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A B S T R A C T

This thesis describes three studies using ultracold gases of bosonic dysprosium atoms. We encode
quantum states of interest in the large electronic ground state spin J = 8 of each atom. Narrow-
line optical transitions are used to manipulate these states by creating strong spin-dependent
tensor light shifts with negligible heating. Our detection scheme uses arbitrary spin rotations
followed by measurement of projection probabilities with single magnetic sublevel resolution.

Firstly, we study a transverse-field Ising model of quantum spin-1/2’s with infinite-range
interactions. This model shows a paramagnetic to ferromagnetic quantum phase transition in
the thermodynamic limit. Our experiment relies on the formal equivalence between the states
of a spin J = 8 and exchange-symmetric states of 2J = 16 qubits in the sector of maximum total
spin. We probe the thermodynamic and dynamical properties, revealing finite-size quantum
critical behaviour around the transition point. We also directly test the fundamental link between
symmetry breaking and the appearance of a finite order parameter. This is enabled by access to
the collective observable defining the underlying Z2 symmetry.

Secondly, we partition the electronic spin to reveal entanglement in nonclassical states. By
optically coupling the ground level to an excited state J′ = J − 1, we remove a pair of encoded
qubits in a state defined by the light polarisation. We probe the concurrence of qubit pairs
extracted from W and squeezed states to quantify their nonclassical character. We directly
demonstrate entanglement between the 14- and 2-qubit subsystems via an increase in entropy
upon partition. In a complementary set of experiments, we probe the decoherence of a state
prepared in the excited level J′ = J + 1 and interpret spontaneous emission as a loss of a qubit pair
in a random state. This allows us to contrast the robustness of nonclassical pairwise correlations
of the W state with the fragility of the coherence of a Schrödinger cat state.

Thirdly, we simulate a quantum Hall system by exploiting the electronic ground state spin as

a discrete synthetic dimension, and optically coupling it to atomic motion along a second real

dimension. This creates an artificial magnetic field, with the two coupled dimensions forming a

Hall ribbon with sharp edges along the synthetic axis. We demonstrate that the large number of

magnetic sublevels leads to distinct bulk and edge behaviours, and a Hall response characteristic

of a non-trivial topology. We perform a preliminary investigation of the entanglement spectrum

associated with a partition at the centre of the synthetic dimension, and we explain how future

studies could directly implement the corresponding entanglement Hamiltonian. We conclude

with a roadmap for extending the techniques presented in this thesis in order to realise many-body

topological states.
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R É S U M É

Cette thèse porte sur trois études utilisant des gaz ultrafroids d’atomes de dysprosium bosoniques.
Nous encodons des états quantiques d’intérêt dans le grand spin électronique J = 8 de l’état
fondamental de chaque atome. Des transitions optiques étroites sont utilisées pour manipuler
ces états en créant de forts décalages lumineux tensoriels dépendant du spin avec un chauffage
négligeable. Notre schéma de détection utilise des rotations de spin arbitraires suivies d’une
mesure des probabilités de projection de chaque état interne.

Premièrement, nous étudions un modèle d’Ising de spins 1/2 quantiques soumis à un champ
transverse et interagissant à portée infinie. Ce modèle présente une transition de phase quantique
du type paramagnétique-ferromagnétique dans la limite thermodynamique. Notre expérience
repose sur l’équivalence formelle entre les états d’un spin J = 8 et les états symétriques par
échange de 2J = 16 qubits dans le secteur de spin maximal. Nous sondons les propriétés
thermodynamiques et dynamiques, révélant un comportement critique quantique de taille finie
autour de la transition. Ensuite, nous testons directement le lien fondamental entre la brisure
de symétrie et l’apparition d’un paramètre d’ordre fini. Ceci est rendu possible par l’accès à
l’observable collectif qui définit la symétrie Z2 sous-jacente.

Deuxièmement, nous partitionnons le spin électronique pour révéler l’intrication dans les
états non-classiques. En couplant optiquement le niveau de base à un état excité J′ = J − 1,
nous extrayons une paire de qubits encodés dans un état défini par la polarisation de la lumière.
Nous sondons la concomitance (concurrence) des paires de qubits extraites des états W et des
états comprimés pour quantifier leur caractère non-classique. Nous démontrons directement
l’intrication entre les sous-systèmes à 14 et 2 qubits par une augmentation de l’entropie lors de la
partition. Dans un ensemble complémentaire d’expériences, nous sondons la décohérence d’un
état préparé dans le niveau excité J′ = J + 1 et interprétons l’émission spontanée comme la perte
d’une paire de qubits dans un état aléatoire. Cela nous permet de contraster la robustesse des
corrélations non classiques par paire de l’état W avec la fragilité de la cohérence d’un état chat de
Schrödinger.

Troisièmement, nous simulons un système de Hall quantique en exploitant le spin de l’état

fondamental électronique comme une dimension synthétique discrète, et en le couplant optique-

ment au mouvement atomique le long d’une deuxième dimension réelle. Cela crée un champ

magnétique artificiel, les deux dimensions couplées formant un ruban de Hall avec des bords nets

le long de l’axe synthétique. Nous démontrons que le grand nombre de sous-niveaux magnétiques

conduit à des comportements distincts dans le cœur et sur les bords du système, et à une réponse

de Hall caractéristique d’une topologie non-triviale. Nous effectuons une étude préliminaire

du spectre d’intrication associé à une partition au centre de la dimension synthétique, et nous

expliquons comment de futures études pourraient directement implémenter le hamiltonien

d’intrication correspondant. Nous concluons avec une feuille de route pour étendre les techniques

présentées dans cette thèse afin de réaliser des états topologiques à N corps.
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1
I N T R O D U C T I O N

Quantum physics created a paradigm shift [1] in our understanding of the microscopic
world. Amongst the first triumphs of this theory was the precise prediction of the
energies of photons, or packets of light, emitted by single atoms. Soon afterwards,
quantum physics was successfully applied to systems with a large number of constituents:
here, novel collective effects can emerge, which are not a mere sum of the individual
constituents’ behaviour [2]. Some such effects, like magnetism, have been known since
antiquity, while more exotic ones like superconductivity, have only been observed with
recent technologies. These collective effects arise through phase transitions, consisting
of an emergence of order at the microscopic level, accompanied by the spontaneous
breaking of a physical symmetry [3], driven by long-range fluctuations. For example,
water molecules collectively ‘choose’ to crystallise along a specific regular lattice, even
though space itself is uniform, and any number of arrangements might be equally
favourable. While a true quantum phase transition only occurs in an infinite system at
zero temperature, fascinating signatures of the transition, dubbed critical behaviour, are
also evident in realistic settings [4].

What is the nature of the long-range correlations driving quantum phase transitions?
While a ‘shut up and calculate’ approach can get one very far in terms of predicting
quantum phenomena, physicists have long been plagued and stimulated by the wider im-
plications of quantum mechanics [5] – spooky, unintuitive behaviour with no counterpart
in our everyday classical experience. This quantum entanglement, or more generally non-
classicality, is not only a philosophical conundrum. It has concrete, detectable physical
consequences [6–8]. Creating and manipulating entangled states is relevant for under-
standing the foundations of quantum physics, as well for developing a new generation
of quantum technologies.

The discovery of the quantum Hall effect in 1980 [9] signalled a fundamentally new
form of order possible in nature, one that does not fit into the above framework of
broken symmetries and critical behaviour [10]. The first experiments observed a physical
quantity, called the Hall resistivity, taking universal values completely insensitive to
experimental imperfections, to an unprecedented and spectacular degree of precision
(one part in ten billion). These measurements were subsequently understood using ideas
from a branch of mathematics called topology. Topology concerns itself with the global
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introduction 12

structure of surfaces – for example, a football and frisbee are topologically equivalent
because they have no holes, but are distinct from a doughnut or coffee mug, which have
one hole. In a more abstract sense, topological structure can be assigned to the global
arrangement of a system’s quantum state, leading to physical properties which depend
on only the associated topological invariant (‘number of holes’), irrespective of small
imperfections. States protected by this topological robustness have promising prospects
for quantum computing [11], while certain classes of topological states are fundamental
to our understanding of highly correlated quantum systems [12].

In this thesis, I will present experimental studies which traverse and interlink the
three themes discussed above: symmetry breaking and critical behaviour near a phase
transition, nonclassicality and entanglement, and topological states of matter. This
work was performed on a single versatile experimental platform, by encoding the
relevant quantum states in the internal degree of freedom (spin) and motion of ultracold
dysprosium atoms.

The following chapter-wise introductions aim to give a more substantial taste of
things to come, while also providing a convenient reference point to be revisited before
reading the respective chapters.

Producing ultracold dysprosium gases

In the 20th century, condensed matter systems such as magnetic materials, superconduct-
ors, and liquid helium, were at the forefront of developments in quantum physics. In the
last few decades, ultracold atom experiments (and their cousins in the broader field of
atomic, molecular, and optical physics) have brought exciting new possibilities to probe
the fundamentals of quantum mechanics, understand many-body effects by quantum
simulation, and engineer entirely novel systems with no traditional condensed matter
counterparts. This is made possible by exquisite control of physical parameters including
spatial potentials, interactions, dimensionality, and coupling to the environment – all
combined with precise, microscopic detection protocols.

The principles of manipulating atoms’ motion and internal states with light were
present in early works by Einstein [13] and Kastler [14]. Modern techniques for laser cool-
ing developed rapidly from the mid-1970s onwards following the widespread availability
of precisely tunable laser sources. A summary can be found in the 1998 Nobel lectures
by Chu, Cohen-Tannoudji, and Phillips [15–17]. These developments culminated in the
creation of dilute degenerate ultracold gases, where the size of the quantum wavepacket
associated with a single atom i.e. the thermal de Broglie wavelength, is comparable to the
spacing between atoms. Depending on the quantum statistics of the atoms involved, such
samples form Bose-Einstein condensates (BECs) [18, 19] or degenerate Fermi gases [20].
This was the birth of the field of ultracold atoms in its current incarnation, and several
landmark results were attained in the following years. These include the observation of
the Mott-insulator to superfluid phase transition [21], the Berezinskii-Kosterlitz-Thouless
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transition [22], and the molecular BEC to Bardeen–Cooper–Schrieffer superfluid crossover
[23–26] (see refs. [27, 28] for more comprehensive reviews).

The above works were carried out with elements whose inter-atom interactions are
given by short-range van der Waals forces. Long-range magnetic dipole-dipole interac-
tions create new possibilities, as first illustrated with chromium BECs with the observation
of ferrofluid behaviour [29]. The study of dipolar ultracold gases has accelerated in the
last decade, following the cooling of the lanthanide elements dysprosium [30, 31] and
erbium [32] to quantum degeneracy. Here, the control of strong long-range interactions
and their subtle interplay with short-range interactions has led to the observation of
novel droplet [33], and supersolid [34–36] phases (see ref. [37] for a review).

In chapter 2, we will describe our experimental setup for the production of ultracold
dysprosium gases. Rather than long-range interactions, the work presented in this
thesis exploits another unique feature of dysprosium: its large ground state angular
momentum J = 8. We explain how we use spin-dependent light shifts associated with
narrow-line transitions to create non-linear spin Hamiltonians, with minimal heating
effects. Combining this ability with the large internal manifold of 2J + 1 = 17 states,
whose occupation we can detect with single-level resolution, we discuss how our setup
acts as a flexible platform to realise the studies described below.

Critical behaviour and symmetry breaking in the Lipkin-Meshkov-Glick model

Phase transitions are ubiquitous in nature, in systems at all energy and length scales, from
the quark-gluon plasma in the early universe to liquid helium in laboratory cryostats. Our
understanding of phase transitions has historically relied on the non-analytic behaviour
of thermodynamic quantities, the spontaneous breaking of symmetry, and fluctuations of
the order parameter. These concepts still play a key role in the modern description of
phase transitions, which is underpinned by the renormalisation group [38], developed by
Fisher, Wilson, and Kadanoff in the 1970s. This theory allows for a unified description
of broad classes of systems near a transition in terms of a few universal parameters,
independent of the microscopic details of individual systems [4]. In quantum systems,
the observed change in behaviour as a control parameter is varied is understood in
terms of a true phase transition occurring at a quantum critical point – defined at zero
temperature in an infinite system. At finite temperatures, a complex interplay of thermal
and quantum fluctuations leads to quantum criticality, where excitations cannot be
reduced to an effective theory with weak interactions [39]. In finite systems, the quantum
critical point also looms large in the crossover regime, as described quantitatively by
universal parameters arising from the theory of finite-size scaling [40].

The distinct properties expected close to a quantum critical point can at times be
probed with macroscopic observables, like the slowing of relaxation times. However,
revealing specifically quantum properties like many-body quantum entanglement [41],
remains challenging. The recent development of highly controlled quantum systems
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Figure 1.1: Crossover from paramagnetic to ferromagnetic behaviour in the Lipkin-Meshkov-Glick
model, as seen in spin projection probabilities along the axis of ferromagnetic interactions. A
preview of results from chapter 3.

of mesoscopic size, such as ion crystals [42], optical lattice systems [43], Rydberg atom
arrays [44], or interacting photons [45], allows for a microscopic characterization of
collective quantum properties [46] such as the full density matrix [45], entanglement
entropy [47] or non-local string order [48]. This degree of control could be used to
investigate fundamental aspects of quantum phase transitions, such as the link between
the breaking of an underlying symmetry and the onset of a non-zero order parameter [3].
This connection cannot be tested in macroscopic systems, where large-size quantum su-
perpositions cannot practically exist and spontaneous symmetry breaking is unavoidable
[49].

In chapter 3, we present an experimental study of the Lipkin-Meshkov-Glick model
(LMGm), which describes quantum spin-halfs with infinite-range Ising interactions in a
transverse field. In the thermodynamic limit, the LMGm exhibits a ferromagnetic phase
transition, characterised by spontaneous breaking of a Z2 symmetry. This model was
originally proposed for nuclear systems [50–52], but has found widespread use. For ex-
ample, the LMGm describes systems undergoing the Dicke superradiance transition [53]
(in the zero temperature limit), and two-mode BECs with Josephson-like tunnelling [54,
55]. From a theoretical perspective, the LMGm has been widely investigated due to its
mathematical tractability, and its close link, via mean-field theory and finite-size scaling,
to the short-range transverse-field Ising model [56].

Our realisation of the LMGm is based on the equivalence between the dysprosium
atom’s electronic spin J = 8 and a set of N = 2J spins-1/2s in an exchange-symmetric
state. We simulate the ferromagnetic Ising interactions with a quadratic light shift. Given
this encoding of qubits, the moments of the total spin-J give access to few-qubit cor-
relators. We measure the crossover between para- and ferromagnetic behaviours using
thermodynamic properties (see fig. 1.1) and the dynamical response. We reveal a regime
of quantum critical behaviour and slowed dynamics around the transition point. A spe-
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cific asset of our setup is the direct access to the parity observable corresponding to the Z2

symmetry; this is made possible by single magnetic sublevel resolution which cannot be
achieved in macroscopic systems. We investigate the fundamental link between symmetry
breaking and the appearance of a finite order parameter. The mesoscopic size of the
system affords us a degree of control where we can specifically probe symmetry breaking
due to a manually applied perturbation (e.g. to measure the susceptibility), as well as
observe spontaneous symmetry breaking from random environmental fluctuations.

Partitioning dysprosium’s electronic spin to reveal entanglement

Entanglement has historically been the defining form of strangeness associated with
quantum systems. Schrödinger called entanglement “the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of thought" [57].
In brief, entanglement allows for situations where the best possible knowledge of a
whole (quantum system) does not include the best possible knowledge of its parts
(subsystems). Early discussions of entanglement focussed on its relevance for hidden-
variable interpretations of quantum mechanics [5, 6]. Today, it is also recognised as a
resource in the context of quantum technologies, for tasks like algorithmic computation,
communication, cryptography, and teleportation [58].

Entanglement also plays a fundamental role in driving quantum phase transitions [4,
41], in the form of the propagation of correlations over large length scales. Indeed, if the
study of the LMG model described above was performed on a system of individually
distinguishable qubits, the observed squeezing of a global spin quadrature in the cros-
sover region would imply entanglement between qubits [59]. It is then natural to ask:
can any physical meaning be assigned to the ‘entanglement of the encoded qubits’, and
to what extent is it accessible as a resource? This is the line of investigation which drives
our second experimental study, presented in chapter 4, where we perform a partition of
this ensemble using optical transitions, giving access to entanglement properties.

Let us first clarify that entanglement lies in the more general category of nonclassical
behaviour. Nonclassicality can be identified even in cases where subsystems cannot be
identified e.g. Fock states in quantum optics. Correlations within indivisible systems
can be fundamentally incompatible with a classical description, as demonstrated by the
violation of Bell-like inequalities [60]. In dysprosium’s ground state spin, if the ensemble
of encoded qubits cannot be partitioned, we must restrict ourselves to stating that we
can have nonclassical behaviour at the level of the total spin, corresponding to quantum
correlations of its internal degrees of freedom.

Before describing our work, it is also helpful to review the kinds of systems used to
create and detect entanglement. Minimal entangled systems of qubit pairs, as realised
with correlated photons, play a central role in testing the foundations of quantum
mechanics [7, 61], through the violation of Bell inequalities [6]. Entanglement can also be
engineered in many-particle systems [62], such as an ensemble of interacting atoms [63].
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Figure 1.2: A scheme for partitioning the electronic spin of dysprosium by spontaneous emission.
A preview of a technique used in chapter 4.

In this case, the atoms are not individually addressable, and quantum correlations are
indirectly revealed by measuring global properties, such as a squeezed spin projection
quadrature [64–67] or via the quantum enhancement of metrological sensitivity [68–70].
State of the art experiments with photonic systems [71], superconducting qubits [72],
trapped ions [73] and Rydberg atom arrays [74] can now produce highly entangled
states of tens of individually identifiable qubits, where entanglement is more readily
observable.

In our work, we first access entanglement properties by partitioning dysprosium’s
electronic spin using an optical coupling to an excited state J′ = J − 1 . This removes a
pair of qubits in a state defined by the light’s polarisation. Starting with the well-known
W and squeezed states, we extract the concurrence of qubit pairs, which quantifies
their nonclassical character. We also directly demonstrate entanglement between the
14- and 2-qubit subsystems via an increase in entropy upon partition. In a second set
of measurements, we probe the decoherence of a state prepared in the excited level
J′ = J + 1 and interpret spontaneous emission as a loss of a qubit pair in a random
state (see fig. 1.2). This allows us to contrast the robustness of nonclassical pairwise
correlations of the W state with the fragility of the coherence involved in a Schrödinger
cat state [75]. These observations are related to the which path information carried by the
emitted photon’s polarisation. Our results can be viewed within the recent debate on
nonclassicality and entanglement in systems of indistinguishable constituents [76]. We
also discuss prospective experiments involving entangled atoms in spatially separated
setups, and more generally discuss many-body spin physics with dysprosium.

Topology and entanglement spectrum of a synthetic Hall system

We now move away from the picture of encoded qubits in the electronic ground state
spin. For the realisation of topological systems, we use the 2J + 1 magnetic sublevels to
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Figure 1.3: Cyclotron and skipping orbits in a synthetic Hall system. A preview of results
from chapter 5.

represent a discrete ‘position’ in a synthetic dimension, as originally proposed in ref. [77].
Motion along neighbouring points in the synthetic dimension is enabled by two-photon
laser transitions, which create complex hopping phase factors (cf. the Aharanov-Bohm
phase) and a well-defined link to the atom’s motion along the photon recoil axis. This
motivates an analogy with a charged particle moving in two dimensions in the presence of
a perpendicular magnetic field. Thus, we realise a Hall-like system in a ribbon geometry;
here, one dimension is along an axis in real space, while the other is a finite synthetic
dimension encoded in the spin.

Quantum Hall systems are famous for the extremely robust quantisation of their
transverse conductance. In traditional condensed matter systems, impurities and disorder
lead to conducting stripes surrounding insulating domains of localised electrons, making
comparisons with simple models challenging [78, 79]. The quantised Hall conductance
results from the non-trivial topological structuring of the quantum states of an electron
band [10]. For an infinite system, this structure is described by the Chern number,
a topological invariant taking integer values, which is robust up to a certain degree
of disorder [10]. In a real finite-size system, the non-trivial topology leads to gapless
edge modes, characterised by unidirectional motion protected from backscattering [79].
These chiral edge modes, together with their generalization to topological insulators,
topological superconductors or fractional quantum Hall states [80, 81], lie at the heart of
possible applications in spintronics [82] or quantum computing [83].

Initial works using synthetic dimensions of limited sizes were able to measure chiral
edge currents [84, 85]. However, the relevance of topological properties requires the
notion of a bulk. In chapter 5, we describe the realisation of a synthetic Hall system with
distinct bulk and edge properties. In the lowest band, we characterise the dispersionless
bulk modes, where motion is inhibited due to a flattened energy band, and chiral edge
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states, where the particles are free to move in one direction only. We also study the
system’s elementary excitations to higher bands, which take the form of cyclotron orbits
in the bulk and skipping orbits along the edges (see fig. 1.3). Finally, we measure the
Hall drift induced by an external voltage, and characterise the local Hall response of
the band using the local Chern marker, which quantifies topological order in real space
[86]. Our experiments show that the synthetic dimension is large enough to allow for a
meaningful bulk with robust topological properties.

The entanglement properties of many-body states contain key information about to-
pological properties. In particular, the structure of the eigenvalues of a given subsystem’s
density matrix, known as the entanglement spectrum, gives the many-body excitation
spectrum of the chiral edge modes of the overall system [87]. We reinterpret our ex-
perimental results from this point of view, revealing a signature of the entanglement
spectrum at the single-particle level. We then discuss how the entanglement properties
could be probed directly in our system with future experiments, inspired by a recent
as-yet-unrealised proposal [88]. We conclude with a perspective on the realisation of
many-body topological states with dysprosium.





2
P R O D U C I N G U LT R A C O L D D Y S P R O S I U M G A S E S

The rule is, jam to-morrow and jam yesterday –
but never jam to-day.

Lewis Carroll, Through the Looking-Glass

In this chapter, I describe the experimental system used during this thesis – a typical
modern ultracold atom experiment, built from 2013 onwards at ENS and Collège de
France, Paris. Our dysprosium atoms begin as a vapour at a temperature of 103 K.
Over a single experimental cycle lasting 20 s, we produce an ultracold quantum gas at
10−7 K. The action takes place inside a vacuum chamber, where the low pressures (down
to 10−10 mbar) provide a high degree of isolation from the environment. We use laser
beams sent through windows in the vacuum chamber, and magnetic fields generated by
surrounding coils to cool, trap, manipulate, and detect the atoms. The cold and dilute
quantum gas we create serves as the starting point for realising the work described in
subsequent chapters.

As the fifth-generation PhD student in the group, I was fortunate to have arrived in a
lab with a fully operational experimental setup. This chapter begins with an overview of
the technical aspects of the setup, which have been described in detail in previous PhD
theses and publications [89–94]. I will then devote the bulk of the chapter to describing
the techniques underlying the original work carried out during this thesis: the precise
and flexible manipulation of the atoms’ internal state using spin-dependent light shifts
and the subsequent detection of the engineered states.

2.1 dysprosium’s physical properties

Dysprosium, from the Greek dysprositos meaning ‘hard to get’, is a lanthanide series
rare-earth element with atomic number Z = 66. In ambient conditions, it is a silver
metallic solid. Dysprosium is notably a highly magnetic element, as we shall see below.
This has lead to applications in magnetic data storage, and also for permanent magnets
in electric car engines and wind turbines.

20
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Electronic structure & isotopes

Dysprosium’s magnetic properties arise from its electronic structure. Like other lanthan-
ides, it has a partially filled 4 f electron shell in its ground state. The electronic configura-
tion, relative to the nearest noble gas xenon, is

[Xe]4 f 106s2 ,

corresponding to four unpaired electrons in the 4 f shell. The net electronic spin is S = 2
which combines with the orbital angular momentum L = 6, to give a total electronic
ground state angular momentum J = 8. So in spectroscopic notation (2S+1LJ), the ground
state is denoted 5 I8. The four unparied electrons lead to a dense forest of excited levels in
the optical energy range (cf. the 2S1/2 ground state of alkali metal atoms). The strongest
relevant transitions (with linewidths Γ ≃ 2π × 30 MHz) form a triplet with excited state
momenta J′ = 7, 8, 9 in the blue part of the spectrum, at wavelengths 405, 419 and 421 nm.
These arise from the jj coupling of the valence electron transition 1S0 →1 P1 to the 5 I8

term, making them analogous to the D1 and D2 lines of alkalis.
Dysprosium has seven stable isotopes, with an average atomic weight of 162.5.

The bosonic isotopes all have nuclear spin I = 0, such that the total atomic angular
momentum remains F = 8. Throughout this thesis, we will work with the bosonic
isotope 162Dy and denote its total angular momentum as J = 8. We prefer 162Dy to 164Dy
despite the latter being more naturally abundant (25.3% vs 28.3%), because of the larger
background scattering length of 162Dy, which is favourable for evaporative cooling. The
first Bose-Einstein condensate (BEC) of dysprosium was produced at Stanford in 2011 [30].
Degenerate quantum gases have also been prepared for the fermionic species 161Dy [95]
(I = 5/2). Other highly magnetic elements which have been cooled to degeneracy are
chromium [96] (in 2005 in Stuttgart), erbium [32] (in 2012 in Innsbruck), and thulium [97]
(in 2020 in Moscow). See ref. [37] for a recent review on dipolar quantum gas physics.

Laser cooling

We use two optical transitions for laser cooling, whose properties are summarised in
table 2.1. Firstly, we used the J′ = 9 transition at 421 nm mentioned above. Its large
linewidth makes it suitable for applying the strong radiative forces needed to slow
down the atomic jet. Note that we also address the atoms using this transition to
image them. The second cooling transition is a narrower, red transition with linewidth
Γ = 2π × 135 kHz. The low associated Doppler temperature TD = h̄Γ/2kB = 3.2 µK
allows for its use for a single stage magneto-optical trap (MOT), from which we can
efficiently load an optical dipole trap (ODT). We do not describe the principles of laser
cooling here – see, for instance, ref. [98].
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Wavelength Linewidth Doppler temperature Excited state
λ [nm] Γ/2π [MHz] TD [µK] f shell valence

421 32.2 774 4 f 10 (5 I8) 6s2 (1P1)

626 0.135 3.2 4 f 10 (5 I8) 6s6p (3P1)

Table 2.1: Parameters of laser cooling transitions. Data from ref. [99].

Magnetic properties

In the presence of an external magnetic field B (say along z), the degeneracy of the J = 8
ground manifold is lifted. The azimuthal angular momentum m remains a good quantum
number, with the states acquiring a linear Zeeman shift

E = µBgJ B m, or in operator form H = µBgJ B Jz .

Here, µB is the Bohr magneton and gJ = 1.242 is the Landé g-factor for the J = 8 ground
manifold. Note the resulting large magnetic moment of the m = −8 ground state, given
by µ = 9.93× µB. This can be compared to other elements: µ/µB equals 1 for 87Rb, 6 for
52Cr, and 6.98 for 166Er.

Interactions

Dysprosium atoms interact with each other via short-range van der Waal’s forces and
long-range magnetic dipole-dipole interactions.

At low temperatures, the short-range interactions for two 162Dy atoms polarised in
m = −8 are described by a single parameter, called the s-wave scattering length, denoted
a. The effective interaction can be reduced to an isotropic contact pseudo-potential

Ucontact(r) =
4πh̄2a

m
δ(r)

∂

∂r
r .

The prefactor is commonly called the coupling constant g = 4πh̄2a/m. The background
value of a is 126(10) a0 where a0 is the Bohr radius. This quantity can be set to any
desired value by tuning the external magnetic field close to a Feshbach resonance. The
species 162Dy shows nine narrow Feshbach resonances at low fields (0 G to 6 G) [100].

We now consider dipole-dipole interactions for atoms polarised in an external B-field.
The interaction potential is given by

Udd(r) =
µ0µ2

4π

1− 3 cos2 θ

r3

where θ is the relative polar angle between the atoms with respect to the external
field. The prefactor can be recast to reveal a length-scale called the dipolar length
add = µ2µ0m/12πh̄2. We can compare this quantity to a to judge the relative strength
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of the long-range term. Indeed, add/a ∼ 1 for dysprosium, while it is about 10−2 for
rubidium, justifying the title of dipolar quantum gas in the former case!

2.1.1 Optical trapping

We use infrared lasers to create conservative trapping potentials for our atoms. The
principle of these optical dipole traps (ODTs) is the light-induced coupling of the ground
state to the forest of excited energy levels, as we will explain in detail in section 2.4.
Here, we restrict ourselves to stating the effect of a monochromatic light field with
spatially dependent intensity I(r), at the wavelength λ = 1064 nm used for our ODTs.
An attractive potential landscape is created:

V(r) = − 1
2ϵ0c

Re[α] I(r) ,

where α ≃ 184 α0 is a quantity called the polarisability. The unit of atomic polarisability
is α0 = 4πϵ0a3

0.
Our ODT laser beams are, to a good approximation, circular Gaussian beams. A

single such beam has an intensity profile

I(r) = I0

(
w0

w(z)

)2

exp
(
−2

ρ2

w(z)2

)
,

where z is the coordinate along the propagation axis, and ρ is the distance from this axis.
The deepest part of the trap is on the axis at the focus z = 0, where the intensity is I0 and
radius is given by the waist w0 (typically 30 µm on our setup). The total optical power of
the beam is P = πw2

0 I0/2. Away from the focus, the radius increases as

w(z) = w0

√
1 +

(
z

zR

)2

,

where zR = πw2
0/λ is the Rayleigh range (typically 7 mm).

The magnitude of the potential at the focus corresponds to the trap depth

U0 =
1

2ϵ0c
Re[α] I0 .

Near the focus (z ≪ zR, ρ ≪ w0), such a trap is approximated by a three-dimensional
harmonic potential

V(r) ≈ −U0 +
m
2
(ω2

ρρ2 + ω2
z z2), where ωρ =

√
4U0

mw2
0

and ωz =

√
2U0

mz2
R

(2.1)

are the radial and axial trap frequencies respectively.
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Figure 2.1: Schematic top view of the experimental vacuum chamber. The operations carried out
in different sections are described in section 2.2. See fig. 2.2 for a zoom-in on the science cell. For
scale, the length of the Zeeman slower is 50 cm.

2.2 experimental setup overview

In this section, we briefly describe the stages of the experiment leading to the production
of ultracold gases. Figure 2.1 shows a schematic of our experimental system. The design
and construction of the experiment have been detailed in refs. [89, 90].

2.2.1 A slow jet of atomic dysprosium

The source of our dysprosium atoms is an effusion cell filled with flakes of solid dys-
prosium. The cell is heated to 1100 ◦C, where the vapour pressure is sufficient to produce
a directed jet of atoms at a velocity of about 500 m s−1. The jet’s divergence is reduced by
a transverse cooling stage located at the cell exit. This 2-D optical molasses, operating on
the blue cooling transition at 421 nm, ensures an adequate flux of atoms at the entrance
of the Zeeman slower. The Zeeman slower also operates on the blue cooling transition; it
uses a spin-flip configuration for the magnetic field over a total length of 50 cm, slowing
the atomic get to a velocity of about 8 m s−1.

Note that the light at 421 nm is produced with a commercial laser, which is frequency
locked to the atomic transition using modulation transfer spectroscopy on a hollow
cathode lamp setup. On the other hand, the 626 nm laser is a home-made system based
on sum frequency generation with infrared seeds at 1050 nm and 1550 nm in a non-linear
PPLN crystal. The frequency lock is more demanding in this case due to the narrow
linewidth. It is performed using Lamb dip spectroscopy directly on the atomic jet before
the Zeeman slower entrance.
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2.2.2 Magneto-optical trap and transport

Our magneto-optical trap (MOT) operates on the 626 nm transition and uses a quadrupole
B-field gradient along a horizontal axis. During an initial loading stage, 15 seconds in
duration, the MOT beams have a high intensity, with saturation parameter s ∼ 50, and
are modulated in frequency; this widens the capture range of atomic velocities. Then,
a compression stage follows, where the modulation is turned off and the intensity is
ramped down, leading to an increase in density and decrease of temperature, as explained
in ref. [93], where a detailed study of our MOT can be found. The balance of radiative
and gravitational forces leads to a spin polarisation in the state |J, m = −J⟩. Our MOT
typically consists of 108 atoms at 15 µK.

The next step consists in transporting the atoms over a distance of 30 cm from the
MOT chamber to the science cell. This step has been described in detail in [90]. In short,
we turn on a deep optical dipole trap (ODT) at 1070 nm, whose focus initially overlaps
with the MOT capture region, allowing for a transfer of the atomic cloud. The optical
path of the ODT beam is designed to include a retroreflector mounted on a mechanical
translation stage, allowing us to move the focus, and hence the trapped atoms, to the
science cell. The total efficiency of the capture from the MOT and the transport steps is
10% (with respect to atom number).

After transport, we use an intermediate Doppler cooling stage. The aim here is to
provide a good starting point for subsequent forced evaporative cooling by increasing
the atomic collisional rate. A single red-detuned 626 nm beam is used for cooling in this
step (see fig. 2.2). The difference in polarisabilities of the ground and excited levels leads
to an effective detuning that depends on the polarisation and intensity of the ODT. As
explained in ref. [94], we exploit this effect to optimise the cooling effect, resulting in
a twofold increase in the collisional rate. Note that the concepts of polarisability and
lightshifts will be explained in detail in section 2.4.

The final step before evaporative cooling is the transfer of the cloud into a pair of
orthogonal crossed optical dipole traps (cODTs, see fig. 2.2). The cODTs are created with
single-mode fibre lasers at λ = 1064 nm with powers 45 W and 10 W. During the transfer,
the focal position of the more powerful laser is rapidly modulated, such that the atoms
feel a wider and shallower time-averaged potential – this increases the spatial overlap of
the cODTs with the transport ODT and improves the transfer efficiency by a factor of
two (see [92] for details). The transport trap is then gradually turned off, preparing us
for evaporative cooling in the cODTs.

2.2.3 Evaporative cooling

The crossed optical dipole traps together form a three-dimensional trapping potential,
given by summing the individual potentials stated in eq. (2.1). We denote the resulting
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Figure 2.2: Schematic of the glass science cell, with incident laser beams. The atomic cloud arrives
from the MOT chamber trapped in the transport optical dipole trap (ODT). It is then cooled by the
Doppler cooling beam at wavelength λ = 626 nm, which is incident from the -z direction. This is
followed by transfer into the mutually perpendicular crossed ODTs (ODT 1&2, λ = 1064 nm) and
evaporative cooling. The spin state is manipulated using the red tensor light shift (LS) beam at
626 nm (J′ = 9). This beam can also be used in conjunction with an identical counter-propagating
beam to induce Raman transitions within the ground manifold (J = 8). The Titanium-Sapphire
(Ti-Sapph) laser beam from above is also used for tensor lightshifts; it can address transitions
with excited state angular momentum J′ = 7, 8, 9. The spin state can then be detected by either of
two absorption imaging beams (λ = 421 nm). Magnetic field control, including production of the
Stern-Gerlach gradient to resolve the spin sublevels, relies on magnetic coils surrounding the cell,
not shown here. For scale, the outer dimensions of the science cell are 5 cm× 5 cm× 15 cm.

total trap depth U0, and average trap frequency ω̄ = (ωxωyωz)1/3. Far from degeneracy,
the average energy per particle is that of an ideal gas i.e. 3kBT. The parameter η =

U0/kBT is on the order of 10, such that the gas is indeed localised at the trap centre,
where the potential is harmonic. From a thermodynamic point of view, this system is
open, since evaporation is possible: particles with large kinetic energies ≳ U0 can escape
the central region and be permanently lost, leading to a decrease in the average energy
per particle. The principle of forced evaporative cooling is to decrease U0 over time, such
that a fraction of high energy particles, i.e. the tail of the Boltzmann distribution, can
escape, leading to a decreasing temperature as the remaining particles rethermalise, as
sketched in fig. 2.3. To achieve significant cooling, this process must dominate non-energy
selective loss processes, e.g. collisions with background gas, which do not decrease the
temperature. A full treatment can be found in standard texts, e.g. ref. [101].

In practice, we wish to implement an evaporation process that increases the degree of
quantum degeneracy, as quantified by the phase space density

D = N
(

h̄ω̄

kBT

)3

.
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Figure 2.3: Evaporative cooling. Upper & middle left: The principle of evaporative cooling,
illustrated with a discrete decrease of the trap depth U0. High energy atoms E ≳ U0 can escape
from the trap. The remaining atoms rethermalise to a new energy distribution p(E), with a lower
energy per particle i.e. a lower temperature. Right: The atom number N, temperature T, and
phase space density D during evaporative cooling. The trap depth, not shown here, is ramped
down exponentially with time, maintaining η ∼ 10. Lower left: The slope of the log-log PSD vs. N
plot gives the evaporation efficiency χ. Note that the threshold for condensation is D ≈ 1.2.

Ignoring interactions, the critical value for Bose-Einstein condensation is D ≈ 1.2. A
smooth decrease in U0 is implemented by exponentially ramping down the cODT powers
on the timescale of a few seconds, while roughly maintaining a constant ratio η, and never
straying far from thermal equilibrium. It is also important to be left with a detectable
number of atoms at the end of the process! In this sense, the efficiency of this cooling
process is given by

γ = −d logD
d log N

.

Another desirable property during evaporation is fast rethermalisation, which is set by
the elastic collisional rate

Γcoll =
Nmσω̄3

2π2kBT

where the collision cross-section is σ = 8πa2 for bosons at low temperature. In optical
traps, the trap opens up over the course of forced evaporation as ω̄ ∝ U1/2

0 . The runaway
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Quantity Typical energy scale E
2π×h̄ [kHz]

Temperature kBT 10
Trap depth U0 100
Trap frequency h̄ω̄ 0.3

Contact interactions
4πh̄2a

m
n 0.1

Dipolar interactions
µ0µ2

8π
n 0.01

Zeeman splitting gJµBB = h̄ωz 200
Transverse B-field fluctuations gJµB δB 0.7

Tensorial light shift coupling V0 200
Two-photon recoil Erec 10

Table 2.2: Relevant experimental energy scales and frequencies. These are evaluated for a cold
thermal cloud prepared at the end of evaporative cooling. After turning off the optical dipole
traps, this cloud is used as a platform to engineer spin Hamiltonians using spin-dependent light
shifts. See text for details and for definitions of the symbols.

regime, where the collisional rate increases with time, cannot be reached with the simple
method described here [102] (cf. evaporation with fixed trap frequency in magnetic
traps).1

Figure 2.3 shows our sample’s properties during evaporative cooling. We choose
the exponential ramps used to reduce cODT power to optimise phase space density at
various intermediate points. The phase space density is calculated from measured atom
numbers and temperatures. The temperature is measured using standard time-of-flight
expansion. Note that the trap frequencies are calibrated independently by measuring
in-trap oscillation frequencies after a quench of ODT power. Throughout this thesis,
we will use an ultracold thermal cloud at temperatures of 0.5 µK to 1 µK. The relevant
parameters and energy scales for such clouds are summarised in table 2.2.

As indicated in fig. 2.3, our setup is also capable of producing BECs, which were
characterised in more detail in ref. [91]. Note that dipolar BECs also pose unique
challenges, such as magnetic instabilities, because of the long-range interactions. The
work described in this thesis deals with light-induced spin Hamiltonians at the single-
atom level. The quantum degeneracy of the gas as a whole does not play a key role. We
will return to this topic to give more context at the relevant junctures: we discuss the
effect of enhanced inter-atom interaction in the BEC state on the results of chapter 3, give
a general perspective on spinor BEC physics with dysprosium at the end of chapter 4,
and give an outlook for light-induced artificial gauge fields in our BEC near the end of
chapter 5.

1 Runaway evaporation is possible in optical dipole traps with specialised techniques [103–105].
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Figure 2.4: Absorption imaging. The density profile of the atomic cloud, integrated along the
imaging axis, is proportional to the optical density (OD), as given in eq. (2.2). The OD is calculated
as the logarithm of the ratio of the images taken without and with the atoms present in the frame.
This example image was taken just after transporting the atomic cloud to the science cell, after a
2.75 ms time-of-flight expansion. In the raw images, darker shades indicate higher intensities.

2.2.4 Absorption imaging

We detect the atomic cloud by a standard absorption imaging scheme at the end of every
experimental shot. The main imaging axes we use in the science cell are along the two
horizontal directions (see fig. 2.2).

Absorption imaging is a destructive measurement process. A collimated beam,
resonant with the 421 nm transition, is sent onto the atoms. Following Beer-Lambert’s
law, the shadow formed due to photon scattering is given by the effective atom-light cross-
section σ and the atomic density profile n(x, y, z) integrated along the light propagation
axis (say z) :

I(x, y) = I0(x, y)e−σ
∫

dz n(x,y,z)

The optical system placed after the camera images the atoms onto a digital CCD camera,
such that we measure I(x, y) up to imaging efficiencies. A successive image taken after
the atoms have fallen out of view measures the reference intensity profile I0(x, y), such
that the integrated density profile can be deduced from the optical density (OD):

OD(x, y) = log
I0(x, y)
I(x, y)

= σ
∫

dz n(x, y, z) (2.2)

Figure 2.4 shows an example of a measured optical density profile. The typical
properties of interest from such an image are the total atom number, the mean in-plane
atomic position, the velocity distribution obtained after a long time-of-flight expansion,
etc. For a simple two-level system, the resonant cross-section only depends on the
wavelength as σ = 3λ2/2π; in our case, the polarisation and spin state of the atomic cloud
play a role via Clebsch-Gordan coefficients. Relative cross sections for different |J, m⟩
sublevels can be calibrated by Ramsey interferometry, as we will explain in section 2.3.
The absolute atom number will not play a role in the results presented in this thesis.
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Nevertheless, we have performed an absolute calibration of the cross section using the
critical phase-space density for Bose-Einstein condensation. Finally, certain results need
accurate absolute values for atomic displacements, which requires precise calibration of
the imaging system’s magnification along each axis (at the level of 0.3%). The direction
along gravity is simply calibrated using free-fall. For the horizontal direction, we use
two-photon Raman transitions, which impart a fixed recoil velocity, to perform the
calibration.

2.2.5 Magnetic field control

Precise control of magnetic fields in the science cell is essential during the cooling stages
as well as for subsequent spin-state manipulation and detection. This is achieved using
the following independently controlled coils.

• The static component of the ambient magnetic field, mainly from the Earth’s field,
is cancelled by three sets of coils in a Helmholtz configuration that encircle the
entire experimental table. The produced field is effectively uniform over the entire
MOT chamber and science cell setup.

• The shot-to-shot variations of the magnetic field along the vertical axes are reduced
by an additional coil controlled by an active compensation system. The primary
source of these fluctuations (timescale ∼ 1 s) is the Paris metro line which passes
underground in the vicinity of the building. The compensation system reads the z-
field value from a probe located near the science cell and generates a corresponding
opposing field. This brings down the value of the fluctuations from 2 mG rms to
0.4 mG rms, which is in line with the observed value in the transverse directions,
which are unaffected by the metro line.

• The static bias field B we wish to subject the atoms to is generated by another
three sets of coils, in this case directly mounted in a cage around the science
cell. We precisely calibrate the value of the field using Ramsey interferometry
(see section 2.3) and radiofrequency spectroscopy. We usually need a field along
the z-axis, although we also use finite transverse tilts of about 5◦ for certain spin-
dependent light shifts, as we shall see later. During Doppler and evaporative
cooling stages, the field magnitude is set near 1.4 G, enough for maintaining the
spin polarisation in m = −8. The gravitational force on the atoms is cancelled by
an additional magnetic field gradient. Before applying tensorial light shifts or spin
rotations, the bias field is reduced to about 0.1 G and the gravitational compensation
is turned off.

• The spin detection protocols explained in the following section use 90◦ spin rota-
tions. These need to be performed on the microsecond timescale and require a
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B-field pulse in a transverse direction. This is produced using coils supplied by
a waveform generator + radiofrequency amplifier circuit. The second component
for spin detection is a magnetic field gradient. The strong Stern-Gerlach gradient
(∼ 50 G/cm) is produced by a single coil below the science cell, supplied by a
circuit designed to produce a large current pulse on a millisecond timescale.

2.3 spin state detection

In this section, we discuss the conceptual representation and practical detection of states
of the ground state electronic angular momentum J = 8. Our experiments are carried
out in a finite axial field Bz ∼ 100 mG, and hence the eigenstates of Jz, denoted |J, m⟩
(or simply |m⟩), with −J ≤ m ≤ J, form a natural basis (often called the Dicke basis).
Remember that the atomic cloud remains polarised in the ground state |m = −J⟩ during
evaporative cooling.

A convenient representation of a general state |ψ⟩ within the spin-J manifold is the
Husimi-Q representation, defined as the overlap with state |m = J⟩n, which is a polarised
state along the spatial direction n.

Q(n) = | ⟨ψ|J, m = J⟩n |2 (2.3)

This function is usually plotted over a generalised Bloch sphere. We show some examples
in fig. 2.5. The state |m = −8⟩ takes the form of a symmetric distribution centred at
the south pole, whereas |m = −4⟩ is maximal at the latitude given by the polar angle
θ = cos−1 (−4/8).

We probe spin states by a projective measurement along the z-axis using a Stern-
Gerlach technique. A strong magnetic field gradient B′ is applied, leading to an m-
dependent force −gJµBB′ m. Each atom is independently projected onto one of the
m-states, according to the spin projection probabilities

Πm = | ⟨ψ|J, m⟩ |2 . (2.4)

After a time-of-flight expansion long enough to spatially resolve the m-states, we
take an absorption image and count the fraction of atoms in each sublevel, leading to
a single-shot measurement of the discrete Πm distribution. See fig. 2.5 for an example
of the detection of a state |m = J⟩n along an equatorial direction. We now have direct
access to spin moments such as

⟨Jz⟩ = ∑
m

m Πm and ⟨J2
z ⟩ = ∑

m
m2 Πm .
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Figure 2.5: Examples of J = 8 spin states represented on the Bloch sphere using their Husimi
functions. The polarised m-state |m = −8⟩ is a symmetric distribution at the south pole, whereas
|m = −4⟩ forms a ring at the latitude given by the polar angle θ = cos−1 (−4/8). The third
state is the state |m = −8⟩ rotated onto the equator – on the right, we show an example of the
experimental detection of this state by a projective Stern Gerlach measurement along the z-axis.
We show a single shot absorption image, from which we extract the projection probabilities Πm
for each of the 2J + 1 m-sublevels.

Note that each Πm is itself effectively a spin moment of order 2J.2 As we shall see
in the following chapters, this single m-level resolution allows us to probe interesting
high-order observables associated with the coherence of the quantum superposition of
spin states.

To have complete information on a general spin state |ψ⟩, we need access to the
projection probabilities along arbitrary projection axes n, denoted Πm(n). This requires
preceding the above Stern-Gerlach protocol with an operation R(n) that rotates the
direction n to the north pole. The first elementary spin rotation at our disposal is an
arbitrary azimuthal rotation Rz(ϕ), corresponding to a simple waiting period of time
t = ϕ/ωz, where ωz = gJµBB/h̄ is the Larmor frequency set by the axial field. The second
elementary spin operation we consider is a π/2 rotation around the y-axis Ry(π/2). This
is produced by a strong B-field pulse along the y-axis, over a timescale of about 5 µs. In
practice, the axial field is not negligible compared the pulse amplitude, such that the
‘π/2-pulse’ is effectively a composite rotation R′y(π/2) = Rz(ϕa)Ry(π/2)Rz(ϕb), where

2 In fact, the projection probability Πm is the expectation value of the following operator, which is of order 2J
in Jz :

∏
m′ ̸=m

Jz −m′

m−m′
.

We cannot directly implement such operators with the techniques discussed in this chapter, but the Stern-
Gerlach detection scheme gives us access to Πm.
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ϕa,b are constants that we calibrate independently. These two spin operations can be
combined as follows to perform the general rotation we need

R(n) = R′y(π/2)Rz(ϕ2)R′y(π/2)Rz(ϕ1) ,

where ϕ1,2 depend on the spherical angles θ, ϕ along the projection axes n as

θ = ϕ2 + π + ϕa + ϕb and ϕ = −(ϕ1 + π/2 + ϕb)

Ramsey interferometry

We now present a Ramsey interferometry experiment as a simple illustration of the spin
detection and rotation techniques explained above. Starting in the ground level |m = −8⟩,
we apply a sequence of rotations R′y(π/2)Rz(ϕ)R′y(π/2). We measure the projection
probabilities Πm as a function of the rotation angle ϕ, as shown in fig. 2.6. Note that each
slice at a given waiting time t corresponds to a measured probability distribution Πm,
averaged over a handful of realisations. This type of presentation of data will reappear
extensively throughout this thesis. As for the familiar Ramsey experiment in a two-level
system, we see that the final state varies smoothly from the south (Π−8 ∼ 1) to the north
pole (Π8 ∼ 1) on the Bloch sphere. The frequency of this oscillation is simply the Larmor
frequency ωz, thus providing a convenient calibration of the total magnetic field. The
coherence time of this oscillation is limited by magnetic field fluctuations and is typically
around 200 µs. A posteriori rescaling of the acquired phase ϕ for each data point, using
the field fluctuations recorded independently on a magnetic field probe near the science
cell, can increase the effective coherence time by a factor of 1.5.

We can also use this experiment to calibrate the relative m-dependent imaging
efficiencies. These arise from the optical cross-section for each m-state with respect to
the J′ = 9 excited level addressed by our imaging beam at 421 nm. This depends on
Clebsch-Gordan coefficients and the chosen polarisation for the imaging beams. In short,
we use the assumption that the total atom number is independent of ϕ, and rescale the
raw Πm values to reflect this. The rescaling coefficients can then be applied to any spin
measurements taken with the same imaging setup (see refs. [89, 91] for more details).
Starting in |−8⟩ and using only spin rotations, our experiments would be limited to the
family of maximally polarised states |m = J⟩n. Leaving this manifold of states requires
creating non-linear spin couplings, which we achieve with spin-dependent light shifts.
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Figure 2.6: Ramsey interferometry Left: Spin projection probabilities Πm measured during a
Ramsey experiment. Starting with all atoms polarised in |J, m = −8⟩, we perform a π/2-pulse,
wait for duration t, and then perform a second π/2-pulse. The state is not exactly |m = 8⟩ at
t = 0 because our π/2-pulses are not perfect – they include azimuthal rotations (see text). Right:
The frequency of the oscillation of the average magnetisation ⟨Jz⟩ = ∑m m Πm gives the Larmor
frequency ωz = 2π × 137.7(4) kHz, corresponding to an axial magnetic field B = 79.3(2)mG.

2.4 spin-dependent light shifts

2.4.1 Basic theory

We first consider a two-level atom in the presence of a laser light field at frequency ω :

E =
1
2

Ee−iωt ϵ + c.c.

Here, ϵ is a complex polarisation vector, and E is the magnitude of the electric field
related to the light intensity via I = ϵ0cE2/2. At lowest order, the atom-light interaction
hamiltonian V is given by the electric dipole term

V = −d · E

where d is the electric dipole operator. A resonant frequency ω0 is associated with optical
transition ground level |g⟩ and excited level |e⟩. We work far from the resonance in a
dressed state formalism, such that V describes an energy displacement or light shift of the
ground state. Using second-order perturbation theory, and hereafter using the rotating
wave approximation (RWA), to discard a term at O(ω + ω0)−1, we get

V =
1
4
|E|2| ⟨e|d · ϵ|g⟩ |2 1

∆ + iΓ/2
,

where we have introduced the detuning ∆ = ω − ω0 and the linewidth of the excited
level, Γ.

The real and imaginary parts of the above expression have distinct physical con-
sequences. Consider the dependence on the laser frequency ω: the imaginary part has
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a Lorentzian shape centred at the resonance ∆ = 0. It represents the rate of incoherent
scattering of photons

Γscatt = Im [α(ω)]
E2

2h̄
.

The frequency dependence of V is represented by a quantity called the polarisability,
denoted α. In contrast, the real part represents a conservative light potential, with
negative (resp. positive) energy shifts for red (resp. blue) detuning. which is defined by
the familiar expression

V = −Re [α(ω)]
E2

4
= −Re [α(ω)]

I
2ϵ0c

(2.5)

Hence, a spatially varying laser field I(r) generates a corresponding potential landscape
V(r) – this is the principle of optical dipole traps, as introduced in section 2.1.1.

2.4.2 Tensor polarisability

The simple treatment presented above is not sufficient in case the ground and excited
optical levels themselves have an internal structure. In this case, the polarisability is, in
general, a tensor: in addition to a simple global shift of the ground state, proportional to
the laser intensity, the atom-light interaction also couples states within the ground mani-
fold. In this section, we state certain key results and explain the practical consequences
for our subsequent experiments – more detailed explanations can be found in refs. [106,
107]. We give results for a ground manifold of total electronic spin J, with no hyperfine
structure. The total light shift operator V then acts on a Hilbert space of dimension
2J + 1, spanned by the states |J, m⟩. The light shift can be decomposed into scalar, vector
and tensor components:

V = −E2

4
(Vs + Vv + Vt)

Vs = αs I (2.6)

Vv = −iαv
(ϵ∗ × ϵ) · J

2J
(2.7)

Vt = αt
3[(ϵ∗ · J)(ϵ · J) + (ϵ · J)(ϵ∗ · J)]− 2J2

2J(2J − 1)
(2.8)

Note that J is a vector whose components are the spin operators Ji, such that the inner
product with a polarisation vector is given by ϵ · J = ϵx Jx + ϵy Jy + ϵz Jz . We see that the
scalar term corresponds to the simple light shift from the previous section, whereas the
vector and tensor terms produce spin-dependent Hamiltonians of the type Ji and Ji Jj

respectively.
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The frequency-dependent polarisability components are determined by the strength
of the coupling to the excited level manifold J′. They are given by:

αs =

√
1

3(2J + 1)
A(0)

αv = −
√

2J
(J + 1)(2J + 1)

A(1)

αt = −
√

2J(2J − 1)
3(2J + 1)(2J + 3)

A(2),

where the frequency dependence is encoded in the coefficients A(K), given by:

A(K) = 3πϵ0c3 Γ
ω3

0
Re
[

1
ω0 −ω + iΓ/2

+
(−1)K

ω0 + ω + iΓ/2

]

× (−1)J+J′+K+1(2J′ + 1)
√

2K + 1

{
1 K 1
J J′ J

}
. (2.9)

Here, the curly braces denote the Wigner-6j symbol, and Γ refers to the linewidth of the
single excited level J′ for which this formula applies. Note that the prefactor in the above
expression can be written as

3πϵ0c3Γ
ω3

0
=

d2

h̄
=

4h̄Ω2
R

E2 , (2.10)

where d is the reduced dipole matrix element | ⟨J||d||J′⟩ | and ΩR is the Rabi frequency.
To get the total values of the polarisability components (αs, αv, αt) at a given frequency,

we must use the above results and sum the contributions from all the excited levels.
Figure 2.7 shows the values of the three components over a wide range of wavelengths.
For our dipole traps at 1064 nm, there are no transitions nearby – in this case, the main
contribution is from the blue transitions near 400 nm, leading to a dominant ‘background’
scalar polarisability of αs ≃ 184 α0 [108, 109].3 The vector and tensor terms are two orders
of magnitude smaller. Note that the imaginary components of polarisability (obtained
by instead taking the imaginary part of the complex term in eq. (2.9)) are a further five
orders of magnitude smaller [110].

In practice, we are most interested in the spin-dependent light shifts at a frequency
where a single transition dominates and in the regime where Γ ≪ ∆ ≪ ω0. Then, the
above formulae for the light shift operator can be condensed into a friendlier form:

3 Remember that in Hartee atomic units, the unit of polarisability is α0 = Eh/(ea0) = 4πϵ0a3
0 .
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Figure 2.7: The scalar, vector and tensor polarisabilities as a function of wavelength. The inset
shows a zoomed view around the 626 nm transition. The calculations are performed using a
limited set of transitions [111], with the additional inclusion of transitions accessible by our
Ti-Sapph laser in the range 695 –1005 nm.

J′ α0 (scalar) α1 (vector) α2 (tensor)

J − 1 5/17 −15/17 −5/17

J 1/3 −1/9 5/9

J + 1 19/51 152/153 −40/153

Table 2.3: Dimensionless coefficients for light shift calculations, given here for J = 8 (see text for
details).

V = V0

(
α0 I− iα1

(ϵ∗ × ϵ) · J
2J

+ α2
3[(ϵ∗ · J)(ϵ · J) + (ϵ · J)(ϵ∗ · J)]− 2J2

2J(2J − 1)

)

(2.11)

with V0 =
3πc2 Γ
2 ω3

0

I
∆

. (2.12)

The values of the dimensionless coefficients αi depend on the excited level electronic spin
J′, and they are listed in table 2.3. Note that these coefficients are of the same order of
magnitude for the scalar, vector, and tensor terms. The background effect of all other
transitions appears mainly as a scalar polarisability, which does not play a role in the
spin Hamiltonians that we realise.

The general idea will be to choose a detuning to the target transition of ∆ ∼ 105 Γ. This
allows us to reach atom-light couplings in the range V ∼ h× 0.1 GHz to 1 GHz for reas-
onable laser intensities with negligible photon scattering. In the following chapters, we
will use laser beams close to narrow-line transitions to create tensor light shifts and hence
manipulate the atomic spin state. We now aim to illustrate the physical consequences of
eq. (2.11) with some examples that are directly applicable to our experimental protocols.
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2.4.3 Examples

Example I: J′ = 9 transition at 626 nm
Consider a beam blue-detuned beam near this transition (Γ = 2π× 135 kHz) and linearly
polarised along x i.e. ϵ = x̂. The scalar polarisability creates a repulsive potential. The
beam is focussed on the atoms, with a waist (∼ 50 µm) much larger than the spatial
extent of the cloud (∼ 5 µm). In addition, the experimental timescales are much shorter
than the oscillation period in this trap. So we can consider a uniform, static light field
over the atomic cloud. The vector light shift vanishes since the cross product ϵ∗ × ϵ

in eq. (2.11) is zero. Hence, only the tensor term is relevant for light-induced spin
dynamics. Since J · ϵ = Jx in eq. (2.11), the tensor light shift is proportional to J2

x (up to
an additive constant). Rearranging the prefactors in the tensor term, we can write the
spin Hamiltonian in the simple form

H = V0
−J2

x
(J + 1)(2J + 1)

(2.13)

Such a spin coupling will be used to implement the LMG model in chapter 3, and to
prepare non-classical states via one-axis twisting dynamics in chapter 4 (albeit with a
different optical transition in the latter case).

Example II: J′ = 7 transition at 696 nm
We now consider a beam blue-detuned to this narrow transition (Γ = 2π × 15 kHz), with
a σ− circular polarisation i.e. ϵ = (x̂− iŷ)/

√
2. This time, the vector term contributes a

term proportional to Jz, since ϵ∗ × ϵ = ẑ. The tensor term is proportional to J2
z (up to an

additive constant), since

(ϵ∗ · J)(ϵ · J) = (Jx + iJy)(Jx − iJy) = −J2
z + const.

Again, the spin Hamiltonian takes a simple form

H = V0
(Jz + J)(Jz + J − 1)

2J(2J − 1)

Note that, in contrast to the previous example, this spin Hamiltonian commutes with
Jz and hence will not induce spin dynamics for an atom initially in the state |m = −8⟩.
Additionally, we have not dropped any additive constants in this formula, such that the
light shifts from this transition indeed vanish when ⟨H⟩ = 0 – we will return to this point
shortly. The results presented in this section so far are in fact valid to lowest order in the
ratio ΩR/∆, where ΩR is the Rabi frequency defined in eq. (2.10). Higher order terms
must be determined as follows. We work in a basis diagonal with respect to the light
shift operator – here, it is simply the eigenstates of Jz i.e. the states |m⟩. Using eq. (2.11)
(and ignoring the factor V0), we can calculate a dimensionless light shift matrix element
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Figure 2.8: Dark states for a transition to an excited level J′ = 7 from the ground level J = 8. (a)
An example for circularly polarised light ϵ = σ− . The states m = −7 and −8 in the ground
manifold are not coupled to the excited level i.e. they are dark. In red, we show the (approximate)
Clebsch-Gordan coefficients for some other m-states. (b) More generally, the pair of dark states
vary with the polarisation. Here, we show the dark states’ spin projection probabilities as the
polarisation is smoothly varied from σ+ to σ− as a function of the parameter θ. The dark states
form the null space of the light-atom coupling operator for this transition; we choose to plot them
in a basis decomposed on even and odd m-sublevels.

Qm for each of these states. We now assign each state its own effective Rabi coupling
ΩR,m =

√
QmΩR. Then, the diagonal elements of the light shift operator are given by

Vm = h̄

(√(
Ω2

R,m +
∆2

4

)
− ∆

2

)
. (2.14)

It is simple to check that we recover the previous expressions when ∆≫ ΩR, which gives
Vm ≃ h̄Ω2

R/∆×Qm. The Qm factors will play an important role in chapter 4, where we
interpret them in terms of the state of the encoded qubits.

2.4.4 Dark states

Dark states are defined as those having a vanishing expectation value with respect to
the atom-light interaction Hamiltonian V. Here, we consider them for a single optical
transition. First, consider the case of an excited level J′ = J − 1: stepping out of the
dressed-state picture for a moment, we see that V couples a Hilbert space of dimension
2J + 1 = 17 to one with dimension 2J′ + 1 = 15. So there must be a two-dimensional
dark subspace in the ground manifold.4 For the case of circular polarisation σ−, it is
clear that the dark states must be m = −7 and −8, as illustrated in fig. 2.8a. In general,
these states vary smoothly with the laser polarisation, as we show fig. 2.8b. Continuing
this reasoning, there are no dark states for excited levels with J′ = J + 1. The case
J′ = J is ambiguous – in our case (and generally for whole number values of J), the

4 This follows from the rank-nullity theorem in linear algebra.
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properties of the Clebsch-Gordan coefficients ensure that one dark state exists for any
polarisation [112].

The inherent protection of dark states from decoherence by spontaneous emission
has led to applications in subrecoil laser cooling [112], electromagnetically induced
transparency [113], and stimulated Raman adiabatic passage [114]. Recently, their poten-
tial for realising long-lived many-body topological states has also generated significant
interest [115]. We will discuss such a possibility for our experimental setup in chapter 5.
Below, in section 2.4.6, we use a dark state to precisely calibrate the polarisation of a laser
beam used to generate light shifts. Dark states will also play an important conceptual
role in our results in chapter 4.

2.4.5 Comparision to alkali atoms

We conclude the theoretical discussion of light shifts by comparing dysprosium to alkali
elements, which are not well-suited for creating the spin Hamiltonians described here.
For alkalis, the picture of a single, isolated transition considered above is complicated
by relatively narrowly split fine and hyperfine structure terms, leading to unfavourable
scaling of the strength of the vector and tensor light shift terms relative to the photon
scattering rate [116]. This advantage of lanthanide atoms also carries forward to the Ra-
man coupling scheme we use to produce synthetic gauge fields. Another key advantage,
resulting from the complex electronic structure, is the presence of narrow-line transitions
at energies far from the dominant blue transitions (cf. the lack of such transitions away
from the D1-D2 manifold of alkalis). This allows for strong couplings without heating,
an important factor for the creation of levels well-separated compared to thermal and
interaction energy scales, e.g. for topological Bloch bands [117].

2.4.6 Experimental implementation

We now describe the laser and optical setups for the creation of spin-dependent light
shifts. We will mainly discuss a tunable Titanium:Sapphire (Ti-Sapph) laser system
which was implemented for this purpose during the course of this thesis. We use a
commercial Ti-Sapph laser5 consisting of a 15 W pump laser at 532 nm, followed by a
laser cavity containing the Ti-Sapph crystal, and a remotely controlled birefringent filter
for wavelength tuning over a range from 695 nm to 1005 nm. The nominal laser power
varies over 2–5 W within this range.

There are several transitions accessible using this laser system, which are shown
in fig. 2.9. The transition at 741 nm has already been studied by the Stanford group and
used for a narrow-line MOT [30, 99]. The transition at 1001 nm has been measured to
have a ultra-narrow width at the level of a Hertz [118]. The other accessible transitions

5 M Squared SolsTiS
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Figure 2.9: Optical transitions accessible using the Ti-Sapph laser.

have kHz-level linewidths. We will mainly use the 696 nm line here and in chapter 4; we
also mention some results with the 833 nm line towards the end of this section.

The optical path for the Ti-Sapph laser beam is as follows: at the laser output, a small
amount of light is sent to a wavelength meter, while the rest can be divided between
two equivalent optical paths, each with an AOM (for power control), and coupled to an
optical fibre going to a second setup nearer the science cell. The two paths are set up
for easy switching between a pair of wavelengths, which could, in the future, be aligned
along different optical paths towards the atoms; here, we will only consider a single
final path arriving at the atoms from the +z direction, which is shown in fig. 2.2.6 The
optical elements placed just before the science cell are indicated in fig. 2.10. The beam is
focussed onto the atomic cloud with a waist of about 50 µm. The elements for precise
control of the polarisation are explained in detail below.

We also briefly mention the separate laser system for light shifts at 626 nm, which is
outside the range of the Ti-Sapph. This homemade laser is identical to the main red laser
used for the MOT (but it does not require a frequency lock due to the large detuning
used). As shown in fig. 2.2, this system produces two counter-propagating beams along
the ±y directions, with similar beam characteristics as those for the Ti-Sapph. While only
one beam is needed to produce a simple quadratic light shift (chapter 3), both are used
when engineering two-photon couplings between m-sublevels (chapter 5).

Polarisation control

Example I: Linear polarisation
The precise control of polarisation is crucial for the spin-dependent Hamiltonians we wish
to implement. Consider the example we introduced in the previous section: a Hamilto-
nian H = V0 J2

x produced by the linearly polarised 626 nm beam ϵ = x̂ propagating along
the y-axis. A key feature of the dynamics induced by this Hamiltonian, starting in the

6 In fact, the beam is aligned with a tilt of 5◦ with respect to the z-axis to prevent alignment of retroreflection
from the walls of the glass cell on the atomic cloud; our glass cell has no anti-reflection coating. The magnetic
field is also tilted in the same manner, such that the quantisation axis is still along the incident beam.
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Figure 2.10: Optical path of the Ti-Sapph laser beam onto the atoms. A polarising beam splitter
(PBS) placed before the final focussing lens ensures that the polarisation is linear and parallel to
the surface of the last out-of-plane mirror. This guarantees that the polarisation is unchanged until
the final motorised quarter-wave plate. The adjustable orientation θ of the waveplate’s fast-axis
creates a polarisation vector ϵ(θ), and hence a light shift V(ϵ) on the atomic cloud, located at the
focus in the science cell. The polarisation is precisely and smoothly tunable between circular σ−,
linear along x, and circular σ+.

state |m− 8⟩, is the fact that only even-m states are populated.7 If a small component
of circular polarisation is introduced, it creates a vector lightshift proportional to Jy,
which couples even- and odd-m states. To achieve a clean linear polarisation, we place a
polarising beam splitter (PBS) just after the final focussing lens, before the beam enters the
glass cell. We expect small imperfections from at least four sources: the convergence of
beam through the PBS, the finite extinction ratio of the PBS (∼ 1000 : 1 for transmission),
any shift in polarisation induced by the quartz walls of cell itself, and optical defects like
astigmatism. We find that these effects are negligible in the spin dynamics we observe,
where the dominant source of defects are Zeeman couplings from transverse magnetic
field fluctuations, which also introduce terms proportional to Jy (and indeed also Jx).

Example II: Tunable circular polarisation
This case is more involved – we implement a circular polarisation smoothly tunable (e.g.
on consecutive experimental shots) between σ− and σ+ for the vertical 696 nm Ti-Sapph
beam. As explained at the end of section 2.4.2, σ− light leads to a lightshift proportional
to (Jz + 8)(Jz + 7). Crucially, this cancels exactly for the dark ground states |m = −7⟩
and |m = −8⟩. This property will play a key role in chapter 4. The polarisation vector is
parametrised by an angle θ

ϵ =
(
cos2 Θ + i sin2 Θ

)
x̂ + sin Θ cos Θ(i− 1)ŷ , where Θ = θ + π/4 . (2.15)

The pair of polarisation dependent dark states vary smoothly with θ, reaching m = 7, 8
for σ+ polarised light (at θ = 0).8 The polarisation state given in the equation above is

7 This corresponds to the conservation of the parity ⟨Pz⟩, which will be introduced in chapter 3.
8 The intermediate case θ = π/4 gives linear polarisation along x, with the pair of dark states being |m = ±8⟩x̂.
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Figure 2.11: Calibration of tunable circular polarisation at wavelength λ = 696 nm. Top left:
Measurement protocol. A linearly polarised blue-detuned vertical laser beam is sent through
a quarter-waveplate oriented at an angle θ′ and acquires a polarisation state ϵ. The beam is
then focussed onto the atomic cloud (internal state m = −8). The atoms are repelled, and far
from the laser they acquire a constant velocity ṙ, such that the kinetic energy mṙ2/2 gives the
polarisation-dependent potential energy at the focus, denoted U(θ′). Bottom left: We image the
‘exploded’ cloud in the horizontal plane, and extract a radius r from the integrated disk profile.
This is repeated for several expansion times to extract the velocity. Right: The measured trap
depths (discs) and the fitted variation with respect to the waveplate orientation (solid curve). The
fitting parameters are a global factor to account for the laser intensity and the offset of θ′ from
the angle θ defined in eq. (2.15). The point of vanishing tensorial light shift (θ = 0) corresponds
to a circular polarisation σ−. Note that although the light shift from the λ = 696 nm transition
vanishes at θ = 0, the background polarisability creates an attractive potential, which we do not
resolve on the energy scale of this measurement.

created when linearly polarised light along x is incident on a quarter-wave plate (QWP)
whose fast axis is oriented at Θ = θ + π/4 with respect to the incident electric field. This
is the situation we implement on our setup, where the last optical elements on the beam
path are a PBS followed by a QWP, as shown in fig. 2.10. The QWP is mounted on a
remotely controlled motorised rotating mount9, allowing for precise shot-to-shot tuning
of the polarisation. As shown in fig. 2.11, the polarisation is calibrated by measuring
the repulsive potential felt by the m = −8 state as a function of the QWP orientation –
the minima corresponding to σ− polarised light. We also verify that the spin state does
not evolve for circular polarisation. The purity of the σ− polarisation we prepare will be
validated more quantitatively in chapter 4 by our direct measurements of the lightshifts
of the m = −8,−7 states, which are consistent with zero at a precision of one part in 104.

We also conducted tests on polarisation-dependent dark states for the J′ = 8 transition
at 833 nm. Here, there is only a single dark state instead of the degenerate pair we have
for the J′ = 7 transition. For a linear-x polarisation, the dark state is |m = 0⟩n=x̂ . In our
preliminary investigations, we aimed to adiabatically prepare this state by starting in
our usual ground state |m = −8⟩ and ramping up the laser power, with promising initial
results.

9 Newport 8410 closed loop Picomotor piezo rotation mount
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Figure 2.12: Precise frequency control of the Ti-Sapph laser near the λ = 696 nm transition.
We induce weak spin dynamics using a pulse of fixed duration and intensity (see text), and
measure the resulting spin projection probabilities Πm as a function of the detuning ∆. The
detuning is scanned by varying the lock setpoint. The absolute resonant frequency measured is
ω0 = 2π × 430.735 818 THz and the fitted width, limited by the resolution of wavelength meter,
is 2π × 2.3 MHz.

Detuning control

The frequency of the Ti-Sapph laser is monitored with a commercial wavelength-meter10.
For tensor light shifts at 696 nm realised in this thesis, we typically use detunings of
0.1 GHz to 10 GHz. To stabilise against frequency drifts on the timescale of seconds, we
lock the laser directly to the interferometer of the wavelength meter, where the correction
is fed back to a laser cavity mirror piezo. A good test of this lock is the determination
of the location of the resonance. We pulse x-linear polarised light on the atomic cloud
in m = −8, inducing spin dynamics. We choose a very low intensity, such that the
m = −7,−6 states are perturbatively populated, resulting in the resonance feature shown
in fig. 2.12. The frequency lock is stable enough to resolve the resonance down to a width
of 2 MHz; we also observe long-term drifts on the order of a few megahertz per day.
We conclude by noting that the polarisation and detuning control could also be used in
studies exploiting polarisation-dependent tune-out wavelengths (where the total light
shift, summing contributions from all transitions, vanishes) or polarisation-dependent
magic wavelengths (where the ground and excited state polarisabilities are equal).

2.5 summary

We have now introduced all the ingredients needed to understand our experiment as a
simulator of light-induced spin-dependent Hamiltonians. We again draw the reader’s
attention to the energy scales listed in table 2.2. We see that thermodynamic and many-
body effects play a secondary or negligible role to the energy scale of tensorial lightshifts
and the Zeeman splitting (each around h× 200 kHz). These terms will form the basis of

10 Highfinesse WS6-200
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the Ising-like spin model studied in chapter 3, and will be used to generate non-classical
spin states in chapter 4. Finally, we will use a pair of Raman laser beams in chapter 5,
which in addition to creating spin-dependent light shifts, resonantly couple neighbouring
m-sublevels, which naturally introduces the two-photon recoil as a relevant energy scale
for the atoms’ motion. Throughout, we can understand the physics in terms of the
spin and motional states at the single-atom level, and consider the atomic ensemble
as a convenient averaging mechanism. Deviations from this picture will be addressed
as needed, both to clarify the interpretation of our results, and where they provide
interesting future avenues for many-body studies. These future projects will need to
be complemented by technical developments, which are currently in various stages of
planning: the group plans to characterise spin-dependent contact interactions, install a
microscope objective to image many-body ground states in artificial gauge fields, and
install magnetic shielding to allow experiments at low fields, where interaction effects
are dominant.
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Waiter, bring me a cup of coffee
without cream. . . .
I’m sorry, sir, we have no cream,
can it be without milk?

Ernst Lubitsch, Ninotchka

In this chapter, I describe an experimental study of the Lipkin-Meshkov-Glick model
(LMGm) of quantum spin 1/2s with infinite-range interactions in a transverse magnetic
field. This model exhibits a continuous paramagnetic to ferromagnetic phase transition
in the thermodynamic limit.

The work presented in this chapter has been published in the following article [119]:
Probing quantum criticality and symmetry breaking at the microscopic level
V. Makhalov∗, T. Satoor∗, A. Evrard, T. Chalopin, R. Lopes, S. Nascimbene
Physical Review Letters 123 (12), 120601 (2019)
* These authors contributed equally

This chapter is structured as follows: I begin by introducing basic concepts relating to
quantum phase transitions in section 3.1, using the transverse-field Ising model. This is
followed by a description of the LMG model in section 3.2, and a discussion on quantum
critical behaviour in section 3.3. Section 3.4 explains the formalism by which our system
realises the LMGm, while section 3.5 explains its experimental implementation. Our
measurements of ground state properties are presented in section 3.6, which also includes
theoretical treatments of the LMGm via the mean-field approach and an expansion
around the critical point. We investigate excitations in the LMGm in section 3.7, followed
by a study of symmetry breaking in section 3.8. Finally, section 3.9 discusses perspectives
for future studies building on the results of this chapter.

47
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Figure 3.1: Phase transition in the transverse-field Ising model, as the interaction strength λ/ωz
is increased.

3.1 transverse-field ising model

The transverse-field Ising model describes quantum spin 1/2s on a lattice with nearest-
neighbour interactions in the presence of an external transverse field. It is one of the
most widely used models to study quantum phase transitions [120], and we discuss it
qualitatively here to introduce some basic concepts and allow comparisons to the LMG
model. The discussion below broadly follows ref. [4], where a rigorous treatment can be
found.

The 1-D transverse Ising model is described by the Hamiltonian

H = −h̄λ ∑
{i,j}

σixσjx +
h̄ωz

2 ∑
i

σiz (3.1)

where {i, j} denotes a sum over nearest neighbours, and individual spins are represented
by the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

which satisfy the commutation relations [σu, σv] = 2iεuvw σw.
Here, λ is the strength of the interactions along the x-axis for spins on neighbouring

sites. We restrict ourselves to the ferromagnetic case λ > 0, where co-alignment is
favoured. In addition, the second term represents the tendency of spins to align along an
externally applied magnetic field along z of magnitude ωz > 0. This tends to disrupt the
magnetic order created by spin-spin interactions.

Let us first consider an infinite system at zero temperature. The nature of the ground
state is determined by the relative strength of the two terms in eq. (3.1), as illustrated
in fig. 3.1. At λ/ωz = 0, the ground state is paramagnetic, taking the form

|0⟩ = ∏
i
|↓⟩ ,

where |↓⟩ is the eigenstate of σz polarised along −z. In this state, the x-projections of the
spins are completely uncorrelated, i.e. two-spin correlator vanishes, with ⟨0|σixσjx|0⟩ = 0,
and they are also unpolarised in this direction, as given by the magnetisation, ⟨0|σix|0⟩ =
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0. Introducing weak interactions λ≪ ωz creates local correlations over a scale defined
by the correlation length ξ, such that

⟨0|σixσjx|0⟩ ∼ e−|i−j|/ξ .

In the opposite limit, λ/ωz → ∞, the interactions dominate and we can identify two
degenerate ferromagnetic ground states

|0⟩+ = ∏
i
|→⟩ and |0⟩− = ∏

i
|←⟩ ,

where |→⟩ and |←⟩ are the eigenstates of σx polarised along ±x respectively. These
states are mapped to each other by the global Z2 symmetry generated by the operator

∏i |σz⟩, which performs the rotation

σx → −σx , σy → −σy and σz → σz , (3.2)

under which the Hamiltonian is invariant. However, an infinite system always ‘chooses’
one of the two ground states in the ferromagnetic phase, upon being nudged infin-
itesimally by the environment. This leads to the appearance of a finite magnetisation
⟨σix⟩ = ±1 at every site, which acts as the order parameter. Crucially, there is also a
spontaneous breaking of the symmetry of the Hamiltonian, since neither ground state shares
the original Z2 symmetry. In this sense, the order parameter can be seen as an additional
quantity needed to fully specify the state of a system having undergone spontaneous
symmetry breaking [49].

The ferromagnetic ordering also implies long-range correlations, as reflected in the
behaviour of the ferromagnetic correlator

⟨σixσjx⟩ = 1 for |i− j| → ∞ .

We see that the nature of correlations is fundamentally different to that of the paramag-
netic case; in fact, it can be shown that a smooth change between the two limits is not
possible as we vary λ/ωz. This change instead occurs via a second-order phase transition
at a critical coupling λ = ωz, where the lowest excitation gap δ vanishes. Near the
transition, the system’s physical properties are described by universal critical exponents,
shared by numerous models said to be in the same universality class. In our Ising model
example, the vanishing gap is given by

δ = |1− λ/ωz|zν

with critical exponents zν = 1. Note that ν is the critical exponent describing the
corresponding divergence of the correlation length ξ ∼ |1− λ/ωz|−ν. A universality
class is not defined by the microscopic structure of the models, but rather by global
properties like the associated symmetries, the lattice’s dimensionality, and the number
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of degrees of freedom of the order parameter. The prediction of this universal critical
behaviour has wide-ranging consequences [121], and has been a major triumph of the
scaling theories of critical phenomena and the renormalisation group, developed by
Fisher, Wilson, and Kadanoff in the 1970s.

Due to the simplicity of the transverse-field Ising model, these scaling exponents can
be obtained exactly using a Jordan-Wigner transform of the spin operators to spinless
fermions [122] (though no exact solution exists in 2-D). In fact, our quantum Hamiltonian
eq. (3.1) shares a universality class with the 2-D classical Ising model. In cases where
such simplifications are not possible, a common first attempt to gain physical insight
into the transition is the mean-field approximation. Here, each spin site is assigned a non-
interacting Hamiltonian in the presence of a ‘mean field’ created by the rest of the system.
This technique ignores quantum fluctuations and can give incorrect critical exponents,
particularly in lower spatial dimensions. This is the case for the 1-D transverse-field Ising
model, where we find (zν)MF = 1/2. As it turns out, this is the correct critical exponent
for the LMG model! We will explain in the coming pages how the LMG model can be
viewed as the mean-field limit of this transverse-field Ising chain.

3.2 the lipkin-meshkov-glick model

The remainder of this chapter is dedicated to the study of a version of the transverse-field
Ising model with infinite-range interactions, given by the Hamiltonian

H = − h̄λ

4(N − 1) ∑
1≤i ̸=j≤N

σixσjx +
h̄ωz

2 ∑
1≤i≤N

σiz. (3.3)

This model shows a second-order phase transition at λ = ωz in the thermodynamic
limit. The terms have the same physical meaning as for the Ising Hamiltonian eq. (3.1),
the main difference being that we now have infinite-range ferromagnetic interactions.
The prefactor (N − 1)−1 ensures that the energy per spin is extensive. We also maintain
the Z2 symmetry of the Ising chain (see eq. (3.2)). We note that the LMGm is often
considered with an additional interaction term λyσiyσjy along the y-direction. We set
this term to zero, and briefly return to it at the conclusion of the chapter to elucidate
the resulting possibilities. The model’s infinite range interactions imply that notions of
length-scales and dimensionality are no longer relevant, which may seem like a fatal blow
to its physical applicability. However, it has found a wide range of uses, starting with its
original formulation for interacting nucleons undergoing a shape change transition by
Lipkin, Meshkov, and Glick [50–52].

The mathematical treatments used in this chapter reflect the wide range of systems
where the LMGm applies (see fig. 3.2). Firstly, the form shown in eq. (3.3) has strong links
to other infinitely-coordinated models. The most famous of these is the Dicke model [123],
which describes N qubits interacting with a single light mode. This model was predicted
to show a second-order quantum phase transition to a superradiant phase when the
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Figure 3.2: Three possible formulations of the LMG model and examples of their corresponding
experimental realisations. The lower panels are adapted from works showing the Dicke model
for a BEC in a cavity with a transverse pump (Baumann et al. [124]), a magnetic Fe8 molecular
complex (Gatteschi and Sessoli [128]) with ground state spin S = 10, and a BEC tunnelling in a
double well potential (Albiez et al. [54]).

atom-light coupling is comparable to the qubit splitting; this has since been confirmed
with a BEC coupled to an optical cavity [124]. After tracing out the photonic degrees
of freedom, the effective inter-qubit interactions are infinite-ranged. In the limit of zero
temperature and to lowest order in the spin-light coupling, the Hamiltonian eq. (3.3)
is recovered, and it can be separately checked that these systems share a universality
class [53]. We also note that infinitely coordinated qubit systems can be realised with
single-mode spinor BECs [125], arrays of trapped ions [126], and using light-mediated
atom-atom interactions [127].

Secondly, the LMGm can describe the tunnelling of interacting bosons between de-
generate modes [129–131], as realised with two mode BECs in a double-well potential [54,
55]. At a fixed atom number N, the Josephson oscillations of the atom number difference
N⟨σix⟩ between the wells are well described by the Hamiltonian 3.3. Here, the z-field
maps to tunnel coupling between wells and λ maps to the strength of two-body con-
tact interactions. Interestingly, the broken-symmetry ferromagnetic states correspond
to self-trapping of the BEC [129] – we will show dynamics between such states with
measurements of macroscopic tunnelling in section 3.7.3.

Thirdly, the ‘large spin’ picture we develop in the following section restates the
LMGm in terms of a single spin J = N/2 under a quadratic coupling proportional to
J2
x . This picture applies to large spin single-molecule magnets [128], most famously

Mn12-acetate, where the non-linear coupling arises from the anisotropic arrangement
of ions. The coherent manipulation of Rydberg atoms’ spins can also produce this
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type of physics [132]. Finally, our experiments with ultracold dysprosium atoms also
fall into this third category. We use a single dysprosium atom with ground state spin
J = 8 to study the LMGm for N = 16 qubits. In our case, the effective ferromagnetic
interactions are produced by a tensor light shift, creating a term proportional to J2

x in the
spin Hamiltonian.

We conclude this section by pointing out that the LMGm is in a position of prime
importance due to its mathematical tractability; in particular, the model is integrable [133,
134], and conservation laws mean that the relevant Hilbert space dimension scales linearly
with the number of spins N (as explained in section 3.4). This is a crucial factor given the
scarcity of quantum critical systems with exact solutions, as evidenced by the rich body
of theoretical work surrounding the model, which we cite throughout this text.

3.3 quantum critical behaviour : finite temperature and size

So far, we have spoken of the qualitative change in the nature of the ground state
across the phase transition, but λ = λc itself i.e. the quantum critical point (QCP), is
of central importance. At the QCP, the ground state is an entangled superposition of
an exponentially large number of fluctuating states [4]. This QCP, and the associated
quantum phase transition, only occur at T = 0 in the thermodynamic limit. However, the
theoretical framework of quantum phase transitions still underpins the description of
realistic systems of a finite temperature and size. Indeed, a QCP acts like a singularity
on the phase diagram, strongly affecting thermodynamic properties and dynamics in
its vicinity (see fig. 3.3). At finite temperatures, this leads to the regime of quantum
criticality, where the energy gap h̄∆ is less than the thermal energy scale kBT, and there is
an intricate interplay of quantum and thermal fluctuations, which cannot be described by
an effective theory with weak interactions. We do not delve deeper into this fascinating
subject and instead refer the interested reader to refs. [39, 135].

We now turn to systems of finite size, which also strongly feel the effect of the
underlying quantum critical point. We shall see that our experiments are effectively at
near-zero temperatures for the spin degrees of freedom. So when we speak of critical
behaviour from here on, it refers to signatures of the QCP visible in the crossover regime
for our finite-size system – which we will be evident in our results.

Let us briefly return to our Ising chain with nearest-neighbour interactions, now
imposing a finite chain length L. Deep in the paramagnetic phase where ξ ≪ L, the
system’s bulk behaves identically to the infinite chain. The effect of the system’s finite
size is felt upon approaching the transition, when ξ ∼ L. In this region, the non-
analytic behaviour of physical quantities in the thermodynamic limit is smoothed out
over a finite range of coupling strengths around the transition1 (see fig. 3.3). This
phenomenon is described quantitatively by the theory of finite-size scaling, introduced in

1 It is also possible to define a shift of the phase transition point, with this shift also scaling inversely with N.
For convenience, we maintain the convention (λ/ωz)c = 1 throughout the text, even for our finite system.
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Figure 3.3: Effect of a quantum critical point (QCP) at T = 0, N → ∞ on systems at finite
temperature T (left panel) and finite system size N (right panel). The QCP is indicated as a green
disk at λ = ωc. The strongly interacting regime persists at finite temperature in the quantum
critical ‘fan’ (red), where quantum and thermal fluctuations compete. The QCP extends to a line
of phase transitions (blue) driven by thermal fluctuations. Our experiments are effectively at
T → 0 (see text). Note that the x-axis is inverted with respect to the convention used elsewhere.
In finite systems, the non-analytic behaviour associated with the QCP is smoothed over a critical
crossover region, and the true ground state does not show broken symmetry. The red curves
enclose the zone where the ferromagnetic correlator deviates significantly from its value in the
thermodynamic limit. Our experiments simulate a system with N = 16 spins.

1972 by Fisher and Barber [40]. In short, finite-size scaling asserts that a thermodynamic
quantity A, which disappears as A ∼ (λ− λc)a in the thermodynamic limit, is given by
Aλ=λc ∼ L−a/ν for a finite system. Here, ν is the critical exponent giving the divergence
of the correlation length ξ ∼ (λ− λc)−ν. Note that the upper critical dimension dc is
another particularly important quantity: it gives the number of dimensions above which
a mean-field approach is valid, and it is often difficult to determine theoretically.

Let us now return to infinitely coordinated systems. Although the correlation length
is not defined here, the theory of finite size scaling has nevertheless been extended to
this case [56, 136], with scaling relations of the type Aλ=λc ∼ NaMF/ν∗ where aMF is the
mean-field scaling exponent. It turns out that the relation ν∗ = νMF dc holds for a large
family of models [136]. Here, νMF and dc are the mean-field critical exponent and the
upper critical dimension in the corresponding short-range model. In this way, the finite
size behaviour of infinitely coordinated models can provide crucial information about
analogous short-range models.

For the LMGm in particular, certain finite size scaling exponents have been calculated
explicitly [137, 138]. For example, the excitation gap ∆, which is strictly zero at the critical
point in the thermodynamic limit, behaves as ∆ ∼ N−1/3 in the finite LMGm, which we
will compare to our results in section 3.7.3.
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3.4 mapping the qubit ensemble to a large spin

Here, we explain the formalism of the large-spin picture, which underpins our
experimental realisation of the LMGm. Let us begin by recasting the spin operators from
the Hamiltonian 3.3 as follows:

Jα =
1
2

N

∑
i

σiα , for α = x, y, z . (3.4)

After a few lines of algebra, this allows us to write our Hamiltonian as

H = − h̄λ

N − 1
J2
x + h̄ωz Jz , (3.5)

up to a constant term, which we discard. We see that this Hamiltonian conserves the
total spin and parity, since

[
H, J2] = [H, Pz] = 0 ,

where

Pz =
N

∏
i=1

σi,z (3.6)

is the parity operator directly corresponding to the Z2 symmetry. These symmetries
allow us to identify subset Hilbert spaces with independent dynamics, within our overall
Hilbert space of N-qubit states. Firstly, we have the spin sectors of defined total spin
J = N/2− n where n = 0 , 1 , 2, . . ., down to J = 0 or 1/2. The manifolds with even
(odd) n consist purely of states symmetric (anti-symmetric) under an exchange of any
qubit pair. Each spin sector can be conveniently represented in the Dicke basis |J, m⟩,
where the integer −J ≤ m ≤ +J is the spin projection along the z-axis. This situation is
summarised in fig. 3.4, where we also indicate the parity of these basis states.

It is easy to check that the ground state in the limits λ/ωz = 0 and λ/ωz ≫ 1 belongs
to the J = N/2 manifold, and so this must be the case throughout the phase diagram.
Moreover, the lowest excited states also have J = N/2, as can be seen in fig. 3.5. This
can be explained by a scaling argument: ⟨H⟩ is extensive in N, so the gap between the
overall ground state (from the J = N/2 manifold) and the lowest-energy state of the
J = N/2− 1 manifold must be a constant of order h̄ωz. In contrast, the gaps within the
J = N/2 manifold can be arbitrarily small, and they indeed vanish at the critical point in
the thermodynamic limit, as we will see in section 3.6.1. Moreover, the conservation of
⟨J2⟩ implies that after starting in the ground band, any phase transition dynamics cannot
involve states with J < N/2. Finally, a brief word on states which have no exchange
symmetry i.e. physical states accessible only by N distinguishable qubits: these states
simply add degeneracies to excited states outside the J = N/2 manifold [139] and do
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Figure 3.4: Hilbert space for N = 16 qubits, when represented as in the Dicke basis for a composite
spin of magnitude J = 0, 1, 2 . . . , N/2. Each state is represented by a triangle; the symmetry
under the exchange of qubits, and the expectation value pz for the parity operator is indicated
(see legend). Our experiments are carried out in the maximal spin sector J = N/2, of dimension
N + 1. Note that if states which have no exchange symmetry are included, the Hilbert space is of
dimension 2N (these states are not shown here).

not complicate this discussion. Considered together, the preceding facts justify using the
electronic ground state spin J = 8 of a single 162Dy atom, which can only explore the
maximal spin sector, to simulate the phase transition and low-energy dynamics in the
LMGm for N = 16 qubits. The restriction to the maximal spin sector is also imposed by
symmetrisation of the wavefunction in spinor BEC realisations of the LMGm [125].

We note that we have dramatically reduced the dimension of Hilbert space considered
from 2N to N + 1. Additionally, the definition eq. (3.4) and the exchange symmetry of
qubits means that one- and two-qubit observables can now be expressed in terms of
experimentally accessible moments of the spin J,

⟨σiα⟩ =
⟨Jα⟩
N

(3.7)

⟨σiασjα⟩ =
4⟨J2

α⟩ − N
N(N − 1)

for α = x, y, z . (3.8)

We can further divide the |J = 8, m⟩ Dicke basis into even and odd parity sectors,
respectively corresponding to eigenvalues +1, −1 of Pz. Equivalently, Pz counts if there
are an even or odd number of qubits pointing up. A unique feature of our system
is that the symmetry is directly accessible from measurements of the spin projection
probabilities Πm using the relation

pz ≡ ⟨Pz⟩ =
J

∑
m=−J

(−1)mΠm , (3.9)

along with the single m-state resolved detection of our experimental setup. We also note
that eigenstates of Pz satisfy
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Figure 3.5: Full spectrum of the N-qubit LMGm, for N = 16 (our experiment) and N =
500, showing the sharpening of phase transition features at λ/ωz = 1 on approaching the
thermodynamic limit. Red, blue, and green curves represent states in the three largest total spin J
sectors. Even (odd) parity states are denoted with solid (dashed) lines. All energies are plotted
with respect to the ground state, which is in the J = N/2 sector, with even parity. Note that this
plot only explicitly shows states either symmetric or anti-symmetric under qubit exchange. The
remaining states, leading to the full 2N Hilbert space dimension, simply add degeneracies in the
sectors with J < N/2. The parity gap (δ) and the dynamical gap (∆) are defined from the ground
level to the first excited state of odd and even parity respectively.

⟨Jα⟩ = ⟨Jz Jα⟩ = ⟨Jα Jz⟩ = 0 for α = x, y

In the remainder of the chapter, we will freely switch between the large-spin and
interacting qubit formulations of the LMGm. Since our qubits are in fact virtual, or
encoded, particular care must be taken when speaking of properties like entanglement,
as we will explain in section 3.6.3.

3.5 experimental implementation

Our measurements are performed on ultracold samples of Nat = 1.3(3) · 105 atoms,
initially held in an optical dipole trap at a temperature T ≃ 1.1(1)µK. The atomic spin
is initially polarised in |m = −J⟩, under a magnetic field B = Bẑ with B = 114(1)mG,
corresponding to a Larmor frequency ωz = 2π × 198(2) kHz. This field creates the
Zeeman splitting corresponding to the external field term in the LMGm, and indeed our
initial state naturally corresponds to the LMGm ground state at λ = 0 , where all qubits
are anti-aligned with the field. To simulate ferromagnetic interactions, we apply a laser
beam close to the 626 nm optical transition (excited level J′ = 9), focussed on the atomic
cloud (with a waist of 50 µm). The laser is far-detuned on the blue side of the transition
by 2π × 21 GHz. The beam is linearly polarised along the x direction, resulting in a
quadratic Zeeman light shift proportional to −J2

x , as explained previously in section 2.4.
The coupling strength λ, proportional to the beam’s power, is controlled dynamically
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Figure 3.6: (a) Scheme of the experiment, based on laser-induced non-linear dynamics of the
electronic spin of dysprosium atoms (quadratic light shift ∝ −λJ2

x), in the presence of a magnetic
field inducing a Zeeman coupling ωz Jz. (b) Typical experimental sequence. After the end of
evaporative cooling in the optical dipole traps (ODTs), the z-magnetic field is ramped down
to B ∼ 100 mG. Then, the ODTs are turned off and the 626 nm J2

x coupling is ramped up, to
realise the LMGm at a particular interaction strength. Then, a further step like a quench of the
J2
x beam power might be carried out, depending on the aim of the measurement (here, we just

show a holding period). The non-linear coupling is applied on the typical timescale of a few
hundred microseconds. Then, a Stern-Gerlach (SG) magnetic gradient is pulsed, followed by
a time-of-flight (TOF) expansion and absorption imaging of the 2J + 1 = 17 atomic clouds to
measure spin projection probabilities.

using the RF power sent to an AOM. Figure 3.6 gives an overview of our experimental
scheme.

The Zeeman energy scale h̄ωz ∼ kB× 9 µK is much larger than the kinetic temperature
of the gas, which also has an interparticle collision rate on the order of one per 10 ms
(negligible on our experimental timescales). Hence, each atom’s spin degrees of freedom
are isolated, and our experiments study the LMGm in an isolated system at an effective
T ≃ 0. Combined with the fact that the light and B-fields are uniform over the sample,
one can conclude that a single experimental run corresponds to Nat ∼ 105 realisations of
an identical experiment, over which we average in our detection scheme. We will revisit
the prospect of probing interaction and finite-temperature effects towards the end of the
chapter.

3.5.1 Compensating stray magnetic fields

While trying to engineer the Hamiltonian of eq. (3.5) on our setup, we are naturally
susceptible to introducing unwanted terms proportional to ωx Jx and ωy Jy; these terms
break the Hamiltonian’s Z2 symmetry. They appear when stray magnetic fields in the
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Figure 3.7: Stray magnetic field compensation (a) Expected magnetisation along x-direction ⟨Jx⟩
of the ground state of the LMGm at λ/ωz = 0 (dashed red line) and in the ferromagnetic case
λ/ωz = 2 (solid blue line). We use the ferromagnetic state for the subsequent calibration. (b)
Measured magnetisation as a function of current set-points (Ix, Iy) in compensation coils. The
colour is interpolated from measurements (black circles). The dashed line is the contour of fitted
⟨Jx⟩ = 0. (c) Measured parity pz as a function of currents in compensation coils. The colour is
interpolated from actual data points (black circles). The dotted line is the curve of fitted maximal
pz, while the dashed line from (b) is also shown. For our experiments, we set the compensation
currents to the intersection of the two fitted lines. Note that directions x, y of B-fields created by
the coils are not the same as those defined by the LMG Hamiltonian.

x-y plane are not cancelled.2 The simplest method to set the offset of the x and y fields
to zero is to set λ = 0, and measure the spin projection probabilities along the z-axis.
Fields along the x or y directions would slightly tilt the coherent states and give non-zero
projection probabilities Πm=−7, Πm=−6 . . . , which we can aim to minimise.

However, we exploit the enhanced sensitivity of the ferromagnetic ground state for
a more clever calibration, illustrated in fig. 3.7. A ωx Jx perturbation polarises the total
spin along either of ±x and drastically reduces the mean parity. In practice, we measure
pz and ⟨Jx⟩ versus applied fields, fit lines of pz = 1 and mx = 0 and work at their
intersection point. These contours do not coincide as expected from theory, which could
be caused by a slight miscalibration of the Ramsey waiting time used to measure ⟨Jx⟩.
Such field adjustment needs to be repeated roughly every twelve hours to take into
account global field offsets from neighbouring experiments or the Paris metro system.
We will reconsider such perturbations to the LMGm in our final set of experiments where
we study parity breaking.

3.5.2 Adiabaticity requirements

We aim to adiabatically prepare the ground state in both the paramagnetic and ferromag-
netic regimes. This requires caution, because of the expected minimum near λ/ωz = 1
in the dynamical gap ∆ to the first excited state of even parity (see fig. 3.5). In order
to choose an appropriate ramp speed, we simulate the system dynamics by solving the
Schrödinger equation numerically with a light coupling increasing at constant speed
λ̇, as performed in our experiments. As shown in fig. 3.8 we find that the calculated

2 Our active B-field compensation system (see section 2.2.5) only minimises shot-to-shot fluctuations along the
z-axis.
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Figure 3.8: Simulation of adiabatic state preparation. Ferromagnetic correlator ⟨σixσjx⟩ as a
function of the coupling λ calculated in the state reached after a linear ramp of the from zero to
λ, for different ramp speeds λ̇.

two-qubit ferromagnetic correlator ⟨σixσjx⟩ significantly deviates from the ground state
value for ramp speeds λ̇ ≳ 0.05 ω2

z . We decided to use the ramp speed λ̇ = 0.015 ω2
z , for

which the correlator is practically indistinguishable from the ground-state value, and the
ramp can be considered adiabatic. This corresponds to ramping to λ/ωz = 1 in 54 µs.
The magnetic field compensation discussed in the previous section also plays a role in
adiabaticity since it minimises mixing with the odd-parity excited levels.

3.6 ground state properties

In this section, we investigate the properties of the LMGm’s ground state. Figure 3.9
shows the measured spin projection probabilities Πm(n) along the n = x̂ and ẑ directions.
In the paramagnetic limit λ/ωz = 0, we start with a coherent state along the z-axis
|−J⟩z, which has a symmetric Gaussian distribution in the mx sublevels around mx = 0.
This distribution broadens as we approach λ/ωz = 1. For λ/ωz ≳ 2, it becomes a
clear bifurcation between states polarised along ±x. We deliberately show single shot
data in fig. 3.9a to highlight that each run of the experiment produces the bifurcated
distribution, and it is not an average of several fully polarised states. Hence, the standard
Ising-type order parameter ⟨σ1x⟩ = ⟨Jx⟩/J remains close to zero in our system. However,
a single shot is effectively averaged over all atoms, so the Πm(x̂) data alone cannot rule
out a situation with half of the atoms in each symmetry broken state – which could occur
if spin domains form in the cloud.

A direct measurement of the Z2 symmetry comes to our rescue here, as we see that
only even sublevels remain populated in the measured Πm(ẑ) distribution, and indeed
the mean parity pz ≡ ⟨Pz⟩ remains close to one for all values of interaction strengths.
The small decrease for large interactions is explained by shot-to-shot field Bx fluctuations
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Figure 3.9: Ground state properties from the x- and z-projection probabilities. (a,c) Measured
projection probabilities Πm(n) for n = x̂ and ẑ respectively as a function of the interaction strength
λ. Evolution of the (b) spin pair correlator ⟨σ1xσ2x⟩, (b, inset) its fluctuations, and (d) the mean
parity pz. The solid blue (dotted black, dashed red) lines correspond to the LMGm (mean-field
approximation, critical Hamiltonian, respectively). No averaging is performed in (a). In other
panels, all data is averaged over about five independent measurements. In all figures, error bars
represent the 1-σ statistical uncertainty. The colour scale for the spin projection probabilities used
throughout is the same as fig. 2.6.

of rms width σB = 0.4 mG. These fluctuations couple the even ground state in the
ferromagnetic phase to its nearly degenerate odd counterpart. This mechanism would
cause true symmetry breaking (pz → 0) in a macroscopic system. In this sense, our
N = 16 system could be qualified as not truly macroscopic, or alternately, the fluctuations
are too well under control to see spontaneous symmetry breaking! A more quantitative
discussion will follow with the measurements of susceptibility in section 3.8.

Setting symmetry breaking aside, magnetic ordering along the x-direction is probed
by the two-spin correlator ⟨σ1xσ2x⟩, which is a standard effective magnetisation used
for the LMGm [56]. We remind the reader that this quantity is linearly related to ⟨J2

x⟩
via eq. (3.7). We see that in fig. 3.9c that the correlator increases smoothly with interaction
strength, characteristic of a para- to ferromagnetic crossover in a finite system. We also
measure an increase in fluctuations of this effective magnetisation (see fig. 3.9c, inset)
which is a generic feature of continuous phase transitions [140]. To concretely link our
measurements to the underlying quantum critical point, we now take a brief detour to
present two theoretical treatments: the mean-field approximation and a series expansion
of the Hamiltonian around the critical point.
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3.6.1 Mean field theory

The mean-field approximation consists in creating an effective single-particle Hamilto-
nian for each qubit. To this end, a mean field Beff is constructed, representing the
average interaction effect felt by a qubit due to the rest of the system, neglecting quantum
fluctuations in the process. Conveniently, the mean-field approach gives exact results
for the LMGm’s thermodynamic quantities and critical exponents [56]. This can be
understood as the extension for the case of spin models with finite range interactions:
there, mean-field theory only works for spatial dimension d greater than dc (the upper
critical dimension); this occurs when the coordination number becomes large enough, and
quantum fluctuations become less relevant. Hence, the maximal coordination number
N − 1 means that the LMGm in the thermodynamic limit can be seen as a mean-field
version of the 1-D Ising model of section 3.1.

We first rearrange our Hamiltonian eq. (3.3) to the form

H =
h̄
2

N

∑
i=1

[
−λ

(
1

N − 1 ∑
j ̸=i

σjx

2

)
σix + ωzσiz

]
.

The ith spin is thus subjected to an external z-field, and an x-field proportional to the
mean spin projection along x of all other spins. We can now make the mean-field
approximation

σixσjx → ⟨σjx⟩σix + ⟨σix⟩σjx − ⟨σix⟩⟨σjx⟩,
= ⟨σix⟩σix + ⟨σix⟩σjx − ⟨σix⟩2, (3.10)

where we have used the exchange symmetry of the ground state to set ⟨σjx⟩ = ⟨σix⟩ for
all i, j. This substitution leads to the mean-field Hamiltonian, which is a simple sum of
single-spin Hamiltonians

Hmf =
h̄
2

N

∑
i=1

(−λ⟨σix⟩σix + ωzσiz) , (3.11)

up to a constant energy shift. Now each qubit is merely subjected to a field Beff =

−λ⟨σix⟩x̂ + ωzẑ, and must be anti-aligned with respect to it. This gives a self-consistency
relation for the x-magnetisation

⟨σix⟩ =
λ⟨σix⟩√

(λ⟨σix⟩)2 + ω2
z

,

whose solution is
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⟨σix⟩ = 0 for λ ≤ ωz, (3.12)

= ±
√

1−
(ωz

λ

)2
for λ > ωz. (3.13)

We note the non-analyticity at the quantum critical point, and can also read off the critical
exponent β = 1/2 associated with the order parameter’s appearance at the transition.
From the approximation eq. (3.10), it is also clear that our correlator ⟨σixσjx⟩ is simply
equal to ⟨σix⟩2 within mean-field theory.

The condition of anti-alignment with Beff also gives the z-magnetisation

⟨σiz⟩ = −1 for λ ≤ ωz,

= −ωz/λ for λ > ωz.

and hence the mean-field expectation value of the parity

pz = ⟨
2J

∏
i=1

σi,z⟩ = ⟨σi,z⟩2J

=⇒ pz = (−1)2J for λ ≤ ωz, (3.14)

= (−ωz/λ)2J for λ > ωz , (3.15)

which rapidly decays to zero after crossing the transition.

Dynamical properties The mean-field approach can also be used to calculate the
excitation dynamics of the system – we will compare these with our measurements
in section 3.7. We are interested in the gaps to the first excited level of odd and even
parities, which we denote δ and ∆ respectively (see fig. 3.5a).

We first focus on the odd gap δ. Consider the coupled equations of motion for the
spin components σx and σy of a spin-1/2 (we drop the subscript i for clarity):

σ̇x =
i
h̄
[H, σx] = −ωzσy

σ̇y =
i
h̄
[
H, σy

]
=

λN
N − 1

(σxσz + σzσx) + ωzσx ,

where we have applied the standard commutation relations. Considering these
equations as describing the dynamics of a semiclassical spin-1/2, we can set them to be
equal to iδσx and iδσy respectively. The excitation frequency δ can then be evaluated by
the random phase approximation [136], which consists in replacing σz with its mean-field
expectation value, leading to
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δ

ωz
=

√
1− λ

ωz
for λ ≤ ωz, (3.16)

= 0 for λ > ωz. (3.17)

We see that the odd gap vanishes at the transition point in the mean-field approximation.
From the square-root decay on the paramagnetic side of the transition, we can infer the
product of critical exponents νz = 1/2.

Semiclassical variational technique

The familiar mean-field approach presented above is equivalent to a variational technique
with coherent collective spin states; this method provides an intuitive picture of the
transition and allows us to extract the remaining energy gaps in the thermodynamic
limit.

We consider coherent states of the collective spin J, pointing along a direction n given
by spherical angles θ, ϕ. In terms of the underlying qubits, this is a product state of the
form

|θ, ϕ⟩ =
2J⊗

i=1

(
cos (θ/2)e−iϕ/2 |↑⟩i + sin (θ/2)eiϕ/2 |↓⟩i

)
.

The fluctuations in average magnetisation in a direction m ⊥ n have a relative
magnitude ∆Jm/J = (2J)−1/2. Then, in the large J limit, the spin behaves like a classical
vector

J = J(sin θ cos ϕ, sin θ sin ϕ, cos θ), (3.18)

Substituting this in the Hamiltonian 3.5 gives the variational energy

⟨H⟩ = h̄J(
−λ

2
sin2 θ cos2 ϕ + ωz cos θ),

where we have already applied 2J − 1 ≃ 2J for convenience. Minimising ⟨H⟩ gives the
ground state

|θ = π⟩ for λ ≤ ωz,

|θ = cos−1 (−ωz/λ) , ϕ = 0 or π⟩ for λ > ωz.

It is easy to check that we recover the mean-field magnetisation of eq. (3.12) from this
solution. The emergence of a pair of symmetry-broken degenerate states (in the x-z
plane) at the transition is apparent in the semiclassical energy landscapes plotted in
fig. 3.10 for different values of the coupling. In fact, the plotted energy contours are the
classical orbits of the spin vector in the variational potential. Note the flatness of the
potential at the cusp of the double well in the ferromagnetic phase. This corresponds to
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Figure 3.10: Semiclassical energy landscape for λ/ωz = 0, 1, 1.5 for coherent states of the total
spin J, parametrised by spherical angles (θ, ϕ) . We show a view of the spin-J Bloch sphere,
looking down at the south pole. We see the emergence of two degenerate minima in the x-z plane
for λ/ωz > 1, corresponding to a broken-symmetry ferromagnetic state.

the divergence of the LMGm’s density of states in the thermodynamic limit, which is
associated with an excited-state phase transition [141].

Dynamical properties We can calculate the associated excitation frequencies by ex-
panding around the minima to recover harmonic oscillator potentials in terms of the
conjugated variables Jz = J cos θ and ϕ. This leads to the following results: in the
paramagnetic phase, we recover the result eq. (3.16) for the odd gap δ. The lowest order
expansion becomes exact in the thermodynamic limit. So when λ ≤ ωz the even gap is
given by ∆ = 2δ. In the ferromagnetic phase, ∆ is the first excitation energy away from
the doubly degenerate ground manifold; we obtain it using an expansion around either
double well minimum, giving the value in the second equation below.

∆
ωz

= 2

√
1− λ

ωz
for λ ≤ ωz, (3.19)

=

√(
λ

ωz

)2

− 1 for λ > ωz, (3.20)

In summary, we have calculated several ground state and dynamical properties of
interest within the framework of mean-field theory. Comparing these to our results
in fig. 3.9, we see that the mean-field theory accurately describes the ferromagnetic
correlations deep in the para- or ferromagnetic regimes, where the system behaves
like the bulk of an infinite system. As expected, mean-field theory fails to capture
the behaviour around the quantum critical point, as well as the lack of true symmetry
breaking in our system.
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3.6.2 Beyond the mean-field approach

We will now improve on the mean-field approach by considering the first-order
quantum correction to the above calculations. We apply a Holstein-Primakoff transform-
ation [142] to express the spin operators in terms of bosonic creation and annihilation
operators a† and a, as

Jz = −J + a†a,

J+ =
√

2Ja†
√

1− a†a/(2J),

J− =
√

2J
√

1− a†a/(2J)a.

Remember that in our notation, J is a scalar, while Jz, J± are quantum operators. The
standard approach is to substitute these expressions into the Hamiltonian and apply the
approximation ⟨a†a⟩ ≪ J i.e. we assume the state is not too far from a classical coherent
state. This is a valid approximation in the paramagnetic regime and close to the critical
point on the ferromagnetic side. We do not reproduce these rather long calculations here
(see, for example ref. [138]). A more convenient (but ultimately equivalent) approach is
to define effective position and momentum operators X and P, via

a = (J1/6X + iJ−1/6P)/
√

2,

and a† = (J1/6X− iJ−1/6P)/
√

2,

such that [X, P] = i. The exponent 1/6 has been chosen such that the Hamiltonian now
takes the elegant form

H =− J − 1/2 (3.21)

+
1

J1/3

(
1
2

P2 +
1
8

X4 − ϵ

2
X2
)

(3.22)

+O(1/J2/3), (3.23)

where we define ϵ = J2/3(λ/ωz − 1). We now see this low-energy Hamiltonian is
dominated in the limit J ≫ 1 by the physics of a particle in a quadratic plus quartic type
potential, with a double well structure appearing when crossing ϵ = 0, as in the textbook
Landau picture of a second-order phase transition [3]. At lowest order, the position
and momentum operators are simply given by X = J−2/3 Jx and P = −J−1/3 Jy. As
plotted in fig. 3.9, the low energy Hamiltonian 3.22 sufficiently accounts for the measured
deviations of the ferromagnetic correlator with respect to the thermodynamic limit
around λ = ωz. In this sense, our 16 qubit system can be considered to be mesoscopic,
since a first-order correction captures the measured finite-size effects.
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Figure 3.11: Equivalent 1-D potential V(x) (blue curve) for the LMGm, for three values of the
interaction strength λ/ωz. The potentials are offset to set their minima to zero. See the text for
the explicit expression for V(x). The real part of the ground state and first-excited wavefunctions
(calculated numerically) for a single particle in this potential Re(Ψ) are plotted with solid and
dashed red curves respectively.

Exact mapping to double-well potentials

We briefly state here an interesting theoretical result whereby the exact spectrum of our
Hamiltonian can be recovered from the stationary states of a single quantum particle in
a cleverly chosen one-dimensional potential. This concept is already hinted at by the
critical Hamiltonian eq. (3.22). Ulyanov and Zaslavskii [143] proved that the spectrum of
our large-spin LMGm Hamiltonian corresponds to the first 2J + 1 eigenvalues in

(
−(J − 1/2)−1 d2

dx2 + V(x)
)

Ψ = EΨ,

with the potential V(x) =
(2J − 1)ωz

λ
sinh2 x̃− (J + 1/2) cosh x̃ , (3.24)

where x̃ = x
√

ωz

λ

Note that 1/J plays the role of h̄ here such that classical dynamics are recovered in the
J → ∞ limit. Figure 3.11 shows the shape of this potential and its two lowest-lying states.
In the ferromagnetic regime, we see the two nearly degenerate states of opposite parity
separated by the gap δ which have the rough form (|L⟩ ± |R⟩)/

√
2, where |L⟩ and |R⟩

are states localised to the left and right wells respectively. This result has a fundamental
link to the theoretically important class of quasi-exactly solvable quantum models [144],
which have partial algebraic solutions. Such an equivalent potential can also be recovered
from a Majorana polynomial representation of the LMGm’s eigenstates [145, 146].
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Figure 3.12: Nonclassicality and squeezing from the y-projection probabilities. (a) Measured
projection probabilities Πm(ŷ) as a function of the interaction strength λ. (b) Evolution of the
two-qubit correlator ⟨σ1yσ2y⟩. The solid blue, dotted black, and dashed red lines correspond to
the J = 8 LMGm, mean-field approach, and critical Hamiltonian expansion respectively.

3.6.3 Nonclassicality

Measurements of the ground state presented so far, projected along x- and z-oriented
measurement axes, gave us access to magnetic correlations and symmetry breaking (or
the lack thereof). What then can the y direction tell us? We start with a Gaussian coherent
state at λ = 0 (∆Jx∆Jy = J/2), and see an increase of the correlator ⟨σixσjx⟩ i.e. an
increase in the variance ∆J2

x . It follows that there can be a squeezing along the conjugated
y-direction near the critical point (cf. one-axis twisting dynamics H = −χJ2

x at short
times). A squeezing is visually apparent in our measurements of the spin projection
probabilities Πm(y) as we approach λ/ωz = 1 from the paramagnetic side, shown in
fig. 3.12a. We also plot the resulting correlator ⟨σ1yσ2y⟩ which assumes negative values
in a broad range of interaction strengths. In the ferromagnetic phase, the measured
correlator significantly exceeds the expected values, which we attribute to shot-to-shot
variations of the spin rotation parameters used for measurement along y, caused by
magnetic field fluctuations.

In terms of the simulated qubits, separable states which are symmetric upon exchange
must satisfy ⟨σ1nσ2n⟩ = ⟨σ1n⟩2 for all directions n, and thus can only exhibit positive
correlators [147, 148]. Therefore, the measured correlator corresponds to an entangled
state of the simulated qubits, illustrating the fundamental role of quantum entanglement
in driving the phase transition [4, 41]. We also see in fig. 3.12b that the mean-field
calculation completely fails to capture this entanglement, which does in fact exist even
in the thermodynamic limit [53]. The negative correlator appears at the level of the full
first quantum correction at order 1/J [138], explaining the qualitative agreement of data
with the critical hamiltonian expansion. From a theoretical point of view, the LMGm
is a goldmine for the study of entanglement near the critical point [149–155]; measures
such as the entanglement entropy and the concurrence can be studied along with their
universal scaling, and exact calculations are possible in some cases.
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Despite the above discussion, our system cannot be called entangled, since we cannot
partition the qubit ensemble and access few-qubit observables. In other words, there
is no way to speak of two entangled subsystems A and B within a single atomic spin
J. This type of partition will be the main subject of the next chapter, where we also
introduce criteria to demonstrate entanglement more pedagogically. For now, we restrict
ourselves to stating that we have nonclassical behaviour at the level of the large spin,
corresponding to quantum correlations of its internal degrees of freedom.

3.7 excitations

We now extend our study to the dynamics of the system, by measuring the energy gaps
of low-lying excitations. Consider the coherent evolution of an excited state of our system
ψ, prepared at a coupling λ f , where we are interested in measuring the frequency gap
∆k

j ≡ ωk −ωj between the jth and kth excited levels:

ψ(t) = A0 |0⟩+
N

∑
j=1

Aje−iωjt |j⟩ ,

where the Aj’s are complex amplitudes. The expectation value of an observable O evolves
as:

⟨O⟩(t) =
N

∑
j=0
|Aj|2Ojj + ∑

0≤j<k≤N
2Re(A∗j Ake−i∆k

j t Ojk) ,

where Ojk are matrix elements. There is an oscillating component at frequency ∆k
j with

amplitude Aj,k = 2|Aj AkOjk| (assuming no other energy difference happens to coincide
here). Hence, to optimise the signal, we should aim to prepare an initial excited state
with maximal |Aj Ak|, and choose an observable with a large overlap |Ojk|.

3.7.1 Breathing modes

Due to the Z2 parity symmetry of the LMGm, the eigenstates can be divided into
decoupled sectors of even and odd parity. We first focus on excitations to the even sector,
which conserve the symmetry of the ground state. In a general LMGm system of N real
qubits, the even gaps define the natural dynamics of the system in the paramagnetic
phase. The energy scale, on the order of h̄ωz, is set by the z-magnetic field, which in
practice dominates symmetry-breaking environmental couplings of the type h̄ωx,iσx,i. The
lowest even gap, which we call the dynamical gap, ∆2

0 (simply denoted ∆ elsewhere in the
chapter), is of particular interest. For instance, it is the dominant excited mode for a weak
modulation of the interaction strength, since such an excitation cannot change the total
spin J or the parity Pz. When the first odd gap (∆1

0 or δ) closes in the ferromagnetic phase,
∆2

0 represents the fundamental excitation away from the manifold of the two broken-
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symmetry states. Note that for system sizes N ≳ 8, ∆2
0 is the lowest even excitation near

λ = 1, across all total spin sectors (cf. fig. 3.5).
In the equivalent 1-D potential picture, symmetry-preserving excitations cannot

change the mean position of the wavefunction; they correspond to breathing modes with
oscillating width. Hence, ⟨σ1xσ2x⟩, or equivalently J2

x , is a natural choice as the observable
O. We continue with this intuitive choice for all even gaps ∆j+2

j , rather than performing
a rigorous optimisation of the overlap |Ojk|. 3 We use a time-dependent coupling λ(t) to
excite our system and measure gaps at a target interaction strength λ f . The system is
initialised at λ = 0, followed by the use of one of three complementary methods:

1. Quench directly to λ = λ f . This method is useful to probe the lowest gap ∆2
0 in the

paramagnetic regime, where method 2 is too gentle to create significant excitations.

2. Linearly ramp to λ f at five times the ramp rate previously used for ground state
preparation, leading to diabatic population of excited levels. This method works
well to probe ∆2

0 in the ferromagnetic regime, where method 1 is too violent.

3. Quench to an intermediate coupling λi, wait there for duration ti, and then quench
to λ f . This method is convenient for higher gaps, as (λi, ti) can be optimally chosen
to target a given pair of levels.

The three methods are compared numerically in fig. 3.13, in terms of the figure of
merit for the prepared state Aj,k = |Aj Ak|. As evident from the experimental findings
below, these methods work well enough for our purposes, whereas a more sophisticated
approach would be to choose the evolution of the classical control parameter λ(t) based
on quantum optimal control theory [156]. The entire process of nonclassical state
preparation, suited for a particular application, followed by probing a well-constructed
observable, can be generalised to a variationally optimised quantum circuit, as shown in
the context of metrology in a recent work by Kaubruegger et al. [157]. 4

We now present our results. When the measured oscillations have only a single
frequency component, as is the case for ∆2

0 in fig. 3.14a, we extract the frequency from
a sinusoidal fit to the data. When there are two or more components, as in fig. 3.14b,
we instead locate peaks in the Fourier power spectrum. Such individual spectra were
taken for gaps up to ∆10

8 , following which we combine the spectra to get a series of
gaps for a particular value of the coupling λ/ωz, as shown in fig. 3.15. The spectra
measured for three different couplings λ/ωz = 0.50(2), 1.00(2), 3.8(1) in fig. 3.16. Finally,
fig. 3.17 summarises all the results on a energy level diagram, also including additional

3 Such an optimisation would also need to account for the scaling of experimental uncertainties when
measuring higher order spin moments.

4 The authors considered applying J2
x-type operators to a qubit ensemble, in order to maximise the sensitivity

of the total spin to an external magnetic field. This proposal was subsequently implemented with trapped
ions [158].
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Figure 3.13: Comparison of the three methods to prepare superposition states for gap meas-
urements at λ = λ f . Method 1: Direct quench to λ f . (a) The resulting relative occupation
probabilities of the jth excited level. (b) The corresponding amplitude Aj,k for the observable
J2
x at frequency ∆k

j , linked to the energy gap between the jth and kth excited levels. Method 2:
A fast (non-adiabatic) ramp to λ f . (c),(d) The same quantities as above. Method 3: Quench to
intermediate coupling λi for duration ti, then quench to λ f . As an example, we show in (e) the
amplitude of the ∆8

6 oscillation for λ f = ωz. It is optimised at (λi, ti) ≃ (2.5 ωz, 10.6 µs)

measurements of ∆2
0. 5 For these large data sets, we had to compromise between several

experimental considerations, while keeping the total duration of a measurement run
below 12 hours – the maximum reasonable continuous running period without recalib-
rations for our ultracold atom machine. Firstly, the time resolution must be sufficient
to resolve higher energy gaps, and to rule out possible excitations there, even when our

5 The ∆2
0 measurements were also used as an absolute calibration of the coupling strength λ. We fit to the

theoretically expected gap, with a single free parameter, namely the proportionality factor between λ and a
photodiode voltage measured at a pick-up mirror on the path of the 626 nm beam.
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Figure 3.14: Measuring breathing mode frequencies. (a,c) Time evolution of the second moment
⟨J2

x⟩ for a coupling λ = ωz, following a weak excitation to populate levels j = 0, 2 (a) or a stronger
excitation to levels j = 2, 4, 6 (c). (b,d) Respective Fourier spectra of the (a,c) evolutions.

protocol only targets lower frequencies. Secondly, the frequency resolution (limited by
the maximum measured time) should allow separation of adjacent peaks in the spectrum.
The final limitation is shot-to-shot fluctuations of the axial magnetic field along z at the
0.8 mG level. This leads to a typical effective broadening of δωz d∆k

j /dωz ≃ 0.02 ωz for
our parameters. These precautions, supplemented by numerical checks, justify the post
hoc identification of spectral peaks with specific LMGm gaps.

We now interpret these spectra in terms of particle motion of the effective potentials
introduced in section 3.6.2. In the paramagnetic phase (λ = 0.5 ωz), the measured spa-
cings remain close to each other, corresponding to a nearly harmonic trap (see fig. 3.16a).
At the critical point λ = ωz, the successive spacings ∆j+2

j increase more steeply with j
(see fig. 3.16b), as expected for a particle evolving in the purely quartic potential [159]
(see the Hamiltonian 3.22 at the critical point). This non-harmonic behaviour illustrates
a defining property of quantum critical systems, whose low-energy spectra cannot be
simply reduced to non-interacting excitation quanta [4]. Deep in the ferromagnetic phase
(λ = 3.8 ωz, fig. 3.16c and fig. 3.17), the spacings are not ordered monotonically and
exhibit a minimum between the 6

th and 8
th levels. This can be explained by the fact

that these energy levels are close to the tip of the corresponding double-well potential.
Our observations are reminiscent of the divergence of the density of states at the tip of
a macroscopic double-well potential [160], and are a signature of the occurrence of an
excited-state quantum phase transition in the thermodynamic limit [141]. The lowest gap
∆2

0, which is most directly relevant to the ground state phase transition, will be discussed
further in the following section, where we contrast its behaviour with the parity gap ∆1

0 .
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Figure 3.15: (a) Oscillation spectra measured at λ/ωz = 1, after an excitation pulse at intermediate
coupling λi/ωz = 1.2, 2.1 2.66, and 3.25 for a duration ti = 11 µs, 7 µs, 13.5 µs and 12 µs, plotted
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On each spectrum, the background noise level is decreased by applying a Gaussian filter of rms
width 0.5 ωz, centred on the most intense Fourier frequency.

0

0.5

1
∆2

0∆4
2∆

6
4∆

8
6∆

10
8

P
(ω

)

0

0.5

1
∆2

0 ∆4
2 ∆6

4 ∆8
6∆10

8

P
(ω

)

1 2 3 4
0

0.5

1
∆2

0∆4
2∆6

4∆8
6 ∆10

8

ω [ωz]

P
(ω

)

(a)

(b)

(c)

Figure 3.16: (a-c) Excitation Fourier spectra measured for λ/ωz = 0.50(2) (a, red dots), 1.00(2)
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j . The right panels show the effective potentials and energy spectra for
each interaction strength. The thin grey lines indicate odd-parity states, not excited with this
protocol.
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3.7.2 The dipole mode

For the remainder of the chapter, we will study the effect of couplings which break the
Z2 symmetry of our system. In a system of N independent qubits, such couplings could
take the form h̄ωx,iσx,i, where ωx,i is a local magnetic field along x acting on the ith qubit.
Terms of this form in the Hamiltonian can flip individual qubits and do not conserve
the total spin J2. Our large-spin realisation of the LMGm is intrinsically limited to a
uniform x-field h̄ωx Jx = ∑i h̄ωxσx,i, which only breaks the Z2 symmetry. Here we pulse
this perturbation to create excitations in odd levels, while in the next section we will
study the ground state properties in a static x-field.

Following the discussion on gap measurement from the previous section, we would
ideally like to create a roughly equal superposition of the ground and first excited states
without involving the higher levels. We choose a small magnetic pulse amplitude with
pulse duration t ≃ 3 µs, and experimentally verify that only the two states of interest
are populated. A smaller pulse area is needed to achieve a good measurement in the
ferromagnetic regime, where the state is more sensitive to Bx fields. We account for this
by further halving the amplitude when working at λ/ωz > 1. We saw that the even
excitations are breathing modes in the effective potential well picture, which lead to
oscillations in the second-order moments. In contrast, odd excitations are dipole modes,
and the natural observable to consider when probing the parity gap δ is the first-order
moment ⟨Jx⟩.

In fig. 3.18a, we show an example of a measured oscillation, along with the fit
used to extract the gap. Our results as a function of interaction strength are plotted in
fig. 3.18b, where we also show the dynamical gap ∆ for comparison. The dynamical
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Figure 3.18: Dipole mode excitations and comparison to the breathing mode. (a) Dipole mode
oscillation performed for λ = 0.79(2)ωz. The solid line is a sinusoidal fit to determine the gap δ.
(b) Parity gap δ between even- and odd-parity sectors (blue disks) and dynamical gap ∆ between
the ground and first even-parity states (red squares), as a function of the coupling λ. The solid,
dotted, and dashed lines are the exact LMGm, mean-field, and critical Hamiltonian predictions
respectively.

gap ∆ exhibits a minimum around the critical point, reminiscent of the gap closing in
the thermodynamic limit at the transition point. The parity gap δ decreases when the
coupling λ increases, in analogy with the softening of the spin dipole mode in quantum
systems close to a ferromagnetic transition [161, 162]. The crossover from ∆/δ ∼ 2 in
the paramagnetic phase to a highly non-harmonic ∆/δ ∼ 3 at the critical point reiterates
the picture of emerging interacting quanta, as previously revealed by our measurements
of the spectra of even gaps. As was the case for ground state properties, the deviations
from the thermodynamic limit in the crossover region are well captured by the critical
Hamiltonian.

For a finite system, the values of the gaps (and spin observables) at the critical point
are described by the theory of finite-size scaling, introduced in section 3.3, which we
investigate numerically for our system. The linear scaling of Hilbert space dimension with
J and the decoupled odd and even parity sectors makes exact diagonalisation feasible
up to J ∼ 222. 6 As shown in fig. 3.19, for the parity gap we recover δ ∼ J−1/3, a result
initially proposed in ref. [56], which has since been analytically calculated by Dusuel and
Vidal [137]. The same scaling exponent also seems to apply to the dynamical gap at the
critical point. Our experimental measurements at λ = ωz (∆ = 0.91(5)ωz, δ = 0.33(1)ωz)
agree well with the numerical results, but deviate by about 0.1 ωz from the limiting
finite-size scaling behaviour. The finite-size scaling exponents are fundamental to the
quantum critical point itself, with direct links to the critical exponents in the LMGm, and
also to the exponents of the corresponding short-range model (i.e. the transverse-field
Ising model introduced at the start of the chapter) [56, 136]. Indeed the scaling behaviour
at λ = ωz is drastically different to the paramagnetic phase (δ− δ∞ ∼ J−1/2), and to the
ferromagnetic phase, where δ ∼ e−aN [163]. Let us take a closer look at the dynamical
consequences of this exponentially small gap attained for λ > ωz.

6 Conveniently, the Hamiltonian for the odd or even subspaces is tridiagonal in the z-Dicke basis.
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Figure 3.19: Finite size scaling of the gaps at the critical point (a) The parity (δc, blue) and
dynamical (∆c, red) gaps at the critical point λ/ωz = 1 as a function of the system size J. We
show exact diagonalisation (circles) and our experimental results at J = 8 (squares). Fitted scaling
exponents are consistent with 1/3 for both gaps. (b) Deviation of the numerics and experiments
from the fitted universal behaviour in the thermodynamic limit.

3.7.3 Tunnelling in the ferromagnetic phase

We now focus on the dipole oscillation measurements in the ferromagnetic phase,
where we measure a strong reduction of the parity gap (see fig. 3.20a) and a near-
degeneracy of the even- and odd-parity ground states. Figure 3.20b,c compares the
time evolution of the probability distributions Πm(x̂) during the dipole oscillation in the
paramagnetic and ferromagnetic phases. In the paramagnetic phase, the distributions
always exhibit a single peak, whose centre smoothly oscillates around zero. On the
other hand, the ferromagnetic phase distributions exhibit two peaks at positive/negative
large-|m| values, with oscillations between these configurations, without significantly
populating intermediate m levels. This qualitative change in the dynamics is well
illustrated by the evolution of the most probable projection m∗, which only takes two
possible values m∗ = ±6 during the evolution shown in fig. 3.20c. These maximal
projection values are close to the collective spin projections ⟨Jx⟩ = ±5.4(5) of the two
corresponding mean-field broken-symmetry states. This behaviour can be interpreted as
a ‘macroscopic’ quantum tunnelling between broken symmetry states – a phenomenon
that has been extensively studied in single-molecule magnets [128, 164–166] and SQUID
systems [167–169].
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Figure 3.20: Tunnelling in the ferromagnetic phase (a) Parity gap δ as a function of λ (blue dots),
compared with the J = 8 LMGm (blue line), mean-field theory (black dotted line), semi-classical
tunnelling (red dashed line) and perturbation theories (green dash-dotted line). The solid black
line is the mean value of δ expected from the LMGm and averaged over magnetic field fluctuations.
(b,c) Time evolution of the projection probabilities Πm(x̂) during a dipole mode oscillation for
λ = 0.79(2)ωz (b) and λ = 1.36(2)ωz (c). The most probable projection m∗ is plotted as a blue
line. The panels on the right use the effective 1-D potential to illustrate the change of dynamics
from a simple dipole oscillation to a tunnelling behaviour.

Deep in the ferromagnetic phase, the dipole mode frequencies are consistent with
the semi-classical theory of quantum tunnelling (see fig. 3.20a). This approach considers
the problem of a particle in the double well potential equivalent to the LMGm, and
applies the WKB approximation to calculate the tunnelling gap [170, 171], or uses a
path-integral formalism with the instanton technique [172–174]. We also compare our
results to perturbation theory calculations, which gives a simple picture of tunnelling
in the limit λ≫ ωz. Here, the two broken-symmetry states |±J⟩x are coupled by the z
field via a process of order 2J, leading to a high power-law scaling δ/ωz ∝ (ωz/λ)2J−1.
Deep in the ferromagnetic regime, our measured oscillation contrast decreases, and the
frequency deviates from theory in a manner that can be understood in terms of magnetic
field fluctuations along x (rms width 0.4 mG). These induce an energy offset between the
two wells, which for λ ≳ 1.5 ωz dominates the tunnel splitting.
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Figure 3.21: Link between symmetry breaking and a finite order parameter. (a,b) Projection
probabilities Πm(x̂) (a) and Πm(ẑ) (b) in the ground state as a function of ωx, for λ = 1.40(3)ωz.
(c,d) Order parameter ⟨σ1x⟩ and mean parity pz computed from (a,b) respectively, with comparison
to the J = 8 LMGm (solid lines) and the mean-field order parameter (dotted lines in (c)).

3.8 symmetry breaking

3.8.1 In a static field

We expand our discussion of symmetry breaking in the LMGm to consider the ground
state properties of our system in the presence of a static transverse magnetic field ωx,
such that the Hamiltonian now reads

H = − h̄λ

2J − 1
J2
x + h̄ωz Jz − h̄ωx Jx . (3.25)

As before, we adiabatically ramp the coupling λ and probe the prepared ground state.
Our results (see fig. 3.21) for a coupling strength λ = 1.40(3)ωz show that the application
of a small perturbation ωx, on the order of a few per cent of ωz causes significant
polarisation of the total spin along x. This measurement is in the regime where the field
is smaller than the parity gap, ωx ≲ δ, such that the effect of the x-field is essentially to
tilt the equivalent 1-D potential and localise the ground state wavefunction to a single
well, as sketched in the inset of fig. 3.22d. Hence, the magnetisation, i.e. the standard
Ising order parameter, attains a value consistent with that of the mean-field broken
symmetry state (at zero x-field) ⟨σ1x⟩ = sgn (ωx)

√
1− (ωz/λ)2. 7 Larger fields would

7 Our projective Stern-Gerlach measurement is now the presence of a bias field along a direction u =
{ωx, 0, ωz}. As a result, the order parameter along u is given by ⟨σ1x⟩u = ⟨σ1x⟩ −ωx/ωz⟨σ1z⟩. This leads to
corrections of ≲ 3 % to our order parameter, which we wish to probe in the lab coordinate basis; we apply
these corrections to our data when using them to fit the susceptibility.
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Figure 3.22: Symmetry breaking in a static field. (a) Order parameter ⟨σ1x⟩ and (b) mean parity pz
as a function of the transverse magnetic field ωx for different couplings λ. (c) The susceptibility χ
compared to the J = 8 LMGm (solid blue) and the mean-field values (dotted black). The inset
is a zoom-in on small χs. (d) The calculated order parameter ⟨σ1x⟩ of the J = 8 LMGm ground
state as a function of λ and the transverse field ωx. The insets show the equivalent single-particle
potentials (solid green), the energies of the ground and first excited states (dashed green), and the
squared modulus of the ground state wavefunction (black) for the points (λ/ωz, ωx/ωz) = (1.5, 0)
and (1.5,−0.02).

distort the effective double well, changing the position of the minimum, and allowing
⟨σ1x⟩ to increase further – ultimately reaching ±J in the limit ωx ≫ ωz.

Concurrently with this polarisation of the spin, we measure a loss of parity, as evident
in the z-projection probabilities in fig. 3.21b. Increasing the field leads to a near-equal
occupation of odd and even sublevels i.e. pz ∼ 0, implying the Z2 symmetry has been
broken. This highlights the fundamental link between the breaking of symmetry and the
appearance of a non-zero order parameter. In macroscopic systems, the symmetry itself
is not an accessible observable: in a ferromagnet composed of N spin 1/2’s, measuring
the parity requires simultaneously measuring all individual polarisations σiz. Hence,
the symmetry breaking can only be inferred indirectly from an order parameter. The
mesoscopic nature of our system, effective averaging over the atomic cloud in a single
shot, and single m-level detection make this striking measurement possible.8

8 Such discrete symmetries can also be directly observed by probing spatially ordered phases with single-site
detection, as shown for 1-D Rydberg arrays in ref. [175].
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Figure 3.23: Spontaneous symmetry breaking due to environmental magnetic field fluctuations (a)
The mean parity pz associated with the Z2 symmetry of the LMGm phase transition after a slow
ramp up of the coupling λ. Each point represents a single shot. (b) The order parameter ⟨σix⟩,
where the colour of the points encodes the independently recorded environmental magnetic field
fluctuations along x, ωx,fluct. Note that the lack of points with ⟨σix⟩ < 0 near λ = 2 occurred due
to a slow global drift to positive values of the x-field during the experimental run. The shaded
areas represent the expected effect (at 2-σ) of transverse field fluctuations of rms width 0.007 ωz.

We now extend these measurements to different interaction strengths. Our results in
fig. 3.22a,b show the increasing sensitivity of the spin polarisation and mean parity to
transverse perturbations as we go deeper into the ferromagnetic regime.9 This effect is
quantified by the susceptibility, χ = d⟨σ1x⟩/dωx|ωx=0, which we determine by a linear fit
to the x-magnetisation around ωx = 0. Although our experimental results are in good
agreement with the LMGm in the paramagnetic phase, we observe an enhanced deviation
upon increasing λ ; this is caused by magnetic field fluctuations along x, which also
limited the determination of the parity gap in the previous section. In the thermodynamic
limit, χ diverges at the critical point as (1− λ/ωz)−1, with critical exponent γ = 1.10 The
finite-size remnant of this behaviour is apparent in the sharp increase in susceptibility
measured, and also in fig. 3.22d, where we plot the calculated magnetisation ⟨σ1x⟩(λ, ωx)

of the ground state of eq. (3.25). In the thermodynamic limit, the quantum critical point
at λ/ωz = 1 extends to a line of first-order phase transitions along the line ωx = 0, when
λ/ωz > 1.

3.8.2 Spontaneous symmetry breaking

Another way to see symmetry breaking is using the shot-to-shot fluctuations of magnetic
field inherent to our experimental setup, in particular by making their effect more
pronounced by increasing the timescales involved. We show in fig. 3.23 the preparation
of the LMGm ground state using a slow ramp of the coupling, with speed λ̇ ≃ 0.006 ω2

z

9 The negative values of parity at certain values of the field are an artefact resulting from imperfect adiabaticity
of our ground state preparation ramp.

10 This can be derived following the methods presented in section 3.6.1.
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i.e. 2.5 times slower than the ramps used so far and corresponding to a total ramp
time of ≃ 360 µs for the largest interaction strengths shown here. In this regime, we
indeed recover spontaneous symmetry breaking for λ ≳ 1.5ωz, as evidenced by the sharp
drop in the mean parity. Furthermore, we see a bifurcated distribution appearing in the
order parameter ⟨σix⟩ (cf. the bifurcation in projection probabilities in fig. 3.9, where the
symmetry was not broken). As demonstrated in fig. 3.23b, the order parameter’s sign is
determined by the direction of the environmental B-field fluctuations ωx,fluct, which are
recorded with an independent magnetic probe adjacent to the science cell.

3.8.3 Interaction-induced symmetry breaking

Finally, we consider symmetry breaking due to interatomic interactions. By what mechan-
ism can interactions cause symmetry breaking in our setup? Consider an ensemble
where the spin state of each atom has been initialised to the ground state of the
LMGm, deep in the ferromagnetic regime (λ ≫ ωz). This ground state is roughly
|ψ0⟩ = (|mx = −J⟩+ |mx = +J⟩)/

√
2, whereas the (nearly degenerate) first excited state

of odd parity is |ψ1⟩ = (|mx = −J⟩ − |mx = +J⟩)/
√

2. Then, the scattering channel
|ψ0⟩A ⊗ |ψ0⟩B → |ψ1⟩A ⊗ |ψ1⟩B for a pair of atoms A, B provides a clear candidate for
a symmetry breaking process. The full treatment of this problem in the s-wave col-
lision limit involves J + 1 independent scattering lengths aK, where K = JA + JB is
the total electronic angular momentum of the colliding atoms.11 Only one of these is
known, a2J = 112(10) a0 [176], namely the background scattering length for two atoms in
mz = −8. So it is not feasible to make quantitative predictions about the expected rate
of symmetry breaking processes. Instead, we give an order of magnitude estimate for
two atoms in a BEC occupying the same spatial mode. Consider the evolution due to
interactions for the initial state

|ψ0⟩A ⊗ |ψ0⟩B = f rac|−J⟩A |−J⟩B + |−J⟩A |J⟩B + |J⟩A |−J⟩B + |J⟩A |J⟩B2 .

The first and fourth terms only project onto the K = 2J manifold, and the associated
interaction energy scale is set by

E++ =
4πh̄2a2J

M
n , (3.26)

where n is the atomic density. We are not as lucky for the corresponding energy E+− of
the second and third terms, which involves all K’s. The dynamics of the mean parity is set
by the phase difference induced by these energies: at time todd = π h̄/|E+− − E++|, we

11 Dipolar relaxation process are negligible since |ψ0⟩ and |ψ1⟩ form the ground state manifold.
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reach the odd-parity state |ψ1⟩A ⊗ |ψ1⟩B. With no other prior information, a reasonable
guess is12

E+− − E++ ∼
4πh̄2avdW

M
n , (3.27)

where avdW ≃ 160 a0 is the van der Waal’s length for dysprosium [110].
In our preliminary attempts to see symmetry breaking due to interactions, we used a

BEC and prepared the LMGm ground state in the ferromagnetic regime, up to λ/ωz ∼ 2.5.
The density of the cloud was n ∼ 1014 cm−3, corresponding to a symmetry breaking
timescale todd ∼ 0.7 ms, i.e. a duration for which environmental transverse field fluctu-
ations also play a significant role. Our measurements, when compared to our previous
results with a thermal cloud, were not sufficient to identify an effect of interactions on the
mean parity. Unfortunately, a thorough investigation was prevented by practical issues.

We note that the collisions considered here couple the internal state of each atom to the
kinetic degrees of freedom of the cloud, and could potentially lead to the thermalisation
of the spin degrees of freedom [178]. For the isolated LMGm studied in this chapter,
thermalisation is precluded by the system’s integrability [133, 134]. Finite-temperature
effects would be most prominent near the critical point, where the spectrum is most
dense, and they could be further boosted by increasing kBT/h̄ωz. The restriction to the
maximal spin sector J = N/2 changes the partition function of the system compared
to the full N-qubit LMGm, and it has been theorised that this leads to fundamentally
different finite-temperature properties [179].

12 In fact, the scattering lengths are distributed according to aK ≃ 0.5 avdW(1 + tan ΦK) [177], and we have no
a priori knowledge of the ΦK’s, so the distribution has infinite variance!
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Figure 3.24: Phase transitions in the two-axis LMGm model, with ferromagnetic interactions
−λx J2

x and −λy J2
y . The panels on the right show semi-classical energy landscapes at the points

labelled a-f in the λx-λy parameter space, with minima in white. The ground state is symmetric in
the orange region, and leaving it (e.g. following the blue path a→b) leads to symmetry breaking
by a 2

nd order phase transition, i.e. the main subject of this chapter. The isotropic line λx = λy
is a special case where the ground state is always an eigenstate of Jz (see text). The blue path
a→d also shows a 2

nd order at transition at λx = λy = ωz, but of a different universality class.
Crossing the isotropic line λx = λy can also lead to 1

st and 3
rd order transitions between broken

symmetry states (green and red paths respectively). Figure partly based on ref. [180].

3.9 perspectives for studying spin models

In this chapter, I described a study of the ground state, dynamical and symmetry breaking
properties 2J = 16 interacting qubits in the Lipkin-Meshkov-Glick model, as realised
with the large electronic ground state spin J = 8 of an ultracold dysprosium atom. A
natural extension of our work is the realisation of the full LMGm Hamiltonian,

H = − h̄
2J − 1

(λx J2
x + λy J2

y) + h̄ωz Jz , (3.28)

with ferromagnetic interactions in both transverse directions. The phase transitions
possible in this model are shown in fig. 3.24. For λx ̸= λy, the physics is unchanged
in the thermodynamic limit, and we still transition from a single minima at the south
pole to double minima structure in the x-z (λx > λy) or y-z (λx < λy) plane. The line
λx = λy is the special isotropic case, where H commutes with Jz, and the ground state
for λx > ωz is simply the state |mz = m0⟩, where m0 varies discretely from −J + 1 to
0 as we increase λx. 13 The nature of the phase transition is fundamentally altered on
the semiclassical energy landscape – a sombrero potential opens rather than a double
well. Indeed, the isotropic LMGm belongs to a different universality class of second-
order phase transitions [56]. The isotropic line enriches the phase diagram in the λx-λy

parameter space, where first- and third-order phase transitions are also possible [180] (see
fig. 3.24). The structure of the excited levels also shows non-trivial behaviour, with four

13 Such ground states are also interesting because they are protected from dipolar relaxation, which would
quickly destroy a sample prepared in a m ̸= −8 in the presence of a Bz field only. For instance, a degenerate
gas in m could be used to probe the scattering lengths am,m, which are unknown for m > −8 (cf. discussion
on symmetry breaking by interactions in section 3.8.3.)
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Figure 3.25: Quantum-enhanced sensing with ground states of the LMGm. The expected metrolo-
gical gain G (relative to a coherent state at G = 1, which corresponds to the standard quantum
limit) when using prepared ground states of the LMGm to measure a magnetic field, shown as a
function of the coupling strength λ. We consider a standard Ramsey-like measurement, and a
second protocol which exploits the high sensitivity of the mean parity pz in the ferromagnetic
regime. The fundamental upper bound on the gain is given by the Heisenberg limit G = 2J = 16.

different ‘phases’ classified according to divergences and discontinuities in the density of
states [146]. The Hamiltonian 3.28 would be easy to implement in our experimental setup:
for example, by adding another off-resonant beam propagating along z and linearly
polarised along y we could create the required tensor light shift proportional to J2

y .
Our system is also a promising platform for studying phase transition dynamics. For

instance, non-adiabatic ramps across the transition, followed by a measurement of the
depopulation of the ground level, could probe the validity of the Kibble-Zurek mechanism,
whose relevance in systems with long-range interactions has been debated [181–185].
Here, the imposed conservation of J2 in our system is an asset. For example, the
ramps of coupling simulated by Defenu et al. [183] could be implemented without the
complications that would arise in trapped ion simulators due to spin-flip errors [186].
We mention that the LMGm can also act as a convenient toy system to study quantum
annealing [187, 188] and dynamical phase transitions [189–192]. The tunable energy level
landscape of the Hamiltonian 3.28 would be suited to measure the dynamical signatures
of excited state phase transitions, such as ‘capture’ of the state near a classical stationary
point following a quench, preventing the revival of the initial state [141].

Near criticality, our system is also interesting from a metrological point of view.
Firstly, the LMGm’s criticality can itself be used as a resource for quantum parameter
estimation [193]. This can be used to determine the interaction anisotropy λy/λx (which
is often unknown in systems like magnetic molecules) and for thermometry in finite-
temperature systems. Secondly, the adiabatically prepared ground states are relevant for
protocols for quantum-enhanced sensing of magnetic fields. We adiabatically prepare
these states, in contrast to the most common method of using dynamical evolution under
a one-axis twisting Hamiltonian H = −λJ2

x [194] (as previously studied in various AMO
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systems [67, 68, 195] and also in our group [196, 197]).14 More quantitatively, we measure
a minimum variance ∆J2

y = 1.4(1) near the critical point, well below the value for the
coherent spin state at λ = 0, which saturates the standard quantum limit ∆J2

y = J/2 = 4.
This relative increase in sensitivity to magnetic fields, for a hypothetical Ramsey-type
measurement, is quantified by the metrological gain G = ⟨Jz⟩2/(2J∆J2

y) [199]; we reach
a maximum value G = 2.6(2), as shown in fig. 3.25. The squeezing observed is a
manifestation of a general property of quantum critical points, namely an increase in
fluctuations leading to the redistribution of quantum noise between observables [200]. In
the ferromagnetic phase, the ground state is N00N-like, and the ideal observable is no
longer the Ramsey phase, but rather the parity, which is highly sensitive to a rotation
around the z-axis. This enhances the gain (see fig. 3.25), which tends to the ultimate
Heisenberg limit GH = 2J in the limit λ ≫ ωz [201]. We will observe such a parity
oscillation in a different context in the following chapter, where we probe the fundamental
link between the nonclassicality of collective spin states and quantum entanglement.

14 Ground state preparation of nonclassical states has also been achieved via spin mixing in BECs [198].
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PA RT I T I O N I N G D Y S P R O S I U M ’ S E L E C T R O N I C S P I N T O R E V E A L
E N TA N G L E M E N T

If you try and take a cat apart to see
how it works, the first thing you have
in your hands is a nonworking cat.

Douglas Adams, The Salmon of Doubt

In this chapter, I present an experimental study of nonclassicality and entanglement
properties within the electronic spin of dysprosium atoms. I describe two protocols
which partition the ensemble of 2J qubits encoded in the angular momentum, thereby
giving a physical meaning to entanglement in this setting.

The work presented here has been published in the following article [202] :
Partitioning dysprosium’s electronic spin to reveal entanglement in nonclassical states
T. Satoor∗, A. Fabre∗, J.-B. Bouhiron, A. Evrard, R. Lopes, S. Nascimbene
Physical Review Research 3 (1), 043001 (2021)
* These authors contributed equally

This chapter is structured as follows: we begin in section 4.1 with a general intro-
duction to quantum entanglement and introduce some methods to detect and measure
it. Section 4.2 then introduces a more general concept, nonclassicality, which applies to
large-spin systems. We also detail the preparation of nonclassical states in our system.
Next, we explain our method to partition dysprosium’s electronic spin in section 4.3,
which we apply to measurements of the nonclassicality of extracted qubit pairs in sec-
tion 4.4. A direct probe of entanglement using the increase in entropy upon partition
is explained in section 4.5. Section 4.6 presents a complementary set of experiments
where we investigate the decoherence of nonclassical states upon the loss of qubit pairs.
We give a summary in section 4.7 and suggest extensions of the results of this chapter,
along with the relevance of our work in the ongoing debate on indistinguishable particle
entanglement. Finally, we bring the themes of this chapter and the preceding one to a

86
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close in section 4.8 by discussing general perspectives for many-body spin physics with
dysprosium.

4.1 quantum entanglement

A pure state of a system can be thought of as one that is as completely specified as
the theory allows. Remarkably, quantum mechanics allows for pure states for which
sub-parts of the system cannot themselves be assigned pure states: these states are called
entangled, while all others are called separable. In other words, entanglement implies that
“the best possible knowledge of a whole does not include the best possible knowledge of
its parts” [203]. Consider a pure state |Φ⟩ of a system composed of subsystems A and B.
Then, any state which cannot be expressed as a product of states associated with each
subsystem i.e. |ϕA⟩ ⊗ |ϕB⟩ is said to be entangled. This definition can be generalised to
define mixed entangled states: such states cannot be expressed as a classical distribution
over product states of the type ∑i pi ρA,i ⊗ ρB,i.

The theory of entanglement and its consequences for experiments are vast and
multifaceted. We restrict our discussion to the aspects needed to contextualise our results.
The interested reader can find detailed reviews in refs. [58, 204], and a description from a
quantum information perspective in ref. [205].

4.1.1 Bipartite systems

This section introduces entanglement in quantum systems with two parts.

Concurrence

We begin — following the treatment of the short review [206] — by discussing a measure
of entanglement called the concurrence. Consider a pure state |Φ⟩ of a system com-
posed of subsystems A and B, spanned by the orthonormal bases

{
|ϕA

1 ⟩ , . . . , |ϕA
n ⟩
}

and{
|ϕB

1 ⟩ , . . . , |ϕB
n ⟩
}

respectively. The bases can always be chosen such that the state |Φ⟩
takes the form

|Φ⟩ =
n

∑
i

ci |ϕA
i ⟩ ⊗ |ϕB

i ⟩ , ci ≥ 0 (4.1)

which is called the Schmidt decomposition [207]. If there is more than one non-zero term
in the above sum, A and B are entangled with each other. Then, the state of subsystem A
(or B) is mixed, described by the density matrix ρA = TrB |Φ⟩ ⟨Φ|, obtained by performing
a partial trace over B. This density matrix has eigenvalues c2

i .
We might now ask how such entanglement could be detected and quantified. One

approach is to define a particular entangled state, namely the singlet state of two qubits
(|↑↓⟩ − |↓↑⟩)/

√
2 as representing one ‘unit’ of entanglement. How many such singlet

pairs, shared between participants Alice and Bob, are needed to create N copies of
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|Φ⟩, such that Alice holds part A and Bob holds part B? Either participant is allowed
local operations, like applying unitary operators or performing measurements, and they
can exchange classical messages; these conditions are commonly referred to as local
operations and classical communication (LOCC). The answer, N × E f (Φ), defines the
entanglement of formation [208], given by

E f (Φ) = − ∑
ci ̸=0

c2
i log2 c2

i . (4.2)

This quantity is in fact the von Neumann entropy of either reduced density matrix ρA or
ρB.

Now consider the trickier case where the state of the composite system is mixed.
Such a state ρ can be decomposed into pure states as

ρ = ∑
i

pi |Φi⟩ ⟨Φi| , (4.3)

where the pi’s are positive coefficients forming a probability distribution. This decom-
position is not unique. For example, take the two-qubit state (|↑↑⟩ ⟨↑↑|+ |↓↓⟩ ⟨↓↓|)/2 :
it could be seen as a mixture of the separable states |↑↑⟩ and |↓↓⟩, or equivalently as
an equal mixture of the entangled states (|↓↓⟩+ |↑↑⟩)/

√
2 and (|↓↓⟩ − |↑↑⟩)/

√
2. For

consistency, we want the entanglement of formation to vanish for separable states, and
hence it is defined as

E f (ρ) = inf ∑
i

piE f (Φi) , (4.4)

where inf denotes the infimum, i.e. the minimum taken over all possible pure state
decompositions of ρ. This method to generalise an entanglement measure to mixed states
is called the convex roof construction, and it allows one to maintain certain desirable
physical properties [204]. The disadvantage being that, in general, finding the optimal
decomposition is not at all straightforward.

We now introduce the concurrence, an entanglement measure introduced by Hill and
Wootters [209], which is very popular for bipartite systems. For a two-qubit pure state Φ,
it is simply given by

C = | ⟨Φ|Φ̃⟩ | . (4.5)

Here, |Φ̃⟩ = σy ⊗ σy |Φ∗⟩ represents the spin flip operation, where |Φ∗⟩ is the complex
conjugate in the usual basis {|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩}. The concurrence vanishes for each
of the separable basis states and equals unity for the maximally entangled singlet state
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Figure 4.1: Entanglement of a pair of qubits A and B. Left: The entanglement of formation E f
is a simple monotonic function of the concurrence C, which is an entanglement measure with
an explicit formula even for mixed states (see text). Middle: The concurrence, evaluated for a
pure state parametrised by θ. The maximally entangled singlet state is at θ = π/4. We also show
conditional entropy of the bipartition, as calculated using the Rényi entropy of infinite order S∞.
S∞(A|B) < 0 corresponds to an increase in entropy upon partition i.e. an entangled composite
state. Right: The same quantities for a mixed state ρ, obtained by combining the singlet state
(relative fraction p) with the identity I.

(see fig. 4.1 for an example). The concurrence is directly linked to the entanglement of
formation by the relation

E f = h

(
1 +
√

1− C2

2

)
; (4.6)

h(x) = −x log2 x− (1− x) log2 (1− x) ,

which is a monotonic and convex function (see fig. 4.1). Remarkably, this result is also
valid for mixed two-qubit states, where the concurrence has the explicit form [209]

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
. (4.7)

The λi’s are the eigenvalues of ρ ρ̃ in descending order, where ρ̃ is the spin-flipped density
matrix ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

To summarise, the concurrence is special for two-qubit systems because it has an
explicit form even for mixed states, bypassing the need to numerically perform the
convex-roof minimisation given in eq. (4.4). Furthermore, the concurrence is directly
linked to the entanglement of formation, a fundamental quantity with a clear operational
definition.

Conditional entropy

The entanglement of formation and concurrence are not linear in the density matrix, as
is clear from the above discussion. Accessing them experimentally is challenging, and
can require tomographic reconstruction or specialised schemes involving many-body
interference with multiple copies of the system [47, 210]. What if, rather than quantifying
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entanglement, we are simply interested in verifying its presence? The most famous
example of a criterion to achieve this, originally proposed to test local hidden-variable
interpretations of quantum mechanics, is the violation of Bell inequalities [6]. We now
introduce an entanglement criterion based on conditional entropy. For classical random
variables X and Y, the conditional entropy is defined as

H(X|Y) ≡ H(X, Y)− H(Y)

and it quantifies the uncertainty in X if Y is known. Here H(Y) is the Shannon
entropy for the distribution of Y i.e. the classical analogue of the von Neumann entropy
S = −Tr (ρ log2 ρ) from eq. (4.2) (see ref. [205] for a more detailed explanation). The
classical conditional entropy is always non-negative, reflecting the fact that we cannot be
more uncertain about the state of X than we are about the overall state of X and Y. This
is no longer the case for entangled quantum systems, and

S(A|B) ≡ S(A, B)− S(B) < 0 (4.8)

is a sufficient criterion to verify entanglement [211, 212]. Here S(A, B) is defined on the
composite state ρ, whereas S(B) refers to the entropy of reduced state ρB = TrA ρ.

The von Neumann entropy is in fact a limiting case (α → 1+) of an entire class of
Rényi entropy measures [213]

Sα(ρ) =
−1

α− 1
Tr ρα , α > 1 .

In our experiments, we make use of the Rényi entropy of infinite order1, i.e. the limiting
case α→ ∞

S∞(ρ) = − log2 λmax(ρ) (4.9)

where λmax(ρ) is the largest eigenvalue of the density matrix. This eigenvalue cor-
responds to the maximum possible overlap of ρ with a pure state. The condition of
increased disorder upon partition eq. (4.8), also works with this measure to demonstrate
entanglement. The quantity S∞ is plotted in fig. 4.1 for some pure and mixed two-qubit
states.

4.1.2 Multipartite systems

In multipartite systems, the descriptors ‘entangled’ and ‘separable’ fail to tell the whole
story. Consider three qubits in a pure state, distributed between three parties A, B and C.
A fully separable state factorises into the form

|Φ⟩ = |α⟩A ⊗ |β⟩B ⊗ |γ⟩C ,

1 For pure states, this is equivalent to the min-entropy [214].



4.1 quantum entanglement 91

whereas a biseparable state can be written as

|Φ⟩ = |α⟩A ⊗ |δ⟩BC ,

where δ may be an entangled two-qubit state. Two other classes of bipartite entangled
states can also be obtained by grouping parties AB or parties CA. Finally, states that
fall into none of the above classes are said to exhibit genuine tripartite entanglement.
In a landmark result, Dür et al. [75] showed that there are two distinct equivalence
classes of genuinely tripartite entangled states. States within a class are equivalent in the
sense that it is possible to transform one to another with local operations and classical
communication (with a finite probability of success). For tripartite entangled states, the
entanglement classes can be understood in terms of their respective paradigmatic states:
firstly, the W state

|W⟩3 =
1√
3
(|↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩) (4.10)

and secondly, the Schrödinger cat-like state

|cat⟩3 =
1√
2
(|↓↓↓⟩+ |↑↑↑⟩) (4.11)

The cat state, named as such since it is a superposition of maximally distinct states, is
also commonly called the Greenberger–Horne–Zeilinger (GHZ) state or the N00N state,
depending on the context. The classes’ existence is reflected in distinct behaviours upon
measurement of a subset of their qubits, as we shall see when studying their respective
N-qubit versions in our experiments. The W state and cat state have been studied in
a wide range of experimental settings (see refs. [215–222] and [132, 167, 196, 223–238]
respectively).

Entanglement witnesses

Entanglement equivalence classes also complicate the experimental detection of mul-
tipartite entanglement. A convenient method, based on entanglement witnesses, is
possible when we expect the prepared state ρ to be in the vicinity of a known multipartite
entangled state |Ψ⟩, up to the effect of experimental imperfections. In this context, an
entanglement witnessW is a carefully constructed observable such that

Tr(Wρ) ≥ 0, for any ρ without multipartite entanglement. (4.12)

Now, given our expectation that ρ has a significant overlap with |Ψ⟩, we can construct
our witness as

W = αI− |Ψ⟩ ⟨Ψ| ,
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where I is the identity operator and α is the smallest possible constant such that the
condition 4.12 is satisfied. Hence, we need

α = max | ⟨Ψ|Φ⟩ |2,

where the maximum is taken over all biseparable states |Φ⟩. We now determine α based
on a simple method introduced by Bourennane et al. [239]. To be concrete, let us consider
|Ψ⟩ = |cat⟩3. With respect to the bipartition A : BC, we can write the state as the Schmidt
decomposition

|cat⟩3 =
1√
2
|↓A⟩ ⊗ |↓B↓C⟩+ 1√

2
|↑A⟩ ⊗ |↑B↑C⟩ .

The maximum overlap with a biseparable state of the type A : BC is the largest
Schmidt coefficient i.e. 1/

√
2, and we get the same result for the other two bipartitions.

Therefore, the global maximum across all states lacking genuine tripartite entanglement
gives α = (1/

√
2)2 and

Wcat =
1
2

I− |cat⟩ ⟨cat| . (4.13)

We have dropped the subscript 3 since this result also applies to general N-qubit
cat states; as we shall see, this allows a link to our measurements. Note that witnesses
can also be constructed with more sophisticated methods, for example, to optimise the
number of measurement settings needed, or to distinguish specific classes of entangled
states [240, 241].

4.2 nonclassicality and large-spin systems

Entanglement has historically been the defining form of strangeness associated with
quantum systems. However, since then, fundamentally nonclassical behaviour has been
identified in a wide range of systems, even in cases where subsystems cannot be identified
and entanglement is not obviously implicated.

Let us consider the state of a single mode of light within the framework of quantum
optics [242]. Here, the family of quasi-classical states are the coherent states |α⟩ [243,
244]. When the number of photons in such a state is macroscopic (|α|2 ≫ 1), quantum
fluctuations are negligible and the system is well described by classical electromagnetic
fields. Any state that is not coherent (or a classical distribution of coherent states) can
be defined to be nonclassical. Some well-known examples are the Fock state, which
has a given number of photons but maximal uncertainty on the phase, as well as the
Schrödinger cat state, which is a quantum superposition of distinct coherent states |α⟩ and
|−α⟩ . We show in fig. 4.2 sketches of these states in phase space, as well as their Wigner
function representations. Note that the Wigner representation is a quasi-probability
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Figure 4.2: Nonclassical states of a single light mode. (a) Sketch in phase space of a Fock state
and a Schrödiger cat-like state. (b,c) Experimentally reconstructed Wigner function of a Fock and
cat state respectively, for light in a cavity, as measured by Deléglise et al. [237]. Negative regions
result from quantum interferences.

distribution in phase space fully characterising the state [245]; its negativity signals
distinctively quantum behaviour (see ref. [246] for further details).

Nonclassicality can also be understood in another class of non-composite systems: a
single spin-J. The Hilbert space in this case is the finite-dimensional analogue of that of
a light mode, allowing us to carry over the same formalism. Therefore, a spin state will
be called classical if it can be expressed as a statistical mixture of coherent states [247], as

ρ(classical) = ∑
n

wn||n⟩⟨n||, (4.14)

where ||n⟩ is a spin-J coherent state pointing along the spatial direction n i.e. the
maximally polarised state |J, m = J⟩n. The sum is over positive weights wn ≥ 0, with the
normalisation condition Tr ρ = ∑n wn = 1.2 This decomposition of the state is called the
Glauber-Sudarshan P-representation. Any state that cannot be represented in this form is
called nonclassical.

Nonclassical correlations within a single spin have been shown to be fundamentally
incompatible with a classical description (more precisely, non-contextual hidden-variable
theories), as demonstrated by Lapkiewicz et al. [60] using a photonic qutrit violating
a Bell-like inequality. Nonclassical squeezed and cat states have been produced with
ground state atomic spins [196, 248, 249] and Rydberg atoms [132]. Nonclassicality can
also manifest as macroscopic tunnelling, as seen with magnetic molecules [128] and our
results in chapter 3. Nonclassical behaviour of the total spin of BECs of pseudo-spin 1/2
particles [63] is also closely linked to this category of systems, as we will discuss in detail
in section 4.7.2.

2 More generally, we can also replace the weights with a distribution w(n), and the sum by an integral.



4.2 nonclassicality and large-spin systems 94

-8

-4

0

4

8

m

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

t [µs]

∆
J
2 z

catsqueezedcoherent

Figure 4.3: One axis twisting dynamics. Top: Spin projection probabilities Πm along the z-
axis under one-axis twisting dynamics H = −χJ2

x , in the presence of a finite z-field. The
value of coupling is χ ≃ 0.9 MHz. The initial Gaussian coherent state |m = −J⟩ is squeezed at
short times. At t = π/(2χ), we reach a Schrödinger cat-like state, close to the ideal cat state
(|m = −J⟩+ |m = +J⟩)/

√
2 in our system. The arrows mark the particular squeezed and cat

states whose nonclassicality we discuss in detail later in this chapter. We also show the states as
represented by their expected Husimi functions on the southern (S) and northern (N) hemispheres
of the Bloch sphere. Below: The spin moment ∆J2

z during the same evolution, showing an initial
increase during squeezing, no evolution at intermediate times, and a revival when the cat is
formed.

4.2.1 Preparing nonclassical states

The initial parameters for the dysprosium cloud here are similar to those used elsewhere
in this thesis. We use a cloud of 1.0(1)× 105 atoms of 162Dy, held in a crossed optical
dipole trap at a temperature T = 0.54(3)µK. 3

Squeezed and cat states

A popular method for creating nonclassical spin states is the one-axis twisting dynamics,
which requires a Hamiltonian of the type H = −χJ2

x [194], as first implemented with
atomic Bose-Einstein condensates [67, 68]. A detailed discussion of these dynamics
in our system can be found in ref. [196]. Here, we generate this coupling using the
spin-dependent light shift from a far-detuned 696 nm laser beam (excited level J′ = J− 1),
with a linear polarisation ex. Figure 4.3 shows the evolution of our system under such a

3 Remember that, unless stated otherwise, the results should be understood by considering a single atom,
with the ensemble only acting as an averaging mechanism.



4.2 nonclassicality and large-spin systems 95

-8

ωz
ΩRF

-7

Vlight-6

0 50 100
0

0.5

1

t [µs]

Π
m

0 50 100
0

0.2

0.4

t [µs]

Π
m

m
−8
−7
−6
−5

(a) (b) (c)

Figure 4.4: Preparation of the Dicke state |J = 8, m = −7⟩. (a) A radio frequency coupling of
strength ΩRF at the Zeeman splitting frequency ωz resonantly couples the initial coherent state
|m = −8⟩ to the target state |m = −7⟩. The states |m = −6⟩ and above are made off-resonant
by light shifts from a laser beam at a frequency close to the 696 nm transition (see text). (b,c)
Observed spin projection probabilities Πm for m ≤ −5 (marks, see legend) as a function of
the RF pulse duration. The dotted curves show the simulated coherent evolution (considering
all 17 states, without the rotating-wave approximation). The only fitted parameters are the RF
coupling ΩRF and its initial phase, whereas the light shifts and Zeeman splitting are determined
independently. The deviation of the data from numerics is due to spin-changing collisions (see
text).

light shift. The spin projection twists at short times (χt ∼ 0.05), leading to the squeezing
of a spin projection quadrature [194]. At intermediate times, there is no evolution of
the moment ∆J2

z . Finally, a revival at a time tcat = π/(2χ), corresponds to a formation
of a cat-like coherent superposition, dominated by stretched states |m = ±J⟩, with
residual occupation of other even-m sublevels. The ideal cat state |cat⟩ = (|m = −J⟩+
|m = +J⟩)/

√
2 would be attained in the absence of a bias field along the z-direction.

However, we apply a field B = 50 mG to maintain a well-defined quantisation axis in
the presence of shot-to-shot transverse field fluctuations. We will return to the squeezed
and cat state indicated on fig. 4.3 later in this chapter to characterise them further and
quantitatively probe their nonclassicality. Hereafter, the cat state we refer to is prepared
with the parameters χ = 2π × 1.25 MHz and B = 53.7(1)mG at t = 200 ns, whereas
the squeezed state is prepared using a weaker coupling χ = 2π × 32.1(4) kHz with
B = 75(1)mG at t ≃ 700 ns.

Dicke state m = −7

The Dicke states |J, m⟩ are another family of states which are natural to consider for
our setup. In analogy to the Fock states in quantum optics, these states are nonclassical
(except at m = ±J). The Dicke state |m = −J + 1⟩ is of particular interest from a
theoretical point of view: we explain in the next section that, in terms of the encoded
spin-1/2’s, it corresponds to a 16-qubit W state. To prepare it, we isolate the two levels
|m = −J⟩ and |m = −J + 1⟩ by applying a strong quadratic light shift acting on the spin
states m > −J + 1 only. This light shift is produced using the same laser beam used for
one-axis twisting; it is far-detuned from the 696 nm transition, with polarisation σ−, for
which the states |m = −J⟩ and |m = −J + 1⟩ are dark. The beam parameters are chosen
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to induce a detuning Vlight = 2π × 320 kHz for |m = −J + 2⟩, in addition to the linear
Zeeman splitting of ωz = 2π × 125 kHz (see fig. 4.4a).

The two-level Rabi dynamics are induced by a single-loop RF antenna, which has
not been introduced so far in this thesis. It is roughly rectangular, with dimensions
5 cm× 10 cm. To maximise the Rabi coupling, we place the antenna just outside the
science cell, such that the atomic cloud is on the loop axis, at a distance of about 6 cm. 4

The antenna circuit is driven by a 30 W amplifier. Additionally, the loop’s inductive
impedance at the operating frequency ωz is matched with a capacitance of about 760 nF,
chosen by maximising the transfer to |m = −J + 1⟩ at a fixed pulse duration, much
shorter than the resulting optimised π-pulse duration of 40 µs .

The system’s coherent evolution is described by the Hamiltonian

HRF = h̄ΩRF cos (ωzt + ϕ)
Jx

2
+ V0

(J + Jz)(J − 1 + Jz)

2J(2J − 1)
. (4.15)

We will provide an intuitive explanation of the quadratic light shift term, which has zeros
at ⟨Jz⟩ = −8, −7, in section 4.4.3.

We fit a Rabi frequency ΩRF ≃ 2π × 12.6 kHz to the dynamics (see fig. 4.4b,c). For
our parameters, simulations indicate that m = −6 and higher sublevels should remain
unoccupied. However, the maximum occupation of |m = −7⟩ observed is 0.91(1), with
residual overlaps on other Dicke states below 4%. We suspect that the fidelity is limited
by inelastic collisions between atoms, which redistribute the spin among neighbouring m
states.

4.3 partitioning dysprosium’s electronic spin

This section describes our method to give access to entanglement properties of the
nonclassical states prepared above by using optical couplings to partition the electronic
spin.

4.3.1 Qubit mapping formalism

The electronic ground state angular momentum J = 8 can be interpreted as the sum of
2J = 16 virtual spin-1/2s, in a state symmetric upon exchange (as introduced for the
LMG model in section 3.4). If these qubits were individually addressable, nonclassical
spin-J states have a one-to-one mapping to entangled 2J qubit states. We discuss some
related subtleties in a combined discussion of our results towards the end of the chapter.
For now, we return to considering the partitioning of the qubit ensemble.

4 The loop dimensions and distance to the atoms being much smaller than the RF wavelength, we must
consider the near-field of an electrically short antenna. Here, the amplitude of the produced fields is given
by their static values, which are maximal on the loop axis. This situation would be inverted in the far-field,
where the field amplitude is maximal in the loop plane [250].
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We will work with the basis of Dicke states. A Dicke state |J, m⟩ has m + J qubits
pointing up and the remaining pointing down:

|J, m⟩ = ∑
sym.

1√
2JCm+J

|↑1↑2 . . . ↑m+J ↓m+J+1 . . . ↓2J⟩ . (4.16)

The sum symmetrises the state over all permutations of m + J qubits pointing up; there
are 2JCm+J terms, hence the normalising prefactor; note that nCk denotes binomial
coefficients.

In the previous chapter, we studied a phase transition in the ensemble of 2J qubits. As
long as the angular momentum J is conserved, the qubit ensemble cannot be partitioned,
and the relevance of entanglement is disputable. Here, we access entanglement properties
by experimentally performing a 2:14 partition of this ensemble through a coupling to an
excited electronic level with angular momentum J′ = 7. A pure 16-qubit state |ψ⟩ (whose
density matrix we denote ρ) can be decomposed with respect to this partition as

|ψ⟩ =
J′

∑
m′=−J′

1

∑
q=−1

am′q |J′, m′⟩ ⊗ |1, q⟩

where |J′, m′⟩ and |1, q⟩ are Dicke states of 2J′ and 2 qubits respectively and the am′q’s
are complex coefficients. We show below how our experimental protocol gives access to
the state of the 2-qubit subsystem, described by the pair density matrix ρpair, which is
obtained by tracing out the remaining 2J′ qubits i.e.

ρpair = Tr2J′(ρ) (4.17)

It will be useful to represent the pair density matrix in the Dicke basis:

⟨1, p|ρpair|1, q⟩ =
J′

∑
m′=−J′

⟨J′, m′; 1, p|ρ|J′, m′; 1, q⟩ (4.18)

=
J

∑
ma,mb=−J

J′

∑
m′=−J′

⟨J′, m′; 1, p|J, ma⟩ ρma,mb ⟨J, mb|J′, m′; 1, q⟩ , (4.19)

where we have expanded over the spin-J Dicke basis on the second line, with ρma,mb =

⟨J, ma|ρ|J, mb⟩. The respective Clebsch-Gordan coefficients in the second equation above
are only non-zero when ma = m′ + p and mb = m′ + q. 5

5 Furthermore, we can use the form of the Dicke state given in eq. (4.16) to derive a simple explicit form for
these Clebsch-Gordan coefficients:

⟨J′, m′; j, p|J, m⟩ =
√

2J′Cm′+J
2jC2j+1

2JCm
,

with m = m′ + q. This coefficient appears in the text with J′ = J − 1 and j = 1 ; in general, this formula it is
valid for J′ + j = J.
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Figure 4.5: Scheme of the first protocol for manipulating qubit pairs in the electronic spin of
dysprosium. An electronic spin of angular momentum J can be viewed as a set of 2J virtual
qubits in a state symmetric upon exchange. The coherent coupling to an excited state J′ = J − 1
with light polarised in a state |ϵ⟩ polarised light probes the probability of finding a qubit pair
polarised in |ϵ∗⟩, itself equivalent to a 2-qubit symmetric state (see text). Here we show σ−
polarised light, for which |ϵ⟩ = |↓↓⟩ and |ϵ∗⟩ = |↑↑⟩.

4.3.2 Implementing the partition

For a practical realisation of the 2 : 2J′ partition, we couple the ground state to an excited
electronic level with angular momentum J′ = 7, via the transition at 696 nm. Consider
the resonant absorption of a photon, whose polarisation is defined by a complex unit
vector ϵ. The polarisation defines the quantum state of an angular momentum L = 1,
which we interpret as a symmetric 2-qubit state. This is evident from the mapping

|↑↑⟩ ↔ ϵ+1 = (x̂ + iŷ)/
√

2

(|↓↑⟩+ |↑↓⟩)/
√

2↔ ϵ0 = ẑ

|↓↓⟩ ↔ ϵ−1 = (x̂− iŷ)/
√

2

corresponding to the usual σ+, π, and σ− polarisation states respectively. In this basis,
we can decompose a general polarisation state as

ϵ =
+1

∑
q=−1

ϵq ϵq (4.20)

For a given polarisation |ϵ⟩ and a given initial atomic state ρ in the ground level
J, the allowed transitions are restricted by the conservation of the azimuthal angular
momentum. Stated mathematically, the polarisation-dependent absorption cross-section
is given by

σ(ϵ) = σ0 ⟨ϵ∗|ρpair|ϵ∗⟩ , σ0 =
3λ2

2π
. (4.21)
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Here, ρpair is the reduced 2-qubit density matrix, and |ϵ∗⟩ is the complex-conjugate
polarisation state with respect to the basis from eq. (4.20). Note that |ϵ∗⟩ is the time-
reversed photon state, whose z-angular momentum is flipped since (ϵ∗)q = (ϵ−q)∗. We
now give a physical justification for this expression.

Using eq. (4.21), the J → J′ = J − 1 process can be interpreted as follows: The photon,
with associated two-qubit state |ϵ⟩ annihilates a pair of qubits in state |ϵ∗⟩ out of the total
2J-qubit state ρ. The rate of this process is proportional to the probability of finding two
randomly chosen qubits in the state |ϵ∗⟩ i.e. the overlap ⟨ϵ∗|ρpair|ϵ∗⟩. Let us consider an
example which is also simple to understand using angular momentum conservation. Take
an incident σ− polarised photon, in which case |ϵ⟩ = |↓↓⟩ and hence |ϵ∗⟩ = |↑↑⟩. If the
dysprosium atom is initially in the coherent state |J, m = −8⟩ (2J qubits pointing down),
the reduced pair state is ρpair = |↓↓⟩ ⟨↓↓| . So there is no overlap, and the cross-section
vanishes since there are no qubits pointing up which are available to be annihilated.
Conversely, if the initial atomic state is |J, m = +8⟩, we have ρpair = |↑↑⟩ ⟨↑↑| and the
cross-section is maximal.

It is easier to measure off-resonant light shifts rather than an absorption cross section
on our experimental setup. The qubit pair annihilation scheme using light shifts is
illustrated in fig. 4.5. The physical origin of the light shift V is in fact virtual photon
absorption processes, and so it is given by a similar polarisation-dependent formula

V = V0 ⟨ϵ∗|ρpair|ϵ∗⟩ , V0 =
h̄Ω2

R
∆

, (4.22)

where ∆ is the detuning from resonance, and ΩR = dE/2h̄ is the coupling Rabi frequency,
d = ⟨J − 1||d||J⟩ being the reduced dipole matrix element, and E the light electric field
amplitude. We will demonstrate in the coming pages how this relation provides a
powerful tool to probe nonclassicality for states prepared in our experiments.

Derivation of the link to the reduced pair state

Here, we derive eq. (4.21) from the point of view of photon absorption probability in a
coherent resonant process. This derivation is provided for the sake of completeness and
is not needed to understand the results of the rest of the chapter. We follow the treatment
from ref. [251].

Working within first-order perturbation theory and using rotating-wave approxima-
tion, the probability of absorption at short times is

Pabs = ⟨ψ| (d · E)† PJ′=J−1 (d · E) |ψ⟩ t2/h̄2,

where d is the electric dipole operator and PJ′ projects on the excited electronic state
manifold. Using the Wigner-Eckart theorem, we write the dipole q-component as

dq = ⟨J′||d||J⟩ ∑
m,m′
|J′, m′⟩ ⟨J, m; 1, q|J′, m′⟩ ⟨J, m| .
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In terms of the polarisation components defined in eq. (4.20), we obtain the expression

Pabs = (Ωt)2 ∑
q,q′

ϵ∗q′ϵqaq,q′ ,

with the Rabi frequency Ω = ⟨J − 1||d||J⟩E/h̄ and the coefficients

aq,q′ = ∑
m1,m2,m′

⟨ψ|J, m1⟩ ⟨J, m2|ψ⟩ ⟨J, m1; 1, q|J − 1, m′⟩ ⟨J − 1, m′|J, m2; 1, q′⟩ .

Using the identity

⟨J, m; 1, q|J − 1, m′⟩ = (−1)q

√
2J − 1
2J + 1

⟨J, m|J − 1, m′; 1,−q⟩ ,

we write

aq,q′ =
2J − 1
2J + 1

(−1)q+q′ ∑
m1,m2,m′

⟨ψ|J, m1⟩ ⟨J, m1|J − 1, m′; 1,−q⟩

× ⟨J − 1, m′; 1,−q′|J, m2⟩ ⟨J, m2|ψ⟩

which simplifies to

aq,q′ =
2J − 1
2J + 1

(−1)q+q′ ∑
m′
⟨ψ|J − 1, m′; 1,−q⟩ ⟨J − 1, m′; 1,−q′|ψ⟩ .

We now recognise the expression from eq. (4.18) for the reduced two-qubit density matrix,
leading to

aq,q′ =
2J − 1
2J + 1

(−1)q+q′ ⟨−q′| ρpair |−q⟩ .

Identifying the spin-1 state |ϵ⟩ with the polarisation ϵ, we obtain the final expression

Pabs = (Ωt)2 ⟨ϵ∗| ρpair |ϵ∗⟩ , (4.23)

where we have used (ϵ∗)q = (ϵ−q)∗, and also absorbed a factor
√
(2J − 1)/(2J + 1) into

the Rabi frequency. We can also interpret this polarisation-dependent absorption rate as
a cross-section, which leads to the previously introduced formula eq. (4.21).

4.4 nonclassicality of the extracted qubit pair

Our first characterisation of entanglement of the 2J-qubit state consists in revealing the
nonclassical character of qubits pairs extracted from it.
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4.4.1 Pair Husimi function

The pair Husimi function will be the primary quantity used to probe nonclassicality
in this section. The Husimi Q-distribution is a quasi-probability distribution, defined
over the domain {α} of coherent states as the squared overlap with the corresponding
coherent state |α⟩. Hence, for a pair extracted from the 2J-qubit ensemble, it is defined as

Qpair(n) = ⟨n|ρpair|n⟩ , (4.24)

where |n⟩ is a two-qubit state pointing along the spatial direction n. Comparing this
expression to the polarisation dependent light shift (eq. (4.22)), we see that by measuring
the light shift for a σ− polarisation, |ϵ⟩ = |↓↓⟩, gives direct access to the Husimi function
along the z-axis (n = ẑ), since

V/V0 = ⟨↑↑ |ρpair| ↑↑⟩ = Qpair(ẑ) (4.25)

In section 4.4.3, we will show how measurements with σ− polarised light can be
combined with rotations of the spin-J state to measure the full pair Husmi function
Qpair(n). We first explain the link of the Husimi function to nonclassicality.

4.4.2 Nonclassicality and the link to concurrence

At first sight, the Husimi function might seem ill-suited to probe nonclassicality, compared
to the Wigner distribution mentioned in fig. 4.2. It is by definition positive-valued;
furthermore, it cannot, for example, distinguish between a quantum superposition and
an incoherent mixture of two coherent states, |n1⟩ and |n2⟩, which are distant in phase
space. Here, we use the pair Husimi function to construct an inequality to detect
nonclassicality of the state of the extracted pair ρpair. We will then explain how this leads
to an elegant determination of the associated concurrence C(ρpair). It is crucial to note
that the L = 1 qubit pairs remain indivisible quantum objects in our system, such that
the concurrence only quantifies the degree of nonclassical correlations.

The collective state ρpair of a qubit pair symmetric upon exchange can be written as
the state of an angular momentum L = 1. The global spin-J state (see eq. (4.14)), the pair
state will be called classical if it can be expressed as a statistical mixture of quasi-classical
coherent states

ρ
(classical)
pair = ∑

n
wn|n⟩⟨n|, (4.26)

with weights wn ≥ 0, where ∑n wn = 1.
We now introduce a measure

Z(n) ≡ 2⟨L2
n⟩ − ⟨Ln⟩2 − 1 (4.27)
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for arbitrary measurement axis n. The key property we will use is as follows [247]: The
existence of a strictly negative value Z(n) < 0 is a necessary and sufficient criterion of
nonclassicality. Note that coherent states satisfy Z(n) = 0 for all n. In fact, they are
the only pure states with this property. Then, it follows by convexity that Z(n) ≥ 0 for
classical states.

The link between Z(n) < 0 and nonclassicality becomes more intuitive if we decom-
pose the spin-1 into two virtual qubits, using

Ln =
σ1n

2
+

σ2n

2
,

where σin is the Pauli operator along the direction n for the ith qubit. This allows us to
rewrite Z in a Cauchy-Schwarz-like form

Z = ⟨σinσjn⟩ − ⟨σin⟩2

where the 1- and 2-qubit correlators have the usual meanings, as previously used
in chapter 3. Alternatively, we can factorise this expression as

Z = ⟨A⊗ A⟩, where A = σin − ⟨σin⟩.

The existence of a one-qubit operator A satisfying Z < 0 also implies the nonclassicality
of an exchange-symmetric state [252].

We now aim to express Z using the pair Husimi function, to make this criterion easily
applicable to our system. Note that the Husimi function is simply the expectation value
of the projector |n⟩ ⟨n|. Furthermore, the eigenstates of Ln with non-zero eigenvalues are
simply |n⟩ and |−n⟩. We can then write Ln = |n⟩ ⟨n| − |−n⟩ ⟨−n|, giving the expectation
values

⟨Ln⟩ = Qpair(n)−Qpair(−n),

⟨L2
n⟩ = Qpair(n) + Qpair(−n).

Substituting these into the definition of Z leads to the expression

Z(n) = γ Cn, where γ =
(√

Qpair(−n)−
√

Qpair(n)
)2
− 1

We have introduced the nonclassicality measure

Cn = 1−
(√

Qpair(−n) +
√

Qpair(n)
)2

. (4.28)

The value of γ is negative by construction. Therefore, the state of the extracted qubit pair
is nonclassical if and only if there exists a direction n for which Cn is strictly positive. This
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criterion of nonclassicality is equivalent to the bipartite entanglement witness established
by Korbicz et al. [253].

We now show that the distribution Cn can be used to quantify the degree of nonclas-
sicality of a quantum state, defined by its distance to the set of nonclassical states [254].
For a system of two qubits, this geometrical measure can be directly expressed in terms
of the concurrence C. As we saw in section 4.1.1, the concurrence can be explicitly written
in terms of the density matrix, but it does not correspond to a directly accessible physical
observable. Remarkably, the distribution Cn can be used to retrieve the concurrence, as

C = max[0, max
n
Cn]. (4.29)

This relation was conjectured and numerically checked for randomly generated states in
ref. [148]. As far as we are aware, it has not been proven.

4.4.3 Application to the Dicke basis

To access the Husimi function of qubit pairs extracted from nonclassical states, we begin
by measuring light shifts to determine the Husimi function along the z-axis Qpair(ẑ) for
all Dicke states |J, m⟩; hereafter, these quantities are denoted Qm i.e.

Qm ≡ Qpair(n = ẑ), for the state Tr2J′ ( |J, m⟩ ⟨J, m| ) (4.30)

The Dicke states are an appropriate starting point for generalising these measurements
to all states, since they form an eigenbasis of the light shift operator for σ− polarised
light.6

The method for the Qm measurement is shown in fig. 4.6a. After turning off the
crossed dipole traps, we use spin rotations to prepare the coherent state |m = J⟩n polar-
ised along a direction n, parametrized by the spherical angles (θ, ϕ). The polar angle θ

determines the projection probabilities Πm along the Dicke states |m⟩, which are signific-
ant for values of m close to J cos θ. We then pulse an off-centred laser beam with circular
σ− polarisation and blue detuning with respect to the 696 nm transition. The intensity
gradient leads to a repulsive force along x proportional to the light shift (fig. 4.6a);
the beam’s offset is chosen as half its waist to maximise the force. After this kick, a
magnetic field gradient separates the different m-components along z during a 2.3 ms
long time-of-flight. Finally, we image the atoms to measure the x-displacement for each
Dicke state |m⟩ that is significantly populated, allowing us to retrieve their light shifts
independently, and hence the respective values of Qm. A typical single-shot absorption
image is shown in fig. 4.6b.

Repeating the above measurement for various angles θ, we measure all the Qm’s,
plotted in fig. 4.6c. In practice, the light shifts’ amplitudes vary over several orders of

6 This also ensures that the spin state does not evolve during Qm measurement protocol.
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Figure 4.6: Measurement of pair Husimi function along the z-axis for Dicke states. (a) Scheme
of the light shift measurement. We measure the force induced on the atoms by an off-centred
laser beam, blue detuned with respect to the optical resonance to the excited level J′ = 7. (b)
Image of an atomic gas prepared in a coherent state of polar angle θ ≃ 100◦. The atoms are
kicked along x by the laser beam. Subsequently, we apply a magnetic field gradient separating
the magnetic sublevels |m⟩ along z during time-of-flight. The dashed line indicates the mean x
position in the absence of the repulsive laser beam. (c) Probability Qm for a qubit pair taken in
the Dicke state |m⟩ to be in |↑↑⟩z, deduced from the kick amplitudes. The error bars here are
smaller than the blue discs. The inset is a zoom near the dark states m = −8,−7. The black lines
are the theoretical values computed from eq. (4.31).

magnitude as a function of m. To account for this, we vary the laser pulse duration in the
range 10 –100 µs and the detuning in the range 50 MHz – 1 GHz, in order to keep similar
displacements for all m-states. For the smallest detunings, we also take into account the
second-order corrections to the light shifts. The uncertainties in the laser beam’s waist
w = 40(5)µm and on the excited state lifetime τ ≃ 11 µs [109] lead to a systematic error.
We correct an overall 20% error using the global constraint ∑m Qm = (2J + 1)/3, which
states that in a completely mixed state, a symmetric qubit pair has a probability 1/3 to
be in |↑↑⟩.

Our measurements are consistent with an absence of light shifts for the states
|m = −J⟩ and |m = −J + 1⟩, i.e. these states are dark with respect to the J → J′ = J − 1
optical transition for σ− polarised light. In terms of the underlying qubits, the state
|m = −J⟩ only contains |↓⟩-polarised qubits, while the state |m = −J + 1⟩ has a single
qubit in |↑⟩. In both cases, a qubit pair cannot be found polarised in |↑↑⟩, and we have
Q−J = Q−J+1 = 0.
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More generally, the state |m⟩ has J −m qubits in |↓⟩ and J + m qubits in |↑⟩. Hence,
the probability of picking a pair |↑↑⟩z is given by a ratio of binomial coefficients,

Qm =
J+mC2
2JC2

=
(J + m)(J + m− 1)

2J(2J − 1)
, (4.31)

in good agreement with the measured values.
We now exploit these measurements to probe the pair Husimi function of arbitrary

states. To this end, we measure the distribution of projection probabilities Πm(n) by
combining spin rotations and Stern-Gerlach projective measurement along z. We then
infer the Husimi function by weighting these probabilities with the Qm values, as

Qpair(n) = ∑
m

QmΠm(n). (4.32)

In the following, we use the theoretical values of eq. (4.31) rather than the measured ones
to avoid propagating systematic errors.

4.4.4 Coherent and W states

We now apply the protocol described above to some well-known classes of N-qubit states.
In each case, we measure the distribution Πm and determine the pair Husimi function
Qpair. In turn, this gives access to the nonclassicality measure Cn, and the resulting
concurrence C.

We first consider the quasi-classical coherent spin state |m = −J⟩ and the W state,
which in our case is simply |m = −J + 1⟩. The coherent state can be viewed as a set of 2J
qubits polarised in |↓⟩, forming a product state. On the other hand, the W state hosts a
single qubit in |↑⟩, and is a paradigmatic state of a fundamental class of entanglement, as
previously explained in section 4.1.2; the method to prepare the W state was explained
in section 4.2.1.

Figure 4.7a,b shows the measured projection probabilities Πm(θ) for these two states.
For a given projection m, the coherent state probabilities feature a single peak centred
on the expected maximum at θm = cos−1 (m/J), shown as red lines. For the W state,
we observe a double-peaked distribution for all m ̸= ±J. This behaviour results from
the interference between two processes: the spin |↑⟩z can project onto |↑⟩θ or |↓⟩θ . The
first (second) process dominates for θ ≃ 0 (θ ≃ π), and the two processes interfere
destructively at θm, as observed in our data.

Combining these measurements with the Qm values using eq. (4.32), we infer the
respective pair Husimi functions, finding good agreement with theory for both states (see
fig. 4.7c). The coherent state obeys Qpair(θ) = sin4(θ/2), corresponding to the probability
that two qubits in |↓⟩ are projected onto |↑⟩θ .

Figure 4.7d shows the distribution Cn computed from the measured Husimi functions
of the coherent and W states. For the coherent state, the measured Cn remains close to
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Figure 4.7: Qubit pair properties of coherent and W states. (a,b) Measured spin projection
probabilities Πm as a function of the polar angle θ, for a coherent spin state (a) and for the
W state (b). The red vertical lines indicate the expected maxima for the coherent state, also
corresponding to minima for the W state. The top panels represent the considered spin-J states on
the generalised Bloch sphere; the red circles indicate the set of spanned measurement projection
axis n. (c) Pair Husimi function Qpair computed from the (a) and (b) data (blue disks and red
squares, respectively). The lines correspond to the expected functions Qpair(θ) for the coherent
and W states (red and blue lines). (d) Distribution Cn of nonclassical correlations as a function of
the polar angle θ. The W state’s nonclassicality is evidenced by the points Cn > 0.

zero for all angles θ. The concurrence C is given by the global maximum of Cn (or zero,
if this maximum is negative). Our data are consistent with C = 0. Indeed, the qubit
pair drawn from this state itself forms a spin-1 coherent state, for which Cn vanishes
according to eq. (4.27).

We find that the prepared W state is not rotationally invariant along the z-axis; the
projection probabilities show a small but significant variation with the azimuthal angle ϕ.
This results from imperfections in the preparation protocol (see section 4.2.1), leading
to a residual coherent admixture with other Dicke states. The quantities shown in
fig. 4.7b,c,d are averaged over ϕ, with the error bars taking into account the dispersion.
The measure Cn takes significantly positive values for θ close to 0 and π, showing the
state’s nonclassical character. The azimuthal dependence is explicitly illustrated in fig. 4.8,
where we show measurements for the azimuthal angles giving extremal values of Cn.
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Figure 4.8: Deviation to z-rotation symmetry in the prepared W state. (a,b) Projection probabilities
Πm as a function of the polar angle θ, for ϕ1 = 0.36(5) rad and ϕ2 = ϕ1 − π/2. (c) Pair Husimi
functions Qpair inferred from the (a) and (b) data (blue disks and red squared, respectively). The
error bars (here, smaller than data markers) represent the statistical uncertainty from a bootstrap
random sampling analysis. The solid line corresponds to the expected variation for the W state.
(d) Distribution Cn as a function of θ. The two azimuthal angles ϕ1 and ϕ2 are chosen to minimise
and maximise the measured Cn respectively.

The global maximum of Cn is reached at the north pole θ = 0, giving a concurrence
C = 0.089(5). This is 71% of the maximum possible value C = 1/J = 0.125 in a system of
2J qubits symmetric upon exchange [255], which would be reached for perfect preparation
of the W state. Again, the limiting factor is imperfect state preparation, in particular the
residual occupation Π−J+2 ≃ 0.03 and Π−J+3 ≃ 0.01 of the next Dicke states.7

4.4.5 Squeezed state

We now extend the study of qubit pair properties to states prepared by one-axis twisting
dynamics (as introduced in section 4.2.1). The first of these is the squeezed state,
which, unlike the Dicke states, is inherently asymmetric around the z-axis, since we can
identify squeezed and anti-squeezed azimuthal directions. We denote these ϕmin and
ϕmax = ϕmin + π/2 respectively.

We show in fig. 4.9a,b the corresponding probabilities Πm(θ, ϕ). For θ = π/2, a
minimum spin projection uncertainty ∆Jmin = 0.92(16) is measured at ϕmin (see fig. 4.9c),
in agreement with the value ∆Jmin = 0.85 expected for an optimally squeezed state
(within the one-axis twisting dynamics). The measured distribution Cn (fig. 4.9d) takes
its maximum for θ = π/2 and ϕ = ϕmin, i.e. along the squeezed quadrature direction.
This maximum gives a value for the concurrence C = 0.058(6), in agreement with the
expected value of 0.055.

7 Remember that the concurrence is not linear with respect to the prepared state or the pair density matrix.
Here, we find that the concurrence is dramatically reduced by simultaneous residual occupation of the
m = −J and m = −J + 3 levels.
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Figure 4.9: Qubit pair properties for a squeezed state. (a,b) Measured spin projection probabilities
Πm for a squeezed spin state, as a function of the polar angle θ with azimuthal angles (a)
ϕmin = −0.4(2) rad and (b) ϕmax = ϕmin + π/2. These are the squeezed and anti-squeezed
azimuthal directions. (c) Spin projection uncertainty ∆Jn computed from the (a) and (b) data (blue
disks and red squares, respectively). The lines correspond to the projection uncertainties expected
for the targeted spin state. (d) Distribution Cn of nonclassical correlations as a function of θ.

Our measurements can be used to check the direct link between quadrature squeezing
and nonclassical pairwise correlations [59]. Indeed, for the states reached via the one-axis
twisting dynamics, one expects the concurrence to be expressed in terms of the minimum
spin projection uncertainty, as

C = 1− 2∆J2
min/J

2J − 1
. (4.33)

From the measured projection quadrature, we calculate a value of 0.053(5) for the right-
hand side of eq. (4.33), in agreement with the direct concurrence measurement.

4.4.6 Schrödinger cat state

Finally, we apply the qubit pair protocol to the Schrödinger cat state. Figure 4.10a, shows
the measured probabilities Πm(n) with respect to the polar angle θ. For θ = 0, we confirm
dominant population of the two stretched states, with Π−J = 0.38(2) and ΠJ = 0.42(2).
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Figure 4.10: Qubit pair properties for a Schrödinger cat state. (a) Measured spin projection
probabilities Πm for a cat state, as a function of the polar angle θ. The azimuthal angle ϕeven is
chosen such that the two coherent state Husimi functions interfere destructively for odd-m values
around θ = π/2, giving an even parity. For the full ϕ-dependence of the state along the equator,
see fig. 4.11a. (b) The nonclassicality measure Cn inferred from the projection probabilities like
those shown in (a). We show measurements for the azimuthal angle ϕ1 = 3.3(1) rad (blue disks),
which shows maximal Cn. This direction is most relevant for the determination of the concurrence.
To illustrate the range of variation of Cn, we also show measurements for ϕ2 = ϕ1 − π/2 (red
squares). The solid line corresponds to the expected variation for a perfect cat state.

When varying θ, the distribution is a superposition of the contributions of each of the
two coherent states forming the cat state. Interestingly, we observe interference between
the two distributions when they overlap, i.e. for θ ≃ π/2.

Similar to the W state, we measure a slight variation of pair properties with ϕ, as
shown in fig. 4.10b. Since we focus on extracting the concurrence from the maximum of Cn,
we are most interested in the measurements for the azimuthal angle ϕ1 = 3.3(1) rad that
maximizes Cn. To illustrate the range of variance, we also show results for ϕ2 = ϕ1− π/2.

Our measurements are consistent with Cn < 0 for all angles θ, showing that the
reduced two-qubit state is classical. This measurement highlights a well-known property
of the cat state, namely that any of its subsystems is classical. Revealing its entanglement
properties requires going beyond pairwise measures, as we show in the following section.

4.5 probing entanglement via subsystem entropy

So far, we have studied the entanglement of 2J-qubit states via the nonclassical character
of their qubit pairs. In this section, we access entanglement more directly by probing
whether a given state of the spin J = 8 is separable with respect to the 14 : 2 partition
performed by the photon absorption. To prove entanglement with respect to this partition,
we use the condition of negative conditional entropy

S∞(14|2) ≡ S∞(ρ)− S∞(ρpair) < 0 (4.34)
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which was introduced in section 4.1.1. Recall that the infinite-order Renyi entropies on
the right hand side of the equation are each given by − log2 λmax, where λmax is the
largest eigenvalue of the respective density matrix.

Our method to evaluate the Rényi entropies is as follows. For the global 2J-qubit
state, we make use of the fact that λmax is the maximum possible overlap of ρ with a pure
state. We measure this overlap with respect to a well-chosen pure state to give a lower
bound on λmax. For the extracted pair state, our method is based on the information
encoded in the pair Husimi function measured in the previous section. This permits
tomography of the pair density matrix [256]. We fit the measured Husimi function by a
spherical harmonic expansion

Qpair(n) =
1
3
+

√
4π

3

2

∑
ℓ=1

ℓ

∑
m=−ℓ

λℓ,mYm
ℓ (n), (4.35)

and infer the density matrix as

ρpair =
1
3

I +
1

∑
m=−1

λ1,mLm +
2

∑
m=−2

λ2,mQm, (4.36)

where the Lm and Qm matrices correspond to the L = 1 angular momentum components
and quadrupole moments, respectively.8

4.5.1 W state

We perform the tomography for the pair state extracted from the W state, taking into
account the slight variation of the Husimi function Qpair(n) with respect to the azimuthal
angle ϕ in the prepared state. We infer a density matrix9

ρpair ≃




0.88 0.01 + 0.05 i −0.01− 0.01 i
0.01− 0.05 i 0.12 0.01 i
−0.01 + 0.01 i −0.01 i 0


 ,

8 These operators are:

L0 = Lz, L±1 = ∓(Lx ± iLy)/
√

2,

Q0 =

√
5
3
(3L2

z − 2), Q±1 = ∓
√

5
2
[(Lx ± iLy)Lz + Lz(Lx ± iLy)], Q±2 =

√
5
2
(Lx ± iLy)

2.

9 Here, we work in basis of symmetric states: |↓↓⟩, (|↓↑⟩ |↑↓⟩)/
√

2, and |↑↑⟩.
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with typically 1% statistical uncertainty. The reconstructed matrix is visually represented
in fig. 4.12, and it closely resembles the expected one

ρpair =




7/8 0 0
0 1/8 0
0 0 0


 .

Note that 7/8 is simply the probability of choosing both qubits in |↓⟩ when picking
from an ensemble where one out of sixteen qubits is in |↑⟩. Diagonalization of the
reconstructed density matrix gives a maximum eigenvalue λmax(ρpair) = 0.882(5).

We now consider the global spin-J state. The projection probability Π−J+1 = 0.91(1),
onto the Dicke state |m = −J + 1⟩, straightforwardly provides a lower bound on the
maximum overlap λmax(ρ) with pure states.

Combining these results for the 2- and 2J-qubit states according to eq. (4.34), we
obtain the conditional entropy

S∞(14|2) < −0.03(1).

Its negative value shows that the prepared state is not separable with respect to a 14 : 2
partition, and is thus entangled.

4.5.2 Schrödinger cat state

We now consider the case of a Schrödinger cat state, for which the effect of the 14 : 2
partition is more striking. Extending the tomography protocol to the cat state, we obtain
the reduced two-body density matrix

ρpair ≃




0.46 −0.01 i −0.03 + 0.05 i
0.01 i 0.05 −0.01 i

−0.03− 0.05 i 0.01 i 0.49


 ,

that we compare to the expected matrix

ρpair =




1/2 0 0
0 0 0
0 0 1/2


 (4.37)

obtained for a perfect cat state. The maximum eigenvalue of the reconstructed matrix is
λmax(ρpair) = 0.53(1).

The evaluation of the maximal eigenvalue of the prepared cat state is more involved.
We evaluate its maximal overlap with the family of pure cat states |catβ⟩ = (|m = −J⟩+
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eiβ |m = J⟩)/
√

2. The simple form of these states in the Dicke basis allows us to express
the overlap with a general state ρ as

Oβ = ⟨catβ| ρ |catβ⟩ =
ρ−J,−J + ρJ,J + 2 Re(ρ−J,J eiβ)

2
,

where the diagonal elements ρm,m are simply the spin projection probabilities Πm, which
we have already measured in section 4.4.6. The overlap Oβ takes its maximum value O
for β = − arg ρ−J,J , with

O =
Π−J + ΠJ + 2|ρ−J,J |

2
.

We present two protocols giving a lower bound on the extremal coherence |ρ−J,J |, both
based on the measurement of an observable A defined for the spin-J state. We consider
its mean value in a state obtained after the cat state preparation, followed by a Larmor
rotation around z of angle ϕ, as

⟨A⟩(ϕ) = ∑
m,m′

am,m′ ρm′,m ei(m′−m)ϕ.

The extremal coherence can be singled out by measuring the Fourier coefficient A2J =

|aJ,−J ρ−J,J | at frequency 2J [231, 257]. We will use observables that can only take values
in the interval [−1, 1], such that |aJ,−J | ≤ 1. The coefficient A2J then provides a lower
bound on the extremal coherence |ρ−J,J |.

The first observable we consider is the parity P of the spin projection along an
equatorial direction n ⊥ ẑ, as a function of the azimuthal angle ϕ. We previously used
the parity in chapter 3, where, for n = ẑ it represented Z2 the symmetry of the LMG
model. Note that the parity is commonly used to characterize cat states [224, 229–231,
233, 234, 238]. The parity is essentially recovered from the interference pattern between
the |m = ±J⟩ projection distributions when they overlap at the equator θ ≃ π/2 (cf.
fig. 4.10a). We now measure this pattern with respect to the azimuthal angle ϕ (fig. 4.11a),
observing an alternation between even- and odd-m projections with period 2π/(2J). We
fit its oscillation, shown in fig. 4.11b, with a Fourier series, from which we extract the
Fourier coefficient P2J = 0.26(1).

The second observable is measured following a non-linear evolution scheme [196,
258–261]. Firstly, the cat is prepared by a pulse of the one-axis twisting coupling (see
fig. 4.11c, upper panel). This is followed by a waiting period, leading to a Larmor
rotation by an angle ϕ around the z-axis. Finally, the same one-axis twisting pulse is
reapplied. In the absence of imperfections, this procedure would create the superposition
sin(Jϕ) |m = −J⟩+ cos(Jϕ) |m = J⟩, allowing for extraction of the maximal coherence
from the oscillation of z-projection probabilities of these two states only. In practice, we
observe residual probabilities in other projection values m, as shown in fig. 4.11c. These
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Figure 4.11: Two protocols for measuring the extremal coherence |ρ−J,J | of the prepared cat
state. This allows a calculation of the overlap with respect to the family of ideal, pure cat
states |cat(β)⟩ = (|m = −J⟩+ eiβ |m = J⟩)/

√
2. Parity protocol: (a) Projection probabilities Πm

measured along equatorial directions (θ = π/2), parametrized by the azimuthal angle ϕ. (b)
Evolution of the mean parity ⟨P⟩ deduced from (b). Non-linear detection protocol: (c) Projection
probabilities Πm measured after preparation of the cat using a one-axis twisting pulse H ∝ −J2

x ,
Larmor rotation of angle ϕ, and a second identical non-linear pulse. The protocol is shown in the
top panel. (d) Evolution of the mean sign of even projections ⟨Σ⟩ deduced from (c). The solid
lines in (b,d) are fits with a Fourier series. In either case, the amplitude of the component with
period 2π/(2J) gives a lower bound on |ρ−J,J |.

are in even m-states only, as expected from parity symmetry. We thus use an observable
Σ defined as the sign of the spin projection on even states, with

⟨Σ⟩ = ∑
m even

sgn(m)Πm. (4.38)

Its oscillation, shown in fig. 4.11d, gives a Fourier coefficient Σ2J = 0.247(5). The
advantage of the sign observable Σ will become clear in the next section, where we
consider a more complex quantum state.

The oscillations of the two observables, P and Σ, lead to comparable estimates of
the extremal coherence. Using the measured probabilities Π±J quoted above, we infer a
lower bound on the overlap O ≥ 0.66(2) and thus on the eigenvalue λmax(ρ). Combining
this with the results of the pair state tomography, we get a conditional entropy

S∞(14|2) < −0.23(3),
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State Concurrence
ρ C(ρpair)

coherent 0
W 0.71(4)× 1

J

squeezed 0.058(6)
cat 0

Pair non-classicality

State Max eigenvalue Pair state Conditional entropy
ρ λmax(ρ) ρpair S∞(14|2)

W ≥ 0.91(1)
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Figure 4.12: Summary of results obtained by extraction of a polarised qubit pair |↑↑⟩ from a
2J-qubit state ρ, by coupling to excited state J′ = J − 1.

which proves entanglement more evidently than for the W state. We note that the re-
quirement O > λmax(ρpair) = 0.53(1), which we use to demonstrate the non-separability
with respect to the 14 : 2 partition, is consistent with the entanglement witness O > 0.5
introduced in section 4.1.2.

Summary

Our results so far are summed up in fig. 4.12. We extracted a qubit pair (L = 1) in
state |↑↑⟩, defined externally by the polarisation of light, which couples the atom to
an excited level J′ = J − 1 with two fewer qubits. Since the amplitude of this process
is proportional to the probability of finding such a polarised pair, our protocol gives
direct information on the reduced pair state. This allowed us to extract the associated
concurrence, quantifying the pair state’s nonclassicality. In a second set of experiments,
we reconstructed the qubit pair state, and combined this with purity measurements of
the prepared 16-qubit state to give the conditional entropy of 14 : 2 bipartition, which
allowed us to detect entanglement.

4.6 decoherence on qubit loss

We now consider the removal of a pair of qubits randomly drawn from the electronic
spin state, irrespective of the pair’s quantum state. For this purpose, we prepare a
state of interest ρ′ in an excited level of angular momentum J′ = 9, corresponding to
a symmetric state of 2J′ = 18 qubits (see fig. 4.13). The spontaneous emission of a
photon drives the system to the ground state J = 8, which has two missing qubits. The
emitted photon can, in general, carry an arbitrary polarisation, therefore the process
allows for three independent quantum jumps associated with the polarisations ϵ−1, ϵ0, ϵ1,



4.6 decoherence on qubit loss 115

Figure 4.13: Scheme of the experiments to probe decoherence on qubit pair loss in the electronic
spin of dysprosium. A symmetric state of 2J′ = 18 qubits is prepared in the excited manifold. A
spontaneous emission process removes a random pair of qubits, following which we measure the
reduced 16-qubit state in the ground level J = 8.

with ϵ±1 = (ϵx ± iϵy)/
√

2 and ϵ0 = ϵz (this is the same polarisation basis introduced
in section 4.3.2). After spontaneous emission, the ground-state density matrix reads

ρ =
1

∑
q=−1

⟨ϵq|ρ′|ϵq⟩ . (4.39)

This is simply a trace over a qubit pair in the original state

ρ = Tr2 ρ′. (4.40)

This corresponds to the loss of an arbitrary qubit pair. The pair is encoded in the
photon (as the spin state corresponding to its polarisation, Tr16 ρ′), which is lost to the
environment in the results presented here. We probe the spin-J state ρ after decay, and
use it to infer properties of the corresponding initial state ρ′.

4.6.1 Robustness of pairwise correlations

We first investigate the effect of particle loss on a W state prepared in an excited electronic
level of angular momentum J′ = J + 1, coupled to the ground state with an optical
transition of wavelength 626 nm. 10 To produce the state |m′ = −J′ + 1⟩ in the excited
level, we start in the coherent state |m = −J⟩ of the lowest energy manifold, and use π

polarised resonant light to couple the system to the desired state (see fig. 4.14a). As shown
in fig. 4.14b, we monitor the Rabi oscillation via the atom recoil upon light absorption.

10 The light pulses are implemented with a laser locked to the atomic transition at 626 nm i.e. the MOT laser.
An AOM allows for independent control of the beam’s frequency, and also for the creation of the fast pulses
needed; to this end, the beam is focussed at the AOM crystal.
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Figure 4.14: Loss of a qubit pair from a W state. (a) Scheme for the preparation of the W state in
the excited electronic level. (b) Evolution of the mean atom velocity acquired due to the photon
absorption recoil, as a function of the light pulse duration. The dashed line is a model taking
into account spontaneous emission during the pulse. (c,d,e) Top panels: expected states, with
a scheme of spontaneous emission in (d) showing the Clebsch-Gordan coefficients for the two
possible quantum jumps. Bottom panels: spin projection probabilities (c) in the absence of the
resonant light pulse, (d) for a π pulse and (e) a 2π pulse. The solid lines are the probabilities
expected for a perfect W state, while the dashed lines use the same model as in (b).

The comparison with a master equation model, which takes into account spontaneous
emission during the Rabi flopping, allows us to estimate a fidelity of 0.98 for a pulse
duration tpulse ≃ 62 ns – the excited state lifetime being τexc ≃ 1.2 µs [262].

Following the light pulse, we wait for spontaneous emission to occur before measuring
the spin state in the ground level. We observe significant populations only in the
states |m = −J⟩ and |m = −J + 1⟩, as expected from the selection rule |m′ − m| ≤ 1.
The state |m = −J + 1⟩ is dominantly populated, showing that, in most cases, the |↑⟩
excitation of the W state is not removed upon the loss of a qubit pair. The projection
probabilities, shown in fig. 4.14d, are close to the expected values Π−J+1 = 1/(J + 1)
and Π−J = 1−Π−J+1, with a residual difference mostly explained by the imperfect state
preparation.

The nonclassicality of qubit pairs in the final state is probed via the distribution Cn

introduced in section 4.4.2. Recall that Cn is obtained from the spin projection probabilities
along n. Since its maximum value is expected to be attained along z, we only consider
projections along this direction, and obtain Cẑ = 0.104(3). This value provides a lower
bound on the qubit pair concurrence, expected to be C = 1/(J + 1) ≃ 0.111 in the initial
state. The proximity of the initial state concurrence and the measured one after decay
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Figure 4.15: Loss of a qubit pair from superposition states. (a) Preparation of the Schrödinger
cat state |ψ1⟩ in the excited electronic level. Given the small values of their Clebsch-Gordan
coefficients, we neglect the couplings between |m = ±8⟩ and |m′ = ±7⟩. (b) Scheme of the
subsequent spontaneous emission. (c) Top panel: spin projection probabilities measured in the xy
plane, as a function of the azimuthal angle ϕ. The corresponding sign observable ⟨Σ⟩ is shown
below, together with a fit with a Fourier series. The y axis range has been reduced compared to
fig. 4.11d to highlight the absence of oscillation. The panels (d,e,f) show the same information for
the superposition state |ψ2⟩ = (|m′ = −8⟩+ |m′ = 8⟩)/

√
2.

illustrates that losing qubits does not alter nonclassicality of the remaining qubits pairs –
this robustness to the loss of qubits is a defining property of the W state entanglement
class (see section 4.1.2 and ref. [75]).

4.6.2 Fragility of macroscopic coherence

We contrast the W state’s behaviour with that of coherent superpositions of states distant
in phase space [263].

We consider two examples, namely a cat state

|ψ1⟩ = (|m′ = −J′⟩+ |m′ = J′⟩)/
√

2 ,

and the superposition

|ψ2⟩ = (|m′ = −J′ + 1⟩+ |m′ = J′ − 1⟩)/
√

2 .

Their preparation consists in producing a cat state in the ground manifold (|m = −J⟩+
|m = J⟩)/

√
2 (see section 4.2.1), and then resonantly to coupling it to the excited manifold.

The state |ψ1⟩ is produced using an x-linear polarisation ϵx = (ϵ1 + ϵ−1)/
√

2, which
dominantly couples the stretched states |m = ±J⟩ to states |m′ = ±J′⟩ (see fig. 4.15a).
Couplings to states |m′ = ±(J′ − 2)⟩ also occur, albeit with very small Clebsch-Gordan
coefficients, such that these processes can be neglected.11 The state |ψ2⟩ is obtained
using a z-linear polarisation (see fig. 4.15d). In both cases, a coherent Rabi oscillation is

11 The coupling amplitudes between |m = ±J⟩ and |m′ = ±(J′ − 2)⟩ are smaller than the couplings between
|m = ±J⟩ and |m′ = ±J′⟩ by a factor of

√
153. When the population of |m′ = ±J′⟩ is maximised, we expect

a residual population of the states |m′ = ±(J′ − 2)⟩ of 3% due to these small couplings.
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Figure 4.16: (a) Scheme of the 2π Rabi oscillation starting in a Schrödinger cat state of the
electronic ground level, for an x-polarised laser excitation (state |ψ1⟩). (b) Top panel: spin
projection probabilities measured after the non-linear detection protocol (see fig. 4.11), as a
function of the azimuthal angle ϕ. The corresponding sign observable ⟨Σ⟩ is shown below,
together with a fit with a Fourier series. The panels (c,d) show the same information for a z-
polarised laser excitation (state |ψ2⟩). We find that the coherence |ρ−J,J |, estimated by the Fourier
component Σ2J , is reduced to 0.202(2) (resp. 0.211(6)) for the x-polarised (resp. z-polarised)
excitation, i.e. above 80% of the value obtained with no Rabi pulse. These measurements confirm
that coherence is preserved during the Rabi oscillation.

observed when varying the pulse duration, and the fidelity of the preparation is limited
by that of the cat state in the ground level. In fig. 4.16, we verify that the coherence of the
superposition is maintained during Rabi flopping by studying the states reached after
2π pulses.

We study the effect of qubit loss, triggered by spontaneous emission, on the superposi-
tion states |ψ1⟩ and |ψ2⟩. For the cat state |ψ1⟩, we only expect population of the stretched
states |m = ±J⟩ (see fig. 4.15b). To check the coherence between them, we measure the
sign observable ⟨Σ⟩ as a function of the azimuthal angle ϕ. As shown in fig. 4.15c, its
oscillation is completely washed out (cf. fig. 4.11). We determine the Fourier component
Σ2J = 0.006(10), indicating an absence of coherence. For the superposition state |ψ2⟩, we
observe dominant projection probabilities in the states |m = ±(J − 1)⟩, corresponding to
the spontaneous emission of a σ∓ polarised photons respectively (see fig. 4.15e). We do
not measure any significant variation of these probabilities with the azimuthal angle ϕ,
excluding coherence between them. We also measure residual projection probabilities in
the stretched states |m = ±J⟩, which occur via the spontaneous emission of a π polarised
photon. The advantage of our definition of the sign observable Σ (eq. (4.38)) becomes
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clear here: it allows one to test the coherence between the states |m = ±J⟩, without being
affected by the atoms populating odd-m states. The measured probabilities in stretched
states coherently oscillate as a function of the angle ϕ (see fig. 4.15f). More quantitatively,
the sign observable, which involves even-m only, evolves with a Fourier component
Σ2J = 0.024(1).

The complete loss of coherence when starting in the cat state |ψ1⟩ can be interpreted
as follows. The spontaneous decay involves two orthogonal polarisations, with a σ+ po-
larised photon emitted when starting in the component |m′ = −J′⟩, while a σ− polarised
photon is associated with the decay of the state |m′ = J′⟩. The photon polarisation thus
holds complete which path information on the spin state polarisation – a term referring to
Einstein’s version of the double-slit interference experiment [264, 265]. In this case, the
coherence between the different paths is erased after spontaneous emission.

We contrast this with the state |ψ2⟩. The most probable quantum jumps still corres-
pond to the emission of σ+ and σ− polarised photons, which carry information about
the state polarisation (see fig. 4.15e). However, the quantum jump associated with the
emission of a π polarised photon does not leak this information, which explains the
residual coherence. The measured Fourier coefficient Σ2J corresponds to 9.7(5)% of the
value measured in the absence of the excitation. This reduction is consistent with the
probability 1/(J + 1) ≃ 11.1% to scatter a π polarised photon for the considered state,
showing that this channel fully preserves coherence.

4.7 perspectives

Above, we considered the partition of an angular momentum J′ = J + 1 of an excited
electronic state. A random qubit pair is extracted by spontaneous emission towards the
ground state J. We showed that nonclassical pairwise correlations of the W state are
robust to particle loss. On the contrary, we observed that coherent superpositions of
states distant in phase space are very fragile in this regard.

4.7.1 Flexible manipulation of entangled states

The study of light-spin interaction presented here is limited to measurements of the
electronic spin. An interesting extension would be to collect the spontaneously emitted
photon, whose polarisation is entangled with the dysprosium atom’s spin state. For
instance, the composite atom-photon state after decay of the excited level cat |ψ1⟩ is

|m = J⟩ ⊗ |σ+⟩+ |m = −J⟩ ⊗ |σ−⟩√
2

(4.41)

The photon can then be seen as a ‘flying qubit’, capable of being transported over signi-
ficant distances and being manipulated with standard quantum optics tools. Carrying
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Figure 4.17: Scheme to create an entangled state of two distant dysprosium atoms. Both atoms are
initialised in the cat state in the excited manifold J′ = 9, with |ψ1⟩ = |m′ = −J′⟩+ |m′ = J′⟩)/

√
2.

Spontaneously emitted photons are combined on a polarising beamsplitter (PBS). Simultaneous
photon detection at both the single photon detectors (SPD) heralds atom-atom entanglement (see
text for details).

forward the analogy with the double-slit experiment, the photon carries the which path
information associated with the decay. In this spirit, spontaneous emission is a com-
monly used in protocols for entanglement manipulation (see, for example refs. [266–
269]). Experiments in this area have been performed with trapped ions, neutral atoms
or solid-state qubits acting as the ‘stationary qubit(s)’, typically with an effective spin
of size 1 or 1/2 [270–275]. Such atom-light interfaces can form the building blocks of
scalable quantum networks [276]. The large spin of dysprosium could provide several
advantages here [277]: the enlarged Hilbert space implies increased information capacity,
better resilience to noise, and more secure quantum cryptography. Furthermore, a super-
position of states distant in phase space, such as our cat state, can itself act as a qubit
with exceptional protection against certain decoherence channels – such systems have
been dubbed ‘cat qubits’ [278, 279].

To conclude, we give a brief example of the kind of manipulations possible using the
state 4.41 as a starting point; the example is closely related to a proposal in ref. [267]
and the experiment in ref. [275]. Consider a pair of atoms, in two independent and
spatially separated setups, each simultaneously initialised in the excited level cat state
|ψ1⟩ (see fig. 4.17). We collect photons emitted along the z-direction and couple them into
fibres.12The polarisations are rotated, such that upon arrival at a polarising beamsplitter,
σ− (resp. σ+) photons are sent to photon detector A (resp. B). Assuming care is taken to

12 The scheme’s success rate could be greatly improved by placing each atom in an optical cavity; the resonant
cavity mode establishes a direction for photon emission [272].
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maintain the indistinguishability of photons arriving from the two atoms, simultaneous
detection at both A and B projects the atom pair into the state

|m = J⟩1 ⊗ |m = −J⟩2 + |m = −J⟩1 ⊗ |m = J⟩2√
2

.

This scheme has mapped photon-atom entanglement to atom-atom entanglement.

4.7.2 Indistinguishable particle entanglement

The discussion of nonclassicality and entanglement in this chapter uses a point of
view equating a spin-J system to 2J indistinguishable qubits in a symmetric state. By
construction, there is no meaningful way to label the qubits – and few-qubit observables
are only accessible indirectly from measurements on the composite spin-J.

The fundamental nature of entanglement in systems of indistinguishable particles
has been a subject of considerable theoretical discussion [280–286] (see also the recent
review [76] and the references therein). Much of this debate has been motivated by
experiments of BECs with two atomic states occupied, forming a pseudo-spin 1/2 [63]. If
only a single spatial mode is occupied, quantum statistics dictate that the global spin state
must be symmetrised – hence defining the Hilbert space as that of a total spin J = N/2
(see also the discussion for the LMG model in section 3.4). In this situation, it is natural to
ask questions such as: is it meaningful to say that the two-particle state (|↑↓⟩+ |↓↑⟩)/

√
2

entangled, since the superposition could be seen as a trivial consequence of the symmetry
requirement? There have been several, at times contradictory, approaches to answer this
question, each with implicitly different definitions of locality [76]. Another interesting
question is the extent to which such entanglement is a useful resource for quantum
information applications [287–289]. A few recent experiments have approached these
issues by partitioning the system into distinguishable spatial modes [290–293].

We hope that our work brings a new perspective to this search for a consistent
description of entanglement for identical particles. Although optically manipulated
single spin-J systems are commonly used in entanglement generation protocols [266,
267, 270–275, 294], they have not, to our knowledge, been considered in the context of
this debate. In this sense, our qubit loss experiments effectively distinguish a spin-1
subsystem by moving it to a separate mode (i.e. the photon polarisation). Our results
also fit into the framework of conversion of nonclassicality into entanglement introduced
in refs. [286, 295].

4.8 many-body spin physics with dysprosium

So far in this thesis, we have studied the LMG model and entanglement properties
of the dysprosium’s large electronic angular momentum. We have demonstrated how



4.8 many-body spin physics with dysprosium 122

optical couplings, specifically non-linear light shifts, are a powerful tool for producing
nonclassical states in the ground and excited state manifolds. The robust single-state
resolved detection techniques, averaged over the thermal cloud, allow for single/few-shot
detection of the usual first- and second-order moments (e.g. Jn, J2

n) , as well as maximal-
order moments ‘custom designed’ for a particular application (e.g. the parity P, and the
sign variable Σ). A promising future direction would be to extend these ideas to systems
of interacting dysprosium atoms. One option to engineer interactions would be via an
optical cavity mode, as briefly discussed by us in ref. [202]. Here, we focus instead on
the possibilities arising from direct atom-atom interactions, primarily considering the
regime of a BEC with a spin degree of freedom, i.e. a spinor gas.

Spinor BECs are now a staple in the cold atoms community – see refs. [296, 297] for
general reviews. Some common species used are 87Rb (F = 1, 2) and 23Na (F = 1), and
the dipolar species 57Cr (F = 3). Lanthanide species have remained largely unexplored,
though there is considerable theoretical interest (see ref. [37] for a recent review). In the
low-energy limit, the contact interactions for a pair of atoms with aribitrary spin states
are fully characterised by a set of scattering lengths aK, where K = 0, 2 . . . , 2F is the total
angular momentum. For example, the spin-dependent interaction Hamiltonian for F = 1
is proportional to (a2 − a0) F1 · F2. In this regard, 87Rb is called ferromagnetic (a2 < a0)
while 23Na is antiferromagnetic (a2 > a0) .

Conceptually, the simplest situation for a spinor BEC is the mean-field limit, with
atom number N ≫ F, where all particles are condensed into a single spatial and spin
state, in a vanishing external magnetic field. Then, the condensate spontaneously breaks
the rotational SO(3) symmetry in addition to the usual U(1) gauge symmetry. The ground
state phase diagram can host nonclassical states, such as the cat state or the m = 0 Dicke
state [298, 299]. 13 Experimental realisation of such physics has tended to be with alkali
atoms in finite fields, where the state observed instead depends on the sign and strength
of Zeeman shifts [296], with weak dipole-dipole interactions preventing relaxation to the
global ground state.

In strongly dipolar gases, the non-condensed state only has SO(3) symmetry in
spherical trapping geometries. Dipolar interactions make relaxation of the total spin
possible, which determines the dynamics of the spinor ground state and allows for
thermalisation of the spin with kinetic degrees of freedom – as studied for chromium
gases [300, 301]. Note that dipolar interactions can also lead to dramatic deviations from
the single-mode approximation, for example, by the formation of spatially modulated
spin textures [302].

For dysprosium, the large spin Hilbert space increases the potential for exotic spinor
states. A convenient way to represent these is with a set of 2J = 16 points on the Bloch
sphere, called Majorana stars [145, 305]. These points give the directions opposite to
where the underlying spin 1/2’s point, and so they are also the roots of the spin-J Husimi

13 In the terminology of F = 2 spinor physics, for example, these are called biaxial nematic and uniaxial
nematic phases respectively.
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(a) Non-Abelian phase

Majorana stars
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(b) Quantum Hall state
vortex lattice

Figure 4.18: Spinor ground states for a J = 8 system, as represented by 2J Majorana stars on
the Bloch sphere (top panels, red vertices), which lie at the zeros of the corresponding Husimi
function (lower panels). (a) A state with non-Abelian character (see ref. [303] and the text). Pairs of
Majorana stars lie at the vertices of a cube, giving Oh (octahedral) symmetry. (b) A state equivalent
to a mean-field vortex lattice in a Hall system (see text). The vortex arrangement (calculated
in ref. [304]), minimises effective repulsive contact interactions on the sphere. Mathematically,
determining this vortex lattice configuration is also equivalent to the optimisation of electron
positions in the Thomson plum-pudding model.

function. For example, the Dicke state |m⟩ has m + J stars at the north pole and m− J
stars at the south pole. The constellation of the Majorana stars reflects the symmetry of
the spin state. In the mean-field and single-mode limit, a whole zoo of states is possible,
depending on the scattering lengths aK. If the symmetry group of the constellation is
non-Abelian, the line-defects of the spinor BEC interact in unusual ways [306] – such
states were classified in ref. [303] (see fig. 4.18a for an example), where the authors
also discuss the detectable signatures of non-Abelian behaviour in the spin populations
and the excitation spectrum. We mention that competition between multiple forms of
magnetic order could be induced by additionally applying non-linear light shifts, as we
did in our realisation of the LMG model.

The perspectives we discuss for dysprosium are necessarily speculative, since the
spin-dependent scattering lengths aK have not been measured for K < 2J. Nevertheless,
we now discuss a special case a2J ≫ aK, a2J > 0 (for all K < 2J), since it is closely linked
with the topic of the remainder of this thesis: artificial gauge fields. Indeed, the spin-J
state can be represented by a wavefunction on the sphere, where Majorana stars are
vortices of unit flux [307]. By this mapping, the spin can simulate the physics of the lowest
Landau level in a spherical geometry pierced by total flux 2J. The chosen scattering
lengths correspond to repulsive contact interactions on the sphere: in the mean-field limit,
the ground state minimises interaction energy in a configuration where the qubits (and
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hence the vortices) have spread out in a configuration shown in fig. 4.18b, as discussed
in ref. [308]. The situation is also interesting in the limit of low atom numbers, N ∼ J,
where quantum fluctuations are dominant and we leave the mean-field regime, such that
the atoms are not all condensed into the same state. This can lead to the formation of
highly correlated states: for example, in the case of exactly J + 1 atoms, the many-body
ground state is in fact the bosonic Laughlin state at half filling [309, 310].
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T O P O L O G Y A N D E N TA N G L E M E N T S P E C T R U M O F A S Y N T H E T I C
H A L L S Y S T E M

Green in nature is one thing,
green in literature another.

Virginia Woolf, Orlando

In this chapter, I present the realisation of a quantum Hall system using a synthetic
dimension encoded in the atomic spin of dysprosium. I will explain how distinct
behaviour is observed at the edges, which host chiral states, and in the bulk, which shows
a transverse response consistent with that of a topological band.

We begin with a brief overview of Hall physics (section 5.1) and explain how light-
induced artificial magnetic fields are created in a synthetic dimension (section 5.2).

We then present our experimental findings (sections 5.3–5.6), in the form of an excerpt
from our article [311]:
Probing chiral edge dynamics and bulk topology of a synthetic Hall system
T. Chalopin∗, T. Satoor∗, A. Evrard, V. Makhalov, J. Dalibard, R. Lopes, S. Nascimbene
Nature Physics 16, 1017–1021 (2020)
* These authors contributed equally

In particular, we explain the realisation of a Hall ribbon with atomic dysprosium, the
properties of the ground band (analogous to the lowest Landau level), a study of the
system’s excitations (semi-classical cyclotron and skipping orbits), and the measurement
of the Hall drift, quantified by the local Chern marker. This first half of the chapter aims
to be concise while remaining self-contained. The topics covered formed a major part of
T. Chalopin’s PhD thesis [91], where in-depth explanations and experimental details can
be found.

We take a more comprehensive approach in the chapter’s second half (sections 5.8–
5.9), where newer work is presented. We begin by examining the entanglement properties
of many-body ground states, where the link to the themes of this chapter might not be
evident at first. Then, we explain how a concept called the entanglement spectrum acts
as an incisive probe of topological behaviour by linking entanglement in the bulk to the

126
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behaviour of edge modes. This motivates a reinterpretation of our experimental results,
where the signature of the entanglement spectrum at the single-particle level is revealed.
Finally, we discuss how the entanglement properties could be probed directly in our
system with future experiments, and conclude with a perspective on the realisation of
many-body topological states with dysprosium.

5.1 introduction to quantum hall physics

The remarkable discovery of the integer quantum Hall effect in 1980 [9] kickstarted
the study of topological states of matter. In that landmark experiment, K. v. Klitzing
measured the transverse resistivity ρxy of a two-dimensional electron gas formed at the
semiconductor-insulator interface in a transistor device. He observed plateaux at

ρxy =
1
ν
× h

e2 (5.1)

as the magnetic field B applied perpendicular to the sample is varied. The parameter
ν was found to take integer values at extremely high levels of precision (∼ 10−10) ,
independent of microscopic sample properties or fine-tuning of the magnetic field. This
was followed by the discovery of the fractional quantum Hall effect in 1982 [312], with
plateaux at certain rational values of ν. Here, we provide a very brief introduction to
Hall physics, focussing on the integer case, and highlight features that will reappear in
our synthetic Hall system. In our explanations, we borrow freely from refs. [313–315].

Classical Hall system

Classically, the motion of an electron in a magnetic field takes the form of circular orbits
at constant speed, at the cyclotron frequency ωc = eB/M, as sketched in fig. 5.1 (M
is the electron mass and e is the electronic charge). The frequency is independent of
the orbit radius. An additional external force F (e.g. from an electric field) causes a
transverse displacement of the orbit’s centre with velocity vdrift = −F × B/(eB2). The
ratio of this drift velocity to the force gives the bulk Hall mobility, µ = −1/eB. At
a sharp repulsive boundary, the electron follows a skipping orbit along the edge (see
fig. 5.1). Such skipping motion is less strongly affected by a force perpendicular to the
edge, leading to a reduced mobility in this region. This picture also describes the motion
of an electron wavepacket in the quantum case, such that we can refer to semiclassical
cyclotron and skipping orbits.

In a translationally invariant Hall system, we can use Lorentz invariance to transform
to a moving frame at velocity −v, such that the electromagnetic fields transform as

(E = 0, B = Bẑ) −→ (E = −v× B, B = Bẑ)
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Figure 5.1: Two-dimensional Hall systems in the classical and quantum regimes. In the classical
case, electron trajectories (solid black curves) take the form of circular cyclotron orbits in the
bulk (at frequency ωc) and skipping orbits at a hard edge. The application of a force causes a
transverse drift of the orbits (dotted red curves). In the quantum case, the dispersion relation
takes the form of evenly spaced Landau levels (at (s + 1/2)h̄ωc for integer s) with a macroscopic
degeneracy of stationary states in the bulk. The edges host chiral (unidirectional) states.

to lowest order in v/c. In the moving frame, the two-dimensional electron gas creates a
current density J = −nev, where n is the electron density. Using these equations and
the definition of the resistivity tensor J = ρ · E, we can identify

ρ =
B
ne

(
0 1
−1 0

)
, (5.2)

predicting a transverse resistivity linear in the field. Clearly, this approach does not
predict the observed plateaux.

Quantum Hall system

For a single electron, quantum effects become relevant for motion at a lengthscale ℓ,
which can be deduced by positing a Heisenberg-like relation ∆x∆p = ℓ×Mℓωc = h̄.
This gives an important quantity called the magnetic length ℓ =

√
h̄/eB. The magnetic

field enters the quantum Hamiltonian as a coupling of the vector potential A, with the
canonical momentum p :

H =
(p + eA(r))2

2M
.

We should remember that the kinetic momentum of the electron is given by Mv =

p + eA(r), and that given translational invariance, p is a conserved quantity. The solution
of this single-particle Hamiltonian gives Landau levels. These form a harmonic spectrum

Es = (s + 1/2) h̄ωc , where s = 0, 1, . . .

as shown in fig. 5.1. Importantly, the spatial density of single-electron states in a single
Landau level is nϕ = (2πℓ2)−1 = B/Φ0, where Φ0 = h/e is the flux quantum. Hence,
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a typical 2-D solid-state sample has a macroscopic degeneracy of each Landau level,
tunable using the magnetic field.1 Since the average electron density n of the sample
remains fixed, we are able to tune the overall filling fraction ν = n/nϕ.

Transverse response

The argument leading to eq. (5.2) for the resistivity only depends on Lorentz invariance,
and so it is also valid for a translationally invariant quantum system. Indeed, if we insert
electron densities corresponding to a whole number of filled Landau levels, we recover
the universal values of eq. (5.1). However, this explanation depends on the precise value
of the magnetic field, and cannot account for the extreme robustness of the resistivity
plateaux. In fact, the presence of disorder (which breaks translational invariance), and of
states at the edge of real samples, play a crucial role in the integer quantum Hall effect.

We now compute the result of a transverse response measurement, working in a ribbon
geometry i.e. with no boundaries along x, and a finite width L along y. We consider a
smoothly varying confining potential V(y). It is convenient to work in the Landau gauge,
where A = eBy x̂, and the single-particle wavefunctions have x-translational symmetry:

ψpx(x, y) = eipxx/h̄ϕy0(y− y0) , with y0 = −px/eB (5.3)

Here, the function ϕy0(y− y0) is localised in a region of width ∼ ℓ around position
y = y0 ; its exact form is not important, and depends on V(y). The dispersion relation
E(px) sharply rises when y0 is close to the edges y = 0, L, where it is intersected by
the Fermi level. The velocity of a wavepacket, vpx = ∂E/∂px x̂ has opposite sign at
each edge, and is along the direction of the respective semiclassical skipping trajectories.
Therefore, even without an external voltage, the ground state contains opposing chiral
(unidirectional) edge currents.

The application of a voltage VH across the sample can be treated as a chemical
potential difference eVH between the edges (see fig. 5.2). The resulting net transverse
current at unit filling (ν = 1) is obtained by integrating over the lowest Landau level
(LLL)

IH = −e
∫

LLL
dpx

1
h

∂E
∂px

= − e
h

∫ y=L

y=0
dE = − e2

h
VH ,

allowing us to recover the universal value for the resistivity.
What is the effect of disorder on this result? Disorder, ever-present in real samples due

to imperfections, might be expected to reduce the transmitted current by backscattering
the electrons off local kinks in the confining potential V. In the Hall system, the only
state available into which an edge state can be backscattered is at the opposite edge of
the sample. The probability for this process is close to zero if L≫ ℓ. Hence, the chiral
edge modes have a remarkable immunity from back scattering.

1 The degeneracy is about 109 for a square sample of length 0.5 mm at a field of 10 T.
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Figure 5.2: Transverse response of the lowest Landau level in a Hall system with disorder and
edges. The Fermi level lies between the first two Landau levels. A voltage VH applied across the
edges of the sample at y = 0, L can be interpreted as a difference of the Fermi levels at the two
edges eVH . The solid blue line shows the resulting filling of the band. The net current is then
obtained by integrating the contributions of occupied states, resulting in a universal value h/e2

for the resistivity (see text). The chiral edge modes are protected from backscattering, since there
are no nearby unoccupied states with opposite momentum and the same energy.

The second key ingredient to recover the characteristic integer quantum Hall effect
behaviour is the localisation of states in the bulk due to disorder. This broadens the
delta functions of the density of states, located at the Landau level energies (s + 1/2) h̄ωc

in the ideal case. These are spread over a finite energy range, given by the strength of
disorder. Then, the chemical potential can vary smoothly with B, while the resistivity
remains determined solely by the number of available edge channels, resulting in the
famous plateaux.

Role of topology

Topology allows us to understand the quantum Hall effect in terms of bulk properties.
The formulation of the Berry (or geometric) phase [316] was an important step

towards the application of topology to quantum systems. As an example, consider a
pure coherent state of a spin-J system, described by a point on the Bloch sphere. We
subject it to an adiabatic cycle of evolution, returning to the initial point in phase space.
The system acquires the usual dynamical phase proportional to the respective eigenstate
energies, and also a geometric factor exp (iJω) which depends on the path followed
in phase space. Using Stokes’ theorem, the geometric phase is expressed in terms of
ω, the solid angle subtended by the system’s trajectory. In this case, the state resides
on a spherical manifold, which has a number of holes, or genus g = 0. Hence, ω is
ambiguous up to a multiple of the total curvature (2− 2g)× 2π = 4π, as given by the
Gauss-Bonnet theorem. For the geometric phase factor to be physically meaningful, 2J
must be an integer, which we know is the case for a quantum spin! This illustrates
how the overall arrangement of the system’s states can be given a precise meaning,
fundamentally restricting the value of a global physical property. This property is then
said to be topologically protected with respect to certain deformations of the system.
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We now return to the quantum Hall system. In a landmark result, Thouless et al. [10]
formulated an expression for the Hall conductance as an integral of a curvature F over
the Brillouin zone, and noted that it takes the observed universal values for integer filling
factors. In brief: this so-called TKNN expression uses Kubo linear response theory on a
two-dimensional lattice, which, for a single band, gives a Hall conductance

σxy =
e2

h

(
1

2π

∫

BZ
d2k F(k)

)
=

e2

h

(
1

2π

∮

BZB
dk ·A(k)

)
(5.4)

where Ai(k) =
1
2i

∫

MUC
d2r

(
u∗

∂u
∂ki
− u

∂u∗

∂ki

)

and F(k) = ∇k ×A .

Here, F is called the Berry curvature, A is a vector field called the Berry connection,
and the u’s (implicitly indexed by k) are Bloch functions with the lattice’s periodicity.
The integrals are over the Brillouin zone (BZ), Brillouin zone boundary (BZB), and the
magnetic unit cell (MUC) respectively. The term in brackets in eq. (5.4) was formally
identified as a topological invariant taking integer values by Simon [317]; it is called
the TKNN invariant or Chern number C, which equals one for a Hall band. Through
a general principle called the bulk-edge correspondence (see ref. [81] for a review), the
presence of a gapless chiral edge mode for each band can be seen as a fundamental
consequence of a boundary between a C = 1 Hall system and the topologically trivial
C = 0 surroundings.

5.2 synthetic dimension with internal states

An essential ingredient for Hall physics to emerge in a two-dimensional quantum system
is the coupling of a momentum p to a vector field A (with ∇× A ̸= 0). In the spirit of
quantum simulation and ‘synthetic’ systems, the two dimensions in question need not be
spatial: here, we consider encoding one of them in the internal state of an ultracold atom.
This concept of synthetic dimensions was proposed by Celi et al. [77] in 2014. Since the
atom has no electric charge, a real magnetic field cannot create the required coupling;
instead, the internal states are coupled to motion using optical transitions, creating an
artificial magnetic field, as we now explain with a toy model.

Consider an atom with a two-level ground manifold (J = 1/2), described by the
Hamiltonian

H =
1
2

Mv2 − h̄Ω
2

(
e−iKx J+ + eiKx J−

)

Here, M is the atom’s mass and v is its velocity along x ; motion along other axes is
irrelevant. The resonant coupling of the m = ±1/2 levels (with strength Ω) has been
achieved in Λ configuration with two-photon Raman transitions (see fig. 5.3). This
uses counter-propagating laser beams along x, each with wavevector K/2. The phase
factors e±iKx arise from the interference of the beams. Any two-photon transition comes
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Figure 5.3: Toy model for synthetic dimension of size two encoded in the internal state of an
atom. (a,b) Counterpropagating laser beams along a real dimension x, far-detuned from an
excited state, induce coherent two-photon transitions between states m = ±1/2, coupling the
‘position’ in this internal synthetic dimension to the induced motion along x. The two-photon
recoil momentum is denoted prec, and the associated recoil energy is Erec. The coupling strength
is h̄Ω. (c) Dispersion relation as a function of the coupling strength. The conserved canonical
momentum is p = Mv + prec Jz. The lower band is optimally flat at h̄Ω = Erec, where it is quartic
to lowest order around p = 0.

along with a recoil momentum kick along x, with magnitude prec = h̄K, such that we can
identify a conserved canonical momentum p = Mv+ prec Jz. Note that a large two-photon
detuning from the single relevant excited level ensures that we can consider coherent
dynamics in the ground manifold.2

We will now interpret Jz as the position in a discrete and finite synthetic dimension.
Hopping along this dimension is associated with complex phase factors, which are
analogous to the Aharonov-Bohm phase (more precisely, its counterpart in discretised
systems, the Peierls phase). The natural length scale along the real dimension is 2π/K,
and we can identify a magnetic unit cell of dimensions 2π/K (real) × 1 (synthetic),
around which the total phase acquired is 2π. The link to the Hall Hamiltonian (in
the Landau gauge) can be made more evident after a unitary transformation given by
U = exp (iKxJz), giving

H =
(p− prec Jz)2

2M
− h̄Ω Jx .

The Jx operator plays the role of the kinetic energy in the synthetic dimension, as it
couples the position eigenstates m = ±1/2. We show the dispersion relation for different
values of the coupling Ω in fig. 5.3b. We see how free-particle parabolic dispersions
(Ω = 0) are coupled for finite Ω, giving an optimally ‘flat’ lower band at h̄Ω = Erec (here,
it is quartic to lowest order around p = 0), analogous to the lowest Landau level. The
average position in the synthetic dimension varies smoothly with p. The analogy with a

2 In this toy model, we avoid specifying the details such as the beams’ polarisations or the nature of the
excited state manifold.
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Hall system is rather overstated at this point; we will see that it is much more convincing
for our larger synthetic dimension of size 2J + 1 = 17, where we can identify an extended
and nearly dispersionless bulk, similar to a real Hall ribbon. Previous implementations of
synthetic dimensions, of size three [84, 85, 318], were able to observe chiral edge modes.

Before presenting our experimental results, we note that the Hamiltonian presented
above is part of the broader category of spin-orbit coupled systems, first implemented
for ultracold atoms in a series of pivotal works in the Spielman group [319, 320], and
developed further in refs. [321, 322]. Other than the synthetic dimension picture presented
above, artificial gauge fields can also arise from a spatial variation of the coupling Ω
(see ref. [323] for a review). We will revisit this approach for our system at the end of
the chapter. The domain of artificial magnetic fields is rapidly growing, with advances
in systems based on optical lattices [324–327], and synthetic dimensions encoded in
photonic systems [328] or in the time domain [329].

Partial text of article begins here

This from our article ref. [311]. Note that the entire article, along with the methods and
supplementary information sections referred to below, are included in appendix A.1.

5.3 implementing a synthetic hall ribbon

In this work, we engineer a topological system with ultracold bosonic 162Dy atoms
based on coherent light-induced couplings between the atom’s motion and the electronic
spin J = 8, with relevant dynamics along two dimensions – one spatial dimension and
a synthetic dimension encoded in the discrete set of 2J + 1 = 17 magnetic sublevels.
These couplings give rise to an artificial magnetic field, such that our system realises an
analogue of a quantum Hall ribbon. In the lowest band, we characterise the dispersionless
bulk modes, where motion is inhibited due to a flattened energy band, and edge states,
where the particles are free to move in one direction only. We also study elementary
excitations to higher bands, which take the form of cyclotron and skipping orbits. We
furthermore measure the Hall drift induced by an external force, and infer the local Hall
response of the band via the local Chern marker, which quantifies topological order in
real space [86]. Our experiments show that the synthetic dimension is large enough to
allow for a meaningful bulk with robust topological properties.

The atom dynamics is induced by two-photon optical transitions involving counter-
propagating laser beams along x (see fig. 5.4a), and coupling successive magnetic sub-
levels m [116, 320]. Here, the integer m (−J ≤ m ≤ J) quantifies the spin projection
along the direction z of an external magnetic field. The spin coupling amplitudes then
inherit the complex phase Kx of the interference between both lasers, where K = 4π/λ

and λ = 626.1 nm is the light wavelength (see fig. 5.4b). Given the Clebsch-Gordan
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Figure 5.4: Synthetic Hall system. (a) Laser configuration used to couple the magnetic sublevels m
of a 162Dy atom (with −J ≤ m ≤ J and J = 8, only a few m values represented). (b) Interpreting
the spin projection as a synthetic dimension, the system is mapped to a two-dimensional ribbon of
finite width. The photon recoil prec = h̄K imparted upon a spin transition leads to complex-valued
hopping amplitudes along m, equivalent to the Aharonov-Bohm phase of a charged particle
evolving in a magnetic field. The blue area represents a magnetic unit cell pierced by one flux
quantum ϕ0. (c) Dispersion relation describing the quantum level structure for h̄Ω = Erec, with
flattened energy bands reminiscent of Landau levels. (d) The lowest energy band is explored
by applying an external force. We probe the velocity and magnetic projection distributions by
imaging the atomic gas after an expansion under a magnetic field gradient. We find three types
of behaviour: free motion with negative (positive) velocity on the bottom edge m = −J (top edge
m = J) and zero average velocity in the bulk. Each panel corresponds to a single-shot image.

algebra of atom-light interactions for the dominant optical transition, the atom dynamics
is described by the Hamiltonian3

Ĥ =
1
2

Mv̂2 − h̄Ω
2

(
e−iKx̂ Ĵ+ + eiKx̂ Ĵ−

)
+ V( Ĵz) (5.5)

where M is the atom mass, v̂ is its velocity, Ĵz and Ĵ± are spin projection and ladder
operators. The coupling Ω is proportional to both laser electric fields, and the potential
V( Ĵz) = −h̄Ω Ĵ2

z /(2J + 3) stems from rank-2 tensor light shifts.
A light-induced spin transition m → m + 1 is accompanied by a momentum kick

−prec ≡ −h̄K along x, such that the canonical momentum p̂ = Mv̂ + prec Ĵz is a conserved
quantity. After a unitary transformation defined by the operator Û = exp(iKx̂ Ĵz), the
Hamiltonian (5.5) can be rewritten, for a given momentum p, as

Ĥp =
(p− prec Ĵz)2

2M
− h̄Ω Ĵx + V( Ĵz) . (5.6)

3 Within this excerpt, we use hats to denote quantum operators.
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Figure 5.5: Ground band characterisation. (a) Spin projection distribution Πm as a function of
the momentum p, with the mean spin projection ⟨ Ĵz⟩ (grey dots) and the theoretical prediction
(p−M∂pE0)/prec (red line). (b) Velocity distribution, together with the mean velocity ⟨v̂⟩ (gray
dots) and the expected value, given by the derivative of the band dispersion ∂pE0 (red line). (c)
Local density of states obtained by integrating the measured distributions in (v, m) space over all
momenta. All error bars in this section (here, smaller than data markers) are the 1-σ standard
deviation of typically 5 measurement repetitions.

We can make an analogy between this Hamiltonian and the ideal Landau one, given by

ĤLandau =
( p̂x − eBŷ)2

2M
+

p̂2
y

2M
, (5.7)

which describes the dynamics of an electron evolving in 2D under a perpendicular
magnetic field B. The analogy between both systems can be made upon the identifications
Ĵz ↔ ŷ and prec ↔ eB. The term Ĵx in equation (5.6) plays the role of the kinetic energy
along the synthetic dimension, since it couples neighbouring m levels with real positive
coefficients, similarly to the discrete form of the Laplacian operator ∝ p̂2

y in equation
(5.7) (see Supplementary Information). The range of magnetic projections being limited,
our system maps onto a Hall system in a ribbon geometry bounded by the edge states
m = ±J. The relevance of the analogy is confirmed by the structure of energy bands
En(p) expected for the Hamiltonian (5.6) describing our system, shown in fig. 5.4c. The
energy dispersion of the first few bands is strongly reduced for |p| ≲ Jprec, reminiscent of
dispersionless Landau levels. A parabolic dispersion is recovered for |p| ≳ Jprec, similar
to the ballistic edge modes of a quantum Hall ribbon [79]. The flatness of the lowest
energy band, for h̄Ω ≈ Erec, results from the compensation of two dispersive effects,
namely the variation of Ĵx matrix elements and the extra term, V( Ĵz) (see appendix A.1).

5.4 ground band properties

We first characterise the ground band using quantum states of arbitrary values of
momentum p. We begin with an atomic gas spin-polarized in m = −J, and with a
negative mean velocity ⟨v̂⟩ = −6.5(1)vrec (with vrec ≡ prec/M), such that it corresponds
to the ground state of (5.6) with p = −14.5(1)prec. The gas temperature T = 0.55(6)µK
is such that the thermal velocity broadening is smaller than the recoil velocity vrec.
We then slowly increase the light intensity up to a coupling h̄Ω = 1.02(6)Erec, where
Erec ≡ p2

rec/(2M) is the natural energy scale in our system. Subsequently, we apply a
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weak force Fx along x, such that the state adiabatically evolves in the ground energy band
with ṗ = Fx, until the desired momentum is reached (see appendix A.1). We measure the
distribution of velocity v and spin projection m by imaging the atomic gas after a free
flight in the presence of a magnetic field gradient.

The main features of Landau level physics are visible in the raw images shown in
fig. 5.4d. Depending on the momentum p, the system exhibits three types of behaviours.
(i) When spin-polarized in m = −J, the atoms move with a negative mean velocity ⟨v̂⟩,
consistent with a left-moving edge mode. (ii) When the velocity approaches zero under
the action of the force Fx, the system experiences a series of resonant transitions to higher
m sublevels – in other words a transverse Hall drift along the synthetic dimension. In
this regime the atom’s motion is inhibited along x, as expected for a quasi non-dispersive
band. (iii) Once the edge m = J is reached, the velocity ⟨v̂⟩ rises again, corresponding to
a right-moving edge mode. Overall, while exploring the entire ground band under the
action of a force along x, the atoms are pumped from one edge to the other along the
synthetic dimension.

To distinguish between bulk and edge modes, we plot in fig. 5.5a the spin projection
probabilities Πm as a function of momentum p. We find that the edge probabilities
Πm=±J exceed 1/2 for |p| > 8.0(1)prec, defining the edge mode sectors – with the bulk
modes in between. We study the system dynamics via its velocity distribution and mean
velocity ⟨v̂⟩, shown in fig. 5.5b. We observe that the velocity of bulk modes remains close
to zero, which shows via the Hellmann-Feynman relation ⟨v̂⟩ = ∂E0/∂p that the ground
band is almost flat.

The measured residual mean velocities allow us to infer a dispersion ∆Epk−pk
0 =

1.2(5) Erec in the bulk mode region – nearly 2% of the free-particle dispersion expected
over the same range of momenta. On the contrary, edge modes are characterized by a
velocity ⟨v̂⟩ ≃ (p− p0)/M, corresponding to ballistic motion – albeit with the restriction
⟨v̂⟩ < 0 for edge modes close to m = −J, and ⟨v̂⟩ > 0 at the opposite edge. We also
characterise correlations between velocity v and spin projection m over the full band, via
the local density of states (LDOS) in (v, m) space, integrated over p. We stress here that
the LDOS only involves gauge-independent quantities, and could thus be generalised to
more complex geometries lacking translational invariance. As shown in fig. 5.5c, it also
reveals characteristic quantum Hall behaviour, namely inhibited dynamics in the bulk
and chiral motion on the edges.

5.5 excitations : cyclotron and skipping orbits

The ideal Landau level structure of a charged particle evolving in two dimensions in
a transverse magnetic field is characterised by a harmonic energy spacing h̄ωc, set by
the cyclotron frequency ωc = eB/M. We test this behaviour in our system by studying
elementary excitations above the ground band, via the trajectories of the centre of mass
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Figure 5.6: Cyclotron and skipping orbits. Trajectories in (x, m) space following a velocity kick
vkick ≃ vrec, starting at ⟨x̂⟩ = 0, and for different initial momentum states (blue dots). The colour
encodes the time evolution. Inset: Frequencies extracted from the velocity dynamics (blue dots),
and compared with the expected cyclotron gap for h̄Ω = Erec (blue line). The error bars are the
1-σ statistical uncertainty calculated from a bootstrap sampling analysis performed on more than
a hundred pictures.

following a velocity kick vkick ≃ vrec. To access the real-space position of the atoms,
we numerically integrate their centre-of-mass velocity evolution (see appendix A.1). As
shown in fig. 5.6 (blue dots), we measure almost-closed trajectories in the bulk, consistent
with the periodic cyclotron orbits expected for an infinite Hall system. We checked that
this behaviour remains valid for larger excitation strengths, until one couples to highly
dispersive excited bands (for velocity kicks vkick ≳ 2vrec, see appendix A.1). Close to
the edges, the atoms experience an additional drift and their trajectories are similar to
classical skipping orbits bouncing on a hard wall. In particular, the drift orientation only
depends on the considered edge, irrespective of the kick direction. We report in the inset
of fig. 5.6 the frequencies of velocity oscillations, which agree well with the expected
cyclotron gap to the first excited band. We find that the gap is almost uniform within the
bulk mode sector, with a residual variation in the range ωc = 3.0(1)− 3.8(1)Erec/h̄.

5.6 transverse hall response

We now investigate the key feature of Landau levels, namely their quantised Hall
response, which is intrinsically related to their topological nature. In a ribbon geometry,
the Hall response of a particle corresponds to the transverse velocity acquired upon
applying a potential difference across the edges (see fig. 5.7a). In our system, such a
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Figure 5.7: Hall response a. We determine the Hall response from the measurement of local
currents in the real dimension, that result from the application, in synthetic space, of a potential
difference −2JFm between the edges. b. Hall mobility µ(p) measured for states of momenta p, via
their increase of velocity upon a small force Fm along m. c. Local Chern marker as a function of
m, corresponding to the integrated mobility µ(p) weighted by the projection probability Πm(p).
The error bars are the 1-σ statistical uncertainty calculated from a bootstrap sampling analysis
over typically 100 pictures (b) and 1000 pictures (c).

potential corresponds to a Zeeman term −Fm Ĵz added to the Hamiltonian (5.6), which
can now be recast as

Ĥp − Fm Ĵz = Ĥp+Mv′ − v′p, with v′ = Fm/prec,

such that the force acts as a momentum shift Mv′ in the reference frame with velocity v′.
In the weak force limit, the perturbed state remains in the ground band, and its mean
velocity reads

⟨v̂⟩ = ⟨v̂⟩Fm=0 − µFm, where µ =
1

prec

∂

∂p
(p−M⟨v̂⟩)

is the Hall mobility. This expression shows that the Hall response to a weak force
can be related to the variation of the mean velocity within the ground band, that we
show in fig. 5.5b. In practice, the velocity derivative at momentum p is evaluated using
momentum states in the domain (p− prec, p+ prec), corresponding to an evaluation of the
Hall drift under a force −2 Erec/ℓ < Fm < 2 Erec/ℓ, where ℓ = 1 is the unit length along
the synthetic dimension. We present in fig. 5.7b the Hall mobility µ(p) deduced from this
procedure. For bulk modes, it remains close to the value µ = 1/prec, which corresponds
to the classical mobility µ = 1/(eB) in the equivalent Hall system. The mobility decreases
in the edge mode sector, as expected for topologically protected boundary states whose
ballistic motion is undisturbed by the magnetic field.

We use the measured drift of individual quantum states to infer the overall Hall
response of the ground band. As for any spatially limited sample, our system does not
exhibit a gap in the energy spectrum due to the edge mode dispersion. In particular,
high-energy edge modes of the ground band are expected to resonantly hybridise with
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excited bands upon disorder, such that defining the Hall response of the entire ground
band is not physically meaningful. We thus only consider the energy branch E < E∗,
where E∗ lies in the middle of the first gap at zero momentum (see appendix A.1). We
characterise the (inhomogeneous) Hall response of this branch via the local Chern marker

C(m) ≡ 2π Im ⟨m| [P̂x̂P̂, P̂ ĴzP̂] |m⟩ =
∫

E(p)<E∗
dp Πm(p)µ(p),

where P̂ projects on the chosen branch [86, 330]. This local geometrical marker quantifies
the adiabatic transverse response in position space, and matches the integer Chern
number C in the bulk of a large, defect-free system. Here, it is given by the integrated
mobility µ(p), weighted by the spin projection probability Πm(p) (see appendix A.1). As
shown in fig. 5.7c, we identify a plateau in the range −5 ≤ m ≤ 5. There, the average
value of the Chern marker, C = 0.98(5), is consistent with the integer value C = 1 – the
Chern number of an infinite Landau level. This measurement shows that our system
is large enough to reproduce a topological Hall response in its bulk. For positions
|m| ≥ 6, we measure a decrease of the Chern marker, that we attribute to non-negligible
correlations with the edges.

Partial text of article ends here

5.7 a cyclic synthetic dimension : the topological laughlin pump

We have recently extended our study of Hall systems by realising a cyclic synthetic di-
mension encoded in dysprosium’s electronic spin. The principle behind our experimental
scheme was explained in our proposal ref. [331] (see appendix A.2 for the full article)
and is illustrated in fig. 5.8a,b. In addition to the J+ coupling used to create the Hall
ribbon, we now include an additional frequency component in one of the Raman lasers
to create J2

− couplings between all pairs of levels m → m− 2. Together, these hopping
terms lead to the emergence of a triad of states |r⟩, forming a cyclic synthetic dimension;
together with the coordinate x, this creates a Hall system on a cylinder. Each state |r⟩
projects only on the levels m mod 3 = r. Hopping along the cylinder circumference i.e.
from |r⟩ to |r + 1⟩ is associated with a complex phase factor exp (i(ϕ− Kx)), where ϕ

is controlled using the relative phase of the Raman lasers, and provides a tunable axial
magnetic field B∥ through the cylinder (we also have the usual synthetic B-field in the
radial direction).

We realised a topological Laughlin pump with this setup, described in our article
ref. [332] (see appendix A.3 for the full article). This pump was conceived as a thought
experiment by R. B. Laughlin in 1982 [78], setting the stage for understanding the
quantisation of conductance in the integer quantum Hall effect observed two years
earlier [9]. He pointed out that varying the axial flux Φ∥ controls quantised motion along
the tube (see fig. 5.8c), later contextualised as a striking manifestation of the underlying
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Figure 5.8: Topological pumping in a synthetic Hall cylinder. (a,b) Engineering a cyclic synthetic
dimension of size three. (c,d) The experimental realisation of Laughlin’s charge pump thought-
experiment. See the text for details.

band topology. We realised this topological pump in our synthetic Hall cylinder by
adiabatically ramping Φ∥, observing the predicted centre-of-mass motion along the
cylinder axis, on average one magnetic length per inserted flux quantum, as shown
in fig. 5.8d.

We are currently working on the realisation of a four-dimensional Hall system,
exploiting r and m as independent synthetic dimensions, in addition to two spatial
dimensions. A detailed discussion of the projects mentioned in this section is beyond the
scope of this thesis. We now return to our two-dimensional Hall ribbon to discuss how
topology relates to the structure of the entanglement of many-body states.

5.8 the entanglement spectrum and topology

The identification of topological order in many-body systems is a challenging task. The
inherent robustness of topological invariants makes systems immune to local probes and
order parameters, which are used for phases emerging in conventional phase transitions.
Moreover, the presence of strong correlations, with the associated exponentially large
Hilbert space dimension, limits numerical methods. To tackle this problem, theoretical
approaches have focussed on using the information encoded in the correlations of many-
body ground states. The general idea is to cleverly construct quantities providing a
concrete link to the system’s physical properties. Beyond topology, these entanglement-
based techniques provide important insights into disorder and impurity effects [333].
Here, we focus on one technique: the entanglement spectrum, introduced by Li and
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Haldane [87] in 2008. We first introduce the topological entanglement entropy, which
is closer to more familiar notions of entanglement. We then generalise this to the
entanglement spectrum, following the treatment of ref. [334]. Next, we show how the
results presented so far in this chapter already contain signatures of the entanglement
spectrum at the single particle level. Finally, we discuss the possibility of directly probing
the entanglement spectrum in our synthetic Hall system, inspired by a recent and as yet
unrealised proposal [88].

5.8.1 Topological entanglement entropy

Consider a system in a many-body pure state |Ψ⟩, whose topological nature we wish to
probe. We apply a spatial bipartition A : B on the system, such that the reduced density
matrix for the region A is

ρA = TrB |Ψ⟩ ⟨Ψ| .

We can now wonder if the von Neumann entropy associated with this partition,

SA = −Tr (ρA log ρA) = −∑
i

λi log λi ,

can be used to probe topological properties. Note that {λi} are the eigenvalues of the
reduced density matrix ρA, and that we use the natural logarithm throughout this section.
If the correlation length is finite, i.e. correlations between A and B are localised in a
region around the cut separating them, we can argue that SA must be proportional to
the area of the cut. This is a d− 1 dimensional area, where d is the dimensionality of the
overall system. This statement is an example of an area law; such laws arise in diverse
physical settings [335] and can be rigorously formulated in both classical and quantum
contexts [336]. In fact, refs. [337, 338] showed that the deviation from this simple picture
is given by a correction term −γ, called the topological entanglement entropy:

SA ≃ cLd−1 − γ .

Here c is a non-universal constant, and L is the characteristic size of the region A, which
should be much larger than the correlation length. In two-dimensional systems, this
statement becomes exact in the limit of large L. Importantly, γ is a universal quantity
associated with the structure of entanglement within the ground state |Ψ⟩ [338]. For
example, in the context of the fractional quantum Hall effect, it equals log

√
3 for the

Laughlin state at one-third filling.
Despite its elegant formulation, the topological entanglement entropy has a number

of drawbacks. Since the above relation for SA is only valid in the limit of an infinite
system, it can be difficult to distinguish finite-size effects from the universal term [339,
340]. Moreover, in some cases, γ does not uniquely determine the topological order of
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number in the subsystem A. This notion of labelling will be carried forward to more complicated
systems. For the product states at θ = 0 and θ = π/2, there is only a single finite value in the
entanglement spectrum, and it equals zero.

the state [334]. The entanglement spectrum is a generalisation which overcomes these
difficulties: rather than condensing the information encoded in the reduced density
matrix to a single quantity SA, we will now exploit the structure of ρA’s spectrum as a
whole.

5.8.2 Entanglement spectrum

Li and Haldane initially proposed the entanglement spectrum in 2008 in the context of
the fractional quantum Hall effect [87]. Since then, it has been applied to spin systems,
topological insulators, Bose-Hubbard models, and complex paired superfluids (see ref.
[334] and references therein).

We begin by writing our many-body state as a Schmidt decomposition over the
bipartition A : B ,

|Ψ⟩ =
min (dimA,dimB)

∑
i

exp (−ξi/2) |ψA,i⟩ ⊗ |ψB,i⟩ . (5.8)

As introduced in chapter 4, |ψA/B,i⟩ form orthonormal bases for the subsystems and
{ξi} is a set of real numbers. The maximal number of terms in this sum is given by the
lesser of the Hilbert space dimensions of A and B. Now, the reduced density matrix has
a simple form

ρA = ∑
i

exp (−ξi) |ψA,i⟩ ⟨ψA,i| . (5.9)
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Both reduced states ρA, ρB have the same spectrum {exp (−ξi)} (if their dimensions are
different, the ‘missing’ eigenvalues for the larger system are zero). The entanglement
spectrum is simply the set of finite values {ξi} i.e.

entanglement spectrum ≡ {ξi} .

Following Li and Haldane, we now consider a local operator O, such that it can be
decomposed on the subsystems as O = OA + OB, where OA acts only on A. Then,
we can simultaneously diagonalise ρA and OA, allowing us to label each value in the
entanglement spectrum using the eigenvalues of OA. We show a toy example for two-
qubit states in fig. 5.9. In this case, we can take OA = σz,A , giving two values in the
spectrum, indexed by ⟨OA⟩ = ±1/2. Up to this point, the entanglement spectrum seems
like an arbitrary construction – in the following, we will explain its utility by applying it
to topological systems.

5.8.3 Link to topology in an integer quantum Hall state

In this section, we will consider a Hall system in two real spatial dimensions in a planar
geometry. Our subsystem of interest A is the half plane y > 0. We aim to write the
many-body state for a fermionic integer Hall state in the lowest Landau level as a Schmidt
decomposition with respect to this bipartition, such that we can read off the entanglement
spectrum using eq. (5.8). We will then highlight the link to topological properties by
comparing the entanglement spectrum to the many-body spectrum of edge excitations.

Since our cut is along the line y = 0, it is natural to work in the Landau gauge,

H =
(px − eBy)2

2M
+

p2
y

2M
,

where the single-particle wavefunctions are translationally invariant along x, and indexed
by their momentum component px:

ψpx(x, y) = eipxx/h̄ϕ0(y− px/eB), (5.10)

ϕ0(Y) =
1

π1/4
√
ℓ

e−Y2/2ℓ2
. (5.11)

We show a scheme of the system in fig. 5.10a. The spatial extent of the wavefunction
along y is set by the magnetic length ℓ =

√
h̄/eB. We associate the creation of a particle

in this wavefunction with a fermionic operator c†
px

. Then, the many-body ground state at
unit filling ν = 1 is a Slater determinant over all allowed momenta px in our system,

|Ψ⟩ =
(

∏
px

c†
px

)
|0⟩ . (5.12)
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Figure 5.10: Entanglement spectrum of a Hall system. (a) A single-particle orbital ψpx (x, y) in the
Landau gauge – along x it is a plane wave with momentum px, and along y it has a Gaussian
spread of width ℓ centred at y0 = px/eB. We partition the system with a cut along y = 0;
px remains a good quantum number in subsystems A, B. (b) The norm of the single-particle
orbital over the subsystems A, B are called α2 and β2 respectively. These quantities are useful
when performing the Schmidt decomposition of a many body state ρ. (c) The set of non-trivial
eigenvalues of the reduced density matrix ρA is {e−ξ}, where {ξ} is called the entanglement
spectrum. (d) Example of a calculated entanglement spectrum for an integer quantum Hall state
with N = 12 spin-polarised fermions completely filling the lowest Landau level (ν = 1). The
partition is performed at y = 0. We show the sector of the entanglement spectrum with fixed
particle numbers NA = NB = 6 in the subsystems. We label the values ξ by the total momentum
Px,A = ∑A px of the particles in subsystem A, which is a good quantum number. Inset: Zoom
on the lowest part of the entanglement spectrum, with a linear guide to the eye (dotted line).
Crucially, the counting of the degeneracies (red text) of the smallest ξ’s (1, 1, 2, 3, 5, 7 . . .) is exactly
that of a chiral U(1) boson, i.e. an edge mode at the partition, providing a signature of the
system’s topological nature. Note that the degeneracies are only exact in the thermodynamic
limit.

Note that we consider the spins to be polarised in a single state, and the proper anti-
symmetrisation and normalisation is implicit here, and in the equations below. This
ground state is equally valid in the interacting case.

The momentum px remains a good label after the partition at y = 0, and indeed the
total momentum Px = ∑ px is a good quantum number. Hence, we can make the form of
the Schmidt decomposition clear by splitting each fermionic operator into two parts cA

and cB, each of which create a particle in the upper and lower half plane respectively:

c†
px

= αpx c†
px ,A + βpx c†

px ,B . (5.13)



5.8 the entanglement spectrum and topology 145

From the anti-commutation relations for the c, cA, and cB operators, we can deduce that
the coefficients satisfy α2

px
+ β2

px
= 1. In fact, the respective single-particle wavefunctions

must decompose onto the same subsystems in the same way,

ψpx = αpx ψpx ,A + βpx ψpx ,B ,

where ψpx ,A is a normalised wavefunction localised to the upper half plane, and it is
simply given by the product with a step function Θ i.e

αpx ψpx ,A = Θ(y)ψpx .

Taking the squared norm, we get

α2
px

=
∫

A
dx dy |ψpx |2 =

1 + erf (pxℓ/h̄)
2

, and β2
px

=
1− erf (pxℓ/h̄)

2
. (5.14)

These real overlap coefficients are plotted in fig. 5.10b, and they take the form of smooth
steps (of momentum width ∼ h̄/ℓ) at px = 0, corresponding to the location of the orbital
at the partition y = 0.

We are now ready to write the Schmidt decomposition of the integer Hall state,
by substituting the split form of the fermionic creation operator 5.13 into the many-
body ground state 5.12. We consider a lowest Landau level comprised of N orbitals,
corresponding to a set of allowed x-momenta {pi} , i = 1, 2, . . . , N.

|Ψ⟩ =
(

N

∏
i=1

(αpi c†
pi ,A + βpi c†

pi ,B)

)
(|0⟩A ⊗ |0⟩B) (5.15)

Upon expanding the product, we see that the state is a sum of terms, each corresponding
to the creation of 0 ≤ NA ≤ N particles in subsystem A, with the rest in B. Moreover,
each term corresponds to the choice of a subset {pj}A of NA orbitals associated with
subsystem A. Analogous quantities can be defined for B. Hence the state can be written
as a sum over all such possible choices of subsets.

|Ψ⟩ = ∑
{pj}A


 ∏
{pj}A

αpj ∏
{pk}B

βpk |{pj}A⟩ ⊗ |{pk}B⟩

 (5.16)

Note that we have omitted factors of −1 from the ordering of c† operators, which drop
out anyways in the calculations below. By writing the state as a Schmidt decomposition,
we have already done the required work for evaluating the entanglement spectrum. We
can now just compare the prefactors in the above expression to eq. (5.8) to get

ξ{pj}A
= log


 ∏
{pj}A

α−2
pj ∏
{pk}B

β−2
pk


 , (5.17)
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where each choice of subset {pj}A automatically specifies the complementary subset
{pk}B, and thus gives us a value in the entanglement spectrum.

We can now apply a key insight of Li and Haldane, and focus on a given sector
of the entanglement spectrum. To be concrete, in fig. 5.10d we show an evaluated
spectrum for N = 12, NA = 6, where we label the levels with the total momentum of
orbitals filled in subsystem A ; this quantity Px,A is simply a sum over the set {pj}A.
For this calculation, we chose single-particle states evenly spaced between ±3h̄/ℓ.4 The
exact values in the spectrum depend on the discrete orbitals chosen, the number of
particles, and the geometry of the cut (via the overlaps α, β). The key feature linked to
topology is the structure of the low-lying levels, shown in the inset of fig. 5.10d. The
characteristics emerging in the thermodynamic limit are: a linear dispersion in Px,A, and
the distinctive counting statistics of the degeneracies (1, 1, 2, 3, 5, 7 . . .). The precursors of
these features are visible even for the modest system size considered: a rough overall
linearity, and a bunching of levels for a given total momentum. Formally, these features
are of a conformal field theory of a U(1) chiral bosonic mode, and they are exactly those
found in the spectrum of excitations at the edge of an integer Hall system.5 For the
entanglement spectrum, they arise from an ‘artificial edge’ at y = 0 generated by our
partition. This is the crux of the Li-Haldane conjecture: the entanglement spectrum of a
gapped, bulk ground state describes the edge excitations. This can be seen as a bulk-edge
correspondence for the entanglement spectrum.

Entanglement spectrum from single-particle psuedo-energies

We now provide an intuitive argument for the applicability of the Li-Haldane conjecture
to the integer quantum Hall state. The simple Slater determinant form of the ground
state considered here lends itself to an expression of the entanglement spectrum in terms
of the sum of single-particle pseudo-energies [343, 344]. Consider the expression for the
entanglement spectrum in terms of the overlap coefficients, given in eq. (5.17). Bringing
a factor with all the β’s outside the logarithm, we can write it in the form

ξ{npx} = ξ0 + ∑
px

npx ϵ(px) . (5.18)

4 The chosen momentum spacing in fact corresponds to a planar system with extent along x of ∼ 10ℓ, with a
confining potential along y restricting the maximum allowed px. The situation we actually wish to consider,
where a discrete finite set of momenta are allowed and the edges do not play a role, is better suited for a
closed geometry such as a sphere. However, we treat the planar case here to make the connection with our
experimental system more direct. The main physical insights gained are the same, and are valid in the bulk
of a large finite system.

5 The link to the properties of edge mode is explained further with fig. 5.11. For a more rigorous explanation,
see ref. [341], appendix A.3. Similar results can also be obtained for the ν = 1/3 Laughlin state, see ref. [342].
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particle pseudo-energies ϵ(px). We continue with the example of fig. 5.10: an integer quantum
Hall state with N = 12 spin-polarised fermions completely filling the lowest Landau level. We
consider the block of the entanglement spectrum with particle number NA = 6 in the subsystem
A (y > 0). Top left: The 12 orbitals considered are uniformly spaced in x-momentum around
px = 0, with quasi-uniform spacing δ of the respective pseudo-energies ϵ(px). Note that ϵ(px) is
calculated from the overlap α2 of each orbital with the subsystem A (see text or fig. 5.10). The
colouring of the circles gives an example of a filling configuration {npx}, which we can easily sum
to give an entanglement energy ξ (Top right formula). Right: The lowest lying configurations in the
entanglement spectrum. As in the direct calculation in fig. 5.10, the counting of the degeneracies
reveals an edge mode at the partition cut. Lower left: Analogy to the many-body edge excitation
spectrum of an integer quantum Hall state (sharp edge at y = 0). The Fermi level intersects the the
dispersion relation E(px) in the edge region, such that lowest chiral edge excitation energies have
a linear spectrum, with the same characteristic counting of degeneracies (1, 1, 2, 3, 5, 7, 11, . . .).

Here, the set of npx = 0 or 1 is a configuration specifying which orbitals are occupied in
subsystem A, with the constraint ∑ npx = NA. The offset term is

ξ0 = −∑
px

log β2
px

,

and more importantly, the single-particle pseudo-energy spectrum is given by

ϵ(px) = log

(
β2

px

α2
px

)
. (5.19)

The computation of the entanglement spectrum from this point of view is illustrated
in fig. 5.11. The function ϵ(px) is, to first order, linear at px = 0, such that we have a
quasi-uniform spacing of the discrete allowed pseudo-energies (becoming exactly linear
in the thermodynamic limit). We can then tabulate the possible filling configurations
{npx} of subsystem A, and easily compute the corresponding levels in the entanglement
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spectrum using eq. (5.19). It is visually clear why the lowest two energies have a single
corresponding filling, while the next level is doubly degenerate, and so on. We recover
both the roughly linear dispersion and the counting of degeneracies we already computed
more explicitly in fig. 5.10.

We also show the direct analogy to the many-body edge excitation spectrum in
fig. 5.11. There, we consider an integer Hall state in a large but finite system, with the
Fermi level lying in between the lowest pair of Landau levels. Then, the dispersion
relation at the edge plays a role analogous to ϵ(px), such that we would recover the same
low-energy structure for the spectrum of the chiral edge excitations.

Applications of the entanglement spectrum

The single-particle spectrum discussed above provides an intuitive justification for the
Li-Haldane conjecture for effectively non-interacting ground states, and we will use it in
the next section. Furthermore, the partition we chose conserved translational symmetry,
allowing for an analytic form of the entanglement spectrum. However, we stress that
the entanglement spectrum is a valid probe of topological properties even in highly
correlated systems, and it has been extensively investigated for states associated with
the fractional quantum Hall effect, such as the Laughlin and Moore-Read states. Indeed,
the entanglement spectrum even remains a useful probe of topology in the presence of
disorder [345], or in more exotic systems such as fractional Chern insulators [346, 347].
More generally, the partition does not need to be spatial – the spectrum calculated with
partitions in momentum space, or with respect to the orbitals themselves can provide
complementary information on the ground state [87, 342, 348, 349]. The genus of the
surface where the Hall system resides can itself play a role, with the entanglement
spectrum on a torus revealing the two spatially separated edge modes associated with a
partition [350]. There is an extensive literature which aims to prove or numerically verify
the Li-Haldane conjecture in different settings [343, 349, 351–358]. Finally, the structure of
the non-universal part of the entanglement spectrum [359] (where finite-size effects play
a role) or the spectrum in the presence of pinned excitations [360] also have interesting
properties. To summarise, the entanglement spectrum is a powerful new tool to access
information encoded in many-body states, motivating experiments to probe it directly.
We now discuss the first steps in this direction with our synthetic Hall system.

5.8.4 Link to our synthetic Hall system

We now perform a post hoc reinterpretation of the measured properties of the ground
band of our system to ‘create a partition’, thereby revealing a link to the entanglement
spectrum. Continuing the analogy with the real Hall system, where we chose a cut at
y = 0, we partition our discrete synthetic dimension at m∗ = −0.5, such that the levels
m = 0, 1, . . . , J form the subsystem of interest A.
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Figure 5.12: Partition of the synthetic Hall system with a cut along the line m∗ = −0.5. (a) Single-
particle entanglement psuedo-energies ϵ(p) associated with the partition. These are deduced from
the projection probabilities (α2

p, β2
p) of single-particle states ψp on the two subsystems generated by

the partition (see text). (b,c) Ground band properties of the state in the upper-half plane subsystem
A. We show the spin projection probabilities (b) and the average velocities (c), indicating the
appearance of an effective edge around the cut region at p = −0.5 prec. In all plots, we show data
for a limited range of quasi-momenta over which the required projection probabilities to perform
the post hoc partition are within our detection precision (see text).

We first clarify how the previously presented ground band properties (section 5.4
and fig. 5.5) were measured. In single experimental runs, we prepare a single-particle
state ψp in the ground band with quasi-momentum p along the x-direction6 (we drop the
subscript x). Then, with our usual method of combining a Stern-Gerlach gradient with
far-field time-of-flight expansion, we measure a distribution np(m, v). This is the squared
amplitude |ψp(m, v)|2, over the continuous velocity v along x, and the synthetic dimension
position over 2J + 1 discrete m states. Let us consider a normalised distribution.

J

∑
m=−J

∫
dv np(m, v) = 1 .

The quantities we plotted in fig. 5.5 are

m distribution: Πp(m) =
∫

dv np(m, v)

v distribution: Vp(v) =
J

∑
m=−J

np(m, v)

local density of states: LDOS(m, v) =
∫

dp np(m, v) ,

along with the calculated (p-dependent) mean values

⟨Jz⟩ =
J

∑
m=−J

Πp(m)m and ⟨v⟩ =
∫

dv Vp(v) v

6 There is in fact a small finite spread of quasi-momenta in a single shot because of thermal broadening, as
mentioned in section 5.4. We can ignore in the discussion here for simplicity.
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Figure 5.13: Appearance of edge-like dynamics in the partition region. Left: A cyclotron orbit in
the bulk of the full system. This is similar to the closed orbits plotted in fig. 5.6, however here
we directly show the evolution of the average magnetisation and velocity. The measured drift
velocity is consistent with zero vdrift = −0.01(2) vrec. Right: The same measurements, after the
application of a partition at m∗ = −0.5. This leads to skipping of the average magnetisation at the
partition, along with the appearance of a negative average drift velocity vA

drift = −0.49(2) vrec.

We will now reinterpret these quantities in the upper half A of our Hall ribbon. Firstly,
recall the convenient role played by the overlap coefficients αp, βp, defined in eq. (5.14).
Since we have single-site resolution in m, these coefficients are easy to evaluate from the
spin projection probabilities:

α2
p =

J

∑
m=0

Πm , and β2
p =

−1

∑
m=−J

Πm = 1− α2
p (5.20)

This gives access to the single-particle entanglement pseudo-energies ϵ(p) = log
(

β2
p/α2

p

)
,

shown in fig. 5.12a. Since our absolute detection precision for the probabilities Πm is at
the per cent level, relative uncertainties in α (resp. β) increase sharply when the state ψp is
largely localised to subsystem B (resp. A). Therefore, using this post hoc partitioning, we
can only reliably measure ϵ(p) in a finite zone centred at p = 0, as reflected in fig. 5.12a.
Since this zone is in the bulk of our system, the psuedo-energies are consistent with those
of a real, infinite Hall system.

The spin and velocity distributions can be projected onto the subsystem A,

ΠA
p (m) =

Πp(m)

α2
p

, for 0 ≤ m ≤ J (5.21)

and VA
p (v) =

∑J
m=0 np(m, v)∫

dv ∑J
m=0 np(m, v)

(5.22)
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following which the averaged quantities ⟨Jz⟩A and ⟨v⟩A of the cut state can be calculated
similarly as for the full system. In fig. 5.12b,c, we focus on the spin distribution ΠA

p (m)

and the average velocity ⟨v⟩A, which reveal the behaviour of an effective edge appearing
at the partition. At this edge, the spin states saturates in m = 0, as for the real boundary
at m = −8 in the full system (cf. fig. 5.5a). Moreover, the finite and negative average
velocities at p < 0 correspond to the chiral edge mode (cf. fig. 5.5b). This edge behaviour
is also apparent in fig. 5.13, which shows the effect of taking a closed cyclotron orbit
centred near the cut m∗ = −0.5 in the full system, and projecting it onto subsystem A. A
skipping behaviour at m = 0 is apparent in the evolution of the average magnetisation,
along with the appearance of a negative average drift velocity vA

drift = −0.49(2) vrec.

5.8.5 Towards direct realisation of the entanglement Hamiltonian

Given the ground band properties associated with the upper half of our Hall system
following our applied ‘partition’, it is interesting to look for a Hamiltonian where such
properties would appear naturally. This is in fact called the entanglement Hamiltonian.

Let us take a step back and reconsider the general many-body Hamiltonian H with
a ground state ρ. As before, we consider a spatial biparition A : B. The entanglement
Hamiltonian H̃ is associated to the reduced state ρA, and it is defined by the relation

ρA = exp
(
−H̃

)
= ∑

i
exp (−ξi) |ψA,i⟩ ⟨ψA,i| . (5.23)

Recall that the states |ψA,i⟩ are an orthonormal basis in which the Schmidt decomposition
of the overall state ρ is expressed (see eq. (5.8)). Hence, the eigenvalues of the entan-
glement Hamiltonian form the entanglement spectrum. This is the key motivation to
directly realise H̃ in experiments. Compared to the tomographic reconstruction of ρA,
which requires a number of measurements exponentially large in the system size, an
implementation of the entanglement Hamiltonian would reduce this problem to one of
spectroscopy of many-body excitations.

In 2018, Dalmonte et al. [88] addressed a series of challenges regarding the imple-
mentation of entanglement Hamiltonians as follows: firstly, H̃ is unknown for a general
system, and it is not even clear whether it can be represented in a closed, physically
realisable form. If this was the case, the story would stop here, and the entanglement
Hamiltonian would remain a useful theoretical tool. In fact, a result from axiomatic field
theory, called the Bisognano-Wichmann (BW) theorem [361, 362], provides a way out.
Roughly speaking, it states that the entanglement Hamiltonian in an infinite, continuous,
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Lorentz invariant system, for a spatial partition along y = 0 takes the form of a local,
linear spatial deformation of the original Hamiltonian,7

H̃ = yH + const. (5.24)

The authors then showed that such an ansatz for the entanglement Hamiltonian of
discrete, moderately sized systems gives very accurate entanglement spectra for some
important classes of models. Moreover, they identified that modern quantum simulators
based on trapped ions arrays, Rydberg dressings, or laser-assisted tunnelling in optical lat-
tices are well suited for the implementation of the required position-dependent couplings.
This work has since led to many interesting theoretical developments and proposals,
including methods to efficiently reconstruct the entanglement Hamiltonian [363], or
to estimate it variationally [364] (see ref. [365] for a review). We highlight ref. [341],
where these methods are discussed for topological systems; the effective edge state at the
partition, which we discussed in the previous section, also appears in this work.

Our synthetic Hall system is well suited to a direct implementation of the entan-
glement Hamiltonian in a BW-like form. Recall from eq. (5.5) that the Hamiltonian we
implemented takes the form

H =
(p− prec Jz)2

2M
− h̄Ω

(
Jx +

J2
z

2J + 3

)
(5.25)

For a cut at m∗ = −0.5 across the synthetic dimension, the BW theorem provides an
ansatz of the entanglement Hamiltonian for subsystem A,

H̃ = c1

(
1

Erec

{Jz −m⋆, H}
2

+ c2(Jz −m⋆)

)
.

Here the curly braces denote the anti-commutator, which accounts for the fact that
H does not commute with (Jz − m∗). The constant c2 represents an offset of original
Hamiltonian not expressed in eq. (5.25), whereas c1 ensures the correct overall scaling
of the entanglement spectrum, maintaining Tr(ρA) = 1. Note that the entanglement
Hamiltonian is defined over the subsystem A only, such that H̃ more accurately refers
to the block of the above operator acting on the m ≥ 0 subspace. Expanding the above
ansatz gives terms of the form J3

z and pJ2
z , whose implementation is not obvious with the

spin-dependent light shifts and Raman coupling techniques discussed so far. Realising
higher order couplings using additional degrees of freedom like intensity modulation of
the light shift beams is a work in progress in our group. Once realised, these will provide
couplings that would be unphysical in a real Hall system, where p2 Jz maps to p2

xy.
Figure 5.14 summarises calculations checking the validity of the BW ansatz in our

system, in the picture of single-particle states of the ground band indexed by the quasi-
momentum p. We compare the ground band dispersion of the ansatz H̃ with the

7 The constant offset merely ensures consistency with eq. (5.23) by maintaining Tr (e−H̃) = 1.
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Figure 5.14: Numerical check of the validity of the ansatz for the entanglement Hamiltonian H̃
given by Bisognano-Wichmann (BW) theorem in the synthetic Hall system. Top left: Ground band
projection probabilities Πp(m) for the exact entanglement Hamiltonian H̃. This is obtained by
projecting the ground state of the Hall Hamiltonian into the upper half plane m ≥ 0 i.e. this is the
theory plot for the data in shown in fig. 5.12b. Top right: Ground band projection probabilities for
a BW ansatz entanglement Hamiltonian. Bottom right: The difference between the states depicted
in the top two panels is quantified by the infidelity, defined here as the squared Hellinger distance
between the spin projection probability distributions, d2

H(Πm, Π′m) = ∑m(
√

Πm −
√

Π′m)2. We
choose this measure as it would be an experimentally convenient figure of merit for a variational
optimisation of the entanglement Hamiltonian (see text). Note that the states we are comparing
here only have real coefficients. Bottom left: The ground band dispersion of the exact entanglement
Hamiltonian (solid blue curve), compared to the BW ansatz Hamiltonian (dashed red curve).
The exact results are simply the single-particle pseudo-energies ϵp for the full synthetic Hall
Hamiltonian.

pseudo-energies ϵp, finding reasonable agreement around the partition region, which
could be improved by adjusting couplings to account for effects from the finite and
discrete synthetic dimension. We also compare the eigenstates of the ansatz H̃ to theory,
again finding a good agreement, as quantified by the low infidelity in fig. 5.14. Hence, our
synthetic Hall system is a promising platform for the first experimental implementation
of the entanglement Hamiltonian in a topological system, providing a direct link to
the Li-Haldane conjecture. We conclude this section on the entanglement spectrum by
emphasising that the longer-term experimental perspective for this section, and indeed of
all the work presented in this chapter, is the extension of these techniques to many-body
topological states, which are discussed below.



5.9 towards many-body topological states 154

5.9 towards many-body topological states

So far, we have discussed the creation of light-induced artificial magnetic fields in a
system with a large synthetic dimension. We observed the characteristic topological
response of the system’s bulk as well as the chiral nature of the edge states. However,
our measurements were limited to single-particle states. The most exciting future
direction for this work would be the realisation of strongly correlated states in the
regime of the fractional quantum Hall effect; these exotic states famously host elementary
excitations with anyonic statistics [366]. In this regime, our techniques would give access
to complex correlation effects, such as flux attachment via cyclotron orbits [367], and
charge fractionalisation via adiabatic pumping [368] or centre-of-mass Hall response [369].
Our techniques could also be extended to fermionic isotopes of dysprosium, where the
bulk response of the Fermi sea at a given filling fraction could be probed. The fermions
also provide a larger bulk in the synthetic dimension i.e. F = 21/2 for 161Dy.

We now discuss an important preliminary step towards the fractional quantum
Hall regime, namely the realisation of many-body states at large filling factors. Here,
the ground state can be described by a mean-field approach, with the insertion of
magnetic flux causing Abrikosov vortices to form, as originally described for type-II
superconductors [370]. With ultracold atoms, such systems were first realised with
rotating Bose-Einstein condensates [371, 372], where the Sagnac phase associated with
particle motion in the rotating frame plays the role of the Aharonov-Bohm phase. In
an essential precursor to our work, artificial gauge fields were subsequently realised by
optical coupling of internal states in alkali species [319]. Compared to the above studies,
our system has a number of advantages when trying to approach the strongly-correlated
regime, where the atomic density n is comparable to the gauge field’s flux density nϕ.
We need the interaction and thermal energy scales to be smaller than the Landau level
splitting, to permit a description restricted to a single band. Our large cyclotron energy,
h̄ωc ≃ kB× 1.8− 2.3 µK, allows this to be realised for realistic temperatures. This creation
of flat, well-separated bands is enabled by the advantageous parameters of light-spin
interactions for lanthanides, allowing large couplings without significant heating8, as we
discussed in chapter 2. Our synthetic dimension provides an additional advantage: as
we will see below, the large manifold of internal states can boost the effective magnitude
of the light-induced gauge fields. However, when it comes to interactions, the synthetic
dimension has some peculiar features: since atoms interact when they are nearby in real
space, the effective ‘length scale’ of interactions in the synthetic dimension is infinite.
Although this can lead to an interesting phenomenology [375], we now discuss a setup
which circumvents this issue by associating a fixed spin state to each position in real
space.

8 The creation of gauge fields using complex-valued hopping amplitudes in optical lattices [326, 373, 374] is
also limited by heating effects.
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To conclude, we briefly describe a proposed experiment inspired by ref. [376] (where
a synthetic dimension of size two was considered). As shown in fig. 5.15a, two laterally
offset counter-propagating light beams, with opposite circular polarisations, pass near
a Bose-Einstein condensate of dysprosium, creating a spatially varying polarisation
field. We work near the transition at λ = 833 nm, with excited level angular momentum
J′ = J = 8. The ground state of the off-resonant spin-light coupling is a polarisation-
dependent dark state, introduced in chapter 2, varying smoothly in space between
m = ±8 depending on the relative intensities of the two beams (see fig. 5.15b). An atom
moving adiabatically, following this ground state, acquires a geometric Berry phase,
which manifests as an artificial gauge field, as originally pointed out in ref. [377] (see
ref. [115] for a review). The total flux in a region between the beams, and of length λ,
is Nϕ ∼ h× 2J [376], emphasising the advantage of the large synthetic dimension. We
show in fig. 5.15c a numerically computed mean-field ground state of such a system. It
shows a pattern of Abrikosov lattices, identified as points of vanishing density and non-
trivial phase winding in the spinor ground state. Beyond the content of this thesis, the
realisation of this experiment would require further developments on cancelling magnetic
field fluctuations, for detecting the spin and spatial state, and for understanding the
spin-dependent interactions – constituting a practical roadmap for the realisation of
many-body topological states.
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Figure 5.15: A scheme for creating a many-body topological state in the limit of large filling
fraction. (a) Two counter-propagating laser beams, far-detuned from the J′ = J = 8 transition at
833 nm are focussed with waist w0 near a dysprosium BEC. The beams are laterally separated
and carry opposing circular polarisations, creating a spatially varying polarisation field across
the BEC, as a function of the relative intensities of the Gaussian beams. (b) Spin projection
probabilities of the dark ground state of the atom-light coupling with respect to the 833 nm
transition, as a function of the coordinate y. The ground state is m = ±8 for pure σ±-polarised
light respectively. Here, we see the intermediate states between these limits. (c) The adiabatic
following of the ground state leads to an artificial gauge field along x (see text). Numerical
simulation of the mean-field ground state using imaginary time evolution of a two-dimensional
Gross-Pitaevskii equation, for a 2J + 1 component spinor wavefunction. We consider a BEC of 104

atoms in a spherically symmetric trap ωx,y,z = 2π × 0.7 kHz. The spin-dependent interactions for
dysprosium are not known; here, we consider all scattering lengths to be equal, with a = 110 a0.
Dipolar interactions are not considered, we do not expect them to significantly affect the observed
behaviour. The light-shift amplitude at the focus of each beam is V0 ≃ 105Erec, corresponding
to a detuning of 2.5 GHz and a power of 4 W. The repulsive scalar potential accompanying the
gauge field is compensated by an additional trapping potential along the y-axis. The overall
spatial form of the wavefunction is well described by a Thomas-Fermi profile with a radius of
RTF ≃ 1.5 µm; the chemical potential is µ ≃ 9 kHz. The spin state converges everywhere to the
local dark state, with squared fidelity greater than 99%. We observe vortices in the calculated
wavefunction: points of vanishing total density and a phase winding of 2π in all populated spin
components. The lower panels show a zoomed-in view of one such vortex. The extent of the
vortex is comparable to the expected healing length ξ = (8πn2D a/RTF)

−1/2 ≃ 90 nm.





A
A P P E N D I X : P U B L I C AT I O N S

This appendix contains articles published during this thesis which were not fully dis-
cussed in the main text.

a.1 probing chiral edge dynamics and bulk topology of a synthetic

hall system

The following pages contain the full text of the article [311], including the Methods and
Supplementary Materials. An excerpt from this article was presented in sections 5.3–5.6.
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Quantum Hall systems are characterized by quantization of the 
Hall conductance—a bulk property rooted in the topological 
structure of the underlying quantum states1. In condensed mat-
ter devices, material imperfections hinder a direct connection 
to simple topological models2,3. Artificial systems, such as pho-
tonic platforms4 or cold atomic gases5, open novel possibilities 
by enabling specific probes of topology6–13 or flexible manipu-
lation, for example using synthetic dimensions14–21. However, 
the relevance of topological properties requires the notion of 
a bulk, which was missing in previous works using synthetic 
dimensions of limited sizes. Here, we realize a quantum Hall 
system using ultracold dysprosium atoms in a two-dimensional 
geometry formed by one spatial dimension and one synthetic 
dimension encoded in the atomic spin J = 8. We demonstrate 
that the large number of magnetic sublevels leads to distinct 
bulk and edge behaviours. Furthermore, we measure the Hall 
drift and reconstruct the local Chern marker, an observable 
that has remained, so far, experimentally inaccessible22. In the 
centre of the synthetic dimension—a bulk of 11 states out of 
17—the Chern marker reaches 98(5)% of the quantized value 
expected for a topological system. Our findings pave the way 
towards the realization of topological many-body phases.

In two-dimensional (2D) electron gases, quantization of the Hall 
conductance results from the non-trivial topological structuring of 
the quantum states of an electron band. For an infinite system, this 
topological character is described by the Chern number C, a global 
invariant taking a non-zero integer value that is robust to relatively 
weak disorder1. In a real finite-sized system, the non-trivial topol-
ogy further leads to in-gap excitations delocalized over the edges, 
characterized by unidirectional motion exempt from backscatter-
ing3. Such protected edge modes, together with their generalization 
to topological insulators, topological superconductors or fractional 
quantum Hall states23,24, lie at the heart of possible applications in 
spintronics25 or quantum computing26.

In electronic quantum Hall systems, the topology manifests itself 
via the spectacular robustness of the Hall conductance quantiza-
tion to finite-size or disorder effects27. Nonetheless, such perturba-
tions typically lead to conducting stripes surrounding insulating 
domains of localized electrons, making the comparison with sim-
ple defect-free models challenging. In topological insulators or 
fractional quantum Hall systems, topological properties are more 
fragile, and can only be revealed in very clean samples23,24. Recent 
experiments with topological quantum systems in photonic or 
atomic platforms5,28 have created new possibilities, from the real-
ization of emblematic models of topological matter6,29,30 to the 
application of well-controlled edge and disorder potentials. In such 

systems, internal degrees of freedom can be used to simulate a syn-
thetic dimension of finite size with sharp-edge effects14–21. Encoding 
a synthetic dimension in the time domain can also give access to 
higher-dimensional physics31,32.

In this work, we engineer a topological system with ultracold 
bosonic 162Dy atoms based on coherent light-induced couplings 
between an atom’s motion and the electronic spin J = 8, with relevant 
dynamics along two dimensions—one spatial dimension and a syn-
thetic dimension encoded in the discrete set of 2J + 1 = 17 magnetic 
sublevels. These couplings give rise to an artificial magnetic field, 
such that our system realizes an analogue of a quantum Hall ribbon. 
In the lowest band, we characterize the dispersionless bulk modes, 
where motion is inhibited due to a flattened energy band, and edge 
states, where the particles are free to move in one direction only. 
We also study elementary excitations to higher bands, which take 
the form of cyclotron and skipping orbits. We furthermore measure 
the Hall drift induced by an external force, and infer the local Hall 
response of the band via the local Chern marker, which quantifies 
topological order in real space22. Our experiments show that the 
synthetic dimension is large enough to allow for a meaningful bulk 
with robust topological properties. Numerical simulations of inter-
acting bosons moreover show that our system can host quantum 
many-body systems with non-trivial topology, such as mean-field 
Abrikosov vortex lattices or fractional quantum Hall states.

The atom dynamics is induced by two-photon optical transitions 
involving counter-propagating laser beams along x (Fig. 1a), and 
coupling of successive magnetic sublevels m (refs. 33,34). Here, the inte-
ger m (−J ≤ m ≤ J) quantifies the spin projection along the direction 
z of an external magnetic field. The spin coupling amplitudes then 
inherit the complex phase Kx of the interference between both lasers, 
where K = 4π/λ and λ = 626.1 nm is the light wavelength (Fig. 1b).  
Given the Clebsch–Gordan algebra of atom–light interactions for 
the dominant optical transition, the atom dynamics is described by 
the Hamiltonian

Ĥ ¼ 1
2
Mv̂2 � ℏΩ

2
e�iKx̂ Ĵþ þ eiKx̂ Ĵ�
� �

þ VðĴ zÞ ð1Þ

where M is the atom mass, v̂ is its velocity and ̂Jz
I
 and ̂J ±

I
 are the spin 

projection and ladder operators. The coupling Ω is proportional to 

both laser electric fields, and the potential VðĴ zÞ ¼ �ℏΩĴ
2
z=ð2J þ 3Þ

I
 

stems from rank-2 tensor light shifts (see Methods and 
Supplementary Information).

A light-induced spin transition m → m + 1 is accompanied by 
a momentum kick −prec ≡ −ħK along x, such that the canonical 
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momentum p̂ ¼ Mv̂ þ prec Ĵ z
I

 is a conserved quantity. After a uni-
tary transformation defined by the operator Û ¼ expðiKx̂ĴzÞ

I
, the 

Hamiltonian (1) can be rewritten, for a given momentum p, as

Ĥp ¼
ðp� prec Ĵ zÞ

2

2M
� ℏΩĴ x þ V ð̂JzÞ ð2Þ

We can make an analogy between this Hamiltonian and the ideal 
Landau one, given by

ĤLandau ¼
ðp̂x � eBŷ2Þ

2M
þ

p̂2y
2M

ð3Þ

which describes the dynamics of an electron of charge –e evolv-
ing in the x–y plane under a perpendicular magnetic field B. The 
analogy between the two systems can be made upon the identifica-
tions Ĵ z $ ŷ

I
 and prec ↔ eB. The term Ĵ x

I
 in equation (2) plays the 

role of the kinetic energy along the synthetic dimension, because it 
couples neighbouring m levels with real positive coefficients, simi-
larly to the discrete form of the Laplacian operator / p̂2y

I
 in equa-

tion (3) (see Supplementary Information). The range of magnetic 
projections being limited, our system maps onto a Hall system in a 
ribbon geometry bounded by the edge states m = ±J. The relevance 
of the analogy is confirmed by the structure of energy bands En(p) 
expected for the Hamiltonian (2) describing our system, shown 
in Fig. 1c. The energy dispersion of the first few bands is strongly 
reduced for ∣p| ≲ Jprec, reminiscent of dispersionless Landau levels. A 
parabolic dispersion is recovered for ∣p∣ ≳ Jprec, similar to the ballis-
tic edge modes of a quantum Hall ribbon3. The flatness of the lowest 
energy band, for ħΩ ≈ Erec, results from the compensation of two 

dispersive effects, namely the variation of Ĵ x
I
 matrix elements and 

the extra term, VðĴ zÞ
I

 (see Supplementary Information).
We first characterize the ground band using quantum states 

of arbitrary values of momentum p. We begin with an atomic 
gas spin-polarized in m = −J, and with a negative mean velocity 
hv̂i ¼ �6:5ð1Þvrec
I

 (with vrec ≡ prec/M), such that it corresponds to the 
ground state of equation (2) with p = −14.5(1)prec. The gas tempera-
ture T = 0.55(6) μK is such that the thermal velocity broadening is 
smaller than the recoil velocity vrec. We then slowly increase the light 
intensity up to a coupling ħΩ = 1.02(6)Erec, where Erec  p2rec=ð2MÞ

I
 

is the natural energy scale in our system. Subsequently, we apply a 
weak force Fx along x, such that the state adiabatically evolves in the 
ground energy band with _p ¼ Fx

I
, until the desired momentum is 

reached (see Methods). We measure the distribution of velocity v 
and spin projection m by imaging the atomic gas after a free flight 
in the presence of a magnetic field gradient.

The main features of Landau level physics are visible in the raw 
images shown in Fig. 1d. Depending on the momentum p, the sys-
tem exhibits three types of behaviour. (1) When spin-polarized in 
m = −J, the atoms move with a negative mean velocity hv̂i

I
, consistent 

with a left-moving edge mode. (2) When the velocity approaches 
zero under the action of the force Fx, the system experiences a series 
of resonant transitions to higher m sublevels—in other words a 
transverse Hall drift along the synthetic dimension. In this regime 
the atom’s motion is inhibited along x, as expected for a quasi 
non-dispersive band. (3) Once the edge m = J is reached, the veloc-
ity hv̂i

I
 rises again, corresponding to a right-moving edge mode. 

Overall, while exploring the entire ground band under the action 
of a force along x, the atoms are pumped from one edge to the other 
along the synthetic dimension.
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panel corresponds to a single-shot image.
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To distinguish between bulk and edge modes, Fig. 2a shows the 
spin projection probabilities Πm as a function of momentum p. We 
find that the edge probabilities Πm = ±J exceed 1/2 for ∣p∣ > 8.0(1)prec, 
defining the edge mode sectors—with the bulk modes in between. 
We study the system dynamics via its velocity distribution and 
mean velocity hv̂i

I
, shown in Fig. 2b. We observe that the velocity of 

bulk modes remains close to zero, which shows via the Hellmann–
Feynman relation hv̂i ¼ ∂E0=∂p

I
 that the ground band is almost flat.

The measured residual mean velocities allow us to infer a dis-
persion ΔEpk�pk

0 ¼ 1:2ð5Þ Erec

I
 in the bulk mode region—nearly 

2% of the free-particle dispersion expected over the same range of 
momenta. By contrast, edge modes are characterized by a velocity 
hv̂i ’ ðp� p0Þ=M
I

, corresponding to ballistic motion, albeit with 
the restriction hv̂i<0

I
 for edge modes close to m = −J and hv̂i>0

I
 at 

the opposite edge. We also characterize correlations between veloc-
ity v and spin projection m over the full band, via the local density of 
states (LDOS) in (v, m) space, integrated over p. We stress here that 
the LDOS only involves gauge-independent quantities and could 
thus be generalized to more complex geometries lacking transla-
tional invariance. As shown in Fig. 2c, it also reveals characteristic 
quantum Hall behaviour, namely inhibited dynamics in the bulk 
and chiral motion on the edges.

The ideal Landau level structure of a charged particle evolving 
in two dimensions in a transverse magnetic field is characterized 
by a harmonic energy spacing ħωc, set by the cyclotron frequency 
ωc = eB/M. We test this behaviour in our system by studying ele-
mentary excitations above the ground band, via the trajectories of 
the centre of mass following a velocity kick vkick ≃ vrec. To access the 
real-space position of the atoms, we numerically integrate their 
centre-of-mass velocity evolution (see Methods). As shown in Fig. 3 
(blue dots), we measure almost closed trajectories in the bulk, con-
sistent with the periodic cyclotron orbits expected for an infinite 
Hall system. We checked that this behaviour remains valid for larger 
excitation strengths, until one couples to highly dispersive excited 
bands (for velocity kicks vkick ≳ 2vrec, see Methods). Close to the 
edges, the atoms experience an additional drift and their trajecto-
ries are similar to classical skipping orbits bouncing on a hard wall. 
In particular, the drift orientation only depends on the considered 
edge, irrespective of the kick direction. We report in the inset of  
Fig. 3 the frequencies of velocity oscillations, which agree well with 
the expected cyclotron gap to the first excited band. We find that the 
gap is almost uniform within the bulk mode sector, with a residual 
variation in the range ωc = 3.0(1)–3.8(1)Erec/ħ.

We now investigate the key feature of Landau levels, namely 
their quantized Hall response, which is intrinsically related to their 
topological nature. In a ribbon geometry, the Hall response of a 
particle corresponds to the transverse velocity acquired upon apply-
ing a potential difference across the edges (Fig. 4a). In our system, 

such a potential corresponds to a Zeeman term �FmĴz
I

 added to 
Hamiltonian (2), which can now be recast as

Ĥp � FmĴz ¼ ĤpþMv0 � v0p with v0 ¼ Fm=prec

such that the force acts as a momentum shift Mv0
I

 in the reference 
frame with velocity v0

I
. In the weak force limit, the perturbed state 

remains in the ground band, and its mean velocity reads

hv̂i ¼ hv̂iFm¼0 � μFm; where μ ¼ 1
prec

∂

∂p
ðp�Mhv̂iÞ

is the Hall mobility. This expression shows that the Hall response 
to a weak force can be related to the variation of the mean velocity 
within the ground band, which we show in Fig. 2b. In practice, the 
velocity derivative at momentum p is evaluated using momentum 
states in the domain (p − prec, p + prec), corresponding to an evalu-
ation of the Hall drift under a force −2Erec/ℓ < Fm < 2Erec/ℓ, where 
ℓ = 1 is the unit length along the synthetic dimension. We pres-
ent in Fig. 4b the Hall mobility μ(p) deduced from this procedure. 
For bulk modes, it remains close to the value μ = 1/prec, which cor-
responds to the classical mobility μ = 1/(eB) in the equivalent Hall 
system. The mobility decreases in the edge mode sector, as expected 
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for topologically protected boundary states whose ballistic motion 
is undisturbed by the magnetic field.

We use the measured drift of individual quantum states to infer 
the overall Hall response of the ground band. As for any spatially 
limited sample, our system does not exhibit a gap in the energy spec-
trum due to the edge mode dispersion. In particular, high-energy 
edge modes of the ground band are expected to resonantly hybrid-
ize with excited bands upon disorder, such that defining the Hall 
response of the entire ground band is not physically meaningful. 
We thus only consider the energy branch E < E*, where E* lies in 
the middle of the first gap at zero momentum (see Methods). We 
characterize the (inhomogeneous) Hall response of this branch via 
the local Chern marker

CðmÞ  2πImhmj½P̂x̂P̂; P̂Ĵ zP̂jmi ¼
Z

EðpÞ < E
dp ΠmðpÞμðpÞ

where P̂ projects on the chosen branch22,35. This local geometrical 
marker quantifies the adiabatic transverse response in position 
space and matches the integer Chern number C in the bulk of a large, 
defect-free system. Here, it is given by the integrated mobility μ(p), 
weighted by the spin projection probability Πm(p) (see Methods). 
As shown in Fig. 4c, we identify a plateau in the range −5 ≤ m ≤ 5. 
There, the average value of the Chern marker, C ¼ 0:98ð5Þ

I
, is 

consistent with the integer value C ¼ 1
I

, the Chern number of an 
infinite Landau level. This measurement shows that our system is 
large enough to reproduce a topological Hall response in its bulk. 
For positions ∣m∣ ≥ 6, we measure a decrease of the Chern marker, 
which we attribute to non-negligible correlations with the edges.

Such a topological bulk is a prerequisite for the realization of 
emblematic phases of 2D quantum Hall systems, as we now con-
firm via numerical simulations of interacting quantum many-body 
systems. In our system, collisions between atoms a priori occur 
when they are located at the same position x, irrespective of their 
spin projections m, m0

I
, leading to highly anisotropic interactions. 

Although this feature leads to an interesting phenomenology36, we 
propose to control the interaction range by spatially separating the 
different m states using a magnetic field gradient, suppressing both 
contact and dipole–dipole interactions for m≠m0

I
, as illustrated in 

Fig. 5a (see Methods and Supplementary Information). The system 

then becomes truly 2D and closely related to the seminal work of  
ref. 33, albeit with a discrete spatial dimension with sharp walls. In the 
following, we discuss the many-body phases expected for bosonic 
atoms with such short-range interactions, assuming, for simplicity, 
repulsive interactions of equal strength for each projection m.

We first consider the case of a large filling fraction ν ≡ Nat/Nϕ ≫ 1, 
where Nϕ is the number of magnetic flux quanta in the area occu-
pied by Nat atoms, as realized in previous experiments on rapidly 
rotating gases37,38. In this regime and at low temperature, the system 
forms a Bose–Einstein condensate that spontaneously breaks trans-
lational symmetry, leading to a triangular Abrikosov lattice of quan-
tum vortices (Fig. 5b). Owing to the hard-wall boundary along m, 
one expects phase transitions between vortex lattice configurations 
when tuning the coupling strength Ω and the chemical potential, 
similar to the phenomenology of type-II superconductors in con-
fined geometries39 (see Methods).

For lower filling fractions ν ≈ 1, one expects strongly correlated 
ground states analogous to fractional quantum Hall states40. We pres-
ent in Fig. 5c a numerical calculation of the many-body spectrum 
for Nat = 5 atoms with periodic boundary conditions along x, corre-
sponding to a cylinder geometry. We choose the circumference such 
that the number of orbitals Norb = 9 in the bulk region of the lowest 
band matches the number Norb = 2Nat − 1 required to construct the 
Laughlin wavefunction. For contact interactions parametrized by a 
Haldane pseudopotential of amplitude U = Erec, we numerically find 
a ground state separated by an energy gap Egap ≃ 0.23Erec = kB × 140 nK 
from the rest of the excitations. It also exhibits a very small interac-
tion energy Eint, indicating anti-bunching between atoms, which is a 
hallmark of the Laughlin state.

The realization of a quantum-Hall system based on a large syn-
thetic dimension, as discussed here, is a promising setting for future 
realizations of topological quantum matter. An important asset 
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of our set-up is the large cyclotron energy, measured in the range 
ħωc ≃ kB × 1.8 − 2.3 μK, much larger than the typical temperatures of 
quantum degenerate gases, thus enabling the realization of strongly 
correlated states at realistic temperatures. The techniques developed 
here could give access to complex correlation effects, such as flux 
attachment via cyclotron orbits41 or charge fractionalization via adi-
abatic pumping42 or the centre-of-mass Hall response43. Our pro-
tocol could also be extended to fermionic isotopes of dysprosium, 
with a synthetic dimension given by the hyperfine spin of the lowest 
energy state, F = 21/2 for 161Dy, leading to an even larger bulk. At 
low temperature and unit filling of the ground band, the Fermi sea 
would exhibit an almost quantized Hall response akin to the integer 
quantum Hall effect.
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Methods
Details on the experimental protocol. Our experiments began by preparing an 
ultracold gas of 8(2) × 104 162Dy atoms at a temperature T = 0.55(6) μK, which 
was then held in an almost symmetrical optical dipole trap with frequency 
�ω ¼ 2π ´ 150
I

 Hz, leading to a peak density of n0 ≈ 1013 cm−3. The atoms were placed 
in a magnetic field B = 172(2) mG along the z axis, corresponding to a Zeeman 
splitting of frequency ωZ = 2π × 298(3) kHz, with the electronic spin polarized in 
the absolute ground state m = −J. We then turned off the trap and turned on the 
two laser beams shown in Fig. 1, which differed in frequency by ω12 = ω1 − ω2. 
When ω12 was close to the Zeeman splitting ωZ, a spin transition m → m + 1 
occurred via the absorption of one photon from beam 1 and the stimulated 
emission of one photon in beam 2. In such processes and in the absence of 
additional external forces, the canonical momentum p̂ ¼ Mv̂ þ _KĴz

I
 is conserved.

The laser beam frequencies were set close to the optical transition at 626.1 nm, 
which couples the electronic ground state J = 8 to an excited level J 0 ¼ 9

I
. The 

beams were detuned by Δ = 2π × 22 GHz with respect to resonance and were 
linearly polarized along orthogonal directions, each being at 45° with respect 
to the z axis. The algebra of the Clebsch–Gordan coefficients of J ! J 0 ¼ J þ 1

I
 

transitions led to Hamiltonian (2) at resonance (ω12 = ωZ), with

Ω ¼ 2J þ 3
4ðJ þ 1Þð2J þ 1ÞV0; V0 ¼

3πc2Γ
2ω3

0

ffiffiffiffiffiffiffiffi
I1I2

p

Δ

where I1,2 are the laser intensities on the atoms, Γ ≃ 2π × 135 kHz is the transition 
linewidth and ω0 is its resonant frequency. The value of the coupling Ω was 
calibrated using an independent method and remained constant over the 
experimental sequence because the waists of both laser beams were much larger 
than the region of atomic motion. The Larmor frequency ωZ was calibrated from 
the resonance of the Raman transition between m = −8 and m = −7.

The non-resonant case (ω12 ≠ ωZ) can be reduced to the resonant case in a 
reference frame moving at a velocity vframe = (ωZ − ω12)/K. Note that the required 
change of frame means that fluctuations of ωZ contribute to the uncertainties of 
the measured velocities. We first slowly increased the intensity up to a coupling 
ħΩ = 1.02(6)Erec, where Erec  p2rec=ð2MÞ

I
, and then applied an external force Fx 

on the system via the inertial force resulting from a time-dependent frequency 
difference, with Fx = (M/K)∂tω12. The preparation of a state in the lowest band 
with a given momentum p was performed by adiabatically ramping the frequency 
difference to a final value

ω12 ¼ ωZ þ 2
p
prec

þ J

� �
Erec

_
ð4Þ

We used the relation (4) to define, from the final frequency difference ω12, the 
quasi-momentum p parametrizing the experimental data. We used a constant ramp 
rate ∂tω12 ’ 0:22 ω2

c;min

I
, where ωc;min ’ 3:06 Erec=ℏ

I
 is the minimum cyclotron 

frequency separating the two lowest energy bands for Ω = Erec/ħ. Depending on 
the target p state, the preparation took between 150 μs and 550 μs. Shot-to-shot 
fluctuations of the ambient magnetic field induce fluctuations of the Zeeman 
frequency splitting, hence an error in the value of the prepared momentum p. As 
shown in Extended Data Fig. 1, the measured error in momentum remains small 
compared to the recoil momentum prec, and its root mean square (r.m.s.) deviation 
Δp ≃ 0.06prec is compatible with the magnetic field fluctuations σB = 0.7 mG 
measured independently.

We numerically checked the adiabaticity of the state preparation protocol. 
While preparing m = +J, which requires crossing all momentum states, the squared 
overlap with the ground band remains greater than 0.96 and the deviation of the 
mean spin projection ĥJzi

I
 from the corresponding ground state value is always 

less than 0.08. The largest deviations occur near m ≃ ±7, where the energy gap 
to the first excited band is the smallest. This behaviour is consistent with our 
measurements, showing that the adiabatic transfer to m = J after exploring the 
entire band is above 97%.

At the end of the experiment, we probed the velocity and spin projection 
distributions. For this, we abruptly switched off the Raman lasers and subsequently 
ramped up an inhomogeneous magnetic field that split the different magnetic 
sublevels along z. After a 4-ms expansion, we took a resonant absorption picture. 
The measured atom density was split along z according to the magnetic projection 
m, and the density along x corresponds to the distribution of velocity v (ωttof ≈ 4). 
Our imaging set-up was such that the 17 magnetic sublevels had different 
cross-sections. We calibrated the relative cross-sections such that the calculated 
atom number remained constant for all momentum states, irrespective of their spin 
composition.

Cyclotron orbits. To probe the excitations of the system we performed a velocity 
quench, which couples the lowest Landau level to the next higher energy band. 
The system then responds periodically with a frequency set by the energy 
difference between the two bands, which for the case of an ideal Hall system 
would correspond to the cyclotron frequency ωc. Experimentally, we performed 
the velocity kick by quenching the detuning ω12, which in practice settles to a 
steady value after 4 μs. We show in Extended Data Fig. 2a,b an example of coherent 

oscillations of both magnetization and velocity. We computed the response of the 
system in real space, x, via a numerical integration of the velocity evolution as 
shown in Extended Data Fig. 2c. The uncertainty on the Larmor frequency leads to 
a systematic error on the velocity on the order of 0.1vrec, consistent with the small 
drift of some cyclotron orbits in the bulk.

The response of the system was probed after a velocity kick vkick ≈ vrec. This 
kick ensures a negligible overlap with the second excited band (smaller than 
4%). Although, in an ideal Hall system, all bulk excitations evolve periodically 
at the cyclotron frequency ωc = qB/M due to the harmonic spacing of successive 
Landau levels, this is not exactly the case in our system. We tested this behaviour 
by varying the strength of the excitation, which relates to the magnitude of the 
velocity kick. As shown in Extended Data Fig. 2d, we find that the trajectories 
cease to be closed and start to drift along the kick direction as the excitation 
strength exceeds 1.5vrec (Extended Data Fig. 2f). This regime corresponds to the 
onset of a significant population of higher energy bands n ≥ 2, which illustrates the 
non-harmonic spectrum of our system.

It is important to note that the excitation protocol described so far is inefficient 
for large values of p, where the energy gap is much larger. In that regime, a quench 
of the coupling amplitude Ω leads to a more efficient overlap with higher energy 
bands. This is shown in Extended Data Fig. 2e, for the case of a sudden branching 
of the coupling strength to ħΩ = Erec. The system initially at p = −Jprec is then 
effectively coupled to higher energy bands and the bouncing on the hard wall 
characteristic of classical skipping orbits is clearly visible.

Transverse drift in a Hall system. Our system is analogous to a Hall system in a 
ribbon geometry (see Supplementary Information for a discussion in the case of a 
disk geometry). To understand the role of a sharp edge on the physical quantities 
measured in the main text, we consider an electronic Hall system in a semi-infinite 
geometry, described by the Landau Hamiltonian (3), written as

Ĥ ¼
p̂2y
2M

þ 1
2
Mω2

cðŷ � p̂x‘
2=ℏÞ2

with a hard-wall restricting motion to the half-plane y > 0. Here, we introduce the 
cyclotron frequency ωc = eB/M and the magnetic length ‘ ¼

ffiffiffiffiffiffiffiffiffiffi
_=eB

p

I
, assuming a 

magnetic field B along z.
We first consider semiclassical trajectories in the absence of external forces, 

which are either closed cyclotron orbits or skipping orbits bouncing on the 
edge, parametrized by the rebound angle θ (Extended Data Fig. 3a). Applying a 
perturbative force F along y leads to a drift of cyclotron orbits of velocity vd = −F/eB 
along x, corresponding to a Hall mobility μ = 1/eB. For skipping orbits, the Hall 
drift can be expressed analytically as

μ ¼ 1
eB

1� sin θ
θ

 2
" #

ð5Þ

The factor of reduction compared to cyclotron orbits, plotted in Extended Data 
Fig. 3a, smoothly interpolates between 1 for almost closed orbits (θ → π) and 0 for 
almost straight orbits (θ → 0). This behaviour provides a simple explanation of the 
reduced Hall mobility of edge modes (Fig. 4b).

We extend this reasoning to the quantum dynamics in the lowest energy band. 
In a semi-infinite geometry, the eigenstates of Hamiltonian (5) can be indexed by 
the momentum p along x, and are expressed as44

ψpðx; yÞ ¼ eipx=ℏffiffiffiffiffi
2π_

p ϕpðyÞ
ϕpðyÞ / DϵðpÞ�1=2

ffiffiffi
2

p
ðy � p‘2=ℏÞ=‘

  ð6Þ

where Dν(z) is the parabolic cylinder function and ϵ(p) = E0(p)/ħωc is the reduced 
energy determined by the boundary condition DϵðpÞ�1=2ð�

ffiffiffi
2

p
p‘=ℏÞ ¼ 0

I
 (Extended 

Data Fig. 3b). By summing over all momentum states of the ground band, we 
compute the local density of state in (vx, y) coordinates plotted in Extended Data 
Fig. 3d. Far from the edge y ≫ ℓ, the velocity distribution is a Gaussian centred on 
vx = 0, of r.m.s. width δvx = ħ/(Mℓ). The distribution is shifted to negative velocities 
when approaching the edge y = 0, as expected for chiral edge modes.

We now consider the Hall response of the system by studying the perturbative 
action of a force F along y, described by the Hamiltonian

Ĥ
0
p ¼

p̂2y
2M þ 1

2Mω2
cðŷ � p‘2=ℏÞ2 � Fŷ

¼ p̂2y
2M þ 1

2Mω2
c ŷ � p‘2

ℏ � F
Mω2

c

� �2
þ EðpÞ

EðpÞ ¼ � pF
Mωc

� F2
2Mω2

c

We identify the perturbed Hamiltonian Ĥ0
p

I
 as ĤpþF=ωc

I
, with an additional energy 

shift EðpÞ
I

. Assuming the system to remain in the ground band, the group velocity 
of a localized wavepacket becomes

hv̂i0 ¼ v0ðpþ F=ωcÞ �
F

Mωc
; v0ðpÞ ¼

dE0ðpÞ
dp
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Assuming a small force, we expand the velocity as hv̂i0 ¼ v0ðpÞ � μðpÞF
I

, with  
the mobility

μðpÞ ¼ 1
eB

1�M
dv0
dp

� �

This formula is analogous to the expression for the Hall mobility in our synthetic 
system. As shown in Extended Data Fig. 3c, it is close to the classical Hall drift in 
an infinite plane in the bulk mode region p ≳ ħ/ℓ, while it decreases towards zero in 
the edge mode region p < 0.

The overall response of an energy branch in the ground band can be obtained 
by summing the drifts of all populated eigenstates, such that the centre of mass 
drift reads

hvðtÞi0 ¼ hvðtÞi0 � F
Z

dp nðpÞμðpÞ

where we assume the normalization ∫dp n(p) = 1 for the occupation number n(p). 
We consider a uniform occupation of the lowest energy band, restricted to the 
energy branch E0(p) < ħωc, that is, in the middle of the bulk gap to the first excited 
band in the bulk. This condition corresponds to momentum states p > p* ≃ 0.54ħ/ℓ 
of the ground band. Assuming an upper momentum cutoff p0

I
 in the bulk region, 

we obtain the Hall drift

hvðtÞi0 ¼ hvðtÞi0 �
F
eB

1�M
v0ðp0Þ � v0ðpÞ

p0 � p

� �

As long as p0  _=‘
I

, the second term can be neglected, and one recovers the Hall 
drift of a topological band of Chern number C ¼ 1

I
.

We finally consider the local Hall response in the ground band, quantified by 
the local Chern marker22

Cðx; yÞ ¼ 2πImhx; yj½P̂x̂P̂; P̂ŷP̂jx; yi

where P̂ projects on the considered branch of states and x; yj i
I

 are localized in (x, 
y). The calculation of the Chern marker starts by decomposing position states into 
momentum states, as

Cðx; yÞ ¼ 2
ℏ

Im
Z

dp dq eiðp�qÞx=ℏϕpðyÞϕqðyÞ~cðp; qÞ
 

where ~cðp; qÞ  hψpjx̂P̂ŷjψqi
I

, which can be evaluated using the explicit form of 
equation (6) for momentum states as

~cðp; qÞ ¼ iℏ hyiqhϕpjϕqiδ0ðp� qÞ

where 〈y〉q is the mean y position in the wavefunction ϕq. Using the general formula
Z

du dv f ðu; vÞδ0ðu� vÞ ¼
Z

du dv
∂vf ðu; vÞ � ∂uf ðu; vÞ

2
δðu� vÞ

we obtain the expression for the Chern marker

Cðx; yÞ ¼
Z

dp jϕpðyÞj
2 dhyip

dp

The relation p = Mv0 + qB〈y〉p then leads to

Cðx; yÞ ¼
Z

dp jϕpðyÞj
2μðpÞ ð7Þ

a relation analogous to the local Chern marker expression for our synthetic Hall 
system. We show in Extended Data Fig. 3e the Chern marker calculated for an 
energy branch E(p) < ℏω, which is close to 1 for y ≳ ℓ, and decreases towards zero 
when approaching the edge y = 0, similarly to the decrease of the Chern marker 
close to the edges shown in Fig. 4c.

Local Chern marker in synthetic dimension. In the synthetic Hall system, the 
expression of the local Chern marker reads

Cðx;mÞ ¼ 2πImhx;mj½P̂x̂P̂; P̂Ĵ z P̂jx;mi ð8Þ

Translation invariance along x ensures that the Chern marker only depends on the 
coordinate m. In the main text, the notation jmi

I
 refers to an arbitrary jx;mi

I
 state, 

the choice of x being irrelevant. The derivation of the Chern marker C(m) = ∫dp 
Πm(p)μ(p) is obtained following the same procedure as for a standard Hall system, 
discussed above. So far, we have only considered one component μxm of the mobility 
tensor—the one that measures the drift along x resulting from a force along m. One 
can also consider the other component, which quantifies the magnetization drift 
dhĴ zi=dt
I

 that results from a force Fx along x. In a linear response, it is defined as 
ĥJzi ¼ hĴ zi0 � μmxðpÞFxt
I

, where μmx explicitly designates the mobility component 

considered here, and ĥJzi0
I

 is the unperturbed magnetization. Its expression is  
given by

μmx ¼ � d
dFx

dhĴ zi
dt

¼ � dhĴ ziðpÞ
dp

where we used Fx ¼ _p
I

 and the fact that ĥJzi0
I

 is time-independent. The expression 
p̂ ¼ Mv̂ þ prec Ĵ z
I

 allows us to recover the relation μmx = −μxm between the two 
transverse mobilities.

We show in Extended Data Fig. 4b,c the measurements of both mobilities as a 
function of p, and find good agreement between them. We also present in Extended 
Data Fig. 4d the local Chern markers computed using the data of each mobility.

In the main text, the Chern marker is evaluated over a branch of the ground band, 
below an energy threshold shown in Extended Data Fig. 4a (at half the cyclotron gap 
at p = 0). We also show the Chern marker computed using all momentum states (grey 
points). Compared to the restricted branch, we only find a discrepancy on the edges 
of the ribbon. In the region −5 ≤ m ≤ 5, the values are nearly identical, showing that 
the bulk topological response is insensitive to the momentum cutoff.

We also evaluate theoretically the effect of disorder on the Chern marker. For 
this, we consider a finite-sized system of length L = 5λ/2, with periodic boundary 
conditions along x, and discretized on a grid (xn = nδx, m) of spacing δx = λ/40. 
The atom dynamics is described by Hamiltonian (2) with an additional disorder 
potential, taken as a random energy at each site (xn, m) drawn according to a 
normal distribution of r.m.s. Δ. We calculate the energy spectrum and the local 
Chern marker using the equation (8), where P̂ projects on the eigenstates of energy 
E < E*, where E* = ħωc is the middle of the bulk gap. We show in Extended Data 
Fig. 5a an example of Chern marker distribution in the region ∣xn∣ < λ/2 for a 
disorder strength Δ = Erec. We define a coarse-grained average at the centre of the 
synthetic dimension as

�Cðm ¼ 0Þ ¼ hCðxn;m ¼ 0Þijxn j < λ=4

We show in Extended Data Fig. 5b the variation of �Cðm ¼ 0Þ
I

 with the disorder 
strength Δ, averaged over 100 disorder realizations for each value of Δ. We find 
that the central Chern marker is almost unchanged for disorder strengths Δ ≲ 2Erec, 
demonstrating the robustness of the Chern marker in the bulk of the sample.

Abrikosov vortex lattices. The role of interactions in the ground band is assumed 
to be governed by a single parameter g, which describes contact interactions 
in both the real and synthetic dimensions (see Supplementary Information). 
We consider a gas of bosonic atoms with high filling fractions, for which the 
many-body ground state is well captured by mean-field theory. The system is 
described by a spinor classical field (ψm(x)) (with −J ≤ m ≤ J), whose dynamics is 
governed by the Gross–Pitaevskii equation

iℏ _ψm ¼ ℏ2

2M ði∂x þ KmÞ2ψm � ℏΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ � mðm þ 1Þ

p
2 ψm�1



þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ � mðm � 1Þ

p
2 ψmþ1 þ m2

2J þ 3ψm


þ gjψmj2ψm

From the phenomenology of Abrikosov vortex lattices, we expect the ground 
state to break translational invariance along the real dimension, with an unknown 
periodicity L0. To find L0, we numerically calculate the ground state on a cylinder 
of circumference L, corresponding to periodic boundary conditions along the real 
dimension, by evolving the Gross–Pitaevskii equation in imaginary time. We find 
that the ground-state energy is minimized for a set of circumferences L, integer 
multiples of a length that we identify as L0.

The thermodynamic properties are determined by the coupling Ω and the 
interaction energy scale g〈n〉, where 〈n〉 is the mean atom density, or equivalently 
by the chemical potential μchem. Here we explore situations in which the chemical 
potential lies in the gap between the lowest Landau level and the first excited band 
(Extended Data Fig. 6b).

For large enough interactions, we always find ground-state configurations in the 
shape of Abrikosov triangular vortex lattices, such as the ones presented in the main 
text (Fig. 5). We give in Extended Data Fig. 6a,b another example of such a ground 
state, represented here by both the density profile and the phase associated to the 
wavefunction. Around each local minimum of the density, the phase profile is 
reminiscent of the phase winding of a quantum vortex in a continuous 2D system.

The hard walls in the synthetic dimension have a strong impact on the vortex 
lattice geometry. We distinguish the different configurations by counting the 
number of vortex lines along x. For example, in Extended Data Fig. 6a we identify 
a configuration made of three vortex lines. The phase diagram, shown in Extended 
Data Fig. 6c, shows a large variety of vortex configurations. Typically, the distance 
between lines is set by the magnetic length ℓm in the synthetic dimension. The 
reduction of the number of vortex lines with Ω is thus explained by the increase 
of ℓm. Similarly to type-II superconductors in a confined geometry, the different 
vortex configurations are separated by first-order transition lines.

The observation of such vortex lattices demands a high-resolution in situ 
imaging resolved in m space. However, the spontaneous breaking of translational 
symmetry can be revealed in the momentum distribution—accessible in standard 
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time-of-flight experiments—via the occurrence of Bragg diffraction peaks at 
multiples of the momentum p0 = h/L0. As shown in Extended Data Fig. 6d, the 
expected variation of p0 with the coupling Ω indirectly reveals the occurrence of 
phase transitions between different vortex configurations.

Data availability
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Extended Data Fig. 1 | Conservation of canonical momentum. Difference between the measured canonical momentum precĥJzi þMhv̂i
I

 and the targeted 
value p defined by the state preparation protocol. All error bars are the 1-σ standard deviation of typically 5 measurement repetitions.
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Extended Data Fig. 2 | Cyclotron orbits measurements. a, b, c, Magnetization, velocity and position response as a function of time after application of a 
velocity kick vkick ≈ vrec. d, Bulk excitations corresponding to different velocity kicks, v = 0.23, 0.48, 1.02, 2.06, and 3.15 vrec, from left to right. The orbits are 
off-centred in real space for visual clarity. e, Skipping orbit for the momentum state p = − J prec following a sudden jump of the coupling strength Ω.  
f, Velocity drift of the orbits as a function of the amplitude kick. The solid line corresponds to the expected drift due to the non-harmonic spectrum of the 
energy bands. All error bars are the 1-σ standard deviation of typically 5 measurement repetitions.
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Extended Data Fig. 3 | Hall system in real dimensions. a, Variation of the Hall mobility for classical skipping orbits, depending on the angle of rebound on 
a hard wall. The case of closed cyclotron orbits corresponds to θ = π. b, Dispersion relation of a quantum Hall system in a semi-infinite geometry y > 0. 
The blue line indicates the energy branch used for the Chern marker calculation, defined by E0(p) < ħωc. c, Hall mobility μ as a function of momentum p.  
d, Local density of state in the (v, y) plane. e, Local Chern marker C(y) for the energy branch defined in b.

NATuRE PHySiCS | www.nature.com/naturephysics



Letters Nature Physics

Extended Data Fig. 4 | Hall mobility and local Chern markers. a, Predicted dispersion relation for ħΩ = Erec. The branch pictured in blue, chosen as E(p) 
< E* with E* at half the gap, is used for the computation of the local Chern marker. b, Measured mobility in x resulting from the application of a force along 
m, as presented in the main text. The points in blue, corresponding to ∣p∣ < p* (white area), are the ones considered for the Chern marker presented in the 
main text (see Fig. 4). c, Measured mobility in m resulting from the application of a force along x. As for b, the points in red are associated to momentum 
states lying below E*. d, Chern marker obtained from the measured mobility, using the whole energy branch (− ∞ < p < ∞, gray squares, using data in 
b), or using the branch defined in a (− p* < p < p*). For the latter, the blue dots correspond to the data in b, and are identical to Fig. 4. The red diamonds 
correspond to the data in c. Solid lines are theoretical values. The error bars are the 1-σ statistical uncertainty calculated from a bootstrap sampling 
analysis over typically 100 pictures (b,c) and 1000 pictures (d).
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Extended Data Fig. 5 | Effect of disorder. a, Example of Chern marker distribution in the presence of disorder of strength Δ = Erec. b, Chern marker 
�Cðm ¼ 0Þ
I

 averaged over the region ∣x∣ < λ/4 as a function of the disorder strength Δ. Each point is the average of 100 disorder realizations, the error bar 
showing the standard deviation of the mean.
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Extended Data Fig. 6 | Abrikosov vortex lattices. a, Ground state density profile and b, associated phase, for ħΩ = 3Erec and for μchem ≈ 4Erec. The local 
minima of the density exhibit a phase winding around them, and thus correspond to quantum vortices. c, Number of vortex lines as a function of the 
Raman coupling Ω and the chemical potential μchem. The dots identify the configurations for which a simulation was realized. The color encodes the number 
of vortex lines that characterizes the low-energy vortex lattice configuration. The phase separation lines are guides to the eye. The dashed line identifies 
the gap to the first excited band above which the atoms significantly occupy higher Landau levels. d, Momentum p0 associated to the spontaneous 
breaking of the translational invariance resulting from the appearance of a vortex lattice, as a function of Ω. The points were taken at a chemical potential 
corresponding to half the gap.
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Probing chiral edge dynamics and bulk topology of a synthetic Hall system
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(Dated: May 15, 2020)

I. ATOM LIFETIME IN THE GROUND BAND

As explained in the main text (Methods), we experimen-
tally find that we can adiabatically prepare the ground
state for any value of p, which suggests the absence of
significant inelastic processes leading to higher band pop-
ulation. We confirmed such an observation by measuring
the atom lifetime, following a preparation in the states
p = 0 and p = 12~K. Experimentally, this amounts to
measuring the remaining number of atoms after a holding
time, in the presence of the Raman coupling at ~Ω = Erec

(see Fig. S1).
We measure a lifetime of approximately 4ms, for p = 0,

which cannot be simply attributed to incoherent Rayleigh
scattering processes associated to the Raman coupling.
Indeed, we estimate numerically the spontaneous emis-
sion rate to be, at most, on the order of 15 s−1, corre-
sponding to a timescale larger than ∼ 60ms, an order of
magnitude larger than the one reported in Fig. S1. How-
ever, we notice that the lifetime is significantly larger for
p = 12~K, which suggests the presence of dipolar re-
laxation [1]. We find numerically that the typical loss
rate associated to the dipolar relaxation, for a density of
1013 cm−3, varies between ∼ 70 s−1 and ∼ 230 s−1 (de-
pending on the spin state), which is consistent with our
measurements. This loss mechanism could be inhibited in
a modified protocol, in which the Hamiltonian (2) (main
text) is realized in the absence of external magnetic field,
which requires a different laser configuration.

II. EMERGENCE OF LANDAU LEVELS

In Fig. S2, we show the dispersion relation of the Hamil-
tonian (2) (see main text) calculated for different cou-
plings Ω. In the absence of the light coupling, Ω = 0,
the Hamiltonian reduces to the kinetic energy term (p̂−
precĴz)

2/(2M), leading to 2J +1 parabolas shifted along
p. All energy crossings become avoided for Ω 6= 0, leading
to flattened energy bands akin to Landau levels. Achiev-
ing a flat ground band dispersion in the bulk region re-
quires couplings that are large enough (~Ω & 0.2Erec) to

∗ These two authors contributed equally.
† Present address: ICFO-The Institute of Photonic Sciences, 08860
Castelldefels (Barcelona), Spain

‡ sylvain.nascimbene@lkb.ens.fr
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Fig. S1. Lifetime in the ground band. Remaining atom
number N for a state prepared at p = 0 (blue) and p =
12~K (red), in the presence of the Raman coupling at ~Ω =
Erec. The atom numbers are normalized by N0, the value
at the origin of the fit (dashed line) which indicates a 1/e
time constant of 4ms. The error bars are the 1-σ standard
deviation of typically 5 measurement repetitions.

reduce short-p oscillations, while still being sufficiently
small (~Ω . Erec) to minimize longer-scale curvature.
The large spin J = 8 allows for a simplified semi-

classical description, where the spin is represented by a
point on the generalized Bloch sphere, parametrized by
its spherical angles (θ, φ). The spin projection is mapped
on a continuous variable m = J cos θ, with the azimuthal
angle φ being its conjugated variable (up to a factor
~). The semi-classical Hamiltonian corresponding to the
quantum Hamiltonian (2) (see main text) then reads

Hp =
(p− ~Km)2

2M
− ~Ω

(√
J2 −m2 cosφ+

m2

2J + 3

)
.

This energy functional being minimized for φ = 0, one
can assume φ≪ 1 and obtain a low-energy expansion

Hp =
(p− ~Km)2

2M
+

~2φ2

2M ′(m)
+ V (m),

M ′(m) = ~/
(
Ω
√
J2 −m2

)
,

V (m) = −~Ω
(√

J2 −m2 +
m2

2J + 3

)
,

which is exactly the Landau Hamiltonian (3) (see main
text), albeit with a position-dependent mass M ′(m) and
a confining potential V (m) in the synthetic dimension.
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Fig. S2. Emergence of synthetic Landau levels. a-d. Dispersion relations for coupling strengths ~Ω/Erec = 0, 0.2, 0.5
and 1 (solid lines). The dashed red lines correspond to the first two energy bands of a semi-classical theory, including first-order
quantum corrections.

The divergence of the mass M ′(m) for |m| → J leads to
an effective hard-wall condition.

In the middle of the bulk, at m = 0, in the semi-
classical model, we deduce the cyclotron frequency ωc =√

2JΩErec/~, and we expect a value ωc = 4Erec/~ for
~Ω = Erec, which is close to the exact value ωc =
3.84Erec/~ (see inset of Fig. 3, see main text). We also
infer the expressions for magnetic lengths

ℓm = 4

√
J~Ω
2Erec

and ℓx =
1

Kℓm

in the synthetic and real dimensions respectively. These
lengths are the characteristic sizes of the quantum vor-
tices shown in Fig. 5b (see main text). For the coupling
~Ω = Erec used in the simulations, we obtain magnetic
lengths ℓm ≃ 1.41 and ℓx ≃ 0.11λ/2.

The approximate analogy between the Hamiltonians
(2) and (3) (see main text) can also be inferred using
quantum operators, as we explain now assuming p ≃ 0
for simplicity. In that case, we expect the system to be
polarized in m = J along x, such that the commutator

[Ĵz, Ĵy] = −iĴx ≃ −iJ

is a c-number. The operator −Ĵy/J is then canonically

conjugated to the spin projection Ĵz. We then use the
Holstein-Primakoff approximation at second order to ex-
press the spin projection Ĵx as

Ĵx = J +
1

2
− Ĵ2

y + Ĵ2
z

2J
,

leading to the Hamiltonian

Ĥ =
(p− precĴz)

2

2M
+
~Ω
2J

Ĵ2
y+

3~Ω
2J(2J + 3)

Ĵ2
z−~Ω

(
J +

1

2

)
.

This Hamiltonian corresponds to the Landau Hamilto-
nian (3) (see main text), with an additional Ĵ2

z term.
This approximation can be generalized to all values of
momentum p. We show in Fig. S2 the first two energy
bands calculated within this approximation, together
with the exact spectrum.
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Fig. S3. Ground band flatness. a. Dispersion relation
after addition of a harmonic confining potential proportional
to J2

z (solid lines), which cancels V (Ĵz) of Eq. (2) (see main
text). b. Dispersion relation in case of using Raman laser
beams in a σ -π configuration (solid lines). In both panels,
the red dashed lines correspond to the dispersion relation of
the Hamiltonian (2) (see main text).

III. GROUND BAND FLATNESS AND
SYMMETRY

The flatness of the ground band and the uniformity of the
cyclotron frequency in our system arise from the partial
cancellation of the dispersive effects from the kinetic term
−~ΩĴx and the light shift term V (Ĵz) = −~ΩĴ2

z /(2J+3)
in the Hamiltonian (2) (see main text). To illustrate this,

we show the effect of removing the term V (Ĵz) from the
Hamiltonian in Fig. S3a – clearly resulting in a highly dis-
persive lowest band. This is equivalent to an additional
harmonic confining potential along the synthetic dimen-
sion, which is achievable in practice using an additional
laser beam linearly polarized along z, and far-detuned
from both Raman beams.

Furthermore, the symmetry of the ground band about
p = 0 depends on the polarization of the two coupling
lasers. The Raman transition scheme we use (Fig. 1a,
see main text) could also be achieved using a polariza-

tion u1 = y = (σ̂+ − σ̂−)/
√
2i for laser 1 and u2 = z = π̂
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for laser 2. However, this σ -π configuration results in
a highly asymmetric dispersion relation, as shown in
Fig. S3b. In our experimental scheme, we recover sym-
metric bands by allowing equal contributions from σ -π
and π -σ arrangements, which corresponds to having or-
thogonal linear polarizations at 45◦ to the z-axis. Im-
perfections in the orientation of the polarizations could
explain the slight asymmetries we measure in velocity
and the Hall mobility.

IV. CHERN MARKER IN A HALL DISK

We extend the discussion of the main text (Methods)
to the transverse response properties of a Hall system
confined in a finite area, taking the example of a disk
geometry. Writing the vector potential in the symmetric
gauge, the Schrödinger equation reads

i∂tψ =
~2

2M

[
−1

r
∂r(r∂r) +

(−i∂θ
r

− r

2ℓ2

)2
]
ψ

in polar coordinates. Its eigenstate wavefunctions
ψn,m(r, θ) = φn,m(r)eimθ, indexed by an integer n ∈ N
and the angular momentum projection m ∈ Z, are solu-
tions of the radial equation

En,mφn,m =
~2

2M

[
−1

r
∂r(r∂r) +

(m
r

− r

2ℓ2

)2
]
φn,m.

For R → ∞, the states for a given n are degenerate and
form the nth Landau level. The wavefunction φn,m(r)

takes significant values around the radius r ≃
√
2mℓ.

For a finite disk of radius R, we thus expect the states
φn,m to remain almost degenerate for m . (R/ℓ)2/2. We
show in Fig. S4a the energy spectrum for a disk of radius
R = 10 ℓ, consistent with this expectation.

We now consider the transverse response of a system
in which the states of energy En,m < ~ωc (i.e. with n =
0 and m ≤ m∗) are uniformly occupied (see Fig. S4a).
The local Chern marker can be expressed in terms of the
radial wavefunctions as

C(r) = C0(r) + C1(r),

C0(r) =
∑

m≤m∗

µm|φ0,m(r)|2,

C1(r) =
|φ0,m∗(r)|2 + |φ0,m∗+1(r)|2

4
|〈φ0,m∗ |r̂|φ0,m∗+1〉|2,

where we introduce

µm =
1

2
(|〈φ0,m|r̂|φ0,m+1〉|2 − |〈φ0,m|r̂|φ0,m−1〉|2).

The first term C0(r) is the sum of contributions from all
occupied orbitals, analogously to the equation (7) (Meth-
ods) obtained in the half-plane geometry. It remains close
to one in the bulk, and decreases to zero close to the edge
r = R over a length scale ℓ. The term C1(r) remains
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Fig. S4. Spectrum and Chern marker in a Hall disk.
a. Energy spectrum of a Hall disk of radius R = 10 ℓ, indexed
by the angular momentum projection m. The blue dots cor-
respond to the states of energy En,m < ~ωc considered for
the Chern marker evaluation. b. Chern marker C(r) in the
same geometry, together with the two contributions C0(r) and
C1(r).

negligible in the bulk, and takes negative values of order
R/ℓ ≫ 1 close to the edge. One checks that the spatial
averages of the two terms are opposite, such that

∫
d2r C(r) = 0,

as required for the Chern marker on a finite geometry [2].
Such a zero average does not occur in the experimental
system, since the atom dynamics is not confined in the
real dimension x.

V. INTERACTIONS IN THE LOWEST ENERGY
BAND

Interactions are typically short-ranged in atomic gases.
In our system, interactions are thus local in x, but they
can occur between any pair of spin projections m1, m2,
corresponding to highly long-range interactions along the
synthetic dimension. To recover short-range interactions,
we propose to spatially separate the different m states
using a magnetic field gradient oriented along another
direction z. The resulting system is thus constituted
of 2J + 1 = 17 one-dimensional tubes, offset in posi-
tion along z. For a transverse confinement of frequency
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Fig. S5. Laughlin-like states at low filling. a-f. Many-body energy spectra calculated for Nat = 5 atoms on cylinders, of
circumferences L = 0.45, 0.5, 0.55, 0.6, 0.65, 0.7λ/2, respectively. We identify a Laughlin-like state with very small interaction
energy and at zero momentum, separated in energy from other eigenstates for L ≥ 0.55λ/2. For L = 0.7λ/2 we recognize an
energy branch of edge excitations of the Laughlin state. The gray area marks the bulk gap of the Laughlin state ∆ = 0.60(3)U
expected in dispersionless Landau levels and in the thermodynamic limit [3]. The color scale is identical to the one used in
Fig. 5c. g-l. Single-particle states included in the simulations are shown as solid dots.

ωz = 2π × 1 kHz, corresponding to a ground-state ex-
tent ∆z =

√
~/Mωz ≃ 250 nm, the interactions be-

come short-ranged for moderate magnetic field gradients
∇B & 30G/cm. For such gradients, the distance be-
tween subsequent tubes is & 320 nm, such that the spa-
tial overlap of neighbouring wavefunctions is negligible,
thus making contact interactions only possible between
atoms within the same tube. At such spatial separations,
the long-range dipole-dipole interactions (DDI) further-
more remains limited to a few tens of Hz (h = 1), which
is also much weaker than the contact interaction within
each tube.

The interaction between atoms in a given m state is
then described by a short-range potential gmδ(x1 − x2)
with coupling constant gm, proportional to the s-wave
scattering length am. At low magnetic field, rotational
symmetry ensures that am = a−m, such that inter-
actions are described by J + 1 independent scattering
lengths. While the am constants are uniform between
all nuclear spin levels for two-electron atoms, we do not
expect such a SU(N) symmetry for lanthanide atoms
such as dysprosium, for which only the coupling constant
a8 = 140(20) a0 has been measured [4]. All the other am
constants remain unknown and we plan to investigate
them in the future. Nonetheless, if all values am are pos-
itive, the system will be protected from collapse, making
many-body phases experimentally accessible.

In lanthanide atoms, interactions between magnetic
dipoles enrich the situation discussed above. These inter-

actions offer an additional degree of freedom that could
be used to stabilize the system in case of attractive s-
wave interaction channels.
For simplicity, we neglect dipolar interactions in the

numerical simulations presented in the main text (Meth-
ods) and consider that all scattering lengths are equal
and positive, such that the interaction potential reads
g δ(x1 − x2)δm1,m2

. For such contact interactions, one
expects interactions restricted to the lowest Landau level
to reduce to a single Haldane pseudo-potential [5, 6]

U =
g

4π

1

ℓxℓm
=
gK

4π
.

VI. LAUGHLIN-LIKE STATE AT LOW FILLING

We consider in this section bosonic atoms at low fill-
ing fractions, for which one expects strongly-correlated
ground states. We calculate the many-body spectrum of
this system using exact diagonalization. The stability of
Laughlin-like quantum states is based on limited energy
dispersion in the ground band, which is improved by con-
sidering a coupling ~Ω = 0.5Erec, i.e. half of the value
used in the experiment. We use a cylindrical geometry
to avoid edge effects along x, and restrict the basis of
single-particle levels to an energy E = 3Erec above the
single-particle ground state, which includes bulk states
of the ground and first excited bands, with a few edge
modes depending on the circumference L of the cylinder
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(see Fig. S5g-l). We calculate the energy spectrum of Nat

bosonic atoms interacting at short range, with an inter-
action strength U = Erec. The many-body eigenstates
are indexed by the total momentum ptot, a conserved
quantity that permits us to subdivide the Hilbert space
into independent sectors, limiting the involved matrices
to dimensions less than 4000.

We show in Fig. S5a-f six energy spectra calculated for
cylinder circumferences in the range L = 0.45− 0.7λ/2.
For L = 0.45λ/2, the ground state does not exhibit
any of the characteristics of the Laughlin state: size-
able interaction energy Eint ≃ 0.03Erec and phonon-like
low-energy excitations. This behavior stems from the
limited number of single-particle orbitals at low energy

Norb = 7, smaller than the number Norb = 2Nat − 1 = 9
of distinct orbitals involved in the Laughlin wavefunc-
tion [7, 8]. For circumferences L ≥ 0.55λ/2, we find
a ground state with a very small interaction energy
Eint ≃ 1.5× 10−4Erec, indicating anti-bunching between
atoms, as expected for the Laughlin state. This state is
separated from excited levels by an energy gap of maxi-
mum value ≃ 0.27Erec (reached for L = 0.63λ/2), with-
out featuring a low-energy phonon branch. For longer cir-
cumferences L ≥ λ/2, the low-energy excitations also ex-
hibit very small interaction energy, as expected for edge
excitations of the Laughlin state occurring for a number
of low-energy orbitals Norb > 2Nat − 1 [9, 10].
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Encoding a dimension in the internal degree of freedom of an atom provides an interesting tool for quantum
simulation, facilitating the realization of artificial gauge fields. We propose an extension of the synthetic
dimension toolbox, making it possible to encode two dimensions within a large atomic spin. The protocol
combines first- and second-order spin couplings such that the spin projection m and the remainder r = m
(mod 3) of its Euclidian division by 3 act as orthogonal coordinates on a synthetic cylinder. It is suited for
an implementation with lanthanide atoms, which feature a large electronic spin and narrow optical transitions for
applying the required spin couplings. This method is useful for simulating geometries with periodic boundary
conditions and engineering various types of topological systems evolving in high dimensions.

DOI: 10.1103/PhysRevA.105.013301

Ultracold atomic gases provide a versatile playground for
the study of various types quantum many-body physics. The
simulation of artificial gauge fields enables the realization of
systems exhibiting a nontrivial topological character [1,2].
A well-developed protocol for their implementation is based
on light-induced couplings between the atom motion and its
spin. This technique enables the realization of a synthetic
dimension, fully encoded in the internal degree of freedom of
the atom, namely, its electronic and/or nuclear spin [3]. The
dynamics of atoms subjected to such a spin-orbit coupling can
be described by an effective gauge field [4,5], which has been
used to engineer two-dimensional quantum Hall systems, with
one spatial dimension and another synthetic one [6,7]. Syn-
thetic dimensions are also promising for the realization of
high-dimensional systems that would feature a topological
character with no equivalent in lower dimensions [8–10].

The most natural implementation of a synthetic dimension
consists in considering the spin projection m of the atomic
spin J (with |m| � J , m integer [11]) as the coordinate of
an artificial dimension [6,7]. Motion along this dimension
then occurs via spin transitions m → m′, for example, induced
by radio-frequency or two-photon optical transitions. The
range |m − m′| of spin transitions is then limited by selection
rules to nearest (|m − m′| = 1) or next-nearest (|m − m′| = 2)
neighbor hoppings. This constraint restricts the simulation of
periodic boundary conditions to small-spin systems [12–14].
Indeed, a coupling between stretched states m = ±J requires
a 2J-photon optical transition, which is experimentally un-
realistic for J � 1. In the absence of such coupling, the
synthetic dimension features sharp edges [6,7], such that the
bulk physics is limited to projection states m far enough from
edges [15]. The concept of synthetic dimension was also gen-
eralized to atomic momentum states [16] and has also been
developed in photonic systems [17]. Recently, a pair of syn-

*sylvain.nascimbene@lkb.ens.fr

thetic dimensions was simulated in a temporally modulated
ring resonator [18].

In this article we propose a protocol to simulate dynamics
in two dimensions within the atomic spin only. It applies to
atomic species possessing a large spin J � 1. We propose
to combine spin couplings of ranks 1 and 2, such that the
spin projection m and the remainder r ≡ m (mod 3) of its
Euclidian division by three evolve independently, thus acting
as the two orthogonal coordinates describing the surface of a
cylinder (see Fig. 1). We discuss the conditions of applicabil-
ity of this description and the requirements for its practical
implementation in cold atom experiments. We also describe
its extension for the simulation of quantum Hall physics on
a cylinder, with one spatial dimension x and another one
encoded in the remainder r, which naturally features periodic
boundary conditions (the coordinate m adding another degree
of freedom, nonrelevant in this case since it is uncoupled to
the x and r dynamics).

I. BASIC DESCRIPTION OF THE PROTOCOL

The protocol combines linear and quadratic spin couplings,
described by the Hamiltonian

H = −Ua
J+
J

− Ub
J2
−

J (J − 1/2)
+ H.c. (1)

The transitions between magnetic sublevels |m〉 induced by
these couplings are shown in Fig. 1(a). They enable nontrivial
cycles between triples of spin states m → m + 1 → m + 2 →
m, leading to the emergence of a cyclic synthetic coordinate,
independent from the magnetic projection m, and encoded in
the division remainder r = m (mod 3).

The projection m and remainder r obviously do not evolve
independently under the action of either the linear or quadratic
spin couplings considered independently. Indeed, the linear
coupling J+ increases both m and r by one unit, while the
quadratic one J2

− decreases m by 2 and increases r by one

2469-9926/2022/105(1)/013301(8) 013301-1 ©2022 American Physical Society
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FIG. 1. (a) Scheme of the spin transitions between the projection
states |m〉 of an angular momentum J . Combining first- and second-
order couplings leads to nontrivial three cycles m → m + 1 → m +
2 → m. (b) Scheme of the emergent synthetic cylinder for J = 8,
where the projection m plays the role of the axial coordinate, and the
remainder r ≡ m (mod 3) of its Euclidian division by 3 acts as the
azimuthal cyclic coordinate.

unit. The occurrence of decoupled m and r dynamics relies on
the proper combination of both processes.

In order to understand the condition for independent
dynamics, we first give a hand-waving argument—a more
rigorous treatment being given in Sec. II. We treat m and r as
continuous variables and approximate the action of the spin
operators as

J+ + J−
J

ψ (m, r) � ψ (m + 1, r + 1) + ψ (m − 1, r − 1)

� (
2 + ∂2

m + 2∂m∂r + ∂2
r

)
ψ (m, r) (2)

and

J2
+ + J2

−
J
(
J − 1

2

)ψ (m, r) � ψ (m + 2, r − 1) + ψ (m − 2, r + 1)

� (
2 + 4∂2

m − 4∂m∂r + ∂2
r

)
ψ (m, r) (3)

at the first nontrivial order in m and r. The Hamiltonian then
takes the expression

H = − 2(Ua + Ub) − (Ua + 4Ub)∂2
m

− (Ua + Ub)∂2
r − 2(Ua − 2Ub)∂m∂r . (4)

The coupling between the m and r dynamics stems from the
last term ∝ ∂m∂r , which cancels for the coupling ratio

Ub/Ua = 1/2. (5)

Under this condition, the m and r dynamics become ap-
proximately separable, mimicking the motion of a particle
on a cylindrical surface with an axial coordinate m and an
azimuthal coordinate r [see Fig. 1(b)]. Unless explicitly spec-
ified, we assume in the following this condition to be fulfilled
and define a single coupling amplitude U ≡ Ua = 2Ub.

II. SEMICLASSICAL ANALYSIS AND EMERGENCE
OF A SYNTHETIC CYLINDER

A more precise understanding of the spin dynamics can
be obtained by performing a semiclassical analysis, which is
legitimate for a large spin size J � 1.
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FIG. 2. (a) Semiclassical energy functional corresponding to the
energy of a coherent spin state of spherical angles (θ, φ). The red
plus sign indicates the energy minimum at θ = π/2 and φ = 0. The
green crosses show the two degenerate maxima at φ = 2π/3 and
4π/3. (b) Energy-level spectra of the actual Hamiltonian (1) (dark
blue lines) and of its harmonic approximation around the energy
minimum (medium red lines) or maxima (light green lines) for a
spin length J = 8. The label ×2 indicates doubly degenerate levels.
The degeneracy is not exact for the spectrum of H , and the label
is shown when two levels are separated by less than the linewidth.
(c) Spin projection probabilities �m for the states |r, n〉, with n = 0
and r = 0, 1, 2 (dark blue, medium red, and light green bars).

A. Semiclassical ground state

We first carry out a variational study of the ground state,
restricted to the family of coherent spin states. A coherent
spin state is defined as a maximally polarized state |θ, φ〉,
parametrized by the orientation of its polarization, labeled by
the spherical angles (θ, φ) [19]. The energy associated with a
coherent state is described by the functional

E (θ, φ) ≡ 〈θ, φ|H |θ, φ〉
= −2U sin θ cos φ − U sin2 θ cos(2φ), (6)

shown in Fig. 2(a). It features a single minimum oriented
along x, that is, θ = π/2, φ = 0.

B. Harmonic low-energy dynamics

In order to understand the low-energy dynamics, we ex-
pand the Hamiltonian around the semiclassical ground state,
assuming that the spin states remain highly polarized along x.
The z and y spin components then exhibit a commutator

[Jz, Jy] = −ih̄Jx � −ih̄J, (7)

such that Jz and (−Jy/J ) can be considered as canonically
conjugated. Expanding the Hamiltonian in powers in these

013301-2
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operators, we obtain at the lowest nontrivial order a quadratic
Hamiltonian

H � U

(
−3 − 5

2J
+ 4J2

z + 6J2
y

2J2

)
.

It describes the dynamics of a harmonic oscillator of spectrum

Eφ=0,n = E0 + nh̄ω, (8)

E0 = [−3 + (2
√

6 − 5)/(2J )]U, (9)

h̄ω = (2
√

6/J )U, (10)

where n � 0 is an integer and ω is the effective oscillator fre-
quency. We discuss in Appendix A an alternative derivation,
based on a Holstein-Primakoff transform of spin operators in
terms of a bosonic degree of freedom [20].

C. Extension to high-energy states

The variational analysis can also be used to get the highest
energy states. The energy functional E (θ, φ) exhibits two
degenerate maxima, at θ = π/2 and φ = 2π/3 or 4π/3 [see
Fig. 2(a)]. The dynamics around these maxima can also be
approximated by a harmonic spectrum, which turns out to
be linked to the spectrum calculated around the ground state
φ = 0, as Eφ �=0,n = −Eφ=0,n/2. Overall, the harmonic spectra
calculated around the energy minimum (φ = 0) or maxima
(φ = 2π/3, 4π/3) can be recast into a single expression:

Eφ,n = (E0 + nh̄ω) cos φ, n ∈ N, φ ∈
{

0,
2π

3
,

4π

3

}
.

(11)

We show in Fig. 2(b) a comparison between the spectrum of
the actual Hamiltonian (1) and the approximated spectrum
(11), calculated for J = 8. The harmonic spectrum accounts
well for the first levels above the ground state and the states
below the highest energy levels. We checked that the number
of levels well described by the harmonic spectrum increases
when increasing the spin length J , as expected for a semiclas-
sical analysis.

D. Interpretation as a cylindrical geometry

The spectrum (11) obtained from the semiclassical analysis
is relevant to describe spin dynamics at low and high energies
but does not apply in the intermediate-energy regime. Still,
we consider here the effective spin dynamics restricted to the
semiclassical spectrum and interpret it in terms of motion on
a synthetic cylinder. This approach will become fully justified
when coupling the spin to a spatial degree of freedom, such
that the three coherent states indexed by φ occur at low energy
on equal footings (see Sec. IV B).

The semiclassical spectrum (11), proportional to cos φ

with φ = 0, 2π/3, 4π/3, is reminiscent of the dispersion
relation E (q) ∼ −2t cos(qa) of a particle evolving on a one-
dimensional ring lattice of length L, where t is the tunnel
coupling and a is the lattice constant. The quasimomentum
q takes the discrete values (2π j)/L, with 0 � j < L/a an
integer. By analogy, the three discrete angles φ involved in our
problem play the role of the momenta conjugated to a cyclic
dimension of length L/a = 3.

This motivates the definition of a basis of position states
|r, n〉, where r is the coordinate of the synthetic dimension, by
the inverse Fourier transform

|r, n〉 = 1√
3

∑
φ=0, 2π

3 , 4π
3

e−iφr |φ, n〉. (12)

The spin projection probabilities �m of the states |r, n〉, shown
in Fig. 2(c) for n = 0, only involve projections m such that
m (mod 3) = r, justifying the r notation. The spectrum (11),
associated to an effective Hamiltonian diagonal in the |φ, n〉
basis, can be recast in terms of the |r, n〉 states as

Heff =
∑
n�0

∑
φ=0, 2π

3 , 4π
3

(E0 + nh̄ω) cos φ|φ, n〉〈φ, n|

=
∑
n�0

2∑
r=0

E0 + nh̄ω

2
|r + 1, n〉〈r, n| + H.c. (13)

We recognize the Hamiltonian of a particle on a cylinder, with
free dynamics along the azimuthal direction r and harmonic
trapping along the axis m.

III. LOW-ENERGY DYNAMICS

A. Excitation protocol

We illustrate the independent motion along the two direc-
tions m and r with simulations of spin dynamics. Starting in
the ground state of the Hamiltonian (1), we apply a weak
perturbation that induces a nonzero velocity either along m
or along r. The velocity along m is defined as

vm ≡ i

h̄
[H, Jz] (14)

= Ua
iJ+
J

+ Ub
−2iJ2

−
J (J − 1/2)

+ H.c. (15)

The cyclic coordinate r, which can be viewed as an angular
variable, cannot be expressed in terms of an Hermitian oper-
ator [21,22]. To obtain the expression of the velocity along
r, we replace the prefactor −2 in front of the J2

− coupling
by 1 to account for the different hopping values 	m = −2
and 	r = 1. Since the J+ coupling induces identical hoppings
	m = 	r = 1, its prefactor remains the same for the two
velocities. This leads to the expression [23]

vr = Ua
iJ+
J

+ Ub
iJ2

−
J (J − 1/2)

+ H.c. (16)

The velocity kick along m is applied by evolving a Zeeman
field along z,

V (m)
pert = Vz Jz, (17)

corresponding to a linear potential in m.
To induce a velocity along r, we need to couple the ground

state |φ = 0, n = 0〉 to the states |φ �= 0, n = 0〉. Since the
states |φ, n = 0〉 are coherent spin states spread along the
equator with azimuthal angles 2π/3, two states with different
angles φ are very distant in phase space for J � 1 and thus
cannot be coupled with low-order spin couplings. To excite
the r velocity, we apply a time-dependent perturbation involv-
ing the high-order coupling V (r)

pert(t ) = Vr cos(2πJz/3 − αt ).
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FIG. 3. Simulated spin dynamics following a velocity kick along
m or r for Ub/Ua = 0.5 (left and right columns, respectively). (a, c)
Evolution of the spin projection probabilities �m. (b, d) Evolution of
the mean velocities 〈vm〉 (dark blue lines) and 〈vr〉 (light green lines)
for the same evolutions. The dashed lines in (b) are calculated with
Ub/Ua = 0.4.

This coupling, diagonal in the |m〉 projection state basis, is
three-periodic in m, such that it takes a value depending on r
only, as

V (r)
pert(t ) = Vr cos(2πr/3 − αt ). (18)

This potential corresponds to a perturbation in r moving at the
speed 3α/(2π ), which drives the system to a nonzero velocity
〈vr〉 �= 0.

B. Decoupling of m and r dynamics

We show in Fig. 3 the dynamics subsequent to the m and r
velocity kicks for Ub = Ua/2. For a weak excitation along m,
the projection probabilities �m and the mean velocity 〈vm〉
oscillate consistently with harmonic trapping along m. The
oscillation frequency matches the value of ω given in (10).
In contrast, the mean velocity 〈vr〉 remains close to zero.

An opposite behavior occurs for a weak excitation along
r: the spin distribution �m becomes modulated in m with a
period 3, and this modulation coherently evolves in time with
a given chirality. The mean velocity 〈vr〉 remains stationary
at a nonzero value, consistently with the absence of trapping
along r. The mean velocity 〈vm〉 remains close to zero. These
two evolutions are thus consistent with independent dynamics
of the two coordinates m and r.

We present in Appendix B a study of the spin dynamics as
a function of the strength of the excitation along m. When the
oscillation amplitude along the m axis becomes comparable
to the spin length J , the spin projection probabilities do not
remain Gaussian and exhibit more complex dynamics. In this
nonlinear regime, the r velocity does not vanish, showing that
the m and r dynamics are no longer independent.

We also studied the effect of a departure from the relation
Ub/Ua = 0.5 by repeating the simulation with Ub/Ua = 0.4
[dashed lines in Fig. 3(b)]. For an excitation along m, we

obtain a nonzero oscillation of 〈vr〉, which confirms that the m
and r dynamics are rigorously decoupled under the condition
Ub/Ua = 0.5 only, as found in Sec. I. Nevertheless, we expect
that the interpretation of spin dynamics in terms of motion
in two dimensions remains valid away from the condition
Ub/Ua = 0.5, albeit with m and r not orthogonal.

IV. IMPLEMENTATION WITH COLD ATOMS

A. Implementation with lanthanide atoms

This proposal requires using an atomic species with an in-
ternal spin J � 1. Lanthanide atoms exhibit a large electronic
spin in the ground state, namely, J = 8, J = 6, and F = 4
for dysprosium, erbium, and thulium—the species brought
to quantum degeneracy so far [24–26]. The levels spectra
shown in Fig. 2 and the low-energy dynamics shown in Fig. 3
were calculated for J = 8 and are thus relevant for a practical
implementation with dysprosium atoms. Fermionic isotopes
of erbium and dysprosium, which were also produced in the
quantum degeneracy regime [27,28], feature a hyperfine struc-
ture with an even larger total spin length.

The spin couplings involved in the Hamiltonian (1) can
be implemented using the ac-Stark shift produced by off-
resonant lasers [29]. In general, second-order light shifts
produce spin couplings described by tensors of rank 0, 1, and
2 [30]. For alkali or two-electron atoms, the electronic ground
state is isotropic (s valence shell with an orbital angular mo-
mentum L = 0), prohibiting spin-dependent light shifts. Spin
transitions can arise from higher-order processes involving the
fine or hyperfine couplings, albeit with significant values only
close to optical resonances [31]. Lanthanide atoms exhibit
a more favorable electronic structure for the realization of
spin-dependent light shifts, thanks to the anisotropic elec-
tronic orbitals in their electronic ground state. The interaction
with light inherits a significant spin dependency from this
anisotropy, even for light far detuned from resonances [32].
Furthermore, spin couplings can be further enhanced using
light close to a single narrow optical transition [33].

In practice, the spin couplings can be produced using res-
onant optical transitions in the presence of a quantization
magnetic field along z. Denoting ωL the Larmor frequency, a
two-photon process involving two light frequencies of differ-
ence 	ω will produce a first- (second-) order spin coupling for
	ω = ωL (	ω = 2ωL, respectively). An important asset of
this protocol is its protection from magnetic field fluctuations.
Indeed, the |r, n〉 basis states are not magnetized along z [see
Fig. 2(c)], such that magnetic field perturbations cancel at first
order.

B. Coupling to a spatial dimension: Example of a quantum
Hall cylinder

When the spin couplings are induced by two-photon opti-
cal transitions from a single laser spatial mode, they are not
coupled to the atom motion. The dynamics can be enriched
when they involve light beams propagating along different
directions, such that spin transitions occur together with a mo-
mentum kick exchanged with light. We present in this section
an application of such a spin-orbit coupling, yielding dynam-
ics mimicking a quantum Hall cylinder, with an additional
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harmonic degree of freedom. This protocol has recently been
implemented experimentally by our group [34]. Quantum Hall
cylinders have also been recently realized by directly coupling
a small number of spin levels [12–14].

We assume the spin couplings to be driven by two-photon
optical transitions using a pair of laser beams counterprop-
agating along the spatial coordinate x. The couplings then
inherit the complex phase factor e2ikx from the laser beam
interference, where k is the light momentum. The atom dy-
namics is governed by the Hamiltonian

H = p2
x

2M
+ V, (19)

V = −
[
Ua

J+
J

+ Ub
J2
−

J (J − 1/2)

]
e−2ikx + H.c., (20)

where px is the x momentum and M is the atom mass. The two
processes increasing the remainder r thus acquire a common
phase factor e−2ikx, leading to a gauge field in the xr plane.
On the contrary, the two processes increasing the projection m
have opposite phase factors e±2ikx, with a zero mean effect for
Ua = 2Ub. Under this condition that we assume in the follow-
ing, we do not expect the occurrence of an effective magnetic
field in the xm plane. Therefore we expect the system to
behave as a quantum Hall cylinder in the two variables (x, r),
with another degree of freedom m acting as the coordinate of
an independent harmonic oscillator [from the term nh̄ω in the
spectrum (11)].

In order to reveal this behavior, we generalize the semi-
classical treatment discussed above. For each position x, we
calculate the semiclassical energy functional

Vcl(θ, φ, x) = − 2U sin θ cos(φ − 2kx)

−U sin2 θ cos(2φ + 2kx), (21)

which always features three extrema for the same orientations,
namely, θ = π/2 and φ = 0, 2π/3, or 4π/3. Expanding the
spin operators around these three extrema, we obtain the har-
monic spectra

Vφ,n(x) = (E0 + nh̄ω) cos(φ − 2kx), (22)

which we compare to the x-dependent eigenstates of V (x) in
Fig. 4(a). We find an excellent agreement for n = 0 and 1, and
observe a visible departure for n = 2, signaling the onset of
anharmonic effects.

The energies Vφ,n(x) play the role of cosine lattice po-
tentials, the angle φ defining the x position of the energy
minima. Importantly, the three angles φ play a symmetric role,
such that they are all involved in the effective low-energy
dynamics—contrary to the purely spin dynamics studied in
Sec. II.

The dynamics induced by the potentials Vφ,n(x) on the r
coordinate is better visualized in the |r, n〉 position state basis,
as

Veff =
∑
n�0

∑
φ=0, 2π

3 , 4π
3

(E0 + nh̄ω) cos(φ − 2kx)|φ, n〉〈φ, n|

=
∑
n�0

2∑
r=0

E0 + nh̄ω

2
e−2ikx|r + 1, n〉〈r, n| + H.c. (23)
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FIG. 4. (a) Energy spectrum of the coupling V (x) as a function
of x (black dots), compared with the effective potentials Vφ,n(x) with
n = 0, 1, 2 (dark blue, medium red, and light green lines). (b) Band
structures calculated using the actual potential V (x) (black dots) and
the effective ones Vφ,n(x), with n = 0, 1, 2 (dark blue, medium red,
and light green lines).

This potential describes hopping dynamics along r, with an
x-dependent complex phase that mimics the Aharonov-Bohm
phase associated to a magnetic field in the xr plane. The full
atom dynamics, described by the effective Hamiltonian Heff =
p2

x/2M + Veff, then maps to the motion of a charged particle
on a Hall cylinder along x and r, with an additional harmonic
degree of freedom n.

We validate this description by comparing the energy-level
structure of the actual Hamiltonian (19) with the effective
model (23). Both models are invariant upon the discrete mag-
netic translation

Tmag = Tx,λ/6Rz,−2π/3, (24)

which combines a λ/6 translation along x and rotation of the
spin around z of angle −2π/3. This symmetry leads to the
conservation of the quasimomentum,

q ≡ Mvx

h̄
+ 2kJz (mod 6k), (25)

defined over the magnetic Brillouin zone −3k � q < 3k. The
Hamiltonian spectra organize in magnetic Bloch bands, shown
in Fig. 4(b) for a coupling strength U = 12 Er, where Er =
h̄2k2/(2M ) is the single-photon recoil energy. The spectrum
of the Hamiltonian (19) exhibits very flat lowest energy bands,
well reproduced by the bands of the effective model for
n = 0, 1, 2. This comparison confirms the relevance of the
description of low-energy dynamics as that of a quantum Hall
cylinder.

V. CONCLUSION

To conclude, we have shown that by combining first-
and second-order spin couplings, one can simulate two-
dimensional dynamics within a large-size atomic spin. One
of the two coordinates consists in a three-site cyclic dimen-
sion. Extending our protocol to larger circumferences L >

3 requires implementing a coupling JL−1
+ , which cannot be
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FIG. 5. (a, c, e, g) Evolution of the spin projection probabilities for various excitation strengths ε = 0.1, 0.2, 0.4, 0.8. The corresponding
evolutions of velocities 〈vm〉 (dark blue lines) and 〈vr〉 (light green lines) are shown in (b, d, f, h). (i) Evolution of the magnetization amplitude
|mz|(max) as a function of ε. The dashed line is the linear response valid for small ε.

achieved with a two-photon process due to selection rules but
could be realized using higher-order processes.

Our technique extends the synthetic dimension toolbox
and could be applied to simulate various types of topological
systems. We described the extension of the method to engineer
a quantum Hall cylinder with an additional harmonic degree
of freedom. The simulation of two-dimensional dynamics in a
single spin will become even more useful for realizing other
types of topological systems in higher dimensions D > 3,
such as four-dimensional quantum Hall systems [9] or five-
dimensional Weyl semimetals [10]. Our method could also be
applied to other physical platforms making use of synthetic
dimensions [5].

Synthetic dimensions appear as a versatile tool for engi-
neering complex single-particle Hamiltonians with nontrivial
topology. Such systems could serve as a ground to study
interacting topological systems. Importantly, synthetic dimen-
sions encoded in the spin degree of freedom naturally lead
to infinitely ranged interactions, as long as the different spin
states are allowed to be in contact. A control of the interaction
range in such systems could be achieved by imposing a spatial
separation between the different spin states or using suitable
interaction time modulations close to Feshbach resonances
[35].
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APPENDIX A: LOW-ENERGY DYNAMICS

We give an alternative derivation of the low-energy dynam-
ics of the Hamiltonian (1). The ground state obtained from
the semiclassical analysis is the coherent spin state polarized

along x. We use a Holstein-Primakoff transform to express the
spin operators in terms of a bosonic degree of freedom [20] as

Jx = J − a†a, (A1)

Jz − iJy =
√

2J − a†a a, (A2)

Jz + iJy = a†
√

2J − a†a, (A3)

where a is a bosonic annihilation operator. To lowest order,
the z spin component

Jz �
√

J

2
(a + a†) (A4)

maps to the position operator of the harmonic oscillator asso-
ciated with a. Expanding the Hamiltonian in power series in
1/J , we obtain at first order

H/U � −3 + 10a†a − a2 − a†2

2J
. (A5)

This quadratic Hamiltonian can be diagonalized using a Bo-
goliubov transform by defining new bosonic operators

b = u a + v a†, (A6)

b† = v∗a + u∗a†, (A7)

with u2 − v2 = 1. For u = [1/2 + 5/(4
√

6)]1/2 � 1.005 and
v = −√

u2 − 1 � −0.102, the Hamiltonian takes the canoni-
cal form

H = E0 + h̄ω b†b, (A8)

with

E0 =
(

−3 + 2
√

6 − 5

2J

)
U, (A9)

h̄ω = 2
√

6

J
U . (A10)
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This expansion can be reproduced around the semiclassical
energy maxima, leading to the complete harmonic spectrum
(11) discussed in the main text.

APPENDIX B: EXCITATION ALONG m
IN THE NONLINEAR REGIME

We studied the atom dynamics following an excitation
along m as a function of the excitation strength. Starting in
the ground state |ψ0〉 of the unperturbed Hamiltonian (1), we
excite the system by applying a short pulse of potential Jz,
resulting in a state |ψi〉 = exp(−iεJz )|ψ0〉, from which we
evolve the Hamiltonian (1). We show in Fig. 5 the spin dynam-
ics calculated for excitation strengths ε = 0.1, 0.2, 0.4, 0.8.

For ε = 0.1, the spin projection probabilities �m(t ) remain
close to a Gaussian. Its center sinusoidally evolves around
zero, with an amplitude |mz|(max) � 1, much smaller than the
spin length J = 8 [see Fig. 5(a)]. In this linear regime, the am-
plitude |mz|(max) � 1 is proportional to the excitation strength
ε [see Fig. 5(i)].

The spin dynamics departs from this simple behavior for
larger excitation strengths, as soon as the oscillation amplitude
|mz|(max) becomes comparable to J . In this nonlinear regime,
the spin projection probabilities cease to be Gaussian, and
the spin dynamics is more complex [see Figs. 5(e) and 5(g)].
While the r velocity remains negligible in the linear regime, it
becomes significant in the nonlinear domain, showing that m
and r dynamics are coupled at high energy.
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The quantum Hall effect occurring in two-dimensional electron gases was first explained by Laughlin,
who developed a thought experiment that laid the groundwork for our understanding of topological
quantum matter. His proposal is based on a quantum Hall cylinder periodically driven by an axial magnetic
field, resulting in the quantized motion of electrons. We realize this milestone experiment with an ultracold
gas of dysprosium atoms, the cyclic dimension being encoded in the electronic spin and the axial field
controlled by the phases of laser-induced spin-orbit couplings. Our experiment provides a straightforward
manifestation of the nontrivial topology of quantum Hall insulators, and could be generalized to strongly
correlated topological systems.

DOI: 10.1103/PhysRevLett.128.173202

The quantization of Hall conductance observed in two-
dimensional electronic systems subjected to a perpendi-
cular magnetic field [1] is intimately linked to the nontrivial
topology of Bloch bands [2] and the occurrence of chiral
edge modes protected from backscattering [3]. The first
step in its understanding was provided by Laughlin, who
gave an elegant argument by considering a Hall system in a
cylindrical geometry (Fig. 1) [4]. Besides the radial
magnetic field B⊥ yielding the Hall effect, this geometry
authorizes an axial field Bk, which does not pierce the
surface but threads the cylinder with a flux Φk. Varying
the fluxΦk controls a quantized electronic motion along the
tube, which is directly linked to the underlying band
topology. Such quantization of transport was later gener-
alized by Thouless to any physical system subjected to a
slow periodic deformation [5], as implemented in electronic
quantum dots [6,7], photonic waveguides [8], and ultracold
atomic gases [9,10].
So far, the topology of magnetic Bloch bands has been

revealed in planar systems only, by measuring the quan-
tization of transverse response [1,11–13] or observing
chiral ballistic edge modes [14–16]. The realization of
Laughlin’s pump experiment requires engineering periodic
boundary conditions, which is challenging when using
genuine spatial dimensions. The concept of a synthetic
dimension encoded in an internal degree of freedom
provides an alternative method for the generation of gauge
fields [17]. Synthetic dimensions were first implemented
with open boundary conditions, leading to the observation
of chiral edge modes [18,19]. More recently, synthetic Hall
cylinders were engineered using several spin states coupled
in a cyclic manner [20–22]. Nevertheless, the realization of
Laughlin’s topological charge pump was not realized yet,
due to the absence of control over an axial magnetic
field Bk.

In this Letter, we use an ultracold gas of 162Dy atoms to
engineer a Hall cylinder whose azimuthal coordinate is
encoded in the electronic spin J ¼ 8 [23]. We manipulate
the spin using coherent optical transitions, such that a triplet
of internal states coupled in a cyclic manner emerges at low
energy, leading to an effective cylindrical geometry [24].
The exchange of momentum between light and atoms leads
to a spin-orbit coupling that mimics a radial magnetic field
B⊥ [25]. The phases of the laser electric fields also control
an effective axial field Bk, which is the crucial ingredient to
implement Laughlin’s thought experiment and reveal the
underlying topology. The topological character of the

FIG. 1. Laughlin’s thought experiment. Scheme of a two-
dimensional electronic system in a cylindrical geometry, with
a radial magnetic field B⊥ producing a quantum Hall effect. The
orange area, pierced by one magnetic flux quantum Φ0, defines
the length lmag of the magnetic unit cell—each cell being filled
with one electron in a quantum Hall insulator. Laughlin’s thought
experiment consists of performing an adiabatic cycle by thread-
ing one flux quantum ΔΦk ¼ Φ0 through the cylinder. The cycle
shifts electron occupations by one unit cell, such that a single
electron is pumped from one edge to the other, or equivalently the
center-of-mass position is displaced by lmag.
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ground Bloch band manifests as well in a complementary
pump experiment driven by Bloch oscillations.
In our experimental protocol, we apply a magnetic field

in order to lift the degeneracy between the magnetic
sublevels m (with −J ≤ m ≤ J and integer m). Spin
transitions of first and second order, i.e., Δm ¼ �1 and
�2, are induced by resonant two-photon optical transitions,
using a pair of laser beams counterpropagating along x
[Fig. 2(a)] [26]. The configuration of laser frequencies is
chosen such that the atoms undergo a momentum kick
−2ℏk upon either resonant process m → mþ 1 or
m → m − 2, shown in Fig. 2(b). Here, k ¼ 2π=λ is the
photon momentum for the laser wavelength λ ¼ 626.1 nm.
The resulting spin-orbit coupling breaks continuous trans-
lation symmetry, but conserves the quasimomentum
q ¼ Mvx=ℏþ 2kmðmod 6kÞ, defined over the magnetic
Brillouin zone −3k ≤ q < 3k, where M and vx are the
atomic mass and velocity. The atom dynamics is described
by the Hamiltonian

H ¼ 1

2
Mv2x þ V; ð1Þ

V¼−T ye−2ikxþH.c.; T y¼ taeiφa
Jþ
J
þ tbeiφb

J2−
J2

; ð2Þ

where Jþ and J− are the spin ladder operators, and ta;tb >0
are the strengths of the first- and second-order transitions.

The phase difference φa − φb can be gauged away using a
suitable spin rotation, such that we retain hereafter a single
phase φ≡ φa ¼ φb.
The combination of the two types of transitions induces

nontrivial 3-cycles m→mþ1→mþ2→m [Fig. 2(b)],
with chiral dynamics in the cyclic variable y ¼
mðmod 3Þ—each step increasing y by one unit. As
explained in a previous theoretical work [24] and in the
Supplemental Material [26], this dynamics leads to the
emergence at low energy of a closed subsystem of
dimension 3, spanned by three spin states jyi, with
y ¼ 0, 1, 2 and where jyi expands on projection states
jmi with m ¼ yðmod 3Þ only. The jyi states are obtained
by linear combinations of three coherent spin states
oriented along equatorial directions of azimuthal angles
ϕ ¼ φþ f0; 2π=3; 4π=3g. Hence, they only involve mag-
netic projections m around 0, with a rms width
Δm ¼ ffiffiffiffiffiffiffiffi

J=2
p ¼ 2. The jyi states will be interpreted in

the following as position eigenstates along a cyclic syn-
thetic dimension of length Y ¼ 3. The operator T y

involved in the spin coupling [Eq. (2)] then acts as a
translation T yjyi ¼ tjyþ 1i, with a hopping amplitude
t ¼ ta þ tb. The low-energy spin dynamics is described by
the effective potential

Veff ¼ −t
X

2

y¼0

ðeiðφ−2kxÞjyþ 1ihyj þ hcÞ: ð3Þ

Together with the kinetic energy 1
2
Mv2x, it describes the

motion of a particle on a cylinder discretized along its
circumference [see Fig. 2(c)]. The complex phase 2kx
mimics the Aharonov-Bohm phase associated with a radial
magnetic field B⊥ ¼ 2ℏk (assuming a particle charge
q ¼ −1). It defines a magnetic length lmag ¼ λ=6, such
that the magnetic flux Φ⊥ ¼ lmagYB⊥ through a portion of
cylinder of length lmag equals the flux quantum
Φ0 ¼ h=jqj.
Experimentally, we use a gas of about 4 × 104 atoms,

initially prepared at a temperature T ¼ 0.54ð3Þ μK, such
that the thermal momentum width σq ≃ 1.3k is much
smaller than the Brillouin zone extent 6k, and interaction
effects can be neglected on the time scale of our experi-
ments. The atoms are adiabatically loaded in the ground
Bloch band with ta ¼ 11.5ð3ÞEr and tb ¼ 7.1ð2ÞEr, by
ramping the light coupling parameters. Here, Er ¼
ℏ2k2=ð2MÞ is the single-photon recoil energy. The mean
quasimomentum hqi is controlled by applying a weak force
Fx after the loading (see the Supplemental Material [26]).
We simultaneously probe the distribution of velocity vx
and spin projection m. For this, we abruptly switch off the
light couplings and ramp up a magnetic field gradient that
spatially separates the different magnetic sublevels along z.
The velocity distribution is obtained from the density

(a) (c)

(b) (d)

FIG. 2. Emerging quantum Hall cylinder. (a) Sketch of the laser
configuration involving two beams counterpropagating along x
and sent on a thermal sample of dysprosium atoms—one beam
having two frequency components. (b) Scheme of the two-photon
optical transitions resonantly driving first- and second-order spin
transitions, labeled a and b, respectively. (c) Representation of a
nontrivial 3-cycle between magnetic sublevels induced by the
light couplings. (d) Scheme of the Hall cylinder dynamics
emerging at low energy, involving three spin states jyi (with
y ¼ 0, 1, and 2). The hopping amplitudes have a complex phase
φ − 2kx, where 2ℏk plays the role of a radial magnetic field B⊥
and φ is linked to an axial field Bk. The orange area, of length
lmag ¼ λ=6 is threaded by one unit of magnetic flux quantumΦ0.
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profile along x measured after a 2.3 ms expansion. A typical
spin-resolved velocity distribution is shown in Fig. 3(a).
The velocity distribution, plotted in Fig. 3(b) as a

function of q, exhibits a period 2k, similar to the case of
a simple λ=2-lattice. The mean velocity hvxi, shown as a red
line, remains close to zero. Since it is linked to the slope of
the ground-band energy ∂qE0ðqÞ ¼ ℏhvxi, this shows that
the band is quasiflat. In fact, the band’s flatness is protected
from pertubations, such as external magnetic field fluctua-
tions, by the zero net magnetization of the jyi spin states—a
similar effect has been used in another implementation of a
Hall cylinder using dynamical decoupling techniques [22].
The probabilities Πm of projection on each sublevel m

reveal a longer periodicity 6k [Fig. 3(c)], corresponding to
the full extent of the magnetic Brillouin zone. It exper-
imentally confirms the spatial separation of magnetic
orbitals lmag ¼ 2π=ð6kÞ ¼ λ=6 introduced above. The
Πm measurements also give access to the probabilities
Py of projection on the synthetic coordinate y, by summing
the Πm’s withm ¼ yðmod 3Þ [Fig. 3(d)]. The q variation of
these distributions reveals a chirality typical of the Hall
effect: when increasing the momentum by 2k, the Py

distributions cycle along the synthetic dimension in a
directional manner, as Py → Pyþ1 [30,31]. We stress that
such a drift does not occur on the mean spin projection hmi,
which remains close to zero [red line in Fig. 3(c)].
The adiabatic y drift occurring during Bloch oscillations

provides a first insight into the topological character of the
lowest energy band—similar to the quantized flow of
Wannier function charge centers in Chern insulators
[32]. To quantify this drift, we cannot rely on the mean
y position, which is ill defined for a cyclic dimension [33].
Instead, it is reconstructed by integrating the anomalous
velocity hvyi≡ ∂φH=ℏ induced by the force Fx driving the
Bloch oscillation. For this purpose, we conduct a separate
experiment, in which we suddenly switch off the force Fx,

such that the center of mass undergoes a cyclotron
oscillation, with the x and y velocities oscillating in
quadrature. More precisely, the rate of change of the x
velocity gives access to the y velocity, via the exact relation

∂thvxi ¼
i
ℏ
½H; vx� ¼ −

2ℏk
M

hvyi:

Hence, the velocity hvyi induced by the force Fx is given by
the initial slope of hvxi [Fig. 4(b)].
The center-of-mass drift hΔyi, obtained upon integration

of hvyi is shown in Fig. 4(a). We find that it varies linearly
with the quasimomentum variationΔq [Fig. 4(a)], such that
the drift per Bloch oscillation cycle reads

hΔyi
Y

¼ 0.97ð5Þ; ð4Þ

consistent with a unit winding around the cylinder of
circumference Y [26]. The rotation along y occurring over a
Bloch oscillation cycle is thus quantized, providing a first
manifestation of the nontrivial band topology.
We now characterize the global band topology by

implementing Laughlin’s charge pump experiment, and
extend the protocol to reveal the local geometrical proper-
ties. To simulate the axial magnetic field used to drive the
pump, we interpret the complex phase φ involved in the y
hoppings [see Eq. (3)] as the Peierls phase associated with
the field Bk threading the cylinder with a flux

Φk ¼
3φ

2π
Φ0: ð5Þ

We varyΦk by adjusting the phase difference φ between the
laser electric fields involved in the spin transitions using
acousto-optic modulators.

(a) (b) (c) (d)

FIG. 3. Ground band characterization. (a) Spin-resolved velocity distribution measured for a gas of mean quasimomentum hqi ≃ 2k.
(b) Distribution of discrete velocity components vx ¼ ℏðqþ 2kpÞ=M (with integer p) for states of quasimomentum q. The red line
shows the mean velocity hvxi. (c) Spin projection probabilities Πm measured as a function of q. The red line stands for the mean spin
projection hmi. (d) ProbabilitiesPy of projection on y ¼ mðmod 3Þ. The blue circles, orange squares, and green diamonds correspond to
y ¼ 0, 1, and 2, respectively. Statistical error bars, computed from a bootstrap random sampling analysis, are smaller than the symbols.
The lines are calculated from the expected band structure.
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We drive the pump by slowly ramping the phase φ, and
measure the induced shift of the center of mass along the
real dimension x. The experiment is performed for various
values of the quasimomentum hqi uniformly spanning the
magnetic Brillouin zone. The q-averaged drift, shown in
Fig. 4(c), is consistent with a linear variation

hΔxi
lmag

¼ C
Φk
Φ0

; C ¼ 1.00ð4Þ;

in agreement with the expected quantization of transport by
the Chern number C ¼ 1. The pump adiabaticity is checked
by repeating the experiment for various speeds of the flux
ramp, and measuring identical responses for slow enough
ramps [26].
Our experiments also give access to the anomalous drift

of individual momentum states Δx ¼ ΩðqÞφ, proportional
to the Berry curvature ΩðqÞ that quantifies the local

geometrical properties of quantum states [34]. As shown
in Fig. 4(d), the measured Berry curvature is flat within
error bars, consistent with theory, which predicts ΩðqÞ ¼
1=ð2kÞwith negligible q variation. The flatness of the Berry
curvature is a consequence of the continuous translation
symmetry along x, making our system similar to continu-
ous two-dimensional systems with flat Landau levels. In
contrast, discrete lattice systems, such as Hofsdtater and
Haldane models [35,36], or previous implementations of
synthetic Hall cylinders [20–22], exhibit dispersive bands
with inhomogeneous Berry curvatures.
We have shown that implementing a quantum Hall

cylinder gives direct access to the underlying topology
of Bloch bands. Our realization of Laughlin’s pump
protocol could be generalized to interacting atomic sys-
tems, which are expected to form strongly correlated
topological states of matter at low temperature. In particu-
lar, at fractional fillings, one expects the occurrence of
charge density waves as one-dimensional precursors of
two-dimensional fractional quantum Hall states [37]. The
pumped charge would then be quantized to a rational value,
revealing the charge fractionalization of elementary exci-
tations [38].
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a.4 realization of an atomic quantum hall system in four dimensions

The following pages contain the main text of the preprint [378], which was mentioned
in section 5.7.
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Topological states of matter lie at the heart
of our modern understanding of condensed mat-
ter systems. In two-dimensional (2D) quantum
Hall insulators, the non-trivial topology, defined
by the first Chern number, manifests as a quan-
tized Hall conductance [1, 2] and protected bal-
listic edge modes [3]. Besides topological insula-
tors [4] and Weyl semi-metals [5, 6] experimen-
tally realized in 3D materials, a large variety of
topological systems, theoretically predicted in di-
mensions D > 3, remains unexplored [7] – among
them a generalization of the quantum Hall effect
in 4D [8, 9]. So far, topological properties linked
with the 4D Hall effect have been revealed via
geometrical charge pump experiments in 2D sys-
tems [10, 11]. A truly 4D Hall system has also
been realized using electronic circuits – however,
no direct evidence of topological quantization has
been reported [12]. Here, we engineer an atomic
quantum Hall system evolving in 4D, by coupling
with light fields two spatial dimensions and two
synthetic ones encoded in the electronic spin J = 8
of dysprosium atoms [13–15]. We measure the
characteristic properties of a 4D quantum Hall
system, namely the quantization of its electro-
magnetic non-linear response by a second Chern
number, and the special nature of its 3D hyper-
edge modes, which combine ballistic motion along
one orientation and insulating behaviour in the
two remaining directions. We also probe low-
lying excitations, revealing non-planar cyclotron
orbits in contrast with their circular equivalents
in D ≤ 3. Our findings pave the way to the ex-
ploration of interacting quantum Hall systems in
4D, from the investigation of strongly-correlated
liquids [9, 16] to the simulation of high-energy
models in link with quantum gravity [9] and Yang-
Mills field theory [17, 18].

Dimensionality plays a prominent role in the classifica-
tion of topological physical systems [7]. While different
topological classes have been explored in condensed mat-
ter systems [19] – effectively described in one, two or
three dimensions – higher dimensional systems can po-
tentially be accessed with engineered materials, based on
the concept of synthetic dimensions [13, 20]. In partic-
ular, different protocols have been proposed to realize a
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FIG. 1. Scheme of the 4D atomic system. a. The
atomic motion in the xz plane is coupled to the internal spin
J = 8 using two-photon optical transitions along x and z
(blue and red arrows, respectively). The spin encodes two
synthetic dimensions given by the magnetic projection m and
its remainder n = m (mod 3) of its Euclidian division by
3, leading to a synthetic space of cylindrical geometry [30].
b. Scheme of the light-induced spin transitions, of first- and
second-order along x and z, respectively. They induce corre-
lated spin-orbit dynamics, with distinct hopping along n and
m according to the rules given in the table. c. Dispersion re-
lation plotted as a function of the momentum p, for 6 values
of the quasi-momentum q uniformly spanning the Brillouin
zone. The ground band is pictured as blue lines.

generalization of a quantum Hall insulator to 4D [21–23],
both for time-reversal invariant systems (classes AI and
AII, as realized with electronic circuits [12]) and in the
absence of discrete symmetry (class A). In 4D, a non-
trivial topology leads to specific behaviour, such as the
quantization of the non-linear response to both electric
and magnetic perturbations, characterized by the second
Chern number C2 [9, 22, 24] – a topological invariant also
relevant for tensor monopoles in high dimensions [25–
28]. The topology of a 4D quantum Hall insulator (class
A) also gives rise to anisotropic motion at the edge of
the system, ballistic along a given orientation, and still
prohibited along the two remaining directions of the 3D
hyperedge [29].

In this article, we realize an effectively 4D quantum
Hall system using an ultracold sample of dysprosium
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atoms, whose motion along two spatial dimensions x
and z is coupled to two synthetic dimensions encoded
in the electronic spin J = 8 (Fig. 1a). The spin-orbit
coupling is generated by two-photon optical transitions
[31] (Fig. 1b), such that it produces an effective magnetic
field leading to the band structure of a class A Hall insu-
lator in 4D. We reveal the quantization of the non-linear
response to both electric and magnetic perturbations, ex-
cept on the system edges where we observe anisotropic
dispersion. We also probe cyclotron excitations of the
center of mass, whose non-planar trajectories contrast
with cyclotron motion in dimensions D ≤ 3.

The coupling between motion and spin degrees of free-
dom is generated by a pair of lasers counter-propagating
along x (resp. z) and resonantly driving spin transitions
m → m + 1 (resp. m → m − 2), while imparting a mo-
mentum kick −2kx̂ (resp. −2kẑ). Here, m is the spin
projection along z (−J ≤ m ≤ J , m integer), k = 2π/λ
is the light momentum for a wavelength λ = 626.1 nm,
and we assume a unit reduced Planck constant ~ = 1.
The atom dynamics is described by the Hamiltonian

H =
Mv2

2
−
(
txeiφx

J+
J

+ tze
iφz
J2
−
J2

+ hc

)
+ β

J2
z

J2
, (1)

where v is the atom velocity and φα = −2kα is the rela-
tive phase of the two laser beams involved in each Raman
process α = x, z. The laser intensities and polarisations
control the amplitudes tα and the quadratic Zeeman shift
β = −2tz (see Methods).

The laser-induced spin transitions can be interpreted
as hopping processes in a two-dimensional synthetic
space (m,n) involving the spin projection m and the re-
mainder n = m (mod 3) of its Euclidian division by 3
(with n = 0, 1, 2) [30]. While the first-order spin cou-
pling J+ acts on these two dimensions in a similar man-
ner (hopping ∆n(x) = ∆m(x) = 1), the second-order cou-
pling J2

− induces hoppings ∆n(z) = 1 and ∆m(z) = −2
leading to differential dynamics along m and n. The
complex phases φα (with α = x, z) can be interpreted as
Peierls phases upon the hopping of a charged particle on
a lattice subjected to a magnetic field. Assuming unit
charge, we write φα =

∫
Aβdrβ = An∆n(α) +Am∆m(α),

leading to the explicit expression for the vector potential

A =
1

3
(0, 0, 2φx + φz, φx − φz)x,z,n,m. (2)

The magnetic field is then defined by the anti-symmetric
tensor Bαβ = ∂αAβ − ∂βAα, as

B =
2k

3




0 0 −2 −1
0 0 −1 1
2 1 0 0
1 −1 0 0


 . (3)

Similarly to the 2D quantum Hall effect, this magnetic
field gives rise to an energy separation between quasi-
flat magnetic Bloch bands. Within each band, motion
becomes effectively two-dimensional, with the guiding
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FIG. 2. Hall drift along the synthetic dimensions.
a. Evolution of the measured spin projections Πm and Pn
as a function of p upon adiabatic driving along µ̂ – the spa-
tial direction conjugated with m. The mean values 〈m〉 and

〈n〉 (computed as 3
2π

arg〈ei2πm/3〉) are shown as red lines. b.
Same quantities plotted for a driving along ν̂ – the spatial
direction conjugated with n. c. Measurements of the mean
values 〈m〉 and 〈n〉 in the Brillouin zone. The green arrows
represent the driving directions considered in a and b.

center coordinate along n canonically conjugated to the
position along ν̂ = (2x̂ + ẑ)/

√
5, while m is conju-

gated to the projection on µ̂ = (x̂ − ẑ)/
√

2. The en-
ergy levels are indexed by the canonical momentum p =
Mv + 2kmx̂ (mod K), which is conserved in the absence
of external force. Here, the reciprocal lattice vector K =
2k(2x̂ + ẑ) ‖ ν̂ corresponds to the momentum kick im-

parted on a non-trivial cycle m
z→ m+ 2

x→ m+ 1
x→ m

involving one transition along z and two along x. In the

following, we decompose the momentum as p = pξ̂ + qν̂,

with ξ̂ = (x̂ − 2ẑ)/
√

5 ⊥ ν̂, such that the first Brillouin
zone is defined for |q| < K/2 and arbitrary p. The energy
levels of the Hamiltonian (1) organize in Bloch bands
shown in Fig. 1d. We focus here on the ground band,
which is quasi-flat in the bulk mode region |p| . 7k (see
Methods).

Our experiments use ultracold dilute samples of '
3.0(3) × 104 atoms of 162Dy, prepared in an optical
dipole trap at a temperature T = 260(10) nK. The
atoms are subjected to a magnetic field B = 221(1) mG
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FIG. 3. Frustration of motion in the bulk and anisotropic ballistic edge modes. a. Evolution of the mean velocity
〈v〉 versus momentum. The arrow is scaled according the mean velocity modulus. b. Measurements of the q-average velocity
components versus p. The solid lines are the expected variations for the ground band of the Hamiltonian (1).

along z, and initially spin-polarized in the magnetic sub-
level m = −J . We adiabatically ramp up the laser
intensities to generate the spin couplings described in
(1) with tx = 5.69(6)Erec and tz = 5.1(1)Erec, where
Erec = k2/(2M) is the recoil energy. Starting in the
m = −J edge mode region with p < 7k, we prepare ar-
bitrary momentum states of the ground energy band by
applying a weak force on a typical 1 ms timescale (see
Methods). At the end of the experiments, we probe the
velocity distribution by imaging the atomic sample af-
ter free expansion in the presence of a magnetic field
gradient, such that the different m states are spatially
separated.

We first investigate the anomalous Hall drift in spin
space upon the application of a weak force in the xz
plane. For a force oriented along µ̂ (spatial direction con-
jugated tom), the spin projection probabilities Πm reveal
a drift of the mean spin projection 〈m〉, while the mean
remainder 〈n〉 remain approximately constant (Fig. 2a).
An opposite behavior is observed when applying a force
along ν̂ (direction conjugated to n), with a quasi-linear
variation of 〈n〉 while 〈m〉 remains constant (Fig. 2b).
More generally, in the bulk of the system, where the band
dispersion can be neglected, the variation with momen-
tum of the mean values 〈n〉 and 〈m〉 can be expressed as
an anomalous Hall drift governed by the antisymmetric
Berry curvature tensor Ωbulk, as

d〈rα〉 = Ωαβbulkdpβ , (4)

Ωbulk = B−1 =
1

2k




0 0 1 1
0 0 1 −2
−1 −1 0 0
−1 2 0 0


 , (5)

where r is the position vector and dp is the momen-
tum variation due to the external force. We con-
front this prediction to our measurements of the mean
positions 〈m〉 and 〈n〉 as a function of p (Fig. 2c).
In the center of the Brillouin zone |p| ≤ 4k (bulk
mode region), we fit the measured Hall drift with the
linear function (4), yielding {Ωnx,Ωnz,Ωmx,Ωmz} =
{−1.00(2),−0.98(2),−0.98(2), 1.96(2)}/(2k), consistent
with (5). We do not measure any significant spatial drift
upon the application of a force in the xz plane, consistent
with Ωxz = 0. Similarly, no Hall current along n is mea-
sured when applying a force along m (corresponding to

a perturbative Zeeman field), compatible with Ωnm = 0
(see Methods).

Further insight on the ground band properties is pro-
vided by the mean velocity 〈v〉 (Fig. 3), which reveals
distinct behaviours between bulk and the edge modes.

In the bulk |p| . 7k, the mean velocity remains much
smaller than the recoil velocity vrec = k/M (Fig. 3b).
Since 〈v〉 = ∇pE0, it confirms that the ground band
energy E0 is quasi-flat in the bulk (Fig. 1d). This mea-
surement illustrates the frustration of motion induced by
the magnetic field, similarly to flat Landau levels in 2D
electron gases.

For p & 7k, the atoms mostly occupy the edge redge =
Jm̂ of the synthetic dimension m. We measure a non-
zero mean velocity, whose ξ component increases with
p, while the ν projection remains small (Fig. 3b). This
observation is characteristic of an anisotropic edge mode
of a 4D quantum Hall system, which corresponds to a
collection of 1D conduction channels oriented along the

direction wmotion, with wαmotion ∝ Ωαβbulkr
edge
β , here corre-

sponding to the direction ξ̂ [29]. Within the edge, the
motion in the plane orthogonal to wmotion remains in-
hibited, in agreement with the measured ν velocity. A
similar behaviour is found on the edge −Jm̂, albeit with
opposite orientation of velocity.

A hallmark of 4D quantum Hall physics is the peculiar
nature of excitations above the ground band, which can
be linked to classical cyclotron trajectories. While cy-
clotron motion in 2D and 3D always corresponds to pla-
nar circular orbits, we expect more complex trajectories
in 4D, involving two planar rotations occurring at differ-
ent rates. In our system, each of these two elementary
excitations is generated by the Raman coupling along x
or z, of corresponding frequencies ωx and ωz indepen-
dently set by the amplitudes tx and tz. We excite the
atoms by applying a diabatic velocity kick, and measure
the subsequent time evolution of the center of mass. We
show in Fig. 4a the orbit measured for ωz/ωx ' 2, reveal-
ing a non-planar trajectory. For this integer frequency
ratio, the orbit is almost closed, and is reminiscent of a
Lissajous orbit (Fig. 4b). We also studied the case of de-
generate frequencies ωz ' ωx, which correspond to the
coupling amplitudes used for our study of the ground
band. In this ‘isoclinic’ case, we recover a planar cy-
clotron motion akin to lower-dimensional cyclotron orbits
(Fig. 4c,d).
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FIG. 4. Cyclotron dynamics. a. Evolution of the center-
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orbit measured for ωz ' ωx. The green arrow shows the
viewpoint for the planar projection shown in d. d. Two-
dimensional projection revealing the planar nature of the or-
bit viewed from the side.

The non-trivial topology of a quantum Hall system
manifests in the quantization of its electromagnetic re-
sponse. While involving the linear Hall conductance in
2D, it requires in 4D considering the non-linear response
to both an electric force f and a magnetic field b. These
two perturbations induce a current

jαnon-linear =
C2

4π2
εαβγδfδbβγ ,

where εαβγδ is the 4D Levi-Civita symbol and C2 is the
integer second Chern number [22]. In other words, the
magnetic field bβγ induces a Hall effect in the perpendic-
ular plane.

We first demonstrate the quantization of the non-linear
response by reconstructing the second Chern number in
terms of a non-linear combination of Berry curvatures.
For an infinite lattice system, it can be expressed as an in-
tegral over the Brillouin zone C2 =

∫
ρ2 d4q/(8π2), where

ρ2 = 1
8εαβγδΩ

αβΩγδ is the second Chern character (see

Fig. 5a and Methods). Since our system exhibits edges
along m, the full band spectrum is gapless (Fig. 1d), pre-
venting a truly topological character for the system as
a whole. To recover quantization, we compute from our
data the local second Chern marker, which quantifies the
non-linear response resolved in m, as (see Methods)

C2(m) =
1

3

∫

|p|<p?
ρ2(p, q)Πm(p, q)dp dq,

where p? = 7k is a momentum cutoff delimiting the bulk
mode region (Fig. 5b). In the central region −5 ≤ m ≤ 5,
we measure an almost constant marker C2(m) = 0.97(6),
compatible with the second Chern number C2 = 1,
demonstrating topological quantization.

In order to directly probe the non-linear response, we
implement a magnetic perturbation bnm, expecting the
appearance of a Hall effect in the xz plane. For this, we
modified the polarization of the laser beam propagating
along x, such that the spin transition amplitude becomes
(see Methods)

J+ → J+ + iε
{J+, Jz}

2
,

with ε ' 0.1, leading to a complex phase amplitude φ′x '
εm. According to (2), this phase corresponds to an addi-
tional vector potential A′ = (0, 0, 2εm, εm)/3, hence the
magnetic field component bnm = −∂mAn = −2ε/3. We
investigate its effect on the xz dynamics subsequent to a
kick along x, using laser couplings such that ωx ' ωz ≡ ω
in the absence of magnetic perturbation. The xz dy-
namics shown in Fig. 5c,d,e are reminiscent of those of a
Foucault pendulum, namely a harmonic oscillation at ω,
with a slower precession governed by the bnm field. We
show in Methods that, in the bulk, the precession rate

ωp =
1

2
Mω2ρbulk2 bnm (6)

gives access to the second Chern character ρbulk2 . Our
measurements yield ρbulk2 ' 0.65(2)/k2, close to the the-

oretical expectation ρbulk2 = 1
8εαβγδΩ

αβ
bulkΩγδbulk = 3/(4k2)

and to the value 0.75(7)/k2 computed from the Berry
curvature measurements.

In conclusion, we realized a 4D quantum Hall system,
and revealed its non-trivial topological character. Other
specific properties of the 4D quantum Hall effect could
be addressed in future work, such as the complex edge
mode trajectories expected for compact boundaries [32].
Our protocol could also be generalized to engineer other
classes of topological systems, such as 5D Weyl semimet-
als [33] and 6D quantum Hall systems [34, 35]. Further-
more, our work opens a door towards the study of inter-
acting quantum many-body physics in high-dimensional
topological structures, where one expects generalized
fractional quantum Hall states [9, 16, 36]. Interacting
quantum Hall states in high dimensions could also be
used to simulate high-energy physics models, such as
quantum gravity [9] and Yang-Mills field theory [17, 18].
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R É S U M É É T E N D U E N F R A N Ç A I S

Production de gaz ultrafroids de dysprosium

Au XXe siècle, les systèmes de matière condensée, tels que les matériaux magnétiques,
les supraconducteurs et l’hélium liquide, ont été à l’avant-garde des développements
de la physique quantique. Au cours des dernières décennies, les expériences sur les
atomes ultrafroids (et leurs cousins dans le domaine plus large de la physique atomique,
moléculaire et optique) ont apporté de nouvelles possibilités passionnantes pour sonder
les fondements de la mécanique quantique, comprendre les effets de nombreux corps
par simulation quantique et concevoir des systèmes entièrement nouveaux sans équi-
valent traditionnel en matière condensée. Cela est rendu possible par un contrôle exquis
des paramètres physiques, notamment des potentiels spatiaux, des interactions, de la
dimensionnalité et du couplage à l’environnement, le tout combiné à des protocoles de
détection précis et microscopiques.

Les principes de la manipulation du mouvement et des états internes des atomes à
l’aide de la lumière étaient déjà présents dans les premiers travaux d’Einstein [13] et de
Kastler [14]. Les techniques modernes de refroidissement par laser se sont rapidement
développées à partir du milieu des années 1970, suite à la généralisation des sources laser
accordables avec précision. On peut en trouver un résumé dans les conférences Nobel
1998 de Chu, Cohen-Tannoudji et Phillips [15-17]. Ces développements ont abouti à la
création de gaz ultrafroids dilués et dégénérés, où la taille du paquet d’ondes quantiques
associé à un seul atome, c’est-à-dire la longueur d’onde de de Broglie thermique, est
comparable à l’espacement entre les atomes. Selon les statistiques quantiques des atomes
impliqués, de tels échantillons forment des condensats de Bose-Einstein (BEC) [18, 19] ou
des gaz de Fermi dégénérés [20]. Ce fut la naissance du domaine des atomes ultrafroids
dans sa forme actuelle, et plusieurs résultats marquants ont été obtenus au cours des
années suivantes. Il s’agit notamment de l’observation de la transition de phase de
l’isolant Mott au superfluide [21], de la transition Berezinskii-Kosterlitz-Thouless [22] et
le passage du BEC moléculaire au superfluide Bardeen-Cooper-Schrieffer [23-26] (voir
réf. [27, 28] pour des revues plus complètes).

Les travaux ci-dessus ont été réalisés avec des éléments dont les interactions inter-
atomiques sont données par des forces de van der Waals à courte portée. De nouvelles
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possibilités sont créées avec des interactions dipôle-dipôle magnétiques à longue portée,
comme cela a été illustré pour la première fois avec les BECs de chrome avec l’observation
d’un comportement ferrofluide [29]. L’étude des gaz ultrafroids dipolaires s’est accélérée
au cours de la dernière décennie, suite au refroidissement des éléments lanthanides
dysprosium [30, 31] et erbium [32] jusqu’à la dégénérescence quantique. Ici, le contrôle
des interactions fortes à longue portée et leur interaction subtile avec les interactions à
courte portée ont conduit à l’observation de nouvelles phases de gouttelettes [33] et de
supersolides [34-36] (voir réf. [37] pour une revue).

Dans le chapitre 2, nous décrirons notre dispositif expérimental pour la production
de gaz de dysprosium ultrafroid. Plutôt que des interactions à longue portée, le travail
présenté dans cette thèse exploite une autre caractéristique unique du dysprosium : son
grand moment angulaire d’état fondamental J = 8. Nous expliquons comment nous
utilisons les décalages lumineux dépendant du spin associés aux transitions à ligne étroite
pour créer des hamiltoniens de spin non linéaires, avec des effets de chauffage minimaux.
En combinant cette capacité avec le grand nombre d’états internes 2J + 1 = 17, dont
nous pouvons détecter les probabilités de projection individuellement, nous discutons de
la façon dont notre expérience comme une plateforme flexible pour réaliser les études
décrites ci-dessous.

Comportement critique et rupture de symétrie dans le modèle Lipkin-Meshkov-Glick

Les transitions de phase sont omniprésentes dans la nature, dans des systèmes à toutes
les échelles d’énergie et de longueur, du plasma quark-gluon dans l’univers primitif à
l’hélium liquide dans les cryostats de laboratoire. Notre compréhension des transitions
de phase a historiquement reposé sur le comportement non analytique des quantités
thermodynamiques, la rupture spontanée de la symétrie et les fluctuations du paramètre
d’ordre. Ces concepts jouent toujours un rôle clé dans la description moderne des
transitions de phase, qui est sous-tendue par le groupe de renormalisation [38], développé
par Fisher, Wilson et Kadanoff dans les années 1970. Cette théorie permet une description
commune et élégante de classes entières de systèmes proches d’une transition en termes
de quelques paramètres universels, indépendants des détails microscopiques des systèmes
particuliers [4]. Dans les systèmes quantiques, le changement de comportement observé
lorsqu’on fait varier un paramètre de contrôle est compris en termes de véritable transition
de phase se produisant à un point critique quantique - défini à température zéro dans
un système infini. Aux températures finies, une interaction complexe de fluctuations
thermiques et quantiques conduit à la criticité quantique, où les excitations ne peuvent
être réduites à une théorie effective avec des interactions faibles [39]. Dans les systèmes
finis, le point critique quantique apparaît également dans le régime de croisement, décrit
quantitativement par des paramètres universels issus de la théorie de l’échelle de taille
finie [40].
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Les propriétés distinctes attendues à proximité d’un point critique quantique peuvent
parfois être sondées par des observables macroscopiques, comme le ralentissement des
temps de relaxation. Cependant, la révélation de propriétés spécifiquement quantiques,
comme l’intrication quantique entre plusieurs corps, reste un défi. Le développement
récent de systèmes quantiques hautement contrôlés de taille mésoscopique, tels que les
cristaux ioniques [42], les systèmes de réseaux optiques [43], les réseaux d’atomes de
Rydberg [44], ou les photons en interaction [45], permet une caractérisation microscopique
des propriétés quantiques collectives [46] telles que la matrice de densité complète
[45], l’entropie d’intrication [47] ou l’ordre non local des cordes [48]. Ce degré de
contrôle pourrait être utilisé pour étudier des aspects fondamentaux des transitions
de phase quantiques, comme le lien entre la rupture d’une symétrie sous-jacente et
l’apparition d’un paramètre d’ordre non nul [3]. Ce lien ne peut être testé dans les
systèmes macroscopiques, où les superpositions quantiques de grande taille ne peuvent
pratiquement pas exister et où la rupture spontanée de symétrie est inévitable [49].

Dans le chapitre 3, nous présentons une étude expérimentale du modèle Lipkin-
Meshkov-Glick (LMGm), qui décrit des spin-1/2s quantiques avec des interactions Ising
de portée infinie dans un champ transversal. Dans la limite thermodynamique, le LMGm
présente une transition de phase ferromagnétique, caractérisée par la rupture spontanée
d’une symétrie Z2. Ce modèle a été proposé à l’origine pour les systèmes nucléaires : [50-
52], mais il a trouvé une utilisation généralisée. Par exemple, le LMGm décrit des systèmes
subissant la transition de superradiance de Dicke [53] (dans la limite de température
zéro), et des BECs bimodes avec un effet tunnel de type Josephson [54, 55]. D’un point de
vue théorique, le LMGm a été largement étudié en raison de sa tractabilité mathématique
et de son lien étroit, via la théorie du champ moyen et l’échelle de taille finie, avec le
modèle d’Ising à champ transversal à courte portée [56].

Notre réalisation du LMGm est basée sur l’équivalence entre le spin électronique
J = 8 de l’atome de dysprosium et un ensemble de N = 2J spins-1/2s dans un état
symétrique d’échange. Nous simulons les interactions ferromagnétiques d’Ising avec
un décalage de lumière quadratique. Étant donné ce codage de qubits, les moments
du spin total-J donnent accès aux valeurs des corrélateurs à quelques qubits. Nous
mesurons le passage entre les comportements para- et ferromagnétiques en utilisant
les propriétés thermodynamiques et la réponse dynamique. Nous révélons un régime
de comportement critique quantique et une dynamique ralentie autour du point de
transition. Un atout spécifique de notre installation est l’accès direct à l’observable de
parité correspondant à la symétrie Z2, rendu possible par la résolution d’un seul sous-
niveau magnétique – ceci n’est pas possible dans les systèmes macroscopiques. Nous
étudions le lien fondamental entre la rupture de symétrie et l’apparition d’un paramètre
d’ordre fini. La taille mésoscopique du système nous offre un degré de contrôle qui nous
permet de sonder spécifiquement la rupture de symétrie due à une perturbation appliquée
manuellement (par exemple, pour mesurer la susceptibilité), ainsi que d’observer la
rupture de symétrie spontanée due à des fluctuations environnementales aléatoires.
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Partitionnement du spin électronique du dysprosium pour révéler l’intrication

L’intrication a toujours été la forme d’étrangeté associée aux systèmes quantiques. Schrö-
dinger a appelé l’intrication "le trait caractéristique de la mécanique quantique, celui
qui l’éloigne entièrement de la pensée classique" [57]. En bref, l’intrication permet des
situations où la meilleure connaissance possible d’un tout (système quantique) n’inclut
pas la meilleure connaissance possible de ses parties (sous-systèmes). Les premières
discussions sur l’intrication se sont concentrées sur sa pertinence pour les interprétations
à variables cachées de la mécanique quantique [5, 6]. Aujourd’hui, elle est également
reconnue comme une ressource dans le contexte des technologies quantiques, pour
des tâches telles que le calcul algorithmique, la communication, la cryptographie et la
téléportation [58].

L’intrication joue également un rôle fondamental dans la conduite des transitions
de phase quantiques [4, 41], sous la forme de la propagation des corrélations à travers
de grandes échelles de longueur. En effet, si l’étude du modèle LMG décrit ci-dessus
était réalisée sur un système avec des qubits individuellement distinguables, l’écrasement
observé d’une quadrature de spin globale dans la région de croisement impliquerait une
intrication entre les qubits [59]. Il est alors naturel de se demander si une signification
physique peut être attribuée à l’"intrication des qubits codés" et dans quelle mesure
elle est accessible en tant que ressource. C’est la ligne d’investigation qui anime notre
deuxième étude expérimentale, présentée dans le chapitre 4, où nous effectuons une
partition de cet ensemble à l’aide de transitions optiques, donnant accès aux propriétés
d’intrication.

Précisons tout d’abord que l’intrication fait partie de la catégorie plus générale des
comportements non-classiques. La non-classicalité peut être identifiée même dans les
cas où les sous-systèmes ne peuvent être identifiés, par exemple les états de Fock en
optique quantique. Les corrélations non classiques au sein de systèmes indivisibles
peuvent être fondamentalement incompatibles avec une description classique, comme le
démontre la violation des inégalités de type Bell [60]. Dans le spin de l’état fondamental
du dysprosium, si l’ensemble des qubits codés ne peut pas être partitionné, nous devons
nous limiter à affirmer que nous pouvons avoir un comportement non classique au
niveau du spin total, correspondant aux corrélations quantiques de ses degrés de liberté
internes.

Avant de décrire nos travaux, il est également utile de discuter les types de systèmes
utilisés pour créer et détecter l’intrication. Les systèmes minimaux intriqués de paires
de qubits, tels que réalisés avec des paires de photons corrélés, jouent un rôle central
dans la vérification des fondements de la mécanique quantique [7, 61], par la violation
des inégalités de Bell [6]. L’intrication peut également être conçue dans des systèmes à
plusieurs particules [62], tels qu’un ensemble d’atomes en interaction [63]. Dans ce cas,
les atomes ne sont pas adressables individuellement, et les corrélations quantiques sont
indirectement révélées par la mesure de propriétés globales, telles qu’une quadrature de
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projection de spin comprimée [64-67] ou via l’amélioration quantique de la sensibilité
métrologique [68-70]. Des expériences de pointe avec des systèmes photoniques [71], des
qubits supraconducteurs [72], des ions piégés [73] et des réseaux d’atomes de Rydberg
[74] peuvent maintenant produire des états hautement intriqués de dizaines de qubits
identifiables individuellement, où l’intrication est plus facilement observable.

Dans notre travail, nous accédons d’abord aux propriétés d’intrication en partitionnant
le spin à l’aide d’un couplage optique à un état excité J′ = J − 1 . Cela supprime une
paire de qubits dans un état défini par la polarisation de la lumière. En partant des états
W et comprimés bien connus, nous extrayons la concurrence des paires de qubits, qui
quantifie leur caractère non classique. Nous démontrons aussi directement l’intrication
entre les sous-systèmes à 14 et 2 qubits par une augmentation de l’entropie lors de la
partition. Dans une deuxième série de mesures, nous sondons la décohérence d’un état
préparé dans le niveau excité J′ = J + 1 et interprétons l’émission spontanée comme une
perte d’une paire de qubits dans un état aléatoire. Cela nous permet de contraster la
robustesse des corrélations non classiques par paire de l’état W avec la fragilité de la
cohérence impliquée dans un état chat de Schr’odinger [75]. Ces observations sont liées à
l’information which path portée par la polarisation du photon émis. Nos résultats peuvent
être considérés dans le cadre du récent débat sur la non-classicalité et l’intrication dans
les systèmes de constituants indiscernables [76]. Nous discutons également d’expériences
futures impliquant des atomes intriqués dans des configurations spatialement séparées,
et plus généralement de la physique de spin à plusieurs corps avec le dysprosium.

Topologie et spectre d’intrication d’un système de Hall synthétique

Nous nous éloignons maintenant de l’idée de qubits encodés dans le spin de l’état
fondamental électronique. Pour la réalisation de systèmes topologiques, nous utilisons
les sous-niveaux magnétiques de 2J + 1 pour représenter une ‘position’ discrète dans
une dimension synthétique, comme cela a été proposé à l’origine dans l’article [77]. Le
mouvement le long de points voisins dans la dimension synthétique est permis par des
transitions laser à deux photons, qui créent des facteurs de phase de saut complexes
(cf. la phase Aharanov-Bohm) et un lien bien défini avec le mouvement de l’atome le
long de l’axe de recul du photon. Cela motive une analogie avec une particule chargée
se déplaçant en deux dimensions en présence d’un champ magnétique perpendiculaire.
Ainsi, nous réalisons un système de Hall dans une géométrie en ruban ; ici, une dimension
est le long d’un axe dans l’espace réel, tandis que l’autre est une dimension synthétique
finie encodée dans le spin.

Les systèmes de Hall quantique sont célèbres pour la quantification extrêmement
robuste de leur conductance transversale. Dans les systèmes traditionnels de matière
condensée, les impuretés et le désordre conduisent à des bandes conductrices entourant
des domaines isolants d’électrons localisés, ce qui rend les comparaisons avec des



résumé étendu en français 205

modèles simples difficiles [78, 79]. La conductance de Hall quantifiée résulte de la
structuration topologique non triviale des états quantiques d’une bande d’électrons [10].
Pour un système infini, cette structure est décrite par le nombre de Chern, un invariant
topologique prenant des valeurs entières, qui est robuste jusqu’à un certain degré de
désordre [10]. Dans un système réel de taille finie, la topologie non triviale conduit à
des modes de bord sans vide, caractérisés par un mouvement unidirectionnel protégé
de la rétrodiffusion [79]. Ces modes de bord chiraux, ainsi que leur généralisation
aux isolants topologiques, aux supraconducteurs topologiques ou aux états de Hall
quantiques fractionnaires [80, 81], sont au cœur d’applications possibles en spintronique
[82] ou en informatique quantique [83].

Les premiers travaux utilisant des dimensions synthétiques de taille limitée ont
permis de mesurer des courants de bord chiraux [84, 85]. Cependant, la pertinence
des propriétés topologiques nécessite la notion de bulk. Dans BLAH, nous décrivons
la réalisation d’un système de Hall synthétique avec des propriétés de bulk et de bord
distinctes. Dans la bande la plus basse, nous caractérisons les modes de masse sans
dispersion, où le mouvement est inhibé en raison d’une bande d’énergie aplatie, et
les états de bord chiraux, où les particules sont libres de se déplacer dans une seule
direction. Nous étudions également les excitations élémentaires du système vers des
bandes supérieures, qui prennent la forme d’orbites cyclotron dans le volume et d’orbites
à saut le long des bords. Enfin, nous mesurons la dérive de Hall induite par une tension
externe, et caractérisons la réponse de Hall locale de la bande en utilisant le marqueur de
Chern local, qui quantifie l’ordre topologique dans l’espace réel [86]. Nos expériences
montrent que la dimension synthétique est suffisamment grande pour permettre un bulk
significatif avec des propriétés topologiques robustes.

Les propriétés d’intrication des états à plusieurs corps contiennent des informations
clés sur les propriétés topologiques. En particulier, la structure des valeurs propres de la
matrice de densité d’un sous-système donné, connue sous le nom de spectre d’intrication,
donne le spectre d’excitation à plusieurs corps des modes de bord chiraux du système
global [87]. Nous réinterprétons nos résultats expérimentaux de ce point de vue, révélant
une signature du spectre d’intrication au niveau de la particule unique. Nous discutons
ensuite de la façon dont les propriétés d’intrication pourraient être sondées directement
dans notre système avec de futures expériences, inspirées par une proposition récente
non encore réalisée [88]. Nous concluons par une perspective sur la réalisation d’états
topologiques à corps multiples avec le dysprosium.
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RÉSUMÉ

Cette thèse porte sur trois études utilisant des gaz ultrafroids d'atomes de dysprosium bosoniques. Nous encodons des états
quantiques d'intérêt dans le grand spin électronique J=8 de l'état fondamental de chaque atome. Des transitions optiques étroites sont
utilisées pour manipuler ces états en créant de forts décalages lumineux tensoriels dépendant du spin avec un chauffage négligeable.
Notre schéma de détection utilise des rotations de spin arbitraires suivies d'une mesure des probabilités de projection de chaque état
interne. 

Premièrement, nous étudions un modèle d'Ising de spins 1/2 quantiques soumis à un champ transverse et interagissant à
portée  infinie.  Ce  modèle  présente  une  transition  de  phase  quantique  du  type  paramagnétique-ferromagnétique  dans  la  limite
thermodynamique. Notre expérience repose sur l'équivalence formelle entre les états d'un spin J=8 et les états symétriques par échange
de  2J=16  qubits  dans  le  secteur  de  spin  maximal.  Nous  sondons  les  propriétés  thermodynamiques  et  dynamiques,  révélant  un
comportement critique quantique de taille finie autour de la transition. Ensuite, nous testons directement le lien fondamental entre la
brisure de symétrie et l'apparition d'un paramètre d'ordre fini. Ceci est rendu possible par l'accès à l'observable collectif qui définit la
symétrie Z2 sous-jacente.

Deuxièmement, nous partitionnons le spin électronique pour révéler l'intrication dans les états non-classiques. En couplant
optiquement le niveau de base à un état excité J'=J-1, nous extrayons une paire de qubits encodés dans un état défini par la polarisation
de la lumière. Nous sondons la concomitance (concurrence) des paires de qubits extraites des états W et des états comprimés pour
quantifier leur caractère non-classique. Nous démontrons directement l'intrication entre les sous-systèmes à 14 et 2 qubits par une
augmentation de l'entropie lors de la partition. Dans un ensemble complémentaire d'expériences, nous sondons la décohérence d'un
état préparé dans le niveau excité J'=J+1 et interprétons l'émission spontanée comme la perte d'une paire de qubits  dans un état
aléatoire. Cela nous permet de contraster la robustesse des corrélations non classiques par paire de l'état W avec la fragilité de la
cohérence d'un état chat de Schrödinger.

Troisièmement, nous simulons un système de Hall quantique en exploitant le spin de l'état fondamental électronique comme
une dimension synthétique discrète, et en le couplant optiquement au mouvement atomique le long d'une deuxième dimension réelle.
Cela crée un champ magnétique artificiel, les deux dimensions couplées formant un ruban de Hall avec des bords nets le long de l'axe
synthétique. Nous démontrons que le grand nombre de sous-niveaux magnétiques conduit à des comportements distincts dans le cœur
et  sur  les  bords  du  système,  et  à  une  réponse  de  Hall  caractéristique  d'une  topologie  non-triviale.  Nous  effectuons  une  étude
préliminaire du spectre d'intrication associé à une partition au centre de la dimension synthétique, et nous expliquons comment de
futures études pourraient directement implémenter le hamiltonien d'intrication correspondant. Nous concluons avec une feuille de route
pour étendre les techniques présentées dans cette thèse afin de réaliser des états topologiques à N corps.

MOTS CLÉS

gaz quantiques, atomes ultrafroids, criticité quantique, intrication quantique, matière topologique

ABSTRACT

This thesis describes three studies using ultracold gases of bosonic dysprosium atoms. We encode quantum states of interest in
the large electronic ground state spin J=8 of each atom. Narrow-line optical transitions are used to manipulate these states by creating
strong  spin-dependent  tensor  light  shifts  with  negligible  heating.  Our  detection  scheme  uses  arbitrary  spin  rotations  followed  by
measurement of projection probabilities with single magnetic sublevel resolution.

Firstly,  we study  a transverse-field Ising model  of  quantum spin-1/2’s with infinite-range interactions.  This  model  shows a
paramagnetic to ferromagnetic quantum phase transition in the thermodynamic limit. Our experiment relies on the formal equivalence
between the states of a spin J=8 and exchange-symmetric states of 2J=16 qubits in the sector of maximum total spin. We probe the
thermodynamic and dynamical properties, revealing finite-size quantum critical behaviour around the transition point. We also directly test
the fundamental  link between symmetry breaking and the appearance of a finite order parameter.  This is enabled by access to the
collective observable defining the underlying Z2 symmetry.

Secondly, we partition the electronic spin to reveal entanglement in nonclassical states. By optically coupling the ground level to
an excited state J' = J-1, we remove a pair of encoded qubits in a state defined by the light polarisation. We probe the concurrence of
qubit pairs extracted from W and squeezed states to quantify their nonclassical character. We directly demonstrate entanglement between
the  14-  and  2-qubit  subsystems  via  an  increase  in  entropy  upon  partition.  In  a  complementary  set  of  experiments,  we  probe  the
decoherence of a state prepared in the excited level J' = J + 1 and interpret spontaneous emission as a loss of a qubit pair in a random
state. This allows us to contrast the robustness of nonclassical pairwise correlations of the W state with the fragility of the coherence of a
Schrödinger cat state.

Thirdly, we simulate a quantum Hall system by exploiting the electronic ground state spin as a discrete synthetic dimension, and
optically  coupling  it  to  atomic motion along a second real  dimension.  This creates an artificial  magnetic  field,  with the two coupled
dimensions forming a Hall ribbon with sharp edges along the synthetic axis. We demonstrate that the large number of magnetic sublevels
leads  to  distinct  bulk  and edge  behaviours,  and a  Hall  response characteristic  of  a  non-trivial  topology.  We perform a  preliminary
investigation of the entanglement spectrum associated with a partition at the centre of the synthetic dimension, and we explain how future
studies could directly implement the corresponding entanglement Hamiltonian. We conclude with a roadmap for extending the techniques
presented in this thesis in order to realise many-body topological states.
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quantum gases, ultracold atoms, quantum criticality, quantum entanglement, topological matter
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