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Long Abstract

This Habilitation to supervise research presents the numerous research activities performed

since 20114 targeting the development of flexible and efficient architectures for high perfor-

mance embedded computing.

The presented research activities aim at the realization of flexible and efficient archi-

tectures in multitude application domains such as digital communication, data-flow, neural

networks, embedded machine learning and embedded vision. These research works have ad-

dressed the design and implementation of novel hardware architectures aiming to attain the

emergent flexibility requirement, and the ever-increasing requirements of enhanced perfor-

mance and reduced power consumption and implementation resources. The performed work

has targeted the elaboration of new algorithms and hardware architectures using different

design paradigms. Several approaches have been adopted including (1) the demonstration of

design approaches that lead to better exploiting of resources; (2) making use of optimization

techniques such as approximate computing, quantization, and building dedicated hardware

architectures; (3) refinement of available algorithms or proposing new algorithms that en-

hance the performance; (4) exploiting the technological advancements especially related to

memristive devices; (5) tackling emergent computing styles such as smart memory architec-

tures, memory-based computing and in-memory computing and (6) benefiting from MPSoC

design approaches.

In this context, several research works have been initiated through completed or ongoing

research projects, two defended PhD theses and several Master theses. The most significant

achievements are presented by grouping them in four sub-themes: (1) Flexible yet efficient

architectures for applications in the digital communication domain; (2) Efficient algorithms

and architectures for dataflow applications; (3) Efficient and flexible design paradigms based
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on emergent memristive devices and (4) Efficient implementations of machine learning al-

gorithms.

In the first theme, the No-Instruction-Set-Computer (NISC) design methodology is ex-

plored to design dedicated modules of turbo receiver. Two NISC-based architectures are

demonstrated. The obtained results in terms of performance and implementation area con-

firm the feasibility of adopting NISC concept in designing flexible yet efficient application-

specific processors in the domain of digital communications.

In the second theme, the novel Notifying Memories (NM) concept is introduced to elimi-

nate useless accesses to memories. Memories are transferred into masters that notify proces-

sors when the data is ready to be processes. The use of the NM concept leads to significant

reductions in latency, injection rate, transported flits and switch conflicts. Also, the through-

put is highly enhanced while saving power. In addition, a novel remapping algorithm and

network-on-chip (NoC)-based architecture design are proposed to cope with the dynamicity

of dataflow actors.

In the third theme, memristive devices are adopted to enhance the computing perfor-

mance. First, memory-based computing on NoC architecture is introduced by making use of

emergent non-volatile memories with power-gating capabilities to enhance the performance

and attain low power consumption. In addition, the use of memristors to design architectures

which combine flexibility and efficiency, has been explored and introduced through the pro-

posal of original architectures that break the limits of the existing ones. The exploration and

study have been conducted in three main levels: (1) interconnect level, (2) processing level

and (3) memory level.

The fourth theme focuses on the design and implementation of efficient machine learn-

ing algorithms targeting the tactile sensing application. In particular, approximate computing

techniques and designing of custom hardware accelerators are adopted to reduce the compu-

tational complexity and achieve higher performance with low power consumption.

Current research activities focus on embedded computer vision (CV) and artificial intel-

ligence (AI) with the goal of achieving efficient implementations on edge devices with low

computational resources and low power budget. The application domains are real-time drone

navigation, marine object detection using deep learning and multi-view object detection. Re-
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sults achieved so far are novel and very encouraging.

Concerning the research perspectives, in the short and medium term, several perspectives

are proposed: interactive machine learning on edge devices for object detection application,

distributed learning on connected devices and tiny machine learning. In the longer term, it is

planned to focus on building memory centric low-power processor.





Résumé long

Ce mémoire d’habilitation à diriger des recherches présente mes nombreuses activités de

recherche menées depuis 2014 visant le développement d’architectures flexibles et efficaces

pour le calcul embarqué haute-performance.

Les activités de recherche présentées visent la proposition et la conception d’architectures

flexibles et efficaces dans plusieurs domaines applicatifs tels que la communication

numérique, les flots de données, les réseaux de neurones, l’apprentissage automatique et la

vision embarquée. Ces travaux de recherche ont porté sur la conception et la mise en œuvre

de nouvelles architectures matérielles visant à répondre aux exigences émergentes en matière

de flexibilité, ainsi qu’aux exigences toujours plus grandes en termes de performances et de

réduction de la consommation d’énergie et des ressources matérielles. Plusieurs approches

ont été explorées, notamment : (1) la démonstration d’approches de conception permettant

une meilleure exploitation des ressources, (2) l’utilisation de techniques d’optimisation telles

que le calcul approximatif, la quantification et la construction d’architectures matérielles

dédiées, (3) l’optimisation d’algorithmes existants ou la proposition de nouveaux algo-

rithmes améliorant les performances, (4) l’exploitation des avancées technologiques, notam-

ment en ce qui concerne les dispositifs memristifs, (5) la prise en compte des paradigmes de

calcul émergents tels que le calcul en mémoire et les architectures de mémoire intelligente

et (6) la mise à profit des approches de conception de MPSoC.

Dans ce contexte, plusieurs travaux de recherche ont été initiés à travers des projets de

recherche terminés ou en cours, deux thèses de doctorat soutenues et plusieurs thèses de

Master. Les réalisations les plus significatives sont présentées en les regroupant en quatre

sous-thèmes : (1) Architectures flexibles et efficaces pour des applications dans le domaine

des communications numériques, (2) Algorithmes et architectures efficaces pour des applica-
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tions de flot de données, (3) Paradigmes de conception efficaces et flexibles basés sur des dis-

positifs memristifs émergents et (4) Implémentations efficaces d’algorithmes d’apprentissage

automatique.

Dans le premier thème, la méthodologie de conception No-Instruction-Set-Computer

(NISC) est explorée pour concevoir des accélérateurs dédiés aux récepteurs itératifs. Deux

architectures basées sur NISC sont proposées et conçues. Les résultats obtenus en termes de

performance et de surface confirment la pertinence de l’adoption du concept NISC dans

la conception de processeurs flexibles et efficaces dans le domaine des communications

numériques.

Dans le deuxième thème, le nouveau concept de Notifying Memories (NM) est intro-

duit pour éliminer les accès inutiles aux mémoires. Les mémoires sont transposées dans

des maı̂tres qui informent les processeurs lorsque les données sont prêtes à être traitées.

L’utilisation du concept NM conduit à des réductions significatives de la latence, du taux

d’injection, les flits transportés, des conflits de commutation. De plus, le débit est fortement

amélioré tout en réduisant la consommation énergétique. En outre, un nouvel algorithme de

remapping et une architecture basée sur un réseau-sur-puce (NoC) sont proposés pour faire

face à la dynamicité des acteurs du flot de données.

Dans le troisième thème, les dispositifs memristifs sont explorés. Tout d’abord, une

nouvelle architecture de NoC avec du calcul basé sur mémoire est introduite en utilisant

des mémoires non-volatiles pour améliorer les performances et réduire la consommation

énergétique. En outre, l’utilisation des memristors pour concevoir des architectures com-

binant flexibilité et efficacité a été explorée et introduite par la proposition d’architectures

originales qui dépassent les limites des architectures existantes. L’exploration et l’étude ont

été menées à trois niveaux : (1) au niveau des interconnexions, (2) au niveau du traitement et

(3) au niveau de la mémoire.

Le quatrième thème porte sur la conception et la mise en œuvre d’algorithmes efficaces

d’apprentissage automatique ciblant l’application de détection tactile. En particulier, des

techniques de calcul approximatif et la conception d’accélérateurs matériels dédiés sont in-

vestiguées pour réduire la complexité du calcul et atteindre des performances plus élevées

avec une faible consommation d’énergie.
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Mes activités de recherche actuelles se concentrent sur la vision par ordinateur et

l’intelligence artificielle embarquées dans le but de réaliser des implémentations efficaces sur

des dispositifs embarqués avec de faibles ressources de calcul et un faible budget énergétique.

Les domaines d’application concernent la navigation de drones en temps réel, la détection

d’objets marins par apprentissage profond et la détection d’objets avec multi-vues. Les

résultats obtenus jusqu’à présent sont originaux et très encourageants.

En ce qui concerne les perspectives de recherche, à court et à moyen terme, plusieurs

pistes sont proposées : l’apprentissage automatique interactif sur les dispositifs embarqués

pour les applications de détection d’objets, l’apprentissage distribué sur dispositifs connectés

et l’apprentissage machine embarqué (TinyML). À plus long terme, il est prévu d’explorer

la construction de processeurs basse consommation centrés sur la mémoire.





Preface

This document represents my Habilitation thesis manuscript. It summarizes my academic
and professional career including recent and future research activities. It is organized as
follows:

The first part includes my detailed Curriculum Vitae. It includes 3 chapters. Chapter 1
presents my personal resume. Chapter 2 and Chapter 3 provide my research and teaching
experiences respectively.

The second part gives a high level view on my previous research activities. It includes 4
chapters:

• Chapter 4 presents the first research topic related to the proposal of flexible and efficient
architectures for applications in digital communication.

• Chapter 5 presents the second research topic related to efficient algorithms and archi-
tectures for dataflow applications.

• Chapter 6 presents the third research topic that tackles the use of memristive devices in
realizing efficient hardware architectures.

• Chapter 7 presents the fourth research topic about designing efficient hardware archi-
tectures for machine learning algorithms.

The third part provides a brief review of current research work (Chapter 8) and long-term
future work (Chapter 9).
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Part I

Detailed Curriculum Vitae
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Chapter 1

Resume

Current professional address

Lab-STICC UMR CNRS 6285
IMT Atlantique – MEE Department
Technopôle Brest-Iroise — CS 83818
29238 Brest Cedex 3
France
Phone : +33 2 29 00 15 95
Fax : +33 2 29 00 11 84
Email : mostafa.rizk@imt-atlantique.fr
Web : https://sites.google.com/liu.edu.lb/mostafa-rizk/

1.1 Summary

I received my Maitrise degree in Electronics, M.Sc in Biomedical Physics, and M.Sc in
Signal, Telecom, Image, and Speech from the Lebanese University in 2007, 2008 and 2010
respectively. Then, I pursued my Ph.D. degree in Sciences and Technologies of Information
and Communication from IMT Atlantique (former Telecom Bretagne) in France in 2014.

Then, I was a post-doctoral researcher at University of Bretagne Sud (UBS) and the Lab-
oratory of Science and Technology of Information, communication, and Knowledge (Lab-
STICC), CNRS, UMR 6285, in Lorient, France. Later in 2016, I joined the Lebanese Inter-
national University in Lebanon as an assistant and then associate professor at the Computer
and Communication Engineering Department. Currently, I am working at Lab-STICC UMR
6825 CNRS/IMT Atlantique in Brest, France where I am conducting my research in the
domain of embedded deep learning and embedded computer vision.

My research activities have been conducted at Lab-STICC. In particular, I performed my
research work with in three teams: the team specialized in the Interaction between Algorithm
and Silicon (IAS), the team specialized in Methods, tOols, Circuits and Systems (MOCS),
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6 CHAPTER 1. RESUME

and the team specialized in Algorithm Architecture Interactions (2AI) in collaboration with
research laboratories in Lebanon.

The performed research work has focused on the hardware/software co-design for embed-
ded architectures, circuits and systems. It stands at the crossing point between development
and refinement of algorithms and designing digital embedded architectures. My conducted
research has been supported in several projects and has been valorized through a number of
publications in well reputable journals and through international and national conferences.

Since I defended my PhD in the end of 2014, which addressed the topic of designing
novel flexible and efficient implementations for applications in the domain of digital commu-
nication, I have been doing research consistently in the domain of embedded systems target-
ing the realization of flexible and efficient architectures with reduced power implementations
in multitude application domains. My research work has tackled emergent topics such as
smart memory architectures, memory-based computing and in-memory computing. An im-
portant work has been done to investigate adopting novel non-volatile memory technologies
and memristive devices to achieve flexible architectures with reduced power consumption.
My research work has addressed the design and implementation of novel hardware archi-
tectures for applications in the fields of data-flow, embedded machine learning, embedded
vision, and embedded intelligence aiming to attain the emergent flexibility requirement, and
the ever increasing requirements of enhanced performance and reduced power consumption.
The performed work has targeted the elaboration of new algorithms and hardware architec-
tures in these fields.

During the last seven years , I have been involved in a number of research projects. I
participated in the supervision of two successfully defended Ph.D theses. I was the direct
tutor for several Master theses and undergraduate projects. Also, I served as member in
several evaluation committees and participated in a number of theses juries.

My teaching activities lay in the domains of electronics, computer and communication
engineering and informatics for undergraduate and graduate levels.
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1.2 Professional Experiences

2021–present Contractual researcher at Lab-STICC, CNRS, UMR 6285, France

2017–present Instructor at the Lebanese University, Faculty of Sciences, Physics and
Electronics Department, Hadat, Lebanon

2016–present
Associate professor at the Lebanese International University (LIU),
School of Engineering, Department of Communication and Computer
Engineering, Beirut, Lebanon

2017–2020 Associate researcher at Institute Mines-Télécom, IMT Atlantique, Brest,
France

2015–2016 Post-doctoral fellow at UBS, Lorient, France and Methods, tOols, Cir-
cuits and Systems (MOCS) research team at Lab-STICC

2014–2015 Research Engineer at UBS, Lorient, France and MOCS research team at
Lab-STICC

2011–2012
Instructor at the American University of Culture and Education (AUCE),
Lebanon, Faculty of Arts and Sciences, Department of Computer Sci-
ences

2009–2010 Six-month research internship at advanced data management company
(ADM), Lebanon

2007–2008 Six-month professional internship at quality department and biomedical
engineering department at RAH, Lebanon

2008–2011 Freelancing engineering projects (electronics, embedded systems and as-
sembly)



8 CHAPTER 1. RESUME

1.3 Educational Achievements

2011–2014 Doctorate’s degree

Organizations: Institute Mines Télécom, IMT Atlantique (former Télécom
Bretagne), France and Lebanese University

Laborartory: Laboratory of Science and Technology of Information, Com-
munication and Knowledge (Lab-STICC) CNRS, UMR 6285

Major: Information and Communication Sciences and Technologies and
Electronics and Telecommunication

Distinction: Very honorable

2009–2010 Research Master’s degree

Organization: Lebanese University, Doctoral School of Sciences and Tech-
nology, Lebanon

Major: Signal, Telecoms, Image and Speech (STIP)

2008–2009 Professional Master’s degree

Organization: Lebanese University, Faculty of Sciences, Lebanon

Major: Biomedical physics; Option: Quality control

2006–2007 Teaching diploma in sciences

Organization: Lebanese University, Faculty of Sciences, Lebanon

Major: Physics; Option: Electronics

2003–2006 License degree of science

Organization: Lebanese University, Faculty of Sciences, Lebanon

Major: Physics; Option: Electronics

2002–2003 Baccalaureate in sciences

1.4 Training Courses

• Scientific Computing Accelerated on FPGA: Three-day training on Vitis HLS (AMD-
XilinX) and OneAPI (Intel) to accelerate scientific computing on FPGAs at Maison de
la Simulation, Saclay, France.

• Developing Accelerators using Vitis and PYNQ: Full-day tutorial about Vitis devel-
opment flow for compute acceleration on Xilinx FPGA; Xilinx University Program

• Channel Coding: Five-day training course about channel coding at Télécom Bretagne,
Brest, France.

• Networks and Telecommunications: Twenty-hour training course about advanced ar-
chitectures of stationary and mobile telecom at Doctoral School of Sciences and Tech-
nology, Lebanese University, Lebanon.
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• Information Systems: Twenty-hour training course about information systems at Doc-
toral School of Sciences and Technology, Lebanese University

• Scientific English: Five-day training course about scientific English language at
Télécom Bretagne, Brest, France.

• Design Methodologies for Adaptive Circuits and Systems: Full-day tutorial about
designing adaptive circuits at IEEE Automation and Test in Europe Conference
(DATE’13).

1.5 Synergistic Activities

2016–2017 Member of the evaluation committee of SoC exhibition at LIU, Lebanon

2012–2014 Member of planning committee of IEEE student branch at Télécom Bre-
tagne

2008–2009 Participation in organizing the PhD student day of ED-SICMA, Brest,
France





Chapter 2

Research Experiences

2.1 Research Topics

My research topics are mainly focused on the hardware/software co-design. My main in-
terests stand at the crossing point between algorithm development and digital architecture
design for embedded systems including but not limited to:

• Digital design of flexible processing systems

• Intellectual Properties for wireless communication

• Hardware/software implementations

• Application Specific Processors (ASP)

• Network-on-Chip (NoC) design

• Embedded systems design in the fields of audio, video, and data-flow domains

• Embedded Multi-processor System-on-Chip (MPSoC) architectures

• Embedded systems based on emerging non-volatile memory technologies

• Memory-based computing, near-memory computing and in-memory computing

• Algorithm development and refinement for digital base-band components

• Algorithm development for task scheduling on MPSoC

• Embedded computer vision

• Embedded machine learning

11
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2.2 Visiting Scholar

December 2019 visiting professor, UBS and Lab STICC, Lorient, France

September 2018 visiting professor, IMT-Atlantique, Brest, France

September 2017 visiting professor, Lab-STICC CNRS 6285, Brest, France

2.3 Laboratory Membership

2010–2014 member of TTS research group at Hasan Kamel Sabbah Lab at the
Lebanese University - Faculty of Sciences, Hadat, Lebanon

2011–2014 member of the research team specialized in the Interaction between Algo-
rithm and Silicon (IAS) in Lab-STICC, CNRS, UMR 6285, Brest, France

2014–2016 member of the research team specialized in Methods, tOols, Circuits and
Systems (MOCS) in Lab-STICC, CNRS, UMR 6285, Brest, France

2016–2017 member of the research team specialized in Electronics in EEE depart-
ment at the Lebanese International University, Beirut, Lebanon

2017–present member of the research team specialized in Algorithm Architecture In-
teractions (2AI) in Lab-STICC, CNRS, UMR 6285, Brest, France

2.4 Research Collaboration

The following list enumerates the institutes where I share research activities:

• CROSSING - IRL 2010, Australia

• University of Genoa, Italy

• Université Bretagne Sud, France

• Tohoku University, Japan

• American University of Culture and Education, Lebanon

• American University of Beirut, Lebanon

• Lebanese University, Lebanon

• Lebanese International University, Lebanon
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2.5 Involvement in Research Projects

I participated in the following research projects:

1. Mobile and wireless communications Enablers for Twenty-twenty Information So-
ciety (METIS):

• Goal: aims to lay the foundation of 5G, the next generation mobile and wireless
communications system

• Funding: co-funded by the European Commission as an Integrated Project under
the Seventh Framework Program for research and development (FP7)

• My Role: PhD student

2. Design Oriented Model of Computation for Embedded and Adaptive Multiproces-
sor (COMPA):

• Goal: aims to propose generic models for adaptive multi-processors embedded
systems

• Partners: gathers three laboratories in Bretagne region (Lab-STICC, IETR, and
IRISA)

• Funding: funded by the French National Research Agency (ANR, project ANR-
11-INSE-0012)

• My Role: Research Engineer

3. Hierarchical Hardware Architectures Based on Associative-Memories and Net-
work on Chips for Cyber-Attack Detection in Telecom Networks (CyAM):

• Goal: aims to exploit associative-memories and network on chips in Cyber-Attack
detection

• Partners: conducted as collaboration between Lab-STICC and University of To-
hoku in Japan

• Funding: funded by Bretagne region, France

• My Role: Post-doc Researcher

4. Optimization of Observation, Detection, Classification and Tracking of Seaships
for Maritime Security by Mean of Embedded Deep Learning (ODESSA)

• Goal: aims to offer a new optoelectronic system that can detect a maritime security
problem as early as possible while costing less than a radar tool

• Partners: conducted as collaboration between Lab STICC (IMT Atlantique and
UBS) and two French Companies: Exavision and Inpixal

• Funding: funded by Bretagne region, France

• My Role: Post-doc Researcher
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5. Deployment of electro-optical sensors and drones for living human detection and
localization in search and rescue missions

• Goal: aims to demonstrate a novel low-cost solution that makes use of the avail-
ability and the affordability of drones to enhance detecting and locating wounded
and lost individuals during and after disasters.

• Funding: funded by the Lebanese University

• My Role: Project technical leader

2.6 Publications

The results of my research activities led to the following publications:

• 1 Ph.D. thesis

• 2 Master theses

• 2 Book chapters

• 18 Journal papers

• 34 international conference papers

• 5 national conference papers

Further information about the publications is detailed in Appendix A.

2.7 Supervision and Tutorship

I have been involved in supervision and tutorship of 2 Ph.D. theses, 24 Master theses and 14
graduation projects.

2.7.1 Supervision of Ph.D. Theses

1. Supervision of the Ph.D. thesis of Dr. Hamoud Younes
Post doctoral fellow at IMT Atlantique, Brest, France

• Title: Embedded machine learning emphasis on hardware accelerators and ap-
proximate computing for tactile data processing

• Academic Years: 2018-2021

• University: University of Genoa, Italy

2. Supervision of the Ph.D. thesis of Dr. Khaled Alhaj Ali
Post doctoral fellow at IMTAtlantique, France
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• Title: New design approaches for flexible architectures and in-memory computing
based on memristor technologies

• Academic Years: 2016-2020

• University: IMT Atlantique, Brest, France

2.7.2 Supervision of Master Theses

Since 2015, I have supervised the several Master theses in different universities. The follow-
ing list presents these theses classified according to universities and the Master’s programs.

1. Supervision of Master theses at Lebanese University, Lebanon:

• 4 Master theses in the program of the professional Master’s degree of Sciences in
Field Electro-Mechanical Engineering

• 1 Master thesis in the program of the professional Master’s degree of Sciences in
Medical Physics and Imaging Technologies

• 3 Master theses in the program of the research Master’s degree of Sciences in
Medical Physics and Life Imaging

• 1 Master thesis in the program of the research Master’s degree of Sciences in Field
Electro-Mechanical Engineering

• 1 Master thesis in the program of the research Master’s degree of Sciences in
Signal, Telecoms, Image, and Speech (STIP)

• 1 Master thesis in the program of the research Master’s degree of Sciences in
Information System and Big Data Intelligence

2. Supervision of Master theses at Lebanese International University, Lebanon:

• 11 Master theses in the program of the Master’s degree of Sciences in Computer
and Communication Engineering

• 2 Master theses in the program of the Master’s degree of Sciences in Electrical and
Electronics Engineering

3. Supervision of Master theses at IMT Atlantique, Mathematical and Electrical En-
gineering Department, France:

• 2 internships in the program of Engineering in Embedded Systems

• 1 internship in the field of embedded artificial intelligence collaboration with the
Lebanese University

4. Supervision of Master theses at Lab STICC, Lorient, France:

• 1 internship in the field of Embedded Systems
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2.7.3 Supervision of Graduation Projects

Since 2016, I have supervised several graduation projects in different universities. The fol-
lowing list presents these projects classified according to the universities and majors.

1. IMT Atlantique, Mathematical and Electrical Engineering Department, France

• 1 graduation project in the program of the Bachelor’s degree of Engineering in
Embedded systems

2. Lebanese International University (LIU), School of Engineering, Lebanon

• 1 graduation project in the program of the Bachelor’s degree of Sciences in Elec-
tronics Engineering

• 10 graduation projects in the program of the Bachelor’s degree of Sciences in
Computer Engineering

3. International University of Beirut (BIU), School of Engineering, Lebanon

• 2 graduation projects in the program of the Bachelor’s degree of Engineering

Further information about my supervision experience is detailed in Appendix B.

2.8 Other Responsibilities and Activities

2.8.1 Reviewing Activities

1. Scientific journals:

• IEEE Transactions on Signal Processing

• IEEE Transactions on Circuits and Systems (TCAS-I)

• IEEE Transactions on Circuits and Systems-Part II (TCAS-II)

• IEEE Access

• IEEE Embedded Systems Letters

• Elsevier Embedded Hardware Design journal (Microprocessors and Microsys-
tems)

• International Journal of Embedded Systems (IJES)

• Journal of Systems Architecture

• Journal of Aerospace Technology and Management

2. International conferences:

• IEEE Design, Automation and Test in Europe (DATE)

• IEEE International New Circuits and Systems Conference (NewCas)
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• IEEE International Conference on Communications and Information Technology
(ICCIT)

• IEEE International Conference on Microelectronics (ICM)

• IEEE New Generation of Circuits and Systems Conference (NGCAS)

• IEEE International Conference on Computer and Applications (ICCA).

• IEEE International Conference on Electronics Circuits and Systems (ICECS).

• IEEE International Symposium on Rapid System Prototyping (RSP)

• IEEE Microwave Theory and Techniques in Wireless Communications (MTTW)

• International Conference on System-Integrated Intelligence (SysInt)

• IEEE International Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT)

• The International Conference on Smart Systems and Power Management
(IC2SPM)

2.8.2 Technical Program Committee Member

I have served as technical program committee (TPC) member in the following international
conferences and workshops:

• IEEE International Conference on Microelectronics (ICM 2013)

• IEEE International Conference on Electronics Circuits and Systems (ICECS 2019)

• IEEE International Conference on Innovation and Intelligence for Informatics, Com-
puting and Technologies (3ICT 2020)

• IEEE International Symposium on Rapid System Prototyping (RSP 2021)

• IEEE Microwave Theory and Techniques in Wireless Communications (MTTW 2021)

• IEEE International Symposium on Rapid System Prototyping (RSP 2022)

• IEEE Microwave Theory and Techniques in Wireless Communications (MTTW 2022)

• Workshop on Maritime Computer Vision (WACV 2023)

2.8.3 Committee Membership

I have served as a committee member for evaluating Master theses and graduation projects
in different majors at different universities. The following list shows my participation in
evaluation committees classified according to university, level and major:

1. Lebanese University (LU), Faculty of Sciences (FS), Lebanon:



18 CHAPTER 2. RESEARCH EXPERIENCES

• 4 Master theses in the program of the professional Master’s degree of Sciences in
Field Electro-Mechanical Engineering (FEME)

• 2 Master theses in the program of the professional Master’s degree of Sciences in
Medical Physics and Imaging Technologies (MPIT)

• 5 Master theses in the program of the research Master’s degree of Sciences in
Medical Physics and Life Imaging (MPLI)

2. Lebanese International University (LIU), School of Engineering (SoE), Lebanon:

• 9 Master theses in the program of the Master’s degree of Sciences in Computer
and Communication Engineering (MCCE)

• 10 graduation projects in the program of the Bachelor’s degree of Sciences in
Computer Engineering (CENG)

Further information about my teaching experience is detailed in Appendix C.
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Teaching Experiences

3.1 Teaching and Administrative Responsibilities

I have worked as course coordinator for several courses at different universities. Course
coordination involves following up the course progress and examination process in different
branches and sections. The following list presents the courses that I have coordinated:

• Introduction to Mechatronics course in the program of the Master’s degree of Science
in Electrical and Electronics Engineering at School of Engineering at Lebanese Inter-
national University

• Introduction to Computer course in the program of the Bachelor’s degree in Computer
at School of Arts and Sciences the American University of Culture and Education

• Microprocessors and Interfaces course in the program of the Bachelor’s degree in Com-
puter at School of Arts and Sciences the American University of Culture and Education

3.2 Construction and Development of University Courses

I have worked on remodeling and development of several courses at different universities.
The reconstruction of a course includes the following duties: developing the syllabus, en-
hancing the course material, choosing the textbooks and updating the course assessment
(exams and assignments).

• Microprocessors and Interfaces course in the program of the Bachelor’s degree in Com-
puter at School of Arts and Sciences the American University of Culture and Education

• Introduction to Computer course in the program of the Bachelor’s degree in Computer
at School of Arts and Sciences the American University of Culture and Education

• Introduction to Mechatronics course in the program of the Master’s degree of Science
in Electrical and Electronics Engineering at School of Engineering at Lebanese Inter-
national University

19



20 CHAPTER 3. TEACHING EXPERIENCES

• Contract Administration and Project Management course in the program of the Profes-
sional Master’s degree of Science in Field Electromechanical Engineering at the Faculty
of Sciences at Lebanese University

• Neural Network and Deep Learning course in the Image-Signal Module in the program
of the Research Master’s degree of Science in Medical Physics and Living Imaging at
the Faculty of Sciences at Lebanese University

• Digital Electronics course in the program of the Master I degree of Science in Fun-
damental Physics (Biomedical Physics Course) at the Faculty of Sciences at Lebanese
University

3.3 Teaching University Courses

3.3.1 Teaching E Overview

Since 2011, I have taught several courses in the programs of various degrees in the following
universities:

1. Lebanese University, Faculty of Sciences, Lebanon:

• Research Master’s degree of Sciences in Signal, Telcom, Image and Speech

• Professional Master’s degree of Sciences in Field Electro-Mechanical Engineering

2. Lebanese University, Institute of Social Sciences, Lebanon:

• Bachelor of Social Sciences

3. Lebanese International University (LIU), School of Engineering, Lebanon

• Bachelor’s degree of Sciences in Computer Engineering

• Bachelor’s degree of Sciences in Electrical Engineering

• Bachelor’s degree of Sciences in Electronics Engineering

• Master’s degree of Sciences in Computer and Communication Engineering

4. American University of Culture and Education (AUCE), Lebanon

• Bachelor’s degree of Sciences in Computer Sciences

Further information about my teaching experience is detailed in Appendix D .
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3.3.2 Teaching Summary

3.3.2.1 Common core courses

I have participated in teaching several courses and practical work related to electric circuits,
electronics and fundamental logic circuits. During my academic career and for several aca-
demic years, I have taught “Electric Circuits”, “Fundamentals of Digital Logic Design” and
“Signals and Systems” courses, where I have applied the concepts in a fun and operational
way using software simulators and basic hardware platforms.

Note that in my previous teaching work, I have participated in developing the plan of
study to include the “Introduction to Engineering” which aims to teach engineering students
how to solve a problem and implement the solution through building simple algorithms and
implementing them on available hardware platforms, in particular Arduino toolset and its
compatible sensors. Several teaching methods have been adopted especially project-based
teaching in order to give the students the opportunity to develop knowledge and skills through
engaging projects set around real-life challenges and problems.

3.3.2.2 Courses in the field of embedded systems

I have a long experience in teaching courses about processors and microcontrollers, advanced
digital logic systems, hardware description languages, computer architecture and embedded
systems for under graduate and graduate levels.

I have taught “Advanced Logic Design” course that introduces designing of logic ele-
ments used in computations targeting Programmable Logic Devices (PLDs) and Field Pro-
grammable Gate Array (FPGA) devices. It aims to teach how to design, in VHDL, several
modules such ad decoders, memories, ALU, multiplexers, registers, etc. Students are directed
to use ModelSim in order to verify the designed modules. Also, I contributed in developing
a practical course for graduate level about designing MIPS processors from scratch. The
course aims to teach how to design, in VHDL, the sub-modules of the processor as well as
the instruction set. Students are directed to use ModelSim in order to verify the designed
processors.

I participated in teaching the technical work of the “Signals and Image Processors” course
in the research Master program in Signals, Telecom, Image and Speech (STIP). This course
focuses on implementing image processing techniques on FPGAs from algorithm till the
hardware realization. In particular, the course introduces the design and implementation of
Sobel filter on Spartan-6 FPGA.

I have taught the “Computer Architecture” course for graduate level. The course aims
to introduce essential computer architecture design and analysis techniques. The course
treats fundamental methods used to improve performance of microprocessors like pipelin-
ing, caches hierarchies, superscalar processors and out-of-order execution. This graduate
course also considers parallel processing topics at different levels (instruction-level paral-
lelism, data-level parallelism and thread-level parallelism). Scheduling and fault-tolerance
strategies are also covered in this course.
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For several years, I have taught microprocessors and microcontrollers courses, which
target the microchip PIC, ARM-based and Atmel microcontrollers. In general, these courses
introduce the architectures of the targeted processors and their corresponding instruction sets.
Moreover, these courses introduce programming of the microcontrollers including looping,
branching, arithmetic and logical operations, timers, interrupts, communication protocols
(UART, I2C, SPI, etc.) and controlling input-output pins. Students are directed to use the the
associated software development tools (MPLab, CCS, STM32CubeMX, Arduino IDE, etc.)
and software simulation tools - such as Proteus - to develop projects

Furthermore, I have taught the “Embedded Systems” course for graduate students which
aims to provide the students with the basic information about embedded systems. The first
part of this course introduces in details the ARM-based/AVR microcontrollers. The second
part is devoted to the programming of embedded systems, where the students learn to de-
sign and develop a programmable embedded platform from scratch and interface a variety
of sensors. In addition, the course cover multitasking by introducing real time operating sys-
tem (RTOS) and using FreeRTOS to apply Queues, Semaphore and Mutex targeting Atmel-
based processors (integrated in Arduino platforms) and ARM-based processors (integrated
in STM32 platforms). Moreover, I have taught “Operating Systems” course and the “Linux”
technical lab targeting Raspberry Pi platforms.

3.3.2.3 Courses in the field of digital communication

Since 2016, I have taught the course of “Digital Communication” which is an introduction
to modern digital communications at a graduate/senior undergraduate level. The coverage
emphasizes a conceptual understanding of principles, techniques, and fundamental limits in
digital communication systems. This course covers modulation for digital communications
over additive white Gaussian noise (AWGN) channels; bandpass and low-pass signal rep-
resentation; signal space representation of waveforms; modulation; demodulation; optimum
receivers for AWGN channels; probability of error analysis; channel coding; synchroniza-
tion; an introduction to digital communication through band-limited channels.

The course has been further developed in 2018 to include, in addition to theoretical con-
cepts, direct applications of the theoretical concepts using MATLAB. It gives hands-on expe-
rience in translating digital communication concepts into software-defined radio technology
using MATLAB coding of the different basic blocks of a digital communication system. Stu-
dents can experiment a complete functional digital communication system by putting all the
designed blocks together. Note that the Lab course of this work includes implementing the
algorithms using USRPs from national instruments using LabView.

3.3.2.4 Courses in the field of artificial intelligence and computer vision

I have taught the “Multimedia Networks” course for graduate level. The course aims to
introduce different media types such as audio, image and video showing their characteristics
and the techniques used in coding along with the corresponding available standards. Also, I
have taught for graduate level the course of “Image Processing and Computer Vision” that
includes the topics of filtering, transformation, edge detection, feature extraction and the use
of neural networks and deep learning in computer vision.
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I have initiated the teaching course “Neural Network and Deep Learning” in the Image-
Signal Module in the program of the Research Master’s degree of Science in “Medical
Physics and Living Imaging” at the Faculty of Sciences at Lebanese University.

3.3.2.5 Courses in the field of software engineering

I have taught practical course about software applications using object oriented programming
(OOP). I teach an introductory course about relational database that includes a practical work
that enables students to design an application embedding a database from scratch (SQL,
phpmyadmin, Java, etc.).

3.3.2.6 Courses in the field of mechatronics

I have developed a course to introduce mechatronics to electronics engineers. The course
scope is to practically lead students to collect data from different sensors, analyze, and
take decisions to control electromechanical actuators. The course introduces mechanical
mechanisms (gears, pulleys, belts, pinions, screws, etc.); motion sensors (GPS, encoders,
accelerometers, speed sensors, proximity sensors, etc.) and actuators (motors, servo motors,
solenoids, etc.). I have organized practical tutorials for students that demonstrate the interac-
tion between embedded systems and electromechanical system.

3.4 Technical Training Courses

I provide technical training courses in the domain of basic and advanced programming,
telecommunication and electronics (logic, digital systems, OOP programming, circuit de-
sign, and PCB assembly, FPGAs) to engineers, university and technical institutes students.
These lectures are presented during private training sessions and workshops.
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Appendix B

Supervision Activities

Table. B.1, Table. B.2 and Table. B.3 show the Master theses I have supervised classified
according to the university and major. Table. B.4 shows the senior projects that I have super-
vised classified according to the university and major.

Table B.1 — Supervised Master theses at Lab STICC and IMT Atlantique

Academic Year Thesis Title

2014-2015
Design of smart memories on multiprocessor architecture for

data-flow applications
SEH

2020-2021
Optimizing embedded systems for multi-view AI-based object

detection
SEH

2020-2021
Smart decision-making approaches for multi-view AI-based

object detection on edge embedded devices
SEH

2020-2021
Top-view real-time embedded AI detector and tracker to assist

multi-view marine object surveillance
SEH
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Table B.2 — Supervised Master theses at Lebanese University

Academic Year Thesis Title Major

2021-2022
Acoustic Classification Using Machine Learning on
Embedded Edge Devices to Assist Real-Time Drone

Detection
STIP

2018-2019
Evaluation of the conformity of the maintenance department
at the company Flashmed to the quality control technical and

management requirements
MPIT

2019-2020 Surgical tool detection in cataract surgery MPLI

2019-2020
Examining image processing techniques for living human
detection and localization for search and rescue missions

MPLI

2020-2021
Crowd detection in closed areas to assure physical distancing

during COVID-19 pandemic
MPLI

2020-2021
Remote real-time monitoring of the environment of

pharmaceuticals and food
FEME

2017-2018
Hadat faculty of sciences buildings electrical auditing and

power economy
FEME

2016-2017 Hadat desalination using reverse osmosis FEME
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Table B.3 — Supervised Master theses at Lebanese International University

Academic Year Thesis Title Major

2020-2021
Computer vision and artificial intelligence to detect

commercial drone in no-fly zones
MCCE

2020-2021
Crowd detection in closed areas to assure physical distancing

during COVID-19 Pandemic
MCCE

2020-2021 Securing the MavLink protocol for unmanned aerial systems MCCE

2019-2020
Design and implementation of a smart and flexible wireless

sensor network for early detection of environmental disasters
MCCE

2019-2020 Path guidance robot for blind person assistance MCCE

2018-2019
Building a MongoDB-based data analysis system for

industrial applications
MCCE

2018-2019 Change detection using drone images and GIS MCCE

2017-2018
Exploring image processing and localization techniques for
UAV-based pollutant detector and tracker for narrow-basin

rivers
MCCE

2016-2017
Detecting and locating soft faults in wiring networks using

time reversal techniques
MCCE

2016-2017
Design and implementation of automatic electrical load

manager for smart facilities
MCCE

2016-2017
Study and design of a MRAM-based memorization system

for a NB-LDPC decoder
MCCE

2016-2017
Detecting and locating soft faults in wiring networks using

time reversal techniques
MEEE

2016-2017
Design and implementation of automatic electrical load

manager for smart facilities
MEEE



36 APPENDIX B. SUPERVISION ACTIVITIES

Table B.4 — Supervised senior projects

Inistitute Academic Year Thesis Title Major

IMT-Atlantique 2021-2022
Smart-cameras network for multi-view

AI-based object detection
SEH

LIU 2020-2021 Municipality (Baladiyati) digital platform CENG

LIU 2020-2021 Barber shop application CENG

LIU 2020-2021 Online shop application CENG

LIU 2020-2021 Lebanese COVID-19 tracker application CENG

LIU 2020-2021 Pharmacy services application CENG

LIU 2016-2017
Web-based water intake monitoring system

for remote cardiac patients
CENG

LIU 2016-2017 Web-based rental management system CENG

LIU 2016-2017 Smart irrigation system for playgrounds CENG

LIU 2016-2017 Smart home: security and automation CENG

LIU 2016-2017 Remote vehicle indicators monitoring CENG

LIU 2016-2017 Home Automation System LENG

BIU 2020-2021
Ambulance emergency response time

scale-up
BEC

BIU 2020-2021 Building a machine learning tool BEC



Appendix C

Contributions In Evaluation Committees

Table. C.1 shows the senior projects I have participated in their evaluation committees clas-
sified according to the university and major.

Table C.1 — Senior projects I have participated in their evaluation committees

Inistitute Academic Year Project Title Major
LIU 2020-2021 Hospital management system CENG

LIU 2020-2021 Travel agency system CENG

LIU 2020-2021 Blood bank system CENG

LIU 2020-2021 CV building application CENG

LIU 2020-2021 Bank queuing system CENG

LIU 2017-2018 A school-to-parent communication platform CENG

LIU 2017-2018 A school bookstore website CENG

LIU 2016-2017 Concealing an Image inside a Video File CENG

LIU 2016-2017 Data Transmission of Blood Pressure CENG

LIU 2016-2017 Wireless Baby Temperature Monitor CENG

Table. C.2 shows the Master theses I have participated in their evaluation committees
classified according to the university and major.
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Table C.2 — Master theses I have participated in their evaluation committees

Inistitute Academic Year Thesis Title Major
LIU 2020-2021 University system for advising (USA) MCCE

LIU 2020-2021 Human-computer interface using eye gaze MCCE

LIU 2020-2021 Deep learning with JavaScript MCCE

LIU 2020-2021
Android malware detection using machine

learning
MCCE

LIU 2019-2020 Optimal RSU placement for VANET MCCE

LIU 2019-2020
Development of NB-LDPC codes based on

different GF for iterative receivers
MCCE

LIU 2019-2020
Parallel implementation of feed-forward neural

networks
MCCE

LIU 2017-2018 A Lebanon wide IoT network MCCE

LIU 2017-2018 Augmented reality using Kinect MCCE

UL 2018-2019
Facilities management and security: preparing
for accreditation at DAR-AL-AMAL hospital

MPIT

UL 2018-2019
Microwave microfluidic sensor for detecting

biological cells
MPIT

UL 2018-2019
Analysis of the effect of auditory and visual
simulations on EEG signals using Wavelet

Transform
MPLI

UL 2019-2020 Texture analysis of uterine fibroma on MRI MPLI

UL 2019-2020
X-ray image segmentation and fracture detection

using image processing techniques
MPLI

UL 2020-2021
Covid-19 lung infected image analysis and

interpretation
MPLI

UL 2020-2021
Image Analysis and Interpretation of Knee

Osteoarthritis
MPLI

UL 2020-2021
Heating, ventilation and air-conditioning

systems in the context of COVID-19
FEME

UL 2019-2020
An optimum selection of secondary batteries for

UPS systems: a comprehensive study
FEME

UL 2019-2020 Distance Patient Monitoring FEME

UL 2018-2019 Pharmaline BMS project FEME



Appendix D

Teaching Activities

Table. D.1, Table. D.2 and Table. D.3 list the taught courses classified according to the uni-
versity, level, and major.

Table D.1 — Taught courses at American University of Culture and Education, Lebanon

Academic Years Title Level Major Length
2011-2012 Microprocessors and Interfaces BS-L3 CS 40h

2011-2012 Introduction to Computers BS-L1 CS 40h

2011-2012 Calculus I BS-L1 CS 40h

Table D.2 — Taught courses at Lebanese University

Academic Years Title Level Major Length
2011-2013 Signals and Image Processors MS-M2 STIP 24h

2017-2018 Contract Administration MS-M2 FEME 24h

2018-2021 Project Management MS-M2 FEME 24h

2019-2021 Informatics BS-L1 SS 50h
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Table D.3 — Taught courses at Lebanese International University

Academic Years Title Level Major Length
2015-2018 Electric Circuits I BS-L1 LENG 45h

2017-2018 Fundamentals of Digital Logic Design BS-L2 CENG 45h

2017-2020 Advanced Digital Logic Design BS-L2 CENG 45h

2015-2017 Fundamentals of Optoelectronics BS-L3 LENG 45h

2015-2016 Electrical Systems Simulation BS-L3 EENG 45h

2016-2017 Operating Systems BS-L3 CENG 45h

2018-2021 Introduction to Database Systems BS-L2 CENG 45h

2016-2017 Microprocessors and Microcontrollers BS-L2 CENG 45h

2016-2017 Signals and Systems BS-L2 CENG 45h

2016-2017 Senior Project - LENG BS-L3 LENG 45h

2016-2021 Senior Project - CCE BS-L3 CENG 45h

2018-2020 Communication Networks Lab BS-L3 CENG 45h

2015-2016 Fiber optics MS-M1 MCCE 45h

2016-2020 Digital Communication MS-M1 MCCE 45h

2016-2019 Computer Architecture MS-M1 MCCE 45h

2019-2021 Multimedia Networks MS-M2 MCCE 45h

2020-2021 Image Processing and Computer Vision MS-M2 MCCE 45h

2017-2020 Introduction to Mechatronics MS-M1 MLENG 45h

2017-2021 Embedded Systems MS-M1 MCCE 45h

2017-2018 Linux Lab BS-L3 CENG 23h

2016-2018 Software Applications and Design Lab BS-L2 CENG 23h

2017-2018 Embedded Systems Lab MS-M1 MCCE 23h

2016-2019 Computer Architecture Lab MS-M1 MCCE 23h



Part II

Overview of Past Research Activities
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Introduction to My Research Activities

My previous research activities since the beginning of my PhD thesis have addressed four
topics:

1. Flexible yet efficient architectures for applications in the digital communication
domain:
This topic was the subject of my PhD thesis. However, I continued working on this
topic afterward. It spans the refinement of algorithms to meet with hardware constraints
and exploring new design methodologies to achieve flexiblity, efficiency and designing
productivity. In particular, the No-Instruction-Set-Computer design methodology has
been explored to design hardware architectures of the base-band modules.

2. Efficient algorithms and architectures for dataflow applications:
In this topic, new algorithms and architectures have been devised to enhance the per-
formance of dataflow applications and to reduce the communication overheads and the
power consumption. In particular, the notifying memory concept has been introduced to
reduce the number of useless attempts, which processors perform to read from and/or
write into memories. Also, a novel approach has been introduced to remap the actors
(tasks) during run-time on NoC-based heterogeneous MPSoCs in order to fit with the
dynamic behavior of dataflow applications.

3. Efficient and flexible design paradigms based on emergent memristive devices:
An important part of my research activities targets exploiting emergent memristive de-
vices to achieve flexible high performance architectures. The novel NoC-Memory based
computing concept has been realized and validated by making use of emergent non-
volatile magnetoresistive random-access memory with power-gating capabilities tar-
geting database search application implemented with neuromorphic architecture based
on Sparse-Neural-Network. In addition, the use of memristors to design architectures
which combine flexibility and efficiency, has been explored and introduced through the
proposal of original architectures that break the limits of the existing ones. The explo-
ration and study have been conducted in three main levels: (1) interconnect level, (2)
processing level and (3) memory level.

4. Efficient implementations of machine learning algorithms:
The main objective of this topic is to design efficient implementations of machine learn-
ing algorithms with as much reduced hardware area and energy consumption. The appli-
cation targets tactile data processing. This topic addresses basically designing specific
hardware accelerators and exploiting approximate computing techniques to accelerate
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demanding portions of machine learning algorithms and to adequately reduce the algo-
rithms computational complexity respectively.

In the following, for each topic, the context of the conducted work is given. After introducing
the topic, motivations are provided along with the background showing the related performed
work and what is missing from the state-of-the-art. Then, the list of contributions and the
performed technical work is provided. Most important results are shown next followed by
the most impacting publication on the subject.



Chapter 4

Flexible and Efficient Architectures for
Applications in Digital Communication

4.1 Preface

After finishing my PhD, I had the chance to personally work on the refinement of the work
done during my PhD and to valorize the obtained results in well-recognized scientific jour-
nals and international and national conferences. This chapter demonstrates briefly the con-
ducted work during my PhD and presents the publications that have been published since the
end on my PhD.

4.2 Introduction

Applications in the field of wireless digital communications are becoming increasingly com-
plex and diverse. Recent emergent wireless communication standards support various modes
and configurations related to channel coding type, modulation type, and antenna dimension
for multiple-input multiple-output (MIMO) transmission techniques. On the other hand, it-
erative concept is also utilized at the receiver side to alleviate the destructive effects of the
channel [3], but data the cost of additional computational complexity.

In digital communication application domain, flexibility is an emerging design feature
that permits the hardware architectures to cope with the various requirements of multiple
communication standards for different system configurations. Circuits and systems adopted
in this application domain must not only consider performance and implementation con-
straints, but also the requirement of flexibility. Because of the rapid evolution of related
standards, modern wireless digital communication systems are highly concerned about the
flexibility feature. This flexibility requirement is foreseen to become even much higher with
the multiple communication scenarios and modes [4].

Nowadays, highly flexible architectures are supposed to be exploited in multiple wireless
communication standards (WiFi, WiMax, LTE, LTE-A, and DVB). The implementations
of these architectures should function properly within different system configurations and
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should not be restricted to certain types of modulation, mapping styles, and/or antenna di-
mensions. Application-specific processor design approaches allow to tune the performance-
flexibility tradeoff as required by the target application. The concept has emerged several
years ago. Note that the flexibility degree can be fully tuned by the designer. The concept
has no limitation in this regard. In this context, flexible application-specific hardware archi-
tectures implementing the functionalities of digital baseband components of the receiver are
under design scope. Application-specific processors constitute a key trend in implementing
definite blocks of wireless system since they provide a good solution in designing flexible
architectures that can fulfill nowadays requirements in terms of low error-rate performance
and high throughput, and satisfy the tight constraints on implementation area and power
consumption.

The combination of flexibility and the ever increasing performance requirements de-
mands design approach that provides better ways of controlling and managing the hard-
ware. In general, available design approaches that adopt dynamic scheduling of instructions
add an overhead due to the instruction decoding. To minimize this overhead, several ap-
proaches have been introduced, which opt static scheduling. In this context, No-Instruction-
Set-Computer (NISC) concept has been introduced to design application-specific processors
without an instruction set. NISC concept proposes that there is no need to first design and
then use an instruction set when the hardware is programmed by its designers rather than its
users. NISC designing approach offers a good compromise between flexibility, productivity,
and quality for the design of a digital system.

In this research work, NISC approach is explored through the design of flexible and
efficient architectures dedicated for digital communication applications which fulfill the re-
quirements imposed by multiple emergent communication standards.

4.3 Context and Motivations

4.3.1 Design Approaches Overview

The baseband modules could be implemented using dedicated or programmable hardware
implementations, depending on the target performance requirements. The dedicated hard-
ware implementations adopting low-level design approaches at Register Transfer-Level
(RTL) ensure best exploitation of the allocated resources to execute the desired functions,
however the main issue of such approach concerns designer productivity and the typical low
degree of flexibility. On the other hand, programmable hardware, i.e. instruction-set based
processors, are highly flexible through software programmability, yet present several limita-
tions in terms of achievable performance and energy/area efficiency. High-Level Synthesis
(HLS) tries to improve the productivity by converting directly high-level language, C for
example, description into RTL. When using HLS, the designer cannot manage precisely the
correlation between the modifications applied to the application and the obtained implemen-
tation performance/cost metrics such as area, power, clock frequency, routable layout, etc. To
improve the quality, the designer can depend only on guess-try-check strategy. The quality
of the result is noticeably low compared to manual RTL, particularly for complex applica-
tions. Furthermore, in HLS the area and delay of the design increase rapidly as the size of
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the software application description increases. Moreover, the design generated by HLS is
not reprogrammable contradicting the ever increasing requirement of flexibility in emerging
applications. Figure 4.1 illustrates the traditional available design approaches.
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Figure 4.1 — Traditional available design approaches

The emerging flexibility need in designing application-specific processors dedicated for
modules of digital receiver sets up a new design metric added to the requirements of effi-
ciency and productivity. Application-Specific Instruction-set Processor (ASIP) design con-
cept has been introduced as an increasingly popular option for implementing flexible ar-
chitectures. ASIP concept offers a tradeoff in terms of designer productivity and the final
quality of the hardware implementation. In ASIP designs, the instruction set is designed to
fit in with a specific application. This specification of ASIP designs provides a compromise
between the flexibility of a general-purpose processor and the performance of application-
specific integrated circuit (ASIC) [5]. In ASIP, the functionality and datapath structure can
be adjusted to fit in with specific application through using custom instructions. At run-time,
custom instructions are decoded and executed by the dedicated hardware. Figure 4.2 illus-
trates the ASIP design approach. The productivity of the designer is reduced since the task of
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Figure 4.2 — ASIP design approach

describing the controller and instruction decoder is tedious and very time-consuming. Addi-
tionally, all available ASIP design approaches demand the design of instruction decoder. In
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cases where the hardware is dedicated for a specific application, designing and implementing
the instruction decoder create an overhead in terms of complexity, power consumption, and
implementation area.

NISC design approach has been introduced as a solution to fill the gap between de-
signer productivity and design metrics, which are two important factors for emerging design
methodologies. The approach simplifies ASIP design approach by eliminating the tedious
task of defining and describing custom instruction set at the designing phase and the com-
plex task of decoding instructions at run-time. The removing of the instruction set enhances
the productivity of the designer and reduces the time-to-market. In contrast to ASIP, NISC
approach reduces the complexity of the architecture since the hardware resources are allo-
cated to fit in with the exact needs of the required application. The hardware is simplified due
to omitting of instruction decoder. A simple controller is added instead of fetching and de-
coding stages. The program memory containing instructions is replaced by control memory
that contains the control words that must be applied to the datapath components at run-time.
Figure 4.3 illustrates the transition from ASIP design approach to NISC design approach.
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Figure 4.3 — Transition from ASIP to NISC design approach

In NISC design approach, the fundamental functionalities of the controller in a proces-
sor such as fetching and decoding the instruction, analyzing the dependency, and scheduling
the instructions are performed statically by the compiler. The compiler is neither restricted
by a specific hardware resources due to the size of implementation area nor limited by tim-
ing constraints due to the desired execution performance. At compilation time the compiler
generates the set of control words (CWs), which should be delivered to the datapath at run-
time, and stores it in the control memory. At run-time, the controller simply loads CWs at
every clock cycle and derives them to the control ports of the components constituting the
datapath. In other words, the decoding and scheduling of instructions are done at compiler’s
execution time. Hence, their overhead does not impact the application execution time. Fig-
ure 4.4 demonstrates the stages of NISC designing approach.

4.3.2 Overview on NISC design approach

NISC is a custom-hardware design technology which has been developed initially at the
Center for Embedded Computing Systems (CECS), UC Irvine [6]. NISC architectures do
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Figure 4.4 — NISC designing approach stages

not include an instruction set abstraction. The designer selects a custom datapath for the
desired processor. A compiler first captures the code of the application, which is developed
using a high level language. Then, at each clock cycle, it generates the proper control signals
for the specified datapath.

Figure 4.5 shows the general overview of a processor that can be described as a controller
and a datapath. In each clock cycle, the controller transfers the control bits to the datapath in
order to perform a specific task and gets a feedback from the datapath in order to determine
the state of the system in the next clock cycle. Every processor has a controller that trans-
fers the sequence of control signals in memory (address space dimension) to a sequence of
control words for each clock cycle (time dimension). Each instruction implicitly determines
the behavior of all datapath components at specified execution cycle. NISC architectures fol-
low the same architectural template as general processors except that instruction decoder is
removed and it is shifted from hardware at run-time to the compiler at compilation time.
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Memory

Figure 4.5 — General processor block diagram

Recently, the compiler has been given more control over the processor. This design con-
cept has constituted a key trend in implementing hardware designs. The idea of expanding
the functionality of the compiler and consequently increasing its control over the proces-
sor refers to many facts. The compiler has a bigger observation window than the hardware
decoder because of its ability to parse the entire application program. In addition, the com-
piler can implement easier complex algorithms since it is not restricted by limited hardware
resources. Moreover, transferring tasks to be performed in software rather than hardware
results in simplifying the latter complexity and reduces the run-time overhead.

In NISC technology, the compiler schedules operations and decodes them into control
words that control the hardware resources at run-time at each clock cycle. NISC designs
have no instructions; hence no decoding stage is required. Furthermore, since all operations
are scheduled statically, NISC designs do not include run-time hardware scheduler. In other
words, the roles of the decoder and scheduler are transferred from hardware to software
compiler. The control words (also called nanocodes), which are stored in program memory,
are directly loaded to control ports of datapath components. Architectures adopting NISC
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concept face the risk of having extra memory needs to store the control words. This issue is
called code bloating and is considered as a common problem in statically scheduled Hori-
zontal Microcoded Architectures (HMA) [7]. Thus, the size of the control memory creates a
new design challenge for the designers. In fact, the size of the control memory depends on
the target application and the opted architecture choices. However, several techniques have
been proposed and applied to reduce the memory size such as code packing, dictionary based
and arithmetic-based compression [8].

4.3.3 NISC Dynamic flexibility

In NISC-based architectures, dynamic flexibility can be attained by storing CWs related
to different configurations in the control memory where each configuration has a different
starting offset address. Hence in this case, offset address information is sufficient to change
the configuration. Figure 4.6 illustrates how to attain dynamic flexibility in NISC.
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Figure 4.6 — Dynamic flexibility in NISC

On the other hand, the large size of CWs constitutes typically an issue for statically sched-
uled architectures. However, this issue depends on the considered application and target
flexibility requirement, besides the devised architectural choices for the datapath compo-
nents. Furthermore, several optimization techniques such as code packing, dictionary-based
or arithmetic-based compression techniques can be applied to overcome this issue [8].

4.4 Contributions and Performed Work

In this work, NISC concept is adopted to design flexible architectures dedicated for turbo
equalization [9] and turbo demapping [10] functions that can be utilized in digital communi-
cation systems which fulfill the requirements imposed by multiple communication standards.
The objective of this research work is to apply jointly flexibility and optimization on algo-
rithms and hardware, with the aim of finding the best compromise between performance
of the algorithms and the cost of their flexible implementation. The originality and novelty
of the work mostly lie in designing simplified versions of the equalization and demapping
functions of single-input-single-output (SISO) wireless receivers, with a manageable degra-
dation of detection performance, then applying the designs on a NISC architecture, and then
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implementing the architecture on an FPGA. It has been shown that the devised approach is
different from the ones described in the literature, and illustrated how the produced perfor-
mance results have consistently superior to those of the other approaches.
The contributions of this research work is summarized in the following subsections:

4.4.1 Study the requirements and features of modern communication
systems

The objective of this work is to explore a new design approach for flexible architectures
dedicated for wireless digital communication applications. Each wireless communication
standard specifies a set of parameters concerning different components of the wireless com-
munication system. So, the first step is studying the requirements and features of modern
communication systems, including WiFi [11], WiMax [12], LTE [13], LTE-Advanced [14]
and DVB (RCS [15, 16],T2 [17, 18] and S2 [19]). The specifications supported by these
different wireless communication standards are investigated thoroughly.

Accordingly, the common building blocks of the transmission chain are analyzed, es-
pecially those that are computationally intensive and could represent bottlenecks when pro-
cessing information symbols, both on the transmitter and receiver sides. In this work, the two
blocks that were identified are the receiver’s equalizer and the demapper which complexities
have increased considerably, especially with the advent of Multiple Input Multiple Output
(MIMO) transceiver designs.

4.4.2 Exploring NISC design methodology and toolset

NISC design approach is investigated to find its relevance in designing flexible yet efficient
architectures in counterpart other available design approaches. The advantages of NISC ar-
chitecture are analyzed to determine its potentials in speeding up computations, and hence
making the case for its suitability and ability for accelerating the receiver’s functions, for
reducing power consumption, and for reducing implementation complexity.

On the other hand, NISC design methodology is explored in deep along with the available
toolset. In fact, based on this exploration, an appropriate design and prototyping flow, which
combines the conventional NISC toolset flow and direct controlling of hardware resources
to ensure both productivity and implementation efficiency is devised.

4.4.3 Contributions in algorithmic domain

In order to design efficient low complexity architectures, the algorithms of soft-in soft-out
turbo equalization and turbo demapping are refined toward hardware implementation:

• Both targeted algorithms are thoroughly investigated. Algorithmic computations are
surveyed to extract the characteristics of all involved parameters. Sufficient mathemati-
cal analysis is devised to simplify the computational overhead of operations in different
algorithmic steps.
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• For the equalization algorithm, several novel decompositions is applied to complex
number operations and complex matrix operations leading to enhanced performance
and to a significant reduction of utilized computations. This work has been published in
the Journal of Circuits, Systems and Computers (JCSC), 2019 [20].

• For the demapping algorithm, the developed simplifications have been analyzed to
achieve best tradeoff in terms of performance and complexity for different system con-
figurations. In addition, reference software model is developed to validate all refinement
techniques performed on these algorithms. Note that a detailed survey about the simpli-
fications on the demmaping algorithm and the corresponding hardware implementations
has been published in 2022 in the Journal of Circuits, Systems and Computer s(JCSC)
[21].

• For both algorithms, the complexity of the adopted refined forms is evaluated. The re-
quired numbers and types of real operations are determined. Studying and analyzing in
details the functions of the receiver’s equalization and demapping blocks, and proposing
simplified alternatives to their typical implementation architectures, while at the same
time considering the resulting degradation in symbol error rate performance. Not only
these simplifications make the algorithms more suitable for implementation on NISC
architectures, but they can also improve performance in terms of speed and power con-
sumption, with anticipated tolerable degradation in detecting symbols correctly.

4.4.4 Contributions on Hardware implementations

In the following, the main contributions to realize the hardware designs of two NISC proces-
sors for turbo equalization and turbo demapping functions:

• The dependency among algorithm steps is studied to provide the scheduling of compu-
tational operations achieving high parallelism degree.

• The requirement of flexibility in both designs is analyzed based on the specifications of
emergent wireless communication standards. For each architecture design, several flex-
ibility parameters is defined to cope with multiple standard requirements for different
system configurations.

• A careful numerical study is conducted to determine the accurate quantization and fixed-
point representation of all parameters and computational values involved in the algo-
rithms at different algorithmic steps to ensure numerical stability of implemented algo-
rithm. A reference software model is developed to evaluate the impact of devised quanti-
zation and fixed-point arithmetic on the error-rate performance. The detailed numerical
study and its impact on the error rate performance have been published in EURASIP
Journal on Embedded Systems, 2017 [22].

• A hybrid design flow is proposed as a combination between available NISC toolset
flow and direct controlling of hardware resources. The adopted design flow to realize
the hardware implementations has been described in Electronics, 2016 [1]. Figure 4.7
shows an overall presentation of the adopted flow.
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Figure 4.7 — Adopted design flow [1].

• Taking into account the refined algorithm with reduced complexity and based on the
standards requirements, flexibility parameters are specified. All computational opera-
tions are scheduled achieving maximum parallelism. Depending on required flexibility
parameters and operation scheduling, the architecture choices are selected to achieve
an efficient architecture for different system configurations. The hardware design of
flexible NISC-based architectures dedicated for turbo equalization and turbo demap-
ping functions is tailored such that the hardware resources are allocated according to
selected architecture choices.

• The proposed NISC architectures are implemented on top of FPGA fabric, specifically
using the well known Xilinx Virtex-7 XC7VX485T FPGA. Also, the devised NISC-
based architectures are synthesized towards ASIC target. The detailed architectures of
the devised demapper and detector have been published respectively in IEEE Transac-
tions on Circuits and Systems II, 2015 [23] and in the Journal of Circuits, Systems and
Computers (JCSC), 2021 [24].

• Using proven analysis and testing tools, the design and the implementation are veri-
fied and tested. On-chip validation of the two proposed NISC-based architectures is
performed to verify the exact performance of the implemented architectures. Xilinx
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ChipScope Pro Analyzer is used to record the output results of the design as illustrated
in Figure 4.8.
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Figure 4.8 — On-board validation using Xilinx ChipScope Pro Analyzer

• Testing and validation allow for producing descriptive results for related performance
measures and complexity costs of the implementations and for comparing the ob-
tained results with those of other designs and implementations found in the literature
[25, 26, 27, 28, 29, 30, 31, 32, 33]. The adopted approach, results and comparisons
have been published in 2018 in IEEE International Conference on Computer and Ap-
plications (ICCA), 2018 [34] and then detailed in Design Automation for Embedded
Systems (DAEM),2021 [35].

4.5 Findings

In both designed NISC-based architectures, the obtained results in terms of performance and
implementation area confirm the feasibility of adopting NISC concept in designing flexible
yet efficient application-specific processors in the domain of digital communications.

Both designed NISC-based architectures have been compared to state-of-the-art ASIP-
based architectures using similar computational resources and supporting same flexibility
parameters. The obtained results show that the proposed NISC-based architectures provide
a significant improvement in execution performance while having reduced implementation
costs.

Also, the obtained results show that the size of the required control memory depends on
the considered algorithm and the devised architectural choices. In the detector module, the
adopted re-usability of allocated resources imposes separate controlling of each component;
hence, additional control signals are implied. Whereas for the demapper module, imple-
mented hardware components are considered to perform specific operations and to deal with
the same type of data; hence, the number of control signals can be reduced significantly.
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Abstract—Applications in wireless digital communication field
are becoming increasingly complex and diverse. Circuits and sys-
tems adopted in this application domain must not only consider
performance and implementation constraints but also the require-
ment of flexibility. The combination of flexibility and the ever
increasing performance requirements demands design approach
that provides better ways of controlling and managing hardware
resources. An application-specific instruction-set processor (ASIP)
design approach is a key trend in designing flexible architectures.
The ASIP concept implies dynamic scheduling of a set of instruc-
tions that generally leads to an overhead related to instruction de-
coding. The no-instruction-set-computer (NISC) concept has been
introduced to reduce this overhead through the adoption of static
scheduling. In this brief, the NISC approach is explored through
a case-study design of universal demapper for multiple wireless
standards. The proposed design has common main architectural
choices as a state-of-the-art ASIP for comparison purpose. The
obtained results illustrate a significant improvement in execution
time and implementation area while using identical computational
resources and supporting same flexibility parameters.

Index Terms—Demapper, flexibility, iterative processing, multi-
standard wireless system, no-instruction-set-computer (NISC).

I. INTRODUCTION

CURRENTLY, flexibility is a major design requirement of
embedded systems and circuits. Hardware architectures

are supposed to accommodate multitude system configurations
as well as their corresponding algorithmic variants. Because of
the rapid evolution of related standards, modern wireless digital
communication systems are highly concerned about the flexi-
bility feature. However, the emergent flexibility need should not
come at the cost of performance and implementation require-
ments. Application-specific processors are increasingly adopted
to implement definite blocks of wireless system since they pro-
vide a good solution in designing flexible architectures that can
fulfill nowadays requirements in terms of low error-rate perfor-
mance and high throughput, and satisfy the tight constraints on
implementation area and power consumption.

The application-specific instruction-set processor (ASIP)
concept offers a tradeoff in terms of the flexibility of general-
purpose processors and the efficiency of application-specific
integrated circuit (ASIC) by customizing the functionality and
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the data path structure through a custom instruction set [1].
This tradeoff can be tuned in a language-based ASIP design
approach, when the degree of flexibility is limited, to reach an
implementation efficiency comparable to parameterized archi-
tectures using classical register-transfer level (RTL) design ap-
proach [2]. However, when hardware is dedicated for a specific
application, processes of specifying and describing instructions
at the designing phase and decoding them at runtime form an
overhead in terms of productivity, execution performance, and
implementation costs. The no-instruction-set-computer (NISC)
concept [3] adopts static scheduling of operations instead of
dynamic scheduling (i.e., decoding instructions at runtime to
determine which operations to execute) to simplify the ASIP
approach. Design productivity is increased by obviating the
task of finding and designing a custom instruction set. The
design quality is better ensured by reducing design complexity
to match exactly the requirements of the desired application.

In a previous work, presented in [4], the NISC concept has
been explored to realize flexible turbo equalizer. The compari-
son with a similar ASIP implementation, which uses identical
computational resources and supports the same flexibility pa-
rameters, illustrates significant improvement in throughput with
reduced implementation costs. However, additional memory
locations are required to implement the control memory with
respect to the ASIP program memory. In fact, this is directly
related to the considered application and devised architecture
choices. the NISC concept is evaluated in this brief through a
different application design and architecture choices. This brief
presents a novel NISC-based universal demapper. The proposed
architecture is thoroughly described. In addition, the design
is compared with a state-of-the-art ASIP-based equivalent im-
plementation in terms of performance, throughput, and area
of implementation. Recent emergent wireless communication
standards, support various modes and configurations related to
the characteristics of the target constellation such as modulation
type and mapping style. Different order constellations have
been employed starting from binary phase-shift keying (BPSK)
up to 256-ary quadrature amplitude modulation (QAM).

Constellations with Gray mapping are adopted to achieve
the lowest possible bit-error probability [5]. Furthermore, the
independence between the in-phase (I) and the quadrature (Q)
components of a symbol in Gray-mapped constellations can
be exploited to reduce the computational complexity without
suffering any performance loss. Accordingly, numerous sim-
plifications have been proposed for specific constellations [6].
These simplifications can not be applied when incorporating
signal space diversity (SSD) with rotated constellation intro-
duced in DVB-T2 standard since the independence between I
and Q components is broken.

On the other hand, an iterative receiver can significantly
improve the performance compared with the noniterative re-
ceiver [7]. In iterative schemes, a priori information, which
is generated by the decoder, is involved in demapping and
imposes additional complexity.

1549-7747 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Iterative receiver block diagram.

Most demapper implementations reported in the literature are
of limited flexibility. In [8], the proposed soft-decision demap-
per architecture supports only four modulation schemes as spe-
cified in the DVB-S2 standard. Other demapper design has been
presented in [9] for rotated QAM constellations targeting the
DVB-T2 standard. To the best of our knowledge, only one uni-
versal demapper has been introduced in [2]. The demapper ar-
chitecture is ASIP based and covers all flexibility requirements
for recent wireless standards. Such wide flexibility to support
different mapping styles, modulation schemes, SSD with rotated
constellation, iterative and noniterative processing schemes be-
comes crucial in the current trend toward the convergence of
wireless communication services [10] and the requirement of
multistandard terminals. Furthermore, demonstrating the ability
of designing highly flexible, yet efficient, demapping archi-
tectures can trigger the proposal of new modulation schemes
and parameters that better suit the application and environment
conditions. Such new schemes, associated with efficient flexible
implementations, can then constitute potential candidates for
adoption in next-generation communication systems.

II. SYSTEM MODEL AND ALGORITHM

Fig. 1 shows the block diagram of iterative receiver. Depend-
ing on the transmitter configuration and propagation conditions,
the input from the wireless channel can be either directly deliv-
ered to the demapper or passed through a channel equalizer. To
reduce the computational complexity, the demapper works in
logarithmic domain and generates probabilities ṽ on received
sequence in the form of log-likelihood ratios (LLRs), where
v represents the binary mapping of the transmitted sequence.
These LLRs construct, after deinterleaving, the input c̃ to chan-
nel the decoder. Through the feedback loop, the a posteriori
information output from the decoder is interleaved and then fed
back to the demapper and the equalizer. In this brief, the channel
fading has a Rayleigh distribution with additive white Gaussian
noise (AWGN). To compute the LLRs, the following expression
is used [11]:
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where m is the number of bits per symbol, i = 0, 1, . . . , m − 1,
L(ṽi

t) is the LLR of the ith bit of transmitted symbol at time
t, X i

0 and X i
1 are the symbol sets of constellation for which

symbols have their ith bit equals b ∈ {0, 1}, ρt is the channel
fading coefficient and σ2 is the AWGN variance, and P (v̂l

t) is
the probability of lth bit of symbol x computed through a priori

information. To reduce the complexity, max-log approximation
[12] is applied by using the following formulas:

ln
a

b
= ln(a) − ln(b)

ln(eδ1+···+eδn
) ≈ max

i∈{1,...,n}
δi max(a) − max(b)

= min(−b) − min(−a).

The expression in (1) becomes
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where vl is the lth bit of each received modulated symbol.
The simplified expression in (2) exhibits four main computa-

tion steps: 2-D Euclidean distance computation, a priori LLR
summation, minimum operations referred by the min functions,
and subtraction operation of minimum values. In the case of
noniterative demodulation, no a priori information is provided
to the demapper. The expression of LLRs in (2) becomes

L
(
ṽi

t

)
≈ min

x∈X i
0

(D) − min
x∈X i

1

(D). (5)

Moreover, for Gray-mapped constellations, I and Q components
are independent from each other; hence, the Euclidean distance
is calculated in one dimension. In case where m is even, further
simplification can be applied. LLR computation expression in
(5) can be transformed in this case into the following [6]:

L
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where
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and X (I)i
b and X (Q)j

b are the constellation point sets on I-axis
and Q-axis with ith and jth bits of symbol x that have a value
equals to b. Applying this simplification, 2m/2 1-D Euclidean dis-
tances are computed instead of 2m 2-D Euclidean distances for
each LLR. For rotated constellations, a simplification has been
proposed in [9] to reduce the number of Euclidean distance
computations by dividing the constellation into four subregions.
This subpartitioning technique reduces the number of candidate
constellation points involved in computing 2-D Euclidean dis-
tances of QAM schemes from 2m to (2(m−2)/2 + 1)2.

III. ARCHITECTURE DESIGN

The variety of specifications in multiple wireless standards
imposes designing hardware architecture of high flexibility to
enable the computation of LLR values for different system
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Fig. 2. Block diagram of the proposed NISC-based architecture detailing the pipeline structure of DemaNISC module.

configurations. The resources of the demapper flexibility are
related to the characteristics of target constellation and the
iterative demodulation concept. In this section, the architecture
design proposed for the universal demapping is described. It is
capable to generate soft-output probabilities in the logarithmic
domain for various modulation schemes starting from BPSK
up to 256-QAM with and without iterative demodulation using
either the generic form or simplifications relative to the
constellation rotation and the Gray mapping.

A. Architecture Choices

Toward achieving flexible demapper design, the following
architecture choices are considered:

1) Modulation Order: Constellation information is stored
in a lookup table (LUT) whose depth varies according to
m. I and Q components of symbols and their corresponding
binary mapping μ are rewritten for each target constellation.
In addition, sufficient hardware operators, which are required
to find minimum values and perform their corresponding sub-
tractions required in (2), (5), (6), and (7), are allocated con-
sidering the largest target constellation (256-QAM). For lower
order modulation schemes, unused resources are not activated.
Sharing hardware resources among these operations decreases
the throughput particularly for high-order modulation schemes.
Furthermore, this architecture choice allows a fair comparison
with the ASIP-based design presented in [2].

2) Mapping Style: The same hardware operators are utilized
in computing Euclidean distances for Gray or non-Gray map-
ping styles. In fact, the computation of one 2-D distance is
equivalent to that of two separate 1-D distances.

3) Iterative Demapping: Operators involved in a priori
LLR summation are instantiated to accommodate all target
constellations.

4) Quantization and Fixed-Point Arithmetic: To reduce the
implementation complexity, fixed-point arithmetic is used, and
computational values are quantized. Targeting a fair compari-
son with an ASIP-based design [2], identical quantization has
been adopted for all computational parameters. With the aid of
long simulations and analysis, bit widths are carefully selected
to ensure least performance degradation. Using a reference
software model, a degradation below 0.05 dB is measured at
10−3 frame-error rate over a fast fading Rayleigh channel.

5) Pipelining: Temporal parallelism using pipelining is ap-
plied to minimize the length of critical path and to enhance
the computation performance and the efficiency of utilized
hardware resources.

B. NISC Architecture

Fig. 2 presents the structure of the proposed architecture and
shows the input/output connections. The inputs to the demapper
architecture are the LLRs stored in AprMem, variance σ2,
CWs saved in CMem, constellation information arranged in
Constellation LUT, and received symbols and fading factors
reserved in YMem and ρMem, respectively. In addition, the LUT
(1/2x)LUT provides the 1/2x inverse values required in the
inversion operations.

The designed architecture is basically composed of a simple
control unit and the module that performs the demapping
functionality. Here, this module is referred to as DemaNISC.

1) Control Unit: It is mainly responsible for loading CWs
from CMem into the components of DemaNISC module. To
accomplish this functionality, the unit handles the address of
CMem memory and constructs links to distribute the control-
signal bits of CWs to appropriate components. In addition, the
control unit manages the flow of input data coming from YMem,
ρMem, and Constellation LUT. These basic tasks reveal the
simple hardware structure required to implement the control unit.

2) DemaNISC Module: It is considered the main core of
the demapper architecture. From a hierarchical scope, it can be
viewed as a concatenation of five units.

a) EDU: This unit includes all hardware resources that
incorporate in computing the Euclidean distance expressed in
(3). It is supplied by I and Q components of received sym-
bol yI and yQ, constellation symbol xI and xQ, and fading
factor ρI and ρQ in addition to the noise variance σ2. At each
computation, Euclidean distance unit (EDU) can deliver two
1-D distances or one 2-D distance. EDU contains 18 registers,
6 real multipliers, 1 real adder, 2 real subtractors, and 1 2-to-1
multiplexer. The operators of the Euclidean distance calculator
spread over five pipeline stages (stages 2–6, Fig. 2). In the sec-
ond, third, and fourth pipeline stages, I and Q components of
y, x, and ρ are exploited to compute two 1-D Euclidean distances.
At the 5th pipeline stage, the two calculated distances may be
added into one 2-D distance ED satisfying the implementation
requirements of (2) and (5). In the case of Gray mapping style
with no a priori information, the two 1-D distances are trans-
ferred to the next stage (EDI and EDQ). At this stage (fifth), the
inverse value of σ2, being provided at the 1/2x LUT index in
the third pipeline stage, is retrieved. I and Q components of 1-D
Euclidean distance (DI and DQ) or 2-D Euclidean distance D
are ready at the end of the sixth pipeline stage (see Fig. 2).

b) ASU: In the case of turbo demodulation, the hardware
resources embedded in this unit are responsible for generating
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Fig. 3. Architecture of the minimum finder block.

the summation of input a priori LLRs as described in (4). The
inputs to a priori LLR summation unit (ASU) are LLR values
saved in AprMem memory and vector v representing the binary
mapping μ of symbols from the Constellation LUT. ASU con-
tains 38 registers, 7 real adders, 8 real subtractors, and 16 2-to-1
multiplexers. These components spread over five pipeline
stages (stages 3–7, Fig. 2). The summation process is managed
by the bit values of v, which represents the binary mapping
of constellation symbol x under consideration and propagates
along pipeline stages. In the case of turbo demodulation, input
LLRs L(v̂i

t), which are loaded in the second pipeline stage, are
summed cumulatively in the third, fourth, and fifth stages. At
this computational level, a copy of input a priori information
is needed to subtract the LLR corresponding to bit vi as
expressed in (4). The final a priori information summations
Api corresponding to all bits are delivered at the end of the
6th pipeline stage.

c) ISU: This unit collects a priori LLR summation val-
ues produced by ASU and subtracts them in parallel from
the value of 2-D Euclidean distance calculated by EDU. To
perform this functionality, intersubtraction unit (ISU) includes
a subtractor set, which is made of eight real subtractors con-
sidering the highest modulation order with m = 8. ISU also
contains nine registers to store the subtraction results (Di =
D − Api) in addition to the value of the Q-component of the
1-D Euclidean distance DQ. Subtractors of ISU are placed in
the seventh pipeline stage and are capable of producing up to
eight Di values (D0 to D7). If turbo demodulation is omitted,
the computed values of Euclidean distance are transferred to
the next pipeline stage (eighth) with no modifications. At the
end of the seventh stage, three types of data are possible to be
achieved:

• one 2-D distance minus the a priori information as ex-
pressed in (2);

• one 2-D distance only (noniterative demodulation case) as
expressed in (5);

• two 1-D distances (Gray mapping with noniterative de-
modulation case) as expressed in (6) and (7).

d) MFU: This unit integrates eight minimum finder
blocks whose architecture is presented in Fig. 3 and are es-
tablished to realize minimum functions listed in (2), (5), (6),
and (7) considering 256-QAM constellation. Each block is
concerned to find minimum values associated to a bit loca-
tion vi along all constellation symbols. As shown in Fig. 3,
the minimum finder structure contains two registers. The first
register stores the updated minimum value that corresponds to
symbol set X i

0 ; whereas the second register stores the minimum
value corresponding to X i

1 . For each new received symbol y, the
two registers are initialized by loading the maximum numerical
value. Each minimum finder benefits from new-updated Di

values in addition to vi bits. Depending on vi value (“0” or “1”),
one of the two registers is chosen to be updated. The current
value is replaced by input value Di if the latter is smaller than

TABLE I
SYNTHESIS RESULTS

TABLE II
EXECUTION PERFORMANCE RESULTS

the former. Otherwise, the register maintains its current value.
A comparison is established by evaluating the sign S of the
difference resulting from the subtraction operation of current
value from input value Di. At the input of each minimum finder
block, a multiplexer is allocated to control input data flow to
minimum finder block according to the required dimension of
the Euclidean distance. Overall, minimum finder unit (MFU) is
composed of 16 registers, 8 real subtractors, 31 2-to-1 multi-
plexers, 16 AND-gates, and 16 negators. All these components
are placed at the eighth pipeline stage.

e) OU: This unit is in charge of delivering finally the
LLR values corresponding to each bit L(ṽi

t) constellation sym-
bol x. Inputs of the output unit (OU) are the minimum values
available in the registers of MFU. Once minimum values of
all constellation points are determined, the OU produces the
difference between minimum pairs (minxt∈X i

0
and minxt∈X i

1
)

corresponding to each bit location vi. After processing all
constellation symbols, final resultant differences are loaded to
their corresponding output registers (out0 to out7).

IV. RESULTS AND COMPARISON

In this brief, the NISC design toolset has been used. The
adopted design flow is thoroughly described in [13]. Table I
summarizes the synthesis results, whereas Table II shows the
number of clock cycles required to produce LLRs for different
system configurations along with the achieved throughput. The
results are in addition compared with those of DemASIP [2],
which is an ASIP dedicated for demapping with customized
data path and instruction set. Both processors support same
flexibility parameters, use identical computational resources,
and adopt identical quantization for all computational param-
eters. The comparison between the two designs shows a
significant improvement in terms of execution time and im-
plementation area. For fair comparison, logic synthesis of the
proposed architecture HDL description has been conducted
targeting the same device (Xilinx Virtex-5 LX330 FPGA) and
using the same synthesis options and tools. Logic utilization
is reduced by 30.8% for slice registers and 52.4% for slice
LUTs compared with DemASIP. In fact, the implementation
of resources responsible for instruction fetching and decod-
ing increases hardware resource utilization. Whereas, in the
NISC-based proposed demapper, the architecture is designed
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to match exactly the requirements of the application. More-
over, DemASIP can operate at a maximum frequency of
186 MHz, whereas the proposed architecture can achieve
a maximum operating frequency of 240 MHz. Hence, it is
1.29 times faster than DemASIP. This is due to the DemASIP
critical path that includes several levels of combinational logic
and which is related to fetch program address generator,
whereas only one level of logic exists in the critical path of
the proposed design. In addition, Table I shows a comparison
between the ASIC implementation of DemASIP and that of the
NISC-based architecture on dedicated chips. In fact, the HDL
code generated by Synopsys (ex CoWare) for the ASIP-based
design (which is available at our research group) and the HDL
code generated by NISC toolset for NISC-based design are
delivered as sources to the Design Compiler tool from Synopsys
to achieve the ASIC implementation targeting the ST CMOS
65-nm technology. The comparison shows that the NISC-based
design offers about 10% area reduction compared with the
ASIP-based design. Note that the detailed results illustrate that
the control unit occupies only 1.6% of total implementation
area of proposed architecture, whereas the components ded-
icated for fetching and decoding instructions occupy 7% of
DemASIP implementation area.

On the other hand, operations in ASIP-based design are lim-
ited to the available instruction set. Overlapping of operations
is not allowed. The instructions are fetched and decoded at
runtime, and their functionalities are limited to their structure.
Whereas, the NISC-based proposed design enables a direct and
mastered access to control signals of hardware resources. Differ-
ent operations are combined and then scheduled statically. Merg-
ing of operations ensures less execution time compared with
DemASIP. At runtime, operations are directly performed, and
LLRs are generated with no additional overhead. Table II shows
that the proposed architecture outperforms DemASIP in all sys-
tem configurations. For all combinations of mapping styles, mod-
ulation types, and SSD, better throughput is always provided.

Concerning CMem requirements, its width is significantly
optimized (from 91 bits to 18 bits) by specifying same control
bits to all components that have the same executions in all
steps, whereas its depth varies according to the number of the
needed execution steps to compute all LLRs corresponding to
one input symbol. The required memory size varies from 23 B
for quadrature PSK (QPSK) with Gray-mapped constellation
to 594 B for 256-QAM with non-Gray mapped constellation.
Compared with the ASIP program memory, CMem requires
less memory space to be implemented. In fact, the assembly
code used for DemASIP includes in addition to PROCESS
instruction, which is the core instruction of LLR generation,
instructions dedicated to loading input data, exporting output
LLRs, looping, and no-operation instructions [2]. The available
assembly code for QPSK non-Gray constellation shows that
these additional instructions forms 54% of the total number
of listed instructions [2]. For this system configuration, the
memory space required to implement the program memory of
DemASIP is 60.3% more than that required to implement the
control memory (CMem) of the NISC-based proposed demap-
per. Note that, for both processors, CWs and assembly code are
produced and optimized by hand as in this case the hardware is
highly dedicated to the application, and it is programmed by its
designers and not by its users.

Furthermore, the proposed demapper is compared with the
dedicated architectures reported in [8] and [9], which use a clas-
sical RTL design approach. These architectures support soft-
decision demapping; however, their flexibility is limited to the
requirements of DVB-S2 and DVB-T2 standards, respectively.
Targeting a fair comparison, our proposed design has been
implemented on the same target devices used in [8] (Virtex II
XC2-V6000) and [9] (Virtex II Pro XC2VP30). Compared with
the architecture in [9], the proposed demapper requires almost
3.33 times less dedicated multipliers, 3.1 times less LUTs, but
2.2 times more registers. In terms of throughput, it outperforms
the design in [9] for QPSK by 6.2 times, for 16-QAM by 3.1
times, and for 64-QAM by 1.2 times. Whereas for 256-QAM,
the design in [9] shows better throughput (2.6 times) since
it can concurrently compute nine Euclidean distances. In [8],
the timing information about the hardware implementation is
not available. The presented logic utilization summary reveals
the need of 1.8 times more logic devices and 2.67 times more
multipliers compared with the proposed NISC-based demapper.

V. CONCLUSION

In this brief, an NISC-based architecture of universal demap-
per for multiple wireless communication standards has been
proposed. The flexibility of the demapper is not restricted
to certain modulation types and/or mapping styles. Hardware
design and implementation have been conducted using the
NISC design approach. While using identical computational
resources and supporting same flexibility parameters, the pro-
posed NISC-based demapper architecture outperforms state-of-
the-art ASIP-based architecture with reduced implementation
costs. In addition, less memory space is required to implement
control memory compared with the ASIP program memory.
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Chapter 5

Efficient Algorithms and Architectures
for Dataflow Applications

5.1 Notifying Memories Concept

5.1.1 Preface

This research topic has been addressed during my work at South Brittany University (UBS)
in MOCS research team at Lab-STICC in Lorient, France in the context of the ANR COMPA
research project. The notifying memory concept has been published in the proceeding of the
Design Automation Conference (DAC) in 2016 [36]. An extension of the results along with
further details about the devised simulator have been also published in [37].

5.1.2 Introduction

Considering the evolution towards manycore and multiprocessor architectures in embedded
systems, the interconnect network has a strong impact on performance and energy efficiency.
On the software side, we observe a renewed interest for dataflow (DF) programming mod-
els that offer clear design guidelines to deal with application complexity and scalability. It
allows for explicitly specifying both spatial and temporal parallelism of an application. DF
programming is also a very convenient approach to manage the evolution of standards based
on a large set of reused functions and to generate correct-by-construction code. One of the
side effects of dataflow applications is the overhead of memory accesses. DF actors (dataflow
nodes) must check firing rules including availability of input data and output buffer space.
This penalty is even more important for dynamic actors, which are unavoidable in real life
applications.

NoCs implement concurrent communications, increasing the bandwidth and taking ad-
vantage of parallelism at the actor level. However, NoCs also increase communication la-
tency, penalizing DF applications which rely on a large number of requests to memories for
firing rule validation. Some recent work has addressed the problem of NoC latency. It relies
on path or time slot allocation and processor or buffer mapping to minimize read and write
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delays, but it is still based on the fact that memories are slaves [38]. The idea of smart or
active memory aims also to reduce the number of transactions and improve memory access
efficiency by moving part of computations to the memory side [39, 40].

In this research work, we address the question with a totally new approach that transforms
memories into masters, able to initiate transfers by means of notifying actions when data is
ready, so to get rid of useless accesses. We call this concept Notifying Memories (NM). The
immediate consequence of a new balance between memory and processors is the reduction
of the number of transactions and injection rates. It provides memories with notification and
processors with listening mechanisms, which are conceptually close to the observer design
pattern, used in software engineering. They are implemented in the network interface (NI).
Our solution is thus independent from memory, processor architectures and NoC parameters.
Moreover, the notifying memories perfectly match with the DF models. In real-life DF ap-
plications, both static and dynamic actors are required. The uncertainty of computing due to
data-dependency prevents from any static scheduling.

5.1.3 Context and Prior Related Work

Many approaches rely on the same idea of the one we propose: reducing the number of
transactions to save bandwidth for useful communications by trimming conflicts. In [40], an
active memory processor is introduced. It is a processor that resides inside the memory con-
troller to process data on the memory side. The computation on a set of data is done directly
inside the memory and thus it reduces the number of transactions on the bus. In [39], the
concept of smart memory is presented. It is a modular reconfigurable architecture that can be
adapted to better match the application requirements. The goal is to propose a target that can
efficiently execute applications specified with a wide range of programming models, from
the stream programming model to speculative and random programming model. The works
in that domain mainly focus on improving the efficiency of memory access [40]. By means
of intelligent cache, memory and protocol controllers, the goal is to break the passivity of
the memories. The contribution of this work follows the same trend in the way that memory
is the best element to know what is in the memory. The main idea is to program memories
so that they can trigger a notification. It supposes that the event is known in advance. The
data-flow paradigm with the different models of computation makes this possible.

Executing data-flow applications onto an NoC-based architecture has been an active topic
and gained renewed interest with the advent of parallel architectures [41]. Executing a data-
flow application, naturally parallel, onto a parallel architecture seems obvious but the prob-
lem is actually more challenging [42]. The approaches in the data-flow domain propose to
extend a baseline model of computation to support architectural features, to adopt a specific
scheduling policy, or to tune the architecture to fit the programming model. Our approach is
complementary to the existing works and is compatible with any DF model of computation
(MoC) and any scheduling policy.
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5.1.4 Motivations

Figure 5.1 presents the actor network model. An actor can contain several actions. An action
is executed (fired) when a set of conditions is satisfied. This set is called a firing rule. This
firing rule usually consists of checking that the number of tokens in the input First-In First-
Out (FIFO) is greater than the number needed to compute, and that the output FIFO is empty
enough to store the produced tokens. In this work, we propose the FIFO to notify directly
the processor about its content. This idea is inspired from the observer design pattern that is
used for software design.

A1

A2

A3

A4
F1

F2

F3

actions

state

Figure 5.1 — Actor network model

This work stands in this context of data-flow application where different models of com-
putation are used. We use as a case study an MPEG-4 Simple Profile decoder (MPEG4-SP)
specified in RVC-CAL [43]. This decoder is specified with heterogeneous MoC and contains
up do 40% of dynamic actors [44]. The Open RVC-CAL Compiler (Orcc) tool is used for
compiling and software synthesis [45]. This research work relies on the C-backend that gen-
erates C code for multi-core platforms. Since the number of actors (about 40) is greater than
the number of processing cores, an actor scheduler is needed. Different policies have been
proposed, one of the most efficient one remains the Round Robin which is the the default in
Orcc. They all have the same major drawback related to DF principles, which is the ineffi-
cient polling that leads to useless accesses to the memory when a scheduling attempt is not
successful. Figure 5.2 presents the structure of the software FIFO generated by Orcc tool. It
is composed of five parts:

1. size of the FIFO

2. FIFO content, where memory allocation is done according to the FIFO size and size of
data type

3. number of readers, since one actor can write in a FIFO but there might be several readers
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4. index of readers, each reader has its own index

5. index of writer

The synchronization is handled through indexes. Only one actor can write in a FIFO but
there might be several readers. Each reader has its own index. In the simple case where there
is one reader, the difference between the reader index and writer index is computed to know
the number of tokens inside the FIFO. When multiple readers occur, the minimum index is
used. It might happen that one slow reader blocks the other readers.

Figure 5.2 — Structure of a software FIFO generated by Orcc tool

Given this FIFO structure, the processor that executes an actor has to read the values of
the different indexes in order to know the number of tokens in the FIFO. This leads to two
memory requests for each of the concerned FIFO. Let us take the example of the firing rule
given in listing 5.1. In order to compute numTokens FIFO1, the number of tokens in the
first FIFO, the processor emits two requests, one for the index of the writer, and one for
the index of the reader. Note that in this example we consider only one reader for sake of
simplicity. For the second FIFO, the processor emits another couple of two requests. Then, in
order to check for the output FIFO, two other requests are emitted on the NoC. In C language,
if the first condition is not satisfied, the whole test is stopped. The worst case is when the input
conditions are satisfied but not the output condition, which would lead to six transactions for
no action firing. Of course, next scheduling attempt will test again these conditions although
the conditions on the input FIFO are satisfied. It has to be noticed that these conditions cannot
become false on the next trial.

Listing 5.1 — Example of a firing rule

\ c e n t e r i n g
i f ( numTokens FIFO IN1 >= 64 && numTokens FIFO IN2 >= 1){

i f ( SIZE FIFO OUT − numTokensFIFO OUT > 64){
/ / f i r e a c t i o n

}}

Some experiments are conducted using the C backend of Orcc by executing the MPEG4-
SP decoder on a desktop computer in order to trace the number of firings of each actor.
The number of zero firings (no action could be fired) is determined out of the total number
of scheduling attempts. Figure 5.3 shows the percentage of useless scheduling attempts for
different video sequences from [46]. There are two reasons why no action can be fired:

1. one of the input FIFO is empty (i.e. does not contain enough tokens)
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2. one of the output FIFO is full (i.e. does not contain enough space)

Figure 5.3 also shows the repartition between empty and full FIFO. The obtained results
show that at least 20% of scheduling attempts suffer failure. Although the lack of tokens
in the input FIFO seams to be the major reason, the disparity among the different video
sequences prevents from drawing any clear conclusion.
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Figure 5.3 — Useless scheduling attempts by the MPEG4-SP decoder for different video

5.1.5 Contributions and Performed Work

This research work has focused on how to delete useless memory requests, indepen-
dently from the implemented scheduling policy although combining our approach with new
scheduling policy is relevant. The main issue is to stop the polling on the NoC because:

• It is useless when no action can be fired.

• It consumes bandwidth that would be useful for effective transactions.

The current situation is that memories are subjected to processor requests. The idea is to give
new capabilities to memories so that they can inform the concerned processors that their
FIFO content has changed.

Our proposition is inspired from the software observer design pattern. The observer de-
sign pattern defines a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically [47]. That behav-
ior is exactly what we expect when the content of a FIFO changes: notify the concerned
processors that execute the actors connected to that FIFO.

The main contributions of this research work are:
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• Introducing the Notifying Memories concept, which includes a notifier module in the
NI of the memories and a listener module in the NI of the processors. For each devised
module, the structure and functionality are identified. Accordingly, their hardware ar-
chitectures are designed.

• Designing an NoC-based architecture which integrates the notifier and listener moud-
ules. The NIs are modified to accommodate the devised modules without impacting the
typical processes. To cope with the NM concept and to remain compliant with any exist-
ing processor or memory and to be independent from NoC parameters such as topology,
router buffer depth and routing policy, the new elements are integrated into the NI of the
NoC. Besides, we need a master component that can send packets through the network
and a component that can monitor requests, the NI is the only component to offer such
features.

• Demonstrating a model and an implementation of the devised NoC-based architecture in
SystemC TLM. A cycle-accurate simulator that models the NoC and connected nodes
has been created. The devised model executes an MPEG4-SP decoder with 41 actors
and 70 FIFOs specified in RVC-CAL.

• The mean values of execution time of all actions are found from profiling data on a
desktop computer. These values are imported to the simulator model and utilized in
order to compensate the execution time of actions, which are functionally simulated.

• Introducing a new type of packet, the notification packet. The structure of the packet is
described and implemented. The modules of the NIs dedicated to make/de-make packets
are modified to generate/parse the new packet type.

• Conducting experimental simulations using the devised simulation model running a
real-life MPEG4-SP decoder for different video sequences from [46] in order to demon-
strate the interest of the notifying memories concept in terms of performance, data traffic
and power consumption. Note that the selected video sequences differ in their charac-
teristics (motion, background, etc.) and formats (QCIF, CIF, 4CIF, etc.).

• In order to check the relevancy of the proposed concept, the obtained results when
adopting NM are compared with the ones obtained when adopting ordinary memories
while using identical NoC features. The comparison is demonstrated in terms of latency,
throughput, injection rate and switch conflicts. As the NM concept induces sending ad-
ditional data related to the notifier configuration and notifications, a detailed investiga-
tion is conducted to determine the impact of new transferred flits on the NoC traffic.

• Preliminary synthesis is achieved to estimate the impact of NM concept on implemen-
tation area and power consumption. The implemented design integrates a worst-case
design, where a single notifier, which is implemented in all memory NIs, and a sin-
gle listener, which is implemented in all processor NIs, can manage all firing rules of
all actors. The size of the registers in all listener and notifier modules are adjusted to
accommodate the signals for all actors. The area and power results are obtained with
the Cadence Encounter RTL Compiler RC12.24 tool. The synthesis targets the 65nm
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process technology at 500 MHz operating frequency and 25◦C. Total power was ob-
tained by using the leakage and dynamic power of the NoC components relying on the
switching activity traced by the SystemC simulation.

5.1.6 Findings

The comparison of the results when adopting notifying memories with those obtained when
adopting ordinary memories shows significant reductions in terms of latency, injection rate
, switch conflicts and total number of flits along with remarkable throughput improvement.
The obtained results confirm the efficiency of NM concept and show that adopting notifica-
tion memories leads to great reductions reaching 75.14% for latency, 53.96% for injection
rate, 58.25% for transported flits, and 75.88% for switch conflicts. Also, the throughput en-
hancement is improved by up to 9.69%.

The synthesis results show that the NoC adopting notifying memories saves up to 49.1%
of power consumption compared to the reference NoC. Besides, the power overhead of the
interfaces of the proposed NoC presents a modest value of 16.3%. Regarding the area, the
proposed NoC presents an overhead of 12.4%, when compared to reference NoC.

The conducted comparison between the number of extra flits for mapping and notification
and the number of flits required to request and retrieve FIFO indexes shows that the added
flits for notification and extra mapping in the case of notification memories are negligible
compared to the required flits to request and retrieve FIFOs indexes in ordinary memories.
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ABSTRACT
NoC-based architectures overcome the limitations of tradi-
tional buses by exploiting parallelism and offer large band-
widths. NoC adoption also increases communication la-
tency, which is especially penalising for data-flow applica-
tions (DF). We introduce the notifying memories (NM) con-
cept to reduce this overhead. Our original approach elim-
inates useless memory requests. This paper demonstrates
NM in the context of video coding applications implemented
with dynamic DF. We have conducted cycle accurate sys-
temC simulation of the NoC on an MPEG4 decoder to eval-
uate NM efficiency. The results show significant reductions
in terms of latency (78%), injection rate (60%), and power
savings (49%) along with throughput improvement (16%).

CCS Concepts
•Networks→Network on chip; •Theory of computa-
tion → Streaming models; •Hardware → Buses and high-
speed links;

Keywords
NoC based architecture; data-flow; memory

1. INTRODUCTION
Considering the evolution towards manycore and multi-

processor architectures in HPC and embedded systems, the
interconnect network has a strong impact on performance
and energy efficiency. On the software side, we observe a re-
newed interest for dataflow (DF) programming models that
offer clear design guidelines to deal with application com-
plexity and scalability. It allows for explicitly specifying
both spatial and temporal parallelism of an application. DF
programming is also a very convenient approach to man-
age the evolution of standards based on a large set of reused
functions and to generate correct-by-construction code. One
of the side effects of data-flow applications is the overhead of
memory accesses. DF actors (data-flow nodes) must check
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firing rules including availability of input data and output
buffer space. This penalty is even more important for dy-
namic actors, which are unavoidable in real life applications.

Networks-on-Chips (NoCs) implement concurrent commu-
nications, increasing the bandwidth and taking advantage of
parallelism at the actor level. However, NoCs also increase
communication latency, penalising DF applications which
rely on a large number of requests to memories for firing
rule validation. Some recent work has addressed the prob-
lem of NoC latency. It relies on path or time slot allocation
and processor or buffer mapping to minimise read and write
delays, but it is still based on the fact that memories are
slaves [4]. The idea of smart or active memory aims also
to reduce the number of transactions and improve mem-
ory access efficiency, by moving part of computations to the
memory side [1, 11].

In this work, we propose to address the question with a to-
tally new approach that transforms memories into masters,
able to initiate transfers by means of notifications when data
is ready, so to get rid of useless accesses. We call this con-
cept Notifying Memories (NM). The immediate consequence
of a new balance between memory and processors is the re-
duction of the number of transactions and injection rates.
It provides memories with notification and processors with
listening mechanisms, which are conceptually close to the
observer design pattern, used in software engineering. They
are implemented in the network interface (NI). Our solution
is thus independent from memory, processor architectures
and NoC parameters. Moreover, the notifying memories
perfectly match with the DF models. In real-life DF appli-
cations, both static and dynamic actors are required. The
uncertainty of computing due to data-dependency prevents
from any static scheduling. We need to demonstrate the ef-
ficiency of the approach with real application execution, so
we prove the concept and the implementation with cycle ac-
curate SystemC simulation. We have chosen an MPEG4-SP
decoder and related benchmark videos to show how we can
significantly improve throughput, latencies, injection rate
and so power consumption.

The contributions of this paper are:

• The Notifying Memories concept, which includes a no-
tifier in the NI of the memories and a listener in the
NI of the processors.

• A model and an implementation of the notifying mem-
ory in SystemC. It includes the introduction of a new
kind of packet, the notification packet.

• Experimental results running an MPEG4-SP decoder
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for different video sequences that demonstrate the in-
terest of the concept in terms of performance, injection
rate and power consumption.

Section 2 presents the related work. Section 3 introduces
the initial situation and a motivational example. Section 4
reminds briefly the observer design pattern and presents in
details the notifying memories. Section 5 shows the results
and Section 6 concludes this paper.

2. RELATED WORK
Many approaches rely on the same idea of the one we

propose: reducing the number of transactions to save band-
width for useful communications by trimming conflicts. An
active memory processor is introduced in [11]. It is a pro-
cessor that resides inside the memory controller to process
data on the memory side. As the computation on a set of
data is done directly inside the memory, it reduces the num-
ber of transactions in the NoC. In [1], the concept of smart
memory is presented. It is a modular reconfigurable archi-
tecture that can be adapted to better match the application
requirements. The goal is to propose a target that can ef-
ficiently execute applications specified with a wide range of
programming models, from the stream programming model
to speculative and random programming model. The work
in that domain mainly focuses on improving the efficiency of
memory access [11]. By means of intelligent cache, memory
and protocol controllers, this kind of work breaks the pas-
sivity of the memories. Our contribution follows the same
objective but is compliant with any memory controller. Our
idea is to program memories so that they can trigger a noti-
fication according to some events. These events can be ap-
plication specific or related to the programming model. The
DF models of computation (MoC) are based on a paradigm
that makes our approach particularly efficient.

Executing DF applications onto an NoC-based architec-
ture is an active topic and gained renewed interest with the
advent of parallel architectures [5]. Executing a DF appli-
cation, naturally parallel, onto a parallel architecture seems
obvious but the problem is actually more challenging [8].
One commercial example is the MPPA programmed with
sigmaC [7]. The approaches in the DF domain propose to
extend a baseline MoC to support architectural features, to
adopt a specific scheduling policy, or to tune the architec-
ture to fit with the programming model. Our approach is
complementary to existing works and is compliant with any
DF MoC and any scheduling policy.

3. MOTIVATIONAL EXAMPLE
Figure 1 presents the actor model of the Caltrop Actor

Language (CAL). An actor can contain several actions. An
action is executed (fired) when a set of conditions is satisfied.
This so-called firing rule usually consists of checking that
the number of tokens in the input FIFO is greater than the
number needed to compute, and that the output FIFO is
empty enough to store the produced tokens. In this paper,
we propose the FIFO to notify directly the processor about
its content. This idea is inspired from the observer design
pattern, used in software engineering.

We use as a case study an MPEG-4 Simple Profile decoder
(MPEG4-SP) specified in RVC-CAL [6]. This decoder is
specified with heterogeneous MoC and contains up do 40%

Figure 1: CAL actor model [3]

Figure 2: Structure
of a SW FIFO gen-
erated by ORCC

i f ( numTokens_FIFO_IN1 >= 64
&& numTokens_FIFO_IN2 >= 1){

i f ( SIZE_FIFO_OUT −
numTokensFIFO_OUT > 64){

// f i r e ac t i on
}}

Listing 1: Example of a firing
rule

of dynamic actors [9]. The ORCC tool is used for com-
piling and software synthesis [6]. Our work relies on the
C-backend that generates C code for multi-core platforms.
Since the number of actors (41) is greater than the number
of processing cores, an actor scheduler is required. Differ-
ent policies have been proposed, one of the most efficient
one remains the round-robin (the default in ORCC). They
all have the same major drawback related to DF principles,
which is the inefficient polling that leads to useless accesses
to the memory when a scheduling attempt is not successful.

Figure 2 presents the structure of the SW FIFO generated
by ORCC [6]. It is composed of five parts: i) size of the
FIFO; ii) FIFO content, where memory allocation is done
according to the FIFO size and size of data type; iii) num-
ber of readers, since one actor can write in a FIFO but there
might be several readers; iv) index of readers, each reader
has its own index; and v) index of writer. Synchronisation is
handled through indexes. The difference between the reader
index and writer index determines the number of tokens in-
side the FIFO. When multiple readers occur, the minimum
index is used. It might happen that one slow reader blocks
the other readers. Many papers deal with FIFO sizing and
FIFO handling but it is out of the scope of this paper. Given
this FIFO structure, the processor that executes an actor
has to read the values of the different indexes in order to
determine the number of tokens in the FIFO. This leads to
a set of memory requests for each FIFO. Taking the exam-
ple of the firing rule given in Listing 1, to compute numTo-

kens_FIFO_IN1, the number of tokens in the first FIFO, the
processor emits two requests, one for the index of the writer,
and one for the index of the reader (one for each reader actu-
ally). For the second FIFO, the processor emits another set
of requests. Then, in order to check for the output FIFO,
other requests are emitted on the NoC. In C language, if
the first condition is not satisfied, the whole test is stopped.
The worst case occurs when the input conditions are satis-
fied but not the output condition, which would lead to six
transactions for no action firing. Of course, next scheduling
attempt will test again these conditions although the condi-
tions on the input FIFO are satisfied. It has to be noticed
that true conditions cannot become false on the next trial.
Our contribution also relies on this property.
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Table 1: Unsuccessful scheduling by the MPEG4-SP
decoder for different video sequences and formats

Video Useless Empty Full
Sequence Format attempt input FIFO output FIFO

Akiyo CIF 42.7% 63.7% 36.3%
Parkjoy 720p 21.3% 90.8% 9.2%
Foreman CIF 34.8% 90.7% 9.3%
Coastguard CIF 27.8% 98.4% 1.6%
Stefan CIF 25.9% 83.3% 16.7%
Bridge far QCIF 23.8% 38.4% 61.6%
Ice 4CIF 45.6% 70.4% 29.6%

We have carried out some experiments using the C back-
end of ORCC and executed the MPEG4-SP decoder on a
desktop computer. We have traced the number of firings of
each actor during one scheduling attempt. We have counted
the number of zero firings, i.e. no action could be fired, out of
the total number of scheduling. Table 1 shows the percent-
age of unsuccessful scheduling for different video sequences
from [10]. There are two reasons why no action can be fired:
1) one of the input FIFO is empty (i.e. does not contain
enough tokens); or 2) one of the output FIFO is full (i.e.
does not contain enough space). Table 1 also shows the dis-
tribution between empty and full FIFO. These results show
that at least 20% of scheduling attempts are unsuccessful.
Although the lack of tokens in the input FIFO seams to be
the major reason, the disparity among the different video
sequences prevents from drawing any clear conclusion. This
observation motivates the integration of mechanisms able
to monitor the FIFO status and to emit notifications. This
mechanism can be integrated in the memory NI, close to the
FIFO implementation.

This paper focuses on how to delete useless memory re-
quests, independently from the processors, memories, NoC
parameters and scheduling policy1. The main issue is to
stop the polling on the NoC that: 1) is useless when no ac-
tion can be fired; and 2) consumes bandwidth that would
be useful for effective transactions. The current situation is
that memories are subjected to processor requests. The idea
is to give new capabilities to memories, so that, they can in-
form the concerned processors that their (FIFO) content has
changed.

4. THE NOTIFYING MEMORIES
Our idea is inspired from the observer design pattern,

widely used in software engineering. Before detailing the
implementation in the NoC of the observer pattern, a brief
description of the software pattern is given.

4.1 The observer design pattern
The observer design pattern defines a one-to-many depen-

dency between objects so that when one object changes state,
all its dependents are notified and updated automatically [2].
That behaviour is exactly what we expect when the content
of a FIFO changes: notify the concerned processors that ex-
ecute the actors connected to that FIFO. Figure 3 shows
the UML class diagram of the observer design pattern. The
subject is the element to watch. The observer is the ele-
ment that should react whenever a change occurs from the
subject. The subject notifies a change to their observers by
means of a method.

1although combining our approach with a new scheduling
policy is relevant

Observer
notify()

Subject
observerCollection : EEList [1]

registerObserver(observer : Observer)

unregisterObserver(observer : Observer)

notifyObservers()

ConcreteObserverA
notify()

ConcreteObserverB
notify()

notifyObservers()             
 for obs in observerCollection

   call obs.notify()

subjects[*]observers[*]

Figure 3: UML Diagram of Observer Design Pattern
for software implementation
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Figure 4: The structure of the used NoC adopting
the notifying memories concept

4.2 NoC Implementation
Porting the observer design pattern to our context, the

memory is the subject and the processor is the observer.
There are two elements to be added in the NoC platform:
the notifier and the listener. In order to remain compliant
with any existing processor or memory and to be indepen-
dent from NoC parameters such as topology, router buffer
depth and routing policy, we have decided to integrate these
elements into the NI of the NoC. Besides, we need a master
component that can send packets through the network and
a component that can monitor requests, the NI is the only
component to offer such features.

Figure 4 illustrates the structure of the NoC used to demon-
strate the notifying memory concept. The NoC is a 4 × 4
mesh-based network which interconnects 28 IP cores (13 pro-
cessing and 15 memory nodes). It is based on usual worm-
hole packet switching mode, deterministic XY routing algo-
rithm to avoid deadlocks, and flow control policy without
virtual channels. The routers have one arbiter per port and
one buffer per input port. Our approach is actually generic
and can be applied to NoC with different features. For in-
stance, N-flit buffers can be used to improve performance
at the cost of more memory, in that case all transactions
including notifications will take advantage of it. The back-
end part of the NI is typical, it includes a packet maker and
packet un-maker to assemble and disassemble the packets, a
scheduler/priority manager to synchronize packet transmis-
sion and reception. The modifications lie in the front-end
of the network interface by either implementing the notifier
or the listener. The notifier is implemented in the NI of a
memory. The listener is added in the NI of a processor. The
structures of the additional components are detailed in the
following subsections.

4.2.1 Notifier
The notifier is a hardware module that transmits the sta-

tus of all FIFOs allocated in a node accommodating mem-
ory. For each FIFO, the notifier generates a notification sig-
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R: reader FS: free space C: firing rule condition N: notified I: index 
W: writer  T: available tokens S: firing rule satisfied  L: location  A: actor ID 
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Figure 5: The notifier architecture

nal that is passed to the FIFO’s writer whenever it contains
enough space to save new tokens, or to the FIFO’s readers
whenever enough tokens are available. The notifier architec-
ture is illustrated in Figure 5. It is basically composed of a
comparator, 2 subtractors, a maximum finder, an and-gate,
an inverter, and set of registers classified in seven banks: FI-
FOs indexes bank (FIB), FIFOs status bank (FSB), firing
rule conditions bank (RCB), firing rule satisfaction bank
(RSB), notification history bank (NHB), actors ID bank
(AIDB) and actors locations bank (ALB). The notifier func-
tionality can be divided into three phases: the configuration
phase, the checking phase, and the notification phase.

Configuration phase.
Once the system is launched, the manager processor pro-

vides the mapping data to all notifiers. A packet is sent
to each memory node specifying the number of involved FI-
FOs in the notifier scope. Also, it specifies for each involved
FIFO the locations (ID of processing nodes) of its writer and
readers as well as their firing rule conditions and the IDs of
their corresponding actors. The registers of ALB, FCB, and
AIDB store this information respectively to be used in the
next two phases. The registers of the other banks are reset.

Checking phase.
When a node receives a new packet modifying one of the

FIFOs’ indexes, the packet un-maker provides the notifier
by the FIFO address (f), and its modified writing index
(If [W ]) or ith reading index (If [Ri]). The notifier stores the
new received index in its specific register in FIB. If the writ-
ing index of FIFO f has changed, the notifier recomputes
the number of available tokens for all its readers (Tf [Ri]).
If one of its reading indexes is modified, the notifier recom-
putes the available free space (FSf ) in FIFO f .

The notifier assigns the computed values to their corre-

Algorithm 1 Checking firing rules satisfaction
Input: k the number of FIFOs, nf the number of readers of FIFO f

for all f ∈ {1, ..., k} do
if If [W ] modified then

for all i ∈ {1, ..., nf} do
Tf [Ri] = If [W ]− If [Ri]
if Tf [Ri] ≥ Cf [Ri] then

Sf [Ri] = true
end if

end for
end if
for all i ∈ {1, ..., nf} do

if If [Ri] modified then
FSf = If [W ]− max

i∈{1,...,n}
(If [Ri])

if FSf ≥ Cf [W ] then
Sf [W ] = true

end if
end if

end for
end for

Actor ID Firing Rule ID 
Room/ 

writing index 

Origin Destination Payload size Type 

Header 

5 bits 8 bits 4 bits 4 bits 

Figure 6: The composition of notification packet

sponding registers of FSB. Later, the notifier compares the
updated values in FSB with their relative firing rules condi-
tions saved in RCB. If a value in FSB equals or exceeds its
relative value in FCB, a “1” is stored in RSB as an indica-
tion of satisfaction of the firing rule condition. The notifier
checking algorithm is outlined in Algorithm 1.

Notification phase.
In this phase, the notifier loops around the bits of RSB in

a round-robin manner and generates consecutively the no-
tification signals, which should be sent to targets (readers
and writers) with satisfied firing rules. The notifier provides
the packet maker with the target location, identity number,
satisfied firing rule identity number, and the number of avail-
able tokens or free space. The packet maker assembles the
notification packet as depicted in Figure 6. To reduce the
number of sent packets, the notification history is recorded
in NHB which reserves one bit for each target. When a noti-
fication is sent, the target corresponding bit in NHB is set to
“1”, and it is reset to “0” when the notification is consumed
by the target. By using simple logic (and-gate and inverter)
the notifier limits the generation of notifications to targets
with “0” in their corresponding bits.

4.2.2 Listener
The listener stores the information included in the notifi-

cation packets sent by notifiers. The coupled listener to each
processor specifies the validation statuses of all firing rules
related to all actions of all actors mapped to the processor.
The processor accesses the validation status of all firing rules
corresponding to an action before it is fired. In addition to
the status, the listener stores the value of the available to-
kens at the input FIFO and the free space at the output
FIFO for each input and output firing rules respectively.
The information is thus available locally to the processor
and no memory requests through the NoC are needed. The

5.1. NOTIFYING MEMORIES CONCEPT 71

Design Automation Conference (DAC), 2016



S: status     A: actor 
D: notification data   

… 

𝐷
1

[𝐴
𝑛

]  

𝐷
𝑘

𝑛
[𝐴

𝑛
]  

… 

𝐷
1

[𝐴
1

]  

𝐷
𝑘

1
[𝐴

1
]  

… 

NDB 

9
 b

it
s … 

𝑆 1
[𝐴

𝑛
]  

𝑆 𝑘
𝑛

[𝐴
𝑛

]  

… 

𝑆 1
[𝐴

1
]  

𝑆 𝑘
1
[𝐴

1
]  

… 

RSB 

1
 b

it
 

… … … … … … 

… … … 

LUT 

 + 

Actor ID 

Firing rule ID 

1 0 

Notification data 

load 
set/ 
reset 

… … … 

Figure 7: The listener architecture

listener architecture is illustrated in Figure 7. It is composed
of a look-up table (LUT), an adder, and set of registers clas-
sified in two banks: the firing rule status bank (RSB) and
the notification data bank (NDB). The listener functionality
is divided into two phases: the configuration phase and the
execution phase.

Configuration phase.
The listener benefits from the mapping information pro-

vided to the processor at system boot. It acquires the spec-
ification of the mapped actors (number, identification num-
ber, number of firing rules) to set its configuration. The
look up table (LUT) is configured such that the starting ad-
dress specified to store notifications of each mapped actor is
retrieved at the LUT output when the actor identification
number is provided at the LUT input.

Execution phase.
When a node receives a notification packet, the payload

is provided to the listener. The actor ID is given to the
LUT input; whereas the firing rule ID is used as an offset
to determine the storage index j. Accordingly, the listener
stores the notification data (free space or available tokens)
in the jth register of NDB and set the jth bit of RSB to
“1” indicating the validation of the firing rule. To access
the notification information of a specific rule, the processor
uses the same mechanism of loading data to the listener
by providing the actor ID and the firing rule ID. Once the
notification information is consumed, its relative bit in RSB
is reset to “0”.

4.3 DF-level deadlock avoidance
In the DF paradigm, an actor in non preemptive. Once

fired, an action consumes and produces the tokens according
to the firing rule. The indexes of the FIFOs are updated
afterwards (conservative synchronisation scheme). Since the
memory requests are triggered by the notifications and the
execution of the action is not preemptive, there can never
be any race conditions. A valid firing rule at time t is still
valid at time t+1 if the associated action has not been fired.

5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup
In order to check the relevancy of the proposed approach,

the adopted NoC implementing notifying memories has been
described in SystemC TLM model as a proof of concept. The
devised model executes an MPEG4-SP decoder with 41 ac-
tors and 70 FIFOs specified in RVC-CAL. The number of
FIFOs are approximately equally distributed on all nodes ac-
commodating memories. The actors are then mapped man-

Table 2: Results of decoding 10 frames of ice video
sequence in 4CIF format

Parameter
Notifying Ordinary

gain
memory memory

Latency (µs) 143.42 665.06 -78.44%
Throughput (frames/s) 27.53 23.29 +15.41%
Injection rate(flits/s) 60 167 732 121 635 294 -50.53%

Switch conflicts 71 182 509 288 574 519 -75.33%
Transported flits 109 264 000 261 123 000 -58.16%

Transported packets 15 376 400 107 050 000 -85.64%

ually such that the number of hops is minimized between one
actor and its FIFOs. The SystemC model is cycle accurate
at the NoC level and network interface; whereas actions are
functionally simulated. We strive to accurately reproduce
the timing features of actions executions in addition to their
functionalities. The mean values of execution time of all
actions are imported from profiling data on a desktop com-
puter. Multiple simulations have been conducted to decode
ten frames for several video sequences from [10]. To evaluate
the efficiency of NM concept, the obtained results are com-
pared with the ones of ordinary memories. Both models use
identical NoC features (e.g. 500 MHz frequency, switching
mode, routing algorithm), processing elements features, and
mapping strategy.

5.2 Results and Comparison

5.2.1 Performance results
Table 2 shows the results obtained after decoding 10 frames

of ice video sequence in 4CIF format in terms of throughput,
latency2, injection rate, switch conflicts, total number of
transported flits, and power consumption. The comparison
between the two cases, ordinary and notifying, shows signif-
icant reductions in terms of latency, injection rate, switch
conflicts, and number of transported flits and packets. Also
the throughput is improved such that it is compatible to
the 25 frames per second standard without using additional
hardware accelerators or processing speedups.

The analysis of the results reveals an additional traffic
overhead in case of ordinary memories which increases sig-
nificantly the injection rate and switch conflicts. To track
its cause, packets are classified according to their function-
ality into two categories: data and control packets. Packets
holding tokens or requests for reading tokens are data pack-
ets, while control packets category includes all other packets
that are used to transport mapping information, set FIFO
indexes, request or retrieve FIFO indexes, and notification
signals produced by notifiers. This classification is also ap-
plied to flits. Figure 8 presents a comparison between no-
tifying and ordinary memories in terms of control and data
categories for transported packets and flits for the ice-4CIF
video. The figure shows that ordinary memories induce 19
times more control packets and 10 times more control flits
than notifying memories. The number of data packets and
flits is approximately the same in the two cases. The sim-
ulation is stopped after 10 fully decoded frames while the
network contains partially decoded frames. This explains
the traffic overhead, due to the additional control packets
injected to the NoC. Investigating thoroughly the types of
transported control flits shows on one hand that more flits

2the time between the first token consumed and the first
token produced by the application
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Figure 9: Classification of control flits according to
their types after 10 decoded frames of ice-4CIF

are needed for mapping information when notifying mem-
ories is adopted since the manager have to send additional
information for all notifiers. Also, additional notification
flits are transported from notifiers to the listeners. On the
other hand, the adoption of notification memories eliminates
the use of flits to request and retrieve FIFO indexes. Fig-
ure 9 shows in logarithmic scale the number of each type
of control flits transported while decoding 10 frames of ice
video sequence in 4CIF format for the case of notification
memories and ordinary memories. It shows that the added
flits for notification and extra mapping in the case of no-
tification memories are negligible (4.58%) compared to the
required flits to request and retrieve FIFOs indexes in ordi-
nary memories.

Due to space limitations, the comparisons for other video
sequences are summarized in Table 3. These average results
confirm the efficiency of NM concept and show that adopt-
ing notification memories leads to great reductions reaching
78% for latency, 60% for injection rate, 67% for transported
flits, and 85% for switch conflicts. Also the throughput en-
hancement is improved by up to 16%.

5.2.2 Preliminary synthesis results
We have implemented a worst-case design, where a single

notifier, which is implemented in all memory NIs, and a sin-
gle listener, which is implemented in all processor NIs, can
manage all firing rules of all actors. The number of firing
rules of in the MPEG4-SP application is 145. Hence, 145
registers are required in all banks of the 12 listeners (one
per processor) and 15 notifiers (one per memory). The area
and power results are obtained with the Cadence Encounter
RTL Compiler RC12.24 tool. The synthesis targets the
65nm process technology at 500 MHz operating frequency
and 25◦C. Total power was obtained by using the leakage

Table 3: Notification memory gain for decoding 10
frames of different video sequences

Video
ThroughputLatency

Injection Switch Flits
SequenceFormat rate conflictsnumber
Bridgefar QCIF +15.53% -73,96% -45,80% -71,38% -54,22%

bus CIF +2.84% -73,79% -53,40% -72,90% -54,73%
grandma QCIF +16.79% -68,96% -60,78% -85,50% -67,36%
foreman CIF +14.26% -78,41% -46,81% -72,86% -54,39%

ice 4CIF +15.41% -78,44% -50,53% -75,33% -58,16%

and dynamic power of the NoC components relying on the
switching activity traced by the SystemC simulation of 10
decoded frames of the ice-4CIF video sequence. The results
show that the NoC adopting notifying memories saves up
to 49.1% of power consumption compared to the reference
NoC. Besides, the power overhead of the interfaces of the
proposed NoC presents a modest value of 16.3%. Regarding
the area, the proposed NoC presents an overhead of 12.4%,
when compared to reference NoC.

6. CONCLUSIONS AND FUTURE WORK
This paper presents the notifying memories, a hardware

implementation based on the observer design pattern, to en-
hance communication of data-flow application that are de-
ployed on a multi-processor platform. The notifying mem-
ories are baseline memories extended by a notifier imple-
mented into the NI of the NoC. The notifying memories send
a new kind of packet, the notification packet that is caught
by a listener, a module implemented in the NI of the proces-
sor. The notifying memory concept raises new opportunities
and new challenges. At the hardware level, an exploration
is needed to find out the size of the components: number
of possible notifications, size of the listener. Another chal-
lenge is to make it configurable or programmable for other
programming models. At the software level, the compiler
should detect the firing rules to appropriately separate the
code onto the notifier and the listener. Finally, new schedul-
ing policies could take advantage of notifications.
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5.2 Run-Time Remapping of Dataflow Actors on NoC-
based Heterogeneous MPSoCs

This research topic has been originally initiated during my work at South Brittany University
(UBS) in MOCS research team at Lab-STICC in Lorient, France in the context of the ANR
COMPA project. Later, the work on this topic has been continued at the Lebanese Interna-
tional University (LIU) in Lebanon in collaboration with UBS. The proposed algorithm and
architecture have been validated along with the obtained results during my visit as visitor
professor to UBS in December 2019. This research work has been recently published in the
IEEE Transactions on Parallel and Distributed Systems (TPDS) [48].

5.2.1 Introduction and Motivations

Multiprocessor system-on-chip (MPSoC) platforms have been emerging as the main solution
to cope with processor frequency ceiling and power density issues while still improving
performances. Then, networks-on-chip have been adopted to provide the increasing number
of processors with the required communication bandwidth as well as with the necessary
flexibility. But legacy code for instance, mainly designed for single or few core architectures,
does not scale well with manycore architectures and fails to fully benefit from the available
parallelism. However, as discussed decades ago [49], dataflow programming can address
the limitations of conventional approaches regarding synchronization and shared memory
issues. With the rise of massively parallel architectures, we can reconsider the use of dataflow
programming as a solution to efficiently exploit the resources of parallel architectures for
computing intensive application domains such as video coding, computer vision, machine
learning and physics simulation for instance.

A dataflow application can be specified as a graph where nodes, called actors, process
data called token(s). The computational models are based on FIFO buffers and respect their
formalized read and write rules. Each FIFO holds a set of tokens. A network of actors holds
specific features that make it different from a generic task graph. Figure 5.1 presents a simple
example on network of actors.

First, an actor is non-preemptive. Once started, an actor ends its execution. Second, the
actor can start if and only if there are enough tokens as input, and enough space in the
output FIFOs. The FIFOs are considered updated (i.e. tokens consumed and produced) at the
end of the execution of the actor, establishing a conservative synchronization scheme, and
preventing from any data race.

When the number of actors is larger than the number of processing elements (PEs), then
the main design challenge is the mapping of actors on the network of PEs [42]. In the case
of static dataflow [50], where the number of tokens produced and consumed by the actors is
known, an optimal solution can be computed offline [51]. However, an increasing number of
applications cannot be specified with a static graph since the performance improvement of
complex applications usually lead to context and data-dependent optimizations. This evolu-
tion is, for instance, significant in the domain of video coding.
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Dynamic models are then used to express data-dependent behavior of some applications.
Dynamic dataflow is a useful MoC for handling streaming data and video processing applica-
tions [52]. As the workload of an actor may change according to the input data set, adapting
the mapping, while the application runs, is required to optimize the use of the computing
and communication resources. Hence, adopting any static or offline dynamic scheduling for
mapping tasks will not cope with the computation variations.

This research work introduces an original run-time mapping algorithm based on the Move
Based (MB) method targeting a dedicated heterogeneous NoC-based MPSoC architecture to
achieve workload balancing and optimized communication traffic. The devised algorithm
compromises monitoring the execution of actors while running in real-time on processors.
Based on the recorded performance metrics, an estimation of performance gain and cost is
determined to move one actor in order to enhance the overall performance.

5.2.2 Context and Related Work

The question of mapping parallel applications on multi or many-core architectures is a very
wide problem, with a large number of dimensions, including the programming model, the
target architecture (homogeneous or heterogeneous, bus-based or NoC-based, etc.), and the
optimization goal (throughput, execution time, energy, etc.) [42].

The mapping problem can be solved based on two main strategies: design-time, and run-
time. When solved at design-time, the mapping is called static since it’s computed offline
and does not change while the application runs. This approach allows for exact methods to
find an optimal solution [53] [51] [54], but suffers from a lack of flexibility since it cannot
capture the dynamic behavior of some applications. Moreover, even in the case of deter-
ministic execution times of actors in a static context, the paper [55] interestingly shows the
difference between the optimal mapping obtained from a well-formalized problem and the
real execution trace, due to execution variabilities coming from the hardware.

The dynamic workload should be handled using run-time techniques. The run-time map-
ping strategies can themselves be divided into two categories:

1. on-the-fly mapping

2. hybrid mapping

On-the-fly mapping techniques are application - and platform - agnostic and solve the prob-
lem online. Very simple and efficient heuristics should be used to shorten the response time.
For NoC-based MPSoCs, various fast heuristics targeting the reduction of communications
under constraints have been already proposed [56] [57] [58]. These approaches consider one
task per core. Allowing multiple tasks on one core is considered in [59]. Heuristics are fast
but can be far from optimal solutions, so hybrid approaches have been introduced. They are
based on pre-computed optimal solutions for a set of cases. The job is split into two phases:
(1) at design-time, a set of solutions is computed, and (2) one solution is selected at run-time.
A wide variety of approaches can then be cited: based on traces in [60], on priority in [61], on
scenario in [62], on previously identified design points in [63], or on WCET and scheduling
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in [64]. None of these studies demonstrates its efficiency with real video applications run-
ning reference sequences. The proposed real-time mapping reconfiguration method in [65]
requires to suspend the currently running application and the manager remaps the tasks at
run-time according to scenarios previously defined at design-time based on the evaluation of
multiple mappings, optimizing for their resource requirements and power consumption. In
[66], the authors have proposed a dynamic resource balance algorithm targeting NoC-based
many-core homogenous platforms to enhance the system performance by balancing the uti-
lization of on-chip computing resources and communication resources. Most of the available
methods focus on determining the suitable mapping of tasks before starting the execution of
the application [67, 68, 69, 70, 71].

Finally, a last approach can fall into the family of hybrid mappings, which considers to
recompute partially the mapping problem at run-time. This is called run-time remapping.
Our work follows such an approach for dataflow applications. First, profiling results are used
to find at run-time a first mapping. Then, the application is monitored to update the profiling
results and a run-time remapping algorithm runs regularly to check if a new mapping would
be better than the current one.

Among the innumerable works dealing with task mapping, we consider run-time methods
for dataflow tasks, and have identified a limited number of solutions. In [72], the mapping is
modeled as a graph partitioning problem, and the problem is solved at run-time by METIS
tool, based on profiling information obtained by a first run. Though the migration cost of
the actors is not taken into account, the results are promising and could be improved if
the mapping does not change completely at each iteration. The approach in [73] allows to
successively refine the mapping according to the dynamic behavior of the application, by
allowing only one actor to move at a time from one processor to the other. This approach
assumes dynamic dataflow application and the target architecture is composed of several
heterogeneous cores interconnected by a bus or a NoC. The communication cost is computed
based on a rough analytical model of the interconnection network, with the loss of accuracy
that comes with it, whereas in our work, we consider profiled values gathered automatically
by the system, with a finer grain down to the link.

In [74], the application is specified with KPN (Kahn Process Network) and the target
architecture is a shared-memory based MPSoC, with also a model of the communication
channel (bus or NoC). The approach proposes to rely on three main steps: the two usual
design-time preparation and run-time mapping steps plus a new customization step. The de-
sign time step computes a set of candidates and populates a database. The run-time mapping
initialization derives from the candidates a new initial mapping for the given workload. Fi-
nally, the run-time customization step incorporates a Scenario-based run-time Task Mapping
(STM) algorithm that is applied to find new mapping of tasks when the system detects that
an objective is unsatisfied.

5.2.3 Contributions and Performed Work

This research work addresses the problem of reconfiguring at run-time and at the applica-
tion level the mapping of dataflow actors on heterogeneous processors, that share the same
instruction set architecture (ISA) while having different coprocessors and different clock
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domains. The proposed method, which is called run-time remapping, relies on continuous
monitoring of exact performance metrics such as the computational time and communica-
tion time during real-time execution of the application. Accordingly, a new mapping of the
involved actors is determined at run-time targeting the enhancement of the overall perfor-
mance. This approach is sequentially repeated while the application is running. The appli-
cation is neither suspended nor modified. The proposed remapping method meets with the
dynamic behavior of dataflow applications, where static or offline mapping methods cannot
capture the dynamic behavior and thus may not lead to optimal solutions. Also, on-the-fly
and hybrid mapping methods suffer from a lack of means to monitor the performance and
remap the actors accordingly.
The contributions of this research work are described in the following subsections:

5.2.3.1 Design of NoC architecture for dataflow application

A new heterogeneous MPSoC architecture is proposed. The target architecture contains sev-
eral different processing elements and shared memories connected with a NoC. The PEs
and memory modules are technologically independent of the structure of the NoC. They
communicate through the network using a network interface. The devised platform includes
heterogeneous PEs. All PEs are implemented be able to execute any of the involved actors.
However, some PEs are augmented with hardware accelerators in order to perform special
functions more efficiently. In addition, the PEs have been specified randomly to operate on
different frequencies. The memory modules include the FIFOs and store the data which is
either imported to the system or processed by the PEs.

In order to implement the remapping algorithm, the designed architecture includes a man-
ager and two special types of memories. One memory module is dedicated to store the binary
codes of all actor and forwards the binary code of the moved actor to a given PE according
to a notification from the manager. Another memory module is in charge of storing the map-
ping information, which is generated by the manager and indicates which actors are to be
executed by each PE, and the monitoring information, which is collected by the PEs during
processing a specified number of video frames.

The manager is a PE that executes the following five tasks.

1. map initially the actors on the available PEs

2. parse the feedback collected data from all modules (memories and PEs)

3. apply the run-time remapping algorithm and selects the actor to be moved (if any)

4. notify the corresponding PEs (looser, gainer, etc.) about the updated mapping

5. manage the transferring of the binary code corresponding to the moved actor from the
shared memory into the cache of the gainer processor
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5.2.3.2 Implementing the actor scheduler

An actor scheduler is implemented in order to manage the order of execution of actors on
PEs, which are considered to run more than one actor as the number of PEs is smaller than
the number of actors. In this work, the well-known round-robin scheduling technique has
been adopted. The actors are given the attempt to be executed in a circular order without
priority. The PE will execute the allocated actor if there are enough input tokens and enough
space in the output FIFOs as specified in dataflow applications.

5.2.3.3 Introduce new types of command packets

In this work, new types of command packets are opted in order to manage FIFO accesses,
send mapping information, collect monitoring data, and manage the transferring of binary
codes. Command packets are initiated by the cores and processed by the NIs of destination
nodes. The following list enumerates the devised packet types and describes briefly their
corresponding roles.

1. Notification packet (NP): aims to inform the PEs that new information is ready to be
requested.

2. Monitoring/Mapping information reading request packet: used to request the mon-
itoring or mapping information as a response to the NPs.

3. Mapping information packet (MpIP): is used by the manager to inform all involved
PEs after determining or modifying the actor mapping strategy.

4. Mapping Confirmation packet (MCP): aims to inform the manager that the new map-
ping information is well received by both the former and the new owner of the actor.

5. Monitoring information packet (MnIP): holds the feedback information needed by
the manager to perform the RR algorithm.

6. FIFO index packet (FIP): holds the writing indexes or reading indexes of FIFOs.

7. Data reading request packets (DRP): holds the reading request of data from PE to
memory module

8. Code transferring packet (CTP): holds a command from the manager to transfer the
binary code referring to the moved actor from the shared memory to the cache of the
new PE.

5.2.3.4 Present new NoC services to implement the observation and adaptation mech-
anisms

In order to apply the proposed method, the architecture of NoCs is augmented to efficiently
provide new services of monitoring performance metrics and remapping the actors, which
are not available in conventional networks. In addition, the typical NIs of memory modules
are extended to accommodate the services for managing the addressing and arranging the



5.2. RUN-TIME REMAPPING OF DATAFLOW ACTORS ON NOC-BASED HETEROGENEOUS MPSOCS 79

retrieved output bits into flits. These new functionalities are implemented as additional com-
ponents in the front-end of the NI corresponding to each memory module type in order to be
independent of NoC parameters and to remain compliant with any available memory.

5.2.3.5 Devise new approaches to estimate NoC communication time delay

Communication time delay is a critical factor in HMPSoC platforms using NoCs. The com-
munication time of the moved actor is affected by the location of the new hosting PE in the
network. NoC time-delay estimation impacts directly the prediction process of the commu-
nication time of the moved actor. Hence, the accuracy level in estimating the delay latency
changes the decision on the actor move in the RR algorithm. In this work, two novel methods
have been proposed to estimate the communication time delay for transferring one token in
the NoC. Both proposed methods make use of the monitoring data, which is collected while
processing the video frames in the previous observation window.

The first method is called the average-path token delay (APTD) and it is based on finding
the average delay for transferring one token depending on the path delays between all nodes
of the NoC where a path is considered to be formed from the set of the interconnections
between two specific nodes. As a deterministic routing is applied in this work, the packets
always use the same path between the source node and the destination node.

The second approach is called the average-link token delay (ALTD) and considers the
time-delay of the token according to the used physical links connecting the NoC components
while transferring the token. A link is defined as the interconnection between two consecutive
components of the NoC: router, memory and PE. Each path is segmented into a set of links.
Then the average communication time delay per token is determined for each link based on
the monitored tokens in the link and the accumulated communication time of these tokens.

5.2.3.6 Optimize the MB algorithm targeting the NoC-based architecture

A novel run-time remapping (RR) algorithm based on the MB method, which allows only one
actor to move at a time from one processor to another, is demonstrated targeting NoC-based
architecture. The algorithm benefits from the monitoring information captured in PEs and
memory modules during run-time to decide the moving of an actor. The devised algorithm
is divided into two main stages:

1. In the first stage, all possible candidate actors which their moves would enhance the
overall throughput are identified. MB algorithm define the throughput as the inverse of
the maximum period over all processors where the period of a PE is the sum of total
computation time and total communication time of all actors mapped on this PE. So,
the set of candidate actors includes the actors running on the PE with maximum period.

2. In the second stage, a tradeoff between the cost of migration and the predicted improve-
ment of the performance is performed. The actor with maximum total gain is chosen to
be moved. The actor selected to be moved should have a maximum total gain. Thus, the
manager estimates the total gain achieved for all combinations of mapping the actors
which belongs to the candidate list
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onto all available PEs. The estimated total gain of a mapping combination is computed
by finding the difference between the estimated performance gain and the estimated
migration cost of the actor The mapping combination that leads to the maximum es-
timated total gain is then selected. The engaged processor and actor are specified and
so-called the gainer processor and moved-actor respectively. Note that the estimated
NoC communication time delay (found using APTD or ALTD) is utilized to estimate
the communication time and the migration time required to compute the total gain.

5.2.3.7 Building an experimental framework

In order to assess the feasibility of our proposed run-time remapping method, a real-time
simulator is developed.

• The simulator is described in SystemC TLM model [75]. The devised simulator mod-
els the MPSoC platform using NoC concept for interconnecting embedded modules.
The platform incorporates heterogeneous processing elements, memory blocks, and the
manager. The simulator platform is designed with hierarchical modules that can work
concurrently and intercommunicate via ports using simple or complex communication
channels. SystemC features are exploited to mimic the accurate functionality of the tai-
lored modules.

• The SystemC model adopted in the simulation platform is cycle accurate at the level
of the NoC and the network interfaces. The timing of all corresponding action execu-
tions on PE is compensated in the simulation according to the profiling data extracted
while running the application on a reference computer. Profiling data provides, for each
involved action, the mean value of the number of cycles required to execute it. During
SystemC simulations, for each fired action, its corresponding execution time determined
in profiling is mapped according to the processor frequency and is used as time delay to
compensate the real execution time.

• In this work we target the multimedia application domain. We adopt the well-known
MPEG4 part 2 Simple Profile video decoder (MPEG4-SP) which is developed by the
Moving Picture Experts Group. This multimedia application is typically used in de-
compression of encoded video digital data. MPEG4-SP is specified with heterogeneous
dataflow MoCs and includes up to 40% of dynamic actors. It is composed of 41 actors
and 70 FIFOs [44].

• The functionality of the modeled actors is verified. First, several benchmark video se-
quences with different formats from [46] have been encoded. The resultant data has
been used as input to the simulator. These same encoded videos have been decoded on
a desktop computer and the FIFO contents have been traced over the decoding period.
The contents stored in the FIFOs in the simulator have been compared to the traced
FIFO data. Also, the output data of the simulator have been reconstructed into visual
video in order to verify the functionality of the devised simulator.
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5.2.3.8 Evaluation of the devised RR algorithm

The encoded video sequences are decoded without applying remapping targeting the same
NoC-base architecture and the obtained results are compared to that obtained when the video
sequences are decoded adopting the MB remapping algorithm applying ALTD and APTD
for estimating the communication time delay while considering an observation window of
10 frames. The comparison is conducted in terms of packet delay, timings and performance.

Applying remapping induces additional control packets and data packets to send the map-
ping information, monitoring data, notifications and to transfer the binary codes. In order to
evaluate the effect of applying the MB remapping algorithm on the traffic in the network,
the transported flits and the number of packets that travel through the network during the
decoding of the video sequences, are recorded in the case of applying the MB remapping
and the case of decoding the video without remapping.

5.2.3.9 Comparison with state-of-the art

In order to determine the relevancy of the devised algorithm, it is compared to the STM
method introduced in [74]. In fact, the authors in [74] have presented a hybrid task mapping
algorithm that consists of three steps. The two first steps (design-time preparation and run-
time mapping initialization) are not related to our work. The third step, so-called run-time
customization, incorporates STM algorithm that is applied to find new mapping of tasks
when the system detects that an objective is unsatisfied [74]. According to the best of our
knowledge, STM is the only similar remapping approach when focusing on the small sub-
set of the existing work around hybrid and run-time (re-)mapping of dataflow applications
on NoC-based architectures. To achieve fair comparison, the STM method is modeled and
implemented on our devised NoC-based architecture.

In addition, the exact method presented in [53] is implemented for the initial mapping,
with two differences: we have used constraint programming instead of ILP, and the objective
function is the maximum period as it is our optimization goal. The workload used for the
computation time of the actors is based on the profiling of Foreman video.

5.2.4 Findings

Data transport

The recorded number of packets are classified into two main categories. The first category
includes the flits which are used basically for dataflow such as data transfer and requesting
and setting FIFO indexes. The second category includes the induced flits by applying the
remapping algorithm. The comparison shows that the additional flits induced by applying
the MB algorithm forms less than 0.02% from total transported flits.

In addition, the impact of transferring the binary code on the traffic is evaluated. The
percentage of flits transporting the binary code of migrated actors from the total number of
transported flits in the network is computed while decoding several video sequences. The
presented percentages illustrate that the impact of actor migration on the traffic is negligible
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(varies from 0.0008% to the 0.0348%. This variation depends on number of moves and the
sizes of the binary codes of the moved actors.

Timings

It is noticed that applying the MB remapping algorithm affects the time-delay of the pack-
ets. The comparison with the case of ordinary decoding illustrates that using MB remapping
decreases gradually the total packet time-delay. The traced graphs show that the total packet
delay decreases after the conducted moves of actors. This refers to the fact that task remap-
ping contributes in distributing the tasks on PEs that are nearer to the memory modules
accommodating the input and output FIFOs.

Performance

The comparison of average FPS achieved when processing multitude video sequencing while
adopting different remapping techniques shows that the MB algorithm achieves the max-
imum average performance enhancements of 26% and 14.11% when adopting ALTD and
APTD respectively compared to the achieved throughput of processing the frames without
remapping. Whereas, remapping using STM algorithm achieves a maximum average en-
hancement of 4%. Performance results of all decoded video sequences shows that the MB
remapping outperforms STM remapping technique when considering either APTD or ALTD
for estimating the NoC communication time delay. Also, the obtained results show that our
method has not failed to enhance the performance for all target video sequences. Whereas,
in some cases the STM method leads to deterioration in the performance. In fact, the STM
method selects critical task to be moved in each observation window without estimating
the resulting total performance gain. Moving the task without determining its effects on the
whole system performance degrades the overall performance. While in our proposed algo-
rithm, the maximum achieved total gain among all mapping combinations is first determined
as explained. Accordingly, a task is specified to be moved if the estimated maximum total
gain is positive. It is noticed that in some observation windows no tasks are moved when the
MB algorithm is applied. In these cases, the estimation shows that no performance enhance-
ment will be achieved for all mapping combinations.

The results obtained from the “optimal” mapping approach proposed in [53] show that the
MB algorithm, starting from a random mapping (without significant initial delay), performs
better that the optimal with no remapping for Foreman video sequence in CIF format. Note
that the “optimal” mapping corresponds to the best mapping found based on the profiling of
Foreman video after a time out of one hour (like the original paper), and the optimality is not
proven.

As the optimality is searched for the Foreman profile, we used the optimal mapping
as a starting point for the MB algorithm, and the results show that it further improves the
throughput. As expected, the optimal mapping for Foreman does not perform good for other
video sequences (such as Ice video sequence in 4CIF format and Grandma video sequence
in QCIF format).
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The so-called optimal method cannot be used for two reasons. First it introduces an un-
practical initialization delay without guaranty of optimality. Secondly, a static solution is not
appropriate to data-dependent applications since a solution can be good for one data-stream
and inefficient for another one and more importantly the efficiency of a mapping varies over
time.

5.3 Perspectives

The notifying memory concept raises new opportunities and new challenges. At the hardware
level, an exploration is needed to find out the size of the components: number of possible
notifications per memory module, size of the listener. Accordingly, the hardware implemen-
tations are to be realized in order to determine the exact resources and energy consumption.
Another challenge is to make the NI configurable or programmable for other models. At the
software level, the compiler should detect the firing rules to appropriately separate the code
onto the notifier and the listener. Finally, new scheduling policies could take advantage of
notifications.

Concerning the research work about run-time remapping on heterogeneous MPSoC sev-
eral we are planning to address several topics concerning the hardware architecture and al-
gorithm. At the hardware level, the implementation of the integrated modules in the NIs and
estimating their overhead in terms of area and energy will be done. Future work would also
address the reduction of NoC power consumption. Another topic to be addressed is the mov-
ing of FIFO modules rather than actors. Novel algorithms would be devised targeting the
reducing of the communication time and the impact of the migration cost of actors binary
codes. Also, a study would be performed to indicate the impact of the size of the observation
window used to monitor the metrics on the overall performance. An important work would
be done to study the scalability of the devised architecture and its degree of heterogeneity
(number and types of memories and processing elements).

In addition, it would be interesting to investigate the impact of using the notifying mem-
ories concept on the devised remapping algorithm in terms of performance and power con-
sumption.
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Run-time remapping algorithm of dataflow actors
on NoC-based heterogeneous MPSoCs

Mostafa Rizk, Kevin J. M. Martin, and Jean-Philippe Diguet

Abstract—Multiprocessor system-on-chip (MPSoC) platforms
have been emerging as the main solution to cope with pro-
cessor frequency ceiling and power density issues while still
improving performances. Then, network-on-chip (NoC) has been
adopted to provide the increasing number of processors with
the required communication bandwidth as well as with the
necessary flexibility. Video processing and streaming applications
are adopting dynamic dataflow model of computation as the need
for high performance parallel computing is growing. Dataflow
applications executed on modern MPSoC-based architectures are
becoming increasingly dynamic and more data-dependent. Dif-
ferent tasks execute concurrently with significant modifications
in their workloads and resource demanding over time depending
on the input data. Hence, adopting any static or offline dynamic
scheduling for mapping tasks will not cope with the computation
variations. This paper introduces an original run-time mapping
algorithm based on the Move Based (MB) method targeting
a dedicated heterogeneous NoC-based MPSoC architecture to
achieve workload balancing and optimized communication traf-
fic. The performance of the proposed algorithm is verified by
conducting cycle-accurate SystemC simulations of the adopted
NoC implementing a real MPEG4-SP decoder. The obtained
results reveal the effectiveness of our proposed algorithm. For
various real-life videos, the proposed algorithm systematically
succeeded to enhance significantly the performance.

Index Terms—NoC, Heterogeneous MPSoC, Run-time remap-
ping, Dataflow actor, Move-based algorithm.

I. INTRODUCTION

MULTIPROCESSOR system-on-chip (MPSoC) plat-
forms have been emerging as the main solution to cope

with processor frequency ceiling and power density issues
while still improving performances. Then, networks-on-chip
(NoCs) have been adopted to provide the increasing number
of processors with the required communication bandwidth as
well as with the necessary flexibility. But legacy code for
instance, mainly designed for single or few core architectures,
does not scale well with manycore architectures and fails
to fully benefit from the available parallelism. However, as
discussed decades ago [1], dataflow programming can address
the limitations of conventional approaches regarding synchro-
nization and shared memory issues. With the rise of massively
parallel architectures, we can reconsider the use of dataflow
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programming as a solution to efficiently exploit the resources
of parallel architectures for computing intensive application
domains such as video coding, computer vision, machine
learning and physics simulation for instance.

A dataflow application can be specified as a graph where
nodes, called actors, process data called token(s). The compu-
tational models are based on First-In First-Out (FIFO) buffers
and respect their formalized read and write rules. Each FIFO
holds a set of tokens. Fig. 1(a) illustrates a network of actors,
which exchange tokens through defined FIFO channels [2].
Fig. 1(b) presents an example of a structure of the software
FIFO generated with the tool ORCC [3]. A network of actors
holds specific features that make it different from a generic
task graph. First, an actor is non-preemptive. Once started, an
actor ends its execution. Second, the actor can start if and
only if there are enough tokens as input, and enough space
in the output FIFOs. The FIFOs are considered updated (i.e.
tokens consumed and produced) at the end of the execution of
the actor, establishing a conservative synchronization scheme,
and preventing from any data race.

When the number of actors is larger than the number of
processing elements (PEs), then the main design challenge is
the mapping of actors on the network of PEs. In the case
of static dataflow [4], where the number of tokens produced
and consumed by the actors is known, an optimal solution
can be computed offline [5]. However, an increasing number
of applications cannot be specified with a static graph since
the performance improvement of complex applications usually
lead to context and data-dependent optimizations. This evolu-
tion is, for instance, significant in the domain of video coding.
Dynamic models are then used to express data-dependent
behavior of some applications [6]. Dynamic dataflow is a
useful model of computation (MoC) for handling streaming
data and video processing applications.

As the workload of an actor may change according to the
input data set, adapting the mapping while the application
runs is required to optimize the use of the computing and
communication resources. The mapping problem is known
as NP-complete. Heuristic methods, for a fast response time,
are thus required to address manycore architectures. Run-
time adaptation relies on system observation, decisions and
configurations. Several previous works have addressed the
problem of task mapping at run-time. In [7], the authors
have proposed a dynamic resource balance algorithm targeting
NoC-based Many-core homogenous platforms to enhance the
system performance by balancing the utilization of on-chip
computing resources and communication resources. In [8],
the authors have introduced a hybrid application mapping
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that combines design-time analysis with run-time mapping
in the context of dynamic thermal and reliability-aware re-
source management. Most of the available methods focus
on determining the suitable mapping of tasks before starting
the execution of the application [9], [10], [11], [12], [13],
[14]. The mapping of actors is also an active topic for other
target platforms like Coarse-Grained Reconfigurable Arrays
(CGRA) [15] or Field Programmable Gate Array (FPGA) [16].

This research work addresses the problem of reconfiguring
at run-time and at the application level the mapping of dataflow
actors on heterogeneous processors. In this work, heteroge-
neous means that processors share the same instruction set
architecture (ISA) while having different coprocessors and
different clock domains. The proposed method, which is
called run-time remapping, relies on continuous monitoring
of exact performance metrics such as the computational time
and communication time during real-time execution of the
application. Accordingly, a new mapping of the involved actors
is determined at run-time targeting the enhancement of the
overall performance. This approach is sequentially repeated
while the application is running. The application is neither sus-
pended nor modified. The proposed remapping method meets
with the dynamic behavior of dataflow applications. Static or
offline mapping methods cannot capture the dynamic behavior
and thus may not lead to optimal solutions. Also, on-the-fly
and hybrid mapping methods suffer from a lack of means to
monitor the performance and remap the actors accordingly.
In order to apply the proposed method, the architecture of
NoCs must be augmented to efficiently provide new services
of monitoring performance metrics and remapping the actors,
which are not available in conventional networks.

Adopting the devised remapping method and NoC-based
architecture leads to balancing the workload. The obtained
results show that the adoption of the remapping method
reduces the standard deviations of the computational times
and communication times of involved processors by 38.58%
and 69% respectively. Thus, the variation of the use rate of
processors is reduced compared to running the application
without remapping. In addition, a reduction of 8.6% in the total
execution time has been achieved as well as a reduction of 21%
in the number of packets’ hops is recorded when comparing
to the execution without remapping.

In this paper we introduce three contributions:
• First, we optimize for a NoC-based architecture with het-

erogeneous processors, a new run-time remapping (RR)
algorithm based on the Move Based (MB) method [17],
which allows only one actor to move at a time from one
processor to another. Our solution is then compared with
state of the art methods for dataflow architectures.

• Second, we present new NoC services that allow to
implement the observation and adaptation mechanisms.

• Finally, we demonstrate our solution with a full im-
plementation of MPEG4-SP, which is available as a
reference of a typical dynamic dataflow application. It is
also complex enough to exhibit data-dependent execution
and communication times. We consider a SystemC packet
cycle-accurate NoC simulator to fully decode reference
videos and demonstrate the effectiveness of the adaptation
mechanism with a real-life dataflow application.

The rest of the paper is organized as follows. Section II
presents the related work. Section III illustrates the adopted
architecture model. Section IV describes the processing flow.
Section V details the conducted experiments and presents the
obtained results. Finally, Section VI concludes the paper.

II. RELATED WORK

The question of mapping parallel applications on multi or
many-core architectures is a very wide problem, with a large
number of dimensions, including the programming model, the
target architecture (homogeneous or heterogeneous, bus-based
or NoC-based, etc.), and the optimization goal (throughput,
execution time, energy, etc.) [18]. The interested reader can
refer to the paper gathering different mapping strategies for
NoC-based architectures [19]. Following the taxonomy pro-
posed in [18], the mapping problem can be solved based on
two main strategies: design-time, and run-time. When solved
at design-time, the mapping is called static since it’s computed
offline and does not change while the application runs. This
approach allows for exact methods to find an optimal solu-
tion [20] [5] [15], but suffers from a lack of flexibility since
it cannot capture the dynamic behavior of some applications.
Moreover, even in the case of deterministic execution times of
actors in a static context, the paper [21] interestingly shows
the difference between the optimal mapping obtained from a
well-formalized problem and the real execution trace, due to
execution variabilities coming from the hardware.

The dynamic workload should be handled using run-time
techniques. The run-time mapping strategies can themselves
be divided into two categories: on-the-fly mapping, or hybrid
mapping. On-the-fly mapping techniques are application- and
platform-agnostic and solve the problem online. Very simple
and efficient heuristics should be used to shorten the response
time. For NoC-based MPSoCs, various fast heuristics targeting
the reduction of communications under constraints have been
already proposed [22] [23] [24]. These approaches consider
one task per core. Allowing multiple tasks on one core is
considered in [10]. Heuristics are fast but can be far from
optimal solutions, so hybrid approaches have been introduced.
They are based on pre-computed optimal solutions for a set
of cases. The job is split into two phases: (1) at design-
time, a set of solutions is computed, and (2) one solution
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is selected at run-time. A wide variety of approaches can
then be cited: based on traces in [25], on priority in [26],
on scenario in [27], on previously identified design points
in [28], or on WCET and scheduling in [29]. None of these
studies demonstrates its efficiency with real video applications
running reference sequences. The proposed real-time mapping
reconfiguration method in [8] requires to suspend the currently
running application and the manager remaps the tasks at run-
time according to scenarios previously defined at design-time
based on the evaluation of multiple mappings, optimizing for
their resource requirements and power consumption. Finally,
a last approach can fall into the family of hybrid mappings,
which considers to recompute partially the mapping problem
at run-time. This is called run-time remapping. The work
presented in this paper follows such an approach for dataflow
applications and leverages design-time analysis profiling re-
sults to find at run-time a first mapping. The application is
then monitored to update the profiling results and a run-time
remapping algorithm runs regularly to check if a new mapping
would be better than the current one.

Among the innumerable papers dealing with task mapping,
we consider run-time methods for dataflow tasks, and have
identified a limited number of solutions. In [30], the mapping
is modeled as a graph partitioning problem, and the problem is
solved at run-time by METIS tool, based on profiling informa-
tion obtained by a first run. Though the migration cost of the
actors is not taken into account, the results are promising and
could be improved if the mapping does not change completely
at each iteration. The approach in [17] allows to successively
refine the mapping according to the dynamic behavior of the
application, by allowing only one actor to move at a time from
one processor to the other. This approach assumes dynamic
dataflow application and the target architecture is composed
of several heterogeneous cores interconnected by a bus or a
NoC. The communication cost is computed based on a rough
analytical model of the interconnection network, with the loss
of accuracy that comes with it, whereas in our work, we
consider profiled values gathered automatically by the system,
with a finer grain down to the link. In [31], the application is
specified with KPN (Kahn Process Network) and the target
architecture is a shared-memory based MPSoC, with also
a model of the communication channel (bus or NoC). The
approach proposes to rely on three main steps: the two usual
design-time preparation and run-time mapping steps plus a
new customization step. The design time step computes a set
of candidates and populates a database. The run-time mapping
initialization derives from the candidates a new initial mapping
for the given workload. Finally, the run-time customization
step incorporates a Scenario-based run-time Task Mapping
(STM) algorithm that is applied to find new mapping of tasks
when the system detects that an objective is unsatisfied. It
first detects the so-called critical task and then identifies why
it misses its objectives: either poor locality or load imbalance.
In case of poor locality, an algorithm that considers the
communication between tasks is used to find a new mapping.
In case of load imbalance, a load balancing strategy based on
computational demands of the tasks is used. This step produces
a new mapping that may move several tasks, which leads to

a (re-)mapping overhead.
When focusing on the small subset of the existing work

around hybrid and run-time (re-)mapping of dataflow appli-
cations on NoC-based architectures, we consider the work
presented in [31] for comparison.

III. ARCHITECTURE MODEL

The target architecture is a heterogeneous Multi-Processor
System on Chip (HMPSoC) containing several different PEs
and shared memories connected with a Network-on-Chip
(NoC). Fig. 2 presents the structure of the adopted NoC-
based architecture. Our method is scalable and without loss
of generality we consider a specific model of architecture
which is required for a data-accurate functional simulation
with a packet-level time accuracy. The target architecture is a
4× 4 mesh-based NoC with 32-bit links that interconnects 28
intellectual property (IP) cores including 15 memory modules,
12 PEs and a processing element that acts as a manager
(MGR). The PEs and memory modules are technologically
independent of the structure of the NoC. They communicate
through the network using a network interface (NI). We
consider a simple NoC model that employs the wormhole
packet switching mode, the deterministic XY routing algo-
rithm, and a flow control policy without virtual channels. The
implemented routers have one buffer of 3 flits per input port
and use distributed arbitration logic (one arbiter per port).
The back-end part of the NI is typical and includes a packet
maker/un-maker, which are used to assemble and disassemble
the packets, and a priority manager to synchronize packet
transmission and reception.

In this work, it is assumed that PE1 imports the incoming
streamed data from an Input buffer and PE12 outputs the
processed data. Fig. 2 illustrates the buffers in order to com-
municate with external systems. Each PE has its local memory.
It is assumed that there are no restrictions to map any MPEG4-
SP application actor to any PE. The used PEs can all work in
parallel according to dataflow firing rules. However, some PEs
are enhanced by hardware accelerators dedicated to certain
functionalities in order to perform them more efficiently. The
shared memories are distributed in memory blocks which have
a unique NI. From an NoC perspective, the novelty is the
introduction of new command packets used as instructions
to manage FIFO accesses, broadcast mapping information,
collect monitoring data, and the transfer of binary codes. In
order to cope with the command packet and associated noti-
fication packet concepts, the NIs implement some additional
logic modules. The command packets were already proposed
in [32] but only produced by the manager and for a specific
application.

A. Manager

The manager is a PE dedicated to the following five tasks:
(1) map initially the actors on the available PEs, (2) parse
the feedback collected data from all modules (memories and
PEs), (3) apply the run-time remapping algorithm and selects
the actor to be moved (if any), (4) notify the corresponding
PEs (looser, gainer, etc.) about the updated mapping and
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Fig. 2. The structure of the used NoC-based architecture

TABLE I
HARDWARE ACCELERATORS USED IN THE SIMULATION PLATFORM

PE ID Accelerated Function Acceleration Ratio
PE3 & PE6 IDCT 1/0.3

PE4 IQ + IAP 1/0.75
PE10 Add 1/0.57
PE11 Interpolation 1/0.4

(5) manage the transferring of the binary code corresponding
to the moved actor from the shared memory into the cache of
the gainer processor.

B. Processing Elements

The target platform includes twelve PEs. All PEs are
supposed to be able to execute any of the forty-one actors
involved in the MPEG4-SP application. As the number of PEs
is smaller than the number of actors, each PE is considered
to run more than one actor. Hence, an actor scheduler is
required to manage the order of execution of actors. Mainly,
in dataflow applications, all schedulers suffer from inefficient
polling which leads to useless memory accesses when a
scheduling attempt fails. In this work, the well-known round-
robin scheduling technique has been adopted in all PEs. The
actors are given the attempt to be executed in a circular order
without priority. The PE will execute the allocated actor if
there are enough input tokens and enough space in the output
FIFOs as specified in dataflow applications.

Furthermore, some PEs are augmented with hardware accel-
erators in order to perform special functions more efficiently.
In this work, we adopt one of the hardware accelerator specifi-
cation described in previous similar work [17]. Table I shows
the list of accelerators adopted in the simulation platform. In
addition, the PEs have been specified randomly to operate
on different frequencies. Table II shows the randomly chosen
operating frequency of all PEs in terms of the NoC operating
frequency f .

C. Memory Modules

The tailored platform integrates three types of memory
modules. Each module includes a memory block that returns
the data allocated at its specified address. Since the PEs and
the manager do not recognize the local mapping of stored data

TABLE II
PROCESSING ELEMENT OPERATING FREQUENCY

PE ID Operating Frequency
PE1, PE12, MGR f
PE2, PE6, PE10 2f
PE3, PE7, PE11 3f

PE4, PE8 4f
PE5, PE9 5f

in each memory module and in order to remain compliant with
any available memory, the typical NI is extended to accommo-
date the services for managing the addressing and arranging
the retrieved output bits into flits. These new functionalities
are implemented as additional components in the front-end of
the NI corresponding to each memory module type in order
to be independent of NoC parameters. In the following the
functionalities of each memory type is described.

1) Binary code memory module (BCM): It contains the
binary codes of all actors. The manager sends a specific packet
request to BCM to forward the binary code of the moved actor
to a given PE according to the decision taken after executing
the RR algorithm. A simple module, so-called memory address
mapper (MAM), is integrated into the NI of the BCM in order
to find the correct memory address. For a specific actor, MAM
determines the starting address of the binary code and its
corresponding size based on the actor’s ID and by the means
of simple look-up-tables that include the starting addresses and
the size of the binary codes of all actors. Furthermore, MAM
manages the extraction of data from the memory and delivers
it to the packet maker unit.

2) Mapping/Monitoring information memory module
(MIM): This memory module accommodates twelve memory
blocks. Each block is dedicated to a specific PE and is
supposed to store two types of data. The first type is the
mapping information, which is generated by the manager
and indicates which actors are to be executed by each PE in
addition to their supplementary information about input and
output FIFOs and the reading orders for each input FIFO
(III-D1c). The second type is the monitoring information
(III-D1e), which is collected by the PEs during processing
a specified number of video frames. Storing the monitoring
information overwrites the mapping information, which is not
needed by the PEs anymore.

When a packet holding either mapping or monitoring in-
formation is received, the MIM module first identifies the
corresponding PE. Accordingly, it dissembles the packet and
stores the data found in the packet payload into the memory
block assigned to the identified PE.

Moreover, the MIM informs the manager about the avail-
ability of new monitoring information and the corresponding
PE about the availability of new mapping information. To do
so, the MIM sends notification packets (III-D1a) as per the
concept of notifying memory concept demonstrated in [2]. In
addition, the MIM responds to reading requests (III-D1b) sent
from the manager to acquire the stored monitoring information
from the PEs or to get the new mapping information.

3) Multi-FIFO memory module (MFM): This type of mem-
ory module is dedicated to store the data which is either
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TABLE III
ADDRESSES DETERMINED BY THE MFM-NI CONTROLLER

Packet Type Starting Address Offset
Request/Set writing index FIFOsize 0
Request/Set reading index FIFOsize+ 1 reading order
Reading Request packet Reading address incremented till

Data packet Writing address reaching data size

imported to the system or processed by the PEs. Each MFM
accommodates a specific number of FIFOs. Only one FIFO
is used at once. The inputs of all FIFOs are connected to
the module’s inputs using demultiplexers whereas the FIFOs’
output data ports are multiplexed. This signal is buffered from
the value of FIFO address which is specified in the payload
of the arriving packets (see Fig. 4). The multiplexer and
demultiplexers are added to the adapter in the NI.

Moreover, the MFMs receive the following types of packets:
(1) FIFO Index packet (III-D1f) that aims either to retrieve
or to set the writing and reading indexes, (2) Data Reading
Request packet (III-D1g) that demands to read data from a
specified FIFO and (3) Data packet (III-D2a) that is used to
write data in a specified FIFO.

A simple circuit is integrated into the adapter of the NI in
all MFM modules in order to manage the memory addressing
for all listed-above packet types. It is composed of a simple
controller and two 4-to-1 multiplexers and an adder in order
to generate the appropriate address values to be given to
the MFM FIFOs. After disassembling the arriving packet,
the packet un-maker delivers the packet type and the data
size to the controller. Accordingly, the controller generates
the control signals to configure the two multiplexers, which
are dedicated to select the values of starting address and the
offset as listed in Table III. These two values are then added
to compute the memory address. In addition, the controller
determines the number and type of the required memory
accesses. It incorporates a simple comparator and an address
counter which is incremented for each required access.

D. Packets’ structure

The developed NoC architecture considers two categories
of packets: (1) command packets and (2) data packets.

1) Command packets: Command packets are initiated by
the cores and processed by the NIs of destination nodes. Sev-
eral command packets, described hereafter, have been opted
in order to manage FIFO accesses, send mapping information,
collect monitoring data, and manage the transferring of binary
codes.

a) Notification packets (NP): The NPs aim to inform
the PEs that new information is ready to be requested. This
technique is inherited from the notifying memories (NM)
concept presented in [2]. When receiving a NP, the PE will
send a reading request to retrieve the available data at the
corresponding notifying memory. In this work, notification
packets are used either to inform an ordinary PE that new
mapping information is available or to notify the manager that
updated monitoring information has been generated and stored.
The NP has empty payload and aims to trigger the manager
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Fig. 3. Packets structure for mapping (left) and monitoring (right) information

and PEs to request data when it is ready rather than frequent
inefficient polling.

b) Monitoring/Mapping information reading request
packets (MRP): This type of packet is used to request the
information stored in the MIM module as a response to the
NP. It is either generated by the manager to acquire the new
monitoring information sent from a definite PE or by one
of the PEs to get the new mapping information provided by
manager. For both information types, monitoring or mapping
information, the request packet does not include any payload.

c) Mapping information packets (MpIP): The manager
uses a MpIP to inform all involved PEs after determining or
modifying the actor mapping strategy. Its payload includes the
following: (1) the number of actors which are mapped to the
PE, (2) the IDs of the mapped actors, (3) the IDs of the input
and output FIFOs, and (4) the actor reading order in each input
FIFO. Fig. 3 illustrates the structure of the packet holding the
mapping information.

d) Mapping Confirmation packets (MCP): A MCP aims
to inform the manager that the new mapping information is
well received by both the former and the new owner of the
actor. The MCP payload is also empty.

e) Monitoring information packets (MnIP): This type of
packet holds the feedback information needed by the manager
to perform the RR algorithm. Fig. 3 presents the structure of
the monitoring information packet.

f) FIFO index packets (FIP): The FIPs are designed to
hold the writing indexes or reading indexes of FIFOs. As
mentioned before, DF applications rely on a large number
of requests to memories for firing rule checking. So, these
indexes are used to determine either the number of available
tokens corresponding to each reader actor or the free space in
a FIFO. If data is required to be read from input FIFOs, the
firing rule is satisfied by checking if the number of available
tokens in all input FIFOs is equal or greater than the required
number during computation. Whereas, if data has to be written
to output FIFOs, the firing rule is satisfied by checking if all
output FIFOs have sufficient empty room to accommodate the
produced tokens. Hence, before processing an action, a PE
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Fig. 5. The structure of the packets holding the reading requests

has to request the reading and/or writing indexes of input and
output FIFOs. When the PE receives the value of demanded
reading/writing index, it will check the satisfaction of the
firing rule. After reading/writing data from/to a FIFO, the
reading/writing index has to be incremented by the size of
the transferred data. The PE, which consumes/produces data,
has to set the new reading/writing index in the targeted FIFO
after reading/writing operation is performed. Accordingly,
four types of packets are utilized: (1) Request read index,
(2) Request write index, (3) Setting read/write index, and
(4) Holding read/write index.

As the FIFO may have several reading indexes correspond-
ing to different reader actors, the PE has to determine the
reading order of the actor and sends it in the payload of the
packet. However, a FIFO has only one writer actor; hence, to
attain the value of its writer index the PE has to send the FIFO
address in the destination memory module. In both packets,
the packet type, given in the packet’s header, is used by the
NI at the destination memory module to decode the request
type. Fig. 4 depicts the structure of the FIP packets holding
the requests of a reading index and writing index.

On the other side, whenever a memory module receives a
request of reading/writing index it will retrieve its value from
the specified FIFO and sends it back to the PE. The NI in
the memory module will assemble a 1-flit payload packet as
shown in Fig. 4.

In order to set the reading/writing index after finalizing the
data transfer operations from/to a FIFO, the PE sends a control
packet that notifies the FIFO about its new reading/writing
index. It includes one flit that contains the FIFO address in the
destination memory module, the reading order of the actor, and
the new value of the reading index. Since the FIFOs have only
one writer actor, the writing packet payload simply includes
the address of the targeted FIFO in the destination memory
module and the new value of the writing index.

g) Data reading request packets (DRP): Fig. 5 presents
the packet holding the reading request of data from PE to
memory module. Its payload consists of one flit that includes
the address of the FIFO in the destination memory module,
the starting address of reading, and the size of required data.

h) Code transferring packets (CTP): Actor binary codes
are stored in a shared memory. When updating the actor
mapping, the binary code referring to the moved actor should
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Gainer ID Actor ID Capacity 

Packet header 

Packet payload 

Fig. 6. Manager command requesting the transfer of the moved actor code
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Fig. 7. The structure of packets carrying processed data

be transferred from the shared memory to the cache of the
new PE. The manager sends a command of transferring the
binary code in the form of a reading request packet. The sent
request includes the actor ID, the address of the new PE, and
the size of transferred data per packet (see Fig. 6).

2) Data packets: The second category of packets refers to
the ordinary flow of data between PEs and memory modules.
These packets, described hereafter, carry data that is either
processed in a PE and written in a memory module or sent
from a memory module as a response to a PE reading request.

a) Dataflow packets (DFP): The DFPs encompass all
packets transferred between PEs and the FIFOs distributed in
the memory modules. They carry data that is either processed
in a PE and will be stored in a FIFO or sent from a FIFO as a
response to a PE reading request. Fig. 7 presents the structure
of packets carrying processed data in their payloads.

b) Binary code packets (BCP): The BCPs aim to transfer
the binary code from the shared memory to the cache memory
of the new PE. Note that the binary code is divided into sec-
tions of reasonable sizes which are transferred consequently.
The size of the transferred data (payload capacity) is specified
by the manager according to the monitored traffic in the
network and based on the required cache lines to be filled
before launching the actor on the new PE. For example, the
packet including in its payload 64 flits of 32-bitwidth transfers
256 bytes which form 4 lines of L1 cache.

IV. PROCESSING FLOW

A. Initial mapping

Initially, the actors are mapped randomly to the PEs, or can
be mapped using the exact method presented in [20]. FIFOs are
mapped randomly and are approximately equally distributed
on all memory blocks. The manager informs by means of
packets all involved PEs. For each PE in charge of executing
actors, the manager generates and sends its corresponding
mapping information in a separate packet (MpIP). Packets
holding the mapping information are stored in a predefined
location in MIM. Then, the involved PEs are notified to
retrieve their mapping information from the shared memory
using notifying packets. At this stage, the manager waits the
PEs, which are incorporated in processing a specific number of
video frames NF to send their monitoring information. Note
that NF is set originally to a default value and may be changed
dynamically by the manager.
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TABLE IV
PARAMETERS AND VARIABLES USED FOR THE MAPPING ALGORITHM

Parameter Definition
DPN application graph (DPNapp)

|A| Number (Nb) of actors
|F| Nb of FIFO channels
|K| Nb of data packets
|Ic| Nb of input ports of actor Ac

Architecture graph (arch)

|P| Nb of processing elements
|M| Nb of memory modules

Profiling data (profile)

Ri Mean number of firings of actor i
W i Total computation cost of actor i
Csi Instruction code size of actor i

Before receiving the notification packet about initial map-
ping of actors, all PEs are in idle state. Once it receives
the notification packet, the PE sends a request to retrieve
the mapping information which includes IDs of actors to be
executed, IDs of input and output FIFOs for each actor, and
the reading order of each input FIFO. The mapped actors are
scheduled according to the order sent from the manager and
the PE begins to execute them in round-robin manner.

B. Monitoring actor execution

The execution of actors continues until receiving a new
notification packet about changing the mapping information.
All involved PEs monitor their running actors during the
processing of NF video frames, which determine the ob-
servation window. Precisely, each PE node accumulates for
every mapped actor Ac its communication time Tcm[Ac],
computation time Tcp[Ac], and total number of tokens received
to each input port NTtotal[Ac[Ij ]

] where c ∈ {1, ..., |A|} and
j ∈ {1, ..., |Ic|}. In addition, the adapter, which is embedded in
the NI of each node n (processor or memory), extracts from
each received packet carrying processed data, the following
information for each source Si: (1) the total number of
transferred tokens from Si to n: NTn

total[Si, n] and (2) the
average time delay consumed per token to reach the node n
from source Si: Tav[Si, n].Table IV gathers the variables and
parameters used to formalize our mapping approach.

The total number of transferred tokens is simply determined.
First, input packets are classified according to their sources Si.
Then, their corresponding sizes sizePk

[Si], which reflect the
number of data-flits, are accumulated.

NTn
total[Si, n] =

K∑

k=1

sizePk
[Si, n] (1)

where i ∈ {1, ..., |P|+ |M|}.
The average time delay per token per each source Tav[Si, n]

is calculated by dividing the time delay of each token trans-
ferred from Si by NTtotal[Si, n].

Tav[Si, n] =

∑K
k=1 sizePk

[Si, n]×DPk
[Si, n]

NTn
total[Si, n]

(2)

where k ∈ {1, ..., |K|}.

DPk
[Si] is determined by embedding, at the source node,

for each packet Pk its sending time-stamp Ts[Pk] in its header
then subtracting it from the reception time Tr[Pk] at the
destination node. All tokens in a packet are considered to have
the same delay.

D[Pk] = Tr[Pk]− Ts[Pk] (3)

C. Collecting monitoring information

When the number of the processed frames meets the ob-
served window, each PE node generates its own monitoring
information packet. The packet is then sent to the MIM
module (presented in III-C). Directly, the accumulated values
are reset with the beginning of the new observation window.
Then, the PE continues executing the previously mapped actors
according to the adopted circular order. This guarantees that
the remapping does not impose any additional overhead in
terms of latency. The MIM module notifies in its turn the
manager when new monitoring data is available correspond-
ing to a specific processor throughout a notification packet
(III-D1a). Whenever a new notification packet is received by
the manager, the latter directly requests to retrieve the new
available monitoring data. Also, the manager requests using
command packets from all memory modules to send their
monitoring information. Note that memory modules respond
to the manager and send the requested data directly without
any notification process since the adopted MoC allows the
direct communication between a memory and a processor.
All received monitoring packets are disassembled and their
contents are parsed and saved in the manager local registers.

When the feedback data is collected from all modules
incorporated in processing the video frames, the manager
applies the run-time remapping algorithm. At this stage, the
manager owns locally the following data: (1) the commu-
nication time of each actor: Tcm[Ac], (2) the computation
time of each actor: Tcp[Ac], (3) the number of input tokens
corresponding to every input port of all actors: NT a

total[Ac[Ij ]
],

(4) the number of incoming tokens to each processor module
from each memory module m: NTn

total[Sm, p], (5) the average
communication delay of received tokens to each processor p
from each memory module m: Tav[Sm, p], (6) the number
of incoming tokens to each memory module m from each
processor module p: NTn

total[Sp,m], and (7) the average
communication delay of received tokens to each memory
module m from each processor module p: Tav[Sp,m] where
c ∈ {1, ..., |A|}, j ∈ {1, ..., |Ic|}, m ∈ {1, ..., |M|} and
p ∈ {1, ..., |P|}.

D. Estimating NoC communication time delay

Communication time delay is a critical factor in HMPSoC
platforms using NoCs. The communication time of the moved
actor is affected by the location of the new hosting PE in
the network. NoC time-delay estimation impacts directly the
prediction process of the communication time of the moved
actor. Hence, the accuracy level in estimating the delay latency
changes the decision on the actor move in the RR algorithm. In
this work, two novel methods have been proposed to estimate
the communication time delay for transferring one token in the
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Fig. 8. Example on path declaration in the NoC

NoC. The first method is called the average-path token delay
and it is based on finding the average delay for transferring
one token depending on the path delays between all nodes of
the NoC. The second is called the average-link token delay
and considers the time-delay of the token according to the
used physical links connecting the NoC components while
transferring the token. Both proposed methods make use of the
monitoring data, which is collected while processing NF video
frames in the previous observation window. The techniques
used in estimating the NoC communication time-delay are
described in the following subsections.

1) Average-path token delay (APTD): In this approach, a
path is considered to be formed from the set of the intercon-
nections between two specific nodes. As an example, Fig. 8
illustrates in red the path P[PE1,MFM6] between processing
element PE1 to memory module MFM6. As a deterministic
routing is applied in this work, the packets always use the same
path between the source node and the destination node. Since
the adopted MoC forbids the transfer of packets in between
memory modules and in between PEs, the active paths are
those connecting either memory modules to PEs or PEs to
memory modules. Note that the packets transferred from a
processing element p to a memory module m do not follow
the same path used in transferring packets from the memory
module m to the processing element p. Fig. 8 illustrates in red
the followed path to transfer packets from PE1 to MFM6 and
in yellow the followed path to transfer packets from MFM6

to PE1. In APTD, the manager calculates the average path
delay per token Tav in several steps as shown in Algo. 1. Tav

refers to the average time delay required to transfer one token
from the source node to the destination node, regardless of the
path between the source and destination nodes. As an example,
the average time delay of all tokens transferred through either
the path P[PE1,MFM6] or the path P[MFM6,PE1] (Fig. 8) is
considered equal regardless of the number of links constituting
each path and the corresponding traffic in each link and the
switch conflicts in the connecting routers. Tav is computed by
dividing the sum of the communication-time delays Dtotal by
the total number of transferred tokens in the network NTtotal:

Tav =
Dtotal

NTtotal
(4)

The manager benefits from the collected monitoring data.
It makes use of the number of input tokens NTn

total[Si, n]
transferred to each destination node n from each source node
Si to determine the total number of all transferred tokens in

Algorithm 1 Average-path token delay (APTD)
Step 1: Find the sum of the communication delays Dtotal

Step 2: Find the total number of all tokens NTtotal

Step 3: Calculate the average time delay per token Tav

the network (NTtotal) as presented in (5):

NTtotal =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

NTn
total[Si, n] (5)

Also, the communication-time delays for all tokens transferred
in the network are accumulated. The sum of the communica-
tion delays Dtotal is determined according to (6):

Dtotal =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

Tav[Si, n]×NTn
total[Si, n] (6)

where Tav[Si, n] is the collected average time delay required
to transfer one token from the source node Si to the destination
node n.

2) Average-link token delay (ALTD): A link is defined as
the interconnection between two consecutive components of
the NoC: Router, Memory and PE. As an example, Fig. 8
shows the links constituting the path P[PE1,MFM6]. In this
approach, the average communication time delay per token
is determined for each link as shown in Algo. 2. The total
communication-time delay in a path P[Si,n] connecting the
source node Si and the destination node n is determined from
the monitored data as shown in (7):

DP
total[Si, n] = Tav[Si, n]×NTn

total[Si, n] (7)
Each path is segmented into a set of links LP[Si,n]

. The average
communication time delay per link DL

av[Si, n] in the path
P[Si,n] is determined as follows:

DL
av[Si, n] =

DP
total[Si, n]

NL[Si, n]
(8)

where NL[Si, n] is the number of links constructing the path
P[Si,n]. Here, the links constructing a path are assumed to have
similar contribution in the total communication time delay
monitored in the path. As a link l is shared among different
paths, the total link communication-time delay Dtotal[l] is
the sum of all average communication-time delay per link
computed in all paths in which link l constitutes one of their
interconnections:

Dtotal[l] =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

DL
av[Si, n] ∋ l ∈ LP[Si,n]

(9)

On the other hand, the tokens passing through a path are
definitely passing through all links constructing the path.
Hence, the total number of tokens NTtotal[l] passing through
a link l is the sum of all tokens passing through all paths,
which link l constitutes one of their interconnections:

NTtotal[l] =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

NTtotal[Si, n] ∋ l ∈ LP[Si,n]

(10)
The average communication-time delay per token Tav[l]
for each link l is determined by dividing the accumulated
communication-time delay Dtotal[l] by the number of tokens
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Algorithm 2 Average-link token delay (ALTD)
Step 1:
for each path P[Si,n] do

a- Find the total communication-time delay DP
total[Si, n]

b- Calculate average communication time delay per link
DL

av[Si, n]
end for
Step 2:
for each link l do

a- Find the total link communication-time delay Dtotal[l]
b- Find the total number of tokens NTtotal[l]
b- Calculate the average communication time delay per
token Tav[l]

end for

NTtotal[l] passing through this link.

Tav[l] =
Dtotal[l]

NTtotal[l]
(11)

E. Applying RR algorithm

For each observation window (NF frames), the manager
executes at run-time the RR algorithm, which is divided into
two main steps. The first step is dedicated to find all possible
candidate actors which their moves would enhance the overall
throughput. The second step sets a tradeoff between the cost of
migration and the predicted improvement of the performance.

1) Specify the possible candidate actors: In this work, the
definitions of the terms period of each processor p (Periodp),
maximum period (Periodmax) and throughput (Th) have
been adopted as introduced in [17]. Periodp is the sum of
total computation time compTp and total communication time
commTp recorded during NF video frames:

Periodp = compTp + commTp ∀p ∈ P (12)
where compTp and commTp of processor p are the sums
of the computation times and of the communication times
respectively of all actors which are mapped on this processor:

compTp =
∑

k:P[k]=p

Tcp[Ak] ∀p ∈ P (13)

commTp =
∑

k:P[k]=p

Tcm[Ak] ∀p ∈ P (14)

The throughput is defined as the inverse of the maximum
period over all processors.

Hence, the first task is to find the PE with the maximum
period. The manager computes the periods of all PEs during
the current observation window of NF video frames. Later,
a simple comparison between all obtained period values is
performed in order to specify the processor with the maximum
period. The processor with the maximum period (Periodmax)
is nominated as looser processor. The algorithm used to
determine the looser processor is outlined in Algo. 3. The
set of candidate actors to be moved C includes the actors
that have been previously executed by the looser processor.
Fig. 9 demonstrates an example of Periodp and Periodmax.
The figure shows three PEs (PE1, PE2 and PE3) that run
six actors (A1, A2, A3, A4, A5 and A6). In this example,

PE1 has the largest period, thus it is selected as the looser
processor.

Algorithm 3 Finding processor with maximum period
Periodmax ← 0
looser ← ϕ
for p ∈ P do

if Periodmax < Periodp then
Periodmax ← Periodp
looser ← p

end if
end for

2) Decision of the actor move: The actor selected to be
moved should have a maximum total gain. According to the
collected monitoring values, the manager estimates the total
gain achieved for all combinations of mapping the actors
which belongs to the candidate list C onto all available
PEs. The estimated total gain Gaine

total[CAc,p] of a mapping
combination CAc,p, which corresponds to moving Ac to p,
is computed by finding the difference between the estimated
performance gain Gaine

per[CAc,p] and the estimated migration
cost of the actor Costemig[CAc,p]. The mapping combination
that leads to the maximum estimated total gain is then selected.
The engaged processor and actor are specified and so-called
the gainer processor and moved-actor respectively.

a) Estimated performance gain: For each actor Ac in the
candidate list C, the manager considers it is moved virtually
to all PEs except the looser processor. For each virtual-move
combination, the manager estimates the achieved period of
each processing element Periodep[CAc,p]. The new period of
processor p is estimated by adding to the processor period
Periodp the estimated communication time T e

cm[CAc,p] and
the estimated computation time T e

cp[CAc,p] of the moved actor
Ac as shown in the following expression:
Periodep[CAc,p] = Periodp+T e

cp[CAc,p]+T e
cm[CAc,p] (15)

Note that the tokens, which are consumed by a certain reader
actor running on a processing element PER, are imported
from a FIFO f . These tokens are previously generated by
another actor running on another processing element PEW .
The generated tokens are first stored in a FIFO f and then
transferred once requested to the processing element PER

where the reader actor is executed. Hence, the tokens pass

𝑃𝑒𝑟𝑖𝑜𝑑𝑃1

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]

𝑃𝑒𝑟𝑖𝑜𝑑𝑃2

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑃3

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥

𝑡𝑖𝑚𝑒

Fig. 9. An example of Periodp and Periodmax
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through two paths. The first path P[PEW ,MFMf ] connects the
processing element PEW , which executes the writer actor,
and the memory module that accommodates the FIFO f .
On the other hand, the second path P[MFMf ,PER] connects
the memory module that accommodates the FIFO f and the
processing element PER which executes the reader actor. The
communication-time delays in both paths are considered when
estimating the communication time of the moved actor.

When adopting APTD method for determining the commu-
nication delay in the NoC, the estimated communication-time
delay per input j for each actor Ac is equal to the total number
of input tokens NTtotalS[Ac[Ij ]

] transferred to the actor at this
input multiplied by the double of the calculated average path
communication-time delay per token Tav (4). The average path
delay per token is doubled to compensate the time delay of
the two paths P[PEW ,MFMf ] and P[MFMf ,PER]. The total
estimated communication time is the sum of all estimated
communication-time delays of all inputs:

T e
cm[CAc,p] =

|Ic|∑

j=1

2× Tav ×NTtotal[Ac[Ij ]
] (16)

Note that the adopted model of computation forbids the trans-
fer of tokens in between actors (running on PEs) directly with-
out passing through a FIFO (allocated in a memory module
MFMf ). Hence, tokens produced by the writer actor (running
on PEW ) will pass through two paths (P[PEW ,MFMf ] and
P[MFMf ,PER]) before arriving to the reader actor (running on
PER). The exact number of tokens passes through both paths
while considering same average path delay per token Tav . So,
the average path delay per token is doubled in (16).

When adopting ALTD method, the estimated
communication-time per input j is equal to the total
number of input tokens NTtotal[Ac[Ij ]

] transferred to the
actor Ac through this input multiplied by the sum of all
average communication-time delay per token Tav[l] for each
link l constructing the paths which the input tokens use
to reach the processing element running the actor Ac. The
total estimated communication time will be the sum of all
estimated communication-time delays of all inputs:

T e
cm[Ac] =

|Ic|∑

j=1

(∑

i=1

Tav[li]

)
×NTtotal[Ac[Ij ]

]

∋ li ∈
{
LP[PEW ,MFMf ]

∪ LP[MFMf ,PER]

} (17)

In addition, the estimated computation time T e
cp[CAc,p] of

the moved actor Ac is determined depending on the recorded
computation time of the moved actor Ac during the previ-
ous mapping Tcp[Ac] and the estimated total speed-up ratio
SUe

total[CAc,p], which is achieved when moving Ac to p:
T e
cp[CAc,p] = Tcp[Ac]× SUe

total[CAc,p] (18)
such that

SUe
total[CAc,p] =

AAc
[p]

AAc
[looser]

× f [looser]

f [p]
(19)

where f [p] is the operating frequency of processor p (Table II)
and AAc

[p] is the acceleration enhancement ratio of the moved
actor Ac when running on processor p (Table I).

Note that for all mapping combinations, the period of the

looser processor is modified when an actor Ac is supposed
to be mapped to another processor p. Hence, it is updated by
subtracting the actual communication time Tcm[Ac] and the
actual computation time Tcp[Ac] of the moved actor Ac:
Periodelooser[CAc,p] = Periodmax−Tcm[Ac]−Tcp[Ac] (20)

For each mapping combination, the manager determines the
maximum estimated period Periodemax[CAc,p] which denotes
the maximum period among all processors when actor Ac is
mapped to processor p. Fig. 10 demonstrates an example of
finding Periodemax[CAc,p]. The figure considers the example
illustrated in Fig. 9. Three actors are mapped to the looser pro-
cessor PE1. The candidate list C includes three actors: A1, A2

and A3. Six mapping combinations are illustrated: CA1,PE2
,

CA1,PE3
, CA2,PE2

, CA2,PE3
, CA3,PE2

and CA3,PE3
. The

figure shows how to find the maximum estimated period
Periodemax[CAc,p] for each mapping combination. It is shown
in the figure that both the estimated communication time and
estimated computation time of the same actor differ when
mapped to different PEs.

These computed new periods are then used to find the
performance gain related to each mapping combination:

Gaine
per[CAc,p] = Periodep[CAc,p]− Periodmax (21)

b) Estimated migration cost: The migration cost of an
actor is the required time to transfer its binary code into the
local memory of the new hosting processing element. It de-
pends on the size of the binary data required to be transferred
and the communication-time delay in the network. The sizes
of the binary codes of all actors are considered to be known
by the manager in terms of number of flits. Accordingly, the
migration cost of the moved actor is estimated by the manager
using the estimated NoC communication-time delay. When
adopting APTD method, the estimated migration cost related
to the moving of actor Ac to processor p is calculated as
expressed in (22):

Costemig[CAc,p] = sizebin[Ac]× Tav (22)
where sizebin[Ac] is the size of the binary code of actor Ac

and Tav is the average path communication-time delay per
token (4). When ALTD method is adopted, the migration cost
of the moved actor Ac is determined by (23):

Costemig[CAc,p] = sizebin[Ac]×
(∑

i=1

Tav[li]

)

∋ li ∈ LP[BCM,p]

(23)

c) Estimated total gain: The manager computes the total
gain estimated to be achieved for all mapping combinations
by finding the difference between the estimated performance
gain Gaine

per[CAc,p] and the estimated migration cost of the
actor Costemig[CAc,p].
Gaine

total[CAc,p] = Gaine
per[CAc,p]− Costemig[CAc,p] (24)

The moving of an actor would lead to permanent performance
gain and the migration cost is paid once. However, the
estimated performance gain takes the cost of migration into
account in order to aggravate the probability of enhancing
the overall performance directly after applying the move (in
the next observation window). In fact, the variation of the
input data and its corresponding effects on executing the
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𝑃𝐸1

𝑇𝑐𝑝
𝑒 [𝐶𝐴1,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴1,𝑃𝐸3]𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴1,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑡𝑖𝑚𝑒

𝑃𝐸1

𝑇𝑐𝑝
𝑒 [𝐶𝐴1,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴1,𝑃𝐸3]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴1,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴3,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6] 𝑇𝑐𝑝
𝑒 [𝐶𝐴3,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴3,𝑃𝐸3]

𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴3,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝
𝑒 [𝐶𝐴3,𝑃𝐸2] 𝑇𝑐𝑚

𝑒 [𝐶𝐴3,𝑃𝐸2]

𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1]

𝑇𝑐𝑝
𝑒 [𝐶𝐴2,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴2,𝑃𝐸3]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴2,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3] 𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1]

𝑇𝑐𝑝
𝑒 [𝐶𝐴2,𝑃𝐸2] 𝑇𝑐𝑚

𝑒 [𝐶𝐴2,𝑃𝐸2]𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴2,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3] 𝑡𝑖𝑚𝑒

Fig. 10. An example of finding the maximum periods for each mapping
combination

involved actors incites to consider worst case (severe) decision
where the performance enhancement should be guaranteed
once moving the actor.

Then, the manager finds the maximum achieved total gain
among all mapping combinations and accordingly specifies the
actor to be moved and the gainer processing element.

F. Moving the actor to the gainer processor

The PE, after finishing the execution of the current running
actor, retrieves the new mapping information and sends di-
rectly a confirmation packet so that the manager processor
manages the transfer of the object code corresponding to
the new mapped actor. Before running the moved actor, the

Algorithm 4 Run-time Remapping (RR)
Step 1: Calculate the period of each PE
Step 2: Find PE with Max. period and assign it as looser
Step 3: Find the total gain (performance - migration cost)
for each move do

a- Find the performance gain
. find the period for each PE
. find the maximum period

b- Find the migration cost
c- Calculate the total gain

end for
Step4: Choose the move with Max. positive total gain

PE checks the availability of the object file corresponding
to the actor in its cache memory. Note that for the initial
mapping, the manager generates and sends packets to all PEs
in charge of executing actors. Whereas, after executing the RR
algorithm, the manager informs only the gainer and looser
processors. This procedure reduces the traffic in the network
and maintain the processing performance since the PEs that are
not affected by remapping process are not disturbed. In fact,
the manager informs first the looser processor about the new
mapping information. Then, it waits until the looser processor
confirms the well reception. The looser processor sends a
confirmation packet to the manager whenever it finishes the
execution of the moved actor. When the manager receives the
confirmation packet, it sends the new mapping information to
the gainer processor. Later, the gainer sends a confirmation
packet to the manager that directly manages the transferring
of the object code of the mapped actor from the shared
memory into the cache memory of the gainer processor by
making use of BCPs described in subsection III-D2b. This
guarantees that the actor is executed by only one PE in the
whole platform and ensure better controlling of the traffic
while migrating the binary codes. In fact, the manager sends
a CTP (subsection III-D1h) which includes the ID of the
gainer processor, the ID of the moved actor and the size of
the BCPs (capacity) as described in subsection III-C1. After
receiving the CTP, the MAM module, which is integrated into
the NI of the BCM (subsection III-C1), manages retrieving
the binary code from the shared memory and dividing it into
sections according to the capacity specified by the manager.
The generated BCPs will be transferred to gainer processor.
In our work, we consider that the gainer processor can start
executing the actor once at least 256 bytes, which construct
8 lines of the L1-I cache, are received and stored to the
gainer processor local memory. The hierarchy of the PEs’
local memories includes L1 and L2 caches. L1 cache is broken
up into to halves, instruction (L1-I) and data (L1-D) each of
32KB. L2 cache size is of 256KB and is used for instructions
and data.

G. RR Algorithm Complexity

The devised algorithm consists of several steps summarized
in Algo. 4. The complexity of each step is illustrated to
determine the overall complexity. The complexity of Step1,
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the step of finding the period of each processor, is O(|P|).
Then, Step2, the step of finding the processor with maximum
period has the complexity of O(|P|). The complexity of Step3,
estimating the total gains corresponding the move of the
candidate actors to all PEs rather than the looser processor,
is O((|P| − 1).|Ac ∈ C|). The complexity of Step4, choosing
the best move, is O(|Ac ∈ C|.(|P| − 1)). If we consider a
well balanced distribution of actors among the processors at
initiation (|Ac ∈ C| ≈ |A|

|P| ), the overall complexity becomes

O(|P|) + O(|A|) knowing that |P|−1
|P| ≈ 1. Note that the

algorithm is computed when all monitoring data is collected,
so the maximum rate is once per execution of the whole
data flow, and in practice can be tuned to be slower. With
respect to the complexity and the execution rates of actors,
this complexity is extremely low.

V. EXPERIMENTS AND RESULTS

A. Application Model

In this work we target the multimedia application domain.
We adopt the well-known MPEG4 part 2 Simple Profile
video decoder (MPEG4-SP). This multimedia application is
typically used in de-compression of encoded video digital
data. Fig. 11 presents the structure of decoder as described
in Reconfigurable Video Coding framework (RVC) [3] [33].

MPEG4-SP is specified with heterogeneous dataflow MoCs
and includes up to 40% of dynamic actors [34]. It is composed
of 41 actors and 70 FIFOs specified in RVC-CAL language.
The ORCC tool is utilized for compiling and software synthe-
sis [3] and we make use of the generated C-code for multi-
core platforms. We also use the structure of the software FIFO
presented in Fig. 1-b), which is generated by ORCC.

A FIFO may have several reader actors but only one writer
actor. It opts an indexing mechanism such that a specific index
is assigned to each reader or writer actor. These indexes are
used to determine the number of available tokens correspond-
ing to each reader actor and the free space in a FIFO. The
number of available tokens (Tf [Ri]) in a FIFO (f ) is the
difference between the reader index (If [Ri]) and the writer
index (If [W ]). The free space in a FIFO is the number of
memory addresses that contain no more needed data from
all reader actors. In other words, it is the subtraction of the
maximum available tokens from the total FIFO size (Sizef ).

Each actor has its input and output ports and includes one
or several actions. An action describes a specific functionality
and is executed (fired) when a set of conditions, so-called
firing rules, are satisfied. As an example, a firing rule consists
of checking if the number of available tokens in the input
FIFO is greater than the required number for computation, and
that the output FIFO has sufficient empty room to store the
produced tokens. In MPEG4-SP, the number of reader actors
ranges from 1 (at least) to 6 (at most).

MPEG RVC defines RVC-CAL applications as dynamic
dataflow applications, where the uncertainty of computing due
to data-dependency prevents from any static scheduling. They
are based on dataflow process network (DPN) model [6].
In such model, the actor executes when at least one of its
firing rules is satisfied. For cases where several firing rules

Fig. 11. MPEG4 part 2 SP decoder [33]

are satisfied simultaneously, only one is selected according to
its priority. Consequently, its corresponding satisfied action is
fired. Each firing consumes input tokens and produces output
tokens. The number of the consumed or produced tokens may
be fixed or variable.

B. Experimental framework and setup

In order to assess the feasibility of our proposed run-
time remapping method, we developed a real-time simulator.
The simulator is described in SystemC TLM model [35].
The devised simulator models a MPSoC platform using NoC
concept for interconnecting embedded modules. The platform
incorporates heterogeneous processing elements (Table I),
memory blocks, and the manager. The simulator platform
has been designed with hierarchical modules that can work
concurrently and intercommunicate via ports using simple
or complex communication channels. SystemC features have
been exploited to mimic the accurate functionality of the
modules described in section III.

The adopted NoC-based architecture, presented in sec-
tion III, is implemented in the devised simulator platform. In
order to accurately model the adopted application, all involved
actions are functionally simulated to determine their execution-
timing features and generate the real data exchanged by actors
during video decoding. The SystemC model adopted in the
simulation platform is cycle accurate at the level of the NoC
and the network interfaces. The timing of all corresponding
action executions on PE is compensated in the simulation
according to the profiling data extracted while running the
application on a reference computer. Profiling data provides,
for each involved action, the mean value of the number of
cycles required to execute it. In this work, profiling data
has been extracted using on a desktop computer (i7-2620M
CPU@2.7 GHz and 8GB memory). We consider that the
NoC operating frequency f is 500 MHz. The clock cycle in
each PE is determined according to Table II. During SystemC
simulations, for each fired action, its corresponding execution
time determined in profiling is mapped according to the
processor frequency and used as time delay to compensate
the real execution time. In addition, several benchmark video
sequences with different formats from [36] have been encoded.
The selected video sequences have different manner in changes
between successive frames. This guarantees to evaluate the
performance of the proposed algorithm for different data-
dependent behaviors. The resultant data has been used as
input to the decoder. These same encoded videos have been
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Fig. 12. Classification of transported packets and flits

decoded on a desktop computer and the FIFO contents have
been traced over the decoding period. To verify the proper
functionality of each actor, the contents stored in the FIFOs
in the simulator have been compared to the traced FIFO data.
Also, the output data of the simulator have been reconstructed
into visual video in order to verify the functionality of the
devised simulator. The video sequences have been decoded
without applying remapping targeting the same NoC-base
architecture and the obtained results have been compared to
that obtained when the video sequences are decoded adopting
the MB remapping algorithm applying ALTD and APTD for
estimating the communication time delay while considering
an observation window of Nf = 10.

C. Experimental Results

1) Transported data: The number of packets that travel
through the network during the decoding of the video se-
quences, and their corresponding flits are recorded in the case
of applying the MB remapping and the case of decoding
the video without remapping. Fig. 12 presents the number
of transported packets and flits in logarithmic scale during
decoding the Foreman video with CIF format and Bus video
with QCIF format for the case of adopting MB remapping
algorithm and the case of ordinary decoding. The packets and
flits are classified into control and data categories. The figure
shows that the flits of control packets form about 53% of all
transported flits in the two cases.

Furthermore, investigating thoroughly the types of trans-
ported control flits illustrates that 93% of control flits belong
to FIP. This refers to the MoC adopted in dataflow applications
which requires checking the firing rules (availability of input
data and output buffer space). Fig. 13 shows in logarithmic
scale the number of each type of control flits transported while
decoding the Foreman video sequence in CIF format and Bus
video sequence in QCIF format for the case of MB remapping
and the case of ordinary decoding.

Also, Fig. 13 shows that additional flits are transported
in the network due to the remapping. In fact, applying
remapping induces additional control and data packets. In
order to evaluate the effect of applying the MB remapping
algorithm on the traffic in the network, the transported flits
are classified into two main categories. The first category
includes the flits which are used basically for dataflow. This
category encompasses the flits which occupy the payload of
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TABLE V
PERCENTAGE OF FLITS TRANSPORTED IN BCP FROM TOTAL FLITS

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 0.0044% 0.0067%

Bus CIF 0.0008% 0.0125%
Ice 4CIF 0.0027% 0.0019%
Bus QCIF 0.0348% 0.0272%

all FIP, DRP and DFP. The second category includes the
induced flits by applying the remapping algorithm. Hence, the
second category compromises the flits listed in the payloads
of NP, MRP, MCP, MnIP, MpIP, CTP, and BCP. Note that both
categories include data and control packets. Fig. 14 illustrates
the comparison summary in terms of the number of transported
flits of both categories. In the figure, the number of transported
flits, which is obtained while processing the Foreman video
with CIF format and Bus video with QCIF format, is presented
in logarithmic scale for both cases (decoding while applying
remapping algorithm and ordinary decoding). The comparison
shows that the additional flits induced by applying the MB
algorithm forms less than 0.02% from total transported flits.
In addition, Table V shows the percentage of flits transporting
the binary code of migrated actors from the total number of
transported flits in the network while decoding several video
sequences. The presented percentages illustrate that the impact
of actor migration on the traffic is negligible.

2) Packet time-delay: The packet time-delay is recorded
while decoding the video sequences, following the procedure
explained in subsection IV-B. Fig. 15 presents the variation
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(bottom) while decoding Foreman video with CIF format [36]

of the sum of packet time-delays throughout the observing
windows during the decoding of the Foreman video sequence
with CIF format when adopting the MB remapping technique.
It is noticed that applying the MB remapping algorithm affects
the time-delay of the packets. In addition, the figure shows
the comparison with the case of ordinary decoding. The
comparison illustrates that using MB remapping decreases
gradually the total packet time-delay. Note that the task moves
occur after processing 80, 100, 160, and 270 frames. Fig. 15
shows that the total packet delay decreases after the conducted
moves. This refers to the fact that task remapping contributes
in distributing the tasks on PEs that are nearer to the memory
modules accommodating the input and output FIFOs. Also,
Fig. 15 presents a comparison in terms of average time-delay
of packets transported during the decoding of the Foreman
video with CIF format when adopting the MB remapping
technique and when using ordinary decoding. The comparison
confirms that the use of MB remapping technique contributes
significantly in reducing the time-delay.

3) Timings: Fig. 16 presents the recorded total commu-
nication time and total computational time throughout the
observing windows during the decoding of the Foreman video
with CIF format when adopting the MB remapping technique
and when using ordinary decoding. It shows that the com-
munication time represents 90% of the total execution time
in both cases. Hence, the total execution time is affected
more by the variation of the total communication time. Also,
Fig. 16(a) shows that the total communication time is almost
not changing among observation windows in the case of ordi-
nary decoding. Whereas, when MB technique is applied, the
communication time varies significantly and tends to follow
a decreasing manner as shown in Fig. 16(b). This illustrates
that reducing the time-delay achieved by MB remapping has
a direct impact on the communication time.

The communication time of each processing element is
investigated through the decoding of all video frames. It is
noticed that when applying the MB remapping technique, the
variation between communication times of all involved PEs is
reduced. The communication time values of all PEs converges
gradually to a specific interval as shown in Fig. 17.

4) Performance results: Multiple simulations have been
conducted to decode several benchmark video sequences
from [36]. Fig. 18(a) presents the achieved throughput in
terms of frames per second (FPS) when decoding Foreman
video (CIF format) and using ALTD and APTD respectively
for estimating the NoC communication time delay. The fig-
ure also shows the achieved throughput when decoding the
Foreman video (CIF format) without remapping. The letter
“M” shown on the curves represents when an actor move
occurs. Fig. 18(a) shows that using MB results in significant
performance enhancement. In addition, the figure illustrates
that adopting ALTD for estimating the NoC communication
time delay, while decoding Foreman video sequence with
CIF format, increases the achieved enhancement ratio. Other
similar simulations have been conducted targeting other video
sequences with different formats (CIF, 4CIF and QCIF). The
selected videos are of diverse characteristics to ensure that
the proposed remapping algorithm is not related to specific
formats or video content. The obtained results confirm that
adopting MB algorithm ensures enhanced performance when
compared to decoding the video without remapping. Also, the
results demonstrate that adopting ALTD rather than APTD
leads to additional performance enhancement.

D. Discussion and Comparison

In order to determine the relevancy of the devised algorithm,
it is compared to the STM method introduced in [31]. To
achieve fair comparison, the STM method has been modeled
and implemented on our devised NoC-based architecture. We
have also implemented the exact method presented in [20] for
the initial mapping, with two differences: we have used con-
straint programming instead of ILP, and the objective function
is the maximum period, Eqn. 12, as it is our optimization goal.
The workload used for the computation time of the actors is
based on the profiling of Foreman video. Simulations have
been conducted while running the MPEG4 decoder to process
real-life videos.

1) Performance enhancement of MB remapping: The
results presented in Fig. 18 show that for Foreman video
sequence with CIF format (Fig. 18(a)), the use of MB remap-
ping algorithm when adopting ALTD leads to a maximum
performance enhancement of 38.2% (frame 280) and adopting
MB-APTD leads to a maximum performance enhancement of
14.8% (frame 210) when compared to the results of processing
the video without remapping. For Ice video sequence with
4CIF format (Fig. 18(b)), maximum performance enhancement
of 56% (frame 450) and 16.5% (frame 250) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. Furthermore, the use of MB algorithm adopting
ALTD and APTD leads to a maximum performance enhance-
ment of 10.92% (frame 120) and 7.6% (frame 50) for Bus
video sequence with QCIF format (Fig. 18(c)) and Bus video
with CIF format (Fig. 18(d)). For Grandma video with QCIF
format (Fig. 18(e)), maximum performance enhancement of
33.2% (frame 170) and 23.9% (frame 190) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. The simulation results show that the link level
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Fig. 16. Total communication and computational times recorded throughout the observing windows during the decoding of the Foreman video with CIF
format [36]; when adopting (a) ordinary decoding and (b) MB remapping
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estimation of ALTD is more accurate and usually leads to
better performance compared to APTD. However, in some
cases APTD performs better such as for some observation
windows of Grandma video (Fig. 18(e)). This refers to the
fact that the heuristic is data-dependent and the link level
prediction depends on the monitoring information collected
during the previous data which may not match with the that
of the current processed data.

2) MB remapping in comparison to STM remapping:
Fig. 18 shows a comparison between our proposed remap-
ping and the STM algorithm in terms of throughput (FPS).
The results shows that the MB remapping outperforms STM
remapping technique when considering either APTD or ALTD
for estimating the NoC communication time delay.

Besides, the graphs in Fig. 18 show that in some cases
the STM method leads to deterioration in the performance.
In fact, the STM method selects critical task to be moved in
each observation window without estimating the resulting total
performance gain. Moving the task without determining its
effects on the whole system performance degrades the overall
performance. While in our proposed algorithm, the maximum
achieved total gain among all mapping combinations is first
determined as explained in subsection IV-E2c. Accordingly, a
task is specified to be moved if the estimated maximum total
gain is positive. It is noticed that in some observation windows
no tasks are moved when the proposed algorithm is applied. A
move is indicated by letter “M” in Fig. 18(a). In these cases,
the estimation shows that no performance enhancement will

be achieved for all mapping combinations.

3) MB remapping in comparison to optimal mapping:
Fig. 18 also shows the results obtained from the mapping
approach proposed in [20]. Note that the “optimal” mapping
corresponds to the best mapping found based on the profiling
of Foreman video after a time out of one hour (like the original
paper), and the optimality is not proven. The results show that
the MB algorithm, starting from a random mapping (without
significant initial delay), performs better that the optimal with
no remapping for Foreman video sequence in CIF format
(Fig. 18(a)). As the optimality is searched for the Foreman
profile, we used the optimal mapping as a starting point for
the MB algorithm, and the results show that it further improves
the throughput. As expected, the optimal mapping for Foreman
does not perform good for the Ice video sequence in 4CIF
format (Fig. 18(b)) and Grandma video sequence in QCIF
format (Fig. 18(e)). But surprisingly, it performs good for
the Bus video in QCIF format (Fig. 18(c)) and Bus video in
CIF format (Fig. 18(d)). The so-called optimal method cannot
be used for two reasons. First it introduces an unpractical
initialization delay without guaranty of optimality. Secondly, a
static solution is not appropriate to data-dependent applications
since a solution can be good for one data-stream and inefficient
for another one and more importantly the efficiency of a
mapping varies over time.

4) Comparison summary: Table VI summarizes the com-
parison of average FPS achieved when processing multitude
video sequencing while adopting different remapping tech-
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Fig. 18. Throughput in terms of FPS when decoding video sequences [36] using MB and STM remapping algorithms
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Fig. 19. Throughput in terms of FPS when decoding video sequences [36]
using MB remapping algorithms targeting 4× 6 NoC

TABLE VI
ACHIEVED RESULTS ADOPTING DIFFERENT REMAPPING TECHNIQUES

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD STM
Foreman CIF 11.4% 5% 4.1%

Bus CIF 5.4% 5.4% −17.7%
Ice 4CIF 26.1% 2% −13.04%
Bus QCIF 9% 8% −20%

Grandma QCIF 14.91% 14.11% NA

niques. The table shows that the MB algorithm achieves
the maximum average performance enhancements of 26%
and 14.11% when adopting ALTD and APTD respectively
compared to the achieved throughput of processing the frames
without remapping. Whereas, remapping using STM algorithm
achieves a maximum average enhancement of 4%.

E. Scalability and generality

The scalability of our approach relies first on a negligible
extra payload in the context of actor-level dataflow models,
which intrinsically require a large amount of small control
packets. For example, when decoding the Foreman video se-
quence the extra flits imposed by remapping (including the flits
holding the binary codes of moved actors) constitute less than
0.02% of the flits used for dataflow. The proposed remapping
method enhances the performance by exploiting the NoC
structure and the characteristics of the available resources.
The results show that our method positively impacts the NoC
performance. Table VII illustrates the reduction percentages of
packet hops when decoding different video sequences adopting
the proposed MB remapping compared to ordinary decoding
without remapping. The comparison shows that the proposed
remapping method reduces the packet hops. The percentage of
reduction is more than 20%. Secondly, the method includes the
migration cost and so limits the number of moves.

Fig. 19 shows the results obtained for a 4 × 6 NoC, for
Foreman and Bus video sequences, starting from a random
mapping. The results show that our approach can also improve
the throughout for a larger NoC. On average, the throughout
is improved by 13.5% and 4% for Bus QCIF and Foreman
CIF videos respectively.

TABLE VII
REDUCTION OF PACKET HOPS WITH MB-ALTD AND MB-APTD

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 20.94% 12.64%

Bus QCIF 3.24% 5.29%
Grandma QCIF 14.18% 8.33%

VI. CONCLUSION

This paper presents an original Move-based algorithm and
NoC-based architecture to map the tasks of dataflow applica-
tion during run-time. The method monitors the performance
and intercommunication, takes the proper mapping decision
and applies the required mapping configurations. The algo-
rithm and the devised architecture are thoroughly presented.
The best way to verify the effectiveness of a run-time mapping,
which is by definition data dependent, is to simultaneously
execute the target application. However such demonstrations
are complex, time consuming and so ignored in the literature.
In this paper we address this issue by conducting a SystemC
simulation of the MPEG4-SP decoder with several real-life
video sequences. The obtained results demonstrate that the
proposed algorithm significantly enhances the performance.
In addition, the proposed algorithm outperforms the available
run-time mapping technique. Future work will consider the
implementation of integrated module in the NIs and estimating
the overhead in terms of area and energy.
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Chapter 6

Flexible and Efficient Architectures
Based on Memristive Technologies

6.1 Networked Power-Gated MRAMs for Memory-Based
Computing

6.1.1 Preface

This research work has been conducted during my work at UBS in the context of Cyam
research project. The work is a collaboration between Lab-STICC and Research Institute
of Electrical Communication at University of Tohoku, Japan in particular with Professor
Takahiro Hanyu and Associate Professor Naoya Onizawa. This research work has been pub-
lished in the proceeding of the IEEE International New Circuits and Systems Conference
(NEWCAS), 2017 [76] and in the IEEE Transactions on Very Large Scale Integration (VLSI)
Systems [77], 2018. Also, additional architectural details and results have been elaborated
in the proceeding of the IEEE International Multidisciplinary Conference on Engineering
Technology (IMCET) [37], 2021.

6.1.2 Introduction

Computing resources are continuously increasing with technology progress, yet the use of
the computing capabilities is facing major limitations in terms of power dissipation, off-chip
memory access time, and real available parallelism. These limitations lead to a partial use
of the offered integration capabilities and increase the gap between accessible technology
nodes and available design methodologies. Nevertheless, the evolution of the emerging non-
volatile memory (NVM) technologies, open new design perspectives to balance the under-
use of available hardware resources.

Besides memory access time reduction due to on-chip integration, the silicon density
offered by recent technology nodes can be efficiently used, and significant reductions in
power consumption can be achieved as long as the leakage power can be controlled and the
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memory bandwidth exploited. Such a configuration is made possible by applying memory-
based computing (MBC) [78] while considering a network-on-chip to broadcast requests to
NVM devices and full power gating (PG) to switch-OFF unused memories.

This research work proposes a novel approach that distributes and moves computing
resources closer to memory. The main idea is to replace computing by memory like. It con-
siders the replacement of results stored in memory to take advantage of dense, low power
memories. Distributed memories are adopted to increase the bandwidth by making use of the
increase of on-chip memory density and the emerging manycore architectures based on NoC.
In practice, all memories are not addressed at the same time leading to inherently partial re-
source usage in time. Therefore, applying power-gating techniques to unused resources can
offer important power savings. For cost and efficiency reasons, emerging NVM memories
are reused without modification except the implementation of efficient power-gating tech-
niques. Rather than implementing logic in memories, the NIs of the NoC are enhanced to
turn power-gated memories into content-addressable memories. It is also important to note
that our NoC-Memory Based Computing (NMBC) concept can be generalized and additional
functionality (e.g. encryption, max, sum, sigmoid, etc.) can be implemented in the NIs.

6.1.3 Context and Motivations

A large increase in the applications that can take advantages of the capability to integrate
much more on-chip memories. Datacenters related applications are one of the main exam-
ples, where the energy efficiency constraints lead to the rise of heterogeneous architectures
[79]. Neuromorphic architectures based on convolutional neural networks (CNN) [80], Spik-
ing neural networks [81] or Sparse Neural Networks (SNN) [82] are another major appli-
cation examples dominated by memory resources. It is worth noting here that this class of
algorithms usually implies much more reading than writing accesses in the operational phase
after the learning stage.

Another related use of the emerging memory integration capabilities is illustrated in [83],
where switch-based logic functions are replaced efficiently by memories especially in the
case of molecular crossbars. In this approach, a partitioning of the application graph is ap-
plied to map computing elements on memory arrays. Replacing logic by memories is effi-
cient in case of computation redundancy. Such patterns can be extracted from signal process-
ing algorithms that allow partial pre-processing [84]. Another different approach consists in
storing the results of frequently used computations in memory. Such methods have shown
significant energy improvement in the context of heterogeneous reconfigurable multicore
architectures [85] and GPGPU architectures [86].

In memory-based computing, where the application is partitioned and mapped to dense
memory arrays and compute elements [85], not all memories are entirely addressed at the
same time. Thus, if the memories are implemented as a grid of memory blocks, the resource
usage in time is inherently partial. Therefore, applying power-gating techniques allows mini-
mizing the power consumption of partially used resources. In this context, the emergent non-
volatile memory technologies, such as magnetoresistive random-access memory (MRAM)
with low-leakage characteristics and power-gating capabilities, represent a great opportunity
to design energy efficient architectures. In other words, increasing on-chip resources with
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low-power behaviors contribute to the global architecture and energy efficiency.

Moreover, such architectures can take real advantage of more than one decade of research
and achievements in NoC design, that allow configurable accesses to grids of memories as
well as the implementation of pre/post-processing steps in network interfaces [36].

Memristive technologies boost the research towards logic-in-memory approaches with
the idea of introducing bit-level logical function in memories. This is presented with a pro-
grammable architecture in [87], where power-gating is not considered. The concept of active
memory also enhances memory with new functionality, which is the capacity to manage
high-level transactions requests with a local processor executing transfer operations [88].
These two approaches lead to specific designs, where logic and memory are tightly coupled.

Magnetic tunnel junction (MTJ) devices [89] represent a main class of emerging non-
volatile technologies for low-power memory circuits. Recently, several MRAM designs have
been presented [90, 91, 92] that exhibit significantly low leakage currents realized by power-
gating, thanks to the non-volatility feature. These MRAM designs are designed using rel-
atively large device technologies, such as 90 nm, yet the MTJ technology allows scaling
down to 11 nm as for CMOS devices [93]. The performance of MRAM devices in such
recent technology nodes are also estimated in [94, 95].

MRAM devices are designed using different MRAM cells, such as 1T-1MTJ, 2T-2MTJ,
and 4T-2MTJ. This corresponds to performance trade-offs between area efficiency and read
time. For example, the 1T-1MTJ MRAM exhibits the highest area efficiency with a rela-
tively slow read time, while the 4T-2MTJ MRAM realizes faster read time with lower area
efficiency. In terms of power-gating, a simple strategy that shutdowns the power of the whole
MRAM device at the idle state is generally used. In the 4T-2MTJ MRAM [91], a cell-level
power-gating technique is used that activates only a row at the read/write state, leading to
low leakage currents in the cells.

6.1.4 Contributions and Performed Work

This research work introduces a novel computing approach that exploits memory bandwidth
and limits the leakage power by applying MBC, while considering a NoC to broadcast re-
quests to memory and NVM to switch-OFF unused memories.
The main contributions of this research work are:

• Propose a novel NMBC architecture that introduces the design of energy-efficient mul-
ticore solutions for memory-based computing. The tailored architecture interconnects
three types of IP blocks: memory modules, processing elements and managers.

• Introduce a new computing paradigm is presented where the packets of a NoC are used
as commands executed by configurable NI to access in parallel multiple memory blocks,
which are technologically independent from the NoC. The managers send queries to
memories by means of packets where known and unknown fields are specified. Then the
processors collect the memories answers and apply a simple winner-take-all algorithm
to select records to be send back to managers.
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• Upgrade the structure of NIs associated to each memory module in order to decode the
requests sent by the manager, handle the communication of results to the processors, and
provide managers with monitoring data about bandwidth usage and processor usage.
Note that these services are dedicated to NIs in order to remain compliant with any
existing memory and to be independent from NoC parameters.

• Introduce novel implementations of Spin-Transfer-Torque Magnetoresistive Random-
Access Memory (STT-MRAM) with cell and peripheral power-gating capabilities.
Three different types of 256-bit × 256-word MRAMs with different power gating poli-
cies are adopted:

1. Type I: controls one 256× 256 MRAM and adopts one PG transistor

2. Type II: controls four 128 × 128 MRAMs and adopts four PG transistors for thr
four 128× 128 MRAM subblocks

3. Type III: controls four 128× 128 MRAMs and adopts one PG transistor

Type I controls one 256 × 256 MRAM; whereas, Type II and Type III control four
128 × 128 MRAMs. Type I adopts one PG transistor for a 256 × 256 MRAM. Type II
adopts four PG transistors for four 128 × 128 MRAM subblocks. The maximum write
bitwidth for Type III is 32 bits, whereas the maximum read bitwidth is 256 bits as for
Types I and II. Adopting PG reduces the leakage current of the cell array compared to
that of an Static Random-Access Memory (SRAM) cell array. The peripheral circuits
can be power-gated using the pMOS transistor when the MRAM is at the idle state.

In this work, two different policies of PG have been addressed: only cell PG (OCPG)
and full PG (FPG). In OCPG, the the MRAM cells are power-gated at the idle state
and the peripheral circuits are always at the active state. In FPG, the whole MRAM
is power-gated at the idle state. FPG reduces the leakage current in comparison with
the OCPG while a wake-up operation is required for the peripheral circuits, which cost
extra energy dissipation and delay time.

• Demonstrate the effectiveness of the proposed approach through a relevant case study
of a database search application implemented with neuromorphic architecture based on
SNN, which is a neural network model inspired by information theory and error cor-
recting codes. It is especially efficient for the implementation of associative memories,
so it can be used to process database queries [82].

• The PEs are implemented as dedicated hardware components. A specific design is tai-
lored in VHDL, which enables to estimate the implementation area of the PEs and
include their power consumption in the global power budget.

• The RTL specification of the router and the NI is synthesized in the physical layout
estimation mode. The total power was obtained by using the leakage and dynamic power
of the NoC and NI components, relying on the switching activity traced by the SystemC
simulation.

• Build an experimental setup that model the adopted NoC implementing MRAM mem-
ories in SystemC TLM. In order to check the relevance of the proposed approach, the
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devised model executes the database search engine application using the Yeast database
benchmarks (cellular localization in proteins) from the UCI Machine Learning Repos-
itory [96]. The model has been developed to mimic the exact behavior of the target
architecture by designing hierarchical modules that work concurrently and intercom-
municate via ports. The SytemC model is cycle accurate at the NoC level including
NIs. To ensure accuracy, the timing features of memory reading response and wake ups
are considered in the model. Furthermore, the execution time of computations in the
PEs is based on the HDL simulation and synthesis that provide real-time environment
modeling.

• Conduct experimental simulations using the devised simulation model while consider-
ing different types of memories, PG policies and number of missing fields in the queries.

• Based on the simulation results, the relevancy of the proposed concept is evaluated. The
transported data is tracked. Accordingly the hit rate and injection rate are computed.
Also, the power budget is estimated based on the TSMC 65-nm CMOS process, the
implementation of PEs and the specifications of the memory models. The percentage
of dissipated power in each module is determined and classified into static or dynamic.
Also, the obtained results when adopting the MRAMs are compared with those ob-
tained when adopting SRAMs while using identical NoC and PEs features and memory
contents.

6.1.5 Findings

• The obtained results demonstrate important power reduction with database hit rates of
about 94A slight degradation in the hit rate is recorded when increasing the number of
missing fields in the queries. This is due to the fact that the ambiguity ratio increases
with the decrease of the number of known fields.

• All FPG solutions provide energy gains over four times with respect to SRAM. This
refers to the factor that the maximum recorded percentage of static power in FPG-
MRAM is lower than that recorded when SRAM is adopted. This can be explained
by the significant reduction of static power in FPG-MRAM when the memory is in
idle state and that the memories are at OFF state most of the time. The recorded data
shows that the MRAMs are OFF more than 75% of the time. It is worthy to indicate
that the static power dissipated in FPG-MRAM in the idle state is highly less than that
of SRAM. The wake-up feature in the FPG policy has not added a significant overhead
as the percentage of wake-up consumed power is less than 10%. The dissipated power
while reading is important since it dominates over the static power and wake-up power.
Its percentage approaches to 65% of the total consumed power. However, the SRAM
power consumption while reading is higher than the introduced types of MRAM.

• OCPG policy cannot outperform SRAM case with any type of MRAM as the percentage
of static power dissipation of OCPG-MRAM is higher than the percentage of static
power dissipation of SRAM.
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• The comparison in terms of power consumption between the three types shows the
following:

1. Type I outperforms Type II in the case of 256 bits as with 256 bits the gain of
read operations does not compensate the increase of the static power of the Type
II switch.

2. Type II is more efficient with respect to Type I when 128 accesses are possible

3. Type III outperforms Type I and Type II in any case as it takes full benefit of the
reduced read energy that does not impact the PG switch overhead. Moreover, Type
III can also benefit from the bitwidth granularity and efficiently exploit 32, 64, and
128-bit cases opportunities.

• The comparison of the adopted NI with the baseline NI shows that the area and power
of the proposed NI, present overheads of 14.3% and 12.6%, respectively. If we consider
the whole NoC, the area and power overheads are 6.1% and 5.2%, respectively.

As a conclusion, important energy savings can be achieved when the application fits with
the MBC context, namely when fully power-gated NVMs can take benefit of limited activity
rates. The obtained results show that such an approach can significantly modify the power
budget breakdown between NoC and memory. This allows to increase the number of memory
modules and so to target large-scale applications.
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Abstract— Emerging nonvolatile memory technologies open
new perspectives for original computing architectures. In this
paper, we propose a new type of flexible and energy-efficient
architecture that relies on power-gated distributed magnetoresis-
tive random access memory (MRAM). The proposed architecture
uses a network-on-chip (NoC) to interconnect MRAM-based
clusters, processing elements, and managers. The NoC distributes
application-specific commands to MRAM devices by means of
packets. Configurable network interfaces allow to transform
MRAM devices into smart units able to respond to incoming
commands. In this context, three types of MRAM designs are
proposed with different power-gating policies and granularities.
A relevant database search engine case study is considered to
illustrate the benefits of this proposed architecture. It is imple-
mented with a sparse-neural-network approach and simulated in
SystemC with different scenarios including hundreds of database
queries. Hardware designs and accurate power estimations have
been conducted. The obtained results demonstrate important
power reduction with database hit rates of about 94%. Targeting
65-nm technology, energy savings reach 87% when compared
with an static random access memory-based implementation.
Moreover, a new asymmetric read/write MRAM type provides
from 39% to 50% energy reduction with respect to the other
fixed-granularity models. This results in a low-power, highly
scalable, and configurable implementation of memory-based
computing.

Index Terms— Database, magnetoresistive random access
memory (MRAM), network-on-chip (NoC), power gating (PG),
sparse neural networks (SNNs).

I. INTRODUCTION

COMPUTING resources are continuously increasing with
technology progress, yet the use of the computing
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capabilities is facing major limitations in terms of power
dissipation, off-chip memory access time, and real avail-
able parallelism. These limitations lead to a partial use
of the offered integration capabilities and increase the gap
between accessible technology nodes and available design
methodologies. Nevertheless, the evolution in memory design
and on-chip memory integration, particularly the emerging
nonvolatile memory (NVM) technologies, opens new design
perspectives to balance the underuse of available hardware
resources.

In fact, besides memory access time reduction due to
on-chip integration, the silicon density offered by recent tech-
nology nodes can be efficiently used, and significant reductions
in power consumption can be achieved as long as the leakage
power can be controlled and the memory bandwidth exploited.
Such a configuration is made possible by applying memory-
based computing (MBC) while considering a network-on-
chip (NoC) to broadcast requests to NVM devices and full
power gating (PG) to switch-OFF unused memories.

Based on these observations, we first propose a novel
NoC-MBC (NMBC) architecture, which relies on an
NoC-based multicore architecture that allows to take full ben-
efit from PG capabilities of distributed MRAM. We introduce
a new computing paradigm, where the packets of an NoC
are used as commands executed by configurable network
interfaces (NI) to access multiple distributed memory blocks
in parallel. These memory blocks are technologically inde-
pendent of the NoC and the processing units. Furthermore,
we introduce different implementations of spin-transfer-torque
magnetoresistive random access memory (STT-MRAM) with
cell and peripheral PG capabilities. Finally, the effectiveness
of the proposed approach is demonstrated through a relevant
case study of a database search application implemented
with a neuromorphic architecture based on a sparse neural
network (SNN) [1].

This paper presents five new contributions that improve
significantly the performances compared with our previous
work [2]: 1) an original type of power-gated MRAM memory
called Type III, which is based on an asymmetric read/write
scheme and allows for significant power reductions with
respect to previous solutions; 2) rather than a single manager,
multiple manager modules can be working concurrently; 3) the
processing elements (PEs) are not statically but dynamically
allocated; 4) PEs are implemented as dedicated hardware
components, and they are included in the global power budget;

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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and 5) design and synthesis of all modules, including MRAM
devices, are done using 65-nm technology node.

The rest of this paper is organized as follows. First,
we present the proposed NMBC architecture model and the
considered application case study of an SNN-based database
search engine in Section III. Then, Section IV introduces
the MRAM design models, including the proposed cell and
peripheral PG policies and the three types of PG granularities.
Section V provides the detailed evaluation setup in terms
of selected database for the application case study, NoC
implementation, and SystemC simulation of the proposed
NMBC architecture. Section VII summarizes and discusses the
obtained results before concluding this paper in Section VIII.

II. RELATED WORK

A. Memory-Based Computing

MBC can have several meanings. The first one is a method
to solve the memory-wall challenge, for applications domi-
nated by data transfers, by migrating computing within the
memory. A first implementation of a full adder was introduced
in [3], and a summary of a research decade on this topic
is presented in [4]. The solution consists in executing some
greedy operations with logic implemented in the memory
device in order to reduce the bandwidth demand and latency
that limit the use of static random access memory (SRAM) and
DRAM. The logic-in-memory concept allows to implement
logic function (F) to apply transformations and data transfer in
the memory as shown in Fig. 1(b). This solution is especially
efficient with NVM technologies, such as spin–orbit torque
magnetic random access memory or domain wall motion
memory. Fan et al. [5] compare these technologies with an
Advanced Encryption Standard encryption application, which
is a typical in-place computing scheme that can take full ben-
efit from this approach. The idea of moving computing close
to the memory reduces latency and increases the bandwidth
compare to solution based on SRAM or DRAM. Memristive
technologies are also candidate for programmable approaches.
This is presented with programmable bit-level logical function
in memories in [6], but PG is not considered.

Our approach aims also to distribute and move com-
puting resources closer to memory but with a different
approach. Actually, we consider distributed memories to
increase the bandwidth. This solution is made possible jointly
by the increase of on-chip memory density and by the emerg-
ing manycore architectures based on NoC. For cost and effi-
ciency reasons, we also want to reuse existing (or emerging)
NVM memories without modification except the implementa-
tion of efficient PG techniques. So our solution relies on the
enhancement of NI, as shown in Fig. 1(a).

The second meaning of MBC is the idea that computing
can be replaced by memory. Replacing logic by memories
is efficient in the case of computation redundancy. Such
patterns can be extracted from signal processing algorithms
that allow partial preprocessing as introduced in [7]. Paul
and Bhunia [8] consider dense memory, based on molecular
crossbars, to implement logic functions in multi-input-multi-
output lookup table (LUT) in a memory array. In this approach,

Fig. 1. Types of MBC. (a) NoC-based with separated PG NVM (this
paper). (b) Logic in memory. (c) Processing mapped in LUT (fine grain).
(d) Processing mapped in LUT (coarse grain). (e) AMM caching frequent
computer results.

a partitioning of the application graph is applied to map
computing elements on memory arrays. In [9], the idea is
extended to coarse-grain implementations. Both cases are
shown in Fig. 1(c) and (d), respectively. It is worth noting that
the two ideas can be combined if in-memory logic functions
are implemented as LUTs.

Our solution also aims to replace computing by memorylike
in Fig. 1(c), and however, we do not implement logic in the
memories but in the NI to turn power-gated memories into
content-addressable memories. It is also important to note
that our NMBC concept can be generalized and additional
functionality (e.g., encryption, max, sum, sigmoid, and so on)
can be implemented in the NIs.

The third meaning is an extension of the second one
and is based on the principle of memory cache applied to
the results of frequent computations with identical inputs.
It is shown in Fig. 1(e). If the same computation with the
same operands occurs, then the result is available from the
memory without repeating the computation. Such methods
have shown significant energy improvement in application
domains with important opportunities of result reuse. This
technique has been implemented with associative memristive
memories (AMMs) in the context of heterogeneous recon-
figurable multicore [9] and GPGPU architectures [10]. Our
approach considers the replacement of results stored in the
memory to take advantage of dense, low-power memories.
In practice, all memories are not addressed at the same
time leading to inherently partial resource usage in time.
Therefore, applying PG techniques to unused resources can
offer important power savings. In this context, emergent NVM
technologies such as MRAM with low-leakage characteristics
and PG capabilities represent a great opportunity. They allow
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to design energy-efficient architectures where unused memory
resources can be switched OFF. In other words, increasing
on-chip resources with low-power behaviors contributes to
the global architecture and energy efficiency. Moreover, such
architectures can now take real advantage of more than one
decade of research and achievements in the NoC design. NoC
allows configurable accesses to grid of memories as well
as the implementation of preprocessing/postprocessing steps
in NI [11].

Data-centers-related applications represent a typical case
where the energy efficiency constraints lead to the rise of
heterogeneous architectures [12]. It covers applications domi-
nated by memory resources, such as database accesses, search
engines, data analytics, and so on. In this context, neuro-
morphic architectures can play a major role. It is worth
noting here that this class of applications usually implies
much more reading than writing accesses in the operational
phase after the learning stage. Different approaches have been
explored in the literature. Pham et al. [13] present an efficient
run-time configurable coarse-grain reconfigurable architecture
for convolutional NNs. A smart direct memory access and
dedicated switches are used to feed computing nodes with
data from an off-chip memory. The architecture is computation
intensive and does not fit with MBC except if produced data
exhibit reuse. The true north architecture [14] is different and
designed for spiking NNs. It is based on an NoC to distribute
synapses states to local computing cells. The chip is based
on a dedicated architecture that implements 5 Mb of on-
chip memory but with no PG technique. Logic-in-memory
is also explored for NN applications, and Wang et al. [15]
implement the different NN function including Sigmoid in an
NVM. Finally, an SNNs dedicated architecture is presented
in [16]. It is designed using a logic-in-memory approach and
MTJ devices with bit-level interconnects. It is highly optimized
but at the cost of a very specific design approach. An NoC-
based architecture for SNN is presented in [17], yet it is a
dedicated architecture and this paper is mainly devoted to the
NoC topology and the memory optimization.

Finally, one can think about the concept of active memory,
which also enhances memory with new functionality. This is
the capacity to manage high-level transactions requests with
a local processor executing transfer operations [18]. This type
of solution leads to specific designs, where logic and memory
are tightly coupled.

We also consider the case of neuromorphic computation as
a typical case of data reuse that can take a great benefit of
an MBC model. But, as previously mentioned, we consider
MRAM with efficient PG and implement additional logic
resources in the NI and not in the memories. Our objective
is to exploit the bandwidth and the flexibility of packet-
switching NoC architecture to efficiently access the target data
distributed in arrays of memories that can be switched ON

when necessary.

B. Power-Gated MRAM Devices
Magnetic tunnel junction (MTJ) devices [19] represent a

main class of emerging nonvolatile technologies for low-
power memory circuits. Recently, several MRAM designs have

been presented [20]–[22] that exhibit significantly low-leakage
currents realized by PG, thanks to the nonvolatility feature.
These MRAM designs are designed using relatively large
device technologies, such as 90 nm, yet the MTJ technology
allow scaling down to 11 nm as for the CMOS devices [23].
The performance of MRAM devices in such recent technology
nodes is also estimated in [24] and [25].

MRAM devices are designed using different MRAM cells,
such as 1T-1MTJ, 2T-2MTJ, and 4T-2MTJ. This corresponds
to performance tradeoffs between area efficiency and read
time. For example, the 1T-1MTJ MRAM exhibits the highest
area efficiency with a relatively slow read time, while the
4T-2MTJ MRAM realizes faster read time with lower area
efficiency. In terms of PG, a simple strategy that shutdowns
the power of the whole MRAM device at the idle state is
generally used. In the 4T-2MTJ MRAM [21], a cell-level PG
technique is used that activates only a row at the read/write
state, leading to low-leakage currents in the cells without any
additional PG transistor. We use this 4T-2MTJ MRAM model
in this paper, and more details are provided in Section IV.

However, advanced PG policies and granularities, including
peripheral circuits (e.g., row and column decoders), have not
been presented or discussed in the available literature. It is
worth noting that conventional PG techniques that can be
applied to processing units and NoCs are out of the scope of
this paper. These methods are independent and complementary
to our proposed approach and can be efficiently combined.

III. NMBC FLEXIBLE ARCHITECTURE

A. Architecture Principle
The proposed architecture model is presented in Fig. 2(a).

It is based on an NoC that interconnects three types of IP
blocks: memory clusters, PEs, and managers. In the proposed
approach, we consider NoC packets as commands initiated by
managers, as shown in Fig. 2(b). Memories are distributed in
MC clusters, and each cluster has a unique NI and is composed
of MB memory blocks. The managers are in charge of a set
of requests to process and send packets to memory clusters
in a unicast, multicast, or broadcast way. They also apply
a processor selection for postprocessing and can therefore
perform load balancing. All the managers can work in parallel.
The decoding of instructions is carried out by smart NIs that
implement additional logic elements. NIs are in particular
aware of a data mapping and manage the communication of
results to processors. NIs also implement some specific bit-
level operations such as bit selection that will be detailed in
Section V-B3. NIs can also provide managers with monitoring
data about bandwidth and processor usage, and this type of
information is sent as monitoring packets to managers.

B. Application Case Study of SNN-Based Database
1) SNN Concept: As introduced before, database search

engine is one of our target application domains. Hereafter,
we explain the use of NMBC for database search engine
implementation based on the SNN algorithm [1]. SNN is an
NN model inspired by information theory and error correcting
codes. It is especially efficient for implementing associa-
tive memories, so can be used to process database queries,
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Fig. 2. NMBC architecture example with MC = 16 memory clusters
composed of MB = 4 memory modules (Mi j), 6 PEs (P[x]), and 2 man-
agers (MGRi ). (a) Architecture. (b) Packet-based command. (c) Example of
execution steps.

as shown in [16]. SNN relies on two phases: message learning
and information retrieval from partial knowledge. It is worth
noting that the learning phase consists simply in writing each
new record “one time” at the right place in the memories.
Therefore, this phase presents a linear complexity with the
database size for any devised network architecture. This is
fundamentally different from the greedy learning phase of deep
learning approaches. So, the write operations cost is negligible
compared with read operations cost, which constitutes the
major challenge in database search applications. Basically,
a record is a clique that fully links neurons that belong
to different clusters. The principle can be compared with
low-density parity-check codes. If we consider the database
application, a record M is composed of F fields (a field f (i)
per cluster). The learning phase is the mapping function that
associates each field of each record to a single neuron in each
cluster. Thus, each field f (i) is coded with ki = �log2(li )�
bits, where li is the number of neurons in cluster f (i).
So, a record is a binary sequence of

∑F
i=1 ki bits and is

Fig. 3. STT MTJ. (a) Structure. (b) R–I characteristic.

associated with a clique of neurons, and each clique mate-
rializes a code word. The query or retrieval of missing data
consists in the selection of the best candidate neuron for each
cluster that corresponds to an unknown field by means of
known neurons is other fields. This choice is made according
to a ranking method, which is a winner-take-all algorithm
in the original proposal. All clique edges are specified with
binary weights such as CXY (i j) = 1 which means that at
least one clique contains an edge from neuron i in cluster X
to neuron j in cluster Y . The score of each neuron, in the
target cluster, equals to the number of clique edges that exist
between this neuron and known neurons in other clusters.
In the original algorithm, additional iterations can be executed
if multiple winners have the same score. However, in the case
of database search engine, we will consider multiple answers
to a given query. Other algorithmic options are possible but
are out of the scope of this paper.

2) SNN on NMBC Architecture: The very dominant cost
in SNN implementation is memory. Actually, it is necessary
to store all the connections between every pair of clusters.
We call mi, j the connection memory between clusters i and j .
We demonstrated in another application domain that it is
possible, by means of a dedicated memory mapping, to use a
single memory for implementing mi, j and m j,i [17]. However,
in this paper, we consider distinct mi, j and m j,i for two
reasons. First, the NMBC architecture must be programmable
to match with different configurations so the size of memory
cannot fit exactly with the size of the cluster. Second, our
objective is to take advantage of future MRAM memory with
a low static power consumption so that unused memories do
not impact significantly the power consumption. Therefore,
memories are used to store the F · (F − 1)/2 connection
memories. Regarding the number of fields and the size of each
cluster, the mapping of mi, j on the set of distributed memories
results from an optimization process to maximize the use
of each memory. The managers send queries to memories
by means of packets where known and unknown fields are
specified. Then, the processors collect the memories answers
and apply a simple winner-take-all algorithm to select records
to be send back to managers.

IV. MRAM MODEL

A. 4T-2MTJ MRAM Cell
MRAM circuits are designed using STT MTJ devices [19]

with CMOS transistors. Fig. 3(a) shows an STT MTJ device
stacked over a CMOS layer. It mainly consists of three layers:
free layer, tunnel barrier, and fixed layer. The resistance of
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Fig. 4. 4T-2MTJ MRAM cell with PG. (a) Circuit diagram. (b) Timing
diagram.

Fig. 5. MRAM with cell PG and selective peripheral PG.

the MTJ device depends on a spin direction of the free layer.
If the spin direction of the fixed layer is the same as that
of the free layer, the MTJ is at the parallel state RP (low
resistance). Otherwise, it is the antiparallel state RAP (high
resistance). The resistance state can be changed using a current
signal IMT J , as shown in Fig. 3(b).

Fig. 4(a) shows a 4T-2MTJ MRAM cell with PG. The
MRAM designed based on [21] consists of four transistors and
two MTJ devices controlled by the power line (PL), the word
line (WL), and the bit lines (BL, BL). A data bit is represented
by complementary signals, b and b, stored in the two MTJ
devices. Fig. 4 (b) shows a timing diagram of the MRAM
cell. In the write operation, a data bit is stored to two MTJ
devices for two steps. First, a current signal is generated from
PL to one of the bit lines (BL, BL) depending on a data bit
stored. In this example, b is written because BL is low. Then,
b is written using a current signal from BL to PL, where the
resistance is changed from RP to RAP . In the read operation,
one of BL and BL is low depending on a stored bit. In the
idle state (PG), both PL and WL are grounded, which totally
eliminates the static power in the 4T-2MTJ cell as no leakage
path exists in this case.

B. Power-Gating Policy
Fig. 5 shows an MRAM with cell PG and selective periph-

eral PG. It consists of the MRAM-cell array with the periph-
eral circuits: row decoder, row drivers, column decoder, and
sense amplifiers (S/A). In the MRAM-cell array, only MRAM
cells in a row are active in read/write operation, while the
other MRAM cells are power-gated using the row drivers.
The cell PG significantly reduces the leakage current of the

TABLE I

PG POLICY IN MRAMs

cell array in comparison with that of an SRAM cell array.
The peripheral circuits can be power-gated using the pMOS
transistor when the MRAM is at the idle state. For the PG pol-
icy, two different policies of PG are exploited as summarized
in Table I. The first policy is only cell PG (OCPG), where
the MRAM cells are power-gated at the idle state and the
peripheral circuits are always at the active state. Therefore, the
OCPG-MRAM requires no wake-up operation with negligible
leakage current in the MRAM cell array. The second policy is
full PG (FPG), where the whole MRAM is power-gated at the
idle state. It reduces the leakage current in comparison with
the OCPG-MRAM while the wake-up operation is required
for the peripheral circuits. The wake-up operation causes extra
energy dissipation and delay time. Hence, there is a tradeoff
between the OCPG-MRAM and FPG-MRAM. In Section V,
the performance of the two different MRAMs with the two
different PG policies is exploited for system-level simulations
of NMBA.

C. Power-Gating Granularity
For the PG granularity, three different 256-bit × 256-word

MRAMs (Type I, Type II, and Type III) are designed, as shown
in Fig. 6. The detailed specifications and performance are
summarized in Table II. The MRAM circuits are designed
and evaluated using a TSMC 65-nm CMOS process and an
MTJ model [26] HSPICE. First, let us explain the differences
between Type I and Type II. Type I uses a PG transistor for
a 256×256 MRAM. Type II uses four PG transistors for four
128×128 MRAM subblocks. The widths of the PG transistors
are determined so as to achieve similar write and read times.
Compared with Type I, the advantage of Type II is lower
power dissipation of reading/writing if the read/write bitwidths
are smaller than or equal to 128 bits. In fact, read and write
powers are reduced because parastic capacitances of BLs and
WLs are reduced, as these capacitances depend on the sizes of
the MRAM subblocks. In contrast, the disadvantage of Type II
is larger leakage current as the normalized total PG switch size
required is double.

We observe that in MBC applications in general and search
applications in particular, data are mainly read and rarely writ-
ten. So we introduce Type III in order to meet both advantages
of Types I and II. Type III is designed with the restriction that
the maximum write bitwidths is 32 bits, whereas the maximum
read bitwidth is 256 bits as for Types I and II. Considering
the asymmetry of read and write occurrences in the target
application domain, this restriction does not significantly affect
the execution time. As only 32 bits are written in parallel
in Type III, the normalized total PG switch size required
is 1/4 of the Type II, leading to a lower leakage current.
If write capability is limited to 32 bits, Type III offers on
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Fig. 6. PG types and granularity in 256-bit × 256-word MRAMs. (a) Type I. (b) Type II. (c) Type III.

TABLE II

PERFORMANCES OF 256 × 256 MRAMs USING THE TSMC 65-nm
CMOS PROCESS AND THE MTJ MODEL [26]

TABLE III

NUMBER OF NEURONS PER CLUSTER IN YEAST DATABASE

the other hand opportunities to extend read configurations
to 32, 64, 128, or 256 bits and so to adapt the read power
according to the application demand, as shown in Table II.

V. CASE STUDY

A. Yeast Database Case
As a representative example, we consider the Yeast database

(cellular localization in proteins) from the UCI Machine
Learning Repository [27]. The original database is specified
with 10 fields that we transform into 11 fields by splitting
the first oversized field so that we get a more homogenized
network. Table III shows the number of connections per field,
i.e., neurons per cluster. The number of available memories is
fixed by the architecture, yet the number of connection memo-
ries mi, j depends on the application. Therefore, the first design
step is the memory mapping that results from an optimization
process, which is out of the scope of this paper. In our case
study, we map 10 × 11 = 110 connection memories in six
256 × 256-bit memory modules. Fig. 7 details the proposed
mapping for one of these six memories (M5, as referenced
in Fig. 8).

Fig. 7. Yeast database: mi, j mapping in memory M5.

B. NoC Implementation

Fig. 8 presents the structure of the NoC and we consider to
demonstrate the NMBC concept. The NoC is a 4 × 4 mesh-
based network, which interconnects 18 IP cores (6 memory
clusters composed of single modules, 10 PEs, and 2 man-
agers). It means MC = 6 and MB = 1 if we refer to the general
model described in Fig. 2 The NoC employs the wormhole
packet-switching mode, the deterministic XY routing algo-
rithm, and a flow control policy without virtual channels. The
implemented routers have one buffer of 3 flits per input port
and use distributed arbitration logic (one arbiter per port).
The back-end part of the NI is typical and includes a packet
maker/un-maker and a priority manager to synchronize packet
transmission and reception.

In addition to usual interface logic, the frontend of an NI
associated with a memory module implements the addressing
and bit selector modules. This choice is important since it
allows to remain compliant with any existing memory and to
be independent of NoC parameters (topology, router buffer
depth, and routing policy). In a fully flexible NMBC architec-
ture, an NI includes an area of reconfigurable hardware that
can be configured to implement application-specific functions
like addressing and bit selector modules in our case study.
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Fig. 8. Structure of the used NoC.

Fig. 9. Structure of the command packet.

The functionality of each IP core and the structure of the
additional elements are detailed hereafter.

1) Manager: Upon loading new query (e.g., from a host
machine), the manager associates missing fields to clusters
with unknown neurons and well-specified fields to identified
neurons in other clusters. Consequently, it transmits to all
memory modules the command to send to allocated PEs,
the available connection information between known neurons
in well-defined clusters and all neurons of the undefined
clusters. The payload of sent packets is divided into segments,
which are relative to definite clusters.

In the adopted application, 11 different clusters exist. Each
segment has two parts. The first is one-bit flag, which is used to
indicate the status of the corresponding cluster. Respectively,
“0” or “1” are placed to specify if the cluster neuron is
missing or known. The content of the second part depends on
the cluster status. If the cluster has known neuron (i.e., known
field of the query), this part contains the initial address of the
neuron, which is available in the loaded query, whereas if the
cluster’s neuron is missing, it will be filled by the address of
the PE that is in charge of processing the winner-take-all for
this cluster. Fig. 9 presents an example of the sent packet. The
loaded query in this example has five clusters with missing
neurons (2, 3, 4, 7, and 8). The flags corresponding to these
clusters is set to “0.” Also, the addresses of the processing
modules (P[2], P[3], P[4], P[7], and P[8]) are specified in
the second part of each segment. The choice of the PE is made
dynamically with a fairness load-balancing policy, whereas
for the other clusters (0, 1, 5, 6, 9, and 10), the flags are
adjusted to “1” and the second part of each segment is loaded
by the values initially available in the query. By arranging this
data into 32-bit flits, the sent packet will be composed of four
flits only. On the other hand, the manager is first responsible

to collect the results corresponding to each cluster from its
dedicated processing module. Then, it decides to iterate in
order to enhance results or to simply deliver the achieved ones.

2) Processing Elements (32 bits in Parallel): All PEs apply
the winner-take-all computational principle in order to find the
neurons with the highest score. The score of each neuron is
incremented by the number of available connections with all
known neurons, which belong to the other clusters. Each PE is
assigned to one cluster with a missing field, the assignment is
made dynamically by the managers, and the PE is active until
the solutions are found. At last, each PE informs by means of
packets and the managers by the identity(ies) of the winner
neuron(s).

In a fully flexible NMBC architecture, a PE could be a
small-size embedded processor or a reconfigurable hardware.
In this paper, we have designed a specific PE in VHDL so that
we can estimate the power consumption and the area. Each
PE can process 32 bits (32 neurons) in parallel. It takes then
three cycles to update in the local memory the score of the
cluster neurons and the best score neuron. The PE receives
the connection information related to their cluster from all
memory modules. The total number of cycles depends on the
number and size of known/unknown fields that determine the
number of packets to be processed.

3) Memory Module: The memory modules store the con-
nection information between the neurons of all clusters at the
learning phase. For the adopted case study, six 256 × 256-bits
memory modules are used to accommodate the contents
of 110 connection memories. Each module includes a memory
that returns the data allocated at its specified address. Each
memory module should respond to the reading request and
deliver all connection information between all known neu-
rons and missing ones to the specified processing modules.
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Fig. 10. Architecture of the address finder.

Fig. 11. Architecture of the bit selector.

The manager is not aware of the local mapping of connection
memories, and the model is independent of the type of
memories. Therefore, the matching between requested connec-
tions and physical addresses is performed by NIs. Since the
command packet arriving from the manager does not include
implicitly the specifications of the data, which is required to be
retrieved (address, width, and starting bit), new tasks such as
addressing and arranging the output bits into flits are required.
Independently of memory and NoC architectures, these new
services are implemented in separate elements in the frontend
of the NI associated with each memory module, as shown
in Fig. 8. Their architectures and functionalities are described
in the following.

a) Address finder: It is a simple hardware element, pre-
sented in Fig. 10, which determines the addresses that must be
used to access the right connection memories. These addresses
are based on the ID of unknown filed and the value of known
fields indicated in the command packet. It is composed of
an adder and a configurable LUT, which includes the starting
addresses of all clusters in the associated memory. When a
command packet arrives, the packet unmaker disassembles the
packet and delivers the payload to the address finder. The latter
identifies the clusters with known neurons according to their
flag bits. For each of those, its identity is used directly as
the LUT index (address) to retrieve the starting address of the
cluster. This address is considered as an offset and is used by
the adder to determine the address value to be delivered to the
memory. For example, in Fig. 9, cluster 5 has known neuron
address 49. The starting address of cluster 5 in memory M5
is 79, as shown in Fig. 7. Therefore, the address finder will
deliver the value of 128 = 79 + 49 to the memory.

b) Bit selector: Fig. 11 shows the architecture of the
bit selector. It is composed of one 256-bit barrel shifter, one
256-bit register to store input data from memory, three 32-bit
registers to store output data according to a 32-bit flit size,

Algorithm 1 Address Finding and Bit Selection

and two LUTs that deliver most significant bit (MSB) and
control output data width. The first includes the MSB values
corresponding to all clusters. The second controls the output
data width. Both LUTs are controlled by the cluster IDs. When
the new data are retrieved from the memory, the barrel shifter
shifts, for each cluster, the data by 255 − MSB steps and then
delivers the result to the three output registers. The registers
are then loaded according to the enable signal delivered by
the second LUT. The algorithm of the address finding and the
bit selection algorithm is outlined in Algorithm 1.

Finally, for all clusters with missing neurons, the retrieved
connection information with known neurons is gathered
according to the cluster identities. Then, each group which is
relative to a definite cluster is sent consecutively to the packet
maker. The latter assembles a packet that is then transmitted
to the processing module dedicated to each cluster.

VI. EXPERIMENTAL SETUP

In order to check the relevance of the proposed approach,
the adopted NoC implementing MRAM memories has been
described in the SystemC TLM model as a proof of concept.
The devised model executes the database search engine appli-
cation using the Yeast benchmarks. The model has been devel-
oped to mimic the exact behavior of the target architecture
by designing hierarchical modules that work concurrently and
intercommunicate via ports. In addition, the SytemC model
is cycle accurate at the NoC level including NIs. To ensure
accuracy, the timing features of memory reading response
and wake ups are considered in the model. Furthermore,
the execution time per paquet of winner-take-all computations
is based on the HDL simulation and synthesis that provide
real-time environment modeling.

Multiple simulations have been conducted by using different
numbers of queries with various number of missing clusters.
In this paper, we consider four cases with 4, 5, 6, and 7
missing fields out of 11. The index of missing fields has
been chosen randomly. To evaluate the efficiency of the
proposed MRAM designs, the results are compared with those
obtained when the SRAM-based design is adopted. The SRAM
on the isocapacity condition is used. In both SRAM and
MRAM cases, the total memory size is 384 kb, where six
256 × 256 distributed memories are used. Both the models
use identical NoC features, including packet sizes, routing
algorithm, PEs features, mapping strategy, and a common
clock set to 500 MHz. We consider the two PG policies defined
in Section IV-B. FPG is implemented at the query level,
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Fig. 12. Energy consumption for the different memory types and PG policies. (a) 2 Managers—600 requests and 4 configurations with 4, 5, 6, and 7 missing
fields. (b) 2 Managers—600 requests and 4 configurations [zoomed on cases, where E < 10 µJ (all FPG policies)].

which means that the peripherals are switched ON when a
packet is received and switched OFF when all the connection
data, related to the command, are processed. We compare the
three types of MRAM detailed in Section IV-C. In the case

of Type II and Type III memories, readings are limited to
128, 64, or 32 bits when it is possible, namely when all the
requested data are located in one of the 4 128×128-bit memory
blocks.
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TABLE IV

HIT RATE

TABLE V

INJECTION RATE (FLITS/CLOCK CYCLE)

TABLE VI

PERCENTAGE OF STATIC POWER FROM TOTAL POWER CONSUMED

IN THE CASE OF SEVEN MISSING FIELDS AND TWO MANAGERS

TABLE VII

TIME PERCENTAGE OF THE ON STATE

VII. RESULTS AND ANALYSIS

A. Functional Simulation
The data delivered by the manager is compared with the

reference data from the Yeast database for the four cases with
600 random request experiments. As illustrated in Table IV,
the obtained results meet our expectations with hit rates over
94% when adopting either one or two managers. The results
show a slight degradation in the hit rate when increasing
the number of missing fields. This is expected, and it is due to
the fact that the ambiguity ratio increases with the decrease of
the number of known fields. As indicated in Table V, the NoC
injection rate doubles with two managers. This translates in
an increase of the NoC activity and the time percentage FPG
memories are ON.

B. Power and Energy
1) Memories: Fig. 12 shows the energy dissipated by differ-

ent types of memory modules in order to process 600 random
queries while using the two proposed PG policies with 4, 5, 6,
and 7 missing fields. The power estimation is based on the
TSMC 65-nm CMOS process and the MTJ model given
in Table II. From these results about the required energy
budgets, we can draw the following important conclusions.
In 65 nm, OCPG policy cannot outperform SRAM case
with any type of MRAM. The static power dissipation of
OCPG-MRAM reaches 95% of the total power dissipation,
as shown in Table VI, whereas in SRAM, the highest recorded
percentage of static power dissipation is 81.5%. Hence, the
power saving due to the reduction of dissipation while reading
is not noteworthy, although it is recorded as 1.6, 1.8, and 2

TABLE VIII

PERCENTAGE OF POWER DISSIPATED WHILE WAKING UP IN FPG-MRAM
FROM TOTAL POWER CONSUMED IN THE CASE OF SEVEN

MISSING FIELDS AND TWO MANAGERS

TABLE IX

PERCENTAGE OF POWER DISSIPATED WHILE READING IN FPG-MRAM
FROM TOTAL POWER CONSUMED IN THE CASE OF SEVEN

MISSING FIELDS AND TWO MANAGERS

TABLE X

AVERAGE NOC POWER CONSUMPTION (mW)

times less than that of SRAM for Type I, Type II, and Type III,
respectively. On the other hand, the static power dissipated in
OCPG-MRAM is approximately 1.9, 2.3, and 1.6 times more
than that of SRAM for Type I, Type II, and Type III, respec-
tively. This refers to the fact that in OCPG-MRAM, only cells
are power-gated at the idle state while the peripheral circuits
are always at the ON state. All FPG solutions provide energy
gains over four times with respect to SRAM. This refers to
different factors. First, the maximum recorded percentage of
static power in FPG-MRAM is 42% from the total dissipated
power, which is about half of that recorded when SRAM is
adopted. This can be explained by the significant reduction of
static power in FPG-MRAM when the memory is in idle state
and that the memories are at OFF state most of the time.

Table VII indicates the time percentage of ON state.
Table VII shows that in FPG policy, the MRAMs are OFF

more than 75% of the time. It is worthy to indicate that the
static power dissipated in FPG-MRAM in the idle state is
approximately 39.5, 27.3, and 89.3 times less than that of
SRAM for Type I, Type II, and Type III, respectively. This fact
demonstrates the reduced dissipation of static energy of FPG-
MRAM compared with that of SRAM. Second, the wake-up
feature in the FPG policy has not added a significant overhead.
The percentage of wake-up consumed power is less than 10%,
as shown in Table VIII. Third, in FPG-MRAM, the dissipated
power while reading is important since it dominates over the
static power and wake-up power. Its percentage approaches
to 65% of the total consumed power, as shown in Table IX.
In addition, the SRAM power consumption while reading
256 bits is recorded about 1.6, 1.8, and 2.0 times more than
that of MRAM for Type I, Type II, and Type III, respectively,
whereas when 128 bits are retrieved, the SRAM reading power
is 3.6 and 4.0 times more than that of MRAM for Type II and
Type III, respectively. This ratio increases significantly for the
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TABLE XI

GLOBAL AVERAGE POWER CONSUMPTION—WORST CASE OF SEVEN MISSING FIELDS

cases of reading 64 and 32 bits from MRAM Type III to reach
8.0 and 16.1, respectively.

If we look into details [see Fig. 12(b)], we observe the
significant benefit of the proposed MRAM Type III. First,
we note that Type I outperforms Type II in the case of 256 bits
(about 2%). With 256 bits, the gain of read operations does
not compensate the increase of the static power of the Type II
switch. The balance becomes positive for Type II with respect
to Type I when 128 accesses are possible. The application
offers opportunities that can be exploited (from 7.7% to 16.5%
for 7 and 4 missing fields, respectively). Type III outperforms
Type I and Type II in any case. Type III takes full benefit
of the reduced read energy that does not impact the PG
switch overhead, thanks to the asymmetric scheme. Moreover,
Type III can also benefit from the bitwidth granularity and
efficiently exploit 32, 64, and 128-bit cases opportunities.
With the 32-bit Type III memory, the gains with respect to
Type I go from 39.5% to 50.5% for 7 and 4 missing fields,
respectively, while the energy budget reduction is about 87%
when compared with SRAM. The gains with respect to Type I
and Type II decrease with the activity rate, this is logical
since the PG impact is reduced as well. However, it remains:
1) strongly significant with respect to Type I even with 7
unknown fields out of 11 and 2) extremely large with respect
to SRAM in all cases. Therefore, we conclude that we obtain,
as expected, important energy savings when the application
fits with the MBC context, namely when fully power-gated
NVMs can take benefit of limited activity rates.

2) NoC: The NoC and NI clock frequency is 500 MHz
in nominal case operating conditions (25 ◦C, 1 V). The
technology used is 65-nm LP LowK Std Vt High Density
Tapless Library from Virage Logic Corporation. The area and
power results are obtained with the Cadence Encounter RTL
Compiler tool. The register transfer level (RTL) specification
of the router and the NI is synthesized in the physical
layout estimation mode. The total power was obtained by
using the leakage and dynamic power of the NoC and NI

components, relying on the switching activity traced by the
SystemC simulation. Table X shows the static and dynamic
power consumption of the used NoC. When compared with
baseline NI, the area and power of the proposed NI, adopting
the bit selector and address finder modules, present overheads
of 14.3% and 12.6%, respectively. If we consider the whole
NoC, the area and power overheads are 6.1% and 5.2%,
respectively.

3) PEs: The power consumption of the dedicated 32-bit
PE is estimated with the following methodology. The RTL
specification of PE is synthesized with the TSMC 65-nm
technology. The static and dynamic power consumption of
a single PE running at 500 MHz are 0.32 and 3.79 mW,
respectively. The activity of each PE is derived from the
number of flits, and each PE is processing according to the
simulation results. The power consumption of PEs is given
in Table XI.

4) Global Power Budget: Finally, we analyze the power
consumption of the whole NMBA considering a 65-nm tech-
nology node. The whole architecture includes memories, NoC
(routers and NI with new modules), and PE (32-bit parallel
version). In Table XI, we consider the global power dissipation
for seven missing fields, which is the worst case for MRAM
versus SRAM since the idle time is reduced. All SRAM- and
MRAM-based architectures use the same NoC, the same SNN
search algorithm, and the same PE and managers. In addition
to the significant power reduction, a main result lies in the
major change of the power distribution. With SRAM mem-
ories, the NoC represents 35%, while the memories account
for more than the half of the total power (57%). If the best
MRAM type and PG policy are considered (Type III FPG),
the NoC share rises to 71% and the memory one drops down
to 13%. So, the use of the right power-gated MRAM leads to
a point where the NoC power consumption is higher than the
memory one. This allows to increase the number of memory
modules and so to target large-scale applications. In our case
study, this number is limited to one 256 × 256-bit memory
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module. However, the general model includes multiple mem-
ory modules per cluster, as shown in Fig. 2.

VIII. CONCLUSION

This paper shows the high interest of a new type of
architecture designed for MBC that can fully benefit from dis-
tributed power-gated MRAMs. Memory blocks are efficiently
accessed and controlled by means an NoC with smart NIs
that are configured to implement application-specific process-
ing or content-addressable memory schemes. Although mem-
ory accesses dominate in such applications, the distributed
nature of the proposed memory architecture exhibits idle states
so opportunities for PG. Considering the general architecture
model, this paper explores different PG schemes as well
as memory block and R/W granularities. This paper shows
first that limiting the PG to MRAM cells does not reduce
energy consumption with respect to the use of SRAM devices.
Only a full PG including peripherals is efficient and provides
impressive energy reduction, higher than 87% in the consid-
ered database search application case study. This significant
energy reduction is obtained by considering the specificity
of the application domain (database search applications and
neuromorphic architectures), where the number of memory
write accesses is extremely reduced compared with the number
of read accesses. In this context, an original MRAM device
model (Type III) is proposed with asymmetric write bitwidth
(32 bits) and read bitwidth (32, 64, 128, and 256 bits). It allows
to jointly limit the leakage of the power-gate switch and
the read/write power consumption. This new approach brings
39%–50% more improvement compared with the symmetric
fixed-granularity model. Furthermore, the validity of the pro-
posed architecture is functionally demonstrated with an appli-
cation that can take advantage of MBC, namely a database
search application implemented with an SNN approach. Sys-
temC simulations have been conducted targeting hundreds of
database queries with a high hit ratio of about 94%. Finally,
the results show that such an approach can significantly modify
the power budget breakdown between NoC and memory. This
allows to increase the number of memory modules and so
to target large-scale applications. Future work should address
the reduction of NoC power consumption and the use of
programmable logic in NI to allow their dynamic configuration
according to the application requirements.
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6.2 MRAM-based memorization system for NB-LDPC de-
coder

This research work investigates the use of emergent non-volatile STT-MRAM technology in
designing energy-efficient components in the digital communication domain. The main aim
is to reduce the power consumption due to memory accesses during intermediate process-
ing of received data. To address this issue, an adaptive and efficient memorization system
based on STT-MRAM is proposed to be implemented within Non Binary-Low Density Par-
ity Check (NB-LDPC) decoder [97]. Based on the available MRAM types and array dimen-
sions, new data mapping and efficient structure of the memorization system are proposed.
The power consumption of the NB-LDPC decoder with STT-MRAM is evaluated and com-
pared to SRAM-based one. Simulation results show that when MRAMs are used, the pro-
posed memorization system offers a significant energy reduction along with an increase in
terms of throughput.

This work has been performed in the context of the Master’s degree project at the
Lebanese International University and has been published in the proceedings of IEEE Inter-
national Conference on Microelectronics (ICM) [98] and in the proceedings of IEEE Inter-
national Conference on Computer and Applications (ICCA) [99]. Moreover, the publication
in the IEEE International Conference on Microelectronics (ICM) [98] was attributed one of
three best student paper awards in 2017.

6.3 Memristor Based Reconfigurable FFT Architecture

6.3.1 Preface

This research work has been accomplished as a part of the PhD thesis of Khaled Alhaj Ali
at IMT Atlantique, Brest, France. The thesis aimed to explore and introduce new memristor-
based designs that combine flexibility and efficiency through the proposal of original archi-
tectures that break the limits of the existing ones. This work has focused on using memristive
devices at interconnect level to allow high degree of flexibility based on programmable in-
terconnects, where memristors are inserted as reconfigurable switches in order to establish
on-chip routing. This research work has been published in the proceeding of the IEEE Inter-
national Conference on Microelectronics (ICM) [100].

6.3.2 Introduction

The recent development of new non-volatile memory technologies based on the memris-
tor [101] concept has triggered many efforts to explore their potential usage in different
application domains. This novel type of two terminal nano-scale elements presents very fast
switching characteristics, non-volatile dense storage capacity, and low power consumption.

Main part of conducted efforts aims to exploit them for establishing a unified and efficient
memory system replacing current flash and CMOS-based memories. Before the discovery of



6.3. MEMRISTOR BASED RECONFIGURABLE FFT ARCHITECTURE 123

the HP memristor, memristive devices were only employed as storage elements. Since the HP
Labs presented the TiO2 memristor in 2008, rapid progress on the fabrication of high-quality
memristors has been achieved in the past few years [102][103][104]. These memristors are
characterized by huge gap between their low resistance state (LRS) and high resistance state
(HRS). This evolution has received significant attention and allowed for employing these
devices in new fields such as non-volatile programmable switches. Memristor-based pro-
grammable switches are introduced to achieve efficient and low cost flexibility in ASIC de-
signs. Such flexible designs are reconfigured allowing for efficient reuse of resources for
different application need. Moreover, memristors have been explored as potential alternative
to the traditional programmable interconnects in FPGAs [2][105][106][107].

The possibility to integrate memristors on top of CMOS logic gates allows for new de-
sign ideas based on close combination and interaction between memory and computation.
This introduces new opportunities of efficient reconfiguration, high performance, and low
power design. Designing flexible architectures, which can adapt dynamically to application
needs, bring great advantages in terms of energy efficiency and performances. Such flexi-
bility is required at processing, interconnect, and memory levels. Current technologies are
inefficient for highly self-adaptive systems, due to the cost of reconfiguration, including de-
lay and power consumption [108][2]. Flexibility is particularly required in digital commu-
nication and multimedia applications where new standards and multiple service modes are
continuously emerging, with strengthen requirements in terms of performance and energy
efficiency.

In this context, the integration of memristors at the interconnect level to enable flexi-
ble and efficient configuration of digital architectures is explored. This work has proposed
memristor-based reconfigurable fast Fourier transform (FFT) architecture. To the best of
our knowledge, this is the first memristor-based FFT design in the literature. The proposed
original architecture allows an efficient support of any combination of radix-2 and radix-3
butterflies. Scalability is ensured through a 2D mesh topology. Flexibility is realized at the
level of interconnects, allowing for optimized hardware reuse through a memristor-based
non-volatile routing.

6.3.3 Context and Motivations

Memristors are employed to implement non-volatile routing switches by logically connect-
ing/disconnecting wires during configuration mode. Non-volatile routing preserves the con-
figuration information stored on-chip while powered OFF, allowing the devices to imme-
diately run when it is powered up. On the other hand, leakage power is minimized during
stand-by mode, leading the system to work at extremely low-power. Moreover, the opportu-
nity to fabricate memristors on the top of transistor layer in the same die brings significant
reduction of the overall area of the system design.

These features are of high interest when targeting multi-mode ASIC designs as well as
high-end FPGAs. It is reported that the routing resources in an FPGA (Figure 6.1) including
switch blocks (SBs), connection blocks (CBs) and interconnects can account for up to 70%
of the total area, delay, and consumed power [108]. Thus, the improvement of these pro-
grammable routing elements in FPGAs is of importance for research and development. In
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this context, memristors have been presented in the literature [2][105][106][107] as potential
alternative to the conventional SRAM-based programmable interconnects in FPGAs.

LB LB LB

LB LB LB

LB LB LB

CB CB

CB CB

CB CB

CB CB CB
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Block 
Memory

Block 
Memory

Figure 6.1 — Conventional FPGA architecture

For instance, authors of [2] have proposed an FPGA architecture with memristor-based
reconfiguration (mrFPGA). The programmable interconnects of mrFPGA use only memris-
tors and metal wires so that the interconnects can be fabricated over logic blocks, resulting in
significant reduction of overall area and interconnect delay. As demonstrated in Figure 6.2,
the area of mrFPGA has been reduced to the total area of the logic blocks only, which takes
10% to 20% of the conventional FPGA area.

© 2011, IEEE

Figure 6.2 — Memristor based-programmable routing structure for FPGA proposed in [2]

Several studies [109][110] have demonstrated the use of memristive devices as pro-
grammable switches instead of SRAM-based pass transistors in conventional FPGAs. Fig-
ure 6.3 shows the structures of conventional SRAM routing switch and the two memristor
switches proposed [110].

FFT [111] has been chosen as application case study since it is used widely in the fields
of digital signal processing and telecommunications. Particularly, FFT is considered recently
as an effective tool for spectrum enhancement of orthogonal frequency division multiplex-
ing (OFDM)-based waveform, which is a central element in the fifth generation new radio
(5G-NR) developments [112]. Furthermore, the size of FFT block can vary according to the
system parameters and the communication channel conditions. Thus, there is a real need
for highly flexible FFT implementations that support multiple configurations. The attained
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(a) (b) (c)

Figure 6.3 — Memristive switches: (a) 7T SRAM routing switch, (b) 2T1R routing switch,
(c) 2T2R routing switch

degree of flexibility in the available implementations dedicated for FFT is hampered by the
high cost of reconfiguration elements, such as multiplexers, SRAM cells and buffers. These
elements constitute the major overhead in terms of area, power consumption and delay. For
the sake of realizing efficient flexible FFT design, we have investigated the advantage of
exploiting memristive devices as routing switches at the level of interconnects.

It is possible to implement a fully-parallel FFT flow graph directly in hardware. However,
for large FFTs it may be infeasible, since the area usage would be too large [113]. In case of a
power of 2 FFT size, radix-2 butterfly (BF) is typically used [114]. Different radix butterflies
are also proposed either to support different FFT sizes (not power of 2) and/or to reduce the
computational complexity. If the application requires to have different radices, typical ineffi-
cient implementations duplicate the hardware resources. Reconfigurable implementations of
FFT have been presented in the literature. Implementations with simplest form of reconfigu-
ration exploit certain portion of the hardware resources for one radix while other independent
parts are reserved for another radices. These implementations allow the concatenation/com-
bination of several processing elements having different radices on the cost of duplication of
hardware resources. Thus, they are considered inefficient in terms of area and energy. Other
implementations the same processing elements can be reused for executing other radices
at different instants of time. These implementations are considered reconfigurable/flexible.
Figure 6.4(a), illustrates how certain portion of the hardware resources are exploited for one
radix while other independent parts are reserved for another radices. Whereas, Figure 6.4(b),
illustrates how the hardware resources, which are utilized for executing certain radix, can be
reused for executing other radices at different instants of time.

Ra Rb

Rc Rd

Ra Rb

Rc Rd

Ra Rb

Rc Rd

Enabled

Disabled

Ra
Rb

Rc
Rd

Ra
Rb

Rc
Rd

Ra
Rb

Rc
Rd

(a)

(b)

FFT
Input

FFT
output

FFT
Input

FFT
output

Figure 6.4 — The block diagram of the reconfigurable FFT

The authors in [115] have proposed a reconfigurable FFT design that is able to support
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48 different configurations with an FFT size up to 2187. The design is composed of several
reconfigurable bricks, which are arbitrarily concatenated to build up a system with recon-
figurable FFT size. Flexibility is achieved through a reconfigurable processing element that
implements six combinations of radix-2 and radix-3 butterflies.

6.3.4 Conducted Work and Achieved Results

In this research work, a memristor-based reconfigurable FFT architecture (mrFFT) is pro-
posed, which allows the efficient support of many configurations with different FFT sizes.
The architecture can be employed in a reuse and systematic way to support radix-2 and
radix-3 kernels [115]. Flexibility is achieved by inserting memristors at the interconnect
level leading to programmable memristive nodes.
The main contributions of this work are:

• Investigate the structures of the flow graphs of FFT radices. This reveals that it is pos-
sible to extract similar/common parts. These similarities are exploited toward realizing
efficient re-usability of hardware resources leading to efficient flexible designs. In par-
ticular, the analysis of radix-2 and radix-3 flow graphs shows that a radix-3 flow graph
can be split into three similar butterflies and a separate real multiplier.

• Introduce the reconfigurable BF, so called RBF, which can be configured to execute
radix-2 BF or any part of the radix-3 BF with the minimal added cost.

• Propose the mrFFT architecture based on RBF design with FPGA-like resource arrange-
ment, where a group of RBFs are arranged in a 2D mesh topology with memristor-based
interconnections serving as routing elements.

• Design the peripheral circuits, dedicated controller and selection blocks, that are used
to reconfigure the states of the implemented memristors.

• Demonstrate the efficiency of the proposed architecture to support of 44 configurations
with different FFT sizes including the 32 operating modes that are defined in 3GPP-LTE
standard.

• Conduct preliminary comparisons with state-of-the-art work [115] in terms of used re-
sources and hardware re-usability ratio in order to determine the relevancy of our pro-
posed mrFFT design.

6.3.5 Findings

The presented mrFFT design accommodates the 32 operating modes that are defined in
3GPP-LTE standard [116, 115]. However, mrFFT is scalable in size and can be extended.
Thus, it is able to support other FFT configurations in case of any future standard changes.

The amount of utilized resources in our proposed design has been estimated and com-
pared to that in [115]. The comparison shows that mrFFT reduces significantly the number
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of the utilized adders (25%), multipliers (37%), 2-to-1 multiplexers (59%), 3-to-1 multiplex-
ers (100%) and FIFOs (25%). On the other hand, the design in [115] has a 55.5% less number
of 1-bit shifters. However, these shifters have a trivial implementation.

The attained gains in mrFFT come at the cost of the adopted routing scheme, which
incorporates a set of 119 memristive node in addition to the corresponding selection blocks.
In fact, the implementation cost of the selection blocks can be relatively reduced when shared
to other designs targeting the same flexibility requirements.

Moreover, the percentage of resource activation has been evaluated in both designs
among all supported configurations. The obtained results show better utilization of adders
and multipliers in mrFFT compared to that in [115]. This implies better hardware reusability
ratios.

The evaluation of the devised mrFFT architecture has been limited to an analytical esti-
mation of the utilized resources, the percentage of activation and the reusability ratio. Power
consumption and delay analysis could not be evaluated for this first proposed design as
analog/digital mixed-signal simulation environment is required, which relevant tools have
not been easily available.

6.4 Hybrid Memristor-CMOS Design for Logic Computa-
tion

6.4.1 Preface

This research work aims to explore the use of memristive devices and their integration with
CMOS technologies for combinational logic design. Such hybrid memristor-CMOS designs
should exploit the high integration density of memristors in order to improve the performance
of digital designs, and particularly arithmetic logic units. It has been conducted as apart of
the PhD thesis of Khaled Alhaj ALI at IMT Atlantique, Brest, France. This research work
has been initially published in the proceedings of the IEEE International Conference on
Electronics, Circuits and Systems (ICECS) [117]. Then, the detailed architecture and results
have been published in Electronics [118].

6.4.2 Introduction

Memristor technology has recently triggered many efforts to extend their usage from mem-
ory to computing [119, 120, 121, 122, 123]. Memristor based logic design is an emerging
concept targeting efficient computing systems. Several logic families have evolved, each with
different attributes. Memristor Ratioed Logic (MRL) has been recently introduced as a hy-
brid memristor-CMOS logic family [119]. MRL requires efficient design strategy that takes
into consideration the implementation phase.

In fact, MRL is a hybrid memristor-CMOS logic family. The goal behind MRL is to
implement conventional combinational logic circuits which are the building blocks of digital
systems. The main idea is to replace as much as possible transistors with nano-scale size
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memristors, while keeping the same role of the intended digital architecture. Several works
have utilized MRL design style to implement various digital architectures [119, 124, 125].
The integration of memristors and CMOS devices in MRL still lacks a consistent way for
arranging memristors at the top of CMOS layer. The integration should be realized in such
a way that exploits efficiently the promising characteristics of memristive devices such as
density and scalability.

In this research work a novel MRL-based crossbar design namely X-MRL has been intro-
duced. The proposed structure combines the density and scalability attributes of memristive
crossbar arrays and the opportunity of their implementation at the top of CMOS layer. The
design methodology of X-MRL efficiently integrates memristors with CMOS devices to im-
prove density and scalability. The evaluation of the proposed approach is performed through
the design of X-MRL based full adder. The design is presented with the layout and the cor-
responding simulation results using Cadence Virtuoso toolset.

6.4.3 Context and Motivations

The fast decline of Moore’s law is paving the way to explore new set of emerging technology
devices [126], as it is difficult to overcome the various physical limitations of the traditional
CMOS technology [127]. In this context, the nano-scale size memristor was introduced as a
possible alternative candidate as it offers a lot of advantageous features including the ca-
pability of executing Boolean logic [119][128][129] in addition to the storage role. The
presence of these two attributes combined has given a great impetus to explore new inno-
vative circuits and systems based on memristors. For instance, one of the main challenges
of modern computers nowadays is the memory wall problem which is originated from the
mismatch in the performance of processor and memory. There has been a continuous effort
to move processing cores closer to where data resides to address the memory wall problem.
A memristor-based logic can integrate processing and storage role (in-memory computing),
an attribute which can be a promising solution to scale the memory wall.

Several memristor-based logic design styles have emerged in the literature [119] [130]
[121] [128] [123] [122] . Each has its own capabilities and thus is adapted for a specific
type of applications. A memristive logic design style is able to compute a certain primitive
logic such as AND, OR, NOR, etc. Based on these simple operations, complex arithmetic
functions can be executed as any Boolean function could be written in the form of the sum
of products (SoP).

The advent of memristor-CMOS process that combines CMOS devices with the nano-
scale size memristors have provided new opportunity to reduce the utilization of silicon area.
However, yet CMOS devices which are considered active, cannot be totally replaced by the
passive memristive devices. Thus, the integration of CMOS and memristors is essential to the
development of memristor technology. To this end, hybrid configurations have been proposed
that make use of the advantages of CMOS while utilizing the high density of memristors. On
the other side, out of the available memristor-based logic design styles, the MRL is the only
design style that meets the conventional CMOS in terms of the adopted state variable. Both
MRL and CMOS use the voltage as the only state variable for representing inputs and outputs
throughout all intermediate stages. Thus, MRL is very qualified for the integration in the
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current CMOS designs and even later can dominate. Also, the computation is accomplished
in one single step. This criterion eliminates the drawbacks of the sequential process of other
memristor-based logic devices.

In fact, MRL is a hybrid memristor-CMOS logic family, where the programmable resis-
tance of memristors is exploited in the computation of the Boolean AND and OR functions.
The goal behind MRL is to implement conventional combinational logic circuits which are
the building blocks of digital systems. The main idea is to replace as much as possible tran-
sistors with nano-scale size memristors, while keeping the same role of the intended digital
architecture. Several works have utilized MRL design style to implement various digital ar-
chitectures [119] [124] [125]. The integration of memristors and CMOS devices in MRL still
lacks a consistent way for arranging memristors at the top of CMOS layer. The integration
should be realized in such a way that exploits efficiently the promising characteristics of
memristive devices such as density and scalability.

6.4.4 Conducted Work

This research work introduce the novel X-MRL approach, which is dedicated for the imple-
mentation of combinational logic. For evaluation purposes, a hybrid memristor-CMOS full
adder based on X-MRL approach has been devised.
The main contributions of this work are:

• Introduce the X-MRL approach for realizing Boolean computation. Using X-MRL,
Boolean functions are represented using pairs of memristors mapped efficiently into
crossbar structure. A memristive crossbar is a two dimensional grid of memristors dis-
tributed along vertical and horizontal nanowires. A memristor is allocated between ev-
ery vertical nanowire (so-called a column) and horizontal nanowire (so-called a row).

• Devise the architecture design for a full adder based on X-MRL approach. The proposed
design includes memristors to execute MRL-AND and MRL-OR operations existing in
the SOP of the 1-bit full adder and several CMOS inverters that are responsible for either
inverting (NOT operation) and/or performing signal restoration for the logical state of
the signal after several cascading stages.

• Determine the layout of the obtained X-MRL full adder architecture using Cadence Vir-
tuoso toolset. Three layers are used. A polysilicon layer is dedicated to the connection of
the gates of NMOS and PMOS transistors. Two metal layers are adopted to implement
the horizontal and vertical wires of the crossbar structure. As the height of memristors
is too short, vertical interconnect accesses (VIAs) are utilized to connect the two metal
layers and the memristors are allocated at the top of the VIAs.

• Conduct simulations using Cadence Virtuoso toolset of the tailored architecture while
adopting the VTEAM model to realize a realistic modeling of practical memristors. An
important work has been done to determine the VTEAM [131] model parameters that
fit with the physical parameters of the memristor device that matches the MRL [102].
Transient simulations are performed adopting CMOS 65nm technology at standard
1.2V to produce the performance analysis and energy consumption.
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• Compare the proposed hybrid memristor-CMOS based full adder with previous pub-
lished designs, which are dedicated to the 1-bit full adder.

6.4.5 Findings

Timing:

The conducted simulation shows that the values of the rising time Tr, falling time Tf and
time delay Td are affected by the switching speed of the memristor which in turn can be
controlled by the fitting parameters. On the other hand, slowing down the switching speed
of the memristors increases the glitches. The high resistance state (ROFF ) of the memristors
has a direct effect on the value of Td which increases when increasing the value of ROFF .
Moreover, it is noticed that increasing ROFF acts as a filter for the glitches. Therefore, the
total delay is directly affected by the memristor physical properties.

Energy consumption:

The value of the average power consumption is relatively high for a full adder circuit. This is
due to the low values of low and high resistance states of the adopted memristor device com-
pared to the source-to-drain dynamic resistance in MOSFETs, which minimizes the leakage
in current.

Memristive devices are still being actively explored and developed using a variety of
materials and deposition techniques. Thus, there is the potential for the device characteris-
tics to be improved. Memristors with high values of (RONN ), which corresponds to LRS,
and (ROFF ), which corresponds to HRS, have to be developed in order to achieve hybrid
architectures with low power consumption.

Area:

The memristors are implemented at the top of CMOS due to their nano-scale and compatibil-
ity at the level of fabrication. Thus, the allocated memristors in the proposed X-MRL design
do not add any overhead in terms of implementation area. The total required area refers to
that occupied by CMOS devices only, which depends on the number of used inverters. The
total area of the X-MRL design is 8.16 µm2 compared to 14.78 µm2 which is utilized in the
case of pure CMOS implementation, leading to 44.79% area saving.

Comparison:

All related works published in the literature lack an estimation about the utilized area for
their proposed designs. In order to achieve a fair comparison in terms of energy consump-
tion, the energy is evaluated per 1 addition operation. The Energy.Delay metric is used for
comparison. It reveals an improvement between ×5.7 and ×31 with respect to the available
literature [124][132].
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Abstract: A great deal of effort has recently been devoted to extending the usage of memristor
technology from memory to computing. Memristor-based logic design is an emerging concept that
targets efficient computing systems. Several logic families have evolved, each with different attributes.
Memristor Ratioed Logic (MRL) has been recently introduced as a hybrid memristor–CMOS logic
family. MRL requires an efficient design strategy that takes into consideration the implementation
phase. This paper presents a novel MRL-based crossbar design: X-MRL. The proposed structure
combines the density and scalability attributes of memristive crossbar arrays and the opportunity
of their implementation at the top of CMOS layer. The evaluation of the proposed approach is
performed through the design of an X-MRL-based full adder. The design is presented with its
layout and corresponding simulation results using the Cadence Virtuoso toolset and CMOS 65 nm
process. The comparison with a pure CMOS implementation is promising in terms of the area,
as our approach exhibits a 44.79% area reduction. Moreover, the combined Energy.Delay metric
demonstrates a significant improvement (between ×5.7 and ×31) with respect to the available
literature.

Keywords: CMOS; crossbar; full adder; logic design; memristor

1. Introduction

The memristor is the fourth fundamental circuit element, which relates charge and
magnetic flux linkage. It was originally predicted by Professor Leon Chua in 1971 [1].
The memristor was realized later by members of HP Labs in 2008 [2]. This successful
realization opened a wide area of research on the memristor and its possible applications.
The HP memristor is a solid state device formed of a nanometer scale TiO2 thin film,
containing a doped and an undoped region sandwiched between two platinum electrodes.
The obtained two-terminal device exhibits a dynamic resistance that is bounded between
a minimum value (RON) and a maximum value (ROFF). Its resistance depends on the
magnitude, direction and duration of the applied voltage across its terminals. The last
attained resistance value of the memristor before withdrawing the applied voltage is
naturally retained. Memristors are promising in the field of non-volatile memories (NVM)
because of their capability for data retention [3] with zero standby power and compatibility
with a conventional CMOS in terms of fabrication and operating voltages. Due to their
versatile nature, the use of memristors has been extended from memory to computing
[4]. Several memristive logic design families have emerged in the literature, each with its
own characteristics, capabilities and usage. Memristor Aided Logic (MAGIC) [5] and the
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Material Implication (IMPLY) [6] are considered as memristive stateful logic families [7].
They were introduced to allow logic computations inside memristive memory systems and
are being explored to overcome the memory wall problem. Memristor-Ratioed Logic (MRL)
[8] is another memristor-based logic design style. MRL is a hybrid memristor–CMOS
logic family. Its goal is to implement conventional combinational logic circuits, which are
the building block of digital systems [8–11]. The main idea behind MRL is to replace as
many transistors with nano-scale size memristors as possible while keeping the role of the
intended digital architecture the same.

Of the above-mentioned logic design styles, MRL is the only approach that matches
the conventional CMOS in terms of the adopted state variable. Both MRL and the CMOS
use voltage as the only state variable to represent inputs and outputs throughout all
intermediate stages. Thus, MRL is the most qualified for integration in current CMOS
designs. However, this integration should be performed in a way that efficiently exploits
the promising characteristics of memristive devices, such as density and scalability. This
can be achieved through the use of the crossbar structure, which is a highly adapted
topology for arranging memristors at the top of the CMOS layer.

In this paper, we propose an MRL-based crossbar design: X-MRL. X-MRL is intended
for implementing combinational logic. The conventional CMOS logic gates are imple-
mented using MRL, and an original mapping into a crossbar structure is proposed. The
proposed methodology efficiently combines the density and scalability attributes of cross-
bar arrays and the ability to implement memristors at the top of the CMOS layer. The
proposed approach is evaluated by designing an X-MRL-based full adder circuit [12]. The
designed architecture is implemented and simulated with the Cadence Virtuoso toolset.

The rest of the paper is organized as follows. Section 2 describes the behavior of the
memristor and the corresponding available models. Section 3 presents a brief review of the
MRL design style. Section 4 presents the proposed X-MRL design for realizing Boolean
computation. Section 5 provides and discusses the simulation results and performance
analysis. A comparison with previous published designs is presented in Section 6. Finally,
Section 7 concludes the paper.

2. Memristor Behavior and Modeling

Chua [1] has defined the memristor as a previously missing relation between the flux
φ and the charge q, yielding the defining relation

M(q) = dΦ/dq (1)

The current–voltage (I-V) characteristic of a memristor has the form of a pinched
hysteresis loop, as illustrated in Figure 1a. The hysteresis phenomenon indicates that
memristor resistance could be modulated between two resistance states RON and ROFF.
Figure 1b schematizes the 3D structure of the memristor device, and Figure 1c depicts the
typically used symbol to represent a single memristor. HP Labs has described the physical
model of a memristor as shown in Figure 2; it consists of two layers of TiO2 sandwiched
between platinum contacts [2]. One of the TiO2 layers is doped with oxygen vacancies,
while the other is left undoped. As a result, the doped region behaves as a semiconductor
while the undoped region behaves as an insulator.

The width of the doped region w(t) varies between zero and a memristor length of
D according to the amount and direction of the electric charges q(t) moving across the
memristor. Thus, applying a certain bias to the memristor leads to the flow of current,
which in turn changes the value of w(t). Therefore, the virtual boundary separating
the doped and undoped regions moves, leading to a variation in the memristor’s total
resistance RMEM as expressed in Equation (2) [2].

RMEM(x) = RON(x) + ROFF(1− x) (2)
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where x =
w
D
∈ [0, 1] and RON and ROFF are the limiting values of memristor resistance

when w = D and w = 0, respectively. The speed of the boundary movement between the
two ends is called the drift velocity and is represented by the state equation [2]

dx
dt

= ki(t) f or k = µv
RON

D2 (3)

where µv is the dopant mobility. Equation (3) considers that the drift velocity is constant,
resulting in a linear drift model of the memristor. However, the experiments presented in
[13,14] proved that the behavior of the implemented memristor is non-linear. To manage
the issue of nonlinearity, several models have been proposed in the literature. In [14], the
authors proposed a non-linear dopant drift model as a relation between the current and
voltage (I-V) of the memristor. In [15], the drift velocity was expressed using a window
function f (w) in order to model the non-linearity, as expressed in Equation(4).

dw
dt

= a f (w)V(t)m (4)

where a and m are constants, f (w) is the window function and m is an odd integer. The
previous presented models are based on the HP physical representation of a memristor.
In [13], Pickett et al. proposed a more accurate physical model of a memristor. A resistor
is connected in series with an electron Simmons tunnel barrier [16] instead of connecting
two resistors in series, as demonstrated in HP’s model. This model exhibits non-linear and
asymmetric switching characteristics. Its state equation is expressed in Equation (5):

dx
dt

=





Co f f sinh
(

i
io f f

)
exp

[
− exp

( x−ao f f
wc
− |i|b

)
− x

wc

]

Consinh
(

i
ion

)
exp

[
− exp

(
x−aon

wc
− |i|b

)
− x

wc

] (5)

where the state variable x represents the width of the Simmons tunnel barrier, Co f f , Con,
ao f f , aon, wc and b are the fitting parameters, and io f f and ion are the current thresholds of
the memristor. Obviously, Equation (5) shows that the Simmons tunnel barrier model is
more complicated; thus, it is computationally inefficient. In order to attain a simplified
and general model, Kvatinsky et al. [17] presented the TEAM model, which represents
in simpler expressions the same physical model as the Simmons tunnel barrier model.
Equation (6) expresses the state equation representing the TEAM model:

dx
dt

=





Ko f f

(
i(t)
io f f
− 1
)αo f f

fo f f (x), 0 < io f f < i

Kon

(
i(t)
ion
− 1
)αon

fon(x), i < ion < 0

0 otherwise

(6)

where ion and io f f are the current thresholds of the memristor. Kon, Ko f f , αon and αo f f are
fitting parameters, and fon(x) and fo f f (x) are the corresponding window functions of the
memristor. However, experimental data acquired from several memristive devices reveal
the existence of a voltage threshold rather than a current threshold [18]. In [18], the TEAM
model was extended to the VTEAM model. Equation (7) describes the VTEAM model. It is
similar to the expression in Equation (6), except for the voltage dependence v(t) and the
respective SET and RESET voltage thresholds von and vo f f . Moreover, the VTEAM model
is considered as a general model since it can be fitted to any other memristor model [18].

dx
dt

=





Ko f f

(
v(t)
vo f f
− 1
)αo f f

fo f f (x), 0 < vo f f < v

Kon

(
v(t)
von
− 1
)αon

fon(x), v < von < 0

0 otherwise

(7)
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Normally, the window function f (x) is added for a memristor model in order to
decelerate the moving boundary of the memristor before reaching its extremities and to
guarantee a zero speed exactly when it reaches either one of them. In this study, we have
adopted the VTEAM model to describe the simulated memristor as it provides simple and
realistic modeling.

(a) (b) (c)

A

B

ROFF

RON

V

I

Figure 1. Memristor: (a) Pinched hysteresis loop, (b) structure: metallic electrodes sandwiching a
thin dielectric insulating layer, (c) symbol.

UndopedA BDoped

W
D

A V

Figure 2. TiO2 memristor model according to [2].

3. Memristor-Based Logic Design Styles

In the literature, three main design styles for using memristors in logic design can be
found. The first two design styles, which are IMPLY [6,19] and MAGIC [5], exploit only
memristors for logic implementations. The third design style, known as MRL [8], adopts a
combination of CMOS and memristor devices. This section presents a brief overview of
these design styles.

3.1. Material Implication IMPLY Gates

In IMPLY, the memristor states (ROFF, RON) represent the logical state variables (0, 1),
respectively. As shown in Figure 3a, the gate consists of the two memristors p and q and
the resistor RG. The initial memristances of p and q represent the input to the gate, while
the output is written into memristor q after applying VCOND and VSET simultaneously. The
truth table of the IMPLY gate is shown in Figure 3b, where p −→ q = p

′
+ q can be used as

a basis for any logic function. As a result, the same memristors are used to store the logical
state and/or perform a logical operation. Consequently, the computation requires several
sequential operations. Several approaches have been proposed in the literature that adopt
IMPLY for the execution of combinational logic [6,20,21]. All available designs require
several time steps to accomplish the target computations. This fact leads to an overhead in
terms of time delay compared to other logic implementation techniques.
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VCOND VSET

RG

p q

(a)

p q p  q

0 0 1

0 1 1

1 0 0

1 1 1

IMPLY gate Truth table
(b)

Figure 3. IMPLY gate: (a) schematic of a memristor-based IMPLY gate, (b) truth table of the IMPLY
function.

3.2. Memristor Aided Logic (MAGIC)

MAGIC is a memristor-only logic design style that supports Boolean functions [5].
Unlike IMPLY, this logic family makes use of separate memristors to store the input bits,
and an additional memristor is used to store the output bit. Figure 4 illustrates the 2NOR1
MAGIC gate where in1 and in2 serve as the input memristor and out serves as the output
memristor. The logic state in MAGIC implementation is represented by the resistance
stored in the utilized memristors, where ROFF and RON represent logic “0” and logic “1”,
respectively. Thus, when driving the gate with voltage V0, the result of the NOR operation
of in1 and in2 is written simultaneously into out.

Applications of MAGIC in memristor-based crossbars are straightforward when using
MAGIC NOR, while an additional resistor is required in case of other gates. The authors
of [22–24] used the MAGIC NOR as the basis to perform logic computation inside the
memory, thus adding processing capabilities. In other words, each processing task is
divided into a sequence of MAGIC NOR operations, which are executed one after the other
using the memory cells as computation elements.

MAGIC-NOR gate

V0

Gateway

In1

In1

Out

Figure 4. Structure of MAGIC NOR gate.

3.3. Memristor Ratioed Logic (MRL)

The third design style of memristor-based logic is Memristor Ratioed Logic (MRL) [8].
It is a typical hybrid CMOS–memristor logic design where the programmable resistance of
memristors is exploited in the computation of the Boolean AND and OR functions. MRL
opts for voltage as the state variable, in a similar manner to CMOS-based devices; thus,
the computation is accomplished in a single step. This criterion eliminates the drawbacks
of the sequential process of IMPLY logic devices. Figure 5 depicts the structures of the
MRL AND, NAND, OR and NOR gates. Both OR and AND gates consist of two anti-serial
memristors (i.e., connected serially with opposite polarities), whereas for NOR and NAND,
a CMOS inverter is added at the output.
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AND 

A 

B 

A 

B 

OR NAND 

A 

B 

A 

B 

NOR 

Figure 5. Schematic layout of MRL AND, NAND, OR and NOR gates.

Both MRL AND and OR gates react similarly when identical values are set to their
input ports (when both inputs are set either to logic “1” or “0”). In this case, no current
flows through the anti-serial memristors, leading to the transfer of the input voltage to
the output. In the case where different values are set to the input ports (i.e., the first port
is set to “0” and the second port is set to “1”, or vice versa), a current flows from the
port with higher potential (logic “1”) to the port with lower potential (logic “0”). The
resulting potential difference changes the internal state of both memristors in an opposite
manner. One memristor tends to attain the RON state while the other tends to attain the
ROFF state. In addition, the connected memristors form the well-known voltage divider
circuit. Assuming ROFF >> RON , Equations (8) and (9) present the obtained output values
Vout of MRL OR and AND gates, respectively [8].

Vout,OR = (
ROFF

ROFF + RON
)×VCC ≈ VCC (8)

Vout,AND = (
RON

RON + ROFF
)×VCC ≈ 0 (9)

Note that the output voltage Vout converges to the higher potential (logic “1”) in the
MRL AND gate and to the lower potential (logic “0”) in the MRL OR gate. Figure 6 illus-
trates the logical operations of the MRL AND gate corresponding to all input combinations.

R0≈ ROFF

R1≈ RON

Vout ≈ Gnd

R0≈ RON

R1≈ ROFF

Vout ≈ Gnd

Vout ≈ Vcc

Current flow=0

Vout ≈ Gnd

Current flow=0

Vcc

Gnd

Gnd

Vcc

Vcc

Vcc
Gnd

Gnd

Figure 6. Logical operations performed with MRL AND gate.

However, cascading several MRL gates leads to a floating output (between logic “0”
and logic “1”) due to voltage degradation [8]. Since memristors are passive devices, they
cannot amplify signals. Therefore, CMOS inverters can be used as buffers after several
stages to restore the attained logical state [8].

Several recent research works presented in the literature exploit the use of MRL to
design basic building blocks. In [8], a design dedicated to a universal full adder circuit was
proposed using MRL gates with the aid of CMOS inverters instead of pure CMOS-based
gates. In [25], the authors demonstrated a simple circuit based on MRL which is capable of
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executing AND, OR and XOR in parallel. The design is considered to be hybrid. However,
cascading several stages of this circuit degrades its performance due to the voltage drop
at the output. In [11], the authors presented an implementation strategy for a memristor-
based Programmable Logic Array (PLA). The memristor-based circuit transformation of
PLA is based on MRL gates. However, the arrangement of memristors at the top of the
CMOS layer and the corresponding layout were not investigated by the authors.

4. Proposed X-MRL Design for Logic Computation
4.1. X-MRL Structure

A memristive crossbar is a two-dimensional grid of memristors distributed along ver-
tical and horizontal nanowires. A memristor is allocated between every vertical nanowire
(called a column) and horizontal nanowire (called a row). A memristive crossbar is charac-
terized by its simple and dense structure [26] and could be fabricated on the top of a CMOS
layer [27]. The potential applications of memristive crossbars range from memory to logic
and from digital circuits to analog circuits. On the other hand, MRL is the only memristor-
based logic design style that adopts voltage as a state variable. Thus, our proposed design
considers the implementation of a combinational Boolean function in a crossbar topology.

It is well known that any Boolean function could be written in the form of the sum of
products (SoP). Accordingly, it can be implemented using MRL-AND and MRL-OR with
the aid of CMOS inverters. In order to clarify the proposed method, Figure 7 illustrates the
design and implementation of the simple function F = AB + AC. Figure 7a shows that the
function F is implemented using two MRL-AND gates and one MRL-OR gate. Figure 7b
depicts the schematic layout, which illustrates the equivalent mapping of the function
onto a crossbar structure. The vertical pairs of memristors corresponding to MRL-AND
generate an output which drives the input of the horizontal pair that represents MRL-OR.
Figure 7c presents a 3D view of the resulting crossbar structure. Figure 7d is another
simplified representation of the obtained crossbar. The same procedure could be performed
to implement other Boolean functions. Although the obtained array is a combination of
AND and OR gates, the positive poles of the allocated memristors rely on the same planar
side, which is considered to be an advantage at the level of their fabrication.

A 

B 

C 

AB+AC 

A 

B 

C 

AB+AC 

A 

B 

AB+AC 

C A 

B 

C 

AB+AC 

(a) (b) 

(d) (c) 

Figure 7. Example of an MRL logic function performed using X-MRL. Reproduced with permission
from [12], Copyright 2019, IEEE.
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4.2. X-MRL Full Adder

This subsection presents, as an example, the design of the 1 bit full adder using the
X-MRL design technique. Equations (10) and (11) present the expressions of the 1-bit full
adder in the SoP format.

S = A⊕ B⊕ Cin = Cin(AB + AB) + Cin(AB + AB) (10)

Cout = AB + BCin + ACin (11)

where A and B are the inputs, Cin is the input carry, S is the 1-bit adder output and Cout
is the output carry. Figure 8a presents the direct form of an MRL based 1-bit full adder.
Figure 8b presents the proposed circuit design of the 1-bit full adder using an MRL-based
crossbar structure. The design requires 18 memristors, which are distributed among vertical
and horizontal wires, in addition to nine CMOS inverters. In the figure, the black vertical
pairs of memristors represent the AND gates while the gray horizontal pairs represent
the OR gates (as illustrated in Figure 7). The CMOS inverters are responsible for either
inverting (NOT operation) and/or performing signal restoration for the logical state of the
signal after several cascading stages.

It is worth noting that the designed X-MRL array is different from conventional
crossbar arrays as a certain number of crosspoints are vacant. In this array, all memristors
are accessed simultaneously, leading to deterministic current paths. Thus, there are no
unexpected current paths, and consequently it is sneak-path free.

(a)

(b)

Cout

S

A
B

Cin

A

B

Cin

Cout

S

Memristors;
Top view

Figure 8. One-Bit Full Adder based on the proposed X-MRL structure. Reproduced with permission
from [12], Copyright 2019, IEEE.
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4.3. Layout

The circuit of the full adder is composed of a memristor crossbar layer in addition to a
few inverters. Figure 9 presents the layout of the circuit using the Cadence Virtuoso tool. In
this layout, the positions of the allocated memristors are assigned virtually due to the lack
of their definition in the Cadence library. The layout is mainly composed of three layers.
The first layer is the polysilicon layer, which is dedicated to the connection of the gates
of NMOS and PMOS transistors. This layer is presented in red in the figure. The second
and third layers, which are called Metal1 and Metal2 and presented in the figure in violet
and blue, respectively, are dedicated to the wiring. In order to achieve the desired crossbar
structure, horizontal wires are constructed in the Metal2 layer, while for the vertical wires,
the connections that are already utilized for the implementation of the required CMOS
inverters are reused to complete the crossbar structure. However, the height of the utilized
memristors is too short (around 10 nm [28]) to allow the linkage of horizontal and vertical
wires through two different layers. Therefore, these links are achieved through vertical
interconnect accesses (VIAs) as demonstrated in [29]. Figure 10 is a schematic view and
cross-sectional transmission electron microscopy (TEM) image of a memristor integrated
with a CMOS in the same die [29].

M

M

M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

A B Cin Cout S

Polysilicon layer

Metal1 layer

Metal2 layer

Vertical Interconnect Access

MemristorM

VIA

Figure 9. Proposed layout for the hybrid memristor–CMOS 1-bit full adder based on the X-MRL
design technique.

The allocated memristors in our proposed layout are implemented at the top of the
VIAs immediately under the Metal2 layer. Accordingly, the CMOS inverters occupy most
of the utilized area, and the additional Metal2 layer is reserved for memristors. In fact, the
designed crossbar causes N-wells and P-wells to be slightly too far from each other. The
obtained layout design could be made more compact if the memristors were implemented
immediately above the CMOS devices. However, this prevents the realization of an X-MRL
approach, as more routing signals would be then added, leading to more wiring in Metal1
and Metal2 layers. This would again cause N-wells and P-wells to be distant from each
other, increasing the area overhead.

Memristive device

Memristive 
device

(a) (b)

Figure 10. Memristor layer at the top of VIAs [29]: (a) a TEM image; (b) a schematic view. Reproduced
with permission from [29], Copyright 2019, IEEE.
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5. Simulation and Performance Analysis
5.1. Memristor Model Fitting

Physical models of memristors, which are based on filament formation and
rupture [30,31] rather than a simplified moving boundary (as described by HP), are more
realistic. However, compared to physical models, a compact model (e.g., VTEAM) pro-
vides the possibility of rapidly reproducing the phenomenological electrical behavior of
memristors with a low computational cost. Accordingly, the VTEAM model has been
adopted in this paper for simulation. The VTEAM model can mathematically fit the mea-
sured electrical behaviors of a memristor and can be easily extended to different types of
memristors. In contrast, other models (e.g., the Stanford model [32]) focus on a specific
type of memristors or even a single memristor device. Table 1 provides the experimental
data of various available memristors with their respective properties. Other memristive
devices that belong to the STT-MTJ family [33,34] are excluded from the table. This is due
to the fact that MTJ devices usually exhibit a low ROFF/RON ratio that does not suit the
operation of MRL. Of the memristors listed in Table 1, the HfOx memristor which has been
reported in [35] has properties which suit the MRL gates. The device is characterized by a
low switching delay 300 ps at a low operating voltage of 1.4 V.

These characteristics mean that this memristor is eligible to be implemented in the
same die with the current CMOS devices. Important work regarding the implementation
of the VTEAM model parameters that fit with the physical parameters of HfOx is described
in [35]. Table 2 shows the determined VTEAM model parameters. The model parameters
are chosen to produce a switching delay of 300 ps for a voltage pulse of 1.4 V, as reported
in [35].

Table 1. Practical memristor devices.

Material RON (ohm) ROFF (ohm) ROFF/RON Switching Speed Voltage Range Reference

TiO2-x - - >300 1 ns −1.5 V to +1.5 V [28]

FTJ 1.6× 105 4.6× 107 >200 10 ns −5.6 V to +4.2 V [36]

HfO2 1.2× 102 105 103 <1 ns <1.5 V [37]

HfOx <10 k >100 k >100 300 ps <1.4 V [35]

TMO - 100 k - 10 ns to 100 ns 3 V [38]

HfO2 2× 103 2× 105 100 - −1.5 V to +1 V [39]

TiN/TiOx/HfOx/TiN 1 k >1 M >1000 5 ns −1.5 V to +1.5 V [40]

Figure 11 shows the switching behavior of the memristor corresponding to SET and
RESET pulses. The device is assumed to be completely switched when the boundary
position w reaches either 1% or 99% of the total length D of the memristor, corresponding
to SET (Vset = 1.4 V) and RESET (Vreset = −1.4 V) operations, respectively. The boundary
conditions of the memristor are managed by a Biolek window function. The mathematical
function of the Biolek window [41], which is described in Equation (12), provides a contin-
uous and smooth transition of the boundary when reaching one of the extremities of the
memristor.

f (x) = 1− (x− stp(−i(t)))2p (12)

where stp(.) represents a unit step function and p is a positive integer. Low values of p
lead to a smooth transition of the boundary of the memristor when reaching its extremities,
whereas high values lead to sharp transitions.
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Table 2. VTEAM fitting parameters for the device in [35].

Parameter Value Parameter Value

RON 1 kΩ p 2

ROFF 200 kΩ αon 3

D 3 nm αo f f 3

Kon −0.0162 m/s Von 0.16 V

Ko f f 0.0162 m/s Vo f f −0.16 V

xon 0 nm xo f f 3 nm

DopedD w

Doped

D

w

Figure 11. Memristor switching time for Vset = 1.4 V and Vreset = −1.4 V according to the device
in [35].

5.2. Performance Analysis

A transient simulation was conducted for the proposed design of the X-MRL-based
full adder in the Cadence Virtuoso environment. CMOS 65 nm technology at the standard
1.2 V was adopted. Figure 12 shows all the possible combinations at the inputs A, B and
Cin in addition to the corresponding outputs S and Cout. The performance is analyzed
below for the proposed design.

5.2.1. Timing Analysis

Figure 13 presents the definition of the rising time (Tr) and the time delay (Td). Ac-
cordingly, the conducted simulation of the proposed design shows that these extracted
parameters (Tr and Td) change among different value combinations of A, B and Cin. The
maximum recorded values are as follows: Tr = 82 ps, Td = 1.2 ns, and Tf = 586 ps, where
Tf is the falling time. These values are considered for the worst-case performance. The
conducted simulation shows that the values Tr, Tf and Td are affected by the switching
speed of the memristor, which in turn can be controlled by Kon and Ko f f . On the other
hand, slowing down the switching speed of the memristors increases the glitches. Figure 14
shows the appearance of glitches when reducing Kon and Ko f f levels to −0.01 m/s and
0.01 m/s, respectively. Particularly, the high-resistance state (ROFF) of the memristors has a
direct effect on the value of Td, which decreases when increasing the value of ROFF. There-
fore, the total delay is directly affected by the memristor’s physical properties. Moreover, it
is observed that increasing ROFF acts as a filter for the glitches. This is due to the fact that a
larger ROFF value minimizes the voltage drop at the output ports of MRL gates. Reducing
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the voltage drop speeds up the switching of the next cascaded MRLs, resulting in a smaller
number of glitches.
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5.2.2. Energy Consumption

Figure 12b shows the total instantaneous power pT(t) consumed by the proposed
design of the full adder. The peak values in pT(t) refer to the dynamic power consumption.
The lower bound in pT(t), which is formed after the end of each transition, corresponds to
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the static power. A slight difference appears between the levels of the static power recorded
after each transition. This difference is due to the change in the equivalent resistance state
of the cascaded memristors for a new combination of the input signals A, B and Cin, which
in turn leads to a different level of current leakage. The average power consumed in the
proposed design of the full adder is Pav = 279.5µW. This value is of Pav is evaluated at a
frequency f of 200 MHz, which is near to the maximum possible frequency at the inputs of
the full adder with a hybrid structure.

The value of the average power consumption is relatively high for a full adder circuit.
This is due to the low values of RON and ROFF of the adopted memristor device compared
to the source-to-drain dynamic resistance in MOSFETs, which minimizes the leakage
in current. Memristive devices are still being actively explored and developed using a
variety of materials and deposition techniques. Thus, there is the potential for the device
characteristics to be improved. Memristors with high values of RON and ROFF have to be
developed in order to achieve hybrid architectures with low power consumption.

5.2.3. Utilized Area

A single memristor has an area in the order of 4F2 [28], where F is the minimum
feature size. Thus, memristors are implemented at the top of the CMOS due to their
nano-scale and compatibility at the level of fabrication. Thus, the allocated memristors in
the proposed X-MRL design do not add any overhead in terms of the implementation area.
The total required area refers to that occupied by CMOS devices only, which depends on
the number of inverters, as discussed in Section 4.3. Figure 9 presents the proposed layout.
The total area of the X-MRL design is 8.16 µm2 compared to the area of 14.78 µm2 utilized
in the case of a pure CMOS implementation, leading to a 44.79% area saving.

6. Comparison

The proposed hybrid memristor–CMOS-based full adder was compared with previous
published designs dedicated to the 1-bit full adder. Note that related works in the literature
lack an estimation of the utilized area of their proposed designs. Moreover, in order to
achieve a fair comparison in terms of energy consumption, the energy was evaluated for
each additional operation. The time period for an addition operation in our proposed full
adder design was set to be the minimum possible time (i.e., the maximum frequency). This
subsection presents the comparison summary, which is also shown in Table 3.

Table 3. Comparison with previous approaches.

Reference Memristors CMOS Transistors Energy Steps Step Delay Energy.Delay

(This work) 18 18 0.69 pJ 1 2.5 ns 1.72 pJ.ns

MRL [9] 16 12 - 1 - -

MRL [42] 18 8 93.7 pJ 1 44.4 ns 4161 pJ.ns

MAGIC [43] 9 Peripheral drivers 0.3 pJ 35 1.89 ns 19.84 pJ.ns

MAGIC (Optimized no. of steps) [23] 10 Peripheral drivers 3.16 pJ 13 1.3 ns 53.40 pJ.ns

MAGIC (Area optimized) [23] 5 Peripheral drivers 3.16 pJ 15 1.3 ns 61.62 pJ.ns

MAGIC [44] 15 Peripheral drivers 0.68 pJ 13 1.12 ns 9.94 pJ.ns

MAGIC (Naive mapping) [24] 15 Peripheral drivers 0.68 pJ 12 1.43 ns 11.66 pJ.ns

MAGIC (Compact mapping)[24] 24 Peripheral drivers 0.89 pJ 16 1.43 ns 20.36 pJ.ns

IMPLY [45] 6 Peripheral drivers - 23 5 ns -

IMPLY (Semi-serial) [46] 8 Peripheral drivers - 12 30 µs -

IMPLY (Semi-parallel) [47] 5 Peripheral drivers - 17 50 µs -

6.4. HYBRID MEMRISTOR-CMOS DESIGN FOR LOGIC COMPUTATION 143

Electronics, 2021



Electronics 2021, 10, 1018 14 of 17

In [9], an optimized implementation of an MRL based 1-bit full adder is proposed.
The authors developed an algorithm to search for the best form of the Boolean functions of
the sum (S) and carry (C). The desired form should lead to an implementation with the
minimum possible number of CMOS inverters. The inverter positions are allocated in such
a way that removes signal degradation. The proposed circuit design of the full adder in
[9] has a smaller number of memristors as well as CMOS transistors, with reductions of
11.1% and 33.3%, respectively, compared to our proposed design. However, the obtained
logic function in [9] is not in the form of SoP. Thus, it is not possible to allocate memristors
in a crossbar structure. This leads to more wiring at the fabrication stage, which in turn
increases the implementation area dramatically. As regards energy consumption, the values
reported in [9] are in the normalized form; thus, they cannot be used for comparison.

In [42], the authors presented a hybrid memristor–CMOS-based full adder circuit
based on MRL. The adder is comprised of 18 memristors and 8 MOSFETs, which corre-
sponds to a 66.6% reduction in the number of MOSFETs compared to our proposed design.
However, the energy and the step delay in [42] are much higher compared to our presented
X-MRL design. The layout is not considered by the authors.

In [43], a design for a 1 bit full adder was proposed based on memristor MAGIC-NOR
and NOT gates. A crossbar structure was adopted and several optimization techniques
were used to minimize the number of rows and columns of the crossbar as well as the num-
ber of computational steps. It has been shown that a compromise exists between the size of
the crossbar and the necessary number of steps to perform a full addition. A minimum
size of 3× 3 crossbars (i.e., nine memristors) with a total latency of 35 computational steps
is achieved. In contrast, our proposed design uses 18 memristors distributed in a crossbar
structure in addition to nine CMOS inverters. The output is evaluated in one computational
step. Concerning energy consumption, the proposed design in [43] consumes 0.3 pJ to
achieve a 1 bit full addition process, whereas our proposed design consumes 0.69 pJ.

In [23], an N-bit addition was performed using MAGIC operations (i.e., NOR and
NOT gates). Several approaches were presented by the authors for realizing logic within
crossbars. The best of these approaches in terms of latency corresponded to 10N + 3
computational steps, which leads to 13 clock cycle for the case of a 1 bit full adder. However,
13N − 3 memristors are reserved (i.e., 10 memristors for N = 1) to accomplish the 1 bit
addition process. For the purpose of minimizing the number of reserved memristors
inside the crossbar, an area optimized crossbar structure was also proposed in [23]. Only
five memristors were utilized; however, 15N (i.e., 15 for N = 1) computational steps were
required to achieve 1-bit full addition. As a result, our proposed design, which requires
one computational step, outperforms the designs presented in [23] in terms of latency.
Regarding the energy consumption, all the proposed approaches in [23] have almost the
same energy dissipation, which is about 3.16 pJ for the case of N = 1. Thus, the proposed
design in [23] consumes 4.5 times more energy than our proposed design.

In [44], an N-bit ripple carry adder (RCA) circuit in a memristor crossbar structure
was presented. The MAGIC design style was used to implement the logic gates. By
considering N = 1, which is the case of 1 bit addition, the proposed crossbar MAGIC-
based design requires 15 memristors and can perform the addition operation in 13 clock
cycles. Compared to our proposed design, the adder design in [44] needs 13 times more
clock cycles to perform addition operation, while it requires three fewer memristors to be
implemented. On the other hand, our design consumes 1.01 times more energy than the
proposed design in [44].

In [24], logic operations were realized by two methods using MAGIC. The first method
corresponds to a naive mapping: it maps the NOR/NOT netlist into a single row of the
crossbar. For the case of 1 bit full addition, 12 NOT/NOR sequential operations were
required for a total number of 15 memristors. The overall energy consumption is estimated
as 0.68 pJ. The second method corresponds to the compact mapping: in this method,
NOR/NOT MAGIC operations are performed on rows and columns of a crossbar to realize
logic functions. A 1 bit full addition process is performed on an 8× 3 crossbar structure

144 CHAPTER 6. FLEXIBLE AND EFFICIENT ARCHITECTURES BASED ON MEMRISTIVE TECHNOLOGIES

Electronics, 2021



Electronics 2021, 10, 1018 15 of 17

(i.e., 24 memristors) and requires 16 computational steps. The overall energy consumption
is evaluated as 0.89 pJ. Compared to our design, the naive mapping and the compact
mapping consume 1.01 times less and 1.28 times more energy, respectively.

In [45], the authors proposed a 1 bit full adder that was designed using IMPLY logic.
The proposed design needs 23 computational steps to perform the addition. The 1 bit full
adder proposed in [45] requires six memristors, which is 33.3% of the memristors utilized
in our design. However, the IMPLY logic design approach adopts three different voltage
levels (VCOND, VSET and VCLEAR). Thus, additional circuitry such as analog multiplexers
should be added to drive the allocated memristors. This induces an overhead in terms
of the total utilized area when compared to our proposed design. Note that the energy
consumption was not considered by the authors.

In [46], the authors proposed an IMPLY-based semi-serial adder with a respective
addition algorithm. The N-bit full adder is implemented using 2N + 6 memristors, which
correspond to eight memristors for a 1 bit full adder. Compared to our proposed X-MRL
design, the authors use 55.5% fewer memristors. The N-bit addition in [46] is completed
within 10N + 2 steps, which correspond to 12 steps for 1 bit addition. Each step requires
30 µs to be completed. Thus, our proposed X-MRL full adder design, which requires one
computational step (2.5 ns in total), outperforms that in [46] in terms of latency.

The authors of [47] presented the design of a semi-parallel adder based on IMPLY.
As compared to the semi-serial adder mentioned above, the semi-parallel adder reduces
the number of memristors to five, but this comes at the cost of an increased number of
computational steps and step delay. The full adder design in [47] uses a smaller number of
memristors compared to our proposed design. However, it requires a higher number of
steps and larger step delay.

Table 3 summarizes the comparison results presented above. The table illustrates the
key advantage of the proposed approach regarding the reduced number of computational
steps with respect to other existing designs. The energy consumption remains comparable.
The Energy.Delay metric is used for a global direct evaluation. This metric combines both
delay and energy consumption. As shown in the table, our proposed design outperforms
all existing related ones. The improvement in Energy.Delay is between ×5.7 and ×31.

On the other hand, for the works that have adopted MAGIC and IMPLY in [23,24,43–45],
the initialization and the evaluation of the rows and columns of the memristive crossbar
require a separate CMOS controller. Moreover, a conversion mechanism is required in
these designs. This mechanism includes a sensing amplifier to convert the resulting stored
bits from the resistance state to the voltage state [8]. These additional peripheral drivers
result in additional overheads in area and power consumption.

7. Conclusions

In this paper, an MRL-based crossbar design—namely, X-MRL—is proposed. The
X-MRL approach is dedicated to the implementation of combinational logic. The design
methodology of X-MRL efficiently integrates memristors with CMOS devices to improve
density and scalability. Using X-MRL, a Boolean function is represented using pairs
of memristors mapped efficiently into a crossbar structure. The obtained memristive
crossbar is stacked at the top of the CMOS layer. For evaluation purposes, we designed a
hybrid memristor–CMOS full adder based on the X-MRL approach. Based on a realistic
memristor parameter model and CMOS 65 nm process, the design was simulated in the
Cadence Virtuoso environment. The obtained layout of the full adder showed a 44.79%
area reduction compared to that implemented with pure CMOS technology. Moreover, the
Energy.Delay metric was used for comparison. This revealed a significant improvement
(between ×5.7 and ×31) with respect to the available literature. As future work, the
proposed X-MRL design may be considered for the implementation of flexible logic blocks.
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6.5 Memristor Overwrite Logic (MOL) for In-Memory
Computing

6.5.1 Preface

This research work aims to explore new in-memory computing approaches and computa-
tional memory architectures that allow efficient combination of storage and processing in
order to bypass the memory wall problem and thus to improve the computational efficiency;
thereafter, apply the proposed techniques and architectures in real application case studies
for the sake of performance evaluation. This work has been initiated during the PhD thesis
of Khaled Alhaj ALI and has been continued during his work as a post-doctoral fellow at
IMT Atlantique, Brest, France. It has been valorized in two IEEE international conferences
[133] [134] and two IEEE transactions [135] [136].

6.5.2 Introduction

Modern systems have to implement additional memory in order to cope with the ever in-
creasing requirement of massive data storage. The aggressive growth in the size of processed
data in addition to the increasing numbers of processing cores have placed a high demand
on the currently used memory systems as well as to intensive data traffic between memory
and processing cores. In-memory computing (IMC) have been introduced to overcome the
memory wall problem. Instead of sending large amount of data to the processing cores, part
of the tasks are computed inside the memory. This reduces the memory accesses bottleneck
and can significantly improve performance.

Emerging memristive technologies such as the ReRAM or MRAM have been considered
as promising candidates for the next generation of memories. Memristive memory systems
have several desirable attributes. They are classified as non-volatile with near-zero standby
power consumption. They have ultra high density. Recent studies have illustrated the ability
to perform local computations inside memristive memories (crossbars). Computing within
memristive memories is motivated by the unique properties of memristors and their versatile
nature. In this context, several recent contributions have been proposed to enable computa-
tion within memristive memory arrays. [121, 137, 138, 139, 132, 140, 141, 142, 143, 144].
However, several challenges and limitations exist in terms of manufacturability and compu-
tational accuracy regarding device variability, pattern-dependent current leakage and the area
overhead of peripheral circuits, and resistance drift effects.

The nonvolatile internal resistance state of memristor could be changed according to the
magnitude and duration of the applied bias across its terminals [103]. If sufficient magni-
tude and duration of the bias across the memristor terminals is guaranteed, the intermediate
resistances could be ignored. Accordingly, a memristor could be considered as a two-state
element (R ∈ {RON , ROFF}). The mapping of the internal resistance between the terminals
of the memristor into Boolean states allows the definition of memristor in digital domain.

Based on this understanding, MOL new logic design style, is proposed for performing
logic operations. In this logic design style, the result of OR/AND logic operation is over-



6.5. MEMRISTOR OVERWRITE LOGIC (MOL) FOR IN-MEMORY COMPUTING 149

written into the internal state of the memristor. The latter acts either as logic accumulator
with its previously stored bit or as logic operator between its two terminals. This novel
logic design style is inspired from a digital representation of memristors. Unlike existing
approaches, MOL can operate with different memristor technologies, regardless the LRS-
HRS margin and with linear as well as threshold-type memristive devices. Furthermore, the
proposed original computational memory architecture, with appropriate drivers and control
sequences, allows the execution of numerous logic operations, at bit or vector-level, in one
or two computational steps at most.

6.5.3 Context and Motivation

Several works have been carried out revealing the ability to execute logic operations inside
memristive memory arrays. The Memristor Aided Logic (MAGIC) [128] and the statefull
implication (IMPLY) [121] have been introduced as possible solutions for the realization of
logic computations inside these memories. Based on MAGIC and IMPLY, storage and pro-
cessing are both allowed within the same cells of the memristive memory array. Although,
these approaches are used as basis logic functions to execute arbitrary Boolean functions
inside memristive crossbar arrays, both approaches induce the state drift phenomena. The
corresponding states of the memristive cells performing computations are not fully digital in
some cases. On the other hand, the performance of these design styles is highly dependent on
the technology of the adopted memristive device. Moreover, the corresponding basis func-
tions provided by IMPLY and MAGIC are not diverse enough to allow fast logic mapping
with minimum computational cycles. More recently, other in-memory computing techniques
have emerged as alternatives. Among these, the memristor-based majority (MAJ) [145] has
been introduced to overcome the aforementioned limitations. However, other downsides arise
at the architectural level. MAJ design style is relatively complex in terms of peripheral cir-
cuits as well as excessive in-out data movement which in turn impacts latency.

In this research work, a novel MOL logic design style is introduced associated with an
original MOL-based computational memory. As MOL approach is based on our proposed
digital representation of memristive devices [103], the proposed MOL-based computation
is fully digital and eligible for highly reliable applications. MOL combines the simplicity of
MAGIC/IMPLY [121] techniques and the accuracy of MAJ [122].

Moreover, MOL can operate with different memristive device technologies and allows
for significant reduction in the number of required memristors and computational steps. The
choice of the memristive device type is not constrained by a specified MOL requirement. It
can be observed from the mechanism of MOL technique that it involves direct access to the
terminals of memristive devices which highly resembles conventional write operation. Dur-
ing the operation of MOL, the potential difference between the terminals of the memristive
device always attains a binary level. Accordingly, MOL can be implemented in a wide range
of memristive memories without specifying particular device features. In contrast, the struc-
ture of pre-existing logic design styles either establishes a series connection of a resistor (e.g.
IMPLY) or series connection of the memristive devices (e.g. MAGIC) for normal operation.
This undoubtedly prevents direct access to the memristive device terminals and consequently
imposes specific device constraints.
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6.5.4 Contributions and Performed Work

This work proposes a MOL-based computational memory architecture. The proposed orig-
inal architecture, based on coupling two conventional crossbar arrays, is able to perform
bitwise AND/OR operations between two stored words. The proposed MOL-memory archi-
tecture can be simply configured between storage (memory) and computation (processing)
modes.
The main contributions of this work are summarized in the following:

• A new logic design style, namely Memristor Overwrite Logic (MOL), is proposed for
performing logic operations. In this logic design style, the result of OR/AND logic
operation is overwritten into the internal state of the memristor. The latter acts either
as logic accumulator with its previously stored bit or as logic operator between its two
terminals.

• Application of the approach to perform MOL inside memristive crossbar arrays. An
original feature in this context concerns the ability to perform MOL on a vector of bits
and the possibility to select a single or multiple rows or columns of the crossbar.

• Integration of MOL into conventional crossbar-memory architecture, with incoming
data bits along bit-lines only. The proposed architecture is able to perform MOL opera-
tions in addition to its main storage function. Four supported modes are detailed (write,
overwrite, read, idle) together with appropriate architectures for the memory peripheral
drivers. This research work has been initially published in the proceedings of the IEEE
International Conference on Electronics, Circuits and Systems (ICECS) [133].

• Proposal of a MOL-based computational memory architecture which is able to per-
form MOL operations between two stored words, rather than between one stored word
and external arriving input bits. An original architecture with two coupled MOL mem-
ory blocks that work in complementary manner is proposed together with appropriate
drivers and control sequences. Numerous logic computations can be performed by this
architecture, each requiring only one computational step.

• Demonstration of the design methodology through a detailed case study of N-bit full
addition implemented using the proposed MOL-based computational memory. The se-
quence of MOL operations is illustrated in time and space (mapping to the two coupled
MOL memory blocks). Different configurations are analyzed and evaluated in terms of
required number of computational steps. This research work has been published in the
IEEE Transactions on Very Large Scale Integration (VLSI) Systems [135].

• Performance analysis of the proposed MOL memory architecture design using Mag-
netic Tunnel Junction (MTJ) device [146][147]and CMOS 65nm technology node. This
includes timing analysis, area utilization, energy consumption and tolerance against de-
vice variability, in addition to a detailed comparison with existing approaches. The ob-
tained results show significant reductions in terms of latency and area when compared
to existing recent approaches [137, 121, 138, 141, 140, 132, 148].
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• Investigate the utility of MOL approach in the field of Neural Networks. An architec-
ture design targeting Deep Neural Network (DNN) computation has been presented to
address the inefficiency of moving data between memory and processing cores which
is time and energy consuming [149]. The design is composed of interconnected com-
putational memory blocks namely CMEMs. The design is able to execute the weighted
accumulation process purely inside the storage cells. This work has been published in
the the IEEE International Symposium on Circuits and Systems (ISCAS) [134].

• Employment of the computational memories based on MOL design style to perform
in-memory computing in the emerging Binary Neural Networks (BNN) [150]. A novel
architecture is proposed to execute instructions inside multiple computational memo-
ries using the proposed SIMM parallelism model which stands for single-instruction
multiple-memory. The architecture employs the advanced quantization algorithm of
BNN and the promising MOL-based in-memory computing technique which is well
adapted for parallel bit-wise operations. This research work has been published in the
IEEE Transactions on Very Large Scale Integration (VLSI) Systems [136].
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Abstract— In this article, we present a novel logic design
style, namely, memristor overwrite logic (MOL), associated with
an original MOL-based computational memory. MOL relies on
a fully digital representation of memristor and can operate
with different memristive device technologies. Its integration in
memristive crossbar arrays and computational memories allows
the execution of bit and vector-level primitive logic operations
in two computational steps at most. Promising features and
performances are demonstrated through the implementation of
N-bit full addition using the proposed MOL-based computational
memory.

Index Terms— Crossbar array, in-memory computation, logic
design, memristor, memristor overwrite logic (MOL).

I. INTRODUCTION

MEMRISTOR has been predicted theoretically by Chua
[1] in 1971. Chua hypothesized that memristor which is

the fourth passive device should exist and hold a relationship
between magnetic flux and charge. The first fabrication of a
memristor device has been developed by a research team at
Hewlett-Packard (HP) Labs [2] in 2008. The device structure is
comprised of a stoichiometric (TiO2) and an oxygen-deficient
(TiO2−x ) layer sandwiched between two platinum electrodes.
The obtained two-terminal nanodevice exhibits a dynamic
resistance that can be modulated between two bounds. These
bounds correspond to the low and high resistance states,
and are referred to as Ron and Roff , respectively. Memristor
possesses the ability to retain the last attained resistance value
in a nonvolatile manner.

Given the nanoscale dimensions of memristors and
their unique properties, several innovative applications have

Manuscript received February 26, 2020; revised May 11, 2020 and
June 17, 2020; accepted July 10, 2020. This work was presented at the 26th
IEEE International Conference on Electronics, Circuits and Systems (ICECS),
November 2019, Genoa, Italy. (Corresponding author: Khaled Alhaj Ali.)

Khaled Alhaj Ali and Amer Baghdadi are with IMT Atlantique, CNRS
Lab-STICC Laboratory, 29238 Brest, France (e-mail: khaled.alhaj-ali@
imt-atlantique.fr).

Mostafa Rizk is with IMT Atlantique, 29285 Brest, France, also with
the School of Engineering, International University of Beirut, Beirut 1105,
Lebanon, and also with the Physics Department, Faculty of Sciences, Lebanese
University, Beirut 1003, Lebanon.

Jean-Philippe Diguet is with the CNRS Lab-STICC Laboratory, 56100
Lorient, France.

Jalal Jomaah are with the Physics Department, Faculty of Sciences,
Lebanese University, Beirut 1003, Lebanon.

Naoya Onizawa and Takahiro Hanyu are with the Research Institute of
Electrical Communication, Tohoku University, Sendai 980-8577 Japan.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2020.3011522

emerged. One of the most promising applications is the use of
memristors to implement arithmetic blocks, such as full adders
[3]–[5]. Compared to pure CMOS implementations, these
blocks are of relatively high density and could be packed into
small chip area. Other applications involve using memristor-
based memories to allow processing within the storage cells.
This approach, referred to as in-memory computing, is being
explored recently to alleviate the time and energy cost of
data movement encountered in conventional von Neumann
architecture and aggravated by the recent growth in data-
centric applications [6]. The concept is different from, yet
can be complementary to, that of near-memory computing
which dates to the 1990s [7]. The near-memory computing
approach aims to place the processing units physically closer
to the memory, for example, through advanced die stacking
technologies or 3-D integration. Despite the reduction in time
and distance to memory access, there still exists a physical
separation between the memory and the compute units [8].
For in-memory computing, instead of sending a large amount
of data to the processing cores, part of the tasks are computed
in place inside the memory itself [9]. Depending on the
application, this can reduce the computational complexity of
these tasks and/or the amount of data being accessed, leading
to significant performance improvement [6].

In this context, several recent contributions have been
proposed to enable computation within memristive memory
arrays and can be classified into two categories. The first
category involves using the memristor as a single-level cell
(SLC) [10]–[16]. The second category includes work that
uses the memristor as a multilevel cell (MLC) or analog cell
[17]–[19]. The MLC-based computing is promising when
targeting applications with intensive multiply–accumulate
operations, such as convolutional neural networks (CNNs)
[19]. However, a number of challenges remain in terms
of manufacturability and computational accuracy regarding
device variability, pattern-dependent current leakage, and
the area overhead of peripheral circuits [20]. Major
semiconductor foundries have not included MLC technology
in their development roadmaps in the near future [19].
In contrast, SLC cells have a larger readout margin that
makes them tolerant against process variation and resistance
drift effects. Based on SLCs, different logic design styles
have been introduced together with different realizations
on memristive crossbar arrays. The Material Implication
(IMPLY) [10] and the Memristor Aided loGIC (MAGIC) [21]
have been introduced to enable in-memory logic operations.
Although promising results are demonstrated, MAGIC and
IMPLY techniques still impose specific technology and
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design constraints. For instance, in order to attain acceptable
performance in these techniques, the ratio Roff/Ron of
the adopted memristive devices should be relatively high.
Moreover, Fang and Tang [22] have reported that IMPLY
does not ensure binary resistance switching of memristors
in some cases. More recently, other in-memory computing
techniques have emerged as alternatives. Among these,
the memristor-based majority (MAJ) [23] has been introduced
to overcome the aforementioned limitations. However, other
downsides arise at the architectural level. MAJ design style is
relatively complex in terms of peripheral circuits as well as
excessive in-out data movement which in turn impacts latency.

In this work, we introduce a novel logic design style,
namely, memristor overwrite logic (MOL), associated with an
original MOL-based computational memory. MOL combines
the simplicity of MAGIC/IMPLY techniques and the accuracy
of MAJ. MOL can operate with different memristive device
technologies and allows for a significant reduction in the
number of required memristors and computational steps.

The rest of this article is organized as follows. Section II
provides a brief survey on existing memristor-based logic
design styles. Section III presents our proposed MOL
approach. Section IV discusses the integration of MOL into
the conventional memory configurations. Section V presents
our proposed configurable MOL-based computational memory
architecture. The design and its configuration methodology
are demonstrated by a case study of a N-bit full addition
in Section VI. Simulations and performance analysis are
illustrated in Section VII. Comparison with available imple-
mentations is presented in Section VIII. Finally, Section IX
concludes this article.

Although memristive devices encompass memristors, it is
possible to use the term memristor for other memristor devices
[24]. In this article, we use the term memristors and memris-
tive devices interchangeably for simplicity.

II. MEMRISTIVE DEVICES AS

COMPUTATIONAL ELEMENTS

The versatile nature of memristors allows them to be used
as computational elements in addition to their storage role.
Implementing Boolean logic with memristors has been widely
explored. Several memristor-based logic design styles have
been introduced in the literature. Each is adapted for a specific
type of application and surrounded by specific limitations.

A. Logic Design Styles

The memristor ratioed logic (MRL) has been proposed in
[3]. MRL integrates memristors with CMOS transistors to
implement combinational functional blocks. These blocks are
relatively dense compared to those implemented with pure
CMOS transistors. The memristive threshold logic (MTL) has
been studied in [25]. The gate uses the configurable conduc-
tance of memristors to represent weights during operation.
However, these weights are very sensitive to state drift, which
can be a critical issue [25]. It is considered simple, but still
in preliminary stages of fabrication. IMPLY [10] and MAGIC
[21] are intended for in-memory computing. In these design
styles, a memristor serves as a memory element as well as
a part of a computational gate inside the memory. MAD
gate, or memristors-as-drivers gate, has been presented in [26].
MAD has been introduced to overcome the long delays of the
IMPLY operations as well as signal degradation and buffering

issues in MRL; however, each MAD gate requires a complex
driving circuitry and is thus considered unsuitable for inte-
gration inside a memristive memory. MAJ has been proposed
in [23]. The authors demonstrated that a single memristor is
capable of performing a 3-variable majority function. Using
additional inversion function (INV), a Boolean expression is
represented using a majority-inverter graph (MIG). MIGs are
then realized sequentially in conventional memristive crossbar
arrays. The complementary resistive switches (CRS) logic has
been presented in [27]. CRS logic is capable of realizing two
primitive operations denoted as reverse implication (RIMP)
and inverse implication (NIMP). This logic design style can
be considered as a special case of MAJ (see Section III-B).

In this article, our target application concerns in-memory
computing, so some logic design styles such as MRL, MAD,
and MTL are excluded.

B. Limitations

MAGIC and IMPLY logic families are widely explored
in the literature. Talati et al. [12], Rahman et al. [28],
Hur and Kvatinsky [29], Gharpinde et al. [30], and
Thangkhiew et al. [31] have presented several approaches
where logic functions are broken down into several MAGIC
or IMPLY operations. These operations are then performed
sequentially inside memristive crossbar arrays. However, these
approaches have several design constraints.

1) The analysis in [22] shows that IMPLY cannot achieve
the full resistance switching of the output memristor in
case both input memristors of the IMPLY gate are in
the Roff resistance state. Hence, the corresponding state
of the output memristor is not fully digital.

2) Output memristors in IMPLY and MAGIC may be
subjected to state drift [10], [12].

3) The performance of these design styles is highly depen-
dent on the technology of the adopted memristive
device (e.g., requirement of memristive devices with
high Roff/Ron ratio) [10], [12].

4) The corresponding basis functions provided by IMPLY
and MAGIC are not diverse enough to allow fast logic
mapping with minimum computational cycles.

MAJ-based logic design has been recently explored by
Shirinzadeh et al. [15] and Gaillardon et al. [23]. MAJ relies
on a digital representation of memristors, so the limitations
faced in IMPLY and MAGIC can be overcome. However,
at the architecture level, other downsides arise.

1) In-memory computing architectures based on MAJ,
which are available in the literature, require additional
load operations, which read data bits outside the mem-
ory. This induces the overheads in terms of the total
critical path, number of cycles, and the complexity of
the dedicated control unit.

2) Architectures based on MAJ involve significant modifi-
cations in the peripheral circuitry of the memory. The
write operations are performed on bit-lines (BLs) as well
as word-lines (WLs) instead of BLs only.

These limitations hold also for CRS logic design approach
[27] as it can be considered as a special case of MAJ.

III. PROPOSED MOL LOGIC

In this section, we introduce a new memristor-based
logic design style, namely, MOL. MOL approach is highly
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Fig. 1. Memristor. (a) Internal state after applying external bias represented
by A and B . (b) Truth table.

adapted for computing within memristive crossbar arrays
and avoids the limitations encountered by preexisting logic
design styles.

A. Digital Representation of Memristive Devices

The nonvolatile internal resistance state of memristor could
be changed according to the magnitude and duration of the
applied bias across its terminals [32]. However, a nonsufficient
magnitude or duration leads to an intermediate resistance
state R where Ron<R<Roff . In this case, the state of the
memristor cannot be considered as binary, which in turn
leads to more sophisticated modeling of the internal state
of memristive devices in the analog domain. However, in a
digital design we can represent the memristor as a two-state
element where its resistance R ∈ {Ron, Roff } and ignoring
any other intermediate states if we succeed to guarantee
a sufficient magnitude and duration of the bias across its
terminals. Based on this understanding, the internal state of
a memristor is defined in the digital domain. Let Qn be the
current internal state of a memristor while Qn+1 is the next
state after applying a new external bias represented by A and
B as shown in Fig. 1(a). Hence, Qn+1 will be a function of the
logical states at terminals A and B and the previous internal
state Qn . By considering all the possible combinations of A,
B , and Qn as shown in Fig. 1(b), the state equation of a
memristive device is expressed as follows:

Qn+1 = Qn A + Qn B + AB = M3(A, B, Qn) (1)

where M3 represents the 3-variable majority function, which is
defined in [33]. This expression demonstrates that a majority
function is an intrinsic feature of memristive devices [23].
Based on the Boolean expression presented in (1), the equiv-
alent latch circuit of a memristive device is shown in Fig. 2
where Q is the internal state of the memristor. To translate the
Boolean value of Q into a resistance between the terminals
of the memristor, an analog multiplexer is added. It selects
either one of the two resistors, whose resistances are Ron or
Roff , where Q = 0 and Q = 1 are mapped to Ron and Roff ,
respectively. Note that this schematic is valid and useful from
the digital perspective, so it cannot be used for simulation in
the analog domain.

B. MOL Logic Procedure

The state representation of memristor expressed in (1)
clarifies its computational capability and simplifies its
integration in the digital domain. Six possible cases can be
derived from (1) and are listed in (2). Fig. 3 is an illustration

Fig. 2. Equivalent latch circuit of memristor with binary resistive ports.

Fig. 3. Six possible logic cases performed by a memristor.

of these cases. They are split into two groups. The first group
includes the cases from 1 to 4, which correspond to MOL.
In these four cases, a memristor acts as a logic accumulator.
The previously stored bit Qn is subjected to OR/AND with the
new input A/B while the other terminal of the memristor is
set to logic “0” or logic “1” depending on the desired function.
The obtained output is simultaneously saved in the form of a
new internal state Qn+1. The remaining cases (i.e., 5 and 6)
are achieved by initializing the memristor to a known state
(logic “0” or logic “1”). The inputs A and B are sent to the
memristor ports simultaneously. The output is saved as the new
internal state (Qn+1) of the memristor. In fact, these two cases
correspond to CRS logic operations that are explored in the
literature [16], [23] [27].

Although MOL operations are special cases of the 3-variable
majority, working with MOL is much simpler. MOL highly
resembles the conventional write operation. One end of each
memristor is reserved for the input operands, while the other
end is employed for selection. In contrast, MAJ employs both
terminals of the memristor for the input operands. This makes
MOL more adapted to crossbar memory arrays

Qn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qn + A , B = 0, case : 1 (MOL)

Qn A , B = 1, case : 2 (MOL)

Qn + B , A = 0, case : 3 (MOL)

Qn B , A = 1, case : 4 (MOL)

AB , Qn = 0, case : 5 (CRS)

A + B , Qn = 1, case : 6 (CRS).

(2)
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Fig. 4. Performing MOL on a vector of bits. (a) Writing N -bits
into memristors. (b) Overwrite step for MOL-OR. (c) Overwrite step for
MOL-AND.

The same concept applies to a vector of bits. Fig. 4
illustrates that two consecutive steps are enough for
achieving MOL operations on an N-bit vector. In step 1,
which is presented in Fig. 4(a), the input vector
I = [IN−1, IN−2, . . . , I1, I0] is written into the N memristors
by mapping logic “0” and logic “1” to the normalized voltage
levels −1 and 1 V, respectively, while the common horizontal
line is set to 0 V. At the end of this step, the resulting
state of a given memristor Mk is Qk = Ik . In step 2,
the same N memristors are overwritten with the input
vector A = [AN−1, AN−2, . . . , A1, A0]. However, the input
voltage level on the common horizontal line is set to 0
or 1 V depending on the desired operation. For the case
of MOL-OR [Fig. 4(b)], B is set to 0 V and the result,
which is stored in a given memristor Mk , is Q�

k = Ak + Ik .
For the case of MOL-AND [Fig. 4(c)], B is set to 1 V
and the result, which is stored in a given memristor Mk ,
is Q�

k = Ak Ik .

C. Performing MOL Inside Memristive Crossbars

The proposed MOL can be performed in memristive cross-
bar arrays. The input data bits to the crossbar can be either
written or combined logically with the currently stored bits
inside the crossbar. This can be simply achieved by choosing
the appropriate normalized voltage levels for representing the
arriving bits (i.e., −1/1 for write and 0/1 for MOL). Fig. 5(a)
illustrates that a single or multiple rows of the crossbar could
be selected for either MOL-OR or MOL-AND operations
with the incoming data bits I = [IN−1, IN−2, . . . , I1, I0]
being applied on the columns. Similarly, Fig. 5(b) shows
that a single or multiple columns of the crossbar could be
selected for either MOL-OR-NOT or MOL-AND-NOT oper-
ations with the incoming data bits of the vector I applied on
the rows.

Fig. 5. MOL inside memristive crossbar. (a) MOL-OR or/and MOL-AND.
(b) MOL-OR-NOT or/and MOL-AND-NOT.

Fig. 6. Configurations of MOL memory architectures. (a) 1M. (b) 1T1M.

IV. MEMORY ARCHITECTURE WITH

MOL CAPABILITIES

Crossbars constitute the core element of emerging memris-
tive memories (e.g., RRAMs and MRAMs). Integrating MOL
with crossbar-memory architectures can lead to promising
enhancements and provides additional computational capa-
bilities to these memories. However, this imposes updating
memory peripheral drivers to cope with MOL operations in
addition to its main storage function. Fig. 6(a) presents the
proposed memory architecture which is capable of perform-
ing MOL. As illustrated in Section III, write and overwrite
operations could be performed along the rows as well as the
columns of the crossbar. However, in a conventional memory
architecture, the flow of the incoming data bits is along the
BLs only while the WLs are reserved for addressing. Thus,
MOL operation, which is similar to a write operation, could
be only performed along the BLs. In this case, MOL-OR and
MOL-AND are the only supported logic operations in
the proposed memory architecture. The architecture shown
in Fig. 6(a) can be configured in four different modes:

1) Write Mode: The input N-bit vector I =
[IN−1, IN−2, . . . , I1, I0] is first mapped via BL
driver (BLD) into the normalized voltage levels of
−1 and 1 V corresponding for logic “0” and “1,”
respectively. Fig. 7(a) presents the schematic of BLD at
the transistor level. The respective voltage levels (−1
and 1 V) are then provided to the BLs of the memristive
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Fig. 7. Drivers architectures for the proposed MOL-memory approach.

crossbar through the Isolation Block (ISO), which acts
in this mode as a connecting switch. Fig. 7(b) illustrates
the internal structure of the ISO. Simultaneously,
the enabled addressing decoder selects a single WL.
The selected WL is supplied with a voltage VSEL, which
is already shared with the input of each transmission
gate corresponding to every WL. The shared voltage
VSEL is set to the normalized voltage level of 0 V. The
unselected WLs remain floating in the high impedance
state (Z).

2) Overwrite Mode: In this mode, the function of the
memory is switched to perform MOL among its
memristive crossbar. As stated earlier, both MOL-OR
and MOL-AND have to be supported. For the case
of MOL-OR, the input data bits are mapped to the
normalized voltage levels of 0 and 1 V corresponding
to logic “0” and logic “1,” respectively. The addressing
decoder performs its normal selection function for a
single WL. The ISO is kept at the connecting state. The
level of VSEL is also set to 0 V as in the case of write
mode. The resulting bits of the MOL-OR operation are
simultaneously stored in the selected WL. MOL-AND
is performed similarly but VSEL is switched to the high
voltage level (i.e., VSEL = 1 V).

3) Read Mode: In this mode, a single WL is selected
to sense the corresponding states of its allocated
memristors individually. BLD is isolated using the ISO
block, which acts in this case as an open switch. The
selection voltage VSE L is set to 0.5 V (normalized).
The sensing current generated through each memristor
has to guarantee the stability of its internal state
(no state drift). A sensing amplifier (SA) circuitry, whose
architecture is illustrated in Fig. 7(c), is used to measure
the voltages across the reference resistors of respective

resistances R. R is chosen to be the midvalue between
Ron and Roff (i.e., R = (Ron + Roff)/2). By considering
Ron < Roff , the voltage across a reference resistor,
which is in series to the sensed memristor, would be
either in the neighborhood of 0 or 0.5 V. Depending on
the state of the sensed memristor, the three cascaded
inverters magnify this difference leading to −1 or 1 V at
the output.

4) Idle Mode: In this mode, the memory is not active.
The memristive crossbar is totally isolated to preserve
its internal state. The IB block is in the isolation mode.
Hence, all BLs are in the high impedance state (Z).
Moreover, the address decoder is disabled. Thus, none
of the WLs is selected, keeping them in the Z state.

The architecture presented in Fig. 6(a) adopts the
1-memristor (1M) configuration for the structure of the cross-
bar. In other words, each cell consists of one memristor
which connects the vertical and horizontal nanowires of the
crossbar. However, the 1M crossbar configuration suffers from
the sneak path phenomenon [34]. Sneak paths correspond
to current paths through unselected cells in a memristive
array. These undesired paths lead, in some cases, to a drift
in the state of unselected memristive cells during write or
overwrite operations. Moreover, it gives false estimation about
the real logical state of a given selected memristor during
the reading mode. This phenomenon degrades the overall
memory performance. Several efforts have been made in the
literature to overcome the sneak path phenomenon [34]–[36].
All proposed methods are limited to a certain crossbar size.
Thus, increasing the size of the memristive crossbar beyond a
certain limit will eventually lead to the sneak paths. A possible
solution to stop these paths is to use a selector in series
with each allocated memristive cell. This solution induces
overheads in terms of the total utilized area of the memory
which in turn loses the ultrahigh density attained in the 1M
case. In [37], a transistor is used as a selector. Thus, each cell
inside the memory consists of one transistor in series with one
memristive device (1T1M). The obtained crossbar architecture
for the 1T1M configuration is considered as sneak-path free.
Fig. 6(b) presents our proposed 1T1M memory architecture
with added MOL capabilities. The WL transmission gates that
have been used in the 1M case are no longer used in the case,
of 1T1M memory architecture. Normally, each transmission
gate is equivalent to two MOSFETs. Thus, for an N × M
memristive crossbar array, additional N M − 2N MOSFETs
are used in the 1T1M architecture compared to that in the
1M case. The obtained 1T1M architecture has the same four
control modes previously introduced for the 1M case.

V. MOL-BASED COMPUTATIONAL MEMORY

In this section, a MOL-based computational memory archi-
tecture is introduced. The architecture can perform MOL
operations between two stored WLs. The original architecture,
which is formed of two interconnected MOL memory blocks,
works in a complementary manner.

A. Architecture

The proposed MOL-memory architectures, which are pre-
sented in Section IV, act as logic accumulators for the newly
arriving bits. In other words, computation in such memory
is restricted for logic accumulation. Accordingly, perform-
ing general Boolean functions in this memory requires an
additional process to load the stored data bits outside the
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Fig. 8. Computational memory architecture.

memory. These additional load operations are at odds with
the concept of computation inside the memory. To over-
come these load operations, we propose the use of two cou-
pled MOL memories (MOL-memory-A and MOL-memory-B)
which work in a complementary manner. At each time step,
one of these memories acts as a source of input data-bits of
the second memory. The second memory performs MOL with
the previously stored bits in its memristive crossbar. Fig. 8
illustrates our proposed computational-memory architecture.
The architectures of MOL-memory-A and MOL-memory-B
are identical. A controlled inverting driver (INV) is added after
the sensing stages of the two memories. The function of this
driver is to achieve a complete logic, as the OR and AND
logic operations supported by the memories are not universal.
Therefore, additional NOT operation is required to allow the
description of any Boolean function. The architecture of INV
is illustrated in Fig. 7(d). A 1-bit barrel shift driver (BSD) is
added to enable bit-level operations in addition to vector-level
operations. The BSD is responsible for ensuring switchable
connections between the two memory blocks. It can be recon-
figured either to pass the data bits or to shift them on the fly
with no need for an additional cycle. The architecture of the
BSD is presented in Fig. 7(e). The proposed MOL-memory
architecture presented in Fig. 8 is capable of performing
numerous operations including logic computation and storage.
Table I lists the most important (not all) operations that could
be achieved. For each listed operation, a set of appropriate

commands are simultaneously sent to the blocks constituting
the architecture. A single operation requires one computational
step. As an example, case 19 in Table I corresponds to the
arithmetic operation expressed in the following equation:

MB (n) = MB (n) AND MA(m) (3)

where MA(m) and MB (n) are the bit-vectors located at the
addresses m and n corresponding for MOL-memory-A and
MOL-memory-B, respectively. In this case, MOL-memory-A
is set to the read mode. It reads the bit-vector MA(m), which
undergoes a bitwise inversion through INV block. The 1-bit
shifter is disabled. Simultaneously, MOL-memory-B is set to
the overwrite mode to perform MOL-AND with the vector
MB (n). The result of the bitwise logic operation replaces the
previous vector MB (n). The process is performed during one
computational step.

B. Performing General Arithmetic Tasks

Generally, an arithmetic function (e.g., addition, subtraction,
compare, and so on) could be expressed in Boolean form.
Accordingly, breaking the Boolean form into several MOL
operations allows its execution inside the proposed computa-
tional memory. The execution of an arbitrary Boolean function
requires several computational steps, thus MOL operations
are executed iteratively to finalize the desired arithmetic task.
For this purpose, an external controller, which arranges these
iterative operations, is needed. Fig. 9 shows the block diagram
which illustrates the general structure of the memory and the
controller. When the controller receives an instruction from the
processor, it decides whether the role of the memory is for stor-
age or computation. Specifically, for the case of computation,
the controller breaks the received macroinstruction into several
iterative microinstructions, which can be performed by the
proposed memory. In our case, microinstructions correspond
to the set of operations listed in Table I. A processing area
should be reserved in each of MOL-memory-A and MOL-
memory-B in the proposed computational memory. The area
could be dynamically changed according to the need (such
as the number of required tasks). Moreover, the location of
the processing area could be also changed periodically. The
reason for location change is to attain better endurance for
the memristive memory cells that are subjected to continuous
stress. The design of the controller is beyond the scope of this
article.

VI. MOL BASED IN MEMORY N -BIT FULL ADDITION

In this section, an N-bit full addition is considered as
a case study to evaluate the functionality of our proposed
computational memory architecture.

A. Proposed Iterative N-Bit Full Addition Process Dedicated
for Computational MOL-Memory

Generally, full adder is the basic digital building block
for several computational operations (i.e., addition, subtrac-
tion, and multiplication). Thus, implementing a full addition
process inside the memory is the first step toward in-memory
computing. The following equations present the well-known
expressions of the 1-bit full addition:

S = A ⊕ B ⊕ Cin (4)

Cout = AB + BCin + ACin (5)
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TABLE I

ENCODING TABLE

Fig. 9. Architecture diagram of MOL-based computational memory with its
dedicated control unit.

where A and B are the inputs, Cin is the input carry value,
S is the 1-bit adder output, and Cout is the output carry. The
operator ⊕ corresponds to the Boolean XOR. Assume that all
the inputs are initially stored in the memory. The Boolean
functions of S and Cout are written in the form of the sum of
products (SoP) so that their expressions could be mapped into
the proposed computational memory using sequential MOL
operations. The inputs of a given MOL operation should
be aligned on the same columns (i.e., same BLs) in the
memory; otherwise, a preshifting process is required to align
the corresponding inputs. Accordingly, the number of steps
required to achieve the computation of S and Cout is affected
by the relative positions of the input A, B , and Cin inside the

memory. In order to minimize the number of computational
steps as well as reserve the minimum possible processing area,
a dedicated N-bit addition process is proposed. The process
uses a specific sequence of each operation listed in Table I.
Consider the two N-bit vectors AN and B N . The addition
of AN and B N leads to the vector sum SN+1. Normally,
the additional 1 bit in SN+1 is reserved for the expected
overflow in the addition process. We propose to follow the
procedure illustrated in Algorithm 1 to achieve a vector level
addition of AN and B N .

1) Stage 1: The vector sum S0 which is of length N + 1 is
initialized by the bitwise XOR of AN and B N . Similarly,
the vector carry C0 of length N + 1 is initialized by the
bitwise AND of AN and B N . The expressions of S0 and
C0 are presented as follows:

S0 = A ⊕ B (6)

C0 = AB. (7)

2) Stage 2: Each time, a new vector sum Si+1 and a
vector carry Ci+1 are created based on their previous
values Si and Ci , respectively. The following equations
demonstrate the respective expressions of Si+1 and Ci+1.
This process is repeated N − 1 times:

Si+1 = Si ⊕ (Ci � 1) (8)

Ci+1 = Si (Ci � 1). (9)

The operator “�1” stands for the 1-bit shift to the left. At the
end of this iterative process, the final obtained vector SN−1
corresponds to the sum of AN and B N while CN−1 will be a
zero vector.

B. In-Memory N-Bit Full Addition Procedure

The proposed iterative N-bit addition process can be
mapped into the computational MOL-memory using the oper-
ations listed in Table I. Fig. 10 shows a space–time repre-
sentation of the N-bit full addition process, which is realized
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Fig. 10. Operations sequence for an in-memory N -bit addition process using MOL-memory.

Algorithm 1 N-Bit Addition Dedicated for Computation
Inside MOL-Memory

within MOL-memory-A and MOL-memory-B. For each com-
putational step, the new contents of the memories are listed
in a new single column in Fig. 10. Assume the case where
the two vectors AN and B N , which are subjected to addition,
are initially stored inside MOL-memory-A at the addresses m1
and m2, respectively. Additional two WLs have to be reserved
inside MOL-memory-B to attain the addition of AN and B N .
The two stages that are presented in Section VI-A are realized
as follows.

1) Stage 1: Corresponds to the steps between 0 and 5 using
the six micro-operations that have the sequence order
shown in Fig. 10. At the end of this stage, the bitwise
AND of A and B (i.e., C0 = AB) is stored in MOL-
memory-A while the XNOR of A and B (i.e., S0 =
A ⊕ B) is stored in MOL-memory-B.

2) Stage 2: In this stage, the steps between 6 and 11 are
repeated N −1 times. Their corresponding microinstruc-
tions have the sequence order shown in Fig. 10. Each
time, the initial vector Ci is shifted to the left by one bit
and the resulting vector undergoes bitwise AND with the
initial vector Si . The obtained result is referred as Ci+1,
whose expression is presented in (9). Simultaneously,
the shifted version of Ci undergoes bitwise XNOR with
the initial vector Si to obtain the new vector sum Si+1.
At the end of this process, the vector SN−1 is stored in
MOL-memory-B. Thus, an additional step is required
to make a bitwise inversion of the obtained vector.
The resulting vector SN−1, which represents the N-bit
addition of the vectors A and B , is stored in MOL-
memory-A.

C. Space–Time Analysis of the N-Bit Addition Process

The total number of computational steps required to com-
plete the N-bit addition is 6N + 1 steps as shown in Fig. 10.
The total number of memristors reserved for the execution of

the N-bit addition is 4N memristors corresponding to four
rows of the MOL-memory architecture. These rows include
the initial locations of A and B , although the initial bits
of the vectors A and B are lost. However, in some cases,
the destruction of the input vectors is undesired, especially
when these inputs are required for other computational tasks.
In order to avoid this case, precopy operations of the two
input vectors A and B could be performed to reserve safe
versions of these vectors. Thus, two additional computational
steps are required for this case and the new total number
of computational steps becomes 6N + 3. The considered
operation sequence in Fig. 10 corresponds to the case where A
and B are both located in MOL-memory-A. However, other
two cases should also be considered: 1) if A and B belong
to different MOL-memories, one additional precopy operation
could be performed to drag the input vector contained in
MOL-memory-B to MOL-memory-A and 2) if A and B are
both contained in MOL-memory-B, two additional precopy
operations are needed to drag them to MOL-memory-A.
These precopy operations are performed to maintain the same
operation sequence, which is presented in Fig. 10. Precopy
operations can be avoided with different sequences (one for
each case, with common parts).

VII. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we study the performance of the proposed
computational memory architecture which is implemented
using a realistic model of magnetic tunnel junction (MTJ)
device and a CMOS 65-nm technology node. The study
includes timing analysis, energy consumption, and robustness
against device variability.

A. Adopted Memristive Device

Several memristive devices have been explored in the lit-
erature. In fact, the MOL technique could apply to all types
of bipolar memristive devices holding two resistance states
Ron and Roff . Among these devices, memristors such as HfOx
[38] and TiO2 [32] exhibit promising characteristics with their
high switching speed (subnanosecond) and their high Roff/Ron
ratio (>100). However, current memristor technologies suffer
from endurance limitations. Although several efforts have been
carried out to enhance endurance [38], the allowed number of
switchings per memristor is still limited in the range of 106–
1012 for the best case. This value is relatively low for target-
ing intensive computations inside memristive crossbars. The
spin-transfer torque magnetic memory (STT-MRAM) [39],
which has been redescribed in terms of memristive systems
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Fig. 11. Typical MTJ. (a) Core structure. (b) Resistance variation.

[40], is considered as one of the most promising nonvolatile
memories (NVMs). STT-MRAM is eligible for high-reliability
applications [41] due to its high endurance (>1015) [32].
As illustrated in Fig. 11, an MTJ cell is mainly composed
of two ferromagnetic layers sandwiching an ultrathin tunnel
barrier. The resistance of the MTJ cell depends on the relative
orientation of magnetization in the free and reference layers.
The low-resistance state (logic “0”) of the MTJ corresponds
to the parallel configuration (P) with resistance RP , while
its high resistance state (logic “1”) is reached in the case
of antiparallel (AP) configuration with resistance RAP. The
magnitude of the applied current I must exceed a critical value
noted as IC0 to allow switching. In contrast to memristors,
MTJs are characterized by a relatively low margin between RP

and RAP. The corresponding margin is commonly evaluated as
the tunnel magnetoresistance (TMR) ratio, whose expression
is presented in the following equation:

TMR = �R

RP
= RAP − RP

RP
. (10)

However, such a low margin has no effect on switching an
MTJ cell but on the corresponding sensing mechanism of the
state of this cell. This requires a more complicated sensing
driver to estimate and decide the corresponding state of a
given selected row inside the memory. In this work, we have
used MTJs with perpendicular magnetic anisotropy (PMA).
The adopted PMA MTJ is formed of CoFeB/MgO/CoFeB
layers. The physical model describing the static, dynamic,
and stochastic behaviors of the STT-PMA-MTJ is presented
in [42] and [43]. In order to fit with experimental results
in the literature, the technology parameters corresponding
to the material composition are kept at their default values.
Other parameters, which depend on the designers’ choice,
are presented in Table II with their corresponding values. It
is worth highlighting that the low TMR value of the adopted
STT-PMA-MTJ device usually leads to a high complexity
of SAs when the memory data need to be readout. However,
in our case, the proposed simple design comprised of three
cascaded inverters and a reference resistor was verified to be
sufficient when combined with the designed INV and BSD
blocks (Fig. 7). In fact, these two CMOS-based blocks are
leveraged in order to perfectly regenerate the voltage levels
corresponding to the amplified output of the cascaded invert-
ers. Fig. 12 shows the switching behavior of an MTJ device
when it is fed with a square signal of amplitude 1.2 V. τAP−P
and τP−AP correspond to the switching delays from AP to
P state and the reverse case, respectively. In fact, switching
delay varies according to the applied voltage level. Fig. 13
illustrates the variation of τAP−P and τP−AP with respect to the
applied voltage level. The graph indicates that switching delay
decreases with the increase of the voltage while switching

TABLE II

ADOPTED VARIABLES AND PARAMETERS FOR PMA MTJ DEVICE

Fig. 12. Switching behavior of MTJ device when fed with square signal.

Fig. 13. Switching delay of an MTJ cell as function of applied voltage level.

from P to AP state is faster than the reverse operation
(i.e., τAP−P < τP−AP).

The choice of the memristive device type is not constrained
by a specified MOL requirement. It can be observed from
the mechanism of the MOL technique that it involves direct
access to the terminals of memristive devices which highly
resembles conventional write operation. During the operation
of MOL, the potential difference between the terminals of the
memristive device always attains a binary level. Accordingly,
MOL can be implemented in a wide range of memristive
memories without specifying particular device features. In
contrast, the structure of preexisting logic design styles either
establishes a series connection of a resistor (e.g., IMPLY) or
series connection of the memristive devices (e.g., MAGIC)
for normal operation. This undoubtedly prevents direct access
to the memristive device terminals and consequently imposes
specific device constraints, such as the requirement of suf-
ficient HRS/LRS ratio and/or operated with threshold-type
devices only.

B. Performance Analysis

A transient simulation has been conducted for the proposed
design of the MOL-memory architecture. Based on the
adopted STT-PMA-MTJ device and the CMOS 65-nm
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Fig. 14. Transient simulation for the in-memory 8-bit addition process.

process, simulations have been carried out using Cadence
Virtuoso toolset. In order to evaluate the performance of
the architecture, the N-bit addition process described in
Section VI is performed. The size of the crossbar is chosen
to be 8 × 8 for MOL-memory-A as well as MOL-memory-B.
The size N is chosen to be 8 bits for both numbers A and
B . The corresponding operating voltage is set to 1.2 V for
logic “1” and −1.2 V for logic “0.” Based on the obtained
transient results, total latency is evaluated as well as the total
energy consumption. As an example, Fig. 14 presents the
corresponding internal states of the four WLs that are reserved
for the 8-bit addition process, which is performed on the two
arbitrary vectors A = [01011011] and B = [00111111]. The
control signals of the MOL-memory architecture follow the
operation sequence presented in Fig. 10.

1) Timing Analysis: The first two steps correspond to the
initialization of vectors A and B inside MOL-memory-A. The
corresponding sum S = [10011010] is evaluated after 6N + 1
computational steps which is equal to 49 for N = 8. In fact,
the max delay is noticed to be τMax = 1.7 ns which is greater
than the max switching delay of MTJ devices operating at
1.2 V. This is due to the voltage drop noticed along CMOS
drivers. The actual voltage supplied to MTJ devices is 0.9 V
(could be interpreted from Fig. 13). This significant voltage
drop (25%) is due to the adoption of low values of RP and
RAP. Moreover, the width W of MOSFETs has a direct effect
on the voltage drop percentage. This voltage drop could be
mitigated by increasing W , but this induces overheads on the
total area of CMOS drivers.

Therefore, the duration (T ) of each computational step
must be greater than τMax. The variability in τMax due to
the stochastic switching behavior of MTJs should also be
considered. Thus, an additional guard interval (τg) is intro-
duced to guarantee the switching of the MTJs. The resulting
step duration for the proposed MOL-memory architecture is
T = τMax + τg = 1.7 + τg . We set τg at 100 ps which
corresponds to 6% of τMax, so the duration T is equal to
1.8 ns. The minimum time required for finalizing the addition
operation (neglecting the two initialization steps) is evaluated
as 49 × 1.8 ns = 88.2 ns.

2) Robustness Against Resistance Variability: Due to the
limit of the manufacturing technology, the actual thickness
of the oxide layer and the free layer of MTJ devices cannot

be fixed at a constant value. They typically vary in a small
range but can lead to a relatively important variation in the
values of LRS and HRS of MTJ. Therefore, we have examined
the effect of MTJ resistance variability on the performance of
our proposed MOL-based computational memory architecture.
Simulations are conducted by performing the 8-bit addition.
The adopted MTJ parameters TMR, tsl, and tox are kept as
presented in Table II while subjecting them to a random
process. The parameters are chosen to follow either uniform
or Gaussian distribution. In Gaussian distribution, no error has
been detected even when reaching a variation percentage of
21% for TMR, tsl, and tox. As for uniform distribution, the tol-
erated variation reaches 7%. This demonstrates the robustness
of the proposed design against the resistance variability of
MTJ devices.

3) Energy Estimation: Energy consumption differs accord-
ing to the operation: read, write, or performing computation.
In this section, we will focus on the energy consumed by
the memristive crossbar of the MOL-memory architecture
neglecting the consumed energy by the peripheral drivers.

a) Write-energy: Consider a single MTJ device located
inside MOL-memory architecture. The energy consumed when
a single bit is written into this MTJ device mainly depends on
its previous resistance state (RP or RAP) and its final one.
Hence, the four cases for write-energy are considered in the
following equation:

Ew0/0 = Vw
2

R�
AP

T

Ew0/1 = Vw
2

R�
AP

τAP−P + Vw
2

R�
P

(T − τAP−P )

Ew1/0 = Vw
2

R�
P

τP−AP + Vw
2

R�
AP

(T − τP−AP)

Ew1/1 = Vw
2

R�
P

T (11)

where Ewi/ j corresponds to the write-energy needed to put the
MTJ device in state i ∈ {0, 1}, after it was in the previous
state j ∈ {0, 1}; Vw and T are the write voltage and write
duration, respectively; R�

AP and R�
P represent the resistance

states of 1T1M cell. R�
AP = RAP+RMOS and R�

P = RP +RMOS.
Generally, the values of i and j are not deterministic, but the
four cases presented in (11) are considered as equiprobable,
since there is no preknowledge about the data bits inside
the memory as well as the bits that would be written. Thus,
the average write-energy is estimated as the average sum of the
four write-energy cases as presented in the following equation:

Ew = 1

4

∑
i, j

Ewi/ j = Vw
2

R�
AP

(
T

2
− �τ

4

)
+ Vw

2

R�
P

(
T

2
+ �τ

4

)

(12)

where �τ = τP−AP − τAP−P . Assuming that the term (�τ/4)
is almost negligible compared to (T/2), the overall expression
in (12) is simplified as

Ew ≈ Vw
2

2Rw
T with Rw = R�

P R�
AP

R�
P + R�

AP

. (13)

Rw represents the equivalent resistance of two MTJs having
opposite states and connected in parallel.
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TABLE III

ENERGY CONSUMED BY A COMPUTATIONAL OPERATION

b) Read-energy: Reading a single MTJ device requires a
sensing voltage Vr and a reference resistor RRef connected in
series with a MOSFET. The total resistance of this 1T1R cell
is R�

Ref . The corresponding state of the sensed MTJ device is
assumed to be stable. The two possible cases for read-energy
are presented in the following equation:

Er0 = Vr
2

R�
AP + R�

Ref

T

Er1 = Vr
2

R�
P + R�

Ref

T (14)

where Er0 and Er1 represent the required energy consumption
for sensing AP and P states, respectively, during a period
T . The corresponding average read-energy is expressed in the
following equation:

Er = Vr
2

2Rr
T with Rr =

(
R�

P + R�
Ref

)(
R�

AP + R�
Ref

)
(
R�

P + R�
Ref

) + (
R�

AP + R�
Ref

) .

(15)

c) Computation-energy: Computational operations that
are performed inside MOL-memory architecture are classified
into MOL or copy operations. Table III summarizes the energy
consumed by each type of operation. Using the specifications
of the adopted MTJ which are listed in Table IV, the average
energy consumed by an MOL operation could be expressed as
EMOL = Ew/2 + Er = 0.196 pj whereas that consumed by a
copy operation is calculated as ECOPY = Ew + Er = 0.333 pj .

Normally, computation inside MOL-memory architecture is
performed on N bits simultaneously. For the N-bit addition
process which is performed within 6N + 1 cycles, 3N cycles
corresponds to MOL operations while 3N + 1 cycles corre-
sponds to copy operations. Thus, the overall consumed energy
(ET ) could be expressed as in the following equation:

ET = (3N)(N EMOL) + (3N + 1)(N ECOPY). (16)

By substituting the corresponding values of EMOL and ECOPY
presented in Table III, the expression of the total energy
becomes ET = 1.587N2 + 0.333N . Specifically, for the 8-bit
addition process, ET is equal to 104.2 pJ. The value of the
energy consumption extracted by simulation is 124.43 pJ.

VIII. COMPARISON

In this section, the proposed MOL-memory architecture has
been compared with recently published relevant designs (listed
in Table V) targeting in-memory computing. The comparison
has been carried out based on the performance of N-bit
addition in terms of latency, energy consumption, and utilized
area. Note that the considered area incorporates only the
memristors involved in the computation regardless of the size
of the crossbar.

TABLE IV

SPECIFICATIONS

4) MOL Versus IMPLY and MAGIC:

1) Except for the parallel approach in [10], our proposed
design, which uses only 6N + 1 steps to perform
addition, outperforms all IMPLY- and MAGIC-based
designs listed in Table V in terms of number of com-
putational steps. In fact, [10] uses the parallel approach
which is intended to increase the level of parallelism
in computation. However, this approach requires signif-
icant modifications in the crossbar structure by adding
connections between its rows. This leads to an increased
area compared to the conventional crossbar structure.

2) The step delay in our proposed design is 1.8 ns.
Although the designs presented in [12], [13], and [30]
adopt memristive devices that provide better step delay
(1.12 to 1.43 ns), the total latency in our proposed design
is still the minimum (10.8N + 1.8 ns). The best case
achieved with the competitor designs is recorded in [12]
with 13N + 3.9 ns (i.e., ∼20% more latency).

3) In the proposed design, 4N memristors participate
in the execution of the N-bit addition. This number
ranges from 11N − 1 to 24N for the majority of
the designs based on MAGIC, so our proposed design
exhibits ×1.75 to ×5 area reduction. On the other hand,
the IMPLY-based serial approach [10], MAGIC-based
area optimized design [12], and the design presented
in [11] use a fixed number of memristors to perform
addition operation. In other words, the required num-
ber of memristors is independent of the size N of
the addition operation. This area optimization comes
at the cost of a high number of computational steps
(×2.5 to ×18.8).

4) The average energy consumed in picojoule for the mem-
ristive crossbar in our design is 1.5867N2 + 0.333N .
This quadratic expression indicates a significant energy
consumption in the order of ×N as compared to the
linear energy expressions of the other designs listed in
the table. The reason for this energy gap is that for
each step, the same bitwise operation is performed on
the whole WL (size N). However, the other approaches
from the literature perform 1-bit operation in each step.
Although our methodology induces overheads on the
total energy consumption, working on the vector level
rather than bit level greatly simplifies the corresponding
control unit and reduces its complexity.

5) MOL Versus MAJ and CRS:

1) Logic representation using MIGs has experimentally
shown promising results in logic optimization [44].
Memristive devices can efficiently execute the intrin-

Authorized licensed use limited to: Linkoping University Library. Downloaded on August 09,2020 at 18:17:54 UTC from IEEE Xplore.  Restrictions apply. 

162 CHAPTER 6. FLEXIBLE AND EFFICIENT ARCHITECTURES BASED ON MEMRISTIVE TECHNOLOGIES

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

COMPARISON OF DIFFERENT LOGIC FAMILIES FOR N -BIT ADDITION IN TERMS OF AREA, LATENCY, AND ENERGY CONSUMPTION

sic resistive MAJ operation. Shirinzadeh et al. [15]
and Gaillardon et al. [23] present a programmable
in-memory computing system, namely, programmable
logic-in-memory (PLiM). The instruction set for the
PLiM architecture is based on the MAJ operation. As
investigated in [15], the number of required memristors
for the addition is ∼ 2N , which is equal to 50% of
that in our approach. However, the execution of an
N-bit addition inside PLiM requires 15N cycles for
the best case, which is ×2.5 the number of cycles
required in our proposed design. This high number
of computational steps is related to the repeated read-
out operations of intermediate results, which impacts,
in addition, the step delay and energy consumption
(not evaluated in [15]).

2) The number of computational steps achieved in [16],
which uses the CRS approach, is less than that of our
proposed computational memory. However, other para-
meters, such as the step delay which is not investigated
by the authors, are expected to be greater. This is due
to the fact that the presented architecture, based on two
separate memory blocks, uses an intermediate control
unit which reads data bits from one memory block and
redistributes them along with BLs and WLs of the other
memory block. This process increases significantly the
overall critical path and consequently the step delay.
The number of memristive cells required in [16] is also
less than that in our proposed design. However, it is
clear that based on this approach, the reserved area
corresponds to a fixed location inside the memory, as the
input bits cannot be shared with all WLs especially
for large memory sizes. This affects the endurance of
memristive cells participating in the computation which
are subjected to continuous stress.

As explained in Section V-B, the proposed memristive
computational memory can perform any general arithmetic
function by breaking it into a netlist of iterative MOL
operations. As MOL is based on the primitive AND/OR
operations, the ABC tool [45], which has been employed for
existing logic design styles [30], [31], could be also leveraged
in order to realize the synthesis task. This will be considered
in our future work.

IX. CONCLUSION

In this article, the MOL design style is introduced together
with an original architecture for MOL-based computational
memory. This novel logic design style is inspired by a digi-
tal representation of memristors. Unlike existing approaches,
MOL can operate with different memristor technologies,
regardless of LRS-HRS margin and with linear as well as
threshold-type memristive devices. Furthermore, the proposed
original computational memory architecture, with appropri-
ate drivers and control sequences, allows the execution of
numerous logic operations, at bit or vector level, in one
or two computational steps at most. In order to illustrate
the benefits of the proposed approach and to evaluate its
performances, the implementation of an N-bit full addition
using the proposed MOL-based computational memory has
been detailed. The design is simulated in the Cadence Virtuoso
environment using a CMOS 65-nm process and realistic model
parameters of the STT-PMA-MTJ device. Results compari-
son with existing recent approaches demonstrates significant
reductions in terms of latency and area.

REFERENCES

[1] L. Chua, “Memristor—The missing circuit element,” IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, p. 80, 2008.

[3] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and
E. G. Friedman, “MRL—Memristor ratioed logic,” in Proc. Int. Work-
shop Cellular Nanosc. Netw. Their Appl., 2012, pp. 1–6.

[4] J. Chowdhury, K. Das, and K. Rout, “Implementation of 24T memristor
based adder architecture with improved performance,” Int. J. Electr.,
Electron. Data Commun., vol. 3, no. 6, pp. 91–94, 2015.

[5] K. A. Ali, M. Rizk, A. Baghdadi, J.-P. Diguet, and J. Jomaah, “MRL
crossbar-based full adder design,” in Proc. 26th IEEE Int. Conf. Elec-
tron., Circuits Syst. (ICECS), Nov. 2019, pp. 674–677.

[6] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, pp. 529–544, Mar. 2020.

[7] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17,
no. 2, pp. 34–44, Apr. 1997.

[8] S. Khoram, Y. Zha, J. Zhang, and J. Li, “Challenges and opportunities:
From near-memory computing to in-memory computing,” in Proc. ACM
Int. Symp. Phys. Design, Mar. 2017, pp. 43–46.

[9] S. Hamdioui et al., “Applications of computation-in-memory architec-
tures based on memristive devices,” in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2019, pp. 486–491.

Authorized licensed use limited to: Linkoping University Library. Downloaded on August 09,2020 at 18:17:54 UTC from IEEE Xplore.  Restrictions apply. 

6.5. MEMRISTOR OVERWRITE LOGIC (MOL) FOR IN-MEMORY COMPUTING 163

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALHAJ ALI et al.: MEMRISTIVE COMPUTATIONAL MEMORY USING MEMRISTOR OVERWRITE LOGIC (MOL) 13

[10] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[11] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2009, pp. 33–36.

[12] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided loGIC (MAGIC),” IEEE
Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650, Jul. 2016.

[13] P. Thangkhiew, R. Gharpinde, D. N. Yadav, K. Datta, and I. Sengupta,
“Efficient implementation of adder circuits in memristive crossbar array,”
in Proc. IEEE Region 10 Conf. (TENCON), Nov. 2017, pp. 207–212.

[14] P. L. Thangkhiew, R. Gharpinde, P. V. Chowdhary, K. Datta, and
I. Sengupta, “Area efficient implementation of Ripple Carry adder using
memristor crossbar arrays,” in Proc. 11th Int. Design Test Symp. (IDT),
Dec. 2016, pp. 142–147.

[15] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drech-
sler, “Logic synthesis for majority based in-memory comput-
ing,” in Advances in Memristors, Memristive Devices and Sys-
tems. Cham, Switzerland: Springer, 2017. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-51724-7_17#citeas

[16] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 5, no. 1, pp. 64–74, Mar. 2015.

[17] C.-X. Xue et al., “A 1 Mb multibit ReRAM computing-in-memory
macro with 14.6 NS parallel MAC computing time for CNN based AI
edge processors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2019, pp. 388–390.

[18] W.-H. Chen et al., “A 16 Mb dual-mode ReRAM macro with sub-
14ns computing-in-memory and memory functions enabled by self-write
termination scheme,” in IEDM Tech. Dig., Dec. 2017, pp. 28.2.1–28.2.4.

[19] C.-X. Xue et al., “A 22 nm 2 Mb ReRAM compute-in-memory macro
with 121-28TOPS/W for multibit MAC computing for tiny AI edge
devices,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2020, pp. 244–246.

[20] W.-H. Chen et al., “CMOS-integrated memristive non-volatile
computing-in-memory for AI edge processors,” Nature Electron., vol. 2,
no. 9, pp. 420–428, Sep. 2019.

[21] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[22] X. Fang and Y. Tang, “Circuit analysis of the memristive stateful impli-
cation gate,” Electron. Lett., vol. 49, no. 20, pp. 1282–1283, Sep. 2013.

[23] P.-E. Gaillardon et al., “The programmable logic-in-memory (PLiM)
computer,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,
pp. 427–432.

[24] D. Biolek, V. Biolkova, and Z. Biolek, “Pinched hysteretic loops of ideal
memristors, memcapacitors and meminductors must be ‘self-crossing,”’
Electron. Lett., vol. 47, no. 25, pp. 1385–1387, Dec. 2011.

[25] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “An energy-efficient
memristive threshold logic circuit,” IEEE Trans. Comput., vol. 61, no. 4,
pp. 474–487, Apr. 2012.

[26] L. Guckert and E. E. Swartzlander, “MAD gates—Memristor logic
design using driver circuitry,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 64, no. 2, pp. 171–175, Feb. 2016.

[27] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser,
“Beyond von Neumann—logic operations in passive crossbar arrays
alongside memory operations,” Nanotechnology, vol. 23, no. 30, 2012,
Art. no. 305205.

[28] K. C. Rahman, D. Hammerstrom, Y. Li, H. Castagnaro, and
M. A. Perkowski, “Methodology and design of a massively parallel
memristive stateful IMPLY logic-based reconfigurable architecture,”
IEEE Trans. Nanotechnol., vol. 15, no. 4, pp. 675–686, Jul. 2016.

[29] R. Ben Hur and S. Kvatinsky, “Memristive memory processing unit
(MPU) controller for in-memory processing,” in Proc. IEEE Int. Conf.
Sci. Electr. Eng. (ICSEE), Nov. 2016, pp. 1–5.

[30] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta, “A scalable
in-memory logic synthesis approach using memristor crossbar,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 2, pp. 355–366,
Feb. 2018.

[31] P. L. Thangkhiew, R. Gharpinde, and K. Datta, “Efficient mapping of
Boolean functions to memristor crossbar using MAGIC NOR gates,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 8, pp. 2466–2476,
Aug. 2018.

[32] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, no. 1, p. 13, 2013.

[33] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819,
May 2016.

[34] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectron. J., vol. 44, no. 2, pp. 176–183, Feb. 2013.

[35] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2013, pp. 156–160.

[36] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for RRAMs,” Proc. IEEE, vol. 100, no. 6, pp. 2021–2032,
Jun. 2012.

[37] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects,” AAPPS Bull., vol. 18, no. 6, pp. 33–40, 2008.

[38] H. Lee et al., “Evidence and solution of over-reset problem for
HfOx based resistive memory with sub-ns switching speed and high
endurance,” in IEDM Tech. Dig., Dec. 2010, pp. 19.7.1–19.7.4.

[39] S. Ikeda et al., “A perpendicular-anisotropy CoFeB–MgO magnetic
tunnel junction,” Nature Mater., vol. 9, no. 9, p. 721, 2010.

[40] X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, “Spintronic memris-
tor through spin-torque-induced magnetization motion,” IEEE Electron
Device Lett., vol. 30, no. 3, pp. 294–297, Mar. 2009.

[41] T. Hanyu et al., “Standby-power-free integrated circuits using MTJ-
based VLSI computing,” Proc. IEEE, vol. 104, no. 10, pp. 1844–1863,
Oct. 2016.

[42] Y. Wang, Y. Zhang, E. Y. Deng, J. O. Klein, L. A. B. Naviner, and
W. S. Zhao, “Compact model of magnetic tunnel junction with stochas-
tic spin transfer torque switching for reliability analyses,” Microelectron.
Rel., vol. 54, nos. 9–10, pp. 1774–1778, Sep. 2014.

[43] Y. Wang, H. Cai, L. A. B. Naviner, Y. Zhang, J. O. Klein, and
W. S. Zhao, “Compact thermal modeling of spin transfer torque
magnetic tunnel junction,” Microelectron. Rel., vol. 55, nos. 9–10,
pp. 1649–1653, Aug. 2015.

[44] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. IEEE Design Autom. Conf. (DAC), 2014, pp. 1–6.

[45] ABC—A System for Sequential Synthesis and Verification. (2005).
Berkeley Logic Synthesis and Verification Group. [Online]. Available:
https://people.eecs.berkeley.edu/~alanmi/abc/

Authorized licensed use limited to: Linkoping University Library. Downloaded on August 09,2020 at 18:17:54 UTC from IEEE Xplore.  Restrictions apply. 

164 CHAPTER 6. FLEXIBLE AND EFFICIENT ARCHITECTURES BASED ON MEMRISTIVE TECHNOLOGIES

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

MOL-Based In-Memory Computing of
Binary Neural Networks

Khaled Alhaj Ali , Amer Baghdadi , Senior Member, IEEE, Elsa Dupraz , Member, IEEE,

Mathieu Léonardon , Member, IEEE, Mostafa Rizk , and Jean-Philippe Diguet , Senior Member, IEEE

Abstract— Convolutional neural networks (CNNs) have proven
very effective in a variety of practical applications involving
artificial intelligence (AI). However, the layer depth of CNN
deepens as user applications become more sophisticated, resulting
in a huge number of operations and increased memory size.
The massive amount of the produced intermediate data leads to
intensive data movement between memory and computing cores
causing a real bottleneck. In-memory computing (IMC) aims
to address this bottleneck by directly computing inside memory,
eliminating energy-intensive and time-consuming data movement.
On the other hand, the emerging binary neural networks (BNNs),
which is a special case of CNN, show a number of hardware-
friendly properties, including memory saving. In BNN, the
costly floating-point multiply-and-accumulate is replaced with
lightweight bitwise XNOR and popcount operations. In this
article, we propose an IMC programmable architecture targeting
efficient implementation of BNN. Computational memories based
on the recently introduced memristor overwrite logic (MOL)
design style are employed. The architecture, which is presented
in semiparallel and parallel models, efficiently executes the
advanced quantization algorithm of XNOR-Net BNN. Perfor-
mance evaluation based on the CIFAR-10 dataset demonstrates
between 1.24× and 3× speedup and 49% and 99% energy
saving compared to state-of-the-art implementations and up to
273-image/s/W throughput efficiency.

Index Terms— Binary neural networks (BNNs), convolutional
neural networks (CNNs), in-memory computing (IMC).

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) are the cur-
rent state of the art for many computer vision tasks, such

as image classification, detection, and localization [1], [2].
In particular, there is an increasing focus on the deployment of
CNN in mobile systems, the Internet of Things (IoT) devices,
and embedded chips for the mass market [3]. The main
challenge that limits the integration of CNN in such systems
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is the requirement for a substantial amount of computation
and memory. For instance, the VGG-19 network exhibits over
140 million floating-point (FP) parameters and requires more
than 15 billion FP operations in order to classify one image [4].
Embedding such networks in traditional cores that deploy the
von Neumann model (e.g., CPUs and GPUs) poses significant
problems in terms of execution speed and power consumption.
Massive intermediate data are produced during CNN execution
revealing intensive I/O data congestion between memory and
processing cores causing a real bottleneck.

Various prior works have been proposed to alleviate the
hardware burdens in the von Neumann model in order to
get better CNN inference performance. Two of the most
promising solutions are network binarization [5]–[7] and in-
memory computing (IMC) [8]. Network binarization or binary
neural networks (BNNs) quantize all the weights and/or
inputs to +1 and −1, providing a promising solution to
mitigate storage and computation bottlenecks. In the resulting
BNN, each convolution is processed by simple bitwise oper-
ations (XNORs and popcounts) instead of the multiply-and-
accumulate (MAC). While BNNs are compact and efficient
for resource-constrained devices, a degradation in accuracy
is inevitable compared to their full precision counterparts.
However, recent works have been carried out to reduce the
decline in accuracy [5]. For instance, Courbariaux et al. [9]
demonstrated only 3% loss in accuracy when applying BNN
to the CIFAR-10 dataset. For the larger ImageNet dataset,
Lin et al. [10] achieved promising results where the accuracy
loss is around 5%.

On the other hand, IMC is one of the emerging techniques
that address the memory wall problem encountered in the con-
ventional von Neumann model [11], [12]. By merging process-
ing cores and the memory component into a single unit, IMC
allows to perform a part of the computation inside the memory,
thus eliminating the need for data exchange. Although IMC
is an old concept [8], it has been revisited recently with the
advent of emerging nonvolatile memory (NVM) technologies
where computing is efficiently enabled on the storage cells,
directly on the data location. Several recent IMC architec-
tures [13]–[15] have been developed based on NVM technolo-
gies, such as resistive memory (RRAM), magnetic memory
(MRAM), and phase-change memory (PCM). Usually, IMC
breaks arithmetic tasks into elementary logic operations that
are successively executed within the memory cells. Although
IMC can execute any arithmetic task, some tasks may be more

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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efficiently performed in classical CMOS implementations.
In this case, dedicated near-memory units are usually added
to handle such tasks. More recently, a computational mem-
ory (CMEM) architecture [13] based on memristor overwrite
logic (MOL) design style has shown promising performance in
terms of execution speed and throughput efficiency, especially
for bitwise application tasks.

In fact, there is a great synergy between IMC and BNNs
when they are combined: the low logic complexity of BNNs
makes them well suited for in-memory implementation. In this
context, we propose a novel MOL-based in-memory architec-
ture design dedicated for BNNs. The related contributions can
be listed as follows.

1) The proposed architecture efficiently implements a par-
allel rowwise in-memory XNOR-based convolution.

2) A novel mechanism for combining in-memory and near-
memory execution is proposed for certain operations
such as popcount and max pooling.

3) An original in-memory bubble sorting technique is intro-
duced to execute a majority binarization stage replacing
addition and normalization operations.

4) For evaluation, a python-based environment with appro-
priate library and commands has been developed by
emulating the functionality of the adopted MOL-based
CMEM and the corresponding control unit.

5) The new architecture is presented in the form of both
semiparallel and parallel models and exhibits the lowest
energy consumption compared to all existing relevant
works, including CPU, GPU, and field-programmable
gate array (FPGA).

6) The proposed parallel model reveals the lowest infer-
ence latency when compared to recent NVM-based
approaches due to the high level of parallelism offered
using MOL-based IMC.

The rest of this article is organized as follows. Section II
provides an overview on CNN, BNN, and the adopted
MOL-based IMC approach. Section III illustrates the devised
methodology and algorithms for realizing a BNN inside
the CMEM architecture. Section IV describes our proposed
semiparallel and parallel architectures that are dedicated for
BNNs. Section V presents the environment setup for perfor-
mance evaluation and discusses the achieved results. Finally,
Section VI concludes this article.

II. PRELIMINARIES

This section briefly reviews the basics of CNN and BNN.
In addition, it introduces the MOL-based IMC technique,
which is adopted in this article.

A. CNN

A CNN is a particular type of neural network. It usually
takes an image at the input and computes the probabilities
that the image features belong to one of the output classes.
Typically, a CNN consists of several convolutional and pooling
layers followed by fully connected (FC) layers, as shown
in Fig. 1(a). It has been shown that FC layers could be
equivalently replaced by convolutions [16].

Fig. 1. Structure of the CNN: (a) multiple layers of CNN including
convolution layer (CONV), pooling (POOL), and FC layer, and (b) illustration
on the convolution and the max-pooling operation.

1) Convolutional Layers: As shown in Fig. 1, a convolu-
tional layer takes an input feature map (Ifmap) represented by
a set of channels/matrices and convolves them with a particular
set of weights (called kernels) to generate an output feature
map (Ofmap). The transfer from Ifmap to Ofmap follows the
expression:

Ym = f

(
b +

N∑
n=1

Xn ∗ Wn,m

)
. (1)

In this expression, Xn represents an Ifmap channel of index
n (where n ∈ �1, N�) and Ym represents an Ofmap channel
of index m (where m ∈ �1, M�). M and N are the number
of channels of the Ifmap and Ofmap, respectively. Wn,m is a
k × k weight filter window linking Xn with Ym . The parameter
b is the bias. f represents the activation function.

2) Pooling Layers: Pooling is an important feature of CNN
as it reduces the dimensionality of a feature map while
maintaining the most important information [17]. It allows to
reduce the size of the network and the number of parameters
used, preventing overfitting. Considering the max pooling,
a spatial neighborhood (e.g., a 2 × 2 window) is defined. The
window is slided without overlapping on the Ofmap elaborated
by the convolutional layer. The largest element inside that
window is taken as an output. Another choice is to take the
average (average pooling) or the sum of all elements in that
window. In practice, max pooling has been shown to work
better [17]. An intuitive example of max pooling is shown in
Fig. 1(b).

B. BNN

The multiply–accumulate is the key and the most
computationally expensive arithmetic operation in classi-
cal CNN. BNNs have been introduced to alleviate the
need for these operations. This is achieved by forcing the
inputs/weights/gradients to have binary values, especially in
the forward propagation.

Various types of BNNs have been explored in the litera-
ture [9], [10], [18]. In this article, we adopt the XNOR-Net
[18] BNN, which offers significant simplifications and better
results than other binarization methods. In XNOR-Net, both the
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Fig. 2. BNN: (a) XNOR truth table and (b) XNOR-popcount process.

Fig. 3. Convolutional layer in a BNN followed by a pooling layer.

incoming activations and weight parameters of the convolu-
tional layers are constrained to a binary set {−1,1} except for
the first convolutional layer where the input is the image. For
efficient hardware mapping, the values −1 and 1 are encoded
to logic “0” and “1,” respectively. Then, multiplication of
weights and activations is achieved according to the XNOR

truth table, as shown in Fig. 2(a).
As shown in Fig. 2(b), the accompanied MAC operations

can be then replaced by a series of XNOR operations and a final
popcount (difference between the number of zeros and ones).
The result is then subjected to normalization and binarization
(Norm-bin). The convolutional layer in a XNOR-net BNN
is shown in Fig. 3 and can be modeled by the following
expressions:

yb
n,m = Norm-bin

(
Popcount

(
XNOR

(
W b

n,m, Xb
n

)))
(2)

Y b
m = Norm-bin

(
N∑

n=1

yb
n,m

)
(3)

where yb
n,m represents the output after convolving the nth

binary Ifmap Xb
n with its corresponding binary weight kernel

W b
n,m and Y b

m represents the mth Ofmap after adding and
binarizing all the N outputs yb

n,m .

C. MOL-Based IMC

1) In-Memory Computing: IMC has been widely explored
to overcome the memory wall by avoiding the long latency
originated from intensive exchange of data between host
processor and memory. From the device-level perspective,
emerging NVMs are promising for the implementation of
IMC. In this context, several recent contributions have been
proposed and can be classified into two categories. The first
category includes approaches that use the NVM cell as a
single-level cell (SLC) [13]–[15]. In the second category,
the authors have employed the NVM cell as a multilevel
cell (MLC) or analog cell [19]–[21]. MLC crossbars can
perform parallelized in situ operations by eliminating sequen-
tial memory accesses. MLC-based computing is promising
when targeting applications with intensive MAC operation
(e.g., CNN) [22]. However, a number of challenges remain
in terms of manufacturability and computational accuracy
regarding device variability, pattern-dependent current leakage,
and the area overhead of peripheral circuits [23]. In contrast,
the SLC approach involves a larger readout margin that
makes NVM cells much tolerant against process variation and
resistance drift effects.

Based on the SLC approach, various IMC techniques
have been introduced in the literature [14], [15]. All these
techniques attempt to realize arithmetic tasks inside NVM
arrays by performing successive elementary logic operations
on the stored data bits. For instance, the material implication
(IMPLY) [15] and the memristor-aided logic (MAGIC) [24]
have been introduced to enable in-place logic operations in
memristive crossbar arrays. Although promising results have
been demonstrated, these techniques present the following
limitations.

1) The performance of IMPLY and MAGIC is highly
dependent on the technology of the adopted NVM
device (e.g., requirement of high ON–OFF margin) [14],
[15]. Thus, they are not qualified for the operation
with spintronic devices such as spin-transfer-torque
(STT)-MRAMs.

2) The analysis in [25] reveals that IMPLY may incur
partial switching and significant state drift issues [14],
[15] of the NVM devices within the memory array.

3) The corresponding basis functions provided by IMPLY
and MAGIC are not diverse enough to allow fast logic
mapping with a minimum number of computational
cycles.

Other IMC techniques, such as the sensing-based computing,
that is introduced in [26], has gained large interest for its
ease of implementation and the ability to execute diverse types
of bitwise operations. Sensing-based computing redesigns the
read circuitry so that it can compute the bitwise logic of two or
more memory rows. Although fast, this technique involves a
relatively high precision read circuitry that is based on sensing
amplifiers (usually Op-Amps) employed as comparators. The
read circuitry, which must be activated at each computational
step, involves relatively high energy consumption.

In this article, the recently proposed IMC approach [13],
namely MOL, is adopted. The main idea behind MOL
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was to address the aforementioned limitations. MOL applies
for various NVM technologies spanning resistive devices
(memristors [27]), spintronics (STT magnetic tunnel junc-
tion (MTJ) [28]), and phase-change materials (PCMs [29]).
Moreover, it allows for significant reduction in the number of
required computational steps as well as the reserved processing
area inside the memory.

2) MOL-Based CMEM: The CMEM presented in [13] is
composed of two adjacent nonvolatile (NV) subarrays that
work in a complementary manner. In this architecture, two
wordlines are activated simultaneously in order to perform
bitwise logic operations. A vector-level AND/OR operation can
be executed within a single computational step. Moreover,
shifting and inversion operations are also enabled through a
dedicated intermediate driver offering flexibility in the oper-
ations, which is crucial for some arithmetic tasks. The inter-
mediate driver involves a simple sensing circuitry followed
by a set of 2-to-1 multiplexers. The role of multiplexers is
to either pass the value from the sensed wordline or to pass
its inverse. It can be configured depending on the desired
operation. The multiplexers are followed by a configurable
1-bit shifter that can be enabled/disabled during the run time.
The resulting intermediate driver passes the signals on-the-fly
without additional computational steps. More details on the
working mechanism of the intermediate driver can be found
in [13].

An external controller arranges the operations performed
inside the memory subarrays in order to finalize a desired
arithmetic task. It breaks down the task into series of micro-
operations (bitwise MOL) that are executed one after the other.
The architecture diagram is presented in Fig. 4.

Generally, the high bandwidth of IMC allows to minimize
the step period of each microoperation. However, when the
complexity of an arithmetic task scales up, the corresponding
number of computational steps becomes large, which again
increases latency and energy consumption. In this case, mov-
ing data to be processed near memory is more efficient. Hence,
the performance of IMC is task-dependent.

In this article, we consider applying the principle of MOL
and the corresponding CMEM for the implementation of
BNNs. For higher precision neural networks, as previously
stated, the multiply–accumulate operation is the crucial oper-
ation in these networks. Addition and multiplication tasks can
be executed in-memory but usually necessitate a large number
of computational steps, which grows when increasing the size
of operands (i.e., precision of the network). As a result, such
tasks might be more efficient to implement in traditional von
Neumann architectures, despite the high communication cost
between memory and processing cores. In contrast, the low
logic complexity of BNN makes it highly suitable for IMC as
the multiply–accumulate operations of a convolutional layer
are mainly replaced with basic bitwise XNOR and popcount.

III. MOL-BASED IN-MEMORY BNN

A. In-Memory XNOR-Based Convolution

1) Method: The bitwise XNOR represents the most com-
putationally expensive operation in the convolution process.

Fig. 4. Architecture diagram of the MOL-based CMEM.

Thus, optimizing its execution inside memory will enhance the
overall performance of the BNN. This is why we first propose
an efficient implementation of the XNOR convolution inside
the CMEM. We consider a binary Ifmap Xb of size h × w
being XNORed with a k × k weight kernel W b . A simple
example presented in Fig. 5(a) illustrates some of the steps of
the proposed procedure. In this example, a 3 × 3 kernel is
adopted. This kernel size is also suitable and used for large
networks and datasets [30].

First, an Ifmap, zero padded at its surrounding, is loaded
into subarray A of the CMEM, as shown in Fig. 5(a). The
corresponding kernel is then loaded into subarray B, though
in a tiled pattern fitting the width of the Ifmap. Hence, the size
of the tiled kernel is k × w. Here, we assume that the width
after zero padding is a multiple of k; otherwise, padding is
increased. For better scheduling of the XNOR operations and
in order to obtain a higher level of parallelism, the Ifmap is
gridded into k × k slots without overlapping. For simplicity,
we use the term sliding grid (instead of sliding window) to
point on the selected regions that would be XNORed. The
convolution is performed in k successive phases (three phases
in this example), while each phase is carried out in k rounds.
For a given phase i ∈ �0, k − 1� and round j ∈ �0, k − 1�, the
sliding grid is right and down shifted to the position i and j ,
respectively. Simultaneously, the tiled kernel is right shifted
to the position i . In other words, the horizontal movement
of the tiled kernel follows that of the sliding grid. This
specific shifting operating is enabled by the CMEM. Rowwise
XNOR is then performed purely inside the CMEM based on a
series of MOL operations that are discussed in Section III-A.2.
At each position (i, j ) of the sliding grid, a XNOR matrix is
obtained in subarray B. The resulting matrix is then moved
to a near-memory processing unit to undergo popcount and
binarization. In fact, the popcount process is not adapted to
IMC. Its implementation is inefficient in terms of the number
of required computational steps. Fig. 5(b) shows the occupied
regions inside the CMEM after execution, where auxiliary
processing regions are required in subarrays A and B in order
to finalize the convolution task.

2) Rowwise XNOR: The Ifmap undergoes several rounds of
XNOR operations inside the CMEM. Thus, an Ifmap should

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on May 15,2022 at 06:08:47 UTC from IEEE Xplore.  Restrictions apply. 

168 CHAPTER 6. FLEXIBLE AND EFFICIENT ARCHITECTURES BASED ON MEMRISTIVE TECHNOLOGIES

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALHAJ ALI et al.: MOL-BASED IMC OF BINARY NEURAL NETWORKS 5

Fig. 5. Proposed in-memory XNOR-based convolution method: (a) samples of the CMEM state taken from different operation phases, (b) CMEM regions
partitioning, (c) example on the near-memory popcount and binarization stage, and (d) architecture of the popcount and binarize (PB) block located inside
the NMU.

remain safe until the end of the convolution process. Similarly,
a safe version of the kernels should be available all the
time in order to be reused for later inference. Within these
requirements, a nondestructive rowwise XNOR is applied based
on a series of MOL operations. As shown in Fig. 6(a),
an Ifmap row Xb

r and a kernel row W b
r are assumed to be

initially inside the CMEM subarrays A and B, respectively.
In order to avoid destroying W b

r , a copy is stored in the
processing region of subarray B. After that, five successive
computational steps are required. In each step, a microopera-
tion zat(m, n) is sent to the CMEM, where z corresponds to
one of the 30 microinstructions described in [13] and m and n
represent the corresponding addresses of subarrays A and B,
respectively. The six microoperations are defined in Fig. 6(b).
At the end, the value Xb

r ⊕ W b
r is obtained in subarray B while

keeping Xb
r and W b

r safe. As a result, only three auxiliary rows
have to be reserved for the XNOR operation to be processed.
As presented in Fig. 6(a), one row resides in subarray A (at
address m2), while the other two rows reside in subarray B
(at addresses n1 and n2). The same auxiliary rows can serve
for later XNORs. Yet, it is preferred to change the location of
the processing region regularly to avoid the thermal accumu-
lation in certain cells and maintain high endurance. Overall,
XNORing an Ifmap of size h × w located in subarray A, with
a tiled kernel of size k × w located in subarray B, requires a
minimum storage space of SXNOR = (h + k + 3)w.

On the other hand, it is possible to retrieve the value of
W b

r logically instead of saving a spare copy. This is because
the XNOR operation can be reversed. The value of W b

r is still
contained in the XNOR result. Yet, the required operations for

retrieving W b
r value are definitely more expensive in terms of

computational steps, in particular that the same set of kernels
is frequently needed for multiple operations and inferences.
Therefore, it is more efficient in this case to use the copy-
saving strategy.

3) Near-Memory Popcount: The XNOR matrix obtained in
subarray B is also grouped into k × k slots using the sliding
grid. Horizontal slots are then moved row by row to the
popcount and binarize (PB) block located inside the near-
memory unit (NMU), as shown in Fig. 5(c). In fact, the
PB process is equivalent to obtaining the majority bit in a
given slot. Hence, the PB block counts the number of ones
in the horizontal slots simultaneously using parallel adders
and accumulators. The resulting number in each slot is then
compared with the threshold value (k2−1)/2, where this value
corresponds to half of the number of elements in each slot.
Exceeding this value indicates that the corresponding majority
bit is “1”; otherwise, the bit “0” is returned. The architecture
of PB is shown in Fig. 5(d). At the end of k successive steps,
a binary row is returned to the memory. The accumulators are
cleared before beginning with the next horizontal slots.

B. BNN Layer in-Memory

1) Convolutional Layer: As illustrated in Section II-B, the
mth Ofmap Y b

m is obtained by adding, normalizing, and bina-
rizing the resulting N convolution channels yb

n,m as expressed
in (3). In fact, executing these three processes separately inside
the CMEM is computationally expensive. In order to handle
these processes efficiently by the CMEM, we introduce the
majority-bin stage instead.
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Fig. 6. Rowwise XNOR: (a) operations sequence for an MOL-based
in-memory XNOR operation, where each column corresponds to the state of
the CMEM at a certain step, and (b) definition of the six microinstructions
used.

The majority-bin stage involves computing the majority
channel out of the N convolution channels yb

n,m . Computing
the majority is simply achieved through a proposed in-memory
bubble sorting technique. As shown in Fig. 7(a), we consider
an arbitrary vector of bits p = {p0, p1, . . . , pi , . . . , pN−1},
where i ∈ �0, N − 1�. When applying bubble sorting on p,
bits holding the value “1” are swept to one side of the vector
leading to new vector q = {q0, q1, . . . , qi , . . . , qN−1}. Since
the number of “0”s and “1”s after sorting remains the same,
the middle bit qN/2 (if N multiple of 2) can be considered
as the majority bit.

The applied bubble sorting technique is implemented using
the logic tree presented in Fig. 7(b), which has a regular form
and is based on the proposed bubble-flip module shown in
Fig. 7(c). The module is composed of only AND and OR logic
gates. It allows to flip the input bits so that “1”s appear at the
output port of the OR logic gate as shown in the figure. As an
optimization step, since the goal is to compute the majority bit
and not to sort the bits inside the vector, bubble-flip modules
and logic gates that are not participating in the generation
of the majority bit have been discarded from the logic tree.
The resulting optimized logic tree has been efficiently realized
inside the CMEM, where the equivalent MOL operations are
implemented sequentially.

Moreover, operations inside the CMEM are performed on
the vector level. Thus, channels sorting is achieved rowwise,
speeding up the whole sorting process. Fig. 7(d) shows how
rows are being sorted ending up with a majority channel
Y b

m located in the middle. The required number of steps to
generate a majority channel in-memory is derived as Smaj =
h((3/2)N2 − 4N + 3). The derived expression shows that the
latency overhead of the sorting technique is independent of the
width w of the channels. Although the number of steps grows
quadratically when increasing the number of channels to be
sorted, the high amount of parallelism at the vector level and
CMEM banks level is sufficient to compensate for the time
overhead of the sequential sorting process.

Fig. 7. Proposed bubble sort-based majority technique: (a) middle bit after
bubble sort represents the majority bit, (b) used bubble-flip module, (c) logic
tree implementation for input vector size N =6, and (d) in-memory rowwise
channel sorting in order to obtain Ofmap Y b

m .

In fact, the concept of sorting has already been adopted in
the literature for replacing computationally expensive tasks.
Zhang et al. [31] adopted the bitonic sorting algorithm in
order to replace the FP addition and activation stages in
neural networks. Alam et al. [32] implemented the bitonic
sorter algorithm in memristive memory array achieving sig-
nificant reduction in the processing time compared to prior
sorting designs. Although bubble sort is slower than bitonic,
it has a simple and more regular pattern for accessing the
data to be sorted. This reduces the complexity of the con-
trol part of the architecture. Prasad et al. [33] proposed a
general hardware/software design to achieve efficient sorting
of floating-point numbers for data ranking. However, the
mechanism imposes a custom design, which is not adapted
for IMC of BNNs.

2) Pooling Layer: The input channel to the pooling layer
is gridded into 2 × 2 slots without overlapping. Each slot
corresponds to a max-pooling window p = {p0, p1, p2, p3}.
The max pooling is defined as in [5]: max − pool(p) = 0 if
and only if all elements inside p is equal to “0”; otherwise,
max−pool(p) = 1. In fact, this can be handled by applying an
elementary OR operation to the four elements inside p. The
resulting bit corresponds to max − pool(p). Performing this
inside memory is achieved in two stages. The first stage can
be efficiently performed using in-memory MOL operations.
Elementary OR operations are applied to the rows where all
slots are managed simultaneously. Thus, the four bits in each
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Fig. 8. Proposed in-memory and near-memory combined max-pooling
process.

slot are compressed into two bits placed horizontally, as shown
in Fig. 8. In the second stage, the resulting two bits are
subjected to another OR operation resulting in max− pool(p).
This stage is realized near memory using simple OR logic gates
that are applied to the columns simultaneously.

IV. SEMIPARALLEL/PARALLEL ARCHITECTURE

This section presents our proposed architecture for the
execution of BNN in-memory. Then, the control flow and the
data mapping methodology are illustrated.

A. Architecture Design

The execution of a complete BNN layer in a single CMEM
block is time consuming, as convolutions would be executed
serially. In order to improve parallelism and consequently
accelerate processing, we propose to split the CMEM block
into smaller interconnected CMEM units. Each CMEM unit
is then employed to execute a single Ofmap channel Y b

m in a
given layer. The same units are reprogrammed to perform the
other layers. The communication between these CMEM units
is managed by a master memory that receives intermediate
results and redistributes them in a systematic mapping method
that is illustrated in Section IV-B.

Fig. 9 shows our proposed architecture with two different
models. The semiparallel model shown in Fig. 9(a) shares one
NMU to all CMEM banks, whereas in the parallel model
shown in Fig. 9(b), each CMEM bank reserves a separate
NMU. It is worth mentioning that all CMEM units are shared
with a unique control bus because tasks being executed on
different units are identical. Thus, a single control unit is able
to cope with all these units. For this purpose, an enabling
decoder block is added. It can be configured to either activate
a single CMEM unit or all units at a time. Such an architec-
ture model is equivalent to a single-instruction multiple-data

(SIMD) model for IMC, so it can be called SIMM that stands
for single-instruction multiple-memory.

B. Mapping Methodology

The adopted mapping method is an important factor in
our proposed architecture as it highly influences the overall
performance of inferencing. We classify the mapped data
depending on its static or dynamic nature. Static data, such
as weight kernels, is mapped during the configuration phase
only and does not require any update during the running phase.
On the other hand, the continuously generated data during
the running phase is considered as dynamic. This type of
data requires redistribution before initializing the next layer.
Examples of dynamic data are the generated convolutions and
Ofmap channels.

The control flow is thus divided into three phases: configu-
ration phase, running phase, and redistribution phase.

1) Configuration Phase: As stated earlier, each CMEM
unit is supposed to handle the computation of a single
Ofmap channel in each layer. Thus, the mth CMEM unit
(CMEMm) receives from the master memory its own
set of weight kernels (W b

n,m; n ∈ �0, N − 1�) that are
required to execute the Ofmap channel Y b

m . Moreover,
the master memory broadcasts the Ifmaps to all CMEM
units.

2) Running Phase: The control unit receives a flag to
begin the inference process. All CMEM units are then
activated simultaneously for parallel execution. For the
case of the semiparallel architecture model, popcounting
and pooling stages are performed sequentially within the
NMU. Thus, during these stages, only one CMEM unit
is activated at a time. At the end of this phase, an Ofmap
is generated in each CMEM unit.

3) Redistribution Phase: This phase prepares the execution
of the next network layer. Normally, the generated
Ofmaps are fed to the next layer as Ifmaps. They are
returned one after the other to the master memory, which
in turn rebroadcasts them to all CMEM units.

In fact, a single CMEM unit should have a certain minimum
space to be capable of holding the inputs, the outputs, and the
intermediate results. For a given layer with N Ifmaps and M
Ofmaps, generating a single Ofmap requires N tiled kernels.
Assuming the size of Ifmaps and tiled kernels as h × w and
k × w, respectively, the minimum storage space required to
implement the layer can be expressed as SCMEM = w(2h N +
k N + 3h).

V. EVALUATION AND RESULTS

This section presents the validation and evaluation results
of the proposed in-memory BNN architecture. In addition,
it presents the detailed discussions and comparisons with
recent relevant works.

A. Simulation Environment and Functional Validation

For functional validation, a python-based environment, with
appropriate library and commands, has been developed to
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Fig. 9. Proposed in-memory BNN architecture with two different models: (a) semiparallel model shares one NMU to all CMEM banks and (b) parallel
model where each CMEM unit reserves a separate NMU.

mimic the MOL-based IMC operations performed in the
CMEM. This environment constitutes a proof-of-concept that
illustrates the programmability of the proposed IMC archi-
tecture. It provides an abstract programming library that
hides the complexity of the low-level logic implementation
to application designers. In this environment, we deal with
the CMEM subarrays as two coupled binary matrices, and
each one has a separate input signal, which points to a
certain row inside the matrix; “0”s and “1”s of the binary
matrices correspond to the ON- and OFF-state of the NVM
cells, respectively. The two matrices receive a command that
is directly translated into a bitwise elementary operation where
30 types of operations are supported and described in [13]. The
developed environment allows for system-level simulations
as well as performance evaluation. Within this environment,
the proposed in-memory XNOR-based convolution and the
majority-bin and pooling operations have been simulated and
cross-validated with standard methods. Moreover, the imple-
mentation of binary convolutional layers has been functionally
validated.

Fig. 10 shows a simple example of a BNN layer imple-
mented with four 28 × 28 Ifmaps taken from the Modified
National Institute of Standards and Technology (MNIST)
dataset. The black and white pixels represent the logic states
“1” and “0” of the memory cells, respectively. This figure,
which is extracted from the developed environment, corre-
sponds to the state of the CMEM subarrays at three different
instants. The first instant corresponds to the initial state, where
four Ifmaps and a set of tiled kernels appear in subarrays
A and B, respectively. The second instant is the end of the
convolutional layer, where three Ofmaps are generated in
subarray B. The last instant corresponds to the end of the
combined in-memory and near-memory max-pooling process.
The channels after rows and columns max-pooling processes
appear inside subarrays A and B, respectively.

Fig. 10. CMEM state at three different instants: the initial state, the end of
the convolutional layer, and the end of the max-pooling layer.

B. Performance Evaluation
In order to evaluate the performance of our proposed

architecture, the binarized neural network BinaryNet [9] and
the CIFAR-10 dataset have been taken as a case study.
The BinaryNet model has been chosen as it achieves near
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state-of-the-art results on CIFAR-10 and allows comparing
with the available relevant works [3], [34], [35]. For the rest of
this article, the adopted model is referred to as the CIFAR-10
BNN model. The BinaryNet BNN consists of six convolutional
layers, three fully connected layers, and three pooling layers.
All convolutional layers use 3 × 3 filters and edge padding.
Both Ifmaps and weight kernels of the convolutional layers
are binarized to −1 and 1 except for the first convolutional
layer where the input is the image. All pooling layers employ
a 2 × 2 max-pooling window without overlapping.

We consider the convolutional layers CONV2–5 in our
evaluations. For CONV2, CONV3, CONV4, and CONV5
layers, the numbers of input and output channels are 128 and
128, 128 and 256, 256 and 256, and 256 and 512, respec-
tively. The corresponding sizes of the Ifmaps are 32, 16, 16,
and 8, respectively. More details on CIFAR-10 BNN model
parameters can be found in [34].

For both parallel and semiparallel architectures, we employ
128 CMEM units, each of 34-bit width. The adopted width
supports the maximum binary image size (i.e., 32 × 32) of the
CIFAR-10 after edge padding. Layers with a number of output
channels exceeding 128 are performed on several stages.

The minimum step period and the average energy con-
sumption of the performed operations are extracted from
the Cadence Virtuoso toolset. The 65-nm technology node
is used for the peripherals, including the intermediate driver
and NMUs, while a realistic STT-MTJ device model [28] is
adopted for the CMEM memory cells. The model describes
the static, dynamic, and stochastic behaviors of the STT-MTJ
device. It has been proven through a resistance variability
analysis in [13] that a variation up to 21% in tunnel magne-
toresistance (TMR), tsl, and tox parameters of the MTJ device
leads to error-free MOL operations. In this work, we consider
that the resistance variability is below this limit. According
to [13], a single MOL operation consumes 0.196 pJ of energy
per STT-MTJ cell, with a maximum switching delay of 1.8
ns. The reported value of energy includes the average energy
consumed by the peripherals as well as the intermediate driver.
On the other hand, the switching delay corresponds to a clock
frequency of 555 MHz. Since the switching speed of MTJ
devices is slower than that of CMOS, this frequency is set to
the entire architecture, including the CMOS peripherals.

Moreover, evaluation is carried out using the emerging spin-
orbit torque (SOT)-MTJ device, which exhibits fast read/write
speed and unlimited endurance. The read/write energy and
delay for this device are taken from [36]. The maximum
estimated values of energy (0.1 pJ) and delay (∼1 ns), for
a single MOL operation, are then deduced according to
the analytical expressions derived in [13]. Here, the delay
corresponds to a maximum clock frequency of 1 GHz. The
average energy consumed by a single MOL-type operation
(AND, OR, AND-NOT, and OR-NOT) per MTJ device can
be expressed as EMOL = Ew/2 + Er , where Er and Ew

represent the read and write energy of the adopted MTJ
device, respectively, [13]. The energy consumed by a copy
operation can be expressed as ECOPY = Ew + Er . Other
operations such as invert and shift, have an energy overhead
close to that of a copy operation. A slight difference appears

TABLE I

ENERGY CONSUMED PER 34-BIT WIDTH OPERATION IN CMEM (IN pJ)

due to the change in the configuration of the intermediate
driver. To evaluate the energy consumed by 34-bit width
operations, the above expressions should be multiplied by a
factor of 34. Other sources of energy consumption appear
during operands movement from the memory array to the
NMU. The NMU is located close to the memory array, and
thus, energy consumption is mainly limited to the hybrid
CMOS-resistive structure of the read circuitry, as well as the
dynamic energy dissipation of the NMU’s CMOS structure.
Table I presents the energy consumption of the different 34-bit
width operations performed in STT and SOT CMEM. This
extracted information is provided to the developed python-
based environment, which is in turn used as an evaluation
tool.

The total computational energy, power, latency, and through-
put efficiency for the CONV2–5 layers are evaluated in both
parallel and semiparallel architectures. A comparison is carried
out with relevant recent state-of-the-art works implementing
BNNs using a similar IMC approach [3], [35]. Moreover, BNN
implementations using a conventional computing approach
on Intel Xeon E5-2640 processor (CPU), NVIDIA Tesla
K40 GPU, and FPGA [34] are considered, although the
two approaches are hardly comparable. Indeed, the emerging
STT/SOT memory technologies are still in the development
phase and there is no mature production technology for them.
In contrast, real fabricated devices using mature technologies
are available for accurate performance measurement on CPUs,
GPUs, and FPGAs. Nevertheless, comparing with these con-
ventional implementation approaches, which we consider as
baseline, still provides useful information about the perfor-
mance level of our proposed architecture.

On the other hand, it is worth noting that the proposed
IMC approach does not alter the accuracy of the BNN model
with respect to the conventional computing approach. It only
provides a different way to implement the same computing
operations on the same parameters and same data.

Comparison results are summarized in Table II. As shown in
this table, our proposed semiparallel and parallel architectures
exhibit the lowest energy consumption regardless of the used
NVM technology (STT/SOT). The SOT-based architecture
reveals 49%–99% reduction in terms of energy compared to
the other implementations. Although the parallel architecture
shows better inference speed than the semiparallel one (6.5×),
the latter requires less number of near-memory units (M×).
The choice between these two architecture models could
depend on the application requirements. Furthermore, our
proposed architecture with SOT technology reaches 264 to
273-image/s/W throughput efficiency, which outperforms all
others, including the CPU, GPU, and FPGA solutions.
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TABLE II

PERFORMANCE IS COMPARED WITH STATE-OF-THE-ART DESIGNS FOR THE CIFAR-10 BNN MODEL

It is worth noting that the semiparallel and fully parallel
architectures have the same energy consumption although they
have different implementation complexities. This is because
they perform exactly the same operations, yet with different
levels of parallelism. A slight difference appears due to the
static energy consumed by the additional NMUs in the parallel
architecture. However, this static energy is negligible with
respect to the predominant dynamic energy consumed by the
resistive switching behavior of the MTJ cells.

In terms of inference speed, the proposed parallel archi-
tecture with SOT technology achieves 1.24×, 1.35×, and
3× speedup compared to Read-SOT [35], Preset-XNOR
(PXNOR)-BNN [3], and Intel Xeon E5-2640 processor (CPU)
approaches, respectively, due to the high level of parallelism
offered using MOL-based IMC. On the other hand, the GPU
and FPGA implementations reveal higher inferencing speed
(6.3× and 1.6×, respectively) compared to our SOT-based
parallel architecture. However, this higher speed comes at the
cost of 41× and 3.3× energy consumption. In this regard, it is
worth noting that our architecture design adopts the CMOS
65-nm technology node. If the design is scaled to more recent
technologies (e.g., 28 nm), we expect even better results in
terms of speed and energy consumption. Finally, although
the GPU and FPGA implementations present better results in
terms of speed, still, they are less convenient for embedded
applications such as the IoT devices where area and energy
consumption are the most crucial.

C. Hardware Complexity Evaluation

The proposed architecture, which is presented in two mod-
els, is mainly composed of interconnected CMEMs, NMUs,
and a control unit. The storage space of a CMEM unit should
be sufficient to accommodate the Ifmaps, the resulting Ofmap,
and the results of intermediate computations of the network
layer. Each CMEM unit in the BinaryNet model should have
a minimum of 36 kB of space, for a total of 4.5 MB for all
CMEM units. It is worth noting that these units are based on
the conventional 1T1M crossbar arrays and thus can benefit
from the promising 3-D stacking technology of NVMs [37],
[38]. Accordingly, the CMEMs crossbars can be stacked at
the top of each other, leading to a compact design. In fact,
it has not been possible to evaluate the area of the proposed
architecture due to the lack of a layout model for the adopted
MTJ devices. However, in order to get an estimation of the
complexity, we evaluated the total number of components in
each CMEM unit, particularly in the peripheral and intermedi-
ate drivers. Table III presents the number of utilized hardware
resources for a 34-bit width as well as for a general d-bit width

TABLE III

NUMBER OF PERIPHERAL COMPONENTS PER CMEM UNIT

TABLE IV

NUMBER OF COMPONENTS IN EACH NMU

CMEM unit. Here, it is worth noting that the reported number
of resources grows when expanding the width d of a CMEM
unit. Increasing the depth (i.e., number of wordlines) has no
additional cost. Table IV presents the number of components
involved in the NMU. The NMU is mainly composed of k-bit
adders, constant comparators, and registers. In the presented
case study, as we employed 128 CMEM banks, the parallel
architecture integrates 128 NMUs, whereas the semiparallel
architecture integrates only one NMU.

On the other hand, the functionality of the control unit
has been emulated using a python-script code, which auto-
matically generates the commands and the address signals
to the interconnected CMEM units. It is considered that this
functionality can be handled using a host processor, which
is programmed according to the desired application (network
model, dataset, and parameters). The use of a host processor
ensures programmability requirement.

VI. CONCLUSION

In this work, we presented a novel IMC architecture tar-
geting efficient implementation of BNN. The proposed archi-
tecture follows what we called SIMM parallelism model to
execute instructions inside multiple computational memories.
It employs the advanced quantization algorithm of BNN
and the promising MOL-based IMC technique, which is
well adapted for parallel bitwise operations. The complex
MAC operations are replaced by parallel rowwise XNOR and
popcounts. Moreover, the addition and normalization stage
is replaced by the majority-bin stage, which is achieved
through the proposed in-memory bubble sorting technique
of channels. An efficient data mapping methodology has
been deployed. For simulation and evaluation purposes,

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on May 15,2022 at 06:08:47 UTC from IEEE Xplore.  Restrictions apply. 

174 CHAPTER 6. FLEXIBLE AND EFFICIENT ARCHITECTURES BASED ON MEMRISTIVE TECHNOLOGIES

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALHAJ ALI et al.: MOL-BASED IMC OF BINARY NEURAL NETWORKS 11

a python-based environment with appropriate library and com-
mands has been developed by emulating the functionality
of the adopted MOL-based CMEM architecture. A study on
the CIFAR-10 BNN model has demonstrated that a proposed
parallel architecture, implemented in SOT-MTJ technology,
has obtained a notable performance improvement compared to
recent relevant state-of-the-art works. The results show 1.24×
to 3× speedup compared with Read-SOT, PXNOR-BNN,
and Intel Xeon E5-2640 processor (CPU) implementations.
Moreover, the proposed parallel architecture outperforms all
other approaches in terms of power and energy consumption,
where 49%–99% reduction is achieved in terms of energy cost.
Besides, it reaches 264–273-image/s/W throughput efficiency,
which is much higher than all others, including the CPU,
GPU, and FPGA solutions. Finally, the proposed architecture
is scalable as it is able to handle larger network sizes and can
in addition be compatibly applied to other types of emerging
memory technologies.
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Chapter 7

Efficient Implementations of Machine
Learning Algorithms

7.1 Preface

This research work has been accomplished during the PhD thesis of Mr. Hamoud Younes
which has been conducted in the Department of Electrical, Electronics and Telecommuni-
cation Engineering and Naval Architecture (DITEN) at the University of Genoa, Italy under
the supervision of Professor Maurizio Valle. It addresses embedded machine learning with
emphasis on hardware accelerators and approximate computing targeting the application of
tactile data processing. It has been valorized in four well recognized journals, six IEEE in-
ternational conferences, and one book chapter.

7.2 Introduction

Embedding machine learning algorithms are constrained by the high computational com-
plexity of such algorithms. Moreover, the amount of data processed by machine learning is
increasing exponentially [151]. On the contrary, the processing resources are limited espe-
cially with the chip shortage in the last few years [152]. This poses challenges relevant to
the requirements of real-time execution and low power/energy consumption when targeting
portable wearable systems due to their limitation in terms of resources and energy budget.
Nonetheless, machine learning is one of many application domains that has intrinsic toler-
ance to inaccuracy. These applications are mostly not about calculating a precise numerical
answer; instead, ”correctness” is defined as providing an outcome that is good enough, or of
sufficient quality to achieve an acceptable application performance [153].

Electronic skin (e-skin) is an artificial skin that mimics the sensing capabilities of human
skin. It is usually composed of distributed tactile sensors integrated with an embedded elec-
tronic system for tactile data decoding. Meaningful information such as texture classification
and pattern recognition can be decoded from tactile data by employing Machine Learning
(ML) algorithms. Computations using embedded machine learning algorithms may enable
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the electronic skin system to be used in various application domains such as wearable, Inter-
net of Things, prosthetic and robotics.

In this perspective, this research work aims at providing efficient implementations of em-
bedded machine learning algorithms for tactile data processing. The core strategy behind
delivering efficient implementations is the use of ”Hardware Accelerators” and ”Approx-
imate Computing” to accelerate demanding portions of ML algorithms and to adequately
reduce the algorithms computational complexity respectively. The implementations should
offer real-time processing with a time latency less than 400 ms [154] with as much reduced
hardware area and energy consumption as possible compared to existing solutions.

7.3 Context and Motivations

Tactile sensing involves the detection of motion, the measurement of contact parameters, the
processing of the signals to extract structured and meaningful information, and the trans-
mission of such information into a higher system levels for interpretation [155]. The data
acquired from tactile sensors corresponds to an electrical stimulus. The latter varies ac-
cording to the type of the sensing material, dimensionality, responsiveness, and structure
of the sensor. Processing algorithms should be able to decode and efficiently handle the ac-
quired data. Tactile data processing algorithms presented in the literature could be divided
into two categories: pre-processing [156, 157, 158, 159, 160] and classification/regression
. Pre-processing algorithms involve feature extraction and dimensionality reduction, while
classification and regression algorithms are mainly machine learning algorithms.

Machine learning algorithms are an efficient solution for processing tactile data in various
applications [161]. ML algorithms in general, can extract a complex, non linear input–output
relationship based on learning by example approach. An ML algorithm is trained using a
set of examples, where each example is described by a group of informative features. ML
algorithms can support intelligent and predictive systems that can make accurate decisions
on unseen data. In this perspective, classification/regression problems supported by ML al-
gorithms could be adopted in applications with tactile information. Several previous works
have adopted ML algorithms for tactile sensing [162, 163, 164, 165].

Embedding machine learning in resource-limited and battery-powered applications for
tactile data processing must abide with the ever increasing requirements of small hardware
area, low time latency, and low energy consumption, which are mostly impacted by the com-
putational complexity of ML algorithms Designing hardware accelerators is a common trend
to implement ML algorithms efficiently, where high performance modules are assigned to
complex and demanding blocks of an algorithm. Designing a hardware accelerator can be
performed using several methodologies. The use of “specific design” methodology suitable
for the hardware platform and application. Another designing methodology is the use of high
performance cores in multi-core central processing units (CPUs) or graphics processing units
(GPUs) for demanding tasks and assign less performing cores for simpler tasks. Recently, a
new hardware accelerator design methodology focuses on techniques such as Near-Memory
Computing (NMC) and Processing-In-Memory (PIM), have emerged to bring computing as
close as possible to the memory arrays to reduce the cost of data movement between com-
puting cores and memories [166].



7.4. CONTRIBUTIONS AND PERFORMED WORK 179

In this work, “specific design” methodology targeting different machine learning algo-
rithms and hardware devices/platforms is adopted. Mainly, the design and implementation of
hardware accelerators for k-Nearest Neighbor (kNN), Support Vector Machine (SVM), and
Binary CNNs. Then, a set of approximate computing methods for enhancing the accelera-
tors’ performance is discussed. The performance of the exact and approximate accelerators
is assessed on a tactile data processing application, mainly touch modality classification.

7.4 Contributions and Performed Work

This work addresses the design and implementation of efficient ML algorithms to handle the
challenges retaled to the computational complexity, the performance/availability of hardware
platforms, and the application’s budget (power constraint, real-time operation, etc.). First,
Approximate Computing Techniques (ACTs) are used to reduce the computational complex-
ity of ML algorithms. Then, custom Hardware Accelerators are designed to improve the per-
formance of the implementation within a specified budget. Finally, a tactile data processing
application is adopted for the validation of the proposed exact and approximate embedded
machine learning accelerators.
The contributions of this work are listed below:

• Propose an exact and approximate kNN classifiers with a classification accuracy compa-
rable with [161] for a touch modality recognition task. The experimental results demon-
strate the effectiveness of Data-oriented ACTs on reducing the memory usage and exe-
cution time of the KNN classifier with an acceptable accuracy loss.

• Propose an approach for applying algorithmic level ACTs on machine learning algo-
rithms, where each ACT in the proposed approach can serve as a quality configurable
knob to trade-off quality for time latency.

• Conduct an overview about energy efficient implementation of machine learning algo-
rithms on hardware platforms highlighting the main challenges when embedding such
algorithms. The techniques that could be applied to improve the energy efficiency are re-
ported. Furthermore, the main factors to be taken into consideration when choosing the
appropriate platform are highlighted. Lastly, the strategies to overcome the challenges
when building an energy efficient embedded machine learning systems are discussed.

• Survey the existing algorithms and tasks applied for tactile data processing. The sur-
vey presents the algorithms and tasks, which include machine learning, deep learning,
feature extraction, and dimensionality reduction. Moreover, this survey provides guide-
lines for selecting appropriate hardware platforms for the algorithm’s implementation.
The algorithms are compared in terms of computational complexity and hardware im-
plementation requirements.

• Perform a comprehensive assessment of applying algorithmic level approximate com-
puting techniques on the FPGA implementation of tensorial SVM.
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• Propose an architecture for Singular Value Decomposition (SVD) computation based
on approximate computing techniques. The architecture is based on a shallow neural
network for finding the SVD of an input matrix with two different dimensions. We pro-
vide the structure, tuning, and training of the network. Also, the FPGA implementation
of the proposed neural network inference is presented. Implementation results show
that the proposed network achieves a significant speedup and reductions in the required
hardware resources and power consumption respectively compared to the traditional
one-sided Jacobi algorithm.

• The first hardware implementation of a neural network based SVM featuring multi-
dimensional tensorial inputs is proposed. The implementation is feasible for real-time
touch modality classification with low power consumption. Moreover, the implementa-
tion scalability shows that the neural network based SVM is adequate for the accelera-
tion of SVM on resource-limited hardware platforms.

• The design and implementation of a kNN accelerator using a selection based sorter (Se-
lector) is proposed. The proposed accelerator overcomes similar state of the art solutions
by reducing the occupied hardware area while providing noticeable speedups.

• A Hybrid fixed-point binary Convolution Neural Network (HCNN) model for touch
modality classification is presented. A hardware accelerator architecture and implemen-
tation on FPGA for HCNN is proposed. The proposed accelerator can classify an input
touch with a higher accuracy compared to SVM and Deep CNN. Moreover, a faster
classification time is noticed while providing a low energy per classification value.

The following subsections provide a brief explanation of the proposed architectures and
the achieved results along with comparisons with state-of-the-art works.

7.4.1 Algorithmic Level Approximate Computing Techniques for Ma-
chine Learning

Applications in domains like computer vision, media processing, machine learning, etc. have
intrinsic tolerance to inaccuracy. Studies repeatedly show that such applications consist of
both critical and non-critical components [167, 168, 169]. Thus, it is not necessary for every
arithmetic operation to be precisely correct and every bit of memory to be preserved at the
same level of reliability. From the perspective of approximate computing, not every operation
in a program needs the same level of accuracy. Auto-tuning approaches can help empirically
identify error-resilient components [170]. However, since machine learning algorithms don’t
present the same level of accuracy for all applications, the identification process varies from
one application to another.

ACTs on the algorithmic level have been firstly investigated in [171]. Authors intro-
duced the concept of incremental refinement. Such concept aims at reducing the number
of iterations of iterative processing. A factor of ten reduction in power consumption has
been recorded for a speech finite impulse response (FIR) filter implementation. In [172],
authors explored the different parameters of the SVM algorithm using algorithm level scal-
ing to reduce the complexity of hardware implementations. A 1.2 × −2.2× energy savings
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have been achieved without any significant accuracy loss. Nogues et. al have presented an
approach on how to apply algorithmic level approximate computing techniques on HEVC
decoding [173]. Authors offered a strategy on how to locate the error-resilient components
of the decoder and which approximate technique to be applied. Energy reductions of up to
40% are demonstrated for a limited degradation of the application Quality of Service (QoS).

In this research, we propose an approach for applying algorithmic level approximate
computing techniques on machine learning algorithms. The approach is based on the work
presented in [173]. kNN and tensorial SVM (TSVM) algorithms are adopted for the evalu-
ation of the proposed approach. The evaluation is performed on both software and hardware
levels. For the software evaluation, we monitored the loss in classification accuracy of a
touch modality problem presented in [161] with respect to the gain in execution time and
memory requirements. The software evaluation has been accomplished on an Intel CPU.

For the hardware evaluation, a FPGA implementation of both algorithms is presented.
Then, the gain in hardware area, time latency, and power consumption is recorded when
each technique is embedded in the hardware implementation. Results have shown that the
kNN execution time and memory usage can be reduced up to 38% and 55% respectively.
Similarly, a 29.6% power reduction and speedup up to 3.7× can be achieved with an approx-
imate kNN FPGA implementation. As for approximate TSVM, the implementation achieves
a reduction in power consumption by up to 49% with a speedup of 3.2×. All these reductions
are accompanied with a classification accuracy loss than 10%.

This research work has been published in the proceeding of the IEEE International
Conference on Ph.D Research in Microelectronics and Electronics (PRIME) [174] and
the proceeding of the IEEE International Conference on Electronics, Circuits and Systems
(ICECS) [175] This research work has been also published in the Electronics [176].
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Abstract: Approximate Computing Techniques (ACT) are promising solutions towards the achieve-
ment of reduced energy, time latency and hardware size for embedded implementations of machine
learning algorithms. In this paper, we present the first FPGA implementation of an approximate
tensorial Support Vector Machine (SVM) classifier with algorithmic level ACTs using High-Level
Synthesis (HLS). A touch modality classification framework was adopted to validate the effective-
ness of the proposed implementation. When compared to exact implementation presented in the
state-of-the-art, the proposed implementation achieves a reduction in power consumption by up to
49% with a speedup of 3.2×. Moreover, the hardware resources are reduced by 40% while consuming
82% less energy in classifying an input touch with an accuracy loss less than 5%.

Keywords: approximate computing; embedded machine learning; tensorial kerne; high-level synthe-
sis; tactile sensing

1. Introduction

Machine Learning (ML) algorithms are efficient solutions for various tasks includ-
ing speech recognition, tactile data classification and image processing. Consequently,
embedding machine learning is increasingly used in several application domains such
as prosthesis, Internet of Things (IoT), robotics, smart appliances and wearable devices.
Support Vector Machine (SVM) is one of the most used supervised algorithms as it exploits
complex relationships among data samples by using “Kernels” to create an optimal hyper-
plane that separates different classes [1]. Despite having a high classification accuracy,
SVM is characterized by its computational complexity. Thus, hardware implementations
dedicated to SVM impose additional overhead in terms of power consumption and execu-
tion time [2]. This overhead adds a design challenge when targeting real-time embedded
systems. Several hardware implementations have been presented using different com-
puting platforms that fulfill the requirements in terms of limited hardware resources,
low power consumption and low latency. These platforms include Advanced RISC Ma-
chines (ARM), Application-Specific Integrated Circuits (ASIC) and Field-Programmable
Gate Array (FPGA). The authors of [3] showed that the implementation of the tensorial
SVM (TSVM) algorithm on an ARM Cortex M4 microcontroller (STM32F405) operating at
165 MHz classifies an input touch in 7 s. The latter is higher than the classification time
obtained using the FPGA device presented in [4], which is about 400 ms. As for ASIC, the
implementation of machine learning inference is characterized by several challenges such
as: reconfigurability and design cycle complexity. On the other hand, FPGAs are suitable
for prototyping where their features of programmability make them more cost-effective
than ASICs. Thus, FPGAs are suitable platforms for implementing such algorithms. In
addition, FPGAs are desirable for ASIC prototyping. In this perspective, FPGA has been
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proposed as a hardware platform for implementing SVM due to its powerful and parallel
processing as a re-configurable device with an efficient utilization of hardware resources [2].

The authors of [5,6] presented a hardware implementation of the linear SVM model
that classifies biomedical data targeting FPGA devices. The implementations proposed
in [5,6] have achieved a speedup of 85× and 6×, respectively, when compared to similar
implementations targeting General-Purpose Processor (GPP). Mandal et al. [7] used a
multiplier less-kernel architecture to implement a polynomial based SVM. The architecture
leads to a power reduction of 3.5% compared to the use of vector-based kernel. A 2D
pipelined streaming architecture with a Radial Basis Function (RBF) kernel implementation
is proposed in [8], achieving a 2× speed improvement. In [4], the authors presented an
FPGA implementation of SVM based on the tensorial kernel approach, which is proposed
in [9]. The advantage of such implementation is that the tensorial representation of data
preserves the implicit structure of the original data. Sidiropoulos et al. [10] conducted
a survey that demonstrates the importance of using tensorial data in signal processing
and machine learning. The survey covers several algorithms and applications, including
optimization and statistical performance algorithms, collaborative filtering, classification
and multilinear subspace learning. In addition, tensorial representation is recommended
for applications such as image and tactile processing [9,11].

Approximate computing has emerged as a promising solution to obtain considerable
resource utilization, energy and time savings at the expense of acceptable accuracy loss [12].
There exist notable hardware implementations of SVM in the literature using ACTs on both
the algorithmic and circuit levels. Van Leussen et al. [13] presented a hardware architecture
with re-configurable kernels and overflow resilient limiter. The proposed architecture
achieved a saving of 15% in the consumed energy and 14% in the implementation area for
the epileptic seizure detection application compared to a fully-exact implementation. The
traditional Ripple-Carry Adder (RCA) has been replaced by an approximate accumulator
,which achieves up to 70% power reduction for the kernel computations in SVM for hyper-
spectral image classification problem [14]. The authors of [15] designed an approximate
adder and fixed-width multiplier with a low-cost compensation. Adopting the devised
adder and multiplier in SVM classifier leads to reduce the power-delay product (PDP),
area and critical path delay by 32.4%, 18.7% and 16%, respectively. All the mentioned
architectures imply an accuracy loss less than 8% for the target applications. However, to
the best of our knowledge, there is currently no implementations of approximate tensorial
SVM classifier presented in the literature.

The work presented in this paper aims to reduce the hardware complexity of the ten-
sorial SVM algorithm using algorithmic level ACTs. A touch modality binary classification
problem was adopted to validate the proposed implementation. The exact tensorial SVM
classifier in [9] as taken as a reference, and then the impact of ACTs on reducing power
consumption, hardware resources and time latency was analyzed. High-Level Synthesis
(HLS) with Vivado 2018.3 and Virtex-7 FPGA was used for the implementation. HLS
design is adopted since it offers: (1) faster development process compared to RTL design;
(2) built-in optimization directives; and (3) easier design manipulation through high-level
programming languages (e.g., C/C++). The rest of the paper is organized as follows.
Section 2 presents the algorithmic level approximate computing techniques and how they
are applied on machine learning methods. Section 3 provides a general overview of the
tensorial approach. Section 4 details the proposed approximate tensorial SVM architecture
and implementation. Section 5 presents an assessment of the hardware implementation
results targeting FPGA using HLS. Finally, Section 6 concludes the paper and illustrates
the future work.

2. Algorithmic Level Approximate Computing

Approximate computing techniques can be applied at algorithmic, architecture and
circuit levels [16]. Algorithmic level techniques are divided into two categories: data-
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oriented and process-oriented. The authors of [17] presented an approach on how to apply
these techniques on machine learning algorithms, as shown in Figure 1.

Figure 1. Algorithmic level Approximate Computing Techniques: (a) data-oriented; and (b)
processing-oriented. Adopted from [17].

The data-oriented category involves modifying the data properties (size and bit-width)
to minimize the work-load on the circuit level. This category includes:

• Dataset Reduction (DsR) decreases the amount of the processed data by eliminating
samples randomly or using a subsampling method as the one proposed in [9]. Fur-
thermore, DsR can be applied through downsampling and downscaling. The former
adjusts the sampling frequency of the electronic interface used to collect raw data
samples from sensors in the time domain, while the latter reduces the dimension of
the collected data themselves (e.g., reducing the tensor size from 4× 4× 3 to 3× 3× 3),
as shown in Figure 1.

• Data Format Modification (DFM) reduces the bit-width of the data and its correspond-
ing arithmetic operations. This can be done by replacing floating-point representation
with a fixed-point one. For instance, a 24-bit fixed-point representation data is adopted
in [18] instead of floating-point to represent tactile data with a negligible precision
loss.

The process oriented category targets the algorithm itself by reducing the number of
tasks or replacing some of them with a less-complex counterpart. This category includes
[19]:

• Computation Skipping (CS) skips a certain number of tasks in an algorithm. If these
tasks are loop iterations, then it is referred to as Loop Perforation (LP). For example, in
some machine learning applications, a pre-processing task such as data normalization
may be skipped without affecting the quality of service of the target application.

• Computation Approximation (CA) proposes an equivalent version of a computation-
ally complex function. The two versions should be mathematically equivalent with an
acceptable output error margin. For example, a division function could be replaced
by a reciprocal multiplication [19].

3. Tensorial SVM Algorithm

Gastaldo et al. [9] presented a tensorial kernel approach for touch modalities classifi-
cation. The approach involves four main steps: (i) Unfolding includes the transformation
of a third-order tensor T(I1 × I2 × I3) into three matrices M(I1 × I2 I3), N(I2 × I1 I3) and
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P(I3 × I1 I2). (ii) Singular Value Decomposition (SVD) is used to find the eigenvectors V for
each of the three unfolded matrices as:

A = USVT (1)

where U and VT contain the left and right singular vectors, respectively, and S is the
diagonal matrix storing the singular values σi of A. SVD computations are achieved by
using the one sided Jacobi algorithm, which is considered as one of the fastest methods to
converge compared to other algorithms [20]. (iii) Kernel computation extends the Gaussian
kernels to tensorial patterns. The kernel function can be expressed as:

K(x, y) =
z

∏
1

kz(x, y) (2)

where kz is the kernel factor defined as:

k(x, y) = exp(
−1
2σ2 (In − trace(ZTZ))) (3)

where Z = VT
x Vy, Vx represents the singular vectors of the unfolded matrix, Vy represents

the singular vectors of the unfolded matrix obtained from the training phase and trace
represents the sum of diagonal elements. (iv) SVM classification applies the classification
function expressed in the following equation:

y = fSVM(x) =
Np

∑
i

βiK(x, y) + b (4)

where y represents the predicted label of an input x and βi represents the coefficients
obtained during training with a bias b.

4. Approximate Tensorial SVM

The proposed architecture of Approximate SVM is presented in Figure 2. The archi-
tecture is an extension to the exact architecture presented in [21]. For the rest of the paper,
the latter is referred to as Exact SVM. It involves two stages: offline learning and online
inference.

Figure 2. Sketch of the proposed Approximate Tensorial SVM.
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4.1. Touch Modality Framework

The touch modality classification problem “Brushing a brush vs. Rolling a washer” re-
ferred to as Problem A in [9] was adopted to verify the proposed architecture. This problem
is based on a dataset that includes readings from 70 participants. The tactile dataset was
acquired by conducting experiments to sense the human touch pressure levels on a 4× 4 tac-
tile sensor array for a duration of 10 s with a sampling rate of 3000 samples per second. Thus,
each modality can be described by a tensor
φ(4 × 4× 30,000). The final dataset was split into training and testing sets with Nt =
180 and Nc = 80. The proposed algorithmic-level approximate computing method dis-
cussed in Section 2 was applied on the exact tensorial SVM for the mentioned classification
problem. Table 1 shows the effect of using this method on the classification accuracy.

Table 1. Effect of approximate computing techniques on classification accuracy.

Approximate Computing Technique Accuracy (%)

None (Exact SVM) 90.47
10% Data Set Reduction 90.47
20% Data Set Reduction 80.95
30% Data Set Reduction 80.95

Loop perforation with sf = 2 90.47
Loop perforation with sf = 3 85.71
Loop perforation with sf = 4 80.95

DFM (24-bit) 85.71
DFM (16-bit) 75

The dataset reduction was applied by randomly removing samples from the original
dataset. To ensure credible assessment, if a sample is removed during the 10% reduction, it
is automatically removed for the 20% and 30% reductions. Loop perforation was applied
on the loops of SVD computation block with a skipping factor s f (i.e., how many loops are
perforated). As for data format modification, 24- and 16-bit fixed-point representations were
applied for all the SVM operations with < 8, 16 > and < 6, 10 > precision, respectively,
using the C libraries used in [18]. Based on the obtained results, the training and inference
of the exact tensorial SVM were incorporated with the ACTs that resulted in an acceptable
trade-off between accuracy and complexity. Combining several ACTs is also known as
“cross-layer approximate computing” [12].

4.2. Offline Learning

The SVM training was conducted offline on a PC with Intel i7 CPU. The training
process starts by activating the AU1 (Approximate Unit 1) (see Figure 2). AU1 applies
dataset-reduction and downscaling techniques on the dataset by performing the following
steps:

• The dataset size is reduced by eliminating data that corresponds to five participants
with noisy readings. Figure 3a shows an example of such reading where the voltage
is almost constant along the measured time. Therefore, the machine learning model
will not learn new information from such sample. Hence, it is removed.

• During data collection of the tactile dataset, no precise instructions were given to the
participants regarding the amount of pressure to be applied on the sensor [9]. Thus,
some touch samples with silent readings where observed such as the one presented
in Figure 3b. Such samples could be pre-processed to extract meaningful information
in certain time frame. Each sample is truncated from 10 to 3.3 s by omitting readings
outside the interval [3.7, 7] s. This results in a new tensor φ(4× 4× 10, 500).

• To reduce the computational complexity of the tensor-based learning algorithms,
the tensor size could be reduced without the loss of information originality using
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subsampling. The latter is applied by truncating each sample into a new tensor
φ(4× 4× 40) with 40 random time readings.

Then, the resulting tensor is unfolded into three matrices M(4× 160), N(4× 160)
and P(40× 16) that have to be symmetrized before applying SVD. The resulting support
vectors along with the Gaussian parameter σ = 1 are fed to the kernel computation block
(see Figure 2). The block outputs the kernel matrices for (+1 vs. −1), (+1 vs. +1), (−1
vs. +1) and (−1 vs. −1) binary classification problems where each row being labeled with
the corresponding class label. This step is essential since LIBSVM [22] does not support
tensorial kernels by default but can receive precomputed kernels. The LIBSVM library is
used to obtain a classification model based on the precomputed kernel. The model contains
the coefficients βi and the bias b.

Figure 3. Touch Modalities: (a) touch with noisy readings; and (b) touch with silent intervals.

4.3. Online Inference

The SVM inference of the proposed architecture was implemented on FPGA through
the steps shown in Figure 4. The architecture was coded in C++ using Vivado HLS. Then,
the architecture was optimized using HLS directives and synthesized to ensure that it
fits in the target FPGA device. Then, a C/RTL simulation was performed to ensure a
coherent output from the architecture coded in C++ and the RTL design provided by
Vivado HLS. Afterward, the architecture was exported as an RTL IP block targeting a
Virtex-7 XC7VX980T FPGA operating at a clock frequency of 120 MHz. The IP block was
imported into Vivado; then, a behavioral/combinational simulation was performed to
verify the integrity of the exported IP. Then, place and route was performed to implement
the architecture on the FPGA device. Finally, a detailed report about the utilized hardware
resources, the number of clock cycles and the power consumption was obtained once the
implementation was completed.
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Figure 4. FPGA implementation process.

The inference starts by fetching a sample tensor from the testing set (that was already
approximated using AU1). The selected tensor undergoes the unfolding, symmetrization
and SVD processes. The obtained support vectors along with the support vectors from
the training phase are provided to the kernel computation block. During online inference,
Approximate Unit 2 is active. It operates by applying:

• Loop perforation (LP) technique to the SVD block with a skipping factor s f . The
support vectors are obtained using the one side Jacobi Algorithm. The latter is an
iterative algorithm, thus it is perforated with s f = 2. This technique accelerates
the SVD computations but a large s f could not be applied to ensure the algorithm’s
convergence.

• Computation Approximation (CA) to the computation of Z in Equation (3). The ob-
tained singular vector matrices from the SVD block are V1(160 × 160),
V2(160 × 160) and V3(16 × 16). These matrices are truncated to V1′(160 × 4),
V2′(160× 4) and V3′(16× 2). Such truncation reduces the complexity of the matrix
multiplication in Equation (3) with an acceptable error margin. This technique was
also applied in the offline training phase so that the equation Z = VT

x Vy has correct
dimensions.

• Data Format Modification (DFM) to all the variables and arithmetic operations in dif-
ferent SVM blocks. HLS offers a library called “apfixed”, which allows the declaration
of variables with fixed-point precision. This declaration is limited by an upper bound
[23]. Specifically, the mathematical functions are Square Root (sqrt), which is used in
SVD calculations, and Exponential (exp), which is used in kernel computations. These
functions are supported only for bit-widths w ≤ 32 and w ≤ 16, respectively. This
limitation was resolved by a variable precision architecture. Hence, all the inference
blocks are implemented with 24- bit fixed-point representation with a < 12, 12 >
precision except the kernel computation block.

Finally, the output of the kernel computation (i.e., a kernel) is used by the classification
block to predict a class for the tested tensor according to Equation (4).

4.4. Performance Booster

The performance of the proposed architecture was enhanced to achieve the lowest
possible time latency for applications with timing constraints [24] while increasing the
throughput. These requirements are usually accompanied by an increase in hardware
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resources, but the use of algorithmic level approximate computing techniques, specifically
“dataset reduction” and “data format modification”, would compensate such increase.

These requirements are facilitated by the use of Vivado HLS optimization directives
[23]. The used directives are:

• Array Partition: tThis directive partitions a large BRAM occupied by a multidimen-
sional array into smaller separate memories. The array partitioning can be complete,
cyclic or block. The latter was applied on the tensor φ(4× 4× 40) with block size =
16, as shown in Figure 5. This results in an RTL IP block with smaller memories while
improving the throughput of the Unfolding process.

• Dataflow: This directive allows functions to overlap in their operations, enhancing
the overall throughput and latency of the design. The functions unfold and sym-
metrization are executed in a task-level pipelining using this directive, as shown in
Figure 6.

• Pipelining: This directive allows the parallel execution of loop iterations, hence
reducing the time latency. The computation of Z in Equation (3) is executed in parallel,
as shown in Figure 7.

Figure 5. Array partitioning: (a) without partitioning; (b) block partitioning; and (c) block with
size=16.

Figure 6. Dataflow pipelining: (a) without dataflow; and (b) with dataflow.
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Figure 7. Pipeline directive applied on vector multiplication.

5. FPGA Implementation Results and Assessment
5.1. Implementation Results

Figure 8 shows the normalized speedup and reduction in power consumption while
assessing different approximate computing techniques. The latter are applied one-by-one
resulting in eight different FPGA implementations. Each implementation is compared to
the exact implementation where the time latency (L) is recorded as:

L = N × 1
fmax

(5)

where N is the number of clock cycles and fmax is the maximum operating frequency. As
for the power consumption, a vector-based method was adopted as it provides the power
consumption related to the processing under a defined testbench. The method involves
generating a “saif” file via post-implementation functional and timing simulations.

Figure 8. Speedup and power consumption reduction under different ACTs.

Using the obtained results in Figure 8, a cross-layer Approximate SVM implementation
was performed where the adopted techniques are: 10% dataset reduction, loop perforation
with s f = 2 and 24-bit DFM. Moreover, the implementation details was recorded with the
performance booster ON and OFF to differentiate between the gain due to approximate
computing techniques with and without HLS optimization directives. Table 2 summarizes
the performance profile for the FPGA implementations based on the architecture in Figure 2.
The Exact SVM is based on the architecture presented in [21]. The boosted Approximate
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SVM corresponds to the Approximate SVM where the “Performance Booster” block is
activated (See Figure 2), i.e., with HLS optimization directives. The reduction is calculated as:

Reduction(%) = 100− (
Iapprox

Iexact
∗ 100) (6)

where Iapprox and Iexact are the implementation element (FF, DSP, LUT, etc.) of the Ap-
proximate (or boosted approximate) and Exact SVM, respectively. As for the energy per
classification, it is calculated using the equation:

E = P× T (7)

where T is the time latency and P is the dynamic power consumption reported in Vivado.

Table 2. FPGA performance profile of Exact and Approximate SVM.

FF LUT DSP BRAM SRL Time
Latency (s)

Power
Consumption (W)

Energy per
Classification (J)

Classification
Accuracy (%)

Exact SVM 37057 42261 475 297 1060 2.4 6.3 15.12 90
Approximate SVM 17,187 25,558 283 291 202 0.91 3.12 2.83 86
Boosted
Approximate SVM 17,197 25,588 284 292 203 0.75 3.2 2.4 86

Approximate to
Exact Reduction 53.62% 39.5% 40.4% 2.02% 80.94% 2.64× 50.4% 81.28% −4%

Boosted Approximate
to Exact Reduction 53.59% 39.45% 40.21% 1.68% 80.84% 3.2× 49.2% 84.12% −4%

5.2. Implementation Assessment

The obtained results presented in Tables 1 and 2 and Figure 8 demonstrate the effec-
tiveness of using approximate computing techniques to reduce the hardware resources
utilization, time latency and power consumption of the FPGA implementation of the tenso-
rial SVM. Such reductions are accompanied by an accuracy loss that varies between 0%
and 10%. Another set of remarks can be noticed:

• In general, loop perforation achieves lower latency and power consumption compared
to dataset reduction with a comparable accuracy loss. This can be justified since the
SVD computation block is among the most complex blocks of the tensorial SVM, as
reported in [4].

• The transition to fixed-point representation results in the lowest latency and power
consumption compared to other methods. This is expected due to the reduced
complexity of the arithmetic operations based on fixed-point representation. This can
be seen in the reduced number of required DSPs between the exact and approximate
implementations. However, this comes at the expense of high accuracy loss; for
example, the use of a 16-bit fixed-point led to a 15% accuracy loss for the target
application.

• The number of used BRAMs is high since we are not using any external DRAM
for memory read/write operations. The range of the number of LUT and DSPs is
expected due to the level of parallelism introduced using HLS directives. For the
target FPGA, this is not a problem as long as we obtained a relatively reduced time
latency and power consumption in the case of Approximate SVM.

• Using “cross-layer” approximate computing: with an accuracy degradation of 4%,
the Approximate SVM requires about 43% less hardware resources and classifies an
unseen sample 2.64× faster while consuming 50% less power compared to its exact
counterpart.

• The accuracy loss due to the use of “cross-layer” approximate computing is not the
sum of the losses obtained for each single approximate technique. This is evident in
the final results presented in Table 2.
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• The use of ACTs shows a remarkable reduction in the energy per classification up to
82%, since such techniques affect both the time latency and power consumption of
the TSVM, as shown in Table 2.

• Applying the adopted HLS optimization directives offered an additional speedup
gain to the Approximate SVM in terms of speedup up to 3.2× accompanied with
84% less energy per classification.. This added a negligible overhead less than 1%
increase in the hardware resources and power consumption. This is expected due
to the fact that pipelining offers a reduction in the number of clock cycles while
increasing the resources/power consumption. However, such increase is compensated
by the dataflow directive that allows resource sharing, providing an enhanced overall
implementation.

6. Conclusions

This paper presents the first FPGA implementation using High-Level Synthesis of an
approximate tensorial SVM classifier. An accuracy of 86% was obtained with a speedup
of 3.2× and 49% power consumption reduction resulting in up to 82% reduction in the
energy per classification. Such results were achieved by utilizing the concept of cross-layer
approximate computing. Combining several algorithmic level approximate computing
techniques demonstrated their efficiency in optimizing the proposed embedded machine
learning implementation. Moreover, specific design choices (e.g., using pipe-lined architec-
ture) could boost the implementation performance with the help of Vivado HLS directives.
The obtained reduction factor in hardware resources, time latency, and power consumption
through applying ACTs paves the way towards applying such techniques on the RTL HDL
design of the TSVM presented in [4] where similar reductions are expected. Such promising
results motivate the exploration of different types of ACTs such as circuit-level techniques
or the use of neural networks to further reduce the impact of computationally expensive
singular value decomposition, as it represents about 70% of the whole implementation.
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7.4.2 Efficient Selection-based k-Nearest Neighbor Architecture on
Modern SoCs

Modern System-on-Chips (SoCs) are designed with heterogeneous architectures to support a
variety of computationally intensive tasks in many application domains such as IoT systems,
industrial automation, robotics, etc. These systems could consist of multi-core processors or
multi-processor system on chip, which could be implemented on GPUs, application specific
integrated circuits, or field programmable gate arrays. The latter is used for accelerating
complex operations and performing tasks concurrently compared to traditional processors.

kNN is a supervised classification algorithm used in a variety of applications such as
pattern recognition, computer vision and machine learning [177]. However, kNN imposes
significant computational workload since the complexity increases linearly with the size of
the dataset and the number of classes [178]. Such workload demands significant memory
requirements with high latency and power consumption [179]. Accordingly, the implemen-
tation of kNN on embedded systems with limited available energy and resources introduces
a design challenge, which makes kNN hardware acceleration a necessity.

kNN algorithm involves independent operations e.g. the distance computation between
a point A and point B is independent of that between points A and C. Thus, kNN doesn’t
require the sorting of the entire distance vector to find the K-Nearest Neighbors. Such char-
acteristics could be exploited to reduce the computational complexity of the algorithm using
a pipelined architecture and tweaking the sorting process.

In this research work, we propose the design and implementation of a kNN architecture
that is characterized by a novel selection-based sorter (Selector). The proposed selector over-
comes similar state of the art solutions by reducing the occupied hardware area by up to 48%
while providing a speedup up to 4.5×. The proposed kNN architecture is implemented using
both exact and approximate computations. The approximate architecture utilizes the use of
algorithmic level ACTs. When validated on a touch modality classification problem, both
the proposed exact and approximate kNNs offer a real-time classification while consuming
6 µJ and 1.9 µJ respectively when implemented on Xilinx Zyqnberry platform. Compared to
similar kNN architectures, the proposed kNN achieves a speedup between 1.4× and 875×
with 41% to 94% less energy consumption and 12% to 94% average hardware area reduc-
tion. Moreover, applying algorithmic level ACTs on the proposed architecture improves its
performance by achieving a 56.4% average area reduction, a speedup by 2.3×, and an energy
reduction of about 69%. An accuracy degradation of 2.6% has been reported using the pro-
posed approximate architecture. This research work has been published in the IEEE Open
Journal of Circuits and Systems (OJCS) [180].
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An Efficient Selection-Based kNN Architecture for Smart Embedded
Hardware Accelerators

Hamoud Younes, Ali Ibrahim, Mostafa Rizk, Maurzio Valle, Member, IEEE
K-Nearest Neighbor (kNN) is an efficient algorithm used in many applications e.g. text categorization, data mining, and predictive

analysis. Despite having a high computational complexity, kNN is a candidate for hardware acceleration since it is a parallelizable
algorithm. This paper presents an efficient novel architecture and implementation for a kNN hardware accelerator targeting modern
System-on-Chips (SoCs). The architecture adopts a selection-based sorter dedicated for kNN that outperforms traditional sorters in
terms of hardware resources, time latency, and energy efficiency. The kNN architecture has been designed using High-Level Synthesis
(HLS) and implemented on the Xilinx Zynqberry platform. Compared to similar state-of-the-art implementations, the proposed
kNN provides speedups between 1.4× and 875× with 41% to 94% reductions in energy consumption. To further enhance the
proposed architecture, algorithmic-level Approximate Computing Techniques (ACTs) have been applied. The proposed approximate
kNN implementation accelerates the classification process by 2.3× with an average reduced area size of 56% for a real-time tactile
data processing case study. The approximate kNN consumes 69% less energy with an accuracy loss of less than 3% when compared
to the proposed Exact kNN.

Index Terms—Embedded Implementation, Hardware Accelerators, K-Nearest Neighbor, Approximate Computing, Tactile Sensing,
Real-time Processing, Energy Efficiency, High Level Synthesis, FPGA

I. INTRODUCTION

MODERN System-on-Chips (SoCs) are designed with
heterogeneous architectures to support a variety of

computationally intensive tasks in many application domains
such as IoT systems, industrial automation, robotics, etc. These
systems could consist of multi-core processors, or specialized
hardware such as Graphics Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs). The latter is used
for accelerating complex operations and performing tasks
concurrently compared to traditional processors.
K-Nearest Neighbor is a supervised classification algorithm
used in a variety of applications such as pattern recognition,
computer vision and machine learning [1]. However, kNN
imposes significant computational workload since it has a
linear scalability with the size of the dataset and the number
of classes [2]. For embedded implementations, such workload
demands significant memory requirements with high latency
and power consumption [3], which makes kNN hardware
acceleration a necessity. kNN algorithm involves independent
operations e.g. the distance computation between a point A
and point B is independent of that between points A and C,
and kNN doesn’t require the sorting of the entire distance
vector to find the K-Nearest Neighbors. Such characteristics
could be exploited to reduce the computational complexity
of the algorithm using a pipelined architecture and tweaking
the sorting process. Another solution for complexity reduction
could be the use of Approximate Computing Techniques
(ACTs). Approximate computing is the idea of reducing the
accuracy to an acceptable limit to save energy, memory, and
execution time without affecting the applications’ overall qual-
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Fig. 1. Approximate Computing Techniques (ACTs)

ity [4]. Compared to Exact Computation Techniques (ECTs)
i.e. performing arithmetic operations following the IEEE-754
and IEEE-854 standards for floating-point operations [5], the
challenge of using ACTs is to maintain the approximation error
acceptable with respect to the target quality of service (QoS)
[6]. ACTs can be divided into two categories as shown in Fig-
ure 1: Processing-oriented and Data-oriented [6]. Processing-
oriented techniques consist of “Computation Skipping” and
“Computation Approximation”. The former technique involves
removing some processing tasks (e.g. image compression,
encoding, etc.). The latter one replaces computationally in-
tensive blocks with approximate ones that implements the
same mathematical operations. Data-oriented techniques tar-
get dataset modifications as “Dataset Reduction” and “Data
Format Modification”. Dataset Reduction aims at decreasing
the number of processed samples through Downsampling and
Downscaling. Downsampling includes adjusting the sampling
frequency of a processing block or truncating the size of an
acquired sample. Downscaling reduces the dimension of the
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data by adjusting the matrix or vector size for vector-based
applications. As for Data Format Modification, it changes
the data from floating-point to fixed-point representation to
simplify the involved arithmetic operations.”
Approximate computing can lead to significant improvements
from algorithmic to circuit level. Authors in [7] have pre-
sented an assessment of the different approximate computing
techniques applied at the circuit, architecture, and algorithmic
levels. Applying ACTs on supervised learning algorithms at
the algorithmic level has been the focus of Younes et. al in
[8] with a case study on the kNN algorithm. Authors reported
that approximate kNN offers a computation boost in terms of
2× speedup compared to Exact kNN.

To design a hardware accelerator for the kNN algorithm, an
efficient architecture is proposed in this paper. The architecture
introduces novel sorting process dedicated for kNN accom-
panied with several design optimizations. Moreover, ACTs
are incorporated to further enhance the performance of the
embedded implementation. For the rest of the paper, the term
”performance” is used to report the characteristics of a kNN
hardware implementation in terms of area, time latency, power
consumption, and energy per classification. While, the term
”quality” reflects the highest classification accuracy that a
kNN architecture could achieve.

The main contributions of this paper could be summarized
as follows:

• It proposes the design and implementation of a selection-
based sorter (Selector) for the K-Nearest Neighbor (kNN)
algorithm. The proposed selector overcomes similar state
of the art solutions by reducing the occupied hardware
area by up to 48% while providing a speedup up to 4.5×.

• It presents a novel kNN architecture that outperforms
similar state of the art solutions in terms of occupied
hardware area, time latency, and energy consumption.
When validated on a touch modality classification, the
proposed kNN achieves a speedup between 1.4× and
875× with 41% to 94% less energy consumption and
12% to 94% average hardware area reduction.

• It applies algorithmic level ACTs on the proposed ar-
chitecture to improve its performance: the results show
a 56.4% average area reduction, a speedup by 2.3×,
and an energy reduction of about 69%. For a touch
modality classification problem, an accuracy degradation
of 2.6% was reported using the proposed approximate
architecture.

• It demonstrates the feasibility of the implemented system
for real-time touch modality classification when validated
on Xilinx Zyqnberry platform. The proposed exact and
approximate kNNs consume 6 µJ and 1.9 µJ respectively.

The rest of the paper is organized as follows: Section II
reports on some of the efficient implementations of kNN
presented in the literature. Section III explains the design and
the high-level synthesis of the proposed selection-based kNN
architecture. Also, it describes the selector integration into
exact and approximate kNN classifiers. Section IV presents
an overview of the tactile data processing case study and the
experimental setup used to asses the quality of the proposed

architecture. This Section also highlights the implementation
tools and methodology with emphasis on the adopted design
optimization techniques. Section V provides a performance
analysis for the FPGA implementation of both the exact and
approximate kNN classifiers. Also, a comparison with similar
works from the literature is conducted. Section VI concludes
the paper highlighting some future works.

II. STATE-OF-THE-ART

Several architectures have been proposed in the literature
for implementing the kNN algorithm on hardware platforms.
One of the first architectures and implementations is presented
in [9]. The architecture is based on a neural network with
SIMD-style architecture, which imposed excessive response
time while performing complex operations. Authors in [10]
designed flexible IP cores based on linear array architecture
for the FPGA implementation of the kNN algorithm. The
cores achieved a very high throughput when validated on
a medium size FPGA device, very large size classification
problems, and with thousands of reference data vectors. A
novel dynamic partial reconfiguration (DPR) architecture of
the kNN algorithm is presented in [11]. The architecture is
characterized by an efficient reconfiguration time for different
values of K. Speedups between 68× and 76× were recorded
when compared to General Purpose Processor (GPP) imple-
mentation. Pu et. al designed a kNN-specific bubble sort
algorithm to take advantage of the FPGA parallel pipeline
structure using OpenCL [12]. The overall implementation
showed an enhanced performance compared to conventional
GPU implementations. Authors in [13] adopted a Bitonic
sorting algorithm to implement the kNN algorithm on both
FPGA and GPU. Using OpenCL coding style and some HLS
directives, the results showed that an FPGA implementation
could be comparable to a GPU in terms of execution time.
Another HLS based implementation has been reported in
[2]. With a reduced number of comparators in the sorting
process and by utilizing the memory-mapped AXI4-Master
Interface of the Xilinx ZC706 FPGA board, a 35.1× speedup
over a GPP based implementation is noticed. In [14], several
architectures are presented, where each one adopt a single
or multiple HLS optimization directives. Speedups between
3.8× and 58× could be achieved while using the quick
sort algorithm and the BCW 9 dataset. Both hardware and
software designs using Xilinx MicroBlaze platform were used
to verify the bubble sort based architecture of the kNN algo-
rithm in [15]. The hardware design achieved 127× speedup
compared to its software counter counter-part. To reduce the
impact of the memory-access constraint in kNN classification
problems, an HLS based kernel is proposed in [16]. The kernel
employs two data access reduction methods: low precision data
representation and principal component analysis based filtering
(PCAF). The kernel performed to an equivalent 56-thread CPU
server while greatly reducing external memory-accesses.

A common characteristic of the most existing efficient kNN
architectures is the use of the conventional sorting algorithms
without optimizations for the kNN algorithm. The efficiency
of these algorithms is affected by the: i) need to sort all the
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vector’s elements, ii) large number of required comparators,
and iii) increased complexity/latency for large vector size. In
this work, we propose a kNN architecture that avoids such
sorting algorithms and adopts a selection-based one with a re-
configurable division ratio for complexity and latency trade-
offs (see Section III.C). Moreover, existing kNN implemen-
tations focus on acceleration gains compared to CPU-based
implementations. This work reports a detailed comparison with
FPGA-based kNN implementations that sheds the light on
different implementation strategies and their effect on the kNN
performance.

III. K-NN PROPOSED HARDWARE ARCHITECTURE

A. k-Nearest Neighbor Algorithm Overview

The kNN algorithm classifies an input sample according to
the class of the majority of K-nearest samples. For an input
sample, the kNN classifier 1) calculates the distance between
the input sample and all the samples in the training set Ti ∈
T , 2) sorts the distances in ascending order, and 3) selects
an output class based on the minimum distance towards K
neighbors. The three main considerations for kNN are:

• The number of nearest neighbors K. A 1-NN classifier
is naı̈ve, while a large value of K might result in over-
fitting. Thus, the value of K is determined using a trade-
off between accuracy and complexity.

• The distance metric could be Chebyshev, Manhattan,
Cosine, Euclidean, etc [17].

• The sorting algorithm could be bubble, select, quick, etc
[18].

B. Selection-based kNN Architecture

The block diagram of the proposed hardware architecture
is shown in Figure 2. The “kNN Classifier” block has been
designed in HLS (coded in C++), whereas the other blocks
are existing IP blocks embedded in Vivado. The SDRAM
memory is used to store the training set, which is more suitable
than the Block RAM (BRAM) of the FPGA for platforms
with limited number of BRAMs or applications with large

datasets. The AXI Interconnect IP handles the read and write
operations from and to the memory. It adopts an AXI smart
connect IP to use one AXI port for 1) writing to the data
acquisition block and 2) reading the classification result from
the class determination block. The Zynq processing system
IP is the main block of the design which uses a processor
system reset IP to drive all blocks with a common clock
and reset signals. The kNN HLS IP starts operating once
the Data acquisition block receives the training samples. To
reduce the access overhead imposed by DRAM, we fetch the
samples in bursts to reduce the number of memory accesses.
Such technique has shown its efficiency in [13] and [19].
First, the distance between a testing sample and all training
samples is performed. Then, the K minimum distance values
are determined using the proposed selector (see subsection C),
and finally a class is assigned for the testing sample using the
class majority of the samples corresponding to the K minimum
distance values.

C. Nearest Neighbors Selector

The proposed architecture aims to replace the conventional
sorter block with a “Selector” which finds the K-minimum
distances without sorting the entire vector [20] as depicted in
Algorithm 1. While coding the selector in HLS, the minimum
K-distance values are saved in the same vector to be sorted,
thus decreasing the memory footprint.

The selector operations can be detailed in three steps:
• Step 1: The distance vector V of size S is divided

into two vectors V 1 and V 2. The suitable division ratio
(a%:b%) is determined via a software simulation. Start by
decreasing the size of V until the classification accuracy
drops to obtain the value of a. Hence, b = S − a.

• Step 2: K-registers are initialized with a maximum value
(e.g. 1000). Each distance value V 1[i] is compared to
the content of register 1. If it is smaller, V 1[i] occupies
the register, and the old content in register 1 is shifted
to register 2. Then, the content in register 2 is shifted to
occupy register 3. Consequently, the content in register i
is shifted to occupy register i+1. Else, V 1[i] is compared

Fig. 2. The Proposed Hardware Architecture
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Algorithm 1: Nearest Neighbors Selector
Input: Vector V with size S, Division ratio a:b,

Number of neighbors K
Output: V with the K-minimum elements at the first

K indices
S1← a× S/100
for i←K to S1 do

if V [i] <= V [0] then
V [K − 1]← V [K − 2]
...
V [0]← V [i]

else if V [i] <= V [1] then
V [K − 1]← V [K − 2]
...
V [1]← V [i]

...
else if V [i] <= V [K − 1] then

V [K − 1]← V [i]

for j ←S1 to S do
if V [j] >= V [K − 1] then

break
else

if V [j] < V [K − 2] then
...
if V [j] < V [0] then

V [0]← V [j]
else

V [1]← V [j]
else

break

to the next register, and so on. At the end of step 2, the
K minimum distance values are saved in the K registers
in the order min1 < min2 < ..... < minK.

• Step 3: Each distance value V 2[i] is compared to the
highest minimum i.e. minK as shown in Figure. 3 (K=3).
If it is larger, the minimums obtained from V 1[i] are not
updated and a new value of V 2 is fetched. Else, V 2[i] is
compared to the other minimums to reach a register to
occupy. Once V 2[i] occupies a register, the old value of
that register is shifted to occupy the register of the next
minimum.

The advantage of this architecture compared to the one
presented in [14], is that if V 2[i] is greater than minK, step 3
will not be executed. Thus, the K minimum distances are the
output of step 2. This will result in a reduced selection time
for hardware implementations. Moreover, the architecture in
[14] selects the K minimum distances in a single step, which
imposes hardware complexity and increased time latency for
large datasets. While in the proposed architecture, the selection
is performed in two smaller steps with a high probability that
the third step will not be executed (V 2[i] > minK).
Although the proposed selector finds the K-nearest neighbors
without sorting the entire vector, a comparison with two sorters
reported in the literature, i.e. QuickSort [12] and Bitonic Sorter

Fig. 3. Sorting Process Step 3 (K=3): Dashed Line (new value), Solid Line
(old value), Colored Lines (concurrent operations)

[21], has been carried out. In general:

• Bitonic sorting is a recursive algorithm that sorts a
Bitonic sequence in a parallel operating fashion. A
Bitonic sequence is a sequence of M elements in which
L elements out of M are sorted in ascending form, and
the other M −L elements are sorted in descending order
[22]. If the sequence is not Bitonic, an additional task
is imposed before the ability to sort the vector. The
proposed selector can operate on any vector form.

• QuickSort selects one of the elements in the sequence to
be the pivot and divides the sequence into two sequences
one with all elements less than the pivot while the other
contains all the elements greater than the pivot. The
process is recursively (add more burden on the hardware)
applied to each of the sub sequences. QuickSort has a
worst-case complexity of O(n2) when the given sequence
is sorted; this resembles the best-case scenario for the
proposed selector as it will select the K minimums faster
(the minimums occupy the first K registers). Then all the
comparisons fail thus no shift operations are performed.
Consequently, step 3 is not executed at all.

• The number of comparators required by the selector
depends on the number of neighbors K, while it depends
on the size of the vector N in the case of Bitonic and
QuickSort. In machine learning applications, usually, it
is valid that K (the number of Nearest Neighbors in
kNN) � N (size of training vector). Given that the
selector doesn’t sort the complete vector, the number of
comparisons is decreased.

Both the sorters presented in [12],[21], and the selector

TABLE I
HLS SYNTHESIS RESULTS OF DIFFERENT SORTERS

Sorter FF LUT Clock Cycles
Proposed Selector 84 176 15 (division ratio 6:4)

[12] 106 226 17
[21] 123 514 96
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have been coded in C++ using Vivado HLS. The distance
vector V has been used as a testing vector for the three
implementations. In this paper, the best K value and division
ratio were determined to be 3 and 6:4 (for the case study
presented in section IV.B) i.e. there is a need to sort only
60% of the vector and step 3 can be aborted without affecting
the selection process accuracy. The obtained synthesis results
for finding the three minimum numbers in V are presented in
Table I. Results show that the selector occupies less hardware
area than the implementations of both sorters. Specifically, an
average reduction of 21.4% and 48.7% is reported compared
to the sorters in [12] and [21] respectively. Concerning the
time latency of the sorting process, the selector is faster than
the sorter in [21] by 4.5×. Compared to the sorter in [12]
that adopts one of the fastest sorting algorithm (QuickSort),
the performance depends on the selection of the division ratio
in step 1 and the number of neighbors K. In fact, if all the
minimum numbers are located in V2, or if the required value
of K is very large; the selector is now sorting all the elements
of V resulting in a slower sorting process. Hence a speedup of
±1.2× (for 6:4 and 5:5 ratios respectively) has been observed
for the given task.

D. Approximate kNN Blocks

In [23], we have presented a complete assessment of using
algorithmic level ACTs on a kNN classifier. The assessment
included the degradation in accuracy to the gain in memory
and execution time on Intel i7 CPU. In [8], the studied
techniques have been formulated into a general approach that
has been tested for the FPGA implementation of two machine
learning classifiers. The reported approach has been adopted
in this paper where a trade-off between the classifiers perfor-
mance and quality has been considered. The trade-off resulted
in our selection for the ACTs presented in the proposed
approximate kNN architecture. All the adopted techniques
belong to the data-oriented approximate computing category
[8]. The adopted ACTs are Dataset Reduction (Downsampling
(DS) and Downscaling (DSc)), and Data Format Modification
(DFM). DS means varying the signal sampling frequency
during signal acquisition. Since tactile data used in this work
are from an already available dataset, the sampling frequency
can’t be changed. As a consequence, DS is applied offline on
the dataset by reducing the number of samples. DSc is applied
by adjusting the sample size as shown in subsection IV.A.
DFM reduces the sample resolution. This can be achieved
through the use of fixed-point or mixed precision instead of
floating-point data representation. In this paper, fixed-point
representation is adopted, and the precision is determined as
a trade-off between resolution (32, 24, 16, and 8-bit) and
classification accuracy.” The approximate kNN classifier starts
operating once the Data Acquisition block receives the training
samples (after DS/DSc has been applied offline) from the
memory. Then, the same steps performed by the kNN HLS
IP are executed.

IV. SELECTION-BASED KNN IMPLEMENTATION AND CASE
STUDY

A. Case Study: Tactile Data Processing for Electronic Skin
Systems

Electronic skin system is an artificial system developed to
mimic human skin behaviour or to implement intelligent tasks
in applications such as robotics, prosthetic, etc. Intelligence
involves the use of learning algorithms for tactile data pro-
cessing in tasks such as surface texture, object compliance,
touch modality, etc. [24], [25]. Touch modality classification
allows the integration of gesture-based actions to be performed
by robots or humans with prosthetic hands. For a medical
purpose of caring for patients with mild mental impairment; a
humanoid equipped with artificial skin has been trained to dis-
criminate between nine touch modalities (scratch, tickle, rub,
etc.) [26]. Recognition rates up to 96.7% has been achieved
using four machine learning algorithms including kNN, SVM,
DT, and Logitboost. Authors in [27] and [23] have adopted
a touch modality classification problem that involves three
patterns: brushing a paint brush, rolling a washer, and sliding
a finger on 4 × 4 tactile sensory array. SVM and Extreme
Learning Machine (ELM), kNN, and Deep CNN based on
transfer learning have been chosen as learning algorithms. A
classification accuracy of 90%, 89.8%, and 76.9% has been
recorded respectively.

In this paper, the kNN algorithm is adopted for the design
of an embedded tactile data processing architecture due to the:
1) high level of parallelization of the kNN algorithm, which
makes it adequate for hardware acceleration, 2) high classi-
fication accuracy with a reduced computational complexity
compared to state-of-the-art algorithms operating on the same
task [28], [29], and 3) ability of complexity reduction without
affecting the application quality using approximate computing
techniques [23].

The dataset collected in [30] has been selected for the
validation of the proposed kNN architecture. The experimental
setup is shown in Figure 4 and can be described as follows:

• Dataset: The dataset contains records for the two touch
modalities performed by 70 participants. Each modality
was recorded from a 4 × 4 tactile sensor for 10 sec-
onds at 3 kHz sampling frequency. Thus, each raw data
sample can be modeled in the form of a tensor of size
4×4×30,000. The touch modalities were performed on
both the horizontal and vertical directions for two trials,
resulting in a dataset of 840 samples.

• Simulation Software: An open-source machine learning
simulation tool called “Weka” has been used [31]. Weka
involves a collection of learning algorithms that can be
applied to a pre-defined dataset or invoked from a Java
code. The tool has options for classification, clustering,
regression, etc.

• Classification Task: the binary problem “Sliding a finger”
vs “Washer Rolling”. For Weka simulation an Attribute-
Relation File Format (ARFF) file is required. Thus, a
header describing the features and the possible output
class of each sample is added to the original tactile
dataset.
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Fig. 4. Experimental Setup

• kNN Characteristics: A 10-fold cross-validation simula-
tion using the Weka tool has been carried to determine the
best value of K. The adopted distance between two tactile
samples T1 and T2 is the squared euclidean distance
written as:

d(T1, T2) =
16∑

0

(TXij − TXmn)
2 (1)

where TXij and TXmn are the taxels inside a 4 × 4
tactile sample.

• Classification Metric: The kNN algorithm has been as-
sessed by calculating the classification accuracy i.e. the
ratio of correctly classified samples to the total number
of available samples.

The ARFF file was loaded into Weka and classification using
kNN is performed. A kNN classifier with 3-nearest neighbors
resulted in the highest classification accuracy of 89.8%. This
result was achieved based on a model selection approach.
Based on the best kNN model obtained, a novel efficient kNN
architecture is proposed in this paper. Furthermore, approx-
imate computing techniques have been applied to enhance
the overall performance of the proposed architecture without
affecting the quality of the application.

The best obtained kNN model with K=3 is referred to as
Exact kNN. As for Approximate kNN, it employs the follow-
ing techniques to the Exact architecture: 1) Downsampling
which applies an approximate window on the touch modality,
where only the data that corresponds to the interval [a,b]
seconds is considered. First, the interval [a, b] is selected
such that 0.1 < a � 1 and 9.5 < b < 10. Then, the
values of a and b are varied, while calculating the classification
accuracy. The interval [3.5, 7] provided the highest accuracy

among others. Thus, each modality tensor can be written as
φ = 4×4×10, 500 (touch readings that belong to the interval
[3.5, 7] seconds), and 2) downscaling which reduces the tensor
size to φ = 4 × 4 × 1, where the last dimension is the mean
of the 10,500 readings according to the equation:

mean =

∑
TXij

10500
(2)

where TXij is the individual taxel inside the 4×4 tactile sam-
ple. Figure 5 shows the initial and obtained touch modalities
after applying DS and DSc.

It is worth mentioning that the tensor representation of data
has been adopted by [30] since it preserves the initial structure
of the data, which is still valid after applying approximate
computing techniques. This is evident in Figure 5 (b), (c)
where the two touch modalities can still be differentiated. For
both the Distance Calculation and Nearest Neighbor Selection
blocks, the operations are implemented in 24-bit fixed-point
representation with a < 6, 18 > precision. The adopted
precision is based on a trade-off between complexity and
classification accuracy.

B. Hardware and Software Design Tools

The Zynqberry TE0726-03M [32] was adopted for imple-
mentation. Zynqberry is a small-sized platform in the form
of a Raspberry Pi compatible System-on-Chip (SoC) module
integrating a Xilinx Zynq-7010 with a 512 MB SDRAM
memory. The Zynq SoC has a hybrid structure of combining a
dual-core ARM Cortex-A9 processor as a Processing System
(PS) and an FPGA as Programmable Logic (PL) in a single
SoC. Moreover, for comparison purposes, the architecture has
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Fig. 5. Touch Modalities: (a) Rolling with DS, (b) Rolling after DSc, (c) Sliding after DSc, * Window

been also implemented on the Virtex-7 FPGA and the NVIDIA
GTX 1650 GPU.

As for the software tools, Vivado HLS 2018.3 and Vivado
2018.3 were used. Vivado HLS allows the design of an
embedded system on FPGA using a high-level programming
language such as C and C++ compared to traditional hardware
description languages (HDL). The use of HLS decreases the
FPGA development time and effort. Also, it offers a set of
optimization directives that can be used to enhance the design
performance. Once the design is completed, it can be exported
as a Register Transfer Level (RTL) Intellectual Property (IP)
block. The latter is imported into Vivado and can be connected
to the processing system (PS) via built-in IPs; thus, it is
possible to obtain the hardware resources, time latency, and
power consumption of the whole design.

C. Implementation Methodology

Once the whole design code is completed in HLS and design
optimizations are applied, a co-simulation is performed. This
simulation runs both the C++ and the RTL simulations together
to verify a matching output. Then, the design is exported as
an IP block. The latter is imported into Vivado 2018 and
connected to the Zynq processor and other IP blocks as seen
in Figure 2. First, a behavioral simulation is performed to
verify the functionality of the design. Then, synthesis and
place and route occur to finalize implementation. At this point,
the generated report contains the occupied area percentage
(BRAM, DSPs, etc.) and the number of clock cycles passed
to generate an output. Concerning power consumption estima-
tion, Vivado offers two methods: Vector-based and Vector less.
This estimation can be performed at any stage between post-
synthesis to post routing. For a credible estimation, a post-
implementation functional and timing simulation is used to
generate a Switching Activity Interchange File (SAIF) to be
used for a vector-based estimation post-routing.

D. Design Optimization

Targeting the real-time functionality on a small-sized plat-
form such as Zynqberry, the proposed architecture has been
optimized to ensure an acceptable balance between time
latency and hardware requirements. This has been achieved
with several design optimizations as shown in Fig. 6. Such

optimizations are facilitated with the use of Vivado HLS
directives [33] as depicted in Algorithm 2. These optimizations
are summarized as follows:

Algorithm 2: kNN Design Optimization
#pragma HLS ARRAYMAP
variable=Distance Instance=AllPatterns horizontal
variable=Modality Instance=AllPatterns horizontal
/* M: nb of features */
function UDC(T1, T2):
for i←0 to M do

#pragma HLS UNROLL factor=4
Execute (1)

/* Tactiles: trainingset, q: testing
point */

/* N: nb of training points */
for i←0 to N do

#pragma HLS INLINE
#pragma HLS UNROLL factor=6
Distance[i]= UDC(p, Tactiles[i])
Modality[i]=Tactiles[i][16]

/* K: nb of Neighbors */
NearestNeighbors=Selector(K, Modality)
for i←0 to K do

#pragma HLS UNROLL
if NearestNeighbors[i] == 1 then

modality1count++
else

modalitycount2++

1) BRAM Resources Reduction: The BRAM size is 18K
in the FPGA, if many arrays have a size less than 18K,
it is better to combine them into a single array. Since
kNN is a supervised algorithm, the class of each query
must be known. Thus, we can benefit from this directive
to combine the “Distance” and “Modality” arrays into
a single array as shown in Figure 6(a). Thus, when
the selector block finds the three minimum neighbors,
the class of each selected neighbor is available at the
same instant. This process is referred to as ”Array Map”
where the horizontal option means that the two arrays
are combined into a single array with more elements
(see Algorithm 2).
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Fig. 6. Design Optimization: (a) BRAM Resources Reductions, (b) Unrolled Class Determination, (c) One Unrolled Distance Calculation (UDC) Block, (d)
Complete Unrolled Distance Calculation

2) Parallelization: To exploit the capabilities of the FPGA,
the operations of the distance calculation and the class
determination blocks are executed in parallel with a
small unroll factor. In HLS terms this is known as ”Un-
rolling”, where unrolling a loop creates multiple copies
of its body in the RTL design, which allows some or all
of its iterations to occur in parallel. This optimization
has been applied to (1) denoted as Unrolled Distance
Calculation (UDC) and the Class Determination blocks
leading to accelerating the calculation and output class
decision. However, executing all the operations in par-
allel leads to a high power consumption and increased
resource requirements. To avoid the negative impact of
unrolling on the hardware cost and power consumption,
the loops are partially unrolled (unroll factors of 4 and
6) as it is shown in Algorithm 2, and the design is
implemented at an operating frequency of 100 MHz
which is lower when compared to similar work [21].
Each touch modality sample has 16 features, thus an
UNROLL factor equals to 4 is used. This means that the
distance between each 4 features is calculated in a single
time interval as shown in Figure 6(c). Similarly, Figure
6(d) shows how the UDC block is used to calculate
the distance between the testing sample and all training
samples. An UNROLL factor equals to 6 is used, thus
112 timing intervals are required to finish all the distance
calculations for a training set size of 80%. The distance
from a testing sample to (80 ∗ 840/100) = 672 training

samples is calculated in batches of 6 calculations per
timing interval i.e 672/6 = 112 intervals. As for Class
Determination, since K = 3 and we have a binary
classification, the process could be fully unrolled as
shown in 6(b).

3) Function Inline: The inlined function is treated as a
part of the calling function that is calling it rather
than a separate entity. This optimization is applied for
the distance calculation function. Thus, whenever the
classification function is called, the distance calculation
is executed within it and it no longer appears as a
separate level of hierarchy in the RTL design. Thus
improving the overall latency of the classification task.

V. IMPLEMENTATION RESULTS AND ASSESSMENT

The performance and quality of the proposed exact and ap-
proximate implementations are assessed on the touch modality
classification problem mentioned in section IV. The assess-
ment involves three case studies: (1) Proposed Exact kNN
versus approximate kNN, (2) Exact kNN on FPGA versus
GPU, and (3) Exact kNN versus similar works. For cases
(1) and (3), the time latency T is calculated according to the
equation:

T = N × 1/fmax (3)

where N is the number of clock cycles obtained in post-
implementation reports and fmax is the maximum operating
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frequency the design can achieve. The Joule per classification
energy E is calculated as:

E = T × P (4)

where T is the time latency and P is the dynamic power
consumed by the programmable logic (PL) of the Zynqberry
reported by Vivado i.e the power consumed by the simulated
kNN architecture to compute a classification of an input
sample (excluding the static power of the processing system
(PS) as it is device dependent).

For case (2), Exact kNN architecture has been coded
using Python language running inside the CUDA computing
platform. The GPU power estimation was obtained using
NVIDIA System Managment Interface (NVSMI). The latter
is a command utility that can be issued on any Python
development environment with the CUDA libraries imported
[34].

Case 1: Exact versus Approximate kNN
The implementation results on Zynqberry of the proposed

Exact and Approximate kNN are shown in Table II. Exact
kNN occupies 12% of the hardware resources, consumes
0.236 W, and classifies an input sample within 25.7 µs.
The obtained time latency verifies the real-time classification
of a touch modality in less than 400 ms [35]. Applying
downsampling and downscaling have decreased the input
size from 4× 4× 30, 00 (a 10s sample) to 4× 4× 1 (a 3.5s
sample) offering a 65% reduction in data size. Such reduction
led to a significant decrease in the hardware resources and
time latency. Using the 24-bit fixed-point representation
instead of 32-bit floating-point one provides a 25% reduction
in the word length of data exchanged between the different
blocks of the kNN architecture and the complexity of
the arithmetic computations. Consequently, the dynamic
power consumption has been reduced. Thus, the proposed
approximate kNN offers an average hardware resource
reduction up to 56.4%, by accelerating the classification of a
test sample by 2.3× with an energy reduction of about 69%
compared to the proposed Exact kNN. For the whole design,
an accuracy degradation of 2.6% is reported. The proposed
approximate kNN provides real-time classification of touch
modalities with a reduced time latency of 11.2 µs. These
results motivate the use of approximate computing techniques.

Case 2: Exact kNN on FPGA versus GPU

TABLE II
IMPLEMENTATION RESULTS OF THE PROPOSED EXACT AND

APPROXIMATE CLASSIFIERS ON ZYNQBERRY

Implementation Exact Approximate
Classification Accuracy 89.8% 87%

Frequency (MHz) 100
BRAM 4 4

DSP48E 10 4
FF 3493 1612

LUT 2825 1264
Time Latency (µs) 25.7 11.2

Dynamic
Power Consumption (W) 0.236 0.164

TABLE III
EXACT KNN PERFORMANCE ON FPGA AND GPU

Exact kNN
Time (FPGA/GPU) 25.7µs/80ms

Energy (FPGA/GPU) 6µJ/1.13J
Time Ratio 0.00032

Energy Ratio 5.37E-6

Using the CUDA platform and NVSMI tool, the GPU
implementation of Exact kNN provided a classification time
of 80 ms while consuming 14.12W for the touch modality
classification problem. Table III shows a comparison between
the FPGA and GPU implementations in terms of execution
time and energy consumption. The results are significantly in
favor of the FPGA, where the acceleration of the proposed
kNN architecture on FPGA could be achieved with a fraction
of the energy consumed using GPUs. This can be justified due
to two possible reasons:

• GPUs use DRAM for the communication between the
different blocks of the kNN architecture (referred to
as kernels) [36], which is slower than using a hybrid
structure as proposed in Figure 2 where BRAMs are used
to communicate between different blocks and DRAM is
used only for dataset storage.

• The proposed kNN architecture exploits the parallelism
capabilities of the FPGA. Thus, the ”if-then-else” con-
ditions are executed in parallel. On the other hand, the
”then” and ”else” parts are executed serially on GPUs
resulting in a significant time latency increase. Such issue
is known as ”thread divergence” [37].

Case 3: Comparison with similar works
Comparing two kNN implementations is not a straight

forward task due to the large number of differences such as:
the number of nearest neighbors (K), dataset size (N ), number
of features per sample (f ), development environment (HLS or
HDL), hardware device used, etc. To achieve a fair comparison
with Exact kNN, three similar architectures have been selected.
These three architectures have been chosen such that they all
have:

• Used HLS for development since the comparison with an
HDL implementation is not feasible.

• Achieved a high acceleration gain (i.e speedup) with
respect to equivalent CPU-based kNN implementation,
so the architecture resembles an efficient accelerator.

• Used similar (and different) values of K, N , and f to
generalize the comparison.

TABLE IV
TESTBENCH IMPLEMENTATION SETTINGS FOR THE EXACT KNN AND

THREE SIMILAR ARCHITECTURES

Architecture S1 [14] S2 [15] S3 [21]
K 10 3 5
N 699 150 300×103

f 9 4 2
Dataset BCW 9 Iris Weather

Device AVNET
ZedBoard Virtex-7 Virtex-7

Frequency (MHz) 100 100 240
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Table IV presents the existing implementation settings for
the three architectures. Denote by Si =[Ki, Ni, fi, Dataseti]
the settings used in the first [14], second [15] and third
implementation [21] respectively. Exact kNN is implemented
using the settings Si i.e the proposed kNN architecture is
implemented and validated using the testbench reported in
each architecture. The implementation results are shown in
Table V with the original implementation results of each
architecture.

kNN-S1 achieves a 12.3× classification speedup with 94%
less energy consumption while requiring a 61% less hardware
resources compared to the kNN presented in [14]. This is
due to two main reasons: 1) the selector used in kNN-S1

is an enhanced version of the one used in [14] where the
division factor plays a key role in decreasing the sorting time
as presented in section IV.C, and 2) the aim of the kNN
architecture in [14] is to attain the highest speedup possible for
real-time embedded applications. This has been accomplished
by combining the UNROLL, PIPELINE, and DATAFLOW
directives. Such directives are known for speedup gains due to
the level of parallelism introduced at the expense of a notice-
able increase in the hardware resources. The latter was not an
issue when using the relatively large FPGA in the ZedBoard
platform. Meanwhile, in kNN-S1 only the UNROLL directive
is used with an unrolling factor that balances the speedup and
complexity for the target application, while achieving more
speedup with the use of the selector.

When compared to the kNN implementation in [15], kNN-
S2 provides a huge acceleration gain of 875× with 94%
less required hardware resources. Such gain is due to the
design choices adopted by the authors in [15] such as: 1)
using the euclidean distance metric, which compared to (1),
has an added complexity due to the square root operation,
2) applying the normalization of the data on-chip, which
presents a complexity overhead, and 3) performing the sorting
operation using a single comparator and multiple BRAMs to
compare each pair of data points, this process is very slow
compared to the proposed selector. Although no power/energy
details were provided for the kNN in [15], kNN-S2 is expected

to be more efficient due to the 90% reduction in the number
of DSPs.

The implementation requirements of kNN-S3 exceeds the
capacity of the FPGA fabric in Zynqberry and thus the design
couldn’t be routed to achieve the 240MHz operating frequency.
Thus, for comparison reasons only, kNN-S3 is implemented
on the target device used in [21] i.e Vertix-7 knowing that
implementing kNN on Zynqberry has achieved the real-time
and low power consumption demands for the target touch
modality application as reported in Table II. kNN-S3 offers
a speedup of 1.4× with 41.5% and 12.3% reduction in
hardware resources and energy per classification respectively.
Such results are justified with the lower number of FF and
LUTs required by kNN-S3. This is expected since the kNN
in [21] uses the Bitonic sorter, which is outperformed by the
proposed selector as shown in Table I. Compared to kNN-
S1 and kNN-S2, the gain achieved by kNN-S3 is relatively
lower since the kNN in [21] exploits the high optimization
capabilities of OpenCL for extensive computations and large
datasets.

VI. CONCLUSION

This paper introduces an efficient novel architecture for the
hardware acceleration of the k-Nearest Neighbor algorithm
using a selection-based sorter. The architecture has been coded
in HLS, synthesized, and routed on the Zynqberry platform.
Two efficient implementations were provided based on exact
and approximate computing. The implementations exploit the
parallelism nature of the kNN algorithm along with the use
of ACTs to achieve real-time classification with relatively
low power consumption. Compared to similar state-of-the-art
solutions, the proposed Exact kNN offers acceleration gain
between 1.4× and 875× with lower energy per classifica-
tion between 41% and 94% depending on the used settings.
Compared to GPU-based implementations, the proposed kNN-
FPGA implementation offers efficient and faster classification
for the target application. Such results pave the way towards
embedding intelligence using a small-sized platform such as
the Zynqberry for applications with low power and real-

TABLE V
IMPLEMENTATION RESULTS COMPARISON

Architecture kNN-S1 [14] kNN-S2 [15] kNN-S3 [21]
Device Zynqberry Virtex-7

Frequency (MHz) 100 240
BRAM 4 - 4 293 500 512

DSP 7 9 5 47 12 12
FF 2002 9484 827 - 21677 23892

LUT 1607 8845 1407 - 11416 11838
Time Latency (ms) 22×10−3 0.27 12×10−3 10.5 0.88 1.24

Energy per
classification (mJ) 4.84×10−3 70×10−3 - - 1.86 3.17

Average Resources
Reduction (%)* 61% 94% 12.3%

Speedup 12.3x 875x 1.4x
Energy Reduction (%) 94% - 41.5%

Classification Accuracy (%) 96.2% 93.3% 86.5%

* Calculated for the available resources only e.g. reduction in BRAM and DSP for kNN-S2

compared to [15], i.e. Reduction = (BRAM-Reduction + DSP-Reduction)/2, where BRAM-
Reduction= 100(1-4/293) and DSP-Reduction= 100(1-5/47).
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time requirements. The implementation on different hardware
platforms, under different settings, and operating on different
dataset size, verifies the efficiency of the proposed selection-
based kNN architecture. Future work will involve the inves-
tigation of the use of circuit-level approximate computing
techniques that are reported to permit noticeable gains in the
performance of machine learning hardware implementations.
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7.4.3 Real-time Accelerated Tensorial Support Vector Machine Archi-
tecture

Tensor based learning techniques permit the effective exploitation of the structure of data
used in various fields such as vision (e.g. image recognition), neuroscience (e.g. MRI data),
chemistry (excitation-emission data), etc. At the beginning of the last decade, ML commu-
nities started showing interest in tensors and their use for supervised learning [181]. Authors
in [182] proposed a tensorial kernel that could be used for supervised tensor-based learning
models while utilizing the structural information embodied in the data and exploiting the
algebraic properties of tensors of any order. Such kernel methods lead to flexible nonlinear
models that have been proven successful in many different contexts. When used with SVM
algorithm, the tensorial kernel achieved better classification accuracy than the Gaussian-
Radial Basis Function and linear kernels in an image recognition task.

Gastaldo et. al have extended the tensorial kernel approach for tactile data processing
in [183]. This approach has been adopted for a touch modality classification problem since
it preserves the inherent tensorial structure of the data collected by tactile sensors. As an end
result, the tensorial-based SVM has achieved higher accuracy in classifying touch modalities
compared to the Regularized Least Square algorithm. In [184], the first FPGA implementa-
tion of the SVM algorithm based on tensorial kernel has been presented. Specifically, two
implementations were provided: Cascaded and Parallel. The former failed to ensure real-time
classification of touch (i.e in less than 400ms [154]), and the latter reported a relatively large
hardware area and high power consumption of 1.14W. Such results were not acceptable for
applications with limited power budget and area constraints [185].

In this research work, we present a new architecture and hardware implementation of the
TSVM aiming at reducing the hardware complexity and power consumption while keeping
real-time operation. The architecture is characterized by the introduction of a Shallow Neu-
ral Network for the SVD computations. The proposed neural network architecture achieves
324× speedup with 58% and 67% reductions in the required hardware resources and power
consumption respectively compared to the traditional one-sided Jacobi algorithm. Such re-
ductions demonstrate the feasibility of the implemented TSVM for real-time tactile data
classification while consuming 6.28 mJ. The proposed TSVM architecture achieves 131×
classification speedup with a 39% and 50% resources and power reductions respectively
compared to similar stat-of-the-art solution [184]. Furthermore, a scalability assessment of
the proposed TSVM architecture is provided. The assessment shows that replacing the one-
sided Jacobi with a neural network demands only 1% increase in the required flip flops
compared to 29% when the number of training tensors is doubled.

This research work has been published in the proceeding of the IEEE International Con-
ference on Artificial Intelligence Circuits and Systems (AICAS) [186] and then extended in
IEEE Transactions on Circuits and Systems I: Regular Papers [187].
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Abstract— This paper presents a novel hardware architecture
of the Tensorial Support Vector Machine (TSVM) based on
Shallow Neural Networks (NN) for the Single Value Decomposi-
tion (SVD) computation. The proposed NN achieves a comparable
Mean Squared Error and Cosine Similarity to the widely used
one-sided Jacobi algorithm. When implemented on an FPGA,
the NN offers 324× faster computations than the one-sided Jacobi
with reductions up to 58% and 67% in terms of hardware
resources and power consumption respectively. When validated
on a touch modality classification problem, the NN-based TSVM
implementation has achieved a real-time operation while consum-
ing about 88% less energy per classification than the Jacobi-based
TSVM with an accuracy loss of at most 3%. Such results offer
the ability to deploy intelligence on resource-limited platform for
energy-constrained applications.

Index Terms— Embedded machine learning, real-time,
tensorial kernel, tactile sensors, neural networks, singular value
decomposition, FPGA.

I. INTRODUCTION

TENSOR based learning techniques permit the effective
exploitation of the structure of data used in various

fields such as vision (e.g. image recognition), neuroscience
(e.g. MRI data), etc. Authors in [1] proposed a tensorial kernel
that could be used for supervised tensor-based learning models
while utilizing the structural information embodied in the data.
When used with Support Vector Machine (SVM) algorithm,
the tensorial kernel leads to better classification accuracy than
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Fig. 1. Computational Complexity of the Tensorial SVM algorithm.

the Gaussian-Radial Basis Function (RBF) and linear kernels
in an image recognition task.

Gastaldo et. al. have extended the tensorial kernel approach
for tactile data processing in [2]. This approach has been
adopted since it preserves the inherent tensorial structure
of the data collected by tactile sensors. As an end result,
the tensorial-based SVM achieves higher accuracy in clas-
sifying touch modalities compared to the Regularized Least
Square (RLS) algorithm. In [3], the first FPGA implementation
of the Support Vector Machine (SVM) algorithm based on
tensorial kernel has been presented. Specifically, two imple-
mentations were provided: Cascaded and Parallel. The former
failed to ensure real-time classification of touch (i.e in less
than 400 ms [4]), and the latter reported a relatively large
hardware area and high power consumption of 1.14W. Such
results were not acceptable for the application with limited
power budget and area constraints [5].

In this paper, our main goal is to provide a new architecture
and hardware implementation of the tensorial SVM (TSVM)
aiming at reducing the hardware complexity and power con-
sumption while keeping real-time operation. For this purpose,
we analyzed the complexity of the tensorial SVM architecture
to pin-out most computationally complex and demanding
blocks. Fig. 1 illustrates the estimated number of operations
required in each step of the tensorial SVM algorithm, where
m and n are the dimensions of the unfolded matrix, Nc ,
Nt , and Nsv are the number of classes to be discriminated,
the number of training tensors, and the number of support
vectors, respectively. In [3], the one-sided Jacobi algorithm
has been adopted for finding the singular vectors. Such algo-
rithm involves a high number of arithmetic operations and

1549-8328 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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requires several iterations to converge [6]. As reported in [3]
(m = 8, n = 20, Nc = 2, Nt = 100, etc.), the Singular Value
Decomposition (SVD) computation corresponds to about 96%
of the overall algorithm. Thus, the main focus of the pro-
posed new architecture is to find an alternative algorithm for
SVD computation. This alternative should impose complexity
reductions without affecting the classification accuracy of the
tensorial SVM.

A Neural Network (NN) is one of the candidates for the
SVD computation. The idea first surfaced in 1991 when
Samardzija et. al. proposed an artificial continuous-time neural
network to estimate the eigenvectors and eigenvalues [7].
In [8], the convergence and computational complexity through
computer simulations of such network are assessed. Another
neural network has been presented in [9]. The network
is characterized by an order n-Ordinary Differential Equa-
tions (ODEs) leading to reduced dimensionality. Such neural
network has evolved to further applications such as Principle
Component Analysis (PCA) [10].

Triggered by the performance of neural networks in many
domains [11] and the continuous quest for efficient designs
specifically for resource-limited applications [12], a neural
network based tensorial SVM architecture is proposed. The
main contributions of this paper are summarized as follows:
• It presents a novel architecture for SVD computa-

tion using shallow neural networks. The architecture
achieves 324× speedup with 58% and 67% reduc-
tions in the required hardware resources and power
consumption respectively compared to the traditional
one-sided Jacobi algorithm. Such reductions are obtained
while providing a comparable performance in terms of
Mean Squared Error (MSE) and Cosine Similarity (CS)
metrics. Moreover, the proposed architecture is ade-
quate for implementations on resource-limited platforms
(e.g. Zynqberry [13]).

• It presents the first hardware architecture and implementa-
tion of SVM algorithm featuring multidimensional tenso-
rial inputs, where shallow neural networks are employed
to compute the singular value decomposition.

• It demonstrates the feasibility of the implemented sys-
tem for real-time touch modality classification while
consuming 6.28 mJ. The proposed cascade architecture
achieves 131× classification speedup with a 39% and
50% resources and power reductions respectively com-
pared to similar stat-of-the-art solution [3].

• It provides scalability assessment of the proposed
SVD architecture. Replacing the one-sided Jacobi with a
neural network in the tensorial SVM architecture reported
only 1% increase in the required FFs compared to 29%
when the number of training tensors is doubled.

The rest of the paper is organized as follows: Section II
presents an overview of the tensorial SVM for touch modality
classification. Section III provides a review on the efficient
existing SVD algorithms and their hardware implementations.
It also reports the complexity of the proposed architecture
compared to existing solutions. Section IV details the process
of designing a neural network for SVD and its performance
when tested on a tactile dataset. Section V provides the

FPGA implementation and verification of the tensorial
SVM based on SVD computation via shallow neural net-
works. Section VI presents a scalability study of the pro-
posed architecture in terms of hardware resources and time
latency. Section VII concludes the paper and illustrates some
observations.

II. SVM CLASSIFICATION BASED ON TENSORIAL KERNEL

A. Overview

A theoretical approach that extends kernel methods to tensor
data has been presented in [14]. The framework allows the
classification of an input tensor using SVM in 4 main steps:
• Tensor Unfolding: A tensor φ(I1× I2× I3) is transformed

into three matrices X1(I1 × I2 I3), X2(I2 × I1 I3) and
X3(I3 × I1 I2).

• SVD Computation: The unfolded matrices are sym-
metrized into square matrices that can be written in the
form:

X1 = U SV T (1)

where U and V T contain the left and right singular
vectors respectively, and S is the diagonal matrix storing
the singular values σi of X1.

• Kernel Computation: The tensorial kernel extended from
the Gaussian kernel is computed using the function:

K (x, y) =
z�
1

kz(x, y) (2)

where kz is the kernel factor defined as:
k(x, y) = exp(

−1

2σ 2 (In − trace(Z T Z))) (3)

where Z = V T
x Vy , Vx and Vy represent the singular vec-

tors of the unfolded matrix obtained during the inference
and training phase respectively, and trace represents the
sum of diagonal elements.

• Classification: Applying the SVM classification function
expressed as:

ŷ = fSV M (x) =
n�
i

βi K (xi , x)+ b (4)

where ŷ is the predicted label of input tensor x , n is
the number of training tensors, βi are the coefficients
obtained during training, and b is the bias.

B. Touch Modalities Classification

The tensorial SVM has been initially presented as an
effective algorithm for touch modality classification in [14].
In this paper, three binary and one multi-class classification
problems are used to test the accuracy of the proposed neural
network based tensorial SVM. Specifically, the problems are:
• Problem A: “brushing a paintbrush” versus “rolling a

washer”
• Problem B: “brushing a paintbrush” versus “sliding the

finger”
• Problem C: “sliding the finger” versus “rolling a washer”
• Problem D: “one versus the others”
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These modalities are derived from a tactile dataset that has
been collected by 70 participants. Each participant performed
the modality on both the horizontal and vertical axes of a
4 × 4 tactile sensor for a duration of 10 seconds. Thus each
touch modality is represented by a tensor φ(4× 4× 30, 000).
However, such tensor size is reduced into φ(4 × 4 × 20)
where 20 is the obtained number of samples using the data
pre-processing algorithm (Algorithm 1) reported in section IV.

III. SVD ALGORITHMS AND IMPLEMENTATIONS

A. Literature Review

Singular value decomposition can be computed numerically
through several methods such as the Jacobi method, the
QR method, and the one-sided Hestenes method [15]. For
parallel implementations, computing the SVD using the Jacobi
method is superior to other methods in terms of complex-
ity and execution time [15]. Brent et. al. have shown that
two-dimensional systolic array could be used for implementing
the Jacobi method [16]. In [17], the authors have presented var-
ious realization for the Jacobi SVD computation using Coordi-
nate Rotation Digital Computer (CORDIC) [18]. The latter is
adopted in majority of the existing hardware implementations
of the Jacobi SVD method. For small matrix dimensions,
an efficient implementation of SVD for the use in Multiple
Input Multiple Output (MIMO) precoding and real-time signal
processing has been presented in [19]. The implementation is
based on CORDIC processors. For an arbitrary m× n matrix,
Ibrahim et. al. have presented an FPGA implementation with
fixed-point arithmetic [20]. The implementation managed to
compute the SVD of an 32 × 127 matrix in 13 ms while
occupying 20% and 67% slice registers and LUTs respectively
on a Virtex-6 FPGA. Fast and efficient FPGA implementation
for computing the singular and eigen value decomposition
based on a simplified CORDIC-like algorithm is presented
in [21]. The implementation uses fixed-point arithmetic for
sequential and parallel operations leading about 3× faster
computation in an image denoising application compared to
computations via an Intel CPU based PC. The authors in [22]
used High-Level Synthesis (HLS) to model the one-sided
Jacobi SVD computation on a Zedboard development board.
For a 16 × 16 matrix, SVD computation takes around
1.1 seconds with a power consumption of 1.38W. Using
CMOS 28-nm technology, Deng et.al proposed a hardware
architecture for tensor SVD [23]. Compared with real-world
CPU-based implementations, the architecture provides an aver-
age of 14× speed on various workloads.

Targeting the TSVM architecture in [3] where the one-sided
Jacobi is identified as a performance bottleneck, the exist-
ing alternative implementations for SVD computation share
several common challenges: (1) they operate only on square
matrices. Thus, if the input matrix is rectangular, an addi-
tional complexity is added due to matrix symmetrization [23].
(2) if the implementation uses floating-point representation,
the complexity is relatively high even for small matrix
dimensions [24], and (3) depending on the required out-
put precision, the algorithm might require additional itera-
tions to converge [6]. Recently, a scalable SVD engine on

Fig. 2. SVD Computation using: (a) one-sided Jacobi, (b) Neural Network.

FPGA has been introduced in [25] targeting these challenges.
The proposed engine managed to compute the SVD of rec-
tangular matrices using floating-point arithmetic. However,
the implementation results show that a large number of DSPs
is required for several matrix dimensions which has a direct
impact on the power consumption of hardware implementa-
tions. Another noticeable observation is that the authors com-
pared the SVD engine only to CPU-based SVD computations.
In this paper, a new architecture for SVD computation based
on shallow neural networks is proposed. The architecture
offers the ability to operate on rectangular matrices (thus sym-
metrization is not needed, see Fig. 2) and utilizes floating-point
arithmetic. As for convergence, the neural network training is
usually performed offline on a high-end computing device.
Thus, a network could be trained several times for any given
amount of time to achieve top notch performance.

B. Computational Complexity

In this section, we compare the complexity of the one-sided
Jacobi algorithm with that of a shallow neural network in terms
of the total number of operations. Consider a shallow neural
network of one hidden layer of size H and an output layer of
size O. For an input Am×n , the outputs of the hidden layer Yh

and the output layer YO are expressed respectively as:
Yh = fh(Wh .A + bh) (5)

YO = fO (WO .Yh + bO ) (6)

where W , b, and f represent the weight, bias, and activation
function respectively. The output of each layer consists of
matrix multiplication, addition, and activation operations. The
number of operations for matrix multiplication and addition is
expressed as:

Nh = H (2m × n − 1)+ H = 2H (m × n) (7)

Assuming that the activation function requires NAct oper-
ations, the total number of operations in the hidden layers is
expressed as:

Nh = 2H (m × n)+ NActh (8)

The same can be applied to the output layer, thus the number
of required operations is:

NO = 2H × O + NAct O (9)
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Fig. 3. Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural Network (N), (m,n) are the matirx dimension and H is the hidden layer
size.

Finally, the number of operations for the whole network
could be expressed as:

N = Nh + NO = 2H (m × n + O)+ NActh + NAct O (10)

To estimate N , suppose there exists an upper bound T such
that N ≤ T . T is an upper bound when both NActh and NAct O

correspond to the most complex activation function i.e. the
tangent hyperbolic function (tanh). The latter is expressed as:

f (z) = ez − e−z

ez + e−z (11)

To find the number of operations required for the term ez ,
we referred to the function implementation in the IEEE-754
library in [26]. The implementation uses the Taylor expan-
sion with an order 3 for floating-points, leading to a
total of 16 operations. Thus the number of operations
NActh = 35H . Similarly, NAct O = 35O. For the network
to output the right singular vectors V of an m× n matrix, the
output layer size O is equal to n2. This simplifies (10) to:

N <= (2H × n)(m + n)+ 35H + 35n2 (12)

Knowing that the number of operations for the one-sided
Jacobi algorithm is (see Fig. 1):

N j = 24m(n − 1)[n2(2n − 1)+ n3 + 6] (13)

through simulations, the values of m, n, and H are varied to
compare (12) and (13). Fig. 3 plots the number of operations
N j and N required to compute the SVD of a matrix using
one-sided Jacobi and a shallow neural network respectively.
Generally, the comparison results are in favor of the neural
network approach as shown in Fig. 3. The one-sided Jacobi
is superior for very small dimensions such as 2 × 2 for
H > 21. As the dimension starts to increase, the neural
network requires significantly less number of operations for
SVD computations. For instance, for (m, n) = (20, 16) and

TABLE I

COMPLEXITY ASSESSMENT UNDER DIFFERENT ACTIVATION FUNCTIONS

(m, n) = (4, 80) (these dimensions are often used for ten-
sorial SVD implementations based on the one-sided Jacobi
algorithm [3], [27]), computing the right singular vectors V
using a shallow neural network requires less number of
operations than using the one-sided Jacobi (N < N j ) for all
values of H ≤ 70, 000 and H ≤ 800, 000 respectively. Such
values of H are very large even for the largest existing neural
networks. The number of operations (N) required for each
activation function is presented in Table I. The hidden layer
activation function could be ReLU (Standard, LeakyReLU
or Parametric), Sigmoid, or hyperbolic tangent (tanh), it is
selected based on the trade-off between complexity and the
required performance. In the output layer, only the hyperbolic
tangent function can be used, due to the fact that the values
of the singular vectors are bounded between −1 and 1.

IV. SVD USING NEURAL NETWORKS

A. Network Structure

A regression model is targeted since the NN is needed to
compute the singular vectors. For that, there are two possible
categories to work on: (1) Classification NN that should
be modified to perform regression and re-trained [28] and
(2) Regression NNs [29]. Although the classification accuracy
achieved by the one-sided Jacobi TSVM could be obtained
by an existing NN model from the two above mentioned
categories, the main concern remains in the computational
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Fig. 4. Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer Neuron, (c) PReLU Activation Function, (d) Output Layer Neuron,
(e) Approximate Hyperbolic Tangent Activation Function.

complexity of such model. Concerning the first category,
one could choose Convolutional NN (CNNs), Multi-Layer
Perceptron (MLP), Long-short Term Memory (LSTM), etc.
Even the smallest models such as MobileNet [30], Shuffle
Net [31], and EffNet [32] contains at least four layers. On the
other hand, for the regression NNs, with only one hidden layer,
a shallow network is considered to be the smallest possible
regression NN model.

A tactile tensor φ(4×4×20) is unfolded into three matrices
M(4×80), N(4×80), and P(20×16). According to (1) each
matrix could be decomposed into:

M4×80 = U4×80 ×�80×80 × V T
80×80 (14)

N4×80 = U4×80 ×�80×80 × V T
80×80 (15)

P20×16 = U20×16 ×�16×16 × V T
16×16 (16)

Authors in [14] and [33] reported that for tensor SVD,
only a small number of the columns of V is required
to obtain acceptable classification accuracy when embedded
in SVM. Using the three touch modality problems reported
in section II.B, the V matrices that resulted in the highest
classification accuracy are: V T

80×4, V T
80×4, and V T

16×2.
Fig. 4(a) shows the proposed shallow neural network that

is capable of computing the right singular vectors V . The
network is composed of three fully connected layers: an input
layer of size m × n, a hidden layer of size H , and an output
layer of size O = n × t , where t is the selected number of
columns from V . Thus, two neural networks are designed. one
with an 80× 4 output and the other with a 16× 2 output.

The neural networks share two activation functions ( fh) and
( fO ) defined as:

fh(zi ) =
�

zi zi ≥ 0

βzi otherwi se
(17)

fO (z) =

⎧⎪⎨
⎪⎩
−1 z < −1

1 z > 1

z otherwi se

(18)

The function fh shown in Fig. 4(c) is called Parametric
Rectified Linear Unit (PReLU) where zi is just one feature

out of the feature vector z and β is a learnable weight
used to keep negative values compared to the standard ReLU
function. It is adopted for the hidden layer to preserve the
sign of the neurons’ output with low computational complexity
compared to other activation functions (e.g. Sigmoid function).
The function fO shown in Fig. 4(e) is called hard hyperbolic
tangent activation function [34]. It is used at the output layer
to output the elements vi of the V matrix in the range [−1, 1]
with a reduced computational complexity compared to the
hyperbolic tangent function.

B. Network Training and Tuning

The chosen network model is trained using floating-point
representation during both forward and backward propagation.
The network is trained to export the right singular vectors V
with the least possible error margin compared to exact com-
putations obtained via MATLAB. The proposed network is
a regression model that outputs singular vectors, for that the
performance is determined based on two metrics: (1) Mean
Squared Error (MSE) and (2) Cosine Similarity (CS). These
metrics are defined as:

M SE = 1

n

n�
i=1

(Vi − V̂i )
2 (19)

C S = 1

n

n�
i=1

(
Vi .V̂i

||Vi || × ||V̂i ||
) (20)

where V is the matrix generated from the neural network
and V̂ is the one generated from applying the SVD using
MATLAB software. Thus, the training aims at finding a net-
work model that achieves the lowest MSE (i.e. the elements vi

of the V and V̂ matrices have similar values) and highest C S
(i.e. the vectors Vi of the V and V̂ matrices have similar
direction i.e C S tends to 1).

The proposed neural network is hand crafted and can be
customized. The training process is used to tune the net-
work hyperparameters [35] i.e. parameters that determines the
network structure and training behavior (e.g. size of hidden
layer H , learning rate) and parameters (e.g. weights). During
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Fig. 5. Touch Modality with: (a) Noisy Readings, (b) Silent Intervals.

training, the weights and biases of the network are randomly
initialized, then updated using one of the below optimizers.
As for the hyperparameters, the following settings have been
tested:
• H = [10, 20, . . . . . . 200]
• PReLU β: learned parameter through Channel-wise or

channel-shared modes [36]
• Learning rate = [0.1, 0.01, 0.001, . . .10−5]
• Optimizer: [SGD, Adam, Adadelta, RMSprop]
• Batch size = [50, 100, 150]
The tactile dataset from [14] is used for training. However,

some modifications have been applied based on the following:
• Some participants recordings are noisy (see Fig. 5(a)),

thus their corresponding data has been removed from the
training dataset.

• Since no particular indications were given to the partic-
ipants in [14] about the pressure level, silent intervals
(i.e. voltage readings from sensor taxels equals to zero,
see Fig. 5(b)) are observed in the recordings. These silent
intervals will not help the neural network to learn new
patterns and thus are removed. Specifically, all reading
outside the timing interval [3.5, 7] are omitted.

Algorithm 1 summarizes the pre-processing technique
applied to the dataset. The algorithm truncates each
modality from 10s to 3.5s resulting in a tensor T �(4 ×
4 × 10, 500). Afterwards, subsampling is applied to
obtain 20 readings (P = 20) from the 10,500 resulting in a
final tensor φ(4×4×20). After pre-processing, 4480 matrices
of dimensions 4 × 80 and 20 × 16 have been derived. Then,
their corresponding V matrices are generated using MATLAB.
These matrices are divided into 80% for training, 10% for
validation, and 10% for testing.

C. Network Performance

The neural network is coded in Python using Tensorflow and
Keras libraries. Then, it is trained on an ASUS PC equipped
with an NVIDIA GTX 1650 graphics card with 4GB VRAM.

Algorithm 1 Pre-Processing Algorithm
Input: Tensor T of size (:,:,S),
Time Interval [a, b]
Sampling parameter P
Output: Sampled Tensor φ of size (:,:,P)
Let v1← a × S/10
Let v2← b× S/10
Let S� ← v2 − v1
Let T � be a Tensor of size (:,:,S’)
Let j = 0
for i ←v1 to v2 do

T �(:, :, j)← T (:, :, i)
j ++

Let k = 0
for i ←0 to P do

φ(:, :, i)← (P/S�) ∗	S �/P+k
i=k T �(:, :, i)

k+ = S�/P

Fig. 6. Network Performance Under Different Activation Functions.

TABLE II

BEST MODEL PERFORMANCE COMPARED TO ONE-SIDED JACOBI

Fig. 6 shows the MSE and CS while testing the proposed net-
work under different activation functions. Although using the
hyperbolic tangent function leads to a model with the lowest
MSE and highest CS, it imposes the highest computational
complexity as reported in Table I. Hence, PReLU activation
function has been adopted for the hidden layer as a trade-off
between complexity and MSE/CS.

Fig. 7 shows the MSE and CS of the model with best
achieved performance. The latter is obtained using the char-
acteristics presented in Table II. One noticeable observation
is that the size of the hidden layer differs for the two input
dimensions. This is due to the fact that the network has to
output 320 elements (80×4) for the input dimension (4×80)

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore.  Restrictions apply. 

7.4. CONTRIBUTIONS AND PERFORMED WORK 213

IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS), 2021



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YOUNES et al.: SHALLOW NN FOR REAL-TIME EMBEDDED MACHINE LEARNING 7

Fig. 7. Best Model Performance: (a) CS for V (80 × 4), (b) MSE for
V (80× 4), (a) CS for V (16× 2), (b) MSE for V (16× 2).

TABLE III

BEST MODEL PERFORMANCE COMPARED TO ONE-SIDED JACOBI

compared to 32 elements (16 × 2) for the input dimension
(20 × 16), which justifies the longer training time required
(higher number of epochs). However, the training can be
shortened into 250 and 100 epochs for output dimensions
(80× 4) and (16× 2) respectively.

The obtained performance is compared to that of computing
the SVD using the one-sided Jacobi algorithm based on the
architecture presented in [20]. According to the comparison
shown in Table III, the proposed neural network is capable of
computing the right singular vectors V while: (1) providing
low MSE and high CS during training, validation, and testing,
and (2) achieving comparable performance in terms of MSE
and CS to the exact computation using the one-sided Jacobi.
This is evident for both input dimensions 4× 80 and 20× 16.

V. HARDWARE IMPLEMENTATION AND VERIFICATION

This section presents the architecture and implementation
details of the two shallow neural networks and the overall
tensorial SVM. The latter is characterized by adopting these

networks for SVD computation. The input, weights, and
biases are represented in 32-bit floating point. Each hardware
architecture has been coded in C++, synthesized and imple-
mented using Vivado/Vivado HLS 2020.1 targeting Virtex-7
FPGA device operating at 100 MHz. To test and validate
the hardware implementation, a C++/RTL co-simulation is
performed in Vivado HLS to compare the results between the
C++ simulation and the RTL implementation. Afterwards,
the RTL implementation has been exported as an Intellectual
Property (IP) to Vivado where the hardware resources and
number of clock cycles are recorded. The time latency is
computed as:

T = cc × 1/ fmax (21)

where cc is the number of clock cycles in post-implementation
timing simulation and fmax is the maximum operating fre-
quency. As for power consumption, a post implementation
functional and timing behavioral simulation is performed
to generate a Switching Activity Interchange File (SAIF).
This file is used to obtain a vector-based power estimation
post-routing.

For the rest of the paper, let NN1 and NN2 denote the
neural networks with input dimensions 4 × 80 and 20 × 16
respectively.

A. FPGA Implementation of the Shallow Neural Network

Fig. 8 shows the architecture of the proposed shallow
neural network. For an input X of size L (one of the
unfolded matrices), it outputs the V matrix using sequential
operations. The outputs Yh and YO corresponds to the equa-
tions (5) and (6), where fh and fO are the PReLU and the
hard tangent hyperbolic activation functions respectively. The
input X and the weights are stored on-chip using BRAMs and
the multiplier is fed from the BRAM to perform element-
by-element multiplication of the input and weight values.
Similarly, the multiplication result is fed to the adder and the
bias values are read from on-chip BRAMs. The right singular
vectors matrix V is obtained by transforming the output
vector YO into a 2D array as shown in Fig. 9. The advantage
of such architecture is that it allows the use of network pruning
without any loss in performance (MSE/CS). The weight and
bias matrices obtained from the offline training phase have
been analyzed to identify neurons with very low weight/bias
values. These neurons could be removed without affecting
the network performance during inference. Thus, pruning is
applied on matrix multiplication/addition by skipping opera-
tions where W [i ], b[i ] ≤ 10−4.

Table IV shows the implementation details for the SVD
computation on a 4× 4× 20 input tensor (i.e. NN1 is utilized
twice to compute the SVD of the matrices M , N while NN2 is
utilized once to compute the SVD of the matrix P) compared
to the one-sided Jacobi based on the architecture presented
in [3]. The obtained results show that using neural networks
for SVD computations allows for a 324× speedup with an
average resources and power reductions of 58% and 67%
respectively. Another observation is that the neural network
architecture uses slightly more BRAMs. This is due to the fact
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Fig. 8. Shallow Neural Network Architecture.

TABLE IV

IMPLEMENTATION RESULTS FOR TENSOR SVD COMPUTATIONS

that the weights and biases matrices obtained from network
training are mapped into BRAMs and are not saved on an
external memory. Knowing that the Virtex-7 FPGA is used
for implementation to have a credible comparison with the
state-of-the-art, the obtained results show that the proposed
neural network for SVD computations is adequate to fit in
a resource-limited platform such as the Zynqberry. This is
not possible for the implementation of the one-sided Jacobi
targeting large matrix dimensions.

B. FPGA Implementation of the Neural Network Based SVM

The neural networks NN1 and NN2 have been embedded
into the cascade architecture of the tensorial SVM presented
in [3]. The new NN-based TSVM architecture is presented
in Fig. 10. The “NN Memory” contains the weights and
biases matrices of the designed neural networks. The “SVM
Memory” contains the singular vector training matrices. k1,
k2, and k3 are the three kernel factors obtained using (3).
The architecture performs the SVD computation of the three
unfolded matrices using the proposed NN1 and NN2 neural
networks. Table V shows the different operating modes in the
cascade architecture. For S0S1 = 00, the first unfolded matrix
X1 is selected and NN1 is activated, then for S0S1 = 01,
the second unfolded matrix X2 is selected and NN1 is utilized.
As for S0S1 = 10, the third unfolded matrix X3 is selected
and NN2 is activated. When active, each network computes
the right singular vector matrix V of each of the unfolded
input matrices. The obtained V matrices along with the ones
exported from the training phase are used to compute the
kernel factors as depicted in (3), which are required to output
a classification decision as shown in (4).

Fig. 9. Vector YO to Array V Transformation.

TABLE V

NN-BASED TSVM OPERATING MODES

TABLE VI

IMPLEMENTATION RESULTS FOR TENSORIAL SVM

Table VI presents the implementation details of both the
NN-based TSVM and Jacobi-based SVM for Nt = 200
and Nc = 2. The energy per classification is computed as
E = P × T where P is the dynamic power consump-
tion and T is the time latency. The NN-based TSVM and
Jacobi-based TSVM recorded 0.9 W and 1.8 W respectively.
Results show that replacing the one-sided Jacobi algorithm
with a shallow neural network in the architecture of the
TSVM leads to faster classification time up to 131×. The
NN-based TSVM also requires 39% less average hardware
resources with 50% reduced power consumption. This leads
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Fig. 10. Neural Network based SVM Cascade Architecture.

TABLE VII

TOUCH MODALITY CLASSIFICATION USING NN-TSVM IN COMPARISON WITH EXISTING METHODS

to 88% reductions in the energy per classification factor. Three
main observations could be noted: the proposed NN-based
TSVM (1) is capable of real-time classification within 36 ms
(time ≤ 400ms [4]), (2) achieves real-time classification
using cascaded architecture, which was not possible using
the Jacobi-based TSVM as reported in [3]. The latter has
been the main reason for using the parallel architecture which
has led to high power consumption, (3) offers the reductions
in resources and energy per classification at the expense of
increased memory requirements to store the weights and biases
matrices compared to Jacobi-based TSVM.

C. Performance Verification

The NN-based TSVM implementation is verified using
the four classification problems mentioned in Section II.B.
Table VII presents the classification accuracy achieved by the
proposed NN-TSVM in comparison with existing methods
targeting the same touch modality classification. The clas-
sification accuracy of different methods is tested using a
dataset with 30 samples. Using neural networks to compute
the right singular vectors V provides approximate values
compared to the exact one-sided Jacobi. However, this resulted
in acceptable classification accuracy with only 3% loss in the
worst case. This is evident in the comparable MSE/CS of both
architectures as presented in Table III.

Compared to other methods, for binary classification
(A, B, and C), the proposed NN-TSVM shows a worst case
of 6% loss compared to RLS for Problem B and a 5% better
accuracy for Problem C, and 9.6% loss compared to kNN for
Problem C while providing up to 20% accuracy increase in
Problems A and B. Problem C has been identified as very
challenging for TSVM in [14], it has been solved in [37]

using k-Nearest Neighbor (kNN). For multiclass classification
(Problem D), NN-TSVM achieves an accuracy comparable to
Jacobi-TSVM and RLS, with a 7% worst case loss compared
to Deep Convolutional Neural Network (DCNN) and TSVN
with Ideal Regularized Composite kernel (TSVM-IRCK).

VI. SCALABILITY OF NEURAL NETWORK BASED TSVM

In order to quantify the scalability of the NN-based TSVM
hardware complexity (resources and time latency), two cases
are assessed: (1) Scalability of the shallow neural network,
and (2) Scalability of the NN-based TSVM. The former is
studied by varying the hidden/output layer size and tuning the
network to achieve the same MSE/CS reported in Table III.
The latter is performed by increasing the number of training
tensors while maintaining the overall classification accuracy
of the NN-based TSVM as reported in Table VII.

A. Case 1

The scalability of the neural network depends on the size
of each layer and the activation function in use. Through
Fig. 3, an insight about the number of operations with respect
to the dimensions (i.e. m, n, and H ) could be learned for a
certain application. To assess the scalability of the proposed
NN architecture, the hidden and output layer sizes are varied.
L is chosen so that the network maintains the same MSE/CS
reported in Table III. O is derived from the dimension of the
V matrix of the unfolded matrices obtained from the input
tensor 4 × 4 × 20. We designed and implemented two more
neural networks that compute the right singular vectors V
without truncation i.e. output layer size O = n × n instead
of O = n× t . Fig. 11 presents the hardware resources and the
time latency with respect to hidden and output layer sizes for
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Fig. 11. Scalability of Shallow Neural Network for varying the hidden/output layers size.

a three-layer (input, hidden, output) shallow neural network
for the SVD computation of an input matrix. The obtained
results are recorded when the network achieved a comparable
MSE/CS to those reported in Table III. Analyzing the graphs
leads to several observations:
• The number of required FFs and LUTs is not uniform

(see Fig. 11(a),(b)). For instance, a similar number of
FFs/LUTs is required for networks with 140 and 400 neu-
rons in the hidden layer with the same output layer
size. This could be justified with the pruned cascaded
architecture where resources are shared for blocks with
similar functionality.

• Memory requirements in terms of BRAMs starts to
increase once reached an output layer size of 80 × 80
with 400 neurons in the hidden layer (see Fig. 11(c)).
This is justified since the sizes of the weight and the
bias matrices increase in such cases, which requires more
memory storage.

• As shown in Fig. 11(d), regardless of the
input/hidden/output layer size of the network, the number
of DSPs is constant for the proposed architecture.

• The SVD computation time is relatively short until reach-
ing a high output layer size as shown in Fig. 11(e).
This is due to the longer operations required to perform
matrix multiplication/addition. However, according to the
comparison in Section III.B, this is faster than using the
one-sided Jacobi as long as H ≤ 70, 000 (H ≤ 800, 000)
for 20× 16 (4× 80) matrices.

The presented scalability assessment supports the use of
these networks for SVD computations as an efficient solution
especially for large matrix dimensions. Hence, the proposed

idea could be extended into other applications via a two-stage
approach as shown in Fig. 12:
• Stage 1: Unfold all the tensors φi in a dataset into

3 matrices. Then, find the V matrix for each of the
unfolded matrices using MATLAB or other software. For
the majority of the applications, a tensor has the same first
two dimensions (e.g. image, touch modality) hence, two
of the generated matrices will have the same dimension
hence can be grouped in a subset A. The remaining
matrix and its corresponding V matrix will be added to
a subset B.

• Stage 2: For each of the subsets, a shallow neural network
is to be designed. Start with random hyperparameters
for the initial model, then tune it using the generated
subset to reach the required MSE and CS. Once, the best
model is found, the weights and biases matrices could
be exported and used by the architecture in Fig. 8.
For complexity tuning, one could modify the pruning
rule while preserving the required performance metric
imposed by the application.

B. Case 2

To study the scalability of the proposed NN-based TSVM,
the number of training tensors has been varied between
200 and 900 and the implementation requirements are recorded
once the NN-based TSVM recorded a comparable accuracy
to the one presented in Table VII. According to the results
obtained in Fig. 13:
• The required hardware resources (FFs, LUTs, BRAMs)

are slightly increased with the increase of the number
of training tensors. In case of BRAMs, a steeper slope is
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Fig. 12. SVD Computation Approach via Shallow Neural Network.

Fig. 13. Scalability of NN-based TSVM for binary classification (Nc = 2) and variable number of training tensors.

observed which is due to the adoption of NN that requires
the storage of weights and biases matrices.

• The number of required DSPs is contsant for each size
of training tensors.

• The proposed implementation is capable of real-time
classification even after 4.5× increase in the number of
training tensors.

Compared to the scalability study of the Jacobi-based
TSVM presented in [41], Fig. 14 shows that the proposed
approach complexity versus the number of training tensors

presents a reduced slope. For instance, the Jacobi-based
TSVM requires 29% increase in the number of FFs when the
number of training tensors is doubled. Using the NN-based
TSVM, an increase of less than 1% in FFs is noticed.
This is mainly due to two reasons: (1) the neural net-
work requires significantly less resources than that of the
one-sided Jacobi. (2) the NN-based TSVM is a cascaded
implementation i.e. blocks are being re-used for implementa-
tion while increasing the time latency. In [41], the architecture
is based on parallel computation due to their time constraint of
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Fig. 14. Scalability Comparison with Existing Methods [41].

real-time classification. The latter is assured using the pro-
posed cascaded architecture for all of training tensors sizes.

The importance of the presented work lies in the ability
to scale such architecture for processing larger number of
samples while respecting the constraints of the application.
When scaled up, the designed NN-TSVM could enable intel-
ligence on smaller platforms (e.g. Zynqberry) if two issues
are tackled. The first issue is reducing the number of DSPs:
this could be achieved by using some approximate computing
techniques [42] or using LUTs-only custom core for matrix
operations. The second issue is reducing the number of
BRAMs: this could be achieved by further pruning of the
weight/bias matrices as long as the application performance is
not highly affected. Another method is to offload these matri-
ces completely to external DRAM. This imposes additional
timing overhead. However, authors in [43] have presented a
strategy to overcome such design challenge.

VII. CONCLUSION

This paper introduced a shallow neural network archi-
tecture for the SVD computation of tensorial inputs. The
architecture achieves comparable performance to the state-
of-art solutions while imposing significant reductions in the
implementation requirements. Once embedded in the SVM
architecture, the NN-based TSVM is capable of delivering
faster touch modality classification time up to 131× using
a cascade architecture. The latter is characterized by a 39%
and 88% decrease in the resources and energy per classi-
fication respectively compared to the architecture presented
in [3] targeting the same application. Moreover, the proposed
NN-based SVM obeys the constraints imposed by the tactile
data processing application e.g. small size, real-time response,
and low power consumption. The encouraging scalability
results present the first effective trial for designing an efficient
embedded processing unit for an e-skin. A unit that is capable
of delivering real-time performance with relatively acceptable
power consumption without the need for high performance
platform or multi-core devices.
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7.4.4 A hybrid precision architecture for an efficient binary convolu-
tional neural network accelerator

Convolutional neural networks are a promising solution in many application domains such
as Internet of Things (IoT), image processing, tactile processing, etc. However, the compu-
tational complexity and memory requirements are the main challenge in the deployment of
CNNs on resource-limited devices for energy-constrained applications [188]. For instance,
the VGG-16 network contains about 140 million 32-bit floating-point parameters and im-
plements 1.6 × 1010 arithmetic operations [189]. There have been numerous efforts on the
complexity reduction of CNNs such as network pruning [190], knowledge distillation [191],
and weight quantization [192].

Quantization of CNNs may cause an information loss especially if it is applied to the ex-
treme using 1-bit representation i.e. binarization. To address this issue, a variety of methods
have been proposed in recent years [189]. These methods aim to: 1) minimize the quan-
tization error, for instance by only quantizing the weights, 2) improve the network loss
function to adapt to the binary values propagating through the network, and 3) reduce the
gradient error by the adjustment of the Back Propagation (BP) training algorithm to adapt
with binarization functions. Among these methods, minimizing the quantization error is
the most used technique since it leads to relevant memory saving and complexity reduc-
tions [189, 192, 193].

In this research work, a new architecture based on hybrid precision representation is pro-
posed as a trade-off between the reliability of CNNs and the low complexity of Binary Con-
volution Neural Networks (BCNN). The architecture adopts binarization of hidden layers
and 32-bit floating-point for the first and last layer with binary weights. A design methodol-
ogy is provided on how to select the network topology, placement of binarization layers, and
training process. The network is designed and trained using Larq framework [194], which is
an extension of Tensor-Flow that offers a library to design, train, and deploy quantized/bi-
narized CNNs. The proposed hybrid-precision binary weight network (H-BWN) achieved
more than 35% accuracy increase in classifying touch modalities compared to traditional
BCNN topology. The H-BWN requires less than 5 KB of storage requirements achieving an
efficient architecture that fits in a wide range of microcontrollers (e.g. STM32F0x2). When
implemented on Zynq-7010 platform, the H-BWN accelerator provided a real-time classifi-
cation within 0.8 ms with a 42.4 µJ energy per classification. Compared to exiting solutions,
H-BWN achieved higher classification accuracy with an energy reduction up to 99% accom-
panied with a speedup up to 6875×.

This research work has been published in the proceeding of the IEEE International
Conference on Ph.D Research in Microelectronics and Electronics (PRIME) [195] and
the proceeding of the IEEE International Conference on Electronics, Circuits and Systems
(ICECS) [196].

7.4.5 Perspectives

The deployment of machine learning algorithms on embedded devices for applications with
a constrained requirements is an active challenge. In this work,two of the main methods that
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are widely used to reduce the obstacles faced while overcoming such challenge have been
investigated. The first method is the use of approximate computing to reduce the computa-
tional complexity of ML algorithms with an acceptable margin of error. The second method
is to design custom hardware accelerator architectures optimized for a certain algorithm im-
plemented on a specific hardware platform.

With the continuous adoption of machine learning algorithms in different domains, future
work in this research area involves tracking the advancements of such algorithms especially
deep learning. For instance, Transformers have been lately investigated for the use of image
classification [197, 198]. Which could be possibly adopted for tactile data processing due
to the tensorial nature of tactile signals. Consequently, monitoring the new methodologies
for the design and implementation of hardware accelerators. In addition, due to the error
resilience nature of ML algorithms, new approximate computing techniques are emerging
such as adaptive approximate computing [199] and approximate adders with Single LUT
delay [200].



Part III

Current Work and Future Directions
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Chapter 8

Ongoing Research Works

8.1 Preface

My ongoing research activities focus on applications in the domain of embedded computer
vision (CV) and embedded artificial intelligence (AI) with great emphasis on achieving effi-
cient implementations on embedded edge devices with reduced computational resources an
power budget. This research track has been initiated during my work at the Lebanese Inter-
national University and Lebanese University where I have supervised several Master theses
that have tackled topics for applications of visual drone navigation, change detection and
object detection. Also, I was the manager of a research project that aims to detect humans
from areal images during search and rescue mission. Furthermore, I am currently involved
in a research project that aims to optimize the detection and classification of marine objects
using deep learning techniques on embedded edge devices. The following sections introduce
my current research topic, describe the conducted work, present the achieved results and
highlight the future work.

8.2 Real-Time Visual SLAM Drone Navigation in GNSS-
Denied Regions

The use of unmanned aerial vehicles (UAVs) is expanding in several fields such as commerce,
agriculture, scientific research, rescue missions, pollution detection, etc. Initially, UAVs have
been developed to be controlled by an on-ground pilot by the means of a remote-control
communication system. Currently, UAVs are drawing closer to navigate at high degrees of
autonomy, where knowing the location is an essential attribute. Most UAVs exploit global
navigation satellite system (GNSS) technology and inertial sensors (INS) to estimate its own
geo-spatial positioning. UAVs are augmented with GNSS receivers, which benefit from the
received time radio signals transmitted from satellites to calculate the location (longitude,
latitude, and altitude). The location estimation based on the INS alone drifts when the GNSS
signal drops-off. Hence, in order to navigate autonomously a course accurately, it is essential
to ensure the well receiving of radio signals from at least four satellites simultaneously. This
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cannot be guaranteed when a UAV mission includes intermediate locations where GNSS sig-
nal becomes unreliable, such as urban zones, indoor environments, landscapes covered with
forests, valleys surrounded by mountains, etc., or when the radio signals are mitigated by
spoofing and gaming operations, which are easily performed especially for GNSS receivers
operating on civilian frequencies. Many research works have been conducted to cope with
GNSS failure. The technique of localizing a robot in a certain environment and mapping it at
the same time is so called Simultaneous Localization and Mapping (SLAM). Several solu-
tions have been demonstrated to apply SLAM adopting INS, ultrasonic and infrared sensors,
Laser range finders [201], rotary encoders, inertial sensors, and GNSS. Recently, as computer
vision has witnessed rapid development, SLAM methods employing cameras have been ac-
tively introduced and referred to as visual SLAM [202]. Several works have discussed the
use of visual SLAM for UAV navigation, landing, etc [203, 204, 205].

This research work demonstrates the usage of image stitching method for SLAM to cir-
cumvent the limitations of available methods. Image stitching is basically used to form a
single panoramic image with high resolution by merging two or more images of the same
scene. Originally, image stitching has been wildly used to do the complete mapping of partic-
ular region benefiting from digital maps and satellite images. The use of image stitching for
SLAM eliminates the need of selecting landmarks and extracting their features. The features
of each two consecutive captured images are used to determine the flight distance and bear-
ing angle. Matching the features is performed only between the stitched image and the two
consecutive images, which are captured in the same conditions and using the same camera.
This reduces the computational complexity, lessens the required memory space and delivers
a solution to localize UAVs in unknown paths and cope with landmarks’ modifications.

A novel method to localize UAVs in GNSS-denied regions is provided. It adopts Scale
Invariant Feature Transform (SIFT) method to detect the features in the captured images. The
features extracted from consecutive images are used to stitch the images. Accordingly, the
bearing angle and moving distance are estimated. Figure 8.1 shows how SLAM is applied
using the proposed method. Figure 8.1(a) and Figure 8.1(b) show two consecutive captured
images Imx and Imx+1. Figure 8.1(c) shows the stitched image Imx,x+1. Figure 8.1(d) and
Figure 8.1(e) present respectively the matching of the two original images Imx and Imx+1

in the resulting stitched image Imx,x+1. In Fig. 8.1(f), the bearing angle is shown between
the green line, which represents the original heading, and the red line, which represents
the current path. Note that the total required execution time to determine the coordinates is
less than the flight duration. In order to check the relevancy of the proposed approach, the
location in the meta-data is compared with the achieved results. The comparison shows for
the illustrated example an error of 5 meters in the estimated distance and 4.6 degrees at most
in the bearing angle as shown in Figure 8.2, where the red line shows the distance and angle
based on the proposed method and the yellow line shows the distance and angle based on the
meta-data of the frames. Note that the coordinates delivered in the meta-data are provided by
a commercial GPS, which has an equivalent user error of 7 meters.

This work has been initiated in the context of a Master’s degree project at the Lebanese
International University and has been published in IEEE International Conference on Arti-
ficial Intelligence Circuits and Systems (AICAS) [206]. In order to perform the experiments
in the laboratory rather than real flights, a GNSS receiver emulator has been designed and
implemented. The emulator has been demonstrated in the IEEE International Conference on
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(a) (b)

(c) (d)

(e) (f)

Figure 8.1 — Sample application of the proposed method

Electronics, Circuits and Systems (ICECS) [207].

Future work includes the implementation of the proposed method on edge embedded de-
vices with low weight and reduced size such as FPGA-based platforms or embedded develop-
ment kits from Nvidia dedicated for AI and computer vision and compatible with the payload
constraints of drones such as Jetson Nano, Jetson Xavier NX, and Jetson AGX Xavier. This
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(a) (b)

Figure 8.2 — Bearing angle comparison results

work includes the phases of implementation and verification in terms of power consumption
and performance targeting real-time scenarios. In addition, it is planned to augment the sys-
tem with a light detection and ranging (LiDAR) to measure the UAV height, which should
be involved in the computation during real experiments.

8.3 Marine Objects Detection Using Deep Learning on Em-
bedded Edge Devices

In this work, we address the problem of detecting and classifying maritime objects. Marine
object detection and classification are two essential tasks for many applications such as ves-
sel identification and positioning, collision avoidance system, safe autonomous navigation,
search and rescue mission, etc. Marine objects can span from stationary floating objects such
as buoys to small boats and kayaks and other large vessels such as ferries, passenger ships
and cargo ships. Surveillance adopting shared information from Electronic Chart Display
and Information System (ECDIS) and GNSS can provide locations of marine vessels [208].
However, this depends on the reliability of data, which may degrade due to spoofing, jam-
ming or even dis-activating automatic identification system (AIS). Radar-based methods can
be effective to detect the presence of large vessels. Small boats and floating objects on water
surface are difficult to be identified [208].

Visual detection of marine objects using electro-optical sensors provides a solution for
detecting and classifying marine objects [209]. Classification and detection of objects using
captured images have been widely used in several application domains [210][211]. However,
the characteristics of the scenes captured in marine environment arise additional challenges
to the task of detecting objects in images or videos compared to other environments. Factors
such as dynamic nature of the background, unavailability of static cues, presence of small
objects at distant backgrounds and illumination effects impact the performance of commonly
used image processing and computer vision approaches [212]. Tides and waves lead to a
continuously dynamic background in both spatial and temporal dimensions. Also, floating
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objects are subjected to a lot of motion with unpredictable patterns. The illumination of
marine scenes varies due to weather conditions (haze, fog, rain, bright sunlight, twilight,
etc.). Speckles and glints are mainly induced by the variation of the solar incident angle on
water. Furthermore, the disparity of color gamut depends on illumination conditions. Color
gamut varies respectively between dark, yellow and red, blue and gray during night, sunset,
daylight, and hazy conditions respectively. These factors affect the visibility of objects in
marine environments and hence the detection performance. An effective technique for certain
cases with specific illumination type, weather condition and water dynamicity may not suit
other conditions.

Artificial intelligence techniques based on deep learning provide robust solutions to de-
tect and locate objects. The achieved performance proves the relevance of CNNs in cir-
cumventing existing computer vision challenges. Deep learning methods, known as deep
neural networks, make use of multiple hidden layers between the input and output layers to
learn a hierarchy of features that are invariant to geometric transformations from raw input
images. AI methods with CNNs play dominant role in classifying and locating multi ob-
jects in images and videos leading to accurate detection. One-stage detection methods have
been introduced to provide real-time performance with acceptable precision and accuracy.
These methods exclude the stage of pre-selecting the regions of classification and abstract
post-processing techniques (refining bounding boxes, eliminating duplicates and adjusting
detection scores) used in two-stage methods such as the well known region-convolutional
neural network (R-CNN) [213] and its enhanced versions [214, 215] in order to reduce the
complexity and ensure real-time detection speed.

You Only Look Once (YOLO) has been recently proposed in [216] as an efficient one-
stage CNN-based model that is able to detect multi objects in real-time. Published peer re-
viewed comparisons [217][208] [218] illustrate that YOLO outperforms two-stage detection
methods and other available one-stage methods such as single shot detector (SSD). Since
introduced, many versions of YOLO have been introduced such as YOLOv2[219], YOLOv3
[220], YOLOv4 [221] and YOLOv5. In YOLOv2 [219], the fully connected layers at the
end have been eliminated and Darknet-19 architecture has been adopted. YOLOv3 [220]
uses Darknet-53 architecture and inherits the concept of residual networks. The detections
are made at 3 different scales which enables the detection of small objects. YOLOv4 and
YOLOv4-tiny proposed initially in 2020 [221] optimize and improve every part of YOLOv3.
The main optimization is to use CSPDarknet-53 as its backbone network for extracting fea-
tures. The difference between YOLOv4-tiny and YOLOv4 is that the tiny version only has
two YOLO heads at the end (2 scale factor instead of 3). Figure 8.3 shows the block diagram
of YOLOv4 network.

Output
image

Input
image

Figure 8.3 — Block diagram of YOLOv4 network
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The experiments targeting Microsoft common object in context (COCO) dataset [222]
show that YOLOv4 is faster and more accurate than real-time neural networks EfficientDet
[223] and RetinaNet [224] provided by Google and Facebook respectively. Comparisons
have been made between YOLOv3, YOLOv4 and YOLOv5, in which some authors claim
that YOLOv4 is more accurate while others claim that YOLOv5 is more accurate. The reason
for different reported results can be attributed to many factors, such as the different datasets
used, the modified hyperparameters, etc [225].

The deployment of CNNs on embedded edge devices targeting real-time inference sets a
challenge due to the limited computing resources and power budgets. Several optimization
techniques such as pruning, quantization and use of light neural networks enable the real-
time inference but at the cost of precision degradation. However, using efficient approaches
to apply the optimization techniques at training and inference stages enables high inference
speed with limited degradation of detection performance.

Accordingly, we investigate different versions of YOLO for real-time object detection
and compare their performance for the specific application of detecting maritime objects. The
trained YOLO networks are efficiently optimized targeting three recent edge devices: Nvidia
Jetson Xavier AGX, AMD-Xilinx Kria KV260 Vision AI Kit, and Movidius Myriad X VPU.
Also, we make use of emergent optimization techniques to deploy the trained networks on
embedded edge devices. Figure 8.4 shows sample predictions using the trained model.

Figure 8.4 — Sample predictions of marine objects using the trained model

This work comes in the context of ODESSA research project which gathers several re-
searchers and engineers from Lab-STICC and two companies. The performed work and ob-
tained results have been described in a research paper [226] which is submitted to the IEEE
International Workshop on Rapid System Prototyping (RSP), which will be held as a part
of the Embedded Systems Week (ESWEEK) international conference, Shanghai in October
2022.

The main contributions of this work are:

• Create a diverse dataset of marine objects, which has the widest number of classes and
annotations compared to available datasets,

• Train and evaluate several YOLO neural networks with different sizes and architecture
specifications,
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• Apply structured pruning using sparsifying [227] to reduce the network size while main-
taining the detection performance,

• Optimize the trained networks towards implementation on popular edge devices to
achieve the best compromise between inference speed and detection performance.

The proposed deployments demonstrate promising results with an inference speed of 90
frames per second (FPS) and a limited degradation of 2.4% in the mean average precision
(mAP). The analysis of the obtained results reveals that Jetson Xavier AGX is the most
powerful device among the three platforms in terms of detection performance. It achieves the
highest inference speed while maintaining acceptable precision values. However, it requires
more power budget. It achieves 3.23 FPS/Watt for YOLOv4-tiny and 1.46 FPS/Watt for
YOLOv4.

The KRIA KV260 AI VISION KIT power consumption is 4 times less than the GPU
on Jetson Xavier AGX. However, the achieved inference speed is 1.6 times and 4 times less
than that achieved using the GPU for YOLOv4-tiny and YOLOv4 respectively. It is necessary
to realize a graph pruning to achieve 15 FPS with only one DPU B4096@300Mhz. While
considering performance per watt criterion only, the KRIA KV260 kit outperforms the other
targeted devices when running YOLOv4. It achieves 1.875 FPS/Watt.

The MOVIDIUS MYRIAD X VPU suffers from a lack of computing power, yet it is
enough to infer a YOLOv4-tiny at 31 FPS with a power consumption less than 5 Watts with
OAK-D camera. The comparison in terms of performance per Watt shows that for YOLOv4-
tiny, the VPU outperforms the other two devices as it achieves 7.75 FPS/Watt.

Future work will include the following steps:

• Extend the dataset in order to include new classes of marine objects and to balance the
number of images among classes.

• Examine the new version of YOLO so called YOLOv7 and conduct comparisons in
terms in detection performance and inference speed.

• Propose and implement an original method to switch dynamically, during run-time, be-
tween different scaled neural network models according to environment, power profile
or required accuracy and precision.

8.4 Smart-Cameras Network for Multi-View AI-based Ob-
ject Detection

Implementing CNNs on embedded edge devices with limited computational resources and
power budget creates a challenge. Recently, several techniques have been applied such as
light networks with fewer layers, pruning to reduce the number of connections, factorization
to combine various aspects of the network architecture, and quantization of weight and/or
activation values. These techniques ensure better deployment of CNN-based object detection
methods on edge devices but at the cost of accuracy and precision drop.
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The use of multiple cameras providing different angles of view for the same scene can be
used to improve the detection performance leading to the reduction of the number of missing
detections or false detections. On the other hand, incorporating multiple camera views for
detection alleviates the impacts related to object occlusion, illumination, intra-class variation,
similarity between classes, background clutter, ambiguity, etc.

This work makes use of multi-views of the same scene to increase the detection accu-
racy. It proposes to build and implement a network of smart-cameras, where each consists of
a camera connected to an embedded processing unit executing a CNN-based object detec-
tion algorithm. Each smart-camera has its own point of view. The distributed smart-cameras
collaborate in order to enhance the accuracy and precision of the detection by merging the
prediction results of all involved nodes. Figure 8.5 shows an overview of the proposed multi-
view smart-camera network.











Figure 8.5 — Overview of the proposed multi-view smart-camera network

The main contributions of this work are:

• Create a novel dataset for mutli-view object detection with accurate measurements in
terms of orientation and distances by acquiring images with multiple cameras for the
same scenes.

• Determine the best hyperparameters of the targeted neural network and conduct training
processes accordingly.

• Implement and demonstrate the network of smart cameras.

• Devise and develop an efficient strategy to collect and aggregate prediction data from
the nodes of the network in order to reduce the communication overhead and power
consumption.

• Propose and implement smart decision-making algorithm to provide the final detection
result based on different nodes detections.

• Verify the relevance of the proposed approach by deploying it in the network of smart-
cameras with live demonstration and comparing the obtained results with those obtained
when multi-view is not adopted.
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• Determine the power budget of the proposed system and compare it with the power
consumption of single-view system with similar detection performance.

The conducted work has been performed in the 2AI (Algorithm Architecture Interactions)
team of the MEE (Mathematical and Electrical Engineering) department at IMT Atlantique,
Brest, France in the context of one senior engineering project and two internships. The con-
tributions and achieved results have been valorized in 2 papers [228][229] submitted to the
IEEE International Workshop on Rapid System Prototyping (RSP), which will be held as a
part of the Embedded Systems Week (ESWEEK) international conference, Shanghai, Octo-
ber 2022.

Future work will tackle the development of the devised approach to consider different
aspects such as the location of the smart-cameras, their angles of view and the similarity of
objects’ occurrences in consecutive video frames in order to enhance the overall detection
result. Also, we will investigate the impact of including orientation to the object annotations
during training and inference.

In addition, we have initiated a research work that aims to use top-view scenes in order to
assist multi-view marine object surveillance using embedded artificial intelligence and com-
puter vision by exploiting the features of top-view scenes. Figure 8.6 illustrates an overview
of this proposed topic.

1

Figure 8.6 — Overview of the proposed top-view detection to assist multi-view marine object
surveillance

This work is done in the context of a Masters thesis held at the Lebanese University in
collaboration with Lab-STICC and IMT Atlantique. The performed work includes creating
a huge dataset that includes images of marine objects captured from top view. We have pre-
pared about 200,000 annotated images taken by the means of drones or satellites. Training is
conducted targeting YOLOv4 models. The validation of the trained models show promising
results in terms of detection performance. The performed work and obtained results are de-
scribed in a research paper [230] which is submitted to the IEEE International Conference on
Smart Systems and Power Management (IC2SPM), which will be held in Beirut, Lebanon
next November 2022.
Future work includes the following tasks:
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• Investigate the impact of optimization techniques such as quantization and pruning on
detection performance.

• Deploy the optimized networks on emergent edge devices and conduct comparisons in
terms of detection performance, inference speed and power consumption.

• Apply the tracking algorithms and examining their corresponding performance on test
videos.

8.5 Embedded AI to Assist Search and Rescue Missions

Maritime search and rescue (SAR) missions are crucial for most coastal states. According to
the International Organization for Migration 218,062 irregular maritime migration attempts
are recorded in the Mediterranean Since 2014 [231]. From which, 23,939 dead and miss-
ing persons are recorded during attempted overseas crossings. Furthermore, the European
Maritime Safety Agency reports in the Annual Overview of Marine Casualties and Incidents
2021 [232] that during the 2014-2020 period, 367 marine casualties resulted in a total of 550
lives lost and 6921 injuries in the waters of European Union (EU) Member States or involv-
ing EU ships. The ability to quickly locate missing people aids in the direction of rescuers
and medical personnel, which plays an important role in increasing the chances of saving
human lives while also lowering costs.

Years ago, visual surveillance in the maritime domain has been explored. However, most
surveillance activities have been assigned to areas near the coasts and ports and mainly de-
pend on human monitoring and analysis for security reasons. Computer vision techniques
are also adopted in few works. However, videos and images capturing maritime environment
pose challenges that are absent or less severe in other environments such as the dynamic
nature of the background, unavailability of static cues, presence of small objects at distant
backgrounds and illumination effects [212]. These challenges impact the efficiency of tradi-
tional computer vision techniques in detecting individuals in marine environments.

Recently, deep learning approaches have introduced efficient solutions to detect, classify
and localize several objects in images and videos. In particular, the evolution of neural net-
works architectures has elevated the performance to a point that they are considered on par
with human performance for some of these problems. The growing use of AI-based detection
methods is of great interest in aiding SAR missions [233, 234, 235, 236, 237]. However, only
few works have addressed the detection of humans in open water or for man overboard acci-
dents [238, 239, 240]. Other available works adopting deep learning in marine environment
have focused mainly on the detection of sea ships [217].

The detection performance of CNN-based methods comes at the cost of increased hard-
ware resources and power consumption especially for real-time scenarios with high require-
ments of accuracy and precision. YOLO has been recently introduced as an efficient unified
model of all phases of a CNN for doing object detection in real-time. The recent version of
YOLO, so called YOLOv4, has been justified to detect objects in real-time with high level
of precision. Several models of YOLOv4 exist, with different architecture specifications and
consequently different detection performance in terms of accuracy and precision, detection
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speed and required energy budget. In this work, the relevance of the YOLO in detecting hu-
mans in maritime environment is investigated. The available models of YOLOv4 are trained
using a custom dataset. The trained models are evaluated using recognized evaluation param-
eters. In addition, the trained models are optimized targeting embedded low-power hardware
platforms dedicated for AI applications.

The main contributions of this work are:

• Create a novel dataset of humans in marine scenes from various positions and from
different perspectives and scales with different backgrounds, resolutions and luminosity.

• Train and validate the target networks using different architecture specifications (num-
ber of layers, activation functions, shortcuts, etc.), data augmentation methods and input
image resolutions.

• Evaluate the trained models and conduct comparisons in terms of well know metrics
(mAP, precision, recall, F1-score and average IOU) [241] in order to find the combina-
tion that leads to the best performance.

• Examine the detection performance using several recorded videos. Thee videos show
humans in open water from different perspectives, points of view and scale.

• Apply several optimization approaches such as pruning to reduce the number of pa-
rameters and quantization of weight and/or activation values in order to ensure better
deployment of CNN-based object detection methods on edge devices.

• Deploy the optimized models on popular embedded edge devices (Nvidia Jetson Xavier
AGX, AMD-Xilinx Kria KV260 Vision AI Kit, and Movidius Myriad X VPU)

The obtained results show that applying data augmentation enhances the detection per-
formance. The use of higher image resolution enhances the mAP performance but at the cost
of reduced inference speed and longer training time. Sample detection results from network
testing are shown in Figure 8.7. The figure shows that trained models are able to accurately
detect and classify the presence of humans in different maritime environments.

The inference speed of the trained networks is evaluated by running several captured
videos, showing humans in open water, targeting embedded platforms with different power
modes. Figure 8.8 shows samples of the obtained detection results in captured video se-
quences. The obtained results show that YOLOv4-tiny can achieve real-time detection of
humans in maritime environment with acceptable accuracy and precession. As an example,
an inference speed of 90 FPS with mAP of 0.8 can be achieved when running YOLOv4-tiny
on Jetson Xavier AGX. Whereas, YOLOv4 can achieve 15 FPS with mAP of 0.859.

In order to achieve real-time inference, optimization techniques are applied targeting
three hardware platforms: Nvidia Jetson Xavier AGX, AMD-Xilinx Kria KV260 Vision AI
Kit, and Movidius Myriad X VPU. The obtained results show that the optimization targeting
Jetson Xavier AGX increases the inference speed while achieving better accuracy for all
tested networks. This refers to the optimization process that implements several techniques
such as kernal fusion, precision calibration, kernel auto-tuning, dynamic tensor memory and
multi-stream execution. YOLOv4 can achieve 20 FPS when FP32 is adopted while attaining
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Figure 8.7 — Sample detection results using the testing dataset images

Figure 8.8 — Samples of the obtained detection results using recorded video sequences

a mAP of 0.861 (+0.2 points in mAP). The quantization to FP16 leads to better inference
rate of 52 FPS (×3.47) but a cost of degradation in the detection performance (−2.9 points
in mAP).

The deployment of trained models on Kria KV260 Vision AI Kit reveals that YOLOv4-
tiny can achieve an inference speed of 65 FPS with 0.451 mAP (−2.46 points in mAP) when
the network parameters are quantized to INT8, which is the only supported representation.
The YOLOv4 model can achieve an inference speed of 11 FPS with 0.818 mAP.
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In order to achieve high-speed inference with high-precision detection, YOLOv4 model is
pruned at the level of channels and layers. First, training under channel-level sparsity-induced
regularization is performed in order to identify insignificant channels [242]. L1 regularization
of the loss during training is adopted based on the work presented in [227]. Channel pruning
is then applied to eliminate the channels with little contribution by deleting its input-output
connections and corresponding weights. After channel pruning, layer pruning is performed
in order to address the cross layer connections (residual) in YOLOv4 network where the
output of a layer is the input to several subsequent layers. Finally, fine tuning is then applied
to assist the pruned model to restore accuracy.

The obtained results after each pruning step of YOLOv4 network with leakyRelu acti-
vation function are reported. It is shown that the mAP drops by 2.3 points after sparsity
training. However, this degradation, which is due to the modification of the loss function, is
compensated later by the conducted fine-tuning on the pruned network. Also, the results il-
lustrate that the channel pruning greatly reduces the number of model parameters (−98.4%)
and the FLOPS (−91.64%) that involve a speed-up effect on embedded devices without
suffering from accuracy loss. Fine-tuning of the YOLOv4 network recovers the accuracy
loss due sparsity training. The obtained results show that the fine-tuned network achieves
higher accuracy (+2.1 points in mAP) than the baseline network while preserving a signifi-
cant decrease in the required memory (−90.4% reduction of parameters) and computations
(−91.66% reduction of FLOPS).

The pruned YOLOv4 network is deployed on Kria KV260 Vision AI Kit. An inference
speed of 69 FPS is achieved while the mAP is degraded to 0.348. The pruned YOLOv4
model is also deployed on Movidius Myriad X VPU [243]. The model is optimized and
quantized to FP16 representation, which is the only supported representation by the VPU.
The resultant model achieves an inference speed of 29.8 FPS (2 threads running on 6 SHAVE
cores) and 14.7 FPS (1 thread running on 6 SHAVE cores) with a slight degradation in the
mAP (71.01%) when compared to the unquantized pruned network (72.4%). In addition, the
YOLOv4-tiny model is deployed on Movidius Myriad X VPU. It achieves 30 FPS inference
speed with a mAP of 72.4%.

The performance per Watt is determined when running the models on all targeted em-
bedded edge platforms. Jeston Xavier AGX can achieve 3.83 FPS/W and 1.73 FPS/W for
YOLOv4-tiny and YOLOv4 networks respectively. Kria KV260 Vision AI kit can achieve
8.125 FPS/W, 1.375 FPS/W and 8.625 FPS/W for YOLOv4-tiny, YOLOv4 and pruned
YOLOv4 networks. Movidius Myriad X VPU can achieve 7.45 FPS/W for pruned YOLOv4
model and 7.5 FPS/W for YOLOv4-tiny model. The analysis of the obtained results shows
that Jetson Xavier AGX can achieve best inference speed and mean average precision but at
the cost of higher power consumption.

This work has been presented initially in the International Conference on System-
Integrated Intelligence (SysInt), 2022 and published as a book chapter in Advances in
System-Integrated Intelligence [244]. Also, the extended work about the optimization and
deployment on hardware devices has been accepted to be published in IEEE International
Conference on Electronics, Circuits and Systems (ICECS) [245] which will be held in Glas-
gow, UK in October, 2022.

Future work will focus on the following:
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• Enrich the dataset to include more images and add thermal images to enable the detec-
tion in all conditions (night, fog, etc.)

• Examine multi-view approach to enhance detection by making use of collaboration be-
tween different cameras which capture same scene from different points of view.

• Examine the detection of humans from cameras situated under the water for man over-
board application.



Chapter 9

Future Research Directions

9.1 Design of Memory-centric Ultra-Low Power Processor

The possibility to run complex deep learning (DL) algorithms for hours outdoors on un-
plugged wearable devices paves the way for new and potentially disruptive applications. Re-
cent developments in non-volatile memory (NVM) technologies and processor architectures
for information processing make this opportunity possible and allow the design of wearable
devices with efficient AI-capabilities.

One of the future research topics is to investigate the design of a novel memory-centric
multicore architecture for ultra-low power AI-based object detection. The target architecture
should devise the best of memory-oriented techniques in order to drastically minimize the
power consumption. Based on our previous results on Memory-based Computing [76, 77]
and Processing-In-Memory [133, 134, 135, 136] design approaches, we will target the het-
erogeneous multicore architecture. MBC replaces logic by Non-Volatile power-gated mem-
ories to leverage computation redundancy. PIM is a promising approach to reduce memory
transfers and power consumption, particularly when using memristive memory arrays. PIM
is very efficient for bulk-bitwise logic operations and for matrix multiplications, where the
energy cost of moving data is orders of magnitude higher than the computation itself. Never-
theless, for some complex arithmetic tasks that require many successive basic PIM compu-
tation steps, passing the operands to a near-memory computing unit could be more time and
energy efficient. Accordingly, the mapping of tasks over PIM, MBC and NMC components
will be investigated to devise the best design. Figure 9.1 illustrates the target architecture
model combining PIM, MBC and NMC.

9.2 Interactive Machine Learning on Edge Devices for Ob-
ject Detection Application

This research topic aims to include the Human in the loop, namely designing an interactive
(AI ◁▷ Human) solution rather than a machine providing visual notifications or applying
human commands. The originality of this topic concerns the use of interactive annotations

239
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Figure 9.1 — Target architecture model combining PIM, MBC and NMC

to not only track different objects, but also to feed the algorithms to add or reject objects (in
incremental learning) considering users’ feedback.

While traditional machine learning systems process the data that has been given to them
in advance, interactive machine learning considers that the learning process could benefit
from interactions with the environment as well as with humans [246], and that inputs and
outputs from and for humans carry meaningful information. Indeed, humans may provide
input to a learning algorithm [247], including inputs in the form of labels, demonstrations,
advice, rewards or rankings. The interaction is all the more useful as the human can guide
along the learning process [248] while adapting his guidance to the outputs of the algorithm.
Feedback from the users will be used to help algorithms: define zones to focus for detection
using hand gestures, refine the confidence of the object class, define new object classes. The
AI-based computer vision algorithms will help automatically annotate and overlay visual
cues onto real-world objects in the field of vision of the users, as well as to recognize hand
gestures allowing them to interact with these objects. For instance, humans could dismiss
some tracked objects that are not useful or that can overload the display, or they would also
be able to mark in real time objects “missed” by the computer vision algorithm (feeding
incremental learning) that they wish to track in the future.

Having a lower power solution opens up opportunities to have more substantial intelli-
gence on the edge devices. Beyond the application itself, it is required to address the chal-
lenge of performing online the incremental learning on edge devices.

9.3 Distributed Learning on Connected Devices

Autonomous systems can benefit from growing embedded computing capacities that allow
decision making based on multi-sensor fusion and/or complex visual navigation based on
semantic recognition [249] and joint mapping and planning [250]. Current challenges are re-
lated to learning issues for both object recognition based on offline training of Deep Neural
Networks and navigation tasks based on Reinforcement Learning [251]. First offline super-
vised learning and online inference are efficient but require huge labeled datasets that hardly
represent all cases to be experienced by autonomous agents in real-life or at a price of energy
and time that can be prohibitive [252]. Therefore, new training phases with updated data-sets
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may be required according to edge/cloud computing paradigm [253]. Navigation tasks can
be based on pre-trained models but are more efficient if they can learn online from their ac-
tions [254] while detecting/identifying obstacles and targets. In both cases, self-adaptivity is
required to improve autonomy. The question to be answered is then: how to improve learning
on a set of distributed embedded systems (e.g. CPU-GPU) by favoring unsupervised methods
such as Reinforcement Learning to improve the autonomy of autonomous systems evolving
in groups.

9.4 Tiny Machine Learning (TinyML)

TinyML refers to the integration of machine learning algorithms within ultra-low-power de-
vices, such as Microcontroller Units (MCUs) [255]. Such integration could be the ultimate
key towards the reduction of processing power required by applications employed on the
edge. Applications such as smart cities and homes, environmental monitoring, industry and
business, autonomous driving, and eHealth. This vast spectrum of applications is driving the
need for the rapid evolution of TinyML systems, an evolution that faces several challenges
along the way. To name a few, the generation of convenient datasets, design of less complex
yet effective ML algorithms, memory management, compatibility with existing frameworks
for rapid development, etc. [256]. The challenges faced by TinyML cover the whole ML
application development pipeline. Thus, solutions like the design of custom hardware accel-
erators, in-memory computing, approximate computing, network compression, etc. could be
a potential interest of the current TinyML research. Moreover, due to the memory constraint
of ultra-low-power devices, one could search for new ML algorithms or efficient deep neural
network architectures aside from the existing large models.
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[1] M. Rizk, A. Baghdadi, M. Jézéquel, Y. Mohanna, and Y. Atat, “Design and prototyp-
ing flow of flexible and efficient NISC-based architectures for MIMO turbo equaliza-
tion and demapping,” Electronics, vol. 5, no. 3, 2016.

[2] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with memristor-based
reconfiguration,” in Proc. of the IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2011, pp. 1–8.

[3] C. Berrou, Codes and Turbo Codes. Paris: Springer, 2010.

[4] A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: the vision
of the METIS project,” IEEE Communication Magazine, vol. 52, no. 5, pp. 26–35,
May 2014.

[5] F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware/Software
Introduction. Wiley India Pvt. Limited, 2006.

[6] D. Gajski, “NISC: The ultimate reconfigurable component,” Center for Embedded
Computer Systems (CECS), University of California, Irvine, Tech. Rep., Oct. 2003.

[7] B. Gorjiara and D. Gajski, “FPGA-friendly code compression for horizontal mi-
crocoded custom IPs,” in Proc. of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’07. New York, NY, USA: Association for
Computing Machinery, 2007, p. 108–115.

[8] B. Gorjiara, M. Reshadi, and D. Gajski, “Merged dictionary code compression for
FPGA implementation of custom microcoded PEs,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 1, no. 11, pp. 285–297, June 2008.
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“MOL-based in-memory computing of binary neural networks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 869–880, 2022.

[137] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,” in Proc. of
the IEEE International Symposium on Nanoscale Architectures, 2009, pp. 33–36.

[138] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within memristive mem-
ories using memristor-aided logic (MAGIC),” IEEE Transactions on Nanotechnology,
vol. 15, no. 4, pp. 635–650, 2016.



254 BIBLIOGRAPHY

[139] P. Thangkhiew, R. Gharpinde, D. N. Yadav, K. Datta, and I. Sengupta, “Efficient im-
plementation of adder circuits in memristive crossbar array,” in Proc. of the IEEE
Region 10 Conference (TENCON), 2017, pp. 207–212.

[140] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, Logic Synthesis for
Majority Based In-Memory Computing, Chapter in Advances in memristors, memris-
tive devices and systems. Springer, 2017.

[141] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary resistive switch-
based crossbar array adder,” IEEE journal on emerging and selected topics in circuits
and systems, vol. 5, no. 1, pp. 64–74, 2015.

[142] C.-X. Xue et al., “A 1Mb multibit ReRAM computing-in-memory macro with 14.6
ns parallel MAC computing time for CNN based AI edge processors,” in Proc. of the
IEEE international Solid-State Circuits Conference-(ISSCC), 2019.

[143] W.-H. Chen, W.-J. Lin et al., “A 16Mb dual-mode ReRAM macro with sub-
14ns computing-in-memory and memory functions enabled by self-write termination
scheme,” in Proc. of the IEEE international Electron Devices Meeting (IEDM), 2017.

[144] C.-X. Xue et al., “A 22nm 2Mb ReRAM compute-in-memory macro with 121-
28TOPS/W for multibit MAC computing for tiny AI edge devices,” in Proc. of the
IEEE international Solid-State Circuits Conference(ISSCC), 2020.

[145] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G. De Micheli, “The programmable logic-in-memory (PLiM) computer,” in Proc. of
the Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 427–432.

[146] Y. Wang, Y. Zhang, E. Deng, J.-O. Klein, L. A. Naviner, and W. Zhao, “Compact
model of magnetic tunnel junction with stochastic spin transfer torque switching for
reliability analyses,” Microelectronics Reliability, vol. 54, no. 9-10, pp. 1774–1778,
2014.

[147] Y. Wang, H. Cai, L. A. Naviner, Y. Zhang, J.-O. Klein, and W. Zhao, “Compact ther-
mal modeling of spin transfer torque magnetic tunnel junction,” Microelectronics Re-
liability, vol. 55, no. 9-10, pp. 1649–1653, 2015.

[148] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta, “A scalable in-memory
logic synthesis approach using memristor crossbar,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, no. 2, pp. 355–366, 2018.

[149] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and
S. Swanson, “Near-data processing: Insights from a micro-46 workshop,” IEEE Micro,
vol. 34, no. 4, pp. 36–42, 2014.

[150] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet clas-
sification using binary convolutional neural networks,” in Proc. of Computer Vision
– ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 525–542.



BIBLIOGRAPHY 255

[151] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, “A survey
of data partitioning and sampling methods to support big data analysis,” Big Data Min.
Anal., vol. 3, no. 2, pp. 85–101, Jun. 2020.

[152] D. Tribe, “Flexibility can help car makers cope with chip supply challenge,” Engi-
neering & Technology, vol. 16, no. 2, pp. 19–19, Mar. 2021.

[153] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate com-
puting and the quest for computing efficiency,” in Proc. of the Design Automation
Conference (DAC). San Francisco, California: ACM Press, 2015, pp. 1–6.

[154] P. P. Lele, D. C. Sinclair, and G. Weddell, “The reaction time to touch,” The Journal
of Physiology, vol. 123, no. 1, pp. 187–203, Jan. 1954.

[155] R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Humans to
Humanoids,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, Feb. 2010.

[156] Y.-H. Liu, Y.-T. Hsiao, W.-T. Cheng, Y.-C. Liu, and J.-Y. Su, “Low-Resolution Tac-
tile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based
Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine,” Math-
ematical Problems in Engineering, vol. 2014, pp. 1–11, 2014.

[157] K. Lee, T. Ikeda, T. Miyashita, H. Ishiguro, and N. Hagita, “Separation of tactile
information from multiple sources based on spatial ICA and time series clustering,” in
Proc. of the IEEE/SICE International Symposium on System Integration (SII). Kyoto,
Japan: IEEE, Dec. 2011, pp. 791–796.

[158] P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, “Linear Discriminant Analysis,”
in Robust Data Mining, ser. SpringerBriefs in Optimization, P. Xanthopoulos, P. M.
Pardalos, and T. B. Trafalis, Eds. New York, NY: Springer, 2013, pp. 27–33.

[159] W. K, “Tactile sensing for ground classification,” Journal of Automation Mobile
Robotics and Intelligent Systems, vol. 7, no. 2, pp. 18–23, 2013.

[160] H. Nguyen, L. Osborn, M. Iskarous, C. Shallal, C. Hunt, J. Betthauser, and N. Thakor,
“Dynamic Texture Decoding Using a Neuromorphic Multilayer Tactile Sensor,” in
Proc. of the IEEE Biomedical Circuits and Systems Conference (BioCAS). Cleveland,
OH: IEEE, Oct. 2018, pp. 1–4.

[161] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “Computational Intelli-
gence Techniques for Tactile Sensing Systems,” Sensors, vol. 14, no. 6, pp. 10 952–
10 976, June 2014.

[162] T. Bhattacharjee, J. M. Rehg, and C. C. Kemp, “Haptic classification and recognition
of objects using a tactile sensing forearm,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE,
Oct. 2012, pp. 4090–4097.



256 BIBLIOGRAPHY

[163] I. Bandyopadhyaya, D. Babu, A. Kumar, and J. Roychowdhury, “Tactile sensing based
softness classification using machine learning,” in Proc. of the IEEE International Ad-
vance Computing Conference (IACC). Gurgaon, India: IEEE, Feb. 2014, pp. 1231–
1236.

[164] M. Kaboli, P. Mittendorfer, V. Hugel, and G. Cheng, “Humanoids learn object prop-
erties from robust tactile feature descriptors via multi-modal artificial skin,” in Proc.
of the IEEE-RAS International Conference on Humanoid Robots. Madrid, Spain:
IEEE, Nov. 2014, pp. 187–192.

[165] M. Kaboli, R. Walker, and G. Cheng, “Re-using prior tactile experience by robotic
hands to discriminate in-hand objects via texture properties,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA). Stockholm, Sweden:
IEEE, May 2016, pp. 2242–2247.

[166] D. Fujiki, X. Wang, A. Subramaniyan, and R. Das, “In-/Near-Memory Computing,”
Synthesis Lectures on Computer Architecture, vol. 16, no. 2, pp. 1–140, Aug. 2021.

[167] V. Wong and M. Horowitz, “Soft Error Resilience of Probabilistic Inference Applica-
tions,” in Proc. of the WORKSHOP ON SYSTEM EFFECTS OF LOGIC SOFT (ER-
RORS), 2006.

[168] L. Leem, Hyungmin Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error Re-
silient System Architecture for probabilistic applications,” in Proc. of the Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). Dresden: IEEE, Mar.
2010, pp. 1560–1565.

[169] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of service pro-
filing,” in Proc. of the ACM/IEEE International Conference on Software Engineering
(ICSE), vol. 1. Cape Town, South Africa: ACM Press, 2010, p. 25.

[170] P. Roy, R. Ray, C. Wang, and W. F. Wong, “ASAC: automatic sensitivity analysis for
approximate computing,” ACM SIGPLAN Notices, vol. 49, no. 5, pp. 95–104, May
2014.

[171] J. Ludwig, S. Nawab, and A. Chandrakasan, “Low-power digital filtering using ap-
proximate processing,” IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 395–
400, Mar. 1996.

[172] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar, “Scal-
able effort hardware design: exploiting algorithmic resilience for energy efficiency,”
in Proc. of the Design Automation Conference (DAC). Anaheim, California: ACM
Press, 2010, p. 555.

[173] E. Nogues, D. Menard, and M. Pelcat, “Algorithmic-Level Approximate Computing
Applied to Energy Efficient Hevc Decoding,” IEEE Transactions on Emerging Topics
in Computing, pp. 1–1, 2016.



BIBLIOGRAPHY 257

[174] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Data oriented approximate K-nearest
neighbor classifier for touch modality recognition,” in Proc. of the Conference on
Ph.D Research in Microelectronics and Electronics (PRIME), 2019, pp. 241–244.

[175] ——, “Algorithmic level approximate computing for machine learning classifiers,”
in Proc. of the IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2019, pp. 113–114.

[176] ——, “Algorithmic-level approximate tensorial SVM using high-level synthesis on
FPGA,” Electronics, vol. 10, no. 2, 2021.

[177] J. Sun, W. Du, and N. Shi, “A Survey of kNN Algorithm,” Inf Eng Appl Comput,
vol. 1, no. 1, May 2018.

[178] Zhe-Hao Li, Ji-Fang Jin, Xue-Gong Zhou, and Zhi-Hua Feng, “K-nearest neighbor
algorithm implementation on FPGA using high level synthesis,” in Proc. of the IEEE
International Conference on Solid-State and Integrated Circuit Technology (ICSICT).
Hangzhou, China: IEEE, Oct. 2016, pp. 600–602.

[179] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J.-s. Seo, “K-Nearest Neighbor Hardware
Accelerator Using In-Memory Computing SRAM,” in Proc. of the IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED). Lausanne,
Switzerland: IEEE, July 2019, pp. 1–6.

[180] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “An efficient selection-based kNN ar-
chitecture for smart embedded hardware accelerators,” IEEE Open Journal of Circuits
and Systems (OJCS), vol. 2, pp. 534–545, 2021.

[181] D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank, “Supervised tensor learning,” Knowl-
edge and Information Systems, vol. 13, no. 1, pp. 1–42, Sep. 2007.

[182] M. Signoretto, L. De Lathauwer, and J. A. Suykens, “A kernel-based framework to
tensorial data analysis,” Neural Networks, vol. 24, no. 8, pp. 861–874, Oct. 2011.

[183] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “A Tensor-Based Pattern-
Recognition Framework for the Interpretation of Touch Modality in Artificial Skin
Systems,” IEEE Sensors Journal, vol. 14, no. 7, pp. 2216–2225, July 2014.

[184] A. Ibrahim and M. Valle, “Real-Time Embedded Machine Learning for Tensorial Tac-
tile Data Processing,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 65, no. 11, pp. 3897–3906, Nov. 2018.

[185] H. Fares, L. Seminara, A. Ibrahim, M. Franceschi, L. Pinna, M. Valle, S. Dosen, and
D. Farina, “Distributed Sensing and Stimulation Systems for Sense of Touch Restora-
tion in Prosthetics,” in Proc. of the IEEE New Generation of CAS (NGCAS). Genova,
Italy: IEEE, Sep. 2017, pp. 177–180.

[186] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Efficient FPGA implementation of ap-
proximate singular value decomposition based on shallow neural networks,” in Proc.
of the IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 2021, pp. 1–4.



258 BIBLIOGRAPHY

[187] ——, “A shallow neural network for real-time embedded machine learning for ten-
sorial tactile data processing,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 10, pp. 4232–4244, 2021.

[188] C. Alippi, S. Disabato, and M. Roveri, “Moving Convolutional Neural Networks to
Embedded Systems: The AlexNet and VGG-16 Case,” in Proc. of the ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks (IPSN). Porto:
IEEE, Apr. 2018, pp. 212–223.

[189] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks: A
survey,” Pattern Recognition, vol. 105, p. 107281, Sep. 2020.

[190] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep Neu-
ral Networks,” in Proc. of the IEEE International Conference on Computer Vision
(ICCV). Venice: IEEE, Oct. 2017, pp. 1398–1406.

[191] J. Yim, D. Joo, J. Bae, and J. Kim, “A Gift from Knowledge Distillation: Fast Opti-
mization, Network Minimization and Transfer Learning,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE,
July 2017, pp. 7130–7138.

[192] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing Deep Convolutional Net-
works using Vector Quantization,” arXiv:1412.6115 [cs], Dec. 2014.

[193] M. Fischer and J. Wassner, “BinArray: A Scalable Hardware Accelerator for Binary
Approximated CNNs,” in Proc. of the IEEE Annual Computing and Communication
Workshop and Conference (CCWC). NV, USA: IEEE, Jan. 2021, pp. 0197–0205.

[194] L. Geiger and P. Team, “Larq: An Open-Source Library for Training Binarized Neural
Networks,” JOSS, vol. 5, no. 45, p. 1746, Jan. 2020.

[195] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “A mixed-precision binary neural
network architecture for touch modality classification,” in SMACD / PRIME 2021;
International Conference on SMACD and 16th Conference on PRIME, 2021, pp. 1–4.

[196] ——, “Hybrid fixed-point/binary convolutional neural network accelerator for real-
time tactile processing,” in Proc. of the IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), 2021, pp. 1–5.

[197] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention Is All You Need,” arXiv:1706.03762 [cs], Dec. 2017,
arXiv: 1706.03762.

[198] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,”
arXiv:2010.11929 [cs], June 2021, arXiv: 2010.11929.

[199] P. Huang, C. Wang, W. Liu, F. Qiao, and F. Lombardi, “A Hardware/Software Co-
Design Methodology for Adaptive Approximate Computing in clustering and ANN
Learning,” IEEE Open J. Comput. Soc., vol. 2, pp. 38–52, 2021.



BIBLIOGRAPHY 259

[200] T. Nomani, M. Mohsin, Z. Pervaiz, and M. Shafique, “xUAVs: Towards Efficient
Approximate Computing for UAVs—Low Power Approximate Adders With Single
LUT Delay for FPGA-Based Aerial Imaging Optimization,” IEEE Access, vol. 8, pp.
102 982–102 996, 2020.

[201] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual appearance and laser
ranging,” in Proc. of the IEEE International Conference on Robotics and Automation,
2006. ICRA 2006., 2006, pp. 1180–1187.

[202] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A survey from
2010 to 2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9, 2017,
publisher Copyright: © The Author(s).

[203] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost quadro-
copter,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 2815–2821.

[204] T. Yang, P. Li, H. Zhang, J. Li, and Z. Li, “Monocular vision SLAM-based UAV
autonomous landing in emergencies and unknown environments,” Electronics, vol. 7,
no. 5, 2018.

[205] Y. Lu, Z. Xue, G.-S. Xia, and L. Zhang, “A survey on vision-based UAV navigation,”
Geo-spatial Information Science, vol. 21, no. 1, pp. 21–32, 2018.

[206] M. Rizk, A. Mroue, M. Farran, and J. Charara, “Real-time SLAM Based on image
stitching for autonomous navigation of UAVs in GNSS-denied regions,” in Proc. of
the IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 2020, pp. 301–304.

[207] M. Rizk, A. Mroue, K. A. Ali, and J. Charara, “Development and implementation
of an embedded low-cost GNSS receiver emulator for UAV testing,” in Proc. of the
IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2019,
pp. 101–102.
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Résumé : Ce mémoire d’habilitation à diriger 
des recherches présente mes nombreuses 
activités de recherche menées depuis 2011 
visant le développement d'architectures 
flexibles et efficaces pour le calcul embarqué 
haute-performance. Les activités de recherche 
présentées visent la proposition et la 
conception d'architectures flexibles et efficaces 
dans plusieurs domaines applicatifs tels que la 
communication numérique, les flots de 
données, les réseaux de neurones, 
l'apprentissage automatique et la vision 
embarquée. Ces travaux de recherche ont 
porté sur la conception et la mise en œuvre de 
nouvelles architectures matérielles visant à 
répondre aux exigences émergentes en 
matière de flexibilité, ainsi qu'aux exigences 
toujours plus grandes en termes de 
performances et de réduction de la 
consommation d'énergie et des ressources 
matérielles. Dans ce contexte, plusieurs travaux 

de recherche ont été initiés à travers des 
projets de recherche terminés ou en cours, 
deux thèses de doctorat soutenues et plusieurs 
thèses de Master.  Les réalisations les plus 
significatives sont présentées en les 
regroupant en quatre sous-thèmes :  
(1) Architectures flexibles et efficaces pour des 
applications dans le domaine des 
communications numériques, (2) Algorithmes 
et architectures efficaces pour des applications 
de flot de données, (3) Paradigmes de 
conception efficaces et flexibles basés sur des 
dispositifs memristifs émergents et (4) 
Implémentations efficaces d'algorithmes 
d'apprentissage automatique. Mes activités de 
recherche actuelles se concentrent sur la vision 
par ordinateur et l'intelligence artificielle 
embarquées dans le but de réaliser des 
implémentations efficaces sur des dispositifs 
embarqués avec de faibles ressources de 
calcul et un faible budget énergétique. 
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Abstract: This Habilitation to supervise 
research presents the numerous research 
activities performed since 2014 targeting the 
development of flexible and efficient 
architectures for high performance embedded 
computing. The presented research activities 
aim at the realization of flexible and efficient 
architectures in multitude application domains 
such as digital communication, data-flow, neural 
networks, embedded machine learning and 
embedded vision. These research works have 
addressed the design and implementation of 
novel hardware architectures aiming to attain 
the emergent flexibility requirement, and the 
ever-increasing requirements of enhanced 
performance and reduced power consumption 
and implementation resources. The performed 
work has targeted the elaboration of new 
algorithms  and   hardware   architectures  using 

different design paradigms. In this context, 
several research works have been initiated 
through completed or ongoing research projects, 
two defended PhD theses and several Master 
theses. The most significant achievements are 
presented by grouping them in four sub-themes: 
(1) Flexible yet efficient architectures for 
applications in the digital communication 
domain; (2) Efficient algorithms and 
architectures for dataflow applications; (3) 
Efficient and flexible design paradigms based on 
emergent memristive devices and (4) Efficient 
implementations of machine learning algorithms. 
Current research activities focus on embedded 
computer vision and artificial intelligence with 
the goal of achieving efficient implementations 
on edge devices with low computational 
resources and low power budget. 

 


	Contents
	List of Figures
	List of Tables
	Dedication
	Glossary
	Long Abstract
	Résumé long
	Preface
	I Detailed Curriculum Vitae
	Resume
	Summary
	Professional Experiences
	Educational Achievements
	Training Courses
	Synergistic Activities

	Research Experiences
	Research Topics
	Visiting Scholar
	Laboratory Membership
	Research Collaboration
	Involvement in Research Projects
	Publications
	Supervision and Tutorship
	Other Responsibilities and Activities

	Teaching Experiences
	Teaching and Administrative Responsibilities
	Construction and Development of University Courses
	Teaching University Courses
	Technical Training Courses

	Appendix List of publications
	Book chapters
	Published journal papers
	Published international conferences
	Published national conference papers

	Appendix Supervision Activities
	Appendix Contributions In Evaluation Committees
	Appendix Teaching Activities

	II Overview of Past Research Activities
	Introduction to My Research Activities
	Flexible and Efficient Architectures for Applications in Digital Communication
	Preface
	Introduction
	Context and Motivations
	Contributions and Performed Work
	Findings
	Selected papers

	Efficient Algorithms and Architectures for Dataflow Applications
	Notifying Memories Concept
	Run-Time Remapping of Dataflow Actors on NoC-based Heterogeneous MPSoCs
	Perspectives

	Flexible and Efficient Architectures Based on Memristive Technologies
	Networked Power-Gated MRAMs for Memory-Based Computing
	MRAM-based memorization system for NB-LDPC decoder
	Memristor Based Reconfigurable FFT Architecture
	Hybrid Memristor-CMOS Design for Logic Computation
	Memristor Overwrite Logic (MOL) for In-Memory Computing

	Efficient Implementations of Machine Learning Algorithms
	Preface
	Introduction
	Context and Motivations
	Contributions and Performed Work


	III Current Work and Future Directions
	Ongoing Research Works
	Preface
	Real-Time Visual SLAM Drone Navigation in GNSS-Denied Regions
	Marine Objects Detection Using Deep Learning on Embedded Edge Devices
	Smart-Cameras Network for Multi-View AI-based Object Detection
	Embedded AI to Assist Search and Rescue Missions

	Future Research Directions
	Design of Memory-centric Ultra-Low Power Processor
	Interactive Machine Learning on Edge Devices for Object Detection Application
	Distributed Learning on Connected Devices
	Tiny Machine Learning (TinyML)


	Bibliography

