satisfied

⇧ Setup to compare tool support execu-
tion times of operations in isolation.

Co�ee’s design contains four independent layers with
separation of concerns.

⇧ Well-engineered and specified syntax
and semantics of the language.

The language provides the formalization of the op-
erational semantics and the implementation in Xtext
relies on language engineering tools such ANTLR and
EMF/Ecore.

⇧ Agreement on the specification of cer-
tain feature model operations.

Not supported

⇧ Availability of realistic models. No, the framework provides a set of toy and academic
examples

9.Testing

⇧ Concepts to represent partial or com-
plete configurations.

Co�ee supports partial and complete configuration

⇧ Consistency checking by the language
infrastructure for the configuration infor-
mation.

Not supported.

⇧ Concepts capturing further testing-
relevant information.

Not supported

10. Analyses

⇧ Different solver strategies depending on
the kinds of analyses and the language
constructs.

The transformation in Co�ee is compatible with dif-
ferent solvers and logic representations.

⇧ Language syntax and semantics, with
abstractions into the logic representa-
tions for solvers.

The semantics of HLVL models are compatible to dif-
ferent logic representations and solvers

11. Mapping to
implementation

⇧ Modifier/Keyword to differentiate ab-
stract and concrete features.

Not supported .

⇧ Well-defined mapping language. The mapping does not consider abstract options

⇧ Avoid common limitations (e.g. features
without children and concrete, otherwise
abstract).

The mapping of feature models does nos include as-
sumptions in the structure of the model

12. Decomposi-
tion and composi-
tion

⇧ Prioritized list of composition mecha-
nisms from the literature.

In progress, developed in a project supervised by the
author.

⇧ Simple mechanism easy to implement. Prototype for merge two HLVL models.

⇧ Dedicated support for interface feature
models.

Language extension to support model composition

13. Model weav-
ing

⇧ Static design-time or dynamic run-time
model weaving.

The Xtext implementation of the language produce
stand-alone tools to integrate HLVL to other Java ap-
plications. Also, the placing of the HLVL parser in a
Docker container with an REST API allows the inte-
gration to other tools

⇧ List of variability mechanisms from the
literature.

The language was designed using the glossary of vari-
ability concepts as reference

⇧ Understanding of the effort for realiz-
ing the mechanism for different types of
assets.

Co�ee does not support the mapping of options to
implementation elements.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

5.4. Summary 132

Table 5.9: Fulfillment of the usage scenarios’ requirements for a unified notation with HLVL.

Usage Scenario Requirement HLVL Satisfied

14. Reverse engi-
neering

⇧ Sufficient expressiveness to model real-
world variability.

HLVL provides boolean and non-Boolean options to
model variability in complex systems

⇧ Traceability and debugging informa-
tion.

All elements in the language has identifiers to provide
traceability after the transformation.

5.4 Summary
This chapter presented the evaluation of Co�ee. The evaluation aimed to demonstrate the expressiveness of
the variability modeling language and the flexibility of the transformation framework.

The first part of the evaluation, in Section 5.1, continues the evaluation left in Chapter 4 about the
expressiveness of the language. In this chapter, the evaluation consist of applying the theoretical framework
developed in Chapter 3 to conduct an ontological analysis over HLVL.

To close, Section 5.3 presents the evaluation of Co�ee considering the characterizations and scenarios
proposed by experts in the community [ES15, tBSE19, BC19]. First, Section 5.3.1 presents a comparison of
HLVL to other textual variability languages using the characterization of ter Beek, Schmidt and Eichelberger
[ES15, tBSE19]. Second, Section 5.3.2 presents the evaluation of the applicability and usefulness of the framework
considering the scenarios and requirements to define an standard language presented by Berger & Collet and
validated by the MODEVAR community [BC19].

Coffee

Chapter 6
Concluding Remarks and future Work

“C’est le temps que tu as perdu pour ta rose qui fait ta rose si importante.”
Le Petit Prince, Antoine de Saint-Exupèry.

6.1 A Summary of the Dissertation
This dissertation presents the conduction of a research developed to explore the usage of intermediate languages
to ease the interoperability of variability management tools. The main goal of the research was to design a
constraint-based framework that supports an expressive variability language and a flexible automated analysis
mechanism. The results and contributions of the research conform a framework named Co�ee.

Co�ee is a constraint-based framework that supports variability modeling and reasoning about variability
models, two of the main tasks in the management of variability-intensive systems. This thesis addresses the
problems regarding the interoperability between variability management tools, the diversity among variability
modeling languages, and the strong dependencies in the automated analysis of variability models. To solve
these problems using intermediate languages, this thesis presents two original contributions.

First, this thesis defines, formalizes, implements, and evaluates the High-Level Variability Language (HLVL).
HLVL is an expressive textual language that unifies the modeling concepts from different modeling paradigms.
Second, this research includes a proposal of a context-aware transformation framework to provide flexible,
multi-language, and multi-solver support for automated analysis of variability models.

The initial steps of the research project contemplated the possibility to adapt or extend the state-of-the-art
HLCL framework as it is the core of early implementations of the VariaMos tool-suite [MMFR+15]. More
importantly, the development of the HLCL framework is consistent to the hypothesis of the applicability of
intermediate representations developed in this thesis.

To make a decision about this adaptation or extension, an evaluation of the framework regarding its
expressiveness and flexibility was in order. As reported in Chapter 3, the evaluation included the engineering
of a variability management tool, and the evaluation of the HLCL’s expressiveness from a theoretical point
of view. The theoretical evaluation required the definition of an evaluation framework capable of answering
questions, such as, Which are the characteristics of an expressive variability modeling language? and How to
measure the expressiveness in variability modeling languages?. To tackle this challenge, this thesis composed an

133

6.2. Discussion and Limitations 134

evaluation framework grounded on the theory of ontological expressiveness [WW93], its extension to variability
modeling languages [AGWH12], and the Recker et al.’s metrics to measure the ontological defects.

The results in the evaluation demonstrated many problematic situations with the HLCL framework. The
ontological evaluation showed the HLCL weakness as variability modeling language, and the practical evaluation
showed that the transformation framework supporting analysis of HLCL variability representations did not solve
the interoperability issues. These results marked a change in the path to provide an expressive and flexible
framework. From this point on, the concerns regarding variability modeling and variability analysis were treated
independently in the thesis.

The next steps in the research pointed to answer the question How intermediate representations can be
integrated in a framework to ease the interoperability of variability management tools?. The result is the
proposal of Co�ee’s conceptual model including two intermediate languages, one for variability and one for
analysis. Then, the framework solves the interoperability among modeling tools introducing an expressive
textual variability modeling language called the High-Level Variability Language. Also, in Co�ee the strong
coupling and lack of flexibility in the transformation framework are solved by introducing a Generic Constraint
Representation together with a context-aware transformation framework.

The High-Level Variability Language (HLVL) is an expressive and extensible textual language that can be used
as a modeling and intermediate language for variability. HLVL was designed following an ontological approach,
i.e., by defining their elements considering the meaning of the existing concepts in different variability languages.
This proposal not only provides a unified language based on a comprehensive analysis of the existing ones, but
also sets foundations to build tools that support different notations and their combination in a concept-driven
approach.

The evaluation of the framework comprised three stages. The first stage evaluated the ontological expressiveness
of the HLVL. This evaluation recovered the theoretical framework developed in earlier stages of the research.
The second stage demonstrates the feasibility of the proposal by implementing the framework and show its
flexibility. Chapter 5 described how the context-aware transformation framework interacts with different set
of rules and solvers. Also, this chapter presented the proposed architecture to implement this transformation
framework together with a prototype implemented using Java, Xtext, and MiniZinc technologies. The final
stage evaluates the applicability and usefulness of Co�ee to solve the interoperability issues among different
tools. This evaluation contrasts the framework proposed in this thesis against the requirements and scenarios
for a unified feature notation defined by Berger & Collet [BC19] and discussed in the MODEVAR community.

6.2 Discussion and Limitations
To discuss the limitations of this proposal this section recalls the results reported in the dissertation.

6.2.1 About the Constraint-based Approaches for Variability Management

Chapter 2 presents a collection of concepts that contributes to describe variability-intensive systems more
accurately. Nevertheless, to the best of our knowledge, there are not initiatives aiming to integrate all these

Coffee

135 Chapter 6. Concluding Remarks and future Work

concepts in a unified language. One of the possible reasons is the trade-off between expressiveness and the
analysis capabilities of the language. However, an unified variability modeling language may improve the
expressiveness and accuracy of variability specifications.

The literature review evidenced the diversity of approaches to encode variability models as constraint
satisfaction problems. The results showed that there are at least 23 different publications containing a set of
transformation rules or an extension to a set of rules. One challenge in the research area is to consider this
diversity and to develop an standard analysis library. The development of a standard analysis library shall
propel the usage of variability management tools and unite the variability community efforts to provide a robust
common analysis core.

There are two types of tools supporting constraint-based approaches: solvers and other software tools. Yet,
there is no one solver specially designed for variability management. But, there is broad support for solving
constraint problems. Also, there is no a particular solving paradigm for variability management. On the
contrary, this mapping study showed that solvers in variability management range in a variety of paradigms,
constraint systems and implementations. One challenge regarding solvers is to address the difficulty of exploiting
the strengths of multiple solvers while solving a single complex problem.

6.2.2 HLVL as Modeling and Intermediate Language for Variability

One of the main characteristics of HLVL is that it contains constructs for comprehensively modeling variability
concerning the concepts in the variability glossary presented in Section 2.3.1. Hence, HLVL can be used (1) as a
specification language to create variability models; or (2) as an intermediate representation of models specified in
other variability languages. Here, we borrow the concept of intermediate language from the compilers’ domain.
In this domain, intermediate languages are used to produce intermediate representations during the process of
translating a source program into target code. Many compilers generate an explicit low-level or machine-like
intermediate representation, which can be thought as a program for an abstract machine, as in the case of the
Java language.

The usage of an intermediate language for variability is a viable alternative to the interoperability problem
because written in such a language, variability models can be easily shared or distributed. Then, modeling tools
should be able to export and import models in the intermediate language, so modelers do not have to learn a
new variability language, then, modeling tools can be used as they are today.

An intermediate language for variability can be to variability modeling tools what the BibTeX format is for
reference tools. That is, these managing references applications (e.g., Mendeley, Zotero, etc.) have their own
formats and styles for managing references. Yet, these applications are also capable of importing and exporting
BibTeX formats. Even electronic databases, for example, ACM data library, IEEE Xplore, Springer, Science
Direct, citeSeer, etc. have their own way to store and display references. However, these electronic databases
provide an option for downloading or exporting references in the BibTeX format. Moreover, in the rare cases a
publication has not available a BibTeX format, it is possible to define it because the language’ syntax is simple.
Also, there exists examples and documentation for the BibTeX notations publicly available.

HLVL can be considered an exchange language for variability models considering the following factors.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

6.2. Discussion and Limitations 136

• HLVL supports different modeling paradigms. As shown in Section 4.2.4 the language can be used at
least to specify feature-oriented models (e.g., FODA models, attribute-based feature models, cardinality-
based feature models, variation-point oriented models (e.g., OVM [PBvdL05], COVAMOF [SDNB04],
CO-OVM [Dum14], CVL[Hau]) and decision-based model (e.g., DoplerML). Moreover, the language
provides numerous constructs to represent different types of variability units as options. Thus HLVL can
represent unconventional variability languages.

• HLVL supports ad-hoc constraints. The literature review conducted in Chapter 2 showed that variability
models are often enriched with ad-hoc constraints to gain expressiveness. These approaches contribute to
the proliferation of new dialects and language extensions. Considering that the transformation of the base
language into an HLVL model is viable, the new constraints can be directly written in HLVL and included in
the model. Then, HLVL can be a standard language to add variability relations not supported by current
notations to enhance variability models without increasing the variability of variability languages.

• HLVL’s semantics is independent of any particular implementation. The language has a formal definition
with a textual syntax using a free-context grammar and its operational semantics defined via a semantic
domain, semantic function and inference rules. The formal definition of HLVL is key to avoid dependencies
with any particular implementation and to ease the sharing making possible the implementation of parsers
and code generators. Moreover, the formal definition of the syntax and semantics is a prerequisite for
efficient and safe tool automation [SHTB07].

• As a textual variability language, HLVL deals with large models better than graphical languages. Graphical
languages are not a viable option for large industrial-size variability models because they cannot be
properly visualized. The high amount of elements in the model requires large physical space or dedicated
tool support unless they are split in views. Additionally, most variability models have some textual
elements such as cross-tree constraints, attributes and annotations that cannot be easily visualized because
they clutter the layout. Consequently, textual variability languages, such as HLVL became popular because
they are an alternative to solve the issues of large graphical models. Furthermore, what makes a graphical
model more readable, i.e., the layout and disposition of the objects in the model, is not conserved when
sharing the model in different tools, because the interchange format is focused on variability and not
graphical information.

• The concrete syntax of HLVL eases its usage as modeling language and exchange format. The language’s
concrete syntax resembles the syntax of declarative programming languages where elements and relations
are the most important concepts. This programming-like syntax makes HLVL a human-readable language
considering that nearly all computing professionals have come across a programming-like syntax and are
thus familiar with this style. Moreover, HLVL is a lightweight language in contrast to the verbosity of
other XML-based notations such as xmi, sxfmi and other syntaxes that even include information about
graphical components in the variability models.

• The support of Boolean and non-Boolean variable items, the capability of modeling different variability
languages, and the potential capability to enhance variability models suggest that HLVL is a viable language
for integrating variability models described in different languages. Either written in the same editor or
created in different modeling tools, models from different sources can be integrated to be analyzed or

Coffee

137 Chapter 6. Concluding Remarks and future Work

configured.

6.2.3 About HLVL’s Expressiveness

HLVL was designed following an ontological approach. On the one hand, the design of the language considered
the results and lessons learned form the ontological evaluation presented in Chapter 3. On the other hand, the
definition of the language considered the meaning of the concepts existing on different variability languages.
That is, the glossary of variability modeling concepts surveyed in the literature review and reported in Chapter 2.
Consequently, this proposal not only provides a unified language based on a comprehensive analysis of the
existing ones, but also sets foundations to build tools that support different notations and their combination in
a concept-driven approach. The following subsection discusses the results and limitations of HLVL regarding its
expressiveness.

From the Ontological point of View

The results in the ontological analysis applied to HLVL under the Recker et al.’s metrics [RRIG09] showed that
the degree of redundancy, the degree of overlapping and the degree of deficit, affect the ontological clarity and
completeness of the language.

HLVL presents a medium level of clarity due to its levels of redundancy and overlap. The results in Chapter 5
showed that the degree of redundancy is 66% and the degree of overlapping is 8%. This redundancy and overlap
levels depend on the number of constructs in HLVL. Then, the mapping between the language and the ontology is
not one-to-one, it cannot be, since HLVL provides more constructs than the ontology. Additionally, the mapping
shows that two or more constructs represent a single ontological construct. However, this redundancy and
overlap in the language is intentional. Moreover, this redundancy is one of the strengths of the language. The
multiple way to represent the variability concepts in HLVL aims to the flexibility of the language. Consequently,
the language supports multiple modeling paradigms and allows the modeler to choose the way they feels more
comfortable to define a variability model.

The decision to tolerate some redundancy and overlap in the language came from one of the conclusions
in the ontological evaluation of the state-of-the-art HLCL framework. Then, HLVL contains a set of redundant
constructs but also provides the mechanism to mitigate the impact of the redundancy in the clarity of the
language. On the one hand, to enhance the clarity of the language and avoid questions such as, Which construct
should be used in a particular situation?, HLVL provides constructs for frequently used variability relations and a
classification of those constructs in the HLVL(x) sublanguages. Additionally, the design of the abstract libraries
to map external languages to the expressiveness levels their contained sublanguages also provide a context to
guide the modeler in the usage of the language.

HLVL presents a high level of ontological completeness as its degree of deficit is the 11%, however, the language
is still incomplete. The ontological incompleteness exists because it is not possible to map any HLVL construct
to the variability pattern of ordering. This conclusion is not surprising given that the logic representation used
in the operational semantics of the language (e.g., first-order logic and concurrent constraint programming)
does not support the concept of order or partial order in the resulting configurations. The inclusion of time as a

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

6.2. Discussion and Limitations 138

native concept in HLVL was considered in the design of the language for the following considerations. First,
the results of the ontological evaluation of the the state-of-the-art HLCL framework, and the results of Asadi
et al.’s study [AGWH12] concluded that variability modeling languages lack of completeness as they do not
have any construct for representing computational time. Second, the notion of computational time, or order in
the configuration seems relevant for some types of variability intensive systems such as, self-adaptive software
systems, and dynamic software product lines. Third, a few works had considered the notion of computational
time in variability modeling. The systematic literature review in Chapter 2 reported the existence of at least
four works with these characteristics. These considerations raised the question of should variability modeling
languages include a construct representing computational time?. This work explored this possibility by including
visibility constructs, and conditioned implies and mutual exclusion. These constructs are transformed into
reified constraints that trigger or hide some constraints in the resulting constraint problem. However, these
constructs do not cause an order relation or partial order over the results of the configuration. To provide this
order relations, the transformation framework must consider different logic representations and modifications to
the solving algorithm as in the works of Sousa et al. [SRD17].

From the Comparison to the Glossary and other Textual Languages

The summary in Chapter 4 presented the Table 4.3 evaluating how HLVL supports the variability concepts in
the glossary of concepts defined in the systematic literature review (cf. Chapter 2).

As shown in the table, as a whole, HLVL supports above the 90% of the variability modeling concepts in the
glossary. Nevertheless, each HLVL(x) sublanguage has a different expressiveness level, and therefore, requires
different support levels. The latter was considered in the design of the language’s operational semantics. The
remaining 10% of concepts not supported are related to the expressions language and its lack of support of
first-order logic. The extension of the expressions language is an object of consideration as it may improve the
expressiveness but also may impact the transformation framework in terms of the logic paradigms and solvers
able to support such expressions.

Another consideration in the extension of the expressions language is to consider the inclusion of optimization
expressions. An important number of works reported in the systematic literature reviews include constraints to
include an objective function and optimize this function in the configuration. Again, this extension, as all the
expressiveness decisions, may impact the transformation framework but is a more feasible extension since most
solvers provide tools to implement optimization.

A final consideration is the result obtained to compare HLVL to other textual variability modeling languages
under the categories in the classification of Eichelberger & Schmidt’s and ter Beek et al. [ES15, tBSE19]. This
comparison presented in Chapter 5, Table 5.8 confirms that HLVL lacks first-order logic support. Also, the
table shows the lack of support for derived and user-defined data types and the definition of default values
in the configuration. The current version of HLVL presented in this dissertation lacks scalability support via
composition. However, the table shows an indirect support since there is an ongoing satellite project to provide
this scalability support. The project is discussed in the future work below.

Coffee

139 Chapter 6. Concluding Remarks and future Work

6.3 Future work
The following are ideas and prospects projects to further develop the proposal of this thesis. Also to pursue
future research derived from the proposals in this thesis.

6.3.1 Extending Co�ee

The future work regarding an in-deep evaluation and some extensions of the framework are part of an ongoing
project derived from this research. The project was proposed and supervised by the first author of this thesis
and funded by Universidad Icesi. The project main objective of this project is to develop a set of tools to support
the integration of Co�ee with other variability management tools. The project involves the participation of a
group pf undergraduate students from the Software Engineering program at Universidad Icesi and two teachers
(myself included). The activities in the project includes the implementation of the tools to Co�ee to an early
version of Variamos-Web using a microservices architecture. Also, the instantiation of the abstract encoding
libraries to produce four parsers for VariaMos, FeatureIDE, Splot, and FAMILIAR.

The following activities considers the result obtained in the evaluation of the applicability and usefulness of
Co�ee by comparing the framework against the requirements and scenarios defined by Berger & Collet [BC19].

Scalability Support. Model composition is a key factor to provide a language that supports industrial-size
models. As shown in the evaluation of Co�ee with respect to the requirements and scenarios for a unified
feature notation defined by Berger & Collet [BC19] HLVL does not support model composition, as it does
not allow the specification or analysis of fractional models.

The extension to provide scalability support is the more advanced activity. The work related to extend
the framework and provide model composition was conducted by Sara Drada and Juan Diego Carvajal.
The students developed the idea to extend the framework as their final project under my supervision. The
following are the results of the project.

• A Literature review to define six scenarios and requirements to support composition of variability
modeling languages.

• The design and development of a prototype that implements the operations and techniques supporting
composition.

• Extending HLVL to specify composed models.

• An evaluation of the extension surveying experts and comparing the correcteness of the results
obtained by their prototype with respect to the results provided by FAMILIAR.

The reader may find the results associated to this project in the following repository: https://github.
com/coffeeframework/ModelOperations.

Other extensions The following is a list of the most relevant extensions to bring Co�ee closer to meet the
scenarios and requirements to be considered as exchange framework [BC19].

• Implementation and testing of the libraries to import HLVL models in other tools. This item is
relevant to completely meet the requirements in the exchange scenario.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

https://github.com/coffeeframework/ModelOperations
https://github.com/coffeeframework/ModelOperations

6.3. Future work 140

• Extend the framework to support the mapping of options to implementation elements. This
extension should explore the concept of abstract option, its syntax and semantics. The support of
the link between options and implementation elements meet the requirements in the mapping to
implementation and model weaving scenarios.

• Compatibility to other languages. All the implementation used java technologies. Though, the tools
employed in the implementation, such as, Xtext to implement HLVL, MiniZinc as pivot language for
logic representations, and the REST APIs provide flexibility in the interoperability to other tools
and languages. However, more tests are required to support interactions with tools developed in
different technologies. A first approximation in this regard is to implement an interpreter to execute
MiniZinc specifications using GNUProlog.

6.3.2 Extending HLVL to Reach Ontological Completeness

The results of the ontological analysis of HLVL evidenced the lack of representation of one variability pattern:
ordering. This pattern is related to the notion of time in variability management. However, it represents an
order relation or a partial order between the elements in a configuration. The problem regarding the lack of
mapping to the ordering pattern is that it reflects a limitation in the formalism used to provide its configurational
semantics. Since, the concurrent constraint programming model does not support an order or partial order
relation among the set of valuations solving a CCP [SR90].

Time is a notion that has been studied by people from different areas of knowledge. Depending on the point
of view, it has a very unique definition, for instance, the physical time is the angle of the earth’s rotation
around its axis, the present time is the magnitude measured by clocks, and musical time is the measure of the
beat, which is the basic rhythmic unit. However, although these definitions seem different, they all share the
feel of movement and transition. This concept is usually represented in terms of temporal relations which are
formalized with a symbolic logic.

As discussed in Chapter 3, time is a notion that could be useful to include in a variability modeling language
as it is a relevant concept when modeling variability-intensive systems such as dynamic software product lines
and self-adaptive software systems. A further step in the development of Co�ee is to explore the usage of
temporal logic [Pnu77] or the situation calculus [MH69] to provide variability relations such as the following:

• Configuration c1 is valid in the situation where element x is true

• Configuration c2 is no longer valid in the situation where element y is between 1 and 2.

• Configuration c3 is valid in the situation where relation r1 holds.

6.3.3 Research perspectives

This section presents a set of research perspectives and open open questions derived from the results and
limitations of the research presented in this dissertation

• Many features of Co�ee were designed following an ontological approach and developed from the
perspective of Programming Languages Engineering. On the one hand, the approaches employed in the

Coffee

141 Chapter 6. Concluding Remarks and future Work

exploration phase of the research are ontological. On the other hand, the results obtained using these
ontological approaches guided most of the design phase. For instance, both, the systematic literature
review and the ontological analysis are ontological approaches since the objective in both activities is to
structure the knowledge using concepts and relationships among those concepts. Once the knowledge about
variability modeling was structured in terms of concepts and relationships, the selection of a concept-driven
approach, the introduction of the modeling paradigm, the definition of the incremental support levels, the
sublanguages structure, and the mapping between the support levels, sublanguages, and other modeling
languages came naturally. Mainly because of my academic and research background and because this
research continues the idea that the inclusion of a pivot language enables the interchange of variability
models originally specified in different modeling languages [DS08, SMD+11a, MSD11, MFTR+15]. An
open question surging from pondering about what things could be done different is What would be the
results if the variability between modeling languages is addressed from a product line engineering approach?

• The implementation of the context-aware transformation framework provided in this thesis relies on
software variability. That is, the variability is supported using factories, abstract superclasses, interfaces
facilitating different implementations, and conditional compilation (e.g., using #ifdefs) [MP14]. To
recognize the variability in the domain and identify the variability in the implementation is one of the
first steps in adopting a product line strategy. The next step is to explore the product line strategy or a
dynamic software product line strategy to implement the transformation framework. Then, the question
derived is Should the context-aware transformation framework be designed as software product line or a
Dynamic Software Product Line? integrate into Co�ee a DSPL approach may be convenient to provide
the self-configuration capability to the framework.

• The idea to provide an intermediate variability language to solve the interchange issues among tools
has been addressed by other authors. More recently, similar proposals arose to the ones presented in
this thesis. The ideas developed jointly by Sundermann et al.[SFE+21], and Feichtinger et al.[FR21]
propose a variability modeling language called UVL aiming to become a standard format for exchange
between variability modeling tools. Also, to provide a flexible transformation framework to avoid the
strong coupling between the logic paradigm, transformation rules, and solving mechanisms. These similar
approaches confirm the relevance of the problematic developed in this thesis. Thus, far from being
outdated, modeling variability and analyzing variability models still pose challenges to the variability
management community. In this regard the following questions arise,

– UVL is a feature-oriented language and HLVL is a multiparadigm modeling language, what are the
commonalities among both languages?, are they dissimilar? are they complimentary?

– UVL’s syntax was designed evaluating the preferences of the community regarding the language’s
scope and its syntax, How close/far is HLVL from these community preferences? which preferences
can be incorporated into HLVL?, Does the inclusion of the community preferences in HLVL affect its
multiparadigm capabilities?

– Can the theoretical evaluation framework proposed in this thesis be applied to evaluate UVL’s
ontological expressiveness? ¿Are the results comparable to the ones obtained for HLVL?

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

Part IV

Appendix

142

Appendix A
Systematic Mapping Study: Protocol and Artifacts

A.1 Search Terms

Table A.1: Search terms

Set 1: Variability management terms

Product line, PL, software product line, SPL, dynamic software product line, DSPL, product family, feature oriented, feature
model, feature modeling, variability, variation model, variability model, variability modeling, reuse management, software reuse

Set 2: Constraint-based terms

Constraint satisfaction problem, CSP, constraint programming, solver, dynamic constraint optimization problem, DCOP, dynamic
CSP, flexible CSP, weighted CSP, fuzzy CSP, Distributed CSP, Constraint logic programming, CLP, logic programming, logic
formula, SAT solver, SMT solver, BDD solver,

Set 3: Solver-related terms

Absolver, AIMMS, Alma-0, Alt-Ergo, AMPL, Artelys Kalis, Babelsberg, Barcelogic, BASOLVER, Beaver, Boolector, Cassowary,
Cbc, chip V5, choco, Ciao, Claire, Comet, Cream, Curry, CVC3, CVC4, DBPLL, Disolver, DPT, Emma, ECLiPSe, FlatZinc, F1
Compiler, Gecode, GLOP, Glpk, Glucose, Google CP Solver, Gurobi, ILOG CPLEX, JaCoP, Jaopt, Jekejeke, JSR- 331, Koalog
Constraint Solver, Lingeling, Logic-tools, Minion, Minlog, Minizinc, Numberjack, OptaPlanner, OpenCog, OscaR, Oz, Picat,
prolog, python constraint, SCIP, Screamer, SMOCS, SMCHR, SONOLAR, somerby web solver, Spear, STP, Sulum, SWORD,
Turtle, UCLID, verilog, veriT, Yices, zChaff, Z3

A.2 List of selected venues for manual search

Table A.2: Selected venues

Conferences and workshops

Automated Software Engineering (ASE), International Conference on Software Engineering (ICSE), International Conference
on Progress in Informatics and Computing (PIC), International Conference on Software Testing, Verification, and Validation
(ICST), W para workshops International Systems and Software Product Lines Conference (SPLC), International Conference on
Tools with Artificial Intelligence (ICTAI), International Workshop on Product Line Approaches in Software Engineering ICSE
(PLEASE), International Workshop on Variability Modelling of Software-intensive Systems (VaMos)

143

A.3. Data Extraction Instruments 144

Journals

Automated Software Engineering Journal (ASE), Constraints an International Journal (Constraints), The CP Journal (CP),
Empirical Software Engineering (ESE), Information and Software Technology (IST), Journal of Systems and Software (JSS)

A.3 Data Extraction Instruments

A.3.1 Data Extraction Process

Start

Data extraction

Gathering bibliographic information

BibTex review

BibTex review

Tag the acronim of the
conference/journal/workshop

Check the document type

Tag the affiliations: (1) university
(2) laboratory (3) country

Use the tag collaboration when
there are more than one

universities/labs

Tag the type of venue
conference/journal/workshop Gather the

bibliographic
information of the

paper

Check/fix authors' names

Check/fix main fields
regarding the document type

Add personalized fields: lab,
university, country

Start

End

Start

End

Data extraction
Answer questions in the

extraction form

Tag the paper in the
literature manager

Include the new categories
in the extraction form

Start

End

Does the form need
new categories?

End

no yes

Figure A.1: Data extraction process

A.3.2 Data Extraction Questionnaire

DE-Q1 What is/are the paradigm(s) to describe variability?

DE-Q2 What are the variability’s concepts used by the variability notation?

DE-Q3 Does the publication includes new constraints (different from the provides by the variability notation)?
What is the purpose of the inclusion of new constraints?

DE-Q4 Which rules were applied to transform variability models into constraints?

DE-Q5 What are the types of the constraints and domains used in the transformation?

DE-Q6 Does the publication reports the usage of a solver?, Which solver?, What is the solver’s paradigm?,
How is the solver implemented? (as a library, language, stand-alone tool)

DE-Q7 Does the publication relates a constraint-based software-tool, or presents the implementation of a
software-tool?, What is the name of the tool?, What is the type of tool?, What is the software tool used for?

Coffee

145 Chapter A. Systematic Mapping Study: Protocol and Artifacts

A.4 Bibliometric Information

A.4.1 Bibliographic questions

1. What is the name and the acronym of the venue?

2. What is the type of the venue?

3. What are the filliation of the authors?

4. Where are the laboratories/universities from?

5. What is the category in the Wieringa et al. [WMMR05] classification?

6. Based in the guidelines by Petersen et al. [PVK15], what is the the evidence level in a the research paper?

7. What type(s) of product family(ies) is/are targeted in the publication?

8. What is/are the type(s) of the contribution(s) of the publication?

9. What is/are the SPLE task(s) addressed by the publication?

10. What is/are the SPLE process(es) [PBvdL05] addressed by the publication?

A.4.2 Results relevant authors and fora

RQ1 aims to procure a better understanding of the publication information of publications in the area by
finding the most relevant authors, papers, and venues related to the topic of constraint-based approaches on
SPLE. First, this section addresses the fora for publications on the topic of CP in the context of SPLE. To this
purpose, the process for reviewing each document included a step for gathering the bibliographic information of
each paper such as the type and name of the venue, the acronym, and the source of retrieval. Fig. A.3 presents
the obtained results. In consequence, the collection of 137 selected papers contains 101 documents classified as
proceedings (79 from conferences and 22 from workshops), 26 journal articles, and ten book chapters. Fig. A.3
also depicts the distribution of publications over types of venues such as journals, conferences, workshops,
and book chapters. For instance, in the bar for Conferences, the most frequent conference is SPLC with 24
publications, followed by ICSE with five publications. In addition, in the bar for Journals, the most frequent
journal is Systems and Software (S&S) with four publications. There is a tie for the second most frequent journal
between the Science of Computer Journal, the Software Quality Journal, and the Information and Software
Technology Journal with two publications each. Additionally, in the Workshop bar, the most frequent workshop
is VaMos with fourteen publications. Finally, the distribution of the publications in the bar book-chapter is
uniform. Table A.3 contains a summary of the information of the most relevant venues: type of venue, acronym,
venue’s name, the source of retrieval, and the amount of selected papers.

Most relevant authors and publications

To find the most relevant publications in the research area, we used the tools provided by the reference manager
to provide the list of publications cited in each paper that are also part of the selected papers collection. From

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

A.4. Bibliometric Information 146

Others
27

IEEE
Xplore

37
ACM
38

Springer
26

Science
Direct
 9

Others IEEE Xplore ACM Springer Science Direct

Figure A.2: Distribution of documents retrieved per source.

ICSE

SCP, SQ, IST

SPLC

S&S
VaMoS

0
10
20
30
40
50
60
70
80
90

Conference Book chapter Journal Workshop

Pu
bl

ic
at

io
ns

Type of venue

Other Second frequent Most frequent

Figure A.3: Amount of publications per type of venue.

this list and with the help of a Java program we obtain the number of citations of each paper. As a result, the
“Feature models, grammars, and propositional formulas” paper [Bat05] is the most cited one with 58 studies
referencing Batory’s proposal for representing feature models as formulas in propositional logic. The second and
third most cited papers are the proposals for transforming extended feature models into constraint satisfaction
problems presented by [BTRC05a] and [CK05]. Fig. A.5 shows the twenty most cited papers over the 137
selected documents in this mapping study.

Fig. A.4 depicts the 20 most influential authors regarding the proposed indicators. This figure presents four
indicators used to evaluate the impact of authors in the research area. These indicators are defined as follows:
Author/Co-author = total of publications as author.
First Author = total of publications as first author.
Citations ratio = the sum of citations of each paper where the author is first contributor.
Citations index = Citations ratio / first author.

To illustrate, consider the indicators for D. Benavides, first author in Fig. A.4. The first bar represents the
total publications where D. Benavides is cited as one of the authors (16 papers). Whereas, the second bar is
the number of documents where D. Benavides is the first author (5 papers). The third bar is the sum of all
citations for the publications where D. Benavides is the first author (citations ratio = 82), and the fourth bar is
the citation index (citations ratio/ first author = 82/ 5 = 16,4). Note that the three first authors in Fig. A.4
correspond to the principal contributors of the most cited papers as presented in Fig. A.5

Coffee

147 Chapter A. Systematic Mapping Study: Protocol and Artifacts

Table A.3: Most frequent venues

Type Acronym Name Source Papers

Conference SPLC International Software Product Line Conference ACM-DL, IEEE Xplore 24

Conference ICSE International Conference on Software Engineering IEEE Xplore 5

Conference RE Requirements Engineering Conference IEEE Xplore 4

Conference CAiSE Springer 4

Journal S&S System and Software Science Direct 4

Journal SCP Science of Computer Programming Science Direct 2

Journal SQ Software Quality Journal Springer 2

Journal SIT Information and Software Technology Science Direct 2

Workshop VaMoS International Workshop on Variability Modelling of
Software-intensive Systems

ACM-DL 14

A.4.3 Results for types of research and evaluation

One of the objectives of this mapping study is the characterization of the type of research together with the
evaluation methods adopted in primary studies to delineate the maturity of research in the area. To address
RQ2, we employed two complementary points of view: (1) Wieringa et al.’s scheme to classify the type of
research [WMMR05], and (2) the guidelines provided by Petersen et al. in [PVK15] to evaluate the evidence
level in a research paper. The categories in the the Wieringa et al.’s classification and the type of evaluation
were included in the classification framework and described in Section ??. Table A.4 presents summary of the
categories.

Fig. A.6 contains the distribution of papers regarding the Wieringa et al.’s scheme. One of the results is that
there are not publications in the category experience paper. This phenomenon is a consequence of the exclusion
of secondary studies from the final collection of documents along with the distribution of the type of research in
the area. As shown in Fig. A.6, the majority of studies are in the solution proposal category (66%), meanwhile,
31 publications are validation research studies (23%), ten publications are philosophical papers (7%) and only
six studies are in the research evaluation category (4%). These numbers show that in spite of the many solution
proposal and validation research studies, there is still an incipient amount of research reporting lessons learned
and practical applications. Therefore the lack of experience papers.

Fig. A.7 displays the results of the evidence provided from primary studies. Accordingly with this chart, the
main strategies for empirical evaluation are academic case studies (51%), and academic (big-set) (15%). On
contrast, the less used strategies for empirical evaluation are industrial cases (13%), and industrial practice
(4%). It is also observe form Fig. A.7, that the 12% of studies not provide empirical evaluation and 6% used
toy-examples to evaluate their proposals. Further development of the evaluation of constraint-based approaches
for SPLE on industrial contexts and industrial practice is required to provide better evidence about the scalability

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

A.4. Bibliometric Information 148

0

10

20

30

40

50

60

70

80

90

D. B
en

av
ide

s

D. B
ato

ry

K. C
za

rne
cki

R. M
az

o

J.
Whit

e

C. S
alin

es
i

W. Z
ha

ng

M. M
en

do
nc

a

O. D
jeb

bi

A. M
etz

ge
r

P.
Tri

nid
ad

A. O
sm

an
 Elfa

ki

A. C
las

se
n

H. Y
an

G. P
err

ou
in

A. V
an

 Deu
rse

n

S. S
eg

ura

T.
Thü

m

R. M
ich

el

N. A
nd

ers
en

Author

Author/ Co-author First Author Citations as first author Index

Figure A.4: Relevant authors in the research area.

and suitability of constraint-based approaches in SPLE.

To provide a better understanding and conclude about the research maturity of CP approaches applied to
SPLE, Fig. A.8 displays the type of research and evidence level with respect to the target product line. In
this figure, the size of the bubble represents the number of publications. Therefore, Fig. A.8 shows that most
publications aim to employ CP approaches in software product lines than in product lines. In addition, despite
there are some works involving dynamic software product lines; there is still a gap in the research concerning
constraint-based techniques applied to that type of software product lines

Coffee

149 Chapter A. Systematic Mapping Study: Protocol and Artifacts

64
26

22
18

17
16

15
13

12
10
10
10
9
9

7
7
7
7

6
6

0 5 10 15 20 25 30 35 40 45 50 55 60 65

DBator05 [13]
DBena05a [14]

KCzar05 [15]
DBena05b [120]

WZhan04 [39]
DBena07 [17]

AMetz07 [156]
JWhit08 [115]

DBena06b [42]
DBena06a [73]

KCzar07 [45]
ODjeb07b [53]
RMazo11 [149]
MMend09 [18]
AClas11 [21]

RMazo12 [16]
MMend09 [104]

PTrin08 [78]
ODjeb07a [10]
MMend08 [107]

Publications

Figure A.5: Most cited papers.

Solution
66%

Validation
23%

Evaluation
4%

Philosophical
7%

Solution Validation Evaluation Philosophical

Figure A.6: Distribution of the publications per type of research.

None
12%

Toy-
example

6%
Academic

51%

Academic
(Big-set)

15%

Industrial
13%

Industrial
practice

3%

None Toy-example Academic
Academic (Big-set) Industrial Industrial practice

Figure A.7: Distributions of documents per level of evidence.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

A.4. Bibliometric Information 150

Table A.4: Summary of the evaluation categories

Type of research (Wieringa et al. [WMMR05])

Philosophical paper. Papers that sketch a new way of looking at things, a new conceptual framework.

Experience papers. Papers explaining how something has been done in practice.

Solution proposal. Papers discussing new or revised techniques.

Validation research. Papers discussing the properties of solution proposals not yet implemented in practice.

Evaluation research. Papers with techniques implemented in practice and reporting the learned lessons.

Evaluation level (Petersen et al. [PVK15])

None. No empirical evidence, the evidence may be provided from observations, demonstration or arguments.

Toy-example. The evidence is obtained by demonstration on toy-examples.

Academic. The evidence is obtained by working out on case studies employed on other publications or
repositories.

Academic (Big-set). Evidence obtained using case studies reported as real life size, or big. These cases are
randomly generated or obtained from public repositories.

Industrial. Evidence obtained using case studies inspired from industrial partners.

Industrial practice. The contributions of he publication is used in an industrial context.

5 1 1

10

10 3 7 3

65 2 23 7

1 2 2

6 1 1

4 2 4 3 2 2

10 4 46 12 11 2

Solutio
n

pro
posa

l

Vali
dati

on

Eva
luati

on
None

To
y-e

xa
mple

Aca
dem

ic

Aca
dem

ic

Big-S
et

Industr
ial

Industr
ial

prac
tic

e

line

product line

Software product

Product line

Dynamic software

Configurable system

Type of system (y axis)

Type of evaluationType of research
Philo

so
phica

l

Figure A.8: Research type and evaluation level regarding the type of system.

Coffee

References

[ACF10] Jean-Marc Astesana, Laurent Cosserat, and Helene Fargier. Constraint-based Vehicle Config-
uration: A Case Study. In 2010 22nd IEEE International Conference on Tools with Artificial
Intelligence, volume 1, pages 68–75. IEEE, IEEE, oct 2010.

[ACF14] Juliana Alves Pereira, Kattiana Constantino, and Eduardo Figueiredo. A Systematic Lit-
erature Review of Software Product Line Management Tools. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8919:73–89, 2014.

[ACL13] César Andrés, Carlos Camacho, and Luis Llana. A formal framework for software product
lines. Information and Software Technology, 55(11):1925–1947, 2013.

[ACLF11] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. Managing feature
models with familiar: a demonstration of the language and its tool support. In Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems, pages 91–96. ACM,
2011.

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Familiar: A
domain-specific language for large scale management of feature models. Science of Computer
Programming, 78(6):657 – 681, 2013.

[ACSW12] Nele Andersen, Krzysztof Czarnecki, Steven She, and Andrzej W\kasowski. Efficient synthesis
of feature models. In Proceedings of the 16th International Software Product Line Conference-
Volume 1, pages 106–115. ACM, 2012.

[ADD+00] Mark Ardis, Peter Dudak, Liz Dor, Wen-jenq Leu, Lloyd Nakatani, Bob Olsen, and Paul
Pontrelli. Domain engineered configuration control. In Software Product Lines, pages 479–493.
Springer, 2000.

[AGV15] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Generating Tests for Detecting Faults
in Feature Models. In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on, pages 1–10. IEEE, 2015.

[AGWH12] Mohsen Asadi, Dragan Gasevic, Yair Wand, and Marek Hatala. Deriving variability patterns
in software product lines by ontological considerations. In Conceptual Modeling – ER, volume
7532 LNCS, pages 397–408, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[APM+14] Germán Harvey Alférez, Vicente Pelechano, Raúl Mazo, Camille Salinesi, and Daniel Diaz.
Dynamic adaptation of service compositions with variability models. Journal of Systems and
Software, 91:24–47, may 2014.

151

References 152

[ApsGtFIfOCSF] Daimler AG, pure-systems GmbH, and the Fraunhofer Institute for Open Communication
Systems FOKUS. The variability exchange language (draft version).

[Apt03] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[ARS+19] Asmaa Achtaich, Ounsa Roudies, Nissrine Souissi, Camille Salinesi, and Raúl Mazo. Evaluation
of the state-constraint transition modelling language: A goal question metric approach. In
Proceedings of the 23rd International Systems and Software Product Line Conference - Volume
B, SPLC ’19, page 106–113, New York, NY, USA, 2019. Association for Computing Machinery.

[AS96] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[ASN14] Stephan Adelsberger, Stefan Sobernig, and Gustaf Neumann. Towards assessing the complexity
of object migration in dynamic, feature-oriented software product lines. In Proceedings of
the Eighth International Workshop on Variability Modelling of Software-Intensive Systems,
page 17. ACM, 2014.

[ASS+19] Asmaa Achtaich, Nissrine Souissi, Camille Salinesi, Raul Mazo, and Ounsa Roudies. A
constraint-based approach to deal with self-adaptation: The case of smart irrigation systems.
International Journal of Advanced Computer Science and Applications, 10(7), 2019.

[Bat05] Don Batory. Feature models, grammars, and propositional formulas. In Henk Obbink and
Klaus Pohl, editors, Software Product Lines, pages 7–20, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[BC05] Felix Bachmann and Paul Clements. Variability in software product lines. Technical Re-
port CMU/SEI-2005-TR-012, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2005.

[BC19] Thorsten Berger and Philippe Collet. Usage scenarios for a common feature modeling language.
In Proceedings of the 23rd International Systems and Software Product Line Conference -
Volume B, SPLC ?19, page 174?181, New York, NY, USA, 2019. Association for Computing
Machinery.

[BCR94] Victor R Basili, Gianluigi Caldiera, and H Dieter Rombach. The Goal Question Metric
Approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[BDA+13] Kacper Ba̧k, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej Wa̧sowski.
Clafer: unifying class and feature modeling. Software & Systems Modeling, pages 1–35, 2013.

[BDRG10] Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and Dragan Gasevic. Configuring
software product line feature models based on stakeholders’ soft and hard requirements. In
Software Product Lines: Going Beyond, pages 16–31. Springer, 2010.

[Ben19] David Benavides. Variability modelling and analysis during 30 years. In Maurice H. ter
Beek, Alessandro Fantechi, and Laura Semini, editors, From Software Engineering to Formal

Coffee

153 References

Methods and Tools, and Back: Essays Dedicated to Stefania Gnesi on the Occasion of Her
65th Birthday, pages 365–373. Springer International Publishing, Cham, 2019.

[Ber12] Thorsten Berger. Variability Modeling in the Real An Empirical Journey from Software
Product Lines to Software Ecosystems. PhD thesis, University of Leipzig, 2012.

[BHST04] Yves Bontemps, Patrick Heymans, Pierre-Yves Schobbens, and Jean-Christophe Trigaux.
Semantics of FODA Feature Diagrams. In Workshop on Software Variability Management for
Product Derivation, pages 48–58, 2004.

[BJM08] Andrew Burton-Jones and Peter Meso. The Effects of Decomposition Quality and Multiple
Forms of Information on Novices’ Understanding of a Domain from a Conceptual Model.
Journal of the Association for Information Systems, 9(12):1, 2008.

[BLL+13] Johannes Bürdek, Sascha Lity, Malte Lochau, Markus Berens, Ursula Goltz, and Andy
Schürr. Staged configuration of dynamic software product lines with complex binding time
constraints. In Proceedings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems - VaMoS ’14, pages 1–8, New York, New York, USA, 2013. ACM
Press.

[BNB14] Razieh Behjati, Shiva Nejati, and Lionel C Briand. Architecture-level configuration of
large-scale embedded software systems. ACM Transactions on Software Engineering and
Methodology (TOSEM), 23(3):25, 2014.

[BSL+13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof Czarnecki. A
study of variability models and languages in the systems software domain. IEEE Transactions
on Software Engineering, 39:1611–1640, 2013.

[BSRC09] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of feature
models: A detailed literature review. Research Report ISA-09-TR-04, Applied Software
Engineering Research Group, December 2009.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35(6):615–636, sep 2010.

[BSTRC06a] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. A first step
towards a framework for the automated analysis of feature models. Proc. Managing Variability
for Software Product Lines: Working With Variability Mechanisms, pages 39–47, 2006.

[BSTRC06b] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. Using java csp
solvers in the automated analyses of feature models. In Ralf Lämmel, João Saraiva, and
Joost Visser, editors, Generative and Transformational Techniques in Software Engineering:
International Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers,
pages 399–408. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[BSTRC07] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. FAMA: Tooling a
Framework for the Automated Analysis of Feature Models. VaMoS, 2007:1, 2007.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 154

[BTCS13] David Benavides, Pablo Trinidad, Antonio Ruiz Cortés, and Sergio Segura. Fama. In Systems
and Software Variability Management, Concepts, Tools and Experiences, pages 163–171. 2013.

[BTRC05a] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated Reasoning on Feature
Models. In Advanced Information Systems Engineering, pages 491–503. Springer, 2005.

[BTRC05b] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Using Constraint Programming
to Reason on Feature Models. In SEKE, pages 677–682, 2005.

[CBH11] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based approach to feature
modelling: Syntax and semantics of tvl. Science of Computer Programming, 76:1130 – 1143,
2011.

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej Wąsowski.
Cool Features and Tough Decisions: A Comparison of Variability Modeling Approaches. In
Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, pages 173–182, NY, USA, 2012. ACM.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-based
feature models and their specialization. Software Process: Improvement and Practice, 10(1):7–
29, jan 2005.

[CHH09] Andreas Classen, Arnaud Hubaux, and Patrick Heymans. A Formal Semantics for Multi-level
Staged Configuration. VaMoS, 9:51–60, 2009.

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature modeling and
constraints: A progress report. In International Workshop on Software Factories, pages 16–20,
2005.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, 2001.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics: There and back
again. In Proceedings of the 11th International Software Product Line Conference, SPLC ’07,
pages 23–34, Washington, DC, USA, 2007. IEEE Computer Society.

[CWD+14] Maxime Cordy, Marco Willemart, Bruno Dawagne, Patrick Heymans, and Pierre-Yves
Schobbens. An Extensible Platform for Product-line Behavioural Analysis. In Proceedings of
the 18th International Software Product Line Conference: Companion Volume for Workshops,
Demonstrations and Tools - Volume 2, SPLC ’14, pages 102–109, New York, NY, USA, 2014.
ACM.

[DBN16] Alexander Diedrich, Björn Böttcher, and Oliver Niggemann. Exposing design mistakes during
requirements engineering by solving constraint satisfaction problems to obtain minimum
correction subsets. In van den Herik J Filipe J. Filipe J., editor, ICAART 2016 - Proceedings

Coffee

155 References

of the 8th International Conference on Agents and Artificial Intelligence, volume 2, pages
280–287. SciTePress, 2016.

[DBS+17] Amador Durán, David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés.
FLAME: a formal framework for the automated analysis of software product lines validated
by automated specification testing. Software & Systems Modeling, 16(4):1049–1082, oct 2017.

[DFH11] Deepak Dhungana, Andreas Falkner, and Alois Haselböck. Configuration of cardinality-based
feature models using generative constraint satisfaction. In Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference on, pages 100–103. IEEE, 2011.

[DGR11] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. The DOPLER meta-tool for decision-
oriented variability modeling: a multiple case study. Automated Software Engineering,
18(1):77–114, mar 2011.

[DHR10] Deepak Dhungana, Patrick Heymans, and Rick Rabiser. A formal semantics for decision-
oriented variability modeling with DOPLER. In Fourth International Workshop on Variability
Modelling of Software-Intensive Systems, Linz, Austria, January 27-29, 2010. Proceedings,
pages 29–35, 2010.

[DKL+16] Frederik Deckwerth, Géza Kulcsár, Malte Lochau, Gergely Varró, and Andy Schürr. Conflict
detection for edits on extended feature models using symbolic graph transformation. In
Thum T Rubin J., editor, Electronic Proceedings in Theoretical Computer Science, EPTCS,
volume 206, pages 17–31. Open Publishing Association, 2016.

[DMSEB15] Lamiae Dounas, Raúl Mazo, Camille Salinesi, and Omar El Beqqali. Continuous monitoring
of adaptive e-learning systems requirements. In Proceedings of IEEE/ACS International
Conference on Computer Systems and Applications, AICCSA, volume 2016-July. IEEE
Computer Society, 2015.

[DS00] Bryan S Doerr and David C Sharp. Freeing product line architectures from execution
dependencies. In Software Product Lines, pages 313–329. Springer, 2000.

[DS07] Olfa Djebbi and Camille Salinesi. Red-pl, a method for deriving product requirements from a
product line requirements model. In John Krogstie, Andreas Opdahl, and Guttorm Sindre,
editors, Advanced Information Systems Engineering: 19th International Conference, CAiSE
2007, Trondheim, Norway, June 11-15, 2007. Proceedings, pages 279–293, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[DS08] Olfa Djebbi and Camille Salinesi. Towards an Automatic PL Requirements Configuration
through Constraints Reasoning. In Second International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS), pages 17–23, 2008.

[DSD07] Olfa Djebbi, Camille Salinesi, and Daniel Diaz. Deriving product line requirements: the
red-pl guidance approach. In Software Engineering Conference, 2007. APSEC 2007. 14th
Asia-Pacific, pages 494–501. IEEE, 2007.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 156

[DTS+14] Cosmin Dumitrescu, Patrick Tessier, Camille Salinesi, Sebastien Gérard, Alain Dauron, and
Raul Mazo. Capturing Variability in Model Based Systems Engineering. In Complex Systems
Design & Management, pages 125–139. Springer International Publishing, 2014.

[Dum14] Cosmin Dumitrescu. CO-OVM : A Practical Approach to Systems Engineering Variability
Modeling. PhD thesis, Universit{é} Paris 1 Panth{é}on-Sorbonne, 2014.

[EFV+13] Osman Abdelrahman Elfaki, Sim Liew Fong, P Vijayaprasad, Md Gapar Md Johar, and
Murad Saadi Fadhil. Using a Rule-based Method for Detecting Anomalies in Software Product
Line. Research Journal of Applied Sciences, 2013.

[EKS13] Holger Eichelberger, Christian Kröher, and Klaus Schmid. An analysis of variability modeling
concepts: Expressiveness vs. analyzability. In John Favaro and Maurizio Morisio, editors, Safe
and Secure Software Reuse, pages 32–48, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Eng20] Dominik Engelhardt. Towards a Universial Variability Language. PhD thesis, Technische
Universitat Braunschweig, 2020.

[EPAH08] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho. Knowledge
Based Method to Validate Feature Models. In SPLC (2), pages 217–225, 2008.

[EPAH09a] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho. Modeling
variability in software product line using first order logic. In International Conference on
Software Engineering Research, Management and Applications, SERA 2009, pages 227–233.
IEEE, 2009.

[EPAH09b] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho. Using First
Order Logic to Validate Feature Model. In VaMoS, pages 169–172, 2009.

[ES15] Holger Eichelberger and Klaus Schmid. Mapping the design-space of textual variability
modeling languages: A refined analysis. Int. J. Softw. Tools Technol. Transf., 17(5):559–584,
October 2015.

[FBGR13] A Felfernig, D Benavides, J Galindo, and F Reinfrank. Towards Anomaly Explanation in
Feature Models. In Workshop on Configuration, pages 117–124, 2013.

[FO09] Raphael Finkel and Barry O’Sullivan. Reasoning about conditional constraint specifications.
In Tools with Artificial Intelligence, 2009. ICTAI’09. 21st International Conference on, pages
349–353. IEEE, 2009.

[FR21] Kevin Feichtinger and Rick Rabiser. How Flexible Must a Transformation Approach for
Variability Models and Custom Variability Representations Be?, page 69–72. Association for
Computing Machinery, New York, NY, USA, 2021.

[GAT+16] José A. Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian Vidal, Benoit Baudry,
and David Benavides. Exploiting the enumeration of all feature model configurations. In
Proceedings of the 20th International Systems and Software Product Line Conference, Splc’16,
pages 74–78, 2016.

Coffee

157 References

[GBT+18] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-Fernández,
and Antonio Ruiz-Cortés. Automated analysis of feature models: Quo vadis? Computing,
49(12):45, aug 2018.

[GDR+15] José A. Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Botterweck, and
Paul Grünbacher. Supporting distributed product configuration by integrating heterogeneous
variability modeling approaches. Information and Software Technology, 62:78 – 100, 2015.

[GFG08] Giancarlo Guizzardi, Ricardo Falbo, and Renata Guizzardi. Grounding Software Domain
Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE Software
Process Ontology. In Memorias de la XI Conferencia Iberoamericana de Software Engineering
(CIbSE 2008), Recife, Pernambuco, Brasil, February 13-17, 2008, pages 127—-140, 2008.

[GFG12] Renata Guizzardi, Xavier Franch, and Giancarlo Guizzardi. Applying a foundational ontology
to analyze means-end links in the i? framework. In 2012 Sixth International Conference on
Research Challenges in Information Science (RCIS), pages 1–11. IEEE, may 2012.

[GMS15] Arnaud Gotlieb, Dusica Marijan, and Sagar Sen. Towards more relational feature models.
In Maciaszek L Lorenz P. Maciaszek L., editor, ICSOFT-EA 2015 - 10th International
Conference on Software Engineering and Applications, Proceedings; Part of 10th International
Joint Conference on Software Technologies, ICSOFT 2015, pages 381–386. SciTePress, 2015.

[GRF+12] Nadia Gamez, Daniel Romero, Lidia Fuentes, Romain Rouvoy, and Laurence Duchien.
Constraint-based self-adaptation of wireless sensor networks. In Proceedings of the 2nd
International Workshop on Adaptive Services for the Future Internet and 6th International
Workshop on Web APIs and Service Mashups, pages 20–27. ACM, 2012.

[GTBW14] José A Galindo, Hamilton Turner, David Benavides, and Jules White. Testing variability-
intensive systems using automated analysis: an application to Android. Software Quality
Journal, pages 1–41, 2014.

[Gui13] Giancarlo Guizzardi. Ontology-Based Evaluation and Design of Visual Conceptual Modeling
Languages. In Iris Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom Cohen, and Jorn
Bettin, editors, Domain Engineering, pages 317–347. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[GWT+14] Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou. Variability
in Software Systems—A Systematic Literature Review. IEEE Transactions on Software
Engineering, 40(3):282–306, mar 2014.

[Hau] Øystein Haugen. Common variability language (cvl) - omg revised submission.

[HBG11] Aymeric Hervieu, Benoit Baudry, and Arnaud Gotlieb. Pacogen: Automatic generation of
pairwise test configurations from feature models. In Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on, pages 120–129. IEEE, 2011.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 158

[Hei13] Richard Heijblom. Potential of Integer Programming for Optimization Analysis of Extended
Feature Models. 2013.

[Hev07] Alan R Hevner. A Three Cycle View of Design Science Research. Scandinavian Journal of
Information Systems, 19(2):87–92, 2007.

[HMGB16] Aymeric Hervieu, Dusica Marijan, Arnaud Gotlieb, and Benoit Baudry. Practical minimization
of pairwise-covering test configurations using constraint programming. Information and
Software Technology, 71:129–146, 2016.

[HMPR04] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Q., 28(1):75–105, 2004.

[HPF20a] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. Extensible and modular abstract
syntax for feature modeling based on language constructs. In Proceedings of the 24th ACM
Conference on Systems and Software Product Line: Volume A - Volume A, SPLC ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[HPF20b] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. Extensible and modular abstract
syntax for feature modeling based on language constructs. In Proceedings of the 24th ACM
Conference on Systems and Software Product Line: Volume A - Volume A, SPLC ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[HPHLT15] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Combining multi-
objective search and constraint solving for configuring large software product lines. In
Proceedings - International Conference on Software Engineering, volume 1, pages 517–528.
IEEE Computer Society, 2015.

[HPP+13] Christopher Henard, Mike Papadakis, Gilles Perrouin, John Klein, and Yves Le Traon. Towards
automated testing and fixing of re-engineered feature models. In Software Engineering (ICSE),
2013 35th International Conference on, pages 1245–1248. IEEE, 2013.

[HR04] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of "semantics"?
Computer, 37(10):64–72, oct 2004.

[Iiv89] Juhani Iivari. Levels of abstraction as a conceptual framework for an information system. In
Eckhard D. Falkenberg and Paul Lindgreen, editors, Information System Concepts: An in
Depth Analysis : Proceedings of the Ifip Tc 8/Wg 8.1 Working Conference on Information
System Concepts : An in De, pages 323–352, 1989.

[JBMS14] Mikoláš Janota, Goetz Botterweck, and Joao Marques-Silva. On lazy and eager interactive
reconfiguration. In Proceedings of the Eighth International Workshop on Variability Modelling
of Software-Intensive Systems, page 8. ACM, 2014.

[KAT16] Matthias Kowal, Sofia Ananieva, and Thomas Thüm. Explaining anomalies in feature
models. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative

Coffee

159 References

Programming: Concepts and Experiences - GPCE 2016, pages 132–143, New York, New York,
USA, 2016. ACM Press.

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Software Engineering Institute,
Carnegie Mellon University, 1990.

[KOD10a] A. Karatas, H. Oguztüzün, and A.H. Dogru. Global constraints on feature models. In 16th
International Conference, CP. Proceedings, pages 537–551. 2010.

[KOD10b] Ahmet Serkan Karataş, Halit Oğuztüzün, and Ali Doğru. Mapping extended feature models
to constraint logic programming over finite domains. In Jan Bosch and Jaejoon Lee, editors,
Software Product Lines: Going Beyond, pages 286–299, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[KOD13] Ahmet Serkan Karataş, Halit Oǧuztüzün, and Ali Doǧru. From extended feature models to
constraint logic programming. Science of Computer Programming, 78(12):2295–2312, dec
2013.

[KPP+02] Barbara Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, Khaled El
Emam, and Jarrett Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8):721–734, aug 2002.

[Kru07] Charles W. Krueger. Biglever software gears and the 3-tiered spl methodology. In Companion
to the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications Companion, OOPSLA ’07, pages 844–845, New York, USA, 2007. ACM.

[KTS16] Sebastian Krieter, Thomas Thüm, and Gunter Saake. Comparing algorithms for efficient
feature-model slicing. In Proceedings of the 20th International Systems and Software Product
Line Conference, pages 60–64, New York, NY, USA, 2016. ACM.

[Läm18] Ralf Lämmel. Software Languages, Syntax, Semantics, and Metaprogramming. Springer
International Publishing, Cham, 2018.

[LC13] Miguel A Laguna and Yania Crespo. A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Science of Computer
Programming, 78(8):1010–1034, 2013.

[LDSSH15] Patrick Leserf, Pierre De Saqui-Sannes, and Jérôme Hugues. Multi domain optimization with
sysml modeling. In IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, volume 2015-Octob. Institute of Electrical and Electronics Engineers
Inc., 2015.

[LDSSHC15a] Patrick Leserf, Pierre De Saqui-Sannes, Jérôme Hugues, and Khaled Chaaban. Architecture
optimization with sysML modeling: A case study using variability, volume 580, pages 311–327.
Springer International Publishing, 2015.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 160

[LDSSHC15b] Patrick Leserf, Pierre De Saqui-Sannes, Jérôme Hugues, and Khaled Chaaban. Sysml modeling
for embedded systems design optimization: A case study. In Desfray P Filipe J Filipe J
Hammoudi S. Pires L.F., editor, MODELSWARD 2015 - 3rd International Conference on
Model-Driven Engineering and Software Development, Proceedings, pages 449–457. SciTePress,
2015.

[LGCR15] Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. SAT-based analysis
of large real-world feature models is easy. In Proceedings of the 19th International Conference
on Software Product Line, pages 91–100. ACM, 2015.

[LHCF+13] Roberto Erick Lopez-Herrejon, Francisco Chicano, Javier Ferrer, Alexander Egyed, and
Enrique Alba. Multi-objective optimal test suite computation for software product line
pairwise testing. In Software Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 404–407. IEEE, 2013.

[LHFRE15] Roberto E. Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Alexander Egyed. A first
systematic mapping study on combinatorial interaction testing for software product lines.
In Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth
International Conference on, number Iwct, pages 1–10. IEEE, 2015.

[LHLE15] Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. A systematic mapping
study of search-based software engineering for software product lines. Information and
Software Technology, 61(0):33–51, 2015.

[Man02] Mike Mannion. Using First-Order Logic for Product Line Model Validation. In Proceedings
of the Second International Conference on Software Product Lines, SPLC 2, pages 176–187,
London, UK, UK, 2002. Springer-Verlag.

[MBC09] Marcilio Mendonca, Moises Branco, and Donald Cowan. SPLOT: software product lines
online tools. In Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 761–762. ACM, 2009.

[MBD+16] Andreas Metzger, Andreas Bayer, Daniel Doyle, Amir Molzam Sharifloo, Klaus Pohl, and
Florian Wessling. Coordinated run-time adaptation of variability-intensive systems: An
application in cloud computing. In Proceedings - 1st International Workshop on Variability
and Complexity in Software Design, VACE 2016, pages 5–11. Association for Computing
Machinery, Inc, 2016.

[MCHB11] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. A formal semantics
for feature cardinalities in feature diagrams. In Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’11, pages 82–89, New York, USA, 2011.
ACM.

[MD16] Leticia Montalvillo and Oscar Díaz. Requirement-driven evolution in software product lines:
A systematic mapping study. J. Syst. Softw., 122:110–143, 2016.

Coffee

161 References

[MDSD14] Raúl Mazo, Cosmin Dumitrescu, Camille Salinesi, and Daniel Diaz. Recommendation
heuristics for improving product line configuration processes. In Recommendation Systems in
Software Engineering, pages 511–537. 2014.

[MFTR+15] Juan C. Muñoz-Fernández, Gabriel Tamura, Irina Raicu, Raúl Mazo, and Camille Salinesi.
REFAS: a PLE approach for simulation of self-adaptive systems requirements. In Proceedings
of the 19th International Conference on Software Product Line - SPLC ’15, pages 121–125,
New York, USA, 2015. ACM Press.

[MGH+11] Raúl Mazo, Paul Grünbacher, Wolfgang Heider, Rick Rabiser, Camille Salinesi, and Daniel
Diaz. Using constraint programming to verify DOPLER variability models. In Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems - VaMoS ’11, pages
97–103, New York, USA, 2011. ACM Press.

[MGSH13] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. Practical pairwise testing
for software product lines. In Proceedings of the 17th international software product line
conference, pages 227–235. ACM, 2013.

[MH69] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

[MHG+11] Bardia Mohabbati, Marek Hatala, Dragan Gašević, Mohsen Asadi, and Marko Bošković.
Development and configuration of service-oriented systems families. In Proceedings of the
2011 ACM Symposium on Applied Computing, pages 1606–1613. ACM, 2011.

[MLHS+11] Raúl Mazo, Roberto E. Lopez-Herrejon, Camille Salinesi, Daniel Diaz, and Alexander Egyed.
Conformance Checking with Constraint Logic Programming: The Case of Feature Models.
In Computer Software and Applications Conference (COMPSAC), 2011 IEEE 35th Annual,
pages 456–465. IEEE, Ieee, jul 2011.

[MMFR+15] Raúl Mazo, Juan C. Muñoz-Fernández, Luisa Rincón, Camille Salinesi, and Gabriel Tamura.
VariaMos: an extensible tool for engineering (dynamic) product lines. In Proceedings of the
19th International Conference on Software Product Line - SPLC ’15, pages 374–379, New
York, New York, USA, 2015. ACM, ACM Press.

[MOP+19] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. Uniform
Random Sampling Product Configurations of Feature Models That Have Numerical Features.
In Proceedings of the 23rd International Systems and Software Product Line Conference -
Volume A, volume A, pages 289–301, New York, NY, USA, sep 2019. ACM.

[MP14] Andreas Metzger and Klaus Pohl. Software product line engineering and variability manage-
ment: achievements and challenges. In Proceedings of the on Future of Software Engineering
- FOSE 2014, number June, pages 70–84, New York, New York, USA, 2014. ACM Press.

[MPH+07] A. Metzger, K. Pohl, P. Heymans, P. Schobbens, and G. Saval. Disambiguating the documen-
tation of variability in software product lines: A separation of concerns, formalization and

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 162

automated analysis. In 15th IEEE International Requirements Engineering Conference (RE
2007), pages 243–253, Oct 2007.

[MRM+12] Swarup Mohalik, S Ramesh, Jean-Vivien Millo, Shankara Narayanan Krishna, and
Ganesh Khandu Narwane. Tracing SPLs precisely and efficiently. In Proceedings of the
16th International Software Product Line Conference-Volume 1, pages 186–195, 2012.

[MSD11] Raúl Mazo, Camille Salinesi, and Daniel Diaz. Abstract Constraints: A General Framework for
Solver-Independent Reasoning on Product Line Models. INSIGHT-Journal of International
Council on Systems Engineering (INCOSE), 14(4):22, 2011.

[MSD12a] Raúl Mazo, Camille Salinesi, and Daniel Diaz. VariaMos: a Tool for Product Line Driven
Systems Engineering with a Constraint Based Approach. In 24th International Conference on
Advanced Information Systems Engineering (CAiSE Forum’12), Gdansk, Poland, June 2012.

[MSD+12b] Raúl Mazo, Camille Salinesi, Daniel Diaz, Olfa Djebbi, and Alberto Lora-Michiels. Constraints:
The Heart of Domain and Application Engineering in the Product Lines Engineering Strategy.
International Journal of Information System Modeling and Design, 3(2):33–68, 2012.

[MSDL11] Raúl Mazo, Camille Salinesi, Daniel Diaz, and Alberto Lora-Michiels. Transforming attribute
and clone-enabled feature models into constraint programs over finite domains. In ENASE
2011 - Proceedings of the 6th International Conference on Evaluation of Novel Approaches to
Software Engineering, Beijing, China, 8-11 June, 2011., pages 188–199, 2011.

[MTS+14] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter Saake. An
Overview on Analysis Tools for Software Product Lines. In Proceedings of the 18th Interna-
tional Software Product Line Conference: Companion Volume for Workshops, Demonstrations
and Tools - Volume 2, SPLC ’14, pages 94–101, New York, NY, USA, 2014. ACM.

[MVSD] Raúl Mazo, Angela Villota, Camille Salinesi, and Daniel Diaz. Medic: Method to diagnose
inconsistent product line models using constraint graphs.

[MWC09] Marcilio Mendonca, Andrzej Wa̧sowski, and Krzysztof CzKarnecki. SAT-based analysis
of feature models is easy. In Proceedings of the 13th International Software Product Line
Conference, pages 231–240. Carnegie Mellon University, 2009.

[MWCC08] Marcilio Mendonca, Andrzej Wa̧sowski, Krzysztof Czarnecki, and Donald Cowan. Efficient
compilation techniques for large scale feature models. In Proceedings of the 7th international
conference on Generative programming and component engineering, pages 13–22. ACM, 2008.

[MZM+14] Jabier Martinez, Tewfik Ziadi, Raul Mazo, Tegawende F. Bissyande, Jacques Klein, and
Yves Le Traon. Feature Relations Graphs: A Visualisation Paradigm for Feature Constraints
in Software Product Lines. In Second IEEE Working Conference on Software Visualization,
pages 50–59. IEEE, IEEE, sep 2014.

Coffee

163 References

[NBE12] Alexander Nöhrer, Armin Biere, and Alexander Egyed. Managing SAT inconsistencies with
HUMUS. In Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, pages 83–91. ACM, 2012.

[NC16] Juan Carlos Navarro and Jaime Chavarriaga. Using microsoft solver foundation to analyse
feature models and configurations. In Rodriguez Y.A., editor, 2016 8th Euro American
Conference on Telematics and Information Systems, EATIS 2016. Institute of Electrical and
Electronics Engineers Inc., 2016.

[NN16] Damir Nešić and Mattias Nyberg. Multi-view modeling and automated analysis of product
line variability in systems engineering. In Proceedings of the 20th International Systems and
Software Product Line Conference, SPLC ’16, pages 287–296, New York, NY, USA, 2016.
ACM.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. Minizinc: Towards a standard CP modelling language. In Principles and
Practice of Constraint Programming - CP 2007, 13th International Conference, CP 2007,
Providence, RI, USA, September 23-27, 2007, Proceedings, pages 529–543, 2007.

[OGRT15] Lina Ochoa, Oscar González-Rojas, and Thomas Thüm. Using decision rules for solving
conflicts in extended feature models. In Di Ruscio D Volter M. Paige R., editor, SLE 2015
- Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering, pages 149–160. Association for Computing Machinery, Inc, 2015.

[Par76] D.L. Parnas. On the Design and Development of Program Families. IEEE Transactions on
Software Engineering, SE-2(1):1–9, mar 1976.

[PBD+12] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and Stefan
Kowalewski. Model-driven support for product line evolution on feature level. J. Syst.
Softw., 85(10):2261–2274, October 2012.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic Map-
ping Studies in Software Engineering. Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, pages 68–77, 2008.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical report,
University of Aarhus, Denmark, 1981.

[PLP11] Richard Pohl, Kim Lauenroth, and Klaus Pohl. A performance comparison of contemporary
algorithmic approaches for automated analysis operations on feature models. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering,
pages 313–322. IEEE Computer Society, Ieee, nov 2011.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 164

[PMI13] PMI. Guide to the Project Management Body of Knowledge (PMBOK Guide). Project
Management Institute (PMI), Newtown Square, PA, USA, 5 edition, 2013.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, SFCS ’77, pages 46–57. IEEE Computer Society, 1977.

[PRM+12] Carlos Parra, Daniel Romero, Sébastien Mosser, Romain Rouvoy, Laurence Duchien, and
Lionel Seinturier. Using constraint-based optimization and variability to support continuous
self-adaptation. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
pages 486–491. ACM, 2012.

[psG] pure-systems GmbH. Technical white paper variant management with pure::variants.

[PSK+10] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. Automated
and scalable t-wise test case generation strategies for software product lines. In Software
Testing, Verification and Validation (ICST), 2010 Third International Conference on, pages
459–468. IEEE, 2010.

[PVK15] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software Technology,
64:1–18, 2015.

[QPB+14] Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence Duchien, and Goetz Botterweck.
Consistency checking for the evolution of cardinality-based feature models. In Proceedings of
the 18th International Software Product Line Conference-Volume 1, pages 122–131. ACM,
2014.

[QRD13] Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-based feature models
with constraints. In Proceedings of the 17th International Software Product Line Conference
on - SPLC ’13, page 162, New York, New York, USA, 2013. ACM Press.

[RAC+98] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N. Maiden, M. Jarke, P. Haumer,
K. Pohl, E. Dubois, and P. Heymans. A proposal for a scenario classification framework.
Requirements Engineering, 3(1):23–47, 1998.

[RBSW11] Iris Reinhartz-Berger, Arnon Sturm, and Yair Wand. External Variability of Software:
Classification and Ontological Foundations. In Manfred Jeusfeld, Lois Delcambre, and Tok-
Wang Ling, editors, Conceptual Modeling – ER 2011, volume 6998 LNCS, pages 275–289.
Springer Berlin Heidelberg, 2011.

[RFBC10] Fabricia Roos-Frantz, David Benavides, and Antonio Ruiz Cortés. Automated Analysis of
Orthogonal Variability Models using Constraint Programming. In JISBD, pages 269–280,
2010.

[RFBRC+12] Fabricia Roos-Frantz, David Benavides, Antonio Ruiz-Cortés, André Heuer, and Kim Lauen-
roth. Quality-aware analysis in product line engineering with the orthogonal variability model.
Software Quality Journal, 20(3-4):519–565, 2012.

Coffee

165 References

[RGHB21] David Romero, José Á. Galindo, Jose-Miguel Horcas, and David Benavides. A First Proto-
type of a New Repository for Feature Model Exchange and Knowledge Sharing, page 80–85.
Association for Computing Machinery, New York, NY, USA, 2021.

[RGM+15] Luisa Rincón, Gloria Giraldo, Raúl Mazo, Camille Salinesi, and Daniel Diaz. Method to
Identify Corrections of Defects on Product Line Models. Electronic Notes in Theoretical
Computer Science, 314:61–81, 2015.

[RR13] Robert Rö�ger and Georg Rock. A Framework and Generator for Large Parameterized
Feature Models. ISPE - International Conference on Concurrent Engineering, 2013.

[RRIG09] Jan Recker, Michael Rosemann, Marta Indulska, and Peter Green. Business Process Modeling
A Comparative Analysis. Journal of the Association for Information Systems, 10(4):1, 2009.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., 2006.

[SDD+09] Camille Salinesi, Daniel Diaz, Olfa Djebbi, Raúl Mazo, and Colette Rolland. Exploiting
the Versatility of Constraint Programming over Finite Domains to Integrate Product Line
Models. In Requirements Engineering Conference, 2009. RE’09. 17th IEEE International,
pages 375–376. IEEE, Ieee, aug 2009.

[SDNB04] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof: A framework for
modeling variability in software product families. In Robert L. Nord, editor, Software Product
Lines, pages 197–213, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[Seg08] Sergio Segura. Automated Analysis of Feature Models Using Atomic Sets. In SPLC (2),
pages 201–207, 2008.

[SFE+21] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and Thomas Thüm.
Yet another textual variability language? a community effort towards a unified language. In
Proceedings of the 25th ACM International Systems and Software Product Line Conference -
Volume A, SPLC ’21, page 136–147, New York, NY, USA, 2021. Association for Computing
Machinery.

[SGW10] Runyu Shi, Jianmei Guo, and Yinglin Wang. A preliminary experimental study on optimal
feature selection for product derivation using knapsack approximation. In Progress in
Informatics and Computing (PIC), 2010 IEEE International Conference on, volume 1, pages
665–669. IEEE, 2010.

[SH13] Denny Schneeweiss and Petra Hofstedt. FdConfig: A Constraint-Based Interactive Product
Configurator, pages 239–255. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Sha98] David C Sharp. Reducing avionics software cost through component based product line
development. In Digital Avionics Systems Conference, 1998. Proceedings., 17th DASC. The
AIAA/IEEE/SAE, volume 2, pages G32–1. IEEE, 1998.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 166

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps.
Generic semantics of feature diagrams. Comput. Netw., 51(2):456–479, February 2007.

[SK10] Tripti Saxena and Gabor Karsai. Towards a generic design space exploration framework. In
Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on,
pages 1940–1947. IEEE, 2010.

[SKES18] Klaus Schmid, Christian Kröher, and Sascha El-Sharkawy. Variability modeling with the
integrated variability modeling language (ivml) and easy-producer. In Proceedings of the
22nd International Systems and Software Product Line Conference - Volume 1, SPLC ’18,
page 306, New York, NY, USA, 2018. Association for Computing Machinery.

[SM12] Camille Salinesi and Raúl Mazo. Defects in Product Line Models and How to Identify Them.
In Software Product Line - Advanced Topics, chapter 5, page 50. InTech, apr 2012.

[SMD10] Camille Salinesi, Raúl Mazo, and Daniel Diaz. Criteria for the verification of feature models.
In INFORSID 2010, number i, 2010.

[SMD+11a] Camille Salinesi, Raul Mazo, Olfa Djebbi, Daniel Diaz, and Alberto Lora-Michiels. Constraints:
The core of product line engineering. In Fifth International Conference on Research Challenges
in Information Science (RCIS), pages 1–10, 2011.

[SMD+11b] Camille Salinesi, Raúl Mazo, Olfa Djebbi, Raúl Mazo, Daniel Diaz, and Alberto Lora-
Michiels. Constraints: the core of product line engineering. Proceedings of the Fifth {IEEE}
International Conference on Research Challenges in Information Science, {RCIS} 2011,
Gosier, Guadeloupe, France, 19-21 May, 2011, pages 1–10, 2011.

[SMD+12] Pete Sawyer, Raúl Mazo, Daniel Diaz, Camille Salinesi, and Danny Hughes. Using Constraint
Programming to Manage Configurations in Self-Adaptive Systems. Computer, 45(10):56–63,
oct 2012.

[SMDD10] Camille Salinesi, Raul Mazo, Daniel Diaz, and Olfa Djebbi. Using integer constraint solving
in reuse based requirements engineering. In Proceedings of the 2010 18th IEEE International
Requirements Engineering Conference, RE ’10, pages 243–251, Washington, DC, USA, 2010.
IEEE Computer Society.

[SMN+10] Graeme Shanks, Daniel Moody, Jasmina Nuredini, Daniel Tobin, and Ron Weber. Representing
Classes of Things and Properties in General in Conceptual Modelling. Journal of Database
Management, 21(2):1–25, apr 2010.

[SR90] Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings
of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL ’90, pages 232–245, New York, New York, USA, 1990. ACM Press.

[SRD16] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. Extending feature models
with relative cardinalities. In Proceedings of the 20th International Systems and Software

Coffee

167 References

Product Line Conference, SPLC ’16, page 79–88, New York, NY, USA, 2016. Association for
Computing Machinery.

[SRD17] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. Extending dynamic software
product lines with temporal constraints. In Proceedings of the 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’17, page 129–139.
IEEE Press, 2017.

[SRM09] Camille Salinesi, Colette Rolland, and Raúl Mazo. VMWare: Tool support for automatic
verification of structural and semantic correctness in product line models. In International
Workshop on Variability Modelling of Software-intensive Systems (VaMos), page 173, 2009.

[SS02] Morten Heine Sørensen and Jens Peter Secher. From type inference to configuration. In
The Essence of Computation: Complexity, Analysis, Transformation, page 436–471, Berlin,
Heidelberg, 2002. Springer-Verlag.

[STJ09] Frans Sanen, Eddy Truyen, and Wouter Joosen. Mapping problem-space to solution-space
features: a feature interaction approach. In ACM Sigplan Notices, volume 45, pages 167–176.
ACM, 2009.

[SWK+16] Thomas Schnabel, Markus Weckesser, Roland Kluge, Malte Lochau, and Andy Schürr.
Cardygan: Tool support for cardinality-based feature models. In de Almeida E S Alves V.
Schaefer I., editor, Proceedings of the Tenth International Workshop on Variability Modelling
of Software-intensive Systems, volume 27-29-January, pages 33–40. Association for Computing
Machinery, 2016.

[SYP01] Giancarlo Succi, Jason Yip, and Witold Pedrycz. Holmes: an intelligent system to support
software product line development. In Proceedings of the 23rd International Conference on
Software Engineering, pages 829–830. IEEE Computer Society, 2001.

[SZFW05] Jing Sun, Hongyu Zhang, Yuan Fang, and Hai Wang. Formal semantics and verification
for feature modeling. In Engineering of Complex Computer Systems, 2005. ICECCS 2005.
Proceedings. 10th IEEE International Conference on, pages 303–312. IEEE, 2005.

[TBD+08] Pablo Trinidad, David Benavides, Amador Durán, Antonio Ruiz-Cortés, and Miguel Toro.
Automated error analysis for the agilization of feature modeling. Journal of Systems and
Software, 81(6):883–896, 2008.

[TBG13] Leopoldo Teixeira, Paulo Borba, and Rohit Gheyi. Safe composition of configuration
knowledge-based software product lines. Journal of Systems and Software, 86(4):1038 –
1053, 2013.

[TBK09] Thomas Thüm, Don Batory, and Christian Kästner. Reasoning about edits to feature models.
In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, pages
254–264. IEEE, 2009.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 168

[TBKC07] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition of product
lines. In Proceedings of the 6th international conference on Generative programming and
component engineering, pages 95–104. ACM, 2007.

[tBLLLV15a] Maurice H. ter Beek, Axel Legay, Alberto Lafuente Lluch, and Andrea Vandin. Quantitative
analysis of probabilistic models of software product lines with statistical model checking. In
Proceedings 6th Workshop on Formal Methods and Analysis in SPL Engineering FMSPLE,
pages 56–70, 2015.

[tBLLLV15b] Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin. Statistical
analysis of probabilistic models of software product lines with quantitative constraints. In
Proceedings of the 19th International Conference on Software Product Line, volume 20-24-July,
pages 11–15. Association for Computing Machinery, 2015.

[tBLLLV16] Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin. Statistical
model checking for product lines, volume 9952 LNCS, pages 114–133. Springer Verlag, 2016.

[tBLP13] Maurice H ter Beek, Alberto Lluch Lafuente, and Marinella Petrocchi. Combining declarative
and procedural views in the specification and analysis of product families. In Proceedings of
the 17th International Software Product Line Conference Co-located Workshops, pages 10–17.
ACM, 2013.

[TBRC06] Pablo Trinidad, David Benavides, and Antonio Ruiz-Cortés. Isolated Features Detection in
Feature Models. In CAiSE, 2006.

[tBSE19] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. Textual variability modeling
languages. In Proceedings of the 23rd International Systems and Software Product Line
Conference volume B - SPLC ’19, pages 1–7, New York, New York, USA, 2019. ACM Press.

[TC09] Pablo Trinidad and Antonio Ruiz Cortés. Abductive Reasoning and Automated Analysis of
Feature Models: How are they connected?. VaMos, 9:145–153, 2009.

[TC16] Thammasak Thianniwet and Myra B. Cohen. Scaling up the fitness function for reverse
engineering feature models, volume 9962 LNCS of Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages
128–142. Springer Verlag, 2016.

[TCO00] Peter Toft, Derek Coleman, and Joni Ohta. A cooperative model for cross-divisional product
development for a software product line. In Proceedings of the First Conference on Software
Product Lines : Experience and Research Directions: Experience and Research Directions,
pages 111–132, Norwell, MA, USA, 2000. Kluwer Academic Publishers.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and
Thomas Leich. FeatureIDE: An extensible framework for feature-oriented software develop-
ment. Science of Computer Programming, 79:70–85, jan 2014.

Coffee

169 References

[TMV+16] Anna Tidstam, Johan Malmqvist, Alexey Voronov, Knut Å kesson, and Martin Fabian.
Formulating constraint satisfaction problems for the inspection of configuration rules. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM)., 30(3):313–328,
2016.

[TSS19] Thomas Thüm, Christoph Seidl, and Ina Schaefer. On language levels for feature modeling
notations. In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume B, SPLC ’19, pages 158–161, New York, NY, USA, 2019. ACM.

[UGKB08] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don Batory. Testing software product
lines using incremental test generation. In Software Reliability Engineering, 2008. ISSRE
2008. 19th International Symposium on, pages 249–258. IEEE, 2008.

[UKB10] Engin Uzuncaova, Sarfraz Khurshid, and Don Batory. Incremental test generation for software
product lines. Software Engineering, IEEE Transactions on, 36(3):309–322, 2010.

[VK02] Arie Van Deursen and Paul Klint. Domain-specific language design requires feature descrip-
tions. CIT. Journal of computing and information technology, 10(1):1–17, 2002.

[VMS18] Angela Villota, Raúl Mazo, and Camille Salinesi. On the Ontological Expressiveness of the
High-Level Constraint Language for Product Line Specification. In System Analysis and
Modeling. Languages, Methods, and Tools for Systems Engineering, number 1, pages 46–66,
Copenhagen, 2018. Springer.

[VMS19] Angela Villota, Raúl Mazo, and Camille Salinesi. The high-level variability language: An
ontological approach. In 3rd International Systems and Software Product Line Conference -
Volume B (SPLC ?19), pages 46–66, New York, NY, USA„ 2019. ACM.

[VRH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.
The MIT Press, 1st edition, 2004.

[Wan10] Shige Wang. Domain-Specific Feature Modeling for High Integrity Vehicle Control Sys-
tem Functional Design. In High-Assurance Systems Engineering (HASE), 2010 IEEE 12th
International Symposium on, pages 142–151. IEEE, 2010.

[WBS+10] Jules White, David Benavides, Douglas C Schmidt, Pablo Trinidad, Brian Dougherty, and
Antonio Ruiz-Cortés. Automated diagnosis of feature model configurations. Journal of
Systems and Software, 83(7):1094–1107, 2010.

[WDSB09] Jules White, Brian Dougherty, Doulas C Schmidt, and David Benavides. Automated reasoning
for multi-step feature model configuration problems. In Proceedings of the 13th International
Software Product Line Conference, pages 11–20. Carnegie Mellon University, 2009.

[WGS+14] Jules White, José A Galindo, Tripti Saxena, Brian Dougherty, David Benavides, and Douglas C
Schmidt. Evolving feature model configurations in software product lines. Journal of Systems
and Software, 87:119–136, 2014.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

References 170

[WLS+16] Markus Weckesser, Malte Lochau, Thomas Schnabel, Björn Richerzhagen, and Andy Schürr.
Mind the gap! automated anomaly detection for potentially unbounded cardinality-based feature
models, volume 9633 of Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 158–175. Springer Verlag,
2016.

[WMMR05] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements engineering
paper classification and evaluation criteria: A proposal and a discussion. Requir. Eng.,
11(1):102–107, December 2005.

[WN09] Lin Wang and Wee Keong Ng. Semantic modeling for DCSP-based product configuration. In
TENCON 2009-2009 IEEE Region 10 Conference, pages 1–6. IEEE, 2009.

[WNS09] Lin Wang, Wee Keong Ng, and Bing Song. Constraint Satisfaction Approach on Product
Configuration with Cost Estimation. In Been-Chian Chien, Tzung-Pei Hong, Shyi-Ming Chen,
and Moonis Ali, editors, Next-Generation Applied Intelligence, pages 731—-740. Springer
Berlin Heidelberg, 2009.

[WSB+08] Jules White, Douglas C Schmidt, David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés.
Automated diagnosis of product-line configuration errors in feature models. In Software
Product Line Conference, 2008. SPLC’08. 12th International, pages 225–234. IEEE, 2008.

[WSC+07] Jules White, Doulas C Schmidt, Krzysztof Czarnecki, Christoph Wienands, and Gunther
Lenz. Automated model-based configuration of enterprise java applications. In Enterprise
Distributed Object Computing Conference, 2007. EDOC 2007. 11th IEEE International, page
301. IEEE, 2007.

[WSWN07] Jules White, Douglas C Schmidt, Egon Wuchner, and Andrey Nechypurenko. Automating
product-line variant selection for mobile devices. In Software Product Line Conference, 2007.
SPLC 2007. 11th International, pages 129–140. IEEE, 2007.

[WSWN08] Jules White, Douglas C Schmidt, Egon Wuchner, and Andrey Nechypurenko. Automatically
composing reusable software components for mobile devices. Journal of the Brazilian Computer
Society, 14(1):25–44, 2008.

[WW93] Yair Wand and Ron Weber. On the ontological expressiveness of information systems analysis
and design grammars. Information Systems Journal, 3(4):217–237, oct 1993.

[WZZ09] Xiaoguo Wang, Jin Zheng, and Qian Zeng. A design of product collaborative online configura-
tion model. In Cooperative Design, Visualization, and Engineering, pages 359–366. Springer,
2009.

[WZZ15] Lin Wang, Shi-Sheng Zhong, and Yong-Jian Zhang. Process configuration based on generative
constraint satisfaction problem. Journal of Intelligent Manufacturing, pages 1–13, 2015.

Coffee

171 References

[XHSC12] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. Generating range
fixes for software configuration. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 58–68. IEEE, 2012.

[Xte] Xtext. Xtext, language engineering for everyone.

[YZZM09] Hua Yan, Wei Zhang, Haiyan Zhao, and Hong Mei. An optimization strategy to feature
models’ verification by eliminating verification-irrelevant features and constraints. In Formal
Foundations of Reuse and Domain Engineering, pages 65–75. Springer, 2009.

[ZC] Zippel and Contributors. kconfig-language.txt.

[ZKY+14] Ed Zulkoski, Chris Kleynhans, Ming-Ho Yee, Derek Rayside, and Krzysztof Czarnecki.
Optimizing alloy for multi-objective software product line configuration. In Proceedings of 4th
International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z. Springer,
pages 328–333. Springer, 2014.

[ZMZ06] Wei Zhang, Hong Mei, and Haiyan Zhao. Feature-driven requirement dependency analysis
and high-level software design. Requirements Engineering, 11(3):205–220, 2006.

[ZYZJ08] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A bdd-based approach to verifying clone-
enabled feature models’ constraints and customization. In High Confidence Software Reuse
in Large Systems, pages 186–199. Springer, 2008.

[ZZM04] Wei Zhang, Haiyan Zhao, and Hong Mei. A propositional logic-based method for verification
of feature models. In Formal Methods and Software Engineering, pages 115–130. Springer,
2004.

[ZZM11] Wei Zhang, Haiyan Zhao, and Hong Mei. Binary-search based verification of feature models.
In Top Productivity through Software Reuse, pages 4–19. Springer, 2011.

Co�ee: a framework supporting expressive variability modeling and flexible automated analysis

	List of Figures
	List of Tables
	I Motivation and context
	Introduction
	Context
	Problem statement and scope
	Variability Modeling
	Variability Analysis
	Research Objective and Research Questions

	Research method
	Design Science Research
	Research Phases

	Summary of contributions
	Publications
	Tools

	Road Map of the Dissertation
	Summary

	State of Research
	Motivation
	Research Method
	Research Questions and Scope
	Conduct Search for Primary Studies
	Screening Papers - Inclusion/Exclusion Criteria
	Data Extraction and Mapping Study Process
	Threats to Validity

	Classification Framework
	Modeling-centered Facets
	Transformation-centered Facets
	Support-centered Facets

	Classification and Mapping
	What variability concepts are modeled as constraints?
	What types of constraint systems are used to encode variability models for analysis purposes?
	What are the characteristics of the solvers supporting variability management?
	What are the characteristics of the variability-management tools?

	Lessons Learned
	Variability Modeling
	Transforming Variability Models into Constraint Programs
	Solvers Supporting Variability Management
	Software tools supporting constraints in SPLE

	Concluding Remarks

	II Studies and Results
	From the Evaluation of the HLCL Framework Towards Coffee
	Motivation and Challenges
	Running Example

	Ontological Expressiveness Theory
	A Foundational Ontology for Variability
	Design of the Evaluation
	Goal and Research Questions
	Hypothesis
	Threats to validity

	Conduction
	Representation mapping
	Interpretation mapping
	Measuring the potential ontological deficiencies
	Results

	Lessons Learned
	Clarity vs Abstraction
	Ontological (in)Completeness
	What About Time for Variability Modeling?
	The Theoretical Evaluation Framework

	Summary of the Practical Evaluation
	Towards the Coffee framework
	Coffee's Overview
	The Variability Space
	The Transition Step
	The Constraints Space

	Summary

	Variability Modeling and Variability Analysis in Coffee
	Motivation and Challenges
	Variability Modeling Concerns
	Variability Analysis Concerns
	Examples in this Chapter

	An Introduction to HLVL
	Models in HLVL
	Options, Domains, and Variants
	Variability Relations
	What about other variability Languages?

	Formal Syntax
	Rules for Models
	Rules for Options and Domains
	Rules for Variability Relations
	Expressions Language
	Well-Formedness Rules

	Formal Semantics
	The HLVL(x) Sublanguages
	Operational Semantics

	Summary
	The High-Level Variability Language
	Logical representation for variability models in HLVL

	III Results Analysis, Discussion, and Outlook
	Evaluation, Discussion, and Outlook
	Ontological Analysis of the Expressiveness of HLVL
	Design of the Evaluation
	Conduction
	Results and Answering the Evaluation Questions

	Flexibility in the Coffee's Transformation Framework
	The Encoding Layer
	The Intermediate Representation Layer
	The Analysis Layer
	Workflow: from Modeling to Analysis
	Evaluation

	Coffee Under Different Eyes
	Comparison of HLVL and other textual languages
	Applicability and Usefulness of Coffee

	Summary

	Concluding Remarks and future Work
	A Summary of the Dissertation
	Discussion and Limitations
	About the Constraint-based Approaches for Variability Management
	HLVL as Modeling and Intermediate Language for Variability
	About HLVL's Expressiveness

	Future work
	Extending Coffee
	Extending HLVL to Reach Ontological Completeness
	Research perspectives

	Appendices

	IV Appendix
	Systematic Mapping Study: Protocol and Artifacts
	Search Terms
	List of selected venues for manual search
	Data Extraction Instruments
	Data Extraction Process
	Data Extraction Questionnaire

	Bibliometric Information
	Bibliographic questions
	Results relevant authors and fora
	Results for types of research and evaluation

	References

