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Summary

This work presents the development and analysis of both the physical phenomena of the TIG (Tungsten
Inert Gas) welding procedure, and the numerical approaches necessary to couple the arc-plasma and the
weld pool. The study is designed with the aim to develop a unified 3D model for the prediction of key
welding variables as a function of basic process parameters.

The mathematical developments, implemented numerically in the finite element method toolbox Ca-
st εM, couple a cathode, arc-plasma and weld pool model in a robust manner. Effectively, a formal derivation
of the thermo-hydraulic interface conditions is performed in a manner compatible with both conjugate heat
transfer and phase change phenomena. The derivation ensures that the relevant kinematic, dynamic and
thermal terms are included in the interface conditions. Next, the arc-plasma and weld pool models are
numerically coupled at the interface. Thus, to couple the energy conservation models, a mixed variable
algebraic approach is proposed and implemented which allows for the use of domain dependent variables in
a monolithic manner. Furthermore, both a partitioned Dirichlet-Neumann and a quasi-monolithic coupling
algorithm were implemented to join the mass and momentum conservation models of the arc-plasma and
weld pool domains. Their respective numerical performances are analysed and discussed.

In order to identify key parameters in the fully coupled model, multiple sensitivity studies were per-
formed and the importance of cathode geometry, inlet current, interface hypothesis and weld pool viscosity
are discussed. The significant impact the geometric singularities of the cathode have onto the arc-plasma
indicates the importance of the choice of cathode geometry when setting up fully coupled models for sim-
ulation. Additionally, the influence the inlet current and the dynamic viscosity have onto the weld pool
thermo-hydraulics brings into context the dominance of the interface forces and the Lorentz force when
shaping the weld pool.

Finally, a verification study for the unified 3D model was set up and discussed. The verified model is
then used to simulate a fully-coupled 3D welding configuration with displacement effects, which is compared
to experimental results and discussed. Thus, this work sets the stage for an exploitable 3D fully coupled
model in the near future.

Keywords : TIG welding, 3D cathode-arc-pool-anode model, multiphysics modelling, interface modelling,
partitioned algorithms
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Résumé

Ce travail présente le développement et l’analyse des phénomènes physiques du procédé de soudage TIG
(Tungsten Inert Gas), ainsi que les approches numériques nécessaires au couplage entre l’arc-plasma et
le bain de soudage. L’objectif de l’étude est de développer un modèle 3D unifié pour la prédiction des
variables clés de soudage en fonction des paramètres procédé de base.

Les développements mathématiques, implémentés numériquement via Cast εM (logiciel de simulation
numérique développé par le CEA et basé sur la méthode des éléments finis) couplent un modèle de cath-
ode, d’arc plasma et de bain de soudage de manière robuste. Effectivement, une dérivation formelle des
conditions thermo-hydrauliques à l’interface fluide est effectuée de façon à intégrer à la fois le transfert de
chaleur de domaines conjugués et le phénomène de changement de phase. Cette étape de dérivation permet
de s’assurer que la cinématique, la dynamique et les termes thermiques sont proprement pris en compte
au niveau des conditions à l’interface arc-bain. Ensuite, les modèles de l’arc-plasma et du bain de soudage
sont numériquement couplés à travers leur interface. Pour coupler les modèles de conservation d’énergie,
une approche algébrique de type variables mixtes est proposée et implémentée ce qui permet d’utiliser les
variables adaptées à chaque domaine pour résoudre monolithiquement le système thermique. De plus, afin
d’unir les modèles de conservation de masse et de quantité de mouvement des domaines de l’arc-plasma
et du bain de soudage, un algorithme de Dirichlet-Neumann et un algorithme quasi-monolithique ont été
implémentés. Leurs performances numériques sont analysées et discutées. Afin d’identifier les paramètres
clés du modèle entièrement couplé, plusieurs études de sensibilité ont été effectuées. Au cours de ces études,
l’influence de la géométrie de la cathode, du courant électrique en entrée, des hypothèses d’interfaces et
de viscosité du bain sont discutées. Il ressort de ces études que l’arc-plasma est significativement lié aux
singularités géométriques de la cathode, ce qui montre l’importance du choix de géométrie pour la mise en
place de modèles couplés pour la simulation. Par ailleurs, l’influence du courant électrique et de la viscosité
dynamique sur la thermo-hydraulique du bain mettent en évidence la prédominance des forces à l’interface
arc-bain et de la force de Lorentz dans la formation du bain de soudage.

Finalement, une étude de vérification du modèle 3D est proposée, étudiée et analysée. Le modèle vérifié
est ensuite utilisé pour simuler une configuration 3D entièrement couplée qui prend en compte les effets de
déplacement. Une étape de comparaison expérimentale est également effectuée en utilisant des résultats
expérimentaux issus de la littérature. Ce travail constitue donc une base solide pour la mise en place, dans
un futur proche, d’un modèle 3D couplé exploitable pour le CEA.

Mots− clés : Soudage TIG, Modèle 3D cathode-arc-bain-anode, modélisation multiphysique, modélisa-
tion des interfaces, algorithmes partitionnés
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6 CHAPTER 1. COUPLING THE ARC-PLASMA AND WELD POOL

Figure 1.1: Principal constituents of the TIG welding system.

1.1 Objective of this chapter

This chapter serves to introduce the reader to the problem statement of this thesis and to motivate and
justify the approaches used throughout this work. To this end, the long term goal of the French Atomic
Energy Commission1 (CEA) concerning TIG welding is presented and is followed by a brief history of
multiphysics modelling of TIG welding at CEA. Next, I present scaling arguments that motivate the
physical and mathematical strategies employed in this work. Finally, to set the stage for the simulation of
more general 3D TIG welding configurations, the reader is introduced to the sensitivity, verification and
3D weld displacement studies performed in this thesis.

1.2 Industrial context

TIG arc welding is an ubiquitous technique used to join metallic pieces together. An arc is used to
generate heat at high temperatures, allowing for the melting of the welding zone of the workpiece. In order
to understand the mechanisms at play in TIG welding, the constituents of the welding system are first
identified. The system is grossly made up of: an electric cathode, an arc and an electric anode. These
three components serve as the electric circuit that heat the arc and turn it into a high temperature heat
source. To ensure a stable and controllable electrification of the arc, the cathode is placed in a nozzle that
transports a shielding gas, serving as both the electrical medium to the arc and as a protective environment
(against oxidation) for the molten metal in the weld pool. The cathode is generally made of doped tungsten
(with thorium or lanthanium), the arc is made of an inert gas (argon or/and helium) and the anode is the
target workpiece to be welded [18]. Figure 1.1 schematises the above description of a typical TIG welding
system. As for the technique itself, it is of particular interest to the nuclear industry due to the clean and

1Commissariat à l’énergie atomique
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high quality welds it produces. With CEA being one of the principal nuclear research institutes in France,
the commission strongly invests in the efforts to master the TIG welding technique. In fact, the long
term goal of CEA is to develop a fully predictive and complete computer model that is capable of using
typical welding parameters (arc height, inlet current, materials etc...) to calculate the thermo-mechanical
responses and metallurgical characteristics of the welded workpiece. Working towards this goal, CEA
currently invests in the modelling of the following: thermo-mechanical, thermo-metallurgical and magneto-
thermo-hydrodynamic approaches. While the latter is the subject of this thesis, the reader is referred to the
work of Pommier [67] for his work on the thermo-mechanical phenomena of welding and to Baumard [5, 6]
for her work on the thermo-metallurgy of 316L steel. The magneto-thermo-hydrodynamic approach (also
called the multiphysics approach) is based on the modelling of the electrodynamically forced TIG arc, the
interaction of the arc with the liquid weld pool that forms in the workpiece and the resulting geometric form
of the weld pool. Fundamentally, this means that the efforts put into multiphysics modelling of TIG welding
are to master the predictibility of the generated thermal field of the workpiece when welding. Indeed, with
a predictive tool capable of accurately reproducing the thermal field from basic welding parameters, the
use of experimentally calibrated thermal sources in mechanical and metallurgical studies can eventually be
avoided [13, 67, 60, 47, 5, 6].

1.2.1 A brief history of multiphysics modelling of TIG welding at CEA

The primary focus of this thesis is to advance the multiphysics approach and is structured on the historic
developments of CEA in this field. In fact, the general objective of this thesis is based on the state of
the multiphysics models at CEA in the year 2018. Therefore, to contextualise the work presented in this
thesis, the historical advancements on the multiphysics modelling of TIG welding is briefly discussed. The
different works are listed in a chronological manner.

From 2005 to 2009:
The first multiphysics model at CEA was the result of Brochard’s thesis [13]. The work extensively covers
the literature on the magneto-thermo-hydrodynamic phenomena used to model the TIG system. Brochard
implemented a computationally efficient approach to model the electro-thermal phenomena between the
cathode, the arc and the anode. Furthermore, his work proved, by using scaling arguments and asymp-
totic expansions, that the TIG arc should be modelled as a dilatational and low Mach number fluid. The
developed TIG arc model was then coupled to the weld pool via a fixed, non-deformable interface. The
developed 2D axisymmetric numerical model was verified with carefully chosen analytical solutions and
the phyical model was validated by comparing simulation results to the literature and to in house exper-
iments. The work of Brochard set up the first coupled 2D axisymmetric TIG model at CEA. The model
was applicable to the study of spot configurations for weak arcs (where the arc-pool interface negligibly
deforms), where the torch and workpiece remain stationary w.r.t the laboratory frame of reference. This
served as the first step in the construction of a numerical tool capable of predicting the thermal field in
the workpiece, by the use of typical welding parameters.

From 2009 to 2012:
To push the model further, Kong’s thesis [46] investigated the deformation of the arc-pool interface. Kong’s
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work focused on the implementation of a fluid model with a deformable free surface using a mesh tracking
method. The purpose of the work was to implement and experimentally validate a free surface model
driven by imposed pressure and surface tension phenomena. This set the stage for the incorporation of
surface deformation effects in the modelling of TIG weld pools. The work of Kong added to the weld pool
model the capability to capture surface deformation effects. This served to extend the range of physical
phenomena added to the TIG welding model.

From 2012 to 2015:
Advancing the model further, Nguyen’s thesis investigated the unification of all the dominant weld pool
phenomena [60]. Nguyen’s work focused on the modelling of a 3D weld pool and is based on a decoupled
approach where the TIG arc is replaced by thermal and mechanical boundary conditions. Thus, only the
weld pool is incorporated into the computational domain. The work implements the enthalpy approach
to resolve the phase change problem and focuses on the implementation of an efficient 3D electrodynamic
solver for the weld pool. Furthermore, the work quantifies the impact that the deformable pool surface has
onto the fluid dynamics of the system and thus onto the geometry of the weld pool. Nguyen’s developed 3D
weld pool model, that emulates the arc as a heat source using calibrated thermal and mechanical boundary
conditions, is applicable to welding configurations for arcs that are weakly affected by weld pool dynamics.
Furthermore, the model is capable of efficiently capturing the thermal phase change effects in the pool.

Summarising the state of multiphysics modelling of TIG welding at CEA before the start of my thesis,
it comprised of the following: 1) a 2D axisymmetric model that couples the cathode, arc and workpiece
domains for fixed arc-pool interfaces; 2) a decoupled 3D weld pool model for deformable weld pool surfaces.

1.2.2 Problem statement and principal objectives

To approach the goal of CEA concerning TIG welding, a fully coupled model that incorporates all dominant
welding phenomena is necessary. Furthermore, a predictive TIG welding model requires that 3D effects be
captured by the fully coupled model because industrial welding invokes 3D thermal phenomena. Thus, to
push the predictability of the TIG modelling efforts at CEA further, the coupling of the functionalities of
the previous models and the extension of the coupled model to 3D is imperative. Therefore, the principal
objective of this work is to identify, develop and implement coupling techniques to join the previous arc-
plasma and weld pool models, and ensure the mathematical consistency of 3D extensions to the coupled
model. The developments are necessary to ensure that a wide variety of welding configurations can be
studied. To facilitate the execution of the principal objective, it is arranged into the following goals:

1) an identification of both the dominant physical terms at the arc-pool interface and the thermal models
best adapted to capturing the range of thermal phenomena in the TIG system.

2) Identification, development (when needed) and implementation of numerical methods best adapted
to resolving the fully coupled thermo-hydraulic system is necessary.

3) To better comprehend the behaviour of the fully coupled model, the physical and numerical sensitiv-
ities of the model are to be identified and analysed. This is important if the dominant phenomena
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in 3D configurations are to be understood.

4) The verification of the the fully coupled 3D model is necessary for the model to be used in a reliable
manner.

5) A 3D welding configuration with displacement effects is to be constructed, simulated and compared
to an experimental case.

Thus, to tackle the principal objective of this thesis I begin by presenting the model coupling methodologies
that are used in this work.

1.3 Coupling the arc-plasma and pool: a scaling argument

Coupling the arc-plasma and the weld pool at their interface extends the applicability of the global model
to more general welding configurations, where the arc-pool system can strongly interact. However, because
the arc-plasma and the weld pool models are driven by different phenomena, the numerical implementation
of the coupling requires attention. Furthermore, implementing the coupling of the arc and pool subdomains
numerically should be compatible with the dominant thermo-hydraulics of the two subdomains2. In this
thesis, compatibility is defined by the stability of the numerical algorithms and their physical coherence
(i.e the algorithm should respect the conservation laws). To this end, identifying and analysing both the
dominant dynamics at the interface and the adapted thermal models between the arc and pool subdomains
is paramount. Thus, in looking to couple the two models, scaling arguments are requisite, and the scaling
methodology follows that described by Ruzicka [70]. Before presenting the scaling arguments, the govern-
ing arc-pool momentum and energy conservation equations at the fluid interface are invoked. The reader
is referred to sections 2.4 and 2.5 for a detailed presentation and discussion of the conservation laws.

I begin by introducing the scaling arguments concerned with the tangential force balance at the arc-pool
interface:

Tangential interface dynamics: (τ pool)∗ = SAP (τ arc)∗ +MPS(∇sT )∗ (1.1)

where the ∗ superscript represents non-dimensionality, τ the tangential viscous stresses at the arc-pool
interface, SAP the shear arc-pool and MPS the Marangoni pool shear numbers, respectively. The normal
force balance at the interface are:{

Normal interface dynamics:
(∇ · n)∗ = Wepool(Ppool)∗ −Wearc(Parc)∗ −Bo(∆ρ)∗ + Capool(σpool)∗ − Caarc(σarc)∗ (1.2)

where n, We, P , Bo, ∆ρ, Ca et σ represent the interface normal vector, Weber number, fluid pressure,
Bond number, difference in density, Capillary number and the normal viscous stresses, respectively. The
non-dimensional numbers, as they apply at a typical arc-pool interface, are described and expressed in
table 1.1. Furthermore, figure 1.2 schematises the interaction of the arc and pool at their interface for

2The coupling of the mesoscopic electrodynamic models of the two subdomains is straightforward and thus is not considered
in the analysis.



10 CHAPTER 1. COUPLING THE ARC-PLASMA AND WELD POOL

Dimensionless number Symbol Force Ratio Equation

Shear arc-pool SAP
Arc to

pool shear
(Uaµa/La)
(Upµp/Lp)

Marangoni pool shear MPS
Marangoni to

pool shear | dγdT | ∆T
(Upµp)

Arc Weber Wearc
Arc dynamic pressure

to surface tension
Pa

(γ/Lp)

Pool Weber Wepool
Pool dynamic pressure

to surface tension
Pp

(γ/Lp)

Bond Bo
Gravity to

surface tension
(ρp − ρa)gLp

γ/Hz

Arc Capillary Caarc
Arc viscous stress
to surface tension

UaµaLp
Laγ

Pool Capillary Capool
Pool viscous stress
to surface tension

Upµp
γ

Table 1.1: Description and equations of non-dimensional numbers at arc-pool interface.

an arbitrary TIG spot configuration, which helps simplify the following scaling arguments3. The main
stagnation zones represented in the figure as a, b and c refer to zones of stagnating arc or pool flow where
the stagnation pressure of the fluid rises as a consequence. Indeed, because the arc-pool system is a two
fluid structure with dynamics along different spatial scales, the three presented stagnation zones manifest
stagnation pressures of different magnitude. In fact, stagnation zone a is dictated by the arc flow, while
zone b is dictated by the fast moving interface velocites and zone c by the slower resurfacing flow in the
pool. Moreover, according to elementary fluid dynamics theory, the stagnation pressure can be scaled to
P ∼ ρU2 [1], which translates to the dependence of the Weber number onto the square of the characteristic
velocity of the zone of interest We = ρU2/(γL). Centering the scaling arguments in the vicinity of the
stagnation zones, the following characteristic scales and quantities are chosen as they manifest for a typical
welding configuration [13, 60, 54, 56]:

Arc


Ua = 100 m · s−1

µa = 10−4 Pa · s
La = 10−3 m
ρa = 10−1 kg · m−3

Pool



Up =
{

5 × 10−1 zone b
10−2 zone c

m · s−1

µp = 10−3 Pa · s
Lp = 10−2 m
Hz = 10−3 m
∆T = 500 K
ρp = 7000 kg · m−3

| dγdT | = 10−4 N · m−1 · K−1

γ = 2 N · m−1

where the pool characteristic velocity Up has two dominant scales that interact with the arc-pool interface
at the stagnation zones b and c. These stagnation zones significantly impact the pool Weber number, due

3The scaling arguments although argued for a TIG spot configuration, are expected to apply for non-stationary configu-
rations.
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Figure 1.2: TIG spot configuration representing the dynamic fluid interface.

to its U2 dependence. The characteristic stagnation zone pressures are estimated to be: zone (a) Pa = 103

Pa, Pb = 1.75×103 Pa, Pc = 0.7 Pa. Thus, using the given arc and pool characteristic scales and quantities
in the summarised equations of table 1.1, the dimensionless force ratios are calculated and presented in
table 1.2. Interpreting the dimensionless numbers, both the arc shear and the Marangoni force must be

SAP MPS Wearc Wepool Bo Caarc Capool
Characteristic
Value 103 500 a → 5 b → 9 c → 35 × 10−4 10−1 10−1 10−4

Table 1.2: Magnitudes of characteristic non-dimensional numbers at arc-pool interface. Zones a,b and c
refer to figure 1.2

taken into account when coupling the arc and pool momentum models because the characteristic SAP
and MPS numbers are of similarly significant magnitudes. As for the dynamics along the normal of the
arc-pool interface, the arc and pool pressure need to be similarly considered. The Weber number of the
arc being relatively significant at stagnation zone a w.r.t the pool Weber number at zone c implies that
the arc dominates the deformation of the interface downstream the arc axis. Furthermore, the relatively
significant pool Weber number at zone b indicates that the pool pressure dominates any potential humping
of the interface. The Bond and arc Capillary number being relatively equivalent in their contribution
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to interface deformation, implies the importance of incorporating both the gravity and arc viscous stress
forces. Lastly, regardless of the miniscule magnitude of the pool Capillary number, the viscous contribution
of the pool is included into the coupling effort of the arc-pool models so as to respect viscous flow theory [1].

Next, a simple dimensionless thermal model is presented where only the ratio of internal energy con-
tributions is discussed, and is expressed as:

(dT
dt

)∗ + 1
Ste

df

dt
= 1
Pe

(∇2T )∗ (1.3)

where Ste = cp∆T/Lf is the Stefan number, f the phase fraction and Pe the Peclet number. The Peclet
number is significant in both the arc and pool models as was shown in Brochard’s work [13], which justifies
the incorporation of heat transport effects in both subdomains. Moreover, the Stefan number is the ratio
of sensible heat cp∆T to the latent heat of fusion Lf , and is only valid if the phase fraction, f , cnst
is not a constant. The phase fraction represents the percentage of one phase over the other in a phase
change problem (see equation (2.26) in chapter 2). Thus, in looking to couple the thermal model of the
arc-plasma to that of the weld pool, the characteristic Stefan number of both subdomains is calculated
using characteristic weld pool specific and latent heat values (see appendix A).

Arc
{

f = 1 implies Ste is undefined Pool
{

0 ⩽ f ⩽ 1 −→ Ste = cp∆T
Lf

≈ 600 × 500
2.5 × 105 ≈ 1

The Stefan number being undefined in the arc means that the implemented arc thermal model is not
required to be adapted for phase change effects. Choosing not to model metal evaporation effects in
the arc-plasma means that the temperature based model of Brochard, which is adapted to capturing the
electro-thermal effects [13], should be used. However, with Ste ≈ 1 in the weld pool, the sensible and latent
heat contributions are of the same order, which requires that the implemented thermal model be adapted
to capturing phase change effects. To ensure that both the sensible and latent heat effects are captured
implicitly by the pool thermal model, an enthalpy based thermal model is used [60, 89, 59].

Having identified the dominant dynamic forces at the arc-pool interface and the type of thermal mod-
els necessary to capture both electro-thermal and phase change effects, the identification of the adapted
numerical coupling techniques is necessary. The coupling algorithms implemented in this thesis are argued
for in the following:

Mass and momentum coupling algorithm:
Recalling that the absolute magnitudes of the SAP and MPS numbers are significant as opposed to the
weaker absolute magnitudes of the Weber, Bond and Capillary numbers, I base the structure of the cou-
pling algorithm on the physical characteristics of the interface. Thus, the algorithm should ensure that
a convergent and conservative communication of the interfacial forces is respected while allowing for a
mass conserving deformation at the interface. To this end, numerically coupling the mass and momentum
equations between the two subdomains is tested using two methods, a partitioned Dirichlet-Neumann and
a quasi-monolithic algorithm. The partitioned Dirichlet-Neumann algorithm transmits, at every iteration
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of a fixed mesh, the arc pressure and shear forces to the pool as Neumann boundary conditions, and
the pool surface velocities to the arc as Dirichlet boundary conditions. This procedure is iterated until
force/velocity convergence at the fixed interface is achieved. As for the quasi-monolithic algorithm, it
ensures a conservative communication of the fixed interface forces without requiring internal iterations.
The algorithm uses the Lagrange Multiplier method [64] to ensure the conservation of forces at the fixed
interface. After either algorithm is executed on a fixed mesh, the normal interfacial forces and a mass
conservation constraint are used to calculate the deformation at the interface. Once the interface defor-
mation field is calculated, a mesh deformation algorithm based on Huang’s work [34] is used. The mesh
deformation method conserves mass and allows for the capture of the weak deformation of the arc-pool
interface. This approach avoids the use of interface tracking methods which in this thesis are considered
excessive. For example, the volume of fluid, phase field and level set methods are computationally costly
and can introduce issues with surface tension and mass conservation [14]. The use of interface tracking
methods are thus reserved for problems where violent interface deformation phenomena (for We >> 1
and Ca >> 1) such as interface detachement/reattachement and when drop formation phenomena occur
[14, 77]. The mass and momentum coupling algorithms are thus developed in section 3.6.

Conjugate heat transfer coupling algorithm:
Recalling that the Stefan number is undefined in the arc-plasma but is Ste ≈ 1 in the weld pool, I base the
structure of the coupling algorithm on the thermal characteristics of the two subdomains. In order to both
respect energy conservation and be compatible with conjugate heat transfer and phase change effects in the
arc-pool system, a mixed variable monolithic algorithm is proposed and implemented. The mixed variable
algorithm couples the temperature based heat transfer model of the arc-plasma [13] to the enthalpy based
heat transfer model of the weld pool [60]. This allows the algorithm to simultaneously capture both the
electro-thermal and heat transport phenomena of the arc, and the phase change phenomena present in the
weld pool. The algorithm uses the Lagrange multiplier method [64] to communicate the heat flux across
the arc-pool interface, by weakly imposing the temperature continuity using the temperature field of the
arc and the enthalpy field of the pool. The monolithic mixed variable algorithm strongly conserves energy
while also satisfying temperature continuity across the interface within a couple of global iterations. These
methods are developed in section 3.5.

Having presented the choice of the coupling algorithms that are compatible with the dominant dynamics
and thermal phenomena between the arc and pool subdomains, I briefly note the range of applicability
of the coupled model. The studied unified model in this work is stationary in that the global algorithm
searches for steady state solutions directly without integrating in time. This choice is taken because it is
imperative that the coupling algorithms are first developed to respect the dominant conservation laws of
the physical problem and converge numerically [88, 63, 16, 25]. Thus, I focus on ensuring a robust coupling
of the arc-pool system and reserve the implementation of a time integrator for a future work. Furthermore,
the incorporation of filler metal into the arc-pool system is also reserved for a future work.

Thus, to continue tackling the principal objective of this thesis I briefly motivate the sensitivity studies
and the model extension to 3D that is performed in this work.
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1.4 An extension to 3D configurations

Once a robust and conservative coupling algorithm that includes the dominant phenomena in the TIG
welding system is implemented, the model can be generalised and extended to 3D configurations. However,
before extending the model to 3D, identifying and understanding the sensitivity of the unified model
to the choice of the coupling algorithm and to certain geometric and physical parameters is necessary.
This is important if the physical and numerical implications of the proposed model are to be understood
before setting up complex 3D configurations. To this end, five sensitivity studies are performed on 2D
axisymmetric configurations. Setting up the studies on axisymmetric configurations allows for good trade-
off between acceptable physical representativity and affordable computational costs. The sensitivity studies
performed are listed and described in the following:

1) The sensitivity of the arc-plasma to the cathode geometry is studied. The cathode geometry is
identified as an often overlooked essential parameter in the numerical simulation of TIG welding.
However, it is essential because the electron emission zone at a cathode can be the most influential
boundary condition as it is the source of momentum for the arc [33, 21]. A TIG arc is thus sensitive
to the variations in cathode shape [18]. The sensitivity of these arcs to cathode truncation angle
has been studied both experimentally and numerically by multiple authors [30, 32, 71, 53, 62, 54].
Moreover, disagreement between numerical and experimental results (see Lago, Goodarzi, Tsai, Sadek
[51, 30, 86, 71]) motivate a more careful analysis of the effect of cathode geometry onto TIG arcs. For
example, Tsai [86] shows, experimentally, that convective heat transfer to the work piece increases as
cathode truncation angle decreases, and that is not evident in the numerical results of Goodarzi [30].
Furthermore, not many numerical investigations into the effect of cathode tip size and shape, which
can have strong effects on the arc [71], have been performed, as authors generally choose arbitrary
pointed and chamfered tip shapes (see [30, 9]); thus motivating this work. This study is presented in
chapter 4.

2) The sensitivity of the model to the two implemented mass and momentum coupling algorithms is
studied. The Dirichlet-Neumann and the quasi-monolithic algorithms are tested for three different
TIG spot configurations, where the convergence rate, solution sensitivity and total iteration count
are compared and analysed. This algorithm sensitivity study helps identify the algorithm that is
better adapted to resolving the unified TIG model. This serves to ensure that the chosen algorithm
is robust and relatively computationally efficient, which will facilitate computational efforts for 3D
configurations. This study is presented in section 5.6.1.

3) The sensitivity of the weld pool to the inlet electric current is studied. Although the influence of
inlet electric current onto weld pools is experimentally understood and quantified (see Mills et al.
[54] for an extensive review), the sensitivity of the driving forces that dictate the pool dynamics is
not well established [13, 54]. In general it is known that the increase of inlet electric current increases
both the available heat and flow speeds in the arc which increases pool width and depth [54, 86, 18].
However, the sensitivity of the interfacial forces has not been thoroughly discussed in the literature
and this has lead to certain authors omitting either the interfacial shear or normal force contributions
[60, 46, 13, 47]. In fact, the similar magnitudes of the SAP and MPS (see section 1.3) numbers
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at a typical arc-pool interface indicate the competing roles the shear and Marangoni forces have in
driving the dynamics of the weld pool. Furthermore, the use of augmented liquid steel viscosity
values by some authors [13, 60, 84, 44] dampens the influence of the inlet electric current onto the
pool geometry. Thus, a discussion of the sensitivity of the leading driving forces, dependent on inlet
current, in the pool offers insight that allows for clearer interpretations of the dynamics of more
complex welding configurations. This study is presented in subsection 5.6.2.1.

4) The sensitivity of the pool system to the chosen interface hypothesis: deformable or fixed/non-
deformable, is studied. In fact, the low magnitudes of the Weber numbers at the arc-pool interface
(see section 1.3) have been used to justify the use of fixed interfaces in the welding models [13, 41].
However, the work on weld pool dynamics in Nguyen’s and Traidia’s PhDs shows the significant
influence the pool surface has onto the pool geometry [60, 84]. Thus, a discussion of the sensitivity of
the pool geometry to the interface hypothesis offers insight onto and allows for clearer interpretations
of the dynamics that influence pool penetration. This study is presented in subsection 5.6.2.

5) The sensitivity of the arc-pool system to different pool viscosities is studied. Experimentally, the
viscosity of liquid 316L steel is consistently reported by multiple authors [10, 43, 57, 41]; however,
much of the literature on numerical simulations of weld pool dynamics uses inconsistent values (see
[13, 60, 46, 84, 91, 44]). In fact, the differences in the experimentally reported and numerically
implemented pool viscosity values are 10-fold in some instances. Thus, it is paramount that the
influence of pool viscosity onto pool geometry and arc-pool dynamics be studied and analysed. This
study is presented in subsection 5.6.2.3.

Once the sensitivities in the unified TIG model are analysed and understood, the extension of the model
to 3D configurations can be performed. To extend the unified model in a coherent manner the mathematical
consistency and physical validity of the model must be argued for. To this end, the verification and
validation of the extended 3D model is performed. The developments of the 3D model are listed and
described in the following:

1) The verification study consists of comparing the simulation results of a 2D axisymmetric TIG spot
configuration to that of its 3D Cartesian analogue. This serves to verify the mathematical model
and serves to indicate whether any mathematical inconsistencies have been programmed into the
extended model. First, the rotational symmetry of the fields calculated for the 3D spot configuration
is verified. The verification of the rotational invariance of the fields is necessary so as to be able to
use the 2D axisymmetric case as a reference, and to compare the comparable. Next, the rotationally
invariant 3D fields are compared to the 2D axisymmetric reference simulation and the the spatial
convergence of the 3D fields is briefly discussed. This study is presented in section 6.1.

2) Lastly, the verified 3D model is compared to an experimental case for preliminary validation. The
study includes weld displacement effects and is compared to an experimental configuration taken from
Koudadje’s work [47]. Effectively, the displacement effects are modelled by assigning to the workpiece
a displacement velocity w.r.t the laboratory observer, while the cathode is held fixed. The simulation
results of the fully coupled 3D cathode-arc-workpiece weld displacement model are then discussed and



analysed. Furthermore, the calculated weld pool is compared to experimental macrographic images
in terms of geometry and size. This study is presented in section 6.2.

Thus, with insight about the sensitivities of the unified model to multiple physical and numerical parameters
and with a verified and generally valid 3D model, the model can be used to study different 3D welding
configurations.



Chapter 2

A mathematical model of the process
physics

By model, I mean a structuring of the situation (actual or hypothetical) so that a theory can be applied.

Michael. A. Day,
The No-Slip Condition of Fluid Dynamics
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2.1 Introduction

In this chapter the mathematical models used to enforce the dominant electrodynamic laws, mass, momen-
tum and energy conservation laws in the TIG cathode-arc-workpiece system are presented. The chosen
arc and workpiece models are compatible with both conjugate heat transfer and phase change phenom-
ena, while also allowing for the capture of the deformable interface phenomenon between the arc and the
weld pool. Furthermore, the thermo-hydraulic equations at the arc-pool interface are formally derived,
bringing into context the importance of non-negligible advective terms that could govern the interface
thermo-hydraulics in some cases.

The chapter begins with a description of the relevant geometric domains in section 2.2, following
with a presentation of the mesoscopic electrodynamic model in 2.3, the modelled momentum and mass
conservation laws in section 2.4 and the modelled energy conservation laws in section 2.5.

2.2 Geometric preliminaries

The geometric construction of the TIG system, as discussed below, is schematised in the figure 2.1. To
facilitate the mathematical discussion performed in this chapter, key geometric elements are presented.
Representing the global TIG welding system ΩTIG mathematically:

ΩTIG = Ωcat ∪ Ωpla ∪ Ωano

where Ωcat is the cathode subdomain, Ωpla the arc plasma subdomain and Ωano the anode/workpiece
subdomain. The subdomain intersections, being important for the assignment of interfacial conditions, are
identified as:

ΓCPI = Ωcat ∩ Ωpla

ΓAPI = Ωpla ∩ Ωano

where the subdomains of intersection, ΓCPI and ΓAPI , are aptly named the cathode-plasma interface (CPI)
and the anode-plasma interface (API), respectively. The ΓCPI is a rigid, undeformable subdomain that
consists of an intersection between a solid and a fluid; while the ΓAPI , consists of both a rigid, undeformable
zone as well as a deformable zone1. The ΓAPI connects the intersection of the arc-plasma to both the solid
and the liquid weld pool sections of the workpiece. Furthermore, the boundary of the global TIG welding
system ΩTIG can be defined, and is mathematically represented as:

∂ΩTIG = ∂Ωcat ∪ ∂Ωpla ∪ ∂Ωano

but for which:
∂Ωano ∩ ∂Ωpool = ∅

where the weld pools studied in this thesis are not deep enough to perforate the anode nor large enough
to intersect with its lateral boundaries.

1The fluid interface is deformable if the deformable interface hypothesis is chosen. This is further detailed in the following
sections.
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Figure 2.1: Schematic of the geometry of the TIG system.

2.3 Electrodynamic equations

The TIG welding system is made up of a closed electric circuit made up of a cathode, a resistor and an
anode. The cathode is the source of both the electric current and electric potential, while the resistor
transforms input electric power into high quality heat2 and simultaneously transports the heat to the
anode. The resistor in the TIG circuit is the arc-plasma, while the anode is the workpiece. In fact, it is
because the electric circuit both generates and transports heat to the workpiece that the electrodynamic
phenomena of the TIG system are the main drivers of the welding process. While the arc-plasma and
more specifically its interaction with the electrode boundaries are fundamentally governed by complex
multi-specie electrodynamics [52, 2, 28] the main driving phenomena can be captured by modelling the
major mesoscopic phenomena [82, 80, 13, 28, 51]. The mesoscopic electrodynamic phenomena respects both
the local thermodynamic equilibrium (LTE) hypothesis and the continuum model for the modelled solids,
fluids and their interfaces [13]. However, because the arc-plasma at the electrode boundaries significantly
deviates from LTE as a result of its cooler boundary temperatures, modified electrical conductivities are
required for those regions. To account for the non-LTE electrical conductivity in the electrode boundary
regions the LTE diffusion approximation method from Lowke et al. is used [52]. This method assigns,
in the cathode region, a modified conductivity taken at the value of the arc-plasma at a δlcat = 0.1 mm
Euclidean distance from the CPI; while in the anode region, the modified conductivity value is assigned
to the value at a δlano = 0.4 mm Euclidean distance from the API (see section 3.3.1 for details). The
mesoscopic electrodynamic phenomena are thus modelled by an electrostatic and magnetostatic approach
adapted from Brochard’s work [13].

2This refers to heat concentrated at high temperatures which is advantageous for welding because the temperatures rise
significantly above the melting point of the workpiece.
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2.3.1 Electrostatic model

The equation used to resolve the electrostatic model for the electric potential ϕ across the entire domain
is as follows:

− ∇ · σ∗∇ϕ = 0 (2.1)

where the electrical conductivity σ∗ is represented by the following piece-wise function:

σ∗(T ) =


σ∗

cat(T ) r ∈ Ωcat

σ∗
pla(T ) r ∈ Ωpla

σ∗
ano(T ) r ∈ Ωano

where the electrical conductivities functions of both temperature and material type are given in appendix
A.

2.3.2 Magnetostatic model

The equations used to solve the magnetostatic model for the magnetic field B across the entire domain are
as follows:

∇ ∧ B = µ0j (2.2)

∇·B = 0 (2.3)

for j = −σ∗∇ϕ (2.4)

where µ0 = 4π × 10−7 N·A−2 is the magnetic permeability in vacuum, assumed constant in the entire
system. The set of magnetic equations (2.2) and (2.3) are defined as Ampere’s law and Gauss’s law,
respectively [37].

2.3.3 Electromagnetic sources

Both the heat generation and its transport to the anode in the TIG system are modelled by electromagnetic
phenomena. The transformation of electrical power to heat in the TIG system is largely dominated by the
Joule effect [80] and is modelled as:

sJoule = σ∗∇ϕ · ∇ϕ (2.5)

where the phenomenon is present in all three subdomains, but is strongest in the arc-plasma. According
to multiple authors [13, 82, 51, 28], the transport of this heat from the hot arc-plasma to the colder
anode is driven by the dominant source of arc momentum, the Lorentz force. Furthermore, this force also
contributes as a source of momentum in the weld pool, although to a much lesser extent [60]. The Lorentz
force, fLor, is modelled as:

fLor = j ∧B = −σ∗∇ϕ ∧B (2.6)

and couples to the momentum equations in the arc-plasma and weld pool; as will be presented in the
following sections.
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2.3.4 Boundary and interface conditions

With the electrostatic and magnetostatic equations defined as three partial differential equations, the
definition of appropriate closure relations defined at the dim(Ω) − 1 subdomains is necessary. Indeed, if
Ω ∈ R2 then the closure relations would apply on all (∂Ω,Γ) ∈ R1; and similarly, if Ω ∈ R3 then the closure
relations would apply on all (∂Ω,Γ) ∈ R2. Furthermore, because the electrodynamic model is chosen to
obey the mesoscopic LTE hypothesis and because the magnetic permeability coefficient is constant in the
entire domain, continuity for both the electric potential and magnetic field is maintained at the CPI and
API. The generalised boundary and interface conditions for equations (2.1), (2.2) and (2.3) are presented.

2.3.4.1 Boundary conditions

The electrostatic boundary conditions are governed by an imposed inlet current at the cathode and an
electric ground at the anode. The lateral boundaries, being both cold and far from the electric current
source are considered as electrically insulated where current cannot pass through. The insulation condition
also applies for axes or planes of symmetry, if they are defined. This is mathematically expressed as:

Inlet: −σ ∂ϕ
∂n

∣∣∣∣
∂Ωin

= jimp = Iimp
∥∂Ωin∥

· n (2.7)

Ground: ϕ

∣∣∣∣
∂Ωground

= 0 (2.8)

Insulated or symmetry: −σ ∂ϕ
∂n

∣∣∣∣
∂Ωinsu

· n = 0 (2.9)

where jimp and Iimp are the imposed current density and the imposed current, respectively. As for the
magnetic boundary conditions, Ampere’s law from equation (2.2) requires only a parametrisation of the
spatial dimension because it is fundamentally a circulation, and is dependent only on the electric current
inside the domain of interest. As for Gauss’s law from equation (2.3), it requires at least one boundary
condition to fix the magnetic field [37, 38]. Furthermore, for symmetry axes and planes, the tangential field
to the plane is null. The TIG circuit is assumed isolated and sufficiently far from any external magnetic
field, thus:

Fixed: B

∣∣∣∣
∂Ωfixed

= 0 (2.10)

Symmetry: B · t
∣∣∣∣
∂Ωsym

= 0 (2.11)

where t is the total tangential vector and manifests in 3D as t = t1 + t2. Furthermore, the magnetic
symmetry condition in equation (2.11) is chosen to be perpendicular to the electric current symmetry
condition in equation (2.9).



22 CHAPTER 2. A MATHEMATICAL MODEL OF THE PROCESS PHYSICS

2.3.4.2 Interface conditions

The simplified electrodynamic model makes for continuous electric potential and magnetic fields across
both the CPI and the API. This is mathematically expressed for the electric potential as:

at the CPI: ϕΓcat = ϕΓpla
(2.12)

at the API: ϕΓpla
= ϕΓano (2.13)

while for the magnetic field this is expressed as:

at the CPI: BΓcat = BΓpla
(2.14)

at the API: BΓpla
= BΓano (2.15)

2.4 Momentum and mass conservation laws

The TIG welding system is generally made up of two fluid subdomains, identified as the arc plasma and
the liquid weld pool. The arc is the subdomain that transports energy from the cathode to the workpiece,
while the weld pool redistributes its absorbed heat in the target weld zone. If both the heat transport
phenomenon of the arc and the redistribution effect3 of the pool are to be captured by the implemented
model, the flow dynamics of both subdomains are to be necessarily treated. To be able to predict the
flow dynamics of the system, both the conservation of mass and momentum are necessary. Therefore,
the equations chosen to model the fluid conservation laws are based on the dilatational fluid model of
Brochard [13] for the arc-plasma and the incompressible fluid model of Nguyen [60] for the weld pool.
Like the dilatational model from Brochard [13], the arc-plasma is not considered to dilate like an ideal
gas, rather it dilates according to the experimentally determined density-temperature relation reported by
Boulos [12]. The main hypotheses taken in modelling the two subdomains are discussed in the following
subsections.

2.4.1 Dilatational arc-plasma fluid model

The arc-plasma is modelled as a fluid under the following hypotheses, which are argued for in detail in
Brochard [13] and considered valid for the entirety of this thesis:

Newtonian fluid: The arc-plasma has isotropic thermophysical properties, independent of the strain
rate.

Dilatational fluid: The arc-plasma is considered to behave like a dilatational fluid in that the depen-
dence of the fluid density onto its temperature cannot be neglected. This assumption is argued for
because the argon gas that transforms into the arc-plasma downstream the cathode has temperature
values that can range from room temperature4 to the tens of thousands of Kelvin in the arc core.
This hypothesis requires that both the density of the arc-plasma and its dynamic viscosity be strongly
dependent onto temperature. Furthermore, it is assumed that any variations in the dynamic pressure

3Which ultimately shapes the weld itself.
4Sufficiently far from the arc core.
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of the fluid are asymptotically small when compared to the thermodynamic pressure of the fluid.
This decouples the dependence of the fluid density onto the fluid pressure. This hypothesis is argued
for because the arc-plasma in TIG welding applications flows at low Mach numbers.

Laminar flow: For typical TIG welding configurations, the flow of the arc-plasma is assumed to
remain laminar. This hypothesis is considered because the flow of the arc-plasma is at Reynolds
numbers that do not exceed Re ≲ 103.

Resistive magnetic fluid: The arc-plasma is assumed to be magnetically resistive in that the magnetic
field is decoupled from the fluid flow and no magnetic advection occurs. This hypothesis is considered
due to the low magnetic Reynolds number of the arc-plasma Rem << 1.

Having discussed the main hypotheses taken in the fluid model of the arc-plasma, the modelled mass and
momentum conservation laws are presented in the following.

Conservation of mass:
Before presenting the equation modelling the conservation of mass, the following presentation relates the
dependence of the density of the arc-plasma to its temperature. The density of the arc-plasma is defined
as a thermodynamic state variable, and is dependent on the pressure and temperature [8], in:

dρ = ∂ρ

∂P
dP + ∂ρ

∂T
dT (2.16)

where P is the arc-plasma pressure. However, for a dilatational fluid that assumes a negligible dependence
of its density onto its pressure, equation (2.16) becomes:

if ρ = f(T ) → ∂ρ

∂P
≈ 0 ; dρ = ∂ρ

∂T
dT (2.17)

where both the density and temperature state variables are defined over the arc-plasma subdomain (ρ, T ) ∈
Ωpla. This allows for the use of the following expansions:

dT = ∂T

∂x
dx+ ∂T

∂y
dy + ∂T

∂z
dz = ∇T · dr

dρ = ∂ρ

∂x
dx+ ∂ρ

∂y
dy + ∂ρ

∂z
dz = ∇ρ · dr

where by combining the above expansions to equation (2.17), the following expression becomes valid:

∂ρ

∂T
= dρ

dT
= ∇ρ · dr

∇T · dr
→ dρ

dT
= ∇ρ · 1

∇T
(2.18)

where the derivative of density w.r.t temperature is defined across the entire Ωpla subdomain. To relate
equation (2.18) to the flow of the arc-plasma, the law of conservation of mass for fluids is introduced, in:

∇ · (ρu) = ρ∇ · u+ ∇ρ · u = 0 → ∇ · u = −1
ρ

∇ρ · u (2.19)

where u ∈ Ωpla is defined as the velocity field in the arc-plasma. Combining equations (2.18) and (2.19),
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the following equation is obtained:

∇ · u = −1
ρ

dρ

dT
∇T · u = −d ln(ρ)

dT
∇T · u (2.20)

where the d ln(ρ)
dT is calculated from the density-temperature relation of argon at atmospheric pressure, as

reported by Boulos [12], and as plotted in appendix A. Interpreting equation (2.20), any thermal dilatation
of the fluid is balanced by an increase in the flow rate away from the zone of fluid expansion.

Conservation of momentum:
The equation used to model the conservation of momentum in the dilatational arc-plasma is as follows:

ρu · ∇u = −∇P + ∇·µ
(

∇u+ ∇tu− 2
3∇· uI

)
+ fLor (2.21)

where I is the identity tensor, and ρ and µ are the density and dynamic viscosity which are functions
of temperature and are detailed in appendix A for argon, respectively. The fLor term is based on the
electromagnetic force modelled by equation (2.6). Interpreting equation (2.21), any acceleration of the
fluid in space is generated by the Lorentz force and dampened by the viscous stresses.

2.4.2 Incompressible weld pool fluid model

The weld pool is modelled as a fluid under the following hypotheses, which are used in Nguyen [60] and
considered valid for the entirety of this thesis:

Newtonian fluid: The weld pool has isotropic thermophysical properties, independent of strain rate.

Incompressible: The weld pool is assumed to be an incompressible liquid in that the dependence of its
density onto both temperature and pressure is neglected. This assumption is argued for because any
variations in the dynamic pressure and the temperature of the weld pool negligibly affect the density
of the liquid metal. However, the thermal expansion of the fluid responsible for the buoyancy effect
is assumed to behave according to the Boussinesq approximation. This means that a slight variation
in density is accounted for in the gravitational effect, which allows for the capture of buoyancy effects
[1].

Resistive magnetic fluid: The weld pool is assumed to be magnetically resistive in that the magnetic
field is decoupled from the fluid flow and no magnetic advection occurs. This hypothesis is considered
due to the low magnetic Reynolds number of the liquid metal Rem << 1.

An additional hypothesis is posed here and concerns the flow regime of the weld pool, and is detailed in
the following:

Laminar flow: The weld pool is assumed to flow under a laminar regime and so a turbulence model
is not implemented. This approach is valid under the assumption that the resolution of the flow, for
the range of welding configurations considered in this thesis, is sufficiently fine. However, the claim
that the flow remains laminar can be challenged because the Reynolds numbers in the simulated weld
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pool can reach up to Re ≳ 103, which makes the flow regime difficult to define5. However, because a
deeper investigation of the true flow regimes of different weld pools is out of the scope of this thesis,
the laminar flow model is retained.

Having discussed the main hypotheses taken in the fluid model of the weld pool, the modelled mass and
momentum conservation laws are presented in the following.

Conservation of mass:
The equation used to model the conservation of mass in the weld pool is as described below:

∇ · v = 0 (2.22)

where v ∈ Ωpool is defined as the velocity field in the weld pool. Interpreting equation (2.22), any variation
in the volumetric flow in one direction is to be compensated by flow along the other two spatial dimensions.

Conservation of momentum:
The equation used to model the conservation of momentum in the incompressible weld pool is as follows:

ρv · (∇v) = −∇p+ ∇·µ∗
(
∇v + ∇tv

)
+ fLor + fBou (2.23)

where p is the weld pool pressure, ρ is the pool density and is considered constant and µ∗ is the strengthened
dynamic viscosity and is a function of temperature. Furthermore, the fLor is the Lorentz as defined by
equation (2.6), fBou the buoyancy force. The strengthened dynamic viscosity µ∗ is used to strongly dampen
the pool flow in the mushy zone. The forces are modelled in the following:

fBou = −β ρref g(T − Tref ) (2.24)

where β is the thermal expansion coefficient, ρref and Tref the reference density and temperature values.
As for µ∗, it is defined as the following:

µ∗ = µ fL + µdamp (1 − fL) (2.25)

where µdamp is a dampening viscosity, chosen at µdamp = 250 kg·m−1s−1 in this work and fL is the liquid
fraction, calculated by:

fL =


0 T < Ts
T − Ts
Tl − Ts

Ts ≤ T ≤ Tl

1 T > Tl.

(2.26)

where the strengthened dynamic viscosity force is adapted from Voller [89]. It serves to increase the
dynamic viscosity of the weld pool by assigning to the pool the viscosity of the liquid metal µ∗ = µ when
fL = 1 to µ∗ = A when fL = 0. The material properties are given in appendix A as they are reported for
316L steel by Pichler and an IAEA6 report [65, 10].

5As shown in chapter 4.
6International Atomic Energy Agency
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2.4.3 Boundary and interface conditions

With the mass and momentum conservation laws modelled as four partial differential equations, the def-
inition of appropriate closure relations defined at the dim(Ω) − 1 subdomains is necessary. Furthermore,
because equations (2.20), (2.21), (2.22) and (2.23) determine both the kinematics and dynamics of the fluid
subdomains, both kinematic and dynamic closure relations can be applied. The generalised kinematic and
dynamic conditions on the arc-plasma and weld pool boundaries ∂Ω are presented first, following with the
conditions at the shared fluid interface Γ between the arc-plasma and weld pool subdomains.

2.4.3.1 Boundary conditions for the arc-plasma subdomain

The arc-plasma subdomain Ωpla is bounded by an inlet flow kinematic condition at the nozzle, no-slip
kinematic conditions at the rigid walls, zero stress dynamic boundary conditions at free boundaries and
symmetry conditions7 if symmetry axes or planes are defined. The generalised mass and momentum
boundary conditions of the arc-plasma are defined as follows:

Inlet: u

∣∣∣∣
∂Ωin

= V̇in
∥Ωin∥

n (2.27)

Rigid wall: u

∣∣∣∣
∂Ωwall

= Uwall (2.28)

Free boundary: (n · σ · n)∂Ωfree
= 0 (2.29)

Symmetry boundary:


n · u

∣∣∣∣
∂Ωsym

= 0

(n · σ · t)∂Ωsym = 0
(2.30)

where V̇in is the inlet volume flow rate at the nozzle entry, n the normal vector, Uwall the velocity of
the rigid wall w.r.t to the laboratory frame of reference, σ the stress tensor and t = t1 + t2 is the total
tangential vector. The stress tensor is defined as σ = −P I+ µ

(
∇u+ ∇tu− 2

3∇· uI
)
.

2.4.3.2 Boundary conditions for the weld pool subdomain

The weld pool subdomain Ωpool is bounded by the solid boundary of the pool and a symmetry condition
if symmetry axes or planes are defined. The generalised mass and momentum boundary conditions of the
weld pool are defined as follows:

Solid boundary: v

∣∣∣∣
∂Ωpool

= Uwall (2.31)

Symmetry boundary:


n · v

∣∣∣∣
∂Ωsym

= 0

(n · σ · t)∂Ωsym = 0
(2.32)

7Generally consists of a mix of kinematic and dynamic boundary conditions.
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Indeed, Uwall is defined as the velocity of the rigid wall w.r.t the laboratory frame of reference; however,
it is also used when modelling the displacement effects in a 3D welding configuration. Chapter 6 discusses
the application in detail, where the displacement of the workpiece w.r.t the laboratory frame of reference
(which is fixed on the cathode) allows for the capture of displacement effects for the steady state model
used in this thesis. This modelling choice assigns the workpiece displacement velocity Vdispl to the wall
boundaries that are in motion w.r.t the laboratory frame of reference Uwall = Vdispl, and assigns a null
velocity to the wall boundaries fixed at the laboratory frame of reference Uwall = 0 m·s−1.

2.4.3.3 Closure conditions at the arc-pool interface

Although both the interface Γ and boundary ∂Ω subdomains are defined at dim Ω − 1 dimension, they re-
quire different closure conditions. Unlike boundary conditions, interface conditions require kinematic and
dynamic relations that allow for a transmission of the mechanical quantities between the two subdomains
or material phases. Applied to the model used in this thesis, the interface requires conditions that conserve
mass when deformed by the superposed forces applied across it. However, the conservation laws, in their
present form need reformulation when analysing interfaces. Indeed, equations (2.20), (2.21), (2.22) and
(2.23) are defined for an arbitrary element dΩ and thus requires mapping to an arbitrary interface element
dΓ. The mapping is performed using the Gaussian pillbox method8. Note that in the following analyses,
the ∇s operator is the surface gradient operator. A formal derivation of the interface kinematics and
dynamics is necessary because they manifest as the dominant driving mechanisms in the pool [60, 54, 84].
Thus, at the fluid interface the conservation laws reduce to:

Kinematic conditions:
Starting from the general equation for mass conservation as stated in equation (2.19), it is integrated over
an arbitrary Gaussian pillbox (visualised in 2D in figure 2.2) subdomain Ω that exists inside both the arc
and pool subdomains Ωpla, Ωpool:

Figure 2.2: Gaussian pillbox over the arc and pool.

∫
Ω

u · ∇ρ dΩ +
∫

Ω
(∇ · u)ρ dΩ = 0 divergence−−−−−−→

theorem

∮
∂Ω

(ρu) · n d∂Ω = 0 (2.33)

8The Gaussian pillbox is a type of Gaussian surface that facilitates the visualisation of Gauss’s theorem.
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after applying the divergence theorem to the conservation of mass equation and after setting the bounds
of the surface integral over the small pillbox shown in figure 2.2, equation (2.33) becomes:∮

∂Ω
(ρu) · n d∂Ω =

∫ δl

0
((ρu)Γ − (ρu)Γ+dΓ) · nΓ dl +

∫
Γ
((ρu)arc · narc − (ρu)pool · npool) dΓ = 0 (2.34)

interested with the kinematics at the interface Γ, the thickness δl of the pillbox is assumed to be much
smaller than the height H of the system, with δl << H. This transforms equation (2.34) into:[

((ρu)Γ − (ρu)Γ+dΓ) · nΓ

]
· δl +

∫
Γ
((ρu)arc · narc − (ρu)pool · npool) dΓ = 0 (2.35)

and reducing the thickness of the pillbox to zero, equation (2.35) becomes:

lim
δl→0

{[
((ρu)Γ−(ρu)Γ+dΓ)·nΓ

]
·δl+

∫
Γ
((ρu)arc·narc−(ρu)pool ·npool) dΓ

}
= 0 =

∫
Γ
((ρu)arc−(ρu)pool)·n dΓ

(2.36)
reverting to the original notation and for an arbitrarily sized interface dΓ, equation (2.36) reduces to:

((ρu)arc − (ρu)pool) · n → (ρarcu− ρpoolv)Γ · n = 0 (2.37)

where the n is the normal vector at the interface Γ. The generalised mass conservation from equation (2.20)
reduces to equation (2.37), and is aptly named the normal kinematic interface condition. Relating two
unknown variables along an unknown direction, the condition requires a supplementary closure relation,
which is derived from the level set equation [1] at the interface (the level set is visualised in figure 2.3), as
shown in the following:

Figure 2.3: Level set at the arc-pool interface.

F = z − hz(x, y) = 0 (2.38)

where F is the level set, hz(x, y) the height of the deformed interface w.r.t the initial configuration Γ0 (see
figure 2.3). Furthermore, because the level set is null, its material derivative is also null, as described in
the following:

dF

dt
= dz

dt
− dhz

dt
= 0 → dz

dt
= dhz

dt
(2.39)

transforming the material derivatives to their Eulerian descriptions:
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dz

dt
= u · ẑ

dhz
dt

= ∂hz
∂t

+ (u · x̂)∂hz
∂x

+ (u · ŷ)∂hz
∂y


substituting−−−−−−−→
eq.(2.39)

∂F

∂t
− u · ∇F = (u · ẑ) − ∂hz

∂t
− u · ∇hz = 0 (2.40)

where the newly introduced unknown variable hz is related to the normal at the interface n by:

n = ∇F
∥∇F∥

(2.41)

so substituting equation (2.41) into (2.40), the resulting equation becomes:

u · n = −∂F

∂t

1
∥∇F∥

(2.42)

where for an interface at its steady state equilibrium position ∂F
∂t = 0 which transforms equation (2.42)

into the impermeability condition:

u · n = 0 where u = (u or v) (2.43)

where the combination of equations (2.37) and (2.43) are the interface conditions for the normal velocity
components at the interface. This leaves the tangential velocity components requiring closure, and so
the no-slip hypothesis at fluid interfaces is introduced, which holds for most fluid systems modelled with
continuum theory, and is assumed to hold here [39]:

u · t = v · t (2.44)

where additional closure equations defining the unknown velocity components equations (2.37), (2.43) and
(2.44) to the different forces at the interface are necessary.

Dynamic conditions:
Starting from the general equation for momentum conservation which resembles9 that of equation (2.21),
it is integrated over an arbitrary Gaussian pillbox (cf. figure 2.2) subdomain Ω that exists inside both the
arc and pool subdomains Ωpla, Ωpool:∫

Ω
ρu · ∇u dΩ =

∫
Ω

∑
volu.

fΩ dΩ +
∫

Ω
∇ · σ dΩ +

∫
Γ

∑
inte.

fΓ dΓ (2.45)

where the fΩ represents volume forces and fΓ surface forces at the interface. The different identified forces
acting inside the pillbox control volume Ω are the following:∑

volu.

fΩ = fg + fLor∑
inte.

fΓ = fγ

9A term related to surface forces is added, because the control volume used in the integral formulation crosses the interface.



30 CHAPTER 2. A MATHEMATICAL MODEL OF THE PROCESS PHYSICS

where fg is the gravitational force and fγ is the surface tension. To facilitate the analysis, each term in
equation (2.45) is discussed individually first before the simplification and reformulation of the dynamic
condition. First, the advection term is analysed for δl << H:∫

Ω
ρu · ∇u dΩ divergence−−−−−−→

theorem

∫
∂Ω
ρu · (u · n) d∂Ω =∫

Γ

(
ρu · (u · n)

)
arc

−
(
ρu · (u · n)

)
pool

dΓ + O(δl)
(2.46)

where the O(δl) represents the integration terms of order δl. Next, the gravitational force term is refor-
mulated as a geopotential force where the divergence theorem is then applied to it for δl << H, in:

fg = ρg = ρ ∇Φ where Φ = gz + cnst∫
Ω
ρ ∇Φ dΩ divergence−−−−−−→

theorem

∫
∂Ω

(ρΦ) · n d∂Ω =
∫

Γ
(ρarc − ρpool)ΦΓ · n dΓ + O(δl) (2.47)

next, the Lorentz force term is analysed for δl << H:

∫
Ω
fLor dΩ =

[ ∫
Γ
fLordΓ

]
δl (2.48)

next, the stress flow term is analysed for δl << H:∫
Ω

∇ · σ dΩ divergence−−−−−−→
theorem

∫
∂Ω
σ · n d∂Ω =

∫
Γ
(σarc − σpool) · n dΓ + O(δl) (2.49)

next, the surface tension force term is analysed along the interface Γ as it is derived using either a variational
or differential approach in [90, 85]:

fγ =
Marangoni force︷ ︸︸ ︷

∇sγ +
surface tension︷           ︸︸           ︷
(γ∇s · n)n (2.50)

where γ is the surface tension coefficient and is considered to only be a function of surface temperature
and sulphur content in weld pools [60, 84, 13]. The Marangoni force can be reformulated into its explicit
temperature dependent form by following the mathematical procedure done between equations (2.16) and
(2.18), transforming it into:

∇sγ = ∂γ

∂T
∇sT (2.51)

where γ as a function of temperature and the concentration of sulphur cS in parts per million [ppm] is
described by Sahoo’s law [72]:

γ(T, cS) = γf −Ag(T − Tf ) −RTΓs ln
[
1 + k1cS exp

(
− ∆H0

RT

)]
(2.52)

∂γ

∂T
(T, cS) = −Ag −RΓs ln

[
1 + k1cS exp

(
− ∆H0

RT

)]
−

∆H0 exp
(

− ∆H0

RT

)
cSΓs(

1 + exp
(

− ∆H0

RT

)
cS

)
T

(2.53)

where γf is the surface tension of pure iron at its temperature of fusion Tf , Ag = − ∂γ
∂T (T, 0), T the pool
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surface temperature, R the ideal gas constant, Γs the surface excess at saturation, k1 a segregation entropy
constant, ∆H0 the enthalpy of adsorption. The operations performed above, reassembled together become:∫

Γ

(
ρu · (u · n)

)
arc

−
(
ρu · (u · n)

)
pool

dΓ =∫
Γ
(ρarc − ρpool)Φ · n dΓ +

∫
Γ
(σarc − σpool) · n dΓ +

∫
Γ
fγdΓ +

[ ∫
Γ
fLordΓ

]
δl + O(δl)

and once again, the thickness of the Gaussian pillbox is taken to zero by applying the limδl→0 to the above
equation and taking an arbitrarily sized interface dΓ, the pillbox momemtum equation (2.45) maps to the
following dynamic interface condition:
(
ρu · (u · n)

)
arc

−
(
ρu · (u · n)

)
pool

=

(ρarc − ρpool)ghz · n+ (σarc − σpool) · n+ ∂γ

∂T
∇sT + (γ∇s · n)n (2.54)

where both the normal and tangential dynamics are included. It is crucial to remark that the advection
terms at the left hand side of equation (2.54) invoke the kinematic interface relation from equation (2.37).
The advection terms in the dynamic interface condition are thus critical if there are sources or sinks in
the mass balance of the system; where in TIG welding the sources and sinks can be related to both phase
change and/or a dumping of filler material into the pool subdomain. However, since this thesis is limited
to studying a TIG system without evaporation effects nor a filler metal, phase change and filler dumping
cases are out of the scope of this work and their analysis is reserved for a future study. Thus, using the
impermeability condition in equation (2.43), this simplifies equation (2.54) to:

0 = (ρarc − ρpool)ghz · n+ (σarc − σpool) · n+ ∂γ

∂T
∇sT + (γ∇s · n)n (2.55)

which will be used as the dynamic boundary condition in this thesis. Both the arc shear stress and the
Marangoni effect at the interface are dominant driving forces for the pool hydrodynamics [54].

2.4.4 Interface hypotheses

A brief description of the two interface hypotheses treated in this thesis are presented. The fixed interface
hypothesis assumes that the API remains fixed while the deformable interface hypothesis assumes that the
API is free to deform.

Fixed interface:
The fixed interface hypothesis maintains the arc-pool interface at its initial configuration Γ0 by assuming
that the sum of normal reaction forces at dΓ0 is at equilibrium. The sum of forces at fixed interface element
is schematised in figure 2.4, where neither the surface tension force nor the gravity force act on dΓ. This is
because hz = 0 which makes null the ghz and γ∇s ·n terms. Thus for fixed interfaces, the normal arc and
pool stress forces are at equilibrium while the sum of the tangential arc and pool stress forces are equal to
the Marangoni force. Summarising the kinematics and dynamics at dΓ, the set of interface conditions to
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Figure 2.4: Sum of forces at a fixed interface element.

be solved at the fixed arc-pool interface are:

kinematic impermeability condition: (u− v) · n = 0 ; v · n = 0

kinematic no-slip condition: (u− v) · t = 0

dynamic condition: (σarc − σpool) · n+ ∂γ

∂T
∇sT = 0

Deformable interface:
The deformable interface hypothesis allows the arc-pool interface to attain a new equilibrium state different
from its initially flat position. This sum of the arc and pool reaction forces are balanced by both the
gravity and surface tension forces at dΓ. However, similar to the a fixed interface the tangential arc and
pool reaction forces are balanced by the Marangoni force. The sum of all forces at a deformable interface
element dΓ is schematised in figure 2.5. Summarising the kinematics and dynamics at dΓ, the set of

Figure 2.5: Sum of forces at a deformable interface element.
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interface conditions to be solved at the deformable interface are:

kinematic impermeability condition: (u− v) · n = 0 ; v · n = 0

kinematic no-slip condition: (u− v) · t = 0

level set: v · ẑ = v · ∇hz ; n = ∇F
∥∇F∥

; F = z − hz

dynamic condition: 0 = (ρarc − ρpool)ghz · n+ (σarc − σpool) · n+ ∂γ

∂T
∇sT + (γ∇s · n)n

2.5 Energy conservation law

The TIG welding system is made up of three bodies that transform electrical energy into heat and that
transfer the generated heat to the workpiece, which melts to form the liquid weld pool. The cathode,
arc-plasma and the workpiece subdomains are simultaneously subject to electro-thermal, heat transport
and phase change phenomena. Thus, to effectively capture the range of thermal effects in the TIG system,
the energy conservation law must be modelled in a manner compatible with both conjugate heat transfer
and phase change phenomena. To this end, energy conservation in both the cathode and arc-plasma are
modelled using the temperature variable as the primary unknown variable, while energy conservation in
the workpiece is modelled using the enthalpy variable. The mixed variable method is used because the
temperature based models allow for a simpler expression of the electro-thermal phenomena in the cathode
and arc-plasma, while the enthalpy based model is adapted for the capture of phase change effects in the
workpiece. The models are briefly presented in the following and are based on the theses of Brochard and
Nguyen [13, 60].

2.5.1 Temperature based heat transfer model

The cathode and arc-plasma interact electro-thermally to transmit and transform electrical energy into heat
energy useful for TIG welding. To capture these effects, temperature based models in both the cathode
and arc-plasma subdomains are set up. The cathode is modelled as a solid because for most TIG welding
time scales, the cathode remains rigid and does not undergo fusion [13, 54, 80, 17]. As for the arc-plasma,
it is hypothesised to maintain LTE even though its colder edges (particularly the electrode boundaries)
deviate from LTE [28, 51, 52]. To simplify modelling of the deviation from LTE, equivalent electro-thermal
source and sink terms are added at both the CPI and API. Thus, the arc-plasma is modelled as a fluid
governed by the LTE hypothesis. The modelled equivalent sources and sinks at the electrode-arc interfaces
are adapted from Brochard’s thesis [13].

2.5.1.1 Cathode subdomain

The energy conservation law in the cathode subdomain is from Brochard [13], and is modelled by the
following equation:

0 = ∇· λ∇T + sJoule (2.56)
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where the thermal conductivity λ as a function of temperature for thoriated tungsten is given in appendix
A. Heat in the cathode is generated by the Joule effect as modelled by equation (2.5).

2.5.1.2 Arc-plasma subdomain

The energy conservation law in the arc-plasma is from Brochard [13], and is modelled by the following
equation:

ρcpu·∇T = ∇· λ∇T + sJoule − sRay,pla (2.57)

where the mass density ρ, the specific heat cp and the thermal conductivity λ of argon are given in appendix
A. Heat generation in the arc-plasma is modelled by the Joule effect as it is given by equation (2.5), while
the total radiated heat is modelled by the emissive volumic radiation term sRay,pla as adapted from Lago
et al. [51]. The volume radiation term is modelled in the following manner:

sRay,pla = 4πϵn (2.58)

where ϵn is the total argon plasma emissivity term and is given as a function of temperature in appendix
A, as it was reported by Lago et al. [51].

2.5.2 Enthalpy based heat transfer model

The heat transported by the arc-plasma melts the weld zone of the workpiece, inducing phase change over
the course of a welding operation. The phase change process is generally strongly temperature dependent
and nonlinear in that the enthalpy of the studied material rises significantly over a small temperature
range10. Thermodynamically the enthalpy h is related to the temperature state variable T and the pressure
state variable p by the following relation [48]:

h =
∫ T

Tref

cp dT +
∫ p

pref

∂h

∂p
dp (2.59)

where Tref and pref are some arbitrary reference temperature and pressure. The dependence of the enthalpy
onto the pressure is negligible for the weld pool system because any dynamic variations in the pool pressure
are asymptotically small w.r.t its thermodynamic pressure [13, 60, 48]. This allows for a simplified isobaric
enthalpy relation, which transforms equation (2.60) into:

if h = f(T ) → ∂h

∂p
≈ 0 ; h =

∫ T

Tref

cp dT (2.60)

which applies for both the solid and liquid states of the weld material. The notion of enthalpy is important
when discussing phase change problems because it masks the strongly nonlinear dependence of phase
change onto temperature by acting as an integral quantity. This can be understood by comparing the
expression of the specific heat as a function of temperature to the expression of the enthalpy as a function

10Or, in the case of pure metals, the enthalpy rises over an isotherm. See appendix B for a detailed description.
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of temperature, where the specific heat for a material undergoing fusion is:

cp(T ) =


cps for T < Ts

Lf

√
1

2π(∆Tm/a)2 exp(− (T − Tc)2

2(∆Tm/a)2 ) for Ts ≲ T ≲ Tl

cpl
for T < Tl

(2.61)

where Ts and Tl are the solidus and liquidus temperatures of the material, Lf the latent heat of fusion,
Tm = Tl − Ts the mushy temperature range, Tc = Tl+Ts

2 the mushy center temperature and a a sharpness
factor to be > 1. For details on how the specific heat is modelled, see appendix B. While the enthalpy for
a material undergoing fusion is:

h(T ) =


∫ T
Tref

cps dT for T < Ts∫ Ts
Tref

cps dT + LffL for Ts ≤ T ≤ Tl∫ Ts
Tref

cps dT +
∫ T
Tl
cpl

dT + Lf for T > Tl

(2.62)

where fL is defined as the liquid fraction from equation (2.26). Indeed, in the range of the mushy zone
where phase change occurs Ts ≤ T ≤ Tl, the model used for the specific heat invokes temperature gradi-
ents that are significantly stronger than those of the enthalpy model. This is because the enthalpy variable
intrinsically contains the latent heat contributions in its formulation, thus masking the small temperature
scales of the specific heat variable which introduce strong non-linearities to temperature based heat equa-
tions. The differences in the temperature scales of equations (2.61) and (2.62) are schematised in figure 2.6.
Thus, using the enthalpy variable instead of the temperature variable in the energy conservation model is

Figure 2.6: Superimposed plots of schematised pool specific heat cp and enthalpy h. Not drawn to scale.

better adapted at capturing phase change effects [89, 59, 68, 3]. The energy conservation model for the
workpiece becomes:

ρv ·∇h = ∇·
(
λ∇ h

cp

)
+ sJoule (2.63)
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where ρ, v, cp and λ are the density, velocity, specific heat and thermal conductivity of the weld pool,
respectively. The material properties of the studied workpieces are presented in appendix A as they are
reported by Brochard and Pichler respectively [13, 65]. Note that v is equal to the workpiece displacement
velocity Vdispl w.r.t the laboratory reference frame in the solid workpiece subdomain. Moreover, the heat
source by the Joule effect is modelled by equation (2.5). Equation (2.63) is based on the model used in
Nguyen’s thesis [60].

2.5.3 Boundary and interface conditions

With the energy conservation laws modelled as three partial differential equations, the definition of appro-
priate closure relations defined at the dim(Ω)−1 subdomains is necessary. Furthermore, because equations
(2.56), (2.57) and (2.63) are defined in the volume subdomains of the system appropriate temperature
continuity and flux interface conditions are needed to account for the heat transfer phenomena across
the interfaces. The generalised thermal conditions on the cathode, arc-plasma and workpiece boundaries
∂Ω are presented first, following with the condtions at the shared interfaces Γ between the cathode and
arc-plasma, and the arc-plasma and workpiece subdomains.

2.5.3.1 Boundary conditions for the cathode and arc-plasma subdomains

With both the cathode and the arc plasma modelled with the temperature variable, their boundary condi-
tions are similarly applied. The cathode and arc-plasma are bounded by fixed temperature, free boundary
flux (also a thermal symmetry condition) and radiation conditions, which are applied using the Stefan-
Boltzmann radiation model [13, 8]. The generalised thermal boundary conditions of the cathode and
arc-plasma are defined as follows:

Fixed temperature: T

∣∣∣∣
∂Ωfixed

= Tfixed (2.64)

Free boundary or symmetry: (−λ∇T · n)∂Ωfree
= 0 (2.65)

Radiation: (−λ∇T · n)∂Ωrad
= ϵσB(T 4 − T 4

∞) (2.66)

where Tfixed is a chosen temperature that remains fixed throughout a simulation, ϵ, σB and T∞ the
emissivity, Stefan-Boltzmann constant and the free stream temperature, respectively, and are given in
appendix A.

2.5.3.2 Boundary conditions for the anode subdomain

With the workpiece (or anode) modelled with the enthalpy variable, its temperature dependent boundary
conditions are specified using temperatures that were mapped from their associated enthalpy variable (see
section 3.5.1 for details). The workpiece is bounded by fixed enthalpy, free boundary flux (also a thermal
symmetry condition), radiation and convection conditions. The radiation is similarly modelled using the
Stefan-Boltzmann model while Newton’s law of cooling is used to model the convection condition [13, 8].
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The generalised thermal boundary conditions of the anode are defined as follows:

Fixed temperature: h

∣∣∣∣
∂Ωfixed

= h(Tfixed) (2.67)

Free boundary or symmetry: (−λ∇T · n)∂Ωfree
= 0 (2.68)

Radiation: (−λ∇T · n)∂Ωrad
= ϵσB(T 4 − T 4

∞) (2.69)

Convection: (−λ∇T · n)∂Ωconv = hconv(T − T∞) (2.70)

where hconv is the convection coefficient.

2.5.3.3 Closure conditions at the interfaces

Unlike boundary conditions, interface conditions require both temperature continuity and flux relations
that allow for a transmission of the thermal quantities between the two subdomains or material phases.
The thermo-electric sources and sinks used to model the electrode boundaries at the interfaces require
conditions that conserve energy when superposed fluxes are applied across it. However, the conservation
laws, in their present form need reformulation when analysing interfaces. Indeed, equations (2.56), (2.57),
(2.63) are defined for an arbitrary volume element dΩ and thus require mapping to an arbitrary interface
element dΓ. The closure conditions at the CPI and API are presented in the following.

Cathode-plasma interface:
First, temperature continuity at the interface is assumed. The continuity of the thermal field is valid at
the interface of perfectly conjugate materials [8]; which, based on the LTE hypothesis used in this work, is
the case for the CPI. This is mathematically expressed as:

TΓcat = TΓarc (2.71)

Next, the flux condition is expressed by applying the Gaussian pillbox method as was previously demon-
strated, which transforms the energy conservation law (equation (2.57)) at the CPI to the following form:

0 = (qarc − qcat) · n+
∑
inte.

sΓCP I
(2.72)

where q = −λ∇sT and sΓ represents the heat sources/sinks at the interface. Note that the advection terms
reduce to null because the CPI is a rigid undeformable interface. The identified sources, as modelled by
Brochard [13], are: ∑

inte.

sΓCP I
= sNeu − sEmi − sSB

where sNeu is the ionic neutralisation source term, sEmi and sRay,cat are the thermoionic emission and
Stefan-Boltzmann (see equations (2.66), (2.69)) sink terms. The electric heat terms are functions of electric
current density, as presented in the following:

sNeu = jIonVi sEmi = je−Wcat
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where Vi and Wcat are the ionisation potential and the cathode work function, respectively. The ionic
current jIon and emitted current je− are calculated in the following manner:

je− = jCPI − jIon

jRD = ArT
2 exp

(−Weff

kBT

) jIon = max(jCPI − jRD, 0)
jCPI = σ∗∇ϕ · n

where Ar is the Richardson constant, Weff the effective work function of the cathode and kB Boltzmann’s
constant and they are given in appendix A. Thus, equation (2.72) becomes:

0 = (qarc − qcat) · n+ jIonVi − je−Wcat − ϵσB(T − T∞)4 (2.73)

Anode-plasma interface:
Similarly to the CPI, the continuity of the thermal field based on the LTE hypothesis is first addressed,
where temperature continuity, using both the temperature and enthalpy variables becomes:

TΓarc =
[ ∫ h

href

1
cp(T )dh

]
Γano

+ Tref (2.74)

where href is an arbitrary reference enthalpy calculated at some reference temperature Tref . Next, the flux
condition is expressed by applying the Gaussian pillbox method as was previously demonstrated, which
transforms equation (2.63) into:(

(ρu · cpT ) · n
)
arc

−
(
(ρv · h) · n

)
ano

= (qarc − qano) · n+
∑
inte.

sΓAP I
(2.75)

It is once more crucial to remark that the advection terms at the left hand side of equation (2.75) invoke
the kinematic interface relation from equation (2.37). The advection terms in the flux condition are thus
critical if there are sources or sinks in the mass balance of the system. With no mass sources nor sinks
considered in this work, the left hand side is null. This simplifies equation (2.75) to:

0 = (qarc − qano) · n+
∑
inte.

sΓAP I
(2.76)

where the identified source terms are: ∑
inte.

sΓAP I
= sAbs − sSB

where sAbs is the electronic absorption term and sSB the Stefan-Boltzmann radiation term (see equations
(2.66), (2.69)). The electronic absorption term is calculated in the following manner:

sAbs = jAPIWano

for jAPI = −σ∗∇ϕ · n

where Wano is the work function of the anode and is given in appendix A. Thus equation (2.76) becomes:

0 = (qarc − qano) · n+ jAPIWano − ϵσB(T − T∞)4 (2.77)



where qarc = −λ∇T and qano = −λ∇ h
cp

, thus allowing for an interface relation consistent with the mixed
variable approach of this section.

2.6 Summary

The modelled electrodynamics and conservation laws that capture the dominant phenomena at play in the
TIG system were presented in this chapter. The models were discussed as they apply for volume elements,
while their mappings to the cathode-arc and anode-arc interfaces were derived. Furthermore, the relevant
generic boundary conditions for each model were detailed.

The used electrodynamic model respects the simplified LTE and continuum hypotheses. This model
captures the dominant electromagnetic phenomena that occur at the mesoscopic scale. This approach
allows, in a simplified manner, to calculate both the Joule effect and the Lorentz force in the TIG system.
This is crucial because both the Joule effect and the Lorentz force are the dominant heat and momentum
sources in the arc-plasma.

The models used for the momentum and mass conservation laws in both the arc-plasma and the weld
pool allow for the resolution of the dominant fluidic effects which are important for the capture of thermal
effects in the global model. Both the kinematics and dynamics at the arc-pool interface are formally derived
and presented, because they manifest as the dominant driving mechanisms in the pool. Therefore, ensuring
that both the arc shear and Marangoni effect are properly manifest in the dynamic interface condition is
paramount. Furthermore, the generalised interface conditions bring into context the importance of non-
negligible advective terms that can govern the interface thermo-hydraulics if source/sink terms are added
to the system.

The modelling of the energy conservation law in both the arc-plasma and the workpiece was presented
in a manner compatible with both conjugate heat transfer and phase change phenomena. Effectively, a
mixed variable formulation was presented in which the temperature variable was used for the cathode and
arc-plasma model and the enthalpy variable for the workpiece model. Furthermore, the interface conditions
that incorporate the equivalent electronic heat sources at the interfaces in a manner consistent with the
mixed variable method were presented.

In this chapter the relevant physical phenomena pertaining to the TIG process were presented in their
mathematical form. To solve the equations of the global model, numerical methods, coupling techniques
and algorithms are needed. The development and implementation of these methods are detailed in the
following chapter.
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3.1 Introduction

This chapter discusses the numerical methods, coupling techniques and algorithms as they are implemented
and constructed for use in this work. The chapter begins with geometric preliminaries, discussing the
numerical construction of certain aspects in the TIG system; and follows with section 3.3 which briefly
presents the different finite element methods (FEM) used to treat the different modelled equations in this
work; then follows with section 3.4 which briefly presents the coupling techniques and solution algorithms
used to build the multiphysics algorithm implemented in this work. Next, a discussion of the construction
of a mixed heat equation algorithm is presented in section 3.5.1, where the temperature based heat equation
and the enthalpy based one are coupled. Section 3.6 discusses the implementation of a Dirichlet-Neumann
algorithm to solve the rigid, partitioned fluid system, and a quasi-monolithic algorithm used to solve the
rigid fluid system. Moreoever, the treatment of the deformation at the fluid interface is discussed. Before
concluding the chapter, the criteria used to asses the convergence of a stationary solution are presented, as
they are defined for both 2D and 3D simulations. The chapter is concluded with a flowchart, representing
the multiphysics algorithm, coupling all physics modules, as used in this work.

3.2 Geometric preliminaries

To facilitate the numerical discussion performed in this chapter, key geometric aspects are presented and
are based on the geometric discussion of section 2.2 of the previous chapter. The ΓAPI , being a subdomain
where two fluids interface, is further decomposed into two subdomains. Thus, ΓAPI is numerically treated
in the following manner:

ΓAPI = Γplaapi ∪ Γanoapi

where Γplaapi and Γanoapi are geometrically overlapping subdomains that are numerically stored as separate
objects in the computer program. These different numerical objects make up the interfacial nodes of the
mesh of their respective subdomains Ωpla and Ωano. A simplified representation of the geometric structure
of the system is presented in figure 3.1. The meshing method of overlapping the interfacial nodes at ΓAPI is
also represented where the geometrically overlapping nodes can be assigned to different arbitrary functions.
The schematised functions f = [f1, f2, f3, ..., fN ] and g = [g1, g2, g3, ..., gN ] represent any mix of functions
defined at the nodes at either side of the interface, that can have some linear relationship. The linear
constraint can be prescribed using the Lagrange Multiplier technique [64]. Moreover, the interfacial nodes
at either the Γplaapi or the Γanoapi side can be loaded with surfacic source or sink terms.

3.3 A brief discussion of the chosen numerical methods

This section presents the basics of the chosen computational methods, used to solve for different TIG
welding configurations. A brief discussion of the Galerkin FEM method used to solve for the electric,
thermal, momentum and mass equations is presented, followed by the Least Squares FEM (LSFEM)
method used to solve the magnetic equations. Finally, the different stabilisation methods used for certain
mathematical operators are briefly presented.
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Figure 3.1: Simplified schematic of constituents of global domain ΩTIG.

3.3.1 The Galerkin FEM approach

In an attempt to be as concise as possible, the details of the Galerkin FEM discretisation and the variational
weighting of the residual vector are assumed trivial. This allows for a more direct discussion of the way
the residual vectors are constructed for each of the partial differential equations (PDE) of the physical
model. The interested reader is referred to the texts by Reddy [36] and Kuzmin [50] for the theoretical
details of the Galerkin FEM method. Thus, we can consider that the general form of the weak variational
formulation of the residual vector Rψ is as it appears in the following algebraic system for some variable
ψ, defined over an arbitrary mesh:

{Rψ} = 0 = [M ]{ψ} − {F } (3.1)

where [M ] and {F } are the total matrix and the force vector, respectively. The total matrix is the discrete,
variational form of the differential operators and can be made up of the advection, convection, gradient
and/or Laplacian operators. Depending on the discretised PDE, the total matrix can be a function of the
primal variable ψ itself, and/or can be dependent on temperature. In fact, the modelled PDEs in this thesis
are strongly non-linear, and so a linearisation step can be necessary before solving for ψ; this is discussed
in section 3.4. As for the boundary counditions of the problem: a) the Dirichlet type conditions are applied
as equivalent fluxes in the {F } term at the nodes across the ∂ΩD of the mesh using the Lagrange Multiplier
technique1 [64], and b) Neumann type conditions are applied as surfacic fluxes in the {F } term at the
nodes pertaining to the ∂ΩN of the mesh. First, Nψ ∈ H1

0, which means that the interpolation functions
Nψ are square integrable and are null at boundaries Nψ|Γ = 0. The form of equation (3.1) as it is set up
for the electric, heat transfer and fluid dynamics models is thus presented in the following:

1An application of this technique is presented in section 3.6.2.1
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1. The electric model:
The electric model, based on equation (2.1), in its discrete variational form, manifests as:

[M ]{ϕ} − {F} = 0 = {R}ϕ ≡
∫

Ω
(σ∗∇ϕ) · (∇Nϕ) dΩ −

∫
∂Ωimp

(jimp · n)(Nϕ) d∂Ωimp (3.2)

where {F} are the Neumann boundary conditions imposed as equivalent fluxes. System (3.2) is
weakly non-linear2, and so it requires coupling to the thermal equation and linearisation before
solving for {ϕ}. Note that in the Ωpla, the σ∗ in the direct vicinity of ΓCPI and ΓAPI is assigned the
conductivity values as they are calculated at a δlcat = 0.1 mm and δlano = 0.4 mm Eucledian distance
from the respective interfaces, regardless of the temperature field calculated at T (r < δlcat,ano) and
of the meshing in that zone. This method is adapted from Lowke [52] and is schematised in figure
3.2, representing how σ∗ is calculated in the vicinity of the ΓCPI . The same mathematical operation
is applied in the plasma in the vicinity of the ΓAPI interface.

Figure 3.2: Visualisation of how σ∗ is calculated in the plasma in the vicinity of the ΓCPI interface.

2. Conjugate heat transfer model:
The conjugate heat transfer model, based on equations (2.56), (2.57) and (2.63), modifies system
(3.1), to manifest as:

[M(ρ, cp,u,v, λ)]{T, h} = {F} (3.3)

where the total matrix [M(ρ, cp,u,v, λ)] and the primal variables {T} and {h} are defined in the
cathode/arc and the anode subdomains, respectively. The fluxes {F} are domain dependent as per
the different sources, sinks and boundary conditions as detailed in section 2.5. I note that for brevity
the Dirichlet boundary conditions are not included in the residuals. The system is strongly non-linear,
and thus requires linearisation before solving for {T} and {h}. Nonlinear system (3.3) depends on
Ωcat, Ωpla and Ωano in the following manner:

2The electric conductivity σ∗ is a function of temperature T , and T is a function of voltage ϕ.
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(a) in Ωcat:
the primal variable is the temperature variable, {T}, and the residual looks like:

0 = RT =
∫

Ωc

(λ∇T ) · (∇NT ) dΩc −
∫

Ωc

(
(σ∇ϕ) · ∇ϕ

)
(NT ) dΩc

−
∫

Γcpi

(
jIonVi − je−Wcat − ϵσB(T 4 − T 4

∞)
)
NT dΓcpi

(3.4)

(b) in Ωpla:
the primal variable is the temperature variable, {T}, and the residual looks like:

0 = RT =
∫

Ωp

(ρcpu∇T )NT dΩp +
∫

Ωp

(λ∇T ) · (∇NT ) dΩp

−
∫

Ωp

(
(σ∇ϕ) · ∇ϕ

)
(NT ) dΩp +

∫
Ωp

(4πϵn)NT dΩp

(3.5)

(c) in Ωano:
the primal variable is the enthalpy variable, {h}, and the residual looks like:

0 =Rh =
∫

Ωa

(ρv∇h)Nh dΩa +
∫

Ωa

(λ∇T ) · (∇Nh) dΩa −
∫

Ωa

(
(σ∇ϕ) · ∇ϕ

)
(Nh) dΩa

−
∫

Γapi

[
(jAPIWano) − ϵσB(T 4 − T 4

∞)
]
Nh dΓapi −

∫
∂Ωconv

hconv(T − T∞)Nh d∂Ωconv

(3.6)

To stabilise the advection terms in the numerical model, a Streamline Upwind Petrov-Galerkin
(SUPG) [35] numerical diffusion term is added to the residuals. However, for brevity the term is
not explicitly shown. Furthermore, the linearisation method and the treatment of the conjugate heat
transfer problem with different primals {T} and {h} is discussed in sections 3.4 and 3.5.1, respectively.

3. Momentum and mass transfer model:
The momentum and mass transfer model, based on equations (2.20), (2.21), (2.22) and (2.23), mod-
ifies system (3.1), to manifest as:

[M(ρ,u,v, µ)]{u, P,v, p} = {F } (3.7)

where system (3.7) combines the momentum and mass conservation equations and is domain depen-
dent, but is undefined for the Ωcat domain as it is modelled as a solid. Thus, nonlinear system (3.7)
depends on Ωpla and Ωano in the following manner:

(a) in Ωpla:
the primal variables are the velocity and pressure variables, {u} and {P}, and the residual looks
like:

0 = Ru =
∫

Ωp

(ρu · ∇u) · (Nu) dΩp +
∫

Ωp

µ

[(
∇u+ ∇ut

)
:
(
∇Nu + ∇N t

u

)]
dΩp

−
∫

Ωp

2
3µ(∇ · u)(∇ ·Nu) dΩp −

∫
Ωp

(
(−σ∇ϕ) ∧B

)
·Nu dΩp −

∫
Ωp

P (∇ ·Nu) dΩp

(3.8)
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0 = RP =
∫

Ωp

(∇ · u)NP dΩp +
∫

Ωp

(d(ln ρ)
dT

∇T · u
)
NP dΩp (3.9)

(b) in Ωano:
the primal variables are the velocity and pressure variables, {v} and {p}, and the residual looks
like:

0 = Rv =
∫

Ωa

(ρv · ∇v) · (Nv) dΩa +
∫

Ωa

µ

[(
∇v + ∇vt

)
:
(
∇Nv + ∇N t

v

)]
dΩa

−
∫

Ωa

(
(−σ∇ϕ) ∧B

)
· (Nv) dΩa −

∫
Ωa

ρgβ(T − Tref ) ·Nu dΩa

−
∫

ΓAP I

( dγ
dT

∇sT ) · (Nv) dΩa −
∫

Ωa

p(∇ ·Nv) dΩa

(3.10)

0 = Rp =
∫

Ωa

(∇ · v)Np dΩa (3.11)

To construct a stable velocity-pressure coupling scheme in the above residuals, either:

i) the chosen vector spaces for the velocity and pressure variables respect the Ladyzhenskaya-
Babuska-Brezzi condition [50, 36], where the pressure variable has a discretisation order smaller
than that of the velocity variable, where for any mesh element:

uh =
m∑
i

uiNu,i Ph =
n∑
i

PiNP,i (3.12)

where Nu,i and NP,i are polynomial functions of different order where n < m; n+ 1 = m;

ii) or they are stabilised with a polynomial pressure projection term based on the work or Dohrmann
[22].

These velocity-pressure considerations are necessary for the stability of the Stokes problem in the
U − P formulation [50]. Furthermore, the advection terms are stabilised with a SUPG term [35].
For brevity, the stabilisers are not explicitly shown in the residuals. Furthermore, the linearisation
method and the treatment of the fluid coupling method between the arc-plasma and the weld pool
is discussed in sections 3.4 and 3.6, respectively.

3.3.2 The LSFEM approach

The LSFEM method is a technique generally adapted to the resolution of 1st order PDEs, unlike Galerkin
methods. Effectively, using the Galerkin FEM to solve 1st order PDEs, without adding numerical diffusion
can generate non-symmetric matrices with odd-even decoupling, and this leads to oscillatory solutions.
Thus, this motivates the use of the LSFEM technique to solve the magnetostatic model used in this thesis
[36, 38]. Motivating the use of LSFEM, a brief discussion of its advantages are first discussed and then the
basics of the method are presented.
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3.3.2.1 Advantages of LSFEM for the magnetostatic model

The magnetostatic model used in this thesis, benefits from the LSFEM method for a number of reasons,
and the most relevant are discussed below:

• Gauss’ Law of magnetism, modelled with the ∇ · B = 0 equation is easily incorporated into the
LSFEM formulation of the magnetostatic model. In fact, assuming the redundancy of Gauss’ law3

and thus its omission from a magnetic model, can generate parasitic stationary solutions. Thus, the
ease of incoporation of Gauss’ law in the LSFEM formulation makes the technique attractive [38].

• Although magnetostatic models can use the vector potential A and thus be solved for with the
Galerkin FEM approach (see Nguyen’s thesis for details [60]); it can be suboptimal if the system
is strongly sensitive to the magnetic field B. This is due to B = ∇ ×A , thus any approximated
solution:

Ah ∝ A+O(δrm)

yields:
Bh ∝ ∇ ×A+O(δrm−1)

after differentiation using the ∇× curl operator. O(δrm) is the discretisation error of order δr, which
is the characteristic element size in a mesh. The reduction in the order of precision, going from
m → m − 1, can influence the precision of magnetic field dependent calculations [38]. For example,
the velocity fields of TIG arcs are very sensitive to the Lorentz force, and thus can be consequently
very sensitive to the precision of the magnetic field.

• The use of LSFEM to solve the magnetostatic model generates positive definite and symmetric
matrices, which can be easily treated by linear solvers. Moreover, the generated linear systems, being
stable and non-oscillatory do not require artificial diffusion methods for stabilisation, as is necessary
for advection terms (see section 3.3.1) [36, 38].

3.3.2.2 Basics of the method

Here, the basics of the LSFEM technique are introduced in as concise a manner as possible. The interested
reader is referred to the text by Jiang [38] for more details. The technique consists of treating 1st order
boundary value problems, in the following manner:

Mu = f (3.13)

where M is a 1st order differential operator:

Mu =
nd∑
n=1

Mn
∂u

∂xn
+M0u

3Ampere’s Law is already a system of three equations and three unknowns. Although this is necessary for the determinacy
of an algebraic system, it is not sufficient.
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looking for approximated solutions, and assuming that f ∈ L2(Ω) so that M : U → L2(Ω) and where the
primal variable u is approximated by uh ∈ U :

uh =
M∑
i

uiNi (3.14)

where the trial function Ni ∈ U , and M is the number of nodes in an arbitrary element. Applying equation
(3.14) to equation (3.13), the approximated equation becomes:

R = Muh − f , 0

unless uh = u, the residual R , 0. The LSFEM method, unlike the Galerkin method, looks not to nullify
the weighted residual

∫
ΩRiNj dΩ = 0, rather looks to minimize the squared distance between Muh and

f , in:
I(uh) = ∥R∥2

0 =
∫

Ω
(Muh − f)2 dΩ ⩾ 0 (3.15)

where I(uh) is defined as the functional. A necessary condition for uh to be a root imposing the minimum
of the functional in equation 3.15 is that any perturbation to I(uh) vanishes at uh, in:

lim
δv→0

∂

∂δv
I(uh + δvNi) = 2

∫
Ω

(MNi)T (Muh − f) dΩ = 0

The minimization of the I(uh) functional thus gives an algebraic system of the form:∫
Ω

(MNj)(MNi)ui dΩ =
∫

Ω
(MNj)f dΩ (3.16)

Equation (3.16) is the general form that results from an LSFEM discretization. Thus, the residual to the
magnetostatic equations (2.2) and (2.3) can be expressed as:

0 = RB =
∫

Ω
(∇ ∧B) · (∇ ∧NB) dΩ +

∫
Ω

(∇ ·B)(∇ ·NB) dΩ −
∫

Ω
(−σ∇ϕ) · (∇ ∧NB) dΩ (3.17)

3.4 The multiphysics computational toolbox

The so called multiphysics computational toolbox, as it is defined in this work, is a small kit of coupling
techniques and classic algorithms, that allow for the resolution of the global multiphysics model. The
physical model, constructed for use in this thesis, can be arranged into so called modules. Each module
represents a physical phenomenon, as it is modelled by some set of governing equations. The modules are
grouped and coupled together under a global model. The global multiphysics model consists of a set of
linear and non-linear equations, grouped together by module, and are connected by coupling techniques
and an appropriate solution algorithm. This global model in this work consists of an electric module,
conjugate heat transfer module, magnetic module, and a fluid dynamics module. Moreover, a module can
be further partitioned into submodules, where in this work, submodules are domain dependent. For exam-
ple, as discussed in detail in section 3.6.2.1 and 3.6.2.4, the fluid dynamics module can be split into three
submodules, where each submodule is defined at a specific domain. Both modules and submodules commu-
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nicate and transmit data4 inter-modularly, so as to mathematically couple the modules and eventually find
stationary solutions to the physical model for different TIG welding configurations. Figure 3.3 schematises

Figure 3.3: Schematic of constructed modules of the global model. Each module transmits physically
interpretable data in the form of velocities, temperatures, forces, fluxes etc....

the interactions between the different modules and the arrows represent the inter-module coupling and the
direction of the coupling. A brief discussion of the coupling techniques and solution algorithms used in this
thesis are presented in the following subsections.

3.4.1 Coupling techniques

The coupling techniques discussed in this subsection are by no means comprehensive, and serve only to
briefly present the methods used in this thesis. The interested reader is referred to Patricot’s [63] and
Viot’s [88] theses, which offer more generalised presentations of the mathematical techniques used to
couple different modules together. The coupling techniques used in this work are either a variant, and/or
a combination of the Gauss-Seidel and the Newton-Raphson methods. The two methods are presented in
the following:

1. Gauss-Seidel:
The Gauss-Seidel method is a simple method, easy to implement, and is a method that weakly cou-

4Data means mathematical information, in physically interpretable quantites, i.e: through velocities, temperatures, forces,
fluxes etc....
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ples5 two (or more) modules together. This coupling technique is widely used in the literature, where
once the coupling is ensured and the mathematical variables are properly transmitted, the coupled
system is iterated until convergence is achieved6.

With k representing the iteration number; and starting from an initial guess ψ0
1, ψ0

2, . . . ,ψ0
l the

equations are iterated in the following manner, for l different modules:

ψk1 = f1(ψk−1
1 ,ψk−1

2 , . . . ,ψk−1
l )

ψk2 = f2(ψk1,ψk−1
2 , . . . ,ψk−1

l )
...

ψkl = f l(ψk1,ψk2, . . . ,ψk−1
l )

(3.18)

The stopping criterion is generally based on increment size where ϵk1 =
∥∥∥ψk1 −ψk−1

1

∥∥∥, ϵk2 =
∥∥∥ψk2 −ψk−1

2

∥∥∥,
. . . , ϵkl =

∥∥∥ψkl −ψk−1
l

∥∥∥, and convergence is assumed7 once ϵkl → 0. Coupling algorithm (3.18) gener-
ally converges to a solution if the initial guesses ψ0

1 . . . ψ0
l are well chosen and within the vicinity of

the roots of the algebraic system [63].

2. Newton-Raphson:
The Newton-Raphson method is a classic method which is commonly used to solve non-linear and
coupled systems. The method has many variants based on approximating the original algorithm, and
can be generally classified as Quasi-Newton methods [88]. The approach is based on a linearisation
of the coupled system of equations and iterating over the generated linear systems until convergence
is achieved. If no approximations to the method are undertaken, the coupling is classified as globally
monolithic or strong, where the algebraic systems and their couplings are solved simultaneously. The
original method applied to a multiphysics model is applied to an algebraic system of equations similar
to equation (3.1), in the following manner:

for any global set of variables ψm, operators Mmn(ψn) and duals Fm, for l different modules,F 1
...
F l

−

M11 . . . M1l
...

. . .
...

Ml1 . . . Mll


ψ1
...
ψl

 =

R1
...
Rl

 =

0
...
0

 (3.19)

and solving for the roots of system (3.19) is in most cases impossible without linearising it. Applying
a 1st order Taylor Expansion to the multivariable system around the roots ψsol of system (3.19):

{R(ψsol +ψk)} = 0 ≈ {R(ψk−1)} + [Jψ]k−1{ψsol −ψk}

applying recursively the 1st order Taylor Expansion a k number of times, assuming an initial guess
of {ψ0} ≈ {ψsol} − {δψk} − {δψk−1} . . . is not too far away from the roots {ψsol} of system (3.19),

5Weak coupling refers to a coupling where the equations are not coupled and solved simultaneously in the same algebraic
system.

6Or stopped based on a mathematical criterion.
7For badly conditioned systems of equations, the residual of each modelled equation is also required to tend to 0.
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the linearised system, at iteration k, to solve becomes:

[Jψ]k−1{δψ}k = −{Rψ}k−1 (3.20)

where {δψk} = {ψk} − {ψk−1}, and where the global Jacobian matrix [Jψ] is defined as:

[Jψ] =

T11 . . . T1l
...

. . .
...

Tl1 . . . Tll

 =


∂R1
∂ψ1

. . .
∂R1
∂ψl

...
. . .

...
∂Rl

∂ψ1
. . .

∂Rl

∂ψl

 (3.21)

where system (3.20) is assumed converged to a root {ψsol} of system (3.19) once {δψk} → 0. The
Tmn are the so called tangent matrix terms.

3.4.2 Solution algorithms

Here a brief discussion of three algorithms that can be constructed with a mix of the different physics
modules and a choice and/or mix of coupling techniques, is presented in the following:

1. Globally monolithic:
The globally monolithic algorithm refers to an algorithm that solves for a stationary solution by
solving for all the modules, defined by their dependent variables ψ = [ϕ, T,B,u] simultaneously.
The nonlinearity of the different modules, requires that the coupled system be solved using the
Newton-Raphson technique. The globally monolithic system to solve will be of the form:

Tϕϕ . . . Tϕu
...

. . .
...

Tuϕ . . . Tuu


k−1


δϕ
δT
δB
δu


k

=


∂Rϕ

∂ϕ
. . .

∂Rϕ

∂u
...

. . .
...

∂Ru
∂ϕ

. . .
∂Ru
∂u


k−1 

δϕ
δT
δB
δu


k

= −


Rϕ

RT

RB
Ru


k−1

(3.22)

Assuming that the boundary and interfacial conditions are included into system (3.22), solving the
linearized system until δψ → 0 is the globally monolithic manner of finding stationary solutions to
TIG welding configurations. However, in practice it is difficult and impractical to create the full
Jacobian at every iteration k. Moreover, inverting the full Jacobian at every iteration k would be a
daunting task for classical solvers, both direct and iterative [16, 88]. Therefore, this algorithm is not
used in this thesis.

2. Partitioned by module:
The modularly partitioned algorithm is one that makes use of the ability of the Newton-Raphson
method to linearise nonlinear and implicit equations, while benefiting from the ease of applicability
of the Gauss-Seidel technique. This method has a convergence trend that is weaker than the globally
monolithic scheme, but is a much more practical algorithm of choice [63]. Here, only the diagonal
terms of the global Jacobian (3.21) are used, and the linearised, simplified system is partitioned by
module into separate linear systems. Finally, the number of linear systems to couple and iterate over
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using the Gauss-Seidel technique is equal to the number of variables to solve for. If ψ = [ϕ, T,B,u],
then dim(ψ) = 4 linear systems are solved for k iterations.

[Tϕϕ]{δϕ}k =
[
∂Rϕ
∂ϕ

]k−1
{δϕ}k = −{Rϕ(ϕk−1, T k−1,Bk−1,uk−1)}

[TTT ]{δT}k =
[
∂RT
∂T

]k−1
{δT}k = −{RT (ϕk, T k−1,Bk−1,uk−1)}

[TBB]{δB}k =
[
∂RB
∂B

]k−1
{δB}k = −{RB(ϕk, T k,Bk−1,uk−1)}

[Tuu]{δu}k =
[
∂Ru
∂u

]k−1
{δu}k = −{Ru(ϕk, T k,Bk,uk−1)}

(3.23)

Assuming that the boundary and interfacial conditions are included into system (3.23), solving the
linearised and partitioned system until the set of all variables ψ → 0 is the modularly partitioned
manner of finding stationary solutions to TIG welding configurations. In fact, this method is funda-
mentally a Gauss-Seidel algorithm, and so it is simple to implement, where the coupling occurs by
simple data transfer between modules. Furthermore, the fact that the method retains the linearisa-
tion capability of the Newton-Raphson method, makes it effective for solving non-linear problems.
The creation and inversion (by direct or iterative methods) of the diagonalised and partitioned tan-
gent matrices is manageable [13, 60]. Therefore, this algorithm is used to couple the different physics
modules used in this thesis. The tangent matrices and the residuals presented in partitioned system
(3.23) are detailed in appendix C. Moreover, a physics module can be further partitioned by domain,
as is performed for the fluid dynamics module in this thesis.

3. Partitioned by domain:
The fluid dynamics module treats a two fluid system, where the two fluids are modelled by different
hypotheses. Furthermore, the treatment of the fluid interface in this thesis, requires that the fluid
dynamics module be solved on a deformable mesh. Additionally, the fluid system can require further
partitioning if the linear systems constructed at each iteration k become too large to be practically
handled by the linear solvers (by direct or iterative methods). Thus, an algorithm that further
partitions a module by domain, is of interest. Partitioning by domain, as it is implemented in this
thesis, is treated and discussed in detail in section 3.6. Figure 3.4 schematises the partitioning by
domain of the fluid dynamics module. The communication of velocities and forces between the
submodules occurs at the partition interface, which for this module, occurs at the ΓAPI interface.
This method also utilises the Gauss-Seidel coupling method, except that the coupling is between
domains and not between modules.

The algorithms and coupling techniques that are discussed above are used to solve the global multiphysics
model in this thesis. Effectively, both the electric and magnetic modules are solved in a straightforward
manner where the linearised system is constructed over the entire TIG domain. As for the conjugate heat
transfer and fluid dynamics modules, they are first further manipulated to account for the coupling of
the different physical models defined for the arc-plasma and the weld pool. The conjugate heat transfer
module accounts for both the electro-thermal phenomena (in the cathode and arc-plasma) and the phase
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Figure 3.4: Fluid dynamics module further partitioned by domain. The arc and pool submodules are con-
nected by interfacial conditions, and after resolution are connected to the interface deformation submodule.

change effects (in the workpiece) in a mixed variable monolithic8 algorithm. This algorithm is detailed
in the following section. As for the fluid dynamics module, two algorithms are implemented, where a
Dirichlet-Neumann and a quasi-monolithic approach are taken (see section 3.6).

Before proceeding I define the term rigid mesh. It refers to the computational domain before the interface
deformation field hz is calculated and applied to the mesh. Due to the partitioned nature of the numerical
approach used in this work, the electric, magnetic, temperature and velocity fields are calculated on a rigid
mesh, that is later deformed, at every global iteration.

3.5 Conjugate heat transfer coupling algorithm

This section discusses the solution methodologies, and the domain/field coupling method used to solve for
the heat and phase change phenomena in the TIG system, as implemented in this thesis. The schemes used
to solve the energy conservation equations in the Ωcat,arc and Ωpool domains are first presented; followed
by a presentation of the coupling scheme used to communicate the temperature approach, used in the arc,
to the enthalpic approach, used in the pool, at the fluid interface at ΓAPI .

3.5.1 Interfacial thermal conditions, a mixed heat equation approach

Resolving the heat field of the arc using the standard temperature approach, and with the heat field of
the workpiece requiring the enthalpic approach to effectively capture the phase change phenomenon, the
arc-pool interface requires careful treatment. The interface between the arc and the workpiece is treated
using equation (2.74). In looking to avoid numerical instabilities, the interface is treated by strongly cou-
pling the arc and pool domains [27], and the energy conservation equations across the ΓAPI interface are
solved monolithically. Before treating the coupling of the interface, the linear systems of the subdomains
in question are presented.

8Monolithic at the domain level, meaning that the the field across the entire spatial domain is solved simultaneously.
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Starting with the heat equations in the cathode and the arc-plasma, equation (3.4) is linearised. The
linearised system treats the temperature as the primal variable, for iteration k and is expressed in the
following:

[TTT ]k−1{δT}k = −{RT }k−1 (3.24)

where [TTT ] represents the temperature tangent matrix, {δT} and {RT } the temperature increment and
residual vectors, defined across the nodes of the meshed cathode and arc subdomains, respectively. As for
the heat equation in the workpiece, equation (3.5) is linearised. The linearised system treats the enthalpy
as a primal variable, for iteration k and is expressed in the following:

[Thh]k−1{δh}k = −{Rh}k−1 (3.25)

where [Thh]k−1 represents the enthalpy tangent matrix, {δh}k and {Rh}k−1 the enthalpy and residual
vectors, defined across the nodes of the meshed workpiece subdomain, respectively. The tangent matrices
of linear systems (3.24) and (3.25) are detailed in appendix C. Linear system (3.24) contains the energy
conservation equations for both the cathode and the arc plasma. Linear system (3.25) expresses the energy
conservation equation as it manifests in its enthalpic form and treats only the workpiece domain. The
boundary conditions of the enthalpy model are assumed included in linear system (3.25). As for the arc-pool
interface ΓAPI , it is treated using the Lagrange Multiplier technique implemented in the Cast εM toolbox
[15, 64]. Thus, the communication between system (3.24) and (3.25) is what is left to treat before solving
for the primal fields {T}k and {h}k. The communication occurs at the interface between the arc and the
workpiece. Figure 3.5 schematises a section of the interface ΓAPI where the {T}Γplaapi

= [T1, T2, T3, ..., TN ]
and {h}Γanoapi = [h1, h2, h3, ..., hN ] fields at their respective arc and anode/workpiece nodes are shown. The

Figure 3.5: Section of ΓAPI interface where interfacial conditions are applied. Domain i represents arc
nodes at Γplaapi, and j anode nodes at Γanoapi and are made up of N interfacial nodes.

coupling of the methods begins by the concatenation of linear systems (3.24) and (3.25). The concatenated
system is thus: [

TTT 0
0 Thh

]k−1 [
δT
δh

]k
= −

[
RT
Rh

]k−1

(3.26)

The concatenation allows the conjugate heat trasfer module to be solved simultaneously, without the need to
transmit temperature or flux fields from one subdomain to another in an iterative manner [16, 27]. However,
linear system (3.26) is ill-posed in its current form due to the temperature and enthalpy equations being
open at their respective Γplaapi and Γanoapi subdomains. Thus, with equation (2.74) as a closure condition,



3.5. CONJUGATE HEAT TRANSFER COUPLING ALGORITHM 55

and in referring to figure 3.5, the interfacial condition interpreted across the plasma and pool domain is:

T ki =
hkj
ckpj

∀ i = j (3.27)

and the associated constraint:

λki,j =
∫

Γi

[(κ∇T ) · n]k dΓi −
∫

Γj

[(
κ∇ h

cp

)
· n
]k

dΓj ∀ i = j (3.28)

where λki,j is the Lagrange Multiplier at the overlapping nodes i = j, which manifests as the sum of reaction
fluxes at i = j, and n the unit normal at its respective node. Appending system (3.26) with conditions
(3.27) and (3.28), the heat transfer scheme to be solved becomes:

[JT,h]k−1{δT, h}k =

TTT 0 1i
0 Thh −1j
1i −1j/cpj 0


k−1 δTδh

λi,j


k

= −

RTRh
0


k−1

(3.29)

where system (3.29) is a well-posed linear system of equations. Note that the interfacial equations (3.27)
and (3.28) are only applied across spatially overlapping nodes. The use of condition (3.27) and constraint
(3.28) strongly9 couples linear systems (3.24) and (3.25) [88]; however, regardless of the monolithic scheme,
the use of different primal variables does not rigidly ensure the continuity of temperature at the interface
as required by equation (2.74). Rather, the coupling relations ensure the continuity of equation (3.27) at
iteration k. This loosely imposed temperature continuity is considered satisfactory because as the global
algorithm converges, relation (3.27) behaves like:

δT ki =
δhkj
ckpj

≈ δT kj

which in the limit10 that k → KGlobal, δT k → ϵ and δhk → ϵ, temperature continutiy at the interface ΓIAP
is assumed. Linear system (3.29) is representative of the coupling algorithm used to solve the heat transfer
module in the arc-pool system. At every global iteration k, the enthalpy field calculated in the anode is
used to calculate the temperature field associated to it. The inverse relation to h =

∫ T
Tref

cpT dT is used
to this end, by simply using the inverse of the h-T relations as extracted from the thermophysical data
set used in this thesis (see appendix A). This amounts to using the calculated enthalpy fields and the T -h
relation, schematised by figure (3.6) to find {Tanode}. Figure 3.6 displays a typical T -h relation to be used in
calculating the temperature field from the enthalpy, by simple interpolation. This methodology allows for
the algorithm to use the fixed mesh at iteration k to identify the pool solidus and liquidus boundaries. The
pool domain is then used to solve the momentum and mass conservation equations in the pool subdomain
[59, 89]. The identification of the pool subdomain is described in the following subsection.

9Allowing for a monolithic approach to the resolution of the energy conservation equations.
10The ϵ at the limit is a predefined convergence criterion assumed to be sufficiently small that errors in precision become

negligible.
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Figure 3.6: Typical temperature-enthalpy relation of an non-isothermal phase change process.

3.5.2 Identifying the pool boundaries

The mushy zone in the workpiece is of high importance as it is the zone where the latent heat of the melt
pool is either captured (during melting) or released (during solidification). With the Stefan number of a
typical welding process is of Ste ∼ 1 (see section 1.3), the treatement of the mushy zone can significantly
impact the temperature field in the concerned workpiece. A typical finitely sized melt pool is bounded
by a solid boundary where the pool velocities approach the velocity of the solid boundary. Without loss
of generality, the pool velocity approaches vΓs = 0 m·s−1 as it solidifies in the mushy zone. The no-slip
condition applied at the solid boundary implies that the mushy zone functions as a transition zone for the
momentum equations [13, 89, 68, 61, 84]. Therefore, the identification of the pool as a subdomain is set to
be a function of the anode temperature field and the velocity field as they are calculated in a simulation.
Thus, the pool is numerically defined using the two following criteria:

if Ωpool ⊂ ΩAnode ∀ Ωpool ∪ ΩAnode = ΩAnode then

The temperature based criterion:

∀ xpool ∈ Ωanode and if Tpool > Ts ⇒ Tpool = f(xpool)

The velocity based criterion:

∀ lpool ∈ Ωpool and if ∥vpool∥ > max(∥vpool∥) × 10−4 ⇒ vpool = g(lpool)

Then Ωpool is defined at xpool ∪ lpool = rpool where rpool ∈ Ωpool. Once the pool domain rpool is identified,
it can be transferred to the pool momentum and mass transfer module in the global algorithm, and this
process is reiterated KGlobal times. The final subsection in this section presents a proof of concept that
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shows the numerical stability of the mixed thermal approach.

3.5.3 A note on the stability of the interfacial temperature

The stability of monolithic approaches to the conjugate heat transfer problems for complex systems is well
known and the reader is referred to the article by Giles [27] for a formal discussion of interfacial stability. In
an effort to bypass any possible instabilities related to domain-decomposition or partitioned methods, the
arc and anode heat equations are solved monolithically in the globally partitioned multiphysics algorithm
of this work. Moreover, the monolithic choice for the conjugate heat transfer module of this work is suitable
because the constructed linear systems built at every global iteration k are not as massive as those of a
momentum and mass transfer problem, even when solving for 3D problems [78]. Therefore, the monolithic
conjugate heat transfer approach in this thesis is treatable by the use of classic linear system solvers (Crout
or BICGStab). Linear system (3.29) represents the entirety of the conjugate heat transfer problem solved
monolithically in this work; however, the mixed thermal approach used in this thesis is slightly different to
the classic approaches tackled in the literature [27, 88]. Generally, only one primal variable is used to solve
a conjugate heat transfer problem as opposed to the two Tcat∪pla, hano used in this work. Furthermore,
although a detailed theoretical analysis of the expected stability of the mixed thermal approach is out of
the scope of this text, a sample axisymmetric TIG Spot simulation is simulated with this algorithm. The
welding parameters of the simulated configuration are, an electric intensity of I = 75 A for a thoriated
tungsten cathode, an argon arc and a 316L steel. As seen in figure 3.7.a) the convergence of the temperature
profiles (at ≈ 2000 K) at the Γplaiap and Γanoiap zones is achieved after only k ≈ 50 global iterations. This
indicates that the temperature continuity condition of perfect thermal contact is approached, see equation
(2.74). Furthermore, the global algorithm convergence plot is presented in figure 3.7 (b), where all primal
fields show a convergent trend. Thus, the reader is provided with a preliminary proof of robustness of the
monolithic, mixed thermal approach developed in this thesis.
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Figure 3.7: (a) Maximum temperature at Γplaiap (black plot) and at Γanoiap (red plot) interfaces as functions
of iteration number. (b) Convergence plot of all variables of sample simulation.
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3.6 Momentum and mass transfer coupling algorithm

This section discusses the solution methodologies, and the domain coupling methods implemented in this
thesis, used to solve the fluid dynamics module in the arc-pool system. The schemes used to solve the
momentum and mass equations in the Ωarc and Ωpool domains are first presented; followed by a presentation
of the coupling schemes used to communicate the kinematic and dynamic interactions at the fluid interface
at ΓAPI .

3.6.1 The algebraic systems of equations

Focusing on the fluidic effects only in the arc and pool subdomains, the following discussion presents the
linearised algebraic systems that numerically treat the momentum and mass transfer equations in their
respective subdomains.

3.6.1.1 The arc scheme

The arc, being modelled as a dilatational fluid, has a linearised system of equations that is different from
that of the pool. Linearising equations (3.8) and (3.9), the algebraic system solved at every global iteration
k is the following:

[Ju,P ]k−1{δ(u, P )}k = −{Ru,P }k−1 (3.30)

where [Ju,P ] represents the approximated Jacobian matrix, {δ(u, P )} and {Ru,P } the velociy/pressure
increment, and the residual vectors respectively, as they are defined across the nodes of the meshed Ωarc

subdomain. The chosen scheme is based on direct U − P coupling, solving directly for the velocity and
pressure fields simultaneously [13]. The linear system for the arc fluid equations is comprised of the
following scheme, expanding equation (3.30):[

Tuu TuP
TPu 0

]k−1 [
δu
δP

]k
= −

[
Ru
RP

]k−1

(3.31)

where the details of the different tangent matrices are found in appendix C. The boundary conditions are
assumed included in linear system (3.31) and are not detailed for brevity.

3.6.1.2 The pool scheme

The weld pool being modelled as an incompressible fluid has a linearised system different than that of the
arc. Linearising equations (3.10) and (3.11), the algebraic system solved at every global iteration k is the
following:

[Jv,p]k−1{δ(v, p)}k = −{Rv,p}k−1 (3.32)

where [Jv,p] represents the approximated Jacobian matrix, {δ(v, p)} and {Rv,p} the velociy/pressure in-
crement, and the residual vectors respectively, as they are defined across the nodes of the meshed Ωpool

subdomain. The chosen scheme is also based on direct U −P coupling [60]. The linear system for the pool
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fluid dynamics equations is comprised of the following scheme, expanding linear system (3.32):[
Tvv Tvp
Tpv 0

]k−1 [
δv
δp

]k
= −

[
Rv
Rp

]k−1

(3.33)

where the details of the different tangent matrices are found in appendix C. The boundary conditions are
assumed included in linear system (3.33) and are not detailed for brevity.

3.6.2 Coupling schemes at the fluid interface

The fluid interface at the ΓAPI subdomain is a zone where the kinematic and dynamic conditions are
imposed. These conditions allow for the transfer of physical quantities between the arc and the pool and
are necessary for the mathematical coupling of the algebraic systems (3.31) and (3.33). The two coupling
methods studied in this work are the Dirichlet-Neumann method11 and a quasi-monolithic method [78].
The coupling methods are applicable to the two interface hypotheses studied in this thesis, the fixed and
deformable interface hypotheses. In the following discussion, the details of the coupling techniques for a
rigid mesh calculation at every global iteration k are presented first, and then followed by a discussion of
the treatment of the fluid interface deformation.

3.6.2.1 The Dirichlet-Neumman algorithm

The Dirichlet-Neumann coupling algorithm is a classic method, adapted from the literature on numerical
fluid structure interaction and conjugate heat transfer [78, 49, 16, 27]. The method consists of decomposing
the fluid domain into two partitioned subdomains ΩArc ∪ Ωpool = Ωfluid, separated by the interface ΓAPI ;
and where each partition ΩArc and Ωpool is associated to a separate calculation step. Thus, the coupling
scheme consists of a total of two steps, where information communicated between the arc and pool cal-
culation steps are in the form of Dirichlet and Neumann conditions, respectively. To ensure the stability
of the partitioned scheme, the Dirichlet condition (an imposed velocity field) is applied on to the Γplaapi
subdomain, while the Neumann condition (an imposed stress field) is applied to the Γanoapi subdomain of
the ΓAPI interface. A formal discussion of the stability of the scheme is out of the scope of this work, but
the interested reader is referred to [16, 27] for further details. Referring to figure 3.8 the solution strategy
is the following:

Figure 3.8: Section of ΓAPI interface where Dirichlet-Neumann coupling is applied. Domain i represents
arc nodes at Γplaapi, and j anode nodes at Γanoapi and are made up of N interfacial nodes.

11Essentially a type of Gauss-Seidel scheme, see [49, 63]
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1. The arc fluid system is appended, at its interfacial nodes, by mapping the velocity values from
iteration k−1 from Γanoapi to Γplaapi at iteration k; and applying the mapped velocities like Dirichlet
boundary conditions using the Lagrange Multiplier technique [64]. Figure 3.9 schematises the applied
velocity mapping, with the red arrows representing the mapped Dirichlet conditions.

∀ i, j ∈ [1, N ] ∧ ∀ i = j ⇒ ∃ rj ∈ Γanoapi ⇒ uki = v(rj)k−1 (3.34)

αki =
∫

Γi

[−P + µ(∇u+ ∇Tu− 2
3∇ · uI) · n]k dΓi (3.35)

Appending equations (3.34) and (3.35) to linear system (3.31), the first linear system to solve in this

Figure 3.9: Domain i represents arc nodes, and j anode nodes for all N nodes at the interface. Blue
arrows represent translation of calculated αki forces from Γplaapi to Γanoapi. Red arrows represent inverse
translation for velocities vkj .

coupling scheme becomes (where I3 is a 3 × 3 identity matrix):Tuu TuP I3,i
TPu 0 0
I3,i 0 0


k−1 δuδP

αi


k

= −

RuRP
ui


k−1

(3.36)

2. Once linear system (3.36) is solved, the calculated forces from the arc are translated and transmitted
to the pool fluid dynamics scheme, using the Lagrange Multipliers αki that were solved for. Figure
3.9 represents a visualisation of the applied reaction force mapping, schematised by the blue arrows,
representing the transmitted forces. The translation of the fields is applied numerically in the com-
puter algorithm, where the fields are translated from the Γplaapi nodes to the Γanoapi nodes. Where
for the rigid pool system12, the mapped and transmitted arc forces and the impermeability condition,
from equation (2.43), at the interface are:

∀ i, j ∈ [1, N ] ∧ ∀ i = j ⇒ ∃ ri ∈ Γplaapi ⇒ F k
τ,j = −α(ri)k · τ kj (3.37)

vkj · nkj = 0 (3.38)

βknj
= nkj ·

∫
Γj

(n · [−p+ µ(∇v + ∇Tv) · n])k dΓj (3.39)

where nki and τ ki are the unit normal and tangent vectors at node i at iteration k. Applying the forces
12Before the interface deformation treatment.
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from equation (3.37) to linear system (3.33) similar to Neumann conditions; and appending linear
system (3.33) with equations (3.38) and (3.39); the second linear system to solve in this coupling
algorithm becomes: Tvv Tvp nj

Tpv 0 0
nj 0 0


k−1  δvδp

βnj


k

= −

Rk−1
v + F k

τ,j

Rk−1
p

0j

 (3.40)

3. The solution strategy discussed above presents the Dirichlet-Neumann method as it occurs at every
iteration of the rigid interface, fluid dynamics module. To help with the convergence of the non-slip
conditions at every global iteration k, a subcycling loop is applied to the scheme, where the coupling
occurs at subiterate m. The algorithm is schematised in flowchart 3.10 below: The subcycle counter

Figure 3.10: Steps required to solve the Dirichlet-Neumann coupling algorithm. Superscript m is the
subcycle iteration counter.

m is limited to a maximum of 3 iterations, to help limit redundant calculations, and move on to the
next physics modules in the global algorithm. Thus, solving for stationary solutions, the limit is set
so that as k → KGlobal, δuk → ϵ and vk → ϵ, satisfies and ensures a stationary solution, and the
kinematic and dynamic conditions at the interface ΓIAP .

3.6.2.2 A note on the stability of the interfacial velocities

The presented Dirichlet-Neumann scheme has been tested for stability for a wide range of welding config-
urations13, and the velocities tend to converge to the no-slip conditions after a couple of iterations. Figure
3.11 presents the maximum velocity at Γplaapi and Γanoapi as they converge rapidly with respect to the
algorithm global iteration number k. The displayed results are extracted from the same sample simulation
discussed in section 3.5.3. The convergence of the velocity profiles (at ≈ 0.175 m·s−1) at both the Γplaapi

13Details not discussed here.
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Figure 3.11: Maximum velocities at Γplaiap (black plot) and at Γanoiap (red plot) interfaces as functions of
iteration number.

and Γanoapi subdomains is acheived quite rapidly, with their error dropping below 1 % in the first couple of
iterations. This provides the reader with a preliminary proof of the effectiveness of the Dirichlet-Neumann
coupling scheme in solving the momentum and mass transfer problem presented in this thesis.

3.6.2.3 The quasi-monolithic algorithm

The quasi-monolithic coupling scheme is a more natural14 scheme to solving the two-fluid problem. This
approach strongly imposes the interfacial conditions at the ΓAPI interface. The scheme enforces the no-
slip, see equation (2.44), and impermeability conditions at every iteration k, unlike the Dirichlet-Neumann
scheme that imposes them weakly, and that can require subcycling to satisfy the physical interfacial con-
ditions. To apply the no-slip, and the arc and pool impermeability conditions numerically, the Lagrange
Multiplier technique is used [64], in:

No-slip:

uki − vkj = 0 (3.41)

λki,j =
∫

Γi

[−P + µ(∇u+ ∇Tu− 2
3∇ · uI) · n]k dΓi −

∫
Γj

[−p+ µ(∇v + ∇Tv) · n]k dΓj(3.42)

Impermeability:

vkj · nkj = 0 (3.43)

ζknj
= nkj ·

∫
Γj

(n · [−p+ µ(∇v + ∇Tv) · n])k dΓj (3.44)

14The use of the word natural here is to describe a more mathematically consistent approach, where the entire fluid domain
is treated as one mathematical system rather than as two, as is done in partitioned methods.
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Assembling the monolithic system, first, linear systems (3.31) and (3.33) are concatenated.
Tuu TuP 0 0
TPu 0 0 0

0 0 Tvv Tpv
0 0 Tvp Tpp


k−1 

δu
δP
δv
δp


k

= −


Ru
RP
Rv
Rp


k−1

(3.45)

The concatenation allows the momentum and mass conservation laws of the entire rigid fluid domain to
be solved simultaneously, without the need to transmit velocity and force fields from one subdomain to
another [78, 49, 16, 88]. Closing the system of equations in system (3.45), equations (3.41), (3.42), (3.43),
(3.44) are appended to it; where the monolithic scheme for the arc-pool fluid system for a rigid interface
becomes, at iteration k:



Tuu TuP 0 0 I3,i 0
TPu 0 0 0 0 0

0 0 Tvv Tpv −I3,j nj
0 0 Tvp Tpp 0 0
I3,i 0 −I3,j 0 0 0
0 0 nj 0 0 0



k−1 

δu
δP
δv
δp
λi,j
ζnj



k

= −



Ru
RP
Rv
Rp
0i,j
0j



k−1

(3.46)

Linear system (3.46) represents the monolithic scheme as it is applied at at every iteration for the rigid
interface, fluid dynamics module. Thus, solving for stationary solutions, the limit is set so that as k →
KGlobal, δuk → ϵ and vk → ϵ, satisfies and ensures a stationary solution.

A note on stability:

As per the literature, monolithic methods have no instabilities associated with interface treament. This
makes the stability of the spatial discretisation of the system both necessary and sufficient in ensuring the
numerical stability of the algorithm. This is unlike Dirichlet-Neumann coupling, where stability depends
on spatial discretization, the coupling direction and other criteria [16, 27]. The reader might thus assume
that monolithic methods are to be preferred, however, monolithic methods can easily grow in degrees of
freedom and can rapidly exhaust linear solvers [88, 78, 16]. Partitioned methods like the implemented
Dirichlet-Neumann method are thus useful, but should be tested for stability thoroughly before use.

A note on the rigid interface and quasi-monolithicity:

The discussion up until now has only presented the treatment of the fluid dynamics problem as it occurs
for a rigid mesh. That is, both the Dirichlet-Neumann and the quasi-monolithic algorithms presented in
this section couple the arc and pool domains without considering the deformation at the interface. This,
motivates the presentation of the following brief discussions:

• Simulating welding using the fixed interface hypothesis, the unit normals n used in equations (3.40)
and (3.46) calculated at every iteration k15 need only be assigned the initial rigid interface orientation,
ninitial = (nx,0, ny,0, nz,0). No treatment of the rigid interface dynamics, nor deformation vector is
thus needed.

15Or iteration m if subcycling occurs.
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• The coupling algorithms that have been presented until now implement the coupling at the rigid
ΓAPI interface. This is because the treatment of the deformable interface problem in this thesis
is performed in a partitioned manner. This brings into context the notion of quasi-monolithicity
when working with deformable interfaces [78]. Effectively, the calculation on the rigid fluid mesh is
performed monolithically, where the interfacial forces are then transferred to the interface deformation
calculation.

3.6.2.4 Fluid interface deformation

The way the fluid interface at ΓAPI is treated in this thesis is based on the trial method16, which is
essentially a partitioned method [19]. Being a partitioned method, this approach is compatible with the
coupling schemes implemented in this thesis. The trial method consists of first solving for the Navier-
Stokes equations on a rigid mesh, and then solving for the interface deformation field hz, by looking for
its equilibrium state. Once hz is calculated it is used to deform the arc and pool meshes in a regularised
manner. It is noteworthy to state that the interface deformation is calculated at Γanoapi nodes and then
mapped to the Γplaapi nodes (see figures 3.8, 3.9). The following cases discuss the arc and pool reaction
forces, as per the coupling scheme is used:

• Dirichlet-Neumann:
If linear systems (3.36) and (3.40) are solved for, the translation of the arc forces at Γplaapi to Γanoapi
is done in the same way represented by figure 3.9. The arc and pool forces at node j becomes:

F k
arc,n,j = −α(ri)k · nkj

F k
pool,n,j = −βknj

• Quasi-monolithic:
If linear system (3.46) is solved for, the translation of the arc forces at Γplaapi to Γanoapi is done in
the same way represented by figure 3.9, the arc and pool forces at node j becomes:

F k
arc,n,j = −(λ(rj)k · nkj ) + ζknj

F k
pool,n,j = −ζknj

where once F arc,n,j and F pool,n,j are calculated, they are added to the sum of normal forces at ΓAPI , in:

Rdyn,j = (F arc,n,j − F pool,n,j − F σ,j − F g,j) · ẑ (3.47)

where Rdyn,j is the dynamic residual vector defined at j, projected along the vertical axis17. This projects
the deformation vector x to the vertical axis, making the deformation field to calculate for the hz field
[61, 60]. Furthermore, to ensure the closure of the dynamic system of equations, the volume conservation
equation at the interface, imposed similarly to a Dirichlet boundary condition, is numerically formulated

16The term "trial method" is that used in the article this technique is adapted from [19].
17What is meant by the "vertical axis" is the unit normal of the initial configuration of the interface, before deformation.
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as:

Rkin =
( L∑
l=1

Vl
)

− V0 (3.48)

Vl = 1
dim(Rn)

∫
Γl

x · n Nhz dΓl (3.49)

where Rkin is the kinematic residual vector, Vl the volume of element l for L elements at the interface, and
where V0 =

(∑L
l=1 Vl

)k=0, being the initial pool mesh configuration volume. The solution strategy used to
solve the interface deformation problem is the following:

1. The interface deformation problem is linearised, as before, using the quasi-Newton method, to give
the following system of equations:[

Thzhz MT
hzhz

Mhzhz 0

]k−1 [
δhz
ψ

]k
= −

[
Rdyn
Rkin

]k−1

(3.50)

where the details of the tangent matrices are presented in C.

2. After solving for the deformation field hkz,j , defined at the Γanoapi subdomain, the field is transmitted
to the geometrically intersecting nodes at i of the Γplaapi subdomain. Referring to figure 3.9, the
deformation field is copied to hkz,i, in:

∀ i, j ∈ [1, N ] ∧ ∀ i = j ⇒ ∃ rj ∈ Γanoapi ⇒ hkz,i = hz(rj)k (3.51)

3. With the calculated deformation vector loaded at the interface nodes, the arc and pool internal el-
ements, at Ωarc and Ωpool, need displacement, following the deformation of the interface ΓAPI . To
this end, a mesh regularization method is used, as adapted from Huang [34]. The basic principles of
this method are presented in the following:

For every internal element18 Ωm, an element energy is associated to it, described by:

Em = Em1 + Em2 (3.52)

where:

Em1 = θH
2

∫
Ωm

[
tr
[
([GT ][M ][G])−1]]nγH

2 √
det[M ] dΩm

Em2 = (1 − θH)n
nγH

2

∫
Ωm

[√
det[GT ][M ][G]

] 1−γH
2

dΩm

where θH is a weighting factor chosen to be 0.5, and [G] is the Jacobian of the geometric trans-
formation between element Ωk−1

m and a reference element Ωk
m at iteration k, and [M ] is the target

metric tensor, and n = dim(Rn), and γH = 2 representing the method norm. The mesh displacement

18An internal element is an element defined within the domain in question and is different to a boundary element.



66 CHAPTER 3. NUMERICAL METHODS, COUPLING TECHNIQUES AND ALGORITHMS

method used in this thesis does not look to adapt the mesh, rather, only to regularize it w.r.t the
interface deformation field {hz}. Thus, the target metric tensor is:

[M ] = ([G0][GT0 ])−1 where [G0] = [G]k=0

which constrains all element deformations at iteration k to be similar to the initial rigid element at
the start of the calculation at k = 0. The first element energy contribution Em119 of equation (3.52)
controls the regularity of the element, while the second contribution Em2 controls the volume of the
element. The internal element displacement fields are calculated at every iteration k, by:

a) Calculating the node displacement field vector {δXpool}k of the pool domain by setting, and
constraining the system with hz,j at the Γanoapi subdomain, for Em ∈ Ωpool: ∂

2Em
∂X2

pool

1j

1j 0


k−1 [

δXpool

ϑj

]k
= −

 ∂Em
∂Xpool

δhz,j

k−1

(3.53)

once {δXpool}k is found, the pool nodes are displaced by a simple mesh position update
{Xpool}k = {Xpool}k−1 + {δXpool}k

b) Calculating the node displacement field vector {δXarc}k of the pool domain by setting, and
constraining the system with hz,i at the Γplaapi subdomain, for Em ∈ Ωarc: ∂

2Em
∂X2

arc

1i
1i 0


k−1 [

δXarc

ϑi

]k
= −

 ∂Em
∂Xarc
δhz,i

k−1

(3.54)

once {δXarc}k is found, the arc nodes are displaced by a simple mesh position update {Xarc}k =
{Xarc}k−1 + {δXarc}k

The presented mesh deformation and regularisation method discussed is generally adapted to the parti-
tioned schemes used in this work. Moreover, the method strictly conserves volume throughout the interface
deformation calculation, because of the mass conservation constraint (3.48) imposed onto linear system
(3.36). A representation of interface deformation, node displacement and regularization algorithm is pre-
sented in figure 3.12. Figure 3.12 (a) presents the rigid mesh where a 2D axisymmetric spot calculation is
performed, whereas (b) presents the deformed mesh as it is influenced by the fluid interface dynamics. The
displayed meshes are extracted from the same sample simulation discussed in section 3.5.3 and 3.6.2.1, but
with an artificially magnified arc pressure (F arc,n × 15) for visualisation purposes.

3.7 Convergence criteria

Seeing as all the algorithms used to approximate solutions to the non-linear equations on the finitely sized
meshes of this work are limited to their discrete nature, finitely sized convergence criteria are necessary. In
multiphysics problems, an approximate solution is considered converged once the residuals or the increments

19Named the harmonic energy by Huang [34]



(a) (b)

Figure 3.12: Red mesh Ωcat, green Ωpla, blue Ωano and red contour ∂Ωpool. (a) Rigid mesh with the melt
pool contour. (b) Deformed mesh with melt pool contour.

of the key primal variables become sufficiently small. The definition of "sufficiently small" depends on the
application and on the problem requirements. In general the sufficiently small criterion is based on the
idea that a solution is considered converged once the calculated approximate solutions no longer vary per
iteration in a simulation. The convergence criteria used in this thesis are based on the increment size of
the variable in question. Furthermore, a different set of convergence criteria are defined for the 2D and
3D simulations of this work. This criteria for 3D simulations are less stringent so as to reduce calculation
time. Therefore, to be able to monitor the convergence trends of a simulation, a set of key variables are
used to calculate the increment at every global iteration. The increments of the voltage, temperature, arc
and pool velocities and the interface deformation variables are calculated using the following:

δϕk = ϕk − ϕk−1

|ϕkmax|
; δT k = T k − T k−1

T kmax
; δuk = uk − uk−1

|ukmax|
; δvk = vk − vk−1

|vkmax|
; δhkz = hkz − hk−1

z

|hkzmax|
. (3.55)

The increments seen in the set of equations (3.55) are calculated at every global iteration k. The increments
are compared at every k to the defined convergence criteria. The defined convergence criteria for 2D and 3D
simulations are presented in the table below: These criteria are used throughout the entirety of this thesis

δϕmin δTmin δumin δvmin δhzmin
2D 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−3 1 × 10−4

3D 1 × 10−4 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3

Table 3.1: Convergence criteria used in this work.

unless otherwise stated explicitly. As a final note, a convergence criterion for the magnetic field module is
not used because of the linearity of the magnetic system of equations. This means that during a simulation,
the magnetic field increment δBk generally follows the convergence trend of the voltage increment δϕk.
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3.8 Summary

The different physics modules implemented in this multiphysics TIG welding model serve to simulate the
dominant phenomena as they are modelled in this thesis. A mix of numerical techniques and algorithms
are used to look for stationary solutions to the global model. Moreover, this chapter proposes a novel
coupling algorithm to solve for a mixed heat equation in the global model. The fluid dynamics module is
also discussed in detail, where a domain partitioned method and a quasi-monolithic method are discussed
and coupled to an interface deformation algorithm. This chapter is concluded with a flowchart summarizing
the physics modules as they interact with each other in the algorithm, schematised in figure 3.13, as it is
developed to solve the global physical model.
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Figure 3.13: Algorithm of global model. Each block represents a physics module, and the modules developed
in this thesis are schematised in further detail. Dashed arrows represent data flow from iteration k − 1,
and the solid arrows, data from iteration k.





Chapter 4

The influence of cathode geometry on
TIG arcs

Understanding is the reward of faith. Therefore, seek not to understand that you may believe, but believe
that you may understand.

Saint Augustine of Hippo
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4.1 Introduction

In this chapter, the study and analysis of the sensitivity of a TIG arc to the emitting cathode geometry
is studied and discussed. A 2D axisymmetric TIG Spot configuration is set up and the cathode tip
parametrised, and the thermal and dynamic responses of the arc analysed. Although cathode tip geometry
is known to influence arc-plasmas, a thorough quantification of the Lorentz phenomenon, which is the
dominant source of momentum in the fluid flow of TIG arcs has not been strongly investigated. Therefore,
a numerical parametric study is performed at a constant inlet electric current and arc height, for different
cathode sizes and shapes (pointed, chamfered and rounded tips), parameterised by the truncation angle
and tip radius. A characterisation, quantification and an analysis of the influence of tip geometry on TIG
arcs and the workpiece is presented. However, to reduce computational costs and to isolate the influence
of the cathode onto the arc, the workpiece is modelled as a solid copper anode.

4.2 Geometric configuration

This section presents the problem geometry for a TIG Spot configuration and its parametrisation, assuming
a rotational symmetry, as sketched in figure 4.1. The model accounts for a cathode, arc plasma and anode,
in which both electrodes are assumed to remain in their solid state to highlight the behaviour of the
arc plasma as a function of only the cathode geometry. So, the arc height is set to a constant value of
10 mm throughout the study. The parametric study is concerned with the effect of the variation of the
cathode geometry at its tip. The considered shapes are a pointed cathode (PNT), a chamfered one (CHF)
and a rounded (RND) one. The cathode is modelled as solid thoriated tungsten (2% Th), the arc as an
argon plasma and finally the anode as a solid copper piece. The geometry of the cathode is parameterised
between the segments [AZ], [ZG], [GF], with tip truncation angle α, radius at the tip rint. The range of the
parameters are: α = [15o, 20o, 25o , 30o] and rint = [0.15 mm, 0.3 mm, 0.6 mm]. Figure 4.1, b) presents
a superimposition of the three considered cathode shapes. The axis of symmetry in figure 4.1 a) and b) is
indicated by the dashed lines with dots. The parameterisation of the geometry yields a total of 28 cases
for the present parametric study. The widths and heights of the computational subdomains Ωcat, Ωpla and
Ωano are kept constant throughout the study. The geometric parameters of the cathode are presented as
follows (cf. figure 4.1):

hcat1 + hcat2 = 10 mm rint = [0.15 mm, 0.3 mm, 0.6 mm] α = [15o, 20o, 25o, 30o] βα = 90 − α

hcat1 = 2 − rint
tanα (4.1)

for all cases

rint,rnd = rint
tan(βα/2) (4.2)

rounded case

rint,chf = rint (4.3)

chamfered case

4.3 Boundary conditions

The imposed boundary conditions for the partial differential equations used in this study are presented in
table 4.1, where the boundary conditions are gathered relative to the equations to which they apply. The
segments where the boundary conditions are imposed are based on the schematic presented in figure 4.1.
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(a) (b)

Figure 4.1: Sketches of the geometric parametric study. a) The computational domain. b) A close-up view
of the three considered cathode shapes, superimposed.

where, the applied inlet electric current jimp at segment [EF] is imposed in the following manner:∫
[EF]

jimp · n dΓEF = Iimp with Iimp = 200 A → jimp = Iimp
ΓEF

· n

and where the electric problem is approached as a fixed current circuit (at 200 A), from which the voltage
is calculated. Regarding the thermal boundary conditions, the zero diffusive flux condition is used to apply
both a symmetry condition along boundary [EH] and an exit condition along boundary [DC]. The imposed
temperature is chosen based on that used by different authors [33, 30].

4.4 Material properties

The thermophysical and electric properties of the solid tungsten cathode, the argon plasma and the solid
copper anode are assumed to depend only on temperature. The thermophysical properties (ρ, µ, λ and
cp) and the electrical one (σ∗) are drawn from Brochard’s PhD [13], and reported in appendix A for
self-consistency of the present paper.

4.5 Discretisation and meshing

This subsection discusses the chosen discretisations used for the different primal variables, the different
meshes used and the spatial convergence of some key variables that the arc model solves for. The discussed
mesh dependent variable of interest is the arc velocity. Once an appropriate mesh is identified, it is used
for similar configurations throughout the rest of this section.
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Electric
ϕ = 0 [HI]
−σ∇ϕ · n = 0 [EA] ∪ [AB] ∪ [BH] ∪ [IC] ∪ [CD] ∪ [DF]
−σ∇ϕ · n = jimp [EF]
Heat transfer
T = 1000 K [EF] ∪ [FD] ∪ [CI] ∪ [IH]
−λ∇T · n = 0 [EA] ∪ [AB] ∪ [BH] ∪ [DC]
Magnetic
B = 0 [EA] ∪ [AB] ∪ [BH]
Momentum
u · r̂ = 0 [AB] ∪ [BC]
u · ẑ = 0 [BC] ∪ [CD]
(σ · n) · r̂ = 0 [FD] ∪ [CD]
(σ · n) · ẑ = 0 [FD] ∪ [AB]

Table 4.1: Applied boundary conditions (cf. figure 4.1).

4.5.1 Discretisation

The primal variables (ϕ, T,B,u) are discretised using (Q2, P2) elements, while the temperature depenen-
dent physical parameters (σ, λ etc...) and the pressure variable P are discretised using (Q1, P1) elements.
The choices of element discretisation per physical variable and coefficient are presented and summarized
in table 4.2.

Interpolation Elements

(P , σ∗, λ, etc...) → Q1, P1

(ϕ, T,B,u) → Q2, P2

Table 4.2: Table of used elements and the variables associated to them.

4.5.2 The different meshes

Three meshes have been generated for each case, a coarse, intermediate and fine denoted as M1, M2 and
M3, respectively (cf. figure 4.2 that presents M1 and M2 of the PNT α = 15o case). The unstructured
meshes are built with both triangular and quadrilateral elements, having 7 and 9 nodes each, respectively.
The high element density zones in the meshes are generated in regions where high gradients are expected,
namely close to the cathode tip, symmetry axis and the API. Table 4.3 shows the number of elements
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used for each of the three meshes studied in this article. The number of elements of the three meshes are
approximately the same, except for the sharpest cathode geometry, the PNT α = 15o case.

(a) (b)

Figure 4.2: The meshes for the PNT α = 15o case. a) M1: coarsest mesh with 15, 487 elements b) M3:
finest mesh with 42, 089 elements. The red, green and blue zones represent the meshes of the cathode,
arc-plasma and anode, respectively.

PNT PNT CHF, all rint RND, all rint
15o 20o ≤ α ≤ 30o 15o ≤ α ≤ 30o 15o ≤ α ≤ 30o

M1 = 15,487 ∼ 4,000 ∼ 3,500 ∼ 3,500
M2 = 22,786 ∼ 7,000 ∼ 7,000 ∼ 7,000
M3 = 42,089 ∼ 13,500 ∼ 14,000 ∼ 14,000

Table 4.3: The approximate number of elements of the 3 meshes used for all studied cases.

4.5.3 Spatial convergence

A formal discussion on spatial error is out of the scope of the present study, owing to the use of unstructured
meshes [69]. However, I have estimated the spatial discretisation error thanks to 4.4:

relative difference =
(

1 − fM2

fM3

)
· 100 (4.4)

that takes into account the field values fM2 and fM3 at the mesh nodes of meshes M2 and M3, respectively.
Starting from M1, I refined the meshes until the main primal variables of the model (ϕ, T, u) dropped
their relative difference values to < 10%, reaching M3. As the velocity field is the most mesh sensitive
quantity, it is plotted in figure 4.3 along the symmetry axis for the various meshes and three different
geometric configurations. One can observe a satisfactory convergence of the results when refining the mesh
from M1 to M3.
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Figure 4.3: Velocity profiles for the three meshes considered and various cathode shapes. Legend: the first
number indicates mesh number, the second one the truncation angle (in degrees) and the third one the tip
radius [mm]. The axis origin is at the API.

4.6 Discussion and results

This section presents the results of the parametric study and their analysis for an arc height of 10 mm and
a input electric current of 200 A. I discuss from a physical point of view, the obtained results (influence of
electric intensity on transported quantites, arc pressure and shear, heat flux).

Physical discussion

In this parametric study aims the magnetic pinching effects induced by the studied geometries of the
cathode tip are highlighted. The cathode, arc plasma and the anode are all taken into account in the
present model. However, both electrodes are assumed to remain in their solid state. The simplified electric
model at the electrode-plasma interfaces allows for a reduction of the computational cost, meanwhile
achieving a satisfactory physical representativity. This enables us to account for the geometric effects of
the cathode onto the induced electric current density. The arc height of the configuration has been chosen
such that the electrical effects at the API become invariant with respect to the studied cathode geometries.
Furthermore, to achieve a good trade-off between an acceptable physical representativity and an affordable
computational cost, we have used a purely conductive model in the anode. This aims to model the thermal
and electrical sinks in a very cheap way. However this modelling choice infers that any reference to the
thermal field in the anode is unrealistic.

4.6.1 Influence of cathode shape on arc behaviour

The Lorentz force fLor is the leading momentum source term in TIG arcs [13, 33, 82], so any modification
to this force translates into the behaviour of the arc. The geometry of the cathode tips strongly influences
the current density at the CPI, as shown in figure 4.4, which presents the electric current density jCPI
along the curvilinear abscissa at the CPI. The sharper the cathode tip, the more intense the current density
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profile near the tip, with the maximum current density value rising more than one order of magnitude as
compared to the other cases. The different current densities along the CPI result in strongly different
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Figure 4.4: The calculated jCPI for the 3 sharpest cathode cases vs. the curvilinear abscissa along the
CPI, where the origin is placed at the tip. The legend lists the geometry type, truncation angle and tip
radius, respectively.

Lorentz force fields in the arc, as displayed in the top row of figure 4.5. The computed norm of the Lorentz
force is mapped in the vicinity of the cathode tip for the PNT α = 15o and the RND α = 20o, rint = 0.6
mm cases. For the pointed case (cf. figure 4.5 top left), the Lorentz force is more than one order of
magnitude higher than that of the rounded case (cf. figure 4.5 top right). Furthermore, the volume on
which the intense Lorentz force acts on the arc is also much higher for the pointed case. This change in the
Lorentz force accordingly influences the velocity field magnitude in the arc-plasma as is seen in the lower
row of figure 4.5. In fact, the magnitude of the velocity field rises 2.8 times from the rounded to the pointed
cases presented. This results from the intense magnetic pinching effect of the arc at the sharply pointed
tip, which leads to a stronger acceleration of the arc in the direct vicinity of the cathode tip. Therefore,
the sharper the cathode tip, the higher the constriction of the arc due to increasing Lorentz forces. These
effects translate into higher transported heat flux values and imparted stresses at the anode. We note that
the considered pointed cathode configurations are ideal geometries and are physically unrealistic. This is
due to geometrical singularities at the tip [37], and this results in temperatures beyond the melting point of
tungsten (Tmelting = 3680 K) in its vicinity. This is represented in figure 4.6 where the temperature profiles
at the cathode symmetry axis for the sharpest and bluntest cathodes are plotted. However, although
the pointed cathodes are physically unrealistic, they correspond to an extreme geometric limit of cathode
shapes. Being the upper limit of cathode sharpness, the pointed cases set the bound on the behaviour of the
implemented physical model; while the bluntest chamfered and rounded cases set the lower bound. Thus,
studying the physical model at the geometric extremes, the behaviour of the model at any intermediate
cathode geometry can be understood.
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Figure 4.5: Contour plots of norms of Lorentz force (top row) and velocity field (bottom row) around two
different cathode tips. PNT α = 15o (left column) and RND α = 20o, rint = 0.6 mm (right column) are
presented. Lorentz force scale is in [N·m−3] and velocity field in [m·s−1].

z (m)

T
 
(
K
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x10
−2

1000

2000

3000

4000

5000

6000

7000

8000

PNT_ANG=15

RND_ANG=30_R=0.6

CHF_ANG=30_R=0.6

Figure 4.6: Temperature profiles at the cathode symmetry axis. Graph origin is at the cathode tip.

4.6.2 Influence of the cathode shape at the plasma-anode interface

To better understand the underlying mechanisms at play in this parametric study, I discuss how the heat
flux and mechanical stresses act at the API. Three heat transfer modes make up the total heat transferred
to the anode at the API, and they are made up of a diffusion, radiation and an electronic absorption term.
Their computed profiles along the radial direction at the API are presented in figure 4.7. Integrating the
corresponding fluxes over the API, the radiated heat power is about 65 W while both the heat powers by
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Figure 4.7: Heat transfer modes at the API for the RND α = 30o, rint = 0.6 mm case. Negative values
represent the heat flux leaving the anode, and the positive one, entering it.

electronic absorption and the conducted heat from the plasma are of the order of 103 W. These trends
are found for all studied cases and not just for the presented case. This implies that only the electronic
absorption and conducted heat terms play a dominant role in contributing to the heat flow at the API.
Therefore, the total heat flow absorbed by the anode is dominated by both the electronic absorption and
conducted heat terms. The electronic absorption term, being directly proportional to the electric current
density at the API, varies proportionally to the jAPI profile. Furthermore, because the conducted heat at
the API is influenced by the advection of heat in the arc, it increases as the advection in the arc rises. This
is due to the large Peclet number in the arc, (Pe ∼ 102) as estimated for the studied cases (Pe = LU/αd,
for Larc = 10 mm, U ∼ 102 m·s−1, αd ∼ 10−3 m2·s−1). Consequently, a rise in the Peclet number of the
arc increases the integrated conducted heat from the plasma to the anode, as is presented in figure 4.8.
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Figure 4.8: Heat flux transferred to workpiece across the API versus maximum Peclet number in the arc.
The color key groups cathodes of same angle, while the marker key groups cathode shape and tip size.



80 CHAPTER 4. THE INFLUENCE OF CATHODE GEOMETRY ON TIG ARCS

The rise in conducted heat as a function of arc Peclet number is essentially a rise in the transported heat
of the arc as a function of cathode tip sharpness.

In the following subsection, I have quantified the influence of the cathode geometry on to the physical
quantities of interest at the API (arc pressure, arc shear stress and the total heat flux to the anode).

4.6.2.1 Transported quantities at the plasma-anode interface

The impact of the variability in the Lorentz forcing of the flow is directly seen in the arc velocity profiles,
where the velocity fields get stronger as the cathode tips get sharper. The direct influence of cathode
sharpness on arc velocity is presented in figure 4.9, where the maximum arc velocities are plotted as
functions of truncation angle and tip size. This significant rise in maximum arc velocity with tip sharpness
significantly influences the pressure, shear and heat flux profiles of the arc at the API.
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Figure 4.9: Maximum arc velocity versus truncation angle (in degrees) and tip type.

To quantify the variability in the stresses and heat flux profiles at the API, two analytical functions are used
to simplify the discussion. The functions are fit to the profiles of interest at the API similarly to Alvarez
et al. [21]. However, I use simpler (less parameters) analytical fits, motivated by the work in [42, 45, 61].
The heat flux qano and the pressure P at the API are fitted with the following Gaussian distribution:

g(r) = gmax exp
( −r2

2σg2
)

(4.5)

The shear stress τ at the API is fitted with a scaled Weibull distribution as follows:

w(r) = wmax

[
r

λw

(
k

k − 1

) 1
k
]k−1

exp
[
k − 1
k

−
( r
λw

)k] (4.6)

The functions are fit by centering them at the maximum values of the profiles qmax, Pmax, τmax and by
constraining the integrals of the fitting functions to the integral heat and force values. The widths of the
numerical profiles are quantified using the variance σg of equation 4.5 and the scale λw of equation 4.6.
The shape parameter k of equation 4.6 dictates the shape of the Weibull distribution.
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The variability in the magnetic pinching effect as a function of tip sharpness translates to significant
variability in the transported arc quantities at the API. Between the bluntest and the sharpest cathodes,
the maximum pressure Pmax and shear stress τmax at the API increases ≈ 3.5 and ≈ 4-fold, respectively,
while the maximum heat flux qmax increases ≈ 1.7-fold. Moreover, as the maxima rise with respect to tip
sharpness, the widths of the pressure, shear and heat flux profiles consequently drop. The widths σP , λτ
of the pressure and shear profiles at the API drop ≈ 1.6-fold, while the widths σq of the heat flux profiles
drop ≈ 1.3-fold between the bluntest and sharpest cathode tip. As the stress profiles intensify with cathode
tip sharpness, the total imparted integrated pressure and shear forces increase ≈ 1.5-fold and ≈ 1.8-fold
respectively. The total heat flux into the anode increases ≈ 1.2-fold. These trends are visualized in figure
4.10. The numerical profiles and the fitted functions to the normalized pressure, shear stress and heat
flux variables are presented for the PNT α = 15o and the CHF α = 30o rint = 0.6 mm cases in figures
4.10 a), b) and c), respectively. The integrated pressure and shear forces are plotted in figures 4.10 d),
e) and the integrated heat flux into the anode in f). The maxima and the fitted widths of the pressure,
shear and heat flux values of all the simulated cases in this study are presented in figure 4.11. Figures
4.11 a) and b) present the maxima and Gaussian variance of the fitted pressure profiles; figures 4.11 c)
and d) the maxima and Weibullian scale of the fitted shear profiles; figures 4.11 e) and f) the maxima
and Gaussian variance of the fitted heat flux profiles respectively, of all simulated cases in this study. The
shape parameter k is approximately constant for all Weibull distributions fitted to the shear profiles, with
k ≈ 1.4. The variability of the electric current density profile jAPI at the API is calculated to be weak for
a 10 mm arc. The jAPI profiles across different cases is negligible where the maximum current densitiy
jmax and the fitted Gaussian widths σj are seen below:

2.85 × 106 ≤ jmax ≤ 3.11 × 106 [A · m−2] (4.7)

3.20 ≤ σj ≤ 3.34 [mm] (4.8)

The sharper the geometry of the cathode tip, the more energy and momentum is transported by the arc
from the cathode to the anode. These trends are captured by our model because the cathode is included in
the calculation domain. Thus the geometry of a cathode requires attention when setting up a TIG welding
configuration for simulation.
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Figure 4.10: a) Normalized Gaussian fits and pressure profiles; b) normalized Weibull and shear stress
profiles; c) normalized Gaussian fits and heat flux profiles for PNT α = 15o and CHF α = 30o, rint = 0.6
mm cases. Black solid lines and red dashed lines indicate the fits calculated profiles, respectively. Axes are
non-dimensionalized w.r.t PNT α = 15o case. d) The integrated pressure force; e) the integrated viscous
shear force; f) the integrated heat flux versus cathode geometry.
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Figure 4.11: a) Maxima of pressure profiles; b) Gaussian variances of fitted pressure profiles; c) maxima
of shear profiles; d) Weibull scales of fitted shear profiles; e) maxima of heat flux profiles; f) Gaussian
variances of fitted heat flux profiles versus truncation angle (degrees) and tip type.

4.6.2.2 Analysis of the obtained results

This study assumes a solid anode so as to isolate the effects of cathode tip geometry onto TIG arcs. The
use of a solid anode maintains a constant arc height unlike in actual welding conditions which leads to a
deformable melt pool in the anode domain [61]. By solely increasing the sharpness of a cathode tip, the
momentum and heat transported by a TIG arc increases. Referring to the figures 4.10 and 4.11 I note that
the maximum stresses and the heat fluxes at the API increase roughly 4 and 1.7 times, respectively, from
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the bluntest to the sharpest cathode tips. This variability is significant and important to capture in TIG
welding simulations, as is already reported in the literature on experimental observations [40, 74, 54, 71, 86].
Therefore, when setting up numerical simulations, one should pay attention when accounting for cathode
shape in the model. Indeed, it appears that in some early numerical studies the sensitivity of the momentum
and mass equations to the magnetic pinching effect is overlooked [33, 30, 9]. With the Lorentz force being
the main source of momentum in the arc-plasma, any variation in this force translates into a variation in
the velocity field, as is presented in figure 4.9. Furthermore, the variability of the Lorentz force is directly
due to its sensitivity to the electric current density in the vicinity of the cathode tip. From figure 4.4, I
note the sensitivity of the electric current density to the geometry at the cathode tip. This sensitivity is
captured by the explicit inclusion of the cathode into the calculation domain. The sensitivity is due to the
∇ϕ|ΓCP I

term that increases in intensity as the tip geometry gets sharper [26, 37].

For the considered arc-plasma of a 10 mm height and 200 A inlet current, the calculated variability in
the heat flux transported to the API is dictated by the variability in the conducted heat term qpla−ano.
This is because the variability in the electronic absorption term sAbs at the API is negligible due to the
arc becoming relatively insensitive to the voltage field near the anode. This insensitivity implies that the
electric current density once it reaches the API becomes roughly constant, as shown in the inequalities (4.7)
and (4.8). The calculated conducted heat flux qpla−ano varies with the sharpness of the cathode tip due to
its dependence on the advected heat of the arc. Referring to figure 4.8, it turns out that the transferred
heat flux to the anode depends on the Peclet in a quasi-linear way. Therefore, the magnitude of the arc
velocity, which depends on the Lorentz force and consequently on the cathode geometry, strongly influences
the heat flux at the API.

Although variability is calculated in the transported quantities across most studied cases, negligible
variation is seen between simulations of the CHF and RND type; as is observed in figures 4.8, 4.9, 4.10,
4.11, where their results overlap. However, although the electric current density locally differs between the
CHF and RND (cf. figure 4.4) this localized difference does not dominate the entirety of the profile, and
only makes up a couple of Amperes in electric current. Therefore, the Lorentz force resulting from the
CHF and RND cases are very similar, cf. figure 4.12, which presents the contour plots of the Lorentz force
in the vicinity of the RND and CHF cases at rint = 0.3 mm, α = 15o.

Figure 4.12: Contour plots of the norms of the Lorentz force around two different cathode tips. The RND
(right) and CHF (left) α = 15o, rint = 0.3 mm cases are presented. The scale is in [N·m−3].
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Furthermore, similar results are calculated for multiple cases at different truncation angles and radii.
This is observed in figures 4.8, 4.9, 4.10, 4.11. This weak variability between the cases is attributed to a
quasi-equivalence in the total power of the Lorentz force to drive flow in the arc-plasma. The total power
is defined by:

P =
∫

Ωpla

u · fLor dΩ (4.9)

where P [W] represents the total power in driving the fluid flow. The power of the Lorentz force for all sim-
ulated arcs in this study is presented in figure 4.13. Referring to the figure, the cases with quasi-equivalent
power values are encased by a specific black marker (circular, triangular and rectangular markers). Pro-
vided that the integral power of the Lorentz force is similar, the resulting transported quantities at the
API will also be comparable, irrespective of the cathode shape.

Figure 4.13: Mechanical power of the Lorentz force in the arc versus cathode geometry. Each black shape
groups cases that have quasi-equivalent power values.

4.6.2.3 Voltage drop and arc efficiency

The voltage drop across the TIG circuit is calculated by imposing a constant current at the input boundary
of the cathode. Figure 4.14 presents the voltage drop across the entire domain versus cathode geometry.
The voltage drop increases w.r.t increasing tip sharpness. This proportionally increases the total energy
available in the circuit as Pcircuit = I∆ϕ [W], with ∆ϕ the voltage drop, and I the input current at a
constant 200 A. The voltage drop as a function of α and rint is presented in figure 4.14. The more the
electric power is pulled by the circuit, the more the heat is deposited at the anode. Correspondingly, figure
4.10 (d) shows that the sharper the cathode tips, the larger Qano is at the work piece. The ratio of the rise
of energy deposited by the arc and power pulled into the circuit is quantified by calculating the efficiency η
of the circuit. The equation used to calculate the circuit efficiency takes into account the source and sink
terms injected at the interfaces at both the CPI and API is:

η = Qano

Pcircuit +
∫ [
sAbs − sEmi + sNeu

]
dΓ

× 100% (4.10)



86 CHAPTER 4. THE INFLUENCE OF CATHODE GEOMETRY ON TIG ARCS

Truncation Angle

∆
 
V
o
l
t
a
g
e
 
(
V
)

14 16 18 20 22 24 26 28 30
10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

PNT_r = 0 mm

RND_r = 0.15 mm

RND_r = 0.30 mm

RND_r = 0.60 mm

CHF_r = 0.15 mm

CHF_r = 0.30 mm

CHF_r = 0.60 mm

Figure 4.14: The voltage drop versus the different cathode geometries.

see subsection 2.5.3.3 for details about the source and sink terms. Although the thermal and dynamic
performance of the arc w.r.t truncation angle and tip radius displays variation, the arc efficiency is largely
independent of the cathode shapes studied in this work. A maximum difference of ≈ 3% is calculated
across all cases, for 65% ≤ η ≤ 68%. This is due to a good positive linear correlation between Qano and
Pcircuit w.r.t tip sharpness.

4.6.3 A discussion with respect to similar works

In this section the results of the present study are compared to those found in the literature on both
numerical and experimental works.

4.6.3.1 Comparison to simulations

The first comparison is performed with a numerical study from Goodarzi et al. [30], in which a wide range
of truncation angles1, ranging from 4.59o ≤ α ≤ 75o, were considered. Instead of incorporating the cathode
into their calculation domain, they imposed an electric current density at the cathode tip as a boundary
condition. The electric current density is imposed using spot areas experimentally estimated by Haidar et
al. [32]. Figure 4.15 a) sketches the electric current density distribution as imposed at the cathode tip in
Goodarzi’s work, and the one resulting from the computation from the present model.

The magnitudes of the main variables of the TIG arc system are presented in table 4.4 for both the
Goodarzi et al. study [30] and ours. Comparing the maximum heat flux pulled into the anode between
the bluntest and sharpest cases, Goodarzi et al. calculated negligible variation (≈ 0.15%), whereas the
computed results reveal a ≈ 1.7-fold increase. Moreover, referring to the maximum arc velocities, pressures
and shear stresses, the values calculated by Goodarzi et al. vary significantly less than ours. Furthermore,
I note that the electric current density, at the cathode tip, is quasi-constant for the range of cases studied
by Goodarzi et al.. Indeed, as previously stated, the electric current density in the vicinity of the cathode
tip directly influences the Lorentz force. Therefore, a lack of variability in the electric current density

1They assign values to the cone angle, whereas in the present work, the half angle is used.
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translates into negligible differences in the transported quantities of the arc. For ease of comparison and
due to the fact that the spot size is the critical boundary condition in Goodarzi’s work [30], the cathode
spot area sizes of this study are estimated. I define the spot size as the zone where 150 A of current passes
through the cathode. The estimated spot areas are presented in figure 4.15 figure (b), along with those
from Goodarzi [30] and Haidar [32]. The variability of the spot sizes w.r.t truncation angle, tip radius
and shape shows a ≈ 3 fold maximum variation in area size. Moreover, the estimated spot areas do not
exceed 2.4-times the values used by Goodarzi et al.. Thus, the variability calculated in the estimated
spot areas is not sufficient to explain the ≈ 1000-fold (see table 4.4) ratio that I obtained in the electric
current densities between the bluntest and sharpest cathode tips. Therefore, I deduce that the spot area
boundary condition method used by Goodarzi et al. is not adapted for the capturing of the variation of
electric current density at the tip. Indeed, the spot areas are incapable of capturing the local behavior at
the cathode tip, because the spot is interpretable as an integral quantity; masking any local j gradients
that can influence the Lorentz force of the arc flow. Thus, the spot area boundary condition method is not
adapted to capturing the influence of tip sharpness onto TIG arcs. Thus, the necessity to account for the
cathode geometry in the computational domain when modelling TIG arcs is highlighted.

Variable jCPI,max [A·mm−2] qmax [W·mm−2] umax [m·s−1]
Case Bluntest Sharpest Ratio Bluntest Sharpest Ratio Bluntest Sharpest Ratio

Goodarzi [30] ≈ 200 ≈ 200 1 39.30 39.84 1 398.9 413.8 1.04
This work 40 30000 750 27 45 1.7 170 470 2.8

Variable Pmax [Pa] τmax [Pa]
Case Bluntest Sharpest Ratio Bluntest Sharpest Ratio

Goodarzi [30] 850 1078 1.3 125 150 1.2
This work 267 935 3.5 34 139 4

Table 4.4: Characteristic results from Goodarzi et al. [30] and from the present study.

4.6.3.2 Comparison to experiments

In this subsection, I compare the calculated results to several experimental studies that deal with the
influence of cathode tip sharpness on to TIG arcs. Mills et al. [54] note the 4-fold increase in maximum
arc pressure as the cathode tip truncation radius decreases to rint = 0 for a constant tip truncation angle
of α = 15o. Furthermore, the maximum arc shear stress rises similarly with the arc pressure for typical
TIG arcs. Tsai [86] observes that the maximum heat flux transported to the anode increases 1.2-fold as
the truncation angle is sharpened from α = 30o to α = 15o. Petrie et al. [87] observe for a 10 mm and
200 A arc, that the maximum arc velocity dropped 2-fold between their sharpest and bluntest cathodes.
Consequently they note a ≈ 3.5-fold drop in the measured maximum arc pressure. They claim a 1.3-fold
drop in the conducted heat flux as their cathode tip sharpness drops. Sadek et al. [71] observe a ≈ 4.5-fold
rise in the maximum arc pressure as the cathode tip radius tends to rint = 0 mm. Concerning the total drop
voltage, a brief comparison with the experimental results from Chihoski [17] is performed, for which two
of his studied trunctation angles correspond to ours (α = 15o and 30o). The total drop voltage is reported
as it is calculated explicitly using the one-specie, one-temperature model (This work a)) along with the
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Figure 4.15: a) Schematic representations of electric current emission zone for Goodarzi’s cathode, and
ours. b) Estimated spot areas in this study, those used in Goodarzi [30] and those from Haidar [32] versus
cathode geometry. The error bars from Haidar’s work are not displayed.

corrected value that accounts for the voltage drops across the CPI and API (This work b)), according to
the method used by Tanaka et al. [82]. The general trends are well reproduced by the current model,
with an agreement from 0.5% up to 7%, for the bluntest to sharpest cases, respectively. Nevertheless, the
experimental setups used by the cited authors do not exactly correspond to the configuration used in this
numerical study (different arc heights and tip truncation radii). To better validate the numerical model,
supplementary experimental studies are recommended. The discussed results borrowed from the literature
are summarized in table 4.5 and compared to the trends calculated in this work. From the quantitative

Variable Max. pressure [Pa] Max. shear [Pa] Max. heat flux [W·mm−2]
Case Bluntest Sharpest Ratio Bluntest Sharpest Ratio Bluntest Sharpest Ratio

Mills [54] ≈ 390 ≈ 1470 ≈ 4 —— —— ≈ 4 —— —— ——
Tsai [86] —— —— —— —— —— —— ≈ 27 ≈ 32 ≈ 1.2

Petrie [87] ≈ 400 ≈ 1400 ≈ 3.5 —— —— —— —— —— 1.3
Sadek [71] ≈ 500 ≈ 2200 ≈ 4.5 —— —— —— —— —— ——
This work 267 935 3.5 34 139 4 27 45 1.7

Variable ∆ϕ [V]
Case Bluntest Sharpest Ratio

Chihoski [17] 17.9 18.6 1.041
This work a) 11 13 1.18
This work b) 18 20 1.11

Table 4.5: Results from experimental studies in the literature versus this study.

comparison presented in table 4.5 it turns out that the present model is capable of reproducing the general



experimental trends concerning the main physical quantities of interest. Moreover, it is interesting to note
that Tanaka et al. [81] observe, for arc configurations similar to ours, that the electric current density
at the API does not significantly vary with cathode tip geometry. Thus, it should be considered that the
model implemented in this study is relevant to capturing the effects of cathode tip geometries onto TIG
arcs.

4.7 Summary

The numerical parametric study showed the influence of the cathode tip geometry onto relevant welding
quantities, such as the heat transferred to the anode, the arc pressure and shear stress at the workpiece.
The TIG Spot model implemented in the present work accounts for both the cathode, arc and anode
subdomains in the computational domain. However, the electrodes are assumed to remain solid and to
behave in a purely diffusive manner. The studied configurations consider a 10 mm arc height, a 200 A inlet
electric current, for three tip shapes: pointed, chamfered and rounded tips. The range of truncation angles
and radii are: α = [15o, 20o, 25o, 30o]; and rint = [0.15, 0.3, 0.6] mm. The main findings of this section
are three-fold. First, the shape of the cathode tip strongly influences the current density at the cathode-
plasma interface, that in turn significantly affects the resulting Lorentz force. This being the main source
of momentum in the fluid flow of the arc-plasma, it induces a broad variability of the transported quantities
relevant to the welding parameters. Indeed the heat flux pulled in by the anode shows a direct dependence
on the Peclet number, which reflects the magnitude of the fluid flow in the arc-plasma. The heat flux varies
up to 1.7 times, while the pressure and shear stresses rise about 4 times, respectively, from the bluntest
to the sharpest tips. Therefore, this parametric study strongly suggests the importance of considering
the cathodes in the computational domain, in order to reliably account for the magnetic pinching induced
by the tip of the cathode. On the other hand, the considered pointed cathode configurations are ideal
geometries that can not exist in the real world. They lead to a geometrical singularity at the tip, that
results in spurious computations in its vicinity, which overestimate the physical quantities. However, they
enable to capture the trends up to the limiting ideal case. Finally, the general agreement between our
results and the discussed experimental observations reinforces the validity of our numerical results, and
confirms the need to incorporate the cathode into the calculation domain.





Chapter 5

A TIG Spot configuration of the fully
coupled model

What we need is not the will to believe but the will to find out.

Bertrand Russel
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92 CHAPTER 5. A TIG SPOT CONFIGURATION OF THE FULLY COUPLED MODEL

5.1 Introduction

In this chapter, the study and analysis of a fully coupled (cathode-arc-pool coupling) 2D axisymmetric
TIG Spot configuration is presented. Here the interaction between the arc-plasma and the weld pool is
of interest. To this end, the thermohydraulics of a 316L weld pool is considered and the behaviour of
the TIG system is studied. To ensure that both the numerical and physical consequences of the arc-pool
coupling problem are understood, both a numerical and physical discussion are presented. Effectively,
the discussion begins, in section 5.6.1, with a comparison of the performance of the Dirichlet-Neumann
and the quasi-monolithic algorithms implemented in the fluid model. The chapter follows with a brief
discussion of the weld pool geometry and its behaviour as a function of inlet current, interface hypothesis
and the chosen viscosity of liquid 316L steel, in subsections 5.6.2.1, 5.6.2.2 and 5.6.2.3, respectively. The
analyses performed in this chapter serve to identify and study, at low computational costs, the dominant
thermohydraulic effects at play, and the characteristics of the arc-pool system.

5.2 Geometric configuration

The geometric configuration used in this section is briefly discussed and presented. The schematic of the
geometry is presented in figure 5.1. The study performed in this section is based on a TIG spot, axi-
symmetric configuration. In referring to the figure the rotational axis of symmetry is represented by the
dashed line. The cathode truncation angle and radius, and the arc height are maintained constant at
α = 15o, rint = 0.3 mm and harc = 5 mm, respectively. The nozzle wall is emulated by including the
segment [JK] into the domain, where zero flow is allowed through. The inlet flow is imposed between the
nozzle wall and the cathode domain at segment [FJ].

5.3 Boundary conditions

The boundary conditions presented in table 5.1 are imposed onto the geometric configuration that is
schematised in figure 5.1. A plasma inlet boundary condition is added at segment [FJ] which corresponds
to a Q = 16 L·min−1 flow rate. Furthermore, the velocity symmetry condition is extended to encompass the
anode domain. This serves as a symmetry condition for the pool domain as it forms during a calculation.
The imposed temperatures along the anode boundaries are chosen so as to maintain a cool workpiece and
a moderately sized pool. As for the API at [BC], it no longer is considered as a boundary condition for the
momentum equations, rather, an interface condition between the arc and the pool. The details of interface
treatment are found in chapter 3.

5.4 Material properties

In this section, a solid thoriated tungsten cathode and argon arc are also used, however, unlike chapter
4, the anode is no longer considered to be a solid copper piece. With the focus of this section being the
arc-pool dynamics of the system, the incorporation of a liquid melt pool material is paramount. To this
end, the thermophysical properties of a 316L steel is chosen. The specific enthalpy, specific heat capacity,
thermal conductivity, electrical resistivity and the mass density of the steel are extracted from Pichler et
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Figure 5.1: Schematic of the geometry used.

al. [65]. The material properties are presented in appendix A. As for the viscosity of liquid steel, the
values generally found in the literature on the thermo-hydraulic modelling of welding are higher than those
reported in experimental studies. This is encountered in the works published by a number of authors, see
[13, 61, 84] for the numerical studies, and [43, 10] for the experimental reports.

This section will explore some differences in the arc-pool thermal and dynamic responses as a function
of different liquid steel viscosities. Thus, two dynamic viscosities are utilized in this section, with one
extracted from the numerical work of Nguyen [61], and the other from an IAEA nuclear materials data
report [10]. The viscosities used are listed below:

∀ T > Tliq ; µ = 0.03 Pa · s (5.1)

Viscosity used by Nguyen [61]

µ =



0.0059 T = 1750
0.0040 T = 2000
0.0029 Pa · s for T = 2250 K
0.0023 T = 2500
0.0019 T = 2750
0.0016 T = 3000

(5.2)

Viscosity extracted from the IAEA report [10]

5.5 Discretisation and meshing

This subsection discusses the chosen discretisations used for the different primal variables, the different
meshes used and the spatial convergence of some key variables that the arc-pool model solves for. The
discussed mesh dependent variables of interest are the pool temperature, velocity and pool contour geom-
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Electric
ϕ = 0 [HI]
−σ∇ϕ · n = 0 [EH] ∪ [IC] ∪ [CD] ∪ [DF]
−σ∇ϕ · n = jimp [EF]
Heat transfer
T = 750 K [HI]
T = 500 K [EF] ∪ [FJ] ∪ [CI] ∪ [KD]
−λ∇T · n = 0 [EH] ∪ [DC] ∪ [JK]
Magnetic
B · θ̂ = 0 [EH]
Momentum
u = (0, 0) [JK] ∪ [FG] ∪ [GZ] ∪ [ZA]
u · r̂ = 0 [AH] ∪ [KD]
u = (0,−1.4) m·s−1 [FJ]
(σ · n) · r̂ = 0 [DC]
(σ · n) · ẑ = 0 [KD] ∪ [AH]

Table 5.1: Boundary conditions imposed along geometry contour seen in figure 4.1.

etry. Once an appropriate mesh is identified, it is used for similar configurations throughout the rest of
this section.

5.5.1 Discretisation

With the velocity and interface deformation variables being the most mesh sensitive variables, they re-
quire more calculation nodes in a given mesh when compared to the other variables in the physical model.
Therefore, in the total domain, the velocity and interface deformation variables (u,v, hz) are discretised
using (Q2, P2) elements, while the voltage, temperature, magnetic field, pressure variables and the temper-
ature depenendent physical parameters (σ, λ etc...) are discretised using (Q1, P1) elements. Assigning (Q2,
P2) discretisations to the most mesh sensitive variables saves calculation time per global iteration when
running simulations while ensuring sufficient spatial resolution of the solutions. The choices of element
discretisation per physical variable and coefficient are presented and summarized in table 5.2.

5.5.2 The different meshes

The global mesh presented in figure 5.2 is made up of the cathode domain in red, the arc plasma domain
in green and the anode domain in blue. The anode region, being the domain where the pool is formed, is
meshed with a higher concentration of structured elements in the expected pool zone. The pool domain
being of interest in this section, mesh refinement is concentrated in the refinement of the rectangular and
structured mesh zone of the anode. Referring to figure 5.2, the structured mesh zone in the anode is
succesively refined, until spatial convergence, using the following mesh densities:

ρM =
[8

3 ,
4
3 ,

2
3 , ...

]
× 10−4 m
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Interpolation Elements

(ϕ, T , h, σ∗, λ, etc...) → Q1, P1

(u,v, hz) → Q2, P2

Table 5.2: Table of used elements and variables associated to them.

Figure 5.2: Global mesh with a superposed schematic of expected pool zone at successive refinements.

5.5.3 Spatial convergence of important variables

The spatial convergence of the different primal variables generally depends on multiple simulation settings,
and in general, higher intensity configurations require finer meshes. To account for the mesh dependence of
the simulations run for this section, a brief spatial convergence study is presented. The spatial convergence
study is based on the most intense TIG Spot configuration (I = 150 A) studied in this section, chosen
because of the sharp gradients in its results. The configuration has the most mesh sensitive solutions and
so it ensures the sufficient spatial resolution of all other studied TIG Spot configurations. It is noteworthy
to state that the arc variables are assumed to be sufficiently resolved with the chosen meshes because of
the meshing choices taken in chapter 4. Furthermore, because this section is interested in studying the
influence of different viscosities onto the arc-pool system, care is taken when treating the weld pools and
claiming the spatial convergence of the simulations.

It is well known in computational fluid dynamics that the spatial convergence of a velocity field on
a given mesh can depend on the Reynolds number of the flow. This can be understood by the increase
in the gradients of the velocity fields as the Reynolds number of a flow increases; thus, an increase in
mesh elements becomes necessary for the capture of the details of that flow [50]. This means that if for
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the same TIG Spot configuration the viscosity from equation (5.1) is chosen, the spatial convergence of
the velocity fields occurs at a coarser mesh than if the viscosity from equation (5.2) is chosen. Moreover,
with the temperature field in the pool being dependent on the pool velocity, the spatial convergence of
the temperature field and the pool geometry is dependent on the viscosity value chosen. Therefore, the
spatial convergence of the variables of the same TIG Spot configuration is studied but for the two different
viscosities identified in subsection 5.4.

Having established the influence of the viscosity of the melt pool onto the spatial convergence of a
simulation configuration, the following cases are studied and the resolution of their solutions analysed.
The cases are identical except for the different liquid steel viscosities studied.

Case 1:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.1)
Interface hypothesis → deformable

Case 2:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.2)
Interface hypothesis → deformable

The analysis begins with case 1 which uses the higher viscosity value as was taken from the work of Nguyen
[61]. Three meshes are generated and used to simulate the configuration of case 1 above. The meshes are
numbered from the coarsest to the finest, going from 1 to 3. The coarsest and finest meshes, mesh 1 and
3 respectively, are schematised in figure 5.2. The mesh densities of the structured zone in the anode go
from ρM1 = 8

3 × 10−4 m to ρM3 = 2
3 × 10−4 m. From the simulation results of the different meshes, the

different velocity and temperature fields are compared. The monitored variables of interest are presented
in figure 5.3 and are the pool geometry, temperature at the API, and the pool velocity at both the API
(magnitude) and the symmetry axis (z-component). Similar to section 4.5.3, the variables monitored for
their spatial convergence are analysed with the relative difference equation. Comparing the results, the
relative difference from equation (4.4) is used, and it drops below < 10% for the monitored variables. Thus,
the results calculated on mesh 3 are considered spatially converged. Analogously, in looking for the spatial
convergence of case 2, which uses the lower viscosity values as they were extracted from the IAEA report
[10], three meshes are generated and used for simulation. The meshes are numbered from coarsest (mesh
1) to the finest (mesh 3). To achieve spatial convergence of the solutions for case 2 is slightly more difficult
in that finer meshes are required. In fact, the coarsest mesh used for case 2 is the finest of that used in
case 1. The mesh density of the structured zone in the anode (see figure 5.2) for the coarse mesh 1 has a
mesh density of ρM1 = 2

3 × 10−4 m, and the meshes are refined up to ρM3 = 1
6 × 10−4 m for mesh 3. Using

the same variables of interest to monitor the spatial convergence of the simulations, the pool geometries,
temperatures at the API, and the pool velocities at both the API (magnitude) and the symmetry axis
(z-component) are plotted in figure 5.4. Comparing the results, the relative difference from equation (4.4)
is used, and it drops below < 10% for the monitored variables. Thus, the results calculated on mesh 3 are
considered spatially converged.



5.6. DISCUSSION AND RESULTS 97

s (m)

T
 
(
K
)

0 1 2 3 4 5 6

x10
−2

400

600

800

1000

1200

1400

1600

1800

2000

2200

Mesh 1

Mesh 2

Mesh 3

s (m)

V
 
(
m
/
s
)

0 1 2 3 4 5 6 7 8 9

x10−3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Mesh 1

Mesh 2

Mesh 3

s (m)

V
z
 
(
m
/
s
)

0.0 0.5 1.0 1.5 2.0 2.5

x10−3

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x10−2

Mesh 1

Mesh 2

Mesh 3

Figure 5.3: Comparing meshes for case 1. Top figure is the pool geometries of the three meshes superposed
and is drawn to scale. Bottom figures are, from left to right, temperature at API, velocity norm at API
and vertical velocity component at symmetry axis, respectively.

5.6 Discussion and results

This subsection discusses two topics. First, a brief discussion of algorithm performance is presented. The
studied algorithms are concerned with the coupling techniques of the momentum equations between the arc
and pool domains. Second, a brief discussion of the sensitivity of the pool domain to the electric intensity,
choice of the interface hypothesis and the liquid steel viscosity values is presented.

5.6.1 Comparing algorithm performance

Here, a brief numerical experiment is set up, executed and discussed in an attempt to choose the appropriate
coupling algorithm for the resolution of the momentum and mass equations in the unified model of this
work. The numerical experiment and the following discussion are based on numerical tests comparing the
partitioned Dirichlet-Neumman to the quasi-monolithic algorithms implemented in this work. To be able
to compare the performance and results of the two implemented algorithms, the simulations need to be set
up in an analogue manner to one another. To this end, eight cases are set up, run and then analysed. Four
setups are identifed and are based on three TIG Spot configurations where for one of the configurations
the relaxation factor is varied. The four identified setups are executed using the two implemented coupling
algorithms. To be consistent in the comparisons between the different cases, all tests are studied on the
same mesh. The mesh is based on one anode mesh density, with a value at ρM = 1

3 ×10−4 m. Furthermore,
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Figure 5.4: Comparing meshes for case 2. Top figure is pool geometries of the three meshes superposed
and is drawn to scale. Bottom figures are, from left to right, temperature at the API, velocity norm at
API and vertical velocity component at symmetry axis, respectively.

the three different configurations have identical physical parameters except for the total electric current
intensity of the system. The general configuration settings are presented below, along with the chosen
input electric current values.

α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.2)
Interface hypothesis → deformable


) I =

[
100, 125, 150

]
A

(5.3)

The three configurations listed above are run on both algorithms for the same relaxation factor applied to
the momentum and mass equations, at a value of ωNS = 0.3. The fourth setup is based on the I = 125
A configuration run using a relaxation factor of ωNS = 1.0 on both algorithms. Summarising, the total
number of cases are named and presented in the table below, where D-N and Q-M stand for the Dirichlet-
Neumann and quasi-monolithic algorithms, respectively: Before running a simulation, each case is loaded
with an initial condition1 where the pool hydrodynamics are turned off. For example, cases 1.a and 1.b
are initialised with the same solution to a calculation at I = 100 A and for which the anode is maintained

1The term initial condition is a misnomer here because the model is a stationary one. However, due to the lack of a better
term it is used.
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ωNS = 0.3 ωNS = 1.0
I = 100 I = 125 I = 150 I = 125

D-N Case 1.a Case 2.a Case 3.a Case 4.a
Q-M Case 1.b Case 2.b Case 3.b Case 4.b

Table 5.3: Summary of the eight cases used in comparing algorithm performance.

solid. The other cases are analogously initialised.

5.6.1.1 Convergence criteria and linear system solvers

To ensure that the simulated cases are sufficiently converged when comparing their results and performance
together, the convergence criteria used in the algorithms are lowered. The algorithm convergence criteria
specific to the performance study of this section are summarized in the table below. Furthermore, since

δϕmin δTmin δumin δvmin δhzmin
2D 1 × 10−4 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6

Table 5.4: Convergence criteria used only in this chapter.

this section is only concerned with the performance of the algorithms used in the fluid dynamics module,
only its linear solver is of concern. To ensure that the resolution of linear systems that have either well
or ill-conditioned matrices is performed in a comparable manner, the direct solver programmed in Cast εM
is used. The solver is based on an LDLt method for symmetric matrices and the Crout method for non-
symmetric matrices. The performance of these methods depend on the linear system being treated and on
the machine executing the program, but they are of the order of:

speed ∼ O(N4/3) (5.4)

where N is the dimension of the linear system [15]. Finally, it is important to note that the computer
used to run the simulations has a quad-core Intel i7-7700 CPU with a baseline clockspeed at 3.60 GHz and
8.192, 0.256 and 0.032 Mb for the L3, L2 and L1 cache memories. The computer also houses 4 slots of 8
Gb DDR4 RAM chips that operate at a clockspeed of 3200 MHz.

5.6.1.2 Quantifying the performance

In order to quantify the differences in performance between the two algorithms, both the total calculation
time and the total number of global iterations of a given case are used. Furthermore, to verify that
both algorithms converge to solutions that are close to each other, key variables are monitored and used
for comparison. Also, the increments of the different primal variables are also presented, as functions of
iteration number, in algorithm convergence plots. Thus, the sub-cases (a and b) of each case from table
5.3 are compared to one another. The analysis begins with a presentation of the differences in both the
convergence plots and their solutions. Starting with case 1 the following key quantities and variables are
presented:
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Case 1:

Total calculation time, case 1.a): 23264 s Total calculation time, case 1.b): 22935 s
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Figure 5.5: a) Convergence plot of case 1.a); b) convergence plot of case 1.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d) profile of z-
component of velocity at the pool symmetry axis.

From the presented results, it is apparent that for case 1, the quasi-monolithic algorithm performs
slightly faster and requires a smaller number of iterations to achieve convergence. From figures 5.5 c) and
d), it is noted that the two algorithms give simulation results that are almost identical.
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Case 2:

Total calculation time, case 2.a): 30772 s Total calculation time, case 2.b): 37458 s
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Figure 5.6: a) Convergence plot of case 2.a); b) convergence plot of case 2.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d) profile of z-
component of velocity at the pool symmetry axis.

From the presented results, it is apparent that for case 2, the quasi-monolithic algorithm performs
slower and requires a larger number of iterations to achieve convergence. From figures 5.6 c) and d), it is
noted that the two algorithms give simulation results that are almost identical.



102 CHAPTER 5. A TIG SPOT CONFIGURATION OF THE FULLY COUPLED MODEL

Case 3:

Total calculation time, case 3.a): 55924 s Total calculation time, case 3.b): 62196 s
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Figure 5.7: a) Convergence plot of case 3.a); b) convergence plot of case 3.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d) profile of z-
component of velocity at the pool symmetry axis.

From the presented results, it is apparent that for case 3, the quasi-monolithic algorithm also performs
slower and requires a larger number of iterations to achieve convergence. From figures 5.7 c) and d), it is
noted that the two algorithms give pool velocity profiles that are slightly different but the difference can
be considered negligible because it insignificantly influences the pool geometry.
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Case 4:

Total calculation time, case 4.a): 162055 s
No convergence

Total calculation time, case 4.b): 43200 s
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Figure 5.8: a) Convergence plot of case 4.a); b) convergence plot of case 4.b). Legends indicate the
increments of primal variables per iteration number.

From the presented results, it is apparent that for case 4, the Dirichlet-Neumann algorithm does not
achieve convergence. The calculation is stopped at global iteration (k = 2000) as it is evident that no
stationary solution was found. As for the quasi-monolithic algorithm, it converges at iteration (k = 948).
Case 4.b) converges for a smaller number of global configurations when compared to the analogous cases
2.a) and 2.b). However, the total time to convergence of case 4.b) is longer than those of cases 2.a) and
2.b). The solution at convergence for case 4.b) is consistent with the solutions found for the analogous
cases 2.a) and 2.b).

It is important to note that in referring to figures 5.5, 5.6 and 5.7, that the algorithms are mathemati-
cally consistent as they both tend towards the same solutions at convergence. Furthermore, the different
performances of the cases presented reveal that a relaxed Dirichlet-Neumann algorithm converges quicker
than the quasi-monolithic algorithm. The total calculation times and iteration number until convergence
(or until the calculation is stopped) for all the studied cases are summarised in table 5.5.
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Case 1 Case 2 Case 3 Case 4
D-N a) Not Converged
Calculation Time (s) 23264 30772 55924 162055
Total Iteration 1021 1158 1749 2000
Time per Iteration (s) 24 27 32 81
Avg. Internal D-N Iterations 1 1 1 2.5
Q-M b)
Calculation Time (s) 22935 37458 62196 43200
Total Iteration 998 1388 1932 948
Time per Iteration (s) 23 27 32 46
Ratio:
Time D-N to Q-M 1.014 0.822 0.899 ——
Iteration D-N to Q-M 1.023 0.834 0.905 ——

Table 5.5: Table summarising calculation times and total number of iterations to convergence. Ratio of
recorded performances are calculated.

While an in-depth algebraic analysis of the results on algorithm performance presented above is out of
the scope of this thesis, the following remarks are discussed based on figures 5.5, 5.6, 5.7, 5.8 and table 5.5:

Remark 1 : It is apparent that between case 1 and case 3, the total run time and total number of
iterations until convergence increases. The increase in the electric current that passes through the
system makes the unified TIG model more difficult to solve, independently of the algorithms. This
is because as the arc intensity rises with a rise in inlet electric current, the stationary solution to the
configuration gets farther away from the field at initialisation2.

Remark 2 : For the 2D configurations treated in this section, the direct solver shows negligible dis-
crepancy in execution time per iteration between the relaxed linear systems of the Dirichlet-Neumann
and the quasi-monolithic algorithm.

Remark 3 : It is apparent that the relaxed Dirichlet-Neumann algorithm achieves convergence faster
than the relaxed quasi-monolithic algorithm between cases 1 and 3 because it requires a smaller
number of iterations to convergence. However, in referring to case 4.b), if the quasi-monolithic
algorithm is executed without relaxation, the simulation requires a smaller number of iterations
before convergence. However, the lack of relaxation makes the direct solver require more time to
solve the linear algebraic system at every global iteration of the simulation.

Remark 4 : Comparing case 4.b) to 2.a), the un-relaxed quasi-monolithic algorithm requires a smaller
number of total iterations but a longer total calculation time until convergence than the relaxed
Dirichlet-Neumann algorithm. Quantifying the remark, the relaxed Dirichlet-Neumann algorithm
requires 22% more iterations but 29% less calculation time until convergence. This is because solving
the un-relaxed linear system using the direct solver requires about 1.7 times more time than the
relaxed linear system.

2The field at initialisation refers to the initial condition at the start of a simulation
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Remark 5 : Comparing case 4.b) to case 2.b), the relaxed case, although requires a larger number of
iterations for convergence, converges faster than the un-relaxed case. Quantifying the discrepancy,
case 2.b requires 46% more total iterations for convergence, but 13% less total calculation time until
convergence. This is because solving the un-relaxed linear system using the direct solver requires
about 1.7 times more time than the relaxed linear system.

Remark 6 : Referring to case 4.a), it is apparent that the lack of relaxation of the Dirichlet-Neumann
algorithm makes that it does not converge to the required convergence criteria, rather it displays
an oscillatory solution. This is because the force balance at the interface of coupling is not satisfied
with an average of 2.5 internal iterations per global iteration. The algorithm ends up over and under
shooting the force balance at the coupling interface, thus preventing the convergence of the algorithm.
The force imbalance of the Dirichlet-Neumann algorithm is hypothesized to be related to the ratio
of the numerical Reynolds numbers in the two coupled domains. A formal study of this hypothesis
is reserved for a future work.

Following the above remarks, it can be argued that even though monolithic schemes are known to have no
instabilities associated with the interface treatment [27] [16] [78], the relaxed Dirichlet-Neumann algorithm
is the most adapted to the work in this thesis. While the quasi-monolithic algorithm in this work can require
a smaller number of iterations until convergence w.r.t the Dirichlet-Neumann algorithm, it performs slower.
Furthermore, in going towards a 3D approach, the quasi-monolithic algorithm is expected to perform
significantly slower than the Dirichlet-Neumann algorithm. This is because a direct solver does not scale
linearly with the number of degrees of freedom in a linear system3. Finally, the use of the Dirichlet-
Neumann algorithm must be performed with sufficient relaxation and internal iterations so as to achieve
a satisfactory force balance at the interface. Thus, a maximum of 3 internal iterations is allowed in the
algorithm and a relaxation factor of ωNS = 0.3 is used for the rest of this work.

5.6.2 Pool sensitivity to physical parameters and interface hypotheses

The weld pool is generally influenced by a multitude of parameters, including the arc electric intensity
and the viscosity of the liquid metal [54]. In this section the influence of the arc intensity, the liquid
steel viscosity and the interface hypothesis are discussed. These parameters are of interest because they
engender the influence of both arc and pool parameters onto the response of the weld pool. The analysis
begins by discussing the influence of the imposed electric current onto the weld pool, then follows with a
discussion of the influence of the interface hypothesis onto the pool and finally the influence of the viscosity
of steel onto the pool.

5.6.2.1 Influence of the electric current

. The influence of the three imposed electric currents presented in configuration (5.3) are studied. The
change in the input electric current into the system influences the arc and consequently the pool in several
ways. Increasing the input electric current from 100 A to 150 A at the inlet of the cathode (segment [EF]

3The number of degrees of freedom in 3D systems grows much quicker than in 2D systems, and thus the scalability of a
direct solver becomes an issue.
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from figure 5.1) increases both the magnetic field and electric current density in the vicinity of the cathode.
Analogous to sharpening a cathode, this consequently intensifies the Lorentz force and the Joule effect in
the arc. Thus, as was argued in section 4.6 an intensification of the Lorentz force and the Joule effect
in the arc can raise both the arc velocity and temperature. The arc velocity and temperature along the
arc symmetry axis as a function of inlet electric current are presented in figure 5.9. For an increase of
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Figure 5.9: a) z-component of velocity along the arc symmetry axis. b) Temperature profile along the arc
symmetry axis.

50 A in the inlet electric current, the maximum arc velocity increases 1.80-fold (see figure 5.9.a)), while
the maximum temperature of the arc increases 1.13-fold (see figure 5.9.b)). Analogous to the influence of
cathode tip geometry onto the arc, the arc velocity is more sensitive than the arc temperature to variations
in the electric current density emitted by the cathode tip. Consequently, this translates to a more significant
influence of the rise in electric current on to the stress fields rather than the heat flux at the API. The
sensitivity of the pressure, shear stress and total heat flux profiles at the API to the inlet electric current
is visualized in figure 5.10. The sensitivity is quantified by the 3.18 and 3.66-fold rise in the pressure and
shear stresses at the API (figures 5.10.a) and b)), as opposed to the more modest 1.47-fold rise in the total
heat flux transported to the anode (figure 5.10.c)). With the interaction of the arc and pool occurring
at the API, the imparted arc quantities at the API are what influence the behaviour of the pool. As the
pressure at the API rises with electric current, the deformation at the interface rises. Similarly, the rise
in shear stress at the API increases the pool surface velocity. However, the more modest rise in the total
heat flux at the API increases the pool temperature in a more modest manner. Furthermore, the increase
in the velocity of the pool increases the advection of heat away from the center of the pool, which is the
zone where the most amount of heat is transported from the arc to the pool. This effect tends to lessen
the rise in maximum temperature, and instead increases the size of the weld pool. These effects can be
seen in figure 5.11. Referring to figures 5.11.a) and 5.11.b) the velocity fields in the pool rise significantly
both at the surface of the pool and along its symmetry axis. The pool temperature also rises, albeit more
modestly. In fact, the pool maximum velocities rise 1.6-fold at the pool surface and a significant 12-fold
along the symmetry axis. This is opposed to the modest 1.1-fold rise in maximum temperatures along both
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Figure 5.10: a) Pressure profiles at API. b) Shear stress profiles at API. c) Total heat flux profile at API.

the pool surface and its symmetry axis as is seen in figures 5.11.c) and d). The sharp gradients at the pool
surface seen in figure 5.11.c) near the T = 1800 K values are due to the sharp reduction in the advection
of heat, as the pool velocities die towards the solidus temperature of the pool. This effect is not seen in
5.11.d) and that is because the downward velocities along the symmetry axis are significantly weaker than
those at the surface.

The significant rise in the velocity of the weld pool with a rise in the inlet electric current increases
the rate of heat advected away from the pool center. These effects influence the pool size and its depth
to width ratio. The weld pools calculated for the different inlet electric currents are presented in figure
5.13. Furthermore, the pool streamlines for the cases at I = 100 A and I = 150 A are presented in figures
5.12.a) and b), respectively. The stream function in a cylindrical coordinate system is defined as:

ψ = 2π
∫
L
r(u · n)dL

where n is the normal vector to an arbitrary line element dL. Reminding the reader that the stream function
is defined as the volume flow rate that passes through the arbitrary line element dL. This measure allows
to visualize the streamline of a flow, which facilitates analysis. So, in referring to the pool geometries in
figure 5.13 and the maps of the stream function field of the I = 100 A and I = 150 A cases (figures 5.12.a)
and b)), the following arguments about the influence of electric current onto pool width and depth are
made.
Pool width:
In this work, the pool width is defined as the pool maximum radius. As is apparent from figure 5.13,
an increase in the inlet electric current increases the width of the weld pool. In fact, the width of the
pool increases from 5.95 mm to 9.14 mm between the I = 100 A and I = 150 A pool; which is a 1.5-fold
increase. Analysing the forces responible for this growth, I start by noting that according to the work of
Nguyen, neither the bouyancy force nor the Lorentz force in the pool are the dominant forcing terms [60].
Furthermore, for pools at low concentrations of sulfur, the Marangoni force4 although it forces the pool
at the same order of magnitude as the shearing of the arc, is not as variable w.r.t inlet current. This is
visualized in figure 5.14, where the Marangoni forcing increases negligibly when compared to the rise in

4A surfacic force is implied here.
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Figure 5.11: a) Velocity norm profiles at API. b) Z-component of velocity at the pool symmetry axis. c)
Temperature profiles at API. d) Temperature profiles at the pool symmetry axis.

arc shear stress (see figure 5.11.b)). It becomes evident that as the arc shear stresses increase, the pool
surface velocities consequently increase. The increase in the surface velocities, along with the increase in
transported heat from the arc, increases the advected heat towards the periphery of the pool. Thus, a
rise in electric current increases both the shearing and the heat flux transferred to the pool surface which
increases the advected heat outward and away from the center, which widens the pool.

Pool depth:
As is apparent from figure 5.13 the depth of the pool increases with a rise in the inlet electric current. In
fact, the depth of the pool increases from 1.76 mm to 3.22 mm, which is a 1.8-fold increase. Although
the depth of a weld pool increases in a similar manner to the pool width, the pool is wider than it is
deep. For low sulfur concentration pools, the Marangoni force generally remains positive and does not
contribute to a reversal in the direction of the surface flow of the pool. This allows for the surface velocities
to generate one primary circulation zone that extends across the whole of the surface. The mapping of
the pool stream function fields for the I = 100 A and I = 150 A simulations in figures 5.12.a) and b),
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a)

b)

Figure 5.12: a) Stream function field with superimposed velocity vectors for the I = 100 A simulation. b)
Stream function field with superposed velocity vectors for the I = 150 A simulation.

presents the primary circulation zone in blue. The clockwise primary circulation5 descends downward at
the pool periphery where the liquid is at a cooler temperature, close to Tsolidus. The cold descent of the
liquid does not allow for deep pool penetration near the periphery. As the flow of the primary circulation
resurfaces near the pool center, the liquid returns to a hot state. The hotter liquid near the ascent of
the primary circulation contributes to the deepening of the pool. Referring to figures 5.11.b) and d), the
I = 100 A and I = 125 A, the results show negligible heat advection effects along the pool symmetry line.
This is due to the weak downward velocities, which makes the pool penetration in these cases dominated
by simple diffusion, which is apparent from the quasi-constant descent of the temperature profile along
the pool symmetry axis. However, the deepening of the pool near the center for the I = 150 A case is
dictated by a secondary circulation zone, mapped in red/yellow in figure 5.12. This secondary circulation
zone exists for all cases but is significantly stronger for the I = 150 A case. Moreover, the secondary
circulation is identified to be a Lorentz eddy because if the Lorentz force is removed from the weld pool
model, the eddy is not calculated. This effect is presented in figure 5.15 where the I = 150 A configuration

5Conforming to the mathematical standard, a flow rotating clockwise has a negative stream function associated to it.
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Figure 5.13: Pool geometries of the three simulations run for different inlet electric currents.

is used. Without the Lorentz force, the secondary circulation does not form because no reversal of the
velocity field is calculated along the pool symmetry axis (see figure 5.15.a)). Consequently, the lack of the
Lorentz eddy reduces the penetration of the weld pool (see figure 5.15.b)). Nevertheless, referring to figures
5.11.a) and b) the Lorentz eddy seen for the I = 100 A case is about 200 times weaker than its primary
circulation. Consequently, the pool remains wider than it is deeper for all cases because the secondary
circulation zone is significantly less intense than the primary circulation. However, the more intense the
inlet current, the higher the intensity of the secondary circulation; and with the Lorentz eddies flowing
in a counter-clockwise manner, they advect the hot liquid downward. Quantifying the pool geometries
table 5.6 presents the widths, depths and the depth to width ratio of the three weld pools. The calculated
D:W ratios show that the deepening effect of the secondary circulation eddy is 1.5-fold higher between the
I = 125 A case and the I = 150 A case. This ratio increase is hypothesised to be due to a strengthening
of the interaction of the primary circulation with the Lorentz eddy. Effectively, the primary circulation
and the Lorentz eddy intensify with a rise in the inlet electric current, which strengthens their interaction.
Once their interaction is strong enough the downward advection of hot liquid is significantly increased (as
seen in the I = 150 A case), augmenting heat transport locally. This consequently contributes to a stronger
deepening of the pool, with the deepening concentrated near the center and below the red circulation zone
from figure 5.12.b).

For purposes of comparison, the experimental studies reported by Mills [54] show a general agreement
with the trends discussed in this subsection. Indeed, a rise in the inlet electric current leads to an increase
in the experimental dimensions of the weld pool.

I = 100 I = 125 I = 150
Width (mm) 5.95 7.51 9.14
Depth (mm) 1.76 2.26 3.22
Ratio D:W 0.30 0.30 0.45

Table 5.6: Summary of pool widths, depths and depth to width ratios.
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Figure 5.14: Marangoni surfacic force at pool surface.

5.6.2.2 Influence of the interface hypothesis

Here, I briefly discuss the influence of the interface hypothesis onto the pool system. Although the Weber
number of the arc-pool system is generally small (see chapter 1, table 1.1), the choice of the interface
hypothesis can significantly affect the system. This is due to the strongly coupled thermo-hydraulic nature
of the system. The discussion is based on the following two configurations:

Case 1:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.2)
Interface hypothesis → fixed

Case 2:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.2)
Interface hypothesis → deformable.

By maintaining all the simulation parameters constant except for the interface hypothesis, the effect of
the weak deformation of the interface onto the pool system can be discussed. Figure 5.19 presents the
pool geometries of both case 1 and 2. As the pool contours suggest, allowing for a deformable interface in
the arc-pool system increases both the width and depth of the pool. However, the pool width increase is
negligible (≈ 2%) as compared to the pool depth increase (≈ 17%). The significant increase in depth is
primarily due to the distortion in the shape of the melt pool. The deformation at the interface modifies
the location and intensity of the secondary circulation below the interface and thus also the heat advected
downard. Figure 5.17 shows the streamfunction field for both case 1 and 2 in the vicinity of the secondary
circulations. The eddy for case 2 is seen to be larger and extends further downward as compared to that
seen for case 1. This can be explained using the following two arguments. Due to the incompressibility of
the melt pool the depression of the interface shifts the liquid steel that is directly underneath it ≈ 0.24 mm
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Figure 5.15: a) z-component of velocity at the pool symmetry axis. b) Pool geometries of the I = 150 A
cases with and without the Lorentz force.

deeper into the anode. This downward displacement of the weld pool modifies the geometry of the basin
the eddy is placed as seen in figure 5.17. Furthermore, eddies are known to be sensitive to the boundary
conditions of their basin [55] and so the modification in the pool geometry appears to intensify the eddy
computed in case 2. This intensification increases the advected heat downward into the anode and so
extends the penetration of the pool an additional ≈ 0.22 mm.

5.6.2.3 Influence of the liquid steel viscosity

Here, I briefly discuss the influence of the choice of the viscosity of the liquid steel onto the pool system.
With weld pools being mainly surface driven fluid systems, a variation in the dynamic viscosity will
translate to the surface velocity, which then translates to the thermal and the secondary circulations that
are dependent on the surface flow. The discussion is based on the following two configurations:

Case 1:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.1) (augmented viscosity)
Interface hypothesis → deformable

Case 2:

Iarc = 150 A
α = 15o

rint = 0.3 mm
cS = 10 ppm
µ → equation (5.2) (experimental viscosity)
Interface hypothesis → deformable.

By maintaining all the simulation parameters constant except for the choice of the dynamic viscosity
data set used, the effect of viscosity onto the pool system can be discussed. Therefore, by maintaining all
arc parameters constant it is negligibly affected by the change in the viscosity of the pool. This is seen in
figure 5.18 a) and b), where neither the arc velocity field nor the temperature field is significantly affected.
Consequently, both case 1 and 2 have arcs that impart similar dynamic stresses and transfer similar heat
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Figure 5.16: Pool geometries of the two simulations run for different interface hypotheses.

Figure 5.17: Streamfunctions in the region of the secondary circulation zones of case 1 (left) and case 2
(right).

fluxes to the pool surface. However, the computed pool geometries are significantly different in both their
width and depth. This is presented in figure 5.19 where the pool width varies 5% between cases and the
depth is computed to be 1.8mm for case 1 and 3.2 mm for case 2, which is a significant 1.7-fold difference.
With the arc remaining almost invariable between the cases, the computed differences in the pool geometry
are due to the thermo-hydraulics of the pool. The identified effects driving the sensitivity of the pool to
the dynamic viscosity are threefold, and are based on figure 5.20:

Effect 1 : The pool at a higher viscosity is stiffer than that at a lower viscosity and so for the same arc
shearing results in lower surface velocities. The surface velocity norms for cases 1 and 2 are plotted
in figure 5.20.a) where the velocity profile rises 4-fold between case 1 and 2. The higher surface
velocities slightly increase the width of the pool.

Effect 2 : The higher velocities in the low viscosity pool allow for a more significant advection of
heat around the pool, that which allows for pools with higher internal energies at the equilibrium
stationary solution. The more easily internal energy is distributed in the pool, the more internal
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Figure 5.18: a) Z-component of velocity along the arc symmetry axis. b) Temperature profile along the
arc symmetry axis.

Figure 5.19: Pool geometries of the two simulations run for different liquid steel viscosities.

energy can be stored in the pool at its thermal equilibrium state. This effect is seen in figure 5.20.b)
where the center of the pool is 1.15-fold hotter for the less viscous case.

Effect 3 : Due to the weaker surface velocities for the more viscous pool, its consequent primary
circulation zone is also weaker. The higher viscosity also stiffens the pool which dampens the effect
the Lorentz force has on the pool. Furthermore, the lower pool temperatures reduce the overall
volume of the pool, that which does not allow for a secondary circulation to form. This is seen in
figure 5.20.c) where for the more viscous pool, there is no downward flow along the symmetry axis,
which is associated to the secondary circulation. The lack of the downward advection of heat means
that the penetration of the high viscosity pool is diffusion dominant, which can be deduced from
figure 5.20.d). Thus, with lower pool temperatures, and no secondary circulation, no heat is advected
downward which explains the 1.7-fold difference in pool depth between case 1 and 2.

The sensitivity of the pool to the choice of dynamic viscosity requires that care is taken when setting
choosing the model parameters. Although lower pool viscosity values requires that the model be solved
on a finer mesh (see section 5.5.3), which makes for more costly computations, the consequent physical
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Figure 5.20: a) Velocity norm profiles at API; b) z-component of velocity at the pool symmetry axis; c)
temperature profiles at API; d) temperature profiles at the pool symmetry axis.

effects cannot be overlooked. A final note concerns the Reynolds number of the pool for the different
viscosities. Here the weld pool Reynolds number Re is calculated at the arc-pool interface, and is defined
as Re = ρHpool∥v∥/µ, where Hpool = 1 mm is taken as the approximate thickness of the primary circulation.
Being sensitive to both the dynamic viscosity and velocity fields in the pool, the maximum pool Reynolds
number, changes significantly between case 1 (Remax = 50) and 2 (Remax = 1380). The computed
Reynolds profiles at the pool surface are compared in figure 5.21. Finally, because the Reynolds number
is significantly smaller in the volume of the pool, and because the meshes are sufficiently refined, the
computed solutions are capable of capturing most of the dynamics of the pool.

Nota bene:
It is important to note that the thermal boundary conditions can strongly influence the behaviour of both
the arc and pool. However, they are expected to only influence the magnitude of the variables and not the
captured trends. An in-depth analysis of this influence is out of the scope of this thesis.
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5.7 Summary

Studying the influence of the coupling algorithms onto the arc-pool model ensured that the more perfor-
mant method is identified and used in the rest of this thesis. Indeed, the two studied algorithms were found
to converge to very close solutions and thus were considered comparable. Furthermore, in comparing time
to convergence and total iteration number, the Dirichlet-Neumann coupling algorithm was found to achieve
numerical convergence faster than the quasi-monolithic algorithm. Additionally, the Dirichlet-Neumann
algorithm was argued to be more appropriate for use in 3D configurations. It is interesting to note that
based on remarks #4 and #5 in subsection 5.6.1.2, there appears to be an optimal relaxation factor that
would reduce both calculation time and iteration number to a minimum.

Studying the influence of the inlet electric current, the interface hypothesis and the liquid steel viscosity
value, at low computational costs in a 2D axisymmetric configuration, served to identify the dominant
thermohydraulics at play in the arc-pool system. In fact, the three model parameters were found to
significantly influence the calculated dimensions of the pool. Effectively, a rise in inlet current increases
both the arc shear force at the API and augments the strength of the secondary circulation in the weld
pool. These effects were shown to increase both the width and depth of the pool. Furthermore, although
the Weber number of the arc-pool interaction is small, the deformation of the API considerably influences
pool penetration by both displacing and morphing the secondary circulation of the weld pool. As for
the influence of the pool viscosity onto the arc-pool system, the main effects are the following. Using an
augmented pool viscosity lowers the maximum velocities and temperatures calculated in the pool which
lowers the widening and penetration of the pool. Moreover, the augmented rigidity of the pool strongly
counteracts the Lorentz force and obstructs the formation of a secondary circulation. This further reduces
the penetration effect of calculated weld pools.



Chapter 6

A three dimensional study of TIG
welding

Une intelligence qui, à un instant donné, connaîtrait toutes les forces dont la nature est animée et la
situation respective des êtres qui la composent, si d’ailleurs elle était suffisamment vaste pour soumettre
ces données à l’analyse, embrasserait dans la même formule les mouvements des plus grands corps de
l’univers et ceux du plus léger atome ; rien ne serait incertain pour elle, et l’avenir, comme le passé,
serait présent à ses yeux.

Le démon de Laplace
Pierre-Simon Laplace
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Introduction

A presentation of two different 3D welding configurations is analysed and discussed in this chapter. The
chapter begins with section 6.1, where a presentation of a verification study performed on a TIG spot
configuration modelled in 3D Cartesian coordinates is discussed. The purpose of the study is to verify that
the extension of the 2D axisymmetric model to a 3D one was coherently performed. Next, in section 6.2,
the verified 3D TIG welding model is extended to account for weld displacement effects. The extended
model is then used to set up a preliminary validation study performed against an experimental case chosen
from the literature. Some results of the simulated case are presented and the thermohydraulics of the
welding configuration briefly discussed. Finally, both similarities and discrepancies between the numerical
test and the experimental case are analysed and discussed; moreover, the limitations of the validation study
are presented.

6.1 A TIG spot verification study

In this section a verification study of the 3D model developed in this work is presented. This verification
study is based on the assumption that rotational symmetry exists for steady state spot configurations;
thus, the verification study is performed on a spot configuration where a 2D axisymmetric configuration is
compared to its 3D Cartesian analogue. The 2D axisymmetric spot configuration is set up, executed and
its simulation results processed so as to serve as a reference solution to compare the simulation results of
the 3D analogue to. The analogous 3D spot model is set up using the same welding parameters as the
reference 2D model, but is built on a full 3D Cartesian mesh. Furthermore, the 3D spot configuration is
solved on a coarse and a fine mesh, which allows for a brief discussion of spatial convergence. To begin the
discussion, first the geometric configuration of the study is presented.

6.1.1 Geometric configuration

Being constructed on analogous geometries, the 2D axisymmetric and 3D Cartesian spot configurations
are modelled using one schematic. The schematic is presented in figure 6.1, where the faded dash-dot
symmetry axis represents the axis of rotation. The schematic represents a z − x section of the geometry
centered at y = 0. Furthermore, the 2D axisymmetric model is built on the half geometry of the schematic
(see figure 5.1 in chapter 5), while the 3D Cartesian model is built on the full rotation of the schematic.

6.1.2 Boundary conditions and material properties

The boundary conditions imposed onto the reference 2D axisymmetric model are the same as those pre-
sented in table 5.1 from chapter 5; while the boundary conditions imposed onto the 3D spot model are
presented in table 6.1. The 3D spot boundary conditions are presented as they apply to the schematic in
figure 6.1. The interface between the arc-plasma and the weld pool, defined along segment [QN], is treated
using the Dirichlet-Neumann algorithm (see section 3.6.2.1 in chapter 3).
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Figure 6.1: z − x section of the geometry used in section 6.1.

Electric
ϕ = 0 [OP]
−σ∇ϕ · n = 0 [AD] ∪ [IM] ∪ [MN] ∪ [NO] ∪ [PQ] ∪ [QA]
−σ∇ϕ · n = jimp [DI]
Heat transfer
T = 750 [PO]
T = 500 [AD] ∪ [DI] ∪ [IM] ∪ [NO] ∪ [PQ]
−λ∇T · n = 0 [MN] ∪ [QA]
Magnetic
B = (0, 0, 0) point J
B · ẑ = 0 [AD] ∪ [DI] ∪ [IM] ∪ [MN] ∪ [NO] ∪ [OP] ∪ [PQ] ∪ [QA]
Momentum
u = (0, 0, 0) [BC] ∪ [DF] ∪ [FG] ∪ [GI] ∪ [KL]
u = (0, 0, — ) [AB] ∪ [LM]
u = ( —, —, 0) [QA] ∪ [MN]
u = (0, 0,−1.4) [CD] ∪ [HK]
(σ · n) · n = 0 [QA] ∪ [AB] ∪ [LM] ∪ [MN]

Table 6.1: Boundary conditions imposed at the geometry contour of figure 6.1.

As for the material properties used in the verification study, they are also based on a solid thoriated
tungsten cathode, argon arc and a 316L steel anode. The thermophysical properties as functions of tem-
perature are presented in appendix A. Note that the chosen viscosity value of liquid steel is based on the
augmented viscosity value from the numerical work of Nguyen [61]. The viscosity is described by equation
(5.1).

6.1.3 Discretisation and meshing

Here the chosen discretizations used for the different variables and the different meshes used are presented.
Note that the discretisation choices presented in the following apply to all discussed simulations in sections
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Dimension Interpolation Elements

2D

(u, P,v, p, hz, h,B, ϕ) → Q1, P1

(σ∗, λ, µ etc...) → Q0, P0

3D

(u, P,v, p, hz, h,B, ϕ) → Q1, P1

(σ∗, λ, µ etc...) → Q0, P0

Table 6.2: Used elements and associated variables. Interpolation nodes are represented by the "o" symbol.

6.1 and 6.2 of this chapter.

6.1.3.1 Discretisation

To reduce computational costs when simulating the 3D model all the solved variables are discretised
tri-linearly (u, P,v, p, hz, h,B, ϕ) while the temperature dependent physical parameters are constant by
element. Furthermore, the volume of the geometry Ω is discretised using a mix of hexahedral and prism
elements, while the surface and interface subdomains ∂Ω, Γ are discretised using a mix of quadrilateral
and triangular elements. The choices of element discretization per physical variable and coefficient are
presented and summarized in table 6.2. The tri-linear Q1–Q1 and P1–P1 discretisation of the velocity and
pressure variables in this chapter does not respect the Ladyzhenskaya-Babuska-Brezzi condition. Thus,
to ensure the stability of the coupled velocity–pressure scheme, the system is stabilised with polynomial
pressure projection terms [22].

6.1.3.2 Meshing

Two 3D meshes are generated on a Cartesian coordinate system for this verification study and they serve
to simulate the 3D spot model in a manner analogue to the 2D axisymmetric spot model. The meshes are
constructed by rotating a 2D axisymmetric mesh (see figure 5.2 in chapter 5) 360o around its symmetry
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axis. The rotation of the 2D plane is discretised with Nrota steps, which generates the discretised third
spatial dimension. The two generated meshes, mesh 1 and mesh 2 have Nrota = 15 and Nrota = 30 steps,
respectively. Figure 6.2 schematises the generation of the two meshes used in this section.

Figure 6.2: Mesh generation of 3D spot model for two rotational discretisations.

6.1.4 Discussion and results

To solve the stationary TIG spot model on a 3D mesh, spot configurations with steady-state equilibrium
solutions should be used, otherwise the simulation would risk diverging. Thus, to simulate a spot configu-
ration that easily converges and allows for the verification of the 3D model, the augmented viscosity value
adapted from Nguyen [60] is used. The main weld parameters of the chosen spot configuration are listed
below:

Iarc = 150 A

cS = 0 ppm

µ = 0.03Pa · s

Interface hypothesis → deformable.

The above configuration is simulated on both mesh 1 and mesh 2, and the results of the converged simu-
lations are discussed in two parts. First, the results of the 3D spot model on the finer mesh are presented,
analysed and discussed, with a focus on the rotational symmetry of the solution. The second part of this
verification study compares the results of both the coarse and fine meshes to the simulation results of their
analogous 2D axisymmetric model (run using the same spot configuration). It is important to note that



122 CHAPTER 6. A THREE DIMENSIONAL STUDY OF TIG WELDING

the verification of the numerical fluid dynamics and magnetostatic schemes were performed in the work of
Brochard [13]; moreover, the extensive verification of the used mathematical operators was performed in
Gounand’s work [31].

6.1.4.1 Rotational symmetry of the 3D spot

Ensuring that rotational symmetry is achieved for the 3D Cartesian spot model is necessary if the model
is to be compared to and verified to its 2D axisymmetric model. To ensure rotational symmetry, I begin
by defining the term symmetry as it is used in this study: if the variance in the calculated fields along the
azimuthal axis remains under 5%, rotational symmetry of said fields is assumed. Analysing the simulation
results of the simulated spot configuration, the temperature map of the cathode, arc and workpiece system
is first presented in figure 6.3. The mapped temperature field of the TIG system indicates a left-right

Figure 6.3: Temperature field of the side view of all TIG subdomains (left), side view of weld pool (top
right) and top view of weld pool (bottom right).

symmetry of the system in the z − x plane. Focusing on the weld pool, the symmetry of the side view is
fundamentally a rotational symmetry as is seen in the top view of the pool along the y − x plane. In fact,
the symmetry of the temperature field of the system translates to the rotational symmetry of the weld pool
geometry. Furthermore, the symmetry calculated in the thermal fields of the studied spot configuration
also manifests in the velocity field of the configuration. The velocity norm of the weld pool for both
the side view and the top view is shown in figure 6.4, for which the rotational symmetry of the field is
apparent. Moreover, the characteristic dimensions of the pool geometry are indicated in figure 6.4 and
measure a = 9.289, b = 9.339, c = −9.290, d = −9.344 mm. The axes vary a maximum of 0.55% w.r.t one
another; thus, the pool geometry is considered rotationally symmetric. Similarly, the interface deformation
field and the norm of the magnetic field are rotationally symmetric, and they are mapped in figures 6.5 a)
and b), respectively. The electric potential map is not shown because the symmetry of the magnetic field
map implies the rotational symmetry of the voltage field because of the quasi-linear relationship between
the electric and magnetic field equations (see equations 2.1 and 2.2). With the rotational symmetry of
the 3D Cartesian spot configuration satisfied, the 2D axisymmetric spot model can be used as a reference
model to verify the 3D model.
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Figure 6.4: Velocity norm field of the side view of weld pool (top) and top view of weld pool (right).

(a) (b)

Figure 6.5: a) Top view of interface deformation field at the arc-pool interface in the pool subdomain. b)
Top view of magnetic field norm at the arc-pool interface.

6.1.4.2 Comparison of the 2D to the 3D model

To compare the 3D model to the reference 2D axisymmetric model, the temperatures and velocities of
the arc-plasma and the weld pool, and the weld pool geometries are compared. The simulation solutions
are generated on mesh 1 and mesh 2 of the 3D spot model, and the reference solution on the analogous
2D axisymmetric mesh (see figure 6.2). The temperature and velocity variables across the arc symmetry
axis, the API and the pool symmetry axis are plotted in figure 6.6. As observed in the plotted results,
the 3D spot model reproduces the same results and trends calculated by the 2D axisymmetric model. In
fact, the temperature fields calculated with the 3D model reproduce, to a good level of precision, the field
calculated with the 2D model. The velocity fields calculated with the 3D model also reproduce the trends
calculated by the 2D model; however, the precision is slightly lower. Furthermore, the three calculated
pool contours show good agreement as is seen in figure 6.7. Although the velocity field calculated on mesh
2 is in better agreement with the reference 2D field, mesh 1 is considered satisfactory because its relative
difference w.r.t the reference solution remains < 10% (see (4.4)). In fact, the small relative differences in
the plotted profiles can be attributed to numerical integration errors and are expected to reduce towards
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Figure 6.6: Comparing the two meshes in 3D to the analogous mesh in 2D. a) Temperature profile along
arc symmetry axis. b) Vertical velocity component profile along arc symmetry axis. c) Temperature profile
along API (center to edge). d) Velocity norm profile along API (center to edge). e) Temperature profile
along anode symmetry axis. f) Vertical velocity component profile along pool symmetry axis.
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Figure 6.7: Pool contours of mesh 1 and 2 of the 3D model and axisymmetric mesh of the 2D model.

0% as the 3D mesh is further refined, and in the limit that the algorithm convergence criteria are reduced
to 0.

Thus, both the rotational symmetry of the 3D spot model, and its good agreement with the 2D
axisymmetric spot model imply that the extension of the 2D axisymmetric model to a 3D Cartesian
model is mathematically consistent. Moreoever, the algorithms defined in chapter 3 are functional and
conservative in both 2D and 3D configurations.

6.2 TIG welding with displacement effects

In this section, the 3D model is extended to account for displacement effects that occur in a typical welding
operation. The displacement effects are accounted for fixing the cathode w.r.t the laboratory frame of
reference and assigning a weld displacement velocity to the workpiece. To test the extended model, a
welding configuration is chosen from Koudadje’s thesis [47] and is simulated. The thermohydraulic fields of
the simulated welding configuration are discussed and analysed, and the weld pool geometry is compared
to the experimental results from Koudadje [47]. The limitations of the preliminary validation study are
also discussed.

6.2.1 Geometry configuration

To both account for the inlet/outlet heat flux associated with the weld displacement effects and to reduce
computational costs, a new geometric configuration is designed. The geometry is set up with both anode
inlet and outlet surfaces that allow for appropriate thermal boundary conditions to be applied. Further-
more, a z−x symmetry plane is assigned, which reduces the computational domain by half. The geometric
configuration is schematised in figure 6.8. The workpiece thickness and arc height are chosen to correspond
to the chosen experimental configuration in Koudadje’s work [47]. However, the domain length and width
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Figure 6.8: Half geometry used in section 6.2, sliced at the z − x symmetry plane, where y = 0.

are chosen to allow for sufficiently far inlet and exit surfaces. As seen in figure 6.8, the workpiece surfaces
are aptly named ∂Ωanoin and ∂Ωanoout.

6.2.2 Boundary conditions, displacement effects and meshing

Here the boundary conditions used to close the 3D weld displacement model, the modelled displacement
effects and the mesh used to simulate the welding configuration are presented. As for the material properties
used in this section, they are the same as those presented in section 6.1.2.

6.2.2.1 Boundary conditions

The boundary conditions imposed onto the geometric model are similar to those of the previous sections,
but are supplemented to account for the weld displacement effects. Furthermore, to capture displacement
effects while using a steady state model requires that the model emulate welding on an infinitely long and
wide but a finitely deep workpiece. To this end, a cold 300 K condition1 is assigned to the inlet ∂Ωanoin

surface, while the outlet ∂Ωanoout surface is left as a free −λ∇T · n = 0 W exit condition. Moreover, the
workpiece bottom surface ∂Ωanobot is assigned a convection boundary condition with hconv = 15 W·K−1·m−2

and Tinf = 300 K. All boundary conditions applied to the 3D weld displacement model are presented in table
6.3 as they apply to the geometry schematised in figure 6.8. As for the interfaces, the arc-pool interface
is treated using the Dirichlet-Neumann algorithm (see section 3.6.2.1 in chapter 3), and the cathode-arc
interface is considered to be a fixed, stationary surface where Uwall = 0 m·s−1.

1Which emulates a workpiece that is at room temperature at infinity.
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Electric
ϕ = 0 ∂Ωanobot

−σ∇ϕ · n = 0 ∂Ωsym ∪ ∂Ωplain ∪ ∂Ωnoz ∪ ∂Ωplatop ∪ ∂Ωplaback ∪ ∂Ωanoin ∪ ∂Ωanoout

−σ∇ϕ · n = jimp ∂Ωcatup

Heat transfer
T = 500 ∂Ωcathau ∪ ∂Ωplain ∪ ∂Ωnoz ∪ ∂Ωplatop

T = 300 ∂Ωanoin

−λ∇T · n = 0 ∂Ωsym ∪ ∂Ωplaback ∪ ∂Ωanoout

−λ∇T · n = hconv(T − T∞) ∂Ωanobot

−λ∇T · n = ϵσB(T 4 − T 4
∞) ∂Ωanobot

Magnetic
B = (0, 0, 0) point E
B = (0, — , 0) ∂Ωsym

Momentum
u = (0, 0, 0) ∂Ωnoz

u = (0, 0, — ) ∂Ωplatop

u = ( —, —, 0) ∂Ωplaback

u = (0, 0,−1.4) ∂Ωplain

(σ · n) · n = 0 ∂Ωplatop ∪ ∂Ωplaback

u = ( —, 0, —) ∂Ωsym

(σ · n) = (0, —, 0) ∂Ωsym

v = Vdispl ∂Ωanoin ∪ ∂Ωanoout

Table 6.3: Boundary conditions imposed at the surfaces of schematised geometry in figure 6.8.

6.2.2.2 Displacement effects

To account for the weld displacement effects, the workpiece heat transfer model is assigned the displacement
velocity w.r.t the laboratory frame of reference Vdispl everywhere except inside the weld pool domain.
Similarly, the weld displacement velocity is imposed as a moving rigid wall condition (see equation (2.31)
in sec. 2.4.3.2, ch.2) where v|∂Ωpool

= Vdispl. The modelling of the weld displacement effects is schematised
in figure 6.9 where the z − x plane of the workpiece at y = 0 is presented.

Figure 6.9: Schematic of the modelled displacement effects in the workpiece.
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6.2.2.3 Meshing

One mesh is generated for the weld displacement model, and is meshed in three steps. First a 2D axisym-
metric mesh (see figure 5.2 in chapter 5) is rotated 180o and discretised using Nrota = 30 steps. Second, a
cylindrical region around the cathode and the central z − y plane at x = 0 are fixed. Lastly, the submesh
in the right hand quadrant is compressed and the submesh in the left hand quadrant is extended to form
the final mesh. The meshing procedure is schematised in figure 6.10. To ensure that the compressed and

Figure 6.10: Mesh generation of 3D weld displacement model.

extended elements maintain their quality and orthogonality the mesh regularisation method adapted from
Huang [34] is used.

6.2.3 Discussion and results

To test the capabilities and validity of the weld displacement model developed in this work, a numerical
configuration analogous to a line weld case from the experiments studied in Koudadje [47] is set up. The
welding configuration is adapted from Appendix F, weld line tests, experiment #2 from Koudadje [47] and
is as follows:
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Experimental parameters )



Iarc = 200 A
Harc = 3 mm
α = 20o

rint = not specified
cS = 10 ppm
Hano = 18 mm
Vdispl = 30 cm · min−1

Workpiece material → 304L

where the cathode truncation radius is not reported. The numerical configuration that is set up with the
above parameters except that the truncation radius is chosen at rint = 0.6 mm and the thermophysical
properties of the workpiece material are for 316L steel2. Furthermore, in order to ensure the simulation
of a converging numerical configuration, without incurring excessive computational time3, the used liquid
steel viscosity is based on the augmented viscosity value in equation (5.1). In fact, finding a converging
solution to 3D configurations with the lower experimentally reported viscosity values (see equation (5.2))
takes a significantly longer amount of time and many more iterations. Moreover, only the results of a fixed
interface simulation are presented because, while writing this section, the deformable interface simulation
had not yet converged.

6.2.3.1 Simulation results

Here I present the results of the simulation of the chosen welding configuration and briefly discuss the
implications of the thermohydraulic fields onto a) the algorithms implemented in this work and b) the weld
pool geometry. First the temperature field of the global domain is presented in figure 6.11.

Figure 6.11: Temperature field of simulated case of the weld displacement configuration.

2The differences between the thermophysical properties of 304L and 316L steel are considered negligible.
3This section was chronologically written last and thus little time was left from my PhD to allocate to expensive calculations.
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The temperature field of the global domain is calculated to be continuous across the arc-plasma and
workpiece domains, as is represented by the black isocontours. The continuity of the temperature field
implies that both the energy and momentum conservation laws are respected by the coupling algorithms
implemented in this work (see sections 3.5 and 3.6). This indicates that the algorithms are robust and
generally applicable to 3D welding configurations. Furthermore, the temperature field of the arc-plasma
displays an asymmetry in its interaction with the workpiece and this indicates the importance of modelling
the arc-plasma in 3D. Furthermore, the symmetry condition applied on the z − x plane can be verified by
noting the orthogonality of the temperature isolines at the ∂Ωsym boundary. To this end, the temperature
field at the arc-workpiece interface (ΓAPI) is shown in figure 6.12. Effectively, the symmetry in the tem-

Figure 6.12: Temperature field of top view of the the workpiece at ΓAPI .

perature field is seen in the vicinity of the pool where the mesh is refined. However, because the symmetry
condition is imposed using Neumann boundary conditions (−λ∇T |∂Ωsym ·n = 0), the temperature isolines
are less orthogonal in the zones where the mesh is less refined.

Next, the arc-plasma flow, the hot regions of the arc and the workpiece, and the pool hydrodynamics
are represented in figure 6.13 by the streamlines, temperature isosurfaces/contours and the vector fields,
respectively. Indeed, the simulation reproduces the inlet argon flow and its acceleration and heating down-
stream the cathode which consequently generates the thermohydraulics of the weld pool, that in turn
shapes the pool geometry. As is seen in figures 6.11 and 6.13, the displacement velocity of the workpiece
stretches the temperature field of the arc-pool system and consequently breaks any rotational symmetries
of the simulated system. The stretched pool geometry and its temperature field are represented in figure
6.14, where Tmax = 2211 K and the pool maximum length, half-width and depth are l = 1.41 cm, w = 4.72
mm and d = 1.24 mm. Furthermore, the velocity and temperature fields of the weld pool are presented
in figure 6.15, where the maximum pool velocities ∥vmax∥ = 0.49 m·s−1 and temperatures are seen at the
pool surface. The arc-shear and Marangoni force driven surface velocities are seen to generate multiple flow
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Figure 6.13: Arc and pool temperature and velocity fields. U represents the streampath scale, and V the
vector field scale.

circulation zones which are responsible for shaping the pool geometry. With the heat advection oriented
in the direction of weld displacement, the rear-end of the pool is deeper and wider than the front of the pool.

The incorporation of the cathode, arc-plasma and the anode/workpiece into the computational domain
is important because it removes the need to experimentally calibrate equivalent heat and pressure sources
and/or use 2D → 3D projection methods as was done by Nguyen [61, 60], Koudadje [47] and Traidia
[84]. However, to ensure that the weld displacement model developed in this work is adapted to simulate
experimental configurations, a validation study is necessary. Limited by time, a preliminary validation
study is presented in the following section where the simulation results are compared to the experimental
pool geometry as reported in Koudadje’s thesis [47].

6.2.3.2 Comparison to experimental observables

To compare the calculated pool geometry to the experimental macrographic image reported by Koudadje
[47], the appropriate calculated pool geometry projection must be considered. In fact, referring to figures
6.14 and 6.15, the pool geometry is not deepest where it is widest; furthermore, the pool floor exhibits
multiple inflection points. Thus, calculating the equivalent macrographic slice from a stationary pool model
requires that the maximum depth isocontour be calculated as a function of the x and y axes. The calcu-
lated maximum depth isocontour for the pool geometry is presented in figure 6.16 and is represented by the
red points and contour on the mesh of the pool geometry. Using the equivalent numerical macrographic
projection the results are compared to the experimental cross section in figure 6.17. Indeed, the calcu-
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Figure 6.14: Pool geometry and the temperature field in its vicinity.

Figure 6.15: A closeup of the pool temperature and velocity fields.

lated pool depth agrees with the experimentally measured depth; however, the calculated pool width is
22% larger than the experimental one. Although the simulated welding configuration yields a pool profile
that is of the same order of magnitude as the experimental cross section, identifying the sources of the
discrepancy is important. To this end, the hypothesised principal sources of discrepancy are, by order of
expected influence: a) the choice of the cathode upper diameter does not correspond to that reported by
Koudadge [47]; b) the use of the augmented viscosity value from equation (5.1); c) an underestimation of
the radiative losses of the arc-plasma as modelled by the sink term in equation (2.58); d) the lack of a
deformable interface in the presented simulation; e) the lack of modelling the thermal losses by contact that
are present on the experimental workbench of Koudadge’s work [47]. Effectively, the discussed sources of
discrepancy are hypothesised because: a) the cathode geometry was shown (see section 4) to significantly
influence the distribution of heat at the API; b) the choice of liquid steel viscosity in a simulation was shown
(see subsection 5.6.2.3) to influence the hydrodynamic regime of the weld pool; c) the radiative sink terms
can influence the heat flux at the API [51, 75] and it is possible that the current model underestimates the
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Figure 6.16: Calculated maximum depth isocontour on the simulated pool geometry.

Figure 6.17: Comparison of numerical maximum depth isocontour to the experimental macrographic cross
section from Koudadje [47].

emission; d) the deformable interface hypothesis was shown in both subsection 5.6.2.2 and by Nguyen [60]
to influence the weld pool geometry; e) the thermal contact points of the experimental workpiece and the
workbench, used in Koudadje’s work [47], could influence the rate of cooling of the workpiece. Furthermore,
it is possible that assigning a displacement velocity to the workpiece as opposed to displacing the welding
torch (as done in Koudadje [47]) w.r.t the laboratory frame of reference, might influence the cooling rate
of the arc and thus influence the pool geometry. In fact, Gonzalez [29] showed that the thermo-hydraulics
of the arc is influenced by the cross-flow while displacing the torch; however, the cross-flow effect is only
significant when the displacement velocity is high.

As a final note, the author encourages the development of an extensive validation study in the future, in
order to thoroughly quantify the limitations and the extent of the validity of the developed model.

6.3 Summary

6.3.1 Spot verification study

The spot verification study ensured that the extension of the 2D axisymmetric model to a 3D Cartesian one
was coherently performed. In fact, the calculated rotational symmetry of the 3D spot simulation indicates
that the mathematical operators used to model the volume, surface and interface forces were properly
extended from the 2D axisymmetric model. Moreover, the rotational symmetry of the 3D spot implies that
the axisymmetric hypothesis in the 2D model is valid (for the spot regimes studied); thus, allowing for the
use of the 2D spot model as a reference.



The comparison of the 3D simulation results to the reference 2D model ensured that extending the model did
not modify the implemented physics in an unwanted manner. Furthermore, the strong agreement between
the reference 2D axisymmetric and the analogous 3D Cartesian simulation results further indicates the
mathematically coherent extension of the model. Finally, the agreement between the 2D and 3D models
indicates that the coupling algorithms implemented in this work maintain their robustness and conservative
nature in 3D configurations.

6.3.2 Welding with displacement effects

The weld displacement study incorporates the cathode, arc-plasma and the workpiece domains and presents
the effects of a displacement velocity onto the welding system. The developed model is a potentially pow-
erful tool that alleviates the need for the use of experimentally calibrated heat and pressure sources. As
for the calculated asymmetry in the temperature field of the arc-plasma, it implies the importance of the
use of a coupled arc-plasma and workpiece model when capturing 3D displacement effects. Furthermore,
the continuity of the temperature field across the API indicates that the implemented coupling algorithms
remain conservative when applied to weld displacement configurations.

The comparison of the numerical results to the analogous experimental case brings into context the validity
of the model. The agreement between the calculated and measured pool depth implies that the model is
capable of simulating experimentally measured trends. Furthermore, the reasons behind the weaker agree-
ment between the calculated and measured widths are hypothesised. Although an exact agreement between
the simulated pool geometry and the measured dimensions is not found, the fact that the simulation results
are in same the order of magnitude as the experimental measurements implies the general validity of the
model. Furthermore, the calculated pool temperature and velocity fields are similar to those encountered
in the literature on the numerical modelling of weld pools [60, 47, 84].



Conclusions and Perspectives

Conclusions

In this doctoral thesis, I focused on the coupling of previously decoupled numerical models for the magneto-
thermo-hydrodynamic simulation of TIG arc welding. This work presents the first fully coupled 3D cathode-
arc-pool welding model at CEA that accounts for both electrodynamic and thermohydraulic phenomena. A
focus on the stability and robustness of the coupling algorithms and their applicability in both 2D and 3D
models is privileged; moreover, the mathematical consistency of the developed and implemented numerical
model is assured. The 3D model this thesis presents is sufficiently robust and developed to allow for the
numerical simulation of welding with torch displacement effects.

Building on previous work, first, the electrodynamic, energy, mass and momentum laws were presented
and the model hypotheses discussed. Care is taken to identify the dominant thermohydraulic contribu-
tions at the arc-pool interface; and the physical model is expressed in a form applicable to both 2D and
3D formulations. The physical model is then numerically implemented with a focus on multiphysics cou-
pling strategies and the algorithms that handle the different thermo-hydraulic phenomena that dominate
the arc-plasma and weld pool domains. Next, the sensitivity of the model to both physical parameters
and to the implemented coupling algorithms is studied on 2D axisymmetric configurations. The analyses
performed in 2D allow for a good trade off between acceptable physical representativity and affordable
computational costs. After having explored the sensitivities of the welding model, a verification study en-
sures that no mathematical inconsistencies were introduced into the fully coupled 3D model. The verified
3D model is then used to study a welding configuration that accounts for weld displacement effects. This
3D weld displacement model is closer to industrial configurations. Thus, one of the few existing studies
on 3D multiphysics modelling of TIG welding using a fully coupled cathode-arc-pool model was introduced.

In chapter 2, the physical model describing the dominant magneto-thermo-hydrodynamic phenomena
present in TIG welding is discussed. The dominant electrodynamic, conjugate heat transfer, phase change
and fluidic phenomena are mainly modelled based on Brochard and Nguyen’s work [13, 60]. Furthermore,
the kinematic, dynamic and thermal relations at the arc-pool interface are carefully derived and the depen-
dence of the dynamic and thermal equations onto the kinematic condition is briefly discussed. Moreover,
both the fixed and deformable arc-pool interface hypotheses are presented.

In chapter 3, the numerical methods, coupling techniques and the algorithms used to solve the physical
model are presented. A brief discussion of the numerical tools, multiphysics methodologies and the cou-
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pling algorithms generally available for the resolution of non-linear models is presented. Next, a detailed
description of a monolithic mixed heat equation approach is discussed and the stability and conservative
nature of the method is shown. Subsequently, a detailed description of the Dirichlet-Neumann and the
quasi-monolithic mass and momentum transfer coupling algorithms is discussed. Similarly, the stability
and conservatiive nature of the two methods are briefly discussed.

Next, in chapters 4 and 5, 2D axisymmetric configurations are set up for the analysis of the TIG welding
model. At affordable computational costs, the sensitivity of the model to both physical parameters and
coupling algorithms are studied. Chapter 4 is based on a parametric study that analyses the strong influ-
ence that the cathode tip geometry has onto the arc-plasma. To better interpret the dominant physics at
play, the anode is maintained solid, while the cathode geometry is modified and its effect on the Lorentz
force of the arc is studied. In fact, it is shown that the tip geometry alone can significantly influence the
transferred heat flux and imparted arc shear and pressure to the anode. Between the bluntest and sharpest
cathodes studied, a 1.7-fold and 4-fold rise in the heat flux and arc stress was calculated, respectively. Thus,
this study highlights the importance of incorporating the cathode into the calculation domain, which is not
common in much of the literature on TIG modelling. Chapter 5 is based on multiple studies that focus on
both the numerical and physical consequences of the arc-pool coupling problem. Hence, an algorithm com-
parison study is performed where the Dirichlet-Neumann and the quasi-monolithic algorithms are shown to
converge to the same solution (to a small order of precision), and are thus considered comparable. For the
cases considered, the Dirichlet-Neumann algorithm is shown to outperform the quasi-monolithic algorithm
by at least 20% and at most 40%, depending on the relaxation factor used. Thus, the Dirichlet-Neumann
algorithm was retained for use in the rest of the work. Furthermore, the influence of the inlet electric
current, the interface hypothesis and the chosen liquid steel viscosity is studied. Effectively, the arc-plasma
is found to be greatly influenced by inlet electric current, which then significantly affects the geometry and
dimensions of the weld pool. Moreover, even though the Weber number of the studied configurations is
generally low, the interface hypothesis is found to influence the depth of the weld pool. Lastly, the choice
of liquid steel viscosity in the model is shown to significantly affect the shape and depth of the weld pool.
In fact, the use of an augmented pool viscosity value, as considered by many authors [44, 60, 84, 13], was
shown to dampen secondary circulation zones which strongly affect the penetration and to a lesser extent
the widening of the pool.

Lastly, two 3D calculations are presented in chapter 6. The chapter begins with a verification study that
ensures the coherent extension of the 2D axisymmetric model to a 3D cartesian one. Effectively, a 3D
spot configuration is shown to maintain the rotational symmetry of the spot weld while also agreeing with
a reference 2D axisymmetric calculation. This approach allowed to verify all implemented and modelled
phenomena, including but not limited to, the deformation of the fluid interface. Using the verified 3D
model, a welding configuration with modelled displacement effects is constructed. It is shown that the
implemented coupling algorithms remain conservative for such welding configurations and that asymmetry
in the arc fields reinforces the importance of a fully coupled 3D arc-pool model in TIG welding. Further-
more, a comparison of the calculated weld pool dimensions to an experimental case studied in Koudadje’s
work [47] is performed. The general agreement of the calculated and measured dimensions of the weld pool



indicates the general validity of the developed model.

In conclusion, the work presented in this thesis served to develop, implement, verify, and analyse a fully
coupled cathode-arc-pool welding model applicable in both 2D axisymmetric and 3D cartesian configura-
tions. Furthermore, this thesis highlights the importance of a fully coupled 3D model for the simulation of
TIG welding with torch displacement effects.

Perspectives

The experience gained while working on this thesis helps identify certain perspectives that could further
enhance and extend the model developed in this work. The suggested perspectives are thus listed as follows:

1. An extensive validation study, set up in an analogue manner to the 3D weld displacement model,
is strongly suggested. Controlling the displacement of the workpiece w.r.t the torch, and as many
other welding parameters as possible, should allow to study the extent of the validity of the model.
Moreover, the validation study could offer more insight on any potential limitations of the model.

2. The elevated Reynolds numbers calculated in weld pools encourage deeper investigations of their
hydrodynamic regimes. In fact, the work of Kidess et al. [41] shows that certain weld pools can de-
velop turbulent characteristics. To capture the various thermohydraulic phenomena, they implement
a Large Eddy Simulation model in the pool domain. Thus, the investigation and consideration of
some appropriate turbulent model for the weld pool is encouraged.

3. The consideration of the effects of filler metal during TIG welding should be investigated so as to
further extend the applicability of the current model towards more industrial configurations. A
careful consideration of both the physical and numerical effects of the momentum and mass source
terms at the fluid interfaces is necessary.

4. The consideration of transient phenomena in the physical model is encouraged. The transient effects
should be developed into the numerical model by the use of implicit integration schemes for their
stability. Furthermore, I encourage research on automated relaxation methods (see Aitken’s delta-
squared method as an example) which could potentially accelerate and/or enhance the stability of
the numerical model [49, 23, 20] .

5. Finally, the development of remeshing strategies for use in the vicinity of the arc-pool interface and
in the weld pool is encouraged. Remeshing would potentially allow for quicker numerical convergence
of the fully coupled model, especially when configurations with significant fluid interface deformation
are simulated.





Appendix A

Material properties

A.1 Electro-thermal constants

A summary of the thermophysical constants used in the model implemented in this thesis.

Parameter Symbol Value Unit
Tungsten
Emissivity ϵ 0.4 -
Work potential Wcat 4.52
Effective work potential (Thoriated Tung-
sten)

Weff,cat 2.63

Richardson constant Ar 3.104

Melting Temperature 3680
Argon
Ionization potential Vi 15.68
Copper
Emissivity ϵ 0.4 -
Work function Wano 4.65
316L Steel
Emissivity ϵ 0.4 -
Work function Wano 4.7
Solidification temperature Ts 1675
Liquidus temperature Tl 1708
Latent heat of fusion Lf 290 kJ·Kg−1

Table A.1: Some electric and thermal constants for Tungsten, Argon and Copper. From Brochard’s and
Pichler’s work [13, 65]
.
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A.2 Temperature dependent material properties

Here the relevant thermophysical of the four used materials in this thesis are presented as they are assem-
bled and/or reported by different authors. The temperature dependent electric and thermal properties of
argon plasma, thoriated tungsten (2% Th), solid copper and 316L steel are plotted and presented. More-
over, the viscosity of liquid steel is presented as reported and/or used by different authors.

Argon plasma
The electrical and thermal conductivities, the mass density, viscosity, specific heat capacity and net plasma
emission coefficient of argon in its gas and plasma states as functions of temperature.
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Figure A.1: Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the
electrical σ [S·m−1] and thermal λ [W·m−1K−1] conductivities, respectively. Subfigures (c), (d), (e) and
(f) present the density ρ [kg·m−3], dynamic viscosity µ [kg·m−1·s−1], heat capacity cp [J·kg−1·K−1] and the
net plasma emission coefficient ϵn [W·m−3·sr−1], respectively. Data is assembled in Brochard’s thesis [13].
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Thoriated tungsten
The electrical and thermal conductivities of solid thoriated tungsten as functions of temperature.
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Figure A.2: Material properties as functions of temperature T [K]. Subfigures (a) and (b) tungsten present
the electrical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities of each respective material. Data is
assembled in Brochard’s thesis [13].

Solid copper
The electrical and thermal conductivities of solid solid copper as functions of temperature.
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Figure A.3: Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the elec-
trical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities, respectively. Data is assembled in Brochard’s
thesis [13].
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316L steel
The electrical and thermal conductivities, the mass density and the specific enthalpy of 316L in its solid
and liquid states as functions of temperature.
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Figure A.4: Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the
electrical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities, respectively. Subfigures (c), (d) present
the density ρ [kg·m−3] and specific enthalpy h [J·kg−1]. Data is experimentally measured in Pichler’s work
[65]

The liquid steel viscosity as numerically augmented and as it is experimentally reported by Nguyen
and an IAEA report, respectively [60, 10].

∀ T > Tliq ; µ = 0.03 Pa · s

Viscosity used by Nguyen [60]

µ =



0.0059 T = 1750
0.0040 T = 2000
0.0029 Pa · s for T = 2250 K
0.0023 T = 2500
0.0019 T = 2750
0.0016 T = 3000

Viscosity extracted from the IAEA report [10]



Appendix B

Modelling phase change

Phase change problems in metallurgical applications are generally modelled by non-linear and stiff equa-
tions. These equations require interesting workarounds to be applied to their troubling mathematical
terms, so as to facilitate their resolution. Therefore, this appendix starts off with a brief discussion of the
effects phase change has on to the thermodynamic properties of a given material; and then presents the
choice of the energy conservation law adapted to solving the phase change problems seen in the welding of
steels, as tackled in this thesis.

Idealized materials and pure metals, under isobaric conditions, can be modelled to undergo phase change
across isotherms. These materials undergo what is known as isothermal solidification. The phase change
process at constant pressures1 is characterized by the following equation:

∀ cp = f(T ) h =
∫ T

Tref

cp dT (B.1)

where h is defined as the enthalpy, cp as the specific heat capacity2, and Tref as some reference temperature.
Isothermal phase change occurs at a transition temperature, which marks the transformation of the state
of the material. Figure B.1 represents a typical phase change relation between the enthalpy of the material
and its temperature. For complex materials, such as steels, the enthalpy-temperature relations are typically
defined experimentally (see [65] for an example). The discontinuity seen in the enthalpy at the transition
temperature Ts,l is characterized by a jump in the energy requirement of the process. This jump is due
to the higher entropic state of the liquid as compared to that of the solid. To achieve the higher entropic
state, energy is spent in liberating the molecular bonds of the material from the low entropy solid state
[48]. Therefore, in referring to figure B.1, all enthalpy values to the left of the transition temperature Ts,l
pertain to the solid state, and the values to the right pertain to the liquid state. This process combines
the enthalpy-temperature relation shown in figure B.1 and equation (B.1) and is modelled by the following
piecewise function:

1The discussion is limited to isobaric phase change and thermodynamics as the fluidic systems treated in this thesis are
hypothesized to be incompressible.

2which can be a complex function of temperature
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Figure B.1: Typical enthalpy-temperature relation of an isothermal phase change process.

h(T ) =


∫ T
Tref

cp dT for T ≤ Ts,l

∫ Ts,l

Tref
cps dT +

∫ T
Ts,l

cpl
dT +

∫∞
−∞ Lf δ(T − Ts,l) dT for T > Ts,l

(B.2)

Where s and l subscripts represent the solidus and liquidus zones respectively, Lf the latent heat of fusion,
and δ(T −Ts,l) a δ-Dirac centered at the phase transition zone. Immediately the difficulty in dealing with a
jump discontinuity in the enthalpy profile of the phase change becomes apparent. The δ-Dirac distribution
seen at the jump, generally cannot be numerically treated in a straightforward manner. In referring to the
energy conservation law expressed with the temperature as the dependent variable, as seen below:

ρcpu·∇T = ∇· λ∇T +
∑
source

sΩ (B.3)

the expression of the specific heat capacity becomes necessary. ρ, u and ∑source sΩ are the mass density,
liquid phase velocity and a sum of arbitrary volume source/sink terms. Therefore, from equation (B.2), cp
is modelled by:

cp(T ) =


dh

dT
(T ) for T < Ts,l and T > Ts,l

Lf δ(T − Ts,l) for − ∞ < T < ∞

(B.4)

Visualising equation (B.4), figure B.2 represents a typical cp-T relation for a material undergoing isothermal
phase change. The δ-Dirac seen at the point of transition of a given material hints at the difficulties expected
in solving such a problem. The numerical difficulties associated with such problems are largely due to the
stiffness of the classic heat equation (B.9), where the temperature is the primal or dependent variable
[59, 89]. A more detailed discussion of isothermal phase change is out of the scope of this text, and so the
interested reader is referred to Voller [89], Nedjar [59], Kumar [68] and Ayasoufi [3].

A discussion of isothermal phase change sets the stage for a discussion of phase change as it occurs for
alloys. This thesis being mainly concerned with steel alloys, the mushy zone at the phase transition zones
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Figure B.2: Typical specific heat-temperature relation of an isothermal phase change process.

are analysed. The mushy zone appears in the solidification/melting process where phase change occurs
over a temperature interval. The interval over which phase change occurs is defined between the Ts and
Tl. The interval marks the transition of the state of the material. The transition is represented in a typical
enthalpy-temperature relation, as seen in figure B.3. The mushy zone manifests because of the multispecies

Figure B.3: Typical enthalpy-temperature relation of an non-isothermal phase change process.

nature of alloys (see [48, 68]). Thus, analogously to equation (B.2), the enthalpy-temperature relation can
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be modelled by the following piecewise function:

h(T ) =



∫ T
Tref

cps dT for T ≤ Ts

∫ Ts
Tref

cps dT +
∫ T

−∞
∂Lf
∂T

dT for Ts < T < Tl

∫ Ts
Tref

cps dT +
∫ T
Tl
cpl

dT + Lf for T > Tl

(B.5)

It is apparent that the presence of a mushy zone in the phase change process should render the problem less
stiff when solving it numerically [59]. In fact, unlike isothermal phase change, the phase transition mushy
zone manifests as a finite function representing the transition phase3 ∂Lf

∂T in the enthalpy-temperature
relation. The transition phase is consequently modelled as:

∀ Lf =
∫ ∞

−∞

∂Lf
∂T

dT ∃ ∂Lf
∂T

= Lf f(T ; ∆Tm, Tc) then∫ ∞

−∞

∂Lf
∂T

dT = Lf

∫ ∞

−∞
f(T ; ∆Tm, Tc) dT

for ∆Tm = Tl − Ts

for Tc = Tl + Ts
2

where in the limit that ∆Tm → 0, the enthalpy-temperature relation approaches the isothermal transition
relation of a pure metal (see equation (B.2)). Thus:

lim
∆Tm→0

Lf

∫ ∞

−∞
f(T ; ∆Tm, Tc) dT = Lf

∫ ∞

−∞
δ(T − Tc) dT (B.6)

and from the theory of distributions (see [79, 66] for details), a normalised Gaussian distribution behaves
as a δ-Dirac in the limit that its width σ → 0, as described below:

δ(T ) = lim
σ→0

√
1

2πσ2 exp(− T 2

2σ2 )

Generalising the expression:

δ(T − Tc) = lim
σ→0

√
1

2πσ2 exp(−(T − Tc)2

2σ2 )

With the upper and lower bounds of the integral relations seen in equation (B.6) being arbitrary, the
following expression becomes valid:

lim
∆Tm→0

f(T ; ∆Tm, Tc) = δ(T − Tc)

and it becomes trivial to deduce that an appropriate function of choice to use in modelling the latent heat

3The integral bounds are arbitrary because ∂Lf

∂T
is itself only defined between Ts < T < Tl
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rise for materials undergoing mushy phase change becomes:

f(T ; ∆Tm, Tc) = ∂Lf
∂T

· 1
Lf

=
√

1
2π(∆Tm/a)2 exp(− (T − Tc)2

2(∆Tm/a)2 ) (B.7)

where a is a sharpness factor used to reduce the half-width of the Gaussian distribution. Consequently
and analogously to isothermal phase change, equations (B.5) and (B.7) are combined and derived w.r.t
temperature, to get:

cp(T ) =



dh

dt
for T < Ts and T > Tl

Lf

√
1

2π(∆Tm/a)2 exp(− (T − Tc)2

2(∆Tm/a)2 ) for Ts ≲ T ≲ Tl

(B.8)

where the interval at which the Gaussian peak is defined, can be approximated to reduce from −∞ < T < ∞
to Ts ≲ T ≲ Tl without a significant loss in numerical precision. Visualising the above analysis, figure B.8
represents a typical specific heat temperature relation for a material undergoing non-isothermal phase
change. The integral of the Gaussian peak is equal to the latent heat of fusion of the phase change

Figure B.4: Typical specific heat-temperature relation of an non-isothermal phase change process.

process4. With steel being the material of interest for the welding workpiece, the following discussion is
centered around non-isothermal phase change, and the adopted modelling choices that are appropriate for
studying the phase change phenomenon.

In order to sufficiently estimate the latent heat contributions that result from phase change in welding,
the energy conservation law must be solved. The classic method of solving temperature fields using the
temperature based equation (see equation (B.9)) renders the phase change problem stiff. Effectively, the
energy equation is stiff because the Gaussian hump in the cp-T relation (see figure B.4) is rather sharp and

4The integral is equivalent to the latent heat up to a certain order of numerical precision
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not on the same scale as cps and cpl
. The stiffness of the problem would require many integration nodes to

be placed in the vicinity of the mushy zone. Figure B.5 schematicises the approximation of the latent heat
in phase change by using the temperature variable, by using only four integration nodes. The grey region

Figure B.5: Typical cp −T relation schematicising integration over the mushy zone using four mesh nodes.

under the curve represents the numerical approximation of the latent heat Lf . Indeed, by looking at the
grey numerically integrated region, it can be understood that using the temperature variable in equation
(B.9) to precisely capture phase change phenomena is difficult and numerically costly. To overcome the
difficulty of integrating over the Gaussian hump, a change of variable and use of the enthalpy as the
primal and dependent variable alleviates the numerical stiffness of the phase change problem. This is
due to the fact that the enthalpy variable masks the stiffness of the problem because h behaves like an
integral quantity, allowing for a smoother problem to be solved. The smoothing of the transition zone
is schematised in figure B.6 where four integration nodes are seen to precisely estimate the latent heat
contribution. Practically, the change of variable (from T to h) allows for the capturing of the latent heat
contribution with modestly sized mesh densities in the phase change zones of a weld pool. Thus, with only
a few number of mesh elements in the mushy zone, the latent heat contributions can be precisely estimated.
The change of variable translates equation (B.9) to the following:

ρu·∇h = ∇· λ
cp

∇h+
∑
source

sΩ . (B.9)

As a final note, the peaking behavior of the specific heat is difficult to incorporate into typical numerical
heat transfer schemes because the cp term is attached to the transport terms of the conservation equation.
This can introduce large variations in the convection matrix of the system at the mesh nodes in the phase
change zone.
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Figure B.6: Typical h− T relation schematicising integration over the mushy zone using four mesh nodes.





Appendix C

Weak formulation

Here the weak formulation of the physical model discussed in chapter 2 is presented. The weak formulation
makes up the terms of the numerical model (see chapter 3) that is used to approximate the solutions to
the welding configurations studied in this thesis. Moreover, Nψ ∈ H1

0, which means that the interpolation
functions Nψ are square integrable and are null at boundaries Nψ|Γ = 0.

Nota bene:
If no subscript is indicated in the Ω symbol, the integral is defined across the entire domain. Otherwise,
Ωc, Ωp, Ωa represent the cathode, arc-plasma and anode subdomains, respectively.

C.1 Electric model

Non-linear residual

0 = Rϕ =
∫

Ω
(σ∗∇ϕ) · (∇Nϕ) dΩ −

∫
∂Ωimp

(jimp · n)(Nϕ) d∂Ωimp (C.1)

Tangent matrix

Tϕϕ =
∫

Ω
σ∗(∇Nϕ) · (∇Nϕ) dΩ (C.2)

C.2 Magnetic model

Residual

0 = RB =
∫

Ω
(∇ ∧B) · (∇ ∧NB) dΩ +

∫
Ω

(∇ ·B)(∇ ·NB) dΩ −
∫

Ω
(−σ∗∇ϕ) · (∇ ∧NB) dΩ (C.3)

Tangent matrix

TBB =
∫

Ω
(∇ ∧NB) · (∇ ∧NB) dΩ +

∫
Ω

(∇ ·NB)(∇ ·NB) dΩ (C.4)
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C.3 Energy conservation model

Non-linear residual

Residual of the temperature based equation, as used in the cathode and arc-plasma subdomains:

0 = RT =
∫

Ωc

(λ∇T ) · (∇NT ) dΩc −
∫

Ωc

(
(σ∇ϕ) · ∇ϕ

)
(NT ) dΩc

−
∫

Γcpi

(
jIonVi − je−Wcat − ϵσB(T 4 − T 4

∞)
)
NT dΓcpi

+
∫

Ωp

(ρcpu∇T )NT dΩp +
∫

Ωp

(λ∇T ) · (∇NT ) dΩp −
∫

Ωp

(
(σ∇ϕ) · ∇ϕ

)
(NT ) dΩp +

∫
Ωp

(4πϵn)NT dΩp

(C.5)
Residual of the enthalpy based equation, as used in the anode/workpiece subdomain:

0 = Rh =
∫

Ωa

(ρv∇h)Nh dΩa +
∫

Ωa

(λ∇T ) · (∇Nh) dΩa −
∫

Ωa

(
(σ∇ϕ) · ∇ϕ

)
(Nh) dΩa

−
∫

Γapi

[
(jAPIWano) − ϵσB(T 4 − T 4

∞)
]
Nh dΓapi −

∫
∂Ωconv

hconv(T − T∞)Nh d∂Ωconv

(C.6)

Tangent matrix

Tangent matrix of the temperature based equation:

TTT =
∫

Ωc

λ(∇NT ) · (∇NT ) dΩc −
∫

Γcpi

[(
2ArT + Weff

kB

)
exp(−Weff

kBT
) − 4ϵσB(T )3

]
NTNT dΓcpi

+
∫

Ωp

ρcpu(∇NT )NT dΩp +
∫

Ωp

λ(∇NT ) · (∇NT ) dΩp

(C.7)

Tangent matrix of the enthalpy based equation:

Thh =
∫

Ωa

ρv(∇Nh)Nh dΩa +
∫

Ωa

λ

cp
(∇Nh) · (∇Nh) dΩa

+
∫

Γapi

(4ϵσB
cp

T 3
)
NhNh dΓapi −

∫
∂Ωconv

(hconv
cp

)
NhNh d∂Ωconv

(C.8)

C.4 Mass and momentum conservation model

Non-linear residual

The following residuals represent the weak form of the dilatational flow momentum and mass equations of
the arc-plasma.

0 = Ru =
∫

Ωp

(ρu · ∇u) · (Nu) dΩp +
∫

Ωp

µ

[(
∇u+ ∇ut

)
:
(
∇Nu + ∇N t

u

)]
dΩp

−
∫

Ωp

2
3µ(∇ · u)(∇ ·Nu) dΩp −

∫
Ωp

(
(−σ∇ϕ) ∧B

)
·Nu dΩp −

∫
Ωp

P (∇ ·Nu) dΩp

(C.9)
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0 = RP =
∫

Ωp

(∇ · u)NP dΩp +
∫

Ωp

(d(ln ρ)
dT

∇T · u
)
NP dΩp (C.10)

The following residuals represent the weak form of the incompressible flow momentum and mass equations
of the weld pool.

0 = Rv =
∫

Ωa

(ρv · ∇v) · (Nv) dΩa +
∫

Ωa

µ

[(
∇v + ∇vt

)
:
(
∇Nv + ∇N t

v

)]
dΩa

−
∫

Ωa

(
(−σ∇ϕ) ∧B

)
· (Nv) dΩa −

∫
Ωa

ρgβ(T − Tref ) ·Nu dΩa

−
∫

ΓAP I

( dγ
dT

∇sT ) · (Nv) dΩa −
∫

Ωa

p(∇ ·Nv) dΩa

(C.11)

0 = Rp =
∫

Ωa

(∇ · v)Np dΩa (C.12)

The following residuals represent the weak form of the deformable fluid interface equations of the arc-pool
interface.

0 = Rdyn =
[ ∫

Γapi

(
Pn+

(
µ(∇u+ ∇ut) · n

))
Nu dΓapi −

∫
Γapi

(
pn+

(
µ(∇v + ∇vt) · n

))
Nv dΓapi

−
∫

Γapi

ρghznNhz dΓapi −
∫

Γapi

(γ∇s · n)nNhz dΓapi
]

· ẑ

(C.13)

Rkin =
( L∑
l=1

Vl
)

− V0 (C.14)

Vl = 1
dim(Rn)

∫
Γl

hz Nhz dΓl (C.15)

where l is the element number at the interface, and L is the total number of elements at the interface.

Tangent matrix

The following tangent matrices represent those of the dilatational flow momentum and mass numerical
model of the arc-plasma.

Tuu =
∫

Ωp

(ρu · ∇Nu)(Nu) dΩp +
∫

Ωp

µ

[(
∇Nu + ∇N t

u

)
:
(
∇Nu + ∇N t

u

)]
dΩp

−
∫

Ωp

2
3µ(∇ ·Nu)(∇ ·Nu)I3 dΩp

(C.16)

TuP =
∫

Ωp

NP (∇ ·Nu) dΩp (C.17)



154 APPENDIX C. WEAK FORMULATION

TPu =
∫

Ωp

(∇ ·Nu)NP dΩp +
∫

Ωp

(d(ln ρ)
dT

∇T ·Nu

)
NP dΩp (C.18)

The following tangent matrices represent those of the incompressible flow momentum and mass numerical
model of the weld pool.

Tvv =
∫

Ωa

(ρv · ∇Nv)(Nv) dΩa +
∫

Ωa

µ

[(
∇Nv + ∇N t

v

)
:
(
∇Nv + ∇N t

v

)]
dΩa (C.19)

Tvp =
∫

Ωa

Np(∇ ·Nv) dΩa (C.20)

Tpv =
∫

Ωa

(∇ ·Nv)Np dΩa (C.21)

The following matrices represent those of the deformable fluid interface of the arc-pool interface, projected
along the vertical ẑ axis.

Thzhz =
∫

Γapi

(
ẑ · P ∂n

∂hz
+
(
ẑ · µ(∇u+ ∇ut) · ∂n

∂hz

))
Nu dΓapi

−
∫

Γapi

ẑ · (ρg∂hzn
∂hz

)Nhz dΓapi −
∫

Γapi

ẑ · γ ∂(∇s · n)n
∂hz

Nhz dΓapi
(C.22)

Mhzhz =
∫

Γapi

NhzNhz dΓapi (C.23)



Appendix D

Scientific contributions

Peer reviewed articles:

1. A numerical study of the effects of cathode geometry on Tungsten Inert Gas type electric arcs.
International Journal of Heat and Mass Transfer, 2021.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121923
C.Nahed, S. Gounand, M. Medale

Oral conferences and presentations:

1. 23/09/2020 - Numerical modelling and simulation of welding and additive manufacturing.
Representative of SEMT/LTA on the numerical simulation of welding.
Conseil Scientifique de la Direction des Energies au CEA-Saclay.

2. 15/11/2020 - A parametric study of the effects of cathode geometry on TIG electric arcs.
International Conference of Fluid Flow, Heat and Mass Transfer 2020 (Virtual)

3. 10/12/2020 - A parametric study of the effects of cathode geometry on TIG electric arcs.
International Conference of Multiphysics 2020 (Virtual)

Miscellaneous:

1. 102 hours of coursework between Université Paris-XI and Paris-XIII

2. Preparation of a mechanics exam for 1st year physics students.
Subject: Flight dynamics - Abbass ibn Firnas and Einstein

3. Preparation of a project on an introduction to multiphysics coupling in engineering using Cast εM.
Subject: A toy electro-thermo-mechanical high current controller

155





List of Figures

1.1 Principal constituents of the TIG welding system. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 TIG spot configuration representing the dynamic fluid interface. . . . . . . . . . . . . . . . 11

2.1 Schematic of the geometry of the TIG system. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Gaussian pillbox over the arc and pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Level set at the arc-pool interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Sum of forces at a fixed interface element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Sum of forces at a deformable interface element. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Superimposed plots of schematised pool specific heat cp and enthalpy h. Not drawn to scale. 35

3.1 Simplified schematic of constituents of global domain ΩTIG. . . . . . . . . . . . . . . . . . . 43
3.2 Visualisation of how σ∗ is calculated in the plasma in the vicinity of the ΓCPI interface. . . 44
3.3 Schematic of constructed modules of the global model. Each module transmits physically

interpretable data in the form of velocities, temperatures, forces, fluxes etc.... . . . . . . . . 49
3.4 Fluid dynamics module further partitioned by domain. The arc and pool submodules are

connected by interfacial conditions, and after resolution are connected to the interface de-
formation submodule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Section of ΓAPI interface where interfacial conditions are applied. Domain i represents arc
nodes at Γplaapi, and j anode nodes at Γanoapi and are made up of N interfacial nodes. . . 54

3.6 Typical temperature-enthalpy relation of an non-isothermal phase change process. . . . . . 56
3.7 (a) Maximum temperature at Γplaiap (black plot) and at Γanoiap (red plot) interfaces as

functions of iteration number. (b) Convergence plot of all variables of sample simulation. . 57
3.8 Section of ΓAPI interface where Dirichlet-Neumann coupling is applied. Domain i represents

arc nodes at Γplaapi, and j anode nodes at Γanoapi and are made up of N interfacial nodes. . 59
3.9 Domain i represents arc nodes, and j anode nodes for all N nodes at the interface. Blue

arrows represent translation of calculated αki forces from Γplaapi to Γanoapi. Red arrows
represent inverse translation for velocities vkj . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Steps required to solve the Dirichlet-Neumann coupling algorithm. Superscript m is the
subcycle iteration counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Maximum velocities at Γplaiap (black plot) and at Γanoiap (red plot) interfaces as functions
of iteration number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Red mesh Ωcat, green Ωpla, blue Ωano and red contour ∂Ωpool. (a) Rigid mesh with the melt
pool contour. (b) Deformed mesh with melt pool contour. . . . . . . . . . . . . . . . . . . . 67

157



158 LIST OF FIGURES

3.13 Algorithm of global model. Each block represents a physics module, and the modules de-
veloped in this thesis are schematised in further detail. Dashed arrows represent data flow
from iteration k − 1, and the solid arrows, data from iteration k. . . . . . . . . . . . . . . . 69

4.1 Sketches of the geometric parametric study. a) The computational domain. b) A close-up
view of the three considered cathode shapes, superimposed. . . . . . . . . . . . . . . . . . 73

4.2 The meshes for the PNT α = 15o case. a) M1: coarsest mesh with 15, 487 elements b) M3:
finest mesh with 42, 089 elements. The red, green and blue zones represent the meshes of
the cathode, arc-plasma and anode, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Velocity profiles for the three meshes considered and various cathode shapes. Legend: the
first number indicates mesh number, the second one the truncation angle (in degrees) and
the third one the tip radius [mm]. The axis origin is at the API. . . . . . . . . . . . . . . . 76

4.4 The calculated jCPI for the 3 sharpest cathode cases vs. the curvilinear abscissa along the
CPI, where the origin is placed at the tip. The legend lists the geometry type, truncation
angle and tip radius, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Contour plots of norms of Lorentz force (top row) and velocity field (bottom row) around
two different cathode tips. PNT α = 15o (left column) and RND α = 20o, rint = 0.6 mm
(right column) are presented. Lorentz force scale is in [N·m−3] and velocity field in [m·s−1]. 78

4.6 Temperature profiles at the cathode symmetry axis. Graph origin is at the cathode tip. . . 78

4.7 Heat transfer modes at the API for the RND α = 30o, rint = 0.6 mm case. Negative values
represent the heat flux leaving the anode, and the positive one, entering it. . . . . . . . . . 79

4.8 Heat flux transferred to workpiece across the API versus maximum Peclet number in the
arc. The color key groups cathodes of same angle, while the marker key groups cathode
shape and tip size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Maximum arc velocity versus truncation angle (in degrees) and tip type. . . . . . . . . . . . 80

4.10 a) Normalized Gaussian fits and pressure profiles; b) normalized Weibull and shear stress
profiles; c) normalized Gaussian fits and heat flux profiles for PNT α = 15o and CHF
α = 30o, rint = 0.6 mm cases. Black solid lines and red dashed lines indicate the fits
calculated profiles, respectively. Axes are non-dimensionalized w.r.t PNT α = 15o case. d)
The integrated pressure force; e) the integrated viscous shear force; f) the integrated heat
flux versus cathode geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 a) Maxima of pressure profiles; b) Gaussian variances of fitted pressure profiles; c) maxima
of shear profiles; d) Weibull scales of fitted shear profiles; e) maxima of heat flux profiles; f)
Gaussian variances of fitted heat flux profiles versus truncation angle (degrees) and tip type. 83

4.12 Contour plots of the norms of the Lorentz force around two different cathode tips. The RND
(right) and CHF (left) α = 15o, rint = 0.3 mm cases are presented. The scale is in [N·m−3]. 84

4.13 Mechanical power of the Lorentz force in the arc versus cathode geometry. Each black shape
groups cases that have quasi-equivalent power values. . . . . . . . . . . . . . . . . . . . . . . 85

4.14 The voltage drop versus the different cathode geometries. . . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES 159

4.15 a) Schematic representations of electric current emission zone for Goodarzi’s cathode, and
ours. b) Estimated spot areas in this study, those used in Goodarzi [30] and those from
Haidar [32] versus cathode geometry. The error bars from Haidar’s work are not displayed. 88

5.1 Schematic of the geometry used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Global mesh with a superposed schematic of expected pool zone at successive refinements. . 95
5.3 Comparing meshes for case 1. Top figure is the pool geometries of the three meshes super-

posed and is drawn to scale. Bottom figures are, from left to right, temperature at API,
velocity norm at API and vertical velocity component at symmetry axis, respectively. . . . 97

5.4 Comparing meshes for case 2. Top figure is pool geometries of the three meshes superposed
and is drawn to scale. Bottom figures are, from left to right, temperature at the API, velocity
norm at API and vertical velocity component at symmetry axis, respectively. . . . . . . . . 98

5.5 a) Convergence plot of case 1.a); b) convergence plot of case 1.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d)
profile of z-component of velocity at the pool symmetry axis. . . . . . . . . . . . . . . . . . 100

5.6 a) Convergence plot of case 2.a); b) convergence plot of case 2.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d)
profile of z-component of velocity at the pool symmetry axis. . . . . . . . . . . . . . . . . . 101

5.7 a) Convergence plot of case 3.a); b) convergence plot of case 3.b). Legends indicate the
increments of primal variables per iteration number. c) Profile of velocity norm at API; d)
profile of z-component of velocity at the pool symmetry axis. . . . . . . . . . . . . . . . . . 102

5.8 a) Convergence plot of case 4.a); b) convergence plot of case 4.b). Legends indicate the
increments of primal variables per iteration number. . . . . . . . . . . . . . . . . . . . . . . 103

5.9 a) z-component of velocity along the arc symmetry axis. b) Temperature profile along the
arc symmetry axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.10 a) Pressure profiles at API. b) Shear stress profiles at API. c) Total heat flux profile at API. 107
5.11 a) Velocity norm profiles at API. b) Z-component of velocity at the pool symmetry axis. c)

Temperature profiles at API. d) Temperature profiles at the pool symmetry axis. . . . . . . 108
5.12 a) Stream function field with superimposed velocity vectors for the I = 100 A simulation.

b) Stream function field with superposed velocity vectors for the I = 150 A simulation. . . . 109
5.13 Pool geometries of the three simulations run for different inlet electric currents. . . . . . . . 110
5.14 Marangoni surfacic force at pool surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.15 a) z-component of velocity at the pool symmetry axis. b) Pool geometries of the I = 150 A

cases with and without the Lorentz force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.16 Pool geometries of the two simulations run for different interface hypotheses. . . . . . . . . 113
5.17 Streamfunctions in the region of the secondary circulation zones of case 1 (left) and case 2

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.18 a) Z-component of velocity along the arc symmetry axis. b) Temperature profile along the

arc symmetry axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.19 Pool geometries of the two simulations run for different liquid steel viscosities. . . . . . . . . 114



160 LIST OF FIGURES

5.20 a) Velocity norm profiles at API; b) z-component of velocity at the pool symmetry axis; c)
temperature profiles at API; d) temperature profiles at the pool symmetry axis. . . . . . . . 115

5.21 Reynolds number profiles at the pool surface for case 1 and 2. . . . . . . . . . . . . . . . . . 116

6.1 z − x section of the geometry used in section 6.1. . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Mesh generation of 3D spot model for two rotational discretisations. . . . . . . . . . . . . . 121
6.3 Temperature field of the side view of all TIG subdomains (left), side view of weld pool (top

right) and top view of weld pool (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 Velocity norm field of the side view of weld pool (top) and top view of weld pool (right). . . 123
6.5 a) Top view of interface deformation field at the arc-pool interface in the pool subdomain.

b) Top view of magnetic field norm at the arc-pool interface. . . . . . . . . . . . . . . . . . 123
6.6 Comparing the two meshes in 3D to the analogous mesh in 2D. a) Temperature profile along

arc symmetry axis. b) Vertical velocity component profile along arc symmetry axis. c)
Temperature profile along API (center to edge). d) Velocity norm profile along API (center
to edge). e) Temperature profile along anode symmetry axis. f) Vertical velocity component
profile along pool symmetry axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Pool contours of mesh 1 and 2 of the 3D model and axisymmetric mesh of the 2D model. . 125
6.8 Half geometry used in section 6.2, sliced at the z − x symmetry plane, where y = 0. . . . . 126
6.9 Schematic of the modelled displacement effects in the workpiece. . . . . . . . . . . . . . . . 127
6.10 Mesh generation of 3D weld displacement model. . . . . . . . . . . . . . . . . . . . . . . . . 128
6.11 Temperature field of simulated case of the weld displacement configuration. . . . . . . . . . 129
6.12 Temperature field of top view of the the workpiece at ΓAPI . . . . . . . . . . . . . . . . . . . 130
6.13 Arc and pool temperature and velocity fields. U represents the streampath scale, and V the

vector field scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.14 Pool geometry and the temperature field in its vicinity. . . . . . . . . . . . . . . . . . . . . . 132
6.15 A closeup of the pool temperature and velocity fields. . . . . . . . . . . . . . . . . . . . . . 132
6.16 Calculated maximum depth isocontour on the simulated pool geometry. . . . . . . . . . . . 133
6.17 Comparison of numerical maximum depth isocontour to the experimental macrographic cross

section from Koudadje [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the
electrical σ [S·m−1] and thermal λ [W·m−1K−1] conductivities, respectively. Subfigures (c),
(d), (e) and (f) present the density ρ [kg·m−3], dynamic viscosity µ [kg·m−1·s−1], heat ca-
pacity cp [J·kg−1·K−1] and the net plasma emission coefficient ϵn [W·m−3·sr−1], respectively.
Data is assembled in Brochard’s thesis [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Material properties as functions of temperature T [K]. Subfigures (a) and (b) tungsten
present the electrical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities of each respective
material. Data is assembled in Brochard’s thesis [13]. . . . . . . . . . . . . . . . . . . . . . . 141

A.3 Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the
electrical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities, respectively. Data is assem-
bled in Brochard’s thesis [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



LIST OF FIGURES 161

A.4 Material properties as functions of temperature T [K]. Subfigures (a) and (b) present the
electrical σ [S·m−1] and thermal λ [W·m−1·K−1] conductivities, respectively. Subfigures (c),
(d) present the density ρ [kg·m−3] and specific enthalpy h [J·kg−1]. Data is experimentally
measured in Pichler’s work [65] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1 Typical enthalpy-temperature relation of an isothermal phase change process. . . . . . . . . 144
B.2 Typical specific heat-temperature relation of an isothermal phase change process. . . . . . . 145
B.3 Typical enthalpy-temperature relation of an non-isothermal phase change process. . . . . . 145
B.4 Typical specific heat-temperature relation of an non-isothermal phase change process. . . . 147
B.5 Typical cp −T relation schematicising integration over the mushy zone using four mesh nodes.148
B.6 Typical h− T relation schematicising integration over the mushy zone using four mesh nodes.149





List of Tables

1.1 Description and equations of non-dimensional numbers at arc-pool interface. . . . . . . . . . 10
1.2 Magnitudes of characteristic non-dimensional numbers at arc-pool interface. Zones a,b and

c refer to figure 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Convergence criteria used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Applied boundary conditions (cf. figure 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Table of used elements and the variables associated to them. . . . . . . . . . . . . . . . . . 74
4.3 The approximate number of elements of the 3 meshes used for all studied cases. . . . . . . . 75
4.4 Characteristic results from Goodarzi et al. [30] and from the present study. . . . . . . . . . 87
4.5 Results from experimental studies in the literature versus this study. . . . . . . . . . . . . . 88

5.1 Boundary conditions imposed along geometry contour seen in figure 4.1. . . . . . . . . . . . 94
5.2 Table of used elements and variables associated to them. . . . . . . . . . . . . . . . . . . . . 95
5.3 Summary of the eight cases used in comparing algorithm performance. . . . . . . . . . . . . 99
5.4 Convergence criteria used only in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Table summarising calculation times and total number of iterations to convergence. Ratio

of recorded performances are calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Summary of pool widths, depths and depth to width ratios. . . . . . . . . . . . . . . . . . . 110

6.1 Boundary conditions imposed at the geometry contour of figure 6.1. . . . . . . . . . . . . . 119
6.2 Used elements and associated variables. Interpolation nodes are represented by the "o" symbol.120
6.3 Boundary conditions imposed at the surfaces of schematised geometry in figure 6.8. . . . . . 127

A.1 Some electric and thermal constants for Tungsten, Argon and Copper. From Brochard’s and
Pichler’s work [13, 65] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

163





Bibliography

[1] DJ Acheson. Elementary fluid dynamics. Oxford University Press, England, 1990.

[2] Andre Anders. Cathodic arcs: from fractal spots to energetic condensation, volume 50. Springer
Science & Business Media, 2009.

[3] Anahita Ayasoufi, Ramin K Rahmani, and Theo G Keith. Stefan number-insensitive numerical simu-
lation of the enthalpy method for stefan problems using the space-time ce/se method. Numerical Heat
Transfer, Part B: Fundamentals, 55(4):257–272, 2009.

[4] S. Badia and R. Codina. Algebraic pressure segregation methods for the incompressible navier-stokes
equations. Archives of Computational Methods in Engineering, 15(3):343–369, September 2007.

[5] Anaïs Baumard. Prédiction des structures de grain d’un composant en acier 316L élaboré par fabri-
cation additive fusion laser sur lit de poudre. Theses, Université Montpellier, December 2020.

[6] Anaïs Baumard, Danièle Ayrault, Olivier Fandeur, Cyril Bordreuil, and Frédéric Deschaux-Beaume.
Numerical prediction of grain structure formation during laser powder bed fusion of 316 l stainless
steel. Materials & Design, 199:109434, 2021.

[7] Michele Benzi, Gene H. Golub, and Jorg Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14:1–137, 4 2005.

[8] Theodore L Bergman, Frank P Incropera, David P DeWitt, and Adrienne S Lavine. Fundamentals of
heat and mass transfer. John Wiley & Sons, 2011.

[9] Riccardo Bini, Michele Monno, and MI Boulos. Numerical and experimental study of transferred arcs
in argon. Journal of Physics D: Applied Physics, 39(15):3253, 2006.

[10] V Bobkov, L Fokin, E Petrov, V Popov, V Rumiantsev, and A Savvatimsky. Thermophysical properties
of materials for nuclear engineering: a tutorial and collection of data. IAEA, Vienna, 2008.

[11] Damien Borel. Etude numerique et experimentale des transferts thermiques dans un plasma d’arc.
Application au soudage a l’arc TIG. PhD thesis, Universite de Rouen, 2013.

[12] Maher I Boulos, Pierre Fauchais, and Emil Pfender. Thermal plasmas: fundamentals and applications.
Springer Science & Business Media, 2013.

[13] Michel Brochard. Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage
a l’arc TIG. PhD thesis, Universite de Provence (Aix-Marseille I), janvier 2009.

165



166 BIBLIOGRAPHY

[14] Stephen Cadiou. Modélisation magnéto-thermohydraulique de procédés de fabrication additive arc-fil
(WAAM). Theses, Université de Bretagne Sud, December 2019.

[15] Cast3m Web site. http://www-cast3m.cea.fr/.

[16] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass effect in the design of partitioned
algorithms for fluid–structure problems. Computer methods in applied mechanics and engineering,
194(42-44):4506–4527, 2005.

[17] R. A Chihoski. The rationing of power between the gas tungsten arc and electrode. Welding Journal,
49(2):69–82, February 1970.

[18] Leonard P Connor and RL O’Brien. Welding handbook: welding processes, volume 2. American
Welding Society, 1991.

[19] C Cuvelier and Ruben Manuel Sylvester Maria Schulkes. Some numerical methods for the computation
of capillary free boundaries governed by the navier–stokes equations. Siam Review, 32(3):355–423,
1990.

[20] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance of a new partitioned procedure
versus a monolithic procedure in fluid–structure interaction. Computers & Structures, 87(11-12):793–
801, 2009.

[21] Alfredo Delgado-Álvarez, Patricio F Mendez, and Marco A Ramírez-Argáez. Dimensionless repre-
sentation of the column characteristics and weld pool interactions for a DC argon arc. Science and
Technology of Welding and Joining, pages 1–10, 2019.

[22] Clark R Dohrmann and Pavel B Bochev. A stabilized finite element method for the stokes problem
based on polynomial pressure projections. International Journal for Numerical Methods in Fluids,
46(2):183–201, 2004.

[23] Mickaël Duval, Jean-Charles Passieux, Michel Salaün, and Stéphane Guinard. Non-intrusive coupling:
recent advances and scalable nonlinear domain decomposition. Archives of Computational Methods in
Engineering, 23(1):17–38, 2016.

[24] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and Fast Iterative Solvers: With
Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation.
Oxford University Press, second edition, 2014.

[25] Carlos A Felippa, Kwang-Chun Park, and Charbel Farhat. Partitioned analysis of coupled mechanical
systems. Computer methods in applied mechanics and engineering, 190(24-25):3247–3270, 2001.

[26] George J. Fix G. Strang. An analysis of the finite element method, 1988.

[27] Michael B Giles. Stability analysis of numerical interface conditions in fluid–structure thermal analysis.
International journal for numerical methods in fluids, 25(4):421–436, 1997.

http://www-cast3m.cea.fr/


BIBLIOGRAPHY 167

[28] Alain Gleizes, Jean-Jacques Gonzalez, and Pierre Freton. Thermal plasma modelling. Journal of
Physics D: Applied Physics, 38(9):R153, 2005.

[29] J J Gonzalez, F Lago, P Freton, M Masquère, and X Franceries. Numerical modelling of an electric
arc and its interaction with the anode: part II. the three-dimensional model—influence of external
forces on the arc column. Journal of Physics D: Applied Physics, 38(2):306–318, jan 2005.

[30] Massoud Goodarzi, Roland Choo, and James M Toguri. The effect of the cathode tip angle on the
GTAW arc and weld pool: I. mathematical model of the arc. Journal of Physics D: Applied Physics,
30(19):2744, 1997.

[31] Stéphane Gounand. Modèles multiphysiques arc-bain en soudage à l’arc TIG. Note Technique DM2S/-
SEMT/LTA NT/2019–65339/A, CEA, september 2019.

[32] J Haidar and AJD Farmer. Large effect of cathode shape on plasma temperature in high-current
free-burning arcs. Journal of Physics D: Applied Physics, 27(3):555, 1994.

[33] K.C. Hsu, K. Etemadi, and E. Pfender. Study of the free-burning high-intensity argon arc. J. Appl.
Phys., 54(3):1293–1301, March 1983.

[34] Weizhang Huang. Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys,
1(2):276–310, 2006.

[35] Thomas JR Hughes. Recent progress in the development and understanding of supg methods with
special reference to the compressible euler and navier-stokes equations. International journal for
numerical methods in fluids, 7(11):1261–1275, 1987.

[36] D. J N Reddy. An Introduction to the Finite Element Method. McGraw-Hill Education, 2005.

[37] John David Jackson. Classical electrodynamics. Wiley, New York, NY, 1999.

[38] Bo-nan Jiang. The least-squares finite element method: theory and applications in computational fluid
dynamics and electromagnetics. Springer Science & Business Media, 1998.

[39] Nikolaos D. Katopodes. Chapter 9 - boundary-layer flow. In Free-Surface Flow, pages 652–708.
Butterworth-Heinemann, 2019.

[40] JF Key. Anode/cathode geometry and shielding gas interrelationships in gtaw. Weld J., 59(12):364,
1980.

[41] Anton Kidess, Saša Kenjereš, and Chris R Kleijn. The influence of surfactants on thermocapillary
flow instabilities in low prandtl melting pools. Physics of Fluids, 28(6):062106, 2016.

[42] C-H Kim, W Zhang, and Tarasankar DebRoy. Modeling of temperature field and solidified surface
profile during gas–metal arc fillet welding. Journal of Applied Physics, 94(4):2667–2679, 2003.

[43] Choong S Kim. Thermophysical properties of stainless steels. Technical report, Argonne National
Lab., Ill.(USA), 1975.



168 BIBLIOGRAPHY

[44] W-H Kim and S-J Na. Heat and fluid flow in pulsed current gta weld pool. International journal of
heat and mass transfer, 41(21):3213–3227, 1998.

[45] Sung H Ko, Choong D Yoo, Dave F Farson, and Sang K Choi. Mathematical modeling of the dynamic
behavior of gas tungsten arc weld pools. Metallurgical and Materials Transactions B, 31(6):1465–1473,
2000.

[46] Xiao-Fei Kong. Modelisation 3D d’ecoulements avec surface libre pour le soudage a l’arc TIG. PhD
thesis, Ecole nationale d’ingenieurs de Saint-Etienne (ENISE), decembre 2012.

[47] Koffi Koudadje. Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG
d’aciers. PhD thesis, Aix-Marseille, 2013.

[48] W. Kurz and D. Fisher. Fundamentals of Solidification: Fourth Revised Edition. 1998.

[49] Ulrich Küttler and Wolfgang A Wall. Fixed-point fluid–structure interaction solvers with dynamic
relaxation. Computational mechanics, 43(1):61–72, 2008.

[50] Dmitri Kuzmin and Jari Hämäläinen. Finite element methods for computational fluid dynamics: a
practical guide. SIAM Rev, 57(4):642, 2015.

[51] F Lago, JJ Gonzalez, P Freton, and A Gleizes. A numerical modelling of an electric arc and its
interaction with the anode: Part I. the two-dimensional model. Journal of Physics D: Applied Physics,
37(6):883, 2004.

[52] J.J. Lowke and M. Tanaka. LTE diffusion approximation for arc calculations. Journal of Physics D :
Applied Physics, 39:3634–3643, 2006.

[53] Fukuhisa Matsuda, Masao Ushio, and Tatsuya Kumagai. Study on gas-tungsten-arc electrode (re-
port 1): Comparative study of characteristics of oxide-tungsten cathode (welding physics, process &
instrument). Transactions of JWRI, 15(1):13–19, 1986.

[54] KC Mills and BJ Keene. Factors affecting variable weld penetration. International Materials Reviews,
35(1):185–216, 1990.

[55] H Keith Moffatt. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics,
18(1):1–18, 1964.

[56] Keisuke Morohoshi, Masahito Uchikoshi, Minoru Isshiki, and Hiroyuki Fukuyama. Surface tension
of liquid iron as functions of oxygen activity and temperature. ISIJ international, 51(10):1580–1586,
2011.

[57] Simon Morville. Modélisation multiphysique du procédé de Fabrication Rapide par Projection Laser
en vue d’améliorer l’état de surface final. Theses, Université de Bretagne Sud, December 2012.

[58] Anthony B Murphy. A perspective on arc welding research: the importance of the arc, unresolved
questions and future directions. Plasma Chemistry and Plasma Processing, 35(3):471–489, 2015.



BIBLIOGRAPHY 169

[59] B Nedjar. An enthalpy-based finite element method for nonlinear heat problems involving phase
change. Computers & Structures, 80(1):9–21, 2002.

[60] Minh-Chien Nguyen. Modelisation et simulation multiphysique du bain de fusion en soudage a l’arc
TIG. PhD thesis, Universite d’Aix-Marseille I, novembre 2015.

[61] Minh Chien Nguyen, Marc Medale, Olivier Asserin, Stephane Gounand, and Philippe Gilles. Sensi-
tivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model.
Numerical Heat Transfer, Part A: Applications, 71(3):233–249, 2017.

[62] RW Niles and CE Jackson. Weld thermal efficiency of the GTAW process. Welding journal, 54(1):25,
1975.

[63] Cyril Patricot. Couplages multi-physiques : évaluation des impacts méthodologiques lors de simulations
de couplages neutronique/thermique/mécanique. Theses, Université Paris Saclay (COmUE), March
2016.

[64] Jacques Pellet. Dualisation des conditions aux limites. Technical documentation of code Aster, EDF,
2011.

[65] Peter Pichler, Brian J Simonds, Jeffrey W Sowards, and Gernot Pottlacher. Measurements of ther-
mophysical properties of solid and liquid nist srm 316l stainless steel. Journal of Materials Science,
55(9):4081–4093, 2020.

[66] Lucjan Piela. Appendix E: Dirac Delta Function - Ideas of quantum chemistry. Elsevier, 2013.

[67] Harry Pommier. Stress relaxation cracking in AISI 316L-type austenitic stainless steels. Theses, Ecole
Nationale Supérieure des Mines de Paris, December 2015.

[68] T.S. Prasanna Kumar. 5.12 - casting simulation methods. In Saleem Hashmi, Gilmar Ferreira Batalha,
Chester J. Van Tyne, and Bekir Yilbas, editors, Comprehensive Materials Processing, pages 235–257.
Elsevier, Oxford, 2014.

[69] Christopher J Roy. Grid convergence error analysis for mixed-order numerical schemes. AIAA journal,
41(4):595–604, 2003.

[70] MC Ruzicka. On dimensionless numbers. Chemical Engineering Research and Design, 86(8):835–868,
2008.

[71] Alber A Sadek, Masao Ushio, and Fukuhisa Matsuda. Gas-tungsten-arc cathode and related phenom-
ena. Transactions of JWRI, 16(1):195–210, 1987.

[72] P Sahoo, T DebRoy, and MJ McNallan. Surface tension of binary metal surface active solute systems
under conditions relevant to welding metallurgy. Metallurgical transactions B, 19(3):483–491, 1988.

[73] L Sansonnens, J Haidar, and JJ Lowke. Prediction of properties of free burning arcs including effects
of ambipolar diffusion. Journal of Physics D: Applied Physics, 33(2):148, 2000.



170 BIBLIOGRAPHY

[74] WF Savage, SS Strunck, and Y Ishikawa. The effect of electrode geometry in gas tungsten- arc welding.
Welding Journal, 44(11):489, 1965.

[75] M Schnick, U Fuessel, M Hertel, M Haessler, A Spille-Kohoff, and AB Murphy. Modelling of gas–metal
arc welding taking into account metal vapour. Journal of Physics D: Applied Physics, 43(43):434008,
2010.

[76] A. Segal, M. ur Rehman, and C . Vuik. Preconditioners for Incompressible Navier-Stokes Solvers.
Numerical Mathematics: Theory, Methods and Applications, 3(3):245–275, August 2010.

[77] James A Sethian and Peter Smereka. Level set methods for fluid interfaces. Annual review of fluid
mechanics, 35(1):341–372, 2003.

[78] Jason P Sheldon, Scott T Miller, Jonathan S Pitt, et al. Methodology for comparing coupling algo-
rithms for fluid-structure interaction problems. World Journal of Mechanics, 4(02):54, 2014.

[79] Robert S Strichartz. A guide to distribution theory and Fourier transforms. World Scientific Publishing
Company, 2003.

[80] M Tanaka. An introduction to physical phenomena in arc welding processes. Welding international,
18(11):845–851, 2004.

[81] M Tanaka, H Terasaki, H Fujii, M Ushio, R Narita, and K Kobayashi. Anode heat transfer in tig
welding and its effect on the cross-sectional area of weld penetration. Welding international, 20(4):268–
274, 2006.

[82] Manabu Tanaka, Hidenori Terasaki, Masao Ushio, and John J Lowke. A unified numerical mod-
eling of stationary tungsten-inert-gas welding process. Metallurgical and Materials Transactions A,
33(7):2043–2052, 2002.

[83] KM Tang, JD Yan, C Chapman, and MTC Fang. Three-dimensional modelling of a DC arc plasma
in a twin-torch system. Journal of Physics D: Applied Physics, 43(34):345201, 2010.

[84] Abderrazak Traidia. Multiphysics modelling and numerical simulation of GTA weld pools. PhD thesis,
2011.

[85] Grétar Tryggvason, Ruben Scardovelli, and Stéphane Zaleski. Direct numerical simulations of gas–
liquid multiphase flows. Cambridge university press, 2011.

[86] Nunsian Tsai. Heat distribution and weld bead geometry in arc welding. PhD thesis, Massachusetts
Institute of Technology, 1983.

[87] E. Pfender T.W Petrie. The influence of the cathode tip on temperature and velocity fields in a
gas-tungsten arc. Weld Research and supplement, 1970.

[88] Louis Viot. Couplage et synchronisation de modeles dans un code scenario d’accidents graves dans les
reacteurs nucleaires. PhD thesis, Universite Paris-Saclay, 2018.



BIBLIOGRAPHY 171

[89] Vaughan R Voller, M Cross, and NC Markatos. An enthalpy method for convection/diffusion phase
change. International journal for numerical methods in engineering, 24(1):271–284, 1987.

[90] CS Wu, J Chen, and YM Zhang. Numerical analysis of both front-and back-side deformation of
fully-penetrated gtaw weld pool surfaces. Computational Materials Science, 39(3):635–642, 2007.

[91] Xavier Yau. Modélisation numérique instationnaire pour la simulation du soudage TIG avec couplage
plasma/bain de fusion. PhD thesis, AMU-Aix Marseille Université; EDF R&D, Laboratoire National
d’Hydraulique . . . , 2018.


	Coupling the arc-plasma and weld pool
	Objective of this chapter
	Industrial context
	A brief history of multiphysics modelling of TIG welding at CEA
	Problem statement and principal objectives

	Coupling the arc-plasma and pool: a scaling argument
	An extension to 3D configurations

	A mathematical model of the process physics
	Introduction
	Geometric preliminaries
	Electrodynamic equations
	Electrostatic model
	Magnetostatic model
	Electromagnetic sources
	Boundary and interface conditions
	Boundary conditions
	Interface conditions


	Momentum and mass conservation laws
	Dilatational arc-plasma fluid model
	Incompressible weld pool fluid model
	Boundary and interface conditions
	Boundary conditions for the arc-plasma subdomain
	Boundary conditions for the weld pool subdomain
	Closure conditions at the arc-pool interface

	Interface hypotheses

	Energy conservation law
	Temperature based heat transfer model
	Cathode subdomain
	Arc-plasma subdomain

	Enthalpy based heat transfer model
	Boundary and interface conditions
	Boundary conditions for the cathode and arc-plasma subdomains
	Boundary conditions for the anode subdomain
	Closure conditions at the interfaces


	Summary

	Numerical methods, coupling techniques and algorithms
	Introduction
	Geometric preliminaries
	A brief discussion of the chosen numerical methods
	The Galerkin FEM approach
	The LSFEM approach
	Advantages of LSFEM for the magnetostatic model
	Basics of the method


	The multiphysics computational toolbox
	Coupling techniques
	Solution algorithms

	Conjugate heat transfer coupling algorithm
	Interfacial thermal conditions, a mixed heat equation approach
	Identifying the pool boundaries
	A note on the stability of the interfacial temperature

	Momentum and mass transfer coupling algorithm
	The algebraic systems of equations
	The arc scheme
	The pool scheme

	Coupling schemes at the fluid interface
	The Dirichlet-Neumman algorithm
	A note on the stability of the interfacial velocities
	The quasi-monolithic algorithm
	Fluid interface deformation


	Convergence criteria
	Summary

	The influence of cathode geometry on TIG arcs
	Introduction
	Geometric configuration
	Boundary conditions
	Material properties
	Discretisation and meshing
	Discretisation
	The different meshes
	Spatial convergence

	Discussion and results
	Influence of cathode shape on arc behaviour
	Influence of the cathode shape at the plasma-anode interface
	Transported quantities at the plasma-anode interface
	Analysis of the obtained results
	Voltage drop and arc efficiency

	A discussion with respect to similar works
	Comparison to simulations
	Comparison to experiments


	Summary

	A TIG Spot configuration of the fully coupled model
	Introduction
	Geometric configuration
	Boundary conditions
	Material properties
	Discretisation and meshing
	Discretisation
	The different meshes
	Spatial convergence of important variables

	Discussion and results
	Comparing algorithm performance
	Convergence criteria and linear system solvers
	Quantifying the performance

	Pool sensitivity to physical parameters and interface hypotheses
	Influence of the electric current
	Influence of the interface hypothesis
	Influence of the liquid steel viscosity


	Summary

	A three dimensional study of TIG welding
	A TIG spot verification study
	Geometric configuration
	Boundary conditions and material properties
	Discretisation and meshing
	Discretisation
	Meshing

	Discussion and results
	Rotational symmetry of the 3D spot
	Comparison of the 2D to the 3D model


	TIG welding with displacement effects
	Geometry configuration
	Boundary conditions, displacement effects and meshing
	Boundary conditions
	Displacement effects
	Meshing

	Discussion and results
	Simulation results
	Comparison to experimental observables


	Summary
	Spot verification study
	Welding with displacement effects


	Conclusion
	Material properties
	Electro-thermal constants
	Temperature dependent material properties

	Modelling phase change
	Weak formulation
	Electric model
	Magnetic model
	Energy conservation model
	Mass and momentum conservation model

	Scientific contributions
	Bibliography

