
HABILITATION À DIRIGER LES RECHERCHES DE

L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Ciprian TEODOROV
G∀min∃ : Exploring the Boundary Between Executable Specifica-
tion Languages and Behavior Analysis Tools

HDR présentée et soutenue à l’ENSTA Bretagne, le 03 avril 2023
Unité de recherche : Lab-STICC, UMR CNRS 6285

Rapporteurs avant soutenance :

Frédéric BONIOL Maître de Recherche, ONERA, Toulouse, France
Stéphane DUCASSE Directeur de recherche, INRIA Lille, France
Hans VANGHELUWE Full Professor, University of Antwerp, Belgique

Composition du Jury :

Président : Frank SINGHOFF Professeur des Universités, Université de Bretagne Occidentale, France
Examinateurs : Jeff GRAY Full Professor, University of Alabama, USA

Alain PLANTEC Professeur des Universités, Université de Bretagne Occidentale, France

Invité(s) :

Emmanuel GAUDIN Ingénieur, CEO, PragmaDEV, France

3

Abstract [English] The formal verification community strives to prove the correctness of a specifica-
tion using formal logic and mathematical proofs. The tremendous progress in computer-aided formal
verification tools, along with an ever-growing number of success stories renders these methods essential in
the system designer toolbox. However, with the advent of domain-specific models and languages, many
formalisms are proposed for writing dynamic system specifications, each one adapted to the specific needs
of the targeted domain. A new question emerges: How to bridge the gap between these domain-specific
formalisms, geared toward domain experts, and the formal verification tools, geared towards mathe-
maticians? One of the answers, ubiquitous in the literature, relies on using model transformations to
syntactically translate the domain-specific model to the verification model. We argue that this approach
is counterproductive leading to semantic multiplication, which requires equivalence proofs that can be
hard to provide and maintain.

In this dissertation, I present a new semantic-level answer developed, refined, and evaluated during
the last 10 years with the help of 6 postdoctoral fellows, 8 PhD candidates, and 12 collaborative projects.
This approach, named G∀min∃, promises a modular, compositional, and reusable software architecture
allowing the design of a wide variety of behavior exploration tools. The core building block of this
approach is a language agnostic semantic-level interface, which acts as a bridge between the dynamic
semantics of a domain-specific language and the behavior analysis tools. Here we propose a formalization
of the interface along with some reusable operators for creating behavior analysis tools for interactive
debugging, model-checking, and runtime monitoring. Besides reviewing almost a decade of fruitful
research, this document allows me to introduce some new research directions, which hopefully will
ease the burden of creating novel specification-design environments and render the design process more
productive.

Résumé [French] La communauté de la vérification formelle s’efforce de prouver la conformité d’une
spécification par l’utilisation de la logique formelle et de preuves mathématiques. Les progrès con-
sidérables réalisés dans les outils de vérification formelle assistée par ordinateur, ainsi que le nombre
croissant de réussites, rendent ces méthodes essentielles dans la bôıte à outils des concepteurs de sys-
tèmes. Cependant, avec l’avènement des modèles et des langages spécifiques à un domaine, un grand
nombre de formalismes ont été proposés pour écrire des spécifications de systèmes dynamiques, cha-
cun étant adapté aux besoins spécifiques du domaine ciblé. Une nouvelle question émerge : Comment
combler le fossé entre ces formalismes spécifiques au domaine, orientés vers les experts du domaine et
les outils de vérification formelle, orientés vers les mathématiciens ? Une des réponses, omniprésente
dans la littérature, repose sur l’utilisation de transformations de modèles pour traduire syntaxiquement
le modèle spécifique au domaine vers le modèle de vérification. Nous soutenons que cette approche est
contre-productive et conduit à une multiplication sémantique, qui nécessite des preuves d’équivalence
qui peuvent être difficiles à fournir et à maintenir.

Dans ce manuscrit, je présente une nouvelle réponse au niveau sémantique développée, raffinée et éval-

uée au cours des 10 dernières années avec l’aide de 6 ingénieurs postdoctoraux, 8 candidats au doctorat et

12 projets collaboratifs. Cette approche, nommée G∀min∃, promet une architecture logicielle modulaire,

compositionnelle et réutilisable permettant la conception d’une grande variété d’outils d’exploration du

comportement. La brique de base de cette approche est une interface de niveau sémantique agnostique

au langage, qui agit comme un pont entre la sémantique dynamique d’un langage spécifique au domaine

et les outils d’analyse du comportement. Nous proposons ici une formalisation de l’interface ainsi que

quelques opérateurs réutilisables pour la création d’outils d’analyse du comportement pour le débogage

interactif, le contrôle de modèle et la surveillance de l’exécution. En plus de passer en revue près d’une

décennie de recherches fructueuses, ce document me permet de présenter quelques nouvelles directions

de recherche, qui, nous l’espérons, allégeront le poids de la création de nouveaux environnements de

conception de spécifications, et rendront le processus de conception plus productif.

5

Foreword

The ”Habilitation à diriger des recherches” is the highest French academic degree, which «sanc-
tions the recognition of the high scientific level of the candidate, of the original character of his
scientific approach, of his ability to master a research strategy in a broad scientific field, and of
his ability to supervise young researchers»[59]. The HDR manuscript shows the scientific ma-
turity of the candidate through an overview of his/her research activities. The document is a
snapshot-like presentation of the author’s works illustrating a clear vision of the subject of study,
along with a scientific methodology, which ultimately leads to promising research perspectives.
In other words, an HDR manuscript sketches the destination, introduces the starting point, and
discusses the route taken emphasizing the new research opportunities discovered on the way. The
main consequence is that the HDR manuscript is not a textbook nor a monograph, which needs
to be more polished and self-contained.

This document is the manuscript of my HDR. Here, I overview almost a decade of research
at the crossroads of three fields: computer science (formal specification & verification), software
engineering (executable language engineering), and computer engineering (execution platform
engineering). In general, my research strategy follows the design science paradigm [60]. However,
the presentation is organized in a more top-down fashion, which emphasizes the lessons learned
(the partial conclusions) before describing some of the experiments and intermediate results
(contributions).

This document is intended mainly for the referees of my HDR, who must evaluate my research
activities. This document also introduces a problem that plagues numerous practitioners, the lack
of adequate tools for understanding executable systems. Moreover, it gives a brief overview of the
state of the art in this field. Finally, this document would be also of interest to both scholars and
practitioners interested in the design of monitoring tools for executable languages, specification
language engineering, diagnosis of model dynamics, and modular software development. From
this perspective, this manuscript is an optimistic account showing that sometimes following a
problem-driven approach can lead to the discovery of simple and elegant software engineering
principles.

6

Contents

1 Introduction 9

1.1 Context . 10

1.2 Objectives and Challenges . 12

1.2.1 Specifying dynamical systems is hard . 12

1.2.2 Too many semantics . 14

1.3 Selected Contributions . 16

1.3.1 Axis 1 – G∀min∃: The Formalization of the Semantic Language Interface 17

1.3.2 Axis 2 – The Way to Modular Executable Specification Monitors 17

1.3.3 Axis 3 – New Formal Verification Techniques 18

1.4 Research Strategy . 19

1.5 Supervision . 20

1.6 Grants and Projects . 22

1.7 Conclusion . 25

2 The G∀min∃ Semantic Language Interface 27

2.1 Overview . 28

2.2 The Semantic Language Interface . 30

2.2.1 Semantic Transition Relation . 31

2.3 Generic Monitoring Operators . 32

2.3.1 Filter . 32

2.3.2 Scheduler . 34

2.3.3 Interleaved Composition . 34

2.3.4 Synchronous Product . 35

2.3.5 Conversion to a Transition Relation . 37

2.4 Monitor Specification : The G∀min∃ Unified Debugger 38

2.4.1 A Semantic Transition Relation for Debugging 42

2.4.2 A Modular Finder Function . 43

2.4.3 Some Species from the Debugging Zoo . 46

2.5 Scheduling in a Modular Architecture for Verification and Execution 48

2.5.1 Background and Classical Solutions . 51

2.5.2 Architecture for Verification and Runtime Execution 52

2.5.3 Illustration on UML . 58

2.5.4 Discussion . 62

2.5.5 Related Work . 63

2.5.6 Conclusion . 65

2.6 Conclusion . 65

7

8 CONTENTS

3 Conclusion & Perspectives 67
3.1 Conclusion . 67
3.2 Perspectives . 68

Bibliography 75
Publications by the Author in International Journals 75
Publications by the Author in International Conferences 76
Publications by the Author in National Conferences 81
References . 81

Chapter 1

Introduction

Contents
1.1 Context . 10

1.2 Objectives and Challenges . 12

1.2.1 Specifying dynamical systems is hard 12

1.2.2 Too many semantics . 14

1.3 Selected Contributions . 16

1.3.1 Axis 1 – G∀min∃: The Formalization of the Semantic Language Interface 17

1.3.2 Axis 2 – The Way to Modular Executable Specification Monitors . . . 17

1.3.3 Axis 3 – New Formal Verification Techniques 18

1.4 Research Strategy . 19

1.5 Supervision . 20

1.6 Grants and Projects . 22

1.7 Conclusion . 25

Designing dynamical systems is hard due to the nonlinear nature of behavior composition
operators. To cope with the complexity the designer relies on abstractions, sometimes called
models or specifications, that simplify the problem by either ignoring irrelevant details and/or
by generalizing to a set of behaviors. The set of behaviors described by a correct specification
includes only the desirable behaviors of the system. However, guaranteeing the correctness of a
specification is not trivial, requiring behavior exploration tools that help initially to increase the
confidence that the specification matches the desired behaviors, and later show that the system
behavior is within the bounds of the specification. The formal verification community strives to
prove the correctness of a specification using formal logic and mathematical proofs. The tremen-
dous progress in computer-aided formal verification tools, along with an ever-growing number of
success stories renders these methods essential in the system designer toolbox. However, with
the advent of domain-specific models and languages, many formalisms are proposed for writing
dynamic system specifications, each one adapted to the specific needs of the targeted domain. A
new question emerges: How to bridge the gap between these domain-specific formalisms, geared
toward domain experts, and the formal verification tools, geared towards mathematicians? One
of the answers, ubiquitous in the literature, relies on using model transformations to syntactically
translate the domain-specific model to the verification model. We argue that this approach is
counterproductive leading to semantic multiplication, which requires equivalence proofs that can
be hard to provide and maintain. In this dissertation we present a new semantic-level answer

9

10 CHAPTER 1. INTRODUCTION

that promises a modular, compositional, and reusable software architecture allowing the design
of a wide variety of behavior exploration tools. The core building block of this approach is a
language agnostic semantic-level interface, which acts as a bridge between the dynamic semantics
of a domain-specific language and the behavior analysis tools. This document proposes a formal-
ization of the interface along with some reusable operators for creating behavior analysis tools for
interactive debugging, model-checking, and runtime monitoring. This approach was developed
and evaluated through numerous realistic studies, which showed that a) it is possible to use
the same semantics for both formal verification, by model-checking, and bare-metal execution
(deployment). b) the approach allows reusing, without modification, the safety properties used
for verification (during the design phase) for runtime monitoring (during embedded deployment).
c) the SLI fosters reuse, allowing for instance the reuse of a UML model interpreter for both
model and property execution. d) the constraints imposed by our proposition are in adequation
with the industry practices, which is expected to ease the adoption of the approach. e) the
approach enables early analysis of incomplete semantic implementations and/or partial models
f) the fine-grained modularity eases the design of new diagnosis setups, reduced multiverse de-
bugging. Moreover, in the context of model-checking, the isolation between the model semantics
and the verification algorithms eased the design of new formal verification techniques, amongst
which the FPGA-accelerated swarm verification promises more scalable and orders of magnitude
faster verification engines. Furthermore, the formalization presented here served as a basis for
the development of 3 significant open-source research prototypes, which have been used in both
academic and industrial settings. Amongst these we emphasize the OBP2 model-checking kernel,
which has been integrated in two commercial products for verifying BPMN and SDL models.

This chapter summarizes some of our research activities. After a presentation of the general
context, in section 1.1, the main objectives and challenges addressed are introduced in section 1.2.
Once the scope of our research efforts is defined, in section 1.3 we review our principal scientific
contributions. Section 1.4 briefly discusses the research methodology we follow. Scientific re-
search is by nature collaborative, sadly it is impossible to acknowledge all sources of inspiration.
Nevertheless, in section 1.5 we overview the most fruitful collaborations, and in section 1.6 we list
the research grants, industrial contracts, and collaborative projects that allowed us to conduct
our research activities.

1.1 Context

Model-Driven Engineering (MDE) promises to reduce the accidental complexity in the devel-
opment of complex software-centered systems [61]. The root cause of this complexity is traced
to the gap between the problem-specific concepts manipulated by the domain experts and the
abstraction level provided by general-purpose programming languages. MDE approaches ad-
dress this problem by introducing domain-specific models along with engineering techniques
and tools which help to separate and contextualize the efforts. For modeling dynamic behav-
iors, these domain-specific models become executable languages, sometimes called executable
domain-specific languages (xDSL). In some instances (eg fUML[62]), the dynamic semantics of
xDSL shares some features with the general-purpose programming languages. In other instances,
the dynamic semantics is radically different [63].

Amongst xDSL one can distinguish the subclass of executable-specification (ES) languages,
as the set of domain-specific languages which strive to capture the dynamic behaviors of complex
systems so that they can be studied in captivity. The need to model and understand the dynamics
of physical processes led to the invention of calculus by Newton and Leibniz, which can be seen
as a subclass of the ES language family. More recently the history of the ES language family

1.1. CONTEXT 11

became intertwined with the evolution of computer science. Reasoning on the dynamics of
computer systems helped, amongst others, to identify other useful subclasses, such as finite-state
automata, Petri nets, and lambda-calculus. The study of these formalisms is one of the pillars
of theoretical computer science, a discipline that aims to understand the nature of computation.

The push toward formal. Tremendous development in this field led to the development of nu-
merous methodologies and tools, which help practitioners to think above the code [64] and
sometimes even derive formal mathematical statements as a result. The theoretical advances
and the numerous technological breakthroughs in this area led to a push towards wider adoption
of formal reasoning and modeling. In this trend, ”The Science of Deep Specification” project1,
for instance, focuses on the specification and verification of full functional correctness of soft-
ware and hardware [65]. The International Council on Systems Engineering emphasized the need
for adopting formal modeling techniques for all steps of the development process (specification,
analysis, design, verification) [66]. The widespread adoption of formal modeling promises the
production of more reliable systems at a lower cost, using mathematics. With time this direction
might even ease the pain of today’s systems engineers still struggling to move from a document-
centric to a model-based approach while generalizing the outdated prediction and control metal
mindset [67].

Reflexivity and Agility With Lisp, John McCarthy [68, 69], showed that data and code can mix
and that both can dynamically co-evolve. The Smalltalk language added a biological metaphor to
computing. That of ”protected universal cells”, today largely known as objects, ”interacting only
through messages that could mimic any desired behavior” [70]. This reification of the conceptual
artifacts manipulated by programmers, allowing the isolation of concerns through inter-connected
objects, nourished the development of the MDE field. Live programming, the capacity of editing
the code of a running program, was also enabled by these initial developments and fed into the
need for agility of software developers. This led to the development of systems like the lively kernel
[71]. Some recent works introduce the concepts of live modeling in the MDE field [72]. Software
is intrinsically dynamic, understanding dynamical systems is hard, thus we can argue that live-
programming leverages some natural human desires (such as interaction, socializing, learning,
and self-expression), to ease the act of programming. This approach resembles gamification
[73], a strategic attempt to enhance the programming activity in order to keep the programmers
engaged and motivated.

Language monitoring [74] is the process of observing the execution of a computer program
expressed in a given programming language. In the following, the tools that enable this process
will be referred to as language monitors, or simply monitors2. Reflexive programming languages
like Lisp [69] and Smalltalk [75] streamline the gamification process by providing access to the
language implementation from the language itself. The program execution can be manipulated
from the program itself, which allows the development of powerful execution analysis tools. Exe-
cutable specification languages are not necessarily reflexive, and external components are needed
for manipulating the execution, provided that the implementation of the semantics exposes the
necessary interface (Semantic Language Interface(SLI) in Figure 1.1). In the following, we will
generically refer to the analysis tools as execution management components, language monitors,
or, simply, monitors.

The computer as an execution platform for analyzing the dynamics of an executable-specification,
offers an ideal gamification environment. The platform is generic, allowing the simulation of a

1https://deepspec.org/
2The notion of monitor here is more general than the notion of monitor in the context of runtime monitoring,

which focuses on observing the execution only during the deployment phase.

https://deepspec.org/

12 CHAPTER 1. INTRODUCTION

Figure 1.1: Research Context

wide range of dynamic semantics, and flexible, allowing the creation of arbitrarily complex anal-
ysis tools. However, when capturing the dynamics of the computer system itself in an ES, careful
isolation is needed between the analysis platform and the deployment platform in order to guar-
antee the soundness of the analysis results. Moreover, the executable specification language and
the underlying tools need to allow the integration in the specification of constraints emanating
from the execution platform used for deployment.

1.2 Objectives and Challenges

The push toward formal rigor can sometimes be at odds with the dynamicity and agility re-
quired for understanding complex executable specifications. Most importantly, a formal exe-
cutable specification environment should ease the diagnosis process by allowing the creation of
generic or domain-specific execution monitors, which offer different perspectives on the under-
lying behavior. The research efforts presented in this manuscript are focused on understanding
the connection between Executable Specification languages and their Execution Management in
the context of varied Execution Platforms, see Figure 1.1. These efforts are situated at the
confluence of multiple disciplines such as language design and implementation, software reuse,
modeling and metamodeling, software diagnostic and formal verification, embedded systems, and
reconfigurable circuit design.

1.2.1 Specifying dynamical systems is hard

Designing dynamical systems is inherently hard due to the emergence of potentially unwanted
behaviors during composition. Writing specifications is hard since no amount of automation will
allow bridging the gap between the dream (the client’s desire to acquire a given capability) and
reality (the system providing exactly the desired capability). The practitioners describing the
capabilities of a future dynamic system face both these challenges. Verification techniques, in-
cluding formal verification, help but only if the desired capability is already specified (informally
or formally). Only then we can verify that a given implementation satisfies the specification.
Objective Designing Executable Specification should be as fun and productive as programming in
a dynamic language, such as Smalltalk, and the result should be as sound as formal mathemat-
ics. To achieve this goal the specification designer needs tools (IDEs, debuggers, profilers, test
frameworks, model-checkers, provers) initially only to increase its confidence that the (potentially
partial) specification faithfully matches the desired capability, and then and only then to prove
that a system implements (refines) the specification.

The creation of dedicated monitoring tools for each new language is very costly in terms of

1.2. OBJECTIVES AND CHALLENGES 13

development effort, the resulting tools are not reusable even for closely related projects, and such
targeted effort closes the tool exploration axis of the whole design-space exploration problem by
directly providing supposedly optimized solutions.

In the language design community, the design-space exploration problem is typically studied
from the perspective of the adequacy between the domain and the language. In this context,
there have been a lot of research efforts to tune the language to the domain needs. The monitor
optimization (tool optimization) is viewed as an independent problem, and many improvements
in terms of algorithm complexity, scalability, and flexibility were achieved by each monitor used
during the design and verification phases. In this manuscript, we argue that there is a stringent
need for adding a third dimension to the design-space exploration focused on tool design and opti-
mization. This three-dimensional view (domain/language/tool) adds two important perspectives
to the DSE problem, namely the adequacy tool/language and the adequacy tool/domain. In the
context of this manuscript, the focus is on tool/language adequacy, the tool/domain adequacy
is treated as a secondary issue. The importance of this new perspective comes mainly from the
need of tool reuse (to reduce the development costs) and from the need for unbiased evaluation
of different technological frameworks at the architectural level (to objectively compare different
solutions).

Lack of tools for temporal logic specifications Temporal logic emerged in the 80 as a good spec-
ification language for software verification. Today, 40 years later we do not have any temporal
languages offering basic tools such as IDE, debugger, and profiler. Numerous attempts have been
made, and the literature is rich with contributions in this direction. Nevertheless, the formal lan-
guage design teams, understandably, focus their efforts on formal language design and proofs and
not on ”simple tools”, such as debuggers. The question is how can the software community help
them? During the last years, tremendous progress on domain-specific language design greatly
improved our understanding of their advantages and limitations. From the language tooling per-
spective, these research efforts culminate with the introduction of the Language Server Protocol
3 (LSP), which decouples the integrated development environments (IDE) from the program-
ming language implementation, allowing their independent evolution. The main breakthrough
of LSP was to focus on an open API design that enabled usage well beyond the initial target
audience. Today interactive theorem provers such as Coq, Lean, and Agda, all recognize the
importance of opening to wider audiences (outside emacs). This reduced barrier to entry allows
transposing the IDE capacities from one language to another. This is even more important for
highly sophisticated languages that go beyond traditional programming.

Language-agnostic Debugging tools [76, 77, 78, 79] and the debugger server protocol (DSP)
transposed this API-based design toward the analysis of the model dynamics. While more tuned
towards programming language debugging, the DSP found an audience in the formal specification
community. Today TLA+ is extending the already existing implementation of the LSP protocol
to DSP in an incremental fashion. The VDM community also recognizes the importance of a
specification-oriented language server protocol [80].

Gemoc project [76] pushed for language-independent omniscient debugging, but with a larger
target audience of executable domain-specific languages. Object-centric moldable debugging[77,
78] pushed the limits by looking at debugging not as a language-specific tool but as an ”application-
specific” requirement for increased productivity. Moreover, Object-centric debugging works in
practice, the real-world applicability being showcased by its integration in the Pharo Smalltalk
IDE.

Nevertheless, besides debugging, less significance was given to the reuse of other behavioral

3https://microsoft.github.io/language-server-protocol

14 CHAPTER 1. INTRODUCTION

exploration tools (such as profilers, model-checkers), which hinders the shared improvement over
multiple languages. Objective Characterize the toolkit needed for studying the large number of
behaviors subsumed by Executable Specifications. The purpose of an executable specification is to
describe a family of behaviors. In this context, typical program analysis tools do not scale well.
For instance, multiverse debugging[81] was proposed as an extension of omniscient debugging
for non-deterministic executions. The authors recognize, however, that the approach does not
scale due to the state-space explosion problem. Recently, our proposition in [82] renders the
approach practical through user-defined reductions. Nevertheless, further research is needed to
understand the interplay between different abstraction strategies, which furthermore need to
be easy to apply to existing language semantics - from an engineering perspective. Moreover,
Executable Specifications debugging might require additional specific functionalities, for instance,
more expressive breakpoints.

Focus on the dialog, not on the subject language. One of the core problems with language-
specific tool development is that the focus is on what language features are needed to implement
the tool and not what are the API-level requirements of the tool (what the tool needs to know
and when - instead of what the language should have so that the tool works). Our conjecture
is that switching to an API-level requirement mindset frees the tool developer from thinking in
terms of subject language features to a contract-oriented mindset focused on the tools. If (one
day) the language implements the API (no matter how) the tool will be available.

One of the hardest problems, in the context of ES monitoring, is identifying the language
needed for creating a semantic-level dialog between the ES language semantics and the moni-
toring tools, viewed themselves as dependent semantics.

1.2.2 Too many semantics

Another problem is the extensive use of denotational semantics and of its closely related cousin
(in the context of defining the semantics of an executable language) model transformations. The
theoretical computer science community agrees that the best way to formalize something is by
defining its meaning with mathematics. Thus, from this perspective, it is natural to define the
semantics of a language, including an ES language, by mapping it to its mathematical meaning
(Formal Semantics in Figure 1.2a). For practical purposes, the practitioners then implement
the language by mapping it to an execution platform (which, by the way, is not necessarily
formally defined) to get an execution runtime (Figure 1.2a). Suddenly, we have two semantics,
the mathematical one and the practical one, which should be proved equivalent. Sadly, under
time-to-market constraints, this proof is not always provided.

The matters get even worse, at a later stage when the language users want to formally verify
their software, and they do not have the verification tools available along with the subject-
language implementation. Here we conjecture that much of the software community is at this
stage. Looking for a solution for software verification, the practitioner encounters a large offering
of verification tools, most of which come with their own specification language, typically different
from the subject language of interest. In Figure 1.2a this situation is illustrated by the 4 Monitor
Runtimes, each one corresponding to a verification tool.

If we have a program (a model) written in the subject language, and a verification sys-
tem based around its verification language, the natural question that arises is: ”How to carry
the subject-language program to the verification language ?”. To address this simple practical
mismatch, an engineer (or a team) could migrate each program of interest to the verification lan-
guage. However, this approach is time-consuming and the manual encoding itself might introduce
bugs. A conceptually better approach, backed by the software and model-driven engineering com-

1.2. OBJECTIVES AND CHALLENGES 15

(a) Semantics duplication induced by model trans-
formations.

(b) Monitoring through a semantics language inter-
face.

Figure 1.2: Two approaches to the language monitoring problem. The dotted arrows represent
model transformations. The Dashed red lines represent the semantic gaps induced by transfor-
mations. The thick red lines represent the equivalences that need to be proved, and maintained.

munities, is to create a software transformation that can translate the source language syntax to
the verification language syntax, while preserving the semantics (the dotted lines in Figure 1.2a).
These transformations lie at the core of model-driven engineering, and numerous tools have been
developed over the years, in 2019 a survey published in the Software & System Modeling journal
identified not less that 60 model transformation tools [83]. In our context, however, defining
a model transformation can be seen as writing another denotational semantics for the subject
language, which already had one. However, as before, if we have two semantics, they should be
proved equivalent. Testing and debugging can only increase the confidence in our model transfor-
mations, and numerous research efforts have been focused on this problem [84]. Nevertheless, the
lack of semantic equivalence proof leads to doubt during the diagnosis process. Is the program
faulty, is the subject-language implementation buggy, is the verification tool incorect or maybe
one of the transformations was not perfect? This leads to difficulties during the diagnosis process.
This problem becomes even more acute if multiple analysis tools need to be used. The number
of transformations increases, as well as the probability of introducing errors in the toolflow. To
make matters worse, each language-to-language transformation introduces a conceptual gap that
disconnects the domain expert from its domain, which further increases frustration.

While denotational semantics and model transformation are exceptional tools, the problem
is multiplying the number of semantics without really proving that they are effectively related
(equivalent, or abstractions). The tremendous development of proof assistants renders these
proofs almost attainable. But writing dependently typed programs (proofs) can be seen as hard
for the typical programmer, especially if it must relate two real-world semantics, which tend to be
less pure than their academic counterparts. Consider, for example, two semantics implemented
in C, maybe with inline assembly for performance reasons. Furthermore, the composition of
language monitoring tools, as illustrated in Figure 1.2a by the connection between the Monitor
Runtime 2 and the Monitor Runtime 3, tends to render these proofs even more difficult due to
the need to related multiple semantics (the two thick pink lines in Figure 1.2a).

Another approach, inspired by a physical world metaphor, is possible. Imagine a person
going to multiple doctors, the person is not transformed, simply the doctors look at the person
from different angles. Sometimes, it is even beneficial to visit multiple physicians in series, each
one enriching the view for the next, through diagnostic letters. Illustrated in Figure 1.2b, the

16 CHAPTER 1. INTRODUCTION

Semantics

Executable
Specification

SLI Language
Monitors

Properties
(metrics)

interprets compute

Diagnosis Toolbox:
• Debugger
• Simulator
• Profiler
• Model-checker
• Exec. Monitors

Figure 1.3: The Semantic Language Interface (SLI), a bridge between the executable specification
semantics and the Language Monitors.

language runtime can let the tools look at it from different perspectives. Monitor Runtime 1 can
inspect and interact with the execution differently than Monitor Runtime 2 or Monitor Runtime
N. Furthermore, Monitor Runtime 3 can look at the execution of the ESL Model enriched with
the annotations of the Monitor Runtime 2. More importantly for us, this approach does not
demultiplies the number of semantics but only requires collaboration, and coordination between
the language designers and the tool providers.

Finally, in this context, the biggest challenge is identifying a generic, and elegant bridge
between the semantics and the tools that imposes a minimal set of constraints so that it can be
easily rolled into production by practitioners.

1.3 Selected Contributions

Kishon et al. in 1991 [74] identified the generic concept of execution monitoring, as the process
of observing and controlling the execution of a program. This perspective conceptually unifies
the set of tools used for manipulating and understanding the temporal evolution of a program.
Furthermore, it abstracts away the complexity of the language semantics while requiring the
ability to introspect and sometimes control the observable behavior exposed. Equipped with this
understanding one of our initial contributions was to define the requirements for execution mon-
itoring[11], which clearly set the language monitoring problem as the central problem addressed
by our research activities.

To clearly set the scope of our vision, Figure 1.3 shows the Semantic Language Interface(SLI)
as a bridge between the Semantics of Executable Specification languages and the Properties or
metrics that are compiled from the behaviors through the Language Monitors, which are seen
as dependent semantics. Understanding the detailed requirements imposed on the SLI bridge
between the ES language semantics and the monitoring tools was the core driver that underlies
most of our research contributions.

Our contributions are spread along three axes:

• [Axis 1 – G∀min∃: The Formalization of the Semantic Language Interface]: the design of
a modular architecture for the language monitoring problem, a direction that explores the
services of the SLI mainly from the perspective of the language monitors. Furthermore,
we strive to identify generic reusable operators that ease the design of specialized language
monitors[11, 1, 2, 82];

1.3. SELECTED CONTRIBUTIONS 17

• [Axis 2 – The Way to Modular Executable Specification Monitors]: the instantiation and
the evaluation of the G∀min∃ approach in practice through significant research artifacts
and industrial experiences, in this context we focus on the instantiation of our conceptual
approach in representative frameworks geared towards real-world specification languages
from the academia and industry, such as TLA+[85], AEFD[86], Pimca[12, 13], UML Stat-
echart[14, 15, 16, 17, 1, 2], BPMN[18, 19, 20];

• [Axis 3 – New Formal Verification Techniques]: the design of verification techniques indepen-
dent-of and uncluttered-by the choice of the executable specification language. This axis is
focused principally on the scalability of model-checking in practice at the model [3, 4, 21],
algorithmic [5, 6, 3, 7] and platform levels [22, 23, 24].

1.3.1 Axis 1 – G∀min∃: The Formalization of the Semantic Language Interface

Our first contribution axis, which is the subject of chapter 2, focuses on the formalization of the
SLI interface, an effort named G∀min∃ in the following. This formalization aims to crystallize our
current understanding of the subject. G∀min∃ SLI exposes the underlying language semantics
through an intensional transition system similar to the Plotkin-style operational semantics[87]
extended with the functionalities needed for execution monitoring. Based on this SLI formaliza-
tion we already defined some generic operators, which streamline the link creation between the
semantics and the runtime environment. The power of this approach is illustrated in chapter 2
by formalizing a multiverse debugger monitor, as a composite dependent semantics integrating
a model-checker monitor for finding breakpoints in ES non-deterministic execution[82]. Further-
more, we formalize multiple language monitoring setups ranging from embedded execution to
complex model-checking strategies that integrate process scheduling as semantic filters over the
subject language semantics [1, 2].

1.3.2 Axis 2 – The Way to Modular Executable Specification Monitors

Besides our individual contributions in peer-reviewed conferences and journals that are cited in
this manuscript, from the language design perspective, four significant experiences shed some
light on the realizability of our vision.

1. The design and development of the OBP2 language-agnostic requirement verification envi-
ronment, our main research vehicle, shows that the proposed approach is feasible. OBP2
instantiates our conceptual architecture (described in chapter 2) offering an extensible
framework that mixes omniscient and multiverse debugging with model-checking. In terms
of subject language support, OBP2 currently allows the verification of executable spec-
ifications in Fiacre[88], TLA+[85], AEFD[86], EMI-UML[1], AnimUML[16], BPMN[89].
Moreover, the OBP2 implementation, done in Java, does not constrain the metalanguage
used for implementing the subject-language semantics. This feature freed the toolbox from
the language barrier problem, allowing the seamless integration with language runtimes im-
plemented in bare-metal executables (for EMI-UML), javascript (for AnimULM), python
(for PragmaDEV PROCESS).

In November 2020, the open-source Hub of Pôle Systematic Paris-Region has nominated
OBP to the price ”Coup de cœur académique” (the 3 other nominees were : Hardware
Locality - INRIA Bordeaux ; Why3 - Equipe projet Toccata (ex ProVal) of Inria Saclay-

Île-de-France, LRI Univ Paris-Saclay, CNRS; Scikit-learn - INRIA Paris-Saclay).

18 CHAPTER 1. INTRODUCTION

Currently the research prototype: OBP2 is available as an open-source contribution at
http://www.obpcdl.org.

2. Moreover, the OBP2 model-checking language monitor was integrated and is distributed
with the commercial tool PROCESS developed by PragmaDEV [90, 19, 20] and released
November 13th 2020. More recently (June 14th 2022), PragmaDEV announced the inte-
gration of the OBP2 model-checker with Studio V6.0, their flagship commercial product
focused on the design, and verification of SDL specifications [91]. This shows that the con-
straints that our approach imposes on the subject-language implementation are reasonable
and compatible with industrial practices.

3. Exploring the reuse of the executable semantics, as an alternative to model-transformations,
for both the real execution and the verification of ES languages led us to design the research
prototype: EMI-UML a bare-metal embedded model interpreter for UML. On the way we
showed that we can unify LTL verification and embedded execution [14], we discovered that
the same observer automata used for verification can be used as runtime monitors, without
needed model transformations[15] and we showed that, with minimal modifications, an
UML Statechart execution engine can be used to encode both the model and the properties
(safety and liveness) for model-checking[1].

4. The research prototype: Animuml, a lively environment[71] for the debugging and the
formal verification of partial UML specifications, available at http://animuml.obpcdl.

org. [16, 17]. Recently in [82], we have showcased through AnimUML that user-defined
sub-approximations during breakpoint lookup, are a breakthrough feature that renders the
multiverse debugger monitor scalable on arbitrary models.

1.3.3 Axis 3 – New Formal Verification Techniques

The G∀min∃ SLI isolates the semantics from the execution monitors, enabling their independent
evolution. Thus, it is natural to question the impact such an isolation can have on the evolution of
the monitors. On this axis, we have been interested mainly in the model-checking monitor. Liber-
ated from the language dependency, we have contributions focused on the scalability of explicit-
state model-checking: a) at the model level, we have proposed the use of verification-guides [21]
to systematically decompose the verification problem and to allow for partially-bounded verifi-
cation procedures; b) at the algorithmic level, we have invented PastFree[ze] [3] a new safety
verification algorithm, which by exploiting the acyclic nature of verification guides drastically
improves the scalability of the partially-bounded verification procedures; c) at the execution plat-
form level, we have proposed the first modular hardware model-checker that offers a continuum
of algorithms ranging from partial to exhaustive verification [22]. Furthermore, by exploiting
both the algorithmic variability and the fine-grained parallelism of reconfigurable architecture,
we have discovered verification procedures almost an order of magnitude faster than the state-
of-the-art [23]. These discoveries led us to the first hardware verification procedure covering
both safety and liveness properties that achieves and average speedup of 4875X over software
[24], a real breakthrough in the field. The use of the G∀min∃ SLI significantly decreased the
efforts needed for the integration of these contributions into research prototypes. The model and
algorithmic level contributions have been integrated into the OBP2 framework. The hardware
verification cores have been designed as language agnostic IPs, which can be instantiated with
multiple SLI-based semantics.

http://www.obpcdl.org
http://animuml.obpcdl.org
http://animuml.obpcdl.org

1.4. RESEARCH STRATEGY 19

1.4 Research Strategy

Design science [60] is at the core of our research methodology. In the following paragraphs, we
first resume our global strategy from the design science perspective. Then we address the local
opportunism that arises during a constructive problem-driven approach.

A strong motivation comes from our industrial experience where we felt that the lack of
tools for manipulating the dynamics of our executable specifications (heterogeneous circuit spec-
ifications, at the time) significantly hindered our productivity. Later during our postdoctoral
fellowship, we were confronted with yet another problem, the demultiplication of intermediate
languages needed to ease the transformation between executable specifications. In this case, the
problem was even more acute, some intermediate languages lacked execution analysis tools. But
even where they were present, the semantic gap between the initial specification and the one
produced rendered the diagnosis process very difficult (if not impossible). The need for solutions
for these practical problems led us to pursue the research directions discussed in this manuscript.

Methodologically our research objectives focus on designing solution concepts that ease the
manipulation of executable specifications. These prescribed solutions should directly contribute
to improve the state of the art.

Following design science, we mainly rely on abductive reasoning to initiate the creative pro-
cess based on our observations. Make no mistake, these problems are not new, they are probably
as old as the computer science discipline itself. Nevertheless, starting from our observations and
previous experiences, we conjecture that the potential causes are the excessive use of model trans-
formations (to create maps between semantics) and the tight link between the semantics and the
algorithms that manipulate them as data (the execution monitors: debuggers, model-checkers).

To validate our hypothesis, we rely on a constructive research method. Design science research
focuses on producing new knowledge while consolidating our understanding in a research artifact.
This method is highly beneficial in the context of software engineering enabling iterative, almost
agile, discovery. However, careful consideration is needed at the beginning of each study to assess
the adequacy of existing solutions concepts as a vehicle supporting the new study. This research
method led to the design of research prototypes.

Definition, decomposition, search and integration are the core steps of problem-solving. The
process starts by defining a problem, which is then decomposed into smaller challenges. For
each challenge, a search process starts to look for a solution. Once all subproblems are solved,
the integration process connects the solutions to obtain a result for the initial problem. This
process can be (and in practice it is) applied recursively during the search phase, which generates
a tree decomposition of the problem. For complex problems, some of the nodes of the tree pose
real scientific challenges becoming research problems. From a scientific research perspective,
these nodes should be unraveled, and doing so might seem just opportunism (if we regard the
research problems without considering the tree they belong to). Sadly, sometimes the tree is not
explicitly present, furthermore, the scientific community does have more incentive to unravel new
nodes than to participate in the integration phase, which is costly and seen as the prerogative
of industrial practitioners. However, when looking at the problem decomposition tree from the
perspective of software engineering, and at the results of the search phase as software artifacts,
then the integration problem becomes itself a node in its own higher-level problem tree. In the
context of our research, we are sometimes in such a situation, forced to unravel nodes in different
problem trees while working on integration problems in other higher-level trees. Furthermore, it
sometimes can be difficult to find the roots of the trees we are unraveling if they are not explicitly
laid down. Even worse, we can find ourselves unraveling the nodes of a tree, for which the root
suddenly disappears due to seemingly unrelated scientific breakthroughs. In such situations,
we should remind ourselves that our role in society is to take those risks that the industry

20 CHAPTER 1. INTRODUCTION

cannot afford to take, with the sole purpose of expanding our understanding. This problem
decomposition perspective can be even liberating as the requirements for scientific research are
just: be curious, explore, expand our understanding, and share the insights4.

1.5 Supervision

In 1159 John of Salisbury wrote in his book Metalogicon: ”We are like dwarfs sitting on the
shoulders of giants. We see more, and things that are more distant, than they did, not because
our sight is superior or because we are taller than they, but because they raise us up, and by their
great stature add to ours”. The work presented in this manuscript describes the view we ac-
quired through numerous discussions and collaborations we had with researchers and practition-
ers around the world. Amongst them, we acknowledge here our closest academic collaborators,
the Trame team at ESEO Angers, our colleagues in the SHARP department (Lab-STICC), as
well as the postdoctoral fellows, the PhD candidates, the research engineers, and the students we
have supervised. Furthermore, we appreciate the high-quality exchanges that we could have with
practitioners from private companies, such as PragmaDEV, CS/SI, Clearsy, SNCF, and Naval
Group.

Table 1.1 lists the PhD candidates with whom we have collaborated. The table shows the sub-
ject, the supervision team, the funding, the supervision rate, and our co-authored publications.
We particularly want to acknowledge the long-term contributions of Luka Le Roux, a collabora-
tor since 2013, first as a research engineer, then as a PhD candidate, and now as a postdoctoral
fellow. The conceptual design of the G∀min∃ SLI, presented in this manuscript, became reality
through the significant contributions of Valentin Besnard, who received the Accessit Prize of the
CNRS GDR GPL for this PhD work5. Emilien Fournier challenged our understanding of model-
checking at the algorithmic level and enabled us to dream of a scalable continuum between test
and exhaustive verification through the fine-grained parallelism of reconfigurable architectures.
Vincent Leilde, helped us to understand the multi-faceted importance of execution monitoring for
reducing the cognitive burden during the diagnosis process. Our early collaboration with Jean-
Philippe Schneider helped us understand the importance of dynamic interfaces for isolating the
data from the analysis algorithms. Nicolas Tithnara Sun proposes influence engineering as a gen-
eralization of system engineering for sophisticated defense scenarios, which emphasizes the need
for powerful reflexive operations in high-level specification languages. Lastly, Matthias Pasquier
challenges one of our foundational hypotheses, the existence of a unique executable semantics,
and we investigate the potential for semantic reuse for gradually introducing abstraction-based
execution monitoring.

Besides PhD candidates, we had the pleasure to collaborate with several postdoctoral fel-
lows and research engineers. Figure 1.4 summarizes these collaborations through a temporal vue
(gantt-like). The blue bars show postdoctoral fellowships, the green bars represent research engi-
neer contracts. Luka Le Roux and Vincent Leilde also appear in this figure, their PhD contract
is shown in yellow. Our collaboration with Sebastien Tleye, in continuation of our PhD work on
the model-driven physical design for reconfigurable architectures, emphasized the importance of
designing model-agnostic analysis algorithms[58]. Our contributions on language-agnostic exe-
cution monitoring, discussed in this manuscript, can be seen as an instance of this more general
setup. Jean-Charles Roger contributed to the software architecture of the OBP2 research proto-
type. During the postdoctoral fellowship of Fahad Golra we started investigating heterogeneous

4Seeing problem solving as a tree is nothing but a coarse approximation, in reality some nodes are shared
and backlinks can arise, thus getting to a graph representation. Moreover problem decomposition is a highly
subjective matter, naturally leading to multiple approaches for solving identical problems.

5https://gdr-gpl.cnrs.fr/node/444

1.5. SUPERVISION 21

Table 1.1: PhD candidate co-supervision from 2013 to 2022.

Funding Supervision
Rate

Publications

Cyber-Security Certification and Embedded Operating System for IoT
Considération explicite d’un système d’exploitation embarqué dans un processus de certification de cybersécurité
M. Pasquier CIFRE ERTOSGENER

30% [92, 82]
co-supervision with L. Lagadec, M. Brun and F. Jouault

Hardware Acceleration of Safety and Liveness Verification on Reconfigurable Architectures [93]
Accélération matérielle de la vérification de sûreté et vivacité sur des architectures reconfigurables
E. Fournier - soutenue 07/2022 Région Bretagne

75% [24, 22, 23]
co-supervision with L. Lagadec

Systems Modeling and Formal Analysis for Advanced Persistent Threats [94]
Modélisation et Analyse Formelle de Modèles Système pour les Menaces Persistantes Avancées
T. N. Sun - soutenue 05/2022 Pôle d’Excellence Cyber

75% [13, 12, 56]
co-supervision with R. Mazo, P. Dhaussy and J. Champeau

EMI: An Approach to Unify Analysis and Embedded Execution with a Controllable Model Interpreter [95]
EMI : Une approche pour unifier l’analyse et l’exécution embarquée à l’aide d’un interpréteur de modèles pilotable
V. Besnard - soutenue 12/2020 Accessit Prix de Thèse du GDR GPL CIFRE Davidson Consulting

35%
[1, 17, 16, 25, 15]

co-supervision with P. Dhaussy and M. Brun [26, 27, 14, 28, 57]

A Diagnosis Support for Formal Verification of Systems [96]
Aide au diagnostic de vérification formelle de systèmes
V. Leilde - soutenue 11/2019 Région Bretagne

[29, 30, 31]
co-supervision with P. Dhaussy and V. Ribaud

Critical embedded system verification, a non-intrusive approach to divide the initial challenge into a sound set of smaller ones [97]
Validation par parties et non-intrusive de systèmes embarqués
L. Le Roux - soutenue 11/2018 PIA BGLE DEPARTS

80% [4, 3, 21, 32, 33]
co-supervision with A. Plantec

Towards an Efficient Approach for Model-checking with Cloud Computing [98]
Vers une demarche efficace de traitement du model checking dans les cloud computing
L. Allal - soutenue 04/2018 Univ. Oran, Algérie

[7, 6, 5, 34]
co-supervision with G. Belalem and P. Dhaussy

Roles : Dynamic Mediators Between System Models and Simulation Models [99]
Les rôles : médiateurs dynamiques entre modèles systèmes et modèles de simulation
J.-P. Schneider - soutenue 11/2015 DGA

[35, 36]
co-supervision with L. Lagadec, Eric Senn and J. Champeau

22 CHAPTER 1. INTRODUCTION

Figure 1.4: Collaborations with postdocs and research engineers at ENSTA Bretagne

language composition with the G∀min∃ SLI [18]. Hiba Hnaini and Bastien Drouot contributed
to the experimental investigation of using heterogeneous verification for cyber-security in the
context of autonomous vehicles [37]. Finally, with Silvain Guerin, we are currently investigating
heterogeneous refinement mappings for establishing a link between legacy executable code and
formal specifications.

Finally, I want to acknowledge the contributions of our undergraduate and master students.
They have contributed significantly to the maturation of both our ideas and research tools.
They have been our alpha-testers for finding bugs that we could not imagine. They have been
our teachers, showing us the limits of our understanding. They have been our scouts, helping
us identify some interesting research problems. The internships of Khaoula Es-Salhi and Rim
S. Boudaoud contributed to the experiences [38] that led to the PhD of Vincent Leilde. Nicolas
Gunepin and Michael Rigaud, have initiated the work which led to the PhDs of Luka Le Roux
and Valentin Besnard, respectively. Lastly, the work of Riwan Cuinat on projectional editing
TLA+ specifications [39] showed that by investing some effort we might be able to lower further
the cognitive effort of writing and manipulating formal specifications.

1.6 Grants and Projects

The work presented in this manuscript was made possible with the financial support offered by
international, national, and regional research grants, as well as bilateral contract with industrial
partners. Figure 1.5 provides an overview of the research grants along with the funding sources.
The main funding sources were:

• European Regional Development Fund (ERDF),

• Banque Publique d’Investissement (BPIfrance),

• French National Research Agency (ANR),

• French Directorate General of Armaments (DGA), through the Defence Innovation Agency
(AID) since 2018,

• French Directorate of Civil Aviation (DGAC)

1.6. GRANTS AND PROJECTS 23

Figure 1.5: Research grants and funding sources

• French National Association of Technological Research (ANRT)

• Brittany Region

• Departmental Council of Finitère

• Brest Métropole,

• Davidson Consulting

• Lucio, groupe ZeKat

Besides the financial support, these grants provided the perfect context to challenge our
understanding, uncover new problems, experiment, polish our ideas and transfer our solutions
to practitioners in the industry. The PIA project DEPARTS (2013-2018) planted the seed that
gave rise to the work presented here. The problem addressed was the heterogeneity and reuse of
(ideally formal) specifications for reliable system design. In the consortium our research focus was
the management of heterogeneity for model-checking, the solution prescribed was straightforward :
”convert everything6 to the common intermediate language Fiacre[88] (introduced in the FUI
project TOPCASED), for which we have model-checkers”.

Our concomitant implication in two other ANR projects GEMOC7 (2012-2016) and ARDyT8

(2011-2015) gave us a broader understanding of the problem. The ANR GEMOC project intro-
duced an execution semantics axis, with the added complexity of designing a language-agnostic

6Some of the specification languages retained by the DEPARTS consortium where UML, Scade, B, AEFD[86]
7https://gemoc.org/ins/
8http://ardyt.irisa.fr/

24 CHAPTER 1. INTRODUCTION

coordination layer along with early validation and verification tools. At this stage, the problem
becomes a lot more complex, due to the horizontal heterogeneity (the model can be expressed in
multiple languages). Moreover, the coordination language is rather complex so the mapping to
Fiacre[88] is not trivial. Furthermore, defining an operational semantics (GEMOC) for debugging
and execution and then a denotational semantics (DEPARTS) for model-checking, seemed to ask
a lot from the language engineers. Especially since the denotational semantics obtained is most
often just a transformation of the operational semantics in another language (at the same abstrac-
tion level). Why not embrace this horizontal heterogeneity, and create a semantic bridge toward
the analysis tools? Focused on the design of fault-tolerant and self-adaptable execution platforms,
the ANR ARDyT project, brought into focus the problems related to hardware verification and
the inherent vertical heterogeneity introduced by the mapping application-architecture. The plot
thickens, from the formal verification perspective not only do we ask for denotational semantics
(through the mathematical objects of the Fiacre language) for each language used by the applica-
tion specification, but we also need that these semantics account for the architectural variability,
since the applications might be mapped on multiple architectures, each bringing a different set
of hypotheses.

The CPER CyberSSI (2015-2021) supported both the acquisition of a high-performance ex-
perimental platform and offered the context for applying our results to cyber-security problems.
The cyber-security context adds yet a new axis to the verification problem, the robustness of the
system to intentional environment aggressions.

The support of Davidson Consulting, EMI project (2017-2020), enabled us to explore the
unification of model analysis (debugging, model-checking, runtime monitoring) and embedded
execution, in the context of a rather challenging executable DSL, the Unified Modeling Language
(UML).

The French Directorate General of Armaments (DGA) supported both the EASE4SE (2017-
2019) and VeriMoB project (2018-2020) which offered us the opportunity to apply the G∀min∃
approach for the analysis of business processes in the NATO architectural framework. In this
context, the collaboration with PragmaDEV (VeriMoB) led to the design of PROCESS, a com-
mercial BPMN analysis tool9. The EASE4SE project, in collaboration with Sodius, explored the
semantic-level composition of business process models with existing discrete-event simulation
environments. These research efforts continue in the project ONEWAY (2021-2023) with the
support of the French Directorate of Civil Aviation (DGAC), which addresses the digitalization
of the product development strategies of complete aircraft systems. Three research directions are
pursued: 1) the formalization of a diagnosis language bound to the modeling semantics; 2) the
compositional integration of temporal constraints in business process models; 3) the exploration
of the continuum test – exhaustive verification, at the algorithmic level.

The AnaMenace (2017-2020) and the JoinSafeCyber projects (2019-2021), both supported
by the Defense Innovation Agency, focused on the design of a tool-supported methodology for
reliable system design in the context of advanced persistent threats. In this context, we have
focused on two orthogonal problems: 1) addressing the limitations of current system engineering
methodologies for the analysis of complex cyber defense scenarios; 2) the diagnosis of executable
models through a compositional toolflow. The collaboration with ESEO Angers led to the design
of the AnimUML environment10 that offers an interactive toolkit for playing with the dynamics
of partial UML specifications while they move towards embedded executables.

The Ker-SEVECO project, supported by the Brittany Region and the European Regional
Development Fund, further explored a globally-asynchronous locally-synchronous (GALS) ap-
proach to heterogeneous verification for the formalization and security analysis of legacy code.

9http://www.pragmadev.com/product/process.html
10http://animuml.obpcdl.org/AnimUML.html

1.7. CONCLUSION 25

This approach can be seen as a restricted form of refinement mapping, where the legacy code
(considered locally-synchronous) is wrapped in a specification (globally-asynchronous), which
paves the way towards property verification by model-checking.

Amongst the monitoring tools that we consider, model-checking is the most promising but
the most challenging, due to its intrinsic state-space explosion problem. The DEPARTS, CPER
CyberSSI and the AntiZero (2017-2020) grants allowed us to explore this challenge at an algo-
rithmic level. These efforts led to the discovery of novel algorithms that exploit the fine-grained
observability of the semantics as well as the inherent parallelism of reconfigurable architectures.
More recently the collaboration with Lucio (2020-2023), supported by the ANRT, allows us to
further investigate the composition of abstract semantics with existing executable semantics for
improving the scalability of model-checking in the context of vertical heterogeneity.

1.7 Conclusion

This chapter overviews almost ten years of research efforts focused on exploring the boundary be-
tween executable specification languages and behavioral analysis tools. The specification designer
needs domain-specific languages to capture the set of behaviors required by the client’s desired
capability. This led to the creation of a large number of executable specification languages. A
wide variety of tools (language monitors) are needed, initially, to improve the confidence that
the specification correctly captures the desired functionality, and later, to prove that a given
system correctly implements the specification. However, building a new set of language-specific
tools for each new domain-specific language is not sustainable. The following question sets the
scene: ”How to bridge the gap between these domain-specific formalisms, geared towards domain
experts, and the formal verification tools, geared towards mathematicians?” After discussing
some of the scientific challenges in section 1.2, section 1.3 sketched a new semantic-level answer,
dubbed G∀min∃, which promises a modular and compositional approach for building language
monitors. Our contributions are presented along three axes: 1) the formalization of the ap-
proach, which strives for modularity and compositionality; 2) the evaluation through significant
research artifacts, which led to contributions in the model-driven engineering community; and
3) the new opportunities, which led to the invention of new verification techniques.

An overview of our research strategy, rooted in the design science approach, was presented,
in section 1.4, which emphasized both the importance of a prototype-driven approach in our
context and the complexity induced by problem decompositions in the larger context of scientific
research.

In section 1.5, we have acknowledged the most fruitful collaborations with researchers, prac-
titioners, and students around the world that pushed us farther, helping us shape our vision.
We could not realize our research vision without the financial support of numerous public and
private grants that were discussed in section 1.6.

The following chapter, chapter 2, dives deeper into G∀min∃ Semantic Language Interface,
our underlying contribution, that structured the last decade of our research career, and which,
continues to inspire us, opening the doors for more ambitious perspectives, briefly discussed in
chapter 3.

Chapter 2

The G∀min∃ Semantic Language
Interface and Applications

Contents
2.1 Overview . 28

2.2 The Semantic Language Interface . 30

2.2.1 Semantic Transition Relation . 31

2.3 Generic Monitoring Operators . 32

2.3.1 Filter . 32

2.3.2 Scheduler . 34

2.3.3 Interleaved Composition . 34

2.3.4 Synchronous Product . 35

2.3.5 Conversion to a Transition Relation 37

2.4 Monitor Specification : The G∀min∃ Unified Debugger 38

2.4.1 A Semantic Transition Relation for Debugging 42

2.4.2 A Modular Finder Function . 43

2.4.3 Some Species from the Debugging Zoo 46

2.5 Scheduling in a Modular Architecture for Verification and Execution 48

2.5.1 Background and Classical Solutions 51

2.5.2 Architecture for Verification and Runtime Execution 52

2.5.3 Illustration on UML . 58

2.5.4 Discussion . 62

2.5.5 Related Work . 63

2.5.6 Conclusion . 65

2.6 Conclusion . 65

The contents of this chapter is adapted from the following articles:

• Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “Unified verification and monitoring of executable UML specifications”. In:
Software and Systems Modeling 20.6 (Dec. 2021), pp. 1825–1855. issn: 1619-1374.

27

28 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

doi: 10.1007/s10270-021-00923-9. url: https://doi.org/10.1007/s10270-

021-00923-9

• Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, Luka Le Roux,
and Löıc Lagadec. “Practical Multiverse Debugging through User-defined Reductions.
Application to UML Models.” In: Proceedings of the 24rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. MODELS ’22. 2022

• Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “Modular Scheduling for Verification & Embedded Execution.” In: submitted
to Software Testing, Verification and Reliability (2022)

This chapter introduces the backbone of our contributions, namely the G∀min∃ Semantic
Language Interface (SLI). This observation and control interface isolates the language seman-
tics from the analysis tools and enables the modular specification of several generic semantic
operators, which eases the creation of specialized tools. Conceptually the G∀min∃ SLI exposes
the underlying semantics through a transition system metaphor like the Plotkin structural op-
erational semantics. From the tool’s perspective, the SLI offers the formal vocabulary needed
for interacting with the execution, while remaining independent of the implementation details
of the subject language. The chapter is decomposed into four sections. Section 2.2 defines the
G∀min∃ Semantic Language Interface. Section 2.3 introduces the most important generic op-
erators, which streamline the link creation between the semantics and the specialized runtime
environment needed either for analysis or embedded execution. Section 2.4, defines, based on
the SLI, an unified debugging semantics that subsumes interactive, omniscient, and multiverse
debugging. Section 2.5 further illustrates the strength of the approach by showing a novel way of
considering scheduling in multiple execution setups ranging from embedded execution to model-
checking. Section 2.5.6 concludes this chapter.

The definitions (listings) in this chapter are formalized using the lean theorem prover [100].
The lean source-code is available under a MIT license at https://github.com/teodorov/gamine.

2.1 Overview

This research effort is based on the observation that globally the software language community
seems to be divided between two apparently incompatible endeavors: formalizing the language
semantics for reasoning on the system dynamics and implementing performance-oriented runtime
environments for language execution. In the first case, tools such as kframework[101] and gemoc
studio[102] offer a rich set of tools for reasoning on the dynamics during execution. However,
in these environments, the raw execution performance suffers. Furthermore, these approaches
require reformulating the semantics using specialized domain-specific languages, which can incur
a high development cost. On the other hand, the industry invests tremendous efforts in creat-
ing high-performance execution environments, which most often lack the support for reasoning.
Furthermore, this situation can introduce semantic deviations between the real execution and
the one seen by the analysis tools, which require language equivalence proofs to rule out. The
model-checking community is probably the community the most impacted by this dichotomy.
On one hand, the industry needs verification tools for real-world languages while on the other
hand, the model-checking community pushes for highly constrained formal languages, which ease
the verification problem.

https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s10270-021-00923-9
https://github.com/teodorov/gamine

2.1. OVERVIEW 29

Figure 2.1: Global overview

The main research question that we ask then is: Is it possible to compose existing execution
environments with monitoring tools without reformulating the semantics? For model-checking,
the answer to this question seems to be positive as shown by research efforts such as Java
PathFinder[103], LTSmin[104]. However, to enlarge the context to the more general scope of
execution monitoring, some follow-up questions are:

• What are the required interfaces?

• What are the minimal set of services which should be offered by the executing environment
to ease the monitoring process?

• How to formalize and implement high-performance tools independently from the language
semantics?

This chapter addresses these questions by introducing the G∀min∃ semantic language inter-
face (SLI). This interface extends the transition system semantics with a few specialized features
that offer fine-grain observability and high level of control during execution. Based on this in-
terface some common semantic-level operations are captured as composable operators, which
enable the specification of many monitoring setups ranging from simple step-by-step execution
to model-checking.

The conceptual decomposition of the problem, illustrated in 2.1, shows the SLI acting as a
mediator between the subject language semantics (left, yellow box) and the execution manage-
ment component (right, blue box) that effectively implements the language monitor. The subject
language component illustrates the interplay between the main components of a language, the
semantics captures the meaning of a model that conforms to a number of syntactic rules (a gram-
mar or a metamodel). It is important to note that the SLI requires an open-style semantics, that
exposes the execution steps descriptively, without invoking them. The execution management
component isolates a tooling bridge from the execution controller. The tooling bridge component
enriches the subject language semantics with the monitoring state and actions while preserving
the open-style semantics. The execution controller explores the composite semantics offered by
the tooling bridge to close the analysis loop. Here we consider four execution controllers: 1. an
interactive controller, which allows a user to manually advance the execution; 2. a reachabil-
ity controller, which performs a fixed-point computation using standard reachability algorithms,

30 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

such as BFS or DFS; 3. a cycle detection controller, which allows the detection of acceptance
cycles in the underlying state-space; 4. a sequencer, which simply threads the execution, given a
deterministic monitoring semantics.

2.2 The Semantic Language Interface

The G∀min∃ Semanting Language Interface (SLI) is defined around four main abstract types,
which are mapped to the subject language internal data structures:

• C: the type of configurations. A configuration is a memory dump of all runtime data handled
by an execution engine (i.e., its execution state) at a given time.

• A: the type of actions. An action is an abstract representation of a fireable transition or an
execution step that enables going from one configuration to another.

• E : the type of expressions that can be evaluated by the subject language runtime.

• L : the type of expressions that need to be evaluated outside the scope of the subject
language.

The configuration type C captures the variable-memory of the execution engine. This memory
corresponds to the valuation of the dynamic variables. A configuration can be extended to capture
the whole memory image of a program, including the constant-memory and the code-memory.
However, for simplicity, in our experiences the dynamic memory is sufficient for capturing the
dynamic program evolutions through a series of configurations. In our context, the constant
and code memories do not change during execution, and they can always be retrieved from the
runtime, or they can be computed by loading the program. Our approach does not constrain the
internal representation of the configuration, we simply handle it as an opaque type, which can
be inspected only by the evaluation services offered by the E language.

The action type A represents the executable steps of the subject language. Typically, they can
be captured as a continuation, which, for improving observability, can be enriched by metainfor-
mation (such as line-numbers, links towards the AST nodes, etc.). In practice, though, dynami-
cally building continuations can be costly. To accommodate this constraint, we again rely on an
unconstrained opaque abstract type, which can be mapped to the subject language implementa-
tion. Similarly, to the configurations, the action can only be inspected by the evaluation services
of the E language.

The E abstract type encodes expression in a diagnosis-specific language exposed by the im-
plementation of the subject language. In the simplest cases, this type is interpreted directly by
the expression evaluator of the subject language. However, for improving the observability of
the execution of the subject language expression terms could be extended. These extensions can
allow, for instance, to introspect the internal state of the execution runtime, even if the subject
language does not include syntactic constructs for such operations. A typical example in this
category will be inspecting the evaluation stack or the internal state of communication buffers.

The L abstract type captures the set of expressions that need external ”services”for evaluation.
For typical specification languages, this set is empty. However, it is needed for languages that de-
pend on external inputs for progressing (i.e. a property language). This type is rather particular
to property languages, which have their semantics dependent on an underlying model language.
The integration of this type in the SLI is motivated by our view that all subject languages can
be specialized to play the role of a property language in the monitoring setup. Furthermore, in
the case of high-level specifications, this type could ease the creation of heterogeneous refinement
mappings[105], a subject of our future works.

2.2. THE SEMANTIC LANGUAGE INTERFACE 31

structure SLI (C A E L : Type) :=

(str : STR C A)

(evaluate : E → C → A → C → bool) -- Atomic proposition evaluator

(collect : C → A → set L) -- Atomic propositions collector

(accepting? : C → bool)

Listing 2.1: The semantic language interface definition

structure STR (C A : Type) :=

(initial : set C)

(actions : C → set A)

(execute : C → A → set C)

Listing 2.2: The Semantic Transition Relation

Based on these types the semantic language interface is defined in Listing 2.1. The STR term,
which is further detailed in Section 2.2.1, captures the underlying execution runtime viewed
as an extended transition relation. The evaluate function enables the evaluation of diagnosis
expressions on execution steps composed of the source configuration, the executed action and
the target configuration. The collect function gathers the expressions needing external evaluation
in the context of an action enabled in a source configuration. The accepting? function defines
the set of accepting configurations in a verification context.

2.2.1 Semantic Transition Relation

The G∀min∃ Semantic Transition Relation (STR) interface, presented in Listing 2.2, exposes
the execution semantics of the subject language. This interface is the core of the SLI, offering a
fine-grained view over the dynamic structure. As opposed to lower-level, model-checking specific
interfaces [106, 104], the STR interface reifies the execution steps. Furthermore, it enables
multiple sources of non-determinism to accommodate a large panel of subject languages.

The initial function of the STR captures all possible initial configurations (set C) of the
model execution. Support for initial state non-determinism is specially required by high-level
specification languages, such as TLA+ [107], which express the initial states as a predicate.
Figure 2.2 illustrates this point through a simple automaton with multiple initial states (s0, s1),
denoted as usual by the arrow emanating from a black point.

The actions function returns all available actions (set A) enabled from a given configura-

Figure 2.2: Simple automaton with initial, action and execution non-determinism.

32 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

tion (C). Seen from the perspective of SOS semantics[87], the action function returns the set of
transition rules for which the current configuration satisfies the premises. This exposes the rule
non-determinism of the executed model. In concurrent languages, the non-determinism arises
at this level from the parallel composition of execution units (having multiple execution units
ready to execute). Furthermore, some specification languages relax the determinism constraint
even at the execution unit level, allowing multiple actions originating from the same execution
unit. The typical example for this second case is an automata-based language, which can allow
non-exclusive guards on the transitions emanating from the same source state. In Figure 2.2 the
a2 and a3 actions are both enabled in the state s1. During deployment concurrent actions from
multiple execution units may be executed in parallel on different processing cores. Nevertheless,
each action is seen as atomic from the perspective of the subject semantics, leading to consistent
target configurations1.

The execute function executes one action (A) in a source configuration (C) and retrieves
a set of target configurations (set C). From the SOS perspective, the execute function simply
unfolds the conclusion of the transition rule. This function allows for non-deterministic rule
execution using a predicate as a return type. The non-determinism, at this level, is typical
for specification languages that either relax operator semantics or provide specialized constructs
which introduce execution non-determinism. Non-deterministic assignment is a typical example
of a non-deterministic operator, illustrated by the action a1 in Figure 2.2, where x = [0, 2] allows
x to be assigned any value from the [0, 2] interval. Some of the most expressive synchronous
communication semantics introduce execution non-determinism by either allowing unidirectional
handshakes [108] or n-to-m directional synchronizations [88]. The usage of shared variables in
these cases can lead to execution non-determinism due to the indeterminate ordering of the
synchronous actions. Note that most implementation languages strictly prohibit execution non-
determinism either syntactically or through implementation choices, which most often resolve
the non-determinism by arbitrarily chosen policies. The most common example is the undefined
behaviors of the C language semantics, which are somewhat resolved by most compilers [109].

2.3 Generic Monitoring Operators

In this section, we define 6 generic monitoring operators, which offer a reusable base for multiple
verification and execution setups. The definition of these operators is based on the G∀min∃
SLI that isolates them from the potentially intricate details of the subject language seman-
tics. The section starts by defining a semantic filtering operator (Section 2.3.1), which enables
semantic-aware scheduling (Section 2.3.2) for partially resolving the ”actions” non-determinism.
The asynchronous composition and synchronous product (Section 2.3.4) binary operators are
discussed in Section 2.3.3, and Section 2.3.4, respectively. Finally, the mapping between the
STR to a model-checking specific transition relation is defined in Section 2.3.5.

2.3.1 Filter

Given the SLI formalization, we can define a filter operator that applies a partial filtering over
the set of actions issued by the STR. The selection of actions to filter is made according to a
filtering policy that defines which actions are forwarded and which action are removed from the
set. The filtering policy, defined in Listing 2.3, has an execution state, which is denoted by the
S type in our formal description.

1The language semantics may define synchronization points between the execution of multiple steps. In this
case, the synchronous execution steps need to be considered as a single action because only the global target
configuration is consistent.

2.3. GENERIC MONITORING OPERATORS 33

structure FilteringPolicy (C A S : Type) :=

(initial : S)

(selector : A → Prop)

(apply : S → C → set A → set (S × A))

(subset2 : ∀ s c A (sa ∈ (apply s c A)),
prod.snd sa ∈ A)

def StatelessFilteringPolicy (C A : Type) := FilteringPolicy C A unit

Listing 2.3: Filtering policy definition

def filter (C A S: Type) (m: STR C A) (s: FilteringPolicy C A S) : STR (C × S) (S × A)

:= {

initial := {cs | ∀ (c ∈ m.initial), cs = (c, s.initial)},

actions := λ cs,

let toFilter := { a ∈ m.actions cs.1 | s.selector a },

toForward := { fa | ∀ a ∈ m.actions cs.1,

¬ s.selector a → fa = (cs.2, a)}

in (s.apply cs.2 cs.1 toFilter) ∪ toForward,

execute := λ cs sa,

let

r := m.execute cs.1 sa.2

in {x | ∀ c ∈ r, x = (c, sa.1)}

}

Listing 2.4: Filter operator definition

The initial function returns the initial execution state (S) of the filtering policy. The
selector function enables to select actions on which the filter is applied. In some cases, the
filter has only to be applied on some actions and not on others (e.g., it may happen that we only
want to apply the filter on actions coming from the system and not on those coming from the
environment). Given the selected actions (set A), a configuration (C), and the execution state
of the filter (S), the apply function defines which actions must be forwarded while others are
removed. For each forwarded action, this function also returns the new execution state of the
filtering policy. As shown by the subset constraint, the returned set of actions (sa) is expected
to be a subset of the action set (A) given as input. It is also important to notice that to be used
in model-checking, the filtering policy should be deterministic, which explains why it has only
one initial execution state. From a given execution state and a set of actions given as input,
the scheduling policy must always return the same set of actions as output. Moreover, using
the definition of the FilteringPolicy, it is also possible to define a stateless version, named
StatelessFilteringPolicy, without an execution state.

Based on the definition of the filtering policy, Listing 2.4 provides the formal definition of the
filtering operator. A filter takes as inputs an STR and a filtering policy and returns a new STR
for which actions have been filtered while keeping track of the filtering policy state.

For each initial configuration obtained through the STR interface, the initial function
returns a pair containing the initial configuration of the STR and the initial execution state of
the filtering policy. The actions function begins by separating actions on which the filtering
policy has to be applied (toFilter) and actions that have only to be forwarded (toForward).
Then, the filtering policy is applied on the toFilter set and the resulting actions are returned

34 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

structure SchedulingPolicy (C A S : Type) extends (FilteringPolicy C A S) :=

(unique : ∀ s c A (a ∈ (apply s c A)) (b ∈ (apply s c A)), a = b)

def StatelessSchedulingPolicy (C A : Type) := SchedulingPolicy C A unit

Listing 2.5: Scheduling policy definition

def scheduler (m : STR C A) (s : SchedulingPolicy C A S) : STR (C × S) (S × A) :=

filter C A S m ↑s
Listing 2.6: Scheduler operator definition

along with the elements of the toForward set. The execute function delegates the execution of a
given action to the subject STR (m) and computes the target configurations which are composed
of the target configurations obtained through the STR and the resulting execution state of the
filtering policy.

2.3.2 Scheduler

Among a set of actions, the scheduler selects one of them as the next execution step for model
execution. The choice of this action depends on a scheduling policy, presented in Listing 2.5,
which is a specialization of the filtering policy.

The scheduling policy adds the unique constraint to the filtering policy to ensure that the
apply function returns a unique action rather than a set. Similarly to the StatelessFilter-

ingPolicy, it is possible to define a stateless version of the scheduling policy, the last line in
Listing 2.5.

Listing 2.6 provides the formal definition of our scheduler operator. The scheduler takes as
input a STR and a scheduling policy and returns a new STR that has only one available action
at a time, the action selected by the scheduling policy. This definition shows how the scheduler
can be easily defined as a filter. Note the upcast (↑s) of the scheduling policy to a filtering policy.

In our approach, we see the scheduling problem as a parametric filter on the possible execution
steps available for execution at a point during the application’s lifetime. As we focus on single
processor targets, we expect that the scheduler selects at most one execution step. Please note
that the language semantics can provide an empty set of possible execution steps, due to deadlocks
or termination, in which case the scheduler trivially returns no further execution steps. Also,
note that the scheduler only solves the non-determinism induced by the concurrency between the
execution units. Further work is thus necessary to ensure that each execution unit is deterministic
when considering system deployment. Nevertheless, this determinization process is not necessary
for preliminary analysis phases.

2.3.3 Interleaved Composition

The interleaved composition is a binary composition operator that composes two processes with-
out synchronization. In our context, this asynchronous composition operator effectively merges
the actions of two STR.

The asynchronous composition operator takes as input two STR and returns the asynchronous
composition of both inputs as another STR, as defined in Listing 2.7.

2.3. GENERIC MONITORING OPERATORS 35

def interleave { C1 A1 C2 A2 : Type }

(lhs : STR C1 A1)

(rhs : STR C2 A2)

: STR (C1 × C2) (A1 ⊕ A2) :=

{

initial := {(c1, c2) | ∀ (c1 ∈ lhs.initial) (c2 ∈ rhs.initial)},

actions := λ c1, c2), { a | ∀ (a1 ∈ lhs.actions c1) (a2 ∈ rhs.actions c2),

a = sum.inl a1 ∨ a = sum.inr a2
},

execute := λ (c1, c2) a, { c’ |

match a with

| (sum.inl a1) := ∀ c1’ ∈ lhs.execute c1 a1, c’ = (c1’, c2)

| (sum.inr a2) := ∀ c2’ ∈ rhs.execute c2 a2, c’ = (c1 , c2’)

end

}

}

Listing 2.7: The definition of the interleaved composition operator.

The initial function returns the cartesian product of initial configurations of both STR.
The actions function joins the actions of both STR in a sum type (A1 ⊕ A2), representing
the disjoint union of the underlying action sets (A1 and A2). To execute an action, the execute

function checks from which STR the action is coming and executes it on the corresponding STR.
Each target configuration returned is a pair containing one target configuration of the STR on
which the action has been executed and the current configuration of the other STR.

2.3.4 Synchronous Product

The synchronous product composes two automata based on the intersection of their vocabulary.
This is the backbone semantic operator for computing language intersection queries.

Considering two automata

A1 = (S1,Σ1,−→1, I1,F1) and A2 = (S2,Σ2,−→2, I2,F2)

where for each automaton Ai , Si represents its set of states, Σi its vocabulary, −→i the transition
relation, Ii ⊆ Si its initial states, and Fi its accepting states.

The synchronous product can be defined as follows

A1 ⊗A2 = (S1 × S2,Σ1 ∩ Σ2,−→⊗, I1 × I2,F1 ∩ F2)

where the transition relation of the product (−→⊗) is

s1
e−→1 s ′1 s2

e−→2 s ′2
〈s1, s2〉

e−→⊗ 〈s ′1, s ′2〉

In simple automata formalisms (NFA or Büchi), this operator is rather straightforward. It
simply exposes composite execution steps obtained by constraining the two operands to advance
together on their common vocabulary. However, the application of this operator, for model-
checking, on arbitrary transition relations poses a number of challenges. One of these challenges
is the definition of the ”common vocabulary” between the model and the property being veri-
fied. Furthermore, while the synchronous product operator is symmetric, there is an asymmetry

36 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

def sychronous product (C1 C2 A1 A2 L : Type)

(lhs : STR C1 A1)

(ape : L → C1 → A1 → C1 → bool)

(rhs : STR C2 A2)

(apc : C2 → A2 → L)

: @STR (C1 × C2) (A1 × A2) := {

initial := { (c1, c2) | ∀ c1 ∈ lhs.initial c2 ∈ rhs.initial },

actions := λ (c1, c2),

{ (a1, a2) | ∀ a1 ∈ lhs.actions c1
a2 ∈ rhs.actions c2
t1 ∈ lhs.execute c1 a1,

evaluate (collect c2 a2) c1 a1 t1
},

execute := λ (c1, c2) (a1, a2),

{ (t1, t2) | ∀ t1 ∈ lhs.execute c1 a1
t2 ∈ rhs.execute c2 a2

}

}

Listing 2.8: Asymmetric synchronous product between a model and a property.

between the model and the property. Namely, the property can be seen as an abstraction of
the model that should somehow be connected to the model (to follow its evolution). Thus, con-
ceptually, the property should speak the language of the model. In the literature, this problem
is typically solved through Kripke structures[110]. In this approach, the property specification
specifically integrates queries referring to the underlying model, known as Atomic Propositions.
The underlying transition system (induced by the model) is interpreted from the perspective
of these atomic propositions to produce a Kripke structure. The Kripke structure can then be
viewed as an automaton, with the vocabulary Σ defined by the set of valuations of the atomic
propositions.

In [111], the authors extend this framework for model-checking to allow the queries both
on the model states and events (actions). This extension allows expressing the properties in a
more concise manner and enables a more straightforward verification procedure, which alleviates
the need for converting between state-based and event-based encodings of the model-checking
problem. In TLA+ [107] the same framework is extended to allow ”queries” on pairs of states,
which enables to logically relate states. Since the STR reifies both the configurations and the
actions of the subject language semantics, these extensions are natural in our context. The
evaluate function accommodates this setup by allowing queries on complete execution steps (two
related configurations and the action that relates them).

In our case, the synchronous operator takes as inputs two STR-based execution engines: one
for the system model and another for the property model. For this definition, we assume that
the model execution is the lhs term and the property is the rhs term. One evaluation function is
also required for each execution engine, connected by the labels represented by L. These functions
enable the property semantics to retrieve the valuation of the atomic propositions from the model
execution semantics.

The synchronous product of the system model STR (lhs) with the property model STR
(rhs) defines a new STR, defined in the Listing 2.8.

The initial configuration of the composition (initial) is the product of the initial configu-
rations of the lhs and the rhs.

2.3. GENERIC MONITORING OPERATORS 37

structure TR (C : Type) :=

(initial : set C)

(next : C -> set C)

(accepting? : set C)

Listing 2.9: Transition relation with accepting states

def STR2TR (C A: Type) (str : STR C A) (sa : C -> bool) : @TR C :=

{

initial := str.initial,

next := λ c, { t | ∀ a ∈ str.actions c, t ∈ str.execute c a },

accepting? := sa.accepting?

}

Listing 2.10: Converting from STR to a transition relation

To build synchronous actions (actions), the property semantics executes its collect function
on all its available actions and returns the list of atomic propositions needing evaluation. These
predicates are evaluated with the evaluate function on each execution step of the model (the
tuple source configuration c1, action a1, target configuration t1). The step a1 has to be executed
to get the target configuration of the system. Using the valuation of the atomic propositions, the
guards of the property can now be fully evaluated. If a guard evaluates to true, it means that
the action of the property (a2) can be synchronized with the one of the model (a1). As a result,
we get a synchronous action corresponding to the tuple (a1, a2).

To execute a synchronous action (execute) we simply dispatch each primitive action to the
corresponding STR. Note that, the order of execution is irrelevant since the model and the
property do not share state.

2.3.5 Conversion to a Transition Relation

The introduction of the STR, as the main component of our semantic language interface, enables
the definition of rich semantic operators, which can finely observe the semantics of the subject
language. Sometimes, however, it is better to hide the complexity of the underlying execution
engine. One of these cases is binding to model-checking algorithms, which require a simpler
transition relation, as presented in Listing 2.9. This transition relation exposes only how the
configurations are connected irrespective of the execution details. Besides the relation between
states, the only ingredients needed for model checking is knowing the accepting states, and their
interpretation (different between NFA and ω automata). In the following, we focus only on the
first aspect, since the semantic interpretation can be provided by the instantiation context.

The conversion from a STR to a transition relation is defined in Listing 2.10. The initial
states are the same, the relation between the states (next) is computed by collecting the target
state obtained by executing the actions enabled in the source state. Finally, to identify the final
state, the accepting? function of the SLI is mapped on the accepting predicate of the transition
relation.

38 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

Figure 2.3: Architectural overview of the G∀min∃ unified debugger

2.4 Monitor Specification : The G∀min∃ Unified Debugger

Debugging is an important part of the development life cycle. By allowing the developer to
explore programs interactively, it can be useful to find faults as well as simply get a better
comprehension of their inner workings. As the complexity of programs increased, this process
has also evolved to adapt to these new difficulties.

Omniscient debugging [112] allows us to return back, on the execution trace, to previously
visited configurations. Multiverse debugging [81] has been introduced to enable the exploration
of concurrent actor-based formalisms. This technique becomes important for the debugging of
multi-threaded actor systems, where the different execution schedules can hide bugs. For high-
level specification languages, such as TLA+ and UML, this feature is necessary due to the intrinsic
non-determinism, which besides scheduling allows capturing entire families of implementations.
The K debugger, presented in [113], is similar to our approach. However, it requires the use of
the kframework[101] for specifying the language semantics. Furthermore, it does not support
multiverse debugging[81].

Figure 2.3 overviews the architecture of our debugger emphasizing: on one hand, the actions
available to the end user; and, on the other hand, its modularity with respect to the subject

2.4. MONITOR SPECIFICATION : THE G∀MIN∃ UNIFIED DEBUGGER 39

structure DebugConfig (C : Type) :=

(current : option C)

(history : set C)

(options : set C)

Listing 2.11: The configuration of the G∀min∃ debugger

language semantics. As debugging remains a human activity, the user is represented as the
”debug user” executor (controls the execution interactively). The interactions during debugging
are classified as: the actions (the orders), observing the configuration (state) of the system,
defining breakpoints, and defining reduction policies. The user actions include stepping through
the system’s behavior, jumping back to a previously observed configuration, selecting between
a non-deterministic choice and running to a breakpoint from the current configuration. The
breakpoint definition syntax allows the user to define the stop criterion. Lastly, the user can
define a reduction policy that is used during breakpoint lookup.

The debugger semantics can be seen as a bridge between the user and the debugged model. In
other words, the G∀min∃ debugger is defined as a monitoring wrapper over the subject language.
The debugger is dependent on the subject language runtime which captures the dynamic seman-
tics of the model. In our case, the subject semantics is encapsulated in a Semantic Language
Interface (SLI), that provides language-agnostic observation and control services. Besides the
subject language, the Figure 2.3 emphasizes the modularity of our approach and the importance
of the breakpoint Finder Function by representing it as an independent unit. When debugging
a deterministic model, this function unravels the single execution path possible. However, mul-
tiverse debugging forces this function to search through multiple non-deterministic branches, a
typical functionality of model-checking, which brings the state-space explosion problem. The run-
to-breakpoint action of the RMD is realized by calling the Finder Function passing the subject
language runtime as a parameter along with the breakpoint and the reduction policy.

The debugger specification, presented in the following, abstracts away some implementation
details, such as the structure of the history trace, the projection functions needed for the user
interface, and the search strategy used for finding the breakpoints. In [82] the Finder Function
uses directly the evaluate component of the subject language SLI for breakpoint evaluation during
a reachability search. To better illustrate the flexibility of our approach, in this manuscript, we
choose a more generic approach for defining the Finder Function. This is achieved by running
the reachability search on the synchronous product between the subject-language runtime and
a property-language runtime, which offers an interpretation of the breakpoints. The debugger
itself exposes the SLI interface. Note that, for simplicity, in the following, we focus mainly on the
definition of the STR component of the debugging SLI. Moreover, this section will not discuss
the user-defined reductions presented in Figure 2.3. Nevertheless, the interested reader should
refer to [82] for further details.

The specification is based on two specific types: the debugger configuration and the debugger
actions. The debugger configuration, DebugConfig in Listing 2.11, is parameterized by the
subject language configuration type (C) and simply captures the core state-variables of the
debugger, namely the current state (current), the execution history (history), and the options for
next configurations (options). The current configuration simply wraps the current configuration
of the subject language in an option type. The history is the set of configurations encountered
since the beginning of the debugging phase. The options variable is necessary because of the
non-determinism of the execute function in the subject language. The options variable acts as a

40 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

inductive DebugAction {C A : Type}

| step : A → DebugAction

| select : C → DebugAction

| jump : C → DebugAction

| run_to_breakpoint : DebugAction

Listing 2.12: Debugging actions, the abstract syntax of the debugger

Figure 2.4: The G∀min∃ debug actions overlayed over a simple transition system (the dashed
blue lines indicate the transitions)

temporary configuration buffer from which the next configuration can be selected.

Please note that we relax the type of the current variable to an option type. This is not
necessary in practice. However, for the purposes of this presentation, it simplifies the specifica-
tion by alleviating the need to ”arbitrarily” choose one configuration from the options to set as
”current” configuration. Furthermore, note that the history does not need more structure, and
can simply be represented as a set, which subsumes multiple implementations as discussed later.

The abstract syntax of the debugger is captured by the DebugAction type, illustrated in
Listing 2.12, which introduces 4 core debug actions. The DebugAction is parameterized over
the configurations (C) and actions (A) of the subject language. The step action syntactically
describes the intention of executing a particular action of the wrapped STR. The select action
captures the selection step necessary for resolving the execution non-determinism of the wrapped
STR. The jump action represents the intention of moving from the current configuration to an
arbitrary configuration picked from the history. Finally, the run to breakpoint action represents
the intention of running the underlying STR until a ”breakpoint” is found.

To gain some intuition on the G∀min∃ debugger, Figure 2.4 shows an example of the debug
actions allowed by our specification. The figure overlays the debug actions over the configuration
3 (the rounded rectangle with a thick border) of a simple transition system (the dashed blue
lines indicate the transitions). The black dot denotes the initial state. The red dots denote the
configurations that satisfy the breakpoints predicate. The a1 & a2 labels on the blue transitions
explicitly indicate the original actions which link the configurations. The execution of the a2
action is non-deterministic. Moreover, the configurations 3 & 7 have action non-determinism
(two actions are enabled). The gray rounded rectangles show the configurations unrolled by the
debugger up to the current configuration. From the current configuration (configuration 3) five

2.4. MONITOR SPECIFICATION : THE G∀MIN∃ UNIFIED DEBUGGER 41

Figure 2.5: The debug transition system induced on the example in Figure 2.4

def Finder (C A E : Type) := (Evaluate C A E) → STR C A → E → set C → list C

def Finder’ (C A E : Type) := STR C A → E → set C → list C

Listing 2.13: The signature of the counter-example finder function

actions are enabled: a) two step actions, which execute the a1 and a2 actions of the original
transition system; b) two jump actions, which enable jumping back to one of the previously
discovered configurations; c) the run to breakpoint action, which discovers the trace (8 ← 7 ←
5 ← 3) of the original transition system. Conceptually, any subset of all witness traces may be
produced, as in [81]. For simplicity, our specification limits the scope of the run to breakpoint
action to the first discovered witness. Thus, the configurations 6 and 9 are not seen by this action
execution.

Figure 2.5 shows an excerpt of the transition system induced by our unified debugger specifi-
cation, defined in Listing 2.14, on the original transition system in Figure 2.4. The gray arrows
separated by · · · indicate the missing actions. Each rounded rectangle represents one instance of
DebugConfig, with its three slots. The effects of the five debug actions are emphasized with the
text fuchsia. The step actions set the options slot to the configurations obtained by executing
the original action. The jump actions, change the current slot, extend the history and reset the
options slot. The run to breakpoint action updates the current configuration and extends the
history with the witness trace. The select action changes the current slot, extends the history
and resets the options slot. In our example, it is used to choose configuration 6, between the two
options (5 & 6) obtained by stepping with a2.

For simplicity, in the following, we consider a static set of breakpoints, which is obtained
from the ambient environment. The breakpoints set is encoded using the E language, which
corresponds to propositional logic over the diagnosis language (E) of the subject STR.

The strategy used for running the underlying STR is abstracted away by the Finder function;
the signature is presented in Listing 2.13. Besides the type arguments, this function has three
arguments: the Evaluate function of the underlying SLI, the STR that should be executed, the
set of breakpoints, and the set of configurations from which to start the ”execution”. The return
type is a witness, a list of configurations C showing a path from one of the breakpoints back to
one of the start configurations. The Finder’, in Listing 2.13, results from the partial application
of Finder. In section 2.4.2, we define this function modularly using the SLI.

42 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

def unified_debugger (C A E: Type) (o : STR C A) (evaluate : Evaluate C A E)

(breakpoint : E) (finder : Finder C A E)

: STR (DebugConfig C) (@DebugAction C A) :=

{

initial := debugInitial C A o,

actions := λ dc, debugActions C A o dc,

execute := λ dc da, debugExecute C A L0 o (finder evaluate) breakpoint dc da

}

Listing 2.14: The STR specification of the G∀min∃ debugger

def debugInitial (C A : Type) (o : STR C A) : set (DebugConfig C) :=

{{ current := none, history := ∅, options := o.initial }}

-- 〈 none, ∅, o.initial 〉 positional notation

Listing 2.15: The initial state predicate of the G∀min∃ debugger

2.4.1 A Semantic Transition Relation for Debugging

Based on the previous definitions the semantics of the debugger can be captured as a STR,
illustrated in Listing 2.14. The unified debugger STR takes 4 arguments: the debugged STR (o)
along with the related APE function, the Finder function (finder) and the set of breakpoints.
The return type is a new STR that wraps the original one while providing the debug actions.

Listing 2.15 shows the definition of the debugInitial function, which simply creates a singleton
containing a DebugConfig with no current state, an empty history set, and the options variable
set to the initial states obtained from the wrapped STR o.

The debugActions function, shown in Listing 2.16, generates the set of enabled actions in a
DebugConfig dc. In our case there are four sources of actions:

1. the original action set oa, obtained from the subject STR o (only if the current slot is not
empty). These actions are created through the step constructor.

2. the select action set sa, induced by the elements in the options slot, which are encapsulated
by the select constructor.

3. the jump action set ja, induced by the history elements, which are encapsulated by the
jump constructor.

4. the run to breakpoint action.

def debugActions (C A : Type) (o : STR C A) (dc : DebugConfig C) : set (DebugAction C A)

:= let

oa := { step a | ∀ c, dc.current = some c → ∀ a ∈ (o.actions c) },

sa := { select c | ∀ c ∈ dc.options }

ja := { jump c | ∀ c ∈ dc.history },

in oa ∪ ja ∪ sa ∪ { run_to_breakpoint }

Listing 2.16: The specification of the debugger ”actions” function

2.4. MONITOR SPECIFICATION : THE G∀MIN∃ UNIFIED DEBUGGER 43

def debugExecute (C A E: Type) (o : STR C A)

(finder : Finder’ C A E) (breakpoint : E)

(dc : DebugConfig C) (da : DebugAction C A) : set (DebugConfig C) :=

match da with

| step a := { 〈 none, dc.history, o.execute c a 〉 |

∀ c opt, dc.current = some c → o.execute c a 6= ∅}
| select c := { 〈 c, dc.histoty ∪ { c }, ∅ 〉 }

| jump c := { 〈 c, dc.history ∪ { c }, ∅ 〉 }

| run_to_breakpoint :=

match dc.current with

| some c := { 〈 w, t, ∅ 〉 |

∀ w l t, finder o breakpoint { c } = w::l → t = dc.history ∪ {x | x ∈ w::l}

| none := { 〈 w, t, ∅ 〉 |

∀ w l t, finder o breakpoint dc.options = w::l → t = dc.history ∪ {x | x ∈ w

::l}

end

end

Listing 2.17: The specification of the ”execute” function

The debugExecute function, presented in Listing 2.17, defines the execute step semantics of
our unified debugger. If the current slot is not empty (dc.current = some c) and the original
action execution does not block (o.execute c a 6= ∅), the execution of the step creates a new
configuration with the options slot assigned to the results of calling the original execute function.
Otherwise, the execution of the step blocks. The select and jump executions are identical, the
argument configuration is set in the current slot, the history is extended with the argument
configuration and the options slot is emptied. The execution of a run to breakpoint is different
based on the state of the current slot. If empty, then the finder function is invoked with the
configurations from the options slot as starting point. If the current slot is not empty (some c),
the finder starts the lookup for breakpoint from the configuration in this slot. If the finder locates
a witness trace towards one of the breakpoints, a new configuration is created with the witnessing
configuration (the configuration that satisfy the breakpoint condition) in the current slot and
the history is extended with the witness (dc.history ∪ {x | x ∈ w::l}). Otherwise, the
execution does not produce any configuration (it blocks).

Note that the execution function is deterministic, since it produces at most one new Debug-
Configuration for each action. Furthermore, note that the blocking behavior of the debugExecute
function is only a design choice. Nevertheless it prevents the introduction of ”strange” debug con-
figurations, like 〈 none, dc.history, ∅ 〉) which can be quit only with jump actions.

2.4.2 A Modular Finder Function

The Finder function, shown as a gray box in Figure 2.6, is the workhorse of any debugger. It
enables the user to jump forward in time, over the transition relation, to specific ”points” of
interest (identified by breakpoint predicates). In deterministic sequential languages the Finder
function corresponds to running the program until a breakpoint condition is satisfied. In general,
however, the Finder needs to perform a reachability query on the transition system induced
by the semantics. Relying on the functionalities exposed by the SLI, this functionality can be
implemented in an ad-hoc manner by specializing any reachability algorithm to the peculiarities of
the SLI interface. However, from our perspective, such an approach defeats the purpose of the SLI

44 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

Figure 2.6: Overview of the Finder function

Figure 2.7: Breakpoint interpretation as a deterministic finite automata

interface, which aims at decoupling the semantics from the algorithm to enable their independent
evolution. From this point of view, we should not compromise eighter on the semantics or on the
reachability algorithm, but rather exploit the SLI facilities to build a bridge between the two,
as illustrated in Figure 2.6 (the blue Finder Bridge rectangle). This section assumes a general
safety checking algorithm (white rectangle in Figure 2.6) that operates on a transition relation
and computes a counter-example. The rest of this section focuses on the modular specification
of the Finder Bridge component, which can be achieved through our approach.

The first ingredient to consider is the subject language SLI (the yellow rectangle in Figure
2.6), from which we need the STR along with the atomic proposition evaluator (APE) functions.
As seen in the previous sections, the STR captures the subject language semantics and exposes a
local view based on the current configuration. The APE predicate extends the subject language
evaluation facilities to enable queries over the execution steps. Querying full execution steps
subsumes multiple usage scenarios by allowing a rich set of breakpoints, such as:

• Predicates related to the syntax tree (AST), the run-to-line is one example, where the line
number is a proxy for the AST node.

• Predicates on the configuration (state predicates), the conditional breakpoint is an example,
which is a conjunction of a state-predicate and an AST predicate.

• Predicates on the execution steps, that relate the source, the action, and the target config-
uration. An example of such a conditional breakpoint can be x ′ = x + 1 ∧ enabled(send),
stating that the variable x in the source state is incremented by one and that the send
AST-node is enabled by the action.

The breakpoints interpretation is defined through a deterministic finite automaton (DFA),
illustrated in Figure 2.7, where pred represents a propositional logic expression using the Eval-
uate language for the atomic propositions (E in our formalization). Initially, the breakpoint is
considered inactive (in the false state). During a system step, the breakpoint state either changes
to true if pred holds on the step or remains inactive otherwise (not pred). The true state is the
accepting state of the DFA. Moreover, the true configuration deadlocks, feature used to cut the
execution path once the breakpoint is active.

2.4. MONITOR SPECIFICATION : THE G∀MIN∃ UNIFIED DEBUGGER 45

def predicate_asserter (L0 : Type) (pred : E) : STR bool (E × bool) :=

{

initial := { false },

actions := λ c, if c then ∅ else

{(pred, true),

(not pred, false)},

execute := λ c a, { a.2 }

}

Listing 2.18: The predicate asserter STR

Figure 2.8: The architecture of the Finder Bridge

This deadlock interpretation is captured by the predicate asserter STR, presented in Listing
2.18. The configuration type is bool. The action type is a pair (predicate, next-state). The initial
set contains only the false state. The actions set is defined according to the current configuration
c. If the DFA is in the true state, the action set is empty (if c then ∅), otherwise a set with
the two possible transitions is returned. The execution of the action a in the configuration c
is simply the projection of the next − state part of the action pair (a.2). Besides the STR, the
other SLI functions can be defined to obtain a complete SLI module. Amongst these, the atomic
proposition collector (APC) is particularly important in this context. The breakpoint predicate
(pred) needs to be interpreted in the subject language, to achieve this the APC function simply
projects the predicate part of the action pair (λ c a, a.1).

The Finder Bridge component can be specified through the modular composition of STRs,
as illustrated in Figure 2.8. This specification uses the synchronous product operator, defined in
Listing 2.8, to compose the subject language STR with the breakpoint semantics, itself captured
by the predicate asserter STR (Listing 2.18). The subject language STR needs to be specialized
to the start configurations. This is achieved by defining a new STR operator, named preinitialized,
which replaces the initial slot of the subject language STR with the start configurations set. The
breakpoint set specializes the predicate asserter STR. Besides the two STR, the synchronous
product operator requires two matching SLI functions. On one hand, the subject language
should provide an evaluation function for the diagnosis language, its APE function. On the

46 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

other hand, the predicate asserter SLI delegates the evaluation of the breakpoint predicates to
the subject language. Hence, it should contribute its APC function. The synchronous product
returns a STR, which is mapped to a transition relation through the STR2TR operator, defined
in 2.10. The STR2TR operator requires a predicate capturing the set of accepting states of the
transition relation. In our case, this set is induced by the breakpoint semantics on the composite
configurations obtained through the product. All configurations for which the predicate asserter
slot is true are accepting. This statement is formalized by λ c, c.2, which projects the predicate
asserter slot of the composite configuration c.

2.4.3 Some Species from the Debugging Zoo

Based on the existence and the structure of the history slot in the debugger configuration (De-
bugConfig), different debugging strategies can be achieved:

• Traceless debugging [114] is probably the most common case, where the debugger configu-
ration does not have an explicit history slot.

• Omniscient debugging [76], which stores the history as a linear path from the initial con-
figuration, thus enabling back-in-time jumps.

• Multiverse debugging [81], which stores the history as a tree of potential execution paths.
This approach, highly effective for non-deterministic languages, allows jumps between dif-
ferent execution histories of the system (universes).

The G∀min∃ debugger, presented in this section, focuses especially on Multiverse debugging.
Nevertheless, by relaxing and/or strengthening the constraints on the history representation and
structure both the traceless and omniscient debugging strategies can be realized. In the case of
the traceless debugging, the history slot could be simply removed from the DebugConfig, which
in turn would imply that the jump actions are never enabled. For omniscient debugging a linear
trace structure should be enforced, which, amongst others, imply that the future should be erased
if the user changes the universe (takes a different path) after a back-in-time jump.

Remote Debugging is a strategy that decouples the debugger itself from the subject language
and distributes them over the network. This approach can be made possible by completing the
SLI with serialization/deserialization functions. Based on these functions the remote communica-
tion can be established between the subject language SLI and the debugger SLI. Furthermore, we
believe that our formal debugger definition can be further generalized to a generic debugger spec-
ification, which can serve as a basis for proving the functional correctness of arbitrary debugger
implementations. To illustrate this point let us consider tdbg an Traceless debugger implementa-
tion, which simply drops the history slot from the configuration. To show that tdbg satisfies our
specification, we need to show that the state-space induced by the tdbg implementation simulates
the state-space of the specification. Conceptually, this fact can be simply established by intro-
ducing a history variable to establish a refinement mapping between the two [105]. The auxiliary
variable reconstructs the trace slot contents by capturing the configurations encountered during
a tdbg session. In our context, this can be realized by simply wrapping the tdbg STR with a
”history” STR that adds the history slot to its configuration. A problem we encounter is that the
specification of the actions function (Listing 2.16) is too restrictive. It generates one jump action
for each configuration in the history. To relax this constraint, we should generalize the actions
function so that it generates jump actions for partitions of the history. This way we obtain
the empty partition case, which does not enable any jump actions exactly like tdbg . With this
generalization, it is now possible to provide the refinement mapping, thus prove the simulation
relation.

2.4. MONITOR SPECIFICATION : THE G∀MIN∃ UNIFIED DEBUGGER 47

By the way, wrapping the tdbg STR with the one defining the history variable illustrates
once more the composability of our approach. Moreover, without much effort, we can extend
this setup further so that the resulting STR offers a modular implementation equivalent to the
specification in Listing 2.14. The only requirement is that the tdbg SLI should offer an update
API, that enables setting the current configuration of the tdbg configuration to the one specified
by the jump action.

48 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

2.5 Scheduling in a Modular Architecture for Verification and Ex-
ecution

In language engineering, the creation of a new concurrent language (e.g., a Domain-Specific
Language (DSL)) usually goes with the design of an execution engine along with different add-
ons for model analysis. These tools are useful to execute models (or programs) conforming to
this language and formally verify their behavior. During this process, language engineers must
handle concurrency by scheduling and synchronizing the execution of the different high-level
processes (e.g., threads, actors, active objects) of a model. In particular, “scheduling” solves the
non-determinism introduced by the mismatch between the model concurrency and the available
physical resources (processors). In general, the scheduler maps concurrent high-level processes
in space (on the physical resources available) and in time in adequacy with an optimization
objective, known as a scheduling policy.

In the literature, a lot of different mechanisms have been defined to handle concurrent lan-
guages (e.g., in SCADE [115], UML [62], Erlang [116]). Using these mechanisms, the scheduler
can be either defined in the design model as a separate execution unit or implicitly encoded in the
language semantics before being mapped to concepts of the execution platform (e.g., an embed-
ded target, or an operating system). On the one hand, these solutions are not always applicable
because of the limited expressivity of the modeling language, or the complexity of transformations
(e.g., code generation). On the other hand, scheduling is not handled at the language-level but
either at the application-level or at the platform-level (i.e., the level of the execution support),
which makes it difficult to respect the language atomicity (e.g., atomic assignment of a variable).
The scheduler must preserve the language atomicity otherwise its execution may happen while
the runtime data used for execution are inconsistent. This may cause the scheduler to choose a
step that is not executable according to the language semantics or to make inappropriate choices,
which may lead to runtime failures or at least to incorrect behavior of the system.

Therefore, we need a reusable solution that defines an explicit semantic-aware scheduler (by
“semantic-aware”, we mean that it does not break the language atomicity) and that can be used
outside the common thread-based environment.

For verification purposes, concurrency mechanisms should considered in the verification pro-
cess because they impact model execution and may be responsible for concurrency bugs (e.g.,
deadlocks). In practice, this consideration remains complex to achieve. To perform model-
checking, classical verification approaches need either to use a transformation towards a formal
language (e.g., PROMELA for the SPIN [117] model-checker) or to define an abstraction of
the concurrency mechanisms (e.g., for the Divine [118] model-checker). Proving that the model
transformation is correct or that the considered abstraction conforms to the actual concurrency
mechanisms remains a difficult task. Therefore, these techniques still face an equivalence problem
between what is verified and what is executed at runtime.

Thus, the design of an explicit and reusable scheduler, that can be used both for deployment
on actual systems and for model verification, remains a scientific challenge. To sum up our
observations, the complexity of this problem lies in two main factors: (1) Concurrency is usually
implicitly encoded within the language semantics while the scheduler is defined at application-
level or at platform-level, which renders the scheduler hard to tailor to language needs. (2) Given
the fact that scheduling has an impact on the model behavior, it should be taken into account
for the verification phase, but this remains a difficult task.

To address these issues, we introduce a software architecture that enables a modular composi-
tion between the system, the scheduler, and the system environment. To illustrate our approach,
Figure 2.9 presents the main principles of our architecture using three variants. In all these
variants, the model execution component represents the execution of the system model composed

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 49

Figure 2.9: Approach overview.

(asynchronously) with the environment. The asynchronous composition with the environment
is made either explicitly, through an operator, or implicitly by the model execution engine.
While for the execution the real environment is considered, for the verification step, an abstract
environment model needs to be constructed [25].

The model execution component exposes the list of available execution steps through the
G∀min∃ SLI, more precisely through the STR interface. This interface enables the control of
the model execution using the modeling language semantics implemented by the engine. Using
the STR interface, different operators and/or tools can be combined to control model execution
according to the required setup, i.e. runtime execution or formal verification.

Model-checking. For model-checking we follow the modular approach introduced in [14, 1].
The model-checker (the green shaded box in the leftmost diagram of Figure 2.9) relies on the
STR interface exposed by the model execution for the verification of formal properties. The
model execution STR is synchronously composed with the property (itself an STR, encoding a
buchi automata semantics). The emptiness checking algorithm consumes the composition results
through a Transition Relation interface obtained from the SLI, as presented in subsection 2.3.5
[22].

The corresponding state-space3 is shown in Figure 2.9 with the initial state in black, explored
states in gray, unexplored states in white, and states with bugs or design errors with a red border.
In this case, all states have been explored and two errors have been detected.

Scheduled Execution When deploying this model on its actual execution platform (Variant 2
in Figure 2.9), a scheduler is required to solve the non-determinism induced by the fact that
several processes are concurrent for their execution. The scheduler becomes here an explicit
and controllable component, which can be configured by a scheduling policy to select the next
execution step in a concurrent software application. Its execution is triggered by the main
execution loop of the platform on which the execution engine is running. In this case, the

3Representation of state-spaces in Figure 2.9 have been designed for illustration purposes only.

50 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

execution only follows one execution trace, and its state-space shows that only one of the two
errors is encountered.

Model-checking with Scheduling For the verification phase, the Variant 3 in Figure 2.9 intro-
duces a set of operators (scheduler + filter) in between the model execution component and the
model-checker component (described for variant 1).

The scheduler, identical to the one used at runtime, is considered in the verification loop
to schedule the execution steps of the system (without interfering with the non-determinism
coming from the environment abstraction). Furthermore, we introduce a filter component that
can encode some high-level hypotheses usually considered in model-checking (e.g., to remove
some interleavings). In this case, some execution paths that are impossible, due to scheduling
choices, are not explored. The explored state-space still contains several traces because of the
non-determinism of the abstract environment. We can also notice that the number of errors in
the explored state-space is reduced, and the remaining ones are more likely the ones towards
which we are steered by the scheduler.

Our efforts focus on bridging the gap between embedded execution and formal verification of
critical systems. In this context, it is of paramount importance to ensure that the real execution
is faithful to the formal verification results. Taking scheduler semantics into account during
verification helps achieve a high-level of trust in the embedded execution enabling to discover
fairness violations (unfair schedulers) while eliminating false requirement violations (scheduling
abstractions).

The main contributions described here are a formally defined, modular and compositional
approach for the integration of scheduling in the verification process. This approach enables,
without restrictions, the integration of:

• arbitrarily complex modeling languages,

• of scheduling algorithms, without any restriction, which can, be deployed in production

• of off-the-shelf, state-of-the-art model-checking algorithms [22].

To the best of our knowledge, this is the first proposal to achieving these goals. Furthermore, the
explicit consideration of the interaction between scheduling and the language runtime enables
a new class of language-aware scheduling algorithms. These schedulers can guarantee language
semantics preservation, much like cooperative scheduling, without, however, requiring trusted
software developers but only trusted language runtimes.

Our approach has been applied to the scheduling of embedded systems described as UML [62]
models. For our experiments, we use an embedded model interpreter called EMI [1] to execute and
verify the UML model of a level-crossing controller under different scheduling policies. The UML
language is an appropriate language for this experiment because, during the execution of a UML
model, different active objects are executed concurrently and should be scheduled. Our study
focuses on bare-metal deployment, which, without OS services, cannot rely on POSIX (Portable
Operating System Interface Unix) threads. As a result, for runtime execution, our scheduling
operator is connected to the interpreter running the level-crossing model. All this setup (system
model + interpreter + scheduler) is then deployed on a STM32 discovery embedded board. For
formal verification, the scheduled system is asynchronously composed with an abstraction of
the environment of the level-crossing system. This software architecture is then controlled by
OBP2 [19, 14] (http://www.obpcdl.org/), an off-the-shelf explicit-state LTL model-checker.

The remainder of this section is structured as follows. In subsection 2.5.1 we present the
classical approaches used for executing and verifying concurrent models. The main architectural

http://www.obpcdl.org/

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 51

contributions are presented in subsection 2.5.2. In subsection 2.5.3 the approach is instantiated
in the context of UML. We discuss some points about our work in subsection 2.5.4. We review
some related work in subsection 2.5.5.

2.5.1 Background and Classical Solutions

Here we consider the design of a concurrent language along with its runtime and verification
environments. By “concurrent language”, we mean a language having several non-exclusive high-
level processes available for execution at a given point in time. If their number exceeds the
number of processors on the execution platform, these high-level processes are competing for
their execution. This kind of execution is called “concurrent execution”. In this section, we
present the classical approaches used for executing and formally verifying models conforming to
a given concurrent language.

Runtime Execution. For the actual execution, two main approaches are usually used: trans-
lational techniques and operational techniques. The translational approach makes a mapping
between the model of concurrency of the design language and the one of the underlying plat-
forms (e.g., an Operating System (OS), a Virtual Machine (VM)). Different techniques can be
used for this purpose including code generation (e.g., Papyrus Software Designer [119], Rhapsody
[120]) or compilation to low-level code (e.g., Unicomp [121], GUML[122]). This mapping between
a high-level concurrent semantics and the underlying execution platform can be very complex.
Different concerns should be taken into account (e.g., scheduling, synchronization mechanisms).
All these concerns may be interdependent, which renders this operation even more difficult. Here,
we focus on: the model of concurrency, the Inter-Process Communication (IPC) mechanisms, and
the scheduling. The high-level processes should be mapped to low-level tasks of the underlying
platform. These high-level processes have different names (e.g., tasks, threads, actors, active
objects) depending on the high-level language used. In the following, the term Execution Units
(EU) is used as a unification concept for all kinds of concurrent processes. Please note that EU
only unifies the terminology, but the different concurrency semantics are preserved.

In the same way, the scheduler and IPC mechanisms of the high-level languages should be
mapped to the concepts of the underlying platform (e.g., the OS scheduler and message queues
for an OS platform). If preemptive, the underlying platform scheduler can break the “atomicity-
level” required by the high-level semantics. This can introduce subtle concurrency bugs (e.g.,
assignment not atomic even if atomic in the source semantics). If cooperative, the underlying
platform scheduler needs to trust the application developer that the model will cooperatively
release control, i.e. the model will not execute infinitely without returning to the scheduler.
Moreover, the scheduler is usually a generic component, which is difficult to align with the
language or domain needs.

The operational approach aims at encoding the semantics of the high-level language in an
interpreter. In the software language engineering (SLE) community, several model interpreters
have been defined. For instance, for fUML [62], the foundational subset of UML, multiples model
interpreters are available: Moka [123], Moliz [124] or the reference implementation (http://
modeldriven.github.io/fUML-Reference-Implementation/). This approach does not suffer
from the mapping issues of the translational approach but the scheduling remains quite often
implicitly encoded in the language semantics.

For more examples using these approaches, the work in [125] provides a systematic review on
model execution in the context of UML.

Formal Verification. For formal verification, three classical approaches are usually considered.
A first technique is to use a transformation from the design model to an analysis model usually
written in a formal language. As shown in [14], this technique creates a semantic gap between

http://modeldriven.github.io/fUML-Reference-Implementation/
http://modeldriven.github.io/fUML-Reference-Implementation/

52 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

the design model and the analysis model, which renders the understanding of verification results
more difficult. Moreover, an equivalence relation should be built, proven, and maintained to
ensure that what is executed at runtime is really what has been verified. This relation remains
complex to establish and prove in the general case.

To avoid building such an equivalence relation, another technique consists in proving the
correctness of the system running on the underlying execution platform. However, formal ver-
ification of the deployed system requires an abstraction of the underlying platform services. In
particular, this includes defining an abstraction of the model of concurrency, of IPC mecha-
nisms, and of the scheduler. For instance, execution units of the design language can be mapped
to C or C++ processes and formally verified using the Divine model-checker [118, 126, 127]
(https://divine.fi.muni.cz/). Divine relies on DiOS [126], which offers a “model-checking-
friendly” abstraction of the POSIX interface. Relying on an abstraction of the underlying plat-
form services to perform formal verification has several drawbacks. First, the mapping between
the design language and the underlying platform concepts creates a semantic gap. As a result,
it is more difficult to be sure that the analysis model respects the high-level semantics of the
design language. Second, a proof must be provided to ensure that the abstraction of the platform
services faithfully implements the desired execution platform behavior.

To avoid mapping issues, a third technique based on operational semantics aims at using a
modified version of the execution engine for model analysis. For instance, Java PathFinder [128]
uses a custom-made Java Virtual Machine (JVM) to perform model-checking on Java bytecode.
However, this technique also requires abstract concurrency mechanisms and in particular schedul-
ing. Therefore, to trust verification results, a proof has to be established that these abstractions
conform to the real JVM behavior.

To sum up, some issues remain for scheduling and managing concurrency of high-level lan-
guages, especially to execute and verify models conforming to these languages in a unified way.
To the best of our knowledge, our approach is the first to address the scheduling problem at both
runtime and verification levels. Furthermore, our proposition is unique because it introduces a
modular approach to scheduling in the verification phase while enabling the deployment of a
semantic-aware scheduler on the execution platform.

2.5.2 Architecture for Verification and Runtime Execution

Using the operators defined in section 2.3, we define an executable and verifiable composition
between the language semantics, the scheduling, and the environment. At runtime, these oper-
ators are used to schedule the execution of concurrent systems running on embedded targets.
During the verification phase, the same operators can also be used to consider the scheduler in
the verification loop and thus reduce the gap with the runtime execution.

Runtime Execution

To execute a concurrent model, we introduce, in Figure 2.10, the software architecture of an
execution engine for a high-level language. The components SEU1 to SEUN are the different
System Execution Units (SEU) of the executed model. Their execution follows the language se-
mantics that encodes the meaning of each concept of the design language. We suggest encoding
the language semantics into an interpreter, an operational semantics, that implements the STR
interface. Even if generated code can also implement the STR interface, the operational approach
has been chosen because it avoids the semantic gap induced by the mapping operation (e.g., code
generation) of translational approaches (subsection 2.5.1). The semantics implementation can
communicate with the concrete environment (i.e., the actual environment) through an Applica-

https://divine.fi.muni.cz/

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 53

Figure 2.10: Architecture for scheduling the runtime execution.

tion Programming Interface (API) that enables the exchange of data with I/O peripherals (e.g.,
sensors, actuators) of the hardware platform (e.g., an embedded board).

This architecture uses our scheduling operator (scheduler), to schedule the concurrent model
execution according to a scheduling policy. The scheduler is controlled by the main execution
loop of the execution engine that only executes two instructions in a loop. (1) The execution
loop asks the scheduler to select the next execution step (selected SystemStep) among the set of
available actions (all possible steps) returned by the language semantics. (2)4 The execution of
this step is then triggered by the execution loop, which delegates its execution to the language
semantics implementation through the whole architecture. At the same time, the execution state
of the scheduling policy is updated according to the executed step.

The execution loop controls the resulting STR given by the following formal definition of our
software architecture.

Definition 2.5.1. The software architecture for runtime execution is formally defined in the fol-
lowing way:

def runtime execution

(system : STR C A)

(scheduling_policy : SchedulingPolicy C A S)

: STR (C × S) (S × A) := scheduler C A S system scheduling_policy

The scheduler can be configured with different scheduling policies gathered into two cat-
egories. Stateless scheduling policies can choose an execution step only based on the set of
possible execution steps and the content of the current configuration. For instance, the fixed
priority scheduling policy is an example of a stateless scheduling policy. It selects the execu-
tion step that belongs to the execution unit with the higher static priority. In contrast, stateful
scheduling policies also require an execution state to store some persistent data. As an example,
round-robin is a stateful scheduling policy that selects an execution step of each execution unit
in turn. For this purpose, it requires storing the turn variable that indicates which execution
unit has the highest priority at the next execution loop.

Using this scheduler component has several benefits. First, we have a semantic-aware sched-
uler, which is independent of the used model of concurrency but bound to the language semantics

4The data exchanged during the execution of a step is not displayed in Figure 2.10 but it uses the same links
and ports as (1) in charge of computing the next execution step. This is also the case for all figures in this
document.

54 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

Figure 2.11: Architecture for model-checking.

through the STR interface. The scheduler appears explicitly in our architecture and is configured
by a scheduling policy to adapt to the application or domain needs.

Second, this scheduler respects the semantics of the language such that it cannot break the
language atomicity. For instance, for UML, it will respect the Run-to-Completion step semantics,
which assumes that the next event cannot be dispatched until the processing of the last event has
finished. The scheduler also must trust that the language semantics will release control and not
execute infinitely. The trust is delegated to the language designer (i.e., the engineer in charge of
the language semantics implementation), who is supposed to know what to do, and not to the
application developer or to the underlying platform developer (as is usually the case). Third,
in contrast to RTOS schedulers that mix both the scheduler and the main execution loop, we
decouple these two components to make the scheduler a reusable and controllable component for
the verification phase.

Initial Model-checking Approach

Figure 2.11 shows how model-checking is usually applied to the design model when an execution
engine for the design language is available, as in [14]. In contrast to runtime execution, the
system must be closed by an abstraction of the actual environment for formal verification. This
abstraction is modeled as different concurrent Environment Execution Units (EEUs), which are
executed by the same language semantics component. These execution units are asynchronously
composed with the system execution units. The model-checker is here directly connected to the
language semantics implementation. For each configuration returned by the execution engine,
it gets all possible execution steps. As a result, the model-checker explores all possible execu-
tion paths and gets the whole model state-space. However, in industrial systems, this can lead
to state-space explosion especially due to the interleaving of events coming from the environ-
ment. To avoid the state-space explosion, some approaches aim at using compositional model
checking [129] or smart environment generations [130] but it may also require considering some
high-level hypotheses.

Model-checking with Filtering

Introducing the reactive hypothesis is one strategy used to reduce the interleaving of events
coming from the environment. This hypothesis, initially considered for synchronous languages
[131], assumes that the system execution is infinitely faster than the environment reactions. This
means that if the system has some possible execution steps, one of them must be executed, else
an execution step of the environment has to be taken. Therefore, the response of the system to
any given environment stimuli is not interleaved with other environment events.

From a practical point of view, the reactive hypothesis acts as a filter on available actions. The
software architecture presented in Figure 2.12 can be used to consider the reactive hypothesis for
model-checking purposes. In Figure 2.12, our filter operator is introduced in between the language
semantics implementation and the model-checker. This filter is configured by a filtering policy

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 55

Figure 2.12: Architecture for model-checking with filtering.

Figure 2.13: Architecture for model-checking with the scheduler in the verification loop.

that specifies which execution steps should be filtered. For instance, to enforce the reactive
hypothesis, the filtering policy has to select an execution step of the system or, if none exists,
an execution step of the environment. The reactive hypothesis is an instance of the filtering
policy. Nevertheless, the architecture presented is more general, allowing any filtering policy.
For instance, another filtering policy might be used to remove actions that cause overflow on
fixed-size message queues.

Definition 2.5.2. The model-checking architecture with filtering is formally defined in the follow-
ing way:

def model checking with filtering

(sys_and_env : STR C A)

(filtering_policy : FilteringPolicy C A S)

: STR (C × S) (S × A) :=

filter C A S sys_and_env filtering_policy

In all formal definitions until the end of the section, these definitions give the resulting STR
that is controlled by the model-checker.

Model-checking with the Scheduler in the Verification Loop

This section describes how to take into account scheduling in the verification loop. This is
one of the main novelties introduced in this manuscript. Considering such a platform-specific
aspect during the model-checking phase enables to remove some execution paths, from the model
state-space, that are never executed at runtime due to scheduling choices.

As mentioned in section 2.5.2, an abstraction of the real environment is required to perform
formal verification. The initial reflex to include the scheduler in the verification loop would be to

56 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

manually extend the scheduling policy so that the scheduler can choose arbitrarily among both
the system and the environment execution steps. However, this simplistic approach introduces an
environment-abstraction-induced interference in the scheduling because this provides an ordering
of the system execution steps potentially different from the actual runtime execution ordering.

A better solution is simply to exclude the environment execution steps from the schedul-
ing choice. We do not want to schedule the environment especially because of its intrinsic
non-determinism and because we usually do not know how to schedule environment steps (i.e.,
according to which scheduling policy?). This is the reason why the scheduler has simply to
forward all environment execution steps and chooses one from the system execution steps. This
solution is described in Figure 2.13. This software architecture presents how to compose the
system, the scheduler, and the environment abstraction in a modular way for model-checking
purposes.

This architecture relies on our scheduling operator. Its selector function enables the schedul-
ing only on steps coming from SEUs. All possible system steps are then processed by the sched-
uler, which selects one of them according to the chosen scheduling policy. The selected SystemStep
is then merged with all possible EnvironmentSteps before being sent to the model-checker either
directly or via a filter component (e.g., to enforce the reactive hypothesis).

Definition 2.5.3. The model-checking architecture with the scheduler in the loop is formally
defined in the following way:

def model checking with scheduling

(S1 S2 : Type)

(sys_and_env : STR C A)

(scheduling_policy : SchedulingPolicy C A S1)

(filtering_policy : FilteringPolicy

(C×S1) (S1×A) S2)

: STR ((C×S1)×S2) (S2×(S1×A)) :=

filter (C×S1) (S1×A) S2
(scheduler C A S1 sys_and_env scheduling_policy)

filtering_policy

To ensure reproducible executions in model-checking, the scheduling policy should be deter-
ministic i.e., given a set of possible execution steps, a given configuration, and a given scheduling
state, the scheduler must always select the same execution step. This does not contradict the fact
that model execution can have non-determinism. However, a deterministic scheduler is required,
for model-checking, to solve the system non-determinism while forwarding the environment non-
determinism to the model-checker. Even a random scheduling policy is deterministic if the state
of the random-number generator algorithm is saved in the execution state of the scheduling pol-
icy. At each step, this state can be restored such that the random-number generator returns a
deterministic number (see rand r function of C programming language).

This approach for model verification offers a modular way to compose the system, the sched-
uler, and the environment with two operators: a scheduler and a filter (e.g., for reactive hypothesis
enforcement).

The software architecture considers the scheduler for the verification phase and thus reduces
the gap between runtime execution and model verification. It also improves model-checking
performance by avoiding exploring some execution paths, which are impossible due to the choice
of the scheduling policy. However, this consideration also has a counterpart. The verification
performed is not valid anymore with other kinds of scheduling policies. The execution engine
should be deployed with the same scheduling policy as the one used during the verification phase.
Otherwise, the correctness of the model behavior would not be ensured. Another limitation is

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 57

that the environment execution may interfere with the system execution because both system and
environment execution units share the same computing resources. As a result, the environment
execution may alter the execution state of the system (e.g., in the case of dangling memory
pointers).

Model-checking with decoupled Environment

To address these interference problems, we introduce a second concurrent language semantics
(language semantics (env)), running on the same processor (i.e., not in a distributed way), that
only interprets the environment abstraction. Such decoupling makes it possible to easily connect
different environment abstractions to the system execution by only replacing the environment
execution runtime. This can also be interesting for isolating each execution in separate memory
areas to preserve the integrity of their execution states. This software architecture is illustrated
in Figure 2.14. The environment abstraction needs to be composed asynchronously with the
scheduled system semantics produced by the scheduler to obtain the closed model needed by
model-checking algorithms. This task, which cannot be made anymore by the language seman-
tics, is performed by the asynchronous composition component that provides an implementation
of our asynchronous composition operator. A filter can then be used to filter some actions and
enforce some hypotheses (e.g., the reactive hypothesis) on the STR provided by the asynchronous
composition. This setup is finally controlled by a model-checker that performs exhaustive verifi-
cation on the whole model state-space.

Definition 2.5.4. The model-checking architecture with the environment model decoupled from
the system model is formally defined in the following way:

def model checking with decoupled env

(C1 C2 A1 A2 S1 S2 : Type)

(system : STR C1 A1)

(environment : STR C2 A2)

(scheduling_policy : SchedulingPolicy C1 A1 S1)

(filtering_policy : FilteringPolicy

((C1×S1)×C2) ((S1×A1) ⊕ A2) S2)

: STR (((C1×S1)×C2)×S2) (S2×((S1×A1) ⊕ A2)) :=

filter ((C1 × S1) × C2) ((S1×A1) ⊕ A2) S2
((scheduler C1 A1 S1 system scheduling_policy)

⊗a environment)

filtering_policy

Moreover, environment execution units need to exchange data with system execution units.
For this purpose, the I/O ports of both language semantics are connected to bind the environment
outputs to the system inputs and the system outputs to the environment inputs. In our software
architecture, the communication is made through shared variables such that runtime data of both
execution engines can be linked together. It may be possible to use different IPC mechanisms
by defining other composition operators, besides the asynchronous composition.

If both system and environment execution units are specified in the same language, lan-
guage semantics (sys) and language semantics (env) can be two instances of the same language
semantics implementation.

However, it is also possible to specify environment execution units in a different language
thus producing a heterogeneous model execution.

This would be like the Ptolemy directors [132], with the added constraint of defining a data
marshaling strategy between the two languages.

58 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

Figure 2.14: Architecture for model-checking with the scheduler in the verification loop and
decoupled environment.

To sum up, this work presents a modular software architecture that can be used to compose
the system, the scheduling, and the environment for both runtime execution and model-checking.
This composition uses three operators to integrate scheduling in the formal verification process.

2.5.3 Illustration on UML

For practical experiments, this approach has been applied, in the context of the PhD of Valentin
Besnard, on a UML model interpreter running a model of a level-crossing controller. These
experiments aim at evaluating our approach for the development of concurrent models from
formal verification to embedded execution.

A Bare-metal Interpreter of UML Models

EMI (Embedded Model Interpreter) is a state-of-the-art model interpreter for UML [62] models
(cf. subsection 2.5.5) that was introduced in [28, 133, 1]. The UML subset supported by EMI can
be represented by class, composite structure, and state machine diagrams. This execution engine
can be deployed on embedded boards (e.g., STM32 discovery) as well as desktop computers.
This tool can also be used for simulation and verification with the open-source model-checker
OBP2[14]. Furthermore, it also supports runtime monitoring of UML [15].

Given that EMI can run on bare-metal (i.e., without OS), this is an appropriate example
where the mapping to the underlying execution platform cannot be made. Indeed, a translational
approach (described in subsection 2.5.1) is not possible because EMI is not running on a software
underlying platform (e.g., VM, OS) but directly on the microcontroller facilities. As a result, EMI
must define its own concurrency and scheduling mechanisms. Three different services are provided
by this execution engine regarding concurrency concerns. (1) EMI relies on a concurrent model
based on green threads to achieve pseudo-parallelism. Indeed, because EMI is usually executed
on mono-core microcontrollers, it cannot use real parallelism. Each green thread is running a
UML active object with its own state machine as behavior. (2) EMI also defines its own IPC

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 59

Figure 2.15: OBP2 graphical interface for simulation and multiverse debugging.

mechanisms to exchange data between UML objects. Each object uses UML signal events to
send data to another object. These events are stored in the event pool of the receiver object
before being processed by its state machine to make progress execution. (3) The scheduler is
implemented using the scheduler operator, presented here, configured with different scheduling
policies (e.g., round-robin, fixed priority scheduling). For both the concurrency model and IPC
mechanisms, EMI relies on standard UML concepts for which the behavior is described in the
UML specification [62]. However, the UML specification does not cover the scheduling aspect.

In practice, EMI offers an operational semantics implementation of the UML semantics and
native implementation of the scheduling semantics. It may also be possible to define an interpreter
to execute the scheduling semantics but for performance purposes, the scheduling semantics (i.e.,
the scheduler and scheduling policies) is here directly described in C, the native implementation
language of the tool. EMI is currently conforming to Figure 2.10 for runtime execution and
to Figure 2.13 for formal verification. Thus, both the environment abstraction and the system
application are executed with the same language semantics. It offers the possibility to put the
scheduler in the verification loop and has an implementation of the reactive hypothesis that can
be applied as a filtering policy.

Considering the Scheduler during Model Debugging. Before formal verification, an essential
step has been to design the UML models for each system. The OBP2 model-checker provides an
implementation of the G∀min∃ unified debugger, presented in section 2.4.

In Figure 2.15 we present a screenshot of the debugger UI instantiated on an UML execution
setup integrating the scheduler. Since the OBP2 debugger is equally based on the STR interface
the addition of the scheduler needed only a decorator for the state-projection function which
adds the scheduling-state (scheduling state = 0 on the right in Figure 2.15) to the current-
configuration view.

60 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

Figure 2.16: Schema of the level-crossing system.

Application to a Case Study

After having described the conceptual solution and its application to EMI, we illustrate our
approach by an experiment on a UML model of a level-crossing controller described in [14]. This
system aims at protecting the passing of a train at the crossing of a road with the railway. The
schema in Figure 2.16 gives a graphical representation of the system. Three sensors (tcEntrance0,
tcEntrance1, tcExit) are placed all along the railway to detect the passing of a train. At the arrival
of a train, the roadSign is switched on and the gate is closed. When the level-crossing is ready,
the railwaySign gives the authorization to the train driver to go on the level-crossing railway
section. When the train has left the level-crossing, the gate opens and the roadSign is switched
off. For this experiment, we design a UML model of this system using 8 active objects that
communicate together with signals. All state machines of these objects have a total of 15 states,
7 pseudo-states, and 22 transitions.

In [14] the authors show that different event pool implementations can be used to change
the event dispatching strategy, which is a semantic variation point in UML. The authors have
used a FifoEventPool strategy that drops ignored events and an OrderedListDeferredEventPool
strategy that defers ignored events such that they can be processed later. In our experiment, we
reuse these two event dispatching strategies to see if scheduling can have an impact on the model
behavior. For this purpose, the two following research questions are used to evaluate our work:

• RQ1: Does the approach enable focusing on relevant design errors and improve model-
checking efficiency?

• RQ2: Does the approach enable helping engineers to choose a scheduling policy and an
event pool strategy in adequation with the system correctness?

For these experiments, we use the OBP2 model-checker to explore the state-space of the
level-crossing model under different setups, search deadlocks, and verify the same four properties
as in [14]:

P1 The gate is closed when the train is on the level-crossing.

P2 The light of the roadSign is active when the train is on the level-crossing.

P3 The gate finally opens after being closed.

P4 The light of the roadSign finally shuts down after being activated.

Our approach does not constrain the use of model-checking tools or the expressivity of prop-
erties. In practice, any ω-regular properties can be verified (e.g., liveness or fairness properties)
if the model-checker provides such facilities.

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 61

Model-checking setup C A D P1 P2 P3 P4
No scheduling 173 276 2 3 3 3 7

Round-robin scheduling 26 25 1 3 3 3 3

Fixed priority scheduling 21 21 0 3 3 3 3

No scheduling with RH 50 54 2 3 3 3 7

Round-robin scheduling with RH 8 7 1 3 3 3 7

Fixed priority scheduling with RH 21 21 0 3 3 3 3

(a) With FifoEventPool strategy

Model-checking setup C A D P1 P2 P3 P4
No scheduling 122 209 0 3 3 3 3

Round-robin scheduling 28 28 0 3 3 3 3

Fixed priority scheduling 21 21 0 3 3 3 3

No scheduling with RH 32 48 0 3 3 3 3

Round-robin scheduling with RH 27 27 0 3 3 3 3

Fixed priority scheduling with RH 21 21 0 3 3 3 3

(b) With OrderedListDeferredEventPool strategy

Table 2.1: Model-checking results with different event pool strategies (with C: the number of con-
figurations, A: the number of transitions, D: the number of deadlocks, and property verification
results).

For formal verification, we consider three different cases of scheduling: “No scheduling” when
the scheduler is not used, “Round-robin scheduling” when the scheduler is used with a round-
robin policy, and “Fixed priority scheduling” when the scheduler is used with a fixed priority
policy. We also want to check the influence of the Reactive Hypothesis (RH) on this case study.

By running a Depth-First Search (DFS) algorithm for state-space exploration, a reachability
algorithm for deadlock detection, and the “nested DFS” algorithm [134] for LTL model-checking,
we collect various results with the OBP2 model-checker on the model executed by EMI. The
Table 2.1a shows the results of our experiments with the FifoEventPool strategy while Table 2.1b
sums up results with the OrderedListDeferredEventPool strategy. For each setup, these tables
give the number of configurations (C) and the number of transitions (A) of the model state-space,
the number of deadlocks (D), and the result of each property verification. Among these results,
we can notice that the first line of each table gives identical results as in [14] because the same
setup is considered. These results also show that including the scheduler in the verification loop
helps to reduce the state-space, tends to reduce the number of deadlocks, and tends to remove
some impossible execution-paths that cause property P4 to fail (RQ1). As expected, the use of the
reactive hypothesis reduces the state-space size because it decreases the number of interleavings
from events coming from the environment (RQ1). These trends have been confirmed by applying
the approach to different UML models. In general, the model state-space is reduced because the
non-determinism of the system execution is solved. However, the scheduling execution state can
differentiate otherwise equivalent configurations.

In the case of this specific level-crossing model, we can observe that the fixed priority schedul-
ing gives better results than the round-robin scheduling (RQ2). This may be explained by the
fact that the fixed priority scheduling enables to better customize priorities among all UML ac-
tive objects. We can also notice that the case with “Round robin scheduling with RH” for the
FifoEventPool strategy has very few states in its model state-space. In fact, the nominal scenario
results in a deadlock, which blocks model execution and causes P4 to be violated. Without the

62 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

reactive hypothesis (“Round robin scheduling”), a similar issue is observed except that the dead-
lock that causes P4 to be violated has been avoided but another deadlock is still there. From
our perspective, it is very good for engineers to notice this issue as soon as the verification phase
(RQ2). To solve the problem, engineers can either change the event dispatching strategy, the
scheduling policy, or both. Moreover, all properties that were verified without scheduling are
also verified with both kinds of scheduling policies.

To sum up, we believe these results bring benefits and interesting feedback for engineers.
Introducing the scheduler in the verification loop ensures that it does not interfere with the be-
havior of the system, if a non-interference proof is missing. Moreover, considering the scheduler
renders the verification procedure more efficient (RQ1). Furthermore, these results bring inter-
esting feedback for engineers to ensure that the right scheduling policy has been chosen and that
the semantic variation points have been appropriately configured (RQ2).

2.5.4 Discussion

This section emphasizes the strengths of our approach, discusses the overhead, and addresses
some current limitations, which points to the need for further research efforts.

Strengths

Our approach hides the language semantics behind the STR interface; thus, the model-checking
core is isolated from the semantics. The OBP2 model-checker is language agnostic, needing only
the STR interface abstraction. Our architecture uses a composable approach that encapsulates
the model-scheduling semantics behind the STR abstraction, which is consumed by the model-
checker. If the language semantics can be defined through the STR interface, arbitrarily complex
concurrency models can be realized. EMI implements the UML semantics in a bare-metal in-
terpreter, its complexity showcases this point. Another strength of our approach is the support
for composing heterogeneous semantics. Composing the EMI-UML interpreter with a scheduler
implemented in C illustrates this point.

It is important to note that our solution does not alternate between the scheduler and the
model steps. The scheduler operates as an inline filter to choose the executable steps during
the execution, which executes the model step updating the scheduler state. This guarantees
atomicity, a strength of our approach.

Second, our approach has been illustrated in the execution of a UML level-crossing model
running on EMI. However, this approach can also be applied to other concurrent languages.
For this purpose, the execution engine of a language must fulfill two conditions. (i) The tool
needs to implement the STR interface such that it can be connected to our operators. (ii) To
separate actions of the system from those of the environment and to define scheduling policies, the
execution engine must provide some introspection capabilities about the content of configurations
and the meaning of transitions. Under these conditions, any execution engine can replicate our
software architecture.

Overhead

By integrating the scheduling our approach can reduce the overall complexity of the verification
problem. However, it needs to be supported by 3 “components”: the model executor, the sched-
uler, and the model-checker. While this approach incurs a high initial tool development cost, due
to its composability, it has an overall systemic benefit, by isolating the problems and ultimately
enabling reuse. The use of EMI-UML language and OBP as off-the-shelf components proves this
point.

2.5. SCHEDULING FOR VERIFICATION AND EXECUTION 63

Furthermore, the model-checking proves that the system-scheduler composition satisfies the
specification. Consequently, it is safe to deploy the system, along with the scheduler, without
modification, which alleviates the need to establish an equivalence relation between the verifi-
cation model and the real execution (which would be necessary in the case of abstract specifi-
cations). This point is proven by our experiment, which shows that it is possible to deploy the
model running on the EMI-UML interpreter and the C schedulers on an STM32 target. Never-
theless, it should be noted that in this study we do not address the scalability of model-checking
in the context of executable specifications. However, we strongly believe that our approach could
be used in combination with automated model abstraction verification setups, such as CEGAR
[135].

Quantitatively our approach does not add additional state-variables, besides the state of the
scheduler, which is also present in other approaches (Section 2.5.5), which consider the scheduler
as a “part” of the model.

Current Limitations

Our approach introduces a semantic-aware scheduler. However, if the language atomicity is
guaranteed at the language level, the system model must ensure that it releases control. Related
to this last point, the use of UML models can still lead to some issues. Indeed, in the action
language used by EMI, nothing prevents the model designer from adding an infinite loop in an
effect of a UML state machine transition, which breaks the assurance that the execution of a
step will always return.

This approach is applied to scheduling policies in the context of embedded critical systems,
such as those integrated into real-time operating systems. However, the timing and schedulability
analysis are seen as orthogonal issues outside the scope of this study, which focuses on the
integration of schedulers in the verification environment.

The environment can be composed with the system using a specialized composition operator,
like Ptolemy directors. This aspect is partially covered in [25]. Nevertheless, running the system
and the environment in a decoupled and heterogeneous way is a challenge out of the scope of this
study. We mention this idea in relation to Figure 2.14 where the system and the environment can
be executed with different language semantics. A heterogeneous execution induces several other
issues like the synchronization and the coordination of both system and environment executions.
Several works in the model-driven engineering community focus on these issues. A dedicated
coordination language like BCOol [136] may help to solve this task.

2.5.5 Related Work

This work focuses on executing and verifying concurrent models using a modular architecture,
nevertheless the literature is rich with proposals addressing similar problems. In the following
we overview some of them. To handle concurrency, various mechanisms have been shown to be
quite efficient in practice, while being completely different from standard OS mechanisms. The
plethora of libraries, languages, and concurrency models available, show the lack of adequacy
between today’s OS thread-based concurrency model and the needs of application developers.
In the context of critical systems, this is shown by the industrial use of: SCADE [115], Simulink
[137], Ptolemy [132], SDL [138], and UML [62] for application development. The microkernel
approaches for OS development (e.g., seL4 success [139]) emphasizes the need for modular OS
design, which can enable a more natural integration of high-level concurrency models as domain-
specific service-libraries. These foster reuse and encourage the development of more appropriate
abstractions going beyond the thread-like parallelism models. Furthermore, the research efforts

64 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

around CSP/occam [140] or Erlang [116] show that language-specific concurrency mechanisms are
more adequate and faster than today’s OS services. As a result, all these concurrent mechanisms
seem more in line with high-level language needs rather than the thread-based concurrency model
of OS.

In the SLE community, the GEMOC Studio [141] provides its own solution for handling the
concurrency of executable DSLs. GEMOC Studio is both a language workbench to design new
DSLs and a modeling workbench to design, execute, and analyze models conforming to these
languages. In [40, 142, 143], the GEMOC team defines a declarative meta-language, called MoC-
CML, to explicitly specify the concurrency concerns of a DSL at the language level. MoCCML
enables specifying the constraints that define how the concurrent control flow of the language will
behave, i.e., which execution paths are possible during model execution. In GEMOC Studio, the
tool TimeSquare [144] is used to enforce these concurrency constraints and enables to observe the
concurrency behavior of a model (e.g., using Visual Constraint Diagrams (VCD)). During model
execution, the choice among the remaining valid execution steps is made by the user through the
“step decider” addon or by the main execution loop of the simulator. In contrast to GEMOC
Studio, our work focuses on defining a modular way to compose the scheduler with the executed
model for both embedded execution and model-checking. For implementing the scheduler, our
approach enables low-level implementations (e.g., in C) but may also accommodate high-level
scheduling DSLs (e.g., MoCCML). In that sense, both works are complementary.

Some related works define explicit schedulers. The work in [145] proposes to slightly mod-
ify the fUML [62] execution model to introduce an explicit scheduler with different possible
scheduling policies. With these updates, fUML execution engines may capture real-time sys-
tems’ execution semantics more precisely. In Real-Time OS (RTOS) (e.g., FreeRTOS [146],
Trampoline [147]), it is also a common practice to define the scheduler as an explicit component.
However, RTOS schedulers usually mix both the scheduling and the main execution loop such
that the call to the scheduler is the last instruction of the main function. All these projects have
explicit schedulers to better capture the language semantics for actual execution, but they do
not consider using such components in model-checking activities.

In terms of formal verification, some model-checkers consider some characteristics of the exe-
cution environment to improve verification performance. In [148], an extension of Java Pathfinder
takes advantage of platform-specific restrictions to reduce memory and time used by state-space
exploration. This work suggests bounding the number of threads that can run in parallel to
the maximum number of threads supported by the execution platform. Some other works [149,
150] suggest using memory-model aware model-checkers by integrating a formal description of
the language memory model (the .NET memory model for [149] and the Java memory model for
[150]) into model-checking tools. This approach especially enables detecting further data-races
by exploring additional reachable states due to the reordering of some instructions. All these
works take into account platform-specific mechanisms to get better verification performance but
none of them puts the scheduler in the verification loop.

Related to the lack of modularity and reusability, some tools focus on modular techniques
to customize model execution and model analysis. The Bogor framework [151, 152] provides
an extensible input language for defining domain-specific constructs and an interface to perform
domain-specific optimizations (e.g., on state-space encoding). Some other approaches rely on
the template semantics technique to customize the semantics encoded in code generators [153]
or in model transformation tools [154, 155] used to obtain analyzable models. In a similar way,
the work in [156] can be used to configure semantic variation points of UML-RT models to
improve the model-checking efficiency. Polyglot [157] provides a way to execute models with
different pluggable semantics for different statechart variants and analyze these models with
Java PathFinder. All these works enable to customize the modeling language semantics but

2.6. CONCLUSION 65

none of them consider the scheduler as a separate and controllable component. In comparison to
these works, our approach proposes a compositional approach for designing a scheduling-aware
verification environment, which is decoupled from the language semantics and can be reused for
different DSLs.

2.5.6 Conclusion

Concurrency concerns are part of the definition of a concurrent language and must be considered
both for model execution and formal verification. We have presented an approach to defining a
modular composition of the system, scheduling, and environment such that the scheduler, used
at runtime, can be integrated into the verification loop.

For runtime execution, the scheduler is controlled by the main execution loop of the execution
engine to schedule the system execution. In this case, the interaction with the actual environment
is made directly through I/O peripherals of the execution platform.

For formal verification, the scheduler can be integrated into the verification loop to reduce
the equivalence problem between what is executed and what is verified. This composition is
made with our asynchronous composition operator and can enforce different hypotheses (e.g.,
the reactive hypothesis). These hypotheses are implemented as filtering policies applying a
partial filtering to the available set of actions. To sum up, this approach makes the scheduler an
explicit and controllable component that can be easily configured by different scheduling policies.
It can be composed with the system and the environment for both execution and verification
activities.

Our approach has been applied to a UML model interpreter, called EMI, that can run on
embedded targets or be connected to the OBP2 model-checker to detect property violations
and concurrency bugs. EMI defines its own model of concurrency based on green threads, its
owned IPC mechanisms, and an explicit scheduler. We have illustrated this approach on a level-
crossing model by showing interesting results. Integrating the scheduler in the verification loop
can help to avoid some bad execution paths that result in property violations or deadlocks. In
the verification phase, our approach gives feedback to engineers about the efficiency of a given
scheduling policy for a particular model. In general, it also contributes to improving verification
performance by reducing the model state-space to explore.

2.6 Conclusion

In this chapter, we have introduced the G∀min∃ SLI. We have shown that this interface is suf-
ficient to implement in a language-agnostic way 5, rather common, operators: filter, scheduler,
interleaved and synchronous composition, and a conversion operator, which lower the SLI in-
terface to a transition relation. The strength of the approach was illustrated through: (1) the
formal specification of a multiverse debugger, a rather complex composite monitor relying on a
model-checker for breakpoint lookup, and (2) the formalization of a novel software architecture,
which enables the modular introduction of the runtime scheduler in the verification setup. These
formalizations show that the G∀min∃ SLI allows the creation of unique non-trivial analysis tools,
of special interest for the diagnosis of executable specifications. The realizability of our approach
was illustrated by presenting EMI, a bare-metal interpreter of UML models implementing the
G∀min∃ SLI, which, when coupled with the OBP2 tool, offers a prototypical implementation of
the formalizations discussed here. The interested reader can refer to:

• [1, 25, 15, 14] for further details related to the EMI UML experiments;

66 CHAPTER 2. THE G∀MIN∃ SEMANTIC LANGUAGE INTERFACE

• [82, 17, 16] for further details on multiverse debugging and AnimUML, another UML
implementation strongly inspired by our formalization;

• [20, 19] for an in-production implementation of the G∀min∃ SLI along with the model-
checking bridge offered by the OBP2 tool (http://www.obpcdl.org).

The following chapter will conclude this manuscript discussing some future research directions
enabled by the contributions discussed in this chapter.

http://www.obpcdl.org

Chapter 3

Conclusion & Perspectives

Contents
3.1 Conclusion . 67

3.2 Perspectives . 68

3.1 Conclusion

In the last ten years, my research was oriented toward understanding the interface between the se-
mantics of executable specification languages and the tools needed for behavioral analysis during
the diagnosis process. One of the high-level objectives behind my research efforts is render-
ing the design of executable specifications as fun and productive as programming in a dynamic
language environment while ensuring formal guarantees of the analysis results. Amongst the
main challenges, we note the large number of domain-specific executable specification languages,
which need behavioral analysis tools. We observe a high reliance on transformation approaches
that leads to semantic duplication and brittle architectures, sometimes difficult to maintain.
This points to the need for an in-depth architectural rethinking of the connection between the
executable-specification languages and the behavior analysis tools.

Our vision is reminiscent of the seminal work [74] of A. Kishon, P. Hudak, and C. Consel that
introduced monitoring semantics, a model which captures the monitoring activity found in some
program analysis tools, such as debuggers, and profilers. However, to obtain reusable monitors
we strive for a higher degree of independence between the language semantics and the monitors,
which are seen as semantics dependent on the subject language and not only as an extension
of the subject language semantics. From this perspective, the G∀min∃ SLI, presented in this
manuscript, offers a generic API interface that mediates the exchanges between the language and
its monitors. The G∀min∃ approach can be seen as a generalization of the monitoring semantics
that accommodates well the constraints imposed by the executable specification languages. The
versatility of our approach was illustrated, in this manuscript, through the formalization of a
multiverse debugger monitor and the formal specification of a novel software architecture that
brings the runtime scheduler into the verification loop, without requiring model transformations.
The realizability of our vision was sketched through the analysis of an illustrative model executed
on the EMI bare metal UML interpreter, which along with the OBP2 tool implements the
formalization discussed in chapter 2.

67

68 CHAPTER 3. CONCLUSION & PERSPECTIVES

We have significantly improved the state-of-the-art paving the way towards a modular and
composable approach for building executable specification analysis tools. Besides the respective
scientific papers, our contributions are crystallized in the development of 3 significant open-source
research prototypes, amongst which OBP2 – a language agnostic model-checking monitor – is
currently commercialized with two products, PROCESS and STUDIO, from PragmaDEV.

We are grateful for the financial support offered by 12 research grants that allowed us to
collaborate with numerous researchers, practitioners, postdoctoral fellows, PhD candidates, and
research engineers, all of whom significantly contributed to the realization of our scientific vision.
The next section offers some insights on a broader vision rich in open research questions, which,
hopefully, will fuel the community for the next decade.

3.2 Perspectives

This chapter overviews some perspectives of my work, focusing on the main directions I would
like to investigate during the next few years. The discussion is deliberately focused on rather
short-term research opportunities drawn directly from our previous experiences, in the scope of
this manuscript. Moreover, we depart from the hypothesis that the G∀min∃ SLI is a fundamen-
tal building block that will positively contribute to each proposal. I understand the potential
amount of work underlying each proposition. However, the creation of a sufficient number of col-
laborations with PhD students, and other research groups along with a sustained dissemination
effort will pave the road towards even more ambitious endeavors built upon some of the bricks
discussed in the following paragraphs.

Model-based System Engineering is at the heart of the development process in many compa-
nies. However, most of the models used today (even if they are standardized) are often informal.
In this direction, in 2014 the INCOSE organization predicted (within 10 years - 2025) the adop-
tion of formal system modeling techniques at all stages of the development cycle (specification,
analysis, design, verification) [66]. The integration of formal models mainly promises an increase
in confidence in the designed systems while decreasing the costs associated with the production
processes (especially in terms of certification). Despite all this will, a set of technical factors is
currently slowing down this movement toward the extensive use of the formal. One of these fac-
tors is heterogeneity. It appears to be due not only to the intrinsic multidisciplinarity of systems
but also, in design, to the abstractions necessary to master complexity. This results in the emer-
gence of many languages covering different aspects of the design space (computation, control,
performance, dynamics). This problem of language heterogeneity is not new, it has been studied
in the literature at different levels of abstraction and in different application contexts [158, 159,
160, 161]. Even if these efforts bring some answers to the problem of integrating heterogeneous
executable models, the use of dedicated (user-defined) formalisms and the need for abstraction
in system specifications still pose many difficulties in terms of runtime analysis, notably in terms
of migrating analysis tools from one formalism to another.

The theme that I wish to develop is part of the problem of integrating languages and tools,
which facilitates both the formalization of languages, the search for efficient analysis algorithms,
and the adaptation to industrial constraints. The initial observation that motivates our work is
that, in the context of critical system design, the ”software languages” community seems to be
divided by two divergent requirements: the formalization of semantics to allow formal analyses
and the implementation of efficient execution environments. In the first case, we find software
frameworks such as kframework[101] and gemoc studio[102] offering a rich set of tools dedicated
to runtime formalization and analysis. However, their runtime performance is limited. Moreover,
users are forced to reformulate the semantics through dedicated languages, which increases the

3.2. PERSPECTIVES 69

development cost and significantly limits industrial adoption. In the second case, the industry
invests heavily in the development of powerful runtime environments that, unfortunately, lack
support for formal reasoning. This situation leads to excessive use of model transformation
approaches which, in addition to the high cost, increases the risk of semantic deviations between
the real execution and that seen by the analysis tools. The model-checking community is probably
the most affected by this dichotomy. On the one hand, the industry needs verification tools for
”real” languages. On the other hand, the scientific community is pushing for the use of very
constrained languages, to simplify the verification problem.

Thus, the main research question that arises is: ”Would it be possible to compose in a modular
way the existing execution environments (developed by the industry) with generic analysis tools?”
Lately, the ”model-checking” community seems to be giving a positive answer to this question
[103, 104, 1]. However, the problem is more general and covers the set of tools needed to diagnose
executable systems throughout their life cycles.

My future work will be oriented toward these aspects. More specifically, I am interested in
further generalizing the G∀min∃ language monitoring approach in the context of specification-
driven software engineering. I strongly believe that the next paradigm shift in software engineer-
ing is offered by a specification-driven approach, which explicitly separates the conceptual and
technological domains.The reification of the semantic interface at the language level, discussed
in chapter 2, offers multiple research opportunities, which will contribute to the realization of
this vision. In the following we emphasize seven promising directions:

• Temporal breakpoints. During the verification phase, temporal logic proved to be the best
tool for reasoning about the concurrent and highly non-deterministic specification. With
the invention of the multiverse debugging [81], geared toward actor-based formalisms or
abstract behavioral specifications [82], the debugger becomes exposed to the difficulties of
reasoning about multiple worlds (execution paths) evolving independently and sometimes
intersecting, that potentially hide unwanted emerging behaviors. Thus it becomes evident
to us that the debugger language should be extended to allow ”temporal logic” reasoning.
Recently, Maximilian Willembrinck et al. in [162] made the first in this direction introduc-
ing time-traveling queries as a solution for collecting user-defined execution data. However,
when confronted with multiple execution histories, this approach, which only embodies user-
defined collecting semantics, fails to exhibit the time-dependent, causal connections that
are offered by temporal logic. In subsection 2.4.2 we have shown a modular architecture for
the Finder operator, which can easily extend the expressivity of the breakpoint conditions
to temporal logic. This extension can be gradual, encoding safety properties as regular
expressions over the execution traces, or both safety and liveness properties as either linear
temporal logic or buchi automata. While through our approach this extension is trivial,
numerous research efforts, in the context of model-checking, show that it can be difficult to
correctly write temporal logic specifications [163]. It will be interesting to see if patterns
emerge when using temporal logic specifications during debugging. Furthermore, we are
forced to observe that currently breakpoint conditions are rather language-specific (even
though some similarities exist), offering higher expressivity through temporal breakpoint
could benefit from the existence of the IEEE Standard for Property Specification Language
(PSL) [164]. For the optimists, the synergy between debug and temporal logic might even
offer terrain for cross-fertilization between the software and hardware design worlds.

• Scheduling-aware functional verification. Task scheduling is a resource allocation process
that is typically studied independently from functional verification. Even when the two pro-
cesses meet, their joint analysis leads to ad-hoc or rather cumbersome setups, as discussed
in section 2.5. Our compositional architecture, presented in section 2.5, has the potential

70 CHAPTER 3. CONCLUSION & PERSPECTIVES

of improving the scalability of functional verification while reducing the gap between the
verification and the execution. In this context, it will be interesting to study the integration
between a modular verification tool, such as OBP2, with a scheduling analysis tool, such
as Cheddar [165]. Even if, due to the inherent state-space explosion problem, an exhaus-
tive joint analysis might not be scalable, we strongly believe that such a setup can greatly
improve the coverage of the functional verification phase through partial explorations of
the state-space pruned by the scheduler. From this perspective, the scheduling-aware func-
tional verification approach that we pursue here can be seen as a complementary tool to
fuzz testing [166] for identifying security vulnerabilities in mission-critical applications.

• Fully-verified Language Monitors. As stated previously, the G∀min∃ formalization is a live
formalization effort that crystalizes almost ten years of exploratory research, and which con-
tinues to evolve beyond the scope of this document. For instance, recently, in the context
of integration of OBP2 verification core in the SDL modeling environment industrialized by
PragmaDEV, we have discovered a more elegant way to handle the dependencies between
SLI modules, which alleviates the need for the rather cumbersome collect function of the
interface. The main idea is to provide a truly dependent SLI interface (where required)
that is parameterized statically with the evaluation function of the subject language and
dynamically with subject-language execution steps. The first positive consequence of this
novel approach is a cleaner and more robust synchronous composition operator, that allows
the dependent SLI to compute internally the available actions. The downside is a slower
synchronization operator, which requires language-level caching (on the dependent SLI) to
retrieve the previous performances 1. We are currently investigating the real-world cost of
this ”more elegant” formalization. Nevertheless, we strongly believe that our formalization
finely captures the essence of the subject-language semantics needed for modularly defining
practically useful language monitors, as illustrated in section 2.4 and in section 2.5. The
next logical challenge, with respect to G∀min∃ SLI, is clearly stating the hypotheses (for-
malized in the dependent type theory of the lean prover [100]) needed to prove that our
operators are sound and that their composition remains sound. The release of lean 4 chal-
lenges the boundary between theorem proving and programming [167] and will allow us to
step further. We plan to start a project seeking to bridge the gap between our specification
and its implementation, an attempt that will result in a fully verified language-agnostic
toolkit for executable specification monitoring. Besides the technical proof-engineering
challenge [168], a real challenge hides behind the performance penalty incurred by the use
of a proof language. Previous attempts to fully formalize an LTL model-checker [169] and
a timed automata model-checker [170], using Isabelle/HOL [171] are an order of magnitude
slower than their non-formalized counterparts.

• Hardware model-checkers. Focus on using hardware platforms dedicated to the implemen-
tation of efficient verification algorithms. This axis emerges from the PhD thesis of Emilien
Fournier, who has shown impressive results at the algorithmic level [22, 23, 24]. However,
further work is necessary to explore the trade-offs related to the implementation of the
model. At this level the problem can be seen from 3 perspectives: (1) The model semantics
is mapped in hardware. In this case, the hardware synthesis time might be prohibitive, if it
is not amortized. However, this approach can be beneficial for the verification of circuits, for
which only the property and the environment model for the circuit needs to be synthesized.
(2) The model is given by software semantics. This approach conceptually allows maximiz-
ing the reuse, as all existing ”software” semantics could be used. However, it seems difficult

1NB. For model-checking the evaluation function of the subject language is called multiple times for each state
(and there are a lot of states) to decide if the available actions in the property language are enabled.

3.2. PERSPECTIVES 71

for a pure software implementation to match the bandwidth of the verification core, which
processes one word per cycle. Nevertheless, while the current system-on-chip (SoC) plat-
forms might not be adequate, we believe that a capacity-level analysis should be performed
to better characterize the performances needed for a specialized SoC. (3) The model is given
by hardware or hybrid software/hardware semantics. On this axis, it will be interesting to
further investigate the opportunities offered by hardware acceleration for implementing the
semantics of certain specification languages, which have features that are hard to compute
in software but could benefit from the fine-grained parallelism offered by circuits. This di-
rection might seem daunting, but, our work [24] and [172, 173] show very promising results
for the rather simplistic specification language DVE, used by the BEEM model-checking
benchmark [174]. Moreover, currently, we are not aware of any systematic study focusing
on designing specialized circuits for implementing other executable-specification languages.
Besides these semantics considerations, we emphasize that the hardware model-checker field
is at its infancy and that the promising results (both in terms of states/second and power
consumption) shown were obtained on reconfigurable architectures, Xilinx FPGAs to be
precise2. Thus, we dare to ask, what can be the performance gain on an application-specific
integrated circuit (ASIC) solution?

• Open and dynamic abstraction-refinement environments should ease the use of abstractions
and enable the creation of heterogeneous refinement mappings. Abstraction and refinement
are inevitable for managing the complexity, however, their usage in an industrial context
remains limited and requires the use of specialized development environments. From our
perspective, these tools can be made available to a larger community through the design of
language-independent abstractions and the possibility of creating heterogeneous refinement
mappings. For instance, zone-based time representation is the core abstraction used to in-
tegrate time constraints in specification languages based on timed automata, like Uppaal
[175] and Fiacre [88]. Numerous research efforts are focused on transforming a wide range
of domain-specific languages into these formalisms for verification [176, 177, 178, 179, 180,
181]. In this context, we strongly believe that capturing the essence of this time abstraction
into a reusable semantic component will render this abstraction more accessible to DSL
designers. Currently, in the ONEWAY project, we are investigating the design of such a
component for allowing real-valued time reasoning in domain-specific business processes
targeting the planning phase of product development. Before achieving our goal of a lan-
guage agnostic operator, the next steps will focus on understanding the dialog between this
abstraction and the subject language. Besides the time representation, other widely used
abstractions, such as channel [88] and/or clock synchronization [108, 40], could be offered as
modules to ease both ES language design and analysis. Moreover, recently, with Matthias
Pasquier we have shown that the G∀min∃ SLI allows the language-agnostic implementa-
tion of many under-approximations, without impacting the subject language semantics [41].
Furthermore, we are planning to investigate the role that the G∀min∃ evaluate function
plays for defining heterogeneous refinement mappings between formally-specified digital
twins and the underlying running system. As a side-note, the initial motivation for intro-
ducing an evaluate function over the execution steps came from our work on MoCCML
[40], which required reasoning on both the state and the clocks labelling the transitions.
State/event based model-checking introduced in [182] formalizes the approach. Temporal
logic of actions [183] reifies a similar notion as a step (transition) predicate, named the
action. The G∀min∃ evaluate captures the essence of these seminal works through the
enabled actions function and a simple predicate inspired by the eval function [184]. Based

2https://www.xilinx.com/products/silicon-devices/fpga.html

72 CHAPTER 3. CONCLUSION & PERSPECTIVES

on this observation, the key insight is that this step evaluation predicate must operate
from outside the semantics, from where it can see the steps (source, action, target). It will
be interesting to study the impact of a true step-based generalization of the original eval
[184], forced to look from the outside, on the behavioral reflection in dynamic programming
languages.

• Creating a moldable diagnosis cockpit. In the literature and during our experimentations
we have encountered other highly reusable monitoring components, besides the operators
described in section 2.3, that enable further specialization of the language monitors. For
instance, the LTSmin [104] introduces partial-order reduction, reordering, and caching as
PINS2PINS wrappers (which are equivalent to our language monitors). In several exper-
iments, we have found that a folding operator allows the advantageous hiding of parts of
the state-space while preserving observability. In this context, the main idea is to define a
specialized domain-specific language for designing the diagnosis setup in accordance with
the diagnosis engineer’s requirements. We can imagine a graphical DSL that based on
specifications similar to the ones shown in section 2.5 (see for instance Figure 2.13, and
Figure 2.14) will allow the derivation of the required tool. Considering this idea in con-
junction with the need for multiple abstraction strategies leads to a monitor-specification
language and/or diagnosis environment that would allow the dynamic adaptation of the
monitoring setup to suit the diagnostician requirements during the analysis process itself.
In this context, the role of the monitor-specification environment could be extended to
derive and provide proof of the soundness of the monitoring setup, along with the analysis
results.

• Algebraic specifications of complex algorithms. Isolating the execution controller from both
the language semantics and the monitors brings modularity and reduces the need for tem-
poral reasoning at the operator level. In the context of functional programming languages,
similar isolation led to the discovery of recursion schemes [185]. More recently, in [186], the
authors relied on a similar idea (open recursive style) to propose an elegant architecture
for the abstract interpretation of higher-order programming languages. In our context, the
reachability execution controller explores the semantics exposed by the SLI, integrating
the analysis results in the monitor’s state. In his PhD manuscript [93], Emilien Fournier
proposed the first generic specification of reachability that subsumes a large class of reacha-
bility algorithm implementations, ranging from breadth-first search, and depth-first search
to partial and symbolic implementations. One surprising point was that the specification
naturally conformed to the G∀min∃ SLI interface, which allowed the use of OBP2 to debug
and illustrate the specification behavior. The keys to achieving this result were embracing
non-determinism during algorithm design (delaying choice), and a pure dataflow mind-
set (limit control flow to a minimum) [187]. Preliminary experimentation, following these
guidelines, allowed us to obtain a fine-grain model-checker architecture, which further de-
composes the traditional buchi model-checking algorithms into a model-checker monitor
executed by a simple execution controller. Thus, the model-checker monitor behaves simi-
larly to a scheduler, which linearizes the exhaustive exploration of the semantics. Further
investigation will be needed to understand the theoretical and practical implications of
these design decisions. Nevertheless, we believe that the algebraic-like specification will
greatly simplify the correctness proofs thus providing a strong implementation baseline.

More generally, our theme seeks to identify and apply a systematic approach, guided by the
needs of execution analysis for the development and use of system specification languages. At
the Lab-STICC laboratory level, this theme is one of the main development axes of the P4S

3.2. PERSPECTIVES 73

team. This axis addresses the problem of language heterogeneity through an approach based on
the federation of executable formal models. At the national level, our theme is at the confluence
of several working groups of the GDR GPL (AFSEC: Formal Approaches to Embedded Commu-
nicating Systems, Debugging, IDM: Model Driven Engineering, IE: Requirements Engineering)
and the GDR SOC2 (Methods and Tools). Internationally, our theme is clearly identified in
the Model Driven Engineering (MODELS) community and the Software Language Engineering
(SLE) community. Our unique and ambitious proposal is part of this dynamic, aiming at a
wide adoption of formal models. Our future work, on language-language and language-tool inte-
gration, seeks to bring composable and sustainable solutions to a key scientific problem for the
design of critical embedded systems.

Bibliography

Publications by the Author in International Journals

[1] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “Unified verification and monitoring of executable UML specifications”. In: Soft-
ware and Systems Modeling 20.6 (Dec. 2021), pp. 1825–1855. issn: 1619-1374. doi: 10.
1007/s10270-021-00923-9. url: https://doi.org/10.1007/s10270-021-00923-9.

[2] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “Modular Scheduling for Verification & Embedded Execution.” In: submitted
to Software Testing, Verification and Reliability (2022).

[3] Ciprian Teodorov, Luka Le Roux, Zoé Drey, and Philippe Dhaussy. “Past-Free[ze] reach-
ability analysis: reaching further with DAG-directed exhaustive state-space analysis”. In:
Software Testing, Verification and Reliability 26.7 (2016), pp. 516–542. doi: https://
doi.org/10.1002/stvr.1611. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/stvr.1611. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
stvr.1611.

[4] Ciprian Teodorov, Philippe Dhaussy, and Luka Le Roux. “Environment-driven reachabil-
ity for timed systems”. In: International Journal on Software Tools for Technology Transfer
19.2 (Apr. 2017), pp. 229–245. issn: 1433-2787. doi: 10.1007/s10009-015-0401-2. url:
https://doi.org/10.1007/s10009-015-0401-2.

[5] Lamia Allal, Ghalem Belalem, Philippe Dhaussy, and Ciprian Teodorov. “Sequential and
Parallel Algorithms for the State Space Exploration”. In: Cybern. Inf. Technol. 16.1 (Mar.
2016), pp. 3–18. issn: 1314-4081. doi: 10.1515/cait-2016-0001. url: https://doi.
org/10.1515/cait-2016-0001.

[6] Lamia Allal, Ghalem Belalem, Philippe Dhaussy, and Ciprian Teodorov. “A Parallel Algo-
rithm for the State Space Exploration”. In: Scalable Computing: Practice and Experience
17.2 (2016), pp. 129–142. url: http://www.scpe.org/index.php/scpe/article/view/
1161.

[7] Lamia Allal, Ghalem Belalem, Philippe Dhaussy, and Ciprian Teodorov. “Distributed
algorithm to fight the state explosion problem”. In: International Journal of Internet
Technology and Secured Transactions 8.3 (2018), pp. 398–411. doi: 10.1504/IJITST.
2018.093664. eprint: https://www.inderscienceonline.com/doi/pdf/10.1504/

IJITST.2018.093664. url: https://www.inderscienceonline.com/doi/abs/10.
1504/IJITST.2018.093664.

75

https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/https://doi.org/10.1002/stvr.1611
https://doi.org/https://doi.org/10.1002/stvr.1611
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1611
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1611
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1611
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1611
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1007/s10009-015-0401-2
https://doi.org/10.1515/cait-2016-0001
https://doi.org/10.1515/cait-2016-0001
https://doi.org/10.1515/cait-2016-0001
http://www.scpe.org/index.php/scpe/article/view/1161
http://www.scpe.org/index.php/scpe/article/view/1161
https://doi.org/10.1504/IJITST.2018.093664
https://doi.org/10.1504/IJITST.2018.093664
https://www.inderscienceonline.com/doi/pdf/10.1504/IJITST.2018.093664
https://www.inderscienceonline.com/doi/pdf/10.1504/IJITST.2018.093664
https://www.inderscienceonline.com/doi/abs/10.1504/IJITST.2018.093664
https://www.inderscienceonline.com/doi/abs/10.1504/IJITST.2018.093664

76 CHAPTER 3. BIBLIOGRAPHY

[8] Löıc Lagadec, Ciprian Teodorov, and Jean-Christophe Le Lann.“Model-Driven Toolset for
Embedded Reconfigurable Cores”. In: Sci. Comput. Program. 96.P1 (Dec. 2014), pp. 156–
174. issn: 0167-6423. doi: 10.1016/j.scico.2014.02.015. url: https://doi.org/10.
1016/j.scico.2014.02.015.

[9] Ciprian Teodorov and Löıc Lagadec. “Model-driven physical-design automation for FP-
GAs: fast prototyping and legacy reuse”. In: Software: Practice and Experience 44.4
(2014), pp. 455–482. doi: https : / / doi . org / 10 . 1002 / spe . 2190. eprint: https :

/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / spe . 2190. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/spe.2190.

[10] Catherine Dezan, Ciprian Teodorov, Löıc Lagadec, Michael Leuchtenburg, Teng Wang,
Pritish Narayanan, and Andras Moritz. “Towards a framework for designing applications
onto hybrid nano/CMOS fabrics”. In: Microelectronics Journal 40.4 (2009). European
Nano Systems (ENS 2007) International Conference on Superlattices, Nanostructures and
Nanodevices (ICSNN 2008), pp. 656–664. issn: 0026-2692. doi: https : / / doi . org /

10.1016/j.mejo.2008.07.072. url: https://www.sciencedirect.com/science/
article/pii/S0026269208004382.

Publications by the Author in International Conferences

[11] Zoé Drey and Ciprian Teodorov.“Object-Oriented Design Pattern for DSL Program Moni-
toring”. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2016. Amsterdam, Netherlands: Association for Computing
Machinery, 2016, pp. 70–83. isbn: 9781450344470. doi: 10.1145/2997364.2997373. url:
https://doi.org/10.1145/2997364.2997373.

[12] Tithnara Nicolas Sun, Bastien Drouot, Fahad Rafique Golra, Joël Champeau, Sylvain
Guérin, Luka Le Roux, Raúl Mazo, Ciprian Teodorov, Lionel Van Aertryck, and Bernard
L’Hostis. “A Domain-specific Modeling Framework for Attack Surface Modeling”. In:
Proceedings of the 6th International Conference on Information Systems Security and
Privacy, ICISSP 2020, Valletta, Malta, February 25-27, 2020. Ed. by Steven Furnell,
Paolo Mori, Edgar R. Weippl, and Olivier Camp. SCITEPRESS, 2020, pp. 341–348. doi:
10.5220/0008916203410348. url: https://doi.org/10.5220/0008916203410348.

[13] Tithnara Nicolas Sun, Ciprian Teodorov, and Luka Le Roux. “Operational Design for Ad-
vanced Persistent Threats”. In: Proceedings of the 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems: Companion Proceedings. New
York, NY, USA: Association for Computing Machinery, 2020. isbn: 9781450381352. url:
https://doi.org/10.1145/3417990.3420044.

[14] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe
Dhaussy. “Unified LTL Verification and Embedded Execution of UML Models”. In: Pro-
ceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. MODELS’18. Copenhagen, Denmark: Association for Computing
Machinery, 2018, pp. 112–122. isbn: 9781450349499. doi: 10.1145/3239372.3239395.
url: https://doi.org/10.1145/3239372.3239395.

[15] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “Verifying and Monitoring UML Models with Observer Automata: A
Transformation-Free Approach”. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS’19). 2019, pp. 161–171.
doi: 10.1109/MODELS.2019.000-5.

https://doi.org/10.1016/j.scico.2014.02.015
https://doi.org/10.1016/j.scico.2014.02.015
https://doi.org/10.1016/j.scico.2014.02.015
https://doi.org/https://doi.org/10.1002/spe.2190
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2190
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2190
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2190
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2190
https://doi.org/https://doi.org/10.1016/j.mejo.2008.07.072
https://doi.org/https://doi.org/10.1016/j.mejo.2008.07.072
https://www.sciencedirect.com/science/article/pii/S0026269208004382
https://www.sciencedirect.com/science/article/pii/S0026269208004382
https://doi.org/10.1145/2997364.2997373
https://doi.org/10.1145/2997364.2997373
https://doi.org/10.5220/0008916203410348
https://doi.org/10.5220/0008916203410348
https://doi.org/10.1145/3417990.3420044
https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1109/MODELS.2019.000-5

PUBLICATIONS BY THE AUTHOR IN INTERNATIONAL CONFERENCES 77

[16] Frédéric Jouault, Valentin Besnard, Théo Le Calvar, Ciprian Teodorov, Matthias Brun,
and Jerome Delatour. “Designing, Animating, and Verifying Partial UML Models”. In:
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems. MODELS ’20. Virtual Event, Canada: Association for
Computing Machinery, 2020, pp. 211–217. isbn: 9781450370196. doi: 10.1145/3365438.
3410967. url: https://doi.org/10.1145/3365438.3410967.

[17] Frédéric Jouault, Valentin Sebille, Valentin Besnard, Théo Le Calvar, Ciprian Teodorov,
Matthias Brun, and Jerome Delatour. “AnimUML as a UML Modeling and Verifica-
tion Teaching Tool”. In: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 2021, pp. 615–619. doi:
10.1109/MODELS-C53483.2021.00094.

[18] Fahad Rafique Golra, Joël Champeau, and Ciprian Teodorov. “Early Validation Frame-
work for Critical and Complex Process-Centric Systems”. In: Enterprise, Business-Process
and Information Systems Modeling. Ed. by Iris Reinhartz-Berger, Jelena Zdravkovic, Jens
Gulden, and Rainer Schmidt. Cham: Springer International Publishing, 2019, pp. 35–50.
isbn: 978-3-030-20618-5.

[19] Mihal Brumbulli, Emmanuel Gaudin, and Ciprian Teodorov. “Automatic Verification
of BPMN Models”. In: 10th European Congress on Embedded Real Time Software and
Systems (ERTS 2020). Toulouse, France, Jan. 2020. url: https://hal.archives-

ouvertes.fr/hal-02441878.

[20] Mihal Brumbulli, Emmanuel Gaudin, and Ciprian Teodorov. “Identifying unreachable
paths in BPMN models”. In: Complex Systems Design & Management (CSD&M’20).
Paris, France, Dec. 2020.

[21] Luka Le Roux and Ciprian Teodorov. “Partially Bounded Context-Aware Verification”. In:
Software Engineering and Formal Methods - 17th International Conference, SEFM 2019,
Oslo, Norway, September 18-20, 2019, Proceedings. Ed. by Peter Csaba Ölveczky and
Gwen Salaün. Vol. 11724. Lecture Notes in Computer Science. Springer, 2019, pp. 532–
548. doi: 10.1007/978-3-030-30446-1_28. url: https://doi.org/10.1007/978-3-
030-30446-1%5C_28.

[22] Emilien Fournier, Ciprian Teodorov, and Löıc Lagadec. “Menhir: Generic High-Speed
FPGA Model-Checker”. In: 2020 23rd Euromicro Conference on Digital System Design
(DSD). 2020, pp. 65–72. doi: 10.1109/DSD51259.2020.00022.

[23] Emilien Fournier, Ciprian Teodorov, and Löıc Lagadec. “Carnac: Algorithm Variability
for Fast Swarm Verification on FPGA”. In: 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL). 2021, pp. 185–189. doi: 10.1109/FPL53798.
2021.00038.

[24] Emilien Fournier, Ciprian Teodorov, and Löıc Lagadec.“Dolmen: FPGA Swarm for Safety
and Liveness Verification”. In: 2022 Design, Automation and Test in Europe Conference
(DATE’22). 2022.

[25] Valentin Besnard, Frédéric Jouault, Matthias Brun, Ciprian Teodorov, Philippe Dhaussy,
and Jérôme Delatour. “Modular Deployment of UML Models for V&V Activities and
Embedded Execution”. In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings. New York,
NY, USA: Association for Computing Machinery, 2020. isbn: 9781450381352. url: https:
//doi.org/10.1145/3417990.3419227.

https://doi.org/10.1145/3365438.3410967
https://doi.org/10.1145/3365438.3410967
https://doi.org/10.1145/3365438.3410967
https://doi.org/10.1109/MODELS-C53483.2021.00094
https://hal.archives-ouvertes.fr/hal-02441878
https://hal.archives-ouvertes.fr/hal-02441878
https://doi.org/10.1007/978-3-030-30446-1_28
https://doi.org/10.1007/978-3-030-30446-1%5C_28
https://doi.org/10.1007/978-3-030-30446-1%5C_28
https://doi.org/10.1109/DSD51259.2020.00022
https://doi.org/10.1109/FPL53798.2021.00038
https://doi.org/10.1109/FPL53798.2021.00038
https://doi.org/10.1145/3417990.3419227
https://doi.org/10.1145/3417990.3419227

78 CHAPTER 3. BIBLIOGRAPHY

[26] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. “A Model Checkable UML Soccer Player”. In: 2019 ACM/IEEE 22nd Inter-
national Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). 2019, pp. 211–220. doi: 10.1109/MODELS-C.2019.00035.

[27] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe
Dhaussy. “Embedded UML Model Execution to Bridge the Gap Between Design and
Runtime”. In: Software Technologies: Applications and Foundations - STAF 2018 Collo-
cated Workshops, Toulouse, France, June 25-29, 2018, Revised Selected Papers. Ed. by
Manuel Mazzara, Iulian Ober, and Gwen Salaün. Vol. 11176. Lecture Notes in Computer
Science. Springer, 2018, pp. 519–528. doi: 10.1007/978-3-030-04771-9_38. url:
https://doi.org/10.1007/978-3-030-04771-9%5C_38.

[28] Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric Jouault, David Olivier, and
Ciprian Teodorov. “Towards One Model Interpreter for Both Design and Deployment”.
In: Proceedings of MODELS 2017 Satellite Event: Workshops (ModComp, ME, EXE,
COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa, MDETools, FlexMDE, MDEbug),
Posters, Doctoral Symposium, Educator Symposium, ACM Student Research Competi-
tion, and Tools and Demonstrations co-located with ACM/IEEE 20th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS 2017), Austin,
TX, USA, September, 17, 2017. Ed. by Loli Burgueño, Jonathan Corley, Nelly Bencomo,
Peter J. Clarke, Philippe Collet, Michalis Famelis, Sudipto Ghosh, Martin Gogolla, Joel
Greenyer, Esther Guerra, Sahar Kokaly, Alfonso Pierantonio, Julia Rubin, and Davide Di
Ruscio. Vol. 2019. CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp. 102–108. url:
http://ceur-ws.org/Vol-2019/exe%5C_4.pdf.

[29] Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy. “A Problem-
Oriented Approach to Critical System Design and Diagnosis Support”. In: New Trends in
Model and Data Engineering. Ed. by El Hassan Abdelwahed, Ladjel Bellatreche, Djamal
Benslimane, Matteo Golfarelli, Stéphane Jean, Dominique Mery, Kazumi Nakamatsu, and
Carlos Ordonez. Cham: Springer International Publishing, 2018, pp. 30–39. isbn: 978-3-
030-02852-7.

[30] Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy. “Domain-
Oriented Verification Management”. In: Model and Data Engineering. Ed. by El Hassan
Abdelwahed, Ladjel Bellatreche, Mattéo Golfarelli, Dominique Méry, and Carlos Ordonez.
Cham: Springer International Publishing, 2018, pp. 354–370. isbn: 978-3-030-00856-7.

[31] Vincent Leildé, Vincent Ribaud, Ciprian Teodorov, and Philippe Dhaussy. “A Diagnosis
Framework for Critical Systems Verification (Short Paper)”. In: Software Engineering
and Formal Methods. Ed. by Alessandro Cimatti and Marjan Sirjani. Cham: Springer
International Publishing, 2017, pp. 394–400. isbn: 978-3-319-66197-1.

[32] Sebastien Heim, Xavier Dumas, Eric Bonnafous, Philippe Dhaussy, Ciprian Teodorov,
and Luka Le Roux. “Model Checking of SCADE Designed Systems”. In: 8th European
Congress on Embedded Real Time Software and Systems (ERTS’16). Ed. by ERTS. 2016.

[33] Ciprian Teodorov, Luka Leroux, and Philippe Dhaussy. “Context-Aware Verification of a
Cruise-Control System”. In: Model and Data Engineering. Ed. by Yamine Ait Ameur, Lad-
jel Bellatreche, and George A. Papadopoulos. Cham: Springer International Publishing,
2014, pp. 53–64. isbn: 978-3-319-11587-0.

https://doi.org/10.1109/MODELS-C.2019.00035
https://doi.org/10.1007/978-3-030-04771-9_38
https://doi.org/10.1007/978-3-030-04771-9%5C_38
http://ceur-ws.org/Vol-2019/exe%5C_4.pdf

PUBLICATIONS BY THE AUTHOR IN INTERNATIONAL CONFERENCES 79

[34] Lamia Allal, Ghalem Belalem, Philippe Dhaussy, and Ciprian Teodorov. “Using Paral-
lel and Distributed Reachability in Model Checking”. In: Ambient Communications and
Computer Systems. Ed. by Gregorio Martinez Perez, Shailesh Tiwari, Munesh C. Trivedi,
and Krishn K. Mishra. Singapore: Springer Singapore, 2018, pp. 143–154. isbn: 978-981-
10-7386-1.

[35] Jean-Philippe Schneider, Joël Champeau, Ciprian Teodorov, Eric Senn, and Löıc La-
gadec. “A role language to interpret multi-formalism System of systems models”. In:
2015 Annual IEEE Systems Conference (SysCon) Proceedings. 2015, pp. 200–205. doi:
10.1109/SYSCON.2015.7116752.

[36] Jean-Philippe Schneider, Ciprian Teodorov, Eric Senn, and Joël Champeau. “Towards
a Dynamic Infrastructure for Playing with Systems of Systems”. In: Proceedings of the
2014 European Conference on Software Architecture Workshops. ECSAW ’14. Vienna,
Austria: Association for Computing Machinery, 2014. isbn: 9781450327787. doi: 10 .

1145/2642803.2642834. url: https://doi.org/10.1145/2642803.2642834.

[37] Hiba Hnaini, Luka Le Roux, Joël Champeau, and Ciprian Teodorov. “Security property
modeling”. In: 7th International Conference on Information Systems Security and Privacy
(ICISSP 2021). Ed. by Steven Furnell Paolo Mori Gabriele Lenzini. 2021.

[38] Khaoula Es-Salhi, Rim S. Boudaoud, Ciprian Teodorov, Vincent Ribaud, and Zoé Drey.
“KriQL : A Language for Query-based Diagnosis of Transition Systems.” In: 15th Inter-
national Workshop on Automated Verification of Critical Systems (AVoCS’15). 2015.

[39] Riwan Cuinat, Ciprian Teodorov, and Joel Champeau.“SpecEdit: Projectional Editing for
TLA+ Specifications”. In: 2020 IEEE Workshop on Formal Requirements (FORMREQ).
2020, pp. 1–7. doi: 10.1109/FORMREQ51202.2020.00008.

[40] Julien Deantoni, Issa Papa Diallo, Ciprian Teodorov, Joel Champeau, and Benoit Combe-
male. “Towards a meta-language for the concurrency concern in DSLs”. In: 2015 De-
sign, Automation Test in Europe Conference Exhibition (DATE). 2015, pp. 313–316. doi:
10.7873/DATE.2015.1052.

[41] Frédéric Jouault, Ciprian Teodorov, and Matthias Brun. “Smart Home Model Verification
with AnimUML”. In: International workshop on MDE for Smart IoT Systems (MESS’22).
Nantes, France, 2022.

[42] Théotime Bollengier, Löıc Lagadec, and Ciprian Teodorov. “Prototyping FPGA through
overlays”. In: 2021 IEEE International Workshop on Rapid System Prototyping (RSP).
2021, pp. 15–21. doi: 10.1109/RSP53691.2021.9806222.

[43] Bassirou Diène, Ousmane Diallo, Joel J. P. C. Rodrigues, EL Hadji M. Ndoye, and Ciprian
Teodorov. “Data Management Mechanisms for IoT: Architecture, Challenges and So-
lutions”. In: 2020 5th International Conference on Smart and Sustainable Technologies
(SpliTech). 2020, pp. 1–6. doi: 10.23919/SpliTech49282.2020.9243728.

[44] Ahcene Bounceur, Madani Bezoui, Massinissa Lounis, Reinhardt Euler, and Ciprian
Teodorov. “A new dominating tree routing algorithm for efficient leader election in IoT
networks”. In: 2018 15th IEEE Annual Consumer Communications Networking Confer-
ence (CCNC). 2018, pp. 1–2. doi: 10.1109/CCNC.2018.8319292.

[45] Erwan Fabiani, Löıc Lagadec, Mohamed Ben Hammouda, and Ciprian Teodorov. “As-
serting causal properties in High Level Synthesis”. In: 2017 IEEE 2nd International Ver-
ification and Security Workshop (IVSW). 2017, pp. 111–116. doi: 10.1109/IVSW.2017.
8031555.

https://doi.org/10.1109/SYSCON.2015.7116752
https://doi.org/10.1145/2642803.2642834
https://doi.org/10.1145/2642803.2642834
https://doi.org/10.1145/2642803.2642834
https://doi.org/10.1109/FORMREQ51202.2020.00008
https://doi.org/10.7873/DATE.2015.1052
https://doi.org/10.1109/RSP53691.2021.9806222
https://doi.org/10.23919/SpliTech49282.2020.9243728
https://doi.org/10.1109/CCNC.2018.8319292
https://doi.org/10.1109/IVSW.2017.8031555
https://doi.org/10.1109/IVSW.2017.8031555

80 CHAPTER 3. BIBLIOGRAPHY

[46] Siham Rim Boudaoud, Khaoula Es-Salhi, Vincent Ribaudy, and Ciprian Teodorov. “Re-
lational and graph queries over a transition system”. In: IEEE EUROCON 2015 - Inter-
national Conference on Computer as a Tool (EUROCON). 2015, pp. 1–6. doi: 10.1109/
EUROCON.2015.7313738.

[47] Ciprian Teodorov and Loic Lagadec. “Virtual prototyping of R2D NASIC based
FPGA”. In: 2014 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH). Los Alamitos, CA, USA: IEEE Computer Society, July 2014, pp. 179–
180. doi: 10.1109/NANOARCH.2014.6880509. url: https://doi.ieeecomputersociety.
org/10.1109/NANOARCH.2014.6880509.

[48] Philippe Dhaussy and Ciprian Teodorov. “Context-Aware Verification of a Landing Gear
System”. In: ABZ 2014: The Landing Gear Case Study. Ed. by Frédéric Boniol, Virginie
Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe. Cham: Springer International Pub-
lishing, 2014, pp. 52–65. isbn: 978-3-319-07512-9.

[49] Ciprian Teodorov and Löıc Lagadec. “MDE-Based FPGA Physical Design: Fast Model-
Driven Prototyping with Smalltalk”. In: Proceedings of the International Workshop on
Smalltalk Technologies. IWST ’11. Edinburgh, United Kingdom: Association for Com-
puting Machinery, 2011. isbn: 9781450310505. doi: 10.1145/2166929.2166936. url:
https://doi.org/10.1145/2166929.2166936.

[50] Ciprian Teodorov, Pritish Narayanan, Loic Lagadec, and Catherine Dezan. “Regular 2D
NASIC-based architecture and design space exploration”. In: 2011 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures. 2011, pp. 70–77. doi: 10.1109/NANOARCH.
2011.5941486.

[51] Ciprian Teodorov, Damien Picard, and Löıc Lagadec. “FPGA physical-design automa-
tion using Model-Driven Engineering”. In: 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC). 2011, pp. 1–6. doi: 10 . 1109 /

ReCoSoC.2011.5981495.

[52] Ciprian Teodorov and Löıc Lagadec. “FPGA SDK for nanoscale architectures”. In: Pro-
ceedings of the 6th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip, ReCoSoC 2011, Montpellier, France, 20-22 June, 2011. IEEE, 2011,
pp. 1–8. doi: 10.1109/ReCoSoC.2011.5981494. url: https://doi.org/10.1109/
ReCoSoC.2011.5981494.

[53] Ciprian Teodorov. “Comparing crossbar-based nano/CMOS architectures”. In: 5th Inter-
national Conference on Design & Technology of Integrated Systems in Nanoscale Era.
2010, pp. 1–6. doi: 10.1109/DTIS.2010.5487598.

[54] Damien Picard, Bernard Pottier, and Ciprian Teodorov. “Process System Modeling for
RSoC”. In: Reconfigurable Communication-centric Systems-on-Chip workshop. Ed. by J.M.
Moreno and G. Sassatelli. Barcelone, Spain, July 2008, Session 6: Mapping and Program-
ming Models. url: https://hal.archives-ouvertes.fr/hal-00491586.

[55] Cornelia Amariei, Ciprian Teodorov, Erwan Fabiani, and Bernard Pottier. “Modeling
Sensor Networks as Concurrent Systems”. In: 2007 Fourth International Conference on
Networked Sensing Systems. 2007, pp. 296–296. doi: 10.1109/INSS.2007.4297438.

https://doi.org/10.1109/EUROCON.2015.7313738
https://doi.org/10.1109/EUROCON.2015.7313738
https://doi.org/10.1109/NANOARCH.2014.6880509
https://doi.ieeecomputersociety.org/10.1109/NANOARCH.2014.6880509
https://doi.ieeecomputersociety.org/10.1109/NANOARCH.2014.6880509
https://doi.org/10.1145/2166929.2166936
https://doi.org/10.1145/2166929.2166936
https://doi.org/10.1109/NANOARCH.2011.5941486
https://doi.org/10.1109/NANOARCH.2011.5941486
https://doi.org/10.1109/ReCoSoC.2011.5981495
https://doi.org/10.1109/ReCoSoC.2011.5981495
https://doi.org/10.1109/ReCoSoC.2011.5981494
https://doi.org/10.1109/ReCoSoC.2011.5981494
https://doi.org/10.1109/ReCoSoC.2011.5981494
https://doi.org/10.1109/DTIS.2010.5487598
https://hal.archives-ouvertes.fr/hal-00491586
https://doi.org/10.1109/INSS.2007.4297438

PUBLICATIONS BY THE AUTHOR IN NATIONAL CONFERENCES 81

Publications by the Author in National Conferences

[56] Tithnara Nicolas Sun, Luka Le Roux, Ciprian Teodorov, and Philippe Dhaussy. “Ex-
ploration de Scénarios de Systèmes Cyber-Physiques pour l’Analyse de la Menace.”
In: 19e journées Approches Formelles dans l’Assistance au Développement de Logiciels
(AFADL’20). Ed. by David Delahaye and Ileana Ober. 2020. isbn: 9782917490303.

[57] Valentin Besnard, Matthias Brun, Philippe Dhaussy, Frédéric Jouault, and Ciprian
Teodorov. “EMI : Un Interpréteur de Modèles Embarqué pour l’Exécution et la Véri-
fication de Modèles UML.” In: 18e journées Approches Formelles dans l’Assistance au
Développement de Logiciels (AFADL’20). Ed. by David Chemouil and Thomas Lambo-
lais. 2019.

[58] Sebastián Tleye, Ciprian Teodorov, Erwan Fabiani, and Löıc Lagadec. “Phadeo : un envi-
ronnement pour FPGA virtuel”. In: Conférence en Parallélisme, Architecture et Système
(COMPAS’15). 2015.

References

[59] French National Law. Arrêté du 23 novembre 1988 relatif à l’habilitation à diriger des
recherches. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000298904/.
1988.

[60] Aline Dresch, Daniel Pacheco Lacerda, and Jos Antnio Valle Antunes. Design Science
Research: A Method for Science and Technology Advancement. Springer Publishing Com-
pany, Incorporated, 2014. isbn: 3319073737.

[61] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and How to Develop
Domain-Specific Languages”. In: ACM Comput. Surv. 37.4 (Dec. 2005), pp. 316–344. issn:
0360-0300. doi: 10.1145/1118890.1118892.

[62] Object Management Group (OMG). “Semantics of a Foundational Subset for Executable
UML Models (FUML)”. In: (2021).

[63] Haiyang Zheng. “Operational Semantics of Hybrid Systems”. AAI3275674. PhD thesis.
USA, 2007. isbn: 9780549172529.

[64] Leslie Lamport. Thinking above the code. https : / / www . microsoft . com / en - us /

research/wp-content/uploads/2016/07/leslie_lamport.pdf. 2016.

[65] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao,
Stephanie Weirich, and Steve Zdancewic. “Position paper: the science of deep specifica-
tion.” In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 375.2104 (2017). doi: 10.1098/rsta.2016.0331.

[66] International Council on Systems Engineering. A World In Motion. Systems Engineering
Vision - 2025. Tech. rep. INCOSE, 2014.

[67] Michael J. Pennock and Jon P. Wade. “The Top 10 Illusions of Systems Engineering: A
Research Agenda”. In: Procedia Computer Science 44 (2015). 2015 Conference on Systems
Engineering Research, pp. 147–154. issn: 1877-0509. doi: https://doi.org/10.1016/j.
procs.2015.03.033. url: https://www.sciencedirect.com/science/article/pii/
S1877050915002690.

[68] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I”. In: Commun. ACM 3.4 (Apr. 1960), pp. 184–195. issn: 0001-0782.
doi: 10.1145/367177.367199. url: https://doi.org/10.1145/367177.367199.

https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000298904/
https://doi.org/10.1145/1118890.1118892
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/leslie_lamport.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/leslie_lamport.pdf
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/https://doi.org/10.1016/j.procs.2015.03.033
https://doi.org/https://doi.org/10.1016/j.procs.2015.03.033
https://www.sciencedirect.com/science/article/pii/S1877050915002690
https://www.sciencedirect.com/science/article/pii/S1877050915002690
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199

82 CHAPTER 3. BIBLIOGRAPHY

[69] John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962. isbn: 0262130114.

[70] Alan C. Kay. “The Early History of Smalltalk”. In: The Second ACM SIGPLAN Confer-
ence on History of Programming Languages. HOPL-II. Cambridge, Massachusetts, USA:
Association for Computing Machinery, 1993, pp. 69–95. isbn: 0897915704. doi: 10.1145/
154766.155364. url: https://doi.org/10.1145/154766.155364.

[71] Dan Ingalls. “The Lively Kernel: Just for Fun, Let’s Take JavaScript Seriously”. In: Pro-
ceedings of the 2008 Symposium on Dynamic Languages. DLS ’08. Paphos, Cyprus: As-
sociation for Computing Machinery, 2008. isbn: 9781605582702. doi: 10.1145/1408681.
1408690. url: https://doi.org/10.1145/1408681.1408690.

[72] Mojtaba Bagherzadeh, Karim Jahed, Benoit Combemale, and Juergen Dingel. “Live Mod-
eling in the Context of State Machine Models and Code Generation”. In: Software and
Systems Modeling (2020), pp. 1–44. doi: 10.1007/s10270-020-00829-y. url: https:
//hal.inria.fr/hal-02942374.

[73] Karen Robson, Kirk Plangger, Jan H. Kietzmann, Ian McCarthy, and Leyland Pitt. “Is
it all a game? Understanding the principles of gamification”. In: Business Horizons 58.4
(2015), pp. 411–420. issn: 0007-6813. doi: https://doi.org/10.1016/j.bushor.2015.
03.006.

[74] Amir Kishon, Paul Hudak, and Charles Consel. “Monitoring Semantics: A Formal Frame-
work for Specifying, Implementing, and Reasoning about Execution Monitors”. In: Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation. PLDI ’91. Toronto, Ontario, Canada: Association for Computing Machin-
ery, 1991, pp. 338–352. isbn: 0897914287. doi: 10.1145/113445.113474. url: https:
//doi.org/10.1145/113445.113474.

[75] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
USA: Addison-Wesley Longman Publishing Co., Inc., 1983. isbn: 0201113716.

[76] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and Benoit Baudry.
“Omniscient debugging for executable DSLs”. In: Journal of Systems and Software 137
(2018), pp. 261–288. issn: 0164-1212. doi: https : / / doi . org / 10 . 1016 / j . jss .

2017 . 11 . 025. url: https : / / www . sciencedirect . com / science / article / pii /

S0164121217302765.

[77] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. “Object-centric debugging”. In:
2012 34th International Conference on Software Engineering (ICSE). 2012, pp. 485–495.
doi: 10.1109/ICSE.2012.6227167.

[78] Andrei Chiş, Marcus Denker, Tudor Gı̂rba, and Oscar Nierstrasz. “Practical domain-
specific debuggers using the Moldable Debugger framework”. In: Computer Languages,
Systems & Structures 44, Part A (2015). Special issue on the 6th and 7th International
Conference on Software Language Engineering (SLE 2013 and SLE 2014), pp. 89–113.

[79] Dominik Aumayr, Stefan Marr, Sophie Kaleba, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. “Capturing High-level Nondeterminism in Concurrent Programs for Prac-
tical Concurrency Model Agnostic Record & Replay”. In: The Art, Science, and En-
gineering of Programming. Programming 5.3 (Feb. 2021), p. 39. issn: 2473-7321. doi:
10.22152/programming-journal.org/2021/5/14.

https://doi.org/10.1145/154766.155364
https://doi.org/10.1145/154766.155364
https://doi.org/10.1145/154766.155364
https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1007/s10270-020-00829-y
https://hal.inria.fr/hal-02942374
https://hal.inria.fr/hal-02942374
https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.006
https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.006
https://doi.org/10.1145/113445.113474
https://doi.org/10.1145/113445.113474
https://doi.org/10.1145/113445.113474
https://doi.org/https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/https://doi.org/10.1016/j.jss.2017.11.025
https://www.sciencedirect.com/science/article/pii/S0164121217302765
https://www.sciencedirect.com/science/article/pii/S0164121217302765
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.22152/programming-journal.org/2021/5/14

REFERENCES 83

[80] Jonas Kjær Rask, Frederik Palludan Madsen, Nick Battle, Hugo Daniel Macedo, and Peter
Gorm Larsen. “The Specification Language Server Protocol: A Proposal for Standardised
LSP Extensions”. In: Proceedings of the 6th Workshop on Formal Integrated Development
Environment, F-IDE@NFM 2021, Held online, 24-25th May 2021. Ed. by José Proença
and Andrei Paskevich. Vol. 338. EPTCS. 2021, pp. 3–18. doi: 10.4204/EPTCS.338.3.
url: https://doi.org/10.4204/EPTCS.338.3.

[81] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix, and
Christophe Scholliers. “Multiverse Debugging: Non-deterministic Debugging for Non-
deterministic Programs”. In: 33rd European Conference on Object-Oriented Programming.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Apr. 2019. url: https://kar.kent.
ac.uk/74328/.

[82] Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, Luka Le Roux,
and Löıc Lagadec. “Practical Multiverse Debugging through User-defined Reductions.
Application to UML Models.” In: Proceedings of the 24rd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems. MODELS ’22. 2022.

[83] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel, and Daniel
Varró. “Survey and classification of model transformation tools”. In: Software & Systems
Modeling 18.4 (2019), pp. 2361–2397. doi: 10.1007/s10270-018-0665-6. url: https:
//doi.org/10.1007/s10270-018-0665-6.

[84] Javier Troya, Sergio Segura, Lola Burgueño, and Manuel Wimmer.“Model Transformation
Testing and Debugging: A Survey”. In: ACM Comput. Surv. (Feb. 2022). Just Accepted.
issn: 0360-0300. doi: 10.1145/3523056. url: https://doi.org/10.1145/3523056.

[85] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2002. isbn: 032114306X.

[86] Marc Pierre Joseph Antoni. “Validation d’automatismes ferroviaires de sécurité à base de
réseaux de Petri”. PhD thesis. Dec. 2009. doi: 10.24355/dbbs.084-201003051455-0.
url: http://www.digibib.tu-bs.de/?docid=00032597.

[87] Gordon D Plotkin. “The origins of structural operational semantics”. In: The Journal of
Logic and Algebraic Programming 60-61 (2004). Structural Operational Semantics, pp. 3–
15. issn: 1567-8326. doi: https://doi.org/10.1016/j.jlap.2004.03.009. url:
https://www.sciencedirect.com/science/article/pii/S1567832604000268.

[88] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, M Filali, Hubert Garavel, Pierre
Gaufillet, Frederic Lang, and François Vernadat. “Fiacre: an Intermediate Language for
Model Verification in the Topcased Environment”. In: 4th European Congress ERTS Em-
bedded Real Time Software (ERTS 2008). Toulouse, France, Jan. 2008, 8p. url: https:
//hal.inria.fr/inria-00262442.

[89] Object Management Group. OMG Business Process Model and Notation (BPMN). Ver-
sion 2.0.2. 2013. url: https://www.omg.org/bpmn/ (visited on 04/27/2021).

[90] PragmaDEV. PragmaDev Process, a new tool to verify business processes. online: http:
//www.pragmadev.com/news/Process_V1.0_EN.pdf. 2019.

[91] PragmaDEV. A new generation of model checker with PragmaDev Studio V6.0. online:
http://www.pragmadev.com/news/V6.0_En.pdf. 2022.

https://doi.org/10.4204/EPTCS.338.3
https://doi.org/10.4204/EPTCS.338.3
https://kar.kent.ac.uk/74328/
https://kar.kent.ac.uk/74328/
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1145/3523056
https://doi.org/10.1145/3523056
https://doi.org/10.24355/dbbs.084-201003051455-0
http://www.digibib.tu-bs.de/?docid=00032597
https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.009
https://www.sciencedirect.com/science/article/pii/S1567832604000268
https://hal.inria.fr/inria-00262442
https://hal.inria.fr/inria-00262442
https://www.omg.org/bpmn/
http://www.pragmadev.com/news/Process_V1.0_EN.pdf
http://www.pragmadev.com/news/Process_V1.0_EN.pdf
http://www.pragmadev.com/news/V6.0_En.pdf

84 CHAPTER 3. BIBLIOGRAPHY

[92] Frédéric Jouault, Maxime Méré, Matthias Brun, Théo Le Calvar, Matthias Pasquier, and
Ciprian Teodorov. “From OCL-based Model Static Analysis to Quick Fixes”. In: 21st
International Workshop on OCL and Textual Modeling (OCL’22). Montreal, Canada,
Oct. 2022.

[93] Emilien Fournier. “Hardware Acceleration of Safety and Liveness Verification on Recon-
figurable Architectures”. PhD thesis. ENSTA Bretagne, 2022.

[94] Tithnara Nicolas Sun. “Systems Modeling and Formal Analysis for Advanced Persistent
Threats”. PhD thesis. ENSTA Bretagne, 2022.

[95] Valentin Besnard. “EMI: Une approche pour unifier l’analyse et l’exécution embarquée à
l’aide d’un interpréteur de modèles pilotable”. PhD thesis. ENSTA Bretagne, 2020.

[96] Vincent Leilde. “A Diagnosis Support for Formal Verification of Systems”. PhD thesis.
ENSTA Bretagne, 2019.

[97] Luka Le Roux. “Critical embedded system verification, a non-intrusive approach to divide
the initial challenge into a sound set of smaller ones”. PhD thesis. ENSTA Bretagne, 2018.

[98] Lamia Allal. “Towards an Efficient Approach for Model-checking with Cloud Computing”.
PhD thesis. Université Ahmed Ben Bella, Oran 1, 2018.

[99] Jean-Philippe Schneider. “Roles : Dynamic Mediators Between System Models and Sim-
ulation Models”. PhD thesis. Université de Bretagne occidentale, 2015.

[100] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. “The Lean Theorem Prover (System Description)”. In: Automated Deduction
- CADE-25. Ed. by Amy P. Felty and Aart Middeldorp. Cham: Springer International
Publishing, 2015, pp. 378–388. isbn: 978-3-319-21401-6.

[101] Grigore Ros,u and Traian Florin S, erbănută. “An overview of the K semantic framework”.
In: The Journal of Logic and Algebraic Programming 79.6 (2010). Membrane computing
and programming, pp. 397–434. issn: 1567-8326. doi: https://doi.org/10.1016/j.
jlap.2010.03.012. url: https://www.sciencedirect.com/science/article/pii/
S1567832610000160.

[102] B. Combemale, O. Barais, and A. Wortmann. “Language Engineering with the GEMOC
Studio”. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW). 2017, pp. 189–191. doi: 10.1109/ICSAW.2017.61.

[103] Guillaume Brat, Klaus Havelund, SeungJoon Park, and Willem Visser. “Java PathFinder-
second generation of a Java model checker”. In: In Proceedings of the Workshop on Ad-
vances in Verification. Citeseer. 2000.

[104] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van
Dijk. “LTSmin: High-Performance Language-Independent Model Checking”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Christel Baier and Cesare
Tinelli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 692–707. isbn: 978-3-662-
46681-0.

[105] Mart́ın Abadi and Leslie Lamport.“The existence of refinement mappings”. In: Theoretical
Computer Science 82.2 (1991), pp. 253–284. issn: 0304-3975. doi: https://doi.org/
10.1016/0304-3975(91)90224-P. url: https://www.sciencedirect.com/science/
article/pii/030439759190224P.

https://doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/https://doi.org/10.1016/j.jlap.2010.03.012
https://www.sciencedirect.com/science/article/pii/S1567832610000160
https://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/https://doi.org/10.1016/0304-3975(91)90224-P
https://www.sciencedirect.com/science/article/pii/030439759190224P
https://www.sciencedirect.com/science/article/pii/030439759190224P

REFERENCES 85

[106] Jǐŕı Barnat, Luboš Brim, Vojtěch Havel, Jan Havĺıček, Jan Kriho, Milan Lenčo, Petr
Ročkai, Vladimı́r Štill, and Jǐŕı Weiser. “DiVinE 3.0 – An Explicit-State Model Checker
for Multithreaded C & C++ Programs”. In: Computer Aided Verification. Ed. by Natasha
Sharygina and Helmut Veith. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 863–868. isbn: 978-3-642-39799-8.

[107] Leslie Lamport. “Specifying Concurrent Systems with TLA+”. In: Calculational System
Design (Apr. 1999), pp. 183–247. url: https://www.microsoft.com/en-us/research/
publication/specifying-concurrent-systems-tla/.

[108] André Arnold. “Nivat’s processes and their synchronization”. In: Theoretical Computer
Science 281.1 (2002). Selected Papers in honour of Maurice Nivat, pp. 31–36. issn: 0304-
3975. doi: https://doi.org/10.1016/S0304-3975(02)00006-3. url: https://www.
sciencedirect.com/science/article/pii/S0304397502000063.

[109] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. “Defining the Undefinedness of C”. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’15. Portland, OR, USA: Association for Computing Machin-
ery, 2015, pp. 336–345. isbn: 9781450334686. doi: 10.1145/2737924.2737979. url:
https://doi.org/10.1145/2737924.2737979.

[110] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. Representation and
Mind Series. The MIT Press, 2008. isbn: 026202649X.

[111] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant Sinha.
“State/Event-Based Software Model Checking”. In: Integrated Formal Methods. Ed. by
Eerke A. Boiten, John Derrick, and Graeme Smith. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 128–147. isbn: 978-3-540-24756-2.

[112] Bil Lewis. “Debugging Backwards in Time”. In: Computing Research Repository
cs.SE/0310016 (Oct. 2003).

[113] M. Saxena. “A Language Independent Debugger Semantics Based Debugging in K.” MA
thesis. University of Illinois at Urbana-Champaign, 2018. url: https://www.ideals.
illinois.edu/handle/2142/101590.

[114] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”. In: Free
Software Foundation 675 (1988).

[115] Gérard Berry. “SCADE: Synchronous Design and Validation of Embedded Control Soft-
ware”. In: Next Generation Design and Verification Methodologies for Distributed Em-
bedded Control Systems. Ed. by S. Ramesh and Prahladavaradan Sampath. Dordrecht:
Springer Netherlands, 2007, pp. 19–33. isbn: 978-1-4020-6254-4. doi: 10.1007/978-1-
4020-6254-4_2.

[116] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, 2007. isbn: 193435600X, 9781934356005.

[117] G. J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on Software Engi-
neering 23.5 (May 1997), pp. 279–295. issn: 0098-5589. doi: 10.1109/32.588521.

[118] Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Henrich Lauko, Jan
Mrázek, Petr Ročkai, and Vladimı́r Štill. “Model Checking of C and C++ with DIVINE
4”. In: Automated Technology for Verification and Analysis. Ed. by Deepak D’Souza and
K. Narayan Kumar. Cham: Springer International Publishing, 2017, pp. 201–207. isbn:
978-3-319-68167-2. doi: 10.1007/978-3-319-68167-2_14.

https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00006-3
https://www.sciencedirect.com/science/article/pii/S0304397502000063
https://www.sciencedirect.com/science/article/pii/S0304397502000063
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://www.ideals.illinois.edu/handle/2142/101590
https://www.ideals.illinois.edu/handle/2142/101590
https://doi.org/10.1007/978-1-4020-6254-4_2
https://doi.org/10.1007/978-1-4020-6254-4_2
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-319-68167-2_14

86 CHAPTER 3. BIBLIOGRAPHY

[119] Van Cam Pham, Ansgar Radermacher, Sébastien Gérard, and Shuai Li. “Complete Code
Generation from UML State Machine”. In: MODELSWARD. 2017. doi: 10 . 5220 /

0006274502080219.

[120] Eran Gery, David Harel, and Eldad Palachi. “Rhapsody: A Complete Life-Cycle Model-
Based Development System”. In: Integrated Formal Methods. Ed. by Michael Butler, Luigia
Petre, and Kaisa Sere. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 1–10. isbn:
978-3-540-47884-3. doi: 10.1007/3-540-47884-1_1.

[121] Federico Ciccozzi. “Unicomp: A Semantics-aware Model Compiler for Optimised Pre-
dictable Software”. In: Proceedings of the 40th International Conference on Software En-
gineering: New Ideas and Emerging Results. ICSE-NIER ’18. Gothenburg, Sweden: ACM,
2018, pp. 41–44. isbn: 978-1-4503-5662-6. doi: 10.1145/3183399.3183406.

[122] Asma Charfi Smaoui, Chokri Mraidha, and Pierre Boulet. “An Optimized Compila-
tion of UML State Machines”. In: ISORC - 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing. Shenzhen, China,
Apr. 2012.

[123] Sebastien Revol, Géry Delog, Arnaud Cuccurru, and Jérémie Tatibouët. Papyrus:
Moka Overview. 2018. url: https : / / wiki . eclipse . org / Papyrus / UserGuide /

ModelExecution.

[124] Tanja Mayerhofer and Philip Langer. “Moliz: A Model Execution Framework for UML
Models”. In: Proceedings of the 2nd International Master Class on Model-Driven En-
gineering: Modeling Wizards. MW ’12. Innsbruck, Austria: ACM, 2012, 3:1–3:2. isbn:
978-1-4503-1853-2. doi: 10.1145/2448076.2448079.

[125] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. “Execution of UML models: a sys-
tematic review of research and practice”. In: Software & Systems Modeling (Apr. 2018).
issn: 1619-1374. doi: 10.1007/s10270-018-0675-4.

[126] Petr Ročkai, Zuzana Baranová, Jan Mrázek, Kataŕına Kejstová, and Jǐŕı Barnat. “Repro-
ducible Execution of POSIX Programs with DiOS”. In: Software Engineering and Formal
Methods. Ed. by Peter Csaba Ölveczky and Gwen Salaün. Cham: Springer International
Publishing, 2019, pp. 333–349. isbn: 978-3-030-30446-1. doi: 10.1007/978- 3- 030-

30446-1_18.

[127] Kataŕına Kejstová, Petr Ročkai, and Jǐŕı Barnat. “From Model Checking to Runtime
Verification and Back”. In: Runtime Verification. Ed. by Shuvendu Lahiri and Giles Reger.
Cham: Springer International Publishing, 2017, pp. 225–240. isbn: 978-3-319-67531-2. doi:
10.1007/978-3-319-67531-2_14.

[128] Corina S. Păsăreanu and Neha Rungta. “Symbolic PathFinder: Symbolic Execution of
Java Bytecode”. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE ’10. Antwerp, Belgium: ACM, 2010, pp. 179–180. isbn:
978-1-4503-0116-9. doi: 10.1145/1858996.1859035.

[129] E. M. Clarke, D. E. Long, and K. L. McMillan. “Compositional Model Checking”. In:
Proceedings of the Fourth Annual Symposium on Logic in Computer Science. June 1989,
pp. 353–362. doi: 10.1109/LICS.1989.39190.

[130] Oksana Tkachuk. “Domain-specific environment generation for modular software model
checking”. PhD thesis. Kansas State University, 2008.

[131] Christophe Diot, Robert de Simone, and Christian Huitema. “Communication Protocols
Development Using ESTEREL”. In: First International HIPPARCH workshop. INRIA
Sophia Antipolis (1994), pp. 15–16.

https://doi.org/10.5220/0006274502080219
https://doi.org/10.5220/0006274502080219
https://doi.org/10.1007/3-540-47884-1_1
https://doi.org/10.1145/3183399.3183406
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://doi.org/10.1145/2448076.2448079
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/978-3-030-30446-1_18
https://doi.org/10.1007/978-3-030-30446-1_18
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1109/LICS.1989.39190

REFERENCES 87

[132] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems”. In: Readings in Hard-
ware/Software Co-Design. USA: Kluwer Academic Publishers, 2001, pp. 527–543. isbn:
1558607021. doi: 10.5555/567003.567050.

[133] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe
Dhaussy. “Embedded UML Model Execution to Bridge the Gap Between Design and
Runtime”. In: MDE@DeRun 2018 : First International Workshop on Model-Driven En-
gineering for Design-Runtime Interaction in Complex Systems. Toulouse, France, June
2018.

[134] Andreas Gaiser and Stefan Schwoon. “Comparison of Algorithms for Checking Emptiness
on Buechi Automata”. In: CoRR abs/0910.3766 (2009). arXiv: 0910.3766.

[135] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-Guided Abstraction Refinement”. In: Computer Aided Verification. Ed.
by E. Allen Emerson and Aravinda Prasad Sistla. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 154–169. isbn: 978-3-540-45047-4.

[136] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and Frédéric Mallet.
“A Behavioral Coordination Operator Language (BCOoL)”. In: International Conference
on Model Driven Engineering Languages and Systems (MODELS). Ed. by Timothy Leth-
bridge, Jordi Cabot, and Alexander Egyed. Ottawa, Canada: ACM, Sept. 2015, pp. 186–
195.

[137] James B Dabney and Thomas L Harman. Mastering Simulink. Pearson, 2004.

[138] Ferenc Belina and Dieter Hogrefe. “The CCITT-specification and description language
SDL”. In: Computer Networks and ISDN Systems 16.4 (1989), pp. 311–341. issn: 0169-
7552. doi: 10.1016/0169-7552(89)90078-0.

[139] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “seL4: Formal Verification of an OS Kernel”.
In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 207–220. isbn: 978-1-60558-752-3.
doi: 10.1145/1629575.1629596.

[140] Kevin J. Vella and Peter H. Welch. “CSP/occam on Shared Memory Multiproces-
sor Workstations”. In: 22nd World-Occam-and-Transputer-User-Group Technical Meeting
(WoTUG-22). Ed. by Barry M. Cook. Vol. 57. Concurrent Systems Engineering Series.
Amsterdam, the Netherlands: IOS Press, Apr. 1999, pp. 87–119.

[141] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Deantoni,
and Benoit Combemale. “Execution Framework of the GEMOC Studio (Tool Demo)”. In:
Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2016. Amsterdam, Netherlands: ACM, 2016, pp. 84–89. isbn: 978-1-
4503-4447-0. doi: 10.1145/2997364.2997384.

[142] Florent Latombe, Xavier Crégut, Benoit Combemale, Julien Deantoni, and Marc Pantel.
“Weaving Concurrency in Executable Domain-specific Modeling Languages”. In: Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Software Language En-
gineering. SLE 2015. Pittsburgh, PA, USA: ACM, 2015, pp. 125–136. isbn: 978-1-4503-
3686-4. doi: 10.1145/2814251.2814261.

https://doi.org/10.5555/567003.567050
https://arxiv.org/abs/0910.3766
https://doi.org/10.1016/0169-7552(89)90078-0
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1145/2814251.2814261

88 CHAPTER 3. BIBLIOGRAPHY

[143] Benôıt Combemale, Julien De Antoni, Matias Vara Larsen, Frédéric Mallet, Olivier Barais,
Benoit Baudry, and Robert B. France. “Reifying Concurrency for Executable Metamod-
eling”. In: Software Language Engineering. Ed. by Martin Erwig, Richard F. Paige, and
Eric Van Wyk. Cham: Springer International Publishing, 2013, pp. 365–384. isbn: 978-3-
319-02654-1. doi: 10.1007/978-3-319-02654-1_20.

[144] Julien DeAntoni and Frédéric Mallet. “TimeSquare: Treat Your Models with Logical
Time”. In: Proceedings of the 50th International Conference on Objects, Models, Com-
ponents, Patterns. TOOLS’12. Prague, Czech Republic: Springer-Verlag, 2012, pp. 34–41.
isbn: 978-3-642-30560-3. doi: 10.1007/978-3-642-30561-0_4.

[145] Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, François Terrier, Frédéric
Boulanger, and Sébastien Gérard. “Extending the Standard Execution Model of UML
for Real-Time Systems”. In: Distributed, Parallel and Biologically Inspired Systems. Ed.
by Mike Hinchey, Bernd Kleinjohann, Lisa Kleinjohann, Peter A. Lindsay, Franz J. Ram-
mig, Jon Timmis, and Marilyn Wolf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 43–54. isbn: 978-3-642-15234-4. doi: 10.1007/978-3-642-15234-4_6.

[146] Richard Barry. FreeRTOS, Real-time operating system for microcontrollers. url: https:
//www.freertos.org/.

[147] J. Bechennec, M. Briday, S. Faucou, and Y. Trinquet. “Trampoline An Open Source
Implementation of the OSEK/VDX RTOS Specification”. In: 2006 IEEE Conference on
Emerging Technologies and Factory Automation. Sept. 2006, pp. 62–69. doi: 10.1109/
ETFA.2006.355432.

[148] Pavel Parizek and Tomas Kalibera. “Platform-Specific Restrictions on Concurrency in
Model Checking of Java Programs”. In: Formal Methods for Industrial Critical Systems.
Ed. by Maŕıa Alpuente, Byron Cook, and Christophe Joubert. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 117–132. isbn: 978-3-642-04570-7. doi: 10.1007/978-3-642-
04570-7_10.

[149] Thuan Quang Huynh and Abhik Roychoudhury. “A Memory Model Sensitive Checker for
C#”. In: FM 2006: Formal Methods. Ed. by Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 476–491. isbn: 978-
3-540-37216-5. doi: 10.1007/11813040_32.

[150] Arnab De, Abhik Roychoudhury, and Deepak D’Souza. “Java Memory Model Aware Soft-
ware Validation”. In: Proceedings of the 8th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering. PASTE ’08. Atlanta, Georgia: ACM,
2008, pp. 8–14. isbn: 978-1-60558-382-2. doi: 10.1145/1512475.1512478.

[151] Robby, Matthew B. Dwyer, and John Hatcliff.“Bogor: An Extensible and Highly-Modular
Software Model Checking Framework”. In: Proceedings of the 9th European Software En-
gineering Conference Held Jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ESEC/FSE-11. Helsinki, Finland: Association
for Computing Machinery, 2003, pp. 267–276. isbn: 1581137435. doi: 10.1145/940071.
940107. url: https://doi.org/10.1145/940071.940107.

[152] J. Hatcliff, M. B. Dwyer, and Robby. “Domain-specific Model Checking Using The Bogor
Framework”. In: Proceedings. 21st IEEE International Conference on Automated Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society, Sept. 2006, pp. 369–370.
doi: 10.1109/ASE.2006.34. url: https://doi.ieeecomputersociety.org/10.1109/
ASE.2006.34.

https://doi.org/10.1007/978-3-319-02654-1_20
https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007/978-3-642-15234-4_6
https://www.freertos.org/
https://www.freertos.org/
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1007/978-3-642-04570-7_10
https://doi.org/10.1007/978-3-642-04570-7_10
https://doi.org/10.1007/11813040_32
https://doi.org/10.1145/1512475.1512478
https://doi.org/10.1145/940071.940107
https://doi.org/10.1145/940071.940107
https://doi.org/10.1145/940071.940107
https://doi.org/10.1109/ASE.2006.34
https://doi.ieeecomputersociety.org/10.1109/ASE.2006.34
https://doi.ieeecomputersociety.org/10.1109/ASE.2006.34

REFERENCES 89

[153] Adam Prout, Joanne M. Atlee, Nancy A. Day, and Pourya Shaker. “Code Generation for
a Family of Executable Modelling Notations”. In: Softw. Syst. Model. 11.2 (May 2012),
pp. 251–272. issn: 1619-1366. doi: 10.1007/s10270-010-0176-6. url: https://doi.
org/10.1007/s10270-010-0176-6.

[154] Joanne M. Atlee, Nancy A. Day, Jianwei Niu, Eunsuk Kang, Yun Lu, David Fung, and
Leonard Wong. Metro: An Analysis Toolkit for Template Semantics. 2006.

[155] Yun Lu, Joanne M. Atlee, Nancy A. Day, and Jianwei Niu. “Mapping Template Seman-
tics to SMV”. In: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering. ASE ’04. USA: IEEE Computer Society, 2004, pp. 320–325. isbn:
0769521312.

[156] Karolina Zurowska and Jürgen Dingel. “A Customizable Execution Engine for Models
of Embedded Systems”. In: Revised Selected Papers of the International Workshops on
Behavior Modeling – Foundations and Applications - Volume 6368. Berlin, Heidelberg:
Springer-Verlag, 2015, pp. 82–110. isbn: 9783319219110. doi: 10.1007/978- 3- 319-

21912-7_4. url: https://doi.org/10.1007/978-3-319-21912-7_4.

[157] Daniel Balasubramanian, Corina S. Păsăreanu, Gábor Karsai, and Michael R. Lowry.
“Polyglot: Systematic Analysis for Multiple Statechart Formalisms”. In: Proceedings of
the 19th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. TACAS’13. Rome, Italy: Springer-Verlag, 2013, pp. 523–529. isbn:
9783642367410. doi: 10.1007/978-3-642-36742-7_36. url: https://doi.org/10.
1007/978-3-642-36742-7_36.

[158] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014. url: http://ptolemy.org/books/Systems.

[159] Akos Ledeczi, James Davis, Sandeep Neema, and Aditya Agrawal.“Modeling Methodology
for Integrated Simulation of Embedded Systems”. In: ACM Trans. Model. Comput. Simul.
13.1 (Jan. 2003), pp. 82–103. issn: 1049-3301. doi: 10.1145/778553.778557. url: https:
//doi.org/10.1145/778553.778557.

[160] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. “Metropolis: an integrated electronic system design environment”. In: Com-
puter 36.4 (2003), pp. 45–52. doi: 10.1109/MC.2003.1193228.

[161] Benoit Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France, Jean-Marc
Jézéquel, and Jeff Gray. “Globalizing Modeling Languages”. In: Computer 47.6 (2014),
pp. 68–71. doi: 10.1109/MC.2014.147.

[162] Maximilian Willembrinck, Steven Costiou, Anne Etien, and Stéphane Ducasse. “Time-
Traveling Debugging Queries: Faster Program Exploration”. In: 2021 IEEE 21st Interna-
tional Conference on Software Quality, Reliability and Security (QRS). 2021, pp. 642–653.
doi: 10.1109/QRS54544.2021.00074.

[163] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Property Specification
Patterns for Finite-State Verification”. In: Proceedings of the Second Workshop on Formal
Methods in Software Practice. FMSP ’98. Clearwater Beach, Florida, USA: Association for
Computing Machinery, 1998, pp. 7–15. isbn: 0897919548. doi: 10.1145/298595.298598.
url: https://doi.org/10.1145/298595.298598.

[164] “IEEE Standard for Property Specification Language (PSL)”. In: IEEE Std 1850-2010
(Revision of IEEE Std 1850-2005) (2010), pp. 1–182. doi: 10.1109/IEEESTD.2010.

5446004.

https://doi.org/10.1007/s10270-010-0176-6
https://doi.org/10.1007/s10270-010-0176-6
https://doi.org/10.1007/s10270-010-0176-6
https://doi.org/10.1007/978-3-319-21912-7_4
https://doi.org/10.1007/978-3-319-21912-7_4
https://doi.org/10.1007/978-3-319-21912-7_4
https://doi.org/10.1007/978-3-642-36742-7_36
https://doi.org/10.1007/978-3-642-36742-7_36
https://doi.org/10.1007/978-3-642-36742-7_36
http://ptolemy.org/books/Systems
https://doi.org/10.1145/778553.778557
https://doi.org/10.1145/778553.778557
https://doi.org/10.1145/778553.778557
https://doi.org/10.1109/MC.2003.1193228
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1109/QRS54544.2021.00074
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1109/IEEESTD.2010.5446004
https://doi.org/10.1109/IEEESTD.2010.5446004

90 CHAPTER 3. BIBLIOGRAPHY

[165] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. “Cheddar: A Flexible Real Time Schedul-
ing Framework”. In: Proceedings of the 2004 Annual ACM SIGAda International Con-
ference on Ada: The Engineering of Correct and Reliable Software for Real-Time &
Distributed Systems Using Ada and Related Technologies. SIGAda ’04. Atlanta, Geor-
gia, USA: Association for Computing Machinery, 2004, pp. 1–8. isbn: 1581139063. doi:
10.1145/1032297.1032298. url: https://doi.org/10.1145/1032297.1032298.

[166] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: a survey”. In: Cybersecurity 1.1 (2018),
p. 6. doi: 10.1186/s42400-018-0002-y. url: https://doi.org/10.1186/s42400-
018-0002-y.

[167] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and Program-
ming Language”. In: Automated Deduction – CADE 28. Ed. by André Platzer and Geoff
Sutcliffe. Cham: Springer International Publishing, 2021, pp. 625–635. isbn: 978-3-030-
79876-5.

[168] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. “QED
at Large: A Survey of Engineering of Formally Verified Software”. In: Foundations and
Trends® in Programming Languages 5.2-3 (2019), pp. 102–281. issn: 2325-1107. doi:
10.1561/2500000045. url: http://dx.doi.org/10.1561/2500000045.

[169] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. “A Fully Verified Executable LTL Model Checker”. In: Computer Aided
Verification. Ed. by Natasha Sharygina and Helmut Veith. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 463–478. isbn: 978-3-642-39799-8.

[170] Simon Wimmer and Peter Lammich. “Verified Model Checking of Timed Automata”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Dirk Beyer
and Marieke Huisman. Cham: Springer International Publishing, 2018, pp. 61–78. isbn:
978-3-319-89960-2.

[171] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assis-
tant for Higher-Order Logic. Berlin, Heidelberg: Springer-Verlag, 2002. isbn: 3540433767.

[172] Mrunal Patel, Shenghsun Cho, Michael Ferdman, and Peter Milder. “Runtime-
Programmable Pipelines for Model Checkers on FPGAs”. In: 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 2019, pp. 51–58. doi:
10.1109/FPL.2019.00018.

[173] Shenghsun Cho, Mrunal Patel, Michael Ferdman, and Peter Milder. “Practical Model
Checking on FPGAs”. In: ACM Trans. Reconfigurable Technol. Syst. 14.2 (July 2021).
issn: 1936-7406. doi: 10.1145/3448272. url: https://doi-org.ins2i.bib.cnrs.fr/
10.1145/3448272.

[174] Radek Pelánek. “BEEM: Benchmarks for Explicit Model Checkers”. In: Model Checking
Software. Ed. by Dragan Bošnački and Stefan Edelkamp. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 263–267. isbn: 978-3-540-73370-6.

[175] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. “UPPAAL
— a tool suite for automatic verification of real-time systems”. In: Hybrid Systems III.
Ed. by Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 232–243. isbn: 978-3-540-68334-6.

https://doi.org/10.1145/1032297.1032298
https://doi.org/10.1145/1032297.1032298
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1561/2500000045
http://dx.doi.org/10.1561/2500000045
https://doi.org/10.1109/FPL.2019.00018
https://doi.org/10.1145/3448272
https://doi-org.ins2i.bib.cnrs.fr/10.1145/3448272
https://doi-org.ins2i.bib.cnrs.fr/10.1145/3448272

REFERENCES 91

[176] Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. “Transformation of Function
Block Diagrams to UPPAAL timed automata for the verification of safety applications”.
In: Annual Reviews in Control 36.2 (2012), pp. 338–345. issn: 1367-5788. doi: https:
//doi.org/10.1016/j.arcontrol.2012.09.015. url: https://www.sciencedirect.
com/science/article/pii/S1367578812000508.

[177] Xiaopu Huang, Qingqing Sun, Jiangwei Li, and Tian Zhang. “MDE-Based Verification
of SysML State Machine Diagram by UPPAAL”. In: Trustworthy Computing and Ser-
vices. Ed. by Yuyu Yuan, Xu Wu, and Yueming Lu. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 490–497. isbn: 978-3-642-35795-4.

[178] Jagadish Suryadevara, Cristina Seceleanu, Frédéric Mallet, and Paul Pettersson.“Verifying
MARTE/CCSL Mode Behaviors Using UPPAAL”. In: Software Engineering and Formal
Methods. Ed. by Robert M. Hierons, Mercedes G. Merayo, and Mario Bravetti. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–15. isbn: 978-3-642-40561-7.

[179] Maruth Ravibanjurdkul, Pittipol Kantavat, and Wiwat Vatanawood. “Transforming
YAWL Workflows with Time Constraints into Timed Automata”. In: The 2021 9th In-
ternational Conference on Computer and Communications Management. ICCCM ’21.
Singapore, Singapore: Association for Computing Machinery, 2021, pp. 194–200. isbn:
9781450390071. doi: 10.1145/3479162.3479191. url: https://doi.org/10.1145/
3479162.3479191.

[180] Jean-Paul Bodeveix, Mamoun Filali, Manuel Garnacho, Régis Spadotti, and Zhibin Yang.
“Towards a verified transformation from AADL to the formal component-based language
FIACRE”. In: Science of Computer Programming 106 (2015). Special Issue: Architecture-
Driven Semantic Analysis of Embedded Systems, pp. 30–53. issn: 0167-6423. doi: https:
//doi.org/10.1016/j.scico.2015.03.003. url: https://www.sciencedirect.com/
science/article/pii/S0167642315000647.

[181] Subeer Rangra and Emmanuel Gaudin. “SDL to Fiacre translation”. In: Embedded Real
Time Software and Systems (ERTS2014). 2014, pp. 582–591.

[182] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant Sinha.
“State/Event-Based Software Model Checking”. In: Integrated Formal Methods. Ed. by
Eerke A. Boiten, John Derrick, and Graeme Smith. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 128–147. isbn: 978-3-540-24756-2.

[183] Leslie Lamport. “The Temporal Logic of Actions”. In: ACM Trans. Program. Lang. Syst.
16.3 (May 1994), pp. 872–923. issn: 0164-0925. doi: 10.1145/177492.177726. url:
https://doi.org/10.1145/177492.177726.

[184] John McCarthy. “History of LISP”. In: History of programming languages. 1978, pp. 173–
185.

[185] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional programming with ba-
nanas, lenses, envelopes and barbed wire”. In: Functional Programming Languages and
Computer Architecture. Ed. by John Hughes. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1991, pp. 124–144. isbn: 978-3-540-47599-6.

[186] David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn. “Abstracting
Definitional Interpreters (Functional Pearl)”. In: Proc. ACM Program. Lang. 1.ICFP (Aug.
2017). doi: 10.1145/3110256. url: https://doi.org/10.1145/3110256.

[187] Richard Bird and Jeremy Gibbons. Algorithm Design with Haskell. Cambridge University
Press, 2020. doi: 10.1017/9781108869041.

https://doi.org/https://doi.org/10.1016/j.arcontrol.2012.09.015
https://doi.org/https://doi.org/10.1016/j.arcontrol.2012.09.015
https://www.sciencedirect.com/science/article/pii/S1367578812000508
https://www.sciencedirect.com/science/article/pii/S1367578812000508
https://doi.org/10.1145/3479162.3479191
https://doi.org/10.1145/3479162.3479191
https://doi.org/10.1145/3479162.3479191
https://doi.org/https://doi.org/10.1016/j.scico.2015.03.003
https://doi.org/https://doi.org/10.1016/j.scico.2015.03.003
https://www.sciencedirect.com/science/article/pii/S0167642315000647
https://www.sciencedirect.com/science/article/pii/S0167642315000647
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.1017/9781108869041

Titre : G∀min∃ : Exploration de la frontière entre les langages de spécification exécutables et les outils d’analyse
du comportement

Mot clés : spécifications, monitoring de langage, analyse comportamentale, model-checking, debugging

Résumé : La communauté de la vérification formelle
s’efforce de prouver la conformité d’une spécification par
l’utilisation de la logique formelle et de preuves mathé-
matiques. Les progrès considérables réalisés dans les
outils de vérification formelle assistée par ordinateur,
ainsi que le nombre croissant de réussites, rendent ces
méthodes essentielles dans la boîte à outils des concep-
teurs de systèmes. Cependant, avec l’avènement des
modèles et des langages spécifiques à un domaine, un
grand nombre de formalismes ont été proposés pour
écrire des spécifications de systèmes dynamiques, cha-
cun étant adapté aux besoins spécifiques du domaine
ciblé. Une nouvelle question émerge : Comment combler
le fossé entre ces formalismes spécifiques au domaine,
orientés vers les experts du domaine et les outils de véri-
fication formelle, orientés vers les mathématiciens? Une
des réponses, omniprésente dans la littérature, repose
sur l’utilisation de transformations de modèles pour tra-
duire syntaxiquement le modèle spécifique au domaine
vers le modèle de vérification. Nous soutenons que cette
approche est contre-productive et conduit à une multipli-
cation sémantique, qui nécessite des preuves d’équiva-
lence qui peuvent être difficiles à fournir et à maintenir.

Dans ce manuscrit, je présente une nouvelle ré-
ponse au niveau sémantique développée, raffinée et
évaluée au cours des 10 dernières années avec l’aide
de 6 ingénieurs postdoctoraux, 8 candidats au docto-
rat et 12 projets collaboratifs. Cette approche, nommée
G∀min∃, promet une architecture logicielle modulaire,
compositionnelle et réutilisable permettant la conception
d’une grande variété d’outils d’exploration du compor-
tement. La brique de base de cette approche est une
interface de niveau sémantique agnostique au langage,
qui agit comme un pont entre la sémantique dynamique
d’un langage spécifique au domaine et les outils d’ana-
lyse du comportement. Nous proposons ici une formali-
sation de l’interface ainsi que quelques opérateurs réuti-
lisables pour la création d’outils d’analyse du comporte-
ment pour le débogage interactif, le contrôle de modèle
et la surveillance de l’exécution. En plus de passer en re-
vue près d’une décennie de recherches fructueuses, ce
document me permet de présenter quelques nouvelles
directions de recherche, qui, nous l’espérons, allégeront
le poids de la création de nouveaux environnements de
conception de spécifications, et rendront le processus de
conception plus productifs.

Title: G∀min∃: Exploring the Boundary Between Executable Specification Languages and Behavior Analysis Tools

Keywords: executable specifications, language monitoring, behavioral analysis, model-checking, debugging

Abstract: The formal verification community strives
to prove the correctness of a specification using for-
mal logic and mathematical proofs. The tremendous
progress in computer-aided formal verification tools,
along with an ever-growing number of success stories
renders these methods essential in the system designer
toolbox. However, with the advent of domain-specific
models and languages, many formalisms are proposed
for writing dynamic system specifications, each one
adapted to the specific needs of the targeted domain.
A new question emerges: How to bridge the gap be-
tween these domain-specific formalisms, geared toward
domain experts, and the formal verification tools, geared
towards mathematicians? One of the answers, ubiqui-
tous in the literature, relies on using model transforma-
tions to syntactically translate the domain-specific model
to the verification model. We argue that this approach
is counterproductive leading to semantic multiplication,
which requires equivalence proofs that can be hard to
provide and maintain.

In this dissertation, I present a new semantic-level
answer developed, refined, and evaluated during the
last 10 years with the help of 6 postdoctoral fellows, 8
PhD candidates, and 12 collaborative projects. This ap-
proach, named G∀min∃, promises a modular, composi-
tional, and reusable software architecture allowing the
design of a wide variety of behavior exploration tools.
The core building block of this approach is a language
agnostic semantic-level interface, which acts as a bridge
between the dynamic semantics of a domain-specific
language and the behavior analysis tools. Here we pro-
pose a formalization of the interface along with some
reusable operators for creating behavior analysis tools
for interactive debugging, model-checking, and runtime
monitoring. Besides reviewing almost a decade of fruit-
ful research, this document allows me to introduce some
new research directions, which hopefully will ease the
burden of creating novel specification-design environ-
ments and render the design process more productive.

	Introduction
	Context
	Objectives and Challenges
	Specifying dynamical systems is hard
	Too many semantics

	Selected Contributions
	Axis 1 – Gmin: The Formalization of the Semantic Language Interface
	Axis 2 – The Way to Modular Executable Specification Monitors
	Axis 3 – New Formal Verification Techniques

	Research Strategy
	Supervision
	Grants and Projects
	Conclusion

	The Gmin Semantic Language Interface
	Overview
	The Semantic Language Interface
	Semantic Transition Relation

	Generic Monitoring Operators
	Filter
	Scheduler
	Interleaved Composition
	Synchronous Product
	Conversion to a Transition Relation

	Monitor Specification : The Gmin Unified Debugger
	A Semantic Transition Relation for Debugging
	A Modular Finder Function
	Some Species from the Debugging Zoo

	Scheduling in a Modular Architecture for Verification and Execution
	Background and Classical Solutions
	Architecture for Verification and Runtime Execution
	Illustration on UML
	Discussion
	Related Work
	Conclusion

	Conclusion

	Conclusion & Perspectives
	Conclusion
	Perspectives

	Bibliography
	Publications by the Author in International Journals
	Publications by the Author in International Conferences
	Publications by the Author in National Conferences
	References

