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Empty spaces, what are we living for? 
Abandoned places, I guess we know the score 

On and on, does anybody know what we are looking for? 
 

The show must go on 
Queen, from album “Innuendo”, 1991 
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INTRODUCTION. NEWS FROM THE ANTHROPOCENE 

… it takes a peculiar kind of  genius and courage of  spirit to be able to envisage nature in the innumerable multitude 
of  its productions without losing one’s orientation, and to believe oneself  capable of  understanding and comparing 
such productions… 

Buffon, First discourse, « Histoire Naturelle » (1749) 

1. BIODIVERSITY CRISIS OF ANTHROPOCENE 

We live in the end of the bottom of material abundancy. In 1992, the Union of Concerned Scientists 

and many other researchers worldwide edited the first “World Scientists’ Warning to Humanity”. 

What were those scientists worried about 27 years ago? Essentially, they feared that humanity was 

about to approach the limits of what natural ecosystems could tolerate from current human 

practices. Today, in 2019, we can confirm that they did not miss the point. In early 2000’s Paul 

Crutzen suggested that the Earth had left the Holocene and entered a new epoch, the 

Anthropocene, demarcated by a footprint of human activities (Crutzen, 2000, 2006). Crutzen did 

not invent the concept, but he proposed to define the start date of the Anthropocene near the end 

of the XVIII century, about the time that the industrial revolution began (the invention of the 

steam engine by James Watt in 1784). Other scientists propose to mark the start of Anthropocene 

with the agricultural revolution, 15 000 years ago, or else with the Columbian Exchange of Old 

World and New World species (Waters et al., 2016). Although its beginning date is still under 

debate, the Anthropocene epoch has certainly established in XXI century. 

The ‘Great Acceleration’ graphs usually illustrate the Anthropocene trends of an increasing 

human imprint on the planet Earth (Figure 1): global rises in temperatures, increasing pollutions, 

defaunation and intensification of land use. Even though human imprint on Earth continue to rise, 

there were some signs of improvement in the last decade. For example, the Antarctic ozone hole, 

extreme poverty, hunger and fertility issues and deforestation of some parts of the Earth have been 

reduced (Ripple et al., 2017). In the last decades human activity pronounced biotic changes in 

species assemblages worldwide and accelerated species extinction rate, associated mostly with  
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Figure 1. "Trends over time for environmental issues identified in the 1992 scientists’ warning to humanity. The years 
before and after the 1992 scientists’ warning are shown as gray and black lines, respectively. Panel (a) shows emissions 
of  halogen source gases, which deplete stratospheric ozone, assuming a constant natural emission rate of  0.11 Mt 
CFC- 11-equivalent per year. In panel (c), marine catch has been going down since the mid-1990s, but at the same 
time, fishing effort has been going up (supplemental file S1 of  Ripple et al., 2017). The vertebrate abundance index in 
panel (f) has been adjusted for taxonomic and geographic bias but incorporates relatively little data from developing 
countries, where there are the fewest studies; between 1970 and 2012, vertebrates declined by 58 percent, with 
freshwater, marine, and terrestrial populations declining by 81, 36, and 35 percent, respectively (file S1). Five-year 
means are shown in panel (h). In panel (i), ruminant livestock consist of  domestic cattle, sheep, goats, and buffaloes. 
Note that y-axes do not start at zero, and it is important to inspect the data range when interpreting each graph. 
Percentage change, since 1992, for the variables in each panel are as follows: (a) –68.1%; (b) –26.1%; (c) –6.4%; (d) 
+75.3%; (e) –2.8%; (f) –28.9%; (g) +62.1%; (h) +167.6%; and (i) humans: +35.5%, ruminant livestock: +20.5%. 
Additional descriptions of  the variables and trends, as well as sources for figure 1, are included in file S1 [of  Ripple et 
al., 2017]." 

Figure and legend are extracted from “Warning to Humanity: A second notice” (Ripple et al., 2017).  
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land-use intensification (Pimm et al., 2014; Williams et al., 2015). Specific to Anthropocene, a new 

branch of ecology developed since several decades, called disturbance ecology (Newman et al., 

2016). Disturbance ecology makes historical comparisons of past, current and future disturbance 

regimes and allows the development of adapted conservation measures. 

In 2017, a “Warning to Humanity: A second notice” has been written and signed by over 

15 000 researchers all over the world (Ripple et al., 2017). If you are one of those who singed this 

sort of a scientific petition, you might agree that soon it could be too late to “shift course away 

from our failing trajectory”. Humanity would certainly need natural resources in the future, and 

would continue to exploit them. Thus, our existence have to be thought sustainably. However, 

there are cultural differences between societies (development) and therefore there are differences 

in their relation to the Nature. There are as many natures as there are cultures. In economically 

wealthy countries, the relationship of humans to the Nature (and not the reverse) could be 

described as a relation of a subject to an object (Descola, 2005). In such a society we can imagine 

a kind of a moral border created between the Humanity with its cultural identities and all the rest 

assembled under the term of Nature. Seen under human interests perspective, Nature loses its role 

of a subject and becomes an object of admiration, of exploitation and finally of concern. However, 

these moral values are not universal and alternatives exist. For example, in Amazonian indigenous 

cultures, there is no conception of Nature at all (Elands et al., 2015), thus there is no separation of 

human from Nature (Diaz et al., 2015). However, in a world of scientific research, Nature, denoted 

as biodiversity, is above all an objects of study. Therefore, I will stick to the scientific definition of 

biodiversity, which is still often underappreciated in socio-economic and political discourses on 

sustainable use and conservation of biodiversity. 

1.1 Biodiversity Definition 

Despite being a common object of study of many researches, biodiversity is a complex concept 

and there is no univocal way to define it. DeLong (1996) in his review listed 85 definitions of 

biodiversity and still was not able to define the semantic basis of it. A whole book has been edited 
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lately, all about defining, measuring and conserving biodiversity (Casetta, da Silva and Vecchi, 

2019), that is to say, the concept of biological diversity is large and includes many revealing 

components. The invention of the term biodiversity was motivated by efforts to stop species 

extinctions and habitat destruction (Mayer, 2006). It comes as a modern contraction of the term 

“biological diversity”, derived from Greek “bios” which stands for “life”. Since its appearance in 

mid-1980’s (Lovejoy, 1980, Haila and Kouki, 1994) major changes happened in the definitions and 

use of the term biodiversity, referred to the variety and variability among living organisms. Today, 

the most widely cited definition comes from the Convention on Biological diversity at the “Earth 

Summit”, held in Brazil in 1992 (UNEP, The United Nations Convention on Biological Diversity) 

and which says that biodiversity is: 

“the variability among living organisms from all sources including, inter alia, terrestrial, marine, and other aquatic 

ecosystems as well as the ecological complexes of which they are part; this includes diversity within species, between 

species and of ecosystems”. 

DeLong (1996) offered a more comprehensive definition: 

“Biodiversity is an attribute of an area and specifically refers to the variety within and among living organisms, 

assemblages of living organisms, biotic communities, and biotic processes, whether naturally occurring or modified by 

humans. Biodiversity can be measured in terms of genetic diversity and the identity and number of different types of 

species, assemblages of species, biotic communities, and biotic processes, and the amount (e.g., abundance, biomass, 

cover, or rate) and structure of each. It can be observed and measured at any spatial scale ranging from microsites 

and habitat patches to the entire biosphere”. 

The definition of DeLong allows for modification according to the context in which it is used, but 

stays vague about the diversity of abiotic components and ecological processes, mentioned as 

diversity of ecosystems. It is astonishing that in XXI century, after all efforts of conservation and 

management made for biodiversity, we are still trying to define a universally agreed definition of it, 

which probably does not exist (Swingland, 2013). Perceived differently among scientists, policy-

makers or conservationists, a biodiversity definition has to go with pragmatic objectives targeting 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/aquatic-ecosystems
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/aquatic-ecosystems
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specific biodiversity issues (Casetta, da Silva and Vecchi, 2019). 

1.2 Components of  Biodiversity 

The definition of biodiversity is organized by three intimately linked main components, proposed 

by Gaston and Spicer (2004):  

 genetic diversity, referring to the heritable variation of  genetic information within and 

between species and populations, 

 species diversity (or organismal diversity), referring to inter-species diversity or more largely 

to taxonomic diversity from individuals up towards to spices, genera and so on, 

 ecosystem diversity, referring to the diversity in species’ communities at ecosystem level. 

The molecular diversity and genetic richness of life (Campbell, 2003) should be considered as the 

basis of biodiversity evolution. Besides, Boon (2019) proposed to investigate intra-individual 

genetic heterogeneity, accessible today with accumulated data on genetic information contained in 

DNA sequences. Concerning species diversity, there are three main aspects: taxonomic, trait-based 

and phylogenetic. Taxonomic diversity is usually presented as a number of different taxa 

(Humphries et al., 1995). It is the simplest way to describe biodiversity at a given location. Trait-

based diversity represents the richness of character types of species or else their biological traits 

(Petchey and Gaston, 2002). I will define species traits in the section 3.2.1. Finally, phylodiversity 

represents the evolutionary potential of a given set of species, hidden behind the branches of a 

phylogenetic tree.  

Biodiversity studies usually integrate the up-mentioned “holy trinity” of components 

(genes, species and ecosystems). This entity-based approach in conservation is particularly used in 

species-centered studies, trying to describe and to protect each of them. However, species are not 

isolated from other ecosystem components, biotic and abiotic, thus, entity-approach should be 

integrated to the process-based approach (Vecchi and Mills, 2019). Indeed, species are at the base 

of many ecosystem processes insuring efficient ecosystem functioning, and linking species to the 

underlying ecosystem processes can strongly enhance conservation action efficacy. Such 
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investigations can be made at several scales of biodiversity. 

1.3. Scales of  Biodiversity 

Living organisms are organized following a nested hierarchy of units with increasing complexity. 

We can distinguish two levels of organization: biological systems, from genome to species 

population sharing genetic homogeneity, and ecological systems, which include different 

interacting species organized into communities at different spatial and temporal levels (André et 

al., 2003). The level of ecological organization is in the focus of this thesis. 

The diversity of ecological systems can be approached at a broad range of spatial levels. 

Usually researchers separate it on three levels: 1) alpha diversity, which corresponds to intra-habitat 

diversity between species composing one community, 2) beta diversity of species composition 

between communities and 3) gamma diversity of a global landscape in a region (Whittaker, 1972; 

Magurran, 2004). Those three levels of biodiversity are interdependent as gamma diversity is a 

function of alpha and beta diversities. Moreover, with changing seasons and habitats, biodiversity 

vary not only in space (Escuedro et al., 2003) but also in time (Pachepsky et al., 2001). Actual 

biodiversity crisis is a global phenomenon. For example, current practices of species extraction 

resulted in quasi total disappearance of some plant species (Prance, 2002). However, conservation 

efforts are usually made at the local scale. Moreover, global species extinctions have been rarely 

observed, as human impact usually leads to local extinctions and biodiversity changes (Hooper et 

al., 2005). To be sustainable, we thus need to consider social, political and economic influences that 

shape biodiversity management at local scale (Williams, 2004). This requires more integrative 

research on the variation of biodiversity across spatial and temporal scales, guided by local priorities 

of conservation.  

2. HUMANITY AND BIODIVERSITY RELATIONS 

There is an evidence for global changes across the world that causes planet’s biotic 

impoverishment (Reid and Miller, 1989). Nature didn’t ask to be protected and it causes 
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contradictions in conservation priorities and “ecological” objectives (Papaux and Bourg, 2015). 

However, humanity does have big reasons to take care about biodiversity. According to the Food 

and Agriculture Organization of United Nations, 40% of the world's economy is based directly and 

indirectly on the use of biological resources that emanate from biodiverse systems. Taking care of 

biodiversity turns out to taking care of the well-being of our-selves. Unfortunately, humanity's 

growing needs surpasses biodiversity capacities to satisfy them and if we want to continue 

benefiting from natural resources, the question of biodiversity use has to be taken seriously. It can 

be accomplished by the sustainable use of biodiversity, which implies the consideration of eventual 

future generations’ needs. The sustainable use of biodiversity is one of the three main objectives 

set by the Convention on Biological Diversity (CBD, 19921). In 2011, in Nagoya, Japan, a Strategic 

Plan for Biodiversity of CBD has been updated with elaboration of 20 Aichi Biodiversity Targets2. 

“The path to solving this dilemma involves changing patterns of behavior and social norms that influence them; but 

such norms also typically change only on those longer time scales. Sustainability in the new millennium will depend 

upon our ability to affect with sufficient dispatch the cultural norms and legal instruments that govern individual 

behaviors in the global commons” (Levin, 2000). 

That is, as current global changes overwhelms the speed of adaptation of biological systems, 

we probably should accept current environmental conditions as a new normal and adjust 

conservation actions to the future trajectories of anthropogenic disturbances (Newman, 2019) that 

will certainly continue. But first of all, we need to understand how natural ecosystems function and 

how they depend on biodiversity.  

2.1. Biodiversity and ecosystem functioning 

Major advances have been made in describing the relationship between biodiversity and ecosystem 

functioning – a broad concept including a variety of phenomena happening in ecosystems and 

including ecosystem proprieties, goods and services (Hooper et al., 2005). Biodiversity is a result 

                                                 
1 https://www.cbd.int/doc/legal/cbd-en.pdf 
2 https://www.cbd.int/sp/targets/ 
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of dynamical interactions between its components in space and time, which obey partly different 

sets of constraints, and hence partly different laws (Loreau, 2010). When studying effects of 

biodiversity changes on ecosystem functioning one should define which component of biodiversity 

is in focus. Ecosystem ecologists have often studied species and their biological characters, as a key 

element for understanding the link between biodiversity and its role in shaping ecosystems (Lavorel 

et al, 2011).  

Since 1960’s, ecology studies combining theoretic, field and experimental methods 

succeeded to gradually develop the debate on causes and consequences of biodiversity loss (Hooper 

et al., 2005; Tilman et al., 2014). Those studies were investigating three fundamental ecosystem 

processes: primary productivity, stability (and resilience) and invasibility. Some examples are 

presented in Figure 2 extracted from Tilman et al. (2014). Concerning productivity-diversity 

relationship, the major result showed that a total biomass of ecosystem linearly increase with a 

number of species in ecosystem (see Tilman et al., 2014). Living organisms, through their 

metabolism and everyday life activities generate an adaptive feedback with their abiotic 

environment, thus regulating abiotic conditions (Kylafis & Loreau 2008). Further, many natural 

processes that are happening spontaneously in ecosystem rely on direct interactions between 

species such as predation, competition, mutualism, facilitation or disease (Cardinale et al., 2002) 

influencing diversity-stability relationship. Ecosystem stability is a multifaceted concept with many 

definitions but which generally determines ecosystem capacity to return to an equilibrium state in 

terms of species densities and interactions after a perturbation (Holling, 1973; Hooper et al., 2005; 

Ives and Carpenter, 2007). Together stability and diversity determine ecosystem functioning 

fluctuations. A variety of observational studies confirmed the theory that greater species diversity 

leads to greater ecosystem stability, especially if species are redundant in their functions (Lehman 

and Tilman, 2000, Gross et al, 2015). Finally, diversity-invasibility relationship was found positive. 

For example, invader success of exotic species decreased with higher native species diversity 

(Naeem et al., 2000; Laureau 2010).  
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Scientific community came up with a broad consensus that many species have generally a 

positive impact on ecosystem functioning (Hooper et al., 2005, Ives and Carpenter, 2007). 

However, the majority of studies that investigated links between biodiversity and ecosystem 

functioning were carried out in terrestrial plant communities, which are also the primary producer 

at the base of every trophic chain. Moreover, contradictory effects of plant diversity on higher 

trophic levels were found (Mittelbach et al., 2001; Proulx et al., 2010). Thus, it is unclear whether 

the results found with terrestrial plant species can be generalized to other taxa, different trophic 

levels and different habitat types (aquatic, subterranean). It has been shown that, depending on the 

biodiversity components studied, on environmental constraints and on spatial scale of study diverse 

biodiversity patterns can be observed (Mittelbach et al., 2001). Indeed, different components of 

species diversity follow different dynamics (Brum et al., 2017) and may have contrasting effects on 

multiple ecosystem processes (Tilman et al., 2014). Trait-based component of biodiversity, for 

example, strongly influences ecosystem properties (Diaz and Cabido, 2001, Hooper et al., 2005, 

Loreau, 2010). Le Bagousse-Pinguet et al. (2019) found that taxonomic, phylogenetic and trait-

based diversity of plant species taken together were better predictors of multifunctionality of 123 

dryland ecosystems than if taken separately. Therefore, biodiversity relations with ecosystem 

functioning cannot be summarized by a simple diversity metric and have to be addressed at multiple 

scales for several levels of biological organization (Tilman et al., 2014). 
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Figure 2. "Relationships among species richness, functional composition, and ecosystem function. Increasing species 
number (a) increases drought resistance; high resistance is associated with a low rate of  biomass decline during drought 
(Tilman & Downing 1994). Increasing species number also (b) increases vegetation cover (Naeem et al. 1994) and (c) 
increases biomass in a greenhouse experiment (Naeem et al. 1995). (d ) Plant abundances (summed percent covers, 
solid line) increase, whereas soil nitrate (dashed line) decreases (more is taken up by plants) with increasing plant species 
numbers (Tilman et al. 1996). Aboveground biomass increases with both (e) the number of  species and ( f  ) the 
number of  functional groups (Hector et al. 1999). ( g) Aboveground biomass depends on plant community 
composition (Hooper & Vitousek 1997). Abbreviations: E, early-season annuals; L, late-season annuals; P, perennial 
bunchgrasses; N, nitrogen fixers. (h,i ) Diversity effect is plant productivity at high diversity divided by that of  

monocultures for ∼100 experiments, with diversity effects (h) ranked from largest to smallest effects and (i ) graphed 
against length of  study (ln of  number of  days, where “7” = 3 years) (Cardinale et al. 2007). Error bars indicate 1 SEM 
(standard error of  the mean)". 

 

Figure and legend are extracted from Tilman et al. (2014) 
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2.2. Biodiversity contributions to humanity 

We saw that biodiversity is involved into many natural ecosystem processes and that understanding 

of the biodiversity-ecosystem functioning relationships would help to prioritize relevant 

biodiversity components in conservation management actions (Diaz et al., 2006). Humanity's 

reliance upon biodiversity for its welfare and survival is enormous, and biodiversity loss has 

unquestionable socio-economic consequences. Ecological process can be seen through the 

utilitarian prism making biodiversity of a vital importance to humanity. By influencing their 

environment different species are involved into primary production, decomposition or 

biogeochemical cycles of nutrients, water and other elements, soil generation, pest control and 

climate regulation. A plenitude of ecosystem processes were assembled into subgroups according 

to the nature of benefits they can offer and called "ecosystem services". The Millennium Ecosystem 

Assessment (MEA, 2005), that gathered around 1700 researchers all over the world, listed four 

roles of biodiversity in ecosystem services supply: 

 

1. provisioning role of  biodiversity by supplying materials, water, food etc.; 

2. regulatory role through the influence of  biodiversity on production, stability and resilience 

of  ecosystems; 

3. supporting role through structural, compositional and trait-based (functional) diversity 

4. cultural role through the non-material benefits (spiritual, educational). 

 

Going further than traditionally described ecosystem services, biodiversity provides an inspiration 

for new energy sources, materials and technologies, commonly called biomimetism. In practice, 

however, it is quasi impossible to clearly differentiate interrelated ecosystem services. 

MEA founded their framework on two pillars: ecological and economic, referring to the multiple 

ecological functions that serves humanity. In the meanwhile, all societies value nature in very 

different ways for their own sake (Wilson, 1984) and MEA recommendations failed to be 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/provisioning
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operational locally, as the definition of ecosystem services lacks socio-cultural values along with 

ecological and economic ones. This intrinsic value of nature is of primary importance in some 

societies, especially for indigenous people. Therefore, Intergovernmental Science-Policy Platform 

on Biodiversity and Ecosystem Services (IPBES, Diaz et al., in press) scientists proposed more 

inclusive, yet not approved to this day, notion of “nature’s contributions to people” instead of 

MEA’s ecosystem services framework (Díaz et al., 2018), embracing the complex relationship 

between humans and nature. 

2.3. What threats to biodiversity? 

As described above, our planet’s living mantle – biosphere – suffers from human intervention, 

unprecedented in Earth’s history (Tittensor et al., 2014). Indeed, global changes accelerated by 

human activity impose selective pressures on the organisms and therefore influence adaptation and 

evolutionary trajectories of taxa (Williams et al., 2015). The most recent classification of direct 

causes of biodiversity decline was made by the IPBES (Diaz et al., in press). The list consist of five 

causes (with a decreasing level of impact): changes in land and sea use; direct exploitation of 

organisms; climate change; pollutions; and invasion of non-native species. There are more precisely 

agricultural overexploitation, urbanization and industrial development threatening wild populations 

by habitat fragmentation, loss and degradation (Krauss et al., 2010); invasive non-native species 

taking over native populations in resource use (Walther et al., 2009); introduced pathogens altering 

biochemical processes in the water, air and soil; climate change modifying species habitats and also 

their behavior, etc. (Diaz et al., 2015; Williams et al., 2015). Those five direct drivers of biodiversity 

change are underpinned by societal values and behaviors that include production and consumption 

patterns, human population dynamics and trends, trades, technological innovations and local to 

global governance. However, the rate of change in the direct and indirect drivers of biodiversity 

loss differs among regions and countries. Moreover, new types of anthropogenic disturbances will 

interact with natural disturbance regimes resulting in completely different threats, proper to 

Anthropocene (Newman et al., 2019). In order to minimize its negative effect on biodiversity, 
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humanity established red lists of endangered species, created protected natural areas and is trying 

to develop a sustainable way of life. Would that be enough?  

One of the most obvious and gravest consequences of biodiversity crisis are species 

extinctions. Species extinction is a natural process occurring without human intervention on large 

time scales, and all living organisms have its limited geological time of existence (Soulé, 1985). 

However, extinction rates caused by humans exceeds natural pace of things. The International 

Union for the Conservation of Nature (IUCN) estimated that out of 1.7 million of described 

species around 25% are threatened and about 1 million are under threat of extinction (Mittermeier 

et al., 2011). As species vanish, so does the benefits they offer to humanity. Therefore, because 

species extinctions are irreversible, their irreplaceable value in terms of services should be a 

mandatory part of ecosystem assessments.  

2.4. Value of  biodiversity 

Based on the ecosystem service notion, many scientists and economists tried to quantify the real 

value of biodiversity loss (Costanza et al. 1997; Balmford et al. 2002). However, it is difficult to 

establish a meaningful and relevant value of biodiversity. There is no single valuation process of 

biodiversity and three main perspectives - economic, societal and ecological - should be accounted 

for (Laurila-Pant et al., 2015; Sukhdev et al., 2014). The monetary valuation of biodiversity changes 

can still serve as a useful link between environmental problems and political decision-making 

processes (Braüer, 2003) but there is no univocal, unambiguous monetary indicator (Nunes and 

van der Bergh, 2001). How much would cost the restoration measures compared to the loss of 

economic benefits? What does it really costs to replace services provided for free by nature? This 

economical valuation has a drawback of not accounting for social visions of nature. Therefore, 

socio-cultural way of biodiversity valuation may be more adapted to the cultural and spiritual 

relations to the nature (Sukhdev et al., 2014). Unfortunately, many ecosystem services cannot be 

bought or sold, thus they have been called "non-use values" of biodiversity (Pagiola et al., 2004).  
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Furthermore, each component of biodiversity has its unique, intrinsic value or “the value 

of nature regardless of the services and economic benefits it provides” (Pearson, 2016). Some 

researchers proposed the idea of biodiversity option value, which represents the unanticipated 

capacity of biodiversity to provide potential future benefits (Faith, 1992, MEA, 2005). Thus, it is 

not only about focusing on ecosystem current uses, but also about making provisions for future 

generations.  

Today, socio-ecological processes are increasingly shaping the world’s natural ecosystems. 

Humanity exploits a minor part of the world’s biological diversity (Swingland, 2013) and 

undiscovered option and intrinsic non-use values should support the precautionary principle of 

biodiversity maintaining. In order to conserve biodiversity and prevent its further loss, there is a 

need to complement the economic and socio-cultural valuation approaches of biodiversity with 

another one based on precise scientific knowledge of ecosystem functioning (Laurila-Pant et al., 

2015). This signifies determining all possible threats, direct or indirect, hanging over biodiversity 

and measuring its well-being.  

2.5. Tools for biodiversity conservation: from global problems to local solutions 

Prevention of biodiversity loss is becoming of the paramount importance for all nations, societies 

and individuals. Biodiversity must be urgently assessed in an operational way in order to facilitate 

conservation targets setting. Since the United Nations Convention on Biodiversity, multiple 

intergovernmental assessments, conservation programs and agencies flourished in order to 

understand and reduce biodiversity loss (e.g., European Environments Agency, IUCN, etc). Many 

of them adopted IPBES as their science-policy interface (Pimm et al., 2014). One of the simplest 

ways to assure the protection of individual species and entire ecosystems consists in setting aside 

entire areas, such as natural reserves and parks (Margules and Pressey, 2000), just by isolating a part 

of biodiversity from any possible threat (“nature for itself” and “nature despite people” policy of 

conservation; Mace, 2014). Such approaches attempt to preserve native species and their natural 

habitats they evolved in, excluding any area that has been in contact with human activity (the 
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concept of wilderness, Mittermeier et al., 2003). However, there are areas around protected spaces, 

where damage to biodiversity could be so big that species would not be able to re-colonize some 

parts of their native habitat without human intervention. Conservation translocation and ex situ 

conservation, are another tool for biodiversity conservation (Sarrazin and Barbauld, 1996; Taylor 

et al., 2017). Conservation translocation is an intentional human-mediated movement and release 

of species in order to re-establish viable populations within species distribution range (Seddon, 

2010). Ex situ conservation tries to maintain a viable population in cultivation or captivity (in seed 

banks, embryos, sperm and oocyte storages). Such conservation tools often involves a loss of 

genetic diversity through inbreeding and founder effect (Milner-Gulland and Mace, 1998). 

However, species do not influence ecosystem processes equally (Tilman, 1997), nor do they have 

the same evolutionary history and potential. Thus, no single taxon is a good proxy for biodiversity 

protection (MEA, 2005).  

Poiani et al. (2000) proposed a practical framework of biodiversity conservation intended 

to make a transition from single-species conservation of rare and endangered species to ecosystem-

oriented conservation, taking into account four ecosystem attributes: composition and structure of 

the focal ecosystems; dominant environmental regimes, including natural disturbance; minimum 

dynamic area; and connectivity. They recommend to use this framework several times during 

conservation actions for more effectiveness. Such ecological management aims to conserve and 

restore historical ecosystems and ensure maintenance of ecosystem services and goods. Therefore, 

biodiversity protection often requires human assistance. Moreover, once biodiversity passed the 

tipping point of no return because of human intervention, the “nature and people” policy should 

be developed linking nature to human well-being (Mace, 2014). Thus, as a final step in human 

relation to biodiversity, the idea of wilderness should be abandoned and framework of biodiversity 

conservation should concentrate on socio-natural areas, integrating both, natural biodiversity 

dimension and socio-economic human dimension as partners (Bourg and Papaux, 2015). Such 

policy was recently adapted in ecology of landscapes and urban ecology, making accent on ordinary 
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biodiversity (nature that can be experienced in every-day life). 

For sure, no single methodology is appropriate for multiple biodiversity loss issues. Effects 

of global change differ between locations, spatial scales and time periods. It is not possible to 

protect all biodiversity components simultaneously and some of them have to be prioritized for 

conservation. Hence, conservation efforts are usually made at the local scale (Pimm et al., 2001). 

First, because local species extinctions are more common (e.g., large changes in species 

abundancies) than global ones (Hooper et al., 2005). Second, because people care more about their 

close environment and because localized actions are easier to implement. Developing biodiversity 

conservation demands a deep knowledge of its state in a first place. Therefore, biodiversity 

monitoring has to be aligned with local and national priorities of biodiversity conservation (see 

Durant, 2014). Organizations such as IUCN, play a key role in facilitating effective communication 

between actors of biodiversity management, creating tools useful to all sides and ensuring that 

information provided is credible, and gathered via a legitimate process. It is important that current 

conservation efforts follow relevant scientific progress and that policy-makers use up-to-date 

methods to ensure better future for nature and people (Mace, 2014; Newman, 2019). One efficient 

way to evaluate biodiversity state is to quantify it, in other words to give biodiversity a numerical 

value (do not confuse with monetary value). To move from assessing to conserving biodiversity, 

many biodiversity measures were developed (Purvis and Hector, 2000). 

3. IS BIODIVERSITY MEASURABLE? 

Measuring such a complex thing as biological diversity, where each level of biological organization 

varies in composition, structure and function (Noss, 1990; Mayer, 2006), is a hard but achievable 

task. In spite of such organizational complexity of biodiversity, one have to choose which 

biodiversity component to measure. Hence, biodiversity conservation has to focus on the dynamic 

ecological processes at different spatial and temporal scales (Levin, 2000; Poiani et al., 2000). 

Nevertheless, components of biodiversity are interdependent and accessing biodiversity gradually 

through its hierarchical organization complements a view of its state. Local biodiversity variations 
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may lead to biodiversity generation and maintenance on larger spatial scales and longer time periods 

(Levin, 2000). Therefore, multiscale conservation effort offers a more comprehensive way for 

protecting a greater amount of biodiversity (Poiani et al., 2000). In ecological sciences a vast range 

of biodiversity metrics exist, each approaching one of the facets of biodiversity. The choice for the 

most adapted biodiversity metric will depend on the underlying ecological question, spatial scale of 

the study and nature of the ecological data (Magurran, 2004, Mayer, 2006). In the Chapter 1 we will 

compare several biodiversity measures and discuss their possible uses in ecology and conservation 

biology. 

3.1. What unit for biodiversity measure?  

No one definition has as yet satisfied all naturalists; yet every naturalist knows  
vaguely what he means when he speaks of a species.   

Darwin (1859/1964) 
 

Generally, biodiversity measures are made in a way to evaluate a state of a biological entity. Such 

entities can be categorized in sets by what they have in common. In ecology, those entities can be 

represented by a chosen level of biological organization, from genes to landscapes passing by 

species and individuals. In my thesis and more generally in community ecology, an entity would be 

composed of individual organisms from the same species and a community would be a set of these 

entities. In conservational biology, species became a common currency for studying biodiversity 

variance and from species distribution and abundance (Agapow et al., 2004). For example, species 

are used to define biodiversity hotspots (Myers et al., 2000) selected upon IUCN species’ threat 

classification. Public concern plays a great role in budgetary allocations for conservation programs, 

and easily recognized, charismatic species are highly valued, regardless of their real ecological 

significance (Agapow et al., 2004; Pearson, 2016; Albert et al., 2018). Would you prefer to 

participate into conservation of a puma or of a dangerous insect? And besides, what hides behind 

the term of “species” and how is it defined? 

John Ray (1627-1705), an English naturalist, was the first who introduced the term of “animal 
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species”. Then, Carl Von Linné introduced binominal nomenclature (genera + species), and 

biologists adopted this naming system for any living organism. For example, Canis lupus stands for 

the wolf, where “Canis” is a genus and “lupus” is a species belonging to that genus with other 

Canidae species. Thus, species is the smallest and the most commonly used unit of taxonomical 

hierarchy starting from a kingdom (which would be animal kingdom for C. lupus). Even though 

sub-species may be named sometimes, they often remain controversial (Wilson and Brown, 1953). 

However, there is no universal way to define species, and no other subject in biology received so 

much controversy as the species concept. The extensive literature on species notion shows 

controversial definitions of species concept which are still debated by scientists. Over 20 definitions 

were described, and two integrated frameworks of species concepts have been proposed by 

Mayden (1999) and by de Queiroz (2005b, 2007). Unfortunately, the problem of species concept 

definition is often confused with issues of how species is delimited and compartmentalized as a 

meaningful entity in biology (Andersson, 1990; Sites and Marshall, 2004; Naomi, 2011). Globally, 

there are four partly overlapping definitions of macroorganism species concept: 

 the biological (or reproductive) species concept defining species as populations that cannot 

interbreed successfully (Mayr, 1942, 1963);  

 the evolutionary species concept defining species as lineages of  ancestral descendant 

populations evolving separately with its own roles and tendencies(Simpson, 1961; Wiley, 

1978); 

 the ecological species concept defining species as lineages evolving in minimally different 

adaptive zones, depending on species ecological preferences (Van Valen, 1976); 

 phylogenetic species concept, delimiting species as a group of  organisms that share at least 

one uniquely derived character, perhaps with a shared pattern of  ancestry and descent or 

monophyly (e.g., Nixon and Wheeler 1990). 

Which definition to choose when boundaries of  species are confused by horizontal gene transfer, 

hybridization, and recent evolutionary isolation (Agapow et al., 2004)? Furthermore, very different 

approaches are used in microbiology to define species concept. Microbial taxa definition is 
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essentially based on DNA sequencing and hybridization, especially when nothing is known about 

natural history and ecology of  those organisms (see Green and Bohannan, 2006, Box1. and 2.). 

Being fundamentally different from described above “pragmatic” attempts of  species definition, 

the method of  97% - similarity of  ‘operational taxonomic units’, based on ribosomal gene 

sequences, would join all primates from humans to lemurs in one species (Staley and Gosnik, 1999). 

Inversely, the phylogenetic species concept would split the biological species concept and increase 

an extant species number (Agapow et al., 2004). Finally, biological species concept definition cannot 

be applied to species with asexual reproduction or to hybrids between species. Therefore, the best 

solution is to see species as an operational entity, clearly defined with sufficient data and accepted 

in a given area of  biology. In this thesis I will use an operational species concept used in ecology, 

delimited by molecular information and species biological properties as a unit of  biodiversity 

measurement (see Sites and Marshall, 2004). 

3.2. Measurement of  Biodiversity: how to proceed? 

3.2.1 Criteria to describe species diversity 

The key to quantify species diversity is to consider species differences (dissimilarity) that create that 

diversity. But which criteria should be used to properly describe species differences? The most 

frequently used characteristic is species abundance. Species abundance is usually measured as a 

population size, or a number of individuals in a population, although other means to measure 

species abundance exist (Rabinowitz, 1982). However, species abundance does not tell us much 

about species biological characteristics, what gives them the capacity to exploit ecosystem 

resources, reproduce, interact with their environment and consequently influence ecosystem 

functioning. Thus, more integrative way to describe differences between species is to use their 

biological traits. Under the “trait” term have been listed many different types of species’ 

characteristics, from individually measured features (biochemical, evolutionary, genetic, 

morphologic, physiologic or behavioral) to environmental conditions of species populations. In 

order to avoid any confusion and ambiguity Violle et al. (2007) proposed to define traits at the 
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individual level only. A species trait is a character measurable on every individual of one species 

and that influence the performance of species (and the ecosystem functioning) and is usually used 

to compare species between them (McGill et al., 2006; Violle, 2007). As species trait is measured 

on a sample of species individuals, there can be inter-specific variability. Indeed, species trait values 

will be different depending on the environment where they were measured (e.g., altitude, latitude, 

climate or season; e.g., Albert at al., 2012), however mean trait values per species are usually found 

in global databases. I would like to emphasize the notion of a functional trait, which is often 

employed to describe many kinds of species traits as a surrogate for species performance in 

ecosystem allowing them to respond to environmental changes and to influence ecosystem 

proprieties. Yet, not all traits are functional, and probably not all of them impact species fitness 

and survival. As the substantial meaning of biological trait varies among authors and ecological 

disciplines, from here on I will employ more inclusive term of “biological trait” or just “trait”. 

Thereby, we can say that every species (or individual) is an assemblage of traits, whose values can 

be unique features of that spec²ific species (or individual) or commonly shared by many species.  

Another way to describe species is to use its position on a phylogenetic tree representing the 

evolutionary relationships between extant species. Phylogenetic tree is the most used principle to 

organize the classification of organisms. Important progress has been made in building technics of 

more reliable and meaningful phylogenetic trees (Roquet et al, 2013). Today, phylogenies are usually 

made with species molecular data, by aligning multiple genetic sequences in the most parsimonious 

way (Roquet et al., 2013). Thus, most of the phylogenetic trees used in ecology are molecular, 

usually built for a specific taxonomic level, and then are assembled into a supertree composed of 

several molecular phylogenies. Figure 3 represents a structure of a phylogenetic tree (extracted from 

Vellend et al., 2011).  
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Figure 3. The components of  a phylogenetic tree. Tips (or leaves) of  a tree represent species, nodes represent the 
most recent common ancestor of  all species descending from it (branches split), the root node (or just a root) represent 
a single point from which all species descend; branches are characterized by branch length, representing the 
accumulation of  evolutionary history of  species changes; polytomies are the nodes with more than 2 descending 
branches. Extracted and midified from Vellend et al., 2008, Box 14.1.  

 
 
 

A largely assumed hypothesis says that shared phylogenetic information between species 

captures on average (and it is important to underline) shared species features, which for the most 

of  them remains, however, unmeasured (Faith, 1992). We will never be able to measure all species 

biological traits, thus, molecular phylogenies could be a good surrogate for the conservation of  

both, known (or easily observed) and unknown (hardly observed) characters of  organisms. Species 

unmeasured features are referred as "future options" and represents a potential unanticipated 

future benefits from features of  species in response to future needs (Faith, 1992; Faith, 2017). A 

recent contradictory debate about phylogenies capturing badly species trait diversity shows that all 

depends on the traits measured and on a spatial scale considered (see Mazel et al., 2018, 2019 VS 

Owen et al., 2019). For example, convergent traits, which are independent evolutionary events 

experienced by species under the same constraints, makes an exception, and convergent trait values 

are not captured by the phylogenies (Faith and Walker, 1996b). However, an increased use of  
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phylogenies to describe species in ecological studies reflect the shared recognition of  the utility of  

phylogenetic information for biodiversity representation and conservation.  

3.2.2 Indices of  species diversity – mathematics can save the planet  

The eternal problem of “what to protect” could be resolved if conservation efforts were more 

inclusive using multiple aspects of species biological traits: genetic, morphological, physiological 

and behavioral. Indeed, species are not equivalent nor exchangeable in their biological 

characteristics and magnitude of their differences varies across the set of species observed (Vellend 

et al., 2011). Thus, the choice of appropriate tool to measure biodiversity will depend on the 

biological discipline, its methods and data availability on species. In general, a biodiversity measure 

is a mathematical formula, created to give a value to a specific entity. Before being operational, it 

has to be accepted by scientific community, to be reusable and understood by all actors of 

biodiversity conservation (Poiani et al., 2000; Balmford, 2005). 

We defined that in this thesis the unit of biodiversity measures will be species, studied 

within the same taxonomic group (e.g., plants, birds, butterflies) at different spatial scales. Measures 

that determine the amount of biological diversity represented by a set of species are naturally called 

species diversity measures. Species diversity is the most commonly used measure of biodiversity, 

mainly because of the ease of working at species level of organization and due to species’ 

recognized roles in ecosystem functioning (Sullivan and Swingland, 2006). In changing 

environmental conditions, conservation priorities are set upon specific localities and their specific 

composition with a common goal to minimize the extinction risk by maintaining the greatest 

number of species and with them, greater amount of ecosystem services. The simplest diversity 

measure is species richness, which reflects a number of species in a set (Magurran, 2004) but gives 

no information on species abundances. To overcome this shortcoming other diversity measures 

have been developed, such as Shannon index (Shannon, 1948), based on the respective proportions 

of species abundances or Gini-Simpson index combining species richness and evenness (Gini, 

1912; Simpson, 1949). However, these commonly used measures also have several drawbacks, as 
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they do not allow including species biological differences described above. Thus, in recent decades 

phylodiversity (Faith, 1992) and trait-based diversity (Petchey and Gaston, 2002) measures have 

been developed, using accordingly species phylogenetic and trait information. The greater species 

dispersion on a phylogenetic tree would represent a greater phylodiversity diversity of species. 

Furthermore, a location with many different higher taxa than species (genus, order, etc.) would be 

more phylogenetically diverse than a site with higher species richness belonging to the same 

taxonomical level. For example, two New Zealand’s endemic species of Tuatara (genus Sphendon) 

is the only surviving members of its lineage (Rhynchocephalia, Hay et al., 2010), dates to the time of 

the dinosaurs and looks like lizards (but they are not). These species represents more phylodiversity 

than some species-rich taxa with a recent common ancestor. Phylodiversity measures, created to 

capture evolutionary relationships between species were successfully adopted in community 

ecology to describe community phylogenetic structure (Webb, 2000; 2002; Cadotte et al, 2010). 

Finally, more recently, trait-based (or functional) diversity has been used to reveal links between 

species traits and species response to global changes and ecosystem functioning (Petchey and 

Gaston, 2002).  

But what about species response to global change and the amount of diversity this species 

support? A measure that provides a value for every species in a set would complement a complex 

picture of biological diversity. In the Chapter 1 we will discuss the most largely used measures for 

estimating the contribution of each species to biodiversity. Several studies argued that ecological 

role of species is proportional to their abundance, which corresponds to the “mass ratio” 

hypothesis of Grime (1998) where the most abundant dominant species represent the most of the 

biomass and have the most important role in ecosystem functioning (Lavorel et al., 2008; Diaz et 

al., 2007b; Pakeman et al., 2011). Yet, it is not always true if differences in species’ biological 

characters are considered. 
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3.2.3. Species originality measures based on species’ biological characters 

Forty years ago, a particular group of measures appeared, in order to characterize each species in a 

set, and not just the species set (May, 1990; Vane-Wright, 1991; Nixon and Wheeler, 1992). Those 

measures use inter-species differences to evaluate their specific contribution to the diversity of a 

finite set of species. A large variety of such indices, even if they measure the same concept, have 

many different names. In my thesis I refer to them as originality measures, simply because the 

general principle of all those measures is to evaluate how unusual or original each species is, 

compared to the others in a set (Pavoine et al., 2005). As for diversity measures, species abundance 

alone is not always a good predictor of the contribution of species into ecosystem functioning and 

even relatively rare species can harbor important ecosystem functions and can be even irreplaceable 

(Mouillot et al., 2013a, Brandl et al., 2016). Thus, species biological characters would allow to 

measure species originality as a rarity of species character states (Pavoine et al., 2017). 

Originality measures can be separated into three large groups, depending on the data they 

use to give each species a value: species taxonomical relations, species phylogenetic position and 

species trait values (see Appendix 1 in Chapter 1). From there, to be operational, an originality 

index needs a species pairwise differences structure, which can be rather a tree structure (for 

taxonomic and phylogenetic data) or a matrix of differences or dissimilarities between species 

(usually adopted for trait-based data but could be used for the others too). Originality measures 

will thus compare species through the shared amount of characteristics (see Figure 2 in General 

Discussion). Species originality concept can help in our understanding of biodiversity response to 

global changes which is a step towards better prediction of communities change under future 

scenarios. I will describe species originality concept and associated methods of its quantification in 

the Chapter 1.  
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4. OBJECTIVES OF THE THESIS 

The main objective of this research work is to bring the light on the benefits of species’ originality 

concept and measures to different biological disciplines, particularly to conservation biology and 

community ecology. In Chapter 1, we start by reviewing the state of the art of three concepts 

primordial to any biodiversity study: species diversity, species rarity and species originality. We 

disentangle various terms, approaches and measures associated with each of the three concepts. 

We also discuss analytical links between measures of diversity, rarity and originality and discuss 

some examples of their joint use. Above, we described two main types of species biological 

characters, phylogenetic and trait-based. Thus, in this thesis we consider both of them, as it allows 

having a more integrated vision of species diversity and originality aspects. 

After a vast theoretical review, we demonstrate which new applications of originality 

measures are possible using a real dataset and ecological context. Indeed, in Chapter 2 we 

investigate plant species originality variation along an urbanization gradient. Especially, we propose 

a conceptual framework of species originality measuring at two spatial scales that can help to 

identify the most relevant spatial scale for trait-based diversity and phylodiversity evaluation in 

cities and which species contribute the most to such a variation. We also discuss some of 

methodological and data problems met in Chapter 2 and compare them with another research work 

(Veron et al., in prep., Appendix A) that proposed several solutions. 

In the end, General Discussion makes an overview of the precedent chapters. We discuss 

possible drawbacks and advantages of the originality measures use in ecology. Indeed, the data 

needed for the calculation of originality is not always available but when it does some shortcomings 

exist.  
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Figure 4. Mindmap of this thesis
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The concept of biological diversity, or biodiversity, is at the core of many evolutionary and 

ecological studies. One of the main aims of such studies is to identify the processes that shape 

biodiversity patterns in space and time. To reach that aim, a myriad of biodiversity measures have 

been developed especially in the last four decades. Species is one of the central units of these 

measures. Often species diversity has been quantified not only in terms of species number but also 

considering species abundance distribution. The abundance of a species is inversely related to an 

aspect of its rarity, so that traditional diversity measures were shown to be functions of abundance-

based rarities. Then, in the last decade, there has been an exponential increase in the number of 

research studies aimed at determining other aspects of the contribution of each species to diversity. 

This contribution expresses how original a focal species is compared to all others in an assemblage 

as regards its position on a phylogenetic tree and the values of its functional traits. Despite their 

fundamental links, these three concepts of biodiversity, rarity and originality have been mostly 

independently treated in the past in ecological and evolutionary studies, with only few attempts to 

show how different they are and how they complement each other. Moreover, there are numerous 

terms, used currently in the literature, that are synonymous with originality. Those synonyms 

especially obscure the concept of originality.  

In this chapter, presented as a systematic review published in Biological Review in March 

2019, we bring attention to the fact that a conceptual explanation of the links between the three 

concepts of diversity, rarity and originality is still missing. We thus provide a semantic and historical 

overview of the definitions of the diversity of an assemblage of species and of the rarity and 

originality of a species. Furthermore, we clarify some aspects of the complementarities between 

these concepts and their measurements bringing together ideas developed in evolutionary biology 

and community and functional ecology.  

Regarding how the concepts of diversity, rarity and originality are measured, our aim here 

was not to review all mathematical formulas developed so far. Instead, we analysed a small set of 

representative biodiversity measures and demonstrate their links with rarity and originality 
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measures. We prove, for example, that numerous biodiversity measures can be written as functions 

of species rarity and originality.  

Finally, synthesizing the results of many published studies, we demonstrated why 

biodiversity, rarity and originality measures should be used together in evolutionary biology, 

ecology and conservation biology. At a large scale, the joint use of these concepts could help clarify 

general patterns of evolutionary events such as trait evolution, extinction, speciation, and adaptive 

radiation of species. At a local scale, it could aid in understanding community assembly and 

ecosystem functioning. At any scale, it could refine conservation strategies. 
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ABSTRACT

The concept of biological diversity, or biodiversity, is at the core of evolutionary and ecological studies. Many indices
of biodiversity have been developed in the last four decades, with species being one of the central units of these
indices. However, evolutionary and ecological studies need a precise description of species’ characteristics to best
quantify inter-species diversity, as species are not equivalent and exchangeable. One of the first concepts characterizing
species in biodiversity studies was abundance-based rarity. Abundance-based rarity was then complemented by trait-
and phylo-based rarity, called species’ trait-based and phylogenetic originalities, respectively. Originality, which is a
property of an individual species, represents a species’ contribution to the overall diversity of a reference set of species.
Originality can also be defined as the rarity of a species’ characteristics such as the state of a functional trait, which is
often assumed to be represented by the position of the species on a phylogenetic tree. We review and compare various
approaches for measuring originality, rarity and diversity and demonstrate that (i) even if attempts to bridge these
concepts do exist, only a few ecological and evolutionary studies have tried to combine them all in the past two decades;
(ii) phylo- and trait-based diversity indices can be written as a function of species rarity and originality measures in
several ways; and (iii) there is a need for the joint use of these three types of indices to understand community assembly
processes and species’ roles in ecosystem functioning in order to protect biodiversity efficiently.

Key words: biodiversity measure, community assembly, conservation biology, distinctiveness, extinction risk, functional
diversity, originality, phylodiversity, species abundance, trait-based diversity.

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
II. Rarity and Originality: Two Entangled Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

(1) The concept of species rarity in ecology and evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
(2) The concept of originality or phylo- and trait-based rarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
(3) The measurement of originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
(4) How should the originality measure be chosen? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
(5) Spatial scale matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
(6) Directions for future research on species’ originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1324

III. Links Between Measures of Diversity, Abundance-, Phylo- and Trait-Based Rarity . . . . . . . . . . . . . . . . . . . . . . 1324
(1) Biodiversity as a mean of abundance-based rarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325
(2) Explicit link between originality and diversity indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325
(3) Most diversity indices only implicitly depend on species’ originalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326

* Author for correspondence (Tel: +33661150410; Fax: +33140793835; E-mail: anna.kondratyeva@edu.mnhn.fr)

Biological Reviews 94 (2019) 1317–1337 © 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0003-0916-6050
https://orcid.org/0000-0003-1374-1222
https://orcid.org/0000-0003-2767-6484


1318 Anna Kondratyeva and others

(a) When diversity equals the sum or mean of originalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
(b) When diversity equals the sum or mean of originalities weighted by abundance . . . . . . . . . . . . . . . . . . 1326
(c) When species’ abundances maximize diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
(d ) When diversity and originality depend on a multidimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327

IV. Reconciling the Diversity, Rarity and Originality Concepts for Their Useful Applications . . . . . . . . . . . . . . . 1330
(1) Understanding the evolutionary emergence of species’ originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330
(2) Analysing the dynamics of community assembly with rarity, originality and diversity . . . . . . . . . . . . . . . . 1332
(3) Role of originality in ecosystem functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
(4) Guiding conservation actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1334
VI. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335

VII. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
VIII. Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337

I. INTRODUCTION

One of the goals of the biological sciences is to identify
ecological and evolutionary mechanisms driving community
assembly that vary in space and time (Walker, 1992; Myers
et al., 2000; Pavoine & Bonsall, 2011). Indices of biological
diversity (or biodiversity) are commonly used with this aim.
Biodiversity has been defined in many ways. According to
the Convention on Biological Diversity published in 1992,
biodiversity means ‘the variability among living organisms
from all sources including, inter alia, terrestrial, marine and
other aquatic ecosystems and the ecological complexes of
which they are part: this includes diversity within species,
between species and of ecosystems’. We will focus here
on ecological and evolutionary aspects of inter-species
diversity.

Historically, species diversity was measured as a function
of species number and abundance, and the concept of
diversity was thus connected to those of species abundance,
commonness and rarity (Patil & Taillie, 1982). The concept
of rarity has generally been used in the last few decades
in ecology to describe the low abundance, restricted range
size or habitat specificity of a species (Rabinowitz, 1981).
However, many researchers have claimed the need also
to describe variety in species’ attributes since species are
not equivalent and exchangeable (Findley, 1973, 1976;
Vane-Wright, Humphries, & Williams, 1991; Faith, 1992).
For example, we can expect that a set of species with a
crocodile, an emu and a lion has higher diversity than does
a set with a lion, a cheetah and a domestic cat because the
species of the first set are more distant in the tree of life than
are the species of the second set and have very contrasting
biologies. Indices of phylodiversity and trait diversity have
been produced (e.g. see Faith, 1992; Petchey & Gaston, 2002;
Webb et al., 2002; Hardy & Senterre, 2007; Helmus et al.,

2007; Villéger, Mason, & Mouillot, 2008; Pavoine & Bonsall,
2011). These measures of biological diversity synthesize the
variety of species in terms of their different attributes: their
phylogenetic relations (Vellend et al., 2011; Tucker et al.,

2017) and their traits, including those that are qualified as
functional (Petchey & Gaston, 2002).

Functional traits have been defined in the literature in
different ways, notably as the traits that influence species’
responses to environmental conditions (response traits) or
that influence ecosystem properties (effect traits) (Lavorel
& Garnier, 2002) and as ‘the traits that are associated
with species’ ability to gain resources, disperse, reproduce,
respond to loss and generally persist’ (Weiher et al., 2011,
p. 2403). The diversity in species’ functional traits was
naturally named ‘functional diversity’ (Petchey & Gaston,
2002). As many studies used the term ‘functional trait’ to
describe any measurable character of a species, we will
consider here the diversity in species traits more generally,
referred to as ‘trait-based diversity’ (Pavoine & Bonsall, 2011).
The expression ‘phylogenetic diversity’ is used to describe
both a concept of diversity in the evolutionary histories and
relatedness among any set of taxa and a measure developed
by Faith (1992) for conservation purposes. To avoid any
confusion, we use ‘phylodiversity’ to describe this concept.

In parallel, a few measures described the degree of isolation
of a species in a phylogeny (May, 1990; Vane-Wright
et al., 1991; Nixon & Wheeler, 1992). More recent studies
developed many alternative measures accounting for branch
lengths leading to the focal species in dated phylogenetic trees
(Redding, 2003; Pavoine, Ollier, & Dufour, 2005; Redding &
Mooers, 2006; Isaac et al., 2007; Redding et al., 2008; Huang,
Mi, & Ma, 2011; Redding, Mazel, & Mooers, 2014; Pavoine
et al., 2017). All these measures evaluate the originality of
each species in a phylogenetic tree.

An issue of many general concepts used in science is
that the word used to designate the concept also has
a common use for a general audience and thus could
have different meanings. Rarity and originality are no
exception. In the most common sense, the words ‘rarity’
and ‘rare’ are usually associated with a low probability of
encountering some specific entity. The term ‘original’ is
also used to designate an unusual entity. When used in
science, these words may refer to different definitions. In
ecology, species rarity usually represents the low probability
of encountering the species. Species’ originality represents
the low probability of encountering the species’ biological
characteristics (phylogenetic position or traits).

Biological Reviews 94 (2019) 1317–1337 © 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Reconciling diversity, rarity and originality 1319

Several studies thus used the term ‘originality’ to describe
a concept, a measure or both (e.g. Pavoine et al., 2005;
Buisson et al., 2013; Redding et al., 2014) to quantify the
degree to which species may harbour or actually harbour
rare characters. Since Webb et al. (2002), phylodiversity and
originality have largely been used in ecological studies as
proxies for trait-based diversity and originality, respectively.
Recent approaches now recommend considering phylo-
and trait-based measures as complementary: the former to
reveal historical and evolutionary processes, and the latter to
reveal ecological processes (e.g. Grandcolas, 1998; Pavoine
& Bonsall, 2011; Kelly, Grenyer, & Scotland, 2014; Gerhold
et al., 2015; Mazel et al., 2017).

Indeed, as ecology and evolution share a wide range
of scientific questions about biodiversity, there is an
increasing interest in inter-disciplinary studies. Ecologists
try to understand how species interact with each other and
with their environment as well as how these interactions can
influence the assembly patterns of multispecies communities
(e.g. Weiher, Clarke, & Keddy, 1998; Emerson & Gillespie,
2008; Cavender-Bares et al., 2009). Evolutionary biologists
work at different time scales and seek to understand the
origins and history of biodiversity and its variation (e.g.
Mergeay & Santamaria, 2012). At the frontier between these
disciplines, studies in evolutionary ecology are developing
frameworks to explain biodiversity patterns and dynamics,
combining ecological causes of evolution and evolutionary
implications in community assembly and ecosystem processes
(e.g. Mouquet et al., 2012). Such developments are now also
needed to explain originality patterns. The use of phylogenies
in community ecology, macroecology, and conservation
biology reflects the shared recognition that accumulated
evolutionary differences may explain trait variation and
thus predict biological and ecological processes. Phylogenetic
approaches have revolutionized these disciplines (Mouquet
et al., 2012; Tucker et al., 2017).

Although the concepts of diversity, originality and rarity
are fundamentally connected, they have often been treated
independently in the past two decades in ecological and
evolutionary studies. Even if attempts to bridge two of
these concepts do exist (e.g. Pavoine et al., 2005; Redding &
Mooers, 2006), very few studies have tried to combine them
all (e.g. Rosauer et al., 2009; Cadotte & Davies, 2010). As a
result, our three main objectives are: (i) to bring attention to
the fact that a conceptual explanation of the links between
the three concepts is still missing; (ii) to highlight the need to
clarify some aspects of the complementarities between these
concepts and their measurement; and (iii) to demonstrate why
these three concepts should be used together in evolutionary,
ecological and conservation studies.

II. RARITY AND ORIGINALITY: TWO
ENTANGLED CONCEPTS

Since the first ecological studies, one of the main challenges
has been to determine the contribution of each species to

biodiversity. Those contributions are measured via species
characteristics that can be expressed by species rarity or
originality. Here, we provide an overview of the definitions
of the rarity and the originality of a species. We highlight
that these two words refer to the same core concept of being
unusual and point out the importance of spatial scale for
their definitions.

(1) The concept of species rarity in ecology and
evolution

The measurement of species rarity is relative, as its definition
and units depend on the context, nature, quality and quantity
of data, constraining every study to define what they mean by
‘rare species’ (Magurran, 2004; Hessen & Walseng, 2008).
Many different definitions and viewpoints on rarity exist
in the literature with biological aspects (e.g. abundance),
threat aspects (e.g. extinction risk) and value aspects (e.g.
‘how special species are’) (Gaston, 1997). In a seminal paper,
Rabinowitz (1981) proposed a typology of rare plant species
by crossing three characteristics: local population size (high or
low), geographic range (large or small) and habitat specificity
(wide or narrow). She proposed seven forms of rarity by
combining these three dichotomized criteria, excluding the
case where a species has high local population size, large
geographic range and wide habitat specificity. If local
population size, geographic range and habitat specificity
are all scarce (the most drastic form of rarity), then a species
will be prone to be the most endangered and to extinction.

Because Rabinowitz’s (1981) classification requires a
considerable amount of information for a given taxon that is
often not available, many studies use only one criterion or
a combination of two to determine species rarity (Kunin &
Gaston, 1993). Most past studies have favoured a definition
of rarity relying on abundance and range size (Gaston, 1997).
However, even if a broad consensus has been reached on
these two aspects of rarity, abundance and range size may
be measured by many different approaches (Gaston, 1997).
For example, the geographic range may be analysed in terms
of extent of occurrence (EOO, total range extent even if
unevenly occupied: Gaston, 1991; Kunin & Gaston, 1993),
area of occupancy (AOO, amount of sites or grid squares
inhabited: Gaston, 1991; Kunin & Gaston, 1993), or both.
This distinction allows the identification of species that occur
only in a restricted, localized area (low EOO) from species
occupying a low proportion of the area within their otherwise
large range boundaries (high EOO but low AOO) (Hartley
& Kunin, 2003).

Regarding species abundance, Rabinowitz (1981)
considered local abundance in terms of population size,
which can be understood as the number of individuals in a
population. In the context of biodiversity measurement, the
number of individuals is also currently the most frequently
used aspect of species abundance. Abundance, however, can
be measured by different means (e.g. absolute and relative
density, biomass, per cent cover), and these could also be
included in species diversity analyses (e.g. Lyons, 1981).
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In addition, the relevance of considering a single aspect
of rarity as an indicator of all others is likely dependent
on the phylogenetic and spatial scales considered. For
example, although a positive correlation between species’
range size and mean local population size at occupied
sites has been reported by many studies across many
different taxa and habitats (see Brown, 1984; Gaston, 1996),
this correlation was sometimes found to be rather weak
or even negative, particularly when the studied species
were phylogenetically distant (Brown, 1984; Gaston, 1997;
Johnson, 1998). Population size also varies depending on
where in the range of the species it is measured, introducing
a spatial contingency into defining rarity (Brown, 1984).
Finally, part of this correlation may be due to sampling
artefacts, as species with low local abundance are likely to
be recorded from fewer sites than the number at which they
actually occur (Gaston, 1997; Hessen & Walseng, 2008).
Rarity is thus a multifaceted concept; and it is reasonable to
argue that when data are available, several facets should be
considered and compared (Gaston, 1997).

More recently, the concept of rarity has been extended
to the functional and phylogenetic characteristics of species
(Pavoine et al., 2005). In his paper on the definition(s) of rarity,
Gaston (1997) reported that taxonomic distinctness had
been considered to define rare species. Pavoine et al. (2005)
highlighted that phylogenetic distinctness may represent how
rare a species’ traits are, and Pavoine et al. (2017) reported
that many recent studies measured distinctness directly from
a finite set of traits (e.g. Mouillot et al., 2013). Violle et al.
(2017) subsequently proposed an expanded framework for
rarity to study what they called ’functional trait rarity’:
a species is rare if it has a low abundance and distinct
traits relative to the other species of an assemblage. They
also stressed the need to study functional rarity from an
evolutionary perspective by examining the phylogenetic
signal of trait rarity. Overall, species rarity can thus be
based on a variety of species attributes. Species’ originality
works with the phylogenetic and trait-based aspects of rarity.

(2) The concept of originality or phylo- and
trait-based rarity

Rarity is a concept widely used to determine a species’
contribution to the diversity of a finite set of species.
Nevertheless, fully to evaluate a species’ contribution to
phylo- and trait-based diversity, an additional measure of
species characters is needed that can be made by means of
species’ originality. Here, we discuss the definition of species’
originality, different types of originality measures and their
link to abundance-based rarity.

The vocabulary employed to describe species’ characters is
continuously evolving and differs between evolutionary and
ecological studies, leading to potential confusion when a term
is employed without a clear definition or reference (Pavoine
& Bonsall, 2011). Since the 1990s, various terms, such as
‘originality’, ‘distinctness’, ‘distinctiveness’, ‘uniqueness’ and
‘isolation’, have sometimes been used to refer to the same
concepts but sometimes not. Thus, there is an inconsistency

in the literature in the terms used to describe measures and
concepts of species rarity and in how they should be used.

The term originality describes species’ general rarity
using characteristics linked to traits and phylogeny.
Pavoine et al. (2017) defined originality as the rarity of
species’ characteristics in a given set of species, where a
characteristic can be a position on a phylogenetic tree
or the state of a functional trait. As recommended by
Pavoine et al. (2017), we define ‘phylogenetic originality’
as synonymous with the terms ‘evolutionary distinctiveness’
(Isaac et al., 2007), ‘evolutionary isolation’ (Redding et al.,
2014), ‘phylogenetic rarity’ (Winter, Devictor, & Schweiger,
2013) and ‘phylo-based rarity’. A species without close
sister species in a phylogenetic tree is likely to have high
phylogenetic originality and thus a high contribution to
phylodiversity (Redding et al., 2008). In recent decades,
particular attention has also been paid to species’ functional
traits that indicate species’ roles in ecosystem functioning (e.g.
Lavorel & Garnier, 2002; Mouillot et al., 2008; Schmera,
Erős & Podani, 2009; Buisson et al., 2013; Mouillot et al.,

2013; Rosatti, Silva, & Batalha, 2015; Brandl et al., 2016).
The assumption that phylogenies indirectly comprise the
evolutionary changes in species’ characters may explain
why the first originality approaches were inferred from
phylogenetic trees.

These approaches were adapted to the analysis of species’
functional traits, to measure what we hereafter refer to as
‘functional originality’. We consider ‘functional originality’ a
synonym of ‘functional rarity’ and ‘rarity of functional traits’.
More generally, we consider below ‘trait-based originality’ a
synonym of ‘trait-based rarity’ and ‘rarity of traits’. Hence,
a species with very distinct trait values compared to those
of other species is expected to have a higher contribution
to trait-based diversity (Jarzyna & Jetz, 2016). Similar to
abundance-based rarity, species’ originality is relative to the
values of the other species in a set. Following Pavoine et al.

(2017), we define the uniqueness of a species as an unshared
part of the species characteristics in a set. Strict uniqueness
is thus an extreme case of originality in which a species
does not share any of its characteristics. Finally, redundancy
is antonymous with uniqueness and measures the number
of shared characteristics of species. Therefore, originality
is the full contribution of a species to the diversity of the
set composed of species’ unshared (uniqueness) and shared
(redundancy) characteristics.

Commonness and rarity traditionally have been presented
as the extremes of a gradient of the abundance-based
rarity of species (Kunin & Gaston, 1993). Redundancy
and uniqueness are the extremes of a gradient of species’
originality, measured in terms of species’ phylogenies
and traits (Redding et al., 2014). Some studies have
analysed potential correlations between the two gradients,
asking whether original species are rare in terms of
abundance at different spatial scales (Mi et al., 2012; Pigot
et al., 2016). Researchers found variable results showing
that abundance-based rarity and phylo- and trait-based
originality are not always correlated depending on the
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Fig. 1. Theoretical illustration of the concept of
abundance-weighted functional originality. Here, we consider
an assemblage of butterflies. The drawings represent butterfly
species of different shapes, for which colours are used to rep-
resent a functional trait: two species with similar colours have
similar values for the trait. Species a, d, e, g, i and j are each rep-
resented by one individual; species b by 30 individuals; species
c by three individuals; and species f and h by two individuals
each. The species a and b are original because they are the
sole species with shades of orange. The other eight species have
different shades of blue and green. However, given that species
b is very abundant (being represented by 30 individuals), the
abundance-weighted originality of species a can be considered
low, and if originality is measured at the individual level, instead
of at the species level, then the originality of any individual of
species b can be considered low.

spatial resolution of a study. Violle et al. (2017) combined
both gradients to define what they called the ‘functional
rarity’ of species (see Fig. 1 in Violle et al., 2017): a species
is functionally rare if it is both original and scarce. Their
concept of functional rarity is not equal to our concept of
functional rarity, which expresses the scarcity of species’ traits
rather than the scarcity of the species themselves.

The measure of originality indeed can be weighted by
abundance, leading to a third gradient of rarity where
originality and abundance-based rarity are entangled. Along
this gradient, a species is original in an assemblage if
its characteristics are rare among the individuals of the
assemblage (Fig. 1). Similarly, Violle et al. (2017) suggested
an abundance-weighted measurement of functional trait
distinctiveness, making it dependent on species scarcity
(Box 2 in Violle et al., 2017). Hence, originality (trait-based
and phylo-based rarities) and abundance-based rarity are
closely related concepts but use different types of data for
characterizing species based on their abundance, traits or
phylogeny (Fig. 2). More generally, other aspects of species

rarity could also be added to this framework, as, for example,
the link between originality and range size has also been
studied (Mouillot et al., 2013; Grenié et al., 2018).

(3) The measurement of originality

The concept of species’ originality can be evaluated by
different measures that rely on various types of data (see
online Supporting information, Appendix S1). The first
originality indices were developed on a tree structure and
thus measured phylogenetic originality. However, they were
applied to undated phylogenies ignoring the evolutionary
time of change in taxa (May, 1990; Vane-Wright et al., 1991;
Nixon & Wheeler, 1992). Those indices used the number of
internal nodes or the number of branches descending from
each node to compute species’ originality. Unfortunately,
they can hardly distinguish the originality between species
from the same clade (Huang et al., 2011; Redding et al.,
2014). These indices are useful when the branch lengths on
a phylogenetic tree cannot be estimated.

With the improved access to dated phylogenetic trees,
measures of phylogenetic originality have been developed
that account for branch lengths. Several of these measures
are derived from the Phylogenetic Diversity (PD) index of
Faith (1992): the sum of branch lengths on a phylogenetic
tree. Some of them are partly redundant, and their formulae
are very similar [the indices of fair proportion (FP ) (Redding,
2003), equal splits (ES) (Redding & Mooers, 2006) and
evolutionary distinctiveness (ED) (Isaac et al., 2007)]. Species
with few relatives and deep terminal branches would be more
original than species with many close relatives (Frishkoff
et al., 2014). Those indices can thus be used when one wants
to know which species subtends most of the evolutionary
history in a given set of species. According to Redding et al.
(2014), technically, all tree-based indices of species’ originality
combine two main aspects of originality: the average distance
to another species on the tree [average phylogenetic distance
(APD) (Redding et al., 2014)] and the terminal branch lengths
that connect the species to the rest of the tree [pendant edge
(PE) (Redding et al., 2008)]. Another framework of tree-based
measures of species’ originality has been proposed that uses
the genome evolution model of species characters called
‘character rarity’ (CHR; Huang et al., 2011). Its advantage
over other indices is that it incorporates models of dynamic
processes, such as character changes and distribution along
lineages during evolution. However, applications of this
framework are still scarce.

With the accumulation of species’ trait information in large
databases, a new type of study appeared that considered
a limited number of traits (Violle et al., 2007; Mouillot
et al., 2008; Hidasi-Neto, Loyola, & Cianciaruso, 2015;
Ricotta et al., 2016). As measures of originality already
existed for phylogenetic trees, trait data were transformed
into dendrograms (trees) to measure trait-based originality
(Buisson et al., 2013; Pavoine et al., 2017). A new challenge
appeared: how best to construct trait-based dendrograms
from a finite set of traits and how to avoid the distortion of
the original trait data (Petchey & Gaston, 2002; Mouchet
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Fig. 2. Diagram illustrating the three types of rarity discussed
herein. Each black circle represents one type of rarity. The areas
where the circles cross designate studies where two or more
aspects of originality are compared or combined. We illustrate
each core concept with a theoretical data set, represented here
by seven theoretical butterfly species. (A) Abundance-based
rarity (AR) (as an illustration, it is here inversely related to
the number of individuals of each species); (B) phylo-based
rarity (PR) representing species evolutionary histories (here
exemplified by a theoretical phylogenetic tree); (C) trait-based
rarity (TR) reflecting species’ trait dissimilarities. In C, butterfly
colours represent species’ traits. We illustrate the trait-based
rarity (or originality) of species a by the dissimilarities d between
this species and all the others. The gradient above the top
circle represents the two extremes of AR: commonness and
rarity. The gradients below the bottom left and right circles
represent phylogenetic and trait-based originality, respectively,
from redundancy to strict uniqueness. (D, E) PR and TR
can be compared with AR using two-dimensional graphs. The
phylogenetic and trait data can also be weighted by species’
abundances, leading to abundance-weighted trait-based rarity
(ATR) and abundance-weighted phylo-based rarity (APR) (see,
e.g. Fig. 1). (F) Studies that analyse both TR and PR thus far
have compared the two aspects by two-dimensional graphs.
No mathematical measures have been developed that combine
these two aspects, which could lead to phylo- and trait-based
rarity (PTR). (G) The area where the three circles cross would
permit identification of the rarest species. Depending on whether
different aspects of species rarity are treated independently or
are combined, such rare species could be defined as having
high AR, TR and PR (identified by the three-dimensional
plot), high ATR and APR (identified by the two-dimensional
plot), or high abundance-weighted PTR (identified by the
diamond). The red circles and question marks show where
further research is critically needed to determine how and why
phylogenetically and functionally original species emerged in
the course of evolution and how this emergence has influenced
species abundance.

et al., 2008), as most traits do not possess any structured
hierarchy. A common approach is to first calculate pairwise
trait-based dissimilarities between species and then construct
the dendrogram from these dissimilarities with a clustering
algorithm. Numerous mathematical equations exist to
calculate the dissimilarity between two species using various
traits (Pavoine et al. 2009). Additionally, the choice of the
clustering method influences the shape of the dendrogram
and eventually influences trait-based originality values
(Mouchet et al., 2008; Maire et al., 2015). Transforming trait
values into dendrograms introduces the risk of distorting
the information on traits (Pavoine et al., 2017) but could
be justified as a way to compare trait-based originalities to
phylogenetic originalities for the same set of species. Thus,
in theory, any of the phylogenetic tree-based originality
measures can be applied to trait-based dendrograms.

The problem raised by deforming trait data when building
functional dendrograms can be bypassed by using trait-based
dissimilarity matrices. Originality measures have therefore
been adapted to work with dissimilarity matrices. Indeed, the
average (AV ) and nearest neighbour (NN ) indices, working
directly with trait-based dissimilarities between species, are
the alternatives of the tree-based APD and PE indices
(Pavoine et al., 2017; Violle et al., 2017; see also Appendix S1).
AV is the average dissimilarity to all other species, and NN is
the lowest dissimilarity to all other species. By extension, these
dissimilarity-based indices can, in turn, incorporate not only
trait-based but also phylogenetic dissimilarities calculated,
for example, as the sum of branch lengths in the smallest
path that connects the two species on the phylogenetic tree or
as the time since their most recent common ancestor (Pavoine
et al., 2017). Computing phylogenetic dissimilarities is useful
for comparing equally the trait-based and phylogenetic
originalities of the same set of species without taking the
risk of distorting trait data.

Clustering methods have also been criticized in favour
of the use of multidimensional space (Maire et al., 2015).
A multidimensional trait space is a geometrical space
representing the distribution of species according to their trait
values (Mouillot et al., 2013). It can be constructed in several
ways (see Appendix S1). The coordinates of the species
projected as points along the axes of such a space could
be used for measuring originality. For example, originality
has been measured as the distance from a species to the
centroid (mean position) of all species (Magnuson-Ford et al.,

2009; Buisson et al., 2013). In theory, the multidimensional
approach was created for the trait-based context but could
also be applied to a phylogenetic space obtained, for
example, with a principle coordinate analysis applied to
phylogenetic dissimilarities between species (e.g. Sobral,
Lees, & Cianciaruso, 2016).

Pavoine et al. (2005) introduced another family of
originality measures by analysing the composition of
theoretical species assemblages that would maximize an
index of diversity. The first index of this family, the QE-based
index (Qb), relies on Rao’s quadratic entropy (Q ) (1982). Q is
an index of diversity equal, in our context, to the phylogenetic
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or trait-based dissimilarity between two randomly selected
species in an assemblage. Qb uses the abundance values
that species should have to maximize the phylogenetic
or trait-based dissimilarity between two randomly selected
species (Huang et al., 2011). Up to a certain degree, the more
abundant the original species are, the more the diversity
of a set is increased (Pavoine et al., 2017). The hypothetical
abundances of species that maximize Q thus reflect species’
originality. Using the same approach, Pavoine et al. (2017)
developed the Rb index using another index of entropy (R
index) closely related to Q . Rb turned out to be similar,
although not equal, to the AV index (the mean trait-based
or phylogenetic distance to all other species), but it better
discriminates original from redundant species. The Qb and
Rb indices are discussed in detail in Section III.3.

Finally, a measure of originality based solely on species’
phylogeny or traits does not account for other aspects of
rarity such as population size or species range size. As shown
in Fig. 2, species originality can be weighted by species
abundance. Regarding phylogenetic data, Cadotte et al.
(2010), for example, modified the FP index (see Appendix S1)
to account for species abundance when species’ originalities
are calculated within a local community. To do so, at
each tip (species) of a phylogenetic tree, they artificially
added as many branches with a length of zero as there
were individuals from the corresponding species in the local
community. In other words, they weighted each terminal
branch by the number of individuals it subtends. They
then calculated originality using the FP index but replaced
species with individuals, leading to their abundance-weighted
evolutionary distinctiveness (AED). Later, they modified their
index, replacing individuals with populations or sites (Cadotte
& Davies, 2010), leading to the biogeographically weighted
evolutionary distinctiveness (BED) index.

By doing so, Cadotte & Davies (2010) evaluated the
originality of an individual or a population of a species. Other
approaches have been proposed using different types of data.
For example, Ricotta et al. (2016) proposed measuring the
originality of a species as the abundance-weighted mean
of the trait-based difference between this focal species and
all other species in a set (weighted version of AV index).
Laliberté & Legendre (2010) measured the distance in a
functional trait space between a species point and the
abundance-weighted centroid of all species points, which can
be viewed as a measure of abundance-weighted originality.
Other indices were also developed that weight originality by
species’ extinction risk (e.g. Steel, Mimoto, & Mooers, 2007).

(4) How should the originality measure be chosen?

Measures of species’ originality are expressed by formulae,
and their mathematical properties can influence the results
and conclusions of a study. Several studies have compared
some of these measures, seeking to establish the relations
between them (Redding et al., 2008, 2015; Huang et al.,
2011; Vellend et al., 2011; Redding et al., 2014; Pavoine
et al., 2017). According to these studies, some measures are
more redundant than others in capturing species-specific

information and in their contribution to phylodiversity
and trait-based diversity. Each type of originality measure
has its own advantages and drawbacks. In general,
tree-based indices would be influenced by tree topology
(terminal and deeper branch lengths, unresolved nodes,
root consideration), but trees without branch lengths fail to
discriminate individual species.

If one wants to compare species’ phylogenetic and
trait-based originalities, then dissimilarity-based indices are
a better choice than tree-based indices, as the former
avoid the potential distortion of trait data. The use of
a multidimensional trait space permits potential original
species and their traits to be visualized. However, all axes
need to be retained. For example, a common practice
when measuring trait-based diversity is to apply a principal
coordinate analysis to trait dissimilarities and then select
the first few axes to calculate diversity, a constraint that
may be forced by the mathematical properties of the
diversity indices (e.g. Villéger, Mason, & Mouillot, 2008).
This dimension reduction can hide some important species if
their originalities are explained by traits on the non-visualized
axes. Finally, originality indices, such as Qb and Rb (Appendix
S1), predict species’ originality expressed as the theoretical
abundance of a given species that maximizes the diversity
of a set. Note that, as originality is context dependent, its
application to a set of two species would give equal originality
to both species; the concept of originality is thus useful as
soon as there are at least three species in a set.

(5) Spatial scale matters

Spatial resolution is essential in species’ originality analyses
that are relative to a reference set of species. Phylogenetic
originality is usually measured at the level of an entire clade
in an evolutionary context (e.g. Jetz et al., 2014). This allows
the identification of the most phylogenetically original species
on Earth and the analysis of their biogeography (e.g. Safi
et al., 2013) and extinction risks (e.g. Isaac et al., 2007). Such
global phylogenetic originalities have been typically summed
for all species present in a region to evaluate the worth of the
region for conservation: how many globally original species
occur in the region (e.g. Pollock, Thullier & Jetz, 2017), and
how original are these species (e.g. Safi et al., 2013; Jetz et al.,
2014)?

Such an approach has also been applied at local levels.
In this case, phylogenetic originality was calculated within
the species pool present at a regional (or continental) or
global level. Then, these regional or global originalities were
summed or averaged for all species within a local site to
identify priority sites for conservation (e.g. Veron, Clergeau,
& Pavoine, 2016) or to determine variations in the presence
of original species among environments (e.g. Morelli et al.,
2018). Most of these studies on phylogenetic originality
focused on the preservation of evolutionary history.

Another approach, which Redding et al. (2015) explored, is
to calculate species originalities directly within a local site and
to compare these local values with regional originalities of
the species. They demonstrated that the correlation between
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local and regional originality depends on the originality
index used. Analysing Nearctic and Neotropical birds, they
found that this correlation is spatially structured and may
depend on the habitat, being notably higher in forested
habitats. More studies of this type are needed to evaluate
how local conservation projects based on local originalities
could complement regional and global projects relying on
large-scale originalities.

In contrast to phylogenetic originality, trait-based
(especially functional) originality is rarely measured at the
global level (see, e.g. Grenié et al., 2018). Instead, it is
usually evaluated at the regional and local levels, as species’
characteristics are directly related to ecosystem functioning
and depend mostly on field data (Da Silva, Silva & Batalha,
2012; Mouillot et al., 2013; Rosatti et al., 2015). Several of
these studies have underlined the potential vulnerability of
functionally original species (Mouillot et al., 2013) and the
negative impact of human disturbance on these species, with
potential consequences on the sustainability of ecosystems
(Rosatti et al., 2015). However, these conclusions may depend
on the taxa, traits and geographic areas analysed (Da Silva
et al., 2012; Brandl et al., 2016).

Future studies could thus focus on determining and
explaining scale-dependent patterns in both phylogenetic
and trait-based originalities as local, regional and global
originality scores may or may not be correlated depending
on the processes that drive diversity patterns (Redding et al.,
2015).

(6) Directions for future research on species’
originality

We have shown that studies on species rarity recently have
been improved by the addition of aspects of trait-based
and phylogenetic originalities. Although many originality
measures have been developed at the species level, they can
be applied to other units of biodiversity, notably, to individual
organisms (Pavoine et al., 2017). For example, replacing
trait-based dissimilarities between species with trait-based
dissimilarities between individuals and replacing species
points in multidimensional trait space by individual points
allow all originality indices presented above to be transferred
from the measure of the originality of a species to the measure
of the originality of each individual (de Bello et al., 2011;
Violle et al., 2012). For example, if information on estimated
among-individual divergence is available on a phylogenetic
tree, Cadotte et al. (2010, Appendix S2) proposed replacing
species with individuals in the FP originality index to measure
the originality of each individual. Thus, from a mathematical
viewpoint, it is possible to apply all originality indices at
an individual level and access the intraspecific variability of
genes and traits. Applying such detail is limited by the scarcity
of relevant data and by the relative cost of obtaining these
data; however, this approach could provide more accurate
results when trait variation is large within species.

Although we focused our review on inter-species diversity
with aspects of phylo- and trait-based diversity, the concept of
originality was also treated in genetics. For example, genetic

originalities can be calculated by replacing phylogenetic
distances between species with genetic distances based on
a genome evolution model (Thaon d’Arnoldi, Foulley,
& Ollivier, 1998; Laval et al., 2000; Huang et al., 2011).
Connecting these different fields of research could improve
biodiversity analyses, allowing more continuous multiscale
analyses, better to connect patterns to underlying processes
in ecological and evolutionary studies.

In Section III, we demonstrate how the indices of
originality relate to indices of diversity. We develop potential
applications of originality indices with real case studies in
Section IV.

III. LINKS BETWEEN MEASURES OF
DIVERSITY, ABUNDANCE-, PHYLO- AND
TRAIT-BASED RARITY

A biodiversity measure is a calculation method expressed by
a mathematical formula that allows specific values for the
amount of variety in a biological system to be computed;
in our case, these values are computed for a set of species.
The oldest and most intuitive biodiversity measure is species
richness, computed as the number of species (Magurran,
2004). Nevertheless, species richness has several drawbacks.
First, it is strongly dependent on sampling effects: in a highly
diverse community, the observed number of species may
greatly underestimate the real number of species because
species with very low abundance frequently will be absent
from even very large samples (Lande, 1996). Second, it
would give equal diversity to a region dominated by a single
species with two rare species and a region with three species
having even abundances (e.g. Magurran, 2004). Third, it
does not include any information on species’ traits and
evolutionary histories. Fourth, it depends strongly on the
definition of the concept of species (Gaston & Spicer, 2004;
Groves et al., 2017) and on taxonomic incompleteness (e.g.
Delić et al., 2017). To overcome these drawbacks, alternative
diversity indices have been developed that include species’
abundances, phylogenies and traits and thus incorporate
various facets of species rarity. Diversity is measured at
the level of the species set, while rarity and originality
indices provide a value for each species that is linked to its
contribution to the diversity of the set.

In the last two decades, the development of trait-based
diversity and phylodiversity indices has expanded. This
variety of indices is partly explained by the fact that one single
mathematical formula cannot alone encompass all aspects of
biodiversity in a set, especially phylogeny, functionality and
abundance (Mason et al., 2005; Mazel et al., 2016). Several
previous studies tried to define semantic frameworks for
measurements of species’ phylo- and trait-based diversities,
in which they specified whether each measure of diversity was
weighted by abundance data (e.g. Ricotta, 2007; Pavoine &
Bonsall, 2011; Vellend et al., 2011; Tucker et al., 2017). Our
aim here is not to review all mathematical indices of species’
phylo- and trait-based diversities but to analyse a small set of
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previous approaches for which we can try to distinguish the
relative importance of abundance-based, phylogenetic and
trait-based rarities. Although most of the diversity indices
we discuss in this part were developed either for phylo-
or trait-based diversity, all our reasoning could easily be
adapted to be applied to both contexts.

(1) Biodiversity as a mean of abundance-based
rarities

Indices that relied on species number and species’
abundances were named indices of species diversity. A
myriad of such indices have been developed in the literature
(e.g. Magurran, 2004). The most famous and most commonly
used are the Gini–Simpson index (Gini, 1912; Simpson,
1949) and the Shannon index (Shannon, 1948). In Fig. 3, we
provide Patil & Taillie’s (1982) demonstration that species
richness, the Shannon index, and the Gini–Simpson index
can be written as the mean of species abundance-based
rarity values. The three indices differ in their sensitivities to
the presence of rare species. The most sensitive measure
is species richness, as it gives equal importance to all
species regardless of their abundance. The least sensitive
is the Gini–Simpson index, which overweights common
species relative to rare species (Lande, 1996). Thus, using
abundance in indices of species diversity is actually a way to
give a different value to each species. For example, giving
the same value to each individual of a species forces us to
give different values to the species, as species are represented
by different numbers of individuals in a community. These
well-known diversity indices illustrate that the first links
between diversity measurement and rarity measurement
date back to around 40 years ago, but these links concerned
only abundance-based rarity. They did not refer to the
phylogenetic or functional trait characteristics of the species.

The simplest approach for measuring aspects of phylo-
and trait-based diversity naturally consisted of replacing
species in the traditional diversity indices discussed above
with trait-based or phylogeny-based entities. When the
analysis of species’ functional traits as an aspect of diversity
measurement started to emerge in the ecological literature,
the number of functional groups represented by the species
in a community was the main measure of trait-based
diversity (Petchey & Gaston, 2002). A functional group is
a group of species united by their similarities in a given trait
value or set of traits (Brandl et al., 2016). The traditional
diversity measures can be applied to the abundance of
each functional group instead of to the abundance of each
species (Hooper et al., 2002). In that case, trait-based diversity
can be related to the abundance-based rarity of functional
groups. Such an approach could also be applied to clades
in a phylogenetic tree, replacing functional groups with
clades (Pavoine, Love, & Bonsall 2009). Although such
approaches allow phylodiversity and trait-based diversity
indices to be connected to abundance-based rarities, they do
not connect them directly to measures of originality, that is,
with trait-based and phylogenetic rarities.
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Fig. 3. Functions of rarity associated with three traditional
indices of diversity. A simple index to measure the diversity
of a set is the number of species, or ‘species richness’. A
related index is the number of species minus one, for which
an assemblage with only one species has null diversity. Indeed,
the minimum value of many indices of species diversity is
zero and is reached when a single species dominates the
assemblage (its relative abundance is 1). Let S be the num-
ber of species in the assemblage; pi , the relative abundance
of species i; and p, the vector of species’ relative abun-
dances. Patil & Taillie (1982) emphasized that a richness-related
(Hr ), the Shannon (HS ) and the Gini–Simpson (HGS ) indices
can be written as follows: Hr

(
p
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(
pi

)
,

HS

(
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i=1 pi log
(
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(
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)
, and. HGS
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i = ∑S
i=1 piRGS

(
pi

)
, where Rr (pi ) = 1/pi − 1,

RS = − log(pi ), and RGS = 1 − pi . The functions Rr , RS and
RGS represent how rare a species is. In Patil & Tail-
lie’s (1982) framework, rarity means low abundance (for
example, in terms of biomass or number of biological
organisms). HCDT entropy generalizes all these indices of
diversity (Havrda & Charvat, 1967; Daróczy, 1970; Tsallis,

1988). Its formula is qHHCDT

(
p
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q
i

)
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(
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) =∑S
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[
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(
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)]
. If q = 0, then the HCDT index is Hr ;

q tending to 1 gives HS , and q = 2 gives HGS . The general
form of the function of rarity associated with the HCDT index

is qRHCDT

(
pi

) =
(

1 − p
q−1
i

)
/
(
q − 1

)
. The sensitivity to rare

species decreases with q. The figure shows how the functions of
rarity Rr , RS and RGS vary if pi increases from zero to one.

(2) Explicit link between originality and diversity
indices

Because a myriad of species diversity indices have been
developed since the 1970s, a myriad of phylo- and trait-based
diversity indices could also be imagined by replacing
species abundance in species diversity indices, such as the
Gini–Simpson and Shannon indices, with species originality
or abundance-weighted originality. This approach was
adopted, for example, by Cadotte et al. (2010), Scheiner
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(2012) and Scheiner et al. (2017). With such an approach, the
diversity would be high if the number of species was high and
if species’ originalities were even. If originalities are weighted
by abundance (Figs 1 and 2), then the diversity would be
high if the distribution of abundance was imbalanced such
that the most original species have the highest abundances
(Cadotte et al., 2010).

Ricotta (2004) previously proposed a different approach
in which abundance and originality were treated as
independent information on species (instead of using
abundance-weighted originalities) and were combined into
one measure of diversity. Further, he used taxonomy instead
of a phylogeny, leading to taxonomic originality, where a
species is original if there are no or relatively few species from
the same genus, family, order, etc. We will see in Section
III.3 that many diversity indices can also be considered as
functions (e.g. sum, mean or abundance-weighted mean) of
originality values, even if the indices were not developed with
that goal in mind. The approach in which species’ originality
values and potential species abundances are combined in a
mathematical formula is thus central to the measurement of
biodiversity.

(3) Most diversity indices only implicitly depend on
species’ originalities

Contrary to the few approaches presented in the previous
Section III.2, species’ originality, obtained through phylo-
and trait-based rarities, was often only implicitly incorporated
into measures of phylo- and trait-based diversity. We will
show here that many of these measures of diversity can
instead be seen as functions of species’ originality or are
largely linked in their formulae to a measure of species’
originality, even if they were not developed explicitly as
functions of species’ originality.

(a) When diversity equals the sum or mean of originalities

Early on, Faith (1992) suggested replacing species in diversity
measurements with features (or character states) of species.
He then developed, as a proxy for feature richness, the PD
index, which is the sum of branch lengths on a phylogenetic
tree. His approach assumes that branch lengths reflect
feature richness. Ten years later, Petchey & Gaston (2002)
similarly proposed representing trait diversity as the sum
of branch lengths on a trait-based dendrogram, an index
named ‘functional diversity’ (FD). Two of the most used
phylogenetic originality measures, the FP and ES indices
(Appendix S1), can be written as additive decompositions of
PD (Redding & Mooers, 2006; Isaac et al., 2007). Thus, the
sum of the originality values over all species in a set is equal
to the PD of the set. If these originality indices, FP and ES,
are calculated from a trait-based dendrogram rather than
from a phylogenetic tree, then the sum of species’ trait-based
originality values over all considered species equals the FD
index.

Two other commonly employed indices of community
phylodiversity, the mean pairwise distance (MPD) index

and the mean nearest taxon distance (MNTD) (Webb et al.,
2002), are means of species’ originality values. The mean
of the APDs (average phylogenetic distance to all other
species) over all species in a set is equal to the MPD or
the average phylogenetic distance between any two species
in a set (Redding, Mazel, & Mooers, 2014). The minimum
phylogenetic distance to another species is an index of strict
uniqueness (see indices NN and PE in Appendix S1). Its
mean over all species in a set is equal to the MNTD index
used during the last two decades to detect the effects of
competition in community assembly (Kraft et al., 2007). Such
reasoning could also be applied to trait-based dissimilarities
between species. Indeed, indices such as MPD and MNTD
were used early on by Findley (1973, 1976) to analyse
the morphometrical diversity of bats. These indices do
not integrate information on how abundant species are.
However, other diversity indices can be seen as functions of
abundance-weighted originalities.

(b) When diversity equals the sum or mean of originalities weighted by
abundance

Regarding phylodiversity, the sum over all individuals of the
AED value (individual’s phylogenetic originality) of Cadotte
et al. (2010) is equal to Faith’s PD (phylogenetic diversity) of
the species pool. Similarly, the sum over all populations of the
BED value (the phylogenetic originality of each population
of a species) of Cadotte & Davies (2010) is also equal to
Faith’s PD of the species pool. Furthermore, Cadotte &
Davies (2010) suggested summing the BED values over
all species in a site, leading to a measure of the relative
originality of each site, and thus to its relative conservative
worth within the studied regional area. This BED index
was inspired by the index of phylogenetic endemism (PE) of
Rosauer et al. (2009), which measures the spatial restriction
of the evolutionary history in a site. PE is the sum of the
ratios branch length/clade range for each branch of the
phylogenetic tree pruned to retain only the species of a site.
The clade range is the union of the ranges of all species
descending from the branch. As such, PE combines notions
of phylodiversity (if species were ubiquitous, PE would be
maximal, which means that regional and local phylodiversity
would be equal), range-based rarity (each branch length is
divided by clade range), and originality (if a species with a
small range descends from a long branch, it is likely to have a
high contribution to PE). Cadotte & Davies (2010) developed
BED to complement the concept of phylogenetic endemism
with a measure that can be calculated at different levels: at
the species, population, local-site or regional levels.

Pavoine et al. (2009) used clades (groups of all
species descending from a specified ancestor) in a
phylogenetic tree to obtain measures of phylodiversity.
They divided a tree into time periods defined between
two consecutive speciation events. They then applied the
Havrda–Chavat–Daróczy–Tsallis (HCDT ) diversity index
(a generalization of the well-known species richness, Shannon
and Gini–Simpson indices; Fig. 3) at each period, using the
number of clades that descend from the period and their
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relative abundances (the abundance of a clade is the sum
of abundances of all its species). At the most recent period,
clades are species. However, from the second period, at least
one clade has more than one species. The associated index of
diversity is equal to the length of the period (in million years
of evolution) times the clade diversity (as measured by the
HCDT index applied to clades). Such an approach brings an
evolutionary dimension to traditional diversity analysis and
has the advantage of considering species abundance when
measuring the phylodiversity of a local community.

This approach is a generalization of the HCDT index for
phylogenetic studies, which was at the core of the theory
of Patil & Taillie (1982) to express diversity in terms of the
mean of species’ rarities (Fig. 3). In Patil & Taillie’s (1982)
theory, rarity was expressed as low abundance. In Table 1,
we propose a new theory using the generalization of the
HCDT index from Pavoine et al. (2009). In this new theory,
rarity is measured as an abundance-weighted phylogenetic
originality, and the measure of phylodiversity is quantified
as the mean of these abundance-weighted originality values.
This theory could also apply to trait-based diversity if a
dendrogram is available.

Another currently widespread approach to measure
biodiversity consists of defining trait-based or phylogenetic
dissimilarities between species and taking their sum or their
mean (e.g. Rao, 1982; Walker, Kinzig, & Langridge, 1999;
Schmera, Erös, & Podani, 2009). The quadratic entropy
index (Q ; Rao, 1982) is a diversity measure that can handle
dissimilarities between species and species abundance.
Shimatani (2001) demonstrated how to decompose Q into
three underlying components: (i) the Gini–Simpson index
(an index of species diversity that itself is a combination
of species richness and species evenness (Fig. 3); (ii) the
non-weighted mean of the (trait-based or phylogenetic)
dissimilarities between species; and (iii) a measure of the
balance between species’ abundances and the (trait-based
or phylogenetic) dissimilarities between species (which can
be related to a covariance-like measure). Examining this
decomposition reveals that Q increases with abundance
evenness and with the number of trait-based or phylogenetic
dissimilarities between species, and it increases when the
most redundant species are rare and the most abundant ones
have the highest trait-based or phylogenetic dissimilarities
between them (Fig. 4).

We showed in Section III.1 that the first component,
the Gini–Simpson index, can be viewed as a mean
of abundance-based rarities and, in Section III.3a, that
the second component, the non-weighted mean of the
trait-based (or phylogenetic) dissimilarities between species,
can be viewed as a mean of trait-based or phylo-based
rarities. The third component, the balance component,
relates abundance to trait-based or phylogenetic differences.
More generally, if we measure the originality of a species
as the abundance-weighted mean of the (phylogenetic
or trait-based) dissimilarity to all species (including the
species itself), then the mean of species’ abundance-weighted
originalities equals Rao’s quadratic entropy (Ricotta et al.,

2016). Therefore, the quadratic entropy can be decomposed
into independent values of abundance-based rarity and
trait-based/phylogenetic originality or into more integrative
values of abundance-weighted originalities. In Section III.3c,
we also develop a distinct link between quadratic entropy
and the notion of originality. We were thus able to extract
multiple links between abundance-based rarity, originality
and diversity indices from some of the mathematical formulae
used to measure these concepts.

(c) When species’ abundances maximize diversity

To measure the trait-based diversity and phylodiversity of
a species assemblage, Pavoine et al. (2005) and Pavoine et al.
(2017) used the quadratic entropy index, Q, and a related
index, R, with the following formulae:

Q =
S∑

i=1

S∑
j=1

pipjdij (1)

R =
S∑

i=1

S∑
j=1

√
pi

√
pjdij (2)

where pi is the relative abundance of species i among S
species and dij is a measure of phylogenetic or trait-based
dissimilarity between species [see Pavoine et al., 2005 for
the use of Q with a restriction on dissimilarities, i.e. use
of ultrametric dissimilarities]. As a measure of species’
originality, the authors proposed the abundance that species
should have in order to maximize the diversity (according to
Q or R) of a theoretical assemblage. The associated indices of
species’ originality, named Qb and Rb, thus correspond to the
values of pi that maximize Q and R, respectively, given that
the trait-based or phylogenetic dissimilarities cannot vary
(for details, see Pavoine et al., 2017). The Qb and Rb indices
illustrate that, up to a certain degree, trait-based diversity
and phylodiversity are high if the most original species in
a set (with the highest trait- and phylo-based rarities) have
the highest abundance and thus the lowest abundance-based
rarity (Fig. 5, Table 2). The indices Q and R thus reveal
an important property that abundance-weighted indices
of trait-based diversity and phylodiversity should have:
a positive correlation between species’ abundances and
species’ originalities tends to increase trait-based diversity
and phylodiversity.

(d ) When diversity and originality depend on a multidimensional space

The previously discussed diversity indices either used a tree
structure or used phylogenetic or trait-based dissimilarities
among species directly. However, several diversity indices
were also developed specifically for use in a multidimensional
space, where axes reflect traits and points are species’
positions according to their traits, as described in Section
II.3. The distance of a species’ point to the centroid of all
points (mean position of all species from the reference set
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Table 1. Phylodiversity as a mean of phylogenetic rarities

Function of diversity Function of raritya

General formulab Iq = ∑K
k=1 Tk

[
1−∑

b∈Pk
p
q
b

q−1

]
= ∑S

i=1 piOq Oq =
[∑

b∈C(i,Root) Lb

(
1−p

q−1
b

q−1

)]

q = 0c I0 = PD − T = ∑S
i=1 piO0 O0 = ∑

b∈C(i,Root) Lb

(
1
pb

− 1
)

q → 1 I1 = − ∑K
k=1 Tk

[∑
b∈Pk

pb ln
(
pb

)] = ∑S
i=1 piO1 O1 = ∑

b ∈ C (i, Root)Lbln(1/pb)

q = 2 I2 = ∑K
k=1 Tk

(
1 − ∑

b∈Pk
p2

b

)
= ∑S

i=1 piO2 O2 = ∑
b ∈ C (i, Root)Lb(1 − pb)

aThe functions Oq, O0, O1 and O2 represent the abundance-weighted originality of a species.
bq is the parameter of the diversity index. It controls the importance given to species lineage abundances (from presence/absence if q = 0 to
the overweighting of the most abundant lineage if q → ∞). pi is the relative abundance of species i. b is a branch of the phylogenetic tree. k
is a period in the phylogeny, T k is its length (time elapsed between two speciation events) and Pk is the set of branches that cross period k.
K is the number of periods. C (i, Root) is the shortest path from species i (tip) to the root of the tree. Lb is the length of branch b. pb is the
summed relative abundance of all species descending from branch b. S is the number of species. See Appendix S2 for a proof of this.
cFor q = 0, PD is the sum of branch lengths on the phylogenetic tree, and T is the height of the tree. The function of rarity is linked to the
AED index of abundance-weighted phylogenetic originality in Cadotte et al. (2010): if pi = N i/N , with N i being the number of individuals
of species i, and N is the number of individuals across all species, then O0 = AED × N – T .
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Fig. 4. The quadratic entropy (Q ) and its main components according to Shimatani (2001). Here, we considered nine
theoretical examples formed by crossing three phylogenetic trees with species as tips and three vectors of species abundance.
In each example, species are named a, b, c and d. We defined the dissimilarity dij between any two species i and j as
the time since their first common ancestor. For example, in the top tree, dab = 1 million years. The vectors of abundance
give the number of individuals of each species in a community (the N i values). We calculated the relative abundance of
any species i as pi = N i/

∑
i in {a, b, c, d}N i . According to Shimatani (2001), the quadratic entropy (Q = ∑

i, j in {a, b, c, d}pipjdij ) is a
function of the Gini–Simpson index of species diversity (HGS = 1 − ∑

i in {a,b,c,d} p2
i ), the mean dissimilarity between two species

(MPD = (
∑

i, j in {a, b, c, d}dij )/(4 × 3)) and a balance component measuring a link between species’ dissimilarities and species’
abundances (B = 1

2

∑
i,j in {a,b,c,d}

(
dij − MPD

)
/
[
pipj − HGS/ (4 × 3)

]
): Q = HGS*MPD + B. The figure shows that B is negative if

the most abundant species are closely related and that it is positive if the most abundant species are also the most dissimilar. It
shows that B is zero in two cases: when the abundances are even and when the dissimilarities between species are even. The top and
middle trees have similar topologies, but we multiplied branch lengths by 10 in the middle tree, which allowed us to emphasize that
Q , MPD and B are multiplied by any factor X (here, 10) if the dissimilarities between species are all multiplied by X .

in the space) is the main originality measure derived from
this method (e.g. Magnuson-Ford et al., 2009). Laliberté &
Legendre (2010) proposed using the average distance to the
centroid over all species as a measure of trait-based diversity
(functional dispersion index, FDis). They defined two versions
of this index: one unweighted (presence/absence data) and

the other weighted by species’ relative abundances. In the
unweighted version, FDis values are high if species are all very
original, i.e. have the highest distances to the centroid. In the
weighted version, they used abundance-weighted distance to
the centroid and thus abundance-weighted originality values.
In this weighted version, FDis will be high if the most original
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(A) (B) (C)

Fig. 5. Theoretical illustration of the Qb and Rb originality measures. Up to a certain degree, increasing the abundance of the most
original species increases diversity. As in Fig. 1, we use different drawings of butterflies as theoretical species and differences in colours
as indicators of functional/phylogenetic dissimilarities between species. Let us first consider a community in which each species is
represented by three individuals (A). This butterfly community appears mostly blue. However, if we increase the abundance (in
terms of number of individuals) of orange species, which are more original, then the colour diversity of the new community appears
much higher (B). If we increase the abundance of orange species too much, then the butterfly community appears mostly orange,
and the diversity decreases (C). The relative originalities of the species do not change from A to C if abundance data are discarded,
but the relative abundance-weighted originalities of the orange species decrease, and those of the blue species increase from A to C.
In other words, an orange species in C is original (species level), but an orange individual is not (organism level). The indices Qb and
Rb determine precisely the abundance that species should have to maximize diversity (see Table 2 for an example with the index Rb).

Table 2. Illustration of the link between species’ originality (Rb) and the index of diversity named R in Pavoine et al. (2017)

Speciesa Massa (kg) S1 (%)b S2 (%)b S3 (%)b S4 (%)b S5 (%)b

U. arctos 266.50 10 25 49.60 70 85
V. vulpes 5.60 30 25 16.61 10 5
M. erminea 0.90 30 25 16.89 10 5
M. nivalis 0.04 30 25 16.90 10 5

↓ ↓ ↓ ↓ ↓
Body-mass diversity (R)c 282 402 462 422 328

aWe considered a theoretical set of four New World terrestrial carnivora species (Ursus arctos, Vulpes vulpes, Mustela erminea and M . nivalis)
with estimates of each species’ body mass obtained from Diniz-Filho & Tôrres (2002).
bWe considered five case studies corresponding to five scenarios of species’ relative abundances, from S1 to S5. S3 corresponds to the
species’ relative abundances that lead to the highest possible value for R and thus to the values of species’ relative originalities (Rb). This
table shows that, up to a certain threshold (S3), increasing the abundance of the most different (original) species (here, U . arctos) more than
that of others increases diversity.
cWe consider the following formula for the index R applied to this data set: R = ∑4

i=1
∑4

j=1
√

pi
√

pj

∣∣Mi − Mj

∣∣, where pi is the relative
abundance given to species i in the set (for example, in terms of number of individuals), and Mi is the body mass of species i (in kg).

species have the greatest abundance, again highlighting
that an inverse correlation between abundance-based rarity
and originality increases diversity. FDis is closely related to
quadratic entropy (their mathematical formulae are very
similar, as shown in Pavoine & Bonsall, 2011).

Villéger, Mason, & Mouillot (2008) developed indices
to describe three facets of trait-based diversity: functional
richness, functional evenness, and functional divergence.
None of these indices can be divided into continuous
values of species’ originality. However, they also implicitly
depend on the notion of originality. The first one, functional
richness (FRic), is the volume of the convex hull of species’
points (minimal space that includes all species’ points) in
the trait-based multidimensional space. From a certain

viewpoint, one can consider that the most original species
support the convex hull, with less-original species lying inside
the convex hull. The second index, functional evenness
(FEve), increases if species and their abundances are evenly
distributed in the multidimensional space delimited by the
most original ones (those at the vertices of the convex hull).
The third index, functional divergence (FDiv), is linked
to the mean distances from species’ points to a centroid,
but this centroid is measured differently than in the FDis

index developed by Laliberté & Legendre (2010). Villéger,
Mason, & Mouillot (2008) considered only the species at the
vertices of the convex hull, i.e. from a certain viewpoint, the
most original species when finding the centroid coordinates.
Their FDiv index relies on the difference between the
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unweighted mean of the distance to the centroid and the
abundance-weighted mean of the distance to the centroid.
In this index, Villéger, Mason, & Mouillot (2008) did not use
species abundance to define the centroid – originality and
abundance-based rarity are thus treated separately – while
Laliberté & Legendre (2010) did use species abundance
to define the centroid of all points, thus obtaining an
abundance-weighted originality.

FDiv increases if the most peripheral species have the
highest abundances (Fig. 6). Here, we can again observe an
inverse link between abundance-based rarity and originality,
if we consider the most peripheral species as the most
original. However, FDiv is not an index of biodiversity: we
identified that FDiv can be close to its maximum when a single
species dominates in abundance, with the remaining species
having residual abundance; for this to happen, this dominant
species must be at the largest distance to the centroid of the
convex hull (Fig. 6B). Diversity means variety. If intraspecific
variations are omitted and if an assemblage is composed
of a single species, then any measure of the trait diversity
of the assemblage must attain its minimum. Similarly, if
intraspecific variations are omitted and if a single species
represents almost all the abundance of an assemblage, then,
whatever its trait values, the trait diversity of the assemblage
is bound to be close to the minimum, whereas in contrast,
FDiv may be close to its maximum. FDiv thus describes a
particular pattern of community functional compositions but
is not an index of trait-based diversity.

IV. RECONCILING THE DIVERSITY, RARITY
AND ORIGINALITY CONCEPTS FOR THEIR
USEFUL APPLICATIONS

In the previous sections, we have discussed the definitions
of the concepts of rarity and originality. We have also
demonstrated that fundamental links exist in the definition
and in the measurements of the concepts of rarity, originality
and diversity. Now we highlight, through many examples,
how these concepts can be explored conjointly for the benefits
of ecology and evolution.

Every organism is a product of its own individual
evolutionary history and is shaped by the environmental
conditions and interactions experienced by its ancestors
(Cadotte & Davies, 2016). We observed that originality
and rarity indices are designed to capture species-specific
features, while diversity indices are applied to sets of species.
Diversity, rarity and originality thus complement each other
in describing the amount of biological variability in species
assemblages. Here, we briefly develop some examples of
fields where diversity, rarity and originality indices can be
applied and underline the importance of their joint analysis.

(1) Understanding the evolutionary emergence of
species’ originality

No approaches have been developed thus far to analyse
how trait-based and phylogenetic aspects of originality

FDiv = 0.692 FDiv = 0.997
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Fig. 6. A key property of the functional divergence (FDiv) index
of Villéger et al. (2008) is that it tends to the maximum (equal
to 1) when a single original species dominates in abundance.
Here, we use the theoretical example of Villéger et al. (2008)
including a set of nine species (points) characterized by two
traits (axes). The traits (positions in the functional space) of the
nine species are similar in A and B. Each species is represented
by a point, the size of which is proportional to the species’
abundance. In A, species have even abundances: the abundance
of a species equals 1/9. In B, one of the species dominates in
abundance: it has a relative abundance of 0.99, while other
species have relative abundances equal to 0.00125 (given that
0.99 + 0.00125 × 8 = 1). The convex hull of the set of points
is represented by the grey square in the two panels, and the
centroid of its vertices is simply its centre. As noted in the
two panels, the FDiv value in case A is lower than that in
case B, where the value of FDiv is close to the maximum (1).
These relations hold because the dominant species is one of the
original species located on the convex hull of all points, and this
dominant species is one with the largest distance to the gravity
centre of this convex hull.

are entangled. Often researchers have measured the two
aspects independently and have then searched for statistical
correlations between them (two-dimensional graph in
Fig. 2F). A given species could have evolved, for example,
a specific set of characteristics that are individually rare or
rare in their combination. Such a species could be both
phylogenetically original and original according to its traits,
in which case the overall originality reflects the history of a
species in terms of trait evolution and species relations [the
phylo-trait rarity (PTR) case in Fig. 2F]. The correlation
between phylogenetic and trait-based originality is expected
if traits have a phylogenetic signal, which means that closely
related species tend to share similar values of traits, while
distantly related species tend to have different traits.

Inferring that a species is original both in the phylogeny
and according to its traits requires observing a particular
pattern on a phylogenetic tree (Fig. 7A). However, we
must remember that past species extinction could blur
the phylogenetic history of a trait state by suppressing
many species displaying it (Fig. 7B). This inference also
depends on the relevance of our present-day taxonomic
sampling (Grandcolas, Nattier, & Trewick, 2014). Rare,
distinct traits can occur either on old, persisting branches
(Fig. 7C) or on rapidly and recently evolved branches of
a given phylogenetic tree (Fig. 7D). The combination of
phylogenetic and trait-based originalities of a species is then
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(A) (B)

(C) (D)

Fig. 7. Theoretical examples where a species is original
according to both its traits and phylogenetic position. We
considered a theoretical phylogenetic tree with 11 extant and
up to four extinct species as tips and branch lengths expressed in
time of evolution. A shows the tree with only extant species, and
B, C and D represent potential scenarios of complete trees with
extinct species and trait values for all species and their theoretical
ancestors (interior nodes). Circle colours express different values
of a theoretical trait (or a complex of traits). (A) Among all extant
species, the current species with the blue trait is both the most
phylogenetically original, because it is the most isolated, and the
most trait-based original, because it is very different in its trait
(colour) value from the other extant species. (B) A scenario where
past extinction events have suppressed many species displaying
the blue trait. (C) A scenario where the species with the blue
trait is a relictual species that has kept an ancestral value of the
trait (that at the root of the tree). (D) The case where the species
with the blue trait has become original among extant species,
although its trait value is a recent autapomorphy. In B to D,
crosses indicate extinct species.

not explained only by the species’ relictness if it alone remains
from a group that is mainly extinct (Grandcolas, Nattier,
& Trewick, 2014). Species’ originality can emerge from
evolutionary autapomorphy, that is, from the appearance in
a given taxon of a distinctive derived value of a trait that is
unique to this taxon (Fig. 7D).

Species originality may also be used to replace intuitive
characterizations that are still too often employed in
evolutionary biology, such as ‘evolved’ or ‘primitive’ (Crisp &
Cook, 2005; Grandcolas & Trewick, 2016). The comparison
of a species to a reference species group could benefit from
being carried out while considering speciation or extinction
rates. For example, adaptive radiations are associated with
both an increase in speciation rates and the adaptation
of constituent species to a diversity of ecological niches
(Gavrilets & Losos, 2009). This adaptation usually leads to
high levels of diversity in the trait(s) on which selection for
local adaptation acts. As a consequence, adaptation leads to
species being original for the trait(s), relative to each other
and to the remaining species of the clade. For example, the

(A)

(B)

A B C D E F G H

Fig. 8. Theoretical examples of the potential effects of
speciation and extinction events on species’ originality and
diversity. (A) Adaptive radiation. (B) Phylogenetically structured
extinctions. As in Fig. 7, we considered theoretical phylogenetic
trees with species as tips and with branch lengths expressed in
time of evolution. Circle colours express different values of a
theoretical trait (or a complex of traits). Each species and each
of their hypothetical ancestors (interior nodes) has a defined
value for the trait(s). In A, the ancestor at the root of the
phylogeny has a grey colour. All of its descendants kept this
trait value up to a given period when adaptive radiation yielded
speciation events with rapid trait evolution. In B, the crosses
indicate that four species are extinct. Extant species are named
A to H. The colours in the circles represent the assumption that
some extant species might have acquired traits (pink, orange
and green) that render them either tolerant or adapted to new
environmental conditions. We used different colours for the
acquired traits as there may be multiple ways of being either
tolerant or adapted to some specific environmental conditions.
This shows that species A, which is phylogenetically distant from
the other extant species, is also likely to be functionally original
(here by remaining with the ancestral character state), but this
may depend on the considered traits.

adaptive radiation in Darwin’s finches led to an increase in
the diversity of beak size and shape, making these species
more original than their relatives (Grant & Grant, 2008). If
speciation events occur in a short time period during such a
radiation, then trait-based and species diversities are likely to
increase by a much larger extent than phylodiversity. In such
a case, trait-based originality is not always accompanied by
phylogenetic originality (Fig. 8A).

Inversely, high extinction rates in a particular lineage
could lead to the phylogenetic isolation of a relict species and
thus to its phylogenetic originality among extant species.
The trait-based originality of the relict species is likely
dependent on the traits considered and on their evolution
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(Fig. 8B). An example of a relict species is the present-day
ginkgo (Ginkgo biloba) (Crisp & Cook, 2011). Phylogenetically
clumped extinctions could thus decrease the diversity of a
regional pool in terms of species number and phylogeny. At
the same time, they could lead to a skewed distribution of
phylogenetic originality across the study region, with a few
very original species belonging to the species-poor lineages
where extinctions occurred. Future research could thus
concentrate on searching for how and why phylogenetically
and functionally original species emerge in the course of
evolution and at which spatial and taxonomic scales they
emerge. Additionally, future studies could evaluate how the
emergence of original species has influenced current patterns
of diversity and distributions of species’ abundances.

(2) Analysing the dynamics of community assembly
with rarity, originality and diversity

Species evolve in continuously changing communities
governed by numerous ecological, evolutionary and
stochastic processes. The ecological processes that have been
most studied to explain species diversity are competition, in
which biotic interactions between species regulate species’
abundances; environmental filtering, where abiotic forces
act to constrain certain species’ traits within limits; and
density dependence, where abundant species have lower
individual performance than do rare species (e.g. Hubbell,
2001; Holyoak, Leibold, & Holt, 2005). Mathematical
models have been developed in recent decades to synthesize
knowledge on community assembly and diversity patterns
(Hubbell, 2001; Holyoak, Leibold, & Holt, 2005; Munoz
& Huneman, 2016). So far, most of them have focused on
measuring and/or predicting patterns of species abundance
(number of individuals) and patterns of species richness in
communities (MacArthur & Wilson, 1967; Magurran, 2004;
McGill et al., 2007). These models have thus rarely focused
on patterns of phylo- and trait-based diversity and originality,
despite copious numbers of empirical and conceptual
studies on community assembly in terms of functional
and phylodiversity. A few recent models have, however,
started to give insights into functional and phylodiversity
(e.g. Münkemüller & Gallien, 2015; Munoz et al., 2018).

There is a broad consensus now on the fact that
several distinct processes, including niche-based and neutral
ones, interact in species assemblages (e.g. Chase &
Myers, 2011). However, despite this consensus, it was
also shown that community assembly models based on
contrasting underlying processes (e.g. niche-based versus
neutral processes) may predict the same patterns of species
abundance and diversity equally well (e.g. McGill et al., 2007).
Such equivalence hampers the direct inference of assembly
processes from observed patterns of species abundance
and diversity. In fact, mechanistic insights into patterns
of community assembly may rely more on the originality
of species rather than on their abundance alone (Cadotte &
Davies, 2016). One of the oldest identified patterns in ecology
is the hollow curve of the distribution of species abundance,
with few dominant and many rare species (McGill et al.,

2007). The shape of this curve is usually described in terms
of skewness. The skewness of an abundance curve is thus
inversely related to species diversity, with the latter increasing
with an increase in abundance evenness. A hollow curve can
also describe the distribution of species’ originality in the case
of many redundant and few original species (Da Silva et al.,
2012). Both species abundance and originality could thus be
described by the same tool: a hollow curve.

In parallel, since Webb et al. (2002), ecologists often
use statistical approaches to associate the trait and/or
phylogenetic structure of a community with scenarios of
community assembly. This association can be accomplished
by comparing observed patterns of trait-based diversity
and phylodiversity with those expected by chance using
a null model of randomly assembled communities from a
regional species pool (Emerson & Gillespie, 2008; Hardy,
2008; Cavender-Bares et al., 2009). Trait-based clustered
communities, with many redundant species and low average
originality, would reveal environmental filtering, while
trait-based overdispersed communities, with the presence
of highly original species, would indicate limiting similarity
and interspecific competition (Webb et al., 2002). These
paradigms may, however, be an oversimplification as
competition can sometimes lead to a reduction in functional
diversity, particularly when traits are linked to species fitness
(Mayfield & Levine, 2010).

The same statements were made for phylodiversity
patterns under the assumption of the phylogenetic signal
mentioned in Section IV.1 (Webb et al., 2002; see also Saito
et al., 2018). Phylogenetic signal tends to decrease at local
spatial scales in communities and for narrow taxonomic
levels (Cavender-Bares, Keen, & Miles, 2006). Differences
between trait-based diversity and phylodiversity patterns
for the same community would indicate labile, convergent
traits, character displacement between lineages (Gerhold
et al., 2015), or environmentally determined traits that vary
more than others (Cadotte & Davies, 2016). Species’ trait
evolution must thus be quantified (see Section IV.1) to
connect community trait-based diversity and phylodiversity
patterns to the assembly processes (Losos, 2008).

Therefore, to date, the processes that shape community
assembly have mostly been analysed based on the concepts
of diversity, abundance and thus abundance-based rarity.
The roles of trait-based (functional) and phylo-based rarities
and thus of species’ originality in community assembly have
been far less studied. For example, during a colonization
event from a regional pool to a local community, the
local originality of a colonizing species relative to resident
species could be decisive for the successful colonization of the
species. The local originality could enhance the colonization
success of those species if they can avoid competition with
natives for resources due to their high originality (‘Darwin’s
naturalization hypothesis’; Strauss, Webb, & Salamin, 2006;
Pearson, Ortega, & Sears, 2012). Inversely, the species’ local
originality could hamper its colonization success if its high
originality makes it less adapted to the local environmental
conditions than are the native species (Strayer, 2012).
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The local coexistence of species could influence the lineage
diversification of the species (Gerhold et al., 2015) and the
distribution of the species’ originalities. Overall, analyses
of community species, phylo- and trait-based diversity,
rarity and originality patterns at various spatial scales
could therefore better indicate underlying ecological and
evolutionary processes that influence species coexistence than
analyses of species abundance could alone. A given process
could impact only part of the species of an assemblage,
which could result in patterns in the distributions of
species’ originalities. The joint use of rarity, originality
and diversity indices could thus provide insights into which
interactions among stochastic, ecological, biogeographical
and evolutionary processes shape local communities and
their dynamics.

(3) Role of originality in ecosystem functioning

Many studies of biodiversity patterns are focused on common
species because they consider common species to represent
the largest part of the biomass of a community and thus
to be essential for ecosystem functioning (Gaston, 2012).
By contrast, rare species may be difficult to include in
community-level analyses due to sampling limits. In cases
in which knowledge of these species is poor, rare species
can be even more difficult to include in trait-based and
phylogenetic originality analyses. However, originality and
abundance-based rarity were found to be correlated in some
cases (e.g. Mi et al., 2012). If low-density species possess
the most distinct functional traits, then they could support
vulnerable functions in ecosystems and be of particular
importance to the community (Gaston, 1998; Mouillot et al.,
2013; Leitão et al., 2016). The removal of such species from
a community could result in a considerable reduction in
ecosystem functioning (Mouillot et al., 2008; Bender et al.,
2017), with no possibility for other species to compensate for
their loss (Leitão et al., 2016). For example, using species
extinction simulations, Rosatti et al. (2015) showed that,
under extinction scenarios based on abundance and fire
tolerance, the probability of losing the most functionally
original woody cerrado species was higher than that expected
by chance, while the loss of phylogenetically original species
was random. In this case study, trait-based functional
originality could thus be an indicator of species vulnerability
defined based on species rarity and fire sensitivity.

By contrast, two species are functionally redundant if they
overlap in their functional niches, i.e. they maintain similar
ecosystem functions (Brandl & Bellwood, 2014; Carmona
et al., 2016). However, any two species in a set are unlikely
to be perfectly redundant but likely to be complementary,
i.e. sharing parts of their functional niches and their roles
in the ecosystem (Rosenfeld, 2002; Loreau, 2004). Contrary
to trait-based originality, trait-based redundancy does not
increase trait-based diversity, but it may increase the stability
and resilience of communities of species and ecosystem
functions. Determining redundant species can thus guide
conservation measures. Indeed, local species extinctions
caused by perturbations could be compensated for by the

persistence of species that are functionally similar to the
lost species but that differ from them in their responses to
changes in environmental factors or disturbances (Walker,
1992; Pillar et al., 2013). For example, an increase in
trait-based functional originality has been found in coral
reef communities after a cyclone disturbance due to the
local extinction of redundant species that had trait values
similar to those of the surviving species (Brandl et al., 2016).
Ecosystem functioning, stability and resilience are dependent
on the composition of species and those species’ abundance-,
phylo- and trait-based rarities. Inversely, species’ characters,
abundances and distribution patterns are shaped by many
ecological processes. We should continue to consider this
mutuality in future studies to better comprehend the
complexity of ecosystem functioning.

(4) Guiding conservation actions

Species are among the key units of biodiversity measurement.
Their conservation is at the core of many national and
international programmes that request effective methods
for habitat prioritization and species preservation. Criteria
related to ecosystem services evaluated as economic
costs, aesthetic value, contribution to well-being, and
species richness and rarity are often parts of these
programmes. Should such programmes also include phylo-
and trait-based diversity and originality? Even if conservation
planning alternates between preserving particular units of
biodiversity and preserving the processes that shaped those
units, the most commonly employed method to design
conservational priorities uses species richness ranked by
species’ abundance-based rarity and endemism (Mace, 2003).
Conservation values are thus often given to geographical
units, or biodiversity hotspots, that are not chosen with
regard to species’ traits and evolutionary histories (Veron
et al., 2017).

For example, Brum et al. (2017) reviewed currently
protected areas determined by the International Union for
Conservation of Nature (IUCN) risk classification system.
They demonstrated that those areas do not harbour more
phylo- or trait-based diversities of threatened mammals than
would be expected if they were randomly selected. As shown
in the previous sections, species are not equivalent, and
the phylo- and trait-based diversities of an area are the
products of numerous stochastic, evolutionary and ecological
processes. Conservation planning would thus benefit from
considering biodiversity as multidimensional by including
the phylogenetic and trait-based originalities of species
(Rodrigues & Gaston, 2002; Pellens, Faith, & Grandcolas,
2016). For example, Pollock, Thuiller, & Jetz (2017) showed
that a 5% expansion of protected areas could more than triple
the protected range of species or trait-based or phylo-based
units.

Originality indices could be useful as a complement for
conservation actions that target species rather than areas
(Pavoine et al., 2005; Isaac et al., 2007; Jetz et al., 2014;
Laity et al., 2015; Grenié et al., 2018). Species are often
ranked for conservation attention by their patrimonial,
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abundance-based rarity and threat status, which is not
sufficient to determine priorities (Mouillot et al., 2008).
These conservation attentions could nevertheless indirectly
(non-intentionally) preserve original species. For example,
Thévenin et al. (2018) showed that, although evolutionary
considerations are unlikely to have driven explicitly the
allocation of reintroduction efforts, reintroduced birds and
mammals in Europe, North America and Central America
tend to be more phylogenetically original than expected by
chance.

Originality indices allow treating species within multiple
facets of biological diversity. The explicit inclusion of such
indices in conservation actions would be useful to evaluate
each species’ contribution to local and global phylo- and
trait-based diversity (Jensen et al., 2016; Pavoine et al., 2017).
The recommendation to safeguard species that are both
original and threatened inspired some authors to extend
pre-existing indices of originality to include additional
species attributes: abundance, range size and probability of
extinction (Isaac et al., 2007; Rosauer et al., 2009; Cadotte &
Davies, 2010; Hidasi-Neto et al., 2015). Although alternatives
exist (Steel et al., 2007; Jensen et al., 2016), the most
widely cited originality measure that also integrates species
extinction risk is the evolutionary distinct and globally
endangered (EDGE) species index (Isaac et al., 2007). The
EDGE index combines the phylogenetic originality of a focal
species with its IUCN threat status. Given that it was designed
for large-scale analyses, the EDGE index does not consider
species’ traits. However, conservation actions are often
developed locally. Hidasi-Neto et al. (2015) thus modified
the EDGE index and proposed the EcoEDGE index, which
combines phylogenetic and functional components of species’
originalities with those species’ extinction risks.

Some studies found that low abundance and narrow
range size are the characteristics of functionally original
species that are threatened to extinction at the local scale
in French breeding birds (Calba, Maris, & Devictor, 2014)
and freshwater bivalve molluscs (Burlakova et al., 2011) and
at both local and regional scales in coral reef fishes, alpine
plants and tropical trees (Mouillot et al., 2013). At a global
scale, phylogenetically original primate species were found
to be more threatened with extinction than were other
primates (Verde Arregoitia, Blomberg & Fisher, 2013; but
see Redding, deWolff, & Mooers, 2010), but this was not
true for the whole class of mammals (Verde Arregoitia et al.,
2013). The endangerment of original species could, however,
lead to a drastic decrease in phylo- and trait-based diversity
if it were also associated with the phylogenetic clustering of
species extinction (Parhar & Mooers, 2011).

Therefore, the spatial distribution of original species may
provide information on whether they are concentrated
in low-diversity areas that are not targeted by current
conservation actions (e.g. Jetz et al., 2014; Veron, Clergeau
& Pavoine, 2016). Additionally, using simulations, Redding
et al. (2008) showed that prioritizing species by different
originality indices measured globally tends to safeguard
more local phylodiversity than is expected by the selection

of random species. Similarly, prioritizing Neotropical and
Nearctic bird species with high average global phylogenetic
originality scores could allow local phylodiversity to
be safeguarded (Redding et al., 2015). Clearly, species’
originality identifies ‘key’ species for preservation priority
that could be overlooked by classical abundance-based rarity
and diversity methods.

V. CONCLUSIONS

(1) Due to the emergence of myriad terms related
to biodiversity, rarity, and originality in the ecological
literature, it has become difficult to determine whether
terms used by different studies refer to the same concepts
and measures. Each concept encompasses different aspects
of species assemblages and can be measured by several
mathematical indices. We provided a semantic and historical
overview of these three concepts – biodiversity, rarity and
originality – at the level of an assemblage of species. We
showed that mathematical links exist between their associated
indices.

(2) Historically, rarity was explicitly integrated into
diversity measures by means of species abundance. Later,
diversity measures incorporated species’ biological (trait or
phylogenetic) differences, sometimes weighted by the species’
abundances. Species identities can be interchanged without
affecting diversity measurement based on the number and
abundances of species. Phylo- and trait-based diversities have
thus gone far beyond the vision of species diversity.

(3) The contribution of individual species to the phylo- and
trait-based diversities of a reference species set is captured
by the concept of originality. This concept brings together
ecologists and evolutionary biologists because it can combine
species’ evolutionary histories, traits and abundances. It can
be measured by various approaches based on phylogenetic
trees and trait-based dendrograms, dissimilarity matrices and
multidimensional space. Focused at the individual species
level, originality complements the diversity measures that
can then sometimes be written as simple functions of species’
trait-, phylogeny-, and abundance-based rarities.

(4) The joint use of the concepts of diversity, rarity, and
originality could aid in the understanding of the multiple
mechanisms shaping communities at different spatial and
temporal scales. At a large scale, the joint use of these
concepts could help clarify general patterns of evolutionary
events such as trait evolution, extinction, speciation, and
adaptive radiation of species. At a local scale, it could
aid in understanding community assembly and ecosystem
functioning. At any scale, it could refine conservation
strategies.

(5) It is widely accepted that no single mathematical
formula could alone encompass all aspects of biodiversity.
Here, we have shown that the joint use of diversity, rarity
and originality measures has the potential to recompose
accurately the complex picture of the diversity of a species
assemblage.
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Appendix S1. List of main originality indices cited, with
references, abbreviations and some of their key properties.
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Appendix S1. List of main originality indices cited in this paper, with references, 

abbreviations and some of their key properties. 

 

In Table S1.1, we describe the most used indices that measure species originality, but we are aware 

that other indices exist and many have been reviewed and compared elsewhere (e.g., Redding et al., 

2014; Cadotte & Davies, 2016). Our choice was structured based on the goal of giving an overview 

of the variety of originality indices and showing their link with diversity, which is a property of a 

set of species, and with abundance-based rarity, which is a property of individual species. We 

describe those links in detail in part III of the main text. 

 

Table S1.1. Indices developed for measuring originality. The first column distinguishes among 

four different types of data used to evaluate species originality: tree structures (phylogenetic trees 

or trait-based dendrograms), dissimilarity matrices (phylogenetic or trait-based distances), 

multidimensional space axes and indices based on generalized entropy.  

Data type Method description Reference 

Name1 
(Examples of 
abbreviations 
used in the 
literature) 

Code 
used 

in our 
paper 

Some known 
properties 

Tree-based 
approach, no 

branch length2 

Inversely 
proportional to the 

number of 
branches 

descending from 
each internal node 
between the focal 
species (tip) and 

the root  

May, 1990 

May index 
(MVW 

[Redding et al., 
2014]; M 

[Pavoine et al., 
2017]) 

M 

Compared to VW, it 
accounts for 
polytomies in 

phylogenetic trees 
(May, 1990) 

Inversely 
proportional to the 
number of internal 
nodes between the 
focal species (tip) 

and the root  

Vane-Wright et 
al., 1991 

Vane-Wright et 
al. index (VW 
[e.g., Redding 
et al., 2014]) 

VW 

Compared to M, it 
does not account for 

polytomies in 
phylogenetic trees 

(May, 1990) 
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 Inversely related to 
the sum of scores 
attributed to the 

nodes between the 
focal species (tip) 
and the root. A 

score is attributed 
to each node 
depending on 
whether it has 
more or less 

species descending 
from it than its 

sister nodes  

Nixon & 
Wheeler, 1992; 
Redding et al., 

2014 

NWU=BPD-1 
(Redding et al., 
2014; BPD is 

the 
unweighted 

binary 
phylogenetic 
diversity of 
Nixon & 

Wheeler, 1992)  
 

NW
U 

Ranks all members 
of a clade as having 

the same priority 
relative to all 

members of its sister 
clade (Nixon & 
Wheeler, 1992) 

Inversely related to 
the sum of the 

number of species 
for each clade to 
which the focal 
species belongs 

NWW=WPD-1 
(Redding et al., 
2014; WPD is 
the weighted 
phylogenetic 
diversity of 
Nixon & 

Wheeler, 1992) 

NW
W 

Can hardly 
distinguish the 

originality between 
species from the 

same clade (Huang et 
al., 2011) 

 Tree-based 
approach, with 
branch lengths2 

Apportions the 
evolutionary 

history represented 
by a branch length 

equally among 
descending 

daughter branches 

 Redding & 
Mooers, 2006 

Equal splits 
(ES [Redding 

& Mooers, 
2006]) 

ES 
Sensitive to 
phylogenetic 
revisions and 

strongly dependent 
on the terminal 
branch lengths 

(Redding et al., 2014) 

Apportions the 
evolutionary 

history represented 
by a branch length 

fairly among 
descending 

daughter species 

Redding, 2003 

 Fair 
proportion (FP 

[Redding, 
2003]); 

evolutionary 
distinctiveness 
(ED [Isaac et 

al., 2007]) 

FP 

Distance from a 
focal species to 

where it subtends 
the tree 

Altschul & 
Lipman, 1990 

 Pendant edge 
(PE [Redding 
et al., 2008]) 

PE 

Overweights unique 
species near the tips 
of a tree (Redding et 
al., 2008); ignores the 

pattern of shared 
evolution between 

species  



61 
 

Expected average 
rarity of the 

characters of a 
species under a 
framework of 

genome evolution  

Huang et al., 
2011 

Character 
rarity (CHR 
[Huang et al., 

2011]) 

CHR 

If the phylogenetic 
tree is ultrametric, 

then CHR is equal to 
the APD and is 
correlated with 

NWW; incorporates 
models of dynamic 
processes of trait 

evolution (Huang et 
al., 2011) 

Average pairwise 
phylogenetic 

distance from a 
focal species to all 

the others in a 
reference species 

set 

 Redding et al., 
2014 

Average 
phylogenetic 

distance (APD 
[Redding et al., 

2014])3 

APD 

Less sensitive to the 
terminal branch 

length changes than 
are FP and ES 

(Redding et al., 2014) 

Dissimilarity-based 
approach 

Shortest distance 
between the focal 
species and all the 
others in the set 

Pavoine et 
al.,2017 

Nearest 
neighbour 

(NN [Pavoine 
et al., 2017])  

NN  
 

With dissimilarity-
based approaches, 

trait-based and 
phylogenetic 

originality can be 
compared with less 
distortion of trait 

information than can 
tree-based 
approaches 

Average pairwise 
dissimilarities 

between the focal 
species and all the 
others in the set 

Eiswerth & 
Haney, 1992 

Genetic 
distinctiveness 
(Eiswerth & 

Haney, 1992); 
average3 (AV, 
Pavoine et al., 

2017) 

AV 

Originality in a 
multidimensional 

space4 

Distance from a 
focal species' point 
to the hypothetical 
average centroid of 

all species 

Magnuson-
Ford et al., 

2009 

Magnusson et 
al. index 

−5 

May discriminate the 
traits responsible for 

the originality of 
identified species  
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Entropy-based 
approach  

 Estimates the 
abundances species 

should have to 
maximize the 

diversity of a set; 
these abundances 

reflect species' 
originalities (see 
section III.3.c) 

Pavoine et al., 
2005 

Quadratic 
entropy-based 

(QE-based 
[Pavoine et al., 

2005]; Qb 
[Pavoine et al., 

2017]) 

Qb 

Depends on 
ultrametric distances 
between species and 
on an entropy index 

(the quadratic 
entropy, Rao, 1982) 

that weights 
commonness over 

rarity (Pavoine et al., 
2017) 

Pavoine et al., 
2017 

Pavoine et al., 
index (Rb 

[Pavoine et al., 
2017]) 

Rb 

Can handle any 
matrix of 

dissimilarity between 
species (does not 

depend on 
ultrametric 

distances); depends 
on an entropy index 
(the R index) that 
weights rarity over 
commonness; is 

similar to AV, but 
better discriminates 

original from 
redundant species 

than does AV 
(Pavoine et al., 2017) 

 

1 When we did not find a specific name, we used the name of the authors who developed the index. 

2 Tree-based approaches were generally applied to phylogenies. However, they have also been 

applied to functional dendrograms (e.g.; Sobral et al., 2016; Pavoine et al., 2017). In the latter case, 

the originality indices are sensitive to the way in which the dendrograms have been built, with a 

risk of distorting the information contained in the traits.  

3 APD is actually a special application of AV. However, in APD, the dissimilarities between species 

are calculated from a phylogenetic tree; we thus classified APD as belonging to the tree-based 

indices. 

4 Ways of multidimensional space construction: a functional multidimensional space can be 

obtained by at least three approaches. First, each axis in the functional space can be a functional 

continuous trait. Second, axes can be calculated with a principal component analysis (PCA) applied 
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to continuous traits or by a Hill and Smith PCA applied to continuous and categorical traits. Third, 

axes can be calculated with a principal coordinate analysis (PCoA) or non-metric multidimensional 

scaling (nMDS) applied to trait-based dissimilarities between species. A phylogenetic space can be 

obtained by applying the PCoA or nMDS to phylogenetic dissimilarities between species. 

Magnusson et al. (2009) originally used a PCA on a matrix of species' morphological traits; they 

defined their index as the Euclidean distance from the origin of the PCA (the origin being the 

centroid of all points; we propose here to define species originality more generally as the distance 

from a focal species' point to the hypothetical average centroid of all species). 

5 We did not find abbreviation for this index and did not use any in our paper. 
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Appendix S2. Illustration associated with Table 1. 

 

Consider a community with S species and a phylogenetic tree with the species as tips. As an 

illustration, we will consider the data set in Fig. S2.1. Pavoine, Love and Bonsall (2009) developed 

the following parametric index of phylogenetic diversity for the community: 

1

1

1

k

q

bK b P

q kk

p
I T

q





 
 

  


  (eq. 1) 

where q is the parameter of the diversity index. It controls the importance given to lineage 

abundances. k is a period in the phylogeny. Periods are defined between two successive speciation 

events (see Fig. S1.1(B) for an example). Tk is the length of period k (time elapsed between the two 

speciation events). Pk is the set of branches that cross period k. For example in Fig. S1.1(C), we 

highlighted in red the set of branches that cross the second period. b is a branch of the phylogenetic 

tree. Lb is the length of branch b. pb is the summed relative abundance of all species descending 

from branch b. 

 

Applied to the data set of Fig. S1.1, Iq is equal to: 
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This can also be written as: 
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and thus 
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Index Iq can thus also be written more generally as  

11

1

q

b
q b bb

p
I L p
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  (eq. 5) 

which, for ultrametric trees, is equivalent to the general equation in Chiu and Chao (2014), as 

follows: 

 1 2 3 4 / ( 1)q

q b bb
I T T T T L p q       (eq. 6) 

 

Let pi be the relative abundance of species i, and let C(i, Root) be the shortest path from species i 

(tip) to the root of the tree. In Table 1, we highlighted that Iq can also be written as a mean of 

abundance-weighted originalities: 
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  (eq. 7) 
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1
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  (eq. 8) 

 

Applied to the theoretical example of Fig. S1.1, eq. 7 corresponds to reorganizing eq. 4 as follows: 
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Fig. S2-1. Theoretical data set with five species, named from A to E, and an ultrametric 

phylogenetic tree with the species as tips. In panel (A), the main aspects of the data set are given. 

The red circle represents the root node. Branch lengths of the tree are indicated and denoted by L1 

to L8. The relative abundances of the species in a community are noted from pA for species A to pE 

for species E. In (B), the phylogeny is split into periods, from T1 (the oldest) to T4 (the most recent). 

These periods are defined between successive speciation events. The length of the branches that 

cross several periods is also split per period. The notation Li,j means the length of the section of 

branch i in period j. This leads to 2 2,2 2,3L L L  , 3 3,2 3,3 3,4L L L L   , 6 6,1 6,2L L L  , 

7 7,3 7,4L L L  , 8 8,3 8,4L L L  , 6,1 1L T , 2,2 3,2 6,2 2L L L T   , L2,3=L3,3=L7,3=L8,3=T3, and 

L3,4=L7,4=L8,4=T4. In (C), as an example, we overlined the branches that cross the second period 

of length T2 in red. 
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CHAPTER 2.  

DIVERSITY IN THE CITY: 

URBANIZATION AFFECTS 

DIFFERENTLY TRAIT-BASED AND 

PHYLOGENETIC PLANT 

ORIGINALITY AT LOCAL AND 

REGIONAL SCALES  
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INTRODUCTION TO CHAPTER 2 

It is clear from Chapter 1 that species originality and diversity measures and concepts are tightly 

related. However, there were very few studies investigating this relation with a real dataset. In this 

chapter, we investigated species diversity dependence on species originality and their respective 

variation along an urbanization gradient. Urbanization is currently considered as one of the major 

threats to biodiversity worldwide, challenging species by habitat fragmentation and land-cover 

changes. Although, urban ecologists studied the biological diversity of cities, there is still a lack of 

information about how species contribute to the diversity observed in a given community and how 

it is affected by urbanization. In this study, we propose a methodological framework to analyze 

species originality and diversity at two spatial scales: local communities and regional species pool. 

We assessed species diversity as the mean of species local originalities, which represents a measure 

of community diversity, and the mean of regional originalities, which is viewed as the amount of 

the regional diversity expressed by species in the plot. Finally, we calculated the skewness of 

originalities which represents the fraction of original species in the community, i.e. the distribution 

of originality along redundancy-uniqueness gradient. 

In the light of plant species importance for ecosystem services, we chose to apply our 

originality-diversity framework to the herbaceous plant communities in Paris and its surrounding 

region, Ile-de-France. We demonstrate that our framework can determine at which spatial scale, 

local or regional, urbanization induces variations in the diversity of the biological characteristics 

and evolutionary history of species, while identifying which species are responsible for these 

variations depending on their originality values. To our knowledge, this is the first real case study 

of plant originality measure in an urbanization context. We believe that the results of this study 

may assist urban policy-makers in efficient management of biodiversity. 

This research work is a result of my collaboration with four research structures: 

 Research team from Germany, based at Helmholtz Centre for Environmental Research 

– UFZ, Department Community Ecology, Halle (Saale) where I spent two months, in 



71 
 

January and February 2019, working with Sonja Knapp, Walter Durka and Ingolf  Kühn. 

At that stage, I had already started plant data analysis, but there was still some missing data 

in plant traits and mismatches in taxonomical names between trait databases and species 

occurrences database. SK, WD and IK considerably improved the trait data, and their 

botanical expertise allowed to identify accidental species or obviously misidentified species 

(e.g., alpine species that occur only once in a dataset are more likely to be identification 

mistakes). WD also showed me methods he used to construct DaPhnE phylogeny of  

vascular plants so I could add species from my dataset missing in the tree. IK contributed 

significantly to the statistical analysis and improved it by adding spatial autocorrelation 

analysis between species plots.  

 Vigie-flore citizen science program, which is supervised by researchers from my own 

research unit and by the Vigie-Nature program: Gabrielle Martin, Nathalie Machon and 

Emmanuelle Porcher managed Vigie-flore data; Eric Motard supervised data collection 

and input to the database; GM substantially helped at the very beginning of  this study, by 

guiding me through data structure and providing ideas for traits use. 

 Conservatoire Botanique National du Bassin Parisien is represented by Jeanne Vallet, 

who provided several ideas for the originality framework and helped me with plant species 

taxonomy and occurrence probabilities. 

 My PhD supervisors, Sandrine Pavoine and Philippe Grandcolas, who were invested at 

every stage of  this study, bringing their expertise in statistical analysis and general context 

information.  
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ABSTRACT 

Urbanization is one of the most intensive and rapid human-driven factors that influence 

biodiversity. Thus, society needs appropriate methods for understanding species responses to 

urbanization processes. To find the appropriate methods, species diversity must be surveyed and 

measured. Although a number of biodiversity metrics exist in ecology, little is known about the 

contributions of different species to urban community diversity. In urban contexts, studies have 

mostly analyzed the influence of urbanization on the spatial distributions of species and on their 

functional traits and phylogenetic community structures. Here, we develop a framework that relies 

on the originality of a species. A species is original if it possesses rare trait values compared to all 

others in the community of species or if it is distantly related to the other species in the community. 

The most original species have the greatest contributions to the diversity of that community. We 

studied the influence of urbanization on species originality using Vigie-flore, the French citizen 

science dataset of plant occurrences in the Île-de-France region. To visualize the urbanization 

gradient, we calculated the percentage of urbanized land cover around the species plots. Since 

urbanization acts simultaneously at multiple spatial levels, we considered both the local and regional 

spatial scales as areas for the originality calculations. Using several trait databases and recent plant 

phylogeny, we measured trait-based and phylogenetic originality. Then, for each plot, we calculated 

the mean of the local species originalities, which represented a measure of community diversity, 

and the mean of the regional originalities, which represented the amount of the regional diversity 

expressed by species in the plot. While the trait-based originality increased along the urbanization 

gradient at both scales, the phylogenetic originality decreased with urbanization at only the regional 

scale, meaning that urban communities do not contribute to regional phylodiversity. We also found 

that urbanization made some species original at the local scale, although they were not at the 

regional scale. Our conceptual framework will help to identify the species responsible for variations 

in diversity along environmental gradients and to determine the most relevant spatial scale for 

urban sustainable management. 
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INTRODUCTION 

The United Nations (2018) predicted that by the year 2050, 68% of the global human population 

will live in urban areas. This process comes with a complex mix of challenges, including land-use 

modifications and habitat fragmentation, which increase the pressure on local remnant species 

diversity (Gaston, 2010). Urbanizing processes such as residential and commercial development 

are listed in the International Union for the Conservation of Nature (IUCN) Unified Classification 

of Direct Threats scheme (version 3.2) as threats with substantial impacts on biodiversity. In 

addition, some the components of biodiversity have the potential to provide ecosystem services to 

humanity (Millennium Ecosystem Assessment (MEA), 2005; Robinson and Lundholm, 2012; 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 

2019). Therefore, it is now recognized that biodiversity needs to be fully considered in urban 

planning and landscape design (Ahern, 2013). 

Urbanization incorporates a set of anthropogenic filters and modifies natural ecological filters that 

determine species diversity and composition of urban areas (Williams et al., 2009; Aronson et al., 

2016). Now, it has been largely recognized that cities, representing a high spatial heterogeneity of 

habitats, can harbor an important amount of plant and animal species (McKinney, 2002; Kühn et 

al., 2004; Godefroid and Koedam, 2007; Pautasso et al., 2011) and that cities play an important role 

in biodiversity conservation (Kowarik, 2011; Ives et al., 2016; Soanes and Lentini, 2019). In 

contrast, many studies show negative impacts of urbanization on biological diversity mostly by 

biotic homogenization (Kühn and Klotz 2006; McKinney, 2006; Devictor et al., 2007, 2008; Morelli 

et al., 2016). These different viewpoints might be explained by scale-dependency of the 

urbanization effect on biodiversity (Pautasso, 2007). However, there is still a lack of understanding 

of the responses of species to urbanization at different spatial scales. 

One of the most investigated taxonomic groups in urban ecology is composed of vascular plant 

species. These species have an important role in primary productivity (Lieth, 1975) and provide 

habitat for other taxa (Tews et al., 2004). Moreover, vegetation structure and vascular plant diversity 
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have been used as general indicators of urban environment conditions (Sukopp and Weiner, 1983; 

Tzoulas and James, 2010). The role of urban areas in biodiversity conservation has been 

increasingly recognized by policy makers (Grimm et al., 2000; Gill et al., 2007; Lundholm et al., 

2014). For example, the development of green infrastructure has been encouraged in cities as a 

means to increase the resilience of cities to global changes and to improve human well-being 

(European Commission’s Directorate-General Environment, 2012; Kabisch et al., 2016). Plant 

species are the focus of this development. To guide such developments, efforts to deepen the 

collective understanding of the responses of plant species to urbanization are the center of urban 

biodiversity research (Werner and Zahner, 2009; Palma et al., 2017), conservation (McKinney, 

2006) and the socioecological sciences (Elands et al., 2015). 

To guide sustainable urban development, biodiversity must be evaluated first. Measures of 

biodiversity should ideally represent all of its multifaceted and hierarchical complexity. In the urban 

context, studies have mainly focused on describing species distributions and abundances (Aronson 

et al., 2016; Deguines et al., 2016; Guetté et al., 2017), species trait distributions (Knapp et al., 2009, 

2010; Vallet et al., 2010; Williams et al., 2015; Kalusová et al., 2017) and the phylogenetic structures 

of urban communities (Ricotta et al., 2012, 2015; Morelli et al., 2016; Knapp et al., 2017; Sol et al., 

2017). Several measures can thus be used to evaluate urban biodiversity, including species richness 

(McKinney, 2002, 2008; Cervelli et al., 2013), trait-based diversity (Petchey and Gaston, 2002; 

Mason et al., 2005; Villéger et al., 2008) and phylodiversity (Faith, 1992; Webb, 2000; Pavoine and 

Bonsall, 2011). Trait-based approaches allow the measurement of community trait structure 

(Laliberté and Legendre, 2010), and phylogenetic approaches divulge the evolutionary history of a 

given community (Tucker et al., 2017, 2019). However, these measures represent the whole 

diversity of a community and give no information about the contributions of individual species to 

this diversity (Kondratyeva et al., 2019). 

In urbanized areas, species constantly interact with their rapidly changing biotic environment (e.g.,, 

non-native species, Gross et al., 2013; Aronson et al., 2014; Kühn et al., 2017). Identifying the 
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species that are the most threatened by urbanization and estimating the consequences their local 

extinction could have on biodiversity could help in the prioritization of conservation actions. Thus, 

there is a need for a metric that evaluates the contribution of each species to the diversity of a 

reference set of species using pairwise differences among species based on their biological 

characteristics. Originality measures are such a tool (see Pavoine et al., 2017; Kondratyeva et al., 

2019 for reviews on originality measures). A species is original if it has rare biological characteristics 

within a reference set of species (Pavoine et al., 2005). Such rare biological characteristics can be 

the distant position of the reference species on a phylogenetic tree (Isaac et al., 2007;  Jetz et al., 

2014; Redding et al., 2015a; Sol et al., 2017) or they can be trait values that few species share 

(Mouillot et al., 2013a; Brandl et al., 2016; Pavoine et al., 2017). Thus, in a species assemblage, the 

less a given species shares its trait values with the other species or the more distantly related it is to 

the other species, the more original it is and the more it contributes to the diversity of that species 

set. Inversely, a species is redundant and contributes less to community diversity when it shares its 

trait values with many other species and/or is closely related to the other species. Species originality 

and redundancy are often used as indicators of ecosystem functioning (Mouillot et al., 2013a; 

Brandl et al., 2016). For example, higher trait-based redundancy among species would increase 

interspecific competition for a limiting resource but, at the same time, would ensure higher 

ecosystem stability in changing environments (Walker et al., 1999; Tilman et al., 2014). 

Biodiversity and originality measures are scale dependent. Moreover, urbanization acts 

simultaneously at various spatial scales (Aronson et al., 2016), with the response of species varying 

across scales, according to their evolutionary histories, trait values and the ecological processes they 

are involved in (Levin, 1992; Chave, 2013). Thus, studying species responses to urbanization 

necessitates data for local communities across multiple locations. Today, an increasingly 

burgeoning citizen science program, particularly in ecology, allows the assembly of large amounts 

of monitoring data (Kobori et al., 2016; Silvertown, 2016). In France, Vigie-Nature 

(www.vigienature.fr) is one of the largest national initiatives for citizen science in biodiversity 
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monitoring. It has already proven to be valuable in conservation policy-making (Couvet and Prevot, 

2015). One of Vigie-Nature national programs, called Vigie-flore 

(http://www.vigienature.fr/fr/vigie-flore), has gathered information on plant occurrences across 

the country for every year since 2009. This long-term dataset has recently allowed the reporting of 

rapid shifts in plant community composition in response to climate change (Martin et al., 2019). 

Therefore, as citizen science data accumulate across space and time, their usefulness in ecology and 

conservation studies is increasingly acknowledged (Dickinson et al., 2010; McKinley et al., 2017). 

Here, using the Vigie-flore program, we analyzed the impact of urbanization on species originality 

at two spatial scales: local plant communities and the regional species pool. We used the mean of 

species-specific originality values, which represent a measure of local trait-based (functional) 

diversity and phylodiversity within a plant community. We investigated three questions as follows: 

1. How do regional and local species originality contribute to variations in community diversity 

along an urbanization gradient? 2. How do non-native species contribute to community diversity? 

3. Which species in particular drive community diversity across spatial scales? Since urban 

environments affect both the trait-based and phylogenetic compositions of communities (Knapp 

et al., 2008), we measured phylogenetic and trait-based originality for plant species. Finally, with 

this study, we show that originality measures are worth integrating into urban biodiversity 

management as metrics that are capable of integrating differences among the species of a 

community. 

MATERIALS & METHODS 

Study Area 

We used plant community data sampled across the Île-de-France region by the participants of the 

national citizen science survey, Vigie-flore, which constitute a large national dataset of plant 

occurrences in diverse habitats. The Île-de-France region occupies a territory of 12 100 km² and is 

the most inhabited region of France, with 12.1 million inhabitants. It includes the city of Paris, 

which is the French capital and the nation’s largest city with 2.2 million inhabitants in 2016, and 
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approximately 1300 other cities and towns with varying human populations (min = 27, max = 

119 645, median = 1318, Institut d’Aménagement et d’Urbanisme (IAU), 2019). This region 

benefits from having the highest sampling effort within the Vigie-flore program (188 grid cells out 

of total of 586) as well as a detailed land cover geodatabase. 

Biological Data 

Following the standardized protocol of the Vigie-flore program, skilled amateur botanists 

investigate randomly selected 1 km² grid cells. Each grid cell contains eight systematically 

distributed 10 m² plots. In each plot, the presence of all vascular plants is recorded. We considered 

the set of species in each 10 m² plot as a local community assemblage. We analyzed a subset of 

2362 plots collected over the years 2009 to 2017 in all types of habitats (1231 in agricultural areas, 

533 in forests, 281 in urbanized areas, 261 in artificial open areas and 56 in semi-natural areas). For 

computational reasons, only plots with a minimum of three species were retained. Indeed, it is 

meaningless to measure originality in a plot with one species where there are no other species, and 

in a plot with two species, each of the species would have equal originality. A total of 322 plots 

missing geolocalization were also excluded from the study. Out of 812 species recorded by Vigie-

flore and found in Île-de-France, 593 herbaceous angiosperm species were retained. To assemble 

as much trait data as possible, we standardized species taxonomic nomenclature among datasets 

by using several synonymous names and updating them by using The Plant List 

(http://www.theplantlist.org/), the Tela Botanica website of the French botanist’s network 

(https://www.tela-botanica.org/) and Flora Gallica (Tison and de Foucault, 2017). For further 

analysis, we kept species names as found in Vigie-flore data with a taxonomical reference TAXREF 

(V2.0, Gargominy, 2008). We removed some data from the initial species dataset: 1. species 

occurring only in plots of 1 or 2 species (see explanation above); 2. species identified as accidental 

or obviously misidentified (e.g., alpine species that occur only once in a dataset are more likely to 

be identification mistakes); 3. woody species, as they seem to be affected less strongly by 

urbanization than other groups (Neil and Wu, 2006) and because of their outlying trait values; 4. 

http://www.theplantlist.org/
https://www.tela-botanica.org/
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Bryophyta and Pteridophyta species; and 5. species that rely on human assistance (no cultivated or 

ornamental species). Woody and herbaceous species were distinguished following the LEDA trait 

database (Kleyer et al., 2008). 

Land Cover Data 

We used vectorized maps of land cover in Île-de-France from Institut d’Aménagement et 

d’Urbanisme, with a spatial resolution of 12.5 meters available for two time periods (2009 to 2011 

and 2012 to 2017). We used six land cover categories (Figure 1): 1. forest (24% of Île-de-France 

area), 2. semi-natural area (2%), 3. agricultural area (50%), 4. artificial open area (6%), 5. water (2%) 

and 6. urbanized area (16%, including individual housing (8%), collective housing (2%), industrial 

and business areas (2%), facilities (1%), quarries, dumps and worksites (0.5%) and transportation 

infrastructures (2.5%)). A detailed description of each category is available online (http://www.iau-

idf.fr/). Using the ArcGIS® software for geographical data manipulation (Environmental Systems 

Research Institute, Esri, 2018, ArcGIS release 10.5.1), we linked the Vigie-flore plots with land 

cover data and calculated the proportion of urbanized areas as a surrogate for the urbanization 

gradient, i.e., we calculated the percentage of urbanized area inside each 1x1 km² grid cell where 

Vigie-flore plots occurred. 

Species Biological Characteristics and Phylogeny 

We collected information on the biological traits of each species from several databases (Table S1): 

the BiolFlor database on biological and ecological traits of the German flora (Klotz et al., 2002), 

LEDA database of life-history traits of the Northwest European flora (Kleyer et al., 2008), TRY 

global database of plant traits (Kattge et al., 2011), Ecoflora database of British Isles 

(http://www.ecoflora.co.uk, Fitter and Peat, 1994) and Catminat database of French flora (Julve, 

1998) along with numerous botanical garden resources across Europe (e.g., the Royal Botanic 

Gardens, Kew, POWO, 2019). The data included three binary (life span, pollination vector, seed 

dispersal mode), one ordinal (type of reproduction), one circular (beginning of flowering) and six 

http://www.ecoflora.co.uk/
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quantitative traits (seed weight, leaf dry mass content, leaf size, specific leaf area, plant height and 

duration of flowering) related to the plant species dispersal, establishment, reproduction and 

persistence (Table S2). We selected traits that are widely used in functional ecology studies for their 

presumed roles in the context of urbanization (Knapp et al., 2009, 2010; Vallet et al., 2010; Williams 

et al., 2015; Kalusová et al., 2017) and that were available for the majority of our species. However, 

the Grime’s strategies (Grime et al., 1988) or the Raunkiær life forms (Raunkiær, 1932) that were 

largely available for our species are synthetic traits and were not retained. Similarly, the Ellenberg 

indicator values were not retained either because they are not functional traits per se but represent 

the ecological preferences of species (Ellenberg et al., 1991) by characterizing a nonrandom 

association of plant species with particular characteristics of the environment (Garnier et al., 2017). 

We investigated the correlations among all retained biological traits to avoid potential collinearity. 

Highly correlated traits were not retained if the absolute values of Pearson correlation coefficient 

were superior to 0.7 (Dormann et al., 2013). In complement to the biological traits, we calculated 

species urbanity following Hill et al. (2002), which, like the Ellenberg indicator values, is an 

environmental association (sensu Garnier et al., 2017). We used species urbanity a posteriori to link 

species urban preferences with their trait-based and phylogenetic originality values. We calculated 

species urbanity as the mean percentage of urbanized area in all grid cells where the species 

occurred. In addition, we used the native status of the species that was extracted from the Île-de-

France plant species list established by the Conservatoire Botanique National du Bassin Parisien 

(CBNBP, 2016) to separate the species into two groups of native and non-native species. A species 

was defined as non-native if it was introduced by humans into the region after the year 1500.  

We used DaPhnE (Durka and Michalski, 2012), a dated phylogeny that is resolved to the species 

level and covers the vascular flora of the British Isles, Germany, the Netherlands and Switzerland 

and thus all taxa from the LEDA and BiolFlor trait databases. The final tree was pruned to our 

species pool (Table S2) in R (R Core Team 2019). 
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DATA ANALYSES 

Community and Species Metrics 

To measure originality, we used the metric named AV for "average" as it represents the average 

dissimilarity between a focal species and all others in a set (Pavoine et al., 2017). The AV metric 

requires a dissimilarity matrix based on species phylogeny or the species trait values. To form a 

trait-based dissimilarity matrix, we first log-transformed the most asymmetrically distributed 

quantitative traits: canopy height, leaf size, and mean seed weight to ensure a bell-shaped 

distribution of values. We then used the mixed-variable coefficient of dissimilarity (Pavoine et al., 

2009) associated with the most appropriate coefficients to estimate trait-based distances between 

pairs of species: the Jaccard metric (Jaccard, 1901) for binary traits, the Podani metric (Podani, 

1999) for ordinal traits and the Manhattan metric (Farris, 1972; Nelson and Horn, 1975) for 

quantitative traits. To form a phylogenetic dissimilarity matrix, we calculated the patristic distances 

between pairs of species (sum of the branch lengths on the shortest path between two species in 

the phylogenetic tree). 

Using the dissimilarity matrices, we calculated the phylogenetic and trait-based originality scores of 

each species with the distinctDis function of the R package adiv (Pavoine, 2018). Following Redding 

et al. (2015a), for each species, we calculated a regional originality score considering all species in 

our dataset (rAV) and local originality scores considering only the species from a given plot (lAV). 

Thus, for the same species, local originality varies depending on the composition of a given plot, 

whereas regional originality will be constant for a given species over all plots (Figure 2). We named 

a given plot P and the region R (union of all sampled plots). NP is the number of species in plot P, 

NR is the number of species in region R, and dij is the functional or phylogenetic distance between 

species i and j. The regional originality of species i is as follows: 

 

𝑟𝐴𝑉𝑖 =
1

𝑁𝑅 − 1
∑ 𝑑𝑖𝑗

𝑗∈𝑅
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If species i occurs in plot P, its local originality in plot P is as follows: 

 

𝑙𝐴𝑉𝑖𝑃 =
1

𝑁𝑃 − 1
∑ 𝑑𝑖𝑗

𝑗∈𝑃
 

 

We defined the diversity of a given plot as the average of the local originalities of its species. This 

diversity metric gives a unique value to each set of species. Thus, in each plot P, we calculated the 

mean of the local originalities of the species (MlOP), which represents a measure of the local trait-

based diversity or phylodiversity within that plot, depending on whether trait-based or phylogenetic 

dissimilarities (dij) were considered; MlOP can be calculated as follows:  

 

𝑀𝑙𝑂𝑃 =
1

𝑁𝑃
∑ 𝑙𝐴𝑉𝑖𝑃

𝑖∈𝑃
=

1

𝑁𝑃

1

𝑁𝑃 − 1
∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑃
 

 

In each plot P, we also calculated the mean of the regional species originalities (MrOP), taken from 

regionally calculated values (rAV) but only for species composing plot P (Figure 2). MrOP can be 

viewed as the average contribution of a species from plot P to the (trait-based or phylogenetic) 

regional diversity and can be calculated as follows: 

 

𝑀𝑟𝑂𝑃 =
1

𝑁𝑃
∑ 𝑟𝐴𝑉𝑖

𝑖∈𝑃
=

1

𝑁𝑃
∑

1

𝑁𝑅 − 1𝑖∈𝑃
∑ 𝑑𝑖𝑗

𝑗∈𝑅
 

 

To test if the observed variations in the mean trait-based and phylogenetic originality along the 

urbanization gradient were due to changes in the originality values of many species or were carried 

by a few very original (or very redundant) species, we calculated the skewness of the phylogenetic 

and trait-based originalities in each plot. We did so for the local and regional originality values. 
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Negative skewness of originality or left-skewed originality represented scenarios with many species 

of high originality and few redundant species. In contrast, positive skewness of originality or right-

skewed originality represented many redundant species and a few highly original species. 

We then created a dataset without 85 non-native species and recalculated all local and regional 

originality scores and all plot-level metrics (species richness and mean and skewness of the 

originalities) to assess the contributions of non-native species to originality. The species richness 

was calculated per plot for both datasets. Finally, we ranked species from the complete dataset 

(native and non-native species) by their regional and local originality values and selected the top 

scoring 5% of the species (the first 30 in the list). We also tested how many species become original 

at the local level although they were not at the regional level. To do so, we calculated the ratio of 

all local originality values to the regional originality value (lAViP / rAVi) for each species. 

Statistical and Spatial Modeling 

We modeled the variation in community metrics with the complete dataset and the only native 

species dataset with generalized mixed linear models in the R package glmmTMB (Millar, 2011); the 

mean, skewness and ratio of trait-based and phylogenetic species originality at local and regional 

levels were calculated with a Gaussian distribution, while the species richness was calculated with 

a negative binomial distribution and a quadratic link between the mean and the variance. We 

included as fixed explanatory variables: the urbanization percentage in the 1 km² cell surrounding 

a given plot, the species richness (except for the model where species richness was a response 

variable) and the survey year, which was transformed by subtracting its minimum value to allow 

the comparison between units of variables. We also included an interaction effect between 

urbanization and species richness. The IDs of the grid cells and the IDs of the plots were modeled 

as random nested variables to account for the pseudoreplication of the plots at the same location. 

Species-specific local originality was tested as a response by adding to the previous mixed models 

the species name as a random factor to control for species that appeared in several plots. Backward 

selection of variables was based on Akaike information criterion (AIC) values, where the lowest 
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AIC value denoted the best model. We calculated the marginal and conditional R² values as 

proposed in Nakagawa and Schielzeth (2013). The marginal R² value describes the proportion of 

variance explained by fixed covariables only. The conditional R² value describes the proportion of 

variance explained by fixed and random covariables. 

As our data were distributed in space, we tested for spatial independence in the residuals of each 

model. We used the local Moran’s I test, or the local indicator of spatial association (LISA, Anselin, 

1995), and visualized it with a correlogram of 500 meter increments for neighborhood definition. 

The significance was assessed based on 999 randomizations with the R package ncf (Bjørnstad and 

Falck, 2001). No spatial autocorrelation was detected in the model residuals, and thus, no 

correction was needed (Figure S1). All statistical analyses were performed with R software version 

3.6.0 (R Core Team, 2019), and statistical significance was considered to be present at α = 0.05. 

RESULTS 

Community Level Metrics 

All model results with the complete dataset are presented in Table 1. We observed a significant 

positive effect of urbanization on the mean trait-based originality, or trait-based diversity, of plots 

at both the regional and local scales. Species richness had a significant positive effect only on local-

scale trait-based diversity. That is, the higher species richness was, the more the species differed 

locally in their traits. There was, however, a significant interaction effect between urbanization and 

species richness at both scales, such that the positive effect of urbanization on trait-based diversity 

(MlO and MrO with trait-based dij values) tended to decrease with increasing species richness and 

vice versa to the point of becoming negative for the highest levels of species richness (Figure 3A,B). 

Trait-based diversity at the local scale significantly decreased with the survey year. The mean 

phylogenetic originality of the plots decreased with urbanization and species richness only when 

evaluated at the regional scale (MrO with phylogenetic dij values, Figure 3C). However, there was 

also a significant interaction between species richness and urbanization: the negative effect of 

urbanization decreased with increasing species richness and vice versa. The mean phylogenetic 
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originality of the plots increased with the sample year at the regional scale only. 

The skewness of trait-based originality at the local scale and phylogenetic originality at the local 

and regional scales did not change with urbanization. We found that the skewness of local trait-

based originality significantly changed with species richness from close to zero to positive values 

(Figure 4A). The skewness of local phylogenetic originality changed accordingly. The interaction 

between urbanization and species richness was not significant, and models were simplified to the 

main effects only, except for the skewness of the local phylogenetic originality. A significant 

interaction effect on the skewness of local phylogenetic originality was such that the positive effect 

of species richness decreased with urbanization to the point of becoming negative for the highest 

levels of urbanization (Figure 4D). The skewness of regional trait-based originality changed from 

near-zero values to positive values with urbanization and species richness (Figure 4B). For the 

skewness of regional phylogenetic originality, only species richness had a significant positive effect 

(Figure 4C). The sampling year was not linked with trait-based and phylogenetic originality 

skewness at both scales. Finally, the species richness of the plots increased along the urbanization 

gradient and did not change significantly across the years. 

Species Level Metrics 

For each species, we calculated its local and regional trait-based and phylogenetic originalities, 

which allowed the identification of the most original species. Among them, we found common 

species such as the annual bluegrass Poa annua and the dandelion Taraxacum sect. Ruderalia (Table 

S3). When we modeled the species-specific originalities directly, only local originality was 

investigated. The trait-based originality for each species increased significantly with both 

urbanization and species richness and decreased across the years. The significant interaction 

between urbanization and species richness on the species-specific trait-based originality decreased 

the positive urbanization effect in plots with greater species richness (Figure S2A). Species 

phylogenetic originality was not influenced by urbanization but increased with species richness and 

decreased with the sampling year. There was, however, a significant effect of the interaction 
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between urbanization and species richness on species phylogenetic originality; the positive effect 

of species richness decreased in the most urbanized plots (Figure S2B). Finally, Spearman’s 

correlation was not significant between the per-species local phylogenetic and trait-based 

originalities (r = 0.04, p = 0.20). 

The ratio of local to regional trait-based originality increased significantly with both urbanization 

and species richness. Due to the interaction with species richness, the positive effect of 

urbanization on the trait-based ratio of originality decreased in richer plots and vice versa (Figure 

S3A). The sampling year was excluded from the model after AIC backward variable selection. We 

found that Spearman’s correlation between the mean of the local trait-based originalities of a 

species and its regional trait-based score was highly significant (r = 0.78, p < 0.001). Finally, species 

urbanity increased with the local trait-based originalities of native and non-native species (Figure 

S4A, Spearman’s correlation coefficient r = 0.17, p < 0.001) but not with the regional originality (r 

= -0.01, p = 0.80). Species urbanity was higher in species that became more original locally than 

they were regionally (Figure S4A). 

Concerning the ratio of local to regional phylogenetic originality, no effect of urbanization alone 

was detected, but there was a significant increase with species richness. Moreover, there was a 

significant effect of the interaction between urbanization and species richness on the ratio of local 

to regional phylogenetic originality; the positive effect of species richness decreased in the most 

urbanized plots (Figure S3B). The phylogenetic originality ratio decreased with the sampling year. 

We also found that the most phylogenetically original species were not the same at the local and 

regional scales. In addition, Spearman’s correlation was low and not significant (r = -0.06, p = 0.11) 

between the average of the local phylogenetic originalities of a species and its regional phylogenetic 

originality score. Finally, species urbanity was higher in less phylogenetically original species at the 

regional scale in both native and non-native species (Spearman’s correlation coefficient r = -0.15, 

p < 0.001, Figure S4B). 
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Dataset without Non-native Species 

Removing 85 non-native species (14.6% of the total regional pool), which occurred in 709 out of 

2362 plots, had a minimal effect on the results of the previous models (Table S4). The only 

differences we found were that 1. the year of sampling had a significant negative effect on mean 

regional trait-based originality (the effect was not significant with the complete dataset); 2. inversely, 

it had no significant effect on the mean regional phylogenetic originality (positive effect with the 

complete dataset); and 3. the skewness of the local phylogenetic originality was not impacted by 

species richness (positive effect with the complete dataset). 

At the local scale, non-native species were significantly more original than native species due to 

their trait values (Wilcoxon paired rank test W=5819854, p < 0.001, Figure S5A) and less original 

due to their phylogeny (W=11347166, p < 0.001, Figure S5B). Twelve out of thirty species in the 

top 5% of trait-based original species at the local scale were non-native. At the regional level, non-

native species were significantly more original than native species in their traits (W = 18069, p < 

0.001, Figure S5C) and not significantly different by their phylogenetic relations (W = 24375, p = 

0.62, Figure S5D). 

DISCUSSION 

Urbanization affects ecosystems at multiple scales (Aronson et al. 2016) by changing community 

phylogenetic structure (Ricotta et al., 2009; Knapp et al., 2017; Sol et al., 2017) and species trait 

distributions (Williams et al., 2015). While urban ecosystem structure is often studied at the 

community scale, it is still difficult to evaluate the role and contribution of each species to local 

diversity. We provide a promising tool that relies on the originality values calculated for each species 

relative to the co-occurring species within its community. Our approach is conceptually simple: 

species originality is measured as an average distance from a focal species to all the others in the 

community. It has recently been proposed to use the originality indices for diversity evaluations 

(see Kondratyeva et al., 2019, section II.3.b). Species originality indices can indeed be used for 

evaluation of local diversity by calculating the mean of species originality scores in a local set of 
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species (Ricotta et al., 2016). Thus, our study is a first application of this framework to the urban 

context that considers the two spatial scales, which are the area over which originality is calculated. 

Trait-based Originality of  Urban Communities 

In our case study, the regional trait-based originality of a species increased the local trait-based 

diversity of communities with increasing urbanization. In other words, species that were highly 

original at the regional scale were also the most original at the local scale relative to their trait-based 

dissimilarities, and original species were more frequent in urbanized areas than in non-urbanized 

areas. Species in urbanized areas were even more original at the local scale than at the regional scale, 

rendering them the unique representatives of some traits. However, the most important ecosystem 

processes are usually ensured by common redundant species (Mouillot et al., 2013b; Brandl et al., 

2016). To a certain level of species richness, plant community trait-based diversity (and species 

trait-based originality) continued to increase with urbanization. Beyond that level, the number of 

redundant species started to increase, accordingly leading to positive skewness of the originality 

values and making the communities more resilient to environmental changes (McLean et al., 2019). 

Therefore, in more-urbanized areas, a few species with high trait-based originality contributed to 

the increase of community trait-based diversity but did not participate much in ecosystem stability. 

However, throughout the years of the study, trait-based originality decreased at both scales, and 

fewer species became original at the local scale compared to at the regional scale. Urban land 

modification may intensify with time and indicate a growing biotic homogenization of local plant 

communities (McKinney, 2006). 

The species with the highest trait-based originality occurred rarely, only appearing once or twice in 

the whole 10-year dataset. However, three of these species have been found in many different 

communities and in the top 5% of original species: Erigeron sumatrensis, which is a highly original 

non-native species with high urbanity; and species of the Taraxacum sect. Ruderalia and Poa annua, 

both of which are native and highly common in the Île-de-France region. Thus, these three 

widespread species greatly contributed to the trait-based diversity of local communities and of the 
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whole region. At the same time, the omnipresence of the same species in urban habitats can lead 

to biological homogenization, such shown in birds (Devictor et al., 2008) and plants (McKinney, 

2006) across cities. Indeed, T. sect. ruderalia and P. annua are urbanoneutral species (Hill et al., 2002); 

in other words, they are less affected than other species by urbanization disturbances (CBNBP, 

2016). Such highly common and dominant species could take over the majority of urban ecosystem 

resources, pushing other less frequent species to adapt different trait values, giving the 

urbanoneutral species higher trait-based originality. 

Phylogenetic Originality of  Urban Communities 

The patterns we obtained with phylogenetic originality were different from those obtained with 

trait data. Knapp et al. (2008) found that urbanophilic species with well-adapted traits for urban 

environmental conditions are phylogenetically more distinct in urban areas than maladapted 

species. In our dataset, a highly phylogenetically original plant species was not necessarily original 

in its traits, and vice versa. This corresponds to findings of Lososová et al. (2016) that phylogenetic 

diversity is only a weak proxy for the functional diversity of urban plant communities. Overall, the 

use of phylodiversity as a proxy for trait-based diversity (feature diversity, Faith, 1992) has been 

recently challenged (Mouquet et al., 2012; Cadotte et al., 2017) and has received mixed empirical 

evidence (e.g., Mazel et al., 2017, 2018, 2019; but see Owen et al., 2019). However, there is emerging 

evidence of rapid urbanization-driven trait evolution that stresses the need to include the eco-

evolutionary implications of urbanization, especially for species that may play key roles in 

ecosystem functioning (Alberti, 2015). 

Contrary to the trends seen in trait-based originality, local and regional phylogenetic originalities 

were not correlated in our dataset. There was no straightforward evidence for an effect of 

urbanization on the phylogenetic diversity calculated with local originality values. It seems that 

urbanization levels predominantly affect the contribution of local plots to the regional 

phylodiversity. This is in line with the results of Knapp et al. (2012), who found a decrease in 

phylodiversity on a large scale but no clear trend in phylodiversity on the small scale of household 
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yards across a gradient of housing density in the US. Therefore, we proposed to study the effects 

of urbanization on herbaceous plant community phylodiversity through regionally measured 

originality, where all relations in the species pool were considered. In our data, more-related species 

(less original) at the regional scale constituted local urban communities of the Île-de-France region, 

thus decreasing regional phylodiversity at the local scale. Many species became phylogenetically 

original in rich local communities compared to their regional originality; however, increasing 

urbanization slowed down this increase. A community with a few distantly related species can have 

a higher phylodiversity than richer communities with more closely related species (Knapp et al., 

2012). Indeed, in our dataset, the mean regional phylogenetic originality represented in a single plot 

decreased with growing species richness. Moreover, there was a global gain in regional phylogenetic 

originality through the years, but a loss of phylogenetically original species at a local scale, again 

showing the importance of the spatial scale of a study. 

Species found in the top 5% of the most phylogenetically original species at local and regional 

scales were mostly monocotyledons (Table S3). This is primarily an effect of the lower number of 

monocotyledon species than dicotyledon species in the regional pool. Because of the large 

phylogenetic age of the split between these two plant groups (Chaw et al., 2004), a lower number 

of monocotyledons makes these species more distantly related on average to all species other than 

those that are classified as dicotyledons. 

Species Richness and Non-native Species Originality 

Even if our 586 species set was a sample of the whole Île-de-France region flora, where more than 

2064 vascular plant species have been recorded (CBNBP, 2016), we found a broadly observable 

pattern of species richness increase in local plots with urbanization both in plots with and without 

non-native species. Non-native species are often promoted in areas disturbed by urbanization 

(Kühn et al., 2017). Nevertheless, non-native species did not contribute more to the community 

diversity, and their removal in our data hardly influenced community structure, although non-native 

species were more functionally original compared to native species at both the local and regional 



91 
 

levels. Non-native species are also filtered by urbanization and have specific environmental 

preferences, making them rare specialists within many urban habitat patches (McKinney, 2006; 

Godefroid and Ricotta, 2018). In contrast, the observed loss in mean regional phylogenetic 

originality in urbanized areas could not be outweighed by the presence of non-native species, which 

are less phylogenetically original than natives. Similarly, Knapp et al. (2017) found that changes in 

the native flora of Halle (Germany), which caused a loss of phylogenetic diversity, could not be 

compensated by the introduction of non-native species. Moreover, the presence of non-native 

species decreased the phylodiversity of plant communities in Ricotta et al. (2009) and Čeplová et 

al. (2015) and the similarly for bird communities where exotic species could not completely 

compensate for the loss of phylogenetic diversity resulting from the loss of native species (Sol et 

al., 2017). Finally, our results are also in line with the trend of non-native species promoting 

homogenization globally (Winter et al., 2009) and contrast the findings of Kühn and Klotz (2006), 

which indicated that after 1500 AD, non-native species promoted differentiation of the plant 

species assemblages in cities. 

CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH 

Cities are complex urban ecosystems, and their functioning tends to be different than that of natural 

ecosystems because of the human element (Rebele, 1994; Grimm et al., 2000). Expanding 

ecological knowledge and expertise can enhance our understanding of the responses of biodiversity 

to urbanization. Local ecological knowledge is required for more targeted urban management 

(McPhearson et al., 2016). Originality measures determine which species contribute the most to 

local and regional diversities. Applied to the urban context, originality measures can easily evaluate 

local biodiversity by integrating multiscale biological species information. 

Our originality framework helps to determine the most relevant spatial scale for efficient urban 

management (e.g., plant phylogenetic originality was influenced by urbanization on a regional scale 

only). Moreover, the originality framework determines which original or redundant species are 

responsible for variations in trait-based diversity and phylodiversity. Here, we showed notably that 



92 
 

urbanization causes some species to have higher trait-based originality at the local community scale 

than at the regional scale. Although we observed that original species were more frequent in 

urbanized areas, we also showed that this originality decreased over time, resulting in less diverse 

communities and regions. Moreover, we showed that the increase in trait-based originality in 

urbanized areas may be partly hampered by the presence of redundant species in the richest plots. 

In our case study, the phylogenetic diversity of local plots was not impacted by urbanization. 

However, species in local urbanized plots tended to be among the least regionally original species, 

implying a negative effect of urbanization on regional phylogenetic diversity. 

Although our study demonstrates the potential of the originality framework, we do not pretend to 

affirm any generalizations about urban plant communities based on our case study. Here, the 

urbanization gradient was characterized by a single measure, i.e., the proportion of urbanized areas 

(including individual and collective housing, industrial and business areas, facilities, quarries, dumps 

and worksites and transportation infrastructure). Although this urbanization measure combines 

diverse types of urban infrastructures and impervious surfaces, it does not distinguish among the 

range of urban microhabitats and does not account for many urbanization-related changes, such as 

soil compaction, eutrophication and air, soil and water pollution (McDonnell and Hahs, 2008). 

Therefore, future urban ecology studies could use multidimensional composite measures of 

urbanization to provide a more holistic understanding of the effects of urbanization on biological 

diversity (Moll et al., 2019). In addition, our dataset did not allow us to account for species 

abundance, which can drastically change conclusions about ecosystem functioning, where a high 

number of individuals supporting the same trait can ensure greater stability (Walker et al., 1999; 

D’agata et al., 2016). The weighting of originality measure with species relative abundances could 

address such an issue, thus regulating the relative importance given to rare vs. abundant species 

(Kondratyeva et al., 2019). 

To our knowledge, originality measures have usually been employed for conservation purposes on 

a global scale (e.g., Jetz et al., 2014; Redding et al., 2015a; Thévenin et al., 2018). Here, we applied 
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them at the local scale of urban plant communities. Future research could now aim to develop 

cross-city comparative research on species originality using urban systems networks, such as the 

Urban Biodiversity Research Coordination Network (UrBioNet, http://urbionet.weebly.com/). 

Citizen science programs, which are deployed in urban areas, are also a good starting base for 

exchange in sustainable city development, which include scientists, policymakers and citizens. To 

complement these programs, we showed that our conceptual framework of originality measures 

deserves more attention by city planners working tightly with urban ecologists. 
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Table 1 Results for the generalized linear mixed models (GLMM) that were run on the complete dataset (native + non-native species), including 9 

community level metrics (means and skewness of local and regional trait-based and phylogenetic originalities and species richness) and 4 species-

specific measures (trait-based and phylogenetic originality and local to regional ratios). 

 

The Estimated coefficients and their significance levels are shown for the explanatory variables that remained after backward selection of variables 

based on Akaike information criterion (AIC) values, including urbanization percentage, species richness, the interaction (U×SR) between 

urbanization and species richness and the sampling year. The value "excluded" means that the explanatory variable was not retained in the final 

model according to the Akaike criterion. The conditional and marginal R² values describe the proportion of variance explained by the fixed (R²c) 

and random+fixed (R²m) covariables. P-values: NS = nonsignificant (P>0.050); * = 0.010 < P ≤ 0.050; ** = 0.001 < P ≤ 0.010; *** = P ≤ 0.001 
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 Intercept 
Urbanization 
(U) Species richness (SR) Sampling year U×SR R²c R²m 

Dependent variable             

Mean local trait-based 
originality 4.7 10-1  *** 7.7 10-4  *** 9.9 10-4  *** -8.3 10-4 ** -2.4 10-5  *** 0.44 0.14 

Mean regional trait-based 
originality 5.2 10-1 *** 2.8 10-4  *** -2.1 10-5 NS -1.3 10-4 NS -9.8 10-6  *** 0.64 0.10 

Mean local phylogenetic 
originality 2.3 10² *** -3.4 10-2 NS 9.6 10-2 NS -3.9  10-1NS -4.9 10-3 NS 0.27 0.01 

Mean regional phylogenetic 
originality 2.4 10² *** -8.6 10-2  *** -2.4 10-1 *** 1.3 10-1  ** 2.2 10-3 * 0.63 0.10 

Skewness of local trait-based 
originality 9.2  10-2 *** 7.5 10-4 NS 2.6 10-2 *** -2.3 10-3 NS excluded 0.22 0.14 

Skewness of regional trait-
based originality -2.1 10-2 NS 1.5 10-3  *** 3.4 10-2 *** -2.7 10-3 NS excluded 0.34 0.20 

Skewness of local 
phylogenetic originality 4.0 10-1  *** 6.8 10-4 NS 6.5 10-3 ** -4.9 10-3 NS -2.3 10-4  *** 0.15 0.01 

Skewness of regional 
phylogenetic originality -4.5 10-2  NS 9.2 10-4 NS 1.5 10-2 *** 2.2 10-3 NS excluded 0.28 0.05 

Species richness 1.0 10 NS   4.5 10-3  *** omitted -4.1 10-1 NS omitted 3.7 10-2 2.3 10-3 

Trait-based originality 4.8 10-1 *** 3.8 10-4  *** 9.1 10-4  *** -5.6 10-4 *** -1.1 10-5  *** 0.68 0.03 

Phylogenetic originality 9.4 10-3 NS 8.0 10-4 NS 8.4 10-3  *** -6.9 10-3 ** -1.6 10-4  ** 0.46 3.8 10-2 

Local/regional trait-based 
originality 9.1 10-1 *** 7.4 10-4  *** 1.8 10-3  *** excluded -2.0 10-5  *** 0.46 0.06 

Local/regional phylogenetic 
originality 9.5 10-1 *** 1.4 10-4 NS 1.2 10-3  *** -9.5 10-4 * -2.4 10-5 *** 0.54 2.9 10-2 

.
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Figures 

 

Figure 1 Land cover and spatial distribution of the sampling plots. The map shows the Île-de-

France region, including its largest city Paris and approximately 1300 other cities and towns, which 

is represented by urbanized areas in red (including individual housing (8%), collective housing (2%), 

industrial and business areas (2%), facilities (1%), quarries, dumps and worksites (0.5%) and 

transportation infrastructure (2.5%)). The urbanization cover and other land cover types (spatial 

resolution of 12.5 meters) that correspond to forests (dark green; 24% of total area), seminatural 

areas (bright green, 2%), agricultural areas (beige, 50%), artificial open areas (violet, 6%) and rivers 

and water points (blue, %) were extracted from data from the Institut d’Aménagement et 

d’Urbanisme (IAU, 2017). The blue dots represent the 2362 sampling plots of Vigie-flore from 

2009 to 2017 (many of them are superimposed). 
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Figure 2 Conceptual framework for measuring species trait-based and phylogenetic originality 

and diversity at multiple spatial scales. We illustrate this framework with a theoretical set of five 

plant species (Sp). First, the pairwise distances among species are calculated to form a 

dissimilarity matrix based on a set of species trait values using Gower’s metric for several types 

of traits (1.1, where Tr T is a species trait) or using species phylogenetic distances represented 

by branch lengths in millions of years (1.2). Second, species originality (trait-based or 

phylogenetic) is calculated at the regional scale considering all species from the regional pool 

(2.1, rAVi) and at the local scale considering only species from a local plot P (2.1, lAViP). The 

fewer trait values that species Sp shares with the other species (in a region or in a local plot), 

or the fewer species Sp are related to the other species, the more original it is. Finally, 

community metrics are measured for each plot P (3): the mean of regionally measured 

originality values (MrOP) and their skewness, the mean of locally measured originality values 

(MlOP) and their skewness, and species richness. MrOP  represents the regional originality of 

the local plot, and MlOP represents a measure of local species diversity. 
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Figure 3 Variation in (A) mean regional trait-based originality, (B) mean local trait-based originality 

(local trait-based diversity) and (C) mean regional phylogenetic originality according to the 

percentage of urbanization within a 1 km² grid cell (grid cell corresponds to the Vigie-flore 

protocol) and species richness with a complete species dataset (natives and non-natives). One data 

point represents one species plot. The colors represent a scale of species richness (SR) going from 

blue for low SR (minimum of 3 species) to red for high SR (maximum of 50 species). Colored 

curves represent the estimated trends of an interaction between urbanization and SR for 5 (blue), 

25 (salmon) and 40 (red) species retrieved from the mean originality GLMM models. 
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Figure 4 The skewness of the (A) regional and (B) local trait-based originality and the (C) regional 

and (D) local phylogenetic originality according to the species richness (SR) in each species plot of 

the complete dataset. One data point represents one plot. In (A, B, C), the black curve represents 

the estimated trend retrieved from the skewness GLMM models. In (D), the colors represent a 

scale of urbanization gradient calculated as the percentage of urbanized area cover; the colored 

lines represent the estimated trends in an interaction between SR and urbanization for 0%, 50% 

and 100%, respectively, within a 1 km² grid cell, retrieved from the skewness GLMM model. 
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Supplementary Table 1. A list of traits and their states (for traits with multiple categories), trait description according to LEDA (Kleyer et al., 2008) 

and BiolFlor (Klotz et al., 2002) databases, sources data bases, type of trait variable and the proportion of total species number with missing data for 

each trait. 

Trait 
Trait states 

(species number)* Description 

Source data 
base 

Variable type 

Proportion 
(%) of total 

species 
number with 
missing data 

Begin of flowering    

Start of flowering period (month) 

BiolFlor; 
Catminat; 

Multiple online 
sources 

circular 0 

Duration of 
flowering   

Duration of flowering period (month) 

BiolFlor; 
Catminat; 

Multiple online 
sources 

quantitative 0 

Life span 

annual (228) 

The individual cycle lasts for a 
maximum of one year (12 months) 

BiolFlor; 
Ecoflora 

binary 0 

biannual (73) 

The plant has a vegetative growth for 
approx. one year before reaching the 
generative phase after which it 
completes its life cycle 

perennial (350) 

The plant has more than one 
generative phase in its life 
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pluriannual (33) 

The plant has a vegetative growth 
longer than one year (up to 5 years) 
before completing its life cycle after 
the first and only generative 
reproduction stage 

Pollination vector 

Apomixis (1) Asexual reproduction, no fertilization 

BiolFlor; 
Ecoflora; 
Catminat 

binary 0 

Geintonogamy (13) Pollination by a neighboring flower 

Insects (442) Pollination by insects 

Self spontaneous 
(366) 

Spontaneous pollination within a 
flower 

Water (1) Pollination on or below water 

Wind (156) Pollination by wind 

Seed dispersal 
mode 

Self dispersal (227) 

Seed dispersal by an explosive 
mechanism, by gravity, by 
autonomous placement of seeds or 
daughter plant away from mother 
plant   

BiolFlor; 
Catminat 

binary 0.1 

Dispersal by wind 
(338) 

Seed dispersal by wind and by rolling 
over soil with wind  

Dispersal by animals 
(505) 

Seed dispersal by hoarding by animals, 
dispersed after digestion or by 
adhesion on animals 

Dispersal by human 
activity (357) 

Seed dispersal by trading of 
seeds/plants and with agricultural 
seeds 

Dispersal by water 
flows (383) 

Seed dispersal by surface currents and 
by raindrops 
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Method of 
reproduction 

s (297) Reproduction only by seed or by spore 

BiolFlor; 
Ecoflora 

ordinal 0.1 

ssv (39) 

Reproduction is mostly by seed, rarely 
vegetative 

sv (205) 

Reproduction can be by seed and 
vegetative equally 

vvs (22) 

Reproduction is mostly vegetative, 
rarely by seed 

v (2) Reproduction is only vegetative 

Seed weight 

 

Mean of seed weight (mg) 
LEDA; TRY; 

Multiple online 
sources 

quantitative 2.29 

LDMC (mg/g) 

  

Leaf Dry Mass Content is a measure of 
tissue density, is the ratio dry leaf mass 
to fresh leaf mass 

LEDA; TRY quantitative 14 

Leaf size 

  

Leaf size is the one-sided projected 
surface area of an individual leaf or 
lamina (mm2) 

LEDA; TRY; 
Multiple online 

sources 
quantitative 19.8 

SLA 
  

Specific Leaf Area is a ratio of fresh 
leaf area to leaf dry mass (mm2/mg) 

LEDA; TRY quantitative 9.65 

Plant height 

  

Mean distance between ground and 
the highest photosynthetic tissue of 
plant (meters) 

BiolFlor; 
Multiple online 

sources 
quantitative 0 

* multiple states are possible for a single species.
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Supplementary material for DaPhnE phylogeny manipulation 

Supplementary Table 2. Species names replaced in DaPhnE by their synonyms as found in Vigie-

flore database:  

Species name available in DaPhnE 

Synonym from Vigie-flore (*name available in 

Daphne but changed to match with trait 

databases) 

Amaranthus chlorostachys 

Centunculus minimus  

Halimione pedunculata   

Helictotrichon pubescens 

Carex otrubae 

Carex ovalis 

Microrrhinum minus    

Calamintha menthifolia    

Virga pilosa    

Roegneria canina    

Elytrigia repens    

Conyza sumatrensis    

Ranunculus ficaria    

Picris echioides    

Inula conyzae    

Galeobdolon luteum    

Coronopus didymus    

Cardaria draba    

Peplis portula 

Amaranthus hybridus* 

Anagallis minima 

Atriplex pedunculata  

Avenula pubescens    

Carex cuprina  

Carex leporina 

Chaenorrhinum minus  

Clinopodium menthifolium  

Dipsacus pilosus 

Elymus caninus    

Elymus repens 

Erigeron sumatrensis     

Ficaria verna 

Helminthotheca echioides 

Inula conyza 

Lamiastrum galeobdolon  

Lepidium didymum 

Lepidium draba* 

Lythrum portula 



116 
 

Medicago x varia    

Listera ovata     

Oxalis fontana    

Hieracium pilosella     

Persicaria dubia     

Fallopia japonica     

Tripleurospermum perforatum     

Pseudolysimachion spicatum     

Taraxacum sect. Ruderalia     

Arabis glabra        

Elytrigia x laxa 

Medicago sativa* 

Neottia ovata    

Oxalis stricta    

Pilosella officinarum    

Polygonum mite    

Reynoutria japonica*    

Tripleurospermum inodorum   

Veronica spicata    

Taraxacum ruderale    

Turritis glabra* 

Elymus pungens 

 

Vigie-flore species not found in Daphne phylogeny and added manually: 

Almost all species from Vigie-flore were present in Daphne, except 15 species which were placed 

to the phylogeny by hand, using existing trees from the literature. We used published molecular 

phylogenies (see below) to place the missing species on the DaPhnE phylogeny according to their 

closest relatives using functions of packages phytools (Revell 2012) and ape (Popescu) in R (R Core 

Team 2019). Taxa were either placed as polytomies or halfway between existing nodes, depending 

on tree topologies. 

Species added with the reference used: 

Antinoria agrostidea (Inda et al., 2008), Bellis annua (Brouillet et al., 2009), Bromus rubens (Fortune et 

al, 2008), Bryonia cretica (Volz and Renner, 2008), Carex mairei (Escudero et al., 2010), Centaurea 

debeauxii (López-Alvarado et al, 2014), Crepis pursifolia (Enke and Gemeinholzer, 2008), Helictotricon 

sempervirens (Rodrigues et al., 2017), Hypericum perfoluatum (Meseguer et al., 2013), Impatiens balsamina 

(Janssens et al., 2006), Potentilla montana (Kechaykin and Shmakov, 2016), Silene laeta (Frajman et al., 

2009), Trifolium pallidum (Ellison et al., 2006), Verbena bonariensis (Marx et al., 2010), Vulpia muralis 
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(Inda et al., 2008).  

References for phylogeny manipulations: 

Brouillet, L., Lowrey, T. K., Urbatsch, L., Karaman-Castro, V., Sancho, G., Wagstaff, S., et al. 

(2009). “Phylogeny and evolution of the Astereae (Compositae or Asteraceae)”. In: Systematics, 

evolution and biogeography of the Compositae. ed. Funk, V.A, Susanna, A., Stuessy, T., and Bayer, 

R. (Vienna: IAPT), p. 589 – 629. 

Ellison, N. W., Liston, A., Steiner, J. J., Williams, W. M., and Taylor, N. L. (2006). Molecular 

phylogenetics of the clover genus (Trifolium-Leguminosae). Mol. Phylogenet. Evol. 39, 688–705. 

doi:10.1016/j.ympev.2006.01.004. 

Enke, N., and Gemeinholzer, B. (2008). Babcock revisited: new insights into generic delimitation 

and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. 

Taxon 57, 756–768. 

Escudero, M., Hipp, A. L., and Luceño, M. (2010). Karyotype stability and predictors of 

chromosome number variation in sedges: A study in Carex section Spirostachyae (Cyperaceae). 

Mol. Phylogenet. Evol. 57, 353–363. doi:10.1016/j.ympev.2010.07.009. 

Fortune, P. M., Pourtau, N., Viron, N., and Ainouche, M. L. (2008). Molecular phylogeny and 

reticulate origins of the polyploid Bromus species from section Genea (Poaceae). Am. J. Bot. 95, 

454–464. doi:10.3732/ajb.95.4.454. 

Frajman, B., Heidari, N., and Oxelman, B. (2009). Phylogenetic relationships of Atocion and 

Viscaria (Sileneae, Caryophyllaceae) inferred from chloroplast, nuclear ribosomal, and low-copy 

gene DNA sequences. Taxon 58, 811–824. 

Inda, L. A., Segarra-Moragues, J. G., Müller, J., Peterson, P. M., and Catalán, P. (2008). Dated 

historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and 

southern hemispheres. Mol. Phylogenet. Evol. 46, 932–957. doi:10.1016/j.ympev.2007.11.022. 

Janssens, S., Geuten, K., Yuan, Y.-M., Song, Y., Küpfer, P., and Smets, E. (2006). Phylogenetics of 

Impatiens and Hydrocera (Balsaminaceae) Using Chloroplast atpB-rbcL Spacer Sequences. Syst. 
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Kechaykin, A. A., and Shmakov, A. I. (2016). A system of subtribe Potentillinae J. Presl (Rosaceae 

Juss.). Turczaninowia 19, 114–128. doi:10.14258/turczaninowia.19.4.16. 

López-Alvarado, J., Sáez, L., Filigheddu, R., Garcia-Jacas, N., and Susanna, A. (2014). The 

limitations of molecular markers in phylogenetic reconstruction: The case of Centaurea sect. 

Phrygia (Compositae). Taxon 63, 1079–1091. doi:10.12705/635.6. 

Marx, H. E., O’Leary, N., Yuan, Y. W., Lu-Irving, P., Tank, D. C., Múlgura, M. E., et al. (2010). A 

molecular phylogeny and classification of Verbenaceae. Am. J. Bot. 97, 1647–1663. 

doi:10.3732/ajb.1000144. 

Meseguer, A. S., Aldasoro, J. J., and Sanmartín, I. (2013). Bayesian inference of phylogeny, 

morphology and range evolution reveals a complex evolutionary history in St. John’s wort 

(Hypericum). Mol. Phylogenet. Evol. 67, 379–403. doi:10.1016/j.ympev.2013.02.007 

Popescu, A.-A., K. T. Huber and E. Paradis (2012). "ape 3.0: new tools for distance based 

phylogenetics and evolutionary analysis in R." Bioinformatics 28, 1536–1537,DOI: 

10.1093/bioinformatics/bts184. 

Revell, L. J. (2012). "phytools: an R package for phylogenetic comparative biology (and other  

things)." Methods Ecol. Evol. 3(2): 217-223 DOI: 10.1111/j.2041 

-210X.2011.00169.x. 

Rodrigues, J., Viegas, W., and Silva, M. (2017). 45S rDNA external transcribed spacer organization 

reveals new phylogenetic relationships in Avena genus. PLoS One 12, 1–17. 

doi:10.1371/journal.pone.0176170. 

Volz, S. M., and Renner, S. S. (2008). Hybridization, polyploidy, and evolutionary transitions 

between monoecy and dioecy in Bryonia (Cucurbitaceae). Am. J. Bot. 95, 1297–1306. 

doi:10.3732/ajb.0800187. 



119 
 

Supplementary Table 3. Lists of top 5% (30 out of 586 species) original species using regional scores and mean local scores for each species across all 

the plots it occurred in. Trait-based originality unit relies on Gower distances calculated for species’ pairwise trait differences, bounded between 0 and 

1, and phylogenetic originality unit represents Million years of evolution.  

Regional trait-based originality 
(min=0.44, median =0.52, max=0.67 

Mean of all local trait-based originalities 
(min=0.36, median=0.48, max=0.71) 

Regional phylogenetic originality 
(min=218.51, median=237.20, max=287.28) 

Mean of all local phylogenetic originalities 
(min=90.41, median=233.56, max=297.20) 

Exaculum pusillum 0.67 Helictotrichon sempervirens* (1) 0.71 Lemna minor 287.28 Vulpia muralis (1) 297.20 

Antinoria agrostidea 0.67 Vulpia muralis (1) 0.67 Alisma lanceolatum 287.02 Antinoria agrostidea (1) 297.20 

Minuartia viscosa 0.65 Exaculum pusillum (1) 0.67 Alisma plantago-aquatica 287.02 Triticum monococcum (1) 295.60 

Bellis annua* 0.65 Trifolium pallidum*(1) 0.67 Arum italicum 286.97 Carex pseudocyperus (1) 295.60 

Erigeron sumatrensis* 0.64 Arctium nemorosum (1) 0.65 Arum maculatum 286.97 Platanthera bifolia (2) 290.44 

Potentilla montana 0.64 Antinoria agrostidea (1) 0.65 Tamus communis 284.20 Muscari neglectum (2) 290.03 

Phragmites australis 0.63 Veronica acinifolia (1) 0.65 Colchicum autumnale 283.74 Arum italicum (1) 288.87 

Carex mairei 0.63 Minuartia viscosa (1) 0.64 Iris pseudacorus 282.28 Dactylorhiza maculata (1) 288.23 

Arctium nemorosum 0.63 Erigeron sumatrensis* (76) 0.64 Allium cepa* 281.44 Alisma plantago-aquatica (2) 286.27 

Anagallis minima 0.63 Bellis annua (2) 0.64 Allium sphaerocephalon 281.34 Arum maculatum (24) 285.85 

Stellaria media 0.63 Triticum monococcum* (1) 0.62 Allium vineale 281.34 Allium cepa* (1) 285.28 

Utricularia australis 0.63 Orobanche picridis (11) 0.62 Goodyera repens* 281.12 Sorghum halepense* (1) 285.28 

Trifolium pallidum* 0.62 Heracleum mantegazzianum* (1) 0.62 Cephalanthera damasonium 281.01 Anthericum ramosum (1) 285.28 

Triticum monococcum* 0.62 Petroselinum crispum* (1) 0.62 Neottia ovata 280.96 Setaria viridis (3) 285.24 

Helictotrichon sempervirens* 0.62 Centaurea debeauxii (1) 0.61 Epipactis atrorubens 280.92 Alisma lanceolatum (1) 285.15 

Amaranthus hybridus* 0.62 Artemisia verlotiorum* (2) 0.61 Epipactis helleborine 280.92 Carex pendula (1) 283.45 

Vulpia muralis 0.62 Anagallis minima (1) 0.61 Himantoglossum hircinum 280.63 Iris pseudacorus (2) 282.95 

Poa annua 0.62 Impatiens balfourii* (2) 0.61 Ophrys apifera 280.63 Anemone sylvestris (1) 282.80 

Veronica acinifolia 0.62 Potentilla montana (5) 0.61 Dactylorhiza maculata 280.61 Scilla autumnalis (1) 282.70 

Centaurea debeauxii 0.61 Beta vulgaris* (2) 0.61 Anthericum ramosum 280.60 Goodyera repens* (1) 282.70 

Veronica agrestis 0.61 Catapodium rigidum (8) 0.60 Platanthera bifolia 280.59 Himantoglossum hircinum (7) 282.24 

Heracleum mantegazzianum* 0.61 Sison amomum (2) 0.60 Platanthera chlorantha 280.59 Allium vineale (5) 282.08 
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Orobanche picridis 0.61 Bromus catharticus* (4) 0.60 Convallaria majalis 280.46 Tamus communis (29) 281.52 

Bromus diandrus 0.61 Crepis bursifolia* (3) 0.59 Polygonatum multiflorum 280.41 Anemone nemorosa (40) 280.84 

Arum italicum 0.60 Arum italicum* (1) 0.59 Polygonatum odoratum 280.41 Colchicum autumnale (1) 279.06 

Lemna minor 0.60 Centaurea microptilon (2) 0.59 Ornithogalum pyrenaicum 280.36 Helictotrichon sempervirens (1) 278.54 

Amaranthus blitoides* 0.60 Persicaria amphibia (6) 0.58 Hyacinthoides non-scripta 280.28 Ranunculus flammula (1) 278.53 

Sison amomum 0.60 Phragmites australis (2) 0.58 Scilla autumnalis 280.26 Ranunculus bulbosus (10) 278.33 

Poa bulbosa 0.60 Poa annua (319) 0.58 Muscari comosum 280.24 Lemna minor (1) 275.44 

Taraxacum sect. ruderalia 0.60 Clinopodium menthifolium (5) 0.58 Muscari neglectum 280.24 Papaver rhoeas (184) 275.31 

*non-native species 

(n) species frequency across plots where it occurred in 10 years of sampling. 
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Supplementary Table 4. Results for the generalized linear mixed models (GLMM) ran on the dataset without non-native species including nine 

community level metrics (means and skewness of local and regional trait-based and phylogenetic originalities and species richness) and four species-

specific measures (trait-based and phylogenetic originality and local to regional ratios) 

 

Estimated coefficients and their significance are shown for the explanatory variables that remained after backward selection of variables based on Akaike 

information criterion (AIC) values including urbanization percentage, species richness, interaction (×) between urbanization and species richness and 

year of sampling. The mention "excluded" means that the explanatory variable was not retained in the final model according to the Akaike criterion. 

Conditional and marginal R² describes the proportion of variance explained by fixed (R²c) and random+fixed (R²m) covariables. P-values: NS = non-

significant (P>0.050); * = 0.010 < P ≤ 0.050; ** = 0.001 < P ≤ 0.010; *** = P ≤ 0.001 

. 
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.

  Intercept 
Urbanization 

(U) 
Species richness 

(SR) 
Year of 

sampling U×SR R2
c R2

m 

Dependent variable               

Mean local trait-based 
originality 4.693 10-1 ***  6.894 10-4  *** 9.077 10-4  *** -5.827 10-4 * -2.341 10-5 *** 0.435 0.119 

Mean regional trait-based 
originality 5.150 10-1  *** 2.430 10-4  *** -5.223 10-7 NS -1.708 10-4 * -1.042 10-5 *** 0.644 0.083 

Mean local phylogenetic 
originality 2.322 102   *** -3.589 10-3 NS -1.028 10-1   NS -1.514 10-1 NS -4.291 10-3 NS 0.242 0.004 

Mean regional phylogenetic 
originality 2.428 102  *** -6.832 10-2  *** -2.252 10-1  *** excluded  1.541 10-3 NS 0.619 0.077 

Skewness of local trait-based 
originality 1.110 10-2  *** 3.706 10-5 NS 2.525 10-2  *** -1.522 10-3 NS excluded   0.194 0.120 

Skewness of regional trait-
based originality -3.719 10-2 NS 1.566 10-3 *** 3.141 10-2  *** -9.724 10-4 NS excluded   0.332 0.175 

Skewness of local 
phylogenetic originality 4.187 10-1  *** 1.691 10-4 NS 3.903 10-3 NS -4.360 10-3 NS -1.894 10-4  ** 0.149 0.012 

Skewness of regional 
phylogenetic originality -5.189 10-2  NS 6.392 10-5 NS 1.583 10-2  *** 3.086 10-3 NS excluded   0.28 0.05 

Species Richness 1.929 *** 3.959 10-3  *** omitted -4.032 10-3 NS omitted   3.456 10-2 1.659 10-3 

Trait-based originality 4.755 10-1 *** 3.826 10-4  *** 8.754 10-4  *** -5.202 10-4 *** -1.066 10-5 *** 0.655 0.034 

Phylogenetic originality 1.818 10-2 NS 6.550 10-4 NS 7.694 10-3 *** -6.562 10-3 * -1.474 10-4 ** 0.428 0.003 

Local/regional trait-based 
originality 9.091 10-1 *** 7.388 10-4  *** 1.733 10-3 *** excluded   -1.992 10-5  *** 0.450 0.056 
 
Local/regional phylogenetic 
originality 9.564 10-1 *** 1.125 10-4 NS 1.064 10-3  *** -8.562 10-4 * -2.076 10-5  ** 0.512 0.002 
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D) 

 

Supplementary Figure 1. Correlograms of the residuals of the GLMM models with complete 

dataset (natives and non-natives): (A) mean local and (B) regional trait-based originality models and 

(C) mean local and (D) regional phylogenetic originality model. Local Moran’s correlation was 

tested on the residuals of the GLMM models. Significance of the correlation was assessed based 

on 999 randomizations at the 500 meters increment for neighborhood definition. First ten 

increment points are visualized, with blue points representing non-significance and the red points 

a significant spatial autocorrelation. Only the points at zero meters of distance were significant, 

reflecting the data structure with a systematic sampling performed each year at the same place for 

many species plots. No spatial autocorrelation was detected in models’ residuals at any other 

distance. Thus, no correction for spatial autocorrelation was needed. 



125 
 

 

Supplementary Figure 2. Variation of species-specific (A) trait-based and (B) phylogenetic 

originalities of native and non-native species according to the percentage of urbanization within 

1x1km grid cell (grid cell corresponds to the Vigie-flore protocol) (in (A)) and species richness (SR) 

(in (B)). One data point represents one species score, including originality values of native and non-

native species from all plots across all the years, thus the same species can occur multiple times in 

different plots. In (A), colors represent a scale of species richness (SR) going from blue as a lower 

SR (minimum of 3 species) to red as a higher SR (maximum of 50 species). Colored curves 

represent the estimated trends of an interaction between urbanization and SR for 5 (blue), 25 

(salmon) and 40 (red) species retrieved from the mean originality GLMM models. In (B), colors 

represent a scale of urbanization gradient calculated as the percentage of urbanized area cover; 

colored lines represent the estimated trends of an interaction between SR and urbanization for 0%, 

50% and 100% respectively, within 1x1km grid cell, retrieved from the skewness GLMM model.  
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Supplementary Figure 3. Variation of species (A) trait-based and (B) phylogenetic originality 

ratio lAViP / rAVi according to the percentage of urbanization within 1x1km grid cell (grid cell 

corresponds to the Vigie-flore protocol) (in (A)) and species richness (SR) (in (B)). One data point 

represents one species score, including originality values of native and non-native species from all 

plots across all the years, thus the same species can occur multiple times in different plots. 

Originality ratio superior to one indicate species that became original at the local scale at least once 

although they were not at the regional scale. In (A), colors represent a scale of species richness (SR) 

going from blue as a lower SR (minimum of 3 species) to red as a higher SR (maximum of 50 

species). Colored curves represent the estimated trends of an interaction between urbanization and 

SR for 5 (blue), 25 (salmon) and 40 (red) species retrieved from the mean originality GLMM 

models. In (B), colors represent a scale of urbanization gradient calculated as the percentage of 

urbanized area cover; colored lines represent the estimated trends of an interaction between SR 

and urbanization for 0%, 50% and 100% respectively, within 1x1km grid cell, retrieved from the 

skewness GLMM model. 
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Supplementary Figure 4. Variation of species (A) trait-based and (B) phylogenetic originality 

ratio lAViP / rAVi according to the percentage of urbanization within 1x1km grid cell (grid cell 

corresponds to the Vigie-flore protocol). One data point represents one species score, including 

originality values of native and non-native species from all plots across all the years, thus the same 

species can occur multiple times in different plots. Originality ratio superior to one indicate species 

that became original at the local scale at least once although they were not at the regional scale. 

Colors represent a scale of species urbanity going from blue for urbanophobic species to green for 

urbanophilic species. Species urbanity was calculated as the mean percentage of urbanized area in 

all grid cells where a species occurred.  
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Supplementary Figure 6. Box plots for (A) local trait-based, (B) local phylogenetic, (C) regional 

trait-based and (D) regional phylogenetic originality of 586 species. Regional originality values were 

calculated regarding all species in the dataset; local originality values were calculated for each of 

586 species regarding only coexisting species in a particular plot where species occurred. Bold black 

lines represent medians, boxes are 25-75% interquartile, moustache (vertical lines) are samples with 

less than 1.5 times of the interquartile range and dots are outliers. Native and Non-native species 

differed significantly in their median (Wilcoxon rank test, W=5819854, W=11347166, W=18069, 

p < 0.001) in (A), (B), and (C).  

  



129 
 

Supplementary Table 5. Plant species dataset used in this study and corresponding amount of 

missing trait data 

Species name Missing trait data (%) 

Clinopodium menthifolium 35,80% 

Bromus diandrus 28,40% 

Hypochaeris radicata 24,69% 

Verbena bonariensis 22,22% 

Dactylis glomerata 20,99% 

Hypericum hirsutum 20,99% 

Vulpia muralis 20,99% 

Centaurea microptilon 16,05% 

Eschscholzia californica 14,81% 

Helictotrichon sempervirens 14,81% 

Catapodium rigidum 13,58% 

Crepis bursifolia 13,58% 

Duchesnea indica 13,58% 

Trifolium pallidum 13,58% 

Antinoria agrostidea 12,35% 

Carex mairei 12,35% 

Centaurea debeauxii 12,35% 

Triticum monococcum 12,35% 

Exaculum pusillum 11,11% 

Minuartia viscosa 11,11% 

Pulmonaria longifolia 11,11% 
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Solanum melongena 11,11% 

Bellis annua 9,88% 

Bromus rubens 9,88% 

Bryonia cretica 9,88% 

Centaurea nigra 9,88% 

Erigeron sumatrensis 9,88% 

Nigella damascena 9,88% 

Potentilla montana 9,88% 

Vicia parviflora 9,88% 

Allium cepa 8,64% 

Amaranthus hybridus 8,64% 

Arum italicum 8,64% 

Carduus tenuiflorus 8,64% 

Carum verticillatum 8,64% 

Ornithogalum pyrenaicum 8,64% 

Orobanche picridis 8,64% 

Veronica acinifolia 8,64% 

Amaranthus cruentus 7,41% 

Impatiens balfourii 7,41% 

Neottia ovata 7,41% 

Petroselinum crispum 7,41% 

Pilosella officinarum 7,41% 

Pisum sativum 7,41% 
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Vicia faba 7,41% 

Amaranthus deflexus 6,17% 

Artemisia verlotiorum 6,17% 

Betonica officinalis 6,17% 

Bromus catharticus 6,17% 

Calamintha nepeta 6,17% 

Calendula officinalis 6,17% 

Campanula patula 6,17% 

Carex cuprina 6,17% 

Chaenorrhinum minus 6,17% 

Crassula tillaea 6,17% 

Crepis foetida 6,17% 

Cucubalus baccifer 6,17% 

Festuca filiformis 6,17% 

Ficaria verna 6,17% 

Gnaphalium uliginosum 6,17% 

Helminthotheca echioides 6,17% 

Lepidium didymum 6,17% 

Linaria arvensis 6,17% 

Lolium rigidum 6,17% 

Melissa officinalis 6,17% 

Muscari comosum 6,17% 

Muscari neglectum 6,17% 
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Scilla autumnalis 6,17% 

Sedum forsterianum 6,17% 

Sisymbrium irio 6,17% 

Taraxacum ruderale 6,17% 

Tripleurospermum inodorum 6,17% 

Vicia grandiflora 6,17% 

Zea mays 6,17% 

Amaranthus albus 4,94% 

Arabis turrita 4,94% 

Arctium nemorosum 4,94% 

Arenaria serpyllifolia 4,94% 

Brassica napus 4,94% 

Carex leporina 4,94% 

Crepis setosa 4,94% 

Cynosurus echinatus 4,94% 

Dipsacus sativus 4,94% 

Elymus caninus 4,94% 

Festuca heterophylla 4,94% 

Glebionis segetum 4,94% 

Goodyera repens 4,94% 

Lathyrus aphaca 4,94% 

Lathyrus hirsutus 4,94% 

Lepidium draba 4,94% 
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Luzula forsteri 4,94% 

Matricaria recutita 4,94% 

Mycelis muralis 4,94% 

Oxalis stricta 4,94% 

Persicaria amphibia 4,94% 

Persicaria hydropiper 4,94% 

Persicaria lapathifolia 4,94% 

Persicaria maculosa 4,94% 

Sedum telephium 4,94% 

Setaria verticillata 4,94% 

Sison amomum 4,94% 

Sorghum halepense 4,94% 

Stellaria alsine 4,94% 

Verbascum blattaria 4,94% 

Viola alba 4,94% 

Amaranthus blitoides 3,70% 

Atriplex prostrata 3,70% 

Cirsium palustre 3,70% 

Epilobium tetragonum 3,70% 

Erodium cicutarium 3,70% 

Euphorbia cyparissias 3,70% 

Festuca ovina 3,70% 

Geranium rotundifolium 3,70% 
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Matricaria discoidea 3,70% 

Odontites vernus 3,70% 

Ononis spinosa 3,70% 

Polygonum mite 3,70% 

Ranunculus reptans 3,70% 

Rubia peregrina 3,70% 

Solanum tuberosum 3,70% 

Vicia villosa 3,70% 

Anagallis minima 2,47% 

Anchusa arvensis 2,47% 

Armeria maritima 2,47% 

Aster lanceolatus 2,47% 

Avenula pubescens 2,47% 

Beta vulgaris 2,47% 

Brassica oleracea 2,47% 

Buglossoides arvensis 2,47% 

Centaurea jacea 2,47% 

Chaerophyllum hirsutum 2,47% 

Elymus pungens 2,47% 

Kickxia spuria 2,47% 

Lamiastrum galeobdolon 2,47% 

Limonium vulgare 2,47% 

Lythrum portula 2,47% 
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Medicago minima 2,47% 

Medicago polymorpha 2,47% 

Medicago sativa 2,47% 

Melica uniflora 2,47% 

Ranunculus lanuginosus 2,47% 

Reynoutria japonica 2,47% 

Securigera varia 2,47% 

Sedum acre 2,47% 

Setaria italica 2,47% 

Tamus communis 2,47% 

Trifolium aureum 2,47% 

Turritis glabra 2,47% 

Utricularia australis 2,47% 

Veronica spicata 2,47% 

Agrostemma githago 1,23% 

Amaranthus blitum 1,23% 

Anagallis arvensis 1,23% 

Anemone sylvestris 1,23% 

Anthoxanthum odoratum 1,23% 

Antirrhinum majus 1,23% 

Brachypodium pinnatum 1,23% 

Brassica rapa 1,23% 

Bromus erectus 1,23% 
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Bromus inermis 1,23% 

Bromus japonicus 1,23% 

Bromus ramosus 1,23% 

Bromus squarrosus 1,23% 

Bromus sterilis 1,23% 

Campanula rapunculoides 1,23% 

Carex arenaria 1,23% 

Carex muricata 1,23% 

Carex vulpina 1,23% 

Centaurea cyanus 1,23% 

Centranthus ruber 1,23% 

Cerastium arvense 1,23% 

Cerastium semidecandrum 1,23% 

Chenopodium hybridum 1,23% 

Chenopodium polyspermum 1,23% 

Chenopodium rubrum 1,23% 

Conyza canadensis 1,23% 

Coronopus squamatus 1,23% 

Crepis vesicaria 1,23% 

Daucus carota 1,23% 

Deschampsia cespitosa 1,23% 

Deschampsia flexuosa 1,23% 

Dipsacus pilosus 1,23% 
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Elymus repens 1,23% 

Epipactis atrorubens 1,23% 

Erophila verna 1,23% 

Euphorbia peplus 1,23% 

Festuca arundinacea 1,23% 

Festuca gigantea 1,23% 

Festuca pratensis 1,23% 

Festuca rubra 1,23% 

Galinsoga parviflora 1,23% 

Galium saxatile 1,23% 

Hieracium umbellatum 1,23% 

Hordeum vulgare 1,23% 

Inula conyza 1,23% 

Juncus effusus 1,23% 

Kickxia elatine 1,23% 

Knautia arvensis 1,23% 

Lemna minor 1,23% 

Leontodon autumnalis 1,23% 

Leontodon hispidus 1,23% 

Lepidium latifolium 1,23% 

Leucanthemum vulgare 1,23% 

Linaria repens 1,23% 

Linum usitatissimum 1,23% 
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Lolium multiflorum 1,23% 

Lotus pedunculatus 1,23% 

Luzula pilosa 1,23% 

Luzula sylvatica 1,23% 

Malva sylvestris 1,23% 

Medicago arabica 1,23% 

Melica nutans 1,23% 

Melilotus albus 1,23% 

Melittis melissophyllum 1,23% 

Myosotis discolor 1,23% 

Myosoton aquaticum 1,23% 

Papaver somniferum 1,23% 

Phacelia tanacetifolia 1,23% 

Pimpinella major 1,23% 

Poa bulbosa 1,23% 

Poa compressa 1,23% 

Poa trivialis 1,23% 

Polygonatum multiflorum 1,23% 

Potentilla anserina 1,23% 

Potentilla sterilis 1,23% 

Pulsatilla vulgaris 1,23% 

Sagina apetala 1,23% 

Salvia pratensis 1,23% 
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Sanguisorba minor 1,23% 

Scrophularia auriculata 1,23% 

Senecio erucifolius 1,23% 

Senecio inaequidens 1,23% 

Senecio jacobaea 1,23% 

Setaria viridis 1,23% 

Silene latifolia 1,23% 

Solanum nigrum 1,23% 

Solidago canadensis 1,23% 

Sonchus palustris 1,23% 

Spergularia rubra 1,23% 

Stachys palustris 1,23% 

Stachys recta 1,23% 

Stellaria nemorum 1,23% 

Teucrium scordium 1,23% 

Tordylium maximum 1,23% 

Torilis nodosa 1,23% 

Trifolium repens 1,23% 

Triticum aestivum 1,23% 

Valerianella rimosa 1,23% 

Viola tricolor 1,23% 

Vulpia bromoides 1,23% 

Achillea millefolium 0,00% 
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Adoxa moschatellina 0,00% 

Aethusa cynapium 0,00% 

Agrimonia eupatoria 0,00% 

Agrostis canina 0,00% 

Agrostis capillaris 0,00% 

Agrostis gigantea 0,00% 

Agrostis stolonifera 0,00% 

Ajuga genevensis 0,00% 

Ajuga reptans 0,00% 

Alisma lanceolatum 0,00% 

Alisma plantago-aquatica 0,00% 

Alliaria petiolata 0,00% 

Allium sphaerocephalon 0,00% 

Allium vineale 0,00% 

Alopecurus geniculatus 0,00% 

Alopecurus myosuroides 0,00% 

Alopecurus pratensis 0,00% 

Amaranthus retroflexus 0,00% 

Ammi majus 0,00% 

Anemone nemorosa 0,00% 

Angelica sylvestris 0,00% 

Anthemis cotula 0,00% 

Anthericum ramosum 0,00% 
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Anthriscus caucalis 0,00% 

Anthriscus sylvestris 0,00% 

Apera spica-venti 0,00% 

Aphanes arvensis 0,00% 

Apium nodiflorum 0,00% 

Aquilegia vulgaris 0,00% 

Arabidopsis thaliana 0,00% 

Arctium lappa 0,00% 

Arctium minus 0,00% 

Arrhenatherum elatius 0,00% 

Artemisia vulgaris 0,00% 

Arum maculatum 0,00% 

Astragalus glycyphyllos 0,00% 

Atriplex patula 0,00% 

Avena fatua 0,00% 

Avena sativa 0,00% 

Ballota nigra 0,00% 

Barbarea vulgaris 0,00% 

Bellis perennis 0,00% 

Blackstonia perfoliata 0,00% 

Brachypodium sylvaticum 0,00% 

Brassica nigra 0,00% 

Bromus arvensis 0,00% 
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Bromus commutatus 0,00% 

Bromus hordeaceus 0,00% 

Bromus racemosus 0,00% 

Bromus secalinus 0,00% 

Calamagrostis epigejos 0,00% 

Calendula arvensis 0,00% 

Calystegia sepium 0,00% 

Campanula rapunculus 0,00% 

Campanula rotundifolia 0,00% 

Capsella bursa-pastoris 0,00% 

Cardamine hirsuta 0,00% 

Cardamine pratensis 0,00% 

Carduus acanthoides 0,00% 

Carduus crispus 0,00% 

Carduus nutans 0,00% 

Carex acutiformis 0,00% 

Carex divulsa 0,00% 

Carex flacca 0,00% 

Carex hirta 0,00% 

Carex pendula 0,00% 

Carex pilulifera 0,00% 

Carex pseudocyperus 0,00% 

Carex remota 0,00% 
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Carex riparia 0,00% 

Carex spicata 0,00% 

Carex sylvatica 0,00% 

Carlina vulgaris 0,00% 

Centaurea scabiosa 0,00% 

Centaurium erythraea 0,00% 

Centaurium pulchellum 0,00% 

Cephalanthera damasonium 0,00% 

Cerastium fontanum 0,00% 

Cerastium glomeratum 0,00% 

Cerastium pumilum 0,00% 

Chaerophyllum temulum 0,00% 

Chelidonium majus 0,00% 

Chenopodium album 0,00% 

Chenopodium ficifolium 0,00% 

Circaea lutetiana 0,00% 

Cirsium arvense 0,00% 

Cirsium dissectum 0,00% 

Cirsium oleraceum 0,00% 

Cirsium vulgare 0,00% 

Clinopodium vulgare 0,00% 

Colchicum autumnale 0,00% 

Conium maculatum 0,00% 
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Convallaria majalis 0,00% 

Convolvulus arvensis 0,00% 

Crepis capillaris 0,00% 

Cruciata laevipes 0,00% 

Cymbalaria muralis 0,00% 

Cynodon dactylon 0,00% 

Cynosurus cristatus 0,00% 

Dactylorhiza maculata 0,00% 

Danthonia decumbens 0,00% 

Datura stramonium 0,00% 

Digitalis purpurea 0,00% 

Digitaria ischaemum 0,00% 

Digitaria sanguinalis 0,00% 

Diplotaxis tenuifolia 0,00% 

Dipsacus fullonum 0,00% 

Echinochloa crus-galli 0,00% 

Echium vulgare 0,00% 

Epilobium angustifolium 0,00% 

Epilobium ciliatum 0,00% 

Epilobium hirsutum 0,00% 

Epilobium montanum 0,00% 

Epilobium parviflorum 0,00% 

Epipactis helleborine 0,00% 
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Eragrostis minor 0,00% 

Erigeron annuus 0,00% 

Eryngium campestre 0,00% 

Erysimum cheiri 0,00% 

Eupatorium cannabinum 0,00% 

Euphorbia amygdaloides 0,00% 

Euphorbia exigua 0,00% 

Euphorbia helioscopia 0,00% 

Fallopia convolvulus 0,00% 

Filipendula ulmaria 0,00% 

Filipendula vulgaris 0,00% 

Fragaria vesca 0,00% 

Fragaria viridis 0,00% 

Fumaria officinalis 0,00% 

Galega officinalis 0,00% 

Galeopsis tetrahit 0,00% 

Galium aparine 0,00% 

Galium mollugo 0,00% 

Galium odoratum 0,00% 

Galium palustre 0,00% 

Galium parisiense 0,00% 

Galium uliginosum 0,00% 

Galium verum 0,00% 
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Geranium columbinum 0,00% 

Geranium dissectum 0,00% 

Geranium molle 0,00% 

Geranium pusillum 0,00% 

Geranium pyrenaicum 0,00% 

Geranium robertianum 0,00% 

Geranium sanguineum 0,00% 

Geum urbanum 0,00% 

Glechoma hederacea 0,00% 

Helleborus foetidus 0,00% 

Heracleum mantegazzianum 0,00% 

Heracleum sphondylium 0,00% 

Herniaria glabra 0,00% 

Herniaria hirsuta 0,00% 

Himantoglossum hircinum 0,00% 

Hippocrepis comosa 0,00% 

Hirschfeldia incana 0,00% 

Holcus lanatus 0,00% 

Holcus mollis 0,00% 

Hordeum murinum 0,00% 

Humulus lupulus 0,00% 

Hyacinthoides non-scripta 0,00% 

Hydrocotyle vulgaris 0,00% 
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Hypericum humifusum 0,00% 

Hypericum maculatum 0,00% 

Hypericum perforatum 0,00% 

Hypericum pulchrum 0,00% 

Hypericum tetrapterum 0,00% 

Illecebrum verticillatum 0,00% 

Iris pseudacorus 0,00% 

Juncus acutiflorus 0,00% 

Juncus bufonius 0,00% 

Juncus conglomeratus 0,00% 

Juncus inflexus 0,00% 

Juncus tenuis 0,00% 

Lactuca serriola 0,00% 

Lactuca virosa 0,00% 

Lamium album 0,00% 

Lamium amplexicaule 0,00% 

Lamium purpureum 0,00% 

Lapsana communis 0,00% 

Lathyrus latifolius 0,00% 

Lathyrus nissolia 0,00% 

Lathyrus pratensis 0,00% 

Lathyrus tuberosus 0,00% 

Legousia speculum-veneris 0,00% 
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Linaria vulgaris 0,00% 

Linum catharticum 0,00% 

Lolium perenne 0,00% 

Lotus corniculatus 0,00% 

Luzula campestris 0,00% 

Luzula multiflora 0,00% 

Lycopus europaeus 0,00% 

Lysimachia nummularia 0,00% 

Lysimachia vulgaris 0,00% 

Lythrum salicaria 0,00% 

Malva moschata 0,00% 

Malva neglecta 0,00% 

Medicago lupulina 0,00% 

Melampyrum arvense 0,00% 

Melampyrum pratense 0,00% 

Melilotus officinalis 0,00% 

Mentha aquatica 0,00% 

Mentha arvensis 0,00% 

Mentha suaveolens 0,00% 

Mercurialis annua 0,00% 

Mercurialis perennis 0,00% 

Milium effusum 0,00% 

Moehringia trinervia 0,00% 
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Molinia caerulea 0,00% 

Myosotis arvensis 0,00% 

Myosotis ramosissima 0,00% 

Myosotis scorpioides 0,00% 

Myosotis sylvatica 0,00% 

Oenanthe lachenalii 0,00% 

Onobrychis viciifolia 0,00% 

Onopordum acanthium 0,00% 

Ophrys apifera 0,00% 

Origanum vulgare 0,00% 

Ornithopus perpusillus 0,00% 

Oxalis corniculata 0,00% 

Papaver dubium 0,00% 

Papaver rhoeas 0,00% 

Parietaria judaica 0,00% 

Parietaria officinalis 0,00% 

Pastinaca sativa 0,00% 

Phalaris arundinacea 0,00% 

Phleum pratense 0,00% 

Phragmites australis 0,00% 

Picris hieracioides 0,00% 

Pimpinella saxifraga 0,00% 

Plantago coronopus 0,00% 
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Plantago lanceolata 0,00% 

Plantago major 0,00% 

Plantago media 0,00% 

Platanthera bifolia 0,00% 

Platanthera chlorantha 0,00% 

Poa annua 0,00% 

Poa nemoralis 0,00% 

Poa pratensis 0,00% 

Polygonatum odoratum 0,00% 

Polygonum aviculare 0,00% 

Portulaca oleracea 0,00% 

Potentilla erecta 0,00% 

Potentilla recta 0,00% 

Potentilla reptans 0,00% 

Primula elatior 0,00% 

Primula veris 0,00% 

Primula vulgaris 0,00% 

Prunella vulgaris 0,00% 

Pulicaria dysenterica 0,00% 

Ranunculus acris 0,00% 

Ranunculus bulbosus 0,00% 

Ranunculus flammula 0,00% 

Ranunculus repens 0,00% 
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Ranunculus sardous 0,00% 

Raphanus raphanistrum 0,00% 

Reseda lutea 0,00% 

Reseda luteola 0,00% 

Rorippa sylvestris 0,00% 

Rumex acetosa 0,00% 

Rumex acetosella 0,00% 

Rumex conglomeratus 0,00% 

Rumex crispus 0,00% 

Rumex obtusifolius 0,00% 

Rumex sanguineus 0,00% 

Sagina procumbens 0,00% 

Sambucus ebulus 0,00% 

Sanicula europaea 0,00% 

Saponaria officinalis 0,00% 

Saxifraga tridactylites 0,00% 

Scandix pecten-veneris 0,00% 

Scleranthus annuus 0,00% 

Scrophularia nodosa 0,00% 

Sedum album 0,00% 

Senecio viscosus 0,00% 

Senecio vulgaris 0,00% 

Sherardia arvensis 0,00% 
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Silene vulgaris 0,00% 

Sinapis alba 0,00% 

Sinapis arvensis 0,00% 

Sisymbrium officinale 0,00% 

Solidago virgaurea 0,00% 

Sonchus arvensis 0,00% 

Sonchus asper 0,00% 

Sonchus oleraceus 0,00% 

Spergula arvensis 0,00% 

Stachys arvensis 0,00% 

Stachys sylvatica 0,00% 

Stellaria graminea 0,00% 

Stellaria holostea 0,00% 

Stellaria media 0,00% 

Symphytum officinale 0,00% 

Tanacetum vulgare 0,00% 

Teucrium chamaedrys 0,00% 

Teucrium scorodonia 0,00% 

Thlaspi arvense 0,00% 

Torilis arvensis 0,00% 

Torilis japonica 0,00% 

Tragopogon pratensis 0,00% 

Trifolium arvense 0,00% 
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Trifolium campestre 0,00% 

Trifolium dubium 0,00% 

Trifolium fragiferum 0,00% 

Trifolium hybridum 0,00% 

Trifolium pratense 0,00% 

Trisetum flavescens 0,00% 

Tussilago farfara 0,00% 

Urtica dioica 0,00% 

Urtica urens 0,00% 

Verbascum nigrum 0,00% 

Verbascum thapsus 0,00% 

Verbena officinalis 0,00% 

Veronica agrestis 0,00% 

Veronica arvensis 0,00% 

Veronica beccabunga 0,00% 

Veronica chamaedrys 0,00% 

Veronica filiformis 0,00% 

Veronica hederifolia 0,00% 

Veronica montana 0,00% 

Veronica officinalis 0,00% 

Veronica persica 0,00% 

Veronica polita 0,00% 

Veronica serpyllifolia 0,00% 
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Vicia cracca 0,00% 

Vicia hirsuta 0,00% 

Vicia lathyroides 0,00% 

Vicia sativa 0,00% 

Vicia sepium 0,00% 

Vicia tetrasperma 0,00% 

Vincetoxicum hirundinaria 0,00% 

Viola arvensis 0,00% 

Viola hirta 0,00% 

Viola odorata 0,00% 

Viola reichenbachiana 0,00% 

Viola riviniana 0,00% 

Vulpia myuros 0,00% 
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SUPPLEMENTARY RESULTS AND COMMENTARIES TO CHAPTER 2 

Variation of  local species-specific originality  

In this chapter we investigated species' local and regional originality variation along an urbanization 

gradient. However, as the originality of a given species is relative to the other species in a set, its 

value should be different from one set to another. We wondered whether the most original species 

were always highly original despite different composition of species sets or whether its originality 

varied. I present below the results obtained with trait-based originality scores (unpublished results). 

We noticed that many of the top 5% of the most original species occurred only few times 

in the whole 10-years dataset, making impossible to follow their originality changes. We therefore 

selected species only occurring more than 50 times from the top 5% trait-based original species 

and followed their originality variation across land cover types and urbanization gradient. One of 

such species was a fleabane Erigeron sumatrensis. Its high trait-based originality value (max = 0.72, 

min = 0.57) in highly urbanized areas could reflect the fact that as a non-native species, with original 

trait values, E. sumatrensis is able to colonize novel ecosystems created by urbanization where 

species competition is low (but see Dawson et al., 2015). Another highly original species in its traits 

was the annual bluegrass Poa annua, native and highly common species on the Ile-de-France region 

(appeared within every land cover type). P. annua trait-based originality increased with urbanization 

and varied between 0.50 and 0.68 with the greatest variation observed in more urbanized areas 

(Figure S7). 

Trait values vary across species and underpin differences in their ecological strategies 

(Westboy et al., 2002). Such information on originality variation per species could shed light on 

such questions as what biotic and abiotic conditions make species the most original and what could 

be the consequences of the loss of these species. In this chapter, we found that some plant species 

became more original with increased urbanization at local level compared to their regional 

originality (ratio of local over regional originality). This could indicate that some urbanization 

processes filter species regarding their traits and evolutionary history from regional pool making 
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them more or less original at local level (see Williams et al., 2009, 2015). Urbanization is often 

characterized by habitat fragmentation creating a mosaic of ecological niches and thus promoting 

coexistence of many species with different trait values in the same place, thus increasing species 

trait-based originality and diversity. However, higher trait-based originality in urbanized areas could 

be also explained by higher competition and limiting similarity within species communities. These 

hypotheses could be tested with null models, comparing the observed originality patterns and those 

created with random species distribution (Emerson and Gillespie, 2008; Cavender-Bares et al., 

2009). Our exploratory results described species-specific originality patterns, yet more data would 

be needed to test the hypothesis explaining possible factors and causes of these patterns. For 

example, including species abundance into originality calculation would certainly decrease the 

originality value of the most common and the most original species like Poa annua (see Chapter1, 

Figure 5 and Table 2) depending on the abundances of the other species. Thus, using species 

abundance could reveal influence of interspecific originality and change our conclusions about 

causes of species originality variation.  

Nevertheless, species trait-based originality in this study was inferred from the mean trait 

values for each species and its variation only depended on the composition of species plots and 

land cover type. A step further to investigate species originality would be indeed to measure trait-

based originality at the individual level, i.e. giving an originality value to each individual of a species. 

Indeed, intraspecific originality variation could better quantify the variation of trait-based 

(functional) diversity patterns in communities and increase our understanding of major questions 

of community ecology (Violle et al., 2012; Siefert et al., 2015; Zhao et al., 2019). 
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Figure S7. Variation of trait-based originality of (A) Poa annua (n=319) and (B) Erigeron sumatrensis 
(n=76) according to the percentage of urbanization within 1x1km grid cell (grid cell corresponds 
to the Vigie-flore protocol). One data point represents one species score. Colors represent the land 
cover type of a plot where species occurred. Black curves represent the estimated trends retrieved 
from the mean originality GLMM models. 
 

Comparing data issues and methodological choices with study of  Veron et al. 

Here I would like to briefly compare some common problems found in our study presented in this 

chapter and Veron's et al. (In prep., see Appendix A) study, where I contributed as a co-author by 

conceiving ideas at early stages and participating into manuscript editing. Veron et al. explored the 

originality of insular and continental monocotyledon species by using six quantitative traits (from 

TRY database). Amongst questions they investigated was the relation of a species' trait-based and 

phylogenetic originality with its geographical range. Are original species also rare?  Veron et al. used 

the same originality index that we used for urban originality study (the AV index) and same 

taxonomic group of plants (although in Veron et al. there were only Monocotyledon species). 

Therefore, I will compare problems concerning the sensitivity of trait-based originality measures 

to the amount missing trait data, to the method of missing data correction and its relation to species 

abundance. 

Sensitivity of  originality indices to missing trait data 

In this chapter, we did not explicitly investigate the sensitivity of originality metric AV to the 
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amount of missing trait data. However, we found that the top 5% of the most original plant species 

had a relatively high amount of "Not-Attributed" trait values (see Table S5). Moreover, the missing 

trait data could influence not only species originality but also a possible biological interpretation of 

its distribution. We tested a correlation between trait-based originality and the amount of total 

missing trait data per species which was positive but moderate (Spearman's correlation coefficient 

r = 0.47, p<0.001 with mean local originality, r = 0.43, p<0.001 with regional originality, Figure 

S8). To the contrary, Veron et al. (In prep.) found a negative low correlation between trait-based 

originality and the amount of total missing trait data per species (r = -0.14, p<0.001, see Appendix 

1 in Veron et al.). The difference between the negative correlation between trait-based originality 

and the percentage of total missing trait data found by Veron et al. and the positive correlation 

found by Kondratyeva et al. is more likely due to difference in the type of traits considered (Table 

S6). 

Table S6. Comparison of  data and methods between 2 case studies, Kondratyeva et al. (in revision) and 
Veron et al. (in preparation) which could have implications in species originality variation. For more details 
see respectively Table 1 (above) and Appendix A. 

 Kondratyeva et al. (in revision 
for Frontiers Ecol. and Evol.) 

Veron et al. (in preparation) 

Number of  traits  
11 6 

Type of  traits 
multiple (see table S1) 

quantitative (see Diaz et al., 

2016) 

Amount of  overall missing 
trait data per species 

min = 0%, max = 35% min=0%, max = 83% 

Amount of  overall missing 
trait data per trait 

min = 0% , max = 19.8% 
min = 23%, max = 81% 

(see Appendix 1) 

Number of  species with 
missing trait data 

250/586 2022/2281 

Method of  distance matrix 
creation 

Extended Gower’s distance 

adapted to trait types 

(Pavoine et al., 2009) 

Gower's distance (Gower, 

1971) 
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 There is also  a quite possible an effect of the geographical origin of species and trait data. In urban 

originality study, we used species common to northern-western region of Europe with well-

established trait data coming from multiple standardized field and experimental sources. Veron et 

al. studied species dispersed across the world; therefore, differences in data collecting and 

availability are probably high. A frequently encountered sampling condition, where rarer species 

are often poorly studied and likely characterized by missing trait information, is particularly true 

for some insular endemic species. For example, by creating a growing missing trait information by 

deleting trait values from a complete data set, Méjeková et al. (2016) found that some trait-based 

diversity indices were more sensitive than others were to missing trait data. They supposed that the 

missing trait information in rare species would remove extreme or outlier trait values, thus it could 

underestimate species originality. Indeed, because of interdependence of diversity and originality 

metrics, findings on trait-based diversity could be tested on the originality measures as well.  
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Figure S8. Relation between trait-based mean local originality per species (top), regional originality (bottom) 
and the percentage of  total missing trait data. Each data point corresponds to a plant species. 

 

To deal with the problem of missing data, several strategies can be adopted (Pakeman, 2014; 

Penone et al., 2014). The first one would be to reinforce trait-sampling effort for studies 

contributing to global databases and to maximize research effort of potential data sources of trait 
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data. In this chapter we adopted the approach of maximizing data sources, as our species pool was 

relatively small (586 species). However, Veron et al. had much larger number of species (2281 

species for trait-based originality) with many poorly studied species. Therefore, Veron et al. chose 

to impute missing trait values. Among the multiple methods of imputation described in the 

literature, they selected a random forest method, which imputes missing trait values by comparing 

it to the non-missing values of other species (missForest package, Stekhoven and Buehlmann, 

2012). After running 1000 random imputations of this type, they found a significant positive but 

moderate Spearman's correlation between the trait-based originality computed before and after 

trait data imputation (r=0.65, p<0.001). To test the influence of imputation method one can also 

artificially delete at random some amount of trait data and compare it to the complete dataset 

(Méjecova et al., 2016), however, complete trait datasets are usually not available. In Veron et al. 

only 259 species had all values of all traits for which they deleted at random 2/3 of trait data and 

then proceeded an imputation of deleted values. There was a positive moderate correlation between 

trait-based originality computed on a subset of species with complete trait data and on species with 

created and then imputed missing data (Pearson's correlation coefficient r=0.41, p<0.001). Hence, 

the chance of imputing an original trait value for a poorly known species is more likely smaller than 

the chance of imputing a common trait value. Depending on how missing data are distributed 

across species (at random, not at random or partially at random), the result of the imputation would 

therefore differ (Penone et al., 2014). Thus, more research is needed to increase our knowledge on 

the sensitivity of species originality measures to missing trait data. 

Relation of  species abundance-based and trait-based originality 

We noticed that the majority of the top 5% of trait-based original species appeared only few times 

across local communities (Table S3). It could confirm previous findings that more original species 

are rarer than expected by chance (Mouillot et al., 2013a) and are more likely to become extinct 

(Gaston 1994). However, we did not have information on species abundances, as abundance data 

are not required by the Vigie-flore protocol (see Appendix B). The only information we disposed 
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was species frequency in each of the 1m² sampling quadrats of one plot. This led to species 

characterized by 10 possible cases of "rarity". Therefore, we did not find any strong pattern in the 

correlation between this discretized estimation of rarity and species local trait-based originality (the 

Spearman’s correlation coefficient r = -0.06, p<0.001; unpublished results). That is to say, one of 

the main objectives of Veron's et al. (in prep) study was to compare insular plant species 

geographical range (or rarity) with its originality. They found that the most phylogenetically original 

species (especially those in the top 5%) were more range-restricted and occurred on fewer islands 

than expected by chance, although this originality-abundance relation was not strong (Pearson's 

correlation coefficient r = -0.15, p < 0.001, see Table 5 in Veron et al, in prep.). However, only 

endemic (rare) species with moderate trait-based originality had a smaller geographic range than 

expected, and very original species occurred on more islands than expected by chance (Pearson's 

correlation coefficient r = 0.43, p < 0.001; see also Table 3 in Veron et al., in prep.). Many causes 

could explain the differences of restrictedness of trait-based and phylogenetic originality discussed 

by Veron et al. (in prep.). 

More generally, species originality and abundance-based rarity were investigated by several 

studies (e.g., Jetz et al., 2014; Thullier et al., 2015; Grenié et al., 2018; Stein et al., 2018) and their 

contradictory results may have been influenced by the same data problems as discussed above. If 

the most original species are actually under extinction risk or are at least more vulnerable to 

environmental changes because of their rarity, this information could be crucial to guide 

conservation priorities. 
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GENERAL DISCUSSION 

ALL IS A MATTER OF CHOICE AND 

AVAILABILITY 
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 “Just when you think you know something, you have to look at in another way. Even though it may seem silly or 
wrong, you must try.” 

John Keating in Dead poets’ society. 
 

 

In this thesis, we have sought to confine the attention on the originality metrics in ecology and 

conservation biology. We have demonstrated main benefits of originality measures completing our 

understanding of biodiversity.  In 1991 Vane-Wright et al. stated that measures of species diversity 

at that time were inadequate for biodiversity conservation priorities because they did not use species 

distinctness treating different species as equally valuable. Vane-Wright et al. developed a measure 

of taxonomic distinctness, called taxic weight, improved by May (1990), which opened a way to a 

new group of metrics in ecology – species originality. The “agony of choice” in conservation would 

push policymakers to unreasonable wish to protect one member of each taxonomic group. 

According to the originality measures, the priority areas for conservation could be designed by 

accounting for species differences within species communities, on which they are dependent, and 

to which they contribute by being different in their traits and evolutionary history. That is, species 

should not be equally considered. We explored in this thesis, phylogenetic and trait-based 

differences between species and thus phylogenetic and trait-based originality. 

 When they appeared in the 90’s, originality measures were erroneously classified as diversity 

measures, which they are not. Hence, their use was abandoned in community ecology and 

conservation biology for the benefit of alternative diversity measures, such as Faith’s (1992) 

Phylogenetic Diversity index, considered more convenient (Pavoine et al., 2005). However, species 

originality metrics do not measure an amount of diversity at the species level; instead, they evaluate 

the contribution of each species to the diversity of a delineated set of species, defined at specific 

spatial and taxonomic levels. That is, the originality of a given species is dependent on a reference 

set of species and varies if the composition of the set changes. Even if species originality is not a 

measure of diversity per se, the diversity of a species set, however, depends implicitly on species 

originality. The more species are different from each other, the more they are original, thus 
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increasing the diversity of the species set. We discussed in the Chapter 1 some theoretical examples 

of such a dependence. Indeed, many diversity measures can be seen as functions of species 

originality (mean or sum of species originalities) even though they were not developed as such. The 

link between diversity and originality is thus both conceptual and mathematical, as indices of 

species diversity and originality are interdependent and use common concepts and data. Performing 

two-steps analysis by first measuring species originality and then evaluating species diversity thanks 

to these originalities has the advantage of giving simultaneous information on the level of diversity 

of a species set and on the contribution of each species to that level. In other words, we can easily 

switch between originality and diversity measures. In Chapter 2, we used such a switch by 

calculating the mean and the skewness (asymmetry) of species originality values to evaluate how 

urbanization affects the trait-based and phylogenetic compositions of plant communities. In this 

case study, the mean of species originalities corresponded to a measure of trait-based or 

phylogenetic diversity, depending on whether species were characterized by their traits or by their 

phylogeny. The skewness (or asymmetry) of species' originalities informed on the shape of the 

distribution of originality values and can be interpreted as the proportion of uniqueness versus 

redundancy in a set of species.  

 This thesis started with the objective of evaluating an impact that the concept of originality 

could have in ecological studies. Two chapters that are at the core of this thesis highlighted links 

between the concepts and measurements of diversity, originality and rarity and provided a first test 

of the joint analysis of originality and diversity in urban ecology. During the last three years, we 

were, however, repeatedly confronted to the reality of data analysis, with missing data and plethora 

of potential mathematical formulas to evaluate diversity and originality, each formula having its 

own interests and drawbacks. In addition, our knowledge on biodiversity, although always growing, 

is still incomplete. Our conservation efficiency thus depends upon series of choices made in 

scientific studies, notably: the choices made about which species we focus on, which biological 

characters we consider, at which spatial scales, and with which measures of species diversity and 
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originality. We will discuss below how some of these choices affect originality measures and their 

interest for ecological and conservation studies.  

1. CHOOSING AND OBTAINING THE DATA FOR ORIGINALITY 
MEASURES 

Biodiversity is declining across the planet, but it's taxonomic, trait-based, and evolutionary aspects 

are declining at different paces. Thus, understanding how these aspects respond to the global 

change and what effect they have on ecosystem functioning is crucial to better prevent the 

ecological consequences of  biodiversity loss. Most current studies of  species originality consider 

species’ phylogenetic relations at large spatial scales for studying evolutionary history of  entire 

groups of  species in a context of  conservation biology (Safi et al., 2013; Jetz et al., 2014; Pollock 

et al., 2017). In contrast, community ecologists report processes of  species co-existence acting at 

local scale (Mouillot et al., 2013b; Garnier et al., 2016; see also Chapter 2, section II.5). However, 

evolutionary and ecological processes both structure species local communities (Lessard et al., 

2012). There are more and more studies coupling ecological and evolutionary sides of  species 

biology with the common aim to protect biodiversity at global scale (e.g., Mazel et al., 2014; Brum 

et al., 2017; Le Bagousse-Pinguet et al., 2019; Kosman et al., 2019). Besides, multifaceted and 

multiscale approaches for biodiversity evaluation have been adapted by Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) in Conceptual Framework for 

nature benefits to people (Diaz et al., 2015; Brondizio et al., 2019, in prep.). Indeed, as described 

in the Introduction, every species (if  we talk about biological concept of  species in macro-ecology) 

can be described by its abundance, phylogeny and trait values or at least one of  those. Below, we 

will discuss the benefits and shortcomings of  each facet of  species originality measuring. 

1.1 On the benefits and limits of  using different aspects of  species’ biology 

1.1.1 On the benefits of  species abundance analysis  

More informative than species occurrence data (presence/absence), abundance can be measured 

by total number of individuals, but also by its density (number of individuals within a standard 
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sampled quadrat), percentage cover or total biomass. Species abundance is the first and simplest 

step to estimate how much species contribute to biological diversity. We should, however, be aware 

of sampling biases when estimating species abundance, depending on where, when and how species 

were observed (Brown, 1984; Gaston, 1997, Buckland et al., 2005, see Chapter 1).  

 Depending on how it is measured, abundance informs on species' commonness (and rarity), 

distribution range and habitat preferences. Furthermore, the notions of species' dominance and 

specificity to habitat type are also based on species abundance. According to the “mass ratio” 

hypothesis (Grime, 1998), species influence ecosystem functioning in proportion to their biomass 

and to the extent of their functional trait values. Thus, dominant species would have the most of 

the influence on ecosystem functioning independently of the richness of subordinate species. All 

information about community change is therefore contained within the patterns of species 

abundance distributions (Buckland et al., 2005).  

 Species abundance is determined by local environmental conditions and regional species 

pool (Shipley et al., 2006). In return, species’ relative abundances would determine the number and 

strength of interactions between species (Vázquez et al., 2007). Hence, abundance-based rarity of 

species is tightly involved into relationship between species diversity and ecosystem functioning. 

The reasons why species are dominant or rare in their abundance is related to their biological 

characters and their ecological performance, constrained by community assembly mechanisms 

(e.g., Adler et al., 2014).  Thus, the distribution of species in a certain environment depends not 

only on their abundance but also on the degree of dissimilarity with other species in their biological 

characters (Shipley et al., 2006), i.e. their originality. Hence, species affects ecosystem functioning 

via phylogenetic and trait-based originalities. Analyzing both abundance and species' biological 

characteristics may thus inform on the processes underlying variations in biodiversity.  

 As shown in Chapter 1, originality measures can integrate abundance data, leading to 

species abundance-based originality. The originality value of a given species can change if weighted 

by species abundance (see Figure 5 in Chapter 1) and thus represents a tool to emphasize the rarest 
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species whose individuals have the rarest biological characteristics (Cadotte and Davies, 2010; 

Mouillot et al., 2013b; Pavoine et al., 2017). An increase through time of the abundance-based rarity 

of a species might indicate that profound changes in the ecosystem functioning are ongoing. Some 

even included extinction risks in phylogenetic originality measures, where extinction risk is partly 

determined by a decrease in population size, i.e. in a number of individuals (Isaac et al., 2007; Steel 

et al, 2007). These measures allow to detect species that are both original and threatened (Isaac et 

al., 2007) as well as species that are original and belong to phylogenetic clades where many species 

have a high risk of extinction (Steel et al., 2007). If conservation actions are based on such measures, 

they could prevent the loss of species with unique biological characteristics.    

1.1.2 On the benefits of  trait-based analysis of  diversity and originality  

Biological characteristics of species can be linked to environmental variables, illustrating species 

adaptations to environmental conditions (Diaz and Cabido, 2001). Trait-based (functional) 

diversity and originality inform us on species’ ecological dissimilarities, related ecological niche 

breadth and ecosystem functions and services (Violle and Jiang, 2009; Cadotte et al., 2011, Mouillot 

et al., 2013a, Hidasi-Neto et al., 2015). Therefore, trait-based approaches have increasingly gained 

many areas of ecological research going from community assembly (McGill et al., 2006, Cavender-

Bares et al., 2009, Mason et al., 2013), ecosystem functioning (Herben and Goldberg, 2014), 

ecosystem services (Lavorel et al., 2011; Diaz et al., 2007b, 2018) and species’ invasions (Rejmanek 

and Richardson, 1996; Kühn et al., 2017) to conservation biology (Grenié et al., 2018; Kosman et 

al., 2019), urban ecology (Vallet et al., 2010; Knapp et al., 2008, 2012; Palma et al., 2017) and many 

other areas. One of the common goals of those studies is to understand how species’ traits mediate 

community assembly and species coexistence and thus to predict the effects of global change on 

biodiversity.  

 Today it is still unclear which traits should be defined as functional (Mlambo, 2014). Violle 

et al. (2007) provided one of the most comprehensive and most cited definitions to date: species 

functional trait should be measurable on individual level and have the influence on species fitness, 
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i.e. its ability to survive and reproduce. Even if there is no universal definition of term "function" 

itself in ecology (see Bellwood et al., 2019), the use of any trait defined as functional should go with 

an explanation of a function related to that trait. Classifying species’ traits into response traits 

(involved into species’ responses to environmental processes, measured by its overall fitness) and 

effect traits (involved into mechanisms by which species influence ecosystem processes) is a good 

beginning (Hooper et al., 2005). That is, in plants, such traits as specific leaf area, plant height, and 

seed mass are used as the principal traits to describe three fundamental axes of phenotypic variation 

amongst plants, which are respectively related to the acquisition and use of resources, the 

competitive ability, and the capacity for sexual regeneration (Diaz et al., 2016; Garnier et al., 2016). 

Species’ traits without clear functional significance should not be referred as functional (Cadotte et 

al., 2011), as for example Ellenberg values (Ellenberg et al., 1991; Garnier et al., 2017) and Grime 

strategies (Grime et al., 1988) or else life-history traits (González-Suárez and Revilla, 2013). 

However, originality can be measured with any trait data making sense in a specific context. This 

is why in this thesis we decided to use more inclusive terms of “traits” or “biological characters”. 

 The trait-based approach in biodiversity studies turns out to be particularly useful in 

establishing links between species performances and ecosystem functioning processes at local scale 

(Loreau et al., 2001). Indeed, the range of trait values present in a community was found to be a 

good predictor of ecosystem functioning in several studies (Tilman et al., 1997; Petchey & Gaston, 

2006). Trait-based or functional ecology offers a promising way to model deterministic processes 

of local community assembly and improves our way of understanding local diversity variations 

(Diaz and Cabido, 2001) and increases the amount of benefits that humanity could gain from 

biodiversity (Diaz et al., 2007b). In line with trait-based diversity, the main assumption in trait-

based originality approach is that the most original species with more unique combinations of traits 

would contribute more to the ecosystem functioning or may maintain specific, irreplaceable 

functions and processes (Mouillot et al., 2013b; Brandl et al., 2016; Leitão et al., 2016). Recently, 

models were developed in functional ecology in order to depict the mechanisms determining 
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species trait-based differences and to identify traits involved into community assembly processes 

(Jabot, 2010; Münkemüller and Gallien, 2015; Munoz et al., 2017). That is, mechanistic insights 

into patterns of community assembly may rely more on the trait-based originality of species than 

on their abundance alone (Cadotte & Davies, 2016).  

 Many community ecology studies have investigated a community-weighted mean (CWM) 

of trait values (a mean of community-level trait values weighted by species abundances) along 

abiotic gradients to describe species’ trait distribution compared to the mean value of community 

(Garnier et al., 2004; Cornwell et al., 2006; Diaz et al., 2007b). Other researchers related specific 

trait variations between and within species to particular environmental conditions (Dwyer et al. 

2014; Siefert et al., 2014). A recent work on trait-environment relationship proposed a concept of 

species functional optimality, where species trait values are distributed according to a Gaussian 

function around a community optimal value of functional traits (Mucarella and Uriarte, 2016). The 

community-weighted mean (CWM) and variance (CWV) of trait values are thus expected to depict 

the optimum and the intensity of environmental filtering, respectively (Denelle et al, 2019). Trait-

based originality measures could be seen here as a connection between species trait-based diversity 

and trait distribution of a community. Indeed, the deviation between species trait value and CWM, 

as a measure based on trait-based distances between species, is similar to originality (Violle et al., 

2017a). In addition, the CWM is the weighted mean of the squared deviations between species trait 

values and CWM and thus a mean of originality values, equal to the variance of trait values and 

related to a well-known index of diversity – Rao's quadratic entropy (e.g., Pavoine et al. 2004). 

When several traits are jointly considered, the use of multidimensional functional trait space may 

allow visualizing a species position relatively to the other species (Villéger et al., 2008). In 

multidimensional trait space, trait-based originality can be measured as the distance from a species’ 

position to the community multivariate centroid (the hypothetical average species, Buisson et al., 

2013), which actually represents the multivariate CWM of the community (Muscarella and Uruarte, 

2016) or else the optimal value of species traits enabling species to persist in the community 
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(Denelle et al., 2019). Species located closer to the CWM would be less original, and contribute less 

to the community trait-based diversity (Figure 1). For example, Muscarella and Uriarte (2016) 

found that 25% of the tree species in Puerto Rico significantly opposed CWM-optimality 

correlation for at least one trait (by being distant from CWM), thereby being more original and 

contributing greatly to local trait-based diversity. To the contrary, 75% of species were closer to 

the community optimal trait value, i.e. they were more redundant in their traits. Therefore, variation 

in trait distributions of a community influences species originality, as it is relative to other species’ 

trait values. Thus, species trait-based originality may reflect the trait-based structure of communities 

and help to assess the relative part of each species into the trait-based diversity variation under 

future global changes. In this manner, species trait-based approach is mostly useful at the local 

community level for determining how species trait differences shape species originality and their 

capacity to colonize new communities just as much as their influence on ecosystem functioning. 

Thus, each study can adapt its choice of traits to the underlying assembly processes of interest.  

 However, traits are related to phylogeny by the underlying evolutionary processes. Indeed, 

each species is a product of evolutionary processes, during which the species acquires its biological 

characteristics (Darwin, 1856; Harvey and Pagel, 1991). Thus, while trait-based (functional) 

diversity and originality may inform us on the contribution of each species to ecosystem functions 

and services, phylodiversity and originality could provide information on the evolutionary and 

biogeographic histories of taxa. Thus, species trait evolution must also be taken into account (see 

article in Chapter 1, Section IV.1) to bridge community trait-based diversity and phylodiversity to 

community assembly processes (Losos, 2008).  
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Figure 1. Theoretical illustration of  species trait-based originality. Nine species presented by 
geometrical colored figures (a – i) are projected in a two-dimensional trait space (trait 1 = shape 
and trait 2 = color). The red points represent a community multivariate centroid (the hypothetical 
average species) or else a Community Weighted Mean of  A) a regional species pool (CWMr), and  
of  two local species communities B) CWMl1, C) CWMl2. Species originality is measured as a distance 
from a focal species to the centroid (dashed lines). B) Species i is the most original in the region, 
however its originality varies between communities and is higher in community B) than in 
community C). Inspired from Buisson et al., 2013. 
 

1.1.3 On the benefits of  phylo-based analysis of  diversity and originality   

Today, the large availability of DNA sequences in datasets such as in Genebank together with 

efficient computer algorithms facilitates the reconstruction of species evolutionary histories 

represented by phylogenetic trees with previously unseen completeness (Diniz-Filho et al., 2013). 

Therefore, phylogenetic information in conservation biology and community ecology has become 

increasingly reliable and meaningful (see Mouquet et al., 2012).  

Although Phylogenetic Diversity measure (PD, Faith, 1992) has been recently included to 

the IPBES Biodiversity Assessment (IPBES, 2019, Diaz et al., in press), underpinning its 

importance for prioritization of species and areas for conservation, the confusion remains about 

which biodiversity measure to use in conservation. Due to their phylogenetic relatedness species 

are not independent units of biodiversity (Felsenstein, 1985) and should not be treated otherwise. 

Evolutionary-based approaches reveal that species embody different amounts of unique versus 

shared evolutionary information, which can be measured by species originality. Indeed, species 

phylogenetic originality has been used to identify sites or taxa with particular conservation value 

(Barker, 2002; Isaac et al., 2007; Cadotte & Davies, 2010). Yet, current conservation actions often 
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ignore species phylogenetic originality, targeting areas with high species richness and degree of 

endemism (Veron et al., 2017). An exception would be the EDGE program (Evolutionarily 

Distinct and Generally Endangered) at the Zoological Society of London. It is probably the only 

conservation initiative that really uses species phylogenetic originality measure (Evolutionary 

Distinctiveness or ED) weighted by species IUCN threat status as an estimate of its extinction risk 

thus focusing conservation efforts specifically on threatened species (Isaac et al., 2007). However, 

the EDGE index has been criticized for considering species extinction risks and species' 

phylogenetic originality as independent variables, whereas the extinction of a given species would 

increase the originality of its sister species (Faith, 2008). The EDGE index was thus improved into 

the HEDGE index that integrates the probability of extinction for species and its close relatives 

(Steel et al., 2007). Therefore, global broad-scale conservation schemes can be established (Isaac et 

al., 2007). 

 However, most conservation actions focus on the biodiversity within areas and not on the 

originality of each species. We must recall that originality is not diversity. Protecting only the most 

phylogenetically original species will not necessarily maximize phylodiversity. Indeed, the set of 

species maximizing phylodiversity has to be dispersed across the tree, while phylogenetically 

original species may in some cases be phylogenetically clustered (Pavoine et al., 2005). Empirical 

studies have, however, shown that subsets of species with high phylogenetic originality capture 

more phylodiversity than at random (Redding et al., 2008) and that ranking mammal species for 

conservation priority with a metric used in the EDGE program, could protect more phylodiversity 

than if species selection was based on phylogenetic originality value or on threat status alone 

(Redding and Mooers, 2015b). 

 In the human-centric benefits of evolutionary history for focusing conservation actions on 

preserving evolutionary history, Tucker et al. (2019) identified six general arguments (such as "Does 

evolutionary history have surrogacy value for phenotypic diversity?" or " Does evolutionary history 

or phenotypic diversity provide greater evolutionary potential and future options for humanity?"), 
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gave a logical support for or against, and future directions for each argument (Table 2 in Tucker et 

al., 2019). However, some arguments are still poorly empirically supported, although optimizing 

the total amount of evolutionary history under protection should enhance the protection of 

important species features useful to humanity, with features defined as the variety of states across 

homologous traits (Lean and Maclaurin, 2016). 

A common assumption is indeed that maximizing the amount of protected evolutionary 

history should capture the variation in species characteristics that are otherwise unknown, 

supporting the intrinsic value of biodiversity (Faith, 1992). Phylogenetic trees have thus been widely 

used with the assumption that shared ancestry provides shared biological traits (Webb et al., 2002; 

Redding and Mooers, 2015b). In that way, the evolutionary potential of species represents species’ 

intrinsic and option values for the future potential uses by humanity (Faith, 1992). Thus, taking 

into account phylogenies in conservation schemes means to plan the protection of potential genetic 

and trait-based diversity (Sarrazin and Lecomte, 2016). Moreover, when there is a lack of 

understanding of the relationship between species traits and ecosystem functioning or which traits 

matter the most in a particular environmental conditions, phylodiversity appears to be a useful tool 

for estimating species feature diversity (Faith, 1992; Webb et al., 2002; Tucker et al., 2018). It 

therefore appears to be a reasonable assumption that preserving phylogenetically distant and 

original species supports trait-based diversity (Redding and Mooers, 2015b; Tucker et al., 2019). 

However, the use of phylodiversity to represent trait-based diversity has been strongly debated and 

studies showed contradictory results (Flynn et al., 2011; Mazel et al., 2017, 2018, 2019; Owen et al., 

2019, see the next section). Such results brought sometimes an uncertainty about the worth of 

valuing species phylodiversity as a proxy of feature diversity, creating a gap between produced 

scientific theory and its application in conservation actions (Winter et al., 2013).  

Moreover, phylogenetic originality informs on the evolutionary history events such as 

immigration, speciation, extinctions and divergence of species characters, which are at the basis of 

species trait-based differences. However, in search for general patterns and rules governing 
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community assembly based on species’ ecological differences, direct use of trait-based approaches 

of species’ diversity and originality could be more informative (Best et al., 2013, Cadotte et al., 

2013).  

1.1.4 Are phylogenies good proxies for species traits? 

Since two decades, many researchers in ecology and conservation biology have used phylogenies 

as a proxy for species ecological similarities (Webb et al., 2002; Cavender-Bares et al., 2009; 

Mouquet et al., 2012; Strivastava et al., 2012, Cadotte et al., 2013). Some studies even argued that 

phylodiversity and trait-based diversity might be redundant measures (see Tucker et al., 2018; 2019 

for the examples). Some even proposed to combine both distances when assessing species 

assembly rules (“traitgrams” in Cadotte et al., 2013). The assumption made by these studies is that 

since phylogenies represent the accumulation of trait evolution among species, closely related 

species should be more redundant in their traits, and thus, phylodiversity could be a proxy for trait-

based diversity (Gerhold et al., 2015).  

However, recent studies have challenged the assumed relationship between evolutionary 

(phylogenetic) distance and ecological trait-based similarity. Cadotte et al. (2017) presented seven 

reasons why the seemingly clear link between species ecological differences and their phylogenetic 

distances may actually not always be straightforward. These reasons are related to evolutionary and 

ecological processes and events (high evolution rates, species assemblage rules different from 

expected) or are due to shortcomings of experimental design (use of only one evolutionary model 

of traits, poor species phylogenetic resolution or wrong evolutionary processes tested). More 

generally, the phylogeny-traits relationship is inherently complex and can take many forms. It is 

thus important to analyze trait evolution rather than assuming that phylogenetic distances among 

species are proportional to trait-based distances (Letten and Cornwell, 2015). Models of trait 

evolution can help us to understand the so-called phylogenetic signal – an expected covariation 

between trait differences and phylogenetic distances – and distinguish it from random trait 

distributions (Blomberg et al., 2003). Thus, the strength of phylogenetic signal is a measure of the 
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relationship between phylogeny and trait values, and many metrics of phylogenetic signal exist 

varying in their sensitivity to the phylogenetic topologies (number of tips, presence of polytomies 

and availability of branch length information, Münkemüller et al., 2012). Yet, many different 

models of trait evolution exist (Felsenstein, 1985; Hansen, 1997; Beaulieu et al., 2012) and there is 

thus no universal model, especially when multiple traits are in focus. In addition, several models 

may predict the same trait evolution equally well (Revell et al., 2008). 

Pavoine et al. (2013) demonstrated that the existence of phylogenetic signal in traits is not 

sufficient to ensure a strong correlation between phylogenetic diversity and trait-based diversity. 

Later, Tucker et al. (2018) found that a positive correlation between phylodiversity and trait-based 

(functional) diversity of simulated data becomes stronger with increasing trait dimensionality, but 

varies depending on the form of evolutionary model, and on the evolutionary complexity of studied 

traits. Regarding originality, Pavoine et al. (2017) used simulated and real data to show that the 

correlation between phylogenetic and trait-based originality increases with the number of traits 

considered but is dependent upon the evolutionary model (speciation events at random, close to 

tips or to root) and originality index used. In their real case study on European Carnivores, 

phylogenetic and trait-based originalities were not significantly correlated and traits had a weak 

phylogenetic signals.  

In a recent theoretical study, Mazel et al. (2017) argued that phylodiversity (measured by 

Faith's PD) is not a good surrogate for preserving the diversity of traits. By using biologically 

plausible scenarios of trait evolution, they found that phylodiversity-based conservation priorities 

selects less of trait-based diversity than at random. In a related empirical study, i.e. using a real 

dataset, Mazel et al. (2018) found that prioritizing the most phylodiverse sets of species results in 

an average gain of only 18% of trait-based diversity relative to a random choice of species sets. 

However, Mazel et al. (2018) stayed aware that they used a limited set of traits and probably more 

traits information is needed to test the relevance of Faith's PD for predicting features diversity.  

 For sure, phylodiversity and trait-based diversity are intimately related, but certainly not on 
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a linear manner and complex evolutionary mechanisms are behind species characteristics 

underpinned by environmental influence (Tucker et al., 2019). Thus, rather than searching for the 

phylogeny-traits duality, one should measure both aspects, phylogenetic and trait-based, for 

diversity and originality, searching how their joint analysis could benefit to ecological studies. In 

addition, proving that phylodiversity is correlated with a measurable trait-based diversity (diversity 

of functional traits or trait richness, Pavoine and Bonsall, 2011) is different from assuming that 

phylodiversity could represent an unmeasured part of trait-based diversity and maintain future 

benefits to humanity, both known and unknown (“option values”, Faith, 1992, see Introduction, 

2.4).  

  Therefore, while planning conservation actions, policy makers would like to be reassured 

that, by using a given measure of species diversity or originality, we encompass the right aspects of 

biodiversity that we want to protect. However, the concepts of diversity and originality are so 

multidimensional that a single mathematical formula, relying on a finite set of data, would never 

encompass all these aspects. In a comment to Mazel et al. (2018), Owen et al. (2019) underlined 

that further exploration of phylogeny-trait link is needed by using different diversity (and 

originality) measures on multiple spatial scales. Nevertheless, the most important in community 

ecology studies is to recognize that we use only a small part of measurable traits, and that the 

remaining features (which are not only functional traits) could completely change the assumption 

of phylogenetic surrogacy for trait diversity and originality. Thus, it is more precocious to use trait-

based and phylogenetic approaches as complementary in ecological and conservational studies, 

each at the adapted spatial scale: global for evolutionary history and local for ecological processes 

operating on community level (Losos, 2008; Saito et al., 2016, Tucker et al., 2019). Therefore, each 

additional aspect of species originality would provide new insights into species contribution to the 

diversity of a set of species. 

1.2 Issues related to the availability and to the quality of  the data 

Ecology, evolution and conservation science requires an exhaustive knowledge on the distribution 
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of species and their biological characters. Therefore, standardizing protocols of species inventory 

is of primary importance to many ecological studies. Standardized data makes possible to combine 

several datasets in one study and to make generalizable assumptions about biodiversity patterns. 

Nevertheless, it is not only about collecting data, but also about its representativeness of the 

available information including raw and processed data, its storage, managing, processing and 

sharing (Merino et al., 2016). A growing availability of ecological data has broadened the scope of 

questions in biodiversity assessment. There are several ways to assess data on biodiversity: 1. big 

online depositories and networks such as Knowledge Network for Biocomplexity3 (KNB), Global 

Biodiversity Information Facility4 (GBIF) mostly for species occurrence data, TRY5 for plant trait 

data (Kattge et al., 2011), PanTHERIA for mammal traits (Jones et al., 2009) or Dyad6 where 

multiple contributors and stakeholders share data; 2. multiple softwares allowing finding, extracting 

and cleaning data easily (i.e. R (R Core Team, 2019), Morpho (Higgins et al., 2002), Data Retriever7) 

and techniques of machine learning allowing to generate more data (Peters et al., 2014; Thessen, 

2016); 3. network science approaches assembling researchers to collect data together (LTER8, 

DataONE9). A global objective of scientific community is to share standardized data from different 

sources stored at interoperable portals to improve data availability and quality (Hampton et al., 

2013). Thus, the use of ecological data serves to analyze specific hypotheses (by estimating model 

parameters and predicting complex processes) and to explore and generate new ideas and models. 

However, many ecological datasets are still hold by individual scientists and laboratories, often 

available on request, but lacking of specific data policy and peer-reviewing (Roche et al., 2015). 

Some other datasets, which could be useful to ecological research, comes from old collections, 

museums and herbariums, and were not necessarily designed for modern research use (Pearman et 

al., 2006). Finally, in Chapter 2, we used the citizen science program of vascular flora survey, “Vigie-

                                                 
3 knb.ecoinformatics.org 
4 gbif.org 
5 try-db.org 
6 datadryad.org 

7 https://www.data-retriever.org/ 
8 lternet.edu 
9 dataone.org 
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flore”. Citizen science was created to assist scientists in a hard task of large data collection, where 

quantity is as important as quality. Citizen science data is increasingly used to answer important 

ecological questions and possess a strong educational outcome (Bonney et al., 2009; Dickinson et 

al., 2010; McKinley et al., 2017; Martin et al., 2019).  

Any biological dataset, whether it includes species occurrences, trait values, gene sequences 

and other aspects of biological information can include missing or erroneous information. It is 

related to several issues in ecology sometimes called the “dark data” (ODE Report, 2011). In fact, 

the path of data transformation from its raw to published form still includes hidden processes of 

data transformation, making it sometimes inaccessible and creating time-consuming and 

unnecessary replications between studies (Hampton et al., 2013). A new challenge for ecologists is 

how to better aggregate, search, cross-reference, and mine large volumes of data (LaDeau et al., 

2017). Thus, a crucial point before analyzing any scientific data is to determine the maximum of 

possible pitfalls and limits relative to the study. One of the most common bias of biodiversity data 

is the information on species geographic range ("Wallacean shortfall", Hortal et al., 2015). Usually 

species are recorded in the most accessible locations depending on spatial and temporal sampling 

effort and even politico-economic situation of a country (Rodrigues et al., 2010). Along with 

general problems of data availability and reliability, we will briefly discuss the most relevant 

problems of the data related to the measurement of originality.  

1.2.1 Phylogenetic bias 

If a fully resolved phylogenetic tree existed, it would still possess some topological uncertainties 

(Swenson, 2009). Each phylogeny is a hypothesis about the real relationships between species 

represented by specific tree topology, thus different tree topologies might represent differently 

species evolutionary history (Knapp et al., 2012). Usually phylogenetic trees have to be rooted for 

calculation of species phylogenetic originality (Thuillier et al., 2015). Sometimes phylogenies also 

have to be ultrametric (i.e. the shortest path from root to tip is constant). For example, the 

originality index Qb would estimate some species’ originalities as equal to zero if non-ultrametric 
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trees were used (Pavoine et al., 2005; Pavoine et al., 2017; see Chapter 1). Moreover, the topology 

of phylogenetic trees changes due to updates in scientific knowledge in some taxonomic groups 

more than in others because of recent diversifications and extinctions (Morlon et al., 2010; Billaud 

et al., 2019), resolution of soft polytomies (Kuhn et al., 2011) and lateral transfers of characters 

between species (Gribaldo and Philippe, 2002). For example, recent extinctions would make the 

remaining closely related species more isolated on the tree and make them more phylogenetically 

original (Chapter 1, Figures 7 and 8).  

Phylogenetic soft polytomies reflect unresolved nodes that support more than two 

descendent branches in a tree. Such low phylogenetic resolution can affect species phylogenetic 

originality (Isaac et al., 2007) by wrongly giving different species the same originality value. This 

bias would be greater with polytomies occurring deeper in the tree if the originality index is sensitive 

to the information nearer the root (such as the AVerage index), and greater with polytomies in the 

terminal nodes for measures that overweight information nearer the tips (such as Equal Splits). 

Even though polytomies can be resolved by several methods (Lewis et al., 2005; Davies et al., 2008; 

Kuhn et al., 2011), their real impact in conservation priorities is still poorly understood.  

Furthermore, if polytomies are present or if molecular information is missing for some species, 

terminal branch lengths can be poorly estimated, what would cause wrong representation of species 

relatedness (Roquet et al., 2013). Phylogenetic branch unit may have length set to 1, or may have 

units of observable changes in traits (or features; Faith, 1992), or genetic distances based on the 

molecular markers, or may be inferred from node age in millions of years (Cavender-Bares et al., 

2006) or estimated with molecular clock models calibrated by fossils presence (Tucker et al., 2019). 

The differences in branch-length estimations would thus under/overestimate species phylogenetic 

originality based on phylogenetic distances. 

The whole phylogenetic tree may change depending on the molecular data available 

(Sanderson and Shaffer, 2002). Plant phylogenies are especially well known to suffer from frequent 

topological changes with species replacements. The definitions of the species, placed as the tips of 
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phylogenetic trees can also sometimes be very instable. Therefore, a species could be placed 

differently on the phylogeny if its definition (limits) change. For example, the split of a species into 

two species due to updates in taxonomic knowledge modifies estimations of species phylogenetic 

originality (Robuchon et al., 2019). Therefore, one should use the most robust and recent version 

of phylogeny available. Some studies have hopefully shown that wrongly placed species did not 

affect phylogenetic originality substantially (Collen et al., 2011; Isaac et al., 2012), which is true if 

taxonomic errors are spread across phylogeny and not concentrated within close relatives. 

However, more studies are necessary to evaluate the effect of phylogenetic quality on species’ 

phylogenetic originalities. 

1.2.2 Trait data bias 

Prioritizing species conservation based on their trait-based originality is a promising strategy; 

however, it remains challenging in practice because we have imperfect knowledge about species 

traits relevant for conservation and how they should be integrated into conservation actions. By 

working with species biological traits, researchers explore trait-based diversity of biological 

assemblages and seek for generalizable predictions of species ecological functions highly 

constrained by the type and number of traits considered (Petchey and Gaston, 2006, Adler et al., 

2014). Information on functional traits and the extent to which they relate to an ecological function 

is available mostly for plant species, and still remains limited for other taxonomical groups, 

although other non-functional traits are available (Lavorel and Garnier, 2002; Diaz et al., 2016). 

Many studies in functional ecology and community ecology are thus dominated by plant diversity 

studies and it is not well understood whether patterns observed with plants can be generalized to 

the other taxa.  

Plants are the most studied taxonomic group, because it is the most documented one. Most 

plant trait databases include mean trait values per species with no information on trait intraspecific 

variability (Diaz et al., 2016). Thus, it seems sometimes difficult to establish relationships between 

the performance of a species and a particular habitat if species' traits have been averaged across a 
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range of different environmental conditions. For example, in Chapter 2 we used trait data from 

several countries of northern-western Europe, but excluded those from the other European 

countries, where same species occurred (available in TRY database). Moreover, the majority of 

species trait values are available for the most common species and for the most easily measurable 

traits (Violle et al., 2015), which bias species originality to the most abundant species. Therefore, 

values of trait-based originality are relying on the choice of traits, their number and type, how they 

were measured and on the way these traits are used to represent dissimilarities between species.  

In particular, species traits can be of different statistical types. In Chapter 2, we used quantitative, 

categorical, ordinal, circular, binary and nominative traits. The type of data will have an influence 

on how species' originality is perceived. For example, categorical traits lead to binary distances 

between species: two species are similar (distance=0) if they belong to the same category or they 

are maximally distant (distance=1) if they belong to distant categories. In that case, species 

belonging to the less frequent category will be considered highly original compared to others, as 

they are maximally distant from other species. Quantitative traits lead to more continuous 

differences between species and thus to more continuous and symmetric distributions of species 

originalities. Discrete traits could thus lead to the highest distances between species and thus to an 

overestimation of their trait-based originality (Maire et al., 2015). When working with several 

species traits, one should also test for collinearity between trait values and exclude highly correlated 

ones. Then, Gower’s measure of species distances (Gower, 1971) allows taking into account 

multiple trait types and handles missing trait data when calculating trait-based dissimilarities 

between species. A generalization of Gower's metric into a mixed-variable coefficient of 

dissimilarity (Pavoine et al., 2009; see Chapter 2 for use) improved the consideration of traits of 

different types. Although, if the amount of missing data is relatively small to the size of the dataset, 

then leaving out the few samples with missing features may be the best strategy in order not to bias 

the analysis, computational bias is still inevitable.  

Species trait-based originality measures are sensitive to the missing data, some more than 
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the others, as found in the case study of Veron et al., (In prep, see Appendix A). Similarly, in our 

case study in Chapter 2 species with the most of missing trait data had the highest trait-based 

originality scores, even if in reality they may not be that different from the other species. For sure 

the best solution to missing trait data would be not having any. Experimentally controlled studies 

could probably get nearly complete datasets. However, most ecological datasets combine many 

data sources and thus many potential sources of missing data. The common habit is to delete units 

with missing observation, which likely increases estimation bias particularly if data is not missing 

completely at random (Nakagawa and Freckleton, 2008; Penone et al., 2014). For example, Penone 

et al. (2014) found that removing species with missing trait values (especially with >30%) created 

more bias than trying to estimate (impute) missing traits. 

To avoid inconsistent results, one could try to improve the effort of data collection, for 

example by combining multiple databases as we did by combining four plant trait databases in 

urban originality study, and completing it with data from literature, museums and fieldwork. If an 

important amount of missing data persists, imputation strategies exist (see Chapter 2), replacing 

missing data points with an estimated value relative to the given data input (Soley-Bori, 2013). 

Penone et al. (2014) compared the power of four imputation methods of missing trait values by 

artificially removing an increasing amount of trait data from a complete dataset of Carnivora 

species. Penone et al. (2014) also included phylogenetic information into the imputation algorithm 

thus improving trait values estimation; however, this could introduce circularity if we calculated 

trait-based originality from phylogenetically constrained data and then compared it to the 

phylogenetic originality. Penone et al. (2014) found that up to 60% of missing data would be an 

acceptable threshold for a meaningful imputation with four methods they tested. However to date, 

there were no studies evaluating species originality sensitivity to the missing trait data and to the 

mentioned imputation methods (but see Veron et al., in prep in Appendix A). 

Another source of trait-based bias is the way of representation of species differences. There 

are three main approaches for representing trait-based differences between species: tree-based, 
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distance-based and trait-value ordinations in multidimensional space (Chao et al., 2014). Because 

originality indices were first developed for the phylogenetic tree structure, the most used method 

to measure trait-based originality is the tree-based approach, by constructing functional 

dendrograms with hierarchical clustering methods (Figure 2.b; Mouchet et al., 2008). Trait-based 

dendrograms consider all possible interrelations between species of a set (Chao et al., 2014). Yet, 

there is no rationale for representing trait-based relatedness between species with a dendrogram 

(Villéger et al., 2017) and it could misrepresent species’ raw distances and bias the estimates of 

species trait-based originality (Pavoine et al., 2017). Nevertheless, there is a lack of research 

investigating how trait-based clustering approaches influence trait-based originality values (but see 

Pavoine et al., 2017; Veron et al., in prep in Appendix A.). We would thus recommend to test the 

quality of several approaches for trait-based distances representation compared to raw trait 

differences and to choose to most appropriate one. For example, Veron et al. (in prep, Appendix 

A) found a low Pearson's correlation between species originality computed on trait and phylogeny 

data. 

In a study case, Maire et al. (2015) found that the use of a tree-based approach could 

artificially increase species trait-based distances and that the use of multidimensional space with 

axes derived from principal component analysis (PCoA), seems to better represent species trait-

based distances. Species originality, calculated in the multidimensional space as a distance from 

focal species to the centroid of all species, would avoid tree-based approach problems; but, if there 

are too many traits, the visualization of functional space can somehow become tricky and difficult 

to interpret (Saito et al., 2016). It is still not clear, however, how big is the difference between tree-

based and ordination approaches for traits-based distances representation (Weinstein et al., 2014; 

Cianciaruso et al., 2017).  

As species trait-based originality is drastically dependent on the accuracy of clustering 

algorithm (Podani and Schimera, 2007) and the quality of multidimensional space (see Maire et al., 

2015), yet it could be difficult to choose between the two approaches. An alternative is to apply 
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originality measures directly to a distance matrix (Ricotta and Szeidl, 2009) as we did in urban plant 

originality in Chapter 2. Using the distance matrices for trait-based species originality measuring 

avoids us the arbitrariness of choice of clustering and ordination methods and simplifies the 

interpretation of multiple trait-based differences between species. Such an approach also makes it 

easier to compare trait-based originality and phylogenetic originality as phylogenetic distances can 

easily be extracted from a phylogenetic tree (Figure 2.a). 

 

Figure 2. Illustration of  interchangeable use of  tree-based and distance-based approaches of  
species biological data representation for originality measuring: a. methods of  pairwise 
phylogenetic distances calculation from phylogenetic trees, b. methods of  hierarchical clustering 
from trait distance matrix to trait-based dendrogram. Methods presented in a. and b. can also be 
reversed. Sp represents five different species in a set. 

 

 
 

2. THE MATTER OF SCALES FOR ORIGINALITY MEASURES 

Levin (1992) noted that “the problem of relating phenomena across scales is the central problem 

in biology and in all of science.” Hence, the problem of scale at which ecological processes should 

be considered is critical to generate general predictions in ecology (Chave, 2013). As species 

originality is relative to a reference set of species, its value depends on the scale at which this species 

set is defined. Most studies on species originality have concerned large clades, like birds or 
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mammals, and have been done at the global, word scale (Safi et al., 2013; Jetz et al., 2014; Thullier 

et al., 2015). Such studies allow responding the questions like: which are the most original species 

on Earth?; Are original species threatened by extinction? In Chapter 2, however, we analyzed 

originality from local to regional scales and not on global scale. When originality is measured in a 

local site, it depends on the species composition of this local site, which itself strongly influenced 

by the regional source pool of species.  

2.1 Importance of  the spatial scale 

As written above, the global world scale has been the most studied scale for calculating species 

originality (see e.g., Veron et al. 2017 and references therein). This is because most studies focused 

on conservation biology asking which species are globally original and how many globally original 

and endangered species are supported by a given region (Safi et al., 2013; Jetz et al., 2014). These 

studies focus on patterns of the distribution of global originality and use the concept of originality 

as a criterion for the conservation of biodiversity. However, originality concept could help 

ecological studies to go beyond describing biodiversity patterns to determination of key processes 

underlying these patterns. 

Ecological and evolutionary processes that act at different scales of  biodiversity 

organization are interdependent. Thus, species ecological properties shape processes of  species’ 

evolution that in return influence the distribution and abundance of  species in communities 

(Ackerly et al., 2003; Cavender-Bares et al., 2004). Local patterns of  species originalities are 

determined by species ability to disperse, install and survive in local communities constrained by 

local community assembly processes (Chase and Myers, 2011). At the same time, local originality 

patterns are also constrained by macro-evolutionary processes (Ricklefs, 1987). Moreover, species’ 

local originality is likely to vary across different specific compositions of  communities, constrained 

by environmental gradients, and different evolutionary histories of  coexisting species.   

As a result, in Chapter 2, we chose to explore the concept of originality at two restricted 

scales: local and regional. It is indeed possible to calculate the originality of  each species in reference 
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to the set of  species present in a local area. If  a species is present in several local areas, then its 

local originality will change depending on the local area considered (see discussion of  Chapter 2). 

In addition, it is also possible to calculate the originality of  each species in reference to all species 

present in a region and to make the mean of  these regional originality values (MrOP) in each local 

community as we did for urban plant species. This measure (MrOP) represents the amount of  the 

regional diversity expressed by species in the local community. If  the regional diversity is well 

represented at the local level, then a local conservation effort could be enough to protect a local 

hotspot of  regional biodiversity (Margules and Pressey, 2000; Veron et al., 2016). Multi-level 

originality approaches from local to global scales could allow determining the scale at which 

environmental factors have the strongest effect and where conservation should be prior. Such a 

multi-scale approach however questions on the definitions of  regional and local species pools. 

The regional pool of species was subject to controversial definitions since nearly 80 years 

(Graves and Rahbek, 2005). Usually, the composition of observed regional pool is limited to a list 

of species known to occur in a given biogeographic area, yet often without the reference to habitat 

or distance from the local assemblage (Graves and Rahbek, 2005). With such a definition, some 

species would appear highly original within the regional pool. In urban originality study (Chapter 

2) for example, some of non-native species introduced by humans from other biogeographical 

zones were top ranked by trait-based originality measures. In another study, introduced Carnivore 

species were characterized by high phylogenetic and trait-based originality scores in Europe 

(Pavoine et al., 2017). Therefore, a regional pool should represent a reference set of species 

susceptible to colonize and compete for resource use in local communities (Lortie et al. 2004; 

Lessard et al, 2012; Cornell and Harrison 2014). The regional pool composition thus reflects 

distinct assembling processes acting hierarchically at local and regional scales and greatly influences 

local communities’ formation (Zobel, 1997; Lessard et al., 2012). Hence, depending on how 

regional pool and local community are defined in terms of  the taxa included, originality measures 

would give different lists of  the most original species and hence, will reveal signatures of  different 
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ecological processes and indicate different priority areas for conservation.  

2.2 Taxonomical scale 

The decision about which taxonomic group to include into a study is based on a number of 

theoretical and practical considerations. Usually community ecology studies are interested in a finite 

set of traits and consider species from a delimited taxonomical group that occur in a given place. 

More fundamental evolutionary studies are searching for global patterns of species diversity and 

usually work with entire clades of species. Use of an inappropriate taxonomic scale can alter 

patterns detected during analysis (Cavender-Bares et al., 2006). Decisions on which species are 

included into the regional pool can fundamentally change the interpretation of species originality 

patterns. For example in Chapter 2 we decided to exclude species from Bryophytes (mosses) and 

Pteridophytes (ferns) from plant communities, as they might have very different trait values and 

evolutionary history compared to Angiosperm species retained. However, this choice was arbitrary 

and not easily justified, which is often the case (Cadotte et al., 2017). If there is no indications on 

which taxa to include, one could start with the largest possible species pool and test whether 

patterns of species originality distribution change within smaller species pools. 

3. CHOOSING THE MATHEMATICAL FORMULA TO MEASURE 
ORIGINALITY 

A significant part of the efforts made by evolutionary and ecology scientists is guided by a common 

aim to preserve biodiversity and the benefits it provides to humanity. This ambitious intention 

demands not only a deep knowledge and understanding of what we want to protect but also an 

adequate tool helping humanity to make the decision. As seen above, the difficult task of selecting 

among different facets of biodiversity (species, sets of species as communities) as targets for 

prioritization depends upon the choice of data type and that of the study scale. It also depends on 

the measure selected. In this thesis we wanted to emphasize species originality measures that come 

to complete well-known species diversity measures. Species originality can be seen as a rarity of 

species characteristics (Pavoine et al., 2005, Chapter 1), completing species abundance-based rarity 
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with information on species' biological differences. Originality indices are numerous, some of them 

are redundant, some are using different types of data and differ in the way they weight species. 

These differences, sometimes subtle, can still substantially influence the patterns of originality 

scores observed. In Chapter 1, we already presented the relationship between species originality 

and diversity measures. Here we overview some methodological aspects that one should be aware 

of before choosing the right originality index. 

3.1 Relations between species originality measures  

The idea that certain species contribute disproportionately to phylodiversity and trait-based 

diversity of species set is based on the assumption that those species possess an unusual set of traits 

unshared by the rest of species set (see Chapter 1). Studying species originality may reveal whether 

or not species with high originality values also maintain important ecosystem functions and large 

amounts of evolutionary history and are therefore worth to be protected in priority. In contrast to 

widely used diversity metrics, measured at the level of species set (local, regional, or global set), 

originality gives a value to each species in a set (Chapter 1). It is important to remember that 

originality is a relative measure, thus it can be described as a gradient (Chapter 1, Figure 2), with 

two extreme yet probably impossible cases: unique species on one side, not sharing any biological 

characteristic with others (100% of unique contribution to the diversity of a set) and redundant 

species on another side, sharing all its characters with other species (0% of unique contribution to 

the diversity of a set). Such a gradient encompasses all the possibilities of species differences in a 

set and its contribution to the diversity. An ideal originality measure would thus be able to position 

species along the whole gradient. Some originality measures however are biased along this gradient, 

being more sensitive to species uniqueness than to species redundancy (Figure 3). 
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Figure 3. Illustration of differences between originality indices in their sensitivity to uniqueness 
versus redundancy. Here six originality indices are considered. We considered a theoretical rooted 
phylogenetic tree with 19 species on tips (capital letters). The root is on the left. The distance from 
tip to root is equal to 5 units. We calculated for each species the NN index (nearest neighbor = 
pendant edge (PE)), the Equal-Split (ES) and Evolutionary-Distinctiveness (ED) indices (see 
Chapter 1), the indices derived from the quadratic entropy (Rb and Qb, see Chapter 1), and AV 
index (average distance to all other species). Then species were ranked from the highest (rank = 1) 
to the lowest (rank = 19) value (variables NNrank, ESrank, EDrank, Qbrank, Rbrank and AVrank). 
Species C is considered as the most original according to NN and ES. These indices overweight 
uniqueness (the branch that leads to a single species) in comparison to redundancy (shared 
branches) (NN even discards any redundancy). Species C is considered the third most original 
species by indices ED and Qb, which acknowledges the phylogenetic isolation of species A and B. 
In contrast, species C is considered the 11th most original species (so among the least original 
species) according to Rb and AV.    
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We have already presented a large variety of originality measures in Chapter 1. Redding et al. (2014) 

showed that some indices were always very closely related (see Table 1 in Redding et al., 2014). As 

described in the Appendix 1 of Chapter 1 (Table S1.1), there are basically two types of originality 

measures, nested inside of the species characters type used – phylogenetic or trait-based. We 

showed in Chapter 1 that many indices independently developed to measure either phylogenetic 

originality or trait-based originality are actually similar. This is the case for the pendant edge 

measure of phylogenetic originality (PE, Redding et al., 2014) and the nearest neighbor (NN) used 

to measure trait-based originality (Pavoine et al., 2017). The PE index does not include the root of 

phylogenetic tree in the calculation of phylogenetic originality. Therefore, PE reflects a recent 

dimension of species evolution and is sensible only to changes in the lengths of terminal branches 

on a phylogenetic tree (Redding et al., 2015a). PE overweighs species uniqueness because it fails to 

compare the amount of unique evolution with the amount of shared evolution between species, 

the latter being discarded. Same arguments are valuable for the NN measure. Hence, according to 

PE and NN indices, a species may appear more original than it actually is (Figure 3).  

Among indices that were inferred from phylogenetic trees, the most used ones (Fair 

Proportion FP, Isaac et al., 2007, and Equal Splits ES, Redding et al., 2006) include the root of the 

phylogenetic tree in originality calculation and partition the total branch length between all species 

from the set (Figure 1 from Pavoine et al., 2017). In contrast to PE, they include all branches of 

the phylogenetic tree from tips to root while calculating species originality. Despite that, it has been 

shown that these measures are strongly correlated with PE and thus also overweigh species 

uniqueness over species redundancy (e.g., Jono and Pavoine, 2012).   

In Chapter 2, we used an alternative index that averages dissimilarity between the target 

species and all others in a set. When applied to phylogenetic distances, this index (named AV for 

Average, Pavoine et al. 2017; or Average Pairwise Distance (APD), Redding et al., 2015a) represents 

more ancient dimensions of species evolution. Hence, it is sensible to deeper phylogenetic structure 

changes and errors in branch lengths (particularly the terminal branch) will provide only a limited 
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amount of incorrect information to a final originality value (Redding et al., 2015a). Redding et al. 

(2015a) also found that APD, working with phylogenetic information, was strongly correlated with 

trait-based measures of originality and thus could also capture well the ecosystem trait-based 

diversity. Thus, APD could represent an analytical link between phylogenetic and ecological 

conservation studies (Redding et al., 2015a). Pavoine et al. (2017) showed, however, that indices 

like AV and APD tend to give close values to all species in a set. Thus, if we were interested in 

distinguishing better between species redundancy and uniqueness of species, another related index 

named Rb would be more appropriate (Figure 3; Pavoine et al., 2017). This index, derived from 

Rao’s quadratic entropy index (Rao, 1982), is strongly correlated to AV, but leads to higher 

variances in the values of species originality (Pavoine et al., 2017). Because of their various 

sensitivity to species uniqueness versus redundancy, the choice of an originality index is crucial to 

better represent and understand phylogenetic and trait-based structure of species community. For 

example, applying 11 different indices of phylogenetic originality to world's phylogenies of 

Mammals and Amphibians created different lists of the top 100 most original species, which also 

differed from the top species list created by EDGE program (Table 2 in Redding et al., 2014). 

However, the metrics that were closely related to the ED measure composing the EDGE formula 

(Isaac et al., 2007) produced very similar lists of top original species (Redding et al., 2014). 

Therefore, the more originality metrics are different in their calculation manner, the more varies 

species originality score.  

3.2 On the ubiquity of  originality measures in general 

We have seen in section 2.1 that continuous indices of species originality could be measured at any 

spatial scale from local to global. However, should the mathematical formula for originality change 

depending on the scale of a study? For example, in Violle et al. (2017a) functional rarity framework, 

the term of species “distinctiveness” was defined only at the local level and designated the mean 

distance to the other species in a set; in contrast, the term of species “uniqueness” was defined only 

at the regional level and designated the distance to the k nearest neighbors within a regional species 
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pool. Further research is however needed to determine whether the choice of originality indices 

should be dependent on the spatial scale of a study and more generally to determine which index 

is most appropriate to respond to which ecological questions (see Carmona et al., 2017; Violle et 

al., 2017b). 

More generally, originality measures are flexible tools and can be applied in many different 

circumstances of various areas of ecological and conservational research. Originality measures 

require a set of entities that can be described by a common set of characteristics. In this thesis, we 

used species as an entity and brought attention to the most available and used species characters – 

traits and phylogenies. Using species as a unit constrains researchers to stick up to one of species’ 

concept definitions. In this thesis, we used a mix of several definitions of species concept (see 

Introduction, section 3.1). Moreover, species could be replaced with individuals characterized by 

traits or DNA sequences (already indirectly used with molecular phylogenies) thus representing 

intra-specific originality. Species could also be replaced by other taxonomic levels (genera, families, 

clades; Cornwell et al., 2014) or trait functional groups assembling multiple species (Brandl et al., 

2016). More broadly, the originality (and rarity) concepts could be extended to any scale of 

biological organization from genes to ecosystems (Carmona et al., 2017). As proposed by Pavoine 

et al. (2017):  

 

“The concept of originality could then be adapted for establishing conservation priorities across multiple 

scales. For example, dissimilarities among communities, even when phylogenetic information is used (e.g., Ives and 

Helmus, 2010; Chiu et al., 2014; Pavoine, 2016), are rarely derived from trees. At the plot and regional scales, 

our methodology can also be extended to measure the environmental originality of plots within regions, and of regions. 

This can be done simply by replacing biological with environmental data when calculating dissimilarities between plots 

and between regions. Our study thus opens the way to new directions of research where the biological originalities of 

areas will be compared to their environmental originalities.” 
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Within a biogeographic zone, some habitats or communities can have a unique composition, as 

well as a restricted area. Consideration of originality at any organizational scale of biodiversity 

would broaden the application of originality framework to study differences between habitats 

within landscapes or regions, regions within countries and biogeographic domains within the world 

(Carmona et al., 2017). More research is thus needed to determine which originality indices could 

allow us to integrate nested scales of originality by measuring the originality of an individual within 

a species, of a species within a site, of a site within a region, etc.  
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CONCLUSION 

 

One of  global goals of  conservation biology, ecology and other disciplines interested in biological 

diversity is to "address the underlying causes of  biodiversity loss […] to improve the status of  biodiversity by 

safeguarding ecosystems, species and genetic diversity […] and mainstreaming biodiversity across government and 

society" (Aichi Biodiversity Targets, Strategic Plan for Biodiversity 2011–2020, CBD, 2011). 

Feasibility of  projects considering biodiversity is constrained by available amount of  knowledge 

and by budgetary capacities. At the same time, biodiversity prioritization is guided by nature's 

benefits to people, reflected in phylodiversity and trait-based diversity of  species. Unfortunately, 

there is still a gap between the scales where biological diversity and ecosystem functioning are 

studied, scales where conservation actions are taken, and scales where direct benefits to humanity 

exist. To overpass this gap, an important role of  biological research is to bridge theoretical and 

practical approaches, sometimes by making simplifications and by according theory a practical use. 

The main objective of  this thesis was to evaluate the benefits that can bring the concept and 

measures of  species’ originality to different biological disciplines, particularly to conservation 

biology and community ecology. Originality indices allow treating species within multiple facets of  

biological diversity. Combining theoretical and empirical evaluations this thesis has contributed to 

the following key points:  

Ǿ Common meaning of  words used to designate a concept in Science can differ between 

researchers, which can be misleading for general understanding. Therefore, we first 

provided a semantic and historical overview of  three commonly used concepts – diversity, 

rarity and originality – at the level of  species assemblage. We propose that studies 

investigating species contribution to the diversity of  a set use a unifying term of  originality, 

so that the comparison between studies and key-words research could be more efficient.  

Ǿ We made an explicit differentiation between species diversity, which is a property of  a set 

of  species and species originality, which is a property of  individual species composing the 
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set. From there, we were able to describe that originality is a species contribution to the 

diversity of  a reference set of  species based on two main attributes used to describe species: 

traits and phylogeny. Therefore, the concept of  species originality can be seen as species 

rarity based on other attributes than species abundance. 

Ǿ We then showed that mathematical links exist between associated indices of  rarity, 

originality and diversity. Rarity, which is historically the oldest way to describe differences 

between species, was explicitly integrated into diversity measures by means of  species 

abundance. Then, based on species' biological differences, diversity indices integrated 

species' phylogenetic and trait characters. We showed that phylodiversity and trait-based 

diversity can thus be written as a function of  species rarity and originality measures in 

several ways (notably, as a mean, sum or a weighted mean).  

Ǿ Following theoretical outlines of  originality-diversity concepts we proposed a practical 

application of  a two-step analytical framework to real plant species data, by first measuring 

species-specific originality and then inferring species diversity with real plant species data. 

We demonstrated how regional and local species originality contributed to variations in 

community diversity along an urbanization gradient. The influence of  urbanization 

gradient on community-level diversity differed between trait-based and phylo-based 

measures and between local and regional scales, which were the area over which originality 

was calculated (originality relative to the rest of  the community or to the rest of  the region). 

Ǿ Our originality framework indicated the most relevant spatial scale for studying trait-based 

and phylo-based originality. Moreover, we determined which species, original or redundant, 

are responsible for variations in trait-based diversity and phylodiversity. We notably showed 

that urbanization causes some species to have higher trait-based originality at the local 

community scale than at the regional scale. Therefore, variation of  species originality across 

local communities is not random but dependent on regional species pool and community 

assemblage rules. 
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Ǿ We brought attention to possible pitfalls that can be encountered during species originality 

analysis. Measured by various approaches based on trees (phylogenetic tree or trait-based 

dendrogram), dissimilarity matrices or multidimensional space, species originality depends 

on data completeness and accuracy. This issue has been encountered by many studies, 

however, its influence on species originality measures has not been addressed in literature. 

We showed with the very first results that originality dependency on trait missing data 

requires a deeper consideration and analysis in future studies. 

Ǿ We underlined that species originality can vary across spatial and taxonomic scales 

according to different ecological and evolutionary processes acting at these scales. In 

addition, we argued that including species abundance-based rarity into originality measuring 

can drastically change species scores and conclusions about ecosystem functioning, where 

a high number of  individuals supporting the same trait can ensure greater stability. 

However, we showed that it is possible to develop originality measures that are regulating 

the relative importance given to rare vs. abundant species. 

Ǿ As it is not possible (and not meaningful) to include all species' attributes into one metric, 

we stressed the need for a joint use not only of  different species' biological characters but 

also of  different originality and diversity measures in order to understand mechanisms 

shaping species communities at different spatial and temporal scales. Different aspects of  

species characters would reflect different patterns of  species evolution and implications 

into ecosystem functioning. 

Ǿ Overall, although these methodological considerations will have to be treated in future 

research, this thesis has demonstrated that the originality concept and its measures could 

be useful to community ecology, notably to identify the evolutionary events and ecological 

processes leading to the coexistence of  species with different levels of  originality. As these 

processes can include human activity, the originality concept and its measure could be also 

useful to conservation studies, especially if  original species are threatened. 
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Ǿ Finally, we underlined the ubiquity of  originality measures as they could give a value to any 

entity in focus compared to other entities of  the same type. The focal entity can be a species 

compared to other species in a set as treated in this thesis. In future research a focal entity 

could also be a community of  species compared to other communities in different regions 

or habitats, characterized by species composition. Few conservation actions have already 

shifted from conserving rare threatened species to conserving threatened species with 

original biological characteristics. As a step further, future actions could shift from 

conserving more diverse and threatened areas (or hotspots of  biodiversity) to conserving 

areas composed of  more original species. 
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AFTERWORD 

Extra projects and other doings, which are indirectly related to a research activity of PhD students 

and researches in general are often forgotten. These usually voluntary work represents, however, 

an important investment of time and energy. I would like to briefly present here some main 

activities, which I was happy to be a part of. All of them provided me a great personal experience, 

whether it was by a popularization of evolution and ecology to a primary school class, by giving 

botany classes to people passionate by nature and biology during public lectures of MNHN or by 

leading an association of Master and PhD students (BDEM) during two past years. It was a great 

pleasure to have a possibility to participate to all those projects, which also opened me different 

worlds of research, teaching, administration, event organization and many others. As I am planning 

to continue my past activities before I started to work on this thesis project, which excites me 

particularly, that is to spread the scientific knowledge to kids, I also participated to a meeting of 

EvoKE (Evolutionary Knowledge for Everyone) association in Croatia.  

Therefore, I would like to thank all the people who I was very glad to meet during these three past 

years, people which contributed to my personal development in any form.  

 

 January - June 2018: Teaching Theory of  Evolution at primary school "Parmentier", Paris, 

during science classes (activity report can be found in Appendix C) 

 26 - 29 September 2019: EvoKE 2019 meeting, Split, Croatia 

 May 2017 – May 2019: Head of  PhDs and Master Students association, “Bureau des 

Doctorants et Etudiants du Muséum” (BDEM) of  MNHN 

 General organization and coordination of  Young Natural History scientists Meeting 

(YNHM) in 2018 and 2019: https://ynhm2019.sciencesconf.org/; 

https://ynhm2018.sciencesconf.org/  

 Public lectures for National Museum of  Natural History in botany (Angiosperms 

reproduction, Plant community ecology, Urban plants ecology) 

 Participation to the Vigie-Nature stand during “Fête de la Nature” week-ends in 2018 and 

2019 



220 
 

LIST OF PUBLICATIONS 

Kondratyeva, A., Grandcolas, P., and Pavoine, S. (2019). Reconciling the concepts and measures 

of  diversity, rarity and originality in ecology and evolution. Biol. Rev. 94, 1317–1337. 

doi:10.1111/brv.12504 

Kondratyeva, A., Knapp, S., Durka, W., Kühn, I., Vallet, J., Machon, N., Martin, G., Motard, E., 

Grandcolas, P., and Pavoine, S. (2019). Diversity in the city: urbanization affects differently trait-

based and phylogenetic plant originality at local and regional scales. In revision for Frontiers 

Ecology and Evolution, section Urban Ecology. 

S. Veron, R. Pellens, A. Kondratyeva, S. Diaz , W. Illes, P. Grandcolas, S. Pavoine, M. Robuchon 

and M. Mouchet. (2019). On islands, evolutionary but not functional originality is rare. In prep. 

 

LIST OF COMMUNICATIONS 

Chaire Modélisation mathématique et Biodiversité (MMB), Aussois, 28 mai – 1 juin 

2017, oral « Mesures d’originalité phylogénétique et fonctionnelle », Kondratyeva, A., Grandcolas, P., 

Pavoine, S. 

SFEcologie 2018 – International Conference on Ecological Sciences, Rennes, 22-25 

October 2018, poster presentation “Species’ diversity, rarity and originality. Disentangling concepts and 

measures in ecology and evolution” Anna Kondratyeva, Philippe Grandcolas, Sandrine Pavoine (award 

of  the best young researcher poster); Oral presentation « Originalité urbaine des plantes herbacées, région 

Ile-de-France », Kondratyeva, A., Knapp, S., Durka, W., Kühn, I., Vallet, J., Machon, N., Martin, G., 

Motard, E., Grandcolas, P., et Pavoine, S. 

Vigie-flore program days (27-28 April 2019), oral presentation « Originalité urbaine des 

plantes herbacées, région Ile-de-France », Kondratyeva, A., Knapp, S., Durka, W., Kühn, I., Vallet, J., 

Machon, N., Martin, G., Motard, E., Grandcolas, P., et Pavoine, S. 

Petit pois déridé, 4-6 June 2019, oral presentation « Originalité urbaine des plantes herbacées, 

région Ile-de-France », Kondratyeva, A., Knapp, S., Durka, W., Kühn, I., Vallet, J., Machon, N., Martin, 

G., Motard, E., Grandcolas, P., et Pavoine, S. 

 

. 



221 
 

APPENDIX A  

ON ISLANDS, EVOLUTIONARY BUT 

NOT FUNCTIONAL ORIGINALITY IS 

RARE 

  



222 
 

On islands, evolutionary but not functional originality is 

rare 

 

Authors: S. Veron1,2,*, R. Pellens1, A. Kondratyeva2, P. Grandcolas1, Rafaël Govaerts3, M. 

Robuchon2, M. Mouchet2 

 

1Institut de Systématique Evolution et Biodiversité (ISYEB UMR7205), Muséum National 

d’histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 47 rue 

Buffon, 75005, Paris, France 
2Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR7204) MNHN, CNRS, 

Sorbonne Université - CP51, 55-61 rue Buffon, 75005, Paris, France 
3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK. 

 
*Author for correspondence: e-mail: sveron@edu.mnhn.fr; Tel. +33 1 40 79 57 63; Fax: +33 1 40 

79 38 35 

 

 

 

 

 

 

 

 

 



223 
 

ABSTRACT  

Functionally and evolutionary original species are those whose traits or evolutionary history are 

shared by few others in a given set. These original species promote ecosystem multifunctionality, 

the ability to cope with an uncertain future, future benefits to society and therefore have a high 

conservation value. A potential signal of their extinction risks is their rarity (stating for geographic 

range-restriction in this study). In islands life in isolation conducted to the rise of a multitude of 

original forms and functions as well as to high rates of endemism. Not only patterns and processes 

of insular originality are unexplained but the relationship between originality and rarity is still 

unknown. The aim of this study is to assess how original insular species are, to explore whether 

original species are rare or not and to investigate the factors that may explain the rarity of original 

species. We first compared the functional and evolutionary originality of monocotyledon species 

and whether continental or insular species were more original. We found that species restricted to 

islands were more original than continental species and, although functionally and evolutionary 

original species were dissimilar, many occurred on similar territories so that regional conservation 

strategies may allow to conserve these distinct forms. Yet, evolutionary original species were 

significantly more range-restricted than those which were distinct in their traits. Reflecting their 

rarity, evolutionary original species had low dispersal abilities and were found on islands where 

settlement may have been facilitated. On the opposite, functionally original species could reach a 

wider set of islands by being transported on long-distances. While some mechanisms may both 

explain rarity and originality such as extinctions, others may be specific to each of these biodiversity 

facets, in particular diversification, niche shift and expansion, and dispersal power. Implications for 

conservation are huge: original species are range-restricted and mostly found in the most threatened 

systems of the world, i.e. islands, endangering the reservoir of features against an uncertain future. 
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INTRODUCTION 

Originality of a given species in a set is the oddity of its biological characteristics, whatever they 

are, relatively to all other species of the set (Sandrine Pavoine, Bonsall, Dupaix, Jacob, & Ricotta, 

2017). Originality can refer to evolutionary history or to functional traits (e.g., Pavoine, Ollier, & 

Dufour, 2005; Pavoine et al., 2017; Marc W. Cadotte & Jonathan Davies, 2010; Redding, Mazel, & 

Mooers, 2014 ; D. Mouillot, Culioli, Pelletier, & Tomasini, 2008 ; Violle et al., 2017 ; Cornwell et 

al., 2014). Originality has been poorly investigated in community ecology or biogeography (but see 

David Mouillot, Graham, Villéger, Mason, & Bellwood, 2013) but its value for biodiversity 

conservation is well supported. Indeed, in addition to capture significant amount of phylogenetic 

or functional diversity (D. Mouillot et al., 2008; Faith, 1992), evolutionary and functionally original 

species may insure key ecosystem processes and provide services to humanity. Functional and 

evolutionary originality may sometimes be decoupled (Faith, 1992; Pollock, Thuiller, & Jetz, 2017) 

and should be differentiated due to the distinct benefits they may provide. Regarding measures of 

functional originality, they are based on a reduced number of traits generally related to ecosystem 

functioning. For example, (Petchey, Hector, & Gaston, 2004) used 12 plant traits and showed that 

functionally original species may have a large contribution to ecosystem functions by increasing 

plant biomass production. Loss of functionally original species may then directly impact ecosystem 

stability, resilience and multifunctionality (Fonseca & Ganade, 2001; Pendleton, Hoeinghaus, 

Gomes, & Agostinho, 2014; Bracken & Low, 2012; Oliver et al., 2015). Evolutionary original 

species may also have a leading contribution to ecosystem functioning because phylogenetic 

isolation may be an indicator of distinct species ecological roles (M. W. Cadotte, Cardinale, & 

Oakley, 2008; (Redding et al., 2008; Marc W. Cadotte & Jonathan Davies, 2010). Most of all, 

phylogenetic diversity represents a reservoir of yet-to-be-discovered resources to humanity and 

evolutionary original species may highly contribute to these option-values (Faith, 2017). Using 

together functional and evolutionary originality may allow to identify species that capture 

irreplaceable ecosystem functions and services to humanity. However, functional and evolutionary 
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originality have rarely been studied jointly. Systems in which the study of both biodiversity facets 

could be highly valuable are islands. Insular systems have a huge importance in biodiversity 

conservation to preserve the heritage of our planet and they have a leading role of “natural 

laboratory” for biogeography and evolutionary ecology (Robert J. Whittaker, Fernández-Palacios, 

Matthews, Borregaard, & Triantis, 2017; Warren et al., 2015). Islands are home of species which 

are found nowhere else on Earth and which represent a unique evolutionary history as well as a 

multitude of forms and functions. Original species may have a high contribution to the island biota, 

but their role in shaping insular diversity just begin to be investigated (Veron, Haevermans, 

Govaerts, Mouchet, & Pellens, 2019; Veron et al., 2019). In addition, very little is known about 

how originality arose and is distributed, so that investigations on this topic may bring insights that 

go beyond the scope of island biogeography.  

A pre-requisite to the joint study of functional and evolutionary originality is to assess how these 

biodiversity facets are related. As stated above, findings about this issue are contradictory and it 

has rarely been studied in an insular context. On islands, the relationship between phylogenetic and 

functional originality may be weak as early diversification and simultaneous cladogenesis resulted 

in the lack of phylogenetic signal in insular species traits (Losos, 2008). A famous example is the 

radiation of Bidens in Hawaii: closely-related species have greater diversity of traits (e.g., growth 

form, floral morphology) than in the rest of the world probably due to the diversity of habitat types 

and to loss of dispersability (Knope, Morden, Funk, & Fukami, 2012). As for Hawaiian Drosophila, 

sexual selection has resulted in clearly distinguishable traits among closely-related (Gillespie & 

Clague, 2009). In addition, phenotypic character changes of insular species do not necessarily 

involve speciation or a phylogenetic branching pattern so that variation in evolutionary history do 

not reflect the variation of some specific traits (R. J. Whittaker & Fernández-Palacios, 2007). The 

first issue we investigated was therefore the extent to which functional and evolutionary originality 

are related and we specifically tested the assumption that evolutionary and functional originality are 

less correlated than on the mainland.  
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Another unresolved question is whether originality is higher on islands in comparison to 

continental areas. On islands, a long evolutionary history in isolation coupled with unfilled niches 

and oceanic climate may have given rise to many evolutionary and functionally original species. 

Extinctions on the continents may also have isolated species in the tree of life and in the functional 

trait space, creating evolutionary and functionally original insular species (Rosemary G. Gillespie & 

Roderick, 2002; Grandcolas, Nattier, & Trewick, 2014)). However, whether insular species are 

more original than continental has been poorly studied so far and maybe highly taxa specific (Jetz 

et al., 2014). We therefore explored whether insular species are more original than continental ones, 

which may add a new line of argument for the preservation of insular biodiversity. 

Some original species may be at risk due to their rarity (here stating for geographic range-

restriction). Range-restriction is indeed a key factor of extinction risks. Many research found that 

low geographic range size was the main predictor of these risks and it is also one of the main factors 

of the threat status of species in the IUCN RedList (Rodrigues, Pilgrim, Lamoreux, Hoffmann, & 

Brooks, 2006; Bland, Collen, Orme, & Bielby, 2015; Veron et al., 2016). Like original species, range-

restricted species provide unique functions in an ecosystem as well as unique services to humanity 

(David Mouillot, Graham, et al., 2013; Leitão et al., 2016). Species which are both rare and original 

may then support highly vulnerable and unique functions and option values (Rosauer, Laffan, 

Crisp, Donnellan, & Cook, 2009; David Mouillot, Graham, et al., 2013; Violle et al., 2017 ; Faith, 

2017). Many of such species may be found on islands. Indeed, a remarkable feature of islands is 

their high rates of endemism which may outcompete these in the mainland by a factor of 9 (Kier 

et al., 2009). More generally, many insular species are spatially range-restricted and found only on 

a few islands. Yet, how range-restricted are original species on islands is still poorly known and, as 

far as we know, has never been tested in the case of functional originality. To fill this gap, we 

explored the potential risks of losing the most original species by assessing the relationship between 

species originality and rarity. Beyond practical conservation implications, assessing the relationship 

between originality and rarity may allow to shed light on the mechanisms shaping both originality 
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and range-restriction. For example, past extinctions may have both isolated species on a 

phylogenetic tree and/or function space and shrunk species area of distribution. Rarity of original 

species can also be influenced by their dispersal capacities (Flather et al. 2007) which may be lineage 

specific. In an insular context, factors influencing colonization rates, such as the possibility of an 

island to have been at reach during its geological history and species dispersal traits have a strong 

influence on the distribution of biodiversity on islands (Rosemary G. Gillespie et al., 2012; Patrick 

Weigelt et al., 2015). We therefore investigated how the dispersal capacities of original species and 

the features of the islands they occur on can give evidence of their rarity.  

Originality on islands is still a pristine research field and through our analyses we tackled four main 

questions that may lay the foundations of the study of originality on islands having implications in 

both conservation and biogeography 1) Are evolutionary and functionally original species similar 

on islands? 2) Are insular species more evolutionary and functionally original than mainland 

species? 3) Are insular original species rare? 4) Can the rarity of original species be attributed to 

their dispersal capacities and to the biogeographic characteristic of islands? To address these issues 

we focused on the group of Monocotyledons (Monocots), a morphologically and functionally 

diverse clade representing a quarter of flowering plant diversity such as all orchids, palms and 

cereals. The origin of monocot species represents a diversity of evolutionary and ecological 

processes. Monocots species are also wide-spread across islands and continents, their phylogeny is 

well-resolved and their traits well-documented. The clade of monocotyledon is therefore a well-

suited group for the study of originality on islands. 

METHODS 

Occurrence data  

We used the e-monocot database (emonocot.org) to extract data on both the spatial distribution 

of monocot species and delimitations of 126 islands (TDWG 3rd level). E-monocot compiles 

records from several botanical institutions for all 70,000 monocotyledons. We kept only native and 

terrestrial species from this database. 
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Estimating evolutionary and functional originality  

 We followed results from (Sandrine Pavoine et al., 2017) to choose the metrics of evolutionary 

and functional originality (EO and FO, respectively). We followed the recommendations of the 

authors to use a distance-based metric over dendrogram metrics because the latter may be biased 

by clustering methods, the use of a low number of traits and of the use of non-ultra-metric trees 

(Mouchet et al., 2008; Pavoine et al., 2017). We first estimated functional and phylogenetic distances 

thanks to the Gower’s distance (Legendre & Legendre, 2012) and derived an originality score 

calculated with the distinctDis function of the package adiv (S. Pavoine, 2019). EO is estimated in 

million years of evolution and FO has no units and ranges between 0 and 1. 

We estimated monocot FO with six traits compiled by (Díaz et al., 2015), adult plant height, stem 

specific density, leaf size expressed as leaf area, leaf mass per area, leaf nitrogen content per unit 

mass, and diaspore mass (see Díaz et al., 2015 for a description). The traits we chose have been 

widely used and recognized as fundamentally representatives of plant ecological strategies (Díaz et 

al., 2015). Missing values were imputed by performing random forest algorithm a thousand times, 

and by then estimating the mean of the 1000 imputation. We performed a sensitivity analysis 

(Appendix 1) to i. assess the extent to which missing values may have influenced our results ii. 

estimate the correlation between traits iii. Assess the contribution of each trait to FO scores. We 

did not include dispersal mode in the measure of functional originality because it was used later as 

an explanatory factor of the originality-rarity relationship. By doing so we assumed that dispersal 

mode was more related to the geographic extent of a species than to its function in an ecosystem 

or its response to environmental conditions. 

To estimate EO thanks to the distinctDis function, the Monocot phylogeny we used was built by 

extracting monocotyledon species from a larger supertree (Qian & Jin, 2016) which is an updated 

version of a mega-phylogeny of plant species (Zanne et al., 2013). EO was estimated in million 

years of evolution and FO has no units and ranges from 0 (lowest originality possible) to 1 (highest 

originality possible). Due to differences in data availability, and in order to estimate originality on 
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the largest sets of species possible, evolutionary originality was estimated on a set of 6.682 species 

and FO on a set of 2.281species.  

Are species more original on continents or on islands?  

We distributed species among three non-overlapping categories a) insular endemics, i.e. present 

only on islands; b) continental endemics, i.e. present only on continents; c) insular non-endemic 

species, i.e. present on both continents and islands. We then estimated the distribution and the 

average of originality scores among the three categories. We tested whether the average originality 

was significantly different between the three categories: we randomized species among categories 

1000 times, estimated the new average originalities per category in the randomized set and 

compared them to the observed originalities in each category. A correction under phylogenetic 

constraint of the average originality score and its significance per category is provided in Appendix 

2 but did not influence the results. 

Relationship between evolutionary and functional originality  

For each category of species, we performed correlation tests between functional and evolutionary 

originality and measured the phylogenetic signal of each of the six traits individually (Kstar test). 

To perform these particular analyses, we excluded species that did not have both phylogenetic and 

functional information. As EO and FO scores are relative to the set of species used to calculate 

originality, estimating their correlation required to re-calculate a second EO score from the similar 

set used to estimate FO (i.e. 2.281 species).  

Considering again the original set of species (i.e. 6.682 species for EO and 2.281 species for FO), 

we then only focused on species present in islands (insular endemic and non-endemic species) and 

drew maps of the number of top 5% original species, i.e. the 5% most original species, in islands 

both for FO and EO. This included 110 non-endemic species and 40 insular endemics for EO and 

38 insular non-endemic and 15 insular endemics for FO. 
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Are insular original species geographically rare?  

Focusing on species present on islands, i.e. both insular endemics and non-endemics, we tested the 

correlation (Pearson’s test) between the originality score and geographic rarity, measured as the 

number of islands each species occur on. The fewer islands a species occur on the rarer it is. We 

also used linear regressions corrected for phylogenetic signal in model residuals (Revell, 2010), 

when necessary. We then specifically tested whether the most original species occurred on fewer 

islands than expected. We classified species with “top originality”, “high originality”, “moderate 

originality”, “low originality”, “very low originality” (ranked in the 5%, 25%, 50%, 75% and >75% 

of the originality score distribution, respectively) and calculated for each class the mean number of 

islands each species occurred on. We randomized species among classes 1000 times and estimated 

whether the observed mean number of islands species occurred on per originality class was lower 

than in the randomized set (see also Appendix 2). Finally, we identified islands where species were 

both among the top original species and were single endemics (found on a single island). We did 

not use indices incorporating both originality and geographic rarity as they may sometimes be less 

relevant for practitioners (Rosauer et al., 2009) and may be difficult to interpret at the functional 

level. 

Dispersal modes, biogeographic characteristic of  islands and species originality 

Coupling dispersal features of original insular species and the characteristics of the islands where 

they occur may help to understand the distribution of original species and possibly their rarity (e.g., 

Veron, Haevermans, et al., 2019). First, we compiled information on insular species dispersal mode 

from (Carvajal-Endara, Hendry, Emery, & Davies, 2017) as well as from the TRY, SID, FRUBASE, 

BROT and LEDA databases. Dispersal modes corresponded to dispersal by animal, wind, water, 

unassisted and others (mainly transportation by humans). Species dispersal strategy was then 

estimated as either long-distance dispersal (animal, wind, water), short distance (unassisted) or 

unknown (others). We calculated the mean species originality per dispersal mode and strategy and 
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assessed their significance by using null models based on the random distribution of dispersal 

modes among species. In the case of zoochory, we also explored the effect of the identity of the 

species dispersing seeds (bird [flying/non flying], mammal [flying/non flying], reptile [terrestrial-

marine], insects) on originality (Appendix 3, in prep.). However, diaspore mass is a trait used in our 

measure of FO that may be related to dispersal strategy and their association thus needed to be 

tested. We found that long-distance dispersal was moderately related to heavy diaspore mass 

(Welch two-sided test p-val=0.07). Moreover, as “diaspore mass” did not prevail on other traits in 

the estimation of FO scores (Appendix 1), the relationship between FO and dispersal strategy may 

have been poorly influenced by the moderate association between “diaspore mass” and “dispersal 

strategy”. 

Following our investigation on dispersal strategies of original species, we investigated how the 

possibility of an island to be/have been at reach may explain the distribution of original species. In 

particular, we focused on the biogeographic characteristics of islands that may be linked to past, 

present and future dispersal events (Table 1) although we acknowledge that some of these island 

features may also drive species diversification and therefore originality. 

 

Table 1: Assumptions about how island features can relate to species geographic rarity 

Island characteristics 

Assumption about the 

relation to dispersal 

potential Reference 

Distance to the continent (km) An original species having 

reached a remote island may 

be a good disperser 

Global Island Database 

(GID; (UNEP-WCM, 

2013)) 

Proportion of surrounding landmass Colonization events may be 

less frequent on/from isolated 

islands  

(P. Weigelt, Jetz, & 

Kreft, 2013) 

Elevation (m) Elevation may provide a 

climatic refuge for ancient 

lineages which may 

consequently rarely disperse (P. Weigelt et al., 2013) 

Area (m2) Successful olonization events 

may be more probable 

towards/from large islands 

GID (Depraetere & 

Dall, 2007) 
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Oceanic or Continental Species present on oceanic 

islands may occur following 

colonization and are likely to 

be relatively good dispersers (P. Weigelt et al., 2013) 

Glaciated or non-Glaciated The presence of ancient 

species on a glaciated island 

may be due to colonization 

and tendency to dispersal Literature; pers. comm.  

Age (million years) An ancient species occurring 

on a recent island may reflect 

colonization, and the 

probability of the species to 

be a good disperser may be 

higher  Literature; pers. com. 

Latitude (decimal degrees) Variable used to highlight a 

possible spatial effect 

GID (UNEP-WCM, 

2013) 

Longitude (decimal degrees) Variable used to highlight a 

possible spatial effect 

GID (UNEP-WCM, 

2013) 

 

Our aim here was to assess the characteristics of the islands where original species occur, potentially 

revealing the tendency for species to disperse or not (Table 1). To do so, we estimated for each 

species the average value of each of the biogeographical features of the islands in which it occurred. 

Each species was therefore associated to 9 values representing these average island features (Table 

1). We then performed generalized linear models and multi-model selection with species originality 

as the response variable and island average features as the explanatory variables (see also Appendix 

2 for models performed under phylogenetic constraint). We identified the strongest interactions 

thanks to Boosted Regression Trees, which were added in the multi-model selection process. To 

complement these analyses, we used the originality classification previously described (top, high, 

moderate, low and very low originality) and estimated which island features had a significant effect 

in each category of originality (Appendix 4, in prep.).  

RESULTS 

Functional and evolutionary originality are decoupled  

The diaspore mass of insular species excepted, none plant functional trait exhibited a phylogenetic 
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signal (Table 2). Functional and evolutionary originality were weakly correlated, although the 

correlation coefficient was higher in species occurring on islands (Pearson’s correlation test: 

cor=0.16, 0.13, 0.018 and 0.093 in insular endemics, insular non-endemics, continental endemics 

and all monocot species, respectively). This result was robust to our sensitivity tests (Appendix 1). 

 

Table 2: Phylogenetic signal (Kstar) in 6 ecological plant traits. Black values mean that there is no 
phylogenetic signal and bold red value indicate a phylogenetic signal. 

 Insular endemics Insular non-

endemics 

Continental 

endemics 

All monocots 

 Phylogenetic signal (Kstar) 

Leaf area 0.05*** 0.028*** 0.02** 0.019*** 

Nmass 0.002 0.002 0.009*** 0.002 

LMA 0.003 0.006** 0.008** 0.006*** 

Plant height 0.06*** 0.04*** 0.05*** 0.04*** 

Diaspore mass 0.59*** 0.03** 0.003 0.003 

SSD.combined 0.002 0.001 0.009*** 0.002 

 

Species endemic to islands are more original  

Evolutionary originality was estimated on a set of 6.682 species and FO on a set of 2.281species. 

Islands with the highest number of evolutionary original endemic monocotyledons were Borneo 

(being home of 10 top 5% original species), the Philippines (9 species), Sumatra (7 species) and 

Japan (6 species; Figure 1). The maximum concentration of species with top 5% functional original 

endemic species in a given island was 4 (Philippines), while several other islands were home of 3 

top 5% functionally original endemic species (New Guinea, New Zealand, Norfolk Island). 

Thirteen islands were home of both top 5% functionally original endemic species and top 5% 

evolutionary original endemic species.  

In non-endemic species, the highest numbers of top 5% evolutionary original species were found 
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in Taiwan (22 species), Hainan (20 species), Japan (17 species), Borneo and Java (16 species). 

Regarding FO, Cuba was home of 11 top 5% original species, Java and Dominican republic of 9 

species while Hainan, the Bahamas, and Trinidad and Tobago harbored 8 top 5% functionally 

original species. There were 63 islands where both top 5% evolutionary and functionally non-

endemic original species occurred. 

By estimating the average originality in function of the endemic or non-endemic status of species 

we found that mean EO and FO was equal to 236.7 and 0.061 for species endemic to islands, 234.9 

and 0.043 for non-endemic insular species and 224.5 and 0.047 for continental species only (Figure 

2). Average EO was higher than expected for species endemic to islands and those found only in 

continents. Using phylogenetic analysis of variance models, EO was the highest for insular endemic 

species (Appendix 2). Average FO was significantly high for insular species whether they were 

endemic or not. 

Evolutionary but not functionally original species are unusually rare 

The top 5% original endemic species regarding EO and FO were present on, on average, 1.7 and 

3.4 islands, respectively. The original non-endemic species occurred on 5.0 to 5.4 islands, on 

average. Geographic range had a significant negative effect on originality for EO of insular non-

endemic species (Pearson’s test: cor = -0.15 p-value = 4.794e-11) and a significant positive effect 

on FO of insular endemic species (cor = 0.43 p-value = 3.794e-7). In other cases, no significant 

effect was found (EO endemics: cor = -0.043 p-value = 0.26; FO non-endemics: cor = -0.028 p-

value = 0.28). 

Regarding the classification of species in function of their originality score, the top 5% EO endemic 

species on fewer islands than expected by chance while top FO species occurred on more islands 

than expected (Table 3, Appendix 2). For insular non-endemic species, high EO species also 

occurred on fewer islands than expected by chance (Table 3, Appendix 2). Conversely, species with 

low or very low EO occurred on more islands than expected by chance. As for non-endemic FO, 

those with moderate FO occurred on more islands than expected.  
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Table 5: Average geographic range of species, i.e. the number of islands it occurs on, and whether 
it is lower or larger than expected by chance per category of originality (one-tailed tests). Red color 
means that species occurs on fewer islands than expected by chance (p-value<0.05). Blue color 
means that species occurs on more islands than expected by chance (p-value<0.05). 

 

Distribution 
Top 

original 
Very 

original 
Moderate Low Very Low 

Evolutionary 
Originality 

Insular 
endemics 

Range=1.7 
 

Range=1.7 Range=2.1 
 

Range=2.0 Range=1.8 

Insular non-
endemics 

Range=5.0 Range=3.7 
 

Range=5.9 Range=7.4 
 

Range=6.4 
 

Functional 
Originality 

Insular 
endemics 

Range=3.2 
 

Range=2.4 Range=1.7 
 

Range=1.8 Range=1.8 

Insular non-
endemics 

Range=5.4 Range=6.4 Range=7.2 
 

Range=6.1 Range=6.0 

 

31 species were both endemic to a single island and among the top 5% most evolutionary original 

species. Among the areas which concentrated the highest number of these rare and original species, 

Borneo harbor 7 of them, 5 were found in the Philippines, Japan and Sumatra, and 3 in Madagascar 

(Figure 3). 6 species were single endemics and top 5% functionally original. They occurred on 

Madagascar (2 species), Lord Howe island (2 species), Bermuda (1 species) and the Canaries (1 

species). Regarding non-endemic species 27 were top evolutionary original species and found on a 

single island. They were mainly concentrated on Equatorial Guinea islands (7 species), Japan (5 

species), Cuba (4 species), Hainan (3 species) and Ceylan (2 species). 11 non-endemic species were 

top functionally original and had a single insular location, in particular Trinidad (3 species), Bali, 

Tasmania, Sicily, Japan, Equatorial Guinea, Ceylan, Corea, Taiwan (1 species). 

Dispersal abilities of  original species  

On average, species that dispersed on small distances were more evolutionary original than species 

dispersing on long-distances (Figure 4a). Endemic evolutionary original species were mainly 

transported by wind, animals or their mode of dispersal was unassisted. Non-endemic evolutionary 

original species had mainly an “unassisted” mode of dispersal. Regarding FO, species dispersing 

on long distances were more functionally original, especially zoochor and anemochor species 
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(Figure 4c and d). 

Possibility of  islands to be at reach and distribution of  originality  

One common point to functionally and evolutionary original species is that they were located at 

low latitudes, indicating a spatial effect on originality (Table 4). The magnitude of the longitude 

effect was generally higher for FO than for EO. We observed a high number of differences between 

the effects of island features on FO and EO. Whatever they were endemic to islands or not, 

evolutionary original species tended to be found on islands that were continental, non-glaciated, 

flat and close to the mainland. In addition, endemic evolutionary original species occurred mainly 

on old islands while non-endemic evolutionary original species were found on more recent islands. 

The effect of the proportion of surrounding landmass was not significant on the evolutionary 

originality of non-endemic species and was negative in the case of endemic species but with a low 

significance (Table 4a). Area had little effect on evolutionary original species whether they were 

endemic or non-endemic to islands. Regarding FO we found important differences between 

endemic and non-endemic species. Endemic functionally original species tended to occur on 

islands that were oceanic, glaciated, small, relatively elevated, close to other landmasses but far from 

the continent (Table 4b). On the opposite, non-endemic functionally original species were present 

on islands of continental origin, close to the mainland, and which were relatively young. (Table 4b).  

 

Table 4: Effects and importance of island features on Evolutionary and Functional Originality 
estimated from multi-model selection. 
a) 

Evolutionary 

Originality Species restricted to islands 

Species found in both islands 

and continents 

 Estimate Pr(>z) Importance Estimate Pr(>z) Importance 

SLMP -4.2 . 0.62 -0.34  0.29 

Distance -2.6 * 0.89 -2.21 *** 1 
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Area 0.62  0.28 -0.45  0.32 

Elevation -6.3 *** 1 -0.31  0.29 

Age 5.1 ** 0.98 -1.5 * 0.88 

GMMC 7.07 *** 1 4.9 *** 1 

Glaciated -5.9 *** 1 -3.5 *** 1 

Latitude -6.79 *** 1 -2.6 ** 1 

Longitude -4.25 ** 0.79 0.58  0.35 

Latitude:SLMP 7.21 *** 1    

Latitude:Age 1.53  0.29    

Distance:Elevation    1.5 . 0.66 

Glaciated:Distance    0.21  0.24 

b) 

Functional 

Originality Species restricted to islands 

Species found in both islands 

and continents 

 Estimate Pr(>z) Importance Estimate Pr(>z) Importance 

SLMP 0.33 *** 1 -0.087 *** 1 

Near_dist 0.049 ** 0.98 -0.058 *** 1 

Area -0.083 *** 1 -0.005  0.39 

Elevation 0.029  0.42 -0.027 *** 1 

Age NA -0.033 *** 1 

GMMC -0.22 *** 1 0.013 * 0.85 

Glaciated 0.081 *** 1 -0.04 *** 1 

Latitude -0.26 *** 1 -0.005  0.27 

Longitude 0.084 *** 1 -0.09 *** 1 

Latitude:Distance 0.01  0.25    
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SLMP:Latitude -0.14 *** 1    

SLMP:Longitude    0.001  0.25 

SLMP:Elev    0.029 *** 1 

 

DISCUSSION 

Decoupling of  functional and evolutionary originality  

In this study we drew a first picture of species originality on islands. Original species have a strong 

contribution to the uniqueness of island biota, to divergence with the mainland and to centers of 

endemism (Veron, Haevermans, et al., 2019; Veron, Mouchet, et al., 2019). Among the islands 

where concentrate both functionally and evolutionary original species are Indonesian islands, the 

Philippines, Taiwan, Hainan, New-Guinea, Japan, Sumatra, Madagascar. However, some islands 

harbor only EO species and others only FO species. Importantly, the sets of the most functionally 

and evolutionary original species were not similar and functional traits of plants representing their 

ecological strategies had weak phylogenetic signals. There are many possible reasons why FO and 

EO are not congruent (e.g., Cornwell et al., 2014; Véron, Saito, Padilla-García, Forest, & Bertheau, 

2019). On islands, species representative of adaptive radiation, and consequently being closely 

related and having very close evolutionary originality values, may have very distinct traits in order 

to fill the niche space let vacant by the low species richness or/and to avoid competition. On the 

opposite, the process of relictualization, i.e. extinctions of close-relatives on the continent, may 

have artificially isolated species in the tree-of-life, among which some have diversified relatively 

recently and share several traits with current species (Grandcolas et al., 2014; R. J. Whittaker & 

Fernández-Palacios, 2007). Another reason for this decoupling is convergent evolution which has 

been reported in multiple lineages on multiple islands (Robert J. Whittaker et al., 2017). This is the 

process by which evolutionary unrelated organisms show similar features as a result of natural 

selection and adaptation under similar environmental constraints (Mazel et al., 2017). Although 
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eco-evolutionary studies would be needed to better understand the evolution of plant species traits 

in islands, this provided a first evidence that ecological strategies of plants are not conserved in the 

phylogeny (see also Cornwell et al., 2014).  

Higher originality on islands than on continents  

A second important finding was that island endemic species were on average more functionally 

and evolutionary original than these occurring on continents. A possible explanation is the isolated 

nature of islands which allows evolution to take its own course giving birth to species evolutionary 

isolated from all others and/or that harbor unique forms and functions. Higher evolutionary 

originality on islands compared to the mainland was however unexpected. Indeed, the initial insular 

pool is generally a set of the continental pool, therefore one could expect that insular species would 

not be more ancient and evolutionary isolated than continental ones. Moreover, high speciation 

rates in islands may result in the diversification of many closely-related species which is expected 

to decrease the average originality of insular pools. Past history in continents may be one 

explanation of our contradictory finding of higher evolutionary originality on islands than on 

continents. One main process could be continental extinction: species loss on continents may have 

pruned the tree of life so that several insular species lost some close-relatives and consequently 

became evolutionary original and sometimes endemic (Gillespie & Roderick, 2002). High climatic 

fluctuations and extreme events in the mainland concomitant with a relative stable climate in islands 

drove extinctions on the continent and persistence on islands, especially in plants (Cronk, 1997; R. 

J. Whittaker & Fernández-Palacios, 2007 but see Jetz et al., 2014). Climate change in continents 

may not only have conducted to extinctions but also to diversification resulting from natural 

selection of the most adapted forms. The result is similar as for extinctions: the evolutionary 

isolation of insular forms. Besides, not only species loss on the continent but the very high number 

of past extinctions on islands may have conducted to the evolutionary isolation of insular forms 

(Courchamp, Hoffmann, Russell, Leclerc, & Bellard, 2014; Robert J. Whittaker et al., 2017). This 

process of isolation depends on the phylogenetic signature of extinctions in insular lineages, which 
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remains to be explored, but our result suggest that they have been clustered in species-poor clades 

which originated in evolutionary original species. A phylogenetic tree incorporating extinct species 

coupled to the identification of their past distribution may help to disentangle the roles of 

extinctions and ancient diversification on insular originality. 

As for functional originality we also showed that it was higher on islands than on the mainland. 

Two main mechanisms may have resulted in a higher functional originality on islands: niche 

expansion and niche shift. Niche expansion relates to low species richness and high disharmony in 

islands which resulted in a diversity of vacant niches to be colonized by functionally diverse species 

(R. J. Whittaker & Fernández-Palacios, 2007). For example, (Diamond, 1970) reported that pacific 

birds could occupy higher altitudinal ranges, a higher diversity of habitats and a higher diversity of 

vertical foraging ranges compared to their continental counterparts after they colonized species-

poor islands in the pacific. Niche shift is the changing biological and ecological characteristics of 

insular species compared to the mainland (MacArthur & Wilson, 1967; Simberloff, 1974). The 

persistence of insular species and especially plants may have been conditioned to adaptations to 

the oceanic climate of islands resulting in the evolution of distinct ecological strategies.  

 Range-restriction of  original species  

The few studies exploring the relationship between evolutionary originality and geographic rarity 

showed that original species were not more range-restricted than others (Jetz et al., 2014; Thuiller 

et al., 2015; Stein et al., 2018). Here, although correlation between rarity and EO was generally low, 

we found that the most evolutionary original species were rare. Some mechanisms generating 

originality in insular systems also generate endemism, for example adaptation to particular 

environmental conditions and the function of refuge of many islands. As stated above, island biota 

has also suffered a number of extinctions and it is likely that human-induced extinctions on islands 

have both artificially isolated insular species in the Tree of Life and turned multi-endemic species 

into single endemics (R. J. Whittaker & Fernández-Palacios, 2007). Extinctions may therefore be 

both responsible for higher originality and higher range-restriction on islands than on continents 
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but, as we will discuss further, it is not the only factor explaining these patterns.  

On average, functionally original species were found only on a small number of islands, which 

seems to be in accordance with studies showing that rare functions are usually supported by rare 

species (Kunin & Gaston, 1993; Violle et al., 2017; Grenié et al., 2018). Yet, using null models we 

found that range-restriction of functionally original species was not different from random 

distribution of species across islands, i.e. functionally original monocot species were not rarer than 

less original ones. This contradicts previous findings that “species that have a low functional 

redundancy (…) are rarer than expected by chance” (David Mouillot, Bellwood, et al., 2013; see 

also Kunin & Gaston, 1993). Violle et al. (2017) recently defined a multifaceted framework of 

“functional rarity”, linking species’ functional originality (called distinctiveness or uniqueness) and 

rarity. In their framework 12 forms of functional rarity are possible at two spatial scales (local and 

regional). The less frequent case of few common species with original traits is possible and goes 

with our findings. A possible explanation would be that functionally original species have a low 

level of competition with other species so that they can more easily settle and occupy a vacant 

niche when they disperse towards it.  

Dispersal capacities of  evolutionary and functionally original species  

There are many examples of islands where species distribution is due to dispersal power (R. J. 

Whittaker & Fernández-Palacios, 2007; Borda-de-Água et al., 2017). For example, the Krakatau 

island has been colonized by ferns whose spores can be transported over long-distances whereas 

other lineages are absent due to their lack of “ocean-going” dispersal mechanisms (R. J. Whittaker, 

Jones, & Partomihardjo, 1997). The modes of dispersal of original species and their association 

with short and long-distance dispersal strongly support our results on the spatial distribution of 

these species. Highly evolutionary original species are transported predominantly on short 

distances and their mode of dispersal is generally “unassisted”, which prevents ocean crossing. 

More strikingly, the strongest the association between originality and the “unassisted” mode of 

dispersal, the higher is the correlation between originality and rarity. A possibility explaining the 
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“unassisted” mode of dispersal of original species may be related to the loss of dispersal of plants 

occurring on islands due to a reduced herbivory pressure and lower competition. Yet, this loss of 

dispersal syndrome is generally tied to species having recently diversified (Robert J. Whittaker et 

al., 2017). Consequently, two assumptions that can be made but need to be tested are, first, that 

evolutionary original species have low dispersal abilities because they have diversified in recent 

times but became isolated through relictualization, and, second, that low dispersal ability is a 

relictual trait rather than a derived one in original species.  

As for functionally original species, they were more widespread than non-original ones and this 

also goes with our findings about their mode of dispersal. Indeed, only few of them had an 

“unassisted” mode of dispersal. Rather they were transported through zoochory (especially birds) 

and anemochory and may have been able to colonize several islands isolated from each other. 

Additional important factors of dispersal include the direction, seasonality, strength of dispersal 

agents (Gillespie et al., 2012). Yet, our results show that the mode of dispersal and the distance on 

which seeds can be transported are key determinants of the distribution of original species on 

islands.  

The dispersal strategies of original species can also be seen from the features of the islands where 

they are found. The most evolutionary original species are often single-endemics and rarely occur 

on islands where recent and/or long-distance dispersal would be needed to establish: they are 

uncommon on remote, glaciated, young and oceanic islands. Evolutionary original species also 

occur on islands surrounded by a relatively low proportion of landmass, decreasing the possibilities 

of dispersal. On the contrary, functionally original endemic species, which are more widespread, 

occurred on islands with opposite features and that may only be colonized by species having high 

dispersal abilities. Together, the dispersal abilities of original species and the characteristics of the 

islands where they are present are important factors explaining the rarity of plants on islands. 

Conservation  

Originality may have an intrinsic value and its conservation is essential to preserve the breadth of 
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functions necessary against future uncertainty and to maintain the reservoir of future benefits to 

people (Faith, 1992); (Violle et al., 2017). If original species go extinct first - and previous 

considerations shows that this is a very likely assumption - some irreplaceable traits and 

evolutionary branches would be lost, strongly affecting ecosystem processes and services. 

Preserving EO species is essential due to their high contribution to “option-values” for humanity 

and the conservation of FO species is needed to maintain ecosystem functions and processes. This 

is all the more true on islands as, at least for monocots, the world most original species are insular.  

Preserving species evolutionary history has sometimes been assumed to be a proxy for the 

conservation of species traits. However, several reasons such as convergent evolution, the 

consideration of a low number of traits, a fast pace of diversification, sexual selection etc. may blur 

this correlation (Gerhold, Cahill, Winter, Bartish, & Prinzing, 2015; Faith, 2018; Véron, Saito, 

Padilla-García, Forest, & Bertheau, 2019). In our study we emphasized a lack of phylogenetic signal 

showing that the originality of plant ecological strategies may not be reflected by their evolutionary 

relationships. Therefore, a ‘silver-bullet” strategy aiming at the protection of both species functions 

and evolutionary history may be inadequate. However, in spite of being different, EO and FO 

species tend to co-occur on many similar islands which give the opportunity for combined 

conservation strategies that may protect both functional and evolutionary originality. Further 

research could then look at the overlap between original species range on a given island which may 

help to prioritize areas for conservation. 

A highly important consideration for conservation is that, among endemic species, the most 

evolutionary original ones are also the rarest. This was also true for non-endemic species but to a 

lesser degree. Rare and original species may cumulate a diversity of threats that make them at high 

risks of extinctions (Jono & Pavoine, 2012). First, rarity may be a signal of higher extinction 

probabilities (e.g., Harnik, Simpson, & Payne, 2012), in particular for insular endemic species for 

which none population may survive on the mainland. Second, species occurring on islands are 

among the most vulnerable on Earth due to the combined effects of human-induced threat, species 
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naiveté and low range-size. Third, rare and original insular species may also be highly vulnerable to 

external threats such as climate or land-use changes because they have low dispersal abilities and 

no land at proximity to escape (Veron, Mouchet, Govaerts, Haevermans, & Pellens, 2019). Finally, 

evolutionary original species may be at higher extinction risks due to increased extinction risks with 

age (Warren et al., 2018). The most functionally original species were not rarer (geographic rarity) 

than other species, but they were distributed in a low number of islands. In addition, the rarest 

functionally and evolutionary original species generally did not occur on the same islands and 

regional or local conservation plans may not allow to protect rare species which are both distinct 

in their traits and evolutionary history. Understanding the diversity of current threats to original 

species and how they will respond to these pressures is key to assess their extinction status and to 

propose actions directed toward the preservation of these unique species (Forest et al., 2018), (Stein 

et al., 2018). 

Finally, as a bridge between the conservation of biodiversity and human cultural heritage, and to 

conclude with originality, islands are not only places where the most original and threatened species 

occur but they also concentrate the most original and threatened human languages (Perrault, 

Farrell, & Davies, 2017). 
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Figure 1: Number of top original species per island for a) Evolutionary Originality (EO) of endemic insular species, b) EO 
of non-endemic insular species, c) Functional Originality (FO) of endemic insular species, d) FO of non-endemic insular 
species. 
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Figure 2: Species originality depending on its geographical origin. *** 
significance of a p-value < 0.001 
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Figure 4: Number of top 5% original species found on a single island for a) Evolutionary Originality (EO) of endemic insular 
species, b) EO of non-endemic insular species, c) Functional Originality (FO) of endemic insular species, d) FO of non-
endemic insular species.  



 
 

256 
 

 

 

Figure 4: Originality scores depending on the dispersal mode and type. Significance level of p-

value: *** <0.001; ** <0.05; * <0.1 
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Appendix 1: Sensitivity analysis 

a) Missing trait values 

i) Correlation between functional originality scores calculated when missing values were imputed or not 

Table 1. Proportion of missing values per trait 

Trait  Proportion of missing values 

Adult plant height 46% 

Leaf size 68% 

Stem specific density 81% 

Leaf mass per area 68% 

Leaf nitrogen content 75% 

Diaspore mass 23% 

 

Missing values were imputed by performing random forest algorithm species (missForest package, 

Stekhoven and Buehlmann, 2012) a thousand times, and the mean of the 1000 imputations was 

estimated. To show how this imputation method may affect our originality results we tested the 

correlation between functional originality scores computed with trait data when missing values 

were considered as « Non-Attributed » and functional originality scores computed when missing 

values were imputed. We found that the correlation was positive but moderate (Spearman 

correlation coefficient r = 0.65, p-value < 0.001). This result was expected, because random forest 

method imputes missing values for a species according to the non-missing values of other traits. 

ii) Correlation between the number of  missing values and functional originality score 

Second, we tested the correlation between the number of species’ missing trait data and its 

functional originality score. We found that the number of species’ missing trait values had a poor 
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influence on its functional originality score (Spearman’s correlation coefficient r = -0.14, p-value < 

0.001). This contradicts the expectancy that random forest imputations would smooth trait values 

and therefore conduct to an under-estimation of the functional originality scores of species with 

many missing trait values. 

iii) Correlation between functional originality scores calculated with a complete trait data and when missing 

trait values were created artificially 

Third, we artificially created missing values for species with complete data for all traits (259 species). 

We then imputed these artificially missing values with a random forest method. We then calculated 

functional originality scores on the complete set of species and estimated their correlation with the 

functional originality scores coming from artificially created trait data. First, all values of a given 

trait were considered as missing. Second, we randomly created 2/3 of missing values among all 

traits and repeated the randomization a hundred times. Results showed high correlations between 

functional originality scores computed on a complete dataset and obtained after artificial deletion 

and imputation of trait values (Table 2). 

Table 2. Correlation between observed functional originality scores of species with no missing 
values and functional originality scores obtained after artificially creating and imputing missing 
values in a particular trait or in all traits at random. 

 Leaf  

area 

Leaf  

Nitrogen 

content 

Leaf  

Mass 

per 

area 

Plant 

height 

Diaspore 

mass 

Stem specific 

density 

2/3 of  missing 

values randomly 

distributed 

Pearson 

coefficient 
0.999 0.907 0.993 0.941 0.999 0.879 0.41 

 

iv) Relationship between functional and evolutionary originality scores in the set of  species having no 

missing values 

We calculated functional and evolutionary originality scores on the subset of 259 species for which 

all trait values were available. We found that the correlation estimated on this particular species 

subset was low (Spearman’s correlation coefficients r = 0.29, p-values < 0.001).  
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We finally estimated the phylogenetic signal of each trait from complete trait data subset using a 

Kstar method (Blomberg et al., 2003) in adiv package (Pavoine 2019). At the exception of the trait 

“Diaspore mass” none trait displayed a phylogenetic signal. 

Table 3. Phylogenetic signal of each trait under study calculated with Kstar method. 
 Leaf  area Leaf  

Nitrogen 

content 

Leaf  Mass 

per area 

Plant height Diaspore 

mass 

Stem 

specific 

density 

Kstar 0.093 

p=0.001 

0.0018 

p=0.743 

0.003 

p=0.605 

0.112 

p=0.006 

2.05 

p=0.001 

0.0036 

p=0.396 

 

b) Correlations between traits 

Table 4. Pearson’s correlation coefficient between trait values  
Leaf Area N mass LMA Plant.Height Diaspore.Mass (mg) SSD combined 

Leaf.Area 1 0.034 0.49 0.44 0.09 0.22 

Nmass 0.034 1 0.47 0.039 0.001 0.65 

LMA 0.49 0.47 1 0.24 0.081 0.43 

Plant.Height 0.44 0.039 0.24 1 0.33 0.51 

Diaspore.Mass (mg) 0.09 0.0013 0.08 0.33 1 0.16 

SSD.combined 0.22 0.65 0.43 0.51 0.16 1 

 

c) Contribution of  each trait to the functional originality score 

To test the influence of each trait on species originality we performed a sensitivity analysis by 

excluding each trait separately and recalculating functional originality with the five remaining traits. 

Pearson’s correlation coefficient between functional originality calculated on 6 traits and calculated 

on 5 traits ranged from 0.91 to 0.99. We concluded that none of traits prevailed over others in the 

calculation of species functional originality. 

 

Table 5: Correlations between the functional originality score calculated with all traits and  
obtained when a given trait was excluded. *** significance level for p-value < 0.001. 
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Trait excluded 

Pearson’s correlation with all-trait 

functional originality 

Adult plant height 0.98*** 

Leaf size 0.95*** 

stem specific density 0.98*** 

Leaf mass per area 0.91*** 

Leaf nitrogen content 0.99*** 

Diaspore mass 0.96*** 

 
 

d) Sensitivity to the metric used to calculate functional originality 

To test the effect of choice of the originality metric we calculated functional originality with Fair 

Proportion index (FP, Isaac, 2007) on species differences represented by a functional dendrogram 

(hierarchical clustering method h-clust) and found a significant but moderate correlation with 

functional originality calculated with AVerage index (AV, Pavoine et al., 2017) on species trait-

based dissimilarity matrix. We also calculated evolutionary originality with the same indices (FP and 

AV) respectively on phylogenetic tree and phylogenetic distances in dissimilarity matrix (Pearson’s 

correlation for evolutionary originality r = 0.45, p-value < 0.001; for functional originality r = 0.40, 

p-value < 0.001). 
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Appendix 2 : Phylogenetically corrected models 

1. Species endemic to islands are more original 
 

Method: Phylogenetic Analysis of variance (package phytools, Revell, 2018) 

1.1 Evolutionary Originality 
 

ANOVA table: Phylogenetic ANOVA 
 

Pairwise posthoc test using method = "holm" 
 
Pairwise t-values: 

 Insular endemics Continental endemics Insular non-endemics 

Insular endemics  2.14 12.72 

Continental enemics -2.14  16.26 

Insular non-endemics -12.72 -16.26  

 
Pairwise corrected P-values: 

 Insular endemics Continental endemics Insular non-endemics 

Insular endemics  0.38 0.003 

Continental enemics 0.38  0.003 

Insular non-endemics 0.003 0.003  

 

1.2 Functional Originality 
Pairwise t-values: 

 Insular endemics Continental endemics Insular non-endemics 

Insular endemics  7.95 6.24 

Continental enemics -7.95  -3.9 

Insular non-endemics -6.24 3.9  

 
Pairwise corrected P-values: 

 Insular endemics Continental endemics Insular non-endemics 

Insular endemics  0.012 0.07 

Continental enemics 0.012  0.647 

Insular non-endemics 0.07 0.647  

 

2. Original species are more range-restricted 

2.1 Relationship rarity and originality  

Method:  Generalized least squares under phylogenetic constraint 

2.1.1 Insular endemics 

                   2.1.1.1 Evolutionary Originality 

AIC BIC logLik 

2094 2107 -1044.15 

 

 Value Std.Err t-value P_val 

Intercept 277.13 1.49 169.23 0.00 
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Number of 
islands 

-0.00038 0.008 -0.04 0.97 

2.1.1.2 Functional Originality 

 

 Value Std.Err t-value P_val 

Intercept 277.13 1.49 169.23 0.00 

Number of 
islands 

-0.00038 0.008 -0.04 0.97 

 

2.1.2 Insular non-endemics 

2.1.2.1 Evolutionary originality 

 

 

2.1.2.2 Functional originality 

 

2.2 Rarity depending on the category of  evolutionary originality  

 Method: Phylogenetic Analysis of variance 

2.2.1 Insular endemics 

2.2.1.1 Evolutionary Originality 

 
Pairwise posthoc test using method = "holm" 
 
Pairwise t-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 0.0 -1.32 -1.69 0.72 -0.08 

Low originality 1.32 0.0 -0.39 1.65 1.39 

Moderate origin
ality 

1.68 0.39 0.0 1.89 1.80 

Very high origin
ality 

-0.72 -1.65 -1.89 0.0 -0.81 

Very low origina 0.08 -1.39 -1.80 0.81 0.0 

 Value Std.Err t-value P_val 

Intercept 0.000 0.0002 -0.0025 0.99 

Number of 
islands 

-0.00024 0.007 -0.03 0.97 

 Value Std.Err t-value P_val 

Intercept 0.023 0.084 0.27 0.78 

Number of 
islands 

0.014 0.0012 11.48 0.0 



 
 

264 
 

lity 

 
 
Pairwise corrected P-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 1 1 1 1 1 

Low originality 1 1 1 1 1 

Moderate origin
ality 

1 1 1 1 1 

Very high origin
ality 

1 1 1 1 1 

Very low origina
lity 

1 1 1 1 1 

 

2.2.1.2 Functional Originality 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality  1.18 1.50 -2.56 1.06 

Low originality -1.18  0.32 -3.48 -0.06 

Moderate origin
ality 

-1.50 -0.32  -3.7 0.37 

Very high origin
ality 

2.56 3.48 3.74  3.32 

Very low origina
lity 

-1.06 0.061 0.37 -3.31  

 

Pairwise corrected P-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 1 1 1 1 1 

Low originality 1 1 1 1 1 

Moderate origin
ality 

1 1 1 1 1 

Very high origin
ality 

1 1 1 1 1 

Very low origina
lity 

1 1 1 1 1 

 

2.2.2 Insular non-endemics 

2.2.2.1 Evolutionary Originality 

Pairwise posthoc test using method = "holm" 
 
Pairwise t-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 0.0 -7.6 -4.24 -2.14 -6.22 

Low originality 7.60 0.0 3.72 2.24 1.42 

Moderate origin
ality 

4.24 -3.72 0.0 0.28 -2.24 

Very high origin 2.14 -2.28 -0.28 0.0 -1.49 
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ality 

Very low origina
lity 

6.22 -1.44 2.24 1.49 0.0 

 
 
Pairwise corrected P-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 1 1 1 1 1 

Low originality 1 1 1 1 1 

Moderate origin
ality 

1 1 1 1 1 

Very high origin
ality 

1 1 1 1 1 

Very low origina
lity 

1 1 1 1 1 

 

2.2.2.1 Functional Originality 

Pairwise t-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality  0.15 -1.7 1.25 -0.41 

Low originality -0.15  -1.95 1.19 0.57 

Moderate origin
ality 

1.69 1.95  2.18 1.22 

Very high origin
ality 

-1.25 -1.19 -2.18  -1.47 

Very low origina
lity 

0.41 0.58 -1.22 1.48  

 
Pairwise corrected P-values: 

 High originality Low originality Moderate origin
ality 

Very high origin
ality 

Very low origina
lity 

High originality 1 1 1 1 1 

Low originality 1 1 1 1 1 

Moderate origin
ality 

1 1 1 1 1 

Very high origin
ality 

1 1 1 1 1 

Very low origina
lity 

1 1 1 1 1 

 

3. Dispersal mode 

Method: Phylogenetic Analysis of variance 

3.1 Type of  dispersal 

3.1.1 Insular endemics 

3.1.1.1 Evolutionary originality 

Pairwise t-values 

 Short distance Long distance 
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Short distance  -0.47 

Long distance 0.47  
 

Pairwise corrected P-values: 

 Short distance Long distance 
Short distance  0.76 

Long distance 0.76  

 

3.1.1.2 Functional originality 

 Short distance Long distance 
Short distance  -.1.15 

Long distance 1.15  

 

Pairwise corrected P-values: 

 Short distance Long distance 
Short distance  0.31 

Long distance 0.31  

 

3.1.2 Insular non-endemics 

3.1.2.1 Evolutionary Originality 

Pairwise t-values 

 Short distance Long distance 
Short distance  0.64 

Long distance -0.64  

 

Pairwise corrected P-values: 

 Short distance Long distance 
Short distance  0.84 

Long distance 0.84  

 

3.1.2.2 Functional Originality 

Pairwise t-values 

 Short distance Long distance 
Short distance  -1.44 

Long distance 1.44  

 

Pairwise corrected P-values: 

 Short distance Long distance 
Short distance  0.41 
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Long distance 0.41  

 

3.2 Mode of  dispersal 

Method: Phylogenetic Analysis of variance 

3.2.1 Insular endemics 

3.2.1.1 Evolutionary originality 

Pairwise t-values             

 Animal Other Unassisted Water Wind 

Animal 0 2.36 0.92 1.64 1.45 

Other -2.36 0 -1.52 -0.98 -1.31 

Unassisted -0.92 1.52 0 0.63 0.33 

Water -1.64 0.98 -0.63 0 -0.34 

Wind -1.45 1.31 -0.33 0.34 0 
 
Pairwise corrected P-values 

 Animal Other Unassisted Water Wind 

Animal 0 1 1 0.48 1 

Other 1 0 1 1 1 

Unassisted 1 1 0 1 1 

Water 0.48 1 1 0 1 

Wind 1 1 1 1 0 

 

3.2.1.1 Functional originality 

Pairwise t-values             

 Animal Other Unassisted Water Wind 

Animal 0 1.37 1.14 -0.69 0.56 

Other -1.38 0 -0.19 -1.63 -0.62 

Unassisted -1.13 0.19 0 -1.43 -0.43 

Water 0.69 1.64 1.44 0 0.98 

Wind -0.57 0.62 0.44 -0.97 0 
 

Pairwise corrected P-values 

 Animal Other Unassisted Water Wind 

Animal 0 1 1 1 1 

Other 1 0 1 1 1 

Unassisted 1 1 0 1 1 

Water 1 1 1 0 1 

Wind 1 1 1 1 0 

 

3.2.2 Insular non-endemics 
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3.2.2.1 Evolutionary Originality 

Pairwise t-values 

 Animal Other Unassisted Water Wind 

Animal 0 1.40 -0.32 1.08 0.50 

Other -1.40 0 -1.35 -0.5 -0.82 

Unassisted 0.32 1.35 0 1.048 0.65 

Water -1.08 0.54 -1.04 0 -0.38 

Wind -0.50 0.82 -0.65 0.38 0 

 

Pairwise corrected P-values 

 Animal Other Unassisted Water Wind 

Animal 0 1 1 0.48 1 

Other 1 0 1 1 1 

Unassisted 1 1 0 1 1 

Water 0.48 1 1 0 1 

Wind 1 1 1 1 0 

 

3.2.2.2 Functional Originality 

Pairwise t-values 

 Animal Other Unassisted Water Wind 

Animal 0 -0.016 1.84 1.93 0.28 

Other 0.016 0 1.48 1.38 0.22 

Unassisted -1.84 -1.48 0 -0.35 -1.36 

Water -1.93 -1.38 0.35 0 -1.25 

Wind -0.28 -0.22 1.36 1.25 0 

 
Pairwise corrected P-values 

 Animal Other Unassisted Water Wind 

Animal 0 1 1 1 1 

Other 1 0 1 1 1 

Unassisted 1 1 0 1 1 

Water 1 1 1 0 1 
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Wind 1 1 1 1 0 

 

4 Features of  islands where original species are found  

Method: generalized least squares under phylogenetic constraint 

4.1 Insular endemics 

4.1.1 Evolutionary Originality 

Coefficients 

 Value Std.Error t-
value 

p-
value 

Intercept 275.81 1.83 150.52 0,00 

Dist -0.002 0.017 -0.12 0.89 

Area 0.006 0.042 0.15 0.87 

Latitude -0.007 0.068 -0.10 0.91 

Longitude 0.0067 0.053 0.12 0.89 

SLMP 0.0055 0.080 0.0686 0.94 

GMMC 0.0060 0.037 0.16 0.87 

Elev -0.0089 0.045 -0.19 0.84 

Agemax 0.0026 0.065 0.041 0.96 

Glaciated 0.00074 0.015 0.047 0.96 

 

4.1.2 Functional originality 

 
Value Std.Error t-value p-value 

Intercept 0.05372446 0.094 0.56 0.57 

Distance -0.014 0.0075 -1.98 0.049 

Area 0.042 0.010 4.05 0.0001 

Latitude 0.016 0.010 1.63 0.10 

Longitude -0.0032 0.011 -0.28 0.77 

SLMP -0.042 0.020 -2.02 0.045 

GMMC -0.0018 0.012 -0.14 0.88 

Elevation -0.042 0.014 -2.89 0.0047 

Age -0.042 0.017 -2.4 0.015 
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Glaciated -0.011 0.0031 -3.75 0.0003 

 

4.2 Insular non-endemics 

4.2.1 Evolutionary originality 

Coefficients 

 Value Std.Error t-
value 

p-
value 

Intercept 269.35 1.02 263.37 0 

Distance 0.00004 0.0039 0.010 0.99 

Area 0.00004 0.0037 0.0098 0.99 

Latitude -0.0002 0.0074 -0.026 0.97 

Longitude 0.00012 0.0062 0.019 0.98 

SLMP 0.00009 0.0075 0.011 0.99 

GMMC 0.00007 0.0052 0.014 0.98 

Elevation 0.00005 0.0043 0.011 0.99 

Age -0.00005 0.0042 -0.012 0.99 

Glaciated -0.00011 0.0072 -0.015 0.98 

 

4.2.2 Functional originality 

 
Value Std.Error t-value p-value 

Intercept 0.062 0.10 0.60 0.54 

Distance 0.0035 0.00045 7.80 0.00 

Area -0.0019 0.00049 -3.98 0.0001 

Latitude 0.0041 0.00090 4.56 0.00 

Longitude 0.00129 0.00073 1.69 0.090 

SLMP 0.0094 0.00087 10.83 0.00 

GMMC 0.00082 0.00062 1.31 0.18 

Elevation 0.0027 0.00048 5.6 0.00 

Age -0.00013 0.00049 -0.27 0.78 

Glaciated -0.0042 0.00084 -5.09 0.00 
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Appendix 3
Originality scores depending on dispersal vectors of zoochor 
species



 
 

272 
 

  



 
 

273 
 

APPENDIX B  

VIGIE-FLORE PROTOCOL 

  



Protocole du programme Vigie-flore 
Observatoire de la flore commune 

 
Protocole défini collectivement à l’UMR 7204,  

Conservation des Espèces, Restauration et Suivi des Populations  
du Muséum national d’histoire naturelle, Paris 

 et testé depuis 2005 en Ile-de-France. 
Mars 2010. 

Correspondantes : Nathalie Machon et Emmanuelle Porcher 
vigie-flore@mnhn.fr 

 

Attribution de maille(s) à l’observateur 
 
 Chaque observateur bénévole doit choisir la maille dans laquelle il désire faire son 
relevé. Pour ce faire, vous devez vous inscrire sur le site www.vigie-flore.fr rubrique 
« devenir observateur ». Durant l’inscription, vous aurez accès à une carte de France des 
mailles Vigie-flore. Les points rouges correspondent aux mailles déjà sélectionnées. Les 
mailles vertes sont celles que vous pourrez choisir. Passez la flèche de votre souris sur la 
maille qui vous intéresse, son numéro s’affichera. C’est ce numéro que vous devrez entrer 
dans le formulaire d’inscription pour qu’elle vous soit attribuée. Vous pouvez renouveler cette 
opération si vous désirez inventorier 2 mailles. Ensuite, vous devez remplir le formulaire 
d’inscription. Une fois votre inscription faite, vous aurez la possibilité de charger la carte, la 
photo aérienne de votre maille et tous les documents nécessaires pour faire votre suivi via 
l’interface de saisie dans la rubrique « saisir vos données » du site internet. 
 
Échantillonnage de la maille  
 
 La maille d’un kilomètre carré est échantillonnée selon un dispositif systématique. 8 
placettes fixes sont disposées selon une configuration pré-établie (Figure 1) désignées sur la 
carte qui est envoyée. L’observateur va alors chercher à se rendre sur chaque point afin 
d’effectuer ses inventaires. Il doit échantillonner au moins les quatre points de la diagonale 
(A, C, F, H). Dans l’idéal, il échantillonnera également les 4 autres points (B, D, E et G). Si 
seuls 1, 2 ou 3 points ont été échantillonnés, les données nous intéressent quand même. Vous 
pourrez nous les envoyer. 

 
 

 
 
 
 
Figure 1 : Disposition des 8 placettes dans 
la maille. Chacune est indiquée par une 
lettre (en rouge) de A à H. Pour chaque 
point se trouve un point de rechange 
(indiqué en noir) de a’ à h’. Ces points 
serviront de substitution lorsque les 
principaux seront inaccessibles. 



 
 

Inventaire des placettes  

 
Figure 2 : Forme et dimension d’une placette 

 
La zone à inventorier est délimitée par une placette de forme rectangulaire, recouvrant 10 

m2 (Figure 2) à l’intérieur de laquelle 10 quadrats de 1 m2 sont réalisés. Dans la pratique cela 
revient à utiliser quatre piquets reliés par des cordes de 1 m de long afin de repérer les limites 
d’un quadrat (Figure 3) et de répéter cette zone d’échantillonnage 10 fois. Les 10 quadrats doivent 
être placés de façon contigüe afin que la localisation des quadrats ne soit pas orientée par un 
choix de l’observateur.  

 
Figure 3 : un quadrat 

 
Seules les plantes vivantes ayant leur pied dans la placette doivent être prises en compte. 

Ainsi, un arbre dont la couronne surplombe la placette mais dont le pied est en dehors de celle-ci 
ne doit pas être inventorié. 
 
 

Positionnement des placettes 
 

Afin de garantir la représentativité des données, il est important que l’observateur se rende 
aussi précisément que possible à l’endroit indiqué sur la carte. Quelques exceptions sont 
envisagées ; lorsque l’observateur manque de points de repères, ou n’a pas la possibilité de 
marquer l’emplacement de son relevé, ce dernier peut choisir de se placer à proximité d’un point 
de repère (arbre isolé, pancarte, rocher, etc.), à condition toutefois que la placette soit positionnée 
dans le même type de milieu que celui désigné par le point. Si par exemple un des points 
d’échantillonnage tombe dans une pelouse, l’observateur est libre de se déplacer de plusieurs 
dizaines de mètres jusqu’à trouver un endroit facilement relocalisable dans cette pelouse. En 
revanche le fait de se déplacer, même sur une plus courte distance hors de cette pelouse pour aller 
échantillonner un milieu jugé plus intéressant, entraînerait un biais dans les données recueillies. 
Enfin, dans ce cas, il est souhaitable que la placette se trouve séparée d’au moins plusieurs mètres 



du point de repère afin d’éviter des effets dus à la présence de ce dernier (traitement au pied d’un 
panneau, flore particulière au pied d’un arbre, etc.).  
 
 

• Cas des champs cultivés : 
Afin de pouvoir relocaliser plus facilement la placette et d’éviter de trop piétiner les cultures, 

les points tombant dans les parcelles agricoles devront être échantillonnés dans le champ mais 
seulement à 5m de la bordure comme indiqué sur la Figure 4. 
 

 
Figure 4 : Exemple de relevé effectué dans une parcelle agricole 

 

• Points inaccessibles : 
Lorsqu’un point à échantillonner s’avère inaccessible (accès non autorisé par le propriétaire, 

toit, falaise, végétation trop dense etc.) l’observateur utilisera un point de rechange (Figure 2) 
prédéfini. Si l’accès à ce dernier est également impossible, aucun relevé n’est effectué et la donnée 
est considérée comme manquante. 
 

• Zones sans végétation : 
Il peut arriver que le point tombe sur une zone  non végétalisée (parking, etc.). Dans ce cas le 

relevé ne doit pas être déplacé, il est considéré comme vide (absence de plante) mais doit tout de 
même faire l’objet d’un bordereau. 
 

• Structures linéaires : 
Lorsque le point se situe sur un élément linéaire (route, rivière, haie, etc.) ou dans son 

voisinage immédiat, la placette sera positionnée systématiquement sur cet élément comme 
indiqué sur la Figure 5, sans déborder sur plusieurs habitats différents.  
 

 
 

 Centre de la placette 
 

 Centre de la placette 
 



Figure 5 : Un point peut tomber à proximité d’un élément linéaire. Ainsi selon l’interprétation de 
l’observateur la placette pourra se situer sur la route (relevé nul) ou sur la bordure.  
 

Périodicité des relevés 
 

Il est recommandé que chaque maille soit échantillonnée une fois par an. 
� En juin ou juillet pour l’ensemble des régions atlantiques et continentales, 
� En avril ou mai pour la région méditerranéenne 
� En juillet ou août pour les mailles situées à plus de 1000 m d’altitude.   

Le passage sur chaque maille sera ensuite renouvelé tous les ans, si possible par le même 
observateur.  

 
Retour sur les placettes  
 Autant que possible, l’observateur devra se repositionner au même endroit l’année 
suivante. Afin de retrouver facilement le positionnement des placettes d’un passage à l’autre, le 
relevé des coordonnés GPS avec un appareil standard pour itinéraire routier d’une précision de 1 
à 10m est suffisant et peut s’avérer utile. La photographie du lieu peut aussi être efficace. Si 
malgré ces précautions, la relocalisation précise est impossible, l’observateur devra se placer dans 
le même habitat que le relevé précédent pour effectuer le relevé. Dans le cas où le milieu est 
fortement perturbé/modifié mais que la relocalisation est possible, le relevé doit se faire au même 
endroit que le relevé précédent. 
 
 

Cas des espèces de détermination délicate  
 

Les botanistes participant au programme devront viser l’exhaustivité dans l’identification 
des plantes se trouvant dans leurs placettes. Néanmoins, la détermination de certaines familles de 
plantes (Poacées, Cypéracées, etc.…) peut poser problème à certains observateurs. Dans ce cas il 
est préférable que l’observateur en reste à une détermination au niveau du genre (par exemple 
« Carex sp »), voire de la famille (par exemple « Poacée »), et signale toute donnée dont il n’est pas 
certain comme « douteuse ». Une donnée imprécise est en effet préférable à une donnée fausse.  
 

Paramètres du milieu à relever  
 

Un certain nombre de variables devront être notées au cours du relevé :  
o Type d’habitat selon une typologie simplifiée fournie à l’observateur (d’après 

CORINE BIOTOPE) 
o Pente (en degrés) selon une échelle fournie à l’observateur 
o Exposition (N/S/E/O) 
o Ombrage : oui (placette toujours à l’ombre)/non (placette toujours à la 

lumière)/partiel : placette à l’ombre sur une partie de sa surface ou bien une partie 
de la journée 

o Type de sol selon une typologie fournie à l’observateur 
o Signes de dégradation éventuels 

 
Hormis le type d’habitat, le relevé des autres variables est facultatif. Néanmoins, les 
observateurs pourront relever ces données au fur et à mesure de leurs différents passages 
sur la maille. 
 
 



Avant les premiers relevés 
Avant de faire vos tout premiers relevés, lisez attentivement le protocole. Si vous avez des 
questions, contactez-nous à l’adresse vigie-flore@mnhn.fr. 
Construisez votre quadrat : utilisez, par exemple, quatre petits piquets en bois de 30 à 
40 cm suffisamment solides pour être enfoncés dans le sol. Reliez-les avec des morceaux 
de cordes de 1 m de long. Vous pouvez aussi utiliser deux mètres de carreleur de 2m 
chacun que vous plierez en deux pour former un quadrat d’1m2 (voir Figure 6). 
 

 
 

Figure 6 : Quadrat fabriqué avec deux mètres de carreleur de 2 m. 
 

Dernières recommandations 
 
Avant de partir 
Avant de vous rendre sur une maille, étudiez attentivement la carte qui vous est fournie 
afin de localiser précisément l’endroit où vous devez vous rendre.  
 
Liste du matériel nécessaire : 

- le protocole 

- quatre à huit exemplaires du bordereau (vous devez remplir un bordereau par 
placette) ainsi que des feuillets supplémentaires dans le cas où certaines placettes 
compteraient plus de 19 espèces. 

- Un crayon de papier et une gomme 

- Un support pour écrire 

- Votre quadrat 
- De quoi récolter les individus que vous n’arriverez par à identifier 

- La lettre de demande d’accès aux propriétés privées 

- Une boussole pour déterminer l’orientation de vos placettes 
- Un récepteur GPS si vous en possédez un 

- Un appareil photo (facultatif) 
 
Sur place 
 
- premier passage sur une maille 
Lors de votre premier passage sur une maille, positionnez vos placettes le plus près 
possible de l’endroit indiqué sur la carte et dans le même habitat. Prenez des repères 
précis et pérennes pour retrouver la placette lors du prochain passage. Eventuellement 
prenez des coordonnées GPS de la placette ou prenez une photo du lieu. Un GPS 
classique pour itinéraire routier a une précision de 1 à 3 m en milieu ouvert et de 5 à 10 m 



en forêt, cette précision sera suffisante lors du prochain passage pour que vous sachiez 
que vous êtes proche de votre placette, les autres repères visuels que vous aurez notés 
vous permettront alors de la trouver facilement. 
Si une des placettes se trouve sur une propriété privée, demandez l’accès au propriétaire 
en expliquant le but du programme (la lettre type fournie peut vous y aider). Si le 
propriétaire vous a refusé l’accès ou s’il est injoignable et que la propriété est fermée, 
utilisez le point de rechange prédéfini. 
 
- passages suivants 
Lors des passages suivants sur une maille, aidez vous des repères pris lors du premier 
passage pour replacez le plus précisément possible vos placettes (une précision de 
quelques mètres est suffisante). Si vos repères sont perdus, replacez-vous dans le même 
habitat. 
 
- dans tous les cas 
Remplissez un bordereau par placette comme indiqué dans la notice. 
Récoltez les individus que vous n’arrivez pas à déterminer sur place en notant avec 
attention la maille, la placette et le quadrat dans lesquel(le)s il(s) étai(en)t présent(s). 
Evidemment, ne prélevez pas un des individus situés dans vos quadrats, choisissez le 
autour. 
 
De retour 
Déterminez à l’aide de flore les individus que vous n’avez pas pu déterminez sur le terrain. 
Si certains individus restent indéterminables, mettez-les en herbier en notant avec 
attention la maille, la placette et le quadrat dans lesquel(le)s ils étaient présents afin de 
vous faire aider ultérieurement pour ces déterminations. (Voir avec le site de Tela 
botanica par exemple ou avec les autres bénévoles Vigie-flore de votre région) 
Saisissez vos données en ligne sur la base de données SPAF (Suivi des Plantes A Fleur), 
voir notice de saisie. 
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APPENDIX C  

TEACHING THEORY OF EVOLUTION 

AT PRIMARY SCHOOL 
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Introduction  

« Rien n’a de sens en biologie si ce n’est à la lumière de l’évolution » 

Theodosius Dobzansky, généticien allemand, 1973 

 

Les sciences devraient être accessibles à tous. De nombreux faits scientifiques se voient déformer 

le visage suite à des fausses interprétations des médias faites sans aucune consultation des 

spécialistes concernés. Partant de ce constat je me suis engagée depuis l’année 2010 dans 

l’animation scientifique auprès des enfants de 3 à 14 ans. Dans les colonies de vacances à thèmes 

naturaliste, les ateliers scientifiques en temps périscolaire et un service civique en enseignement à 

l’environnement et au développement durable. Je pense que la sensibilisation des jeunes à 

l’environnement qui les entoure à travers de nombreuses expériences ludiques est une action 

importante dans leur formation extra-scolaire, car en dehors des bancs de l’école l’enfant perçoit et 

appréhende les informations d’une manière différente, selon ses propres choix et intérêts 

(l’éducation populaire n’est pas obligatoire mais elle est ouverte à tous). 

Le doctorat ne me laisse pas suffisamment de temps pour m’occuper pleinement des 

activités avec les enfants. Cependant, grâce à une proposition de formation doctorale qui s’intitule 

« L’accompagnement scientifique du Muséum » j’ai pu intervenir dans une classe d’école primaire 

sur une des thématiques de ma recherche : l’évolution et la classification du vivant. Ce dispositif 

est mis en place par une collaboration entre le Muséum National d’Histoire Naturelle et la 

Fondation « La Main à La Pâte » (LAMAP). Le but est d’associer l’enseignant, le scientifique (un 

doctorant ou un chercheur) et les élèves dans une logique d’enrichissement mutuel et de partage 

de compétences. Cet accompagnement se distingue d’autres formes d’interventions car l’enseignant 

n’est plus tout seul pour tenir une séance en classe. La présence d’un scientifique et ses apports 

dans la préparation des séquences aident l’enseignant à conduire avec confiance les séquences dont 

il n’est pas forcement spécialiste et d’avoir une autre vision sur sa pratique d’enseignement. Pour le 

scientifique, cet engagement permet de développer des compétences de médiation scientifique 
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auprès d’un public non expert. Enfin les élèves, qui sont les éléments principaux pour moi dans ce 

dispositif, développent leur questionnement du monde ainsi qu’une ouverture d’esprit et satisfont 

leur curiosité par l’observation et l’expérimentation. 

L’évolution : un enseignement à risque ? 

La thématique choisie, celle du concept de l’évolution et de la classification du vivant n’est 

pas un savoir neutre comme en témoignent les polémiques actuelles et passées. L’évolution est un 

phénomène non spectaculaire qui s’inscrit dans une fenêtre de temps et d’espace qui échappe pour 

une bonne part à la perception humaine. L’évolution du vivant se déroule à une échelle de temps 

géologiques trop longs et aussi dans l’infiniment petit10. Mais c’est également un principe 

organisateur de toutes les disciplines biologiques qui permet de comprendre l’unité et la diversité 

du vivant. Ce sujet d’étude par la nature même des savoirs en jeu, est particulièrement intéressant 

et délicat à expliquer car il est confronté aux idées présentes dans le domaine public où se mêlent 

sciences, philosophies, idéologies et religions. C’était donc pour moi un véritable défi de prendre 

en compte dans mes explications la perception personnelle du monde des élèves. Ainsi, je voudrais 

non seulement partager mes connaissances et vulgariser mon travail au muséum (j’effectue une 

thèse dans un domaine d’écologie évolutive) mais aussi  retrouver le plaisir du travail avec les jeunes.  

Avant de commencer j’ai décidé de me renseigner sur le niveau d’enseignement des concepts 

d’évolution et de la classification du vivant dans les écoles primaires en France. L’évolution apparait 

de façon explicite dans les programmes d’écoles primaires qu’à partir de 1985. Ce sujet était alors 

abordé de façon succincte en s’appuyant principalement sur l’observation des fossiles et l’analyse 

de documents. Avec les programmes scolaires renouvelés depuis 1995 nous observons une 

progression dans les objectifs de connaissances enseignées. De « L’évolution du vivant » en 1985, 

on passe à « Première approche de la notion d’évolution à partir de l’unité du vivant, caractérisée 

par la mise en évidence de quelques grands traits communs, puis de sa diversité, illustrée par 

                                                 
10 Guillaume Lecointre, 2002. Classification phylogénétique du vivant, deuxième édition, avec Hervé Le Guyader. Belin 
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l’observation de différences, le tout conduisant aux notions d’espèce et d’évolution ; première 

approche de la notion d’évolution des êtres vivants à partir de quelques fossiles typiques » en 2007.  

En 2001 le comité scientifique de la fondation « LAMAP » propose de diffuser au niveau 

des écoles primaires un protocole pédagogique adapté consacré aux classifications du monde 

vivant. La même année la classification phylogénétique devient un savoir obligatoire pour passer le 

CAPES et l’agrégation. En 2004 la classification du vivant fait partie du programme du cycle 2 (CP, 

CE1 et CE2) et de cycle 3 (CM1, CM2 et 6e) au sein du chapitre sur l’évolution du vivant.  

Etant donné que j’allais travailler avec une classe de CM2 je me suis particulièrement 

intéressée à des programmes du cycle 3. Le dernier Bulletin Officiel d’Enseignement National de 

2016 dit que dans un cadre de la matière « Sciences et techniques » du cycle 3, une des thématiques 

à enseigner est « Le vivant, sa diversité et les fonctions qui le caractérisent ». Un des attendus à la 

fin du cycle 3 précise que les élèves doivent savoir « classer les organismes, exploiter les liens de 

parenté pour comprendre et expliquer l’évolution de ces organismes ». En même temps, sur le site 

« EduScol », mis en place pour informer et accompagner les professionnels de l’éducation, on 

retrouve la clef pour la mise en œuvre et la progressivité des enseignements. Concernant la 

thématique du vivant il est précisé que « il n’est pas attendu au cours du cycle 3 une quelconque 

explication de la théorie de l’évolution, mais simplement de poser les bases qui permettront 

d’aborder les mécanismes explicatifs développés au cycle 4 ». Il est également conseillé de ne pas 

aborder la construction des arbres de parentés et les arguments moléculaires en faveur d’une 

parenté. N’étant pas d’accord avec ce dernier point, j’ai pu expliquer à la classe l’utilité d’un arbre 

phylogénétique, de faire la différence avec un arbre généalogique et d’en construire un avec les 

élèves. J'expliquerai ma démarche en détails dans la partie suivante. 

Avant de me lancer dans une construction de séance, je défini d’abord les deux concepts 

principaux autour desquels je travaille. Il existe certainement plusieurs façons de les définir et le 

lecteur peut ne pas être entièrement d’accord avec les définitions synthétiques que je propose : 
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L’évolution (en termes de Biologie) : processus continu par lequel les espèces se transforment  au 

cours du temps et des générations avec la sélection naturelle comme  moteur et la variabilité 

génétique et phénotypique comme carburant. 

La classification du vivant (la Systématique) : le fait de regrouper des êtres vivants selon les 

caractères qu’ils possèdent. La classification établie doit refléter l’ordre phylogénétique et donc la 

parenté entre ces êtres vivants.  
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Le projet 

 

 Première proposition du sujet 

Avant de rencontrer un enseignant intéressé j’avais proposé mon projet à LAMAP que j’avais 

intitulé « L’arbre du vivant et son évolution ». Il a été diffusé dans l’Académie de Paris auprès des 

professeurs des écoles. En plus des concepts de l’évolution et de la classification du vivant qui 

resteront des notions centrales de ce projet, j’avais inclus des notions de la biodiversité, des relations 

des êtres vivants avec leur milieux et donc de la diversité des habitats, ainsi que des relations 

trophiques entre les êtres vivants au sein de ces habitats. Personnellement, je trouvais qu’il n’était 

pas possible de parler des espèces vivantes sans prendre en compte le contexte écosystémique.   

 Première rencontre avec l’enseignante 

Ma proposition de séances a intéressé Isabelle Bénéfice, une enseignante stagiaire d’une classe de 

CM2 de l’école primaire Parmentier. Elle a été très enthousiaste à propos de la thématique de 

l’évolution et m’avait paru tout de suite très impliqué dans ce projet. Venant d’une formation 

pluridisciplinaire en économie et relations publiques elle a préféré se consacrer à l’enseignement  

en secteur privé d’abord, puis cette année elle a obtenu le statut de titulaire d’un professeur des 

écoles. Isabelle m’avait confié que les sciences en biologie n’étaient pas son « point fort » et qu’elle 

espérait que notre collaboration soit enrichissante pour elle. 

 Mise en place des séances 

Nous avons revu ensemble avec Isabelle le programme des séances que j’avais proposé. Sachant 

que j’avais écrit la première version sans consulter les manuels scolaires proposés par 

l’Enseignement National, j’ai été contente d’apprendre que ces séances suivaient plutôt bien leurs 

contenus. Isabelle m’avait expliqué les thèmes que les élèves avaient déjà vus dans la classe de 

« Sciences et techniques » cette année : la constitution de la matière et les différentes sources 

d’énergie. Elle prévoyait également de faire un cours sur la reproduction et le développement des 

êtres vivants, ce qui fait partie du programme obligatoire de CM2. Je pouvais donc m’appuyer sur 
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les connaissances que les élèves avaient déjà abordées cette année, ainsi que les années précédentes 

en classe de sciences. Celles-ci sont notamment les notions du vivant / non-vivant, de la diversité 

des êtres vivants et des milieux, et de l’espace-temps (une notion importante pour comprendre 

l’échelle du temps sur laquelle se déroule l’évolution)11. Nous avons également ajouté une séance 

consacrée entièrement à l’histoire passée du vivant, la partie que je n’avais pas prévu d’aborder de 

façon explicite.  

Nous nous sommes mises d’accord sur le déroulement général des séances. Chaque séance 

commencerait par une confrontation des conceptions premières des élèves pour mettre en route 

des investigations personnelles et une remise en cause des idées. En deuxième partie un recueil des 

idées nouvelles et une mise en commun des résultats permettrait de faire un bilan avec toute la 

classe. A la fin une évaluation pourrait éventuellement avoir lieu. Isabelle avait mis un accent sur la 

démarche d’investigation, de recherche personnelle et de questionnement à suivre. Enfin, nous 

avions convenu de préparer les séances en détail au fur-et-à-mesure du déroulement du projet en 

fonction de la vitesse d’avancement et des remarques des élèves. Pour cela, nous restions dans la 

classe après chaque séance pour préparer une séance suivante.  

Pour développer au mieux les séances je me suis surtout servie des ressources pédagogiques sur le 

site de LAMAP (« A l’école de la biodiversité ») et de l’ouvrage « Comprendre et enseigner la 

classification du vivant » sous la direction de Guillaume Lecointre. La totalité de ressources utilisées 

se trouve dans la partie Bibliographie. 

  

                                                 
11 Bulletin Officiel de l’Education Nationale 2016, Ministère de l’Education Nationale 



 
 

290 
 

Tableau 1. Le contenu des séances. 

Séance Thème Méthode / mots clé Matériel Commentaires 

24/02 

Unité et 

diversité du 

vivant 

Vivant/non-vivant; 

espèce; biodiversité 

Planches d’images 

des espèces à 

regrouper 

Premier contact 

avec la classe 

03/03 

Classification 

du vivant : 

décrire 

Trier/Ranger/Classer 

Caractères partagés 

Tableau de 

caractères 

Images des espèces à 

décrire 

Observation et 

description des 

espèces 

10/03 

Classification 

du vivant : 

classer 

Classer, emboiter, 

nommer 

Tableau de 

caractères 

Images des espèces à 

décrire 

Classification 

emboitée 

17/03 

Diversité 

actuelle et 

passée des 

espèces 

Fossile, ancêtre 

commun, évolution 
Vidéo, diaporama 

Première définition 

d’évolution 

24/03 
Parenté des 

espèces 

Construction d’un 

arbre de parenté, 

notion du temps lent 

Diaporama 

Insister sur le terme 

de changement des 

caractères 

31/03 

Espèces, 

habitats, 

chaines 

trophiques 

Habitat, adaptation, 

interaction 

Jeu de la chaine 

trophique 

Images de 6 habitats 

Liste d’espèces à 

replacer sur l’arbre 

Adaptations aux 

différents habitats  
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26/06 
Jeu de piste 

dans la GGE 
Jeu de piste 

Feuille de piste 

Tableau de 

caractères 

Découverte des 

espèces du Muséum 

30/06 Bilan Discussion collective Diaporama 

Recueil des 

impressions 

générales sur les 

séances 
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Déroulement des séances 

Tout le matériel nécessaire était disponible sur place (un vidéoprojecteur et un PC, des tableaux, 

une imprimante et une photocopieuse).  Les séances se déroulaient chaque vendredi après-midi, de 

13h30 à 15h. Etant donné que les élèves sortaient de la cantine et de la cour de récréation les 

premières minutes des séances se passaient dans le brouhaha avant le retour du calme. Lors des 

séances Isabelle préférait rester au fond de la classe, à surveiller le retour au calme et à écouter en 

même temps ce que je racontais.  

 

Séance 1 - Unité et diversité du vivant 

Cette première séance était également une première confrontation avec la classe. En arrivant un 

peu en avance, j’ai pu m’installer afin de me repérer dans la classe. Isabelle avait même fait un 

schéma des tables d’élèves avec leurs prénoms dessus. Les élèves étaient déjà au courant d’une 

nouvelle intervenante et sont restés attentifs lors de la présentation du sujet. Ma promesse d’une 

sortie nature (qui malheureusement n’a pas pu avoir lieu) et d’un jeu de piste au Muséum ont 

certainement attiré leur attention et renforcé leur motivation pour participer lors des séances. 

Recueil des conceptions premières des élèves  

Pour introduire un vaste sujet de la diversité du vivant il fallait mettre au clair ce que les 

élèves sous-entendaient comme le « vivant » et le « non-vivant ». J’avais demandé ce que leur 

évoquaient ces deux mots. Un par un, chacun à son tour, les élèves ont donné des exemples que 

j’avais noté sur le tableau. Les élèves ont surtout eus du mal à dire que les végétaux sont aussi des 

êtres vivants. Il a fallu alors faire un cheminement logique de la graine qui pousse (une expérience 
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que la plupart des élèves ont déjà pratiqué) et qui ensuite donne une plante. D’autres exemples, 

non seulement des noms mais aussi des concepts, des verbes et des actions (paysage, respirer, vent, 

animal…) ont été donnés. 

Après une brève analyse des mots notés nous avons défini en trace écrite : 

Le vivant : tout être organisé qui naît, se développe (respire et se nourrit), se reproduit et meurt.  

Pour terminer j’avais expliqué que nous pouvons rassembler l’énorme quantité des êtres vivants 

que nous connaissons aujourd’hui sous un seul mot qui est la biodiversité. Je me suis attardé sur le 

« –bio » car parfois ça peut être associé à des produits bio, biologiques, il fallait donc mettre ces 

choses au clair. 

Mise en route des investigations  

Le but de la séance étant de préparer les élèves à l’action de la classification du vivant, je voulais 

faire avec eux une classification « test ». Nous avons séparé les élèves en groupes de 4. Chaque 

groupe a reçu un jeu de photos d’organismes vivants (Annexes). J’avais demandé alors d’observer 

attentivement ces photos et de mettre ensemble les êtres vivants qui se ressemblent le plus. J’avais 

aussi demandé de noter des raisons pour lesquels les élèves avaient mis ensemble certains 

organismes et pas d’autres.  

Recueil et mise en commun des résultats 

Après une quinzaine de minutes, chaque groupe avaient révélé les ensembles d’organismes qu’ils 

avaient formés et expliqué quels étaient les indices utilisés pour ce classement. Les raisons de 

classements étaient diverses : la couleur, la forme ou encore le « type » d’un être vivant. Certains 

avaient regroupé les espèces vivant dans l’eau et sur terre. En posant la question à la classe « 

Pourquoi les êtres vivants de chaque groupe se ressemblent-ils autant ? » la classe avait proposé : « 

Ils se ressemblent parce qu’ils sont de la même famille ; de la même espèce». Ce dernier terme est 

sorti assez rapidement chez certains élèves ce qui ne pouvait que m’encourager à poser la question 

suivante : « Comment pourrait-on appeler des individus regroupés ensemble parce qu’ils se 

ressemblent ? ». Nous avons alors nommé chaque groupe formé : des fleurs ou des végétaux (ou 
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des marguerites et des bleuets), des humains, des poissons (poissons-clowns et poissons rouges) et 

des grenouilles (grenouille dendrobates et des grenouilles rousses). 

Pour élargir les investigations des élèves j’avais demandé si les individus au sein des 

ensembles formés pouvaient se reproduire et donner des petits ? Et entre les ensembles ? La 

réponse correcte est venue rapidement, même s’ils hésitaient pour les 2 espèces de grenouilles et 

pour les plantes. Pour l’homme la réponse était catégorique : pas de reproduction en dehors de ce 

groupe. Donc chaque groupe correctement formé représentait une espèce différente.  

Enfin nous avons regardé plus attentivement chaque ensemble. Le constat était le même : 

au sein de chacun, les individus avaient des petites différences. A la fin de la séance les élèves ont 

gardé une trace écrite de la définition d’une espèce :  

Une espèce est un ensemble d’êtres vivants ayant des caractères en commun et qui sont 

susceptibles de se reproduire entre eux. À l’intérieur d’une espèce, les individus possèdent de petites 

différences qui les rendent uniques. 

 

Séance 2.1 – Classification du vivant : décrire 

La science de la classification s’appelle la Systématique. Son but est de mettre de l’ordre et de 

donner du sens à l’immense diversité du vivant en se basant sur l’identification des espèces après 

une observation des caractères qu’ils présentent. A l’école primaire nous utiliserons uniquement 

des caractères morphologiques, de préférences externes (à l’exception du squelette).  

Recueil des conceptions premières des élèves   

En rappelant la séance précédente j’avais demandé aux élèves combien d’espèces 

différentes nous avions observé. Après avoir réfléchi, les élèves ont convenu qu’il existait une 

pléthore d’espèces animales et végétales sur notre planète. Mais personne ne pouvait les nommer 

toutes. En plus j’avais fait remarquer que ces espèces se retrouvaient comme dans un énorme tas 

en désordre et si je leur demandais de m’en sortir une en particulier ils passeraient beaucoup de 

temps à la chercher. Ainsi j’avais introduit le besoin de mettre de l’ordre dans la diversité du vivant, 
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c’est-à-dire de classer des espèces.  Pour mieux comprendre le monde qui l’entoure, l’homme a 

besoin de classer les êtres vivants, d’organiser cette variété pour y voir plus clair.  

Avant de commencer la classification proprement dite, il fallait s’assurer que les élèves 

comprennent bien le sens du mot « classer » et le distinguent avec les actions de « trier » et de 

« ranger ». Au titre d’exemple j’avais pris une des trousses et sorti tout ce qu’il y avait dedans sur 

une table. Ensemble nous avons trié les objets de la trousse : les crayons papier et les stylos, en 

objets pour écrire et les autres en objets par couleurs, etc. Donc le tri s’effectue sur une présence 

ou absence d’un seul critère.  

Ensuite j’avais demandé de ranger ces objets. Les élèves avaient du mal à comprendre ce 

que je leur demandais. Pour les aider j’avais rangé les stylos du plus petit au plus grand. Donc, le 

rangement s’effectuait sur un critère continu.  

Enfin, j’avais remis les objets ensemble et commencé par les séparer en stylos et en crayons. 

Au sein de chaque groupe nous les avons séparés par couleur, puis dans chaque sous-groupe par 

taille. Donc pour classer il faut déterminer des critères communs aux objets qui permettent d’établir 

une hiérarchie relationnelle entre ces objets. 

Nous avons donc rappelé que ce qu’ils ont fait avec les espèces vivantes en séance 1 n’était 

pas du classement mais du tri car il n’y avait pas de relations entre les groupes formés, tout était 

basé sur des informations ponctuelles et exclusives. Le classement au contraire doit toujours se 

construire à partir de ce que les espèces possèdent comme critère et non de ce que les espèces font 

(nagent, volent, mangent de la viande, etc.).  

Mise en route des investigations  

J’avais proposé aux élèves d’effectuer une vraie classification scientifique. Les élèves avaient été 

séparés en binômes, chaque binôme ayant reçu une collection d’animaux à classer (Annexes). Nous 

n’avions pas fait de classification des végétaux car celle-ci est trop complexe à comprendre et il n’y 

a pas assez de caractères facilement observables.  

Tout d’abord j’avais demandé aux élèves d’observer quelques animaux et de noter des 
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caractères en commun que ces espèces partageaient. Les yeux ou les poils ont été mentionnés le 

plus souvent. Mais certains avaient encore listés ce que les espèces font et où elles habitent. J’avais 

ensuite expliqué que les scientifiques utilisent des listes de critères bien définis parce que nous ne 

pouvons pas utiliser n’importe quoi, qu’il y avait des critères qui changeaient trop au sein de la 

même espèce etc. Nous avions ensuite distribué à chaque groupe d’élèves un exemplaire de 

la « Fiche d’observation de caractères » prédéfinis (Annexes). J’avais demandé d’observer encore 

une fois tous les animaux de la collection et de cocher dans le tableau les critères. Comme certains 

caractères n’étaient pas familiers une « Fiche de définition de caractères » avait été distribué 

(Annexes) que nous avons lues ensemble.  

 

Séance 2.2 – Classification du vivant : classer 

Dans la suite de la séance précédente nous avons repris le tableau des caractères que j’avais projeté 

sur le tableau que nous avions rempli tous ensemble. À partir de la « Fiche de définition de 

caractères » corrigé j’avais demandé à repérer des caractères que ces animaux ont en commun. Les 

élèves ont alors remarqué que par exemple l’humain et le chat ont des poils et 4 pattes, que la 

mouche et le coléoptère ont 6 pattes et un squelette 

externe ou encore que le pigeon et le canard ont tous 

les deux des plumes.  

La classe a donc été donc mise au défi : mettre 

des espèces dans des boites selon des critères qu’ils 

partagent et ainsi dresser une classification emboitée. 

Au titre d’exemple pour expliquer comment procéder 

j’avais utilisé les objets de la fig.1.  

Pour aider la classe les consignes suivantes ont été 

données :  

Les animaux sont classés à partir de ce qu’ils ont et pas de ce qu’ils n’ont pas, ni de ce qu’ils font. 

Figure 1. Exemple d'une classification emboitée 
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Les boites construites doivent porter un seul nom – le nom d’un caractère partagé par toutes les 

espèces dans cette boite. On partirait d’un caractère le plus partagé (la tête et les yeux) vers les 

caractères les moins partagés. 

 

Recueil et mise en commun des résultats 

Après une vingtaine minutes de découpage (images des espèces et des étiquettes avec des critères), 

de réflexion et de collage par groupe de 4 nous avons affiché les classements sur le tableau, mais la 

séance avait déjà dépassé le temps dédié, et nous avons dit que la correction se ferait la semaine 

suivante.  
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Figure 2. Exemple d'une classification emboitée effectué par les groupes d’élèves 
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Séance 4 – Diversité actuelle et passée du vivant 

Avant d’aborder une nouvelle thématique nous avons fait une correction des classements 

emboitées. Certains groupes ont eu du mal ou n’ont pas été jusqu’au bout de leur classement. J’avais 

alors demandé : « Quels noms peut-t-on donner à chaque “boite” » ? L’exercice s’est avéré plutôt 

simple, les élèves ont vite trouvé des noms à la plupart des groupes.  Il a fallu juste aider avec les 

Métazoaires (la tête et les yeux), les Arthropodes et les Vertébrés. Le groupe de « Poissons » et de 

« Reptiles » n’existent plus dans la classification actuelle, ce sont des groupes para phylétiques (qui 

n’ont pas un unique ancêtre en commun). Mais au niveau de classe de primaire il est difficile (et 

pour moi inutile) de contredire les élèves en expliquant que dans les reptiles on devrait inclure les 

oiseaux et que les poissons s’appellent en vrai des Actinoptérygiens (on a exclue les raies et les 

requins qui ont un squelette entièrement cartilagineux). J’avais donc utilisé ces termes pour définir 

des groupes d’espèces, le plus important étant la compréhension du principe de la classification 

emboitée.     

Figure 3. Corrigé de la classification emboitée des animaux avec des noms de boites 
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Maintenant nous pouvions passer à la thématique de la séance 4. C’était une séance de 

transition entre la classification du vivant et son évolution. Le but était de montrer aux élèves 

l’existence dans le passé d’un nombre extraordinaire d’espèces vivantes qui ont disparues et qui 

peuvent souvent ressembler aux espèces actuelles. Sur la base de ce constat j’introduis une notion 

d’un ancêtre commun et de l’évolution des espèces.  

Recueil des conceptions premières des élèves   

J’avais commencé par demander : « Combien d’espèces existe-t-il sur la Terre aujourd’hui ? ». Les 

élèves ont donné des chiffres très différents allant de quelques milliers jusqu’à quelques milliards. 

Il est difficile d’imaginer de tels chiffres, même pour un adulte, alors j’avais comparé le nombre 

d’espèces estimé sur terre à un nombre de gouttes dans un océan (ce qui est en vérité beaucoup 

plus grand). Ensuite nous avons regardé un extrait d’un documentaire de Denis Van Waerebeke 

« Espèces d'espèces », pour avoir une réponse correcte : actuellement on estime le nombre total 

d’espèces vivantes entre 5 et 10 millions, avec seulement 1.7 millions d’espèces connues.  

« Et est-ce qu’il y a toujours eu les mêmes espèces présentes sur la planète ? ». La réponse 

de la classe était unanime : « non, il existait d’autres animaux, par exemple des dinosaures. » J’avais 

donc passé un diaporama en montrant à la classe des images de 

fossiles (un nouveau mot à définir) et des images d’espèces animales 
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et végétales en disant qu’elles n’existaient plus. J’avais fait remarquer qu’elles ressemblaient parfois 

souvent aux espèces actuelles. Par exemple l’Archéoptéryx avait des plumes et des ailes, 4 membres, 

une tête et des yeux, mais aussi des dents.  

Il partageait des caractères en commun avec des oiseaux et des « reptiles » d’aujourd’hui 

(qui font partie d’un même groupe monophylétique). Ils sont donc des proches parents et ils 

possèdent un ancêtre en commun dans le passé. Il était important d’insister sur le fait que nous ne 

connaitrons jamais à quoi rassemblaient les ancêtres communs des espèces actuelles, que ce sont 

des ancêtres hypothétiques, disparues aujourd’hui. Elles ont évolué, changé et sont devenues telles 

qu’on les connait aujourd’hui. Ce processus continue toujours. 

Recueil et mise en commun des résultats 

Cette séance m’a permis également de préparer le terrain pour des explications de concept d’un 

arbre phylogénétique en introduisant la notion de parenté entre les espèces et de leurs évolutions. 

Lors de cette séance les élèves se sont montrés très attentifs, certainement captivés par les images 

des espèces du passé qui rassemblent à des monstres (des trilobites par exemple) et ont posé 

beaucoup de questions sur les causes de leur disparition et leurs modes de vies. 

 

Figure 4. Faune de l'océan Cambrien : il y a 540 000 000 d’années 
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Séance 5 – Parenté des espèces 

Comme mentionné précédemment, je trouvais qu’il est impossible de parler de la diversité du vivant 

sans toucher un mot sur la représentation de la parenté sous forme d’un arbre. En effet, une 

classification emboitée représente un arbre phylogénétique vu de dessus. Avec une telle 

représentation on introduit la notion du temps, et le concept d’évolution dans le temps.  

Recueil des conceptions premières des élèves   

Les élèves de l’école primaire n’ont pas forcement la facilité de se projeter dans une troisième 

dimension, celle du temps et encore moins de la voir sous forme d’un arbre. J’avais donc commencé 

par rappeler, en séance précédente, que nous avions déjà parlé des ancêtres communs qui existaient 

par le passé. Des parents des espèces actuelles. J’ai alors demandé si les élèves connaissent tous les 

membres de leur famille. Forcément, les élèves ont pensé aux personnes encore vivantes : des 

parents, des frères, des sœurs, des cousins, des grands-parents. « Mais vos grands-parents avaient 

eux aussi des parents ? ». Ah, oui, on les appelle des arrière grands-parents. « Vous connaissez alors 

un arbre généalogique de vos familles ? ». La classe savait à quoi correspondait un tel arbre : une 

histoire d’une famille où on connait chaque ancêtre dans le passé.  

La question était « Est-ce qu’on peut représenter un arbre généalogique des toutes les 

espèces vivantes sur Terre? ». Les élèves ont hésité à répondre positivement, vu l’énorme quantité 

des espèces. Et bien on peut, mais on appelle un tel arbre « un arbre phylogénétique » puisque dans 

ce cas les ancêtres communs ne sont que hypothétiques, on ne connait pas leur identité exacte. 

C’est là où se trouve une différence avec la généalogie, où dans chaque nœud de l’arbre il y a des 

êtres vivants connus.  
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Mise en route des investigations  

Pour mieux comprendre une telle 

représentation nous avons repris la 

classification emboitée des séances 

2. J’avais projeté un arbre 

phylogénétique vide, fait exprès pour la 

collection d’espèces classées. Le même arbre a été distribué 

aux d’élèves. On s’est rappelé que pour faire chaque boite nous 

avons utilisé un seul caractère. « Quel caractère est partagé 

par toutes les espèces ? ». La tête et les yeux, c’est donc un caractère qui était possédé par un ancêtre 

de toutes les espèces de la collection et c’est ainsi un caractère le plus vieux. Pour illustrer ce constat 

j’ai dessiné une flèche au-dessus de la phylogénie représentant le temps (les élèves étaient déjà 

familiers avec une telle représentation du temps après des cours d’Histoire). Nous avons donc placé 

le caractère « tête » à la racine de notre arbre, là où le temps était le plus « ancien ». J’avais demandé 

ensuite à la classe, par groupe de 4, de placer les espèces de leur collection sur l’arbre, en disant que 

les espèces qui partagent le plus de caractères vont se trouver sur les branches plus proches et que 

chaque caractère utilisé pour désigner une boite doit se retrouver dans un des nœuds de l’arbre.  

Recueil et mise en commun des résultats 

La classe a eu des difficultés à placer correctement les espèces sur l’arbre, alors rapidement nous 

avons procédé à une correction collective. Après avoir replacé toutes les espèces et tous les 

caractères sur notre phylogénie nous avons remonté le temps en partant des feuilles de l’arbre. Par 

exemple, en prenant le pigeon on a lu dans l’arbre qu’il avait des plumes (sur les ailes), 4 pattes, un 

squelette interne et une tête. En s’arrêtant au nœud « plumes » j’avais montré une autre branche qui 

en partait, celle du canard. Ça voulait dire que le pigeon et le canard, qui font partie du même 

groupe, celui des oiseaux, avaient un même ancêtre commun dans le passé et cet ancêtre possédait 

des plumes. Ensuite il a évolué, changé et donné naissance à plein d’autres espèces d’oiseaux. 

Figure 5. Arbre phylogénétique à remplir 
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A la fin j’avais montré un diaporama pour illustrer la parenté des espèces. Je voulais surtout 

demander : « Est-ce que vous pensez que l’être humain est un descendant des singes ou est-ce que 

nous avons des ancêtres communs ? ». Les réponses étaient étonnamment correctes, non, on n’est 

pas des singes (et puis quoi encore !), on doit partager des parents en commun. J’avais donc 

expliqué que représenter la parenté des hominidés de façon linéaire était fausse et qu’il fallait le 

faire plutôt avec un arbre phylogénétique.  

 

Figure 5. Phylogénie des Primates 

Pour conclure, nous avons défini en quoi un arbre phylogénétique rend-il compte de l’histoire du 

vivant ? 12 

1)  Il montre un ordre d’apparition de différents caractères : plus un caractère est partagé par les 

espèces plus il a apparu tôt dans le temps de l’histoire de la vie. 

2) Il montre des liens de parentés des espèces : plus elles sont proches dans l’arbre, plus grande est 

leur parenté.  

3) Il montre la séparation de lignées d’espèces avec ancêtres communs hypothétiques aux nœuds 

et donc permet d’introduire l’idée de l’évolution. 

                                                 
12 Guide Belin. « Comprendre et enseigner la classification du vivant ». Sous la direction de Guillaume Lecointre. 
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Séance 6 – Habitats des espèces et chaînes trophiques 

Dans cette séance je voulais replacer les espèces vivantes, dont on parlait isolement sans aucun 

contexte environnemental, dans leurs milieux naturels.  

Recueil des conceptions premières des élèves   

J’avais demandé aux élèves d’imaginer des milieux, des endroits typiques où on pourrait trouver 

des espèces différentes. Les élèves ont cité plutôt des composantes que des habitats : l’eau, la terre, 

l’air, ils associaient donc un habitat avec les éléments naturels. Pour mettre un peu de contexte dans 

les différences entre les espèces j’avais affiché des images des habitats principaux sur Terre : un 

récif corallien, un désert, un désert polaire, une forêt tropicale, une forêt boréale et une prairie.  

Mise en route des investigations  

J’ai demandé à la classe de décrire les images avec les habitats. Ensemble nous avons séparé leurs 

propositions en vivant (végétaux, animaux) et non-vivant (chaleur, vent, température, neige, 

rochers, eau, etc.). Ensuite j’ai demandé quels animaux pourraient vivre dans chacun de ces habitats 

et pourquoi ? Ainsi nous avons évoqué la notion d’adaptation des espèces à leur milieu déjà effleuré 

dans les séances précédentes. Au début j’avais surtout insisté sur l’interaction entre les espèces 

vivantes et les composantes non-vivantes des habitats : besoin de respirer, d’avoir de la lumière du 

soleil, de se cacher dans des rochers, etc. Ensuite, en prenant un exemple d’une forêt et de toutes 

les espèces que la classe a placé dedans, j’avais demandé : « est-ce qu’il y avait des relations entre 

ces espèces ? » Comme la réponse avait du mal à venir j’avais demandé : « Est-ce que vous 

connaissez des chaines alimentaires entre les espèces ? ». A partir de là les élèves m’ont donné des 

exemples de « qui mange qui » dans la forêt. 

Recueil et mise en commun des résultats 

J’ai présenté un diaporama des 6 habitats et des schémas de chaines trophiques placés dedans. Il 

était important de ne pas présenter des chaînes alimentaires en s’appuyant sur le sens de la prédation 

: le lapin mange l’herbe, le renard mange le lapin. Il fallait indiquer le sens de circulation de la 

matière et de l’énergie : l’herbe est mangée par le lapin, le lapin est mangé par le renard. De plus les 
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élèves ont déjà vu les concepts de la matière et de l’énergie, ce qui facilitait la compréhension. 

 

Figure 6. Chaine trophique d'une prairie d’Amérique du Nord 

  

Pour terminer la séance de façon plus ludique j’avais proposé un jeu sur les chaines alimentaires 

que j’avais déjà testé en étant animatrice à l’époque. Nous avons collé le nom d’un animal, d’un 

végétal ou d’une matière (eau, terre, air) sur le dos de chaque élève. La consigne était simple : créer 

des chaines alimentaires en se prenant la main entre ceux qui étaient en interaction trophique. Avec 

Isabelle on répondait à certaines questions (on faisait partie du jeu également), surtout à celle de 

« est-ce qu’un tel peut manger un tel ? ». Certains élèves ont passé plus du temps à rigoler du rôle 

des autres plutôt que de jouer le jeu. Mais au total on a pu construire quelques chaines trophiques. 

Chaque chaine trophique s’est présentée devant le tableau et nous avons discuté des variations et 

des erreurs possibles.  

A la fin de la séance nous avons regardé des images d’espèces des chaines en les séparant en : 
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végétaux, qui sont à la base de chaque chaine alimentaire ; animaux herbivores ; animaux 

carnivores ; animaux détritivores. La discussion était vive et pleine de questions.  

 

Séance 7 – Jeu de piste dans la Grande Galerie de l’Evolution 

Fin juin nous avons organisé une sortie au Muséum sous forme d’un jeu de piste. Lors de la 

préparation de la visite j’ai été étonné d’apprendre qu’il n’existait qu’un petit jeu de piste rédigé par 

l’équipe d’animation du Muséum. Je le trouvais trop léger pour le niveau de CM2, de plus je voulais 

que la visite renforce les connaissances et les compétences que les élèves ont pu acquérir lors des 

séances en classe : l’observation, la description et la classification des espèces. Il existe également 

des parcours plus spécifiques sur les dents et les os, mais cela ne correspondait pas non plus à mes 

besoins. 

Avec Isabelle nous nous sommes alors donné rendez-vous à la galerie de l’évolution afin 

de préparer notre propre parcours. Nous avons repéré 15 espèces à trouver et à classer, ainsi que 

nous avons noté quelques questions « bonus » pour animer la visite. Le parcours complet se trouve 

dans les annexes.  

 

Figure 7. Grande Galerie de l'Evolution, MNHN 

Le jour de la visite 3 parents et 2 services civiques de l’école ont accompagné la classe. Les élèves 

ont été séparés en groupes de 4-5 avec un accompagnateur adulte par groupe (Isabelle et moi 

compris). Avant d’entrer dans la galerie j’avais expliqué les règles : trouver des espèces représentées 
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dans la feuille de route, les observer et remplir le tableau de caractères que les élèves connaissaient 

déjà. Un rappel sur l’importance d’un bon comportement (on n’est pas tout seul au musée) et les 

groupes sont partis à la découverte de la galerie 

Globalement, tous les groupes ont pu finir le parcours à temps (on n’avait que 1h15, les élèves 

devaient être de retour à l’école pour la cantine). J’avais récupéré les feuilles avec des réponses 

qu’on allait corriger ensemble à la dernière séance.  

Des choses à améliorer 

 Je suis restées avec mon groupe pendant tout le jeu de piste, mais d’après les remarques 

des autres accompagnateurs les élèves se sont globalement bien investis dedans, mais préféraient 

poser des questions à un adulte plutôt que d’aller chercher la réponse seuls. Il fallait donc les 

relancer à chaque étape.  

La collection d’espèces choisies n’était pas forcément la plus simple à classer. Nous nous 

sommes basés sur les espèces faciles à trouver et pas sur leurs caractères. Parfois il était compliqué 

d’observer tel ou tel caractère, comme par exemple le recouvrement de la peau d’un requin (des 

écailles osseuses) ou encore les 4 pattes chez les baleines qui ont des vestiges des membres 

postérieurs. 

 

Séance 8 – Correction du jeu de piste et bilan global 

Tous ensemble nous avons procédé à une description des espèces observées dans la galerie de 

l’évolution à l’aide d’un diaporama. Nous avons débattu chaque espèce : ces caractères observables, 

ces particularités et adaptations à son milieu naturel. Finalement je n’ai pas eu le temps de construire 

une classification emboitée de ces espèces ce qui n’était pas le plus mal, étant donné les ambiguïtés 

dans les caractères utilisés.  
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J’avais terminé la séance sur un rappel de notion d’une espèce en montrant des images des humains 

et des coquilles d’une espèce d’escargots. Le but était de montrer que même au sein d’une même 

espèce les individus peuvent être très différents. Nous avons également parlé des espèces hybrides, 

ces exceptions de la définition d’une espèce où les individus des espèces différentes ne pouvaient 

pas se reproduire entre eux.  

 

Conclusion 

Introduire auprès des jeunes la classification du vivant n’a pas seulement pour objectif d’expliquer 

ce qu’est la systématique qui rend intelligible la diversité du vivant. En passant par une phase de 

description des caractères des espèces vivantes, les élèves apprennent à être des observateurs 

curieux de leur environnement. Cela leur permet d’ouvrir les yeux sur la nature qui nous entoure et 

de s’en émerveiller. Malheureusement, une sortie naturaliste, prévue initialement dans un parc de 

Belleville n’a pas pu avoir lieu à cause de problèmes de sécurité qui n’était pas suffisante dans un 

parc public selon le directeur de l’école.  

L’évolution est un savoir complexe à expliquer, surtout au niveau de l’école primaire. Un 

important travail de vulgarisation pédagogique est nécessaire. C’est là-dessus qu’Isabelle avait 

besoin d’aide, pour ne pas commettre des erreurs classiques de l’enseignement sur ce sujet :  

La notion d’un fossile vivant 
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Certaines espèces actuelles, comme les cœlacanthes ont subi très peu de modifications visibles à 

l’œil nu ce qui suggère à tort que ces espèces n’auraient pas évolué depuis les temps « fossiles » des 

espèces qui leur sont très semblables. Une forte ressemblance n’exprime pas une absence de 

changements génétiques au cours des générations, mais l’expression d’adaptations similaires face à 

des conditions de vie similaires. On appelle ces espèces des espèces panchroniques.  

 

Figure 2 Fossile d’un cœlacanthe de Jurassique;  Individu d’une espèce actuelle de cœlacanthe 

Latimeria chalunae 

 

La notion du chainon manquant 

En présentant l’histoire évolutive du vivant il est facile de faire une erreur en disant que des fossiles 

que nous retrouvons aujourd’hui représentent des ancêtres communs des espèces actuelles et 

peuvent donc servir de preuve d’une forme du vivant qui relie le passé et le présent. J’avais illustré 

ce problème par le fait que nous ne disposions pas d’une machine à remonter le temps, et donc 

que nous ne pouvions pas savoir à quel moment une espèce du passé a changé et donné naissance 

à un nouvel embranchement d’un arbre phylogénétique et donc à une nouvelle espèce. Il est 

également possible qu’elle s’est éteinte sans laisser de descendants. Car la question dans la 

systématique n’est pas « Qui descend de qui » mais « Qui est plus proche de qui? ». Donc nous ne 

savons pas si le fossile en question est vraiment un ancêtre d’une espèce étant plus apparentée 

actuellement.  

Il est possible d’expliquer ceci en demandant aux élèves de décrire les caractères d’un fossile et de 
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le classer avec des espèces actuelles, un exercice que je n’ai malheureusement pas eu le temps de 

faire. 

 

La notion du progrès dans l’évolution 

Le progrès est une notion très anthropique, reflétant un point de vue assez subjectif de l’homme 

sur les changements subis par des objets en général. Dans un contexte d’évolution cette notion 

suggère une amélioration et des perfectionnements constants des espèces vivantes. Or les espèces 

évoluent toutes en même temps mais dans des conditions très différentes, ce qui font d’elles une 

mosaïque de caractères « primitifs » et de caractères « dérivés ». J’avais donné un exemple d’une 

taupe qui perd sa vue ou des Cétacés qui n’ont plus de membres postérieurs, ce qui peut être vu 

comme une dégression et pourtant fait partie de leur chemin d’évolution. Darwin lui-même écrivait 

« survival of the fittest » et non « of the best » ou « of the strongest ».  Ainsi, il n'existe pas de 

caractères supérieurs et inférieurs.  

 

 

 

 

Des suggestions pour l’enseignement de l’évolution  

Suite à mon expérience personnelle et une lecture de plusieurs ouvrages lors de cette formation je 

voudrais proposer les idées suivantes : 

 Intégrer l’explication du concept de l’évolution tout au long de l’enseignement des sciences 

et techniques plutôt que de l’isoler comme un sujet à part. 
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 Combiner l’histoire évolutive et la classification de la diversité du vivant au lieu de les 

séparer. 

 Prendre en compte des obstacles liés à la notion des temps géologiques et à la polysémie 

des mots « évolution » et « classification ». 

 Prendre en compte la pluralité du rapport personnel des élèves (social, culturel, religieux). 

 Expliquer aux élèves l’intérêt d’étudier de tels concepts. 

 

Bilan personnel du projet 

C’était un grand plaisir de se retrouver de nouveau face à un groupe de jeunes esprits, d’éveiller 

leur curiosité et de partager avec eux des siècles de connaissances scientifiques. C’était aussi une 

expérience différente de toutes celles que j’ai pu avoir avec des groupes d’enfants, car cette fois je 

collaborais avec une enseignante, une chose qui manque cruellement aux animateurs périscolaires 

pour savoir ce que les élèves apprennent en classe afin d’adapter le contenu de leurs ateliers.  

J’aimerais que cette formation soit mise plus en valeur parmi les doctorants qui n’osent pas 

s’y investir par manque de temps ou par la peur d’une perspective de travail avec un publique trop 

jeune et donc impatient et bruyant. Pour y remédier j’avais organisé un « Café scientifique », une 

conférence hebdomadaire au sein de mon UMR, où j’avais présenté ce travail. J’espère que ce 

partage d’expérience donnera envie à mes collègues du Muséum de partager leurs propres 

connaissances scientifiques avec le grand publique qui n’y a malheureusement pas forcement accès.  
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Humanity strongly depends on biodiversity and services it provides. To prevent the biodiversity loss and to 
establish sustainable relations with nature humanity has to efficently manage and protect natural resources. The 
problem of “what to protect” is not new but became more important than ever and could be resolved by an 
appropriate use of biodiversity measures. Many indices of biodiversity have been developed in the last four 
decades, with species being one of the central units. However, evolutionary and ecological studies need a precise 
description of species’ characteristics to best quantify inter-species diversity, as species are not equivalent and 
exchangeable. First measures taking into account species biological differences were based on species phylogenetic 
relations and trait values. However, many of them measure a diversity of a set of species, and does not indicate 
the respective contribution of each species to the diversity of the set. To find a remedy to this issue, other type of 
measures appeared in early 90’s, comparing species through the shared amount of characteristics, but were put 
aside, erroneously classified as diversity measures too. In this thesis we refer to these measures as species originality 
indices. A species is original if it possesses unusual trait values compared to all others in a community or if it is 
distantly related with other species in a community. Thus, the most original species have the greatest contribution 
to the diversity of that community. In this thesis we sought to demonstrate the benefits of originality metrics, 
particularly in conservation biology and community ecology. First we review the relation of species originality with 
concepts of species’ diversity and rarity and we compare their related measures. Following theoretical links 
between originality and diversity measures we propose a practical application of a two-step (and two-scale) 
originality framework to a real plant species data. Finally, we discuss main pitfalls and advantages related to species 
data, spatial scale of a study and the choice of an originality measure. Future studies could use originality measures 
with other entities than species, such as genes or habitats, and therefore broad the extent of biodiversity assessment 
and conservation.  
 
 

L'humanité dépend fortement de la biodiversité et des services qu'elle nous fournit. Pour prévenir la perte 
de biodiversité et établir des relations durables avec la nature, l'humanité doit gérer et protéger des ressources 
naturelles. Le problème de "what to protect" n'est pas nouveau, mais il est devenu aujourd'hui plus important que 
jamais et pourrait être résolu par une utilisation appropriée des mesures de la biodiversité. De nombreuses mesures 
de biodiversité ont été élaborées au cours des quatre dernières décennies avec l'abondance des espèces comme 
l'une des unités centrales. Cependant, les études en écologie et évolution nécessitent une description précise des 
caractéristiques des espèces pour quantifier au mieux la diversité interspécifique, car en effet les espèces ne sont 
pas équivalentes. Les premières mesures tenant compte des différences biologiques entre les espèces étaient 
fondées sur les relations phylogénétiques et les valeurs de traits des espèces. Cependant, beaucoup d'entre elles 
mesurent la diversité d'un ensemble d'espèces et n'indiquent pas la contribution de chaque espèce à la diversité de 
l'ensemble. Comme une solution à ce problème, d'autres types de mesures sont apparus au début des années 90's, 
comparant les espèces en fonction de ce qu'elles ont en commun, mais elles ont été mises de côté, classées à tort 
comme mesures de la diversité. Néanmoins, ces mesures donnent une valeur à chaque espèce et non à l'ensemble 
des espèces. Dans cette thèse, nous appelons ces mesures des indices d'originalité des espèces. Une espèce est 
originale si elle possède des valeurs de traits inhabituels par rapport à toutes les autres espèces dans une 
communauté ou si elle est phylogénétiquement éloignée des autres. Ainsi, les espèces les plus originales sont celles 
qui contribuent le plus à la diversité de cette communauté. Dans cette thèse, nous avons cherché à démontrer des 
avantages des mesures d'originalité, en particulier en biologie de la conservation et en écologie des communautés. 
Tout d'abord, nous examinons la relation entre les concepts de l'originalité, de la diversité et de la rareté des espèces 
et nous comparons leurs mesures associées. Poursuivant des liens théoriques entre les mesures d'originalité et de 
diversité, nous proposons une application pratique d'indices d’originalité en deux étapes (et à deux échelles) à un 
jeu de données réel des espèces végétales. Enfin, nous discutons des principaux points forts et faibles liés aux 
données sur les espèces, à l'échelle spatiale des études et au choix des mesures d'originalité, impliqués dans l'analyse 
d'originalité. Un outil prometteur, les mesures d'originalité pourraient être utilisés avec d'autres entités que des 
espèces, tels que les gènes ou les habitats, et donc élargir notre compréhension et la conservation de la biodiversité. 


