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Présentation et synthèse du mémoire

Mes intérêts de recherche couvrent différent sujets entre les domaines de la cosmologie

et des ondes gravitationnelles, comme les signaux d’ondes gravitationnelles provenant de

l’univers primordial, l’utilisation des ondes gravitationnelles émises par les binaires compactes

pour tester l’expansion de l’univers, mais aussi la physique du fond diffus cosmologique, les

champs magnétiques cosmologiques, la turbulence dans le plasma primordial, l’énergie noire

et les champs scalaires en cosmologie.

Au cours du temps, les aspects plus étroitement reliés aux ondes gravitationnelles ont pris

un place importante dans ma recherche, en particulier dans le contexte des études prépara-

toires à l’interféromètre spatial LISA. Ceci a été dû principalement au fait que, en fin 2013,

je suis devenue coordinatrice du Groupe de Travail de Cosmologie au sein du Consortium

LISA, ce qui m’a donné la possibilité de suivre de près le développement du cas scientifique

de LISA, et d’avoir une idée claire des arguments qu’il était nécessaire approfondir dans ce

contexte.

L’approbation de LISA par l’ESA en début 2017, favorisée par le succès de LISA

Pathfinder et par le cadre heureux de la première détection directe des ondes gravitation-

nelles par aLIGO et aVirgo, a ultérieurement renforcé ma conviction que la cosmologie avec

les ondes gravitationnelles est un sujet important et d’actualité, auquel il vaut la peine de

dédier sa propre recherche. La récente détection coïncidente des ondes gravitationnelles et

électromagnétiques émises par la collision des deux étoiles à neutrons a démontré le potentiel

des ondes gravitationnelles pour la cosmologie: elle a permis une nouvelle mesure de la con-

stante de Hubble, et de contraindre la vitesse des ondes gravitationnelles (et par conséquent

certaines théories de la gravitation modifiée très importantes pour la cosmologie).

Devant décider le sujet de ce mémoire, et les travaux à y intégrer, il m’a semblé donc

naturel de choisir comme thématique les ondes gravitationnelles en tant que observable cos-

mologique. Parmi les sujets sur lesquels j’ai travaillé, deux possibilités s’ouvraient concer-

nant cette thématique: soit les tests cosmologiques par moyen de l’observation des ondes

gravitationnelles émises par le binaires compactes [1–5], soit les fonds stochastiques d’ondes

gravitationnelles générés dans l’univers primordial [6–14]. Ayant récemment écrit une revue

sur ce dernier sujet, en collaboration avec Daniel Figueroa [15], j’ai opté pour la deuxième

possibilité. Une bonne partie de ce mémoire est extraite donc de la revue, mais en ce qui
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concerne les sources d’ondes gravitationnelles qui y sont traités, j’ai sélectionné premièrement

celle sur laquelle j’ai travaillé le plus par le passé: les transitions de phase cosmologiques de

premier ordre.

Le mémoire est structuré comme suit. Le chapitre 2 définit les ondes gravitationnelles

dans l’univers en expansion, et le chapitre 3 introduit et motive les fonds stochastiques d’ondes

gravitationnelles d’origine cosmologique. Le chapitre 4 présente les limites supérieures à ces

fonds stochastiques, et les détecteurs d’ondes gravitationnelles opérationnels et futurs. Le

chapitre 5 adresse le spectre de modes tensoriels produit lors de l’inflation slow roll, et son

évolution depuis la fin de l’inflation jusqu’à maintenant.

Le chapitre 6 est la partie la plus importante de ce mémoire, et traite du fond stochastique

d’ondes gravitationnelles produit par les transitions de phase de premier ordre. La première

partie du chapitre est de nouveau extraite de la revue, et résume les caractéristiques prin-

cipales du signal. La deuxième partie inclut quatre publications sélectionnées parmi mes

travaux. La première publication est une analyse du signal produit par la turbulence mag-

nétohydrodynamique qui survient après la transition de phase [9]. Les trois autres sont de

caractère plus observationnels. Elles étudient la détection du signal issu de différentes tran-

sitions de phase, qui ont lieu à différents échelles d’énergie dans l’univers primordial, par

différents détecteurs d’ondes gravitationnelles. En particulier, la section 6.3 traite de LISA

et, par conséquent, des transitions de phase autour et au delà de l’échelle éléctrofaible [12].

La section 6.4 analyse par contre les Pulsar Timing Arrays, et donc la transition de phase

QCD [10]. Finalement la section 6.5 examine le Cosmic Explorer et des transitions de phase

hypothétiques à très haute température, autour de 106 GeV [14]. J’ai choisi ces publications

parce que elle montrent le potentiel que ont les détecteurs d’ondes gravitationnelles de tester

l’univers à des échelles d’énergie très diversifiées, et qui ne sont pas accessibles par d’autre

observables cosmologiques basées sur l’émission électromagnétique.

Chaque chapitre, et chaque section qui inclut une publication, sont dotés d’un préambule

pour en faciliter la lecture. Les préambules expliquent le contexte, résument les principaux

résultat, et présentent les développements et mes projets futurs concernant la thématique,

s’il y en a. J’ai joint mon CV à la fin du mémoire.
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Chapter 1

Introduction

The first detection of gravitational waves (GWs) by the LIGO/Virgo collaboration on

Sept. 2015 [16], has happily ended 50 years of experimental effort towards a direct detec-

tion of GWs. At the same time, it has proven the existence of a quite unexpected source,

binary systems with fairly massive stellar-origin black holes. It was a first hint of the great

potential of GW detection for the exploration and understanding of the universe: further

detections by the aLIGO interferometer first, and by the aLIGO and aVirgo network starting

from summer 2017, have subsequently fully revealed this potential [17–20]. The implications

of these detections concern not only the discovery of new astrophysical objects, but extend

also to powerful tests of fundamental physics and cosmology. Several aspects of General Rel-

ativity (GR) can be probed, such as for example the speed of propagation and polarisation

of GWs. The first detection of the coalescence of two neutron stars, accompanied by the

coincident detection of the same event in various electromagnetic bands [21,22], has strongly

constrained the GW propagation speed |cT − 1| ≤ 5 · 10−16. Focussing on cosmology this

has, for example, important consequences for modified gravity scenarios candidates to ex-

plain the current acceleration of the universe, see e.g. [23–26], and [27, 28] for early works.

Moreover, this observation has provided a measurement of the Hubble rate today [29], though

not precise enough yet to help solving the tension between Cosmic Microwave Background

(CMB) [30] and local universe measurements [31]. The measurement of the Hubble rate will

however improve consistently as new GW signals will be detected in the upcoming years.

The discovery potential of GW observations also concerns the cosmology of the early

universe. On general grounds, due to the weakness of gravity, GWs are decoupled from the

5



1. Introduction 6

rest of matter and radiation components in the universe, upon production: comparing the

rate of interaction of GWs with the Hubble rate, one gets qualitatively [32]

Γ(T )

H(T )
∼ G2 T 5

T 2/MPl
=

(
T

MPl

)3

, (1.1)

where MPl denotes the Planck mass, G = 1/M2
Pl the Newton constant, H(T ) ∼ T 2/MPl the

Hubble rate in the radiation dominated era, and we have assumed a weak interaction with rate

Γ(T ) = nσ v, with the number density of particles n ∼ T 3, cross-section σ ∼ G2T 2 and v ∼ 1.

This estimate shows that the GW interaction rate is smaller than the Hubble parameter,

essentially at any temperature in the universe T < MPl for which our present knowledge about

gravitation holds. In other words, GWs propagate freely in the early universe, immediately

after they are generated. This means that GWs carry unique information about the processes

that produced them, and therefore about the state of the universe at epochs and energy

scales unreachable by any other means. The energy scales that GWs can probe extend

beyond the reach of presently available observational probes of the universe, mostly based on

electromagnetic emission. Furthermore, GWs can provide information on particle physics, in

a complementary way to the Large Hadron Collider or future particle colliders. Mechanisms

generating GWs in the early universe are typically based on theories beyond the Standard

Model of particle physics. They can occur within a broad range of energies, from the QCD

scale ∼ O(102) MeV, all the way up to the inflationary scale, bounded as Einf . 1016 GeV.

The potential of GW detection to improve our knowledge of the early universe, is in

principle comparable to the one of the CMB detection at its dawn, which marked the be-

ginning of modern cosmology. Still, the GW signals must have sufficient amplitude to be

captured by current and future GW detectors. In general, this requires the production of

a substantial amount of tensor metric fluctuations. Fortunately, there are a number of well

motivated mechanisms that can generate cosmological GW backgrounds within the reach of

some GW experiments. Furthermore, the number of present and planned GW detectors is

increasing, and presently include: the network of terrestrial interferometers, currently com-

posed by aLIGO and aVirgo, but to be complemented by KAGRA in the near future, and

subsequently by LIGO India; the space-based interferometer LISA, which has been accepted

by the European Space Agency with a predicted launch date around 2034; and Pulsar Tim-
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ing Arrays, which in the future will reach an extreme sensitivity with the Square Kilometre

Array.

In the following, we first present some generalities on GW signals from the early universe,

and then focus on two processes that can generate a stochastic GW background: after having

briefly overviewed standard slow roll inflation, we thoroughly discuss the main topic of this

dissertation, first order phase transitions (PTs) in the early universe. The manuscript is

organised as follows. In chapter 2 we provide a definition of GWs, initially on a flat space-time,

and then focussing on the relevant case of a Friedmann-Lemaître-Robertson-Walker (FLRW)

background, together with some noteworthy solutions of the GW equation of motion. In

chapter 3, after discussing why any GW background produced in the early universe is of

stochastic nature, we present a general characterization of a statistically homogeneous and

isotropic stochastic gravitational wave background (SGWB). In chapter 4 we review the

present constraints on SGWBs, and discuss some of the characteristics of current and future

GW detectors. In chapter 5 we discuss the irreducible SGWB arising from quantum vacuum

fluctuations in standard inflation, and its evolution until today. Finally, chapter 6 is dedicated

to first order phase transitions beyond the standard model of particle physics, both related

and unrelated to the electroweak symmetry breaking.

Notations. Throughout the manuscript, unless otherwise specified, we use units c = ~ =

1. We will use interchangeably the Newton constant G, the full Planck massMPl ' 1.22·1019

GeV, or the reduced Planck mass mPl ' 2.44 · 1018 GeV, related through M2
Pl = 8πm2

Pl =

1/G. Latin indices are reserved for spatial dimensions i, j, k, ... = 1, 2, 3, and Greek indices

for space-time dimensions µ, ν, α, β, ... = 0, 1, 2, 3. We assume the Einstein convention so

that repeated indices are interpreted as a sum over their values. We use a flat FLRW metric

ds2 = −dt2 + a2(t) δij dx
idxj = a2(η)(dη2 + δij dx

idxj), where t denotes physical time, and

η (alternatively τ in some sections) denotes the conformal time. Comoving momenta are

presented by k, the physical Hubble rate is denoted by H, and the conformal Hubble rate by

H. The critical density today is

ρ0
c =

3H2
0

8πG
, (1.2)

and, unless otherwise specified, cosmological parameters are fixed to the CMB values given

in [30]. Our Fourier convention is given in section 2.4.



Chapter 2

Definition of gravitational waves

This chapter, taken from the review [15], presents the definition of GWs. We first discuss

the case of ‘linearized gravity’ in Sect. 2.1, defining GWs as metric perturbations in globally-

vacuum asymptotically flat space-times. A more general definition is given in Sect. 2.2,

including the case when sources are present, by decomposing the metric perturbation into

scalar-vector-tensor components. We identify the GWs with the only gauge-invariant radia-

tive part of the metric perturbation. After a discussion on the notion of GWs in arbitrary

space-times (Sect. 2.3), we focus on the cosmological context, introducing the GW equation

of motion in an expanding FLRW universe, and discussing some of its solutions in vacuum

(Sect. 2.4). The GW evolution in the presence of a generic source is postponed to Sect. 3,

after we have introduced the statistical characterization of cosmological SGWBs.

The main aim of this chapter is to present the framework necessary to define GWs in

a FLRW background. This definition is not completely straightforward, and it is possible

because of the symmetries of the FLRW space-time, namely homogeneity and isotropy. We

also derive here two solutions of the GW equation of motion, for sub- and super-horizon

modes, that will be useful for the rest of the dissertation.

2.1 Linearized theory in vacuum: the transverse-traceless

gauge

A natural approach to introduce gravitational waves (GWs) is that of ‘linearised grav-

ity’, by which one considers a small perturbation over a fixed Minkowski background

8



2. Definition of gravitational waves 9

ηµν ≡ diag(−1,+1,+1,+1),

gµν(x) = ηµν + hµν(x) , |hµν(x)| � 1 . (2.1)

The condition |hµν(x)| � 1 implies that one is allowing for a) only weak gravitational fields,

and b) a restricted set of coordinate systems where Eq. (2.1) holds. General Relativity (GR)

is invariant under general coordinate transformations xµ −→ x′µ(x), under which the metric

tensor transforms as g′µν(x′) = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ(x). This implies that, under general infinitesimal

coordinate transformations x′µ −→ xµ+ξµ, with ξµ(x) an arbitrary infinitesimal vector field,

the metric perturbation transforms as

h′µν(x′) = hµν(x)− ∂µξν − ∂νξµ . (2.2)

In order to preserve the functional form of Eq. (2.1) in the new system of coordinates,

i.e. g′µν(x′) = ηµν + h′µν(x′), |h′µν(x′)| � 1, we require |∂αξβ| . |hαβ|. Therefore, only slowly

varying infinitesimal coordinate transformations are a symmetry of the linearised theory1.

The affine connection ( Christoffel symbols) to linear order in the tensor perturbation is

Γαµν ≡
1

2
gαβ(∂νgβµ + ∂µgαν − ∂βgµν) =

1

2
(∂νh

α
µ + ∂µh

α
ν − ∂αhµν) +O(h2

∗∗) . (2.3)

Using this expression we can write, also to linear order, the Riemann tensor, Ricci tensor and

Ricci scalar, as

Rαµνβ = ∂νΓαµβ − ∂βΓαµν =
1

2
(∂µ∂νh

α
β + ∂β∂

αhνµ − ∂ν∂αhµβ − ∂β∂µhαν ) , (2.4)

Rµν ≡ Rαµαν =
1

2
(∂ν∂αh

α
µ + ∂µ∂

αhνα − ∂µ∂νh−2hµν) , (2.5)

R = Rµµ = (∂α∂βh
β
α −2h) , (2.6)

where h ≡ hαα is the trace of the metric perturbation, and 2 ≡ ∂α∂α. From these expressions
1Notice that under a Lorentz transformation x′µ = Λ ν

µ xν , g′µν(x′) = Λ α
µ Λ β

ν gαβ(x), preservation of
Eq. (2.1) requires |Λ α

µ Λ β
ν hαβ(x)| � 1, so that it remains true that |h′µν(x′)| � 1. Rotations do not spoil

the condition |hµν(x)| � 1, but boosts could, and therefore must be restricted to those that do not spoil such
condition. As hµν(x) is invariant under constant displacements x′µ −→ xµ + aµ, linearised gravity Eq. (2.1)
is also invariant under Poincaré transformations.
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we can construct the Einstein tensor, again to first order in the metric perturbation, as

Gµν ≡ Rµν −
1

2
ηµνR =

1

2
(∂ν∂αh

α
µ + ∂µ∂

αhνα − ∂µ∂νh−2hµν − ηµν∂α∂βh β
α + ηµν2h)

=
1

2
(∂α∂ν h̄

α
µ + ∂α∂µh̄να −2h̄µν − ηµν∂α∂βh̄αβ) , (2.7)

where in the last line, for convenience, we have introduced a new metric perturbation

h̄µν ≡ hµν −
1

2
ηµν h . (2.8)

As the trace of h̄µν has opposite sign to that of hµν , h̄ = −h, h̄µν is referred to as the

trace-reversed metric perturbation. Writing Gµν in terms of h̄µν has the advantage that it

eliminates the trace.

The expression of Gµν in Eq. (2.7) can be further simplified, by exploiting the invariance

of the linearised theory under slowly varying infinitesimal coordinate transformations. Under

x′µ −→ xµ + ξµ, the metric perturbation hµν changes as in Eq. (2.2), whereas the trace-

reversed perturbation transforms as

h̄′µν(x′) = h̄µν(x) + ξµν(x) , ξµν(x) ≡ ηµν∂αξα − ∂µξν − ∂νξµ . (2.9)

In light of the expression of Gµν in terms of h̄αβ , it seems convenient to make a coordinate

transformation such that the metric perturbation verifies

∂µh̄µν(x) = 0 . (2.10)

We now demonstrate that this gauge choice, known as the Lorentz gauge, is always possible.

Let us start with an arbitrary perturbation h̄µν for which ∂µh̄µν 6= 0. The Lorentz gauge

condition, using Eq. (2.9), transforms as

∂′µh̄′µν(x′) = ∂µh̄µν(x)−2ξν , (2.11)

so that we can always demand that ∂′µh̄′µν(x′) = 0, as long as

2ξν = fν(x) , fν(x) ≡ ∂µh̄µν(x) . (2.12)
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One can always find solutions to the above Eq. (2.12), because the d’Alembertian operator

2 is invertible. Therefore, one is free to exploit the invariance of the linearised theory under

infinitesimal coordinate transformations, in order to pick the Lorentz gauge.

The advantage of expressing Gµν in terms of the trace-reverse metric, becomes now

manifest. Restricting the coordinate systems to those verifying the Lorentz-gauge condition

Eq. (2.10), leads to a very simple expression for the Einstein tensor,

G(L)
µν = −1

2
2h̄µν , (2.13)

where (L) refers to the Lorentz gauge. One can always write Gµν as in Eq. (2.13), as long as

one restricts oneself to the set of Lorentz coordinate systems verifying Eq. (2.10). The amount

of gauge freedom in Lorentz coordinate systems is of course reduced, compared to the full

freedom in linearized gravity under general infinitesimal coordinate transformations given by

Eqs. (2.2), (2.9). Once h̄µν verifies ∂µh̄µν(x) = 0, we can always make a further infinitesimal

coordinate transformation x′µ −→ xµ + ξµ, so that the new metric perturbation h̄′µν still

verifies ∂′µh̄′µν(x′) = 0, as long as Eq. (2.12) is satisfied with fν(x) = 0. The gauge freedom

within Lorentz coordinate systems amounts therefore, to an infinitesimal vector displacement

characterized by four functions ξν(x), which are not fully free, but rather restricted to satisfy

the source-less wave equation2 2ξν = 0.

In the Lorentz gauge, linearized Einstein gravity reduces therefore to the equation

2h̄µν = − 2

m2
p

Tµν , (2.14)

which is nothing else but a wave equation with a source. The general homogeneous solution

to the wave equation, based on the superposition of the linearly independent solutions, can

be written as

h̄µν(x) =

∫
d3k (h̄µν(k)eikx + h̄∗µν(k)e−ikx) , with kµh̄µν = 0 , (2.15)

where kx ≡ kµxµ = −ω(|k|)t+k·x, ω(|k|) = |k|, and h̄µν(k), are functions that depend solely

on the wave vector k. The latter are not free, but must satisfy kµh̄µν = 0, as it follows from
2Alternatively, the gauge freedom in Lorentz coordinate systems, amounts to 8 free functions depending

on the 3 spatial coordinates, determining the initial data hyper-surface.
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Eq. (2.10). The solution Eq. (2.15) characterizes completely a gravitational wave background

hµν(x) ≡ h̄µν(x)− 1
2ηµν h̄(x), at every space-time point x = (x, t). In light of Eqs. (2.14) and

(2.15), it becomes clear why, in fact, we speak of gravitational waves.

As the Lorentz gauge Eq. (2.10) represents 4 constraints over the trace-reverse metric

perturbation h̄µν , one might be tempted to conclude that there are in total 10 − 4 = 6

radiative degrees of freedom verifying Eq. (2.14), and hence propagating at the speed of

light. However, this is not the case: as discussed above, fixing the Lorentz gauge does not

saturate completely the gauge freedom. In fact, from Eq. (2.9), we see that the trace-reversed

metric changes under infinitesimal coordinate transformations, as h̄µν −→ h̄µν + ξµν , with

ξµν ≡ ηµν∂
αξα − ∂µξν − ∂νξµ. Once in a Lorentz frame ∂µh̄µν = 0, to remain in a Lorentz

frame after applying a new infinitesimal coordinate transformation, requires that 2ξµ = 0.

From this we observe that also 2ξµν = 0 is verified.

We now restrict to globally-vacuum spatially flat space-times, where the first condition

implies Tµν(x) = 0 at every point and time, and the second conditions requires hµν(x) −→ 0

as |x| −→ ∞ (the case where a source is present is treated in the next section). It follows

then, that the wave equation is invariant under Lorentz preserving infinitesimal coordinate

transformations3, as 2′h̄′µν = 2(h̄µν + ξµν) = 2h̄µν = 0. In light of this, we can consider

taking 4 infinitesimal vector displacements ξµ (appropriately chosen so that 2ξµ = 2ξµν = 0

is verified), and use them to impose 4 conditions over a newly (Lorentz-gauge preserving)

transformed metric perturbation h̄′µν(x′) = h̄µν(x) + ξµν(x), hence eliminating 4 degrees of

freedom. In other words, out of the seemingly 6 degrees of freedom that verify the wave

equation Eq. (2.14), we realize that, in reality, only two independent degrees of freedom are

present. These are the truly physical propagating degrees of freedom, as any new Lorentz-

gauge preserving coordinate transformation h̄µν −→ h̄µν + ξµν , with 2ξµ = 2ξµν = 0, would

not reduce further the number of independent degrees of freedom below 2.

Under these circumstances, one can exploit the residual gauge freedom to eliminate di-

rectly components of the metric perturbation. For instance, using Eq. (2.9), we can make

the trace and the spatial-temporal components to vanish, h̄ = h̄0i = 0. This implies that we

do not need to differentiate any more between trace-reversed and normal perturbations, as
3The box operator 2 also changes under a coordinate transformation, 2′ = ηµν ∂

∂x′µ
∂

∂x′ν = ηµν [(δαµ −
∂ξα

∂xµ
) ∂
∂xα

] [(δβν − ∂ξβ

∂xν
) ∂
∂xβ

] = ηµν ∂
∂xµ

∂
∂xν

+O(∂ξ) = 2+O(∂ξ). As O(|∂ξ|) . O(|h∗∗|), then 2′ = 2+O(|h∗∗|),
and hence 2′hµν = 2hµν +O(h2

∗∗).
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they become equal h̄µν = hµν . From the Lorentz condition we obtain that ḣ00 = −∂ihi0 = 0,

and hence that the temporal-temporal component is only a function of the spatial coordi-

nates h00 = V (x). This time independent term corresponds in fact to the static part of the

gravitational interaction, i.e. to the Newtonian potential. As GWs are only concerned with

the time-dependent part of the gravitational interaction, we may very well set h00 = 0. So

in summary, we have specialized the gauge to

hµ0 = 0 , h = hi i = 0 , ∂ihij = 0 , (2.16)

where the last condition follows from the Lorentz condition Eq. (2.10). This is known as the

transverse-traceless (TT) gauge. The counting of the degrees of freedom in the TT gauge

becomes now more clear than before, as after having eliminated all temporal components

hµ0 = 0, we are left with 6 degrees of freedom in the spatial components hij . Out of these 6

degrees of freedom, 3 are further eliminated from the 3 transversality condition(s) ∂ihij = 0,

and 1 more degree of freedom is eliminated from the trace-less condition h = hi i = 0. Hence,

we obtain that there are, finally, only 6− 3− 1 = 2 degrees of freedom surviving. Once the

TT gauge Eq. (2.16) is adopted, gauge freedom is saturated.

The TT gauge is therefore particularly convenient as it fixes completely the gauge freedom,

so that the metric perturbation contains only the physical radiative degrees of freedom.

This can be seen particularly clearly by considering a plane wave propagating in direction

n̂ = k/|k|. Due to the transversality condition ∂ihij = 0, we see that the tensor components

parallel to the direction of propagation vanish, as n̂ihij = 0. Without loss of generality, we

can fix ẑ = n̂, so that only h11, h12, h21 and h22 are non-zero in such system of reference. As

we also require the metric perturbation to be trace-less and symmetric, then we are left only

with 2 independent components, which we call h× ≡ h12 = h21 and h+ ≡ h11 = −h22. We

find that the perturbed line element, due to the passing of a GW, is thus given by

ds2 = −dt2 + dz2 + (1 + h+)dx2 + (1− h+)dy2 + 2h×dxdy , (2.17)

where it is manifest that there are only 2 degrees of freedom, h× and h+.

Furthermore, in a globally vacuum space-time, all non-zero components of the Riemann
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tensor can be obtained from Ri0j0, which in the TT gauge reads

Ri0j0 = −1

2
ḧij . (2.18)

This simple relation between the Riemann tensor and metric perturbations in the TT-gauge,

makes particularly simple the study of the response of a detector when a GW passes through

it. We refer the reader to the elaborated discussion on this in section 1.3 of [33].

2.2 Linearized theory in matter: scalar-vector-tensor decom-

position

We ended the previous section considering linearised gravity over a Minkowski background

(gµν = ηµν + hµν), in asymptotically-flat (hµν −→ 0 at infinity) and globally vacuum space-

times (i.e. with null stress-energy tensor everywhere Tµν = 0). In this setting, we were able

to demonstrate that GWs are characterised by only two physical degrees of freedom, h+ and

h×. However, this characteristic is a manifestation of the intrinsic nature of the gravitational

interaction, mediated by the graviton, a spin-two massless field that has only two independent

helicity states (see e.g. chapter 2 of [33]). The TT gauge, that can only be picked in vacuum,

clearly exhibits the fact that GWs are characterised by only two physical degrees of freedom,

corresponding to two polarisation states. However, this must be true in general, not only in

globally vacuum space-times. In this section we develop a formalism that renders this fact

manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski

background (gµν = ηµν + hµν , |hµν | � 1), but consider the more realistic situation where

a non-vanishing stress-energy tensor is present, Tµν 6= 0. The rest of this section is based

on [34] (see also [35]), which presents the flat space-time limit of Bardeen’s cosmological

gauge-invariant perturbation theory [36]. We follow standard notations in cosmology (that

deviate somewhat from those of the previous section): the background metric is ḡµν = ηµν ,

and we denote the first order metric perturbation as δgµν (this corresponds to hµν in the

previous section). The main difference with the cosmological setting of [36] is that our metric

background is Minkowski, and hence the energy momentum tensor Tµν at the background

level, must vanish.
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We begin by decomposing the metric perturbation and the energy-momentum tensor into

irreducible parts with respect to 2-dimentional rotations around a vector,

δg00 = −2φ , (2.19)

δg0i = δgi0 = (∂iB + Si) , (2.20)

δgij = δgji = −2ψδij + (∂i∂j −
1

3
δij∇2)E + ∂iFj + ∂jFi + hij , (2.21)

and

T00 = ρ , (2.22)

T0i = Ti0 = ∂iu+ ui , (2.23)

Tij = Tji = p δij + (∂i∂j −
1

3
δij∇2)σ + ∂ivj + ∂jvi + Πij . (2.24)

By construction, the above functions can be classified as scalars, vectors and tensors, accord-

ing to how they transform under rotations,

δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ

Vector(s) Si, Fi ui, vi

Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the

following conditions

∂iSi = 0 (1 constraint) , ∂iFi = 0 (1 constraint) , (2.25)

∂ihij = 0 (3 constraints) , hii = 0 (1 constraint) . (2.26)

and

∂iui = 0 (1 constraint) , ∂ivi = 0 (1 constraint) , (2.27)

∂iΠij = 0 (3 constraints) , Πii = 0 (1 constraint) , (2.28)

where we have implicitly assumed that all terms vanish ρ, u, ui, p, σ, vi,Πij −→ 0 at infinity.

The total number of degrees of freedom is as follows. For the metric perturbation, the total
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number of functions introduced in Eqs. (2.19)-(2.21) is 16 = 4 scalars (φ, B, ψ, E) + 6

vector components (Si, Fi) + 6 tensor components of the 3 × 3 symmetric tensor hij . The

total number of constraints in Eqs. (2.25), (2.26) is 6, so the number of independent functions

in the decomposition defined by Eqs. (2.19)-(2.21) is 10 = 16 − 6, as expected for a 4 × 4

symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor,

decomposed in Eqs. (2.22)-(2.24), and subject to the constraint equations (2.27), (2.28).

Given our assumptions about metric perturbations over a flat background ηµν , and asymp-

totic flatness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and

tensor pieces, defined by Eqs. (2.19)-(2.21), is actually unique. Given a metric perturbation

δgµν , one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij , as a function of

δgµν . Similarly, the decomposition of the energy-momentum tensor by Eqs. (2.22)-(2.24) is

also unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary

functions of space-time coordinates and, in general, they are not independent from each other.

For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the

functions introduced in Eqs. (2.22)-(2.24), must satisfy

∇2u = ρ̇ (1 constraint) , (2.29)

∇2σ =
3

2
(u̇− p) (1 constraint) , (2.30)

∇2vi = 2u̇i (2 constraints) . (2.31)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor,

out of the 10 seemingly independent functions ρ, u, ui, p, σ, vi,Πij , there are in reality only

6 = 10 − 4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily,

whereas the remaining functions u, σ, vi can be derived from the latter, by solving the system

of Eqs. (2.29)-(2.31).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to

4 constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the

metric decomposition Eqs. (2.19)-(2.21), only 6 = 10 − 4 functions are truly independent

degrees of freedom. The relation among metric components is however more complicated

than in the case of the stress-energy tensor components Eqs. (2.29)-(2.31), as it is the metric
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perturbation δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar,

vector, and tensor parts. In order to reduce the number of independent degrees of freedom

in Eqs. (2.19)-(2.21) from 10 to 6, it is more practical to exploit the invariance of linearised

gravity, under arbitrary infinitesimal coordinate transformations xµ −→ xµ + ξµ. Following

the logic of the metric decomposition in Eqs. (2.19)-(2.21), let us first express an arbitrary

infinitesimal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id+ di) with ∂idi = 0 , (2.32)

where d, d0, di are general functions of the space-time coordinates (t,x). As the met-

ric perturbation transforms under an arbitrary infinitesimal diffeomorphism as δgµν −→

δgµν − ∂µξν − ∂νξµ, see Eq. (2.2), one obtains that scalar parts of the metric perturbation in

Eqs. (2.19)-(2.21), transform as

φ −→ φ− ḋ0 , B −→ B − d0 − ḋ , (2.33)

ψ −→ ψ +
1

3
∇2d , E −→ E − 2d , (2.34)

the vector parts as

Si −→ Si − ḋi , Fi −→ Fi − 2di , (2.35)

and the tensor part as

hij −→ hij . (2.36)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant,

i.e. independent of the system of coordinates (as long as we preserve the infinitesimal condition

|δgµν | � 1). Since we know that there should be only 6 (= 10−4) physical degrees of freedom,

it must be possible to reduce the above scalar and vector perturbations (8 functions) to only

4 (= 6− 2) degrees of freedom. In light of Eqs. (2.33), (2.34) and (2.35), one can build new
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scalar and vector perturbations

Φ ≡ −φ+ Ḃ − 1

2
Ë , (2.37)

Θ ≡ −2ψ − 1

3
∇2E , (2.38)

Σi ≡ Si −
1

2
Ḟi , with ∂iΣi = 0 , (2.39)

which are directly invariant under arbitrary infinitesimal coordinate transformations.

Note that for the energy momentum tensor, we did not need to perform a coordinate

transformation to exhibit the gauge-invariant independent degrees of freedom, as we just did

for the metric perturbations: they followed simply after imposing energy-momentum con-

servation, see discussion after Eqs. (2.29)-(2.31). This is a consequence of the fact that, in

our approach, the energy momentum tensor must be zero in the background, because of

the assumption of linearisation around Minkowski. In fact, the first-order perturbation of a

generic tensor Tµν = T̄µν + δTµν transforms under an infinitesimal coordinate transformation

as δTµν −→ δTµν + LξT̄µν , where LξT̄µν denotes the Lie derivative of the background com-

ponent T̄µν , along the vector field ξµ (which reduces to Eq. (2.2) in flat spacetime and for

the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e.

it is invariant under arbitrary infinitesimal coordinate transformations. This is the so-called

Stewart Walker lemma [37,38].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in

total 6 degrees of freedom (= 1 (Φ) + 1 (Θ) + 2 (Σi) + 2 (hij)), we are certain that these

variables represent the truly physical degrees of freedom of the metric. It must be possible

therefore, to express the Einstein equations as a function exclusively of these variables. As

a matter of fact, the Einstein tensor can be written purely in terms of such gauge invariant

quantities, as

G00 = −∇2Θ , (2.40)

G0i = −1

2
∇2Σi − ∂iΘ̇ , (2.41)

Gij = −1

2
2hij − ∂(iΣ̇j) −

1

2
∂i∂j (2Φ + Θ) + δij

[
1

2
∇2 (2Φ + Θ)− Θ̈

]
. (2.42)

Introducing now Eqs. (2.40)-(2.42) in the left hand side of the Einstein Equations Gµν =
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1
m2
p
Tµν , and Eqs. (2.22)-(2.24) in the right hand side, one finds, with the help of Eqs. (2.29)-

(2.31), that

∇2Θ = − 1
m2
p
ρ , ∇2Φ = 1

2m2
p

(ρ+ 3p− 3u̇) ,

∇2Σi = − 2
m2
p
ui , 2hij = − 2

m2
p
Πij .

(2.43)

It appears that only the tensor part of the metric hij obeys a wave equation. The other

variables Θ, Φ and Σi, obey Poisson-like equations. Indeed, in a globally vacuum space-time,

the above equations reduce to five Laplace equations and a wave equation,

∇2Θ = 0 , ∇2Φ = 0 ,

∇2Σi = 0 , 2hij = 0 .

(2.44)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric

perturbation Θ,Φ,Σi and hij , only the tensor part hij (which has two independent compo-

nents) represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the

metric perturbation remains as such, i.e. a perturbation |δgµν | � 1. In Sect. 2.1 we found

that the invariance under infinitesimal coordinate transformations of the linearised theory,

allows to saturate the gauge freedom once one reduces the metric perturbations to only 2

degrees of freedom, in the transverse-traceless gauge and in vacuum. However, identifying

correctly the truly gauge invariant and radiative degrees of freedom is not just a matter of

a gauge choice. In some gauges, as e.g. the Lorentz one, it is possible to have all metric

components satisfying a wave equation, but this is only a ‘gauge artefact’, arising due to the

choice of coordinates. Such gauge choices, although useful for calculations, may mistakenly

led to identify pure gauge modes with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: i) gauge spurious degrees

of freedom, ii) physical but non-radiative degrees of freedom, and iii) physical radiative

degrees of freedom. In the previous section we have found that, using infinitesimal coordi-

nate transformations, one can arrive to the result that only two physical radiative degrees

of freedom are relevant. However, due to the presence of the physical non-radiative degrees

of freedom, these cannot be made explicit, unless in vacuum: it is not possible in general to
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write the metric perturbation in the TT gauge, since usually we cannot eliminate the tempo-

ral components of the stress-energy tensor that do not vanish T00, T0i 6= 0. Nonetheless, here

we have demonstrated that the linearised metric perturbation can be split up uniquely into

scalar, vector and tensor parts, as in Eqs. (2.19)-(2.21). This decomposition contains all type

of degrees of freedom i)− iii). From Einstein equations it appears clearly that the physical

radiative degrees of freedom correspond only to the tensor piece of the metric perturbation,

i.e. to the piece that satisfies a wave equation and verifies the TT gauge conditions (often

referred to as the TT piece), irrespective of the gauge choice. In vacuum, the TT-gauge

happens to correspond to the set of coordinate systems where the whole metric perturbation

reduces to the physical radiative degrees of freedom. In the presence of matter, there are

instead four physical degrees of freedom on top of the TT ones. Yet, the latter are – un-

mistakably – the only physical degrees of freedom truly representing gravitational radiation,

independently of the gauge choice, and/or the presence of matter.

2.3 Gravitational waves in a curved background

In section 2.1 we have presented the definition of GWs in the context of linearised gravity

over a Minkowski background, in asymptotically-flat and globally vacuum space-times. In

section 2.2 we have demonstrated that GWs can be unequivocally defined also dropping

the assumption of globally-vacuum space-times. The next step is to drop the assumption of

linearised theory over Minkowski, and tackle the definition of GWs over a curved background4.

This step becomes indeed mandatory in order to define the GW energy momentum tensor

[33,34,39]. In GR, every form of energy contributes to the curvature of space-time. In order

to find expressions for the energy and momentum carried by GWs, one has to explore in which

sense GWs are themselves a source of space-time curvature. However, this simple statement

is enough to conclude that one needs to go beyond linearised theory over Minkowski: sticking

to it, one excludes from the beginning the possibility of generating any form of curvature in

the space-time, it being by definition flat. Furthermore, in the rest of this review we will

be dealing with GWs generation processes operating in the early universe, and hence it is

crucial that we determine how to define GWs over a FLRW background, which naturally

corresponds to a curved background.
4We remind that in our treatment ‘background’ means ‘everything except GWs’.
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Going beyond linearised theory over Minkowski emerges as an outstanding necessity, but it

is far from being a simple task. We need to generalize the theory to gµν(x) = ḡµν(x)+δgµν(x),

with |δgµν(x)| � |ḡµν(x)| and ḡµν(x) a general metric. However, it is clear that in this setting

it becomes non-obvious to define GWs, since it is non-trivial to distinguish the background

from the fluctuation, as ḡµν(x) can contain space- and time-dependent components, due for

instance to space- and time-varying Newtonian fields. The only way to define fluctuations

representing GWs in this context, is to exploit a possible separation of scales/frequencies: if

the background ḡµν(x) varies over a typical length-scale LB (or its time variation is charac-

terised by a typical frequency fB), and the GWs have typical reduced wavelength λ̄ = λ/2π

(or frequency f = 1/λ), one can distinguish the GWs from the background provided that

LB � λ̄ (fB � f). In this case, the GWs can be viewed as small perturbations on a smooth

background (from ‘their’ point of view), or rapidly varying perturbations over a slowly varying

background.

Let us make this more explicit with two examples. We will properly introduce the case

of the FLRW metric later on, but let us anticipate that in this case, it is easy to see that

the typical space and time variations of the background today correspond to the Hubble

factor, LB ∼ 1/fB ∼ 1/(a0H0) (here we refer to comoving quantities). For a GW produc-

tion mechanism operating causally (i.e. within the causal horizon) at a given time t∗ in the

radiation or matter dominated eras, the typical wave-lengths/frequencies of the GW signal

today would correspond to λ = 1/f ≤ 1/H(t∗). Since the universe is expanding it holds that

H(t∗) � a0H0, and therefore it is clear that the above conditions (in terms of length-scales

and in terms of frequencies) are satisfied in this case. This is an anticipation of the fact that

GWs can indeed be well defined in a cosmological context.

In the case of GWs arriving on Earth, e.g. from a compact binary coalescence, the situ-

ation is more complicated. Earth-based GW detectors have the best sensitivity to GWs for

frequencies around f ∼ 100 − 1000 Hz, corresponding to λ̄ ∼ 500 − 50 km: on these length

scales, the Newtonian gravitational field of the Earth does have spatial variations, rendering

it impossible to distinguish it from GWs solely based on the condition LB � λ̄. Moreover,

its amplitude is much bigger than the GW one, δgN00 ∼ 10−9 � δgGW
ij ∼ 10−21. On the other

hand, the Earth gravitational field is almost static in the frequency window in which terres-

trial interferometers operate: it varies mostly on typical frequencies fB . 0.1 Hz. Therefore,
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Earth-based interferometers can indeed perform GW measurements (as proven recently!),

and distinguish GWs from the background, based on the condition fB � f : i.e. by maximiz-

ing their sensitivity in a frequency window which is clean from the time varying Newtonian

gravitational field, Earthquakes and other seismic motions.

Let us then start from the principle that GWs can be defined within the approximation

that their wave-length (frequency) is much smaller (bigger) than the length (inverse time-

scale) characterising the background space-time over which the waves are propagating. The

method to implement this definition on a practical level, is to perform averages of physical

quantities over a length-scale ` (time-scale τ) such that λ̄ � ` � LB (1/f � τ � 1/fB).

For proper covariant definitions of the averaging procedure, see [40].

Since an averaging is involved, it becomes clear that, in order to proceed consistently in

the definition of GWs, it is necessary to go to second order in the expansion of the metric

perturbation |δgµν | � 1. Averaging the first order contribution in fact gives zero, because

of the oscillatory nature of the waves. So we need to look for the contribution of GWs to

the background curvature, but linear quantities in δgµν cannot influence the background, as

they average to zero. On the other hand, the averaging of a second order quantity can mix

two short wavelength (high frequency) modes, in such a way, that in total they contribute a

long wavelength (low frequency) mode, as commonly experienced in convolutions. Therefore,

second order quantities in δgµν can give rise to the corrections to the background metric at

scales larger than the GW wavelength. A particularly relevant point, that will help to clarify

these ideas, is the definition GW energy momentum tensor, which we discuss next.

For a full analysis of perturbation theory over a generic background to second order in

|δgµν | � 1, we refer the reader to the excellent treatments of Refs. [33,34,39]. Here, we only

present the two main results that will be useful for us in the review: the definition of the

GW energy momentum tensor, and the equation for the propagation of GWs on a curved

background. Concerning the first point, the analysis of the Einstein equations at second

order, shows that the effective energy momentum tensor of GWs is obtained by averaging the

second order Ricci tensor. Denoting the metric perturbation as hµν = δgµν and generalizing

the trace-reserve metric perturbation definition as h̄µν = hµν − 1
2 ḡµν ḡ

αβhαβ (where ḡµν is the

background metric), the result reads, in the Lorentz gauge ∇µh̄µν = 0 and once all spurious
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gauge modes have been removed, as

TGW
µν =

〈∇µhαβ∇νhαβ〉
32πG

, (2.45)

where ∇ denotes the covariant derivative with respect the background space-time, and 〈...〉

an average over ` and/or τ . The above GW energy momentum tensor must be inserted

in the right hand side of the background Einstein equations, as any other form of matter.

It contributes to the background space-time curvature as a term of order O(h2/λ̄2), which

must satisfy h2/λ̄2 . 1/L2
B, where the < sign applies if the background already contains a

contribution from another (dominant) source of space-time curvature, whereas the ' sign

applies if the only contribution is due to the GWs. The consistency of the second order

treatment is then manifest, since one has |hµν | . λ̄/LB: the definition of GWs in the limit

λ̄/LB � 1 implies, therefore, that these are small perturbations, |hµν | � 1. From Eq. (2.45)

we see that the energy density of GWs becomes the well known expression

ρGW = T 00
GW =

〈ḣij ḣij〉
32πG

, (2.46)

where we have written it in the TT gauge. Following the results presented in sections 2.1

and 2.2, TT gauge can be chosen either far away from the sources where one is almost

in vacuum, in which case ḣij denotes the derivative with respect to the time variable of

Minkowski metric; or in curved space-time, for example in FLRW, in which case ḣij denotes

the derivative with respect to physical time, leading to Eq. (3.13). Note that, for FLRW at

first order in perturbation theory, ∇0hij = ḣij .

To analyse the propagation of GWs on a curved background, one the other hand, one

does not need to go to second order in the hµν expansion. The Einstein equations at first

order, in the case of the expansion around a flat background, led to the propagation equation

in (2.43). In the case of a curved background, this generalises to (see e.g. [41–44])

−1
22h̄µν+ Rλµν

σh̄λσ +∇(ν∇σh̄µ)σ −
1

2
ḡµν∇α∇βh̄αβ + (2.47)

+Rαβ
[

1

2
ḡµν h̄αβ −

1

2
h̄µν ḡαβ + ḡβ(µh̄ν)α

]
= 8πGδTµν ,

where round parentheses in a subscript denote symmetrisation, h̄µν is the trace reversed
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metric perturbation, 2, ∇, the Riemann and the Ricci tensors are defined with respect

the background ḡµν . We have decomposed the matter energy momentum tensor as Tµν =

T̄µν + δTµν , where T̄µν is the background contribution, sourcing the background curvature

of ḡµν , while δTµν is the first order contribution, that can act as source of GWs. Note that

we have written the above equation without fixing the gauge choice and in presence of a

generic matter source, as in this way it can be directly adapted to the FRLW case. The

above equation is most commonly written in vacuum and in the Lorentz gauge ∇αh̄αβ = 0,

where it takes the simpler form [34]

2h̄µν − 2Rλµν
σh̄λσ = 0 . (2.48)

In the limit LB � λ̄, the couplings to the background due to the 2 term and the term

proportional to the background Riemann tensor, have the effect of imprinting gradual changes

on the properties of the GWs, e.g. in their amplitude and polarisations. This can be analysed

by solving the above equation in the geometric optics limit LB � λ̄, with the result that

GWs propagate along null geodesics of the space-time background, with parallel-transported

polarisation, orthogonal to the rays, see e.g. [33] for a discussion about this. Furthermore,

one of the consequences of the geometric optics limit is a conservation law, that represents,

in the quantum language, the conservation of the number of gravitons.

In chapter 5 we will present an example of a situation, namely inflation, where the conser-

vation of gravitons does not hold. During inflation one has that the GWs (sub-Hubble tensor

metric perturbations) gradually exit the Hubble scale, breaking the condition LB � λ̄. When

this occurs, the dynamics of the GWs is strongly coupled to the dynamics of the background,

and the graviton number is no longer conserved. We will explain this in detail in chapter 5.

The important point to remark here is that, even though in that case LB ' λ̄, one can still

distinguish the background from the metric fluctuations (albeit the tensor modes become

GWs only after they have crossed back inside the Hubble scale) because of the particular

symmetries of the FLRW space-time.

All of this finally brings us to the definition of GWs in the particular case when the

background space-time is the FLRW metric. It is a remarkable case in which the split-

ting of the metric into a curved background component plus linear perturbations can be
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uniquely defined, even in the regime5 LB ' λ̄. The reason are the symmetries of the FLRW

background, experimentally well verified by CMB observations [45]: the hyper-surfaces of

constant time are homogeneous and isotropic. Therefore, there is no possible ambiguity be-

tween what pertains to ḡµν(x) and what to hµν(x). Furthermore, because of homogeneity

and isotropy, two-index tensors can be irreducibly decomposed on these hyper-surfaces under

spatial translations (harmonic analysis) and rotations. One can therefore perform the same

decomposition carried on in section 2.2, but on a time-evolving background. A general per-

turbation of the metric can be decomposed into scalar, vector and tensor modes, according to

the way they transform under spatial rotations in the background space-time. For derivations

of this decomposition in the case of a FLRW background, see e.g. [36, 38,46,47].

As already mentioned in section 2.2, the main difference with the flat space-time case is

the presence of a non-zero energy momentum tensor at the background level, which has to

satisfy the symmetries of the FLRW space (admitted cases are for example an unperturbed

perfect fluid or a scalar field that depends on time only). Consequently, in cosmological

perturbation theory one has to build a set of gauge-invariant variables also for the components

of the energy momentum tensor, which we did not need to do in section 2.2. Moreover, in

cosmological perturbation theory, it is customary to also expand the metric perturbations

into eigenfunctions of the Laplacian (i.e. in Forurier modes), which represent irreducible

components under translations. Other than this, the two analyses proceed in a very similar

way.

In the context of cosmological perturbation theory one also finds that the two degrees of

freedom of the tensor modes of the metric perturbations, hij , are the only radiative modes6,

and therefore correspond to GWs: scalar and vector modes cannot propagate in vacuum.

The symmetries of the FLRW background imply that hij vanishes in the background: it is

therefore gauge-invariant at first order by the Stewart Walker lemma (c.f. section 2.2). Scalar,

vector and tensor modes are decoupled from each other at linear order in perturbation theory

[38]. GWs may then be represented by the tensor spatial perturbations hij (i, j = 1, 2, 3) of
5Another example are e.g. static space-times.
6Note that, in this context, one also finds a wave-like equation for the scalar Bardeen potential, which

in the case of adiabatic perturbations of a perfect fluid and zero spatial curvature reads Φ̈ + 3H(1 + c2s)Φ̇ +
[H2(1 + 3c2s)−H2(1 + 3w) + k2c2s]Φ = 0, where w is the background fluid equation of state, and cs its sound
speed. However, these are sound waves and represent the perturbations in the matter-radiation fluid, coupled
to the metric. They do not exist if the background fluid is not present, and their modes cannot propagate in
vacuum: they have therefore an entirely different nature than the tensor mode.
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the FLRW metric

ds2 = −dt2 + a2(t) (δij + hij) dx
idxj (2.49)

with

∂ihij = hii = 0 . (2.50)

Since hij is symmetric, the transverse and traceless conditions (2.50), leaves only two in-

dependent degrees of freedom, which correspond to the two GW polarizations. For most

practical purposes there is no need to go beyond linear order in perturbations theory.

2.4 Propagation of gravitational waves in expanding back-

grounds

In this section we analyse the propagation of GWs in a cosmological context, and provide

some useful definitions. The GW equation of motion is given by the Einstein equations

linearized to first order in hij , over a FLRW background. It can be deduced from Eq. (2.47),

by specifying the FLRW connection, Riemann and Ricci tensors, and keeping only the TT

piece hij of the metric perturbation. This leads to

ḧij(x, t) + 3H ḣij(x, t)−
∇2

a2
hij(x, t) = 16πGΠTT

ij (x, t) , (2.51)

where ∇2 = ∂i ∂i is the Laplacian associated to the comoving coordinates xi in (2.49), a dot

denotes derivative with respect to t, H = ȧ/a is the Hubble rate, and ΠTT
ij is the transverse

and traceless part of the anisotropic stress. The anisotropic stress is given by

a2 Πij = Tij − p a2 (δij + hij) , (2.52)

where Tij denotes the spatial components of the energy-momentum tensor of the source, and

p is the background pressure. In the RHS of Eq. (2.52), the term in p δij is a pure trace that

does not contribute to ΠTT
ij , while the term in p hij cancels out with an identical term of

opposite sign that emerges in the derivation of Eq. (2.51).

The transverse and traceless part of a tensor is most easily extracted in Fourier space.
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Consider the spatial Fourier transform

Πij(x, t) =

∫
d3k

(2π)3
Πij(k, t) e

−ik·x . (2.53)

The transverse and traceless part of a symmetric tensor is then given by the projection (see

e.g. Ref. [39])

ΠTT
ij (k) = Oij,lm(k̂) Πlm(k) =

[
Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂)

]
Πlm(k) , (2.54)

with

Pij(k̂) = δij − k̂i k̂j , (2.55)

where k̂ = k/k is the unit vector in the k direction. The operators Pij are projectors on the

subspace orthogonal to k, satisfying Pijki = 0 and Pij Pjl = Pil. From this it follows directly

that ki ΠTT
ij = ΠTT

ii = 0.

The transverse and traceless perturbation hij can be decomposed into the two polarization

states r = +,×, as

hij(x, t) =
∑

r=+,×

∫
d3k

(2π)3
hr(k, t) , e

−ik·x erij(k̂) (2.56)

where the two polarisation tensors erij(k̂) can be taken to be real and to satisfy erij(−k̂) =

erij(k̂). The condition for hij to be real is then h∗r(k, t) = hr(−k, t). The two polarisation

tensors depend only on the unit vector k̂ and are symmetric (erij = erji), transverse (k̂i e
r
ij = 0)

and traceless (erii = 0). They can be written as

e+
ij(k̂) = m̂i m̂j − n̂i n̂j ,

e×ij(k̂) = m̂i n̂j + n̂i m̂j , (2.57)

where m̂ and n̂ are two unit vectors that are orthogonal to k̂, and well as to each other. We
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then have the orthonormal and completeness relations

erij(k̂) er
′
ij(k̂) = 2 δrr′ , (2.58)

∑

r=+,×
erij(k̂) erlm(k̂) = Pil Pjm + Pim Pjl − Pij Plm , (2.59)

where the projectors Pij are defined in Eq. (2.55), and can be written alternatively as Pij =

m̂i m̂j + n̂i n̂j .

The space-time behavior of GWs is determined by Eq. (2.51), with solutions depending

on the particular source considered. Most examples of cosmological sources last only for a

finite amount of time, and become eventually negligible. In linearised GR, once the source

has stopped operating, GWs propagate freely through the FLRW space-time. It is therefore

useful to derive the corresponding free solutions of Eq. (2.51), particularly in the two regimes

of interest in a cosmological setting: for wavelengths smaller and larger than the Hubble

radius.

It is convenient to work with conformal time dη = dt/a(t), so that the metric (2.49) reads

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
. (2.60)

Defining

Hij(k, η) = a hij(k, η) , (2.61)

Eq. (2.51) in Fourier space becomes

H ′′ij(k, η) +

(
k2 − a′′

a

)
Hij(k, η) = 16πGa3 ΠTT

ij (k, η) , (2.62)

where primes denote derivatives with respect to η, and k = |k| is the comoving wave-number.

Restricting ourselves to the case where the source is absent, ΠTT
ij (x, t) = 0 (the solution in

the presence of a generic stochastic source is deferred to section 3.4), we are interested in

solving the time-dependence of the Fourier amplitudes hr(k, η) in Eq. (2.56). These can be

easily obtained from the equation

H ′′r (k, η) +

(
k2 − a′′

a

)
Hr(k, η) = 0 , (2.63)
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where we have set the source to zero, and defined Hr(k, η) = a hr(k, η). Let us focus on a

generic scale factor with power law behaviour a(η) = anη
n, which covers the cases of radiation

(n = 1) and matter (n = 2) domination, as well as of de Sitter inflation (n = −1), (see

e.g. [38]). The general solution is

hr(k, η) =
Ar(k)

a(η)
η jn−1(kη) +

Br(k)

a(η)
η yn−1(kη) , (2.64)

where jn(x), yn(x) are the spherical Bessel functions, and Ar(k) and Br(k) are dimensional

constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power law scale

factor, a′′/a ∝ H2, where H = a′/a is the comoving Hubble factor. One can therefore solve

approximately Eq. (2.63) in the limits of super-Hubble (k � H) and sub-Hubble (k � H)

scales, which simply correspond to the solutions one obtains taking the limits kη � 1 and

kη � 1 in Eq. (2.64).

For sub-Hubble scales, one neglects the term a′′/a with respect the term k2, in Eq. (2.63),

and the solution becomes

hr(k, η) =
Ar(k)

a(η)
eikη +

Br(k)

a(η)
e−ikη , for k � H . (2.65)

Again, Ar(k) and Br(k) are dimensional constants [of different dimension than in Eq. (2.64)],

to be established from the initial conditions. For hij(x, η) to be real, they must satisfy

the conditions Ar(−k) = B∗r (k) and Br(−k) = A∗r(k). With the above solution for sub-

Hubble modes, Eq. (2.56) reduces to a superposition of plane waves with wave-vectors k, and

amplitude decaying as 1/a(η),

hij(x, η) =
1

a(η)

∑

r=+,×

∫
d3k

(2π)3
erij(k̂)[Ar(k)eikη−ik·x + c.c.] = (2.66)

=
1

a(η)

∑

r=+,×

∫
d3k

(2π)3
erij(k̂)[Br(k)e−ikη−ik·x + c.c.] , (2.67)

where c.c. stands for complex conjugate. These formulas will be useful at the end of subsec-

tion 3.2.

To solve Eq. (2.63) for super-Hubble scales, one neglects instead the term k2 in Eq. (2.63),
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and then one obtains

hr(k, η) = Ar(k) +Br(k)

∫ η dη′

a2(η′)
for k � H , (2.68)

where the first term in the RHS is constant in time, and the second one decays with the

expansion of the universe (again, Ar(k) and Br(k) are arbitrary constants). As it will be

discussed in chapter 5, Eq. (2.68) applies, in particular, to the super-Hubble modes generated

from quantum fluctuations of the tensor metric perturbation during inflation. In that case,

the decaying mode in Eq. (2.68) becomes quickly negligible due to the quasi-exponential

expansion of the universe, so that hr(k, η) is constant in time, for modes outside the Hubble

radius. These tensor perturbations eventually re-enter the Hubble radius during the post-

inflationary evolution, and then become standard GWs, behaving as in Eq. (2.65).

Note that, in a radiation-dominated universe, the term a′′/a vanishes identically, therefore

strictly speaking one cannot perform the approximation based on neglecting k2 vs a′′/a. The

super-Hubble solution in that case, is simply Eq. (2.65) in the limit kη � 1, which also

reduces to a decaying and a constant mode.



Chapter 3

Cosmological (ergo stochastic)

gravitational wave backgrounds

In this chapter, taken from the review [15], we introduce general aspects of cosmological

backgrounds of GWs. We review the reasons why GW signals generated by cosmological

sources are expected to have a stochastic character (section 3.1), and we present how to

characterize the spectrum of such SGWB (section 3.2). Furthermore, we discuss the evolution

of a cosmological SGWB from the time of its production until the present epoch, as it redshifts

with the expansion of the universe (section 3.3). Finally, we present a derivation of the GW

spectrum by a generic stochastic source (section 3.4).

The most important message of this chapter is that the characteristic frequency ranges

of GW detectors allow to probe the presence of GWs sources at very early epochs of the

universe’s evolution, far before Nucleosynthesis (BBN), the earliest observational window on

the thermal universe (see figure 3.1). Between inflation at say 1015 GeV (probed via the

CMB, c.f. section 4.2), and BBN at 0.1 MeV (c.f. section 4.1), there can be a wide range of

energy scales inaccessible by observables based on electromagnetic radiation, since photons

are tightly coupled. On the other hand, GWs propagate freely in the early universe, providing,

at least in principle, observational access to these energy scales.

31



3. Cosmological (ergo stochastic) gravitational wave backgrounds 32

3.1 Stochastic nature of cosmological backgrounds

Early universe sources typically lead to the production of stochastic backgrounds of GWs

today. This means that the amplitude of the tensor perturbation hij(x, η) in Eq. (2.56)

is a random variable, which can be characterised only statistically, by means of ensemble

averages. In principle, to perform an ensemble average, many copies of the system should

be available; obviously in the case under analysis this does not happen, as there is only

one observable universe. What is customarily done in cosmology is to invoke the ergodic

hypothesis, equating the ensemble average with either spatial and/or temporal averages.

This implies that, by observing today large enough regions of the Universe, or a given region

for long enough time, one has access to many realisations of the system. Two conditions

must be met for this to hold. The first one is that the universe is almost homogeneous and

isotropic, so that the ‘initial conditions’ of the GW generating process are the same (even

if only in a statistical sense) at every point in space. The second one is that a GW source

fulfils causality, and operates at a time when the typical size of a region of causal contact in

the universe was smaller than the causal horizon today1. Under these conditions, the GW

signal from the early universe takes the form of a stochastic background and one can invoke

the ergodic theorem to study its properties. Before showing in further detail why GWs from

the early universe must be viewed as a stochastic field, let us remark that, under the ergodic

hypothesis, the average over length- and/or time-scales introduced in section 2.3, necessary to

define GWs, can be identified with the ensemble average needed to characterise the statistical

properties of the GW signal.

Because of causality, a cosmological GW source acting at a given time in the early universe,

cannot produce a signal correlated at length/time scales larger than the cosmological horizon

at that time. Denoting with a subscript p the time of production, the (physical) correlation

scale of the emitted GWs, must satisfy `p ≤ H−1
p , while the GW signal can be correlated at

best on a time scale ∆tp ≤ H−1
p . Here we have set the inverse Hubble factor H−1

p as the

cosmological horizon, which is a good approximation for most of the cosmological evolution

(except for inflation, a case that we discuss below). Since at the present time we have

access to much larger length/time scales than today’s redshifted scale associated to H−1
p , the

1Inflation does not verify this condition but still provides a SGWB: we discuss this case later on in the
chapter.
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GW signal in the universe today is composed by the superposition of many signals, that are

uncorrelated in time and space. The number of independent signals can be actually obtained,

knowing the evolution of the universe and depending on the time of GW production.

We start by comparing the size of the horizon today H−1
0 with the correlation length scale

redshifted to today `0p = `p(a0/ap) (for simplicity, we focus for now on the length-scale only

and analyse the case of time-scales later on). This gives

`0p

H−1
0

=
`p

H−1
0

a0

ap
≤
H−1
p

H−1
0

a0

ap
=

a0/ap√
Ωmat(zp) + Ωrad(zp) + ΩΛ

, (3.1)

where in the third equality z denotes the redshift, and we have inserted one of the

Friedmann equations in its form H(z) = H0

√
Ωmat(z) + Ωrad(z) + ΩΛ, where H0 =

100h km sec−1 Mpc−1 is the Hubble constant today and Ω∗(z) = ρ∗(z)/ρ0
c , with ρ0

c =

3H2
0/(8πG) the critical energy density today, ρ∗(z) denoting the energy densities associated

with radiation ρrad(z), matter ρmat(z), and the cosmological constant ρΛ ≡ Λ/(8πG).

Since we are interested in sources operating far in the radiation era, the term proportional

to Ωrad(z) dominates. In order to rewrite Eq. (3.1), we first need to make a short digression.

It is an excellent approximation to treat the expansion of the universe as adiabatic, so that

it is governed until today by the conservation of entropy per comoving volume2 [38],

gS(T )T 3 a3(t) = constant (3.2)

where T is the photon temperature at time t, and gS is the effective number of entropic

degrees of freedom at that time [48]. As the universe cools down, gS decreases when some

species become non-relativistic. When this occurs, they release their entropy to the species

that are still in thermal equilibrium, causing the temperature to decrease as T ∝ a−1 g
−1/3
S ,

i.e. slower than the usual T ∝ a−1. The amount the universe has expanded between GW

production at a temperature Tp, and today, is then characterized by the ratio

a0

ap
=

(
gS(Tp)

gS(T0)

)1/3 (Tp
T0

)
' 1.25× 1013

(
gS(Tp)

100

)1/3 ( Tp
GeV

)
, (3.3)

where we have used T0 ' 2.35 × 10−13 GeV for the photon temperature today [49]
2The total entropy of the universe is very large and dominated by the relativistic species: extra entropy

production due to known decoupling processes is sub-dominant with respect to the total entropy.
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and gS(T0) ' 3.91 for the Standard Model degrees of freedom with three light neutrino

species [48]. Note that gS(T0) must be evaluated in this calculation as if the neutrinos were

still relativistic today. This is because they decouple from the thermal plasma when they

are relativistic (at T ∼ MeV, while mν < 2 eV [49]) and do not release their entropy to the

photons when they later become non-relativistic. In the Standard Model, the last decrease

of gS occurs when electrons and positrons become non-relativistic (at T ∼ me ' 0.5 MeV),

and the photon temperature evolves simply as T ∝ a−1 afterwards. In the radiation era, the

total energy density is given by [48]

ρrad =
π2

30
g∗(T )T 4 , (3.4)

where g∗(T ) is the effective number of relativistic degrees of freedom at temperature T .

Combining Eqs. (3.3) and (3.4), one obtains

Ωrad(T ) = Ω0
rad

(
gS(T0)

gS(T )

)4/3( g∗(T )

g∗(T0)

)(a0

a

)4
, (3.5)

where Ω0
rad = h−2 2.47 × 10−5 is the radiation energy density today, and g∗(T0) = 2 (the

photons). Note that for numerical estimates we take h = 0.67 [50]. Saturating inequality

(3.1), i.e. setting `p ≡ H−1
p , and keeping only the dominant term during the radiation era,

Eqs. (3.3) and (3.5) lead to (in the last equality we set g∗(Tp) = gS(Tp) for Tp > 0.1 MeV [48])

`0p

H−1
0

' a0/ap√
Ωrad(Tp)

=
1√

Ωrad

(
gS(Tp)

gS(T0)

)1/3
√
g∗(T0)

g∗(Tp)
T0

Tp

' 1.3× 10−11

(
100

g∗(Tp)

)1/6 (GeV

Tp

)
, (3.6)

which clearly shows that the correlation scale today of a GW signal from the early universe

is tiny comparable to the present Hubble scale.

The number of uncorrelated regions from which we are receiving today independent GW

signals, can be found from calculating the angle Θp subtending the size `p at zp:

Θp =
`p

dA(zp)
, (3.7)
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where dA(zp) is the angular diameter distance

dA(zp) =
1

H0(1 + zp)

∫ zp

0

dz′√
Ωmat(z′) + Ωrad(z′) + ΩΛ

. (3.8)

In total, today one has access to ∼ dA(zp)
2/`2p = Θ−2

p uncorrelated regions. Let us consider,

as an example of a GW source, the electroweak (EW) phase transition at TEW ∼ O(102)

GeV, for which we can take gS(TEW) ∼ 100. The redshifted scale today corresponding to

the horizon scale at the EW phase transition is (a0/aEW)H−1
EW ' 2.7 × 10−4 pc. Inserting

h2Ωmat = 0.12 and ΩΛ = 1−Ωmat in Eq. (3.8), from Eq. (3.7) one gets ΘEW ' 2×10−12 deg,

meaning that the GW signal (as received today on Earth) due to a causal process operating at

the EW epoch, is composed by the superposition of independent signals emitted by at least

∼ 1024 uncorrelated regions (even more, if the inequality `EW ≤ H−1
EW is not saturated)3.

This indicates that the GW signal can only be described statistically. Thus, a GW signal

from the early universe cannot possibly be resolved beyond its stochastic nature. In order to

resolve individual realizations of the signal, a GW detector should have an angular resolution

as good as Θp. However, as shown for the example of a GW signal produced at the time of

the EW transition, ΘEW corresponds to a tiny resolution unreachable by any realistic GW

detector.

It appears therefore entirely justified to consider the GW signal from sources operating

in the early universe as a stochastic background. Furthermore, since any signal is composed

by the superposition of sources operating in regions that are not in causal contact during

the GW generation, but in which the same physical process is taking place, it is justified to

invoke the ergodic hypothesis, and assume that a spatial average corresponds to an ensemble

average.

In fact, the above considerations apply even to much lower energy scales than the one

of the EW transition. For instance, at the epoch of photon decoupling, at redshift zdec '

1090, we have Θdec ' 0.9 deg. For the sake of the exercise, let us postulate the existence

of a stochastic background with a high enough amplitude so that a future GW detector

could observe it, say with an angular resolution of about 10 deg. The redshift at which the
3It is important to note that, even though these regions are not in causal contact, and hence are uncorre-

lated, the phase transition is happening everywhere at the same time, because the temperature is the same
everywhere, as the the universe is homogeneous and isotropic. Inflation is the leading mechanism to provide
the right initial conditions for this to happen, see Sect. 5.
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background should have been generated, in order to be correlated on an angular scale of 10

deg, should be, according to Eq. (3.7), zp ' 17. Consequently, the property of stochasticity

holds for any GW signal sourced until well into the matter dominated era.

One may ask whether the signal could be resolved in time, instead of in terms of its

characteristic length-scale. The correlation time-scale of the GW signal is again given by

∆tp ≤ H−1
p . Saturating the inequality, for the EW phase transition at TEW ∼ 100 GeV,

one finds a time interval today ∆t
(0)
EW ' 8 hours, while for the QCD phase transition at

TQCD ∼ 200 MeV, it is ∆t
(0)
QCD ' 9 months. The correlation time of primordial sources looks

therefore reasonable from a point of view of observational time. However, to resolve the

signal, one would need a detector capable of pointing in the same direction within the above

calculated angular size Θp, for a time interval corresponding to ∆t
(0)
p . This is clearly not

possible, again because of the limited resolution of GW detectors.

Note that the above arguments remain valid also for causal GW sources that are not

localised in time at a given moment tp, but are continuously operating during several Hubble

times. The paradigmatic example of this are topological defects (see e.g. section 9 of [15]).

For example, a network of cosmic strings emits GWs continuously, all the way since the epoch

of the phase transition that produced it, until today. The GW signal in this case is the sum of

two components. One is the irreducible component, given by GWs that are produced around

the horizon at each time t, by the anisotropic stress of the network. The second contribution

is the superposition of the emission of GWs from sub-horizon cosmic string loops, at each

time t. The GW signal from these two components is a stochastic background, contributed by

the superposition of the many horizons that at every moment, fit (redshifted) within today’s

horizon. Therefore, if we observe it today, it cannot be resolved beyond its stochastic nature,

for the same reasons discussed above. The main difference between this continuously sourced

background and the one arising from a source localised at a time tp, is that the former extends

over many frequencies, precisely due to the source operating during many Hubble times [15].

On the other hand, during inflation the causal horizon grows exponentially [38], and the

above arguments do not apply. In this case, the reason why the inflationary GW signal is a

stochastic background, resides in the intrinsic quantum nature of the generating process. As

we will see in detail in section 5, the source of this GW background are quantum vacuum

fluctuations of the metric during inflation. The tensor metric perturbations are therefore
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random variables with random phases. They become effectively classical, as the universe

expands and the wave-numbers of the fluctuations become larger than the Hubble scale

during inflation, leading to very large occupation numbers, see discussion e.g. in [51] and

[52, 53]. This quantum-to-classical transition renders the metric perturbation, of quantum

origin, equivalent to a stochastic variable after Hubble crossing. The perturbations re-enter

progressively the Hubble radius during the radiation and matter dominated eras, leading to

a GW signal which is intrinsically stochastic.

In general, the stochastic GW background from sources in the early universe is assumed

to be statistically homogeneous and isotropic, unpolarised and Gaussian. The reasons behind

these assumptions are easily understood, as we will explain next (for a thorough discussion

see also [51]).

Statistical homogeneity and isotropy is inherited from the same property of the FLRW

universe, be it during inflation or afterwards during the thermal era. It implies that the

two-point spatial correlation function satisfies

〈hij(x, η1)hlm(y, η2)〉 = ξijlm(|x− y|, η1, η2) , (3.9)

where hij(x, η1) is the tensor perturbation of Eq. (2.60), and 〈...〉 denotes the ensemble

average (that becomes an average over volume/time under the ergodic hypothesis). In the

case presented before about a phase transition operating during the radiation dominated era

for example, even though the GW signal is given by the superposition of the signals emitted

from many uncorrelated regions, the (statistical) homogeneity and isotropy of the universe

causes these regions to have, essentially, the same characteristics, e.g. the temperature and

particle densities. Therefore the phase transition happens everywhere in the universe at the

same time and with the same outcome, so that the produced GW background is statistically

homogeneous and isotropic. The same holds for the irreducible GW background generated

during inflation, because the tensor metric perturbations representing the GWs, are generated

over the homogeneous and isotropic FLRW background.

The GW cosmological backgrounds are assumed typically to be unpolarised, as a con-

sequence of the absence of a significant source of parity violation in the universe. If the

process sourcing the GWs is based on interactions that are symmetric under parity, the
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outcome is a GW background for which the two polarisations +, ×, are uncorrelated. In

terms of the Fourier amplitudes of Eq. (2.56), this means 〈h+(k, η)h×(k, η)〉 = 0. The

connection with the parity symmetry is made more explicit by introducing the helicity ba-

sis ε±i (k̂) = (m̂ ± i n̂)i/
√

2, where m̂, n̂ are the unit vectors used in Eq. (2.57). Out of

the usual e+,×
ij polarisation tensors defined in Eq. (2.57), one can construct a basis for

the transverse-traceless tensor space representing the two independent helicity states ±2:

e±2
ij = (e+

ij ± i e×ij)/2. The basis transforms as e′±2
ij = e±2iθe±2

ij under rotation by an angle θ

around the k̂ axis (see e.g. [54, 55]). An arbitrary symmetric rank two transverse-traceless

tensor is in general a mixture of both helicity states, and can be expressed as a linear combina-

tion in this basis, hij = h+2 e
+2
ij +h−2 e

−2
ij . Using these definitions, one can easily derive that

〈h+2(k, η)h+2(k, η) − h−2(k, η)h−2(k, η)〉 = 〈h+(k, η)h×(k, η)〉 = 0, where the last equality

holds if the background is unpolarised (see e.g. [56]). The absence of a net polarisation is

therefore equivalent to the condition that the two independent helicity modes are produced,

on the average, with the same amplitude, i.e. with identical expectation values. If this is not

the case, the GW background can be chiral and must arise from some parity-violating source

(see e.g. section 6.1.2 in [15]).

Gaussianity also follows straightforwardly in most cases of GW backgrounds formed by

the emission of many uncorrelated regions. As discussed above, since the signal is composed

by a large number of sources that were independent at the moment of the GW emission, by

the central limit theorem one can expect the outcome signal given by the superposition of

all independent signals, to have a Gaussian distribution [51]. Gaussianity also applies in the

case of the irreducible background generated during inflation, again because of the quantum

nature of this background: in the simplest scenarios, the tensor metric perturbation can be

quantised as a free field, and hence with Gaussian probability distribution for the amplitudes4.

Note that, although the properties of statistical homogeneity and isotropy, gaussianity,

and absence of net polarisation, are satisfied to a good approximation for most cosmological

sources, there can be exceptions. For example, a certain level of large-scale anisotropy in the

universe is allowed by present CMB constraints [45]. A typical example of GW source from

the early universe, leading to a statistically anisotropic GW background, is the excitation of
4In reality, there is always a small degree of deviation from gaussianity in the inflationary perturbations,

as they are created over a dynamical quasi-de Sitter background that also evolves (even if slowly) during
inflation [57]. In practice, the amount of non-gaussianity is ‘slow-roll suppressed’.
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a gauge field during inflation (although this has been studied mainly for the scalar mode, see

e.g. [58–60]). The GW background generated by gauge field dynamics during inflation is also

non-Gaussian, since the GW source is quadratic in the fields [61], and it can be polarised if

the interaction between the gauge field and the inflaton is parity-breaking [62, 63] (in this

case the inflaton is a pseudo-scalar).

3.2 Characterization of a stochastic gravitational wave back-

ground

In the following we introduce different quantities that are used to characterize the power

spectrum of a stochastic GW background. The Fourier amplitudes hr(k, η) of Eq. (2.56) are

considered to be random variables. For a statistically homogeneous and isotropic, unpolarised

and Gaussian GW background, their power spectrum can be written as

〈hr(k, η)h∗p(q, η)〉 =
8π5

k3
δ(3)(k− q) δrp h

2
c(k, η) , (3.10)

where hc is dimensionless, real and depends only on the time η and the comoving wave-

number k = |k|. The delta function in k, q, and the fact that hc does not depend on the

direction k̂, are consequences of statistical homogeneity and isotropy; the delta function in the

polarisation states r, p is a consequence of the absence of a net polarisation, and gaussianity

implies that the above expectation value contains all the relevant information on the statistical

distribution of the random variables hr(k, η). We do not need to investigate therefore higher-

point correlation functions, as for a Gaussian field even-point correlation functions can be

rewritten in as powers of h2
c(k, η), while odd-point correlations are vanishing. The factor 8π5

in Eq. (3.10) has been chosen so that Eqs. (2.56) and (2.58) give

〈hij(x, η)hij(x, η)〉 = 2

∫ +∞

0

dk

k
h2
c(k, η) , (3.11)

where the factor 2 in the RHS is a convention motivated by the fact that the LHS involves

contributions from two independent polarizations (we adopt here the same convention as

[32,33], while the one adopted in [64] differs by a factor 2). It appears from the above equation

that hc(k, η) represents a characteristic GW amplitude per logarithmic wave-number interval
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and per polarization state, at a time η.

As discussed at the beginning of subsection 3.1, for free waves at sub-Hubble scales

(those detectable today), the average in the LHS of Eq. (3.10) can be taken both as a volume

average over sufficiently large regions compared to the GW wavelengths, and a time average

over several periods of oscillation (i.e. the average under which GWs can be defined, following

what presented in section 2.3). The time behaviour of the GW Fourier amplitudes for sub-

Hubble modes is given by Eq. (2.65). Inserting this solution into Eq. (3.10), and keeping in

mind that the presence of the delta function imposes k = q, one can average out the terms

that are oscillatory in time, and find

〈hr(k, η)h∗p(q, η)〉 =
1

a2(η)
[〈Ar(k)A∗p(q)〉+ 〈Br(k)B∗p(q)〉] . (3.12)

The above equation, together with Eq. (3.10), shows that for free waves inside the Hubble

radius, hc(k, η) ∝ 1/a(η) after the oscillatory terms are averaged out.

Besides hc, a quantity of prime interest to characterize a stochastic GW background, is

the spectrum of GW energy density per logarithmic wave-number interval, dρGW/dlogk. The

energy density in GWs is given by the 00-component of the energy-momentum tensor, see

Eq. (2.46)

ρGW =
〈ḣij(x, t) ḣij(x, t)〉

32πG
=
〈h′ij(x, η)h′ij(x, η)〉

32πGa2(η)
=

∫ +∞

0

dk

k

dρGW

dlogk
, (3.13)

where in the second equality we have converted the derivatives with respect to the physical

time t into derivatives with respect to the conformal time η, while the third equality defines

dρGW/dlogk. Again, we have seen from the discussion in subsection 2.3 (c.f. also what

presented in [33,39]) that, even for a deterministic GW signal, the energy-momentum tensor

of GWs cannot be localized inside a volume smaller than the GW typical wavelength, but can

only be defined by performing an average over volume and/or time (over several wavelengths

and/or frequencies for its Fourier components). For a stochastic background generated in

the early universe, invoking the ergodic hypothesis, the average performed in Eq. (3.13)

corresponds to the usual ensemble average of Eq. (3.10).

An expression for the GW energy density power spectrum dρGW/dlogk valid for free

waves inside the Hubble radius, can be found from Eq. (3.13), inserting the time behaviour
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of the GW Fourier modes given by Eq. (2.65). The first step is to postulate that the same

structure of Eq. (3.10) holds for the power spectrum of the conformal time derivatives of the

Fourier modes hr(k, η),

〈h′r(k, η)h′p
∗
(q, η)〉 =

8π5

k3
δ(3)(k− q) δrp h

′
c
2
(k, η) , (3.14)

where we have defined a new characteristic amplitude h′c
2(k, η), analogous to h2

c(k, η). One

then substitutes solution (2.65) in the above equation. Again, because of the delta function

imposing k = q, it is straightforward to average out the terms that oscillate in time (as we did

to derive Eq. (3.12)). Besides, one can neglect the H2 term arising due to the conformal time

derivative of (2.65), with respect to the term k2, since in the case under analysis, k � H.

One then finds a simple relation among the amplitudes:

h′c
2
(k, η) ' k2 h2

c(k, η) . (3.15)

With this identity, one can evaluate Eq. (3.13) with the help of Eqs. (2.56), (2.58) and (3.14),

to find
dρGW

dlogk
=

k2 h2
c(k, η)

16πGa2(η)
. (3.16)

Furthermore, we have seen before that hc(k, η) ∝ 1/a(η) for sub-Hubble modes. Thus, as

expected for massless degrees of freedom, the GW energy density is diluted as radiation with

the expansion of the universe, ρGW ∝ a−4.

In order to make connection with observations, it is necessary to evaluate the GW back-

ground today in terms of the present-day physical frequency f = k/(2π a0), corresponding to

the comoving wave-number k redshifted to today (we remind that a subscript “0” indicates

a quantity evaluated at the present time). The characteristic GW amplitude per logarithmic

frequency interval today, is then given by

hc(f) = hc(k, η0) , (3.17)

which corresponds to the definition given in Ref. [32]. A stochastic background is often
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characterized also by its spectral density

Sh(f) =
h2
c(f)

2f
, (3.18)

which has dimension Hz−1. This quantity is directly comparable to the noise in a detector,

parametrised by Sn(f). We will use the spectral density in section 4.4, when discussing the

sensitivity of interferometric experiments to stochastic backgrounds.

The spectrum of GW energy density per logarithmic frequency interval, can be conve-

niently normalized as

ΩGW(f) =
1

ρc

dρGW

dlogf
, (3.19)

where ρc = 3H2/(8πG) is the critical energy density at time t. The quantity traditionally

considered by cosmologists is h2 Ω
(0)
GW, because it is independent of the observational uncer-

tainty on the value of H0. Eqs. (3.16 - 3.18) with f = k/(2π a0) give (note the factor two

difference with respect to e.g. [64])

Ω
(0)
GW(f) =

4π2

3H2
0

f3 Sh(f) . (3.20)

Inserting H0, in terms of the dimensionless amplitude hc =
√

2f Sh, we have

Sh(f) = 7.98× 10−37

(
Hz

f

)3

h2 ΩGW(f)
1

Hz
, (3.21)

hc(f) = 1.26× 10−18

(
Hz

f

) √
h2 ΩGW(f) . (3.22)

It is important to notice that, when performing a GW direct detection experiment, the

expansion of the universe is completely negligible on the time scales of interest (with the

exception of very particular cases, see e.g. [3]). This allows us to make the connection

between the quantities introduced above, in particular expansion (2.56), and the expansion

of hij(x, t) often used in the literature, for example in Refs. [32, 33,64]:

hij(x, t) =
∑

r=+,×

∫ +∞

−∞
df

∫
d2k̂ h̄r(f, k̂) ei 2π f(t−k̂·x) erij(k̂) , (3.23)

where the integration over negative frequencies is obtained via the definition h̄r(−f, k̂) ≡
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h̄∗r(f, k̂) that is necessary for hij(x, t) to be real. To connect the above equation to expansion

(2.56), the starting point is (2.66) for sub-Hubble GWs, those of interest for detectors. The

scale factor must be fixed to the scale factor today, while neglecting the expansion of the

universe means that it is possible to perform a time Fourier Transform: the time in the

exponentials of (2.66) becomes therefore the Fourier conjugate variable to the frequency f .

One can then rewrite Eq. (2.66) in terms of frequency via the change of variable d3k =

(2π a0)3 f2 df dk̂, and extend to negative frequencies by identifying Ar(−f, k̂) ≡ A∗r(f, k̂), to

get

hij(x, t) = a2
0

∑

r=+,×

∫ +∞

−∞
f2 df

∫
d2k̂Ar(f, k̂) ei 2π f(t−k̂·x) erij(k̂) . (3.24)

If the expansion of the universe can be neglected, Eq. (2.66) becomes therefore equivalent

to Eq. (3.23), provided one identifies h̄r(f, k̂) = a2
0 f

2Ar(f, k̂) (the same can be done with

Br(f, k̂)).

At this point, the usual expression for the power spectrum of the Fourier amplitudes

h̄r(f, k̂), given in Refs. [32, 33, 64], and defining the power spectral density, can be easily

recovered. First of all, one needs to observe that Eq. (3.12) can also be written as (by using

Eq. (2.67))

〈hr(k, η)h∗p(q, η)〉 =
2

a2(η)
〈Ar(k)A∗p(q)〉 . (3.25)

One obtains therefore

〈h̄r(f, k̂)h̄∗p(g, q̂)〉 = a4
0 f

2 g2〈Ar(k)A∗p(q)〉 =

=
1

8π
δ(f − g) δ(2)(k̂− q̂) δrp Sh(f) , (3.26)

where the second equality has been obtained inserting Eq. (3.10), changing variable to f =

k/(2π a0) and using definition (3.18). From the above equation, one can appreciate that the

definition of the spectral density given in [32,33,64] is equivalent to the one of Eq. (3.10).

3.3 Propagation of gravitational waves through cosmic history

As already mentioned, the weakness of the gravitational interaction guarantees that GWs are

decoupled from the rest of the universe since the Planck scale. Furthermore, because of the

symmetries of FLRW space-time, for most practical purposes there is no need to go beyond
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linear order in perturbation theory (c.f. Eq. (2.49)). For these reasons, one can neglect both

interactions with ordinary matter and self-interactions, and assume that sub-Hubble GWs

propagate freely once they have been produced (or once they re-enter the Hubble radius, in

the case of an inflationary produced signal). Consequently Eq. (2.65) applies for sub-Hubble

modes as soon as the GW source has stopped operating. As demonstrated in the section

above, in this case the GW energy density spectrum redshifts with the expansion of the

universe, but it retains its initial shape. In fact, the GW energy density is diluted as radiation,

ρGW ∝ a−4, while the GW physical wave-numbers evolve simply as k/a. Normalizing the

GW energy density at the time of production to the total energy density in the universe

at that time ρp (the subscript p indicates that a quantity is evaluated at the time of GW

production), the GW spectrum today is given by

h2 ΩGW(k) =
h2

ρc

(
ap
a0

)4

ρp

(
1

ρ

dρGW

dlogk

)

p

for k � H . (3.27)

Furthermore, normalizing the physical wave-number at the time of GW production to the

Hubble rate at that time,

xk =
k/ap
Hp

(3.28)

the corresponding GW frequency today is given by

f =
1

2π

k

a0
=
xk
2π

ap
a0
Hp . (3.29)

As discussed in section 3.1, the GW signal from a source operating at some time tp in the early

universe cannot be correlated on length/time scales larger than H−1
p . In general, the typical

correlation scale shows up as a peak (or a feature) in the power spectrum: consequently, we

expect the GW energy density spectrum to be peaked at a characteristic wave-number smaller

than the Hubble radius at the time of production of the GWs, i.e. we expect its characteristic

wave-number to be k/ap ≥ Hp. Thus, although the value xk in Eq. (3.28) for the peak of

the spectrum depends on the particular source under consideration, we can conclude that it

certainly satisfies xk ≥ 1. Examples of such short-lasting sources include first-order phase

transitions (discussed in Chapter 6) and preheating after inflation (see e.g. section 7 of [15]).

Other sources like e.g. cosmic strings, on the other hand, produce GWs continually during a
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long period of time. In this case the source is active for a large range of values of apHp in

Eq. (3.29), and the resulting GW spectrum today covers a wide frequency range. Similarly,

the GW spectrum produced by inflation is very broad because apHp varies exponentially

during (de Sitter) inflation. Note also that, if a source produces GWs continually during the

radiation era with an energy density ρGW that remains a constant fraction of the total energy

density ρ at the time of production, then the resulting spectrum (3.27) is approximately flat

because a4
p ρp is approximatively constant during the radiation era (up to variations of the

number of relativistic species discussed in section 3.1). This is in fact a typical situation for

long-lasting sources (including inflation for modes that re-enter the Hubble radius during the

radiation era, as we will see in section 5).

For GWs produced during the radiation era, Eqs. (3.27) and (3.29) can be rewritten with

the help of (3.3) and (3.4) to give the present-day GW amplitude and GW frequency in terms

of the temperature Tp at the time of production:

h2 ΩGW = 1.6× 10−5

(
100

g∗(Tp)

)1/3 (1

ρ

dρGW

dlogk

)

p

(3.30)

and

f = 2.6× 10−8 Hz xk

(
g∗(Tp)

100

)1/6 Tp
GeV

(3.31)

where we have used H2 = 8πGρ/3 and again g∗(Tp) = gS(Tp) for Tp & MeV [48].

Eq. (3.29), and its analogue in the radiation era Eq. (3.31), provide an interesting con-

nection between the frequency of the GW today and the epoch in the early universe when a

GW source was operating. The precise value of xk can only be determined within a specific

GW generation process; however, since xk ≥ 1, one can still find, through these equations,

the lowest possible frequency emitted by a process operating at a given time in the universe

parametrised by Tp. Therefore, it is possible to associate to a given GW detection experi-

ment, operating in a given frequency range, the epochs in the early universe during which

a source should have been active to produce GWs detectable by that experiment. This is

shown in Fig. 3.1 for several GW detectors (for details, see section 4.4): 1 Hz . f . 103 Hz

for ground-based interferometers, 10−5 Hz . f . 0.1 Hz for LISA, 3×10−9 Hz . f . 10−6 Hz

for Pulsar Timing Arrays, and 3.4× 10−19 Hz . f . 7× 10−18 Hz for the CMB. In this last

case, the observable frequency window corresponds respectively to the Horizon today and at
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Figure 3.1: Black line: the characteristic GW frequency of Eq. (3.29) with xk = 1 as a function
of temperature (the corresponding redshift is shown above). Shaded regions: the frequency
ranges detectable by several GW experiments, from right to left respectively 1 Hz . f .
103 Hz for ground-based interferometers, 10−5 Hz . f . 0.1 Hz for LISA, 3× 10−9 Hz . f .
10−6 Hz for Pulsar Timing Arrays, and 3.4× 10−19 Hz . f . 7× 10−18 Hz for the CMB.

the epoch of photon decoupling, c.f. section 4.2: H0/(2π) ≤ f ≤ Hdec (a0/adec)/(2π), with

Tdec ' 0.26 eV. Note that Eq. (3.31) does not hold in the case of the CMB, which extends

beyond the radiation era, while Eq. (3.29) is generically valid. Fig. 3.1 illustrates how GW

experiments have the potential to probe well separated energy scales and cosmological epochs

that are not directly accessible by any other mean, since the universe was opaque to photons

at that time. Other cosmological probes like e.g. Large Scale Structure, the CMB and Big

Bang Nucleosynthesis (BBN) can probe temperatures Tp . 1 MeV, or the inflationary epoch

for what concerns CMB anisotropies and polarisation. On the other hand, GW experiments

have in principle access to a wide range of energy scales beyond 1 MeV.

3.4 Gravitational wave spectrum by a generic stochastic source

In section 2.4 we have presented the free solutions for the GW Fourier modes hr(k, η) at

sub- and super-horizon scales. Here we derive the amplitude of the Fourier modes and the

energy density power spectrum Eq. (3.16) in the presence of a generic stochastic source of
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GW acting during the radiation or matter dominated eras5.

The tensor anisotropic stress sourcing the GWs can be decomposed, analogously to hij ,

in two polarisation states (here and in the following we omit the superscript TT for brevity):

Πij(x, t) =
∑

r=+,×

∫
d3k

(2π)3
Πr(k, t) e

−ik·x erij(k̂) . (3.32)

For the reasons put forward in section 3.1, it is enough to describe the source stochastically.

Though there are exceptions, here we assume that the properties of statistical homogeneity

and isotropy, gaussianity and the absence of a preferred polarisation, apply for the GW

source as well, as assumed for the GW spectrum (c.f. section 3.1). The power spectrum of

the Fourier components of the tensor anisotropic stress can therefore be written as

〈Πr(k, η) Π∗p(q, ζ)〉 =
(2π)3

4
δ(3)(k− q) δrp Π(k, η, ζ) . (3.33)

Note the chosen the normalisation, and that we have written the correlator at unequal times

for future convenience.

In terms of the Fourier amplitudes of Hij = a hij , the evolution equation (2.62) reads

H ′′r (k, η) +

(
k2 − a′′

a

)
Hr(k, η) = 16πGa3 Πr(k, η) . (3.34)

In the radiation dominated era with a(η) = a∗η, and in terms of the dimensionless variable

x = kη, the above equation becomes simply

d2Hrad
r (k, x)

dx2
+Hrad

r (k, x) =
16πGa3

∗
k5

x3 Πr(k, x) , (3.35)

which has {sinx, cosx} as homogeneous solutions and G(x, y) = sin(x − y) as the Green

function associated to the differential operator in the LHS of Eq. (3.35). Let us suppose that

the source starts operating at a time xin = kηin and stops operating at xfin = kηfin, with

ηfin still well into the radiation dominated era. While the source is active x < xfin, one has
5The solution for a source that acts continuously through the radiation-matter transition requires numerical

integration and goes beyond the illustrative purposes of this section.
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therefore (assuming vanishing initial conditions)

Hrad
r (k, x < xfin) =

16πGa3
∗

k5

∫ x

xin

dy y3 sin(x− y) Πr(k, y) . (3.36)

We are interested in the GW spectrum today: we need therefore the solution at x0 = kη0 �

xfin. For this, one has to match (3.36) with the homogeneous solution

Hrad
r (k, x > xfin) = Arad

r (k) cosx+Brad
r (k) sinx (3.37)

and its first derivative, to find the matching coefficients Arad
r , Brad

r . This procedure leads to

Arad
r (k) =

16πGa3
∗

k5

∫ xfin

xin

dy y3 sin(−y) Πr(k, y), (3.38)

Brad
r (k) =

16πGa3
∗

k5

∫ xfin

xin

dy y3 cos(y) Πr(k, y). (3.39)

One can now apply Eq. (3.12) together with Eq. (3.10) and Eq. (3.33) to find the power

spectrum amplitude today due to a GW source acting in the radiation era:

h2
c(k, η0)|rad = 64

G2

a2
0

a6
∗
k7

∫ xfin

xin

dy y3

∫ xfin

xin

dz z3 cos(y − z) Π(k, y, z) . (3.40)

It is now straightforward to get the energy density power spectrum by applying Eq. (3.16):

dρGW

dlogk
(k, η0)

∣∣∣∣
rad

=

=
4

π

G

a4
0

k3

∫ ηfin

ηin

dη a3(η)

∫ ηfin

ηin

dζ a3(ζ) cos[k(η − ζ)] Π(k, η, ζ) , (3.41)

where we have rewritten the integrals in terms of conformal time. The above equation

represents the energy density power spectrum for a generic stochastic source operating during

the radiation dominated era.

If the source is operating during the matter dominated era with a(η) = a∗η2, the solution

of the GW equation

d2Hmat
r (k, x)

dx2
+

(
1− 2

x2

)
Hmat
r (k, x) =

16πGa3
∗

k8
x6 Πr(k, x) , (3.42)
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after the source has ceased acting becomes

Hmat
r (k, x > xfin) = Amat

r (k)
(cosx

x
+ sinx

)
+Bmat

r (k)

(
sinx

x
− cosx

)
, (3.43)

with matching coefficients

Amat
r (k) =

16πGa3
∗

k8

∫ xfin

xin

dy y5 [y cos y − sin(y)] Πr(k, y), (3.44)

Bmat
r (k) =

16πGa3
∗

k8

∫ xfin

xin

dy y5 [cos y + y sin y] Πr(k, y). (3.45)

Note that, since we are interested in wave-numbers satisfying x0 � 1, the terms proportional

to x−1
0 are sub-dominant and can be dropped in Eq. (3.43), which then takes the same form

as the sub-Hubble solution Eq. (2.65). We can adopt the same procedure as for the radiation

case and find the GW energy density power spectrum for a source operating during the matter

era:

dρGW

dlogk
(k, η0)

∣∣∣∣
mat

=
4

π

G

a4
0

k a∗

∫ ηfin

ηin

dη a5/2(η)

∫ ηfin

ηin

dζ a5/2(ζ) Π(k, η, ζ)

×[(1 + k2ηζ) cos(k(η − ζ)) + (kη − kζ) sin(k(η − ζ))] . (3.46)



Chapter 4

Bounds and detectors

This chapter, taken from the review [15], describes the present observational constraints on

stochastic backgrounds of GWs (Sects. 4.1-4.3), and the basic features of current and future

GW detectors (Sect. 4.4). In Section 4.1 we discuss how BBN and the CMB can be used

to set upper bounds on the total energy density of a cosmological SGWB. In section 4.2 we

discuss the imprint of a SGWB on the CMB temperature and polarisation anisotropies. We

present the current upper bound on the SGWB spectrum at CMB scales, as inferred from

current CMB measurements. In section 4.3 we review the ability of pulsar timing arrays

(PTA) to probe the SGWB, and discuss the present and future upper bounds that can be

placed using this technique. In section 4.4 we turn to the direct detection of a SGWB via

interferometers. We review the basic principles of the SGWB detection using interferometry,

and briefly survey the present and future Earth- and space-based detectors.

The main message of this chapter is conveyed by figures 4.1 and 4.2, which show some

of the observational upper bounds on the energy density of a SGWB of primordial origin,

together with the sensitivity of current and future GW detectors. From these figures one infers

the amplitude and frequency ranges that are still unexplored, where generation mechanisms

in the early universe may have operated.

50



4. Bounds and detectors 51

4.1 Constraints on the gravitational wave background energy

density

As discussed in Section 3, the energy density of a GW background decays with the expan-

sion of the universe as relativistic degrees of freedom, i.e. ρGW ∝ a−4. This means that a

GW background acts as an additional radiation field in the universe1, contributing to the

background expansion rate as

H2(a) = H2
0

[(
ρ0

GW

ρ0
c

+ Ω0
rad

)(a0

a

)4
+ Ω0

mat

(a0

a

)3
+ Ω0

Λ

]
. (4.1)

Any observable capable of probing the background evolution of the universe (and hence its

energy content), has therefore the potential ability to constrain the integrated GW energy

density ρGW/ρc = (ρ0
GW/ρ

0
c)(H0/H(a))2(a0/a)4 present in that moment. In particular, two

events that yield a very precise measurement of the expansion rate of the universe are Big

Bang Nucleosynthesis (BBN), and the process of photon decoupling leading to the CMB. An

upper bound on the energy density of a GW background present at the time of BBN or at

CMB decoupling, can therefore be derived from the constraint on the amount of radiation

tolerated at those cosmic epochs (when the Universe had a temperature of TBBN ∼ 0.1 MeV

and TCMB ∼ 0.3 eV, respectively). Using Eq. (3.3), and Eq. (3.4) for the photon component

ργ(T ) = (π2/15)T 4, we can write

(
h2ρGW

ρc

)

0

= h2Ω0
γ

(
gS(T0)

gS(T )

)4/3 ρGW(T )

ργ(T )
, (4.2)

where h2Ω0
γ = 2.47×10−5 is the density parameter of photons today. The GW energy density

ρGW(T ) must not exceed the limits on the abundance of radiation during BBN and CMB

decoupling. A constraint on the presence of ‘extra’ radiation is usually expressed in terms of

an effective number of neutrino species Nν , as follows. The radiation energy density in the

universe is given by Eq. (3.4)

ρrad =
π2

30
g∗(T )T 4 ≡ π2

30


∑

b

g∗b

(
Tb
T

)4

+
7

8

∑

f

g∗f

(
Tf
T

)4

 T 4 , (4.3)

1Here we implicitly assume that the characteristic wavelengths of the GW background are well inside the
horizon.



4. Bounds and detectors 52

where we have made explicit the contributions to g∗(T ): the sum
∑

b is over bosonic species

and the sum
∑

f over fermionic species. Before electron-positron annihilation, at T ∼ MeV,

the total number of relativistic degrees of freedom was

g∗(T = MeV) = 2 +
7

8
(4 + 2Nν) (4.4)

where the first term is due to the photons (with two helicity states), the second one is due

to the electrons and positrons (with two helicity states each), and the last term is due to the

Nν species of neutrinos and anti-neutrinos (with one helicity state each). In the Standard

Model, Nν = 3. From Eqs. (4.3) and (4.4), we see that an extra amount of radiation can be

put in the form of ∆Nν extra neutrino species as

∆ρrad =
π2

30

7

4
∆Nν T

4 . (4.5)

Thus, an upper bound on any extra radiation component in addition to those of the Standard

Model, can be seen as an upper bound on ∆Nν . Since the energy density in GW must satisfy

ρGW(T ) ≤ ∆ρrad(T ), one has

(
ρGW

ργ

)

T=MeV

≤ 7

8
∆Nν . (4.6)

Inserting the above equation into (4.2), one finds a constraint on the GW energy density

redshifted to today in terms of the number of extra neutrino species,

(
h2ρGW

ρc

)

0

≤ h2Ω0
γ

(
gS(T0)

gS(T )

)4/3 7

8
∆Nν = 5.6× 10−6∆Nν , (4.7)

where we have inserted h2Ω0
γ = 2.47 × 10−5, gS(T = MeV) = 10.75 and gS(T0) ' 3.91 [48],

see discussion below Eq. (3.3).

Before proceeding to discuss how BBN and CMB can limit ∆Nν , let us note that the

bound in Eq. (4.7) is often quoted in terms of Neff , the effective number of neutrino species

present in the thermal bath after e+e− annihilation. In the Standard Model Neff = 3.046,

differing slightly from Nν = 3 simply due to the fact that neutrinos are not yet completely

decoupled when e+e− annihilation takes place, and hence they are partially ’reheated’ along

with the rest of the plasma [65]. Instead of normalising (4.6) at T = MeV we can choose a
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temperature below e+e− annihilation. In this case we have to use

g∗(T < Te+e−) = 2 +
7

4
Neff

(
4

11

)4/3

, (4.8)

since, after the photons have been reheated by e+e− annihilation, the temperature of the

neutrinos satisfies Tν = (4/11)1/3 T . Carrying on the same procedure as before, leads to

(
h2ρGW

ρc

)

0

≤ h2Ω0
γ

7

8

(
4

11

)4/3

∆Neff = 5.6× 10−6 ∆Neff , (4.9)

equivalent to Eq. (4.7).

The above bound applies on the integrated energy density, defined in Eq. (3.19), as

(
h2ρGW

ρc

)

0

=

∫
df

f
h2 ΩGW(f) . (4.10)

Except in the extreme case of a GW spectrum with a very narrow peak of width ∆f �

f , the above bound can be interpreted as a bound on the amplitude of a GW spectrum,

h2 ΩGW(f) . 5.6 × 10−6∆Nν , over a wide frequency range. This of course only applies to

GWs with characteristic wavelength well inside the horizon at the time (or slightly before)

when the constraint on ∆Nν is established; otherwise, if the wavelength is super-horizon,

the tensor mode does not propagate as a wave and hence it cannot affect the expansion rate

of the universe. As shown in section 3, the comoving scale entering the horizon at time tp

is k = Hp ap, corresponding to a frequency f = (Hp/2π)(ap/a0). Furthermore, the bounds

in Eq. (4.7) (equivalently (4.9)) obviously applies only to GW backgrounds produced before

the physical mechanism (BBN or CMB decoupling) considered to infer the constraint on Nν

(Neff), takes place.

Let us now turn to actual constraints on Nν (Neff). We first discuss BBN, which can be

used to place an upper limit on Nν through the predictions of the primordial abundances

of light elements. For a review, see e.g. Ref. [66]. BBN successfully predicts the primordial

abundances of 2H (Deuterium), 3He, 4He, in very good agreement with measurements from

the CMB and astrophysical observations2 [69]. In particular, the abundance of 4He is very

sensitive to the expansion rate H(T ) at the beginning of BBN (T ∼ MeV), and therefore to
2The predictions for 6Li and 7Li are in contrast with observations [67, 68], and this remains an open

problem today.
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the total amount of radiation at that time, including a possible GW background (Eq. 4.1).

The expansion rate in fact controls the relative abundance of neutrons and protons nn/np.

At T & MeV, neutrons and protons are kept in thermal equilibrium by weak processes like

p+ e− ↔ n+ νe, simply thanks to their interaction rate Γweak ∼ G2
F T

5, which is larger than

the expansion rate H(T ). However, as T decreases, the interaction rate falls below H(T ), and

the interactions freeze-out at the temperature Tf ' 0.7 MeV, for which Γweak(Tf ) = H(Tf ).

The neutron-to-proton ratio then freezes at the value nn/np ∼ e−Q/Tf , where Q = mn−mp is

the difference between the neutron and proton masses, whereas the exponential (Boltzmann)

suppression comes from the fact that the protons and neutrons are non-relativistic. Until

the actual onset of BBN, nn is reduced only by neutron decays. Even though Tf is smaller

than the Deuterium biding energy (2.2 MeV), the huge amount of photons present in the

early universe delays the Deuterium synthesis by photo-dissociation, until TN ' 0.1 MeV,

the temperature at which BBN truly starts: the Deuterium formation in fact initiates a chain

of nuclear processes leading to heavy nuclei production, especially 4He. Since practically all

the available neutrons eventually form 4He, its abundance depends directly on e−Q/Tf , and

on the baryon-to-photon ratio ηB = nB/nγ = 6× 10−10 [30]. An extra radiation component

parametrised by Nν increases the Hubble rate, leading to a larger freeze-out temperature Tf ,

and therefore to more neutrons and hence to a larger abundance of 4He.

The latest constraints on Nν by BBN can be found in Ref. [69]. From 4He measurements

only, the constraint is Nν < 4, quite loose because of the strong degeneracy with the baryon to

photon ratio ηB. This improves considerably if considered in combination with the Deuterium

abundance, and quite strong bounds can be put on both Nν and ηB. However, the best

determination of both parameters is obtained adding the CMB data, as the latter yield a

very good measurement of ηB. In particular Ref. [69] finds Nν < 3.2 at 95% confidence level.

Eq. (4.7) then gives (h2 ρGW/ρc)0 < 1.12×10−6. As mentioned above, this constraint applies

only to GW backgrounds produced before BBN, and not to stochastic backgrounds e.g. from

astrophysical sources. Furthermore, it applies only to GWs that were inside the Hubble radius

at the time of BBN, which corresponds to present-day frequencies f ≥ 1.5 × 10−12 Hz (we

have used Eq. (3.31) with xk = 1 and T = 0.1 MeV).

The CMB constitutes as well a very precise measurement of the radiation energy den-

sity, and can be used therefore to infer an upper bound on extra radiation components
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parametrised by Nν , and in turn on the presence of a GW background. The effects that an

extra radiation component can have on the CMB are multiple, see e.g. [70]. At the back-

ground level, it alters the redshift of matter-radiation equality and of photon decoupling:

this leads to a change of all angular scales, shifting the position and amplitude of the CMB

acoustic peaks, as well as of the baryon acoustic oscillations observed in galaxy catalogues; it

also leads to less growth of the perturbations inside the Hubble radius, affecting the matter

power spectrum. For a representation of the effects on the CMB, see Fig. 1 of [71].

The implications of this for GWs have been first analysed in Ref. [72], using a combined

dataset including WMAP, ACBAR, CBI, VSA and BOOMERnaG for the CMB, and 2dF

and SLOAN galaxy surveys and Lyman-α forest for the matter structure. Two cases were

identified, depending on the initial conditions. In the first case, labelled as the ‘adiabatic

initial condition’, the GW background is assumed to be alike a gas of free-streaming neutrinos,

so that there are perturbations imprinted on its energy density, following the same distribution

as all other components in the universe. The constraint in this case is (h2 ρGW/ρc)0 ≤

3.9 × 10−5. In the second case, labelled as the ‘homogeneous initial condition’, the GW

background is not perturbed and the curvature perturbation is the one of the standard

adiabatic case (therefore it would vanish in the limit of a universe made exclusively by GWs).

We view this second option for initial conditions as more justified, since it applies to all known

mechanisms of generation of a GW background3 (from the irreducible GW background due to

quantum fluctuations during inflation, to all active sources operating during or after inflation

in the early Universe). In the case of homogeneous initial conditions, Ref. [72] finds a stronger

bound as (h2 ρGW/ρc)0 ≤ 6.9 × 10−6, since all degeneracy with the neutrino parameters

(number of species, sum of the masses) is broken.

Note that this bound extends over a wider range of frequencies than the analogous one

from the BBN one, as the frequency corresponding to the comoving scale entering the horizon

during decoupling is f = (Hdec/2π)(adec/a0) ' 7 × 10−18 Hz. More realistically, Ref. [72]

considers that the the tensor modes will have to oscillate for a while, once inside the horizon,

before they can be fully considered as GWs (and hence as a radiation component), in order
3In most circumstances the energy density of GWs is not perturbed at first order in cosmological perturba-

tion theory, though there are exceptions as in certain cases of preheating, see [73,74] for a discussion on this.
Furthermore, GWs are not expected to be produced by the decay of the inflation field in the same manner as
all other matter/radiation fields in the universe, so there is really no clear justification to assume they have
the same adiabatic initial conditions that apply to neutrinos.
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to provide the effect under analysis. Therefore Ref. [72] tentatively sets the lowest frequency

for which the bound applies to f > 10−15 Hz.

The analysis of [72] has been redone more recently by [71, 75]. In particular, the lat-

ests analysis of Ref. [75] uses Planck data, together with CMB lensing, Baryon Acous-

tic Oscillations and also Deuterium abundances, and finds a constraint that goes down to

(h2 ρGW/ρc)0 ≤ 1.2 × 10−6. Not surprisingly, this is comparable to what is obtained from

the BBN analysis by [69], which also uses WMAP data to pin down the baryon to photon

ratio ηB. However, Ref. [75] only analyses adiabatic initial conditions. From the results of

Refs. [71, 72], one can infer that the gain obtained imposing homogeneous initial conditions,

due to the breaking of degeneracies with neutrino parameters, is of a factor of a few, of the

order of ∼ 5. Using this, we can tentatively estimate the constraints that could be put by

Planck and other actual cosmological data in the hypothesis of GW with homogeneous initial

conditions, as (h2 ρGW/ρc)0 . 2× 10−7.

The bounds presented above apply to any GW background produced before BBN or

before CMB decoupling, as those we will discuss in the following sections. They are not

relevant however for the irreducible background of GWs expected from inflation, that we will

introduce in section 5.2. The inflationary background of GWs is in fact constrained much

better (down to many orders of magnitude lower in amplitude) by another kind of constraint,

formerly know as the ‘COBE bound’, which we describe in the next section4.

4.2 Constraints from Cosmic Microwave Background anisotropies

As the CMB is our best probe of the homogeneity and isotropy of the universe, it can

also be used to place constraints on the amplitude of metric perturbations over the FLRW

metric, in particular in the presence of a SGWB5. A SGWB induces fluctuations in both

the temperature and polarisation of the CMB, as GWs affect the space-time through which
4As we will see, the ‘COBE’ bound attains only lower frequencies (corresponding to CMB scales), but

assuming the standard almost-scale invariant form of the inflationary spectrum (c.f. section 5), the corre-
sponding bound on h2 ρGW/ρc at CMB scales can be extrapolated to much higher frequencies (corresponding
to scales much smaller than the CMB scales).

5Let us recall here that tensor perturbations can only be properly interpreted as a background of GWs for
modes well inside the horizon, see discussions in Sect. 2. The imprint of tensor perturbations on the CMB,
similarly as in the case of scalar perturbations, is however due to both super- and sub-horizon modes at the
CMB time. Thus, we should be really speaking about stochastic tensor modes, rather than of a stochastic
background of GWs. We will nonetheless allow ourselves such abuse of language, as it is customary when
discussing the effect of tensor perturbations on the CMB.



4. Bounds and detectors 57

the photons propagate with their characteristic quadrupolar pattern. The measurement of

the CMB temperature and polarization angular power spectra at large angular scales, can

be used therefore to constrain the amplitude and spectral index of a SGWB at the very low

frequencies f = k/(2πa0), comprised between the Hubble parameter today and the Hubble

parameter at matter-radiation equality, i.e. H0a0 < k < Heqaeq (for a universe dominated

by radiation and matter only, Heqaeq =
√

2 a0H0 Ωmat/
√

Ωrad, c.f. Eq. (5.43)).

In principle, the constraint that can be inferred from the measurement of CMB fluctua-

tions holds irrespective of the origin of the stochastic GW background. In practice, however,

it is only relevant for mechanisms capable of producing a GW spectrum with a non-negligible

amplitude on scales around the Hubble scale at the epoch of CMB decoupling (both sub-

and super-horizon scales). These mechanisms include an early epoch of accelerated expan-

sion: inflation (chapter 5.2), or its alternatives like pre-big bang and ekpyrotic scenarios (see

e.g. section 6.5 in [15]). They also include active seeds like cosmic defects, which continuously

source metric perturbations around the horizon scale at every moment of cosmic evolution

(treated e.g. in section 9 of [15]). On the contrary, typical GW generation mechanisms from

the early Universe, operating for a short amount of time and within the causal horizon (e.g. a

phase transition), cannot be probed well by the CMB fluctuations. As we will see in chapter

6, short-time mechanisms lead generically to a SGWB energy density spectrum scaling as

ΩGW(k) ∝ k3, on scales k < Hinain larger than the size of the horizon at the time ηin of

production. These mechanisms are typically operative after inflation but well before Nucle-

osynthesis. Their characteristic time and length scale, of the order of 1/(Hinain) at most,

is therefore much smaller than CMB scales, which span around the size of the horizon at

photon decoupling cs(ηdec)/(Hdecadec).

A stochastic background of GW induces temperature fluctuations in the CMB through

the Sachs Wolfe effect [76,77] as

∆T

T
= −

∫ f

i
h′jl(x, η)njnldλ , (4.11)

where λ is an affine parameter along the photon geodesic with tangent vector n, h′jl(x, η) is the

time derivative of the tensor metric perturbation and i and f denote the initial (e.g. photon

decoupling) and final (e.g. today) times. Note that the above temperature fluctuation,
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due to presence of the tensor mode, has a quadrupolar pattern. Around the recombination

time, photons perform Thomson scattering with the electrons of the primordial plasma. If

the incident radiation on the electron is not isotropic, the resulting scattered light becomes

polarised. Consequently, the quadrupole anisotropy in the photon distribution, due to the

presence of tensor modes, induces a net polarisation in the Thomson-scattered photons. The

polarization pattern is then maintained until today, as the photons travel freely since they

performed their last scattering [78–80].

This polarisation signal in the CMB is generated only at last scattering, contrary to the

temperature anisotropies sourced continuously up to today as in Eq. (4.11). Customarily,

CMB polarisation is decomposed into two polarisation patterns that have the advantage

of being independent of the reference frame: E and B polarisation modes. The E-mode

is sourced by all scalar, vector and tensor metric perturbations, while the B-mode is only

sourced by vector and tensor perturbations, but not by scalar perturbations. As in the

dominant paradigm of the early Universe, inflation, vector perturbations died away during

the accelerated expansion, a B-mode polarization represents a unique imprint of the presence

of primordial inflationary GWs. Unfortunately, more important sources of B-polarisation than

the primordial tensor perturbations are gravitational lensing and galactic foregrounds, such

as galactic dust and synchrotron emission. This poses a serious challenge for CMB detectors

aiming at measuring the tensor primordial spectrum. While lensing can be distinguished in

the angular CMB spectrum by the characteristic shape it produces, and by the fact that it

becomes important only at relatively high multipoles, distinguishing galactic foregrounds is

more challenging6. Envisaged solutions are to measure several CMB frequencies (in order to

distinguish the CMB black-body spectrum in frequency from the foreground spectra), ground-

based observations of regions of the sky poorly contaminated by foreground emissions, and

full-sky observations with space satellites.

The contribution of tensor modes to the CMB temperature and polarisation anisotropy

angular power spectra today can be written in a very compact form using the formalism
6In 2014, BICEP2 announced the detection of B-mode polarization of primordial origin [81], before a joint

analysis using Planck data proved that it was in reality polarised emission from galactic dust [82], see footnote
in Sect. 5.2.
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of [55],

CXY`,T =
2

π

1

(2`+ 1)2

∫
dk k2[X2

` (k, η0)Y 2∗
` (k, η0) +X−2

` (k, η0)Y −2∗
` (k, η0)] (4.12)

where T stands for tensor, and X and Y can be, respectively, the temperature Θ±2
` , or

the polarization E±2
` or B±2

` , anisotropies today. These are here expanded using the nor-

mal modes defined in Eqs. (10-11) of [55], which combine the angular dependence from the

spherical harmonic decomposition (adopted since temperature and polarisation transform,

respectively, as a scalar and a spin two field, on the surface of the sky) with the one of a

plane wave decomposition (in terms of which the spatial dependence of the temperature and

polarisation fields is expanded, and which accounts for the photon propagation after CMB

decoupling). Note that, in the formalism of [55], tensors are expanded in the helicity basis

(see Eq. (34) of [55], from which we borrow the normalisation, and also Sect. 3)

e±2
ij = −

√
3

8
(m̂± i n̂)i × (m̂± i n̂)j (4.13)

where m̂ and n̂ are the unit vectors of Eq. (2.57). In terms of the usual polarisation tensors

defined in section 3 one has e±2
ij = −

√
3/8 (e+

ij ± i e×ij). The coefficients of the tensor-induced

temperature Θ±2
` and E±2

` , B±2
` polarisation anisotropies today, are given by time integrals

of the sources as [55]

Θ±2
` (k, η0)

2`+ 1
= −2

3

∫ η0

0
dη e−τ (h±2(k, η))′j(2 2)

` (k(η0 − η)) , (4.14)

E±2
` (k, η0)

2`+ 1
= −

√
6

10

∫ η0

0
dη τ ′e−τ [Θ±2

2 −
√

6E±2
2 ] ε±2

` (k(η0 − η)) , (4.15)

B±2
` (k, η0)

2`+ 1
= −

√
6

10

∫ η0

0
dη τ ′e−τ [Θ±2

2 −
√

6E±2
2 ]β±2

` (k(η0 − η)) , (4.16)

where τ(η) is the optical depth between time η and today, whereas the radial functions j(2 2)
` ,

ε±2
` and β±2

` represent how the total angular power is transferred into the ` modes, and can

be found in Eqs. (15), (17), (18) of [55]. Eq. (4.14) follows directly from (4.11) and shows that

the source of temperature anisotropy is the time derivative of the tensor perturbations. More-

over, the factor e−τ(η) becomes non-zero only from the time of photon decoupling onwards,

naturally selecting the period since the last scattering surface till today, as the time window
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during which the source of temperature anisotropy is active. This is to be compared with

Eqs. (4.15, 4.16), where on the contrary τ ′e−τ is strongly peaked around decoupling time,

indicating that CMB polarisation is generated only around this time. Moreover, Eqs. (4.15,

4.16) show that only the quadrupole ` = 2 in the temperature anisotropy Θm
2 and in the

polarisation Em2 can source the polarisation signal.

In the following we derive the temperature anisotropy angular spectrum, as a worked

out example of the effect of tensor modes on the CMB fluctuations. For the initial tensor

spectrum leading to the signal we want to evaluate, we consider the case of a super-horizon

spectrum with constant amplitude AT and spectral index nT , c.f. Eq. (4.21). This leads to

equations which are sufficiently simple to be tackled analytically, at least if one is looking for

an approximate (but instructive) result. Furthermore, it is directly applicable to the case of

inflation (c.f. section 5), even though it is in principle valid for any generation mechanism

that produces such a spectrum on super-horizon scales.

In order to find the CMB temperature spectrum, one has to combine Eqs. (4.14) and

(4.12). Using j(2 2)
` (x) =

√
3(`+ 2)!/(8(`− 2)!) j`(x)/x2, this gives

CΘΘ
`,T ' 1

3π

(`+ 2)!

(`− 2)!

∫
dk k2

∫ η0

ηdec

dζ
j`(k(η0 − ζ))

k2(η0 − ζ)2

∫ η0

ηdec

dξ
j`(k(η0 − ξ))
k2(η0 − ξ)2

×[(h2(k, ζ))′(h2∗(k, ξ))′ + (h−2(k, ζ))′(h−2∗(k, ξ))′] , (4.17)

where ηdec denotes the photon decoupling time, inserted as a lower bound of integration in

order to account for the effect of the optical depth. The tensor perturbation h±2(k, η) can be

inferred from the non-decaying solution of the wave equation (2.63). Tensor perturbations

contribute to the present CMB temperature fluctuations roughly from the decoupling time

onwards. If the GW source operated for a finite period of time in the early universe and

ceased to act before decoupling time, we have seen in section 3 that the homogeneous solution

hr(k, η > ηdec) of equation (2.63) is a constant fixed by the initial conditions on super-horizon

scales, while it oscillates and decays as a−1 once the mode has entered the horizon. We will

re-derive and confirm this result in the context of slow roll inflation in section 5.2. As

a consequence, the dominant contribution to the time integrals of Eq. (4.17) comes from

modes that entered the horizon during the matter dominated era, since the amplitude of

those that entered before has been further suppressed by the sub-horizon decay, giving a
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negligible contribution. As we will derive in section 5.3, in the matter era the solution is

particularly simple, c.f. Eq. (5.40):

h±2(x) = h±2
in (k)

3 j1(x)

x
(4.18)

(h±2(x))′ = h±2
in (k)

−3 k j2(x)

x
(4.19)

where x = kη and h±2
in (k) denotes the initial amplitude at super-horizon scales. To make

contact with definitions in other sections (e.g. sections 3 and 5), we go from the helicity basis

to the usual tensor basis, and define the initial GW spectrum (see e.g. equation (5.27)):

〈
h+2

in (k)h+2∗
in (k) + h−2

in (k)h−2∗
in (k)

〉
=

4

3

〈
[h+

in(k)h+∗
in (k) + h×in(k)h×∗in (k)]

〉

=
4

3
π2Ph(k)

k3
. (4.20)

Because of the presence of the time integrals in (4.17), it is useful to normalise Ph(k) at the

scale corresponding to the inverse comoving time today, k0 = 1/η0 (note however that this

normalisation is completely arbitrary). Allowing for a generic spectral index, we write

Ph(k) = AT (k0) (kη0)nT . (4.21)

In the inflationary case, the initial tensor spectrum is due to the amplification of vacuum

metric fluctuations and it is given in Eq. (5.28) (see also Eq. (5.31)) at first order in slow roll.

Going back to Eq. (4.17), and using Eq. (4.19), the CMB temperature spectrum becomes
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Γ
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]
Γ
[
`+ 7− nT

2

] (4.22)

∝ `nT−2 for `� 1 ,

where the approximated result in the second line has been evaluated using Eq. (B.5) of

Ref. [56] for the integral in x, and then integrating exactly over k using (6.574.2) of Ref. [83].

The spectrum in Eq. (4.22) has been derived also e.g. in [38]. In the limit of big multipoles

(small angular scales) ` � 1, one recovers the usual shape for the CMB tensor angular
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spectrum, where `(` + 1)C` ∝ const. for a scale invariant tensor spectrum nT = 0 [38, 84].

However, in general, there is a dependence of the CMB spectrum on nT as `nT−2. Note that

the latter result is valid only for 1� ` . 60, as it is a quite crude estimation which does not

take into account the decay of GW for modes that enter the horizon before matter-radiation

equality, corresponding roughly to an angular scale of ` ' 60 [38].

From Eq. (4.22) it appears that the measurement of the CMB spectrum at low multipoles

can be used to infer a combined bound on the amplitude AT and the spectral index nT of a

GW background (generated before decoupling) at super-horizon scales. Historically, in the

GW literature, this constraint has been referred to as the ‘COBE bound’, since it was first

established using the measurement of the CMB quadrupole ` = 2 by the COBE satellite [85–

89]. The bound was derived setting nT = 0 and considering that the CMB temperature

anisotropy at large angular scales was entirely due to the tensor mode. Today we know that

this is not the case, and that the main contribution to the CMB anisotropy comes from scalar

perturbations. In fact, the difference in the shape of the scalar and tensor temperature CMB

spectra as a function of multipole ` allows to distinguish the two contributions.

For what concerns the latest results from the Planck satellite, Ref. [30] states that the

strongest constraint on tensor modes still comes from the CMB temperature spectrum at

` < 100 (the tensor mode contribution decays at higher multipoles), so that the addition of E-

polarisation does not change the result significantly. Therefore, the precision of this constraint

is limited by cosmic variance, and can only be improved by adding a direct measurement of

B-polarisation. This has been done in [90], where the data of the BICEP2 and Keck Array

B-polarisation detectors have been combined with the Planck data, yielding the strongest

constraint to date on the amplitude of tensor modes, coming from CMB only. The bound is

given in terms of the tensor to scalar ratio (see section 5.2 and in particular Eq. (5.35) for a

definition) and reads (for the pivot scale k∗ = 0.05 Mpc−1) [30]

r0.05 =
Ph
PR
≤ 0.07 at 95% c.l. (4.23)

where PR ' 2 ·10−9 denotes the primordial curvature power spectrum amplitude at the pivot

scale k∗ = 0.05 Mpc−1, see Eq. (5.34).

Note that the above constraint is derived assuming a ΛCDM model, fixing the tensor
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spectral index to zero, nT = 0. Current CMB measurements do not have the ability to

constrain nT , since the measurement of r is still compatible with zero, and for low enough

r, practically any value of nT is acceptable. For this reason, the constraints on nT depend

on the chosen prior on r, as pointed our for example in [91]. This situation will change if, in

the future, a positive detection of a non-zero tensor amplitude is obtained from primordial

B-modes (see [91] for forecasts concerning a COrE-like mission [92] exclusively dedicated to

B-mode polarisation). In the meanwhile, other observations like those from Pulsar Timing

Arrays (PTA) (c.f. section 4.3), or from direct GW detection ground-based interferometers

(c.f. section 4.4), can be used to place upper bounds on nT in the case of blue tilted SGWB

spectra, see e.g. Refs. [13,91,93,94].

The GW energy density fraction today can be expressed in terms of the tensor to scalar

ratio r and a generic spectral index nT using Eq. (5.52) (c.f. section 5.3 and the discussion

therein),

ΩGW(f) =
3

128
Ωrad rPR

(
f

f∗

)nT [1

2

(
feq

f

)2

+
16

9

]
, (4.24)

where f∗ = k∗/(2πa0) is the pivot frequency at which the primordial scalar amplitude is

normalised, k∗ = 0.05 Mpc−1, and feq = H0 Ωmat/(π
√

2 Ωrad) is the frequency entering

the horizon at matter-radiation equality, c.f. Eq. (5.43). The energy density spectrum of

Eq. (4.24) is shown in Fig. 4.1 for r saturating the bound in Eq. (4.23) and two values of

nT : the red-tilted value predicted by slow roll inflation, corresponding to the consistency

relation nT = −r/8 (c.f. sec. 5.2 and in particular Eq. (5.37)), and a blue-tilted case with

large index, nT = 0.15. In this figure we also show the sensitivity of current and future GW

detectors (which we will describe in Sect. 4.4) and the CMB bound derived in Eq. (4.23),

which applies for nT = 0. Note that, as discussed before, tensor modes decay once they enter

the horizon; this determines the regime of validity of the CMB bound, namely frequencies

which were outside the horizon at matter-radiation equality but are inside the horizon today:

3.4 · 10−19 < f < 2.1 · 10−17 Hz. For forecasts on the constraints that can be derived on the

couple of parameters (nT , r) by the combination of data from CMB temperature anisotropies

and B-polarization, with direct bounds established by advanced LIGO/Virgo and PTA, and

with indirect bounds described in section 4.1, we refer the reader for example to Fig. 2 of [93],

see also [91,94].

At last, it is worth mentioning another way to probe the presence of primordial tensor
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Figure 4.1: The power spectrum of Eq. (4.24) for r = 0.07 and nT = −r/8 (black
dashed line), and nT = 0.15 (black solid line), together with the constraint given by
Planck+BICEP2+Keck Array data given in Eq. (4.23), i.e. setting r = 0.07 and nT = 0
(green solid line), and the reach of current and future GW detectors: PTA (magenta, solid),
advanced LIGO at the first run and at design sensitivity (blue, solid) and LISA (orange,
solid).

modes via the CMB, namely spectral distortions of the CMB black-body spectrum [95, 96].

These are tiny deviations of the CMB monopole from a perfect black-body, produced at red-

shift z . 106, when thermalisation processes like Compton scattering and Bremsstrahlung

start to be less efficient. Spectral distortions can be due to several processes that cause

energy injection in the photon distribution, both in the context of the standard cosmologi-

cal model (recombination, the dissipation of primordial fluctuations, reionisation, structure

formation...) and of its extensions (annihilation or decay of particles, primordial magnetic

fields, primordial black holes, cosmic strings...). See [97, 98] for recent analyses, and refer-

ences therein. The CMB spectral distortion due to the presence of primordial tensor modes

is produced via Thomson scattering in a similar way to the one due to the dissipation of

scalar perturbations, but the tensor anisotropic stress (shear viscosity) in the photon distri-

bution, necessary to activate the dissipation process, is directly induced by the tensor modes

instead of by photon free-streaming [95]. As a consequence, the dissipation occurs over a

wider range of scales than those probed by Silk damping, as in the case of scalar modes.

For the almost scale invariant tensor spectrum produced in slow roll inflationary scenarios,

it has been shown that the amplitude of the distortion is very small, providing only a tiny

correction to the signal expected from the dissipation of scalar perturbations [95,96]. A more
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important deviation from the CMB black-body can be induced if the tensor spectrum is very

blue, say with nT ' 1. In this case, the level of the distortion can become comparable to the

one induced by scalar modes in the standard inflationary scenario [96].

4.3 Pulsar timing arrays

Pulsars are highly magnetized, rotating neutron stars, that emit a beam of electromagnetic

radiation in the direction of their magnetic axis (which spins along with the rotation of the

neutron star). It is the magnetic axis of the pulsar, which does not necessarily coincide

with the rotational axis, that determines the direction of the electromagnetic beam. If the

beam sweeps the line of sight between Earth and the pulsar, a regular train of radiation

pulses is observed, similarly as when we observe a lighthouse from the distance. Pulsars

are thus colloquially referred to as ‘cosmic lighthouses’. The arrival times of the pulses are

extremely regular and can be predicted very accurately over long times. Pulsars represent

therefore very stable ‘clocks’ scattered around the sky, which allow for a variety of precise

astronomical measurements. For instance, the first extra-solar planet was discovered around

a pulsar [99], and the decrease of the orbital period of a binary system with a pulsar – the

Hulse-Taylor binary – provided the first indirect evidence for the existence of GWs [100,101].

As we will discuss in the following, pulsars can be used also as a direct probe of SGWBs,

since the arrival times of the electromagnetic pulses experience a shift in the presence of a

GW background.

The use of pulsars as a precise clock, rely on a technique known as ‘pulsar timing’, see

e.g. Ref. [102] for a review. This basically involves two main steps: first, the beam profiles are

analysed so that a ‘time of arrival’ (TOA) is assigned to each pulse. Secondly, the measured

TOA’s are compared to a theoretical modelling that incorporates many circumstances pos-

sibly affecting the signal, from the evolution of the pulsar’s rotation, to the relative motion

between the pulsar and Earth, the propagation of the pulses through the interstellar medium,

etc. Parameters such as the pulsar’s spin period, spin-down rate, proper motion, and others,

are obtained from fits to the data. The difference between the best-fit model predictions

and the measured TOA, for a given pulsar, is called ’timing residual’. Among the different

pulsars, those with rotation periods of the order of a millisecond, have very small timing ir-

regularities, and their TOA’s can be measured with very high precision. Millisecond pulsars



4. Bounds and detectors 66

are therefore particularly suited for the detection of GW backgrounds, as timing residuals

varying by no more than few micro seconds over several years can be obtained for them, see

e.g. Fig. 5 of Ref. [103].

The use of pulsar timing observations as a way to detects/constrain GWs was first studied

by Sazhin [104] and Detweiler [105] and further developed in Refs. [106–109]. The very small

timing residuals observed in various pulsars can be used to set upper bounds on the presence

of a GW background between a given pulsar and Earth. The maximum sensitivity can be

achieved for a GW background with power at frequencies of the order of the inverse total

observation time T , typically7 at f ∼ 10−9−10−8 Hz for T ∼ few years. For a timing residual

varying by an amount of δt, a constraint on the characteristic amplitude of a stochastic GW

background, typically of the order of hc . δt/T [see Eqs. (3.11,3.17)], can be obtained. Using

this fact and e.g. δt ∼ few × 10−6 sec and T ∼ few years, Eq. (3.21) leads to a constraint

h2 ΩGW . few×10−8 at f ∼ 10−8 Hz. More precisely, using long-term observations of stable

millisecond pulsars, Kaspi et al [103] obtained, for a flat spectrum of GW, an upper bound

of h2 ΩGW < 6 × 10−8 (at 95% confidence level) at f ≈ 4.5 × 10−9 Hz. This was further

improved to h2 ΩGW < 10−8 at f ≈ 4.5× 10−9 Hz in Ref. [110], and to h2 ΩGW < 2× 10−9

at f ≈ 2× 10−9 Hz in Ref. [111]. Note however that the statistical method used in the latter

works has been criticized in the literature, see Refs. [112], [113].

The previous technique allows to establish strong upper bounds on the presence of a

stochastic GW background in the Universe. However, since it is not possible to determine

the exact origin of a given timing residual, the observation of an individual pulsar does not

allow by itself, to actually detect a GW stochastic background. The timing residuals might

be due to a number of reasons, not always under control, such as irregularities in the pulsar’s

rotation or in the terrestrial time standards. The effect of a stochastic GW background

on the timing residuals of various pulsars, however, may be distinguished and isolated by

looking for correlations among the different pulsars’ residuals. This can be done by the

so called ‘pulsar timing arrays’ (PTA), where timing observations are performed for many

pulsars distributed over the sky. The presence of an isotropic stochastic background of GWs

will induce a correlation between the timing residuals from different pulsars, depending only

on the angular separation between the location of the pulsars in the sky. The GW induced
7The fitting procedure to a pulsar model described before removes the signal effect from GWs with fre-

quencies much smaller than ∼ 1/T .
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frequency shifts in the arrival times of a train of pulses (from a given pulsar) depends on the

GW amplitude along the path of the pulse,

∆ν

ν
= −1

2

∫ λr

λe

dλh′ij(x(λ))ζ̂iζ̂j , (4.25)

where ζ̂i is the unit vector in the pulsar-Earth direction, and λ is the affine parameter

parametrizing the spatial trajectory of the pulse [c.f. Eq. (4.11)]. The correlation between

the frequency shifts of two pulsars comes from the Earth-contribution to each pulsar. Using

the decomposition of a GW background given by Eq. (2.56), with erij the polarization tensors

Eq. (2.57), the correlation can be written as [107]

〈
∆ν

ν
(ζ̂)

∆ν

ν
(ξ̂)

〉
∝

∑

r=+,×

∫
d2k̂

erij(k̂) erkl(k̂) ζ̂i ζ̂j ξ̂k ξ̂l

(1 + k̂m ζ̂m) (1 + k̂n ξ̂n)
(4.26)

∝ x logx− x

6
+

1

3
with x =

1− cosθ

2
, (4.27)

where in the second line we have used the polarization tensor completeness relation Eq. (2.59),

and defined the angle cosθ = ζ̂i ξ̂i between the unit vectors in the pulsar-Earth direction for

each pulsar. The specific dependence on the angle θ exhibited by this correlation between fre-

quency shifts, represents a characteristic and unique signature of the presence of a stochastic

GW background in PTA observations.

There are various active PTA collaborations searching for GW backgrounds: the Parkes

Pulsar Timing Array [114] (PPTA), the European Pulsar Timing Array [115] (EPTA) and

the North American Nanohertz Observatory for Gravitational Waves [116] (NANOGrav).

They have recently joint forces forming the International Pulsar Timing Array [117, 118]

(IPTA). The current upper bounds on GW backgrounds obtained by these collaborations

have been reported in Refs. [113], [119], [120], and [121]. In these works, a GW background is

characterized by its amplitude hc(f) (see Eq. (3.21) for the relation to ΩGW(f)), parametrized

like

hc(f) = Aα

(
f

year−1

)α
. (4.28)

The upper limits obtained on Aα depend, in principle, on each chosen value for α. In

particular α = −2/3 (i.e. ΩGW(f) ∝ f2/3) is expected in the case of the GW background

from unresolved supermassive black hole binaries, whereas α = −1 corresponds to a flat
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spectrum ΩGW(f) ∝ const., and α = −7/6 (i.e. ΩGW(f) ∝ f−1/3) is a typical value expected

for the GW background from cosmic strings. The upper bounds at the frequency where the

sensitivity is best achieved, f ∼ 1/T (T here is the effective total observation time of the

multiple pulsars), are approximately independent of the slope of the GW spectrum. The

α-dependence of the upper limits on Aα comes about mostly because the chosen reference

frequency f = 1/year differs from f ∼ 1/T , see Refs. [113], [119]. For instance, Jenet et

al [113] obtained, for a range of values of α, an upper bound (95% confidence) h2 ΩGW <

2 × 10−8 at f = (8 years)−1 ' 4 × 10−9 Hz, whereas Lentati et al [120] obtained h2 ΩGW <

1.2× 10−9, at f = (18 years)−1 ' 2.4× 10−9 Hz. For α = −2/3, the results yield h2 ΩGW <

3.1×10−8 at f ∼ 3×10−8 Hz (Demorest et al [119]) and h2 ΩGW < 1.1×10−9 at f ∼ 2.4×10−9

Hz (Lentati et al [120]). The PTA bounds on GW backgrounds are particularly constraining

for cosmic strings. Furthermore, contrary to the BBN and CMB bounds discussed in Sect. 4.1,

the PTA bound can be applied as well to stochastic backgrounds produced (way after BBN

and photon decoupling) by unresolved astrophysical sources.

The sensitivity of PTA to SGWBs is expected to improve in the near future. There are

good prospects for improving the timing precision, the total observation time, the number of

observations and the number of millisecond pulsars that will be observed. The IPTA [117] is

expected to reach a sensitivity of the order of h2 ΩGW ∼ 10−11. In the longer term, the Square

Kilometer Array (SKA) is expected to reach sensitivities, in the nHz frequency range, down

to h2 ΩGW ∼ 10−15 assuming 50 pulsars monitored every two weeks for 20 years [122]. Let

us note however, that one of the most significant stochastic backgrounds of GWs in the PTA

frequency range, is produced by super-massive black hole (SMBH) binaries that coalesce when

galaxies merge [123–126]. Even though this astrophysical background has a characteristic

frequency-dependence as ΩGW ∝ f2/3 that distinguishes it from other backgrounds, it will

’hide’ other cosmological backgrounds with smaller amplitude. The amplitude of the SMBH

background depends on the galaxy merger rates during the cosmological evolution and on

the typical SMBH masses. Given the current uncertainties on the astrophysical parameters

characterizing these mergers, a conservative lower limit on this background can be obtained

using the results from Refs. [126], [127],

h2 ΩSMBH
gw . 10−11

(
f

10−8 Hz

)2/3

for f . 10−8 Hz . (4.29)
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A cosmological background with a smaller amplitude than in Eq. (4.29) will thus be unlikely

to be observable by PTA. Note also that the signal amplitude Eq. (4.29) is well within the

reach of an experiment like SKA.

4.4 Gravitational wave interferometers

4.4.1 Principles of the detection of a stochastic background.

We present here a basic description of the principles of SGWB detection by GW interferom-

eters, based mainly on [32]. We point the reader interested in a closer examination of this

topic to the exhaustive treatments of Refs. [33, 64].

The detection of GWs consists in measuring the quadrupolar deformation of spacetime

that they induce. This can be done through a resonating mechanical system (the first GW

detectors were resonant massive bars, for an overview see [33]), but a much more efficient

method is via a Michelson interferometer operating between freely suspended masses. In the

idealized case of a linearly polarized wave hitting perpendicularly the interferometric system,

with its polarization axes aligned with the arms in the proper detector frame as defined

in [33], one arm contracts while the other expands. Therefore, the laser beams returning

from each arm pick up a phase difference which changes in time following the passage of the

wave, influencing the interferometric patterns: this is the principle of the GW detection via

interferometers8 (for a review, see e.g. [128]).

In the case of one interferometer with arms of equal length L in the x and y directions, the

output of the detector due to the passing of a GW is the strain h(t) = (∆Lx(t)−∆Ly(t))/L.

This scalar signal is related to the GW in the TT gauge as h(t) = F+h+(t) + F×h×(t),

where F+,×(Ω̂, ψ) are the detector pattern functions, which depend on the geometry of the

system [32,129]: the direction of arrival of the wave Ω̂, and the choice of axes with respect to

which one defines the polarizations, represented by a rotation angle ψ in the plane orthogonal

to Ω̂. The Fourier transform of the signal becomes then [32]

h̃(f) =

∫
dΩ̂ [F+(Ω̂, ψ)h+(f, Ω̂) + F×(Ω̂, ψ)h×(f, Ω̂)] . (4.30)

8As analysed in detail in [33], the interpretation of the physical effect a GW has on the experimental device
differs for different coordinate choices: in the TT gauge for example, since the coordinates expand with the
metric perturbation, the GWs affect the propagation of photons along the geodesic instead of affecting the
masses position.
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For an unpolarized stochastic background, there is no privileged choice of axes to define the

polarizations, and the angle ψ effectively cancels from the final result. Furthermore, the

average of the signal vanishes, while the second moment of the signal distribution can be

written simply as [32]

〈h2(t)〉 = F

∫ ∞

0
df Sh(f) , F =

∫
dΩ̂

4π
[F 2

+(Ω̂, ψ) + F 2
×(Ω̂, ψ)] , (4.31)

where Sh(f) is the spectral density defined in Eq. (3.18), and the factor F is the average of

the detector pattern functions over all directions of arrival of the waves. This factor quantifies

the loss of sensitivity due to the fact that the GW background hits the detector isotropically,

with respect to the sensitivity of the detector in the optimal direction: if α is the angle

between the two arms, one has [32] F = 2/5 sin2 α.

The total output of a detector is given by the GW signal plus the noise, S(t) = h(t)+n(t).

In the same way as done for the signal h(t), one can define the noise spectral density Sn(f)

from the averaged squared noise:

〈ñ∗(f)ñ(f ′)〉 = δ(f − f ′)Sn(f)

2
, 〈n2(t)〉 =

∫ ∞

0
df Sn(f) . (4.32)

The level of noise in the detector is given by the strain sensitivity hf =
√
Sn(f). In a single

detector the SGWB manifests itself simply as an extra source of noise. This makes impos-

sible to isolate the detector from the signal, in order to measure the actual detector noise,

subtract it, and thereby distinguish the two components. Therefore, when a single detector

is operating, a stochastic background can be measured if it overcomes the detector noise level

(this is what happened e.g. with the measurement of the CMB black-body spectrum) or it is

of comparable amplitude. Methods to distinguish the signal from the noise are, for example,

a substantial difference between their spectral shapes, or the distinctive time modulation

of an anisotropic signal due to the detector motion (as expected, for instance, in the case

of the SGWB from galactic binaries visible by the space-based interferometer LISA [130]).

Furthermore, a good knowledge of the noise can be achieved using null channels: particular

combinations of the interferometer outputs to which the contribution of the signal is strongly

suppressed [64]. Null channels allow to measure the noise spectral density directly from the

detector output; the knowledge of the noise is then used to assess the presence of a SGWB in
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the standard interferometric channels. However, the interferometer structure must be such as

to allow the construction of a null channel: in the case of the triangular LISA configuration,

for example, the null channel is the so called symmetrised Sagnac combination [131, 132].

Once the noise has been evaluated, the technique to dig out a signal buried in it is optimal

Wiener filtering, often using a parametrized model for the signal. This has been demonstrated

e.g. in the third Mock LISA Data Challenge [133]: a relatively loud isotropic stochastic back-

ground, with amplitude slightly below the LISA instrument noise (c.f. Fig. 4.2), had been

buried in the simulated detector output, and the teams participating in the data analysis

challenge were able to recover the presence of this signal and its spectral characteristics.

The minimal condition to observe the SGWB with a single interferometer can be de-

fined then as Sh(f) > Sn(f)/F . In terms of the GW energy density parameter ΩGW =

(4π2/3H2
0 ) f3 Sh(f) (c.f. Eq. (3.20)), this condition can be translated into a minimum value

for detection assuming a signal to noise ratio of one, at a frequency f , and given the inter-

ferometer strain sensitivity hf (f) [33]:

h2ΩGW(f) & 10−2

F

(
f

100 Hz

)3( hf

10−22 Hz−1/2

)2

. (4.33)

From the above equation it appears that, for the same noise level hf , detectors with lower

detection frequency window are more sensitive to a stochastic background.

Concerning currently operating detectors on Earth, for which Eq. (4.33) has been nor-

malised, the predicted amplitude of both astrophysical and cosmological stochastic back-

grounds is still below their sensitivity. On the other hand, as several detectors are present,

this allows to adopt a more elaborated detection strategy, which consists in cross-correlating

the output of two (or more) different detectors, exploiting the fact that different detectors

have (in principle) independent noise. We present a brief description of this strategy, based

on Refs. [32,51]. The cross-correlation signal S12 is constructed multiplying the two detector

outputs S1(t) and S2(t), and integrating over the observation time T with a filter function

Q,

S12 =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′S1(t)S2(t′)Q(t− t′) . (4.34)

As we will see later, the filter function must be chosen to maximize the signal to noise ratio: it

depends on the position and orientation of the detectors, on the features of their characteristic



4. Bounds and detectors 72

noise, as well as on the spectrum of the stochastic background. However, since one considers

that both the signal and the noise are stationary in time, it is reasonable to assume that the

best choice for Q depends only on the time difference t− t′. Furthermore, Q(t− t′) is different

from zero only for |t− t′| � T : it must fall off rapidly for time intervals which are larger than

the light-travel distance between the two detectors, which is of the order of 10−2 sec if they

are both on Earth. On the other hand, the integration time is typically of the order of one

year: one can therefore Fourier transform Eq. (4.34) in the limit of large integration time T .

Moreover, because the noise in each detector is uncorrelated with the other one, and with

the GW strain, it turns out that the expected value of the cross-correlation of the detector

outputs Si(t) = hi(t)+ni(t), obtained by taking the expectation value of Eq. (4.34), depends

only on the GW stochastic background. Using Eq. (3.18) together with the response of the

detector through the pattern functions, one finds finally [32]

〈S12〉 =
T

2

∫ ∞

−∞
dfSh(f)Γ(f)Q̃(f) , (4.35)

where Q̃(f) denotes the Fourier transform of the filter function, and Γ(f) is the overlap

function. This latter characterizes the reduction in sensitivity to the GW background arising

from the relative positions and orientations of the pair of detectors:

Γ(f) =
1

4π

∫
dΩ̂ [F+

1 F
+
2 + F×1 F

×
2 ] exp

[
2πiΩ̂ ·∆x

]
, (4.36)

where ∆x denotes the separation between the two detectors. In the case of two coincident

interferometers, ∆x = 0 and Γ(f) = F = 2/5. The exponential phase factor in the definition

of Γ is the phase shift arising from the time delay between the two detectors for radiation

arriving along the direction Ω̂. As an example, the overlap function between the LIGO

interferometers at Hanford and Livingston is shown in Ref. [134]. From the definition of

〈S12〉, it appears that the expected signal grows linearly with the observation time. We will

see that the r.m.s noise, on the other hand, grows only as
√
T : in principle, with enough

observation time one can detect a GW stochastic background buried in any level of detector

noise.

The form of the optimal filter function Q̃(f) for a stochastic background search is the

one that maximizes the signal to noise ratio. The noise in the detector is given by the
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variation of S12 away from its mean value: N = S12−〈S12〉. We are dealing with the case in

which the noise is much higher than the gravitational strain signal, ni � hi, so that one can

approximate Si ' ni. With the further condition that the noise is Gaussian and uncorrelated

among the two detectors, one gets for the squared r.m.s. value of the expected noise [32]

〈N2〉 = 〈S2
12〉 − 〈S12〉2 =

T

4

∫ ∞

−∞
df S(1)

n (f)S(2)
n (f) |Q̃(f)|2 , (4.37)

where S(i)
n (f) denote the spectral noise densities in each detector. As anticipated, one sees

that the r.m.s. noise grows as
√
T . The value of Q̃(f) that maximizes the signal to noise

ratio SNR = 〈S12〉/
√
〈N2〉 is found by solving a variational problem and turns out to be [32]

Q̃(f) = c
Γ(f)Sh(f)

S
(1)
n (f)S

(2)
n (f)

, (4.38)

with c a normalization constant. The optimal filter function depends then on the GW spectral

density: in order to search for the signal, one has to perform the data analysis using several

forms for the filter function. Q̃(f) can be chosen either so as to match the theoretical

predictions for the GW stochastic backgrounds, or assuming a simple power law behavior

Sh(f) ∝ fα, so as to generically model the frequency dependence of a stochastic background

over the (often narrow) frequency range a detector. The value of the signal to noise ratio

SNR using the optimal filter function for two interferometers is then given by

SNR =
〈S12〉√
〈N2〉

=

[
2T

∫ ∞

0
df

Γ2(f)S2
h(f)

S
(1)
n (f)S

(2)
n (f)

]1/2

. (4.39)

Starting from this expression for the signal to noise ratio, it is possible to estimate the gain

in sensitivity due to the cross-correlation of two detectors with respect to the single detector

case. Let us suppose that the integrand in the above equation is approximately constant over

the frequency range of sensitivity of the detector, say ∆f ' 100 Hz for a typical Earth-based

interferometer. Setting SNR > 1, the GW spectral density must satisfy

Sh(f) >

√
S

(1)
n (f)S

(2)
n (f)

Γ(f)
√

2T ∆f
. (4.40)

We assume the same noise spectral density in the two detectors, so that
√
S

(1)
n (f)S

(2)
n (f) =
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Sn(f) = h2
f , where hf is the strain sensitivity. Moreover, we assume that the two detectors are

coincident, and as a plausible observation time, we take T ' 1 year. Through the relationship

between Sh and ΩGW, we can then evaluate the minimum detectable value of ΩGW from an

ideal two detector correlation Ω2d
GW(f), and compare it with the single detector case given in

Eq. (4.33) labelled now as Ω1d
GW(f):

h2Ω2d
GW(f) & 10−5 [h2Ω1d

GW(f)]

√
1 year

T

√
100 Hz

∆f
. (4.41)

The cross-correlation between two coincident detectors, with the same noise characteristics

but fully uncorrelated noise, helps in the detection of a GW stochastic background by about

five orders of magnitude. The minimum detectable value of ΩGW(f) for 1 year of integration

time and assuming that everything can be treated as constant over a frequency range of

about ∆f ' 100 Hz becomes then [32]

h2Ω2d
GW(f) ' 10−7

F

(
f

100 Hz

)3( hf

10−22 Hz−1/2

)2

. (4.42)

From the expression of the signal to noise ratio (4.39), it appears that the detectability

of a SGWB improves with the integration time T and with the frequency span of the signal.

In order to visualise this effect when plotting the sensitivity of GW detectors as a function of

frequency, Ref. [134] proposes a method that holds for signals having a power law frequency

dependence in the frequency band corresponding to the detector sensitivity. This consists

in plotting the so-called Power Law-Integrated Curve, composed by the envelope of a set of

power laws,

ΩPI = max
β

Ωβ

(
f

f∗

)β
, (4.43)

where f∗ is a reference frequency and the amplitudes Ωβ are chosen such that they provide

a given value for the SNR: converting the noise spectral density into an energy density using

Sn(f) = (3H2
0/4π

2)Ωn(f)/f3, one defines

Ωβ =
SNR√

2T

[∫ fmax

fmin

df
(f/f∗)2β

Ω2
n(f)

]−1/2

, (4.44)

where fmin, fmax denote the detector bandwidth. The meaning of the Power Law-Integrated
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Figure 4.2: The Power Law-Integrated Curves of current and future GW detectors. From
left to right: for PTA (blue) we show the predictions for the International Pulsar Timing
array and for a network monitored by the SKA, taken from [122]; for LISA (red), we show
the expected power law-integrated curve adapted from Ref. [130]; for Advanced LIGO/Virgo
(green) we show the sensitivities given in [135] for the first (O1) and second (O2) runs, and
at design sensitivity (O5).

Curve is that, a power-law background lying above it, is detectable with signal to noise ratio

larger than the actual value of SNR chosen in Eq. (4.44).

Note that, since the bandwidths of current GW detectors are relatively small, it seems

justified to construct a sensitivity curve which is meaningful for single power-law SGWBs.

On the other hand, this method is going to become inadequate in the future, especially with

space-based detectors such as LISA or with third generation Earth-based detectors such as

the Einstein Telescope (c.f. next subsections). Depending on the generation model, there are

several predictions for the spectral shape of a cosmological SGWB, which go beyond simple

power laws [15]. Often, this constitutes the only handle one has to possibly distinguish

the origin of the SGWB. Nevertheless, the Power Law-Integrated Curve remains the best

currently available visualisation of the sensitivity of detectors to SGWB, and this is what we

plot in Fig. 4.2 for PTA, LISA and several observation runs of advanced LIGO/Virgo.

4.4.2 Earth-based detectors.

The first generation of earth-based GW interferometers included four detectors: LIGO, Virgo,

GEO 600 and TAMA. The GEO 600 interferometer [136] is a 600-meter interferometer
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located near Hannover (Germany), with best sensitivity of hf ∼ 3 · 10−22 Hz−1/2 at about

700 Hz. The TAMA interferometer [137] has 300-meter arm, is located near Toyko (Japan),

and was the first of the network to be operational: it reached its best sensitivity of hf ∼

1.5 · 10−21 Hz−1/2 at about 1 kHz. Both these interferometers have been important for

testing several technical innovations needed for the second generation experiments. LIGO

(Laser Interferometer Gravitational-wave Observatory) [138] consisted of three multi-

kilometers interferometers, at two locations: H1 with 4 km arms and H2 with 2 km arms

located at Hanford (Washington State), and L1 also with 4 km arm located in Livingston

Parish (Louisiana). They have been operational since 2002. The Virgo interferometer [139],

located near Pisa (Italy), has a 3km arm.

In general, for ground based detectors, the most important limitations to sensitivity

result from the effects of seismic noise in the low frequency range (up to a few Hz), thermal

noise associated with the test masses and their suspensions (up to a few hundreds Hz),

and finally laser shot noise (from a few hundreds to 104 Hz). All these aspects have been

improved in the upgrade that brought the initial devices to the the second generation

of GW detectors, Advanced LIGO [140] and Advanced Virgo [141]. At the level

of sensitivity reached by the first generation of Earth-based interferometers, there was no

guaranteed source of detection. In 2015, the planned upgrade of LIGO into advanced LIGO

was ready, with an improvement in sensitivity by about a factor of ten. This enhanced

considerably the physics reach: the distance searched for detectable sources improves linearly

with the strain sensitivity, so an order of magnitude in strain sensitivity means the ability

to probe a thousand times more volume in the sky. This has guaranteed the first direct

detection of GWs, announced in February 2016: the GW emission from the coalescence of

two black holes with masses around 30M� [16]. Since, the detection of other three black hole

binary coalescences have been announced, performed by the Advanced LIGO interferometers

only [17–19]. In the spring of 2017, Advanced Virgo was ready to join the search, and not

much later the network of three detectors performed the first the common detection of another

black hole binary coalescence [20], followed by the first detection of the merger of two neutron

stars that, most remarkably, has been detected at the same time in various electromagnetic

bands [21,22].

Concerning stochastic backgrounds, so far there is no detection but only upper bounds.
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The most recent one has been obtained with the data of the first Advanced LIGO run (without

Advanced Virgo) in [142]. We have seen in Eq. (4.38) that the ideal filter function Q̃(f)

depends on the shape of the GW spectrum: Ref. [142] assumes then a power law template GW

spectrum of the form ΩGW(f) = Ωα(f/25 Hz)α. This procedure yields the 95% confidence

upper limit Ωα=0 < 1.7 · 10−7. For other values of the power index α in the range between

-5 and 5, the 95% upper limit varies between about 2 · 10−7 and about 4 · 10−10 (c.f. Figure

2 of Ref. [142]). These constraints are stronger than both the BBN (c.f. Section 4.1) and

integrated CMB (c.f. Section 4.2) constraints in the above mentioned frequency range.

The next technological step is to use cryogenic mirrors, which is now being explored by

the KAGRA collaboration. KAGRA [143] is a 3 km arm interferometer currently under

construction, which besides using cooled mirrors to reduce the thermal vibrations, is placed

underground in the Kamioka mine (Japan) to suppress also the seismic noise. KAGRA should

join the network in the next years, and can be considered a path-finder for the third generation

GW detectors to be placed underground. Furthermore, there is a planned advanced detector

to be located in India (IndIGO) [144].

Since the second generation of Earth-based GW interferometers is expected to get to the

lowest possible sensitivity given their technical structure, a conceptual design study for a

third generation detector, the Einstein Telescope (E.T.), has been funded by the

European Framework Programme FP7 [145]. The third generation detector should be sen-

sitive to a great variety of sources, at much larger distances and with higher signal to noise

ratio than Advanced LIGO and Virgo. Via the implementation of new technologies, the aim

is to provide a strain sensitivity about ten times better than second generation detectors

(corresponding to scanning a thousand times larger volume of the universe), and to shift

the minimal detectable frequency to approximately 1 Hz. Consequently, E.T. will allow to

probe the stochastic background down to a level of ΩGW ∼ 10−12 [146]. A proposed config-

uration [147, 148] is that of a 10-km arm triangular set of three Michelson interferometers,

situated underground to significantly reduce seismic noise and allow for very long low fre-

quency suspensions, with 500 W lasers using squeezed light to beat down quantum noise,

and cryogenic test masses of 120 Kg kept at 20 K. The arms of the triangle, which has an

opening angle of 60 degrees, are each used twice to form three co-located interferometers,

which allows to measure both GW polarization states, and to use time delay interferometry:
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a technique developed to suppress the noise in LISA (c.f. section 4.4.3), which consists in

constructing virtual output signals by time shifting and linearly combining the actual inter-

ferometer output signals. As an example, one can construct the Sagnac observable [131],

a combination of interferometric output signals that is insensitive to GW and can be used

to firmly identify the instrument noise, improving greatly the performance of the instru-

ment. Another proposed configuration for E.T. is the xylophone design [149, 150]: this is

composed by a high-power, high-frequency interferometer (ET-HF), which employs powerful

lasers to suppress the high-frequency photon shot noise, and a cryogenic low-power, low- fre-

quency interferometer (ET-LF), with less powerful lasers reducing the thermal noise which

would dominate at low frequency. The two interferometers would be co-located and with

the same orientation, but only ET-LF would be situated underground. Compared to the

single-interferometer design, the xylophone configuration improves the sensitivity by a factor

of 2-10 in the frequency range 6-10 Hz.

4.4.3 Space-based detectors.

Earth-based interferometers, even situated underground, are limited by seismic noise and can-

not probe frequencies smaller than about 1 Hz. It is possible to reach much lower frequencies

placing interferometers in space: the principle is to put drag-free spacecrafts into orbit, and

compare the distances between test masses in the spacecrafts using laser interferometry.

The most advanced and long-studied space-based project is LISA (Laser Interferom-

eter Space Antenna): it consists in an array of three drag-free spacecrafts at the vertices

of an equilateral triangle of side-length 2.5 · 109 m, orbiting at a distance of 1 AU from the

Sun on a Earth-like orbit, but 20 degrees behind the Earth and inclined at 60 degrees with

respect to the ecliptic [130]. This configuration allows to probe the frequency band between

0.1 mHz and 0.1 Hz, which is expected to be richly populated by signals from sources such

as galactic binaries of white dwarfs and neutron stars, stellar-origin black hole binaries, co-

alescing massive black hole binaries in the mass range 104 − 107 M�, binaries formed by a

massive black hole and a stellar-mass compact object, and a stochastic background generated

by cosmological sources [130].

The key technology for LISA, namely the ability to keep the test masses in free-fall

with extremely low residual acceleration, was successfully tested by the LISA Pathfinder
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mission in 2016 [151]. This mission, consisting in one LISA arm reduced in one spaceship, has

measured a differential acceleration among the two test masses that fully meets (and even

overcomes, depending on the frequency range) the requirements for LISA. This has led the

European Space Angency (ESA) to issue a call for mission concerning a GW observatory in

space at the end of 2016, and in response to that call the LISA proposal has been accepted

by ESA in spring 2017, in the configuration proposed in [130]. Currently, the planned launch

date is 2034.

In the LISA configuration, the direct reflection of laser light like in standard Michelson

interferometers, is not feasible due to the large distance between the spacecrafts. Therefore,

each arm is composed of two laser beams: the first one is sent out from a spacecraft, and

received by the other spacecraft; there, instead of begin reflected, it is phase locked to the

second laser beam, which is then send back to the first spacecraft. The combination of the

emitted and sent back lasers gives the information about the arm length. The same procedure

is repeated in the adjacent arms, and with the information about the length of the three arms

one then constructs the interferometry signal. LISA has therefore six masses and six laser

links joining the three satellites (two in opposite directions for each side of the triangle): this

three-interferometer configuration was chosen first of all since it provides redundancy against

component failure. Moreover, it allows to use time delay interferometry, i.e. the use of virtual

interferometric observables to effectively reduce the laser noise level [152], and it improves

the capability to disentangle an isotropic cosmological (or astrophysical) background from

the instrumental noise through Sagnac calibration [131]. As mentioned for the E.T., the

symmetrized Sagnac observable is a combination of six interferometric signals that is much

less sensitive to GWs at low frequencies than other combinations, and thus can be used to

determine the instrumental noise level. Furthermore, concerning stochastic backgrounds,

there is a considerable gain in moving to lower frequencies: the factor f3 in Eq. (4.33) leads

to an improvement in the minimum detectable value of h2ΩGW at 1 mHz by fifteen orders of

magnitude with respect to the minimum detectable value at 100 Hz, for the same instrument

strain sensitivity hf . Therefore, whereas going to space prevents the possibility of increasing

the detection performance through cross-correlation with other detectors (as in the case of

Earth-based interferometers), on the other hand it provides a mean to retrieve a very high

sensitivity to a stochastic background just by the opportunity of reaching a lower frequency
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range in the absence of seismic noise. LISA is expected to probe a SGWB down to a level of

h2ΩGW ∼ 10−13 [130].

There are also concepts for two other space-based projects using optical interferometry,

DECIGO (DECi-hertz Interferometer Gravitational Wave Observatory) [153,154]

and BBO (Big Bang Observer) [155, 156]. The proposed configuration for these two

missions is quite similar: they consist of four LISA-like interferometers orbiting the Sun at 1

AU, two of which are co-located in a ‘star of David’ shape, while the other two are ahead and

behind by an angle of 2π/3 respectively, on the same orbit. The reason for this design is that

it allows to measure with high-precision the stochastic background by cross-correlating the

outputs of the two overlapping constellations; while the other two constellations are there to

improve the angular resolution, which is useful for characterizing and removing the compact

binary ‘foreground’ [157]. The angular position of the source is determined by exploiting the

differences in the arrival times of the GW at the different constellations. Both missions are

designed to probe the 0.1-10 Hz frequency band, where the stochastic background from white

dwarf binaries is absent: the primary goal of these missions is in fact to reach a sensitivity

of about [158, 159] ΩGW & 10−17, in order to detect the primordial stochastic background

from inflation (see Section 5). The dominant astrophysical foreground in this band is due to

compact binaries of neutron stars and stellar-origin black holes; however, the concept missions

are planned to be sufficiently sensitive to individually detect and subtract out every merging

compact binary out to high redshift, thereby uncovering the primordial GW background.

Note that this ‘foreground removal’, which in practice consists in the detection of hundreds

of thousands of merging binaries, allows to use this kind of detectors also for doing precision

cosmology [158] and tests of general relativity [160]. The BBO mission is a follow-up of LISA

with the previously described constellation, with shorter arms of 5·107 m, and exploiting very

powerful lasers of about 300W. On the other hand, the DECIGO mission, though sharing

the same constellation, would have shorter arms of 106 m which form Fabry-Perot cavities,

i.e. the lasers (of 10 W in this case) are reflected among the arms, and would be 2 to 3 times

less sensitive than BBO.

There are also proposals for space-based missions using atom interferometry instead of op-

tical interferometry, like AGIS (Atomic Gravitational-wave Interferometric Sensor)

and the more recent proposal AGIS-LEO [161, 162]. The principle of such a GW measure-
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ment is to combine the use of the atom interferometry with lasers traveling a long distance.

The experiment is constructed such that it compares the phase shifts of two separate atom

interferometers that are manipulated by the same laser. Typically, the separation between

the two interferometers is of the order of 1000 km, therefore probing the frequency band

10−2 − 10 Hz, with a strain sensitivity of the order of [163] h ∼ 10−18 Hz−1/2.



Chapter 5

Gravitational wave background from

inflation

In this chapter, taken from the review [15], we present the SGWB generated during slow-

roll inflation by the rapid evolution of the universe background. In sections 5.1 and 5.2, we

briefly overview single-field slow-roll inflation, and derive the tensor spectrum arising from

the amplification of initial quantum fluctuations of the gravitational field. We define the

spectrum main properties: amplitude, spectral index, gaussianity, polarisation. In section

5.3 we proceed to describe the principal processes that influence the time evolution of the

tensor spectrum from the end of inflation until today, affecting its present-day amplitude.

We first evaluate the transfer function in the case of a universe constituted of radiation and

matter (sub-sect. 5.3.1), and then discuss the effects on the tensor spectrum in the context of

a more complete picture, that includes: changes in the particle content during the radiation

dominated epoch, the presence of a stiff component, late time acceleration, free streaming

neutrinos (sub-sect. 5.3.2).

5.1 Generalities

The inflationary period, defined as an early phase of accelerated expansion, provides a natural

solution to the shortcomings of the hot Big Bang framework [164–166], namely the horizon

and flatness problems; see also Refs. [167–170] for early works. The major success of inflation

is to provide a natural explanation for the physical origin of the primordial density pertur-

82
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bations, required to start the process of structure formation in the Universe. Inflation leads

naturally to the stretching of quantum fluctuations [171–175], which result parametrically

amplified into classical density perturbations [176–178]. Later on, during the decelerated

evolution of the universe following after the end of inflation, the perturbations re-enter the

Hubble radius, providing the required ‘seed’ to trigger, via gravitational collapse, the forma-

tion of structures in the universe. The perturbations leave at the same time an imprint in

the CMB, in the form of temperature and polarization anisotropies. The simplest models of

inflation lead to a homogeneous and isotropic spatially flat universe, with adiabatic, Gaus-

sian, and approximately scale-invariant density perturbations. These predictions have been

spectacularly confirmed over the years by increasingly accurate observations of the CMB and

of the large-scale structure in the universe.

During inflation any light field with a mass smaller than the the inflationary Hubble rate

m2 � H2, experiences quantum fluctuations. Due to the accelerated expansion, initially

small fluctuations with wavelength smaller than the inflationary Hubble radius, k > aH,

result amplified and stretched to super-Hubble scales, k < aH. This affects, in particular,

the tensor metric perturbations [179–182], as these correspond to massless fields. As we will

show in detail, the resulting spectrum of tensor modes is quasi scale-invariant, spanning over

a wide range of scales (from the Hubble scale at the end of inflation, to at least the Hubble

scale today). When the tensor modes re-enter the Hubble radius during the post-inflationary

era, they turn into a proper classical (yet stochastic) background of GWs, with a quasi scale-

invariant spectrum. This background constitutes an irreducible emission of GWs expected

from any inflationary model.

The irreducible background of GWs from inflation is expected to create a pattern of B-

modes in the polarization of the CMB [183–186]. This major prediction from inflation remains

however unverified, as to date this effect has not been observed1. If B-modes due to primordial

tensors are eventually detected in the CMB, this will constitute a very strong evidence in

favor of inflation2. Besides, a detection of primordial B-modes will provide a powerful tool
1Let us recall that on March 2014, the BICEP2 collaboration announced the detection of B-modes due to

the irreducible background of GWs from inflation [81]. Even though the detection of B-modes was very real
(later on confirmed by other experiments), unfortunately the interpretation of the signal as due to inflationary
tensors was mistaken. An underestimation of the contribution to polarized light from dust in the interstelar
medium [187–189], led the BICEP2 team to consider such dust contribution negligible as compared to the
measured signal. It turned out that the signal was however only due to (or at least mostly dominated by)
the dust contamination [82,190].

2This will not be a definitive proof of inflation. It has been shown nonetheless, that other primordial
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to discriminate between the (currently) many different inflationary models compatible with

the data.

Many CMB polarization B-mode experiments are currently ongoing or under construction,

aiming to detect or further constrain in the near future, the irreducible GW background from

inflation, see Section 4.2. In light of present CMB constraints, we know that the amplitude of

this background is too small to expect detecting it with current or planned direct detection

GW observatories like aLIGO/Virgo, LISA, ET and others. If the energy scale of inflation

is sufficiently high, futuristic GW detectors such as BBO may have a chance to detect this

primordial background. However, the irreducible contribution may not be the only GW

background expected from inflation. Under some circumstances, if new species or symmetries

are at play during inflation, GWs with a high amplitude and a significant deviation from

scale-invariance, can also be produced (see e.g. section 6 in [15]). Contrary to the irreducible

contribution, these backgrounds are model dependent. However, whenever produced, they are

expected to have a much larger amplitude than the irreducible background, particularly at the

frequencies accessible to direct detection experiments. In light of this possibility, GWs from

inflation remain a relevant target for the upcoming ground- and space-based interferometers.

5.2 Irreducible GW background: amplification of vacuum fluc-

tuations

The simplest inflationary models involve a single inflaton scalar field φ slowly rolling down its

potential V (φ) during inflation, minimally coupled to gravity, and with a canonical kinetic

term. We will refer to these models as canonically normalized single-field slow-roll (SFSR)

scenarios. These are characterized by an action

S =

∫
d4x
√−g

[
m2

Pl

2
R− 1

2
∂µφ∂µφ− V (φ)

]
, (5.1)

sources of B-modes such as primordial magnetic fields or topological defects, do not produce a B-mode angular
spectrum resembling close enough the inflationary one, unless parameters in these scenarios are highly (and
unnaturally) fine-tuned [191–195]. Thus, in principle, in the event of a future detection of a primordial signal
(assuming astrophysical contaminants have been properly removed), the shape of the B-mode angular power
spectrum could be a good discriminant by itself, to differentiate whether a signal is due to the inflationary
irreducible background of GWs, or rather due to other primordial sources.
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where R is the Ricci scalar and mPl = 1/
√

8πG is the reduced Planck mass. In the slow-roll

regime the kinetic energy of the scalar field is negligible compared to its potential energy,

1
2 φ̇

2 � V (φ). This is a requisite to inflate the universe. To sustain this regime sufficiently

long, it is also necessary that the acceleration of the field is suppressed compared to the field

velocity per Hubble time, i.e. |φ̈| � |φ̇|/H−1. These two conditions allow to simplify both

the Friedmann equation for the homogeneous and isotropic background, and the equation of

motion of the homogeneous inflaton,

3m2
PlH

2 = V (φ) (1 + εφ/3) ' V (φ) (5.2)

−V ′(φ) = 3Hφ̇ (1− ηφ/3) ' 3Hφ̇ (5.3)

where we have defined the two slow-roll parameters

εφ ≡
3

2

φ̇2

V
, ηφ ≡ −

φ̈

Hφ̇
(5.4)

The approximations in RHS of Eqs. (5.2), (5.3) are consistent only as long as both slow-roll

parameters are sufficiently small, εφ � 1 and ηφ � 1. It is then useful also to define the

potential slow-roll parameters

εV ≡
m2

Pl

2

(
V ′

V

)2

, ηV ≡ m2
Pl

V ′′

V
, (5.5)

related to the former parameters by εφ ' εV and ηφ ' ηV − εV . Demanding εV � 1 and

ηV � 1 represents therefore a sufficient (though not necessary) condition, for obtaining and

sustaining an inflationary slow-roll regime. The ε slow-roll parameter controls the deviation

of the equation of state from pure de Sitter, w ≡ (1
2 φ̇

2 + V )/(1
2 φ̇

2 − V ) ' −1 + 2
3εφ, hence

determining as well the rate of change of the inflationary Hubble rate,

εH ≡ −
Ḣ

H2
≡ 3

2
(1 + w) ' εφ . (5.6)

Note that even though we have argued that εφ ' εV ' εH , this double equivalence does

not necessarily hold in scenarios beyond the SFSR paradigm. Nevertheless from now on, for

simplicity we will write without distinction ε, as we will not go beyond SFSR.
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Once inflation starts (say at some value εV � 1), if the inflaton potential is sufficiently

flat (i.e. ηV � 1) over a wide range of scalar field values, this ensures that the universe will

inflate during a sufficiently long period, so that the initial condition problems of the Hot

Big Bang model are solved. In the slow-roll regime εV , ηV � 1, the equation of state w

is close to −1, producing a quasi-exponential expansion a(t) ∼ eH t, with a Hubble rate H

approximately constant. In reality, according to Eq. (5.6), the Hubble rate decreases with

time, but the decreasing rate is ‘slow-roll suppressed’ as ∆H/H ' ε∆N , where N is the

number of e-folds dN = d log a ' Hdt.

Let us note that although the anisotropic stress of a scalar field ∼ ∂δφ∂δφ, can act as

a source term in the equation of motion of tensor perturbations, it is intrinsically of second

order in the field fluctuations. Therefore, to linear order in field fluctuations, there is typically

no active source of GWs during inflationHowever, unavoidable quantum fluctuations of hij are

parametrically amplified by the quasi-exponential expansion of the universe. To describe this

phenomenon, we need to quantize the tensor modes of the metric, considered as perturbations

over the homogeneous and isotropic inflationary background.

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (5.1) with the metric

Eq. (2.60), at second order in hij and expressed in conformal time η [196]

S(2)
g = − m

2
Pl

8

∫
dη d3x a2(η) ηµν ∂µhij ∂νhij

=
m2

Pl

4

∑

r=+,×

∫
dη

d3k

(2π)3
a2(η)

[
|h′r(k, η)|2 − k2 |hr(k, η)|2

]

=
1

2

∑

r=+,×

∫
dη

d3k

(2π)3

[
|v′r|2 − k2 |vr|2 +

a′′

a
|vr|2

]
, (5.7)

where we have used the decomposition Eq. (2.56) and the orthonormal condition (2.58) in

the second equality, whereas for the third equality we have introduced the variables

vr(k, η) =
mPl√

2
a(η)hr(k, η) . (5.8)

The action in Eq. (5.7) is equivalent to the action of two real scalar fields vr(x, η) in Minkowski

space-time, with canonically conjugate momenta πr(x, η) ≡ v′r(x, η), and time-dependent

frequency ω2
k(η) = k2 − a′′

a . The quantization proceeds by promoting vr and πr to operators
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v̂r and π̂r that satisfy the standard commutation relations on hyper-surfaces of constant time

η,

[
v̂r(x, η) , π̂r′(x

′, η)
]

= i δrr′ δ
(3)(x− x′)

[
v̂r(x, η) , v̂r′(x

′, η)
]

=
[
π̂r(x, η) , π̂r′(x

′, η)
]

= 0 . (5.9)

The fields can be decomposed on the basis of the solutions of the dynamical equations derived

from action Eq. (5.7). Since the background is spatially isotropic, we can write

v̂r(x, η) =

∫
d3k

(2π)3

[
vk(η) e−ikx âkr + v∗k(η) e+ikx â+

kr

]
, (5.10)

with â+
kr and âkr creation and annihilation operators satisfying the usual commutation rela-

tions

[
âkr , â

+
k′r′
]

= (2π)3δrr′ δ
(3)(k− k′) , (5.11)

[âkr , âk′r′ ] =
[
â+
kr , â

+
k′r′
]

= 0 , (5.12)

and the mode functions vk(η) satisfying the equation of motion

v′′k + ω2
k(η) vk = 0 , with ωk(η)2 ≡ k2 − a′′

a
(5.13)

Consistency between the commutation relations Eq. (5.9) and Eq. (5.12) requires the nor-

malization condition

vk v
′∗
k − v∗k v′k = i . (5.14)

Eq. (5.13) describes an harmonic oscillator with a time-dependent frequency varying from

ω2
k ' k2, when the modes are sub-Hubble aH � k, to ω2

k ' a′′/a, when the modes become

super-Hubble aH � k. For sub-Hubble modes, Eq. (5.13) reads v′′k + k2 ' 0, which has two

linearly independent solutions, vk = ck,+v
(+)
k +ck,−v

(−)
k , with v(±)

k ≡ e∓ikη, and c(±)
k constants.

Defining a vacuum state |0〉 as âkr |0〉 = 0, we can associate the annihilation operators âkr in

Eq. (5.10) to the ‘positive frequency modes3’ v(+)
k . This standard prescription corresponds

3They are referred to as ‘positive’ because they correspond to the eigenfunctions of the energy operator
Ĥ = i∂η with positive eigenvalues, Ĥv(+)

k = +kv
(+)
k .
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to the so-called Bunch-Davies vacuum. A discussion of the consequences of other vacuum

prescriptions for the GW background can be found in Ref. [197]. The initial condition is then

set with ck,− = 0, so that initially vk(η) ∝ v+ ∝ e−ikη. The value of ck,+ 6= 0 is determined

by the normalization condition Eq. (5.14), so that the physical solution of Eq. (5.13) for

sub-Hubble modes, finally reads

vk '
e−ikη√

2k
for k � aH . (5.15)

The fluctuations with deep sub-Hubble wavelengths have therefore an amplitude exactly like

in flat space-time.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (5.13) reads

v′′k/vk ' a′′/a, which is satisfied by vk ' Ck a(η) (with Ck a constant), up to a sub-leading

term that becomes quickly negligible [see Eq. (2.68)]. In the slow-roll regime, we can deter-

mine the constant Ck by simply matching the super-Hubble solution with the sub-Hubble

solution (5.15) at aH = k. This gives

Ckak =
1√
2k

⇒ |vk(η)| ' Hk√
2 k3

a(η) for k � aH , (5.16)

where a subscript k indicates, from now on, that the quantity is evaluated when the mode

is crossing the Hubble radius during inflation, akHk = k. As hk ∝ vk/a, Eq. (5.16) in-

dicates that the amplitude of the tensor fluctuation at super-Hubble scales is constant in

time. Although Eq. (5.16) has been derived following a rather imprecise method, it provides

nonetheless a very good approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (5.13) admits analytic solutions, for constant slow-

roll parameters. In particular, let us notice that if we consider εH ≡ −d logH/dN constant,

then we can write the Hubble rate during inflation as H(N + ∆N) ' H(N)e−ε∆N . This

implies that the conformal time is η ≡
∫
dN
aH ' − 1

(1−ε)H , with H ≡ aH. Taking derivatives

(with respect conformal time) at both sides of the last expression, we obtain H′ ' (1− ε)H2.

Hence, the term involving the scale factor in Eq. (5.13) is a′′/a ≡ H′ + H2 ' (2 − ε)H2 '
(2−ε)

(1−ε)2η2 ' 1
η2 (2 + 3ε), so that Eq. (5.13) can be written as

v′′k +

[
k2 − 1

η2

(
ν2 − 1

4

)]
vk = 0 , ν ≡ 3

2
+ ε (5.17)
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A slow-roll parameter ε 6= 0 represents, therefore, a linear deviation from the exact de Sitter

value ν ≡ 3
2 , corresponding to ε = 0. The general solution to Eq. (5.17), for constant ε, is

vk = (−η)1/2
[
c1(k)H(1)

ν (−kη) + c2(k)H(2)
ν (−kη)

]
, (5.18)

where H(1)
ν (−kη), H(2)

ν (−kη) are Hankel functions of the first and second kind. In the deep

ultraviolet regime (−kη) → ∞, this general solution must match the plane-wave solution

Eq. (5.15). Hence, using the large argument expansion of the Hankel functions, H(1)
ν (x �

1) '
√

2
πxe

i(x−ν−π/4), H(2)
ν (x � 1) '

√
2
πxe
−i(x−ν−π/4), we conclude that c2(k) = 0 and

c1(k) =
√
π

2 e
i
2(ν+ 1

2). The exact solution then becomes

vk =

√
π

2
e
i
2(ν+ 1

2)√−η H(1)
ν (−kη) , ∀ k, η (5.19)

Depending on the scale, this solution reduces to

vk ' e−ikη√
2k

, for − kη � 1 (5.20)

vk ' ei
π
2 (ν− 1

2)2(ν− 3
2) Γ(ν)

Γ(3/2)

1√
2k

(−kη)
1
2
−ν , for − kη � 1 , (5.21)

where in the second expression we have used the small argument expansion H
(1)
ν (x � 1)

'
√

2
πe
−iπ

2 2ν−
3
2

Γ(ν)
Γ(3/2)

1
xν . The exact solution Eq. (5.19) reduces correctly, at sub-Hubble

scales, to Eq. (5.15), as it should. At super-Hubble scales and in the limit ε → 0, the

amplitude of Eq. (5.19) reduces to |vk| ' − 1

η
√

2k3
, which thanks to aHkη = −1, matches

exactly Eq. (5.16) (which was derived for exact de Sitter). In reality, as one typically expects

ε 6= 0 (i.e. the inflationary space-time is typically quasi-de Sitter), we see from the −kη � 1

limit in Eq. (5.21), that |vk| has a tilt at super-Hubble scales; something we will discuss

shortly.

Let us remark that Eq. (5.13) describes an harmonic oscillator with a time-dependent

frequency, which varies from ω2
k ' k2 to ω2

k ' a′′/a (' −2a2H2), when the initially sub-

Hubble modes aH � k eventually turn super-Hubble aH � k, due to the quasi-exponential

expansion. When ω2
k(η) varies only adiabatically in time, i.e. ω′k � ω2

k, as long as ω2
k(η)

is positive, we can associate an occupation number nk to each mode k, so that |∆k|3nk
represents the number density of gravitons with momentum [k,k+ ∆k]. This is given by the
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energy Ek ≡ 1
2

(
|v′k|2 + ω2

k|vk|2
)
per mode divided by the energy ωk per particle,

Ek =

(
nk +

1

2

)
ωk ⇒ nk +

1

2
≡ 1

2ωk

(
|v′k|2 + ω2

k |vk|2
)

(5.22)

where the 1
2 term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-Hubble scales Eq. (5.15) into Eq. (5.22), gives nk = 0, as it should be

for vacuum in flat space-time. The occupation number nk is an ‘adiabatic invariant’ when

ω2
k(η) is positive and varies slowly as |ω′k| � ω2

k. However, the stretching of modes during

the inflationary expansion violates both conditions, resulting in an abundant production of

gravitons as the modes leave the Hubble radius, turning the initial nk = 0 into nk � 1.

We can check that the solution for super-Hubble modes Eq. (5.21) [Eq. (5.16) for exact

de Sitter], corresponds in fact to a very large number of gravitons. Strictly speaking, the

occupation number Eq. (5.22) is not well-defined during inflation, as nk is not adiabatically

conserved during the inflationary period. Let us therefore evaluate it just after inflation,

assuming an instantaneous transition into a power law expansion era a(η) ∝ ηp after inflation

(p ≥ 1/2), established at some time η = ηe. Using for simplicity the result in exact de Sitter,

we can plug Eq. (5.16) into Eq. (5.22), and find that for super-Hubble modes aeHe � k,

nk ∼ (Hk/He)
2 (aeHe/k)3 if p 6= 1 [nk ∼ (Hk/He)

2 (aeHe/k)4 for a RD background with

p = 1]. Thus, super-Hubble modes exhibit a very large occupancy nk � 1, as it corresponds

to a large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is lost (due to the time evolution leading to squeezing),

but reflected in the stochastic nature of the emerging effectively classical field distribution.

The quantum-to-classical transition, which occurs basically when the modes leave the Hubble

radius, is studied in detail in Ref. [176–178].

In terms of the original GW field hij , Eqs. (2.56), (5.8) and (5.10), we can write

ĥij(x, η) =
∑

r=+,×

∫
d3k

(2π)3/2

(
hk(η) eikx âkr + h∗k(η) e−ikx â+

kr

)
erij(k̂) , (5.23)

with the amplitude of the physical tensor modes hk at super-Hubble scales determined by

Eqs. (5.8) and Eq. (5.21), as

|hk(η)| ' H

mPl k3/2
f(ε)

(
k

aH

)−ε
, for k � aH (5.24)
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with f(ε) ≡ 2ε(1 − ε)1+ε(Γ
(

3
2 + ε

)
/Γ
(

3
2

)
) ' 1 −

(
1− ln(2)− ψ0

(
3
2

))
ε ' 1 − 0.27ε, ψ0(x)

the Digamma function. In the limit of exact de Sitter ε → 0, Ḣ → 0, f(ε → 0) → 1 and

(k/aH)−ε → 1. Hence the amplitude reduces to4

|hk(η)| −→ H

mPl k3/2
, for ε→ 0 , k � aH . (5.25)

As discussed below Eq. (2.68), hk(η) remains constant in time after the modes leave the Hub-

ble radius during inflation, until they re-enter the Hubble radius during the post-inflationary

evolution. Eq. (5.24) evaluated at Hubble radius crossing k = akHk (which is exactly equiv-

alent to Eq. (5.25) if we approximate f(εk) ' 1), will thus provide the initial condition for

the evolution of the modes once they re-enter the Hubble radius, to be discussed in the next

section.

It is convenient to define a dimensionless tensor power spectrum Ph(k) as

〈0|ĥij(k, η)ĥ∗ij(k
′, η)|0〉 =

2π2

k3
Ph(k)δ(3)(k− k′) , (5.26)

so that

〈0|ĥij(x, η)ĥij(x, η)|0〉 =

∫
dk

k
Ph(k) . (5.27)

Using Eq. (5.23) evaluated at the super-Hubble solution Eq. (5.24), the orthonormal relation

(2.58) for the polarization tensor, and the commutation relations Eq. (5.12) for the creation

and annihilation operators, we obtain

Ph(k) ' 2

π2

H2

m2
Pl

f2(ε)

(
k

aH

)−2ε

, for k � aH . (5.28)

At horizon-crossing k = akHk, this expression reduces simply (taking f(ε) ' 1) to

Ph(k) ' 2

π2

H2
k

m2
Pl

, for k = akHk . (5.29)

Since we saw above that the super-Hubble modes behave as a classical random field, the

vacuum expectation value in Eq. (5.26) can be interpreted as a classical ensemble average
4Alternatively we could have deduced Eq. (5.25) by using Eq. (5.16) valid for exact de Sitter, instead of

Eq. (5.21).
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over a stochastic field variable. The tensor power spectrum interpreted this way, is then

related to the characteristic GW amplitude introduced in Eqs. (3.10), (3.11) by Ph(k) = 2h2
c .

A small difference between the result in exact de Sitter Eq. (5.29) and quasi-de Sitter

Eq. (5.28), is the factor f2(ε) ' 1 − 0.54ε, which simply amounts for a tiny correction in

amplitude of ∼ 0.5(ε/0.01)%. A more notable difference arises however due to the fact that

the spectrum becomes slightly red-tilted in the quasi-de Sitter case, i.e. Ph(k) ∝ knT , with

nT < 0 but |nT | � 1. More precisely, the spectral tilt nT (k) can be defined as5

nT (k) =
dlogPh(k)

dlogk
. (5.30)

Applying this formula to Eq. (5.28) leads immediately to the result for canonical SFSR

inflation scenarios (where ε is small but non-vanishing),

nT ' −2ε . (5.31)

Of course we could have directly read out this tilt from Eq. (5.28) from the explicit Ph(k) ∝

knT behaviour.

Let us emphasize that the redness of the spectrum nT < 0, is a direct consequence of

the fact that the amplitude of the tensor spectrum at horizon crossing Eq. (5.29), is directly

proportional to the (inflaton potential) energy density H2
k ∝ Vk(1 + ε/3) ' Vk. Because

the Hubble rate decreases slowly during inflation, like Ḣ = −εHH2 [recall Eq. (5.6)], the

amplitude of the spectrum Eq. (5.29) at different moments of horizon crossing, changes

accordingly to the change of H2
k as time goes by. Applying therefore Eq. (5.30) over the

spectrum Eq. (5.29) at horizon crossing6, gives

nT (k) ' dlogVk
dlogak

' φ̇k
Hk

V ′k
Vk
≡ −(2εφ)1/2(2εV )1/2 (1− εφ/3)−1/2 ' −2ε . (5.32)

As expected, this alternative computation leads consistently to the same result as in

Eq. (5.31).

The primordial scalar perturbations generated from inflation can be studied in a similar
5With this definition we also encompass the possibility that nT is a function of the scale k, even if this is

not the case in canonical SFSR scenarios.
6Note that this is different from what we did previously, when we applied Eq. (5.30) to the general spectrum

Eq. (5.28) at arbitrary super-Hubble scales −kη � 1.
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way as we did for GWs. In single field inflationary models, the so-called comoving curvature

perturbationR is conserved on super-Hubble scales [198]. In slow-roll models with a canonical

kinetic term, its (dimensionless) spectrum,

〈0|R(k, η)R∗(k′, η)|0〉 =
2π2

k3
PR(k)δ(3)(k− k′) , (5.33)

takes a value at horizon crossing as

PR '
1

4π2

H4
∗

φ̇2∗
' H2

∗
8π2εm2

Pl

for k = akHk . (5.34)

The relative contribution of GW is often indicated by the tensor-to-scalar ratio r, defined as

r =
Ph(k)

PR(k)
. (5.35)

Using Eqs. (5.29), (5.34) for the spectra and the slow-roll equations (5.2, 5.3), we find that,

at horizon crossing k = akHk,

rk = 16 ε . (5.36)

Together with Eq. (5.32), this gives the so-called consistency relation for SFSR inflationary

models (at the lowest order in the slow-roll parameters),

nT (k) = −rk
8
. (5.37)

Remarkably, this relation is independent of the micro-physical details of the potential that

is responsible for inflation: it only involves quantities that are in principle observable. The

observational verification of this relation would provide a spectacular confirmation of the

simplest models of inflation, and would constitute a definite proof for inflation. This relation

can be modified in inflationary models, e.g. if several scalar fields are involved [199,200] or if

vacuum prescriptions differ from the standard Bunch-Davies vacuum [197].
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5.3 Evolution of the inflationary background after inflation

5.3.1 The transfer function in a universe composed by radiation and mat-

ter

In chapter 3 we have derived the solution of the GW evolution equation at super-Hubble

scales and found that its dominant part is constant in time, see Eq. (2.68). In the previous

section 5.2, we have demonstrated that this behaviour is indeed confirmed for the quantum

tensor fluctuations produced during inflation, after they have become super-Hubble. We

have specified solution (2.68) to the case of inflation, by choosing the correct behaviour at

sub-Hubble scales (Bunch-Davies vacuum): this gives Eqs. (5.20)-(5.21), and in turn solution

(5.25) at super-Hubble scales and in the limit of exact de Sitter.

Eq. (5.25) provides therefore an initial condition for the evolution of the tensor modes

produced during inflation. When the modes re-enter the horizon7 during the subsequent

phases of the evolution of the universe, they acquire a time dependence, in particular they

start oscillating and decaying like 1/a(η) (c.f. section 2.4). The full solution for a generic

power-law expansion factor is given in Eq. (2.64), for which one has to choose the right initial

conditions for kη � 1, i.e. a constant amplitude given by Eq. (5.25). For a universe that is

radiation dominated, once the mode has re-entered the horizon, one finds

hRD
r (k, η) = hinf(k) j0(kη) , (5.38)

where

hinf(k) =
H

mPlk3/2
(5.39)

is the tensor amplitude set by inflation in the limit of exact de Sitter. Note that the same

expression (5.38) is valid for both polarisations. For a matter dominated universe, on the

other hand, the relevant solution is

hMD
r (k, η) = hinf(k)

3 j1(kη)

kη
. (5.40)

To get the amplitude today of a tensor mode produced during inflation, one has to
7In the radiation and matter dominated phases, the horizon evolves in time like the Hubble scale, contrary

to the inflationary period when it diverges, see e.g. [38].
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distinguish the modes that entered the horizon during the matter dominated era and those

that entered the horizon during the radiation dominated era. In the first case, the relevant

solution is simply Eq. (5.40). In the second case, however, neither Eq. (5.38) nor Eq. (5.40)

apply. To find the result at present time, for a mode that crossed the horizon during radiation

domination, one can match solution (5.38) at the time of radiation-matter equality with the

full solution valid in the matter era with free coefficients (see Eq. (2.64))

hMD,full
r (k, η) = Ā(k)

j1(kη)

kη
+ B̄(k)

y1(kη)

kη
. (5.41)

This procedure holds under the assumption that the radiation-matter transition is instanta-

neous. We therefore expect it to fail for modes which are comparable to the inverse duration

of the transition [201]. A solution valid for these modes as well8 can be obtained by in-

tegrating numerically the GW evolution equation (2.63), accounting for the fact that the

background evolves smoothly from radiation to matter-domination, i.e. using the scale factor

a(η) = H2
0 Ωmat a

3
0 η

2/4 + H0

√
Ωrad a

2
0 η instead of the single power-law behaviours consid-

ered in section 2.4. Still, we present here the matching procedure in order to provide some

analytical insight into the numerical solution.

In order to proceed with the analytical approach, one must choose the time η∗, repre-

senting radiation-matter equality, at which to match the radiation solution (5.38) with the

full solution (5.41). One possibility is to use (note that the numerical values below are found

using the cosmological parameters of [30] and setting a0 = 1)

ηeq =
2(
√

2− 1)
√

Ωrad

a0H0 Ωmat
' 86 Mpc , (5.42)

derived by solving aeq = a0(Ωrad/Ωmat) = H2
0 Ωmat a

3
0 η

2
eq/4 + H0

√
Ωrad a

2
0 ηeq. The corre-

sponding equality scale keq (the wave-number entering the horizon at ηeq) is

keq =

√
2 a0H0 Ωmat√

Ωrad
' 1.3 · 10−2 Mpc−1 . (5.43)

However, from the left panel of Fig. 5.1 one can infer that a better choice for the match-

ing time is the time at which the radiation arad(η) = H0

√
Ωrad a

2
0 η and matter amat(η) =

8For modes that enter the horizon after the universe starts accelerating at late-time, c.f. section 5.3.2
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H2
0 Ωmat a

3
0 η

2/4 solutions cross, i.e. η∗ = 4
√

Ωrad/(a0H0Ωmat) ' 417 Mpc. Matching at

η∗ better approximates the true background evolution, and therefore provides an analytical

solution to the GW evolution equation that better reproduces the numerical one (as can be

inferred from the right panel of Fig. 5.1). The corresponding scale k∗ can be evaluated using

the radiation solution arad(η): the wave-number entering the horizon at η∗ is then k∗ = 1/η∗.

The free coefficients of Eq. (5.41) are found via matching hMD,full
r (k, η) and its derivative

∂ηh
MD,full
r (k, η), with hRD

r (k, η) and ∂ηh
RD
r (k, η), respectively, at η∗. With x∗ = kη∗, they

read [202]:

Ā(k) = hinf(k)

[
3

2
− cos(2x∗)

2
+

sin(2x∗)
x∗

]
, (5.44)

B̄(k) = hinf(k)

[
1

x∗
− x∗ −

sin(2x∗)
2

− cos(2x∗)
x∗

]
. (5.45)

The full solution today can therefore be written as [202]

hr(k, η0) = hinf(k)T (k, η0) , (5.46)

where T (k, η0) is the transfer function:

T (k, η0) =





3 j1(kη0)
kη0

, k < k∗

Ā(k)
hinf(k)

j1(kη0)
kη0

+ B̄(k)
hinf(k)

y1(kη0)
kη0

, k > k∗

. (5.47)

The GW energy density today from tensor modes produced during inflation becomes (c.f

Eq. (3.13))

ρGW(η0) =
〈h′ij(x, η0)h′ij(x, η0)〉

32πGa2
0

=
1

64π3Ga2
0

∫ ∞

0
dk k2 [T ′(k, η0)]2 |hinf(k)|2 , (5.48)

where in the last equality we have used the decomposition in Eq. (5.23) and relations (5.12).

Using the above relation and definition (5.27), the GW energy density parameter today can

be written as

ΩGW(k) =
1

12H2
0 a

2
0

[T ′(k, η0)]2Ph(k) , (5.49)
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with the inflationary tensor power spectrum given by

Ph(k) ' 2

π2

H2

m2
Pl

, (5.50)

in the limit of exact de Sitter as we have seen in the previous section. Note that in general

one is interested in Eq. (5.49) at sub-horizon scales. Hence, it is customary to approximate

[T ′(k, η0)]2 ' k2 T 2(k, η0), given the oscillatory behaviour of the tensor modes inside the

horizon (c.f. section 2.4).

As described in [203], the in-phase oscillation of all modes with a given wave-number k

which re-enter the horizon at the same epoch, apparent in Eq. (5.47), is a physical effect

due to the common origin (inflation) of the modes. This effect is captured by the oscillating

transfer function. However, from the observational point of view, as these modes correspond

to a stochastic background of GWs, it is appropriate to average the transfer function over

several oscillations. At sub-horizon scales kη0 � 1, and performing an oscillation-averaging

procedure, one obtains

[T ′(k, η0)]2 −→
kη0�1





η2
∗/(2η

4
0) , k > k∗

9/(2η4
0 k

2) , k < k∗

. (5.51)

By substituting the above equation in (5.49), it appears that the energy density spectrum

today of the tensor modes generated during inflation is flat in k (assuming exact de Sitter)

for modes that entered the horizon during the radiation era, and scaling as k−2 for modes

that entered the horizon during the matter era.

The right panel of Fig. 5.1 shows the GW energy density power spectrum, calculated

both by numerically integrating the GW evolution equation through the radiation-matter

transition, and using the analytical transfer function (5.47). It appears that the analyti-

cal solution performs well, a part for modes around keq, that enter the horizon during the

radiation-matter transition.

The GW energy density power spectrum can be approximated as

ΩGW(k) =
3

128
Ωrad Ph(k)

[
1

2

(
keq

k

)2

+
16

9

]
, (5.52)
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Figure 5.1: Left panel: the scale factor for a radiation-dominated universe (blue curve), a
matter-dominated one (red curve), and a universe performing the transition from radiation to
matter domination (black curve). The green, dashed line represents the scale factor at equal-
ity aeq = a0(Ωrad/Ωmat). Right panel: the GW energy density power spectrum, normalised to
the primordial inflationary spectrum Ph(k), as a function of normalised wave-number k/keq.
The aim is to show the effect of the transfer function when modes enter the horizon (hence the
normalisation). The orange curve represents Eq. (5.48), where we have inserted the correct
transfer function, found by numerically integrating the GW evolution equation through the
radiation-matter transition. The blue curve is the analytical approximation, i.e. Eq. (5.48)
inserting Eq. (5.47). The black curve is approximation (5.52), where we have accounted for
oscillations by inserting a factor 1/2. The black, dashed curve shows the result of Ref. [204],
i.e. using Eq. (5.53) for the transfer function.

where we have used η0 = 2/[a0H0(
√

Ωrad +
√

Ωrad + Ωmat)], and we have interpolated oscil-

lations simply by inserting a factor 1/2. The pre-factor 3/128 and the pivot wave-number

keq have been chosen in order to recover Eq. (4) of [93]. Fig. 5.1 also shows the transfer

function computed in Ref. [204], where it was derived for the first time (note that in this case

oscillations have not been accounted for by introducing a factor 1/2):

[T ′(k, η0)]2TWL =

[(
3 j1(kη0)

kη0

)′]2(
1 + 1.34

k

keq
+ 2.5

k

keq

)
. (5.53)

5.3.2 Going beyond the radiation-matter universe

The above analysis is valid only under several assumptions, some of which we are going to

review now in some details. Note that we concentrate only on the effects caused in the context

of the standard model of particle physics and cosmology: for more exotic effects related to

super-symmetry, the presence of dark fluids and dark interactions, exotic phase transitions

or reheating models, see e.g. [202,203,205–209].

First of all, we have assumed that the transition between the radiation and the matter
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era is instantaneous. Consequently, solution (5.46) is valid only for modes with wavelength

much larger than the duration of this transition. For solutions without this restriction, either

evaluated under the WKB approximation or fully numerical, see [201,204].

Second, we have assumed that the universe evolves from a phase of radiation domination

with a(η) ∝ η to a phase of matter radiation with a(η) ∝ η2. This is quite simplistic since

the evolution of the universe can be characterised by other phases, as for example the phase

of late accelerated expansion following the matter era. In order to investigate how a change

in the laws of the evolution of the universe affects the above analysis and the SGWB energy

density spectrum, the simplest way is to use the solution given in Ref. [203]. In this work,

the behaviour of the GW amplitude at sub-horizon scale is derived by pushing the validity of

the sub-horizon solution (e.g. Eq. (2.65)) up to horizon crossing, and matching it there with

the constant inflationary solution. This gives

hr

(
k >

1

η
, η

)
' hinf(k) cos[k(η − ηk) + φk]

ak
a(η)

, (5.54)

where ak = k/Hk and ηk denote respectively the scale factor and the conformal time at

horizon crossing, and φk is a phase that does not interest us at this point. This solution

is approximate, but for k/H � 1 it recovers asymptotically the behaviour of Eq. (5.46)-

(5.47), as well as (5.38) and (5.40). The transfer function today becomes, using this solution,

T (k, η0) ' cos[k(η0 − ηk) + φk] (ak/a0).

Let us start with the radiation dominated era. In the above derivation (as well as in

chapter 3) we have assumed that the scale factor always evolves as a(η) ∝ η ∝ 1/T . However,

this neglects the fact that the particle content of the primordial thermal bath changes its

nature as the temperature decreases, because particles become non-relativistic and/or get out

of thermal equilibrium at different times. In the standard model this occurs for example at

e+e− annihilation, neutrino decoupling, the QCD phase transition, the EW phase transition,

etc. When a given particle species gets out of thermal equilibrium, the effective number of

relativistic species contributing to the entropy, gS(T ), decreases, causing the scale factor to

increase faster than 1/T during this phase (c.f. section 3.1). Note that here we distinguish

gS , the effective number of relativistic species contributing to the entropy, from g∗, those

contributing to the energy density: gS = g∗ for T > 0.1 MeV (before neutrinos decouple),
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while they differ later (c.f. section 3.1). The fast increase of a(η) leads to an extra suppression

of the tensor modes that entered the horizon before the time at which gS(T ) changes. The

extra suppression can be evaluated without modelling the time behaviour of the effective

number of relativistic species in any detail, by using Eq. (5.54) (c.f. [202] for a more refined

derivation). Let us suppose that gS(T ) and g∗(T ) change at a time η̄, going from ḡS , ḡ∗ to their

value today g0
S , g

0
∗, and consider a mode that entered the horizon at ηk < η̄. Using Eq. (5.54)

one can compare the amplitude of the tensor mode accounting for the change in gS(T ), g∗(T )

with the one neglecting it, i.e. assuming that gS and g∗ have always remained constant and

equal to today’s values, also in the past. Using a(T ) = (a0 T0/T )(g0
S/gS(T ))1/3, ρrad(T ) =

(π2/30)g∗(T )T 4, and identifying at horizon crossing k = H(Tk) =
√

8πG/3 ak
√
ρrad(Tk),

one obtains that the amplitude of the tensor mode with wave-number k is suppressed as

hr(k, η0)|ḡ
hr(k, η0)|g0

' (ak/a0)|ḡ
(ak/a0)|g0

=
Tk|g0

Tk|ḡ

(
g0
S

ḡS

)1/3

=

(
g0
S

ḡS

)2/3(
ḡ∗
g0∗

)1/2

, (5.55)

where the notation is such that |ḡ means a quantity accounting for the change in the effective

number of relativistic species, while |g0 neglecting it. For the energy density this leads to

ρGW(k, η0)|ḡ
ρGW(k, η0)|g0

'
(
g0
S

ḡS

)4/3(
ḡ∗
g0∗

)
. (5.56)

Here we assumed a sudden decrease of gS and g∗ at T̄ , but actually gS(T ) and g∗(T ) decrease

continuously during the radiation dominated era for T > 0.1 MeV. Therefore, the reduction

in the tensor amplitude and energy density of a given mode k is stronger, the earlier the mode

enters the horizon. As a consequence, the energy density spectrum today is no longer scale

invariant for modes that entered the horizon in the radiation era, as we have found above

neglecting this effect (and assuming pure de Sitter, c.f. Eq. (5.52)). If one accounts for the

change in the effective number of relativistic degrees of freedom, the tensor energy spectrum

today decreases with k, as shown for example in Fig. (4) of [202].

A more exotic scenario that leads in fact to an enhancement of the GW energy density,

is the presence of a stiff component in the evolution of the universe, i.e. a component with

equation of state parameter w > 1/3 [203,205,210–213]. If such a fluid is present in the early

universe it would dominate over radiation at sufficiently early times, since the scale factor

for a stiff component increases slower than radiation, a(η) ∝ η2/(3w+1) with 2/(3w + 1) < 1
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for w > 1/3 (and we know that at some point radiation must have dominated the universe).

Clearly, a stiff component can only play a relevant role before BBN, when no constraint is

present on the evolution of the universe. It can drive the expansion of the universe only for

a finite amount of time, at some point between the end of inflation and the onset of BBN.

During this phase, the amplitude of a GW background increases with respect to the standard

radiation-dominated scenario. In fact, comparing the GW amplitudes in the two regimes as

done previously, one obtains (note that k � a0H0)

hwr (k, η0)

hrad
r (k, η0)

' awk
arad
k

' Ω
1

3w+1

stiff√
Ωrad

(
a0H0

k

) 1−3w
3w+1

> 1 for w >
1

3
, (5.57)

where Ωstiff denotes the energy density parameter for the stiff fluid today, and we have used

arad
k = H0

√
Ωrad a

2
0/k and

awk = H
2

3w+1

0 a
3(1+w)
3w+1

0 Ω
1

3w+1

stiff k−
2

3w+1 . (5.58)

Note that ηk = [2/(3w + 1)k]2/(3w+1). Furthermore, the GW energy density power spec-

trum becomes strongly blue-tilted, as opposed to the quasi-scale invariant case of the modes

crossing during the radiation dominated era (c.f. Eq. (5.52)). In order to evaluate the

GW energy density spectrum today for the modes that crossed the horizon during the

stiff era, let us first define kRD = aRDHRD, as the comoving horizon scale at the onset

of radiation-domination, when the stiff fluid just became sub-dominant. The background of

GWs is enhanced for the modes k > kRD that crossed before the end of the stiff period.

Substituting T ′(k, η0)2 ' k2(ak/a0)2 derived from (5.54) in Eq. (5.49), using Eq. (5.58) in

(ak/a0)2 = (kRD/k)4/(1+3w)(aRD/a0)2, and using (aRD/a0)4 = Ωrad(H0/HRD)2, we obtain

ΩGW(k) =
Ωrad

12
Ph(k)

(
k

kRD

) 6w−2
3w+1

for k > kRD . (5.59)

The blue-tilted scaling as ΩGW ∝ (f/fRD)(6w−2)(3w+1) for f > fRD, represents a strong

enhancement of the short-wave modes of the inflationary background, and opens up the

possibility of direct detection of a SGWB of inflationary origin. The standard vacuum

contribution from inflation for modes entering during the period of radiation-domination,

ΩGW

∣∣
rad

= Ωrad
12 Ph(k), is way below the sensitivity of present and future GW observatories
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as PTA, LISA, and advanced LIGO/Virgo, c.f. Fig. 4.1 and section 4.4. The enhancement

ΩGW

∣∣
stiff

/ΩGW

∣∣
rad

= (f/fRD)(6w−2)(3w+1) is larger the bigger the frequency, and the later the

phase of radiation-domination is established. If the stiff period lasts until just before BBN, say

with fRD ∼ 10−10 Hz, the enhancement at the LISA frequencies fLISA ∼ 10−3 Hz, can be quite

significant for a super stiff phase with w ' +1, as ΩGW

∣∣
stiff

/ΩGW

∣∣
rad

= (fLISA/fRD) ∼ 107.

For an inflationary model with energy scale saturating the upper bound determined by CMB

anisotropies, H ≤ Hmax ' 9 · 1013 GeV, ΩGW

∣∣
rad

= Ωrad
12 Ph(k) ∼ 5 · 10−16, and hence

ΩGW

∣∣
stiff

(f ' fLISA) ∼ 5 · 10−9, way above the sensitivity of LISA ΩGW(f ' fLISA) & 10−13.

As mentioned above, in our previous discussions we have neglected the presence of late-

time acceleration (see e.g. [204, 214]). Using solution (5.54), we can approximately quantify

the difference in the GW solution today accounting (quantities denoted with superscript

Λ) and not accounting (quantities denoted with superscript m) for late-time acceleration.

Without accounting for late-time acceleration, the scale factor at horizon crossing is given by

amk = H2
0 Ωm

mat a
3
0 (ηmk )2/4, with ηmk = 2/k: in this case, one must set Ωm

mat = 1 today if one

assumes spatial flatness (note that we are neglecting the residual presence of radiation in the

late time universe). When accounting for late-time acceleration, the solution for the scale

factor does not have an explicit analytic form; however, before the effect of the cosmological

constant becomes relevant, it is well approximated by the same solution as above, accounting

in this case for the fact that h2Ωmat = 0.14 today: aΛ
k ' H2

0 Ωmat a
3
0 (ηΛ

k )2/4 and again

ηΛ
k ' 2/k. A numerical evaluation indicates that this solution is valid approximately until

ηΛ ' 8000 Mpc, corresponding to z ' 2.7 and kΛ ' 2.5 · 10−4 Mpc−1. The ratio of the GW

solution today accounting and not accounting for late-time acceleration, becomes then (using

ak = k/Hk, and normalising both solutions such that aΛ
0 = am0 = 1)

hΛ
r (k, η0)

hmr (k, η0)
' aΛ

k

amk
=
Hm
k (ηmk )

HΛ
k (ηΛ

k )
=

√
(1/amk )3

√
Ωmat/(aΛ

k )3 + ΩΛ

(5.60)

'





Ωmat if k > kΛ

1√
ΩΛ

(
k
H0

)3
> 1 if k < kΛ

It appears that the GW solution for the modes that enter the horizon well in the matter era,

i.e. before the moment when dark energy becomes relevant, is suppressed by a factor Ωmat '

0.3, when accounting for late-time acceleration [204, 214]. This is however a calculation
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artefact, since we are obliged to set Ωm
mat = 1 if we neglect the cosmological constant but

still assume spatial flatness. On the other hand, the modes that enter the horizon after the

onset of the accelerated phase, have tensor amplitudes enhanced with respect to the case

neglecting late-time acceleration; furthermore, the energy density power spectrum is changed

to ΩGW(k) ∝ k4 instead of the usual k−2 dependence given for example in Eq. (5.52). Note

however that the approximation Ωmat/(a
Λ
k )3 + ΩΛ ' ΩΛ is really crude: a numerical solution

shows that in reality the transition occurs very gradually and it is, in fact, still taking place

today. The solution given in Eq. (5.60) for k < kΛ, as well as the claim that ΩGW(k) ∝ k4,

must be therefore considered only as indicative. Furthermore, a numerical evaluation also

shows that wave-numbers around the horizon today, with k0 = 2.2 · 10−4 Mpc, have already

started exiting the horizon due to the onset of the accelerated expansion. For those, the

above solution clearly does not apply9.

Let us note that in all our derivations so far, we have neglected the presence of free-

streaming neutrinos. Their contribution however must be taken into account. After they

decouple, neutrinos are no longer in thermal equilibrium with the rest of the universe, and

start to stream freely. Consequently, they cannot be described as a perfect fluid, and hence

they develop certain out-of-equilibrium terms in their energy momentum tensor, including a

tensor anisotropic stress. It is the presence of tensor perturbations in the metric that sources

a tensor anisotropic stress in the neutrino fluid, analogously to what happens for an imperfect

fluid with shear viscosity ν, which develops a tensor anisotropic stress as ΠTT
ij = −νḣij . In

the case of neutrinos, Ref. [216] has worked out the expression for ΠTT
ij which, once inserted

into the evolution equation for tensor modes (2.51), gives an integro-differential equation for

the tensor perturbation,

h′′ij(k, η) + 2Hh′ij(k, η) + k2hij(k, η) = (5.61)

− 24
ρν
ρ̄
H2

∫ η

ην

dτ

[
j2(k(η − τ))

k2(η − τ)2

]
h′ij(k, τ) ,

where ρν and ην denote respectively the background neutrino energy density and the time

of neutrino decoupling, and ρ̄ is the background energy density. This equation can be solved
9Note that also Ref. [215] tackles the problem of the effect of the cosmological constant on the GW

transfer function, but assumes an instantaneous transition between the matter dominated phase and a de
Sitter expansion.
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numerically, as done e.g. in [201,202,208,216], to infer the detailed effect of the free-streaming

neutrinos on the tensor energy density power spectrum today: see e.g. Fig. 2 in [208]. However

some features of the solution can be appreciated by directly looking at Eq. (5.61). First of

all, the minus sign on the right hand side confirms that the overall effect is a damping of the

amplitude of the inflationary tensor modes, and hence of the energy density power spectrum,

see e.g. Fig. 2 in [208] or Fig. 4 in [202]. Secondly, free-streaming neutrinos only affect modes

that are inside the horizon, as outside the horizon we expect h′ij = 0 for the inflationary GW

background. In other words, the effect from free streaming neutrinos respects, as it should,

causality. On the other hand, the source term on the r.h.s. of (5.61) is proportional to H2,

meaning that modes that are inside the horizon k � H at the onset of neutrino decoupling,

are not altered by neutrino free-streaming. Furthermore, the source term is proportional to

the ratio of the neutrino energy density to the one of the background universe. As long as

the universe is radiation dominated this remains constant, but starts decaying after the onset

of matter domination: consequently, the effect of neutrino viscosity is largely suppressed for

modes that enter the horizon during the matter dominated era. To summarise, neutrino

free-streaming leads to a damping in the GW energy density power spectrum of about ∼

35% [202], for modes that enter the horizon between the time of neutrino decoupling and the

time of matter-radiation equality, i.e. 10−17 Hz . f . 10−11 Hz.

Finally, let us also notice that in our previous derivations, the period of reheating has

not been modeled in any detail: the transfer function in Eq. (5.47) assumes an instantaneous

transition directly from the inflationary to a radiation dominated era. However, if the scale

of inflation is sufficiently low, scales entering the horizon at reheating time could fall in the

sensitivity range of Earth- or Space-based detection: in this case, a more refined modeling

becomes necessary. This can go from the standard accounting for inflaton oscillations around

the minimum of its potential (corresponding to a matter-dominated phase if the inflaton

potential is quadratic at the minimum) before the universe gets thermalised [204], to more

complicated scenarios where other fields, interacting or not with the inflaton, are present, see

e.g. [206–208,217].



Chapter 6

Gravitational wave background from

first order phase transitions

This chapter represents the core of the dissertation, and analyses the GW signal from first

order PTs in the early universe. The first section is taken from the review [15], and summarises

several aspects of the problem: the occurrence of primordial first order PTs, the shape of the

generated SGWB, its main parameters, the processes sourcing it. This section is meant as

a relatively concise introduction to facilitate the reading of the following ones. The section

ends with two examples of SGWB spectra from first order PTs, compared with the sensitivity

curve of LISA (figure 6.1). Both the spectral shape and the sensitivity curve are the most

accurate, given the state of the art of the research in this topic.

The following four sections include four publications. The preamble to each section puts

the article into context, summarises its main results, presents related future projects. The

article in section 6.2 derives analytically the SGWB from MHD turbulence in the aftermath

of a first order PT. Three articles then follow, each analysing the possibility of detection

of the SGWB signal by different GW observatories: LISA in section 6.3, PTA in section

6.4, and CE in section 6.5. Depending on the frequency range in which they are operating,

these detectors probe PTs occurring in different epochs of the universe’s evolution. LISA can

probe the electroweak symmetry breaking, and higher energies up to about 103 TeV. PTA

can probe the QCD phase transition, occurring at an energy scale of 100 MeV. CE, on the

other hand, is sensitive to hypothetical PTs at very high temperatures, from about 104 to

1010 GeV. There is no theoretical guidance on the nature of these speculative PTs: therefore,

105
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a positive detection would be a major theoretical breakthrough.

The articles presented in sections 6.2 to 6.5 have been written at different stages of my

research, the oldest being from 2009. Therefore, some aspects may vary, both amongst

them and when compared to the first part of the chapter, section 6.1, because the research

has progressed in the meanwhile. This concerns for example the sensitivity curves of the

instruments, the role of sound waves in generating GWs, the amount of MHD turbulence

developing. Some aspects are still the object of ongoing research: when this is the case, it

is specified in the preamble to the section. Since the papers are self-contained, there are

repetitions e.g. in the definition of the parameters and of the GW spectral shapes.

6.1 Summary

In the course of its adiabatic expansion, the universe might have undergone several phase

transitions (PTs) driven by the temperature decrease. There are a variety of processes related

to primordial PTs that can lead to the production of a SGWB, and often a relic SGWB is

the only observable remaining after the occurrence of a PT, which can bring us relevant

information on the PT nature. Topological defects for example, stable configurations of the

field(s) undergoing the PT that can be left over after a spontaneous symmetry breaking, can

be a powerful source of a SGWB (see e.g. section 9 of [15]). In the following, we concentrate

specifically on SGWB generation by processes which are related to the occurrence of first

order PTs.

First order PTs are characterised by the appearance of a barrier in the potential of the

order parameter that is driving the PT, separating the false, symmetric vacuum from the true,

symmetry-breaking one, which becomes more energetically favourable as the temperature

decreases. In order for the field to reach the true vacuum, the potential barrier must be

overtaken by quantum tunnelling or thermal fluctuations. In real space this corresponds

to the nucleation of bubbles of the true vacuum in the space-filling false one. The bubbles

then expand due to the pressure difference acting on their walls. As the bubbles expand,

the free energy contained in the false vacuum is released. In the idealised case of a PT

occurring in empty space, the released energy can only be converted into gradient energy of

the bubble walls, which accelerate up to the speed of light. More realistically, since the PT

is occurring in the early universe, space is filled with the primordial plasma; the greatest
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part of the released energy is then converted into thermal energy, raising the temperature of

the surrounding plasma. Moreover, part of the energy still goes into gradient energy of the

bubble walls. However, since the field driving the transition is very likely coupled to the other

fields present in the plasma, part of the released energy is also transferred to bulk motion of

the surrounding fluid.

Both the field energy momentum tensor representing the gradient energy stored in the

expanding bubble walls and the fluid energy momentum tensor representing the kinetic energy

of the bulk plasma motions do in general have a non-zero anisotropic stress component in

their space-space part Πij (c.f. Eq. (2.52)). If this latter is of the tensor type, it can act as a

source of GWs (see Eq. (2.51)).

Note, however, that spherically symmetric expanding bubbles cannot produce gravita-

tional radiation since the transverse and traceless part of the energy momentum tensor of a

radial distribution of field gradients, or of velocity fields, is identically zero (c.f. e.g. Appendix

A of [7]). GW production occurs since, towards the end of a first order PT, the true vacuum

bubbles collide and convert the entire universe to the symmetry-broken phase. The collisions

break the spherical symmetry of the bubble walls and of the bulk fluid velocity configura-

tion surrounding them, generating a non-zero tensor anisotropic stress which actively sources

GWs.

The fact that a first-order PT occurring through the nucleation of broken phase bubbles

can be a source of GW, has been first pointed out in the seminal works [218, 219]. Here the

GW signal was estimated using dimensional arguments and the quadrupole approximation;

subsequent analyses performed numerical simulations of the collision of bubbles in vacuum,

in order to give a more accurate prediction of the GW signal [220, 221], and generalized the

problem also to PTs happening in a thermal environment [222].

6.1.1 Occurrence of first order phase transitions in the early universe

The nature of the primordial PTs depends on the particle theory model describing the universe

at high energy. Our present knowledge of high energy physics indicates that there must have

been at least two PTs in the early universe: the electroweak one and the QCD one. At

temperature higher than the one probed by the Large Hadron Collider (LHC), corresponding

to the electroweak symmetry breaking, there is no experimental guidance to indicate what
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is the most appropriate particle theory model, and the physical picture is open to several

hypothesis.

In the standard model of particle physics (SM), the electroweak phase transition (EWPT)

is a cross-over, and it is not expected to lead to any appreciable cosmological signal (see

e.g. [223–227]). However, deviations from the SM in the Higgs sector or the introduction of

additional fields (for example because of supersymmetry) can modify the order of the EWPT

with respect to the SM scenario. The discovery of the Higgs boson at the LHC confirms

the paradigm of a scalar field-driven symmetry breaking in the early universe [228], and

there is yet no indication of new physics near the EW energy scale. However, the order of

the EWPT is not constrained by LHC data: several models leading to a first order EWPT

remain viable and complying with LHC bounds. A review of these models, that can provide

interesting SGWB signals in the LISA frequency band, is presented in the second part of the

article constituting section 6.3. Besides a SGWB, these extensions of the standard model can

provide dark matter candidates, baryogenesis, and can also alleviate the hierarchy problem

(see e.g. [229–235]).

The QCDPT is also predicted to be a cross-over by lattice simulations run at zero baryon

and charge chemical potentials (in the absence of lepton and baryon asymmetries) [236].

However, the lepton asymmetry is very poorly constrained in the early universe, since it

could be hidden in the neutrino sector. It has been claimed that ‘large’ lepton asymmetry,

still compatible with present constraints, might affect the dynamics of the QCDPT in a way

to render it first order in the early universe [237]. A viable test of this hypothesis would

be the detection of the GWs thereby emitted, as analysed in the article presented in section

6.4. Note that the energy scale of the QCDPT implies SGWB signals emitted in the PTA

frequency band.

Alternatively, there are various extensions of the SM that predict strong first-order cos-

mological PTs not tied to the EW or QCD scales. Models solving the hierarchy problem

via warped extra dimensions, as the Randall-Sundrum one, are a promising example in what

concerns the production of a detectable SGWB, as demonstrated in section 6.3. There, we

also discuss other scenarios, in which the dark matter is a stable bound state of a confining

dark sector, often without interaction with the (beyond-)SM visible sector, except gravita-

tionally. PTs in the dark sector can be of first order, giving rise to a SGWB just as do PTs



6. Gravitational wave background from first order phase transitions 109

in scenarios interacting and/or extending the SM [238].

In general, the detection of a SWGB would provide a neat probe of the occurrence and

the nature of cosmological first order PTs, bringing new information on the underlying high

energy theory describing the primordial universe.

6.1.2 Relevant parameters entering the SGWB signal

The GW signal from first order PTs only depends on a few parameters that determine the

evolution of the broken phase bubbles (for example their size at collision and their wall speed)

and the amount of energy which is available to source the GWs, i.e. the tensor anisotropic

stresses (which depend on the strength of the PT and the coupling of the field undergoing

the transition with the particles in the primordial universe plasma). The values that these

parameters can take depend on the characteristics and the particle nature of the PT, but

the GW signal can be described in terms of them in a phenomenological, practically model-

independent way. The following of this section presents, in more detail, section 1.1 of the

work constituting section 6.3.

Relevant for the GW production is T∗, the temperature of the thermal bath at the time t∗

when GWs are produced, i.e. towards the end of the PT when bubble collision occurs (from

now on, a subscript ∗ denotes a quantity at the time of GW production). For PTs without

significant supercooling and reheating, this is approximately equivalent to the nucleation

temperature, T∗ ≈ Tn. The nucleation temperature is the one at which the probability

of nucleating one bubble per horizon volume is of order one. This is determined by the

nucleation rate (see e.g. [239])

Γ(t) = A(t)e−S(t) , (6.1)

where A is a pre-factor with unit of energy to the fourth power, and S is the Euclidean

action of a critical bubble [240, 241]: either S4, given by the O(4)-symmetric solution for

vacuum transitions, or S3/T , given by the O(3)-symmetric bounce solution for transitions at

finite temperature. One can define an approximate inverse time duration of the PT β as the

rate of variation of the bubble nucleation rate (accounting for the fact that most of the time

variation of Γ(t) is in S(t))

β ≡ − dS

dt

∣∣∣∣
t∗

' Γ̇

Γ

∣∣∣∣∣
t∗

. (6.2)
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The ratio of the PT inverse duration β and the inverse characteristic rate of expansion of the

universe at the PT time H(T∗), is a fundamental parameter for the GW signal, as we will

see:
β

H∗
= T∗

dS

dT

∣∣∣∣
T∗

. (6.3)

This parameter fixes R∗, the size of the bubbles towards the end of the PT: if vw is the

bubble wall speed, in the rest frame of the fluid and far away from the bubble, one has

simply R∗ ' vw/β.

The strength of the PT is characterised by the ratio of the vacuum energy density released

in the transition to the radiation energy density in the universe at the moment of the PT

(this parameter is defined in the literature also in terms of the latent heat, instead of in terms

of the vacuum energy)

α =
ρvac

ρ∗rad

. (6.4)

Note that, if the supercooling is large and the PT effectively occurs in vacuum, it must be

characterised also by a consistent amount of reheating, in order to restore the universe in a

thermal state after its completion. In this case, one expects Tn � Treh ' T∗, and the above

definitions must be changed accordingly [12]:

β

H∗
=
H(Tn)

H∗
Tn

dS

dT

∣∣∣∣
Tn

, α =
ρvac

ρrad(Tn)
. (6.5)

In this case, the nucleation temperature can be many orders of magnitude smaller than the

energy scale corresponding to the VEV at the minimum of the potential. However, the

relevant temperature for the GW generation remains T∗ ' Treh; and if the reheating process

is sufficiently fast, one also has H(Tn) ' H∗.

As previously mentioned, the amplitude of the GW signal depends on the amount of

energy which is available to source the GWs. The source can be in various forms, depending

on the properties of the phase transition. In the most common cases, the PT occurs in

a thermal environment, and the largest part of the free-energy liberated by the bubbles is

converted into heat, which does not lead to any GW production. However, the PT proceeds

through bubble nucleation and therefore some fraction of the free-energy also sets the bubble

walls into motion. Towards the end of the phase transition, the bubbles collide and a non-
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zero tensor anisotropic stress is generated, which acts as a source of GW. The anisotropic

stress can be from the gradient energy of the bubble walls, or from the bulk motion that

are set in the fluid by the bubbles sweeping through (provided the field performing the PT

is coupled to the surrounding plasma). There are therefore two relevant parameters for the

GW generation, the fraction of vacuum energy that gets converted into gradient energy of

the Higgs-like field, and into bulk motion of the fluid, respectively:

κφ =
ρφ
ρvac

, κv =
ρv
ρvac

. (6.6)

Note that if the PT is characterised by a large amount of supercooling, and it is therefore

effectively happening in vacuum, the free-energy liberated by the bubbles is converted only

into gradient energy of the bubble walls, and in this case one has simply κφ ' 1.

6.1.3 General properties and frequency shape of the SGWB spectrum

It is easy to obtain a rough estimate of the GW amplitude, which shows how it scales with the

duration and the tensor anisotropic stress of the GW source (see e.g. [7]). Let us suppose that

the process leading to the tensor anisotropic stresses has a typical duration corresponding

to the PT duration 1/β, and that this is less than one Hubble time: β/H∗ > 1. Under

these hypotheses, the usual equation for GW production, Eq (2.51), provides the scaling

β2h ∼ 16πGΠ, where h denotes the amplitude of the tensor perturbation, Π the tensor part

of the energy momentum tensor of the source, and we inserted 1/β as the characteristic time

on which the perturbation is evolving (we have dropped indices for simplicity). This suggests

that ḣ ∼ 16πGΠ/β, and the GW energy density at the time of production can then be

estimated as (c.f Eq. (3.13)) ρ∗GW ∼ ḣ2/(32πG) ∼ 8πGΠ2/β2. Dividing by the total energy

density in the universe ρ∗tot = 3H2
∗/(8πG) at the time of GW production, one has

ρ∗GW

ρ∗tot

∼
(
H∗
β

)2 ( Π

ρ∗tot

)2

. (6.7)

The above equation shows that the GW energy density scales like the square of the ratio

of the GW source duration and the Hubble time, and the square of the ratio of the energy

density in the source and in the universe at the source time. Using Eq. (3.30), the amplitude
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of the SGWB today becomes

h2 ΩGW ∼ 1.6× 10−5

(
100

g∗(Tp)

)1/3 (H∗
β

)2( κα

1 + α

)2

(6.8)

where, to rewrite Π/ρ∗tot, we have used ρ∗tot = ρ∗rad+ρvac, the definition of α given in Eq. (6.4),

and we have set κ ∼ Π/ρvac, where κ can be either of the parameters defined in (6.6). As a

rule of thumb, a GW signal above the sensitivity of a future interferometric detector like LISA

(h2ΩGW & 10−12) can be generated if (H∗/β)(Π/ρtot)∗ & 3 × 10−4. Therefore, detectable

signals arise from very energetic processes, which involve a sizeable fraction of the total energy

density in the universe, and at the same time slow processes, which minimise the value of

β/H∗.

As mentioned above, the processes leading to the production of the SGWB operate to-

wards the end of the PT, since they are related to the collision of bubbles. The characteristic

wave-number k∗ of the SGWB generated by these processes, i.e. the wave-number at which

one expects the SGWB to peak, corresponds to the inverse typical time or length scale of the

problem: in this case, either to the duration of the PT or to the bubble size, k∗/a∗ ' 2π β

or k∗/a∗ ' 2π/R∗ ' 2π β/vw, depending on the details of the source (note that we are

equating the comoving wave.number k∗ to physical quantities as β and R∗, therefore we in-

troduce the factor a∗). If the growth of the bubble proceeds at a highly relativistic speed,

the two time/length-scales are equal. Setting e.g. k∗/a∗ ' 2π β, and using Eq. (3.31) with

xk = 2π β/H∗, one obtains the following order of magnitude estimate for the characteristic

frequency today:

f ∼ 1.6× 10−5 Hz
β

H∗

(
g∗(T∗)

100

) 1
6 T∗

100 GeV
. (6.9)

Since at the end of the PT one expects the entire universe to be converted to the broken

phase, in general the PT must complete faster than a Hubble time, so that β/H∗ > 1.

From Eq. (6.9) it appears that the characteristic frequency of GW emitted around the EW

symmetry breaking at 100 GeV falls in the frequency range of LISA [130] for values 1 .

β/H∗ . 105 (c.f. section 6.3). As another example, we see from the above formula that GW

production at the QCDPT at T∗ ' 100 MeV can fall into the frequency range of detection

with pulsar timing array, since f ≥ 10−8Hz (c.f. section 6.4). The precise value of β/H∗ has

to be determined in the context of a given model for the first order PT.
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The slope of the GW spectrum at wave-numbers smaller than the Hubble radius at the

time of production, k < a∗H∗, can be determined on general grounds, valid for any transient

stochastic source after inflation. It is a consequence of the fact that the causal process (the

PT) generating the GW signal cannot operate on time/length-scales larger than (a∗H∗)−1.

Therefore, the anisotropic stresses Πij(k, t) sourcing the metric perturbations in Eq. (2.51)

are not correlated for k < a∗H∗, and the anisotropic stress power spectrum Π(k, η, ζ) (c.f.

Eq. (3.33)) is expected to be flat in k (white noise) up to the wave-number k∗. Eq. (3.41), valid

in the radiation era, then shows that the spectrum of GW energy density per logarithmic

frequency interval must grow as k3 at these large scales k < a∗H∗ ' 1/ηin. Thus, it is a

general result, for SGWBs produced by a first order PT, that the infrared tail of the present-

day GW spectrum behaves as h2ΩGW ∝ f3 for scales that were super-Hubble at the time of

production [8].

Note that at sub-Hubble scales H∗ < k < k∗, the SGWB spectrum may also continue to

grow as f3 until the characteristic frequency f∗ = k∗/(2π): the inverse typical time or length

scale of the problem, determining k∗, can also play the role of a maximal correlation scale,

so that the anisotropic stress power spectrum remains uncorrelated, white noise, for every

k < k∗, and the above argument applies. However, the details of the time dependence of

the anisotropic stress power spectrum can also play a role in this frequency range, modifying

the expected k3 slope, while this cannot happen for super-Hubble modes. While often the

case, it therefore cannot be taken for granted that h2ΩGW ∝ f3 for f < f∗, and there are

exceptions (MHD turbulence being one of these, as we will see).

For k > k∗, the GW power spectrum decays with a slope that depends on the details of

the process sourcing the SGWB, and no general consideration is possible, a part from the

fact that the total ρGW, c.f. Eqs.(3.13) and (3.41), must be finite when integrated on the

interval 0 < k <∞.

As mentioned earlier, the anisotropic stresses acting as a source of GW can be relative

to the gradient energy of the bubble walls, or to the bulk motion in the surrounding fluid.

We now proceed to describe the SGWBs due to the sources acting during a first order PT:

the results of the following sections overlap with those of section 2.1 of the work constituting

section 6.3, but they are presented here in more detail.
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6.1.4 Contribution to the SGWB from the scalar field driving the PT:

bubble wall collisions

The GW production due to the collision of the bubble walls is the easiest to model because,

since the seminal paper [221], it is estimated using the ‘envelope approximation’. This con-

sists in numerically simulating the motion of the bubble walls as a propagation of spherical,

infinitely thin shapes instead of using the Klein-Gordon equation to evolve the scalar field.

In this approximation, the gravitational radiation is sourced only by the TT part of the

energy-momentum tensor of the uncollided envelope of the spherical bubbles, ignoring the

interaction region: this greatly simplifies the numerical simulation since it dispenses with the

detailed dynamics of the scalar field and reduces the required computational power.

The validity of the envelope approximation has been asserted in [221, 222] for the case

of strongly first order PTs happening both in vacuum and in a thermal environment, if

they proceed through detonation (i.e. at supersonic speed [242]). In these cases, the energy

momentum tensor representing the propagation of the bulk fluid motions sourcing the GW is

effectively concentrated on a thin shell near the bubble wall. The latest numerical simulations

using the envelope approximation with considerably improved numerical accuracy have been

carried on in [243, 244], providing a better determination of a larger portion of the GW

spectrum and consequently a more careful analysis of the high frequency behaviour with

respect to previous works. The resulting SGWB spectrum is1

h2Ωφ(f) = 1.67× 10−5

(
H∗
β

)2( κφ α

1 + α

)2( 100

g∗(T∗)

) 1
3
(

0.11 v3
w

0.42 + v2
w

)
(6.10)

× 3.8 (f/fφ)2.8

1 + 2.8 (f/fφ)3.8

where the peak frequency fφ corresponds roughly to the characteristic time-scale of the PT,

i.e. its duration 1/β [8]. The simulations yield [243,244]

f∗
β

=
0.62

1.8− 0.1vw + v2
w

(6.11)

1Note that, by the argument given in the previous subsection, causality should imply that at low frequency
the SGWB grows as f3. This must be the case at least for frequencies smaller than the inverse Hubble
horizon at GW production; however, f2.8 provides a better fit to the simulated result close to the peak of the
spectrum [243].
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which becomes, once redshifted to today

fφ = 1.65× 10−2 mHz

(
f∗
β

) (
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

(6.12)

(c.f. Eq. (6.9)). Besides numerical simulations [243, 244], there have been also several works

that have tried to model the SGWB spectrum from bubble collisions analytically, see [7,245,

246].

6.1.5 Contribution to the SGWB from the bulk fluid motions: sound

waves

The characteristics of the bulk flow depend on the strength of the coupling of the field driv-

ing the PT to the fluid particles: this coupling strongly influences the bubble evolution, as

demonstrated by many analyses (see e.g. [247–252]). In general, it can be assumed that the

propagation quickly reaches stability and the bubble walls expand with constant velocity vw,

which can be either subsonic (deflagration) or supersonic (detonation) (see e.g. [253] and

references therein)2. The bubble wall speed vw should be determined by a full analysis of

the microscopic interactions, of the type of those carried out in e.g. [248,256,257]. However,

from the point of view of GW production, the problem can be tackled by introducing a phe-

nomenological parameter, the friction η, and by studying the bubble evolution as a function

of this [253]. Both semi-analytical methods (see e.g. [258]) and numerical simulations (see

e.g. [259]) show that the friction modelling the interactions influences the bubble wall velocity

and the transfer of kinetic energy of the scalar field to bulk kinetic energy of the fluid [253],

which are important parameters entering the GW production rate.

The most recent and detailed numerical simulations of the full system of the scalar field

performing the transition and the surrounding fluid coupled to it via a friction parameter η

have been performed in Refs. [260–262]. These have demonstrated that compressional modes,

i.e. sound waves, are induced in the surrounding fluid by the expansion of the bubbles, due

to the coupling among the scalar field and the fluid. At bubble collisions, the sound waves

give rise to a non-zero tensor anisotropic stress that is a powerful source of GWs. Simulations

have furthermore found that the sound waves continue to act as a source of GW well after
2Note that the possibility of having runaway solutions in the electroweak PT, first put forward in [254],

has been excluded by a recent analysis [255].
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the merging of the bubbles is completed and the scalar field has everywhere settled in the

true vacuum. They remain present in the fluid until either they are damped by viscosity,

or they generate shocks. The long-lasting nature of the sound waves in the primordial fluid

enhances the GW signal by a factor β/H∗ rendering them the most relevant contribution to

the SGWB spectrum in the case of PTs which are not very strongly first order and happen

in a thermal environment [260]. Note that the fact that GW sources lasting long, more than

one Hubble time, are amplified by an extra β/H∗ factor does not contradict the result given

in Eq. (6.7), and was predicted on the basis of analytical arguments in the work presented in

section 6.2, i.e. Ref. [9].

The SGWB spectrum from sound waves, fitted from the numerical results of [261], is

given by

h2Ωsw(f) = 2.65× 10−6

(
H∗
β

)(
κv α

1 + α

)2( 100

g∗(T∗)

) 1
3

vw (6.13)

×
(
f

fsw

)3 ( 7

4 + 3 (f/fsw)2

)7/2

,

where the peak frequency is set by the characteristic size of the bubbles at the end of the

transition, and it is approximatively given by fsw ' (2/
√

3)(β/vw), which, after redshifting,

becomes3

fsw = 1.9× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

. (6.14)

6.1.6 Contribution to the SGWB from the bulk fluid motions: MHD tur-

bulence

Besides sound waves, the bubble merging could also induce vortical motions in the surround-

ing fluid, which would constitute an independent source of GW. The primordial plasma is

characterized by a very high Reynolds number (of the order of 1013 at 100 GeV and at the

typical scale of the bubbles [9]): therefore, the energy injection caused by the collision of the

bubbles is expected to lead to the formation of magneto-hydrodynamic (MHD) turbulence,

which generates GW through the anisotropic stresses of the chaotic fluid motions and of the

magnetic field. Note that the turbulence is expected to be accompanied by the presence of

magnetic fields since the early universe plasma is fully ionised and has a very high conductiv-
3Note that the most recent analysis [262] finds a somewhat smaller peak frequency of the order of fsw '

0.3(β/vw)
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ity [263,264]. Turbulence can also lead to the amplification of small magnetic fields generated

by charge separation at the bubble wall (see e.g. [265]).

In the simulations of [260–262], the vortical component of the bulk fluid motions has

been evaluated and was always largely sub-dominant with respect to the compressional one.

However, after a characteristic time τsh ∼ (vw/
√
κvα)β−1 (see e.g. [266]) one expects the

formation of shocks, that will eventually convert the acoustic signal into a turbulent one.

This happens of course only if τsh ≤ H−1
∗ , so if shocks can develop within one Hubble time.

Up to now, the numerical simulations did not simulate strong enough PTs capable of reaching

τsh within the simulation time, so predictions of the GW signal from turbulence based on

simulations are not available. However, analytical evaluations of the SGWB from MHD

turbulence exist.

The first analyses of the GW production by turbulence had some problems that led to

an overestimate of the signal [267–269] (c.f. the discussion in [11] and references therein).

The most recent analytical evaluation of GW emission from MHD turbulence generated

during a first-order PT and freely decaying afterwards is the one of [9]. This analytical

evaluation maintains a certain level of intrinsic uncertainty, for example in that it has to

rely on a theoretical turbulence model (usually, Kolmogorov turbulence is assumed) and

on a model for the time decorrelation of the GW source. This uncertainty could only be

addressed by numerical simulations of relativistic MHD turbulence. Furthermore, [9] neglects

the possibility of helical turbulence (see e.g. [270]). Under these assumptions, the resulting

contribution of MHD turbulence to the GW spectrum is [9, 11]

h2Ωturb(f) = 3.35× 10−4

(
H∗
β

)(
κturb α

1 + α

) 3
2
(

100

g∗(T∗)

)1/3

vw (6.15)

× (f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/h∗)

where

κturb = ε κv (6.16)

represents the (yet unknown) fraction of bulk kinetic energy associated to the vortical mo-

tions, as opposed to the compressional modes. Similarly to the case of sound waves, there

is an amplification by a factor β/H∗ which is typical of sources that last longer than the
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average duration 1/β of the PT. In Eq. (6.15), h∗ = 1.6 · 10−4(T∗/100 GeV)(g∗/100)1/6 mHz

is the Hubble parameter red-shifted to today: it enters also as a consequence of the fact the

turbulence acts as a source of GW for several Hubble times. Similarly to the sound wave

case, the peak frequency is connected to the inverse characteristic length-scale of the source,

the bubble size R∗ towards the end of the PT: fturb ' (3.5/2)(β/vw), which becomes, after

red-shifting,

fturb = 2.7× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

. (6.17)

6.1.7 Examples of SGWBs from a first order phase transition

In order to predict the amplitude and peak frequency of the GW signal from a specific first

order PT one has to determine the value of the few parameters entering the GW spectrum,

as shown in the previous subsections. These are the PT temperature T∗, the inverse duration

of the PT β/H∗, the bubble wall velocity vw, and the fraction of energy that contributes

to the GW generation (Π/ρtot)∗. This latter becomes the factor (κα/(1 + α)) appearing in

Eqs. (6.10), (6.13), (6.15), once translated into the two parameters representing the strength

of the PT (α, Eq. (6.4)) and the fraction of vacuum energy that gets converted into gradient

or kinetic energy (κ, Eq. (6.6)).

These parameters can only be determined within a given model of the PT, and are not all

independent among each other. In the case of a thermal phase transition, one first needs to

find the bounce solution of the three-dimensional Euclidean action S3(T ), which quantifies

the probability of thermal jumping [271]. From this, one can then calculate the fraction of

space that is covered by bubbles (neglecting overlap): T∗ can be defined as the temperature

at which this fraction is equal to one. Moreover, knowing the action S3(T ) as a function of

temperature, one can calculate β/H∗ = T d(S3/T )/dT , which has to be evaluated towards

the end of the PT to represent, as a matter of fact, the ‘duration’ of the PT4.

The bubble wall velocity vw and the fraction of energy that contributes to the GW

generation (Π/ρtot)∗ cannot in general be evaluated solely from the action S3(T ). Since

these two parameters are connected to the dynamics of the bubble expansion in the primordial

fluid, a knowledge of the total particle content and interactions of the theory is in principle
4Alternatively, it is possible to relate β to the typical bubble size at the end of the PT through vb,

〈R〉 ' 3vb/β(T ), where 〈R〉 can be estimated from the maximum of the bubble volume distribution [271].
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necessary to determine them. The bubble wall velocity vw results from the balance among

the driving force that makes the bubble expand (given by the pressure difference between

the interior and the exterior of the bubble, which is connected to the latent heat) and the

friction force due to the interaction of the bubble wall with the surrounding plasma, which

slows down the bubble expansion. The friction can either be determined in a given particle

theory model, for which all interactions are known, or it can be parametrised in terms of the

independent parameter η, providing then a phenomenological description valid for several

PT models [253]. Once vw is known, it gives the boundary condition for the hydrodynamical

description of the bubble growth.

The tensor anisotropic stress Π sourcing GW is in general given by the the sum of the

gradient energy in the Higgs-like field driving the phase transition and of the bulk kinetic

energy of the fluid set into motion by the bubble walls. This latter must be further divided

into the component due to sound waves and the one due to MHD turbulence. If the PT is

occurring in a thermal state and the friction is high, the bulk motion and the MHD turbulence

are expected to dominate Π. The simulations of [260–262] show that the contribution from

the scalar field gradient energy is largely sub-dominant. In this case, the total GW signal

is given by the sum of Eqs. (6.13) and (6.15). Moreover, it is shown in Ref. [253] that

the efficiency factor κv in Eq. (6.6), representing the fraction of vacuum energy that gets

converted into bulk kinetic energy, can be related to α (Eq. (6.4)): in the limits of small and

large vw, [253] finds

κv '





α (0.73 + 0.083
√
α+ α)

−1
vw ∼ 1

v
6/5
w 6.9α (1.36− 0.037

√
α+ α)

−1
vw . 0.1 .

(6.18)

If, on the contrary, the PT is very supercooled and friction is low, the role of the plasma

is minor, and most of the energy remains in the form of gradient energy of the Higgs-like

field. In this case, the total GW signal is given by Eq. (6.10), and furthermore, one can

consistently approximate κφ ' 1. Since the PT is very strongly first order, one has α � 1,

and the dependence on α of the SGWB in Eq. (6.10) effectively drops. It is also important

to point out that, in general, the strength of the PT α is connected with its duration β/H∗:

strong PTs last longer, leading to small β/H∗. This increases the amplitude of the GW signal,

but shifts the peak frequency to low values.
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Figure 6.1: SGWB spectra in two examples of first order PT, compared with the estimated
sensitivity curve of the interferometer LISA calculated from [130] (the red solid curve appear-
ing in both pictures, c.f. section 4.4). Left plot: the Higgs portal scenario, with parameters
α = 0.17 , β/H∗ = 12.5 and T∗ = 59.6 GeV, see [12]. The green, dashed curve represents the
GW signal from sound waves, while the blue, dotted curve represents the GW signal from
MHD turbulence, where we have taken ε = 1 (c.f. Eq. (6.16)). Right plot: PT connected
with the radion stabilization in the Randall Sundrum model, with β/H∗ = 15 and T∗ = 100
GeV, again see [12].

The article constituting section 6.3 presents a selection of PT scenarios, both related

and not related to the EW symmetry breaking, that can produce SGWBs in the frequency

range of the LISA interferometer. For each scenario there is a choice of benchmark values of

α , β/H∗ and T∗ that can be realised within the model. This allows to give predictions for

realistic GW signals, which can actually arise in well identified particle physics models.

We close this section with two examples of SGWB from first order PTs, taken from

Ref. [12]: the Higgs portal scenario, with benchmark values α = 0.17 , β/H∗ = 12.5 and

T∗ = 59.6 GeV, and the dilaton scenario, with benchmark values β/H∗ = 12.5 and T∗ = 59.6

GeV (as explained above, in this case the GW signal no longer depends on α � 1). In the

first case, we have set vw = 0.95 as done in [12], while in the second case, since the PT is

effectively happening in vacuum, we have set vw = 1. The resulting GW spectra are shown in

Fig. 6.1 together with the LISA sensitivity, taken from Ref. [130]. In the Higgs portal scenario

the SGWB is sourced by the plasma bulk motion. We therefore plot the two contributions:

the one from sound waves, Eq. (6.13), with κv given by the first line of Eq. (6.18); and the

one from turbulence, Eq. (6.15), with κturb = ε κv. Note that we have set ε = 1, since for

the adopted benchmark point τshH∗ ' 0.54 and one therefore expects the formation of MHD

turbulence. In the dilaton-like scenario, on the other hand, the PT is effectively happening

in vacuum: we are therefore plotting only Eq. (6.10), with κφ = 1. It appears that both

scenarios can provide a SGWB detectable by LISA, which could thereby help testing the
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occurrence of new physics beyond the standard model of particle physics, for models that are

still viable notwithstanding LHC constraints.

6.2 Article: Gravitational waves from MHD turbulence

The article constituting the following section presents an analytical derivation of the SGWB

from MHD turbulence arising after a PT. Even though the paper has been completed in 2009,

the result for the shape of the SGWB is still used to date: this is the reason why I considered

it worth to be included in this dissertation. The analysis improves considerably over previous

ones, however, it still contains several assumptions and approximations. On the other hand,

it probably represents just how far one cat get on this problem using analytical evaluations:

a more realistic result for the SGWB, taking into account the detailed dynamics of the MHD

turbulence, can only be obtained via numerical simulations, which are however quite difficult

to perform. This is why the research on the SGWB produced by non-helical MHD turbulence

did not undergo fundamental progresses after the work presented below appeared.

The main novelty of this work is that we accounted for the fact that MHD turbulence is

in the free-decay regime. The source of the fluid stirring is bubble collision: a quick process,

completed well within one Hubble time. We assumed that the stirring is enough to produce

fully developed Kolmogorov turbulence, in one eddy turnover time. Afterwards, the turbulent

motions are not sustained any longer, and decay according to the Kolmogorov time-decay

laws. On the other hand, performing the analysis we have discovered that, due to the very

low viscosity of the early universe fluid (which we evaluated), the free-decay is a very long

process: the MHD turbulence can therefore act as a source of GWs for many Hubble times

after the PT has ended. This influences the shape of the SGWB spectrum at large scales.

The turbulent velocity spectrum, and the one of the accompanying magnetic field, have

been modelled in this work in a more realistic way than in previous analyses, using a smooth

interpolation between large and small scales, accounting for the causality in the spatial cor-

relation function, and keeping the source continuous in time. However, the Kraichnan-type

time decorrelation, typical of turbulent fluid motions, could only be accounted for using

an Ansatz for the unequal time correlator of the anisotropic stresses: this is probably the

weakest assumption done in this work, which absolutely necessitates checking via numerical

simulations.
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In collaboration with the group of the University of Helsinki, in particular David Weir and

Mark Hindmarsh, we started a project which aims at verifying and ameliorating, via numerical

simulations, the SGWB obtained analytically. The initial conditions of the simulations are

the end results of the previous simulations done by the same group, in which sound waves

were generated. This allows to avoid simulating the initial stages of the PT, for which one has

to solve both the scalar field and the fluid equations of motion. We plan to start simulating

after the fluid configurations have reached terminal velocity and sound waves have developed,

thereby gaining simulation time. By doing so, we do not loose any precious information, since

turbulence is only expected to form in a subsequent stage, by the shocks generated at the

sound wave fronts. In principle then, the new simulations should show the formation of

shocks leading to turbulence. Moreover, together with Danièle Steer and a common master

student, we have calculated an analytical approximation for the sound wave velocity power

spectrum, tuned to the results of sound simulations. We plan to use this as well, as initial

condition for the turbulent simulations: being an analytical formula, it allows to set up the

initial conditions also for stronger phase transitions, for which the turbulence is expected to

be more important.
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1 Introduction

Cosmological observations are often a search for ‘relics’ of the early universe. Relics allow
us to infer the physics at a time when the Universe was much hotter and much denser than
today. A famous example of this is the cosmic microwave background (CMB) [1], which
literally represents a photograph of the Universe at the time when CMB photons decoupled.
Another very promising relic which has not yet been observed is a gravitational wave (GW)
background. Since GWs interact so little with matter and radiation, they propagate freely
immediately after generation and therefore allow us a direct observation of the Universe at
the time of their production. GW backgrounds have been proposed from inflation [2], from
braneworlds [3], from topological defects [4], from reheating after inflation [5] and from first
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order phase transitions [6, 7]. In this last case, which is the topic of this paper, at least three
different sources of GWs have been identified: the collisions of broken phase bubbles [8–14],
fluid turbulence [15–20] and magnetic fields [21–24]. In this paper we concentrate on the
latter two aspects which cannot be truly separated since the magnetic fields are processed
and amplified by the turbulent fluid flow.

The GW signal from a first-order phase transition has a characteristic frequency of the
order ω = c k∗a∗/a0 = ε−1H∗a∗/a0 where ε = L∗H∗/c is the size of the largest bubbles in
units of the horizon size at the transition, 1/H∗. Its value depends on the particle physics
model but for a strong first-order phase transition, we will set ε ∼ 0.01. Quite remarkably, for
a potentially first-order electroweak (EW) phase transition at T∗ ∼ 100 GeV, this frequency
is around a MilliHertz which is the frequency of best sensitivity of the planned GW satellite
LISA (Laser Interferometer Space Antenna) [25], meaning that LISA is potentially a window
on EW and TeV scale particle physics [26–28].

The main difference of our approach with earlier works is that we consider a long-
lasting, magneto-hydrodynamic (MHD) turbulent source. The collision of bubbles of the
broken phase causes an injection of energy in the primordial fluid. Since the kinetic Reynolds
number of the fluid is huge, for instance ∼ 1013 at the EW epoch (c.f. section 3.5), turbulent
motion sets in rapidly in the fluid. The magnetic Reynolds number being also very large, this
leads to the amplification of magnetic fields generated during the phase transition [29], and
MHD turbulence develops. Once the phase transition is over the source of energy injection
stops. However, MHD turbulence does not cease immediately but decays like a power law. In
previous studies [15–18, 20], the free decay of the turbulent velocity power spectrum has been
ignored: it was assumed that turbulence was active only during the completion of the phase
transition. However, since the value of the Reynolds number is very high, the dissipation is
not sudden and the fluid can remain turbulent during many Hubble times.

The power law decay in time of MHD turbulence is well established theoretically [30–35],
experimentally [36] and by numerical simulations [37–39]. However, there is no consensus
on the actual value of the power law exponent: Kolmogorov theory predicts a faster decay
than what observed in general in numerical simulations. On the other hand, both analytical
analyses and numerical simulations do agree on one point: that, in the absence of helicity,
the large scale part of the MHD turbulent spectrum is constant in time. Without inverse
cascade the energy is dissipated on the very small scales, the correlation length grows in
time, but wavenumbers much smaller than the inverse correlation length are not affected by
the evolution. This is important for MHD turbulence in the early universe. The radiation
dominated universe is characterised by a finite causal horizon, beyond which the turbulent
motions cannot be causally connected. As previously demonstrated [17, 40], the existence of
this causal horizon in a cosmological setting implies that the real-space correlation function
of the stochastic velocity field has compact support. The fact that the real-space correlation
function necessarily vanishes at large scales, together with the property of divergence freeness
satisfied by the incompressible turbulent flow and by the magnetic field, entails the formation
of a Batchelor spectrum for the turbulent velocity field and the magnetic field [17]. Namely,
taking for example the velocity field, the large scale part of the spectrum grows as Pv(k →
0) ∝ I k2, where I ∼ 〈v2〉L5 is the Loitsyansky’s integral, 〈v2〉 being the typical velocity of
the largest eddies and L their size (i.e. the largest scale on which turbulence develops, the
correlation scale corresponding to the bubble diameter in our context). Given this form of
the large scale part of the power spectrum, if it has to be constant as predicted by the theory
and observed in numerical simulations, then necessarily I must be constant in time (which

– 2 –



J
C
A
P
1
2
(
2
0
0
9
)
0
2
4

is also required by the Navier-Stokes equation) [41, 42].

In the following, we will assume that the kinetic energy 〈v2〉 and the correlation length
L evolve in such a way, as to maintain the product I ∼ 〈v2〉L5 constant. We define the power
law exponent γ such that L ∼ tγ and 〈v2〉 ∼ t−5γ . For generality, the exponent γ is kept
unspecified in the analytical formulae, but for the numerical results we substitute the value
γ = −2/7. According to Kolmogorov theory, in fact, the constancy of I together with the
energy decay equation d〈v2〉/dt ∼ −〈v3〉/L lead to the Kolmogorov decay laws: the decay
of the kinetic energy with time as 〈v2〉 ∼ t−10/7 and the growth of the correlation scale as
L ∼ t2/7 (see for example [30]). As explained in section 3.3, in the following we also assume
equipartition between the turbulent and magnetic energy densities 〈v2〉 ∼ 〈b2〉: consequently,
we assume the same decay law also for the magnetic field, i.e. 〈b2〉L5 = constant.

The value γ = 2/7 that we use in the numerical estimates has also been derived on
the basis of detailed theoretical arguments, as for example in [35]. On the other hand,
as previously mentioned, numerical simulations observe a slower decay for the kinetic and
magnetic energies, close to 〈v2〉 ∼ 〈b2〉 ∝ t−1 [37–39]. However, it is not clear whether
numerical simulations can efficiently model the conditions of MHD turbulence in the early
universe, which is characterised by the presence of a causal horizon and develops at extremely
high Reynolds number, of the order of 1013 (c.f. the discussion at the end of section 3.4).
Therefore, in our analysis we have chosen to follow the theoretical picture of ref. [35], which in
addition leads to a conservative estimate of the production of GWs: in fact, MHD turbulence
which decays slower would be active as a source of GWs for a longer time.

In the following we assume this model of free decay for the turbulence, but to this
‘absolute’ time behaviour we also add the exponential de-correlation proposed in [43], to
express the time de-correlation of the velocity field on a given scale as time goes by. We take
the characteristic de-correlation frequency on a given scale to be the eddy turnover time at
that scale, and assume a Gaussian functional form to express the dependence of the power
spectrum on time difference.

Another new point of our analysis is that the sources of GWs, turbulent kinetic energy
and magnetic field, are continuous in time. The importance of having a continuous source
and its consequences on the position of the peak of the GW spectrum have been analyzed
in [14] for a short lasting source: the collision of bubbles. Here, we analyze also the long
lasting, MHD turbulent source. In order to do so, we need to modify the Kolmogorov decay
laws, and insert an initial phase in which the proper turbulent cascade has not yet begun:
during this phase, we assume that the kinetic energy starts from zero and grows linearly in
time, up to when stirring is over and the free decay of turbulence starts. The linear increase
has been observed in MHD simulations [44], and is also satisfied in simulations of the bubble
collision source (c.f. [13, 14]). We assume that the evolution law of the stirring scale L
remains equal to the Kolmogorov decay law also during the initial phase.

Contrary to previous analyses, we also model the MHD turbulence spectrum using a
formula which smoothly interpolates between the large scale behavior, determined by causal-
ity, and the small scale one, given by the MHD cascade (see also [24]). This model gives a
more realistic estimate of the amplitude of the MHD spectrum at the peak, which in turns
determines the final amplitude of the GW spectrum. With this improved MHD spectrum, the
GW peak amplitude is more than one order of magnitude smaller than previous estimates.

The paper is organized as follows. In the next section we discuss a toy model for the
source to illustrate the difference between a short-lasting and a long-lasting source of GWs. In
section 3 we discuss the properties of the MHD turbulence, and we determine the anisotropic
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stress power spectrum from this source in section 4. We then define the time after which we
may neglect the GW source and determine the final GW spectrum in section 5. We discuss
our results in section 6 and conclude in section 7. A discussion of the fluid viscosity and
some technicalities are given in appendices for completeness.

Notation: Unless otherwise stated, we use comoving variables: t denotes conformal
time, the energy injection scale L, the Kolmogoroff microscale λ (the endpoint of the Kol-
mogoroff spectrum), and k are respectively comoving distances and wavenumber. The index ∗
indicates the time of the phase transition, while the index 0 indicates today. We normalize the
scale factor a(t0) = 1. H denotes the conformal Hubble parameter, H0 = h0100km/s/Mpc
is the Hubble parameter today, and the critical energy density is ρc = ρc(t0). The radiation
energy density parameter today is h2

0Ωrad,0 = 4.2 × 10−5. This value includes three types
of neutrinos. As we shall see, this is the relevant quantity since neutrinos (with standard
masses) are still relativistic at matter-radiation equality.

2 A stochastic gravitational wave background of cosmological origin

We consider a Friedmann universe with flat spatial sections. The tensor metric perturbations
are defined by

ds2 = a2(t)[−dt2 + (δij + 2hij)dx
idxj ] . (2.1)

In this work we want to determine the GW energy density power spectrum given by (see
e.g. [21])

dΩGW

d log k
=

k3|ḣ|2
2(2π)3Gρca2

=
k5|h′|2

2(2π)3Gρca2
, ρc = ρc(t0) , (2.2)

where ˙= d
dt and ′ = d

dx , x = kt, and the GW energy power spectrum is defined as

〈ḣij(k, t)ḣ∗ij(q, t)〉 = (2π)3δ(k− q)|ḣ(k, t)|2 . (2.3)

Here 〈· · ·〉 is an ensemble average over the stochastic process which generates the GWs. The
Dirac delta function δ(k− q) is a consequence of statistical homogeneity.

Once the source has decayed and the wavelength under consideration is inside the hori-
zon, the GW energy density simply scales like a−4. Hence the GW energy spectrum scaled
to today becomes

dΩGW

d log k

∣∣∣∣
0

=
dΩGW

d log k

∣∣∣∣
t

a(t)4 =
k5a2

2(2π)3Gρc
|h′(x)|2 , x� 1. (2.4)

To evaluate the GWs emitted by turbulent motion in the primordial fluid and by a
magnetic field we need to determine the tensor-type anisotropic stresses of these sources.
They source the evolution equation for the GW perturbations,

ḧij + 2Hḣij + k2hij = 8πGa2T
(TT )
ij (k, t) . (2.5)

In this section we consider in all generality a relativistic source, and we solve the wave
equation in two cases: a long lasting source (i.e. many Hubble times), and a short lasting one
(i.e. significantly less than one Hubble time). We introduce the transverse traceless tensor
part of the energy momentum tensor of the source as

T
(TT )
ij (k, t) = (ρ+ p)Π̃ij(k, t) so that 8πGa2T

(TT )
ij (k, t) = 4H2Π̃ij(k, t) , (2.6)
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where we denote the dimensionless energy momentum tensor with a tilde: Π̃ij(k, t) =
(PilPjm − 1/2PijPlm)T̃lm(k, t). The projection tensor PilPjm − 1/2PijPlm, with Pij = δij −
k̂ik̂j , projects onto the transverse traceless part of the stress tensor. Π̃ includes any time
dependence other than the basic radiation-like evolution. We assume that the source is ac-
tive only during the radiation-dominated era, where p = ρ/3. During adiabatic expansion
g(Ta)3 = constant so that

ρ(t) =
ρrad,0

a4(t)

(
g0

g(t)

)1/3

and a(t) ≈ H0 Ω
1/2
rad,0

(
g0

g(t)

)1/6

t (2.7)

where g(t) is the number of relativistic degrees of freedom at time t.

2.1 Long-lasting source

Let us first concentrate on the more general case of a long lasting source. To solve eq. (2.5)
we set H = 1/t, neglecting changes in the number of effective relativistic degrees of freedom.
In terms of the dimensionless variable x = kt eq. (2.5) then becomes

h′′ij + 2
h′ij
x

+ hij =
4

x2
Π̃ij . (2.8)

We consider a source that is active from time tin to time tfin, which in the long lasting case
can span a period of many Hubble times. For t > tfin, we match the solution of the above
equation to the homogeneous solution, Π̃ij = 0. Assuming further that we are only interested
in modes well inside the horizon today, x � 1, the resulting GW energy power spectrum
becomes

∣∣h′(k, x > xfin)
∣∣2 =

8

x2

∫ xfin

xin

dx1

x1

∫ xfin

xin

dx2

x2
cos(x2 − x1)Π̃(k, x1, x2) x� 1 , (2.9)

x1 = kt1, x2 = kt2, and Π̃(k, x1, x2) denotes the unequal time correlator of the source,

〈Π̃ij(k, t1)Π̃∗ij(q, t2)〉 = (2π)3δ(k− q)Π̃(k, kt1, kt2) . (2.10)

With eq. (2.4), the power spectrum of the GW energy density parameter for a long-lasting
source which is active between tin and tfin in the radiation era is then given by

dΩGW

d log k

∣∣∣∣
0

=
4 Ωrad,0

3π2

(
g0

gfin

)1/3

k3

∫ xfin

xin

dx1

x1

∫ xfin

xin

dx2

x2
cos(x2 − x1)Π̃(k, x1, x2) . (2.11)

This result is completely general for modes well inside the horizon today; it reduces the
computation of the GW spectrum to the determination of the unequal-time correlator of the
tensor-type anisotropic stress, Π̃(k, x1, x2).

2.2 Short-lasting source

If the source is active for a short interval of time, essentially only during the phase transition,
one can neglect the expansion of the universe during the time of action of the source, and
match the solution so obtained with the one of the homogeneous equation in which expansion
is taken into account. For this kind of source, we set tfin = tin +∆t, with ∆t/tin � 1. Solving
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the wave equation (2.5) without expansion term, amounts to neglect the time-dependence of
the factors 1/x1 and 1/x2 in eq. (2.9) or (2.11) during the active period, so that

∣∣h′(k, x > xfin)
∣∣2 =

8

x2
in x

2

∫ xfin

xin

dx1

∫ xfin

xin

dx2 cos(x2 − x1)Π̃(k, x1, x2) . (2.12)

Also this solutions applies for modes inside the horizon today. The energy spectrum now
becomes

dΩGW

d log k

∣∣∣∣
0

=
4 Ωrad,0

3π2

(
g0

gfin

)1/3

H2
in k

∫ xfin

xin

dx1

∫ xfin

xin

dx2 cos(x2 − x1)Π̃(k, x1, x2) . (2.13)

Obviously, the general long-lasting case reduces to this result if (tfin − tin)/tin � 1. Summa-
rizing:

dΩGWh
2
0

d log k

∣∣∣∣
0

= A





(
g0

gfin

) 1
3
k3
∫ xfin

xin

dx1
x1

∫ xfin

xin

dx2
x2

cos(x2 − x1) Π̃(k, x1, x2)

long-lasting source (e.g. MHD turbulence)

(
g0

g∗

) 1
3 H2

in k
∫ xfin

xin
dx1

∫ xfin

xin
dx2 cos(x2 − x1) Π̃(k, x1, x2)

short-lasting source (e.g. bubble collisions)

(2.14)

with x1 = kt1, x2 = kt2, xin = ktin, xfin = ktfin and A = 4
3π2 Ωrad,0h

2
0 .

2.3 Solutions for a simple source

In this section we analyze the difference between the GW spectrum generated by a short
lasting and a long lasting source in a simple example which can be treated analytically. We
find analytical solutions for the GW energy density spectrum (2.14). The general behaviour
of the solutions in this simple case is illuminating, as it is similar to the case of the evolving
source that we will treat in the rest of the paper (MHD turbulence).

We consider a tensor source Π̃ with an equal time power spectrum which depends on time
solely via a function modeling the turning on and off of the source: Π̃(k, t, t) ≡ Π̃(k)f2(t).
For the equal time power spectrum of the tensor source, we take a form which is motivated
by turbulence and magnetic fields, see section 4:

Π̃(K, t, t) =

(
ΩS

Ωrad

)2

L3S(K)f2(t) , (2.15)

where ΩS denotes the (radiation like) energy density of the source normalised to the critical
energy density today (so that the ratio ΩS/Ωrad is time-independent), K = Lk/2π is a
dimensionless wavenumber, L is a characteristic scale of the problem, and S(K) models the
scale dependence of the source. The continuous function f(t) vanishes at both, tin and tfin

and describes the switching on and off of the source. The source is active during the time
interval tfin− tin, which can be long or short compared to the initial Hubble time, H−1

in = tin.
As shown in ref. [14], the time continuity in switching the source on and off can be

relevant for the GW spectrum. Inspired by results from numerical simulations of bubble
nucleation during a first order phase transition [10, 13], we choose the function f(t) to be
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Figure 1. The function modeling the time dependence of the source used in section 2.3, eq. (2.16).

continuous but not differentiable at the initial and final times. The effect of this choice on
GW spectra for short duration sources is discussed in ref. [14]. Here we shall also study its
effect on sources of long duration. We set (see figure 1)

f(t) =





0 if t ≤ tin
2(t−tin)

∆t if tin ≤ t ≤ tin + ∆t/2
1 if tin + ∆t/2 ≤ t ≤ tfin −∆t/2
2(tfin−t)

∆t if tfin −∆t/2
0 if t ≥ tfin .

(2.16)

For a short lasting source, ∆t is also the duration of the source (c.f. section 2.2 and ref. [12]),
while a long lasting source is typically active for a much longer period of time, and ∆t is the
characteristic time of turning on and off. As we show below, the effect of introducing time
continuity on the resulting GW spectrum is relevant only in the ‘coherent’ case (see figure 3).
In this case, the power at small scales is less than for a discontinuous source.

To compute the solution according to eq. (2.14), we need the source power spectrum
at unequal times Π̃(k, t1, t2). In this section, we consider two different possibilities for the
unequal time correlators, the incoherent and the totally coherent approximations, which we
discussed also in the case of GWs generated by bubble collisions [12]. In section 3 we will
compare these approximations with the ‘top hat’ ansatz [12], which turns out to be more
realistic for the case of MHD turbulence.

• Incoherent approximation: the source is correlated only for t1 ' t2
Π̃(K, t1, t2) = Π̃(K, t1, t1)δ(t1 − t2)∆t f2(t1) . (2.17)

Here ∆t plays also the role of a very short characteristic time, over which the source
remains ‘coherent’. With this ansatz the time integration in (2.14) is simple, and we
obtain the following result for the GW energy spectrum:

dΩGWh
2
0

d log k

∣∣∣∣
0

=
4Ωrad,0h

2
0

3π2

(
ΩS

Ωrad

)2

K3S(K)F (tin, tfin,∆t) (2.18)

where

F (tin, tfin,∆t) '





( g0

gfin

) 1
3 ∆t
tin

long-lasting,

( g0

g∗

) 1
3 (2π)2

3

(
∆t
tin

)2
short-lasting.

(2.19)
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The result for the long-lasting case is expanded using ∆t� tin, tfin. The full expression
is given in appendix A, where we collect all analytical expressions for the convenience
of the reader, see eq. (A.1).

In the incoherent approximation, the function F (tin, tfin,∆t) resulting from the convolu-
tion of the Green function with the source, eq. (2.14), does not depend on wave-number.
The GW power spectrum is therefore simply the one of the source S(K), multiplied by
the phase-space volume K3, both for long lasting and for short lasting sources. The
peak of the GW spectrum then coincides with the one of the source spectrum. The
time integration results in the ratio between the brief coherence time ∆t and the initial
horizon time tin. In the long lasting case, this factor might be close to one while in the
short lasting case it is always much smaller. In addition, the GW amplitude of the short
lasting case is suppressed by one more factor ∆t/tin with respect to the long lasting one.

• Coherent approximation: the source is perfectly correlated at all times t1 and t2

Π(K, t1, t2) =
√

Π(K, t1, t1)
√

Π(K, t2, t2) . (2.20)

In this case as well, the time integration in eq. (2.14) can be performed explicitely,
and we obtain the GW energy density power spectrum (we remind that xin = ktin,
xfin = ktfin, and ∆x = xfin − xin)

dΩGWh
2
0

d log k

∣∣∣∣
0

=
4Ωrad,0h

2
0

3π2

(
ΩS

Ωrad

)2

K3S(K)F (xin, xfin,∆x) (2.21)

where

F (xin, xfin,∆x)'





( g0

gfin

) 1
3

[
(Ci(xfin)−Ci(xin))2+(Si(xfin)−Si(xin))2

]
long-lasting

( g0

g∗

) 1
3 64(2π)2

x2
in

sin4((xfin−xin)/4)
(xfin−xin)2 short-lasting.

(2.22)

In the long lasting case we have again expanded to lowest order in ∆x/xin and ∆x/xfin.
Ci and Si denote the integral cosine and sine functions [45]. The full expression is given
in appendix A.

Contrary to the incoherent case, here the function F (xin, xfin,∆x) depends on wave-
number, and the resulting GW spectrum is therefore modified with respect to the one of
the source. We plot F (xin, xfin,∆x) in figure 2. In both the long and short lasting case,
F (xin, xfin,∆x) tends to a k-independent value for wave-numbers such that xin � 1.
The constant is log2(xfin/xin) in the long lasting case, and π2(∆x/xin)2 in the short
lasting one. In the short lasting case F remains constant up to ∆x ' 1 where it starts
oscillating and decaying like 1/(xin∆x)2. The long lasting case instead depends also on
xfin: when xfin becomes larger than one, the slope changes from the constant to a mild
logarithmic dependence on k as log2 xin. Then for xin ≥ 1 we have a decay like 1/x2

in,
up to ∆x & 1 where F also starts oscillating and decaying, with a smaller amplitude
than the short lasting case, see figure 2. Hence, wavelengths which are larger than the
typical switching on time are amplified by an additional factor min{(∆x)−2, (xin/∆x)2}
in the long lasting case. On the other hand, wavelengths smaller than the the typi-
cal switching on time are suppressed in the long lasting case due to the presence of
interferences suppressing the signal.
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Figure 2. Comparison between a short and long-lasting source. We plot the function F (xin, xfin,∆x)
defined in eq. (2.19) (incoherent case) and eq. (2.22) (coherent case) as a function of xin = ktin. Blue,
solid: long lasting coherent and incoherent cases with tfin/tin = 100 and ∆t = 0.01 tin. Red, dashed:
short lasting coherent and incoherent cases with tfin/tin = 1.01, ∆t = 0.01 tin. The horizontal lines
correspond to the incoherent case.

The functions F (xin, xfin,∆x) for both the short and long lasting incoherent and coher-
ent cases are shown in figure 2. The GW amplitude in the short lasting case is suppressed for
low and intermediate values of k with respect to the long lasting one, both in the incoherent
and in the coherent cases. However, while in the incoherent case this suppression is main-
tained for all k, in the coherent one interferences suppress the amplitude of the long lasting
case for frequencies larger than the typical switching on frequency ∆x & 1.

Figure 3 shows the effect of introducing continuity in the process of turning on and off
a long lasting source. The conclusions drawn in the analysis of ref. [14] are not modified by
the long duration of the source. The incoherent spectrum is the same for a continuous and
a discontinuous source, while in the coherent case there is a difference for frequencies higher
than k & 1/∆t corresponding to the characteristic time-scale of the source. In the continuous
case the slope changes, becoming steeper by a factor k−1 if the turning on process has a kink:
f(t) is continuous but not differentiable. In the discontinuous case, on the other hand, the
change of slope is absent.

Summarizing, two general features can be deduced from this analysis. First, the GW
energy spectrum at large scales is proportional to the phase space volume K3 times the source
power spectrum S(K). In the incoherent case no other wavenumber-dependence intervenes;
in the coherent case, instead, the wavenumber at which this behaviour changes depends on
the duration of the source, whether it is short or long lasting. Second, the GW amplitude in
the short lasting case is smaller than the one in the long lasting case. In the incoherent case,
this is always true; in the coherent case, this suppression can be very significant on large
scales, however, it turns into an amplification for scales smaller than ∆t. On super-horizon
scales, the difference in the amplitude between the short lasting and long lasting sources is
typically of the order of ∆t/tin in the incoherent case and (∆t/tin)2 in the coherent one.

Examples of well-motivated long-lasting sources are turbulent fluid flows initiated by
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Figure 3. For a long-lasting source, comparison between the continuous (solid) and discontinuous
(dashed) cases. We plot the function F (xin, xfin,∆x) as a function of xin = ktin. The incoherent
case is not affected by continuity as shown by the red horizontal line (the solid and dashed lines
are superimposed). In the coherent case shown in blue, the slope changes in the continuous case for
frequencies k > ∆t−1. The values of the parameters are the same as in figure 2.

instabilities generated by bubble collisions. In the following, we concentrate on this particular
source. We also study the case of magnetic fields, which represent another long-lasting source
of GW typically expected from first order phase transitions [29].

3 Turbulent magneto-hydrodynamics as a source of gravitational waves

3.1 General considerations

Turbulence develops if a fluid with sufficiently high Reynolds number is perturbed. If the
fluid is stirred on a characteristic scale Lp (the subscript indicates that we use the physical
length, not comoving length here), the Reynolds number of the flow is defined by

Re (Lp) =
vL Lp
ν

(3.1)

where vL is the characteristic velocity on the energy injection scale Lp, and ν is the kinetic
viscosity of the fluid. If Re (Lp) � 1, the stirring develops turbulent motions. In a first
order phase transition, the source of stirring is bubble collision. Therefore, the characteristic
scale of the stirring is given initially by the typical bubble size towards the end of the phase
transition, L∗ ∼ 2vbβ

−1 where vb is the bubble wall velocity and β−1 the (comoving) duration
of the phase transition (see for instance section 4 of [12] for a detailed definition). The initial
energy injection scale L∗ is the scale at which the largest turbulent eddies develop, and
corresponds to the peak of the turbulent velocity power spectrum.

The dynamics of bubble growth at late times, towards the end of the phase transition,
allows us to determine the order of magnitude of the kinetic energy involved in the turbulent
flow. The bubble wall can be treated as a discontinuity, i.e. a combustion front across which
energy and momentum are conserved [46]. At the front, the velocity of the fluid in the
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rest frame of the bubble center is given by vf = (v1 − v2)/(1 − v1v2), where v1 and v2 are
respectively the incoming and outgoing speed of the fluid in the rest frame of the front (see
e.g. ref. [12] for more details). We assume that the typical value of the turbulent fluid velocity
is given by vf . Therefore, the kinetic energy of the turbulent flow is

ρkin = (ρ+ p)
〈v2〉

2
with 〈v2〉 ∼ v2

f . (3.2)

Even though the velocities involved are large in the case of interest, we are using the formal-
ism of non-relativistic MHD turbulence. Since the corresponding values of γ are typically
of order one, we expect that the error introduced is within the uncertainty of our calcu-
lation. Furthermore, while the validity of the theory of non-relativistic turbulence may be
questionable if high speeds are involved [47], it was shown in [48–50] that the Kolmogorov
spectrum is recovered even in the relativistic case.1 Still, we impose for the fluid velocity
〈v2〉 ≤ c2

s, where cs = 1/
√

3 is the sound speed in the relativistic fluid. The fluid velocity vf
is completely specified once vb is known and the ratio α = ρvac/ρrad,∗ is fixed: solving for the
hydrodynamical equation allows one to relate the fluid velocity to the bubble wall velocity
(see for instance [54] for more details). If the phase transition proceeds as a detonation
(deflagration), then v1 ≡ vb (v2 ≡ vb). For this paper, we choose the fluid velocity vf = cs
corresponding to α = 1/3 and either vb ' 0.87 (detonation) or vb ' cs (deflagration) (for
α > 1/3 there is no deflagration solution). When we need to specify vb, in the figures and the
numerical values, we always consider the detonation case vb = 0.87. It is straight forward to
re-scale the results to lower bubble and fluid velocities.

If the fluid is stirred on the scale L∗, turbulent motions develop within a time interval
of the order of the eddy turnover time τL. This is the characteristic time for the cascade to
set in. Given the typical value of the turbulent fluid velocity vf , the eddy turnover time on
the stirring scale L∗ is defined simply as τL ∼ L∗/(2vf ). Since the fluid velocity is always
smaller than the bubble wall velocity vf ≤ vb, the eddy turnover time is always larger than
the duration of the phase transition: τL ≥ β−1. In the following we identify the time interval
∆t given in section 2.3 as ∆t = τL. For short-lasting turbulence, this means that the source
lasts for only one eddy turnover time. In the long-lasting case (which is the relevant one as
we will see), this means that turbulence is ‘turned on’ in one eddy turnover time τL.

In the cosmological context the fluid is ionized and has not only a very high kinetic
Reynolds number (which we evaluate in section 3.5) but also a very high magnetic Reynolds
number Rm, defined by (see appendix B)

Rm(Lp) =
LpvL
µ

, where µ =
1

4πσ
(3.3)

is the magnetic diffusivity and σ denotes the conductivity. High values of the magnetic
Reynolds number require an MHD treatment of the cosmic plasma. Moreover, the magnetic
Prandl number

Pm ≡
Rm(L)

Re (L)
=
ν

µ
(3.4)

is much larger than unity, as we calculate in appendix B. Therefore, the characteristics of
the plasma in the early universe entail the formation of MHD turbulence. The seed magnetic

1It is remarkable that recent simulations of quark gluon plasma instabilities in the process of thermalization
in heavy ion collisions show similarities with a Kolmogorov scaling [51–53].
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field can be generated by several mechanisms [29], and is then amplified by the currents due
to the turbulent flow of charged particles [31, 55]. The magnetic field itself is also a source of
GWs. In the following we make the simplifying but reasonable assumption of equipartition:
the total kinetic energy in the turbulent motion is equal to the magnetic field energy. Note
however, that this assumption need not hold for each wave number k, so that we can allow for
different spectra for the magnetic field energy and the turbulent kinetic energy at small scales.

In the remainder of this section we present our model for the power spectra of turbulence
and magnetic fields, as well as their time evolution. We evaluate the Reynold number in the
early universe and describe how it evolves with time, which will help us to determine when
MHD turbulence is expected to end.

3.2 The turbulent velocity power spectrum

The power spectrum of the turbulent velocity field at equal times is of the form2

〈vi(k, t)v∗j (q, t)〉 = (2π)3δ(k− q)Pij Pv(k, t) , (3.5)

where the projector Pij = δij−k̂ik̂j comes from the fact that the turbulent velocity field v(x, t)
is divergence free. An ansatz for the unequal time correlator will be given in section 3.6. In
previous works, the turbulent velocity power spectrum Pv(k, t) was either assumed to be
given only by the inertial range k−11/3 [15, 16, 18, 20], or naively determined by intersecting
the k2 behaviour at very small scales with the inertial range k−11/3 behaviour [17]. Both
approaches overestimate the peak amplitude of the turbulent source and thus overestimate
the GW amplitude. In the present study, we use a more realistic, smooth function to describe
the spectrum, proposed by Von Kármán [56] (see also page 244 of [57]). It is given by the
following interpolating formula (here in terms of comoving quantities):

Pv(K) = Cv〈v2〉L3 K2

(1 +K2)17/6
×
{

1 for 0 ≤ K ≤ L
λ

0 for K ≥ L
λ ,

(3.6)

where we again use the dimensionless variable

K = kL/2π (3.7)

and λ denotes the Kolmogorov microscale, beyond which turbulent motions are absent and
we set the spectrum to zero. The kinetic energy of the turbulent flow is given in eq. (3.2):
using this definition, we rewrite 〈v2〉 in terms of the ratio of the total kinetic energy to the
radiation energy density,

〈v2〉 =
3

2

ΩT

Ωrad
. (3.8)

In our numerical estimates, we will use 〈v2〉 = 1/3, thus corresponding to ΩT /Ωrad = 2/9.

In equation (3.6), the constant Cv = 55
108π3/2

Γ(5/6)
Γ(1/3) ≈ 0.0385 comes from the normalization of

the kinetic energy spectrum, E(k) = k2Pv(k)/(2π2),

ρkin

ρ+ p
=
〈v2〉

2
=

3

4

ΩT

Ωrad
=

∫ ∞

0
dkE(k) =

1

2π2

∫ ∞

0
dk k2Pv(k) . (3.9)

2In this paper we neglect the presence of a helical component in the velocity and magnetic field power spec-
tra (c.f. eq. (3.15)). Non-zero helicity, possibly arising from a macroscopic parity violation in the early universe,
affects the decay of MHD turbulence, as demonstrated for example in [37], and the subsequent generation of
GWs. For GW production by primordial helical MHD turbulence we refer to the analysis of refs. [20, 24].

– 12 –



J
C
A
P
1
2
(
2
0
0
9
)
0
2
4

~k-11�3
~k2

0 1 2 3 4
0.00

0.01

0.02

0.03

0.04

0.05

K = k L � 2Π

P
vHK

L�
@L

3
W

T
�W

ra
d

D

y=1

Figure 4. Comparison between the turbulent velocity power spectrum obtained by intersecting the
k2 behaviour at small scale with the inertial range k−11/3 behaviour (blue), as done in the literature,
with the Von Kármán spectrum (black).

Expression (3.6) smoothly interpolates between the large scale, K2 behaviour, and the inertial
range K−11/3, which is reached for K & 3. The peak is at Kpeak =

√
6/11 ∼ 0.74, which

corresponds roughly to the energy injection scale at K = kL/2π = 1. The peak amplitude is
smaller by a factor ∼ 6 compared to the amplitude obtained when naively extrapolating the
k−11/3 behaviour down to the energy injection scale K = 1, as shown in figure 4. This is an
important point when we compare the amplitude of the GW signal with previous estimates in
the literature. Note that expression (3.6) is analytic for k → 0, which is required for causally
generated, incompressible turbulence in the cosmological context [17].

In the inertial range, the characteristic velocity on a given scale 2π/k is approximately
given by [30]

v2
k ∼ kE(k) ' 6πCv

ΩT

Ωrad
K−2/3 for K & 3 . (3.10)

Thus, the characteristic velocity on the energy injection scale, which is related to the total
kinetic energy in the turbulence, is:

v2
L ' 6πCv

ΩT

Ωrad
= 4πCv〈v2〉 . (3.11)

3.3 The magnetic field power spectrum

The power spectrum of the MHD processed magnetic field is closely related to the one of the
turbulent velocity field. Here we treat the two sources exactly on the same footing. Since
the energy density of a cosmological magnetic field scales like radiation, we can use eq. (2.14)
to evaluate the GW spectrum sourced by the magnetic field, provided that we define the
normalized magnetic field vector

bi =

√
3

16πρrad
Bi , (3.12)
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so that the transverse traceless (TT ) part of the magnetic field energy momentum tensor is

[
TBij (x, t)

](TT )
=

[
Bi(x, t)Bj(x, t)

4π

](TT )

=
4

3
ρrad(t) [bi(x, t)bj(x, t)]

(TT ) = (ρ+ p)Π̃B
ij(x, t) .

(3.13)
The normalized magnetic field bi is equivalent to the dimensionless turbulent velocity field
vi. We define a parameter analogous to eq. (3.8), given by the ratio of the magnetic field
energy density to the radiation energy density

〈b2〉 =
3

2

ΩB

Ωrad
= 2

ρB
ρ+ p

, with ρB =
〈B2〉
8π

. (3.14)

In the following we assume equipartition between the magnetic and turbulent energy densi-
ties at the time when the latent heat is released, therefore 〈v2〉 ' 〈b2〉 (however, the scaling
of the GW spectra with the source energy density is kept explicit). The slope of the high
frequency tail of the magnetic power spectrum in fully developed MHD turbulence is not
precisely known: it could be of the Kolmogorov type, or it could satisfy the Iroshnikov-
Kraichnan [58] or Goldreich-Sridhar [59] spectral slopes. While in the presence of a strong
background magnetic field, the spectrum of the field perpendicular to the background field is
of the Iroshnikov-Kraichnan type according to refs. [60–62], in the isotropic case, the relevant
one in cosmology, the simulations of ref. [61] indicate a Kolmogorov-type slope. However,
to diversify the treatment of the magnetic source from the turbulent one, we choose to con-
sider the Iroshnikov-Kraichnan spectrum; the GW spectrum resulting from a Kolmogorov
magnetic field is not very different and it can be readily derived from the turbulent one.

The low frequency tail of the spectrum is determined by causality and by the fact that
B is divergence free. Like for turbulence, we use the interpolating formula from ref. [56] to
find the equal time magnetic power spectrum

〈bi(k, t)b∗j (q, t)〉 = (2π)3δ(k− q)Pij Pb(k, t) , (3.15)

Pb(k, t) =
3

2
Cb

ΩB

Ωrad
L3 K2

(1 +K2)11/4
×
{

1 for 0 ≤ K ≤ L
λ

0 for K ≥ L
λ .

(3.16)

The normalization constant Cb = 7
16π3/2

Γ(3/4)
Γ(1/4) ≈ 0.0265 is calculated in the same way as in

eq. (3.9). The magnetic field and the turbulent flow being generated by the same physi-
cal process, namely bubble nucleation and collision, we assume that they share the same
correlation scale L and Kolmogorov microscale λ.

3.4 Freely decaying turbulence

The turbulence stirring time is given by the duration of the phase transition which is typically
much shorter than one Hubble time. Calling tin the time at which the phase transition
starts, one has β−1 � H−1

in . As discussed in section 3.1, the typical time interval over which
turbulence is established is the eddy turnover time τL. Moreover, Kolmogorov turbulence
can be generated only if τL ≤ H−1

in . This condition translates into a lower bound for the
turbulent fluid velocity, in terms of the phase transition parameters:

vf & (Hin/β)vb . (3.17)

If τL ≤ H−1
in , turbulence sets in after a short interval of time ∆t ≡ τL ≤ tin. After the

completion of the phase transition (once bubbles have percolated), the stirring is over and
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the turbulence enters the free decay regime, i.e. the total kinetic energy is dissipated (see for
example [30]). The physical quantities appearing in the turbulent (3.6) and magnetic (3.16)
spectra are comoving, but they also have an additional ‘absolute’ time dependence due to the
evolution of the turbulent cascade and the decay of the total energy. As already mentioned in
the introduction, the existence of a maximal correlation length in the universe (the horizon)
and the consequent Batchelor spectrum (i.e. k2 at large scales), imply that (ΩT /Ωrad)L5 is
constant in time [17, 41, 42]. According to this, we assume the following laws for the growth
of the correlation scale and the decay of the kinetic energy:

L(t) = L∗

(
t− tin
τL

)γ
, γ > 0 (3.18)

ΩT

Ωrad
(t) =

ΩT∗
Ωrad∗

{ t−tin
τL

, tin ≤ t ≤ tin + τL ,(
τL
t−tin

)5γ
, t ≥ tin + τL .

(3.19)

When the phase transition starts, at tin, both the correlation length and the kinetic energy
vanish. This insures that the source is continuous in time. At a time t∗ = tin + τL, after
the completion of the phase transition, turbulence is fully developed. The stirring scale
is given by L∗, and ΩT∗

Ωrad∗
is the total kinetic energy in the turbulent fluid, normalized to

the radiation energy at time t∗. We assume that the energy cascade responsible for the
Kolmogorov spectrum starts at this stage. At times t ≥ t∗ = tin + τL turbulence enters
the free decay phase, and the correlation scale and the kinetic energy evolve following the
condition (ΩT /Ωrad)L5 =constant.

The simple linear interpolation between these two behaviors given in (3.19) has been
introduced to mimic the turning on of the source in the bubble collision case, inferred from
numerical simulations, see [13]. The linear increase of the magnetic energy density in MHD
turbulence has also been observed in simulations [44]. After this initial phase, for Kolmogorov
turbulence which we shall adopt here, the energy decay law infers the value γ = 2/7 (see
e.g. [30] and the introduction). For generality, we keep γ unspecified in the analytical
formulae. When numerical results are presented, we substitute the value γ = 2/7.

In order to show explicitly its time evolution, we re-express the velocity power spec-
trum eq. (3.6) in terms of the time-independent variable K∗ = kL∗/2π. Introducing the
dimensionless time variable

y =
t− tin
τL

,

consequently L(t) = L∗ yγ , and using K = K∗ yγ we obtain:

Pv (K∗, y) =
3

2
Cv

ΩT∗
Ωrad∗

L3
∗

K2
∗

(1 +K2∗y2γ)17/6
×





y5γ+1 if 0 ≤ y ≤ 1 and 0 ≤ K∗ ≤ L∗
λ(y)

1 if y ≥ 1 and 0 ≤ K∗ ≤ L∗
λ(y)

0 if K∗ ≥ L∗
λ(y)

The time-dependence of Pv(K∗, y) is shown in figure 5. The initial phase, 0 ≤ y ≤ 1
is inserted so that the source of GW increases smoothly from zero. As already discussed,
the continuity of the source at initial time is an important issue for the resulting GW spec-
trum [14]. However, since the duration of this initial phase is short, we assume that the
details of the source spectrum during this phase are not relevant and we do not model them

in any detail. In particular, we do not expect the inertial range K
−11/3
∗ for K∗ & 3 to be

already developed in this initial phase, because the real energy cascade has not yet started.
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Nevertheless, for simplicity we keep the same form of the spectrum as a function of K∗ in the
two phases: the turbulent free decay phase, y ≥ 1, is actually the most relevant one for the
GW generation. During this phase, the large scale part of the power spectrum K∗ � 1 re-
mains constant. We also show the characteristic velocity and the kinetic energy as functions
of K∗ for different times in figure 6.

In the following we assume that the turbulent magnetic field also undergoes the same
time decay as the turbulent velocity field. Even though the precise decay law of the magnetic
field energy density is not known in general for MHD turbulence, both analytical [32–35]
and numerical [37–39] analyses seem to agree with the fact that the magnetic field power
spectrum is persistent on large scales. Together with the condition that the spectrum, in
a cosmological setting, should be of the Batchelor type (i.e. k2 at large scales) due to the
presence of a cosmological horizon, constancy in time at large scales entails the existence of
a conserved quantity analogous to Loitsyansky’s invariant: (ΩB/Ωrad)L5 =constant. This
gives the same decay as for the turbulent flow. Equivalent scaling laws (once generalized
to the Batchelor case) are obtained from the argument of self-similarity [32, 38] and direct
cascade [34, 39]. Therefore, we also assume in the magnetic case,

L(t) = L∗yγ

ΩB

Ωrad
(t) =

ΩB∗
Ωrad∗

{
y 0 ≤ y ≤ 1
y−5γ y ≥ 1 ,

Pb (K∗, y) =
3

2
Cb

ΩB∗
Ωrad∗

L3
∗

K2
∗

(1 +K2∗y2γ)11/4
×





y5γ+1 if 0 ≤ y ≤ 1 and 0 ≤ K∗ ≤ L∗
λ(y)

1 if y ≥ 1 and 0 ≤ K∗ ≤ L∗
λ(y)

0 if K∗ ≥ L∗
λ(y) .

Our argument for assuming this particular form of the time decay in MHD turbulence relies
on approximative, analytical considerations, and given the high non-linearity of the problem
it is conceivable that only numerical simulations will be able to find the correct scaling. For
simplicity, and in order to be able to proceed with our analytical estimate, we are forced to
make the above mentioned, rather crude assumptions for the scaling. Nonetheless, we would
like to stress here once again the importance of the presence of a causal horizon, unavoidable
in the cosmological setting. This prevents the formation of long range correlations at least
beyond the horizon scale, a feature which certainly affects the decay law and that can not be
accounted for in numerical MHD simulations which go on for times larger than the box size.

3.5 How long does turbulence last?

In this section we confirm that turbulence is generated during a phase transition, and we
determine when it ends according to the free decay picture described above. For this we eval-
uate the Reynolds number defined in eq. (3.1) at the energy injection scale L corresponding
to K = kL/2π = 1. We distinguish the physical length with a subscript p

Lp(T ) = L(y)
T0

T

(
g0

g(T )

)1/3

(3.20)

from the comoving scale L(y) = L∗yγ . The kinematic viscosity ν(T ) is derived in appendix B:

ν(T ) ≈





22 T−1 T & 100 GeV
5 108 GeV4 T−5 T . 100 GeV
2 109 GeV4 T−5 T . 100 MeV

(3.21)
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Figure 5. The normalized velocity power spectrum as a function of wavenumber K∗ for different
times. Left: the phase in which the turbulence is developing, 0 ≤ y ≤ 1. Right: the phase of free
decay, y ≥ 1. The Kolmogorov microscale is outside the plot range (c.f. end of section 3.5).
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Figure 6. Left: the characteristic velocity v2
k ∼ kE(k) = 4πK3

∗Pv(K∗)/L3
∗ as a function of wavenum-

ber at different times in the inertial range K∗ & 3 during the free decay phase, y ≥ 1. Right: the
kinetic energy E(k)/L∗ = 2K2

∗Pv(K∗)/L3
∗. The Kolmogorov microscale is outside the plot range.

The jumps in the viscosity introduce an uncertainty in the evaluation of the parameters, for
which we can only give the correct order of magnitude.

For vL ≡ vk(k = 2π/L), we use the relation (3.10). Eq. (3.10) is valid only during
the cascade, the free decay phase y ≥ 1, and in the inertial range K & 3. To estimate the
Reynolds number, we extrapolate it to K = 1, thus making a small error. However, the
following estimate is valid only for times y ≥ 1. We have

v2
L(y) ∼ 6πCv

ΩT∗
Ωrad∗

y−5γ , for y ≥ 1 . (3.22)

Inserting this in (3.1) we obtain for temperatures T ≤ T∗ corresponding to y ≥ 1

Re (L(T )) = Re (L∗)
T∗
T

ν(T∗)
ν(T )

y−
3
2
γ

(
g∗
g(T )

)1/3

with (3.23)

Re (L∗) =

√
6πC ΩT∗

Ωrad∗

L∗
ν(T∗)

T0

T∗

(
g0

g∗

)1/3

. (3.24)
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Figure 7. Evolution of the Reynolds number at the energy injection scale Lp(T ) as a function of
temperature, assuming a phase transition with β/H∗ = 100, ΩT∗

Ωrad∗
= 2/9 and γ = 2/7, for three phase

transition temperatures: T∗ = 100, 106 and 108 GeV. The temperature at which the Reynolds number
decays below 1 (horizontal line) represents approximatively the end of the turbulence: this typically
happens at temperatures ∼ 100 MeV, 2 GeV and 8 GeV respectively.

Re (L(T )) is plotted for different values of T∗ in figure 7. If we consider the EW phase tran-
sition, for which T∗ ∼ 100 GeV, and we fix β/H∗ = 100, ΩT∗/Ωrad∗ = 2/9 corresponding to
vf = cs, vb = 0.87 corresponding to detonations (see section 3.1), and γ = 2/7, we find the
value

Re (L(T∗ = 100 GeV)) ∼ 1013 . (3.25)

This confirms that turbulence develops once the primordial fluid is stirred on the scale
L∗ = 2vb/β. In appendix B we also derive

Pm =
ν

µ
' 1012

(
GeV

T

)4

, 1 MeV < T < 100 GeV , (3.26)

so that

Rm(L(T )) = Re (L(T ))Pm(T ) ' 1012 Re (L(T ))

(
GeV

T

)4

, (3.27)

Rm(L(T∗ = 100 GeV)) ∼ 1017 . (3.28)

We now want to determine the wavelength up to which the cascade is present, and
the time up to which MHD turbulence persists. The turbulent cascade stops when viscosity
becomes important, and this happens at scales smaller than the Kolmogorov microscale λ,
defined by

Re (λ) =
vλ λp
ν
≡ 1 hence

L

λ
=
vλ
vL

Re (L) = Re (L)3/4 , (3.29)

– 18 –



J
C
A
P
1
2
(
2
0
0
9
)
0
2
4

LHTL � L*

ΛHTL � L*

0.01 0.1 1 10 100
10-10

10-7

10-4

0.1

100

105

T HGeVL

Figure 8. Evolution of the stirring scale L(T ) and the Kolmogorov microscale λ(T ) =
L(T )/[Re (L(T ))]3/4 with temperature, for T∗ = 100 GeV, β/H∗ = 100, ΩT∗

Ωrad∗
= 2/9 and γ = 2/7.

where for the last equality we use (3.10). Therefore, the Kolmogorov microscale also grows
during free decay, according to:

λ(T ) = λ∗

(
T

T∗

ν(T )

ν(T∗)

(
g(T )

g∗

)1/3
)3/4

y
17
8
γ . (3.30)

The temperature dependence of λ(T ) and L(T ) is illustrated in figure 8. The ratio of the
initial scales determining the extension of the turbulent inertial range is L∗/λ∗ = O(1010),
for T∗ = 100 GeV, β/H∗ = 100, ΩT∗/Ωrad∗ = 2/9, vb = 0.87 and γ = 2/7.

Since λ(T ) grows faster than L(T ), there always exists a temperature at which the two
scale cross, as shown in figure 8. We define the end of turbulence when the entire inertial
range (K & 3) is dissipated, namely when the dissipation scale has grown to reach

L(Tfin)

λ(Tfin)
= 3 ⇒ Re (L(Tfin)) = 34/3 . (3.31)

If turbulence starts at T∗ = 100 GeV, using again the values β/H∗ = 100, ΩT∗/Ωrad∗ = 2/9
and γ = 2/7, we find Tfin ' 120 MeV. Therefore, turbulence acts as source of GWs for many
Hubble times.

Once turbulent motions are dissipated, the magnetic field fluctuations at scales larger
than the dissipation scale remain frozen in the primordial plasma. Hence, in principle, the
magnetic field continues acting as a source of GW also after the end of turbulence. However,
we neglect this extra contribution to the GW spectra since it will not affect the spectrum
at the interesting scales, around the peak, where the signal may be visible. These scales in
fact have entered the horizon well before the end of turbulence and further GW production
is strongly suppressed at later times.
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3.6 Time de-correlation of the spectrum of magneto-hydrodynamical turbu-
lence

In order to evaluate the GW power spectrum generated from MHD turbulence, the equal
time velocity and magnetic field power spectra given in eqs. (3.5), (3.6) and eqs. (3.15), (3.16)
are not enough. We need to know the unequal time velocity power spectrum,

〈vi(k, t1)v∗j (q, t2)〉 = (2π)3δ(k− q)Pij Pv(k, t1, t2) , (3.32)

and equivalently for the magnetic field. To model the unequal time velocity power spectrum,
we multiply the equal time one (3.6) with the exponential time de-correlation proposed by
Kraichnan in [43] and also used in [18]. The temporal de-correlation of the velocity field
described in [43] operates only in the inertial range and during the cascade, which in our case
means K & 3 and t ≥ t∗. The characteristic de-correlation time scale is given by the eddy
turnover time: τ` = `/(2v`), for a characteristic eddy of size ` = 2π/k well in the inertial
range. To model the de-correlation Kraichnan proposes a Gaussian functional form,

g(t1, t2) = exp(−π(t1 − t2)2/(4τ2
` )) . (3.33)

In our approach, the magnetic field undergoes the same de-correlation as the turbulent field.

In the case of freely decaying MHD turbulence under consideration here, the eddy
turnover time τ` is itself time-dependent, through the characteristic velocity on the same
scale, v`. Using the formula of the characteristic velocity in the inertial range (3.10), and the
evolution equations for the kinetic energy and the correlation scale (3.19) and (3.18) we obtain

τ`(y) =
`

2v`
= τ∗` y

17
6
γ where τ∗` =

L
1
3∗ `

2
3

2
√

6πCv ΩT∗
Ωrad∗

, (3.34)

and the above equation is valid only during the cascade y ≥ 1 and K & 3. Setting
y = (t1 − tin)/τL, and z = (t2 − tin)/τL, we arrive at the following expression for the ve-
locity unequal time power spectrum (the magnetic field spectrum is readily derived from the
expression below, substituting Cv by Cb, ΩT by ΩB and 17/6 by 11/4):

Pv(K, y, z) =
3

2
Cv

ΩT

Ωrad
(y, z)L3(y, z)

K2(y, z)

[1 +K2(y, z)]17/6
(3.35)

×





1 for K(y, z) < 3

exp
(
−π

4 (y − z)2
(

τL
τ`(y,z)

)2)
for 3 < K(y, z) < L

λ and y, z ≥ 1

0 for K(y, z) > L
λ

Here the notation ΩT
Ωrad

(y, z) (and so on) is to remind that the variables K, L, ΩT /Ωrad and τ`
depend on time. In principle, we need to specify at which time these variables have to be eval-
uated. This choice must satisfy the constraint that the unequal time power spectrum (3.32)
is symmetric under the exchange of t1 and t2. As explained in the next section, we avoid the
problem by modeling de-correlation of the Kraichnan type directly in the anisotropic stresses
of the source.
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4 The anisotropic stress power spectrum

In order to determine the GW energy density power spectrum generated by the MHD tur-
bulent source, we need to calculate the anisotropic stress power spectrum (2.10) at different
times, substitute it into eq. (2.14), and evaluate the time integral.

The tensor anisotropic stress is the transverse traceless part of the energy momentum
tensor Π̃ij(k, t) = (PilPjm − 1/2PijPlm)T̃lm(k, t), where we denote the dimensionless energy
momentum tensor with a tilde, see eq. (2.6). The part of the energy momentum tensor of our

sources which contributes to the anisotropic stress is given by T̃
(T )
lm (x, t) = vl(x, t)vm(x, t)

and T̃
(B)
lm (x, t) = bl(x, t)bm(x, t). The anisotropic stress power spectrum is then

〈Πij(k, t1)Π∗ij(q, t2)〉 = (2π)3δ(k− q)Π(k, t1, t2) = Pabcd〈Tab(k, t1)T ∗cd(q, t2)〉 , (4.1)

where we omit the tildes for simplicity and

Pabcd =

(
PiaPjb −

1

2
PijPab

)
(k)

(
PicPjd −

1

2
PijPcd

)
(q) . (4.2)

For the turbulent source, one has

〈Πij(k1, t1)Π∗ij(k2, t2)〉 =

= Pabcd
∫

d3p

(2π)3

∫
d3q

(2π)3
〈va(k1 − p, t1)vb(p, t1)v∗c (k2 − q, t2)v∗d(q, t2)〉 . (4.3)

In order to proceed analytically, we assume that we can decompose the four point correla-
tion function into products of the power spectra, using Wick’s theorem like for a Gaussian
random field. Since turbulence is not truly Gaussian, this is of course not strictly correct
but it is usually adopted as a reasonable approximation to close the hierarchy (i.e. to avoid
using equations involving higher order correlators). We refer to [21] and appendix C for
details of the determination of Π(k, t1, t2). The bottom line is that the anisotropic stress
power spectrum is given by the convolution of the unequal time velocity power spectrum,
c.f. eq. (C.3). This quantity is in principle determined once we know how the source behaves
in time. In our case it is given by the Kraichnan de-correlation model, once we have chosen
an appropriate way of symmetrizing in time, see eq. (3.35).

On the other hand, the anisotropic stress power spectrum should, by definition, be a
positive kernel, i.e. such that

∫
dt1

∫
dt2 Π(k, t1, t2)f(t1)f∗(t2) ≥ 0 ∀ f(t) . (4.4)

This follows simply from the definition of the velocity power spectrum, eq. (4.1), making use
of the inequality

〈
∣∣∫ dt1 Πij(k, t1)f(t1)

∣∣2〉 ≥ 0 . (4.5)

Comparing eq. (4.4) with the definition of the GW spectrum eq. (2.14), we see that in the
GW case the function f(t) is replaced by the Green function of the GW wave equation,
f(t1) = cos(kt1)/t1 or sin(kt1)/t1 (the factor 1/t1 is absent for the short lasting case). Since
the trigonometric functions are a complete basis, the property (4.4) is automatically satisfied,
if it holds for the Green function with arbitrary values of k. Therefore, inserting the unequal
time source power spectrum eq. (3.35), which accounts for Kraichnan de-correlation, in the
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convolution given by eqs. (4.3) and (C.3), and performing the integration over the momenta,
should give back an anisotropic stress power spectrum which is a positive kernel. However,
we have tried different ways of symmetrizing eq. (3.35) without succeeding in obtaining a
positive kernel. This may be related to the inaccuracy of our analytical estimates, to our
choice of symmetrization, or it could be an indication that either Wick’s theorem or free decay
together with Kraichnan de-correlation, although reasonable assumptions for the evolution
of MHD turbulence, are not entirely appropriate for the source we are considering. Only a
full numerical simulation of the turbulent and magnetic fields could help to understand the
shortcomings of our approach.

The same problem can arise when trying to obtain the source power spectrum by Fourier
transforming the space correlation function, but this is circumvented since the source is
modeled directly in Fourier space (the power spectrum is well known in the MHD turbulent
case). However, in order to calculate the GW spectrum one has to evaluate also the time
Fourier transform: this is not a common procedure and no general solution is given in the
literature. The problem is worsened by the fact that we want to account for the free decay of
turbulence. If the only time dependence of the turbulent power spectrum was the Kraichnan
de-correlation, which is Gaussian in the time difference, the spectrum resulting after time
Fourier transforming would be positive. However, the free decay introduces an additional
absolute time dependence which is more difficult to handle. Moreover, having to evaluate
the anisotropic stress power spectrum further increases the difficulty of finding the correct
time behaviour that would provide a positive kernel. Note that the same problem arose in
the analytical evaluation of the GW signal coming from bubble collisions [12].

In order to proceed, we model the source in such a way, that Π(k, t1, t2) is a positive
kernel by construction. This is most easily done directly for the anisotropic stress power
spectrum. In previous analyses [12] we have already tackled this problem and proposed three
forms for the unequal time anisotropic stress power spectrum which are positive kernels. In
section 2.3 we presented the incoherent (2.17) and coherent (2.20) cases, for which the source
is never correlated, respectively always correlated in time. We apply them in the following
to the MHD turbulent source. We believe, however, that the top hat correlation introduced
in ref. [12] is the relevant one for MHD turbulence, since it best mimics the Kraichnan de-
correlation. In the top hat model one assumes that Π(k, t1, t2) is correlated if |t1− t2| < xc/k
and uncorrelated otherwise. Here xc is a parameter of order unity. We shall choose xc = 1
for our numerical results. Since Π(k, t1, t2) has to be symmetric in t1 and t2 we set

Π(k, t1, t2) =
1

2

[
Π(k, t1, t1) Θ(t2 − t1) Θ

(xc
k
− (t2 − t1)

)

+ Π(k, t2, t2) Θ(t1 − t2) Θ
(xc
k
− (t1 − t2)

)]
. (4.6)

This way of correlating the source at unequal times is intermediate between the coherent and
incoherent approximations; instead of being correlated at all times or only for t1 = t2, here
we account for the fact that longer wavelengths de-correlate at larger time differences. While
the term Θ(t1 − t2) is there only to make the function symmetric and does not influence the
time continuity of the source, the term Θ(xc/k−|t1−t2|) should in principle be replaced by an
exponential decay to keep the source continuous. We have tried this, and a part from a much
slower convergence of the numerical integrals since the integrand oscillates rapidly for large
values of k|t1− t2|, we found no difference in the final result. Moreover, inserting (4.6) in the
integral (2.11), we find that the GW energy power spectrum is not given by the Fourier trans-
form of the source and continuity does not affect the final spectrum in this case (c.f. [14]).
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Assuming that the Kraichnan time de-correlation trivially extends from the turbulent
velocity field to the anisotropic stress, it is clear that it gives a behaviour quite similar to
the top hat de-correlation: according to (3.33), the source is no longer correlated for time
intervals |t1 − t2| & (2/

√
π)τ`. Accounting for the fact that the eddy turnover time is simply

the inverse of the characteristic frequency of the source ω` = 1/τ`, and that the GW Green
function selects the diagonal of the time Fourier transform of the source, for which |ω| = k,
we find that the Kraichnan de-correlation gives back the same condition as the top hat
de-correlation, namely correlation is lost for time differences

|t1 − t2| &
2√
π

1

ω`
' xc

k
with xc ' 1 . (4.7)

Even though the top hat case best reproduces turbulent de-correlation, in the following we
evaluate the GW spectra also for the coherent and incoherent cases and compare the results.
In order to proceed with the calculation, we now evaluate the equal time anisotropic stress
power spectrum, see eq. (4.6).

4.1 The equal time anisotropic stress power spectrum for magneto-hydro
dynamical turbulence

The equal time anisotropic stress power spectrum is given by the convolution of the equal
time velocity and magnetic field power spectra multiplied by an angular dependence coming
from the projector in eq. (4.3), see eq. (C.3). As already mentioned above, we refer to [21]
and appendix C for a derivation. In terms of the variable K = K∗yγ , using the velocity
power spectrum given in eq. (3.20), we find

Πv(K, y, y) =
9

2
π C2

v

(
ΩT

Ωrad
(y)

)2

L3(y) Iv(K, y, y) , (4.8)

where y = (t1 − tin)/τL and Iv is given by

Iv(K, y, y) =

∫ ∞

0
dQ

Q4

(1 +Q2)17/6

∫ 1

−1
dχ (1 + χ2)

2K2 +Q2(1 + χ2)− 4KQχ

(1 +K2 − 2χKQ+Q2)17/6
, (4.9)

with Q = Lq/2π, χ = k̂ ·q̂. The magnetic field anisotropic stress power spectrum is equivalent
to the above expressions, substituting ΩT with ΩB, Cv with Cb and the power law 17/6 with
11/4. The integrals cannot be performed analytically, so we solve them numerically and
derive fits in terms of the variable K = K∗yγ . Within this approach we do not account for
the small scale cutoff L/λ when fitting the convolution. We explain below how this cutoff is
taken into account. We find, for the turbulence and the magnetic field respectively:

Iv(K∗, y, y) ' 0.098

[
1 +

(
K∗yγ

4

)4/3

+

(
K∗yγ

3.3

)11/3
]−1

(4.10)

Ib(K∗, y, y) ' 0.12

[
1 +

(
K∗yγ

4

)4/3

+

(
K∗yγ

3.5

)7/2
]−1

(4.11)

The fits are shown in figure 9.
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Figure 9. Black, solid lines: the integral in eq. (4.9), left: for the turbulence anisotropic stress, and
right: for the magnetic field anisotropic stress, as a function of K = K∗yγ , together with their fits
given in eqs. (4.10) and (4.11) (shown as red, dashed lines).

4.2 The final time of the magneto-hydrodynamical turbulent source

As demonstrated in section 3.5, MHD turbulence can act as a source of GWs for many Hubble
times, while it undergoes free decay. The source generally switches off at the end of the
turbulence, when Re (Lp(Tfin)) = 34/3 (see eq. (3.31)). If T∗ = 100 GeV, we have found Tfin '
120 MeV. However, we have seen in section 3.5 that the Kolmogorov microscale grows in time,
and for wavenumbers above this cutoff the source has decayed. This means that the final time
of integration in eq. (2.11) must be defined as the minimum of t(Tfin) and the time at which
a given mode k is equal to the upper cutoff. For later times, that mode k is not generating
GWs any longer; however, if the time at which k is equal to the upper cutoff comes after the
end of the turbulence, we should take the end of the turbulence t(Tfin) as the final time of
action of the source on the scale k. This is the way in which we include the upper cutoff L/λ
appearing in eq. (3.35) in the calculation of the GW spectrum, even though we have neglected
it for simplicity in the evaluation of the anisotropic stress power spectra (4.10), (4.11).

We introduce tk as the time at which k = 4π/λ(tk), where the extra factor of 2 comes
from the fact that Iv(K∗, y, z), being the convolution of the velocity power spectrum (3.35)
(and equivalently for the magnetic field power spectrum), it will go to zero at twice the ve-
locity power spectrum cutoff. Using the time evolution of the dissipation scale λ, eq. (3.30),
we find

tk
τL

=

[
L∗
λ∗

2

K∗

(
t∗
τL

)3
] 1

17γ/8+3

if T∗ ≤ 100 GeV , Tfin ≥ 100 MeV (4.12)

tk
τL

=

[
L∗
λ∗

2

K∗

] 8
17γ

if Tfin ≥ 100 GeV , (4.13)

where the different behaviour depending on the initial and final temperature is due to the
different evolution of the viscosity, given in eq. (3.21). Finally, the time at which turbulence

– 24 –



J
C
A
P
1
2
(
2
0
0
9
)
0
2
4

at a given scale k ends is tfin(k) given by

tfin(k)

τL
= min

{
t(Tfin)

τL
,
tk
τL

}
(4.14)

where t(Tfin) ' T0 / (TfinH0

√
Ωrad) and Tfin denotes the end of the MHD turbulence by the

dissipation of the entire Kolmogorov range, defined in section 3.5. For the usual set of values
T∗ = 100 GeV, β/H∗ = 100, ΩT∗/Ωrad∗ = 2/9, vb = 0.87 and γ = 2/7, we find

tfin(k)

τL
'





2× 104 for K∗ . 0.07
(

2 1014

K∗

) 28
101

for K∗ & 0.07 .
(4.15)

5 The gravitational wave spectrum

We are now ready to evaluate the integrals in eq. (2.11). We consider the three approx-
imations for the unequal time correlator of the anisotropic stress tensor mentioned above,
namely incoherent, coherent and top hat. All we need is the anisotropic stress power spec-
trum taken at equal times, which is given in eqs. (4.10) and (4.11). These are then inserted
into eq. (2.11). The GW power spectra obtained in this way are always positive. The figures
of the GW energy density spectra shown below are calculated for the set of parameter values
given at the end of the previous section. Under the equipartition hypothesis, we fix the

magnetic field energy density to the same value of the turbulent one: ΩT∗
Ωrad∗

=
Ω∗B

Ω∗rad
= 2

9 .

Even though we have demonstrated in section 3.5 that MHD turbulence can last for
many Hubble times, at the end of this section we also consider the case of GW generated by
MHD turbulence confined in time to the duration of the phase transition. We find this anal-
ysis illuminating to understand our results and useful to compare with the results obtained
in previous works.

From now on we use a common notation for both the GW spectra generated by turbu-
lence and by the magnetic field, with s = v or b denoting respectively the turbulence and
magnetic field source.

• Incoherent approximation: in this case the anisotropic stress spectrum at unequal
times is given by (c.f. eq. (2.17) and (4.10) resp (4.11)):

Π(K∗, y, z) =
9

2
π C2

s

(
ΩS

Ωrad
(y)

)2

L3(y) Is(K∗, y, y) δ(y − z) , (5.1)

where we have chosen τL as the short characteristic time over which the source remains
coherent. From the anisotropic stress formula given above we find the spectrum:

dΩGWh
2
0

d log k

∣∣∣∣
0

= 12(2π)2 C2
s Ωrad,0h

2
0

(
g0

gfin

) 1
3
(

ΩS∗
Ωrad∗

)2

K3
∗ (5.2)

×
{∫ 1

0

dy y3γ+2

[
y + tin

τL

]2 Is(K∗, y, y) +

∫ yfin

1

dy y−7γ

[
y + tin

τL

]2 Is(K∗, y, y)

}

where τL = L∗/(2vL) is the initial eddy turnover time at the scale L∗ for y = 1, and

vL =
√

6πCv ΩT∗
Ωrad∗

denotes the initial eddy turn-over speed, eq. (3.22); moreover, see

section 3.4
tin
τL

=
t∗
τL
− 1 where

t∗
τL

=
vL
vb

β

H∗
, (5.3)
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yfin is given by (tfin(k) − tin)/τL and tfin(k) is defined in section 4.2. The spectra
Is(K∗, y, y) are given in eqs. (4.10) and (4.11).

We recover the same behaviour as in section 2.3. The GW power spectrum is pro-
portional to the phase space volume K3

∗ times the source power spectrum. The slope
at large scales is therefore K3

∗ , the one at small scales is K3+n
∗ where n = −11/3 for

the turbulence and n = −7/2 for the magnetic field. The peak is at Kpeak
∗ ' 5.9 for

turbulence and Kpeak
∗ ' 7 for the magnetic field. The results are shown in figure 11

for the usual choice of the parameter values. The incoherent approximation is the one
leading to the highest peak amplitude:

dΩGWh
2
0

d log k

∣∣∣∣
(turb)

Kpeak
∗

' 4× 10−10 Kpeak
∗ ' 5.9 , (5.4)

dΩGWh
2
0

d log k

∣∣∣∣
(mag)

Kpeak
∗

' 3× 10−10 Kpeak
∗ ' 7 . (5.5)

• Coherent approximation: According to eq. (2.20), we have

Π(K∗, y, z) =
9

2
π C2

s

ΩS

Ωrad
(y)L

3
2 (y)

ΩS

Ωrad
(z)L

3
2 (z)

√
Is(K∗, y, y)

√
Is(K∗, z, z) . (5.6)

The GW spectrum is positive by construction, but it is oscillatory:

dΩGWh
2
0

d log k

∣∣∣∣
0

= 12(2π)2 C2
s Ωrad,0h

2
0

(
g0

gfin

) 1
3
(

ΩS∗
Ωrad∗

)2

K3
∗ (5.7)

×
{[∫ 1

0
dy

y3γ/2+1

y + tin
τL

√
Is(K∗, y, y) cos

(
πK∗
vL

y

)

+

∫ yfin

1
dy

y−7γ/2

y + tin
τL

√
Is(K∗, y, y) cos

(
πK∗
vL

y

)]2

+

[∫ 1

0
dy

y3γ/2+1

y + tin
τL

√
Is(K∗, y, y) sin

(
πK∗
vL

y

)

+

∫ yfin

1
dy

y−7γ/2

y + tin
τL

√
Is(K∗, y, y) sin

(
πK∗
vL

y

)]2


 .

As discussed in ref. [14] and in section 2.3, the calculation in the coherent case is
more involved than the incoherent one, since the GW power spectrum is not simply
proportional to the source power spectrum, but it is given by the square of its time
Fourier transform. The source is characterized by the space correlation scale L∗ and
the time correlation scale τL, related by L∗ = 2vLτL. Since vL . 0.4 (the upper bound
is given by eq. (3.11) with 〈v2〉 = 1/3), we have L∗ < τL. On scales larger than both
the characteristic spatial correlation scale L∗ and time correlation scale τL, the Fourier
transform of the source is constant because the source is not correlated (white noise).
Therefore, for wave-numbers k . 2π/τL < 2π/L∗, corresponding to K∗ . L∗/τL, we
recover the K3

∗ behaviour like in the incoherent case. However, for k & 2π/τL the
time Fourier transform is no longer constant and starts to decay as a power law, the
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exponent depending on the time differentiability properties of the source [14]. Since we
have chosen a source which is continuous but not differentiable at initial time tin (see the
time evolution laws of the energy and the correlation scales given in eqs. (3.18), (3.19)),
this implies a decay like k−2 for the time Fourier transform of the source. Therefore,
the GW power spectrum (5.7) (the square of the Fourier transform, multiplied by K3

∗ )
decays like K−1

∗ at intermediate scales L∗/τL . K∗ . 1. This behaviour is satisfied
up to the wave-number corresponding to the spatial correlation scale: k ' 2π/L∗.
Afterwards, the spectrum decays with a power law given by the time Fourier transform
multiplied by the power law decay of the source. In the case of turbulence, for K∗ & 1

one has therefore the power law decay K
−14/3
∗ = K3

∗ × (K−2
∗ )2 × (K

−11/6
∗ )2; while in

the magnetic field case this becomes K
−9/2
∗ = K3

∗ × (K−2
∗ )2 × (K

−7/4
∗ )2.

The form of the power spectrum, in particular the wave-number at which the spectrum

peaks is determined by the ratio L∗
τL

= 2
√

6πCv ΩT∗
Ωrad∗

. In figure 10, we show the GW

spectrum from turbulence for the coherent case for two values of this ratio: the case
when the kinetic energy density in the turbulence in maximal 〈v2〉 = 1/3, corresponding
to ΩT∗

Ωrad∗
= 2/9, and another one in which the kinetic energy involved is much smaller,

〈v2〉 = 10−3, corresponding to ΩT∗
Ωrad∗

= 2/3× 10−3. Notice that not only the amplitude
but also the peak position differs, and that the power law behaviour derived above
is recovered. The form of the GW spectrum in the coherent case is also shown in
figure 11 for the usual choice of the parameters. The coherent approximation leads to
the smallest peak amplitude:

dΩGWh
2
0

d log k

∣∣∣∣
(turb)

Kpeak
∗

' 10−13 Kpeak
∗ ' 0.4 , (5.8)

dΩGWh
2
0

d log k

∣∣∣∣
(mag)

Kpeak
∗

' 8× 10−14 Kpeak
∗ ' 0.4 . (5.9)

• Top hat approximation: this is the most realistic case for the MHD turbulent source,
since it mimics a de-correlation in time of the Kraichnan type as discussed in section 4:

Π(K∗, y, z) =
9

4
π C2

s

[(
ΩS

Ωrad
(y)

)2

L3(y) Is(K∗, y, y) Θ(z − y) Θ

(
vLxc
πK∗

− (z − y)

)

+

(
ΩS

Ωrad
(z)

)2

L3(z) Is(K∗, z, z) Θ(y − z) Θ

(
vLxc
πK∗

− (y − z)
)]
. (5.10)

We choose the value xc = 1, as in the Kraichnan model, so that the integral determining
the GW spectrum is positive. It is given by:

dΩGWh
2
0

d log k

∣∣∣∣
0

= 12(2π)2 C2
s Ωrad,0h

2
0

(
g0

gfin

) 1
3
(

ΩS∗
Ωrad∗

)2

K3
∗

×
[∫ 1

0
dy

y3γ+2

y + tin
τL

Is(K∗, y, y)

∫ ytop

y

dz

z + tin
τL

cos

(
πK∗
vL

(z − y)

)

+

∫ yfin

1
dy

y−7γ

y + tin
τL

Is(K∗, y, y)

∫ ytop

y

dz

z + tin
τL

cos

(
πK∗
vL

(z − y)

)]
,(5.11)
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Figure 10. The GW energy density power spectrum from turbulence in the coherent case for T∗ =
100 GeV, β/H∗ = 100, vb = 0.87, γ = 2/7, and gfin = 47.75. Blue, solid: ΩT∗/Ωrad∗ = 2/9. The peak

is at about Kpeak
∗ ' 0.4, not far from the value L∗/τL = 2(6πCvΩT∗/Ωrad∗)1/2 ' 0.8. The small scale

behaviour for K∗ > Kpeak
∗ is K

−14/3
∗ . Red, dashed: ΩT∗/Ωrad∗ = 2/3× 10−3. The peak position is at

K∗ ' 0.02, again not far from the value L∗/τL = 2(6πCvΩT∗/Ωrad∗)1/2 ' 0.04. In this case the slope
K−1

∗ for intermediate wave-numbers is well visible.
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Figure 11. The GW energy density spectrum in the incoherent (red, long-dashed), top hat (black,
short-dashed) and coherent (blue solid) cases. Left from turbulence, right from magnetic field, for
T∗ = 100 GeV, β/H∗ = 100, ΩS∗

Ωrad∗
= 2/9, vb = 0.87, γ = 2/7, gfin = 47.75 (and xc = 1 for the tophat

case).

where

ytop = min

[
yfin , y +

vL xc
πK∗

]
. (5.12)

As in the incoherent case, the spectrum bears no relation with the time Fourier trans-
form of the source (c.f. [14]). The integral in z can be estimated simply as the integrand
evaluated at the lower bound, multiplied by one oscillation period: therefore, at high

wave-numbers we expect the slope K
−5/3
∗ for the turbulent case, and K

−3/2
∗ for the

magnetic field case. Moreover, the peak position corresponds to the spatial correlation
scale of the source: K∗ ' 3.5 for the turbulence and K∗ ' 3.7 for the magnetic field.
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Figure 12. The GW energy density spectrum in the top hat case. Blue, solid from turbulence and
red, dashed from the magnetic field for T∗ = 100 GeV, β/H∗ = 100, ΩS∗

Ωrad∗
= 2/9, vb = 0.87, γ = 2/7,

gfin = 47.75, xc = 1.

The result is shown in figure 11 and 12, for xc = 1; the dependence on the value of
0 < xc < π is weak. In this case the amplitude at the peak takes an intermediate value
between the incoherent and coherent cases:

dΩGWh
2
0

d log k

∣∣∣∣
(turb)

Kpeak
∗

' 10−11 Kpeak
∗ ' 3.5 , (5.13)

dΩGWh
2
0

d log k

∣∣∣∣
(mag)

Kpeak
∗

' 7× 10−12 Kpeak
∗ ' 3.7 . (5.14)

6 Discussion

6.1 Comparison with the gravitational wave spectrum from bubble collisions

In the case of bubble collisions [12], we have also studied the different assumptions for the
unequal time power spectrum of the source: coherent, incoherent and top-hat. Numerical
simulations of bubble collisions [13] indicate that the coherent case is the relevant one for
bubbles. This can be understood by the following argument: we consider a bubble collision
event starting at time tn with tensor anisotropic stress given by fn(k, t− tn). Summing over
all the collision events of the phase transition we obtain for the total anisotropic stress of
bubble collisions (c.f. [14])

〈Π(k, t)Π∗(k′, t′)〉 =

N∑

n=1

N∑

m=1

〈ei(k·xn−k′·xm)f̂n(k, t− tn)f̂∗m(k′, t′ − tm)〉 , (6.1)

where xn is the center of the n-th collision event. To recover the simulation result, we now
have to make two fundamental assumptions. First we assume that different collision events
are not correlated,

〈ei(k·xn−k′·xm)〉 = V −1δnmδ(k− k′) , (6.2)
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here the volume V restores the dimensions. This leads to

Π(k, t, t′) =
1

(2π)3V

N∑

n=1

〈fn(k, t− tn)f∗n(k, t′ − tn)〉 . (6.3)

Second, we assume that one typical collision event is totally coherent, so that
〈fn(k,∆t)f∗n(k,∆t′)〉 = f(k,∆t)f∗(k,∆t′) where f(k,∆t) ≡

√
〈|fn(k,∆t)|2〉 is the square

root of the power spectrum of a typical collision event, and ∆t = t− tn. Furthermore, since
bubbles only exist during the phase transition the duration of which is much shorter than
one Hubble time, the expansion of the universe can be neglected and the anisotropic stress
spectrum is a function of the time difference t− t′ = ∆t−∆t′ only. Equation (6.3) becomes

Π(k, t, t′) =
2N

(2π)3V
f(k,∆t)f(k,∆t′) =

√
Π(k, t, t)Π(k, t′, t′) , (6.4)

which is the form of the coherent approximation. Therefore, assuming that one collision
event is totally coherent in time and that different collisions are uncorrelated implies that
bubble collisions represent a totally coherent source of GWs.

However, for turbulence, we do not expect this to hold. There are no well isolated
uncorrelated events which can be treated independently. Besides, one expects correlations to
decay in time over a timescale which is related to the spatial extension of the source. This
has motivated the Kraichnan de-correlation ansatz given in [43] and eq. (3.33), which we
have simplified to the the top hat de-correlation in section 4 in order to obtain a positive
kernel, see eq. (4.6) and the discussion following it. To summarize, we can conclude that
bubble collisions are well represented by the coherent case, while MHD turbulence is well
represented by the top-hat case.

6.2 Comparison with short-lasting turbulence

Once MHD turbulence is generated, it decays following the ‘absolute’ time dependence
described in section 3.2, which applies to freely decaying, non-helical turbulence. In this
section we compare our results with the ones from MHD turbulence that lasts for less than
one Hubble time and where the time-dependent decay is neglected. This was always assumed
in previous analyses. This allows us to verify the general statements of section 2.3 in a more
realistic case. Note however that, with respect to previous analyses which assumed either a
discontinuous [17] or a stationary [15, 18, 20] source, here we consider a source with a finite
time duration, but continuous in time. The importance of having a continuous source has
been discussed in [14].

The aim of this section is simply to test the results of section 2.3 in a realistic case.
We therefore concentrate only on the source from the turbulent velocity field, and we do not
discuss the magnetic field for which the results are similar. We set the duration of the source
to one eddy turnover time τL: tfin = tin + τL [15]. We model the switching on and off of the
source with the same function as in bubble collisions [14]:

f(y) = 4y(1− y) (6.5)

with y = (t − tin)/τL. Since L and ΩT /Ωrad do not evolve in time, the turbulent spectrum
becomes

Pv(K∗) =
3

2
Cv

ΩT∗
Ωrad∗

L3
∗

K2
∗

[1 +K2∗ ]17/6
f(y) , (6.6)
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Figure 13. The GW energy density spectrum for short lasting turbulence. Blue, solid: coherent;
black, short-dashed: top hat; red, long-dashed: incoherent.

and the anisotropic stress power spectrum is

Π(K∗, y, y) =
9

2
π C2

v

(
ΩT∗

Ωrad∗

)2

L3
∗ Iv(K∗) f2(y) , (6.7)

where Iv(K∗) is given by eq. (4.10) with y = 1. Inserting this in eq. (2.13) one finds after
some manipulations

dΩGWh
2
0

d log k

∣∣∣∣
0

= 12(2π)2 C2
vΩrad,0h

2
0

(
g0

g∗

) 1
3
(

ΩT∗
Ωrad∗

)2

(H∗τL)2K3
∗ I(K∗)×

×
∫ 1

0
dy

∫ 1

0
dz cos

(
πK∗
vL

(y − z)
)
F (y, z) (6.8)

with

F (y, z) =





f2(y) δ(y − z) incoherent
f(y) f(z) coherent
1
2

[
f2(y)Θ(z − y) Θ

(
vL xc
πK∗

− (z − y)
)

+ y ↔ z)
]

top hat.
(6.9)

Figure 13 shows the GW energy density spectra from short lasting turbulence in the
incoherent, coherent and top hat cases. The relative amplitudes between the different ap-
proximations is similar to the long lasting case and the peak positions are also not very
different. In figure 14 we compare the long-lasting and the short-lasting cases.

One first notices that the change in amplitude of the GW spectrum is generically much
less than expected from our general arguments in section 2.3. This is because our realistic
source, unlike the one considered in section 2.3, is decaying with the decay time τL, which
here corresponds to the duration of the short lasting source. Therefore, the fact that the
source is long lasting does not amplify the signal as expected, because its characteristic decay
time is the same as the duration of the short lasting source. In the incoherent approximation,
the overall amplification of the long lasting source is about a factor two, instead of the factor
(τLH∗)−1 which we found for the toy model. The long lasting coherent approximation, on
the other hand, is amplified at large scales by about a factor of (τLH∗)−1 ' 80 compared to
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Figure 14. Comparison between the long-lasting case, represented by thick lines and the short-lasting
one, represented by thin lines (incoherent: red, long-dashed; coherent: blue, solid; top hat: black,
short-dashed).

the short lasting one, instead of the expected (τLH∗)−2. As already seen in section 2.3, in the
coherent case the signal at the peak from short-lasting turbulence is higher than the long-
lasting result: this comes from the fact that in the long-lasting case interference can reduce
the final amplitude if the source is present and coherent over several oscillation periods.

The top-hat case, which we did not analyze in section 2.3, shows an intermediate behav-
ior between the incoherent and coherent ones: at long wavelengths, K∗ � Kpeak

∗ , the long
lasting signal is enhanced by about two orders of magnitude, i.e. the same amplification as
for the coherent case, (τLH∗)−1; around the peak, the long and short lasting top hat cases
differ by about a factor two, equivalent to the incoherent case.

To summarize, due to the fact that the long lasting source decays with a characteristic
time τL corresponding to the duration of the short lasting source, the amplification factor
(τLH∗)−2, expected at large scales, is reduced to (τLH∗)−1 for the coherent and top-hat
approximations, and the amplification is virtually absent in the incoherent approximation.
In all cases it is a factor (τLH∗) less than expected due to the rapid decay of the source.

7 Conclusion

In this work, we have calculated the GW emission from MHD turbulence generated during a
first order phase transition and freely decaying afterwards. This is the first paper which takes
into account the free decay of turbulence, and models the source in a continuous fashion.

For the source power spectrum we use a new ansatz that interpolates analytically be-
tween the large scale and small scale behaviors, determined respectively by causality and by
the Kolmogorov (or Iroshnikov-Kraichnan) theory. Previous analyses had either considered
only the Kolmogorov range, ignoring the large scale part of the spectrum and continuing
the Kolmogorov slope up to the peak [15, 16, 18, 20], or joined the two behaviors at the
peak [17]. This caused an overestimation of the source spectrum amplitude at the peak of
about a factor six, leading to an overestimation of nearly two orders of magnitude for the
GW spectrum (c.f. for example eq. (56) of [17]). The interpolating formula which we adopt
here models the spectrum of MHD turbulence in a more realistic way.
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We also take into account the time de-correlation of MHD turbulence following the
model proposed by Kraichnan in [43]. However, in order to recover a positive result for the
GW energy density spectrum, we cannot directly apply the Kraichnan de-correlation in the
velocity and magnetic field power spectra, but we have to model it in Fourier space as a
de-correlation of the anisotropic stress power spectrum. We claim that in the case of MHD
turbulence, neither the coherent [17] nor the stationary [15, 18, 20] approximations previously
used in the literature are the correct ones, but the anisotropic stresses at different times have
to be modeled in a way similar to our top hat ansatz.

Moreover, previous analyses have considered either a MHD source which is discontinu-
ous in time (i.e. instantaneous turning on of the Kolmogorov spectrum) [17] or a source which
is stationary (i.e. neglecting the fact that the source is actually turned on and off) [15, 18, 20].
Here instead the source is continuous in time, starting with zero energy and building up
the Kolmogorov spectrum after one eddy turnover time. It then starts free decay, since the
stirring due to the phase transition lasts only for about one eddy turnover time. Due to
the free decay, the source is absent on scales smaller than the time dependent Kolmogorov
microscale, and is completely dissipated once the Kolmogorov microscale has reached the
energy injection scale and the entire Kolmogorov range has decayed. We have evaluated the
temperature of the universe, Tfin, at which this happens, as a function of the temperature at
which MHD turbulence is generated, T∗, and we have found that the process of dissipation
lasts for many Hubble times. For instance, for the EW phase transition, T∗ ∼ 100 GeV and
Tfin ∼ 120 MeV. Therefore, MHD turbulence has to be modeled as a long lasting GW source.
Nevertheless, since the characteristic decay time of the source is still given by the eddy
turnover time which is much smaller than the expansion time of the Universe, the amplifi-
cation due to the long duration is less significant than what is expected from a source which
is not decaying in time. Especially the peak amplitude is enhanced only by about a factor
of two due to the long duration of the source. On the other hand, the long duration of the
source becomes important on very large scales: here the GW spectrum from the long lasting
source is amplified with respect to the short lasting case by about two orders of magnitude.

The top hat ansatz together with the time continuity of the source have some interesting
consequences on the peak position and amplitude of the GW spectrum. In ref. [14] it has
been shown that, in the coherent case, time continuity affects the slope of the spectrum at
small scales and also moves the peak of the GW spectrum from the characteristic length scale
of the source (here L∗) to its characteristic time scale (here τL). If the two scales are well
separated (for instance if the fluid velocity is significantly smaller than the speed of light),
this causes a reduction of the amplitude at the peak. The fact that for MHD turbulence
the top hat ansatz is the relevant one, fixes the peak position of the GW spectrum at the
characteristic length scale of the turbulent source.

To summarize, our final result for the GW spectrum from MHD turbulence for the most
realistic case, the top-hat de-correlation, has the following main features:

• The peak frequency is given by K∗ ' 3.5 for the turbulence and K∗ ' 3.7 for the
magnetic field. Given the degree of precision of our analytical estimate, we can neglect
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this small difference. The peak frequency from MHD turbulence thus corresponds to

fMHD
peak =

kpeak

2π
' 3.5

L∗
= 3.5

β

2vb
(7.1)

' 3× 10−2 mHz
( g∗

100

)1/6 T∗
100 GeV

β

H∗
1

vb
' 3.4 mHz ,

where we have used H∗ = (g0/g∗)1/6 (T∗/T0)H0

√
Ωrad, and the last line gives the value

for the EW phase transition with β/H∗ = 100, T∗ = 100 GeV, vf = 1/
√

3 and vb ' 0.87.

• The peak amplitude for the above values of the parameters is h2
0ΩGW(Kpeak

∗ ) ' 10−11.
Using that h(f) = 1.26×10−15

√
h2

0ΩGW(f)(mHz/f) (see [63]), we obtain the maximal
GW amplitude h(fpeak) ' 2 × 10−21 which is detectable with LISA (see figure 15).
The suppression of the peak amplitude by more than one order of magnitude compared
e.g. to ref. [18], is mainly due to the fact that we use the more realistic interpolating
spectrum for the MHD turbulent source (see figure 4).

• The slope of dΩGW/d log(k) is the usual k3 on large scales k < kpeak, but on small
scales, k > kpeak, it decays only like k−5/3 and k−3/2 for turbulence and magnetic field
respectively, see figure 12.

In figures 15 and 16 we compare the GW spectrum from MHD turbulence with the
experimental sensitivities of LISA [25], AGIS [64], LIGO [65] and the Big Bang Observer
(BBO) [66]. Note that the sensitivity curve of LISA plotted in the figures represents only
the noise of the instrument, and the data analysis can actually improve the detection down
to a level of h2

0ΩGW ∼ 5× 10−13 [67].

With respect to the GW signal from bubble collisions analyzed in ref. [12], the peak
frequency of the GW spectrum from MHD turbulence is larger by about a factor two. Note
however that, as already pointed out in [14], the work of ref. [12] has to be corrected in
two aspects: first, the source analyzed there was not continuous, and secondly, the relevant
approximation for the anisotropic stresses generated by bubble collisions is the coherent and
not the top hat one. These modifications are work in progress and may well lead to some
correction in the results of [12]. The peak amplitude of the GW signal from MHD turbulence
is somewhat higher than the signal from bubble collisions, but it decays faster than the k−1

decay which has been seen in the latest simulations of bubble collisions [13].

Nevertheless, there is still considerable uncertainty in our analytical modeling which
probably can only be addressed by numerical simulations of relativistic MHD turbulence of
the kind developed after a first order phase transition. For example, in this work we have
added the results from the turbulent velocity field and the magnetic field incoherently. One
could argue, however, that these fields are correlated and have both a Kolmogorov spectrum
in the inertial range. One could then use si = bi + vi ' 2vi as transverse vector-field with
Πij(s) ' 4Πij(v). Instead of the results presented here we would then obtain 16 times the
GW energy density spectrum from turbulence, which would enhance the total result for ΩGW

by about a factor of 8 and the one for h(f) by
√

8. Therefore, our results are probably to
be taken within about a factor of a few for the GW amplitude h(f) and within an order of
magnitude for the energy density dΩGW/d log(k).
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Figure 15. The GW energy density (left) and the GW characteristic amplitude (right) from turbu-
lence only (blue, solid), magnetic field only (red, dashed) and the total MHD turbulence (black, solid)
generated at the EW phase transition with T∗ = 100 GeV, β/H∗ = 100, ΩS∗/Ωrad∗ = 2/9, vb = 0.87,
γ = 2/7, xc = 1 and gfin = 47.75, together with the sensitivities of LISA [25], BBO [66], AGIS [64]
and ‘BBO Corr’ (improved from BBO with data analysis) taken from [68].
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Figure 16. Sensitivities of LISA, AGIS, BBO and Advanced LIGO (orange) compared with two GW
spectra (black) generated by MHD turbulence from a phase transition at respectively T∗ = 100 GeV
with β/H∗ = 100, and T∗ = 5.106 GeV with β/H∗ = 50; ΩS∗/Ωrad∗ = 2/9, vb = 0.87, γ = 2/7,
and xc = 1. The Advanced LIGO sensitivity is optimized by making use of correlations between two
ground-based detectors [69].
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A Analytical expressions for section 2.3

Here we give the full expression for eqs. (2.19) and (2.22).

• Incoherent constant source

F (tin, tfin,∆t) =





( g0

gfin

) 1
3 8
[
1− tfin

∆t log
(

tfin
tfin−∆t/2

)
− tin

∆t log
( tin+∆t/2

tin

)]

'
( g0

gfin

) 1
3 ∆t
tin

long-lasting,

( g0

g∗

) 1
3 (2π)2

3

(
∆t
tin

)2
short-lasting.

(A.1)

• Coherent constant source

F (xin, xfin,∆x) =





( g0

gfin

) 1
3 4

∆x2

{[
xfinCi(xfin) + xinCi(xin)

−(xfin−∆x/2)Ci(xfin−∆x/2)−(xin+∆x/2)Ci(xin+∆x/2)

− sin(xfin)−sin(xin)+sin(xfin−∆x/2)+sin(xin+∆x/2)
]2

+
[
xfinSi(xfin) + xinSi(xin)

−(xfin−∆x/2)Si(xfin−∆x/2)−(xin+∆x/2)Si(xin+∆x/2)

+ cos(xfin)+cos(xin)−cos(xfin−∆x/2)−cos(xin+∆x/2)
]2
}

'
( g0

gfin

) 1
3

[
(Ci(xfin)−Ci(xin))2+(Si(xfin)−Si(xin))2

]
+O(∆x)

long-lasting ,

( g0

g∗

) 1
3 64(2π)2

x2
in

sin4((xfin−xin)/4)
(xfin−xin)2 short-lasting.

B Viscosity and magnetic diffusivity

The Reynolds number defined in eq. (3.1) is inversely proportional to the kinematic viscosity
ν given by

ν =
η̄

ρ+ p
, (B.1)

where η̄ is the shear viscosity. The kinematic viscosity is the transport coefficient that
characterizes the diffusion of transverse momentum due to collisions in a medium, and is
roughly the mean free path `mfp of excitations. In fact one has [70]

η̄ =
4

15

π2

30
g∗T 4 `mfp so that ν =

`mfp

5
. (B.2)

The largest viscosity comes from the weakest interactions, since it is inversely proportional
to the scattering cross section of the processes responsible for transport. Simple parametric
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estimates using kinetic theory show that the shear viscosity at high temperature (where T is
much larger than the mass of the diffusing particle) behaves as (to leading-log accuracy):

η̄ = C
T 3

g4 log g−1
(B.3)

where g is the appropriate coupling constant (depending on the temperature and the length
scale at which one wants to compute the Reynolds number) and C is a numerical coefficient
that can only be obtained from a detailed analysis.

After EW symmetry breaking, neutrino interactions are suppressed by a factor
(T/MW )4. In this regime, neutrinos have the longest mean free path and dominate the
viscosity. We use [71]

`mfp ≈ (3G2
FT

5)−1 , (B.4)

leading to

ν(T . 100 GeV) ≈ 4.9× 108 GeV4

T 5
. (B.5)

At temperatures smaller than 100 MeV, after the QCD phase transition, the particle content
changes and consequently the neutrino mean free path increases to

`mfp ≈
10

9
(G2

FT
5)−1 (B.6)

leading to

ν(T . 100 MeV) ≈ 1.6× 109 GeV4

T 5
. (B.7)

At temperatures above the EW phase transition, neutrino interactions are no longer sup-
pressed. The shear viscosity is dominated by right handed lepton transport and given by [72]

η̄ ≈
(

5

2

)3

ζ(5)2

(
12

π

)5 3/2

9π2 + 224(5 + 1/2)

T 3

g′4 log g′−1
(B.8)

where g′ is the hypercharge coupling. This leads to

ν(T & 100 GeV) ≈ 21.6

T
. (B.9)

The evolution of ν with temperature is plotted in figure 17. The neutrinos remain the
relevant particles controlling the viscosity until they decouple at T ∼ 1.4 MeV, after which
photons take over. Even if there was some source of turbulence after the EW phase transi-
tion, turbulence is expected to terminate anyway around 1 MeV. Indeed, e+e− annihilation
reduces the plasma electron population and increases the photon diffusion length hence also
the kinematic viscosity, leading to a decrease of the Reynolds number below one.

Since we have only found non-relativistic derivations in the literature [31, 55, 73], let
us estimate here in some detail the magnetic diffusivity and the magnetic Prandl number for
relativistic electrons in the cosmic plasma with temperatures 1 MeV < T < 100 GeV,

Pm(T ) ≡ Rm(L, T )

Re (L, T )
=
ν(T )

µ(T )
. (B.10)

We want to determine Pm(T ) when the electrons are relativistic and their dominant interac-
tions are electromagnetic.
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Figure 17. Evolution with temperature of the kinematic viscosity ν(T ).

To determine the magnetic diffusivity µ(T ) we derive an expression for the conductivity
σ(T ). The Lorentz force acting on an electron is

me
duµ

dτ
= eFµνuν .

If we average this equation over a fluid element containing many electrons, the magnetic field
term is sub-dominant. Even though the electrons are highly relativistic, the average fluid
velocity is small. Furthermore γ = 1/

√
1− v2

e ' T/me is nearly constant and we may neglect
the contribution dγ/dτ from dui/dτ = d(γvi)/dτ above. With dτ = γ−1dt = (me/T )dt, this
yields the following equation for the mean velocity of the electron fluid:

dv

dt
=
e

T
E .

If we denote the collision time for the electrons by tc, they can acquire velocities of the order
v ' e

T E tc between successive collisions. Hence the current is

J ' enev ' tc
e2ne
T

E ≡ σE

so that the conductivity becomes

σ = tc
e2ne
T

.

We now derive an estimate for tc from Coulomb interactions. For a strong collision between
the electron and another charged particle we need an impact parameter b such that e2/b >
Ee ' T . Hence the cross section becomes σt ∼ πb2 ' πe4/T 2 (this simple argumentation
neglects the Coulomb logarithms which enhance the cross section by ln(1/αmin) where αmin

is the minimal deflection angle [73]). With ve = 1 the time between collisions is therefore
tc = 1/(σtne) ' T 2/(πe4ne) and

σ ' T

πe2
. (B.11)
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Note that this result is independent of the electron density. This is physically sensible as ne
enhances the current on the one hand but it reduces in the same way the collision time.

With (B.11) we obtain for the magnetic diffusivity

µ(T ) ≡ 1

4πσ
' e2

4T
' 10−3

T
. (B.12)

Inserting the kinematic viscosity from eqs. (B.5) or (B.7) we obtain for the Prandl number

Pm =
ν

µ
' 1012

(
GeV

T

)4

. (B.13)

This number is larger than 1 for all temperatures 1 MeV< T < 100 GeV where the derivation
applies. Hence currents and magnetic fields can develop and we are in the regime where
MHD turbulence applies.

C The unequal time anisotropic stress power spectrum

As mentioned in the main text, the unequal time anisotropic stress power spectrum Π(k, t1, t2)
is given by the convolution of the unequal time source power spectrum. The details of the
derivation (for the formally identical case of a magnetic field) can be found in ref. [21]; here
we just give its main steps. One starts with eq. (4.3). Wick’s theorem gives

〈vi(k)v∗j(q)vn(s)v∗m(p)〉 =

= 〈vi(k)v∗j(q)〉〈vn(s)v∗m(p)〉+

〈vi(k)vn(s)〉〈v∗j(q)v∗m(p)〉+

〈vi(k)v∗m(p)〉〈vn(s)v∗j(q)〉 . (C.1)

This has to be inserted in eq. (4.3) together with the definition of the velocity power spec-
trum (3.32). Applying the projection operator gives the angular dependence,

Pabcd(k̂)[(δac − q̂aq̂c)(δbd − (k̂− q)b(k̂− q)d)

+ (δad − q̂aq̂d)(δbc − (k̂− q)b(k̂− q)c)] =

= 1 + (k̂·(k̂−q))2 + (k̂·q̂)2 + (k̂·q̂)2(k̂·(k̂−q))2 . (C.2)

Comparing then with eq. (4.1), one arrives at the result:

Πv(k, t1, t2) =

∫
d3pPv(p, t1, t2)Pv(|k− p|, t1, t2)(1 + γ2)(1 + β2) , (C.3)

with γ = k̂ · p̂, β = k̂ · k̂− p.
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6.3 Article: Gravitational wave signal from first order phase

transitions at LISA

The article presented in the following section has been conceived and completed in the con-

text of the LISA Cosmology Working Group, that I am coordinating together with Germano

Nardini and, since 2018, Robert Caldwell. The project of a space-based GW interferometer,

called eLISA at that time, was under study by ESA: in particular, they constituted a com-

mittee (the GOAT committee) with the duty of advising ESA about the best design for the

interferometer, balancing cost and scientific reach. The committee asked the community of

the eLISA Consortium to help in assessing the scientific potential of the several eLISA con-

figurations under examination. The Cosmology Working Group organised a kick-off meeting

in CERN in 2015, where the community was reassembled, and it was decided to perform a

common effort to work out the sensitivity of four of the proposed eLISA configurations to

SGWBs generated by first order PTs. A sub-group of the Working Group members worked

together on this topic and produced the paper presented below. My contribution has been

mainly the prediction of the GW signals and the analysis of the eLISA sensitivity: in partic-

ular, sections 1 to 3 and Figs. 1 to 7 of the following paper. Note that, for MHD turbulence,

this work adopts the SGWB spectral shape derived in the previous section 6.2.

The paper has been useful for the community. One reason is that it summarises the most

relevant PT models (both of the EWPT and others) that can provide interesting signals

for eLISA, remaining unconstrained by particle physics experiments, in particular the LHC.

However, the main reason is that, for the first time, it puts together all the contributions to

the GW signal (bubble wall collision, sound waves, MHD turbulence), providing concise and

easy-to-use formulas for the SGWB spectra. Moreover, it presents the sensitivity reach of four

eLISA configurations in a subset of the PT parameter space constituted by (α, β/H∗, T∗).

Therefore, PT model builders have been using this paper both to predict the SGWB from

their model, and to quickly assess whether it was detectable at eLISA.

The result of the analysis is, that configurations of the interferometer with three arms

have the best potential to probe the PT parameter space (also, but not only, because they

allow for a much better characterisation of the noise - c.f section 4.4 of chapter 4). The paper,

together with their companions assessing eLISA scientific potential concerning massive black
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hole binaries [272] and standard sirens [1], was relevant for the choice made by ESA of

maintaining a three-arm design for eLISA. An interferometer with three arms of 2.5 million

km arm-length and 4 years of nominal time duration was finally approved by ESA in 2017

under the name of LISA, and is scheduled to launch in 2034 (c.f. chapter 4.4 and [130]). The

approval was triggered in particular by the great success of the LISA Pathfinder mission [151].

The Cosmology Working Group is currently preparing a follow-up of the article presented

below. It will contain updated results concerning the PT models, it will use the new LISA

sensitivity curve to assess the parameter space tested by the interferometer, and it will include

updated shapes for the GW spectra, when available. Together with the article, a web-tool

will be provided to be used by the community to test whether the SGWB signal from a given

PT model can be detected by LISA. There is an ongoing debate within the Working Group,

whether to make this paper a living review: that would allow to keep it up to date as new

results appear, on the interferometer data analysis and/or on the SGWB spectra and sources.

For example, another activity of the Cosmology Working Group consists in developing

new data analysis techniques to evaluate the detectability of a SGWB. It is clear that verifying

that the SGWB overcomes the Power Law-Integrated Curve (c.f. section 4.4.1) is only the

first step: one should also establish the accuracy with which the parameters of the SGWB

can be measured. Furthermore, it is essential to ascertain whether the spectral shape of the

SGWB can be determined, as this is the only possibility we have to potentially distinguish

among different SGWB sources from the early universe. Last but not least, techniques for

removing the astrophysical foregrounds must be worked out, if we want to access SGWB of

primordial origin with smaller amplitude than the foregrounds. All these issues are currently

under study within the LISA Consortium Working Groups, and important results are to be

expected in the next few years.
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Géraldine Servantd,h and David J. Weiri

aIPhT, CEA Saclay and CNRS UMR3681,
91191 Gif-sur-Yvette, France
bDepartment of Physics and Astronomy, University of Sussex,
BN1 9QH, Brighton, U.K.
cDepartment of Physics and Helsinki Institute of Physics, University of Helsinki,
PL 64, FI-00014 Helsinki, Finland
dDESY,
Notkestrasse 85, D-22607 Hamburg, Germany
eTRIUMF,
4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
f ITP, AEC, University of Bern,
Sidlerstrasse 5, CH-3012, Bern, Switzerland
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Abstract. We investigate the potential for the eLISA space-based interferometer to detect the
stochastic gravitational wave background produced by strong first-order cosmological phase
transitions. We discuss the resulting contributions from bubble collisions, magnetohydrody-
namic turbulence, and sound waves to the stochastic background, and estimate the total cor-
responding signal predicted in gravitational waves. The projected sensitivity of eLISA to cos-
mological phase transitions is computed in a model-independent way for various detector de-
signs and configurations. By applying these results to several specific models, we demonstrate
that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of par-
ticle physics predicting strong first-order cosmological phase transitions in the early Universe.

Keywords: cosmological phase transitions, cosmology of theories beyond the SM, gravita-
tional wave detectors, primordial gravitational waves (theory)
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1 Introduction

Phase transitions (PTs) are ubiquitous in nature. Boiling liquid into gas, the emergence of
superconductivity, superfluidity, and permanent magnetization in ferromagnetic materials are
some well-known examples of this phenomenon. Intriguingly, PTs can also be cosmological :
regions of the universe can abruptly transition from one ground state to another. In the
language of quantum field theory, this typically corresponds to the appearance or change of
a scalar field operator’s vacuum expectation value (VEV).

A first-order cosmological PT can occur when two local minima of the free energy
co-exist for some range of temperatures. If this is the case, the relevant scalar field can
quantum mechanically ‘tunnel’ or thermally fluctuate into the new phase. These quantum
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or thermal processes proceed via the nucleation of bubbles in a sea of metastable phase. The
bubbles will then expand and eventually collide with each other. This sequence of events can
give rise to a significant stochastic background of gravitational waves (GWs), as we describe
below, and provides an attractive target for the next space-based GW observer, the eLISA
interferometer [1].

First-order cosmological PTs are predicted in many scenarios beyond the Standard
Model of particle physics. They can be tied to the production of the observed baryon asym-
metry, to the nature of dark matter, or simply be a byproduct of an extended scalar sector.
Consequently, eLISA can be a vital tool in exploring possibilities for new physics, comple-
menting existing observational efforts at colliders, precision and cosmic frontier experiments.

The purpose of this paper is to quantitatively assess the extent to which eLISA can
test realistic scenarios predicting strong first-order PTs in the early Universe. Currently,
a design study is in progress within the European Space Agency to define the most sci-
entifically promising configuration of eLISA. The characteristics of the configuration that
remain open or undetermined are the low-frequency noise level, soon to be tested by the
LISA Pathfinder [2], the number of laser links (four or six, corresponding to two or three
interferometer arms), the length of the interferometer arms (1, 2, or 5 million km), and the
duration of the mission (2 or 5 years).

As part of the design study, the scientific potential of each possible eLISA configuration
is currently being analyzed and scrutinized. This paper is the second in a series that evaluates
the impact of the aforementioned four key design specifications on the scientific performance
of eLISA. The first considered the primary scientific target of eLISA: the GW signal from
massive black hole binaries [3]. In this paper, we specifically address eLISA’s potential
to detect a stochastic GW background arising from a first-order PT. As we will see, our
conclusions in this regard depend quite sensitively on the experimental configuration. For a
more detailed discussion on the status of the eLISA mission and its possible designs, we refer
the reader to the first paper of this series [3].

The remainder of this study is structured as follows. We provide an overview of GW
generation at a first-order cosmological PT in section 2. Model-independent projections of
the eLISA sensitivity to such signals are presented in section 3. We then discuss several
specific examples of models predicting strong GW signatures through a first-order PT in
section 4, either associated with electroweak symmetry breaking (section 4.2) or otherwise
(section 4.3). Section 5 comprises a summary and our conclusions. Some additional details
of our analysis are provided in appendix A.

1.1 Definitions and notation

Before proceeding, we comment briefly on our notation, which generally coincides with that
found in e.g. ref. [4], and identify the quantities important for computing the GW signal from
cosmological PTs.

In what follows, T∗ denotes the temperature of the thermal bath at the time t∗ when
GWs are produced. For typical transitions without significant reheating, this is approxi-
mately equivalent to the nucleation temperature, T∗ ≈ Tn. For the remainder of this section
we assume that this is the case, deferring the treatment of scenarios with large reheating
effects to section 2.2.3. The bubble nucleation rate is [5]

Γ(t) = A(t)e−S(t) , (1.1)

– 2 –
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where S is the Euclidean action of a critical bubble.1 Tn is then defined as the temperature
at which Γ becomes large enough to nucleate a bubble per horizon volume with probability
of order 1.

In terms of Γ(t), the (approximate) inverse time duration of the PT is defined as

β ≡ − dS

dt

∣∣∣∣
t=t∗

' Γ̇

Γ
. (1.2)

A key parameter controlling the GW signal is the fraction β/H∗, where H∗ is the Hubble
parameter at T∗. The smaller β/H∗ is, the stronger the phase transition and consequently
the GW signal. Provided T∗ ≈ Tn, this ratio can be expressed as

β

H∗
= T∗

dS

dT

∣∣∣∣
T∗

. (1.3)

A second key parameter, α, is the ratio of the vacuum energy density released in the
transition to that of the radiation bath.2 For transitions without significant reheating,

α =
ρvac
ρ∗rad

, (1.4)

where ρ∗rad = g∗π2T 4
∗ /30, and g∗ is the number of relativistic degrees of freedom in the plasma

at T∗.
The characteristic frequency of the signal at the time of emission is set roughly by H∗

(see section 2.1). For PTs taking place at the electroweak epoch, the observed frequency
today, which is redshifted by a factor of (T0/T∗), is typically in the milliHertz range. eLISA,
which is sensitive to frequencies in this range, may therefore provide a window to electroweak
scale physics.

Other important parameters are [6]

κv =
ρv
ρvac

, κφ =
ρφ
ρvac

, (1.5)

the fraction of vacuum energy that gets converted into bulk motion of the fluid and into
gradient energy of the Higgs-like field, respectively. Finally, vw denotes the bubble wall
velocity in the rest frame of the fluid far away from the bubble.

2 Prediction of the gravitational wave signal

As mentioned above, a first-order PT proceeds by the nucleation and expansion of bubbles
of a new phase. Isolated spherical bubbles do not source GWs. It is therefore processes
arising during the collision of bubbles that are relevant for GW physics (we ignore possible
instabilities [7, 8]).

Depending on the details of the model, the bubble walls can move with velocities up
to the speed of light. If the dynamics of the PT involve only a single field with no relevant

1In principle, there are many solutions to the Euclidean equations of motion that can contribute to the
action. In practice, only the solution with the lowest action is relevant. For vacuum transitions, this is the
O(4)-symmetric solution with Euclidean action S4, while at finite temperature the O(3)-symmetric bounce is
the relevant solution, with Euclidean action S3/T . Then, at a given time, S(t) ≈ min{S4, S3/T}.

2Notice that in parts of the literature, α is defined in terms of the latent heat of the PT and not in terms
of the vacuum energy. In the limit of strong PTs and large supercooling these two definitions coincide.
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couplings to the thermal bath, then the bubble walls move relativistically in what is known
as a vacuum transition.

Thermal PTs, in which the scalar field is coupled to a plasma of light fields, typi-
cally involve slower wall velocities due to the effective friction term coupling the field to the
plasma [9]. It is, however, still possible to get luminal wall velocities [10]. For thermal PTs,
if velocities are subsonic vw < 1/

√
3, a shock forms in the plasma in front of the bubble wall;

if velocities are supersonic vw > 1/
√

3, a rarefaction wave forms behind the bubble wall.
The spectrum of the stochastic GW background arising from cosmological PTs depends

on various sources. These are outlined in section 2.1. Which sources are most relevant in a
given PT scenario depends sensitively on the dynamics of bubble expansion. We discuss the
various possibilities in section 2.2.

2.1 Contributions to the gravitational wave spectrum

To varying degrees, three processes are involved in the production of GWs at a first-order PT:

• Collisions of bubble walls and (where relevant) shocks in the plasma. These can be
treated by a technique now generally referred to as the ‘envelope approximation’ [11–
16]. As described below, this approximation can be used to compute the contribution
to the GW spectrum from the scalar field, φ, itself.

• Sound waves in the plasma after the bubbles have collided but before expansion has
dissipated the kinetic energy in the plasma [17–20].

• Magnetohydrodynamic (MHD) turbulence in the plasma forming after the bubbles have
collided [21–26].

These three processes generically coexist, and the corresponding contributions to the stochas-
tic GW background should linearly combine, at least approximately, so that

h2ΩGW ' h2Ωφ + h2Ωsw + h2Ωturb . (2.1)

Let us briefly review each contribution in more detail.

2.1.1 Scalar field contribution

The GW contribution from the scalar field involved in the PT can be treated using the
envelope approximation [11–14]. In this approximation, a fraction κ of the latent heat of
the PT is deposited in a thin shell close to the PT front. The energy in each shell is
then assumed to quickly disperse after colliding with another shell such that the energy is
primarily stored in the envelope of uncollided shells.3 Numerical simulations utilizing the
envelope approximation suggest that the GW contribution to the spectrum is given by [16]

h2Ωenv(f) = 1.67× 10−5
(
H∗
β

)2( κα

1 + α

)2(100

g∗

) 1
3
(

0.11 v3w
0.42 + v2w

)
Senv(f) , (2.2)

where Senv(f) parametrises the spectral shape of the GW radiation. A fit to simulation
data [16] yields

Senv(f) =
3.8 (f/fenv)2.8

1 + 2.8 (f/fenv)3.8
, (2.3)

3The envelope approximation we adopt here neglects the fact that the scalar field can perform oscillations
as it settles into the true vacuum after wall collisions, as demonstrated e.g. in [27].
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with the slopes of the spectrum in the limit of small and large frequencies given respectively
by Senv ∝ f q with q = 2.8 and Senv ∝ f−p with p = 1. Causality implies that at low frequency
the spectral index is q = 3 [28]. This has to be the case at least for frequencies smaller than
the inverse Hubble horizon at GW production, eq. (2.6). However, q = 2.8 provides a better
fit to the simulated result close to the peak of the spectrum and we adopt this spectral index
in the following.

The peak frequency of the contribution to the spectrum from bubble collisions, fenv, is
determined by the characteristic time-scale of the PT, i.e. its duration 1/β [25, 28]. From
simulations, the peak frequency (at t∗) is approximately given by [16]

f∗
β

=

(
0.62

1.8− 0.1vw + v2w

)
. (2.4)

This value is then red-shifted to yield the peak frequency today [14],

fenv = 16.5× 10−3 mHz

(
f∗
β

) (
β

H∗

)(
T∗

100 GeV

)( g∗
100

) 1
6
. (2.5)

In going from eq. (2.4) to eq. (2.5) we use the value of the inverse Hubble time at GW
production, redshifted to today,

h∗ = 16.5× 10−3 mHz

(
T∗

100 GeV

)( g∗
100

) 1
6

(2.6)

along with the assumption that the Universe transitioned directly to a radiation-dominated
phase after the PT and has expanded adiabatically ever since.

The envelope approximation can be readily applied to the GW contribution arising from
the scalar field itself,

h2Ωφ(f) = h2Ωenv(f)
∣∣
κ=κφ

, (2.7)

where κφ denotes the fraction of latent heat transformed into the kinetic energy of the scalar
field. Its size depends on the details of the bubble expansion, as we discuss in section 2.2.

2.1.2 Sound waves

Percolation produces bulk motion in the fluid in the form of sound waves. Acoustic production
of GWs is an area of active research, and a definitive model covering all relevant vw and α
is not yet available [17, 20]. For generic values of vw (meaning values more than about 10%
away from the sound speed or the speed of light), the numerical results of [20] are fitted
reasonably by

h2Ωsw(f) = 2.65× 10−6
(
H∗
β

)(
κvα

1 + α

)2(100

g∗

) 1
3

vw Ssw(f) , (2.8)

where the efficiency κv denotes the fraction of latent heat that is transformed into bulk
motion of the fluid, and depends on the expansion mode of the bubble (see section 2.2).

The numerical simulations performed in ref. [20] indicate that the contribution from
acoustic production can be modelled by a broken power law, with the causal slope q = 3 for
values of the frequency below the peak frequency, and a power law −p above the peak, with
p & 3. It can be shown that the signal-to-noise ratios for GW detection are rather insensitive
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to the precise value of p if it is greater than 3. For the purposes of this analysis we take
p = 4. We adopt the following spectral shape Ssw(f) in eq. (2.8):

Ssw(f) = (f/fsw)3
(

7

4 + 3 (f/fsw)2

)7/2

. (2.9)

The peak frequency fsw is not yet well understood. The overall scale is set by the
average bubble separation R∗ = (8π)

1
3 vw/β, but the peak position is found numerically to

be less than R∗. A conservative estimate that complies with the above spectral shape is
fsw = (2/

√
3)(β/vw), which, after redshifting, becomes

fsw = 1.9× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

) 1
6
. (2.10)

The parametric dependence of the GW spectrum in eq. (2.8) differs by a factor β/H∗
with respect to the envelope result in eq. (2.2). The enhancement of the spectral amplitude
by a factor β/H∗ for long-lasting sources w.r.t. to short lasting ones has been predicted on the
basis of analytical arguments in ref. [25]. Simulations show that the sound waves typically
remain active as a source of GW much longer than the collisions of the bubble walls [20]. We
therefore believe that the β/H∗ factor is tied to the duration of the source, and is robust. The
same amplification is observed in the case of MHD turbulence which is also a long-lasting
source (it takes several Hubble times to dissipate [25]).

We emphasize that the simulations used to arrive at eqs. (2.8)–(2.10) were restricted
to values of α . 0.1 and the maximum root mean square fluid velocity

√
καv was about

0.05. The extent to which the results of these simulations can be extrapolated to larger α
remains to be investigated. In particular, we expect that the development of weak shocks at
tsh ∼ (vw/

√
καv)β

−1 (see e.g. [29]) will eventually convert the acoustic signal to a turbulent
one, described in the next section. We urge the reader to keep this in mind when interpreting
our results below.

2.1.3 MHD turbulence

Percolation can also induce turbulence in the plasma, and in particular MHD turbulence
since the plasma is fully ionized. Considering Kolmogorov-type turbulence as proposed in
ref. [30], its contribution to the GW spectrum in eq. (2.1) can be modelled as4 [6, 25]

h2Ωturb(f) = 3.35× 10−4
(
H∗
β

)(
κturb α

1 + α

) 3
2
(

100

g∗

)1/3

vw Sturb(f) , (2.11)

where κturb denotes the fraction of latent heat that is transformed into MHD turbulence
(note the different dependence on this parameter w.r.t. to the sound wave and scalar field
cases). Similarly to the case of sound waves, one recognizes the amplification by a factor
β/H∗ which is typical of sources that last longer than the average duration 1/β of the PT.
The spectral shape has been found analytically and is given by [6, 25]

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/h∗)

. (2.12)

4Note that MHD turbulence after a primordial PT can also be helical, as pointed out e.g. in ref. [23]. Here
we neglect the GW signal from a possible helical component, which in the context of eLISA will be the subject
of a subsequent study.
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The explicit dependence on the Hubble rate h∗ (cf. eq. (2.6)) is also a consequence of the
fact the turbulence acts as a source of GW for several Hubble times. The causal slope
q = 3 is recovered for frequencies smaller than h∗, but it changes to q = 2 for intermediate
(sub-Hubble) values of the frequency h∗ < f < fturb, again due to the long duration of the
GW source [25]. At large frequency f � fturb the slope is determined by the Kolmogorov
turbulence model, p = 5/3.

Similarly to the sound wave case, the peak frequency is connected to the inverse char-
acteristic length-scale of the source, the bubble size R∗ towards the end of the PT. Analytic
arguments show that this is due to the particular time de-correlation properties of the tur-
bulent source [25]. One has fturb ' (3.5/2)(β/vw), which becomes, after redshifting,

fturb = 2.7× 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)( g∗
100

) 1
6
. (2.13)

Note that, contrary to the envelope and sound wave cases, the spectral shape of the GW
spectrum in eq. (2.12) has not been tuned such that fturb exactly corresponds to the maximum
of Sturb(f). Here fturb is inherited from the physical arguments underlying the analytical
evaluation carried out in ref. [25].

2.2 Dynamics of the phase transition: three cases

The relative importance of each contribution discussed above w.r.t. GW generation depends
strongly on the features of the PT and its dynamics. The bubble wall velocity plays a key
role in this respect. If the wall velocity is small, the thermal bath can efficiently absorb the
energy available in the PT, and the GW spectrum is thus suppressed. If the wall velocity is
instead relativistic, a large portion of the energy budget can go into bulk motion or even in
the kinetic energy of the wall itself. Moreover, in the case of relativistic bubble wall velocities,
qualitatively different scenarios can arise, depending on whether the bubble wall reaches a
terminal velocity or not. In the latter (‘runaway’) case, a further important distinction is
whether or not plasma effects play an important role in bubble expansion. Below, we consider
these different scenarios in turn.5 We stress that, when analyzing the GW spectrum predicted
in a particular particle physics model, it is important to understand which of the following
scenarios apply.

2.2.1 Case 1: non-runaway bubbles

Bubbles expanding in a plasma can reach a relativistic terminal velocity. In this case, the
energy in the scalar field is negligible (it only scales with the surface of the bubble and not
with the volume) and the most relevant contributions to the signal are expected to arise
from the bulk motion of the fluid. This can be in the form of sound waves and/or MHD
turbulence. Combining these contributions, we approximate the total spectrum as

h2ΩGW ' h2Ωsw + h2Ωturb . (2.14)

As shown in the previous sections, these expressions involve κv, the efficiency factor for
conversion of the latent heat into bulk motion [9, 14]. In the limits of small and large vw, it
is approximately given by

κv '
{

α (0.73 + 0.083
√
α+ α)

−1
vw ∼ 1

v
6/5
w 6.9α (1.36− 0.037

√
α+ α)

−1
, vw . 0.1

(2.15)

5We do not analyze the case of non-relativistic wall velocity since it tends to yield GW spectra that are
not detectable in the forthcoming future.
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Full expressions for κv are given in ref. [9], which we utilize below (note that κv is called κ
in ref. [9]).

The GW spectra also depend on vw, which is model-dependent. We choose vw = 0.95
for concreteness, since scenarios with nearly luminal wall velocities are more promising from
the standpoint of observable gravitational radiation.

In the GW contribution from MHD turbulence, eq. (2.11), we take

κturb = ε κv , (2.16)

with ε representing the fraction of bulk motion which is turbulent. Recent simulations sug-
gest that only at most 5 − 10% of the bulk motion from the bubble walls is converted into
vorticity (cf. e.g. table II in [20]). However, these simulations lasted for less than one eddy
turn-over time so one would not expect significant turbulence to have developed. The onset
of turbulence is expected after shocks develop at tsh ∼ (vw/

√
καv)β

−1, which is less than a
Hubble time for stronger transitions. More work is needed to understand how turbulence
develops from the acoustic waves, and to allow for the uncertainty in what follows we conser-
vatively set ε = 0.05. This strongly suppresses the role of turbulence as far as the detection
of GW from the PT is concerned, thereby underestimating the signal in the case that weak
shocks develop within one Hubble time. As we will see, turbulence can only slightly improve
the signal-to-noise ratio in extreme cases for which the PT is very slow, i.e. β ' H∗. A more
accurate balance between acoustic and turbulent gravitational wave production remains to
be investigated, as does the possible contribution from the magnetic field.

2.2.2 Case 2: runaway bubbles in a plasma

If a model predicts a first-order PT already at the mean-field level, it is possible for the
bubble wall to accelerate without bound and hence run away [10], with vw → c. Although the
existence of a runaway configuration does not guarantee that it will be realized [31, 32], it is
generally difficult to prevent strong transitions from reaching the runaway regime, if it exists.

Bubbles can run away even if expanding in a thermal plasma. In this case, the energy
density stored in the Higgs-like field profile cannot be neglected, since it is known to dominate
as α→∞ (Case 3 below). The total contribution to the GW signal can be approximated in
this case by

h2ΩGW ' h2Ωφ + h2Ωsw + h2Ωturb , (2.17)

where we have reintroduced Ωφ, the part sourced by gradients in the scalar field. This
contribution is well-modeled by the envelope approximation (see section 2.1.1).

The following picture emerges in this case [9]. As α is increased, the wall velocity quickly
becomes relativistic. We denote by α∞ the minimum value of α such that bubbles run away
(i.e. no longer reach a terminal velocity in the plasma frame). For α > α∞, the fraction
of the total phase transition energy budget deposited into the fluid saturates. Beyond this
value, the fluid profile no longer changes with increasing α and the surplus energy goes into
accelerating the bubble wall. This surplus energy is parameterized by the fraction

κφ ≡
α− α∞

α
≥ 0 . (2.18)
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Only the fraction α∞/α of the total energy budget is then transformed into bulk motion and
thermal energy according to eq. (2.15):

κv ≡
α∞
α
κ∞ ,

κtherm ≡ (1− κ∞)
α∞
α

,

κ∞ ≡
α∞

0.73 + 0.083
√
α∞ + α∞

.

(2.19)

The parameter α∞ is model-dependent. Denoting the tunneling field6 as φ with cor-
responding vacuum expectation value φ∗ inside the bubble immediately after tunneling, one
can express α∞ as [9]

α∞ '
30

24π2

∑
a ca∆m

2
a(φ∗)

g∗T 2∗
, (2.20)

for the typical case with T∗ ≈ Tn. In the above expression, the sum runs over all particles
a that are light in the initial phase and heavy in the final phase, ∆m2

a(φ∗) is the difference
of their (field-dependent) squared masses in the two phases, g∗ again corresponds to the
effective number of relativistic degrees of freedom in the initial phase, and ca is equal to Na

for bosons and 1
2Na for fermions, with Na the number of the degrees of freedom for the species

a. For electroweak PTs in models with Standard Model-like particle content (g∗ = 106.75,
a ∈ {W±, Z, t} and NW = 6, NZ = 3, Nt = 12),7 this parameter is approximately given by8

α∞ ' 4.9× 10−3
(
φ∗
T∗

)2

. (2.21)

Since most scenarios beyond the Standard Model do not feature new relativistic degrees of
freedom or new particles with couplings to the Higgs comparable to those of the SU(2)L
gauge bosons or top quark, eq. (2.21) is typically a reliable estimate for electroweak PTs,
although one should verify this explicitly with the exact expressions found in ref. [9].

By definition, reasonably strong first-order PTs in a radiation-dominated epoch feature
φ∗/T∗ & 1. On the other hand, heuristically, models with φ∗/T∗ & 10 are more likely to fall
into the large-α case (described in the next section) for which α∞ becomes irrelevant. We
therefore expect α∞ ∼ 0.005–0.5 for scenarios belonging to Case 2.

2.2.3 Case 3: runaway bubbles in vacuum

Finally, some models predict PTs that occur in a vacuum-dominated epoch. This situation
arises in models with a significant amount of supercooling. In this case, plasma effects are
negligible, and the bubble wall will accelerate indefinitely, with vw quickly approaching the
speed of light, as in Case 2 above.

The temperature T∗ in this situation is given approximately by the reheat temperature
after percolation, T∗ ≈ Treh. So far, in most of our expressions we have assumed T∗ ≈ Tn ≈
Treh, as is appropriate for transitions in a radiation-dominated epoch and without significant
reheating. However, in the vacuum case, one instead generally expects Tn � Treh ≈ T∗, since

6Here, φ should be thought of as a vector in field space for scenarios in which more than one field changes
its VEV during the transition.

7The Higgs and Goldstone contributions are typically numerically negligible.
8Note that the expression above differs from that in ref. [9]; we believe this discrepancy is due to an

algebraic error in the latter.
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Name C1 C2 C3 C4

Full name N2A5M5L6 N2A1M5L6 N2A2M5L4 N1A1M2L4

# links 6 6 4 4

Arm length [km] 5M 1M 2M 1M

Duration [years] 5 5 5 2

Noise level N2 N2 N2 N1

Table 1. Properties of the representative eLISA configurations chosen for this study. The correspond-
ing sensitivity curves are shown in figure 1. More details on these configurations and their sensitivity
curves can be found in ref. [3] and ref. [33] respectively.

Treh is governed by the vacuum energy released during the transition. The definitions of α and
β/H∗ should be adjusted accordingly. In particular, for vacuum transitions, Equations (1.3)
and (1.4) should be replaced by

β

H∗
=
H(Tn)

H∗
Tn

dS

dT

∣∣∣∣
Tn

, α =
ρvac

ρrad(Tn)
. (2.22)

Notice that for fast reheating one obtains H(Tn) ' H∗ even though Tn � T∗. This is because
energy conservation ensures that the vacuum energy that dominates H(Tn) is transformed
without loss into the radiation energy that dominates H∗.

As Tn → 0, α→∞ and the α dependence drops out of the predicted GW signal in this
scenario (cf. eq. (2.2)). Also, in this limit, only the Higgs field contribution is significant,
from which it follows that

h2ΩGW ' h2Ωφ , (2.23)

where h2Ωφ is given in eq. (2.7), and eq. (2.2) with κφ = 1, vw = 1. There is no significant
plasma contribution in this case, by definition. Note that, if the reheating of the Standard
Model sector is slow, there will be a period of matter domination immediately following the
transition, which would change the redshift, and hence eq. (2.5). We will not consider this
particular case further.

3 eLISA sensitivity

3.1 Detection threshold

In this analysis we consider four representative configurations for eLISA, which we name
C1-C4 and which are listed in table 1. The corresponding eLISA sensitivity curves can be
found in ref. [3] for the target GW source, massive black hole binaries. On the other hand,
here we are interested in a stochastic background of GWs, which is statistically homogeneous
and isotopic. The purpose of this section is to briefly explain how one can obtain sensitivity
curves which correctly represent the prospects for detecting a stochastic GW background with
eLISA for a given configuration (more details will be presented in an upcoming study [33]).

For the C1-C4 configurations, the resulting eLISA sensitivity to a stochastic GW back-
ground is shown in figure 1. The most promising clearly appears to be C1, which corresponds
to the old LISA configuration: it has 6 links, 5 million km arm length, a duration of 5 years
and noise level corresponding to that expected to be found by the LISA Pathfinder (labeled
as N2 and henceforth called “LISA Pathfinder expected”). The least sensitive is C4, with 4
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Figure 1. Sensitivity curves of the C1-C4 configurations given in table 1 compared with a typical GW
signal. We have chosen the signal predicted in the Higgs portal scenario described in section 4.2.2,
with benchmark values T∗ = 59.6, α = 0.17, β/H∗ = 12.54, φ∗/T∗ = 4.07 (see table 3).

links, 1 million km arm length, a duration of 2 years and noise level corresponding to 10 times
larger than expected (N1, also dubbed “LISA Pathfinder required”). For the intermediate
configurations, we have fixed the duration to five years and the noise level to LISA Pathfinder
expected, since these two characteristics are likely achievable. An open question, which we
would like to answer with this analysis, is whether it is more efficient to add a pair of laser
links or to increase the arm length for the purpose of probing the occurrence of first-order
PTs in the early Universe. The outcome, as we will see, is that adding a pair of laser links
leads to a larger gain in sensitivity than increasing the arm length from 1 to 2 million km.

To assess the detectability of the GW signal, we consider the signal-to-noise ratio [34],

SNR =

√
T
∫ fmax

fmin

df

[
h2ΩGW(f)

h2ΩSens(f)

]2
, (3.1)

where h2ΩSens(f) denotes the sensitivity of a given eLISA configuration and T is the duration
of the mission in years [33]. Whenever SNR is larger than a threshold SNRthr, the signal
h2ΩGW(f) can be detected. Quantifying SNRthr is not an easy task. We briefly describe how
this can be done here, referring the interested reader to ref. [33] for more details.

Applying a Bayesian method, refs. [35, 36] found that the old LISA configuration over
one year can detect a white-noise stochastic background at the level of h2ΩL6

GW = 1× 10−13.
This sensitivity can be achieved by exploiting the fact that, with three interferometer arms
(i.e. three pairs of laser links), it is possible to form two (virtually) noise-independent detec-
tors, in which the noise is uncorrelated whereas the GW signal is correlated. This technique
is safe and robust, although it remains to be tested with realistic noise levels. On the other
hand, this technique cannot be applied to the two-arm configurations, and the level of de-
tectable GW background is degraded. With the same Bayesian method, and assuming good
prior knowledge of the noise, ref. [36] finds that with a four-link but otherwise LISA-like
configuration over one year one can detect a white-noise stochastic background at the level
of h2ΩL4

GW = 3.5× 10−13.
These levels of sensitivity h2ΩL6,L4

GW do account for the presence of the confusion noise
from galactic binaries: refs. [35, 36] show that this latter can be estimated, and therefore
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extracted, together with the cosmological signal using the Bayesian method. This is why we
do not include it in the sensitivity curves of the C1-C4 configurations shown in figure 1.

For the present detection analysis, we use the above results and convert them into
corresponding values of SNRthr. We compare the h2ΩL6

GW and h2ΩL4
GW detection levels with

the power law sensitivity curve for each six-link (respectively, four-link) configuration. The
power law sensitivity curve is a concept developed in [34] with the aim of accounting for the
improvement in the usual sensitivity curves of a GW detector that comes from the broadband
nature of a stochastic signal. The curve is given by the envelope of power laws Ωβ(f/fref)

β

that can be detected with SNR = 1, varying β. For each eLISA configuration, we compute the
power law sensitivity curve, and the SNR corresponding to the detection levels h2ΩL6

GW and
h2ΩL4

GW. To be conservative, for the four-link configurations we increase the detectability level
to h2ΩL4

GW = 10−12. This yields SNR = 10 for all six-link configurations and SNR = 50 for all
four-link configurations. We then interpret these values as SNRthr. In other words, we classify
a given GW background h2ΩGW(f) as detectable by a six-link configuration (four-link) if,
once inserted into eq. (3.1), it returns SNR > 10 (SNR > 50) [33]. Since we choose SNRthr

based on [35, 36], the confusion noise from galactic binaries is accounted for in our analysis.

3.2 Examples of gravitational wave spectra

We have seen in section 2.1 that the GW spectrum from a first-order PT is in general
given by the sum of three contributions: that of the scalar field gradients, sound waves and
MHD turbulence. The relative importance of each contribution depends on the details of
the PT dynamics, as discussed in section 2.2. Here we provide some examples of spectra
to show the interplay among the aforementioned contributions. This helps to clarify the
model-independent sensitivity contours derived in the next section.

In figure 2 we show examples of GW spectra that can arise if the PT proceeds through
non-runaway bubbles (Case 1 above), for fixed T∗, α and vw, and varying β/H∗. The total
spectrum is given in eq. (2.14) by the sum of the signal generated by sound waves and by MHD
turbulence. Since we set ε = 0.05 the signal from sound waves is dominant (cf. eq. (2.16)).
Turbulence can play a role at high frequencies, because the signal from sound waves decays
faster (i.e. with p = 4 as opposed to p = 5/3, cf. eqs. (2.9) and (2.12)) and the peak positions
are not that different (cf. eqs. (2.10) and (2.13)). Increasing β/H∗ at fixed T∗ and vw causes
the peak position to shift towards larger frequencies, and the overall amplitude to decrease.
Correspondingly, the contribution from turbulence becomes less and less important because
of the suppression due to the factor 8πf/h∗ in eq. (2.12).

If the PT proceeds through runaway bubbles in a plasma (Case 2 above), the gradients
of the scalar field also act as a source of GW together with sound waves and MHD turbulence.
The corresponding examples of GW spectra are shown in figure 3, for fixed T∗, α, vw and α∞,
and varying β/H∗. Note that fixing α∞ sets the relative amplitude of the scalar field-related
and the fluid-related contributions. For small β/H∗ the contribution from the scalar field can
dominate the GW spectrum, since the β/H∗ enhancement of the amplitude that operates for
long-lasting sources is less relevant (cf. eqs. (2.8) and (2.2)). As β/H∗ increases, the sound
wave contribution gains importance (provided that α∞ is large enough). At sufficiently high
frequencies however the scalar field contribution always dominates because of its shallow
decay: p = 1 as opposed to p = 4 and p = 5/3, see eqs. (2.3), (2.9) and (2.12).

It is apparent that the total GW spectrum arising from a first-order PT depends on the
interplay among the contributions of the different sources, which in turn are determined by the
specific dynamics of the PT. On the one hand this is encouraging, since it opens up the pos-

– 12 –



J
C
A
P
0
4
(
2
0
1
6
)
0
0
1

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

Figure 2. Example of GW spectra in Case 1, for fixed T∗ = 100 GeV, α = 0.5, vw = 0.95, and
varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000
(bottom). The black line denotes the total GW spectrum, the green line the contribution from sound
waves, the red line the contribution from MHD turbulence. The shaded areas represent the regions
detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

sibility of investigating the dynamics of the PT. On the other hand, this is probably feasible
only in the most optimistic PT scenarios and for the best eLISA configurations. Note that the
highest GW signals are expected for runaway bubbles in vacuum (Case 3 above) for which the
GW spectrum has the simplest shape, being determined only by the scalar field contribution.

3.3 Sensitivity to a first-order phase transition

With the eLISA sensitivity to a stochastic GW background determined, we would like to
assess eLISA’s ability to detect GWs from primordial first-order PTs in a way that is as
model-independent as possible. We have shown in the previous section that the predictions
of the GW spectra differ in the three cases described in sections 2.2.1–2.2.3: we must therefore
consider them separately. The most straightforward is Case 3, runaway bubbles in vacuum,
since the GW spectrum depends only on the parameters β/H∗ and T∗. If plasma effects are
important, the GW signal depends in addition on α, vw and ε, and moreover on α∞ for the
case of runaway bubble walls at finite α.

Once a model predicting a strong first-order PT is chosen, these parameters are fixed.
However, even without choosing a model, general considerations prevent these quantities from
varying completely independently. For example, α, β/H∗ and T∗ are related: as α increases,
β/H∗ and T∗ typically decrease. This behaviour is due to the shape of the Euclidean action
of the tunneling solution, S(T ), as a function of temperature [38]; therefore, we can expect
it to hold quite generally, and to occur in many different models predicting a strong first-
order PT. However, the relationship between α, β/H∗ and T∗ cannot be specified analytically
or numerically in more precise terms without knowing S(T ) in detail i.e. without restricting
oneself to a given model. Therefore, it is not possible to perform a model-independent analysis

– 13 –



J
C
A
P
0
4
(
2
0
1
6
)
0
0
1

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

10-5 10-4 0.001 0.01 0.1
10-16

10-14

10-12

10-10

10-8

f@HzD

h2
W

G
W

Hf
L

Figure 3. Example of GW spectra in Case 2, for fixed T∗ = 100 GeV, α = 1, vw = 1, α∞ = 0.3, and
varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000
(bottom). The black line denotes the total GW spectrum, the blue line the contribution from the
scalar field, the green line the contribution from sound waves, the red line the contribution from MHD
turbulence. The shaded areas represent the regions detectable by the C1 (red), C2 (magenta), C3
(blue) and C4 (green) configurations.

that realistically accounts for the relation among α, β/H∗ and T∗. As a consequence, in the
following we have chosen to let them vary freely,9 and in figures 4, 5 we present contour plots
in the plane (α , β/H∗) for different values of T∗ and representative choices of vw, ε and α∞.
In figure 6 the sensitivity is instead shown in the (T∗ , β/H∗) plane. It is important to keep
in mind that not all the points of the detection regions shown in figures 4–6 can be realized
within a realistic model. See [6] for a very similar analysis in the 2012 eLISA configuration
(also called NGO at the time).

Figure 4 shows the regions in (α , β/H∗) which are accessible by the four eLISA configu-
rations described in section 3.1 for several values of T∗ in the case of non-runaway bubble walls
(taking vw = 0.95). We have set ε = 0.05. In all figures, the regions detectable by eLISA for
each eLISA configuration are shaded. As anticipated, the two six-link configurations provide
the best reach.

The behaviour of the curves in figure 4 can be understood as follows. Larger values
of α and lower values of β/H∗ are easier for eLISA to detect because the amplitude of the
GW spectrum increases with α and decreases with β/H∗. At fixed T∗ and small β/H∗ only
the high frequency tail of the spectrum can enter the sensitivity curve: as α increases, this
happens at correspondingly smaller values of β/H∗. On the other hand, as β/H∗ increases
for a fixed value of α, the signal peak enters the detectable region, and finally exits it again
for very high β/H∗. The contours flatten out at high α, as the α-dependence drops out from
the GW spectrum amplitude for α� 1. Increasing the temperature causes smaller α-values

9A preliminary analysis of this type was carried out in [4] under the simplifying but arbitrary assumption
of a Jouguet detonation, which allows to express the bubble wall velocity as a function of α.
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Figure 4. Projected eLISA sensitivity to Case 1: non-runaway relativistic bubble walls. Results are
displayed for four values of T∗ (indicated) and the four eLISA configurations described in table 1.
The detectable region is shaded. Also shown are benchmarks from various specific models, discussed
in section 4. All other parameters are as described in the text. Note that the values of T∗ chosen
correspond only approximately to the precise values for the benchmark points. The GW signal is given
primarily by the contribution of sound waves (turbulence is negligible for the chosen value of ε).

to enter the detection region, because the peak frequency of the spectrum is shifted towards
higher frequencies where the eLISA sensitivity is better. However, detection requires β/H∗
to be small enough: as we have seen, increasing β/H∗ at fixed T∗ causes the peak frequency
to shift beyond the frequency window detectable by eLISA.

In figure 4 we also show the benchmarks from various specific models, discussed in
section 4. The values of T∗ in each panel are chosen so as to approximately match the PT
temperatures of the benchmarks.

Figure 5 applies to runaway bubbles (i.e. vw = 1) at finite α. Again we take ε = 0.05
and show several values of T∗ tuned to match the benchmarks of the models presented in
section 4. For concreteness, we have to fix the value of α∞ in each panel: it is apparent
that the contours of the detectable regions depends strongly on α∞. In appendix A we
provide extra figures showing the variation of the contours with α∞. Each benchmark point
of figure 5 represents a model with a given value of α∞ according to eq. (2.21) (cf. the
tables in section 4). Consequently, for each panel we have chosen a value of α∞ which is
representative of all benchmarks, following the criterion that the position of the benchmark
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Figure 5. Projected eLISA sensitivity to Case 2: runaway bubble walls with finite α. Results are dis-
played for four values of T∗ and α∞ (indicated) and the four eLISA configurations described in table 1.
The detectable region is shaded. Also shown are benchmarks from various specific models, discussed
in section 4. All other parameters are as described in the text. Note that the values of T∗ and α∞ cho-
sen correspond only approximately to the precise values for the benchmark points (as described in the
text). The GW signal is given primarily by the contribution of the scalar field and of the sound waves.

points with respect to the contours remains as unaltered as possible. For T∗ = 1 TeV there
are no benchmarks: we have fixed α∞ = 0.1. Note that in the four panels we only plot the
region α ≥ α∞, for which the scalar field plays a role. For an explanation of the behaviour
of the curves in figure 5 we refer the reader to appendix A.

We reiterate that the sound wave contributions in figures 2–5 rely on extrapolating the
results found by simulations for α . 0.1 and small fluid velocities to stronger transitions.
The validity of this extrapolation remains to be determined. The reader should bear this in
mind when interpreting our results, especially in cases where the sound wave contribution
dominates for α & 0.1 (e.g. Case 1).

Finally, the projected eLISA sensitivity for Case 3 (runaway bubbles in vacuum) is
shown in figure 6. This case is parametrically simpler than the other two. The GW signal,
due entirely to the scalar field contribution, only depends on T∗ and β/H∗. eLISA’s sensitivity
to the stochastic background peaks for frequencies around 1 − 10 mHz. Therefore, as the
temperature increases, the GW peak frequency fenv approaches this region from below, and
higher and higher values of β/H∗ are detectable. However at some point the predicted peak
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Figure 6. Projected eLISA sensitivity to Case 3: runaway bubble walls in vacuum. The region de-
tectable by each configuration (cf. table 1) is shaded. Also pictured are the predictions corresponding
to the benchmark points discussed in section 4 that fall under Case 3.

frequency increases above the optimal eLISA value, and larger amplitudes are necessary for
detection; the detectable values of β/H∗ start to decrease accordingly.

3.4 Summary of model-independent projections

The model-independent analysis of this section shows that the six-link configurations provide
the most coverage to first-order cosmological phase transitions. The configuration with four
links and 2 million km arm length is, however, not much worse than that with six links and
1 million km arm length. Note that much better knowledge of the instrumental noise and
astrophysical backgrounds would be needed to use the four-link configurations, since one
cannot cross-correlate the signal of the two effective, coincident detectors that the six-link
configurations provide. This is accounted for in the above analysis through the technique
explained in section 3.1, and in particular through the increase of SNRthr. We stress that
our comparison between the four- and six-link configurations would change substantially if
the analysis of ref. [36] were found to be unfeasible in practice, and/or the assumed prior
knowledge of the noise were unachievable.

We now move on to consider how specific models map on to the model-independent
parameter space we have been discussing so far.

4 Testing specific models with strong phase transitions

Many scenarios beyond the Standard Model of particle physics predict first-order cosmological
PTs.

Such a transition could have occurred during electroweak symmetry breaking. Provided
the Universe reached sufficiently high temperatures after inflation, electroweak gauge sym-
metry was likely unbroken after reheating. As the Universe cooled, the symmetry would
then have been spontaneously broken when a Higgs field, charged under SU(2)L × U(1)Y ,
acquired a VEV. In the Standard Model of particle physics, and for the observed value of
the Higgs mass, no transition occurs; electroweak symmetry is instead broken at a cross-
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over [39, 40].10 However, many well-motivated extensions of the Standard Model predict a
strong first-order electroweak PT instead of a cross-over. Such a transition could have played
a role in generating the observed baryon asymmetry through the mechanism of electroweak
baryogenesis [42] and produced a spectrum of gravitational radiation observable by eLISA,
through the mechanisms described above in section 2.11

Alternatively, there are various extensions of the SM that predict strong first-order
cosmological PTs not tied to the electroweak scale (or baryogenesis). Models solving the
hierarchy problem via warped extra dimensions and dark matter sectors with non-trivial
gauge structure are two such scenarios.

In the remainder of this section, we discuss several specific examples of models that
predict strong first-order cosmological PTs, at the electroweak scale (section 4.2) or beyond
(section 4.3), with GW signals detectable by eLISA. Before proceeding, however, we briefly
outline different mechanisms for generating strong PTs in the early Universe.

4.1 Mechanisms for generating a strong first-order phase transition

There are a variety of well-studied mechanisms for generating a strongly first-order PT in
scenarios beyond the Standard Model. Thermal loops of new bosonic modes can contribute
a large cubic term to the finite temperature effective potential. This occurs for example in
the minimal supersymmetric extension of the Standard Model (MSSM) with a light scalar
top quark (stop). Even if the new degrees of freedom do not contribute substantially to
the finite-temperature cubic term, it is also possible to rely primarily on the SM gauge bo-
son contributions for the barrier, provided the free-energy difference between vacua at zero
temperature is small enough (this in turn depends on the interplay of various terms in the
potential), as may occur in extended Higgs sectors. Alternatively, new tree-level terms in
the scalar potential can directly source a barrier (which can persist to zero temperature).
This can occur either through new renormalizable or non-renormalizable operators. In the
former case, even if no cubic terms are present in the potential, a tree-level barrier can arise
at finite temperature if one of the scalar fields obtains a non-vanishing VEV in an earlier
(not necessarily first-order) PT.

The aforementioned mechanisms typically rely on polynomial potentials, in which case
the critical temperature, the nucleation temperature, the VEV of the scalar field at the mini-
mum of the potential and the position of the barrier in field space all typically share a common
scale. An alternative and intriguing possibility arises in models with a dilaton-like poten-
tial that is nearly conformal. The potential can be described by a scale invariant function
modulated by a slow evolution across scales, similar to the Coleman-Weinberg mechanism
in which a slow Renormalisation Group evolution of the potential parameters can generate
widely separated scales for the various aforementioned quantities. The potential in this case
is very shallow, and the position of the barrier and the minimum of the potential can be very
far apart. As a result, a significant amount of supercooling and therefore a strong first-order
PT can be obtained without a substantial tuning of parameters.

In the remainder of this section, we review some well-motivated scenarios for physics
beyond the Standard Model that can feature strong first-order PTs via (combinations of) the

10A GW spectrum is nonetheless generated by equilibrium phenomena in the electroweak plasma, such as
scatterings between thermal constituents and collective phenomena. The resulting spectrum [41] is however
tens of orders of magnitude below eLISA sensitivity.

11Typically, transport-driven electroweak baryogenesis requires sub-sonic bubble wall velocities, correspond-
ing to small GW signals. There are exceptions however; see e.g. ref. [43, 44].
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mechanisms mentioned above. Our aim is to determine reasonable values of α, β/H∗ and T∗
that can actually arise in realistic particle physics models. For each model, we provide some
benchmark points (shown in figures 4–6) and compute the parameters relevant for predicting
the spectrum of gravitational radiation. We also comment on the detectability by eLISA in
each case.

4.2 Strong phase transitions at the electroweak scale

4.2.1 Supersymmetric extensions of the standard model

Supersymmetric theories with low-energy soft-breaking terms are theoretically well-motivated
models featuring new scalar fields that can naturally lead to strong electroweak PTs and, in
turn, to sizeable GW signals.

The most well-studied supersymmetric extension of the SM is the MSSM. This theory
can give rise to a reasonably strong electroweak PT, provided the lightest scalar top quark has
a mass below that of the top quark [45, 46]. This rough upper bound decreases substantially
when the Higgs boson mass is fixed at around 125 GeV [47, 48], pushing the model into severe
tension with LHC stop searches and Higgs rate measurements [49–52]. At the same time,
independent of the PT, the MSSM is losing its original appeal due to the large amount of
fine-tuning required to obtain a Higgs mass of 125 GeV. Both tensions can be alleviated in
non-minimal supersymmetric models.

In singlet extensions of the MSSM, new F -term contributions can increase the tree-level
Higgs mass and, consequently, reduce the fine tuning of the electroweak sector (compared to to
the MSSM). Moreover, the presence of the scalar singlet enriches the Higgs sector and has im-
portant consequences for the electroweak PT. Even after imposing discrete symmetries on the
field interactions, the (reduced) parameter space still allows for strong PTs [53–55] while com-
plying with all Run-I LHC bounds [56–58]. In particular, in the regime where the electroweak
PT occurs in two steps (i.e. with the singlet acquiring a VEV first, and electroweak symmetry
breaking occurring at a subsequent transition), very strong electroweak PTs seem likely [59].

For instance, in the four benchmark points of the singlet extension of the MSSM studied
in ref. [59], the tree-level barrier between the minima along the singlet and the SM-like Higgs
directions of the potential efficiently strengthens the electroweak PT. The properties of the
PTs corresponding to these four points were obtained and studied in ref. [59]; the results are
quoted in table 2. Notably, all points fulfill the runaway requirement. Relativistic wall veloci-
ties are thus expected, although obstructions could prevent the bubble from actually reaching
the runaway regime. Since the existence of these obstructions remains to be studied in this
model, we consider the GW signal in both the runaway and the non-runaway scenarios (Case
1 and Case 2, in the language of section 2.2). The prospects for detecting the GW background
from these benchmark points at eLISA are shown in figures 4 and 5 (bottom left panels) where
the values of α and β/H∗ of table 2 are displayed (the approximation T∗ ' 100 GeV has been
used). We find that (cf. figure 4) only the most sensitive eLISA configuration can probe the
electroweak PT of the majority of the considered benchmark points. For the relativistic non-
runaway scenario, the C2 (six-link) configuration can probe two benchmark points, while if
the runaway scenario is realized (cf. figure 5) it can only probe one of them.

Other extensions of the MSSM beyond that considered in ref. [59] are possible. However,
such models seem unlikely to predict much stronger signals than those considered here, at
least for electroweak (i.e. SU(2)L×U(1)Y -breaking) transitions and without significantly de-
parting from minimality. The predictions could differ substantially when considering PTs oc-
curring before the electroweak transition. Further study is required to clarify this possibility.
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A B C D

T∗ [GeV] 112.3 94.7 82.5 76.4

α 0.037 0.066 0.105 0.143

β/H∗ 277 105.9 33.2 6.0

φ∗/T∗ 1.89 2.40 2.83 3.12

Table 2. Characteristics of the electroweak PT predicted for the benchmark points of the singlet
extension of the MSSM analyzed in ref. [59] (see section 4.2.1).

4.2.2 The standard model with additional scalars

Another simple class of scenarios that can give rise to observable GWs are (non-
supersymmetric) extensions of the Standard Model scalar sector. The new scalar(s) can
either be singlets or charged under the Standard Model gauge groups.

New SM gauge singlet scalar fields can couple directly to the Higgs field via renor-
malizable operators. Such models are attractive from the standpoint of dark matter [60],
baryogenesis [61], and solutions to the hierarchy problem without colored top partners [62].
New terms in the tree-level potential can allow for strong electroweak PTs and an observable
level of gravitational radiation.

To see what this entails, let us consider the Higgs portal scenario with a real gauge singlet
scalar field, which is the simplest case and illustrates some key features of this scenario. We
will restrict ourselves to the case where the new gauge singlet scalar, S, is charged under a
discrete Z2 symmetry and has no VEV at zero temperature [63]. All other Standard Model
particles are assumed to transform trivially under the new Z2 symmetry. The most general
renormalizable scalar potential in this case can be written as

V (H,S) = −µ2(H†H) + λ(H†H)2 +
1

2
a2(H

†H)S2 +
1

2
b2S

2 +
1

4
b4S

4 . (4.1)

Here, the CP-even neutral component of H is identified with the 125 GeV Standard Model-
like Higgs. The discrete symmetry ensures that S is stable. The singlet can thus contribute
to the observed dark matter relic abundance. Note that S can also be a component of a scalar
charged under other symmetries (e.g. a hidden sector gauge group). One should also bear in
mind that this model resides in a subspace of a larger model parameter space without the
Z2 symmetry. Going beyond the Z2 limit opens up additional parameter space for a strong
first-order PT.

This “Higgs portal” model can give rise to a strong electroweak PT in primarily two
ways. If the parameter b2 < 0, the singlet can be destabilized from the origin at finite
temperature (along the S direction in field space). The H†HS2 term then provides a cubic
term to the effective potential, and hence can contribute to a barrier along the direction
connecting the 〈S〉 6= 0 and electroweak vacua (in which 〈S〉 = 0). This is another example
of a two-step transition. Alternatively, if b2 > 0, the singlet will be stabilized at the origin
at all temperatures. Nevertheless, large zero-temperature loop effects can lower the SM-like
Higgs quartic coupling to increase the value of φ(Tn) inside the bubble. Finite-temperature
loop effects can also play a role (alongside the SM gauge, Higgs, and Goldstone bosons) in
contributing to a barrier between the origin and the electroweak vacuum in this case.

To illustrate the characteristics of the electroweak PT in this scenario, we consider
four benchmark points. These points, labeled A–D, are chosen such that mS = 250 GeV,
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A B C D

T∗ [GeV] 70.6 65.2 59.6 56.4

α 0.09 0.12 0.17 0.20

β/H∗ 47.35 29.96 12.54 6.42

φ∗/T∗ 3.39 3.70 4.07 4.32

Table 3. Characteristics of the electroweak PT predicted for the Higgs portal benchmark points
discussed in section 4.2.2.

and correspond to (a2, b4) = (2.8, 2.1), (2.9, 2.6), (3.0, 3.3), and (3.1, 4.0), respectively; they
satisfy all current phenomenological constraints and are particularly difficult to test at col-
liders [65]. The corresponding PT parameters are displayed in table 3; they are obtained
by using the full 1-loop finite-temperature effective potential and including the resummation
of daisy diagrams. For such strong transitions, the bubble wall is expected to run away
without obstruction [32], corresponding to Case 2 of section 2.2. The sensitivity of eLISA
to these points is shown in figure 5, top-right panel. We find that the most sensitive eLISA
configuration can probe all four benchmark points, while C2 (six-links) and C3 (four-links)
can probe benchmark point D, with point C residing at the edge of the region detectable by
C2). The observational situation is therefore similar to the one discussed in section 4.2.1.

While the benchmarks shown above feature thermal transitions (i.e. the O(3)-symmetric
bounce minimizes the four-dimensional Euclidean action at Tn), it should be noted that this
model can allow for a metastable electroweak-symmetric phase to persist to zero temperature.
This suggests that very strongly supercooled transitions occurring in vacuum (Case 3) may
be possible. The resulting GW signals in this case have not been previously analyzed, but
would be worthwhile to consider in future work.

New scalars charged under the SM gauge group are also phenomenologically and theo-
retically well-motivated. When transforming nontrivially under the electroweak gauge group,
such scalars can participate in electroweak symmetry breaking, with a potentially significant
impact on the electroweak PT. The simplest realization of this scenario is that of a two-
Higgs-doublet-model (2HDM), in which the SM Higgs sector is enlarged by a second scalar
doublet. These scenarios can accommodate electroweak baryogenesis [66] and can result in
the generation of GWs at the electroweak PT (with preliminary studies having been carried
out in [67]). The scalar potential is12

V (H1, H2) = µ21 |H1|2 + µ22 |H2|2 − µ2
[
H†1H2 + h.c.

]
+
λ1
2
|H1|4 +

λ2
2
|H2|4

+λ3 |H1|2 |H2|2 + λ4

∣∣∣H†1H2

∣∣∣
2

+
λ5
2

[(
H†1H2

)2
+ h.c.

]
. (4.2)

After electroweak symmetry breaking, the presence of the two doublets H1, H2 yields three
new physical states in addition to the 125 GeV Higgs h: a charged scalar H± and two neutral
states H0, A0.

In this class of scenarios, a strong electroweak PT is driven by a decrease in the free-
energy difference between the electroweak-symmetric local maximum and electroweak-broken
phase at T = 0, w.r.t. the SM prediction. The effect of this decrease on the strength of PT

12We assume for simplicity CP conservation, as well as a Z2 symmetry (softly broken by µ2 in eq. (4.2)) for
phenomenological reasons, namely the absence of flavour-changing neutral currents in the Higgs sector.
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A B C

T∗ [GeV] 68.71 61.25 51.64

α 0.046 0.070 0.111

β/H∗ 2446 1383 663

φ∗/T∗ 3.15 3.69 4.53

Table 4. Characteristics of the electroweak PT predicted for the benchmark points considered for
the 2HDM in section 4.2.2.

is in fact similar to the reduction of the SM-like Higgs quartic coupling occurring for singlet
“Higgs-portal” scenarios with b2 > 0, as described above. Moreover, such a decrease in
the free energy difference between the origin (in field space) and the vacuum with broken
electroweak symmetry is highly correlated with a large mass splitting between the new states
A0, H0 [68, 69], which provides an appealing connection to LHC signatures.

For 2HDM scenarios, it is always true that α < α∞, and so these models belong to
Case 1 of section 2.2. We present here three benchmark points studied in [70] with increasing
strength of the electroweak PT, labelled A–C in table 4. The eLISA sensitivity to these
benchmarks is shown in figure 4, top-right panel. We find that only one benchmark point lies
in the region detectable by C1. This point may also be marginally detectable by C2. Four-link
configurations provide no access to this model.

Finally, let us also point out that new scalar fields can also be charged under the SM
color group, SU(3)c. Such a scalar could trigger a strong first-order color-breaking transition
in the early universe [71]. The broken gauge symmetry can be restored by a subsequent
transition to the standard electroweak vacuum. As argued in ref. [71], color-breaking
transitions in this two-step setup typically occur at temperatures close to the TeV scale.
This may provide another interesting target for the eLISA experiment. We leave a study of
the GW signatures of this scenario to future work.

4.2.3 The standard model with higher-dimensional operators

We have seen that tree level modifications of the Higgs potential can easily make the elec-
troweak PT strongly first-order. The models of the previous sections considered cases in
which new terms in the potential involving new (relatively light) scalar fields significantly
strengthen the electroweak PT. Alternatively, the effects of heavy new physics on the PT
can be studied and illustrated in a model-independent manner using an effective field theory
approach, for instance by adding dimension-6 operators in the Higgs potential allowing for a
negative quartic coupling [37, 72]:

V (φ) = µ2|φ|2 − λ|φ|4 +
|φ|6
Λ2

. (4.3)

This model illustrates the typical correlations expected between small values of β/H∗ and
large α mentioned earlier. Contours of α and β/H∗ were computed in the (mh,Λ)-plane
for the complete one-loop finite temperature effective potential associated with eq. (4.3)
in ref. [37]. The region corresponding to a sizable GW signal from the electroweak PT is
confined to values of Λ below 1 TeV. The tension between such a low cutoff and the LHC
bounds remains to be investigated. Nevertheless, focusing on the GW signal, we consider
two benchmark points where Λ is around 600 GeV [38], both in the relativistic, non-runaway
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T∗ [GeV] 63 26

α 0.13 2.3

β/H∗ 160 5

φ∗/T∗ 4 9.5

Table 5. Characteristics of the electroweak PT in the SM plus a dimension-6 effective operator for
two benchmark points taken from ref. [38]: Λ ∼ 600 GeV (A) and Λ ∼ 576 GeV (B), see section 4.2.3.

case and in the runaway with finite α case (the predicted wall velocity remains to be studied
in such non-renormalizable models, although runaways seem likely, given the tree-level origin
of the barrier between vacua). The resulting features of the electroweak PT are quoted in
table 5. We find that for most benchmark points the GW signal can be detected by all eLISA
configurations except C4. However, only C1 can detect all benchmark points.

4.3 Strong phase transitions beyond the electroweak scale

As we have seen, observable GWs may have been produced at the electroweak scale in various
scenarios beyond the Standard Model. However, there are other scenarios for new physics
that may have given rise to a strong first-order cosmological PT in the early Universe. We
discuss two such examples here.

4.3.1 Dilaton-like potentials and naturally supercooled transitions

Models with a spontaneously broken (approximate) conformal symmetry feature a pseudo-
Nambu-Goldstone boson associated with the broken symmetry; this field is known as the
dilaton. The scalar potential Vσ(σ) of the dilaton field, σ, can be parametrized by a scale
invariant function modulated by weakly scale-dependent function:

Vσ(σ) = σ4 × P (σε) where |ε| � 1 (4.4)

A particularly interesting and well-motivated class of scenarios arises when the quadratic
term for the Higgs field φ is controlled by the VEV of the dilaton σ:

V (σ, φ) = Vσ(σ) +
λ

4
(φ2 − ξ σ2)2 (4.5)

where ξ is a constant. In particular, this potential is precisely that of the 5D Randall-Sundrum
models [75], which provide an elegant solution to the hierarchy problem of the SM.

Assuming the Higgs is localized on the IR brane at a distance y = r from the UV brane
(localized at y = 0), the 4D effective action for the Higgs is

L4 = e−2kπrηµνDµH̃DνH̃−e−4kπrλ(|H̃|2−v2P )2 = ηµνDµHDνH−λ
(
|H|2 − v2P

k2
σ2
)2

(4.6)

where vP ∼ ΛUV ∼ mPl ∼ k, H is the canonically normalized field H = e−kπrH̃ and the
radion field is

σ ≡ ke−kπr. (4.7)
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We also define the scale

ΛIR ≡ 〈σ〉 (4.8)

which is generated once the radion is stabilized and is exponentially warped down from the
Planck scale due to the Anti de Sitter (AdS) geometry. We also have ξ = v2/Λ2

IR. For
the 5D AdS metric, the effective 4D potential for the radion was shown to be dilaton-like
(eq. (4.4)), independently of the inter-brane distance stabilization mechanism [76–78]. We
therefore recover the scalar potential eq. (4.5) for the coupled radion-Higgs system. Solving
the weak/Planck scale hierarchy leads to ΛIR ∼ O(TeV).

The cosmological implications of the potential Vσ(σ) in eq. (4.5) were considered in
refs. [73, 74]. A very strong first-order PT typically occurs for this type of potential. In the
first investigation of the associated PT, it was argued that the transition to the minimum
of the radion potential could not complete [79]. This conclusion essentially followed from
a thin-wall estimate of the critical bubble action and assuming that tunneling would take
place directly to the minimum of the potential. The key point stressed in ref. [80] is that
the PT can actually complete through tunneling to a value of the field much smaller than
the value at the minimum of the potential and subsequently rolling towards the minimum.
This is typical of very shallow potentials. As emphasized in ref. [74], the value of the field
at tunneling, σr, is σr ∼ √σ+σ− where σ+ and σ− = ΛIR are the positions of the maximum
and minimum of the potential respectively. The nucleation temperature Tn is proportional
to σr and given by [74, 81]

Tn ∼ 0.1
√
σ+σ− ∼ 0.1 ΛIR

√
σ+
σ−

. (4.9)

For a standard polynomial potential, σ+ ∼ σ− ∼ σr ∼ Tn. In contrast, for the very shal-
low dilaton-like potential, σ+ � σ−, and the nucleation temperature is parametrically much
smaller than the scale associated with the minimum of the potential. We therefore naturally
get a stage of supercooling before the PT completes. The hierarchy between σ− and σ+ can
be as large as the Planck scale/weak scale hierarchy: σ−/σ+ . ΛUV /ΛIR. Therefore the nu-
cleation temperature can be as low as Tn ∼ 0.1ΛIR

√
ΛIR/ΛUV [74]. We obtain Tn ∼ 35 MeV

if ΛIR = 5 TeV and ΛUV = MPl, while Tn ∼ 0.1 GeV if ΛIR = 1 TeV and ΛUV = 1010 GeV.
Note that at scales below ΛQCD, eq. (4.4) will be modified, since QCD breaks conformal
invariance. While a delayed electroweak PT down to the QCD scale is in principle a gen-
eral outcome in this framework (and interesting from the standpoint of e.g. cold electroweak
baryogenesis with the QCD axion [82]), this modification of the scalar potential around the
QCD scale, which we do not account for here, will affect the detailed predictions of this model.

We have argued that the nucleation temperature of the PT associated with a potential
of the form in eq. (4.4) can be many orders of magnitude smaller than the scale given by the
VEV at the minimum of the potential. In this case, plasma effects can be ignored and the
GW signal comes from runaway bubbles in vacuum. As discussed in section 2.2.3, while the
PT temperature Tn can in principle be much smaller than ΛIR ∼ O(TeV), the temperature
T∗ in the various GW formulae will be set by the reheating temperature, T∗ ≈ Treh. This
temperature is typically somewhat below ΛIR and the peak frequency (eq. (2.5)) can easily
fall within the range that will be probed by eLISA. In particular, for a dilaton VEV at the
TeV scale, as motivated by the Randall-Sundrum scenario, and more generally by composite
Higgs models which have a strongly coupled sector at the TeV scale, the predicted GW signal
can be detectable by eLISA [80, 81].
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A B

T∗ [GeV] 100 100

β/H∗ 3 15

Table 6. Characteristics of the PT predicted for the benchmark points of the dilaton-like scenario in
section 4.3.1.

The prospects for detecting the gravitational wave signal predicted by such a scenario
are analyzed for two benchmark points, with PT properties summarized in table 6. The
two benchmark points A and B represent the parameter space region in which this model
solves the hierarchy problem without introducing a significant “little hierarchy” between the
EW scale and ΛIR. In computing β/H∗, eq. (2.22) is used, as is appropriate for vacuum
transitions, since T∗ ≈ Treh � Tn. As shown in figure 6, the prospects for observing GWs
from this model are very good. Benchmark point A can be detected by all configurations while
benchmark point B can be observed by all but C4.

Very strong first-order PTs associated with nearly conformal dynamics at the TeV scale
are interesting from the point of view of the hierarchy problem, but a similar situation may
arise at a different scale. In this case, the discussion of this section remains applicable as far
as the strength of the GW signal is concerned, although the predicted peak frequency will
be affected.

4.3.2 First-order phase transitions in a dark matter sector

Models in which dark matter (DM) is a stable bound state of a confining dark sector are well
motivated. Common examples are SU(N) dark sectors with nf light dark quarks, where the
DM candidate is a dark baryon-like state [83], as well as cases with no massless quarks, in
which case dark glueballs are DM candidates [84]. The DM mass is typically of the order of
the confinement scale, which in turn is set by the scale of the associated symmetry breaking
PT. In a large class of models the PT is first order, and therefore can give rise to a GW signal.

Viable DM models of this class have masses ranging from O(10) MeV up to O(100) TeV.
The GW signal falls into the eLISA frequency range for DM masses ranging from 10 GeV to
10 TeV. In particular the high mass range is difficult to test in current collider experiments,
and GWs provide a unique window to probe some aspects of these models.

The first-order nature of the PT in these models can be determined from very basic
symmetry arguments [85]. For an SU(N) dark sector with N ≥ 3 and nf light quarks the PT
is first order for nf = 0 or 3 ≤ nf . 4N . The PTs occur in the non-perturbative regime of
the theories, so the details of the dynamics are currently not known. This can be improved
in the future using lattice simulations.

Some models might feature a rather weak PT, which will typically make them inacces-
sible by eLISA. On the other hand, studies of holographic PTs [73, 74, 79–81] discussed in
section 4.3.1 find cases with very strong transitions, and therefore one can hope that models
close to the conformal window (i.e. with nf close to 4N) will also fall into this class. Thus, we
expect at least a subset of the models to feature a sufficiently strong signal to be detectable
by eLISA.

We consider a scenario with relativistic (non-runaway) bubbles in a plasma (Case 1),
and a scenario with runaway bubble walls in vacuum (Case 3). We do not consider the
possibility of runaway bubbles in a plasma (Case 2), simply because the prospects for GW
detection by eLISA in this case depend sensitively on α∞ (cf. appendix A), which is not
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known for these scenarios. In fact, as the present understanding of the model does not allow
for proper quantitative estimates, we simply make some reasonable guesses for all of the
relevant PT parameters. Specifically, in the first case we assume T∗ = 10, 50, 102, 103 GeV. For
each temperature we consider β/H∗ = 10 as well as β/H∗ = 100, respectively accompanied
by α = 0.1 and α = 0.5. In the second case we assume T∗ = 10, 102, 103, 104 GeV and
β/H∗ = 100. We stress that these values are simply educated guesses, since our present
understanding of the model does not allow for proper quantitative estimates. We analyze the
GW signal detectability for Case 1 and Case 3 in figures 4 and 6. We find that, in Case 1,
the C4 configuration can only probe one of the benchmark points, while C1 can detect all but
one. C2 and C3 provide comparable sensitivity to these points. For Case 3, all but C4 can
detect the benchmark points considered.

Despite its numerous issues that require future clarification, the present model deserves
some attention as it highlights a link between eLISA and DM experiments. Dark matter
model building in recent years has focussed on non-minimal models with additional dynamics,
and this model is a broad subclass of this category. From the point of view of theoretical
particle physics there is a strong desire to find alternative ways to probe these models, since
they are relatively hidden from collider and direct DM searches. In contrast, the GW signal
does not depend on the interaction strength between the dark and visible sectors, and thus
provides a unique way to probe these scenarios. In particular, most of the parameter space
will not be excluded by other experiments within the next 20 years, and so eLISA may
provide the first evidence in favor of such a dark sector. The criteria for first-order PT are
simple and generic, and the models considered so far are minimal. Other classes of models
in which DM is associated with a first-order PT are conceivable, and the models considered
here could also be extended, for example to enhance the strength of the transition. Future
work considering these possibilities is warranted.

5 Summary and conclusions

We have seen that many scenarios beyond the SM predict a GW signal from first-order phase
transitions in the early Universe that can be observed by eLISA. Although ongoing efforts at
the LHC will be able to test some of these scenarios, there remain many examples that cannot
be probed through collider experiments on a timescale comparable to that of eLISA, if at all.

The eLISA detector has the potential to provide us with valuable information about
electroweak-scale physics that cannot be obtained from high-energy colliders, for example
concerning the dynamics of the electroweak phase transition and the shape of the Higgs
potential, or concerning hidden sectors and dark matter at the weak scale. Violent processes
in the early Universe may in fact have taken place in a sector with very feeble couplings to
the SM particles; in this case the new sector might only be probed via GWs.

The eLISA interferometer is also in a good position to probe strong first-order phase
transitions taking place well above the electroweak scale, in the multi-TeV regime. There are
many theoretical motivations for such scenarios, for example solving the hierarchy problem
or explaining the observed dark matter abundance in our Universe. In fact, we have shown
that eLISA may be sensitive to cosmological phase transitions taking place at temperatures
above 10 TeV, and therefore be able to probe new physics that will remain inaccessible to
collider experiments for the foreseeable future.

We have demonstrated the extent to which different eLISA configurations can realisti-
cally detect the stochastic gravitational wave background arising from strong first-order cos-
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mological phase transitions. To do so, we considered a (model-independent) parametrization
of the phase transition in terms of α, β/H∗, T∗, and α∞. To make contact with realistic mod-
els, we analysed the predicted values for these parameters in various well-motivated scenarios.

Focusing on the eLISA designs listed in table 1, and taking into account the signal-to-
noise ratio thresholds required for detection (SNRthr > 10 for six links, SNRthr > 50 for four
links [33]), we conclude that:

• For typical electroweak phase transitions, in which all relevant dimensionful parameters
are near the electroweak scale, the configuration C1 is definitively better than the
others, while the configuration C4 is decisively unsatisfactory. The performances of the
configurations C2 and C3 are similar, but C2 has the ability to test a larger fraction of
the considered benchmark points.

• For phase transitions not strictly related to electroweak symmetry breaking, e.g. in-
volving a dark sector or a dilaton, the predicted characteristics of the phase transitions
exhibit more variation. Larger GW signals are allowed than in the electroweak case. For
certain scenarios, the resulting GW spectrum can be probed by all considered eLISA
designs. The C1 configuration, however, has the potential to test a much wider region
of the parameter space in such models than do C2–C4.

It is worth reiterating that our results for the four-link configurations depend strongly on
the assumed prior knowledge of the noise level, as well as the feasibility of the data analysis
technique proposed in [36].

Finally, we emphasize that our results can be straightforwardly extended beyond the spe-
cific models considered in section 4. To do so, one should identify the main features of the bub-
ble wall dynamics from the general considerations of section 2.2 and e.g. refs. [9, 10, 31, 32],
and compute the predicted values for the parameters α, β/H∗, T∗ and α∞, as defined in sec-
tions 1.1 and 2 (in some cases only a subset of these quantities will be relevant for the predicted
GW signal). The results of this procedure can then be compared directly with the appropri-
ate eLISA sensitivity curves provided in figures 4–7. In this way, we hope this study to serve
as a useful tool (and motivation) for future investigations of eLISA’s potential to probe new
physics scenarios predicting strong first-order phase transitions in the early Universe.
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Figure 7. Detectable regions in the (α, β/H∗) plane for phase transitions with runaway bubbles
at finite α (Case 2). In each row of panels we fix T∗ as indicated and consider three values of α∞,
increasing from left to right.
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A Sensitivity to runaway bubbles in a plasma

If the PT proceeds as in Case 2, with runaway bubbles (i.e. vw = 1) at finite α, the contours
of the detectable region in the (α, β/H∗) plane depend not only on T∗ and vw, but also on
α∞. In our analysis we have consistently set vw to values very close to one, maximizing its
effect on the GW spectrum. In this appendix we aim to show how the sensitivity contours
change with T∗ and α∞. We refer the reader to figure 7 where we plot the detectable regions
for three values of T∗ and α∞.

From figure 7 it is apparent that the effect of increasing T∗ is similar to that found by
increasing α∞. This is because, in both cases, the contribution of the sound waves to the
GW spectrum gains importance. Fixing α∞ amounts to fixing the relative contribution of the
scalar field and of the sound waves, cf. eqs. (2.19). At small α∞ and small T∗ only the scalar
field contribution is relevant: the typical contour-shape is that appearing in the top left panel
of figure 7. For small β/H∗, only the high frequency tail 1/f lies within the eLISA sensitivity
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region. As β/H∗ increases, a larger portion of the spectrum becomes observable until the peak
finally exits the detectable region. Increasing β/H∗ also causes the overall amplitude to dimin-
ish and therefore one needs correspondingly lager α to guarantee detectability. Starting from
the situation with small α∞ and small T∗ (top left panel), one has that increasing T∗ at fixed
α∞ does not change the relative contribution of the scalar field and sound waves but shifts the
peak to higher frequencies. Since the peak due to the sound waves occurs at parametrically
larger frequencies than that due to the scalar field (cf. eqs. (2.5) and (2.10)), this can help shift
the spectrum into the detectable region, especially if β/H∗ is large enough. We reiterate that
the amplitude of the sound wave contribution is larger by a factor β/H∗ than that of the scalar
field in our treatment (cf. eqs. (2.2) and (2.8)). As a consequence, the regions at small α and
large β/H∗ open up with increasing T∗, in the middle left and bottom left panels of figure 7.

The same trend is observed at fixed T∗ if one increases α∞: the sound wave contribution
is boosted in amplitude w.r.t. that of the scalar field and affects the detectable regions at small
α and large β/H∗. Note that the amplitude of the scalar field contribution, eq. (2.2), increases
with increasing α until the α−dependence drops out at very large α and consequently the
contours demarcating the detectable regions flatten at high α. On the other hand, the
amplitude of the sound wave contribution at fixed α∞ decays with growing α (cf. eqs. (2.8)
and (2.19)). This behaviour is reflected in the shape of the contours in the low-α regions
shown in the right panels.
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6.4 Article: Gravitational wave signal from first order phase

transitions at PTA

In the article constituting the following section we analyse the SGWB that would be generated

under the hypothesis of a first order primordial QCDPT. Though quite old, we include it

here as it represents yet another example of the ability of GW detectors to probe different

phases in the evolution of the primordial universe: a GW signal produced at the energy scale

of the QCDPT falls in the frequency range of PTA observatories (c.f. section 3.3)

The main result of this analysis is that the PT must occur (unnaturally?) slowly, in order

for the SGWB peak to fall in the range of frequencies probed by PTA. Furthermore, present

constraints on the SGWB from PTA are at best of the order of h2Ωgw ∼ 10−9 (c.f. section

4.3), meaning that the SGWB predicted here would only be marginally detectable today, for

choices of the parameters governing the signal that are not too extreme. Note that the most

probable SGWB source in the nanoHertz band are super-massive black hole binaries, but a

future detection of the SGWB by PTA could also be used to constrain the parameter space

of an hypothetical first order QCDPT, if the SGWB frequency shape remains undetermined,

not allowing to ascertain the SGWB origin.

At the time of the analysis presented below, it was not known that sound waves were

an important source of GWs in the aftermath of a first order PT; consequently, only bubble

collision and MHD turbulence have been accounted for. Moreover, in the absence of theo-

retical guidance, we assumed equipartition between the gradient energy in the bubble walls,

and the kinetic turbulent energy. Hopefully, progress will be made in the near future on

this particular point, thanks to the new numerical simulations discussed in the preamble of

section 6.2.

Here we apply to the QCDPT the GW production framework developed for perturbative,

scalar-field driven PTs, as the results for the SGWB spectra are virtually independent on the

PT nature and only rely on the formation and evolution of broken phase bubbles coupled

to the surrounding plasma. An important feature of this work, is that it provides for the

first time the interpolation formula for the GW spectrum from MDH turbulence derived in

the paper of section 6.2. This formula has been re-used in the paper of section 6.3 and

consequently in many works analysing the SGWB from primordial PTs.
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I. INTRODUCTION

Gravitational waves (GWs) are space-time fluctuations
that propagate at the speed of light through empty space;
they were predicted by Einstein in 1916 [1]. Because of the
weakness of the gravitational interaction, GWs could pro-
vide information about astrophysics and cosmology from
regions and epochs of the Universe from which electro-
magnetic radiation cannot propagate freely. For the same
reason, however, GWs have thus far eluded direct detec-
tion, despite considerable efforts.

Advanced configurations of existing ground-based
interferometers such as LIGO [2] and VIRGO [3] are
expected to detect GWs in the next years. Terrestrial
interferometers have the best sensitivity at a frequency
f� 100 Hz, and are severely limited by seismic noise
below a few Hertz. GWs with significantly lower fre-
quency, f� 10�9 Hz, are also expected to be detected
by pulsar timing experiments in the next decade [4,5]. A
worldwide collaboration of astronomers, the International
Pulsar Timing Array (IPTA) project [4], has been formed
with the goal of detecting nano-Hz GWs using millisecond
pulsars. Millisecond pulsars are rapidly rotating, highly
magnetized neutron stars which emit a beam of electro-
magnetic radiation that sweeps over the Earth once per
rotation. They constitute extremely accurate clocks that
could be used to detect GWs. Candidates for the genera-
tion of a GW background in the nano-Hz band are super-
massive black hole binary mergers [6–11] and cosmic
strings [12–16].

In this paper we study another potential candidate: the
cosmological QCD phase transition, which is believed to
have taken place when the Universe had a temperature of
T� ’ 100 MeV. AGW background can be generated by the
QCD phase transition if it is first order, and the character-
istic frequency of this background falls in the frequency
band of pulsar timing experiments. We show here that, if
the phase transition is sufficiently strong and lasts for a
sufficiently long time, the GWs produced can be observed
in future pulsar timing experiments. This possibility has
been discussed for the first time by Witten in Ref. [17].
Here we present accurate predictions for the spectrum of

the emitted gravitational radiation as a function of the
phase transition parameters like its temperature, strength,
and duration.
In the context of standard cosmology and QCD, the

cosmological QCD phase transition is not even second
order but a crossover, and we do not expect it to generate
GWs. However, if the neutrino chemical potential is suffi-
ciently large (still well within the bounds allowed by big
bang nucleosynthesis), it can become first order [18].
Furthermore, if a sterile neutrino is the dark matter, we
do expect a large neutrino chemical potential [19].
Thus, pulsar timing experiments could open a new

cosmological window: the detection of a stochastic back-
ground of GWs could help to determine whether the QCD
phase transition is first order. The amplitude and peak
frequency of the spectrum are also sensitive to the expan-
sion rate of the Universe during this phase transition [20],
which is currently unconstrained.
In the next section we provide estimates for the GW

spectrum by a first order QCD phase transition. In Sec. III
we compare our results with current and expected sensi-
tivities of pulsar timing arrays. We conclude in Sec. IV.
Throughout we use the metric signature ð�;þ;þ;þÞ and
conformal time so that the Friedmann metric is given by
ds2 ¼ a2ðtÞð�dt2 þ dx2Þ. The conformal Hubble parame-
ter is denoted byH ¼ _a=a ¼ Ha. An overdot denotes the
derivative with respect to conformal time t.

II. GRAVITATIONALWAVES FROM A FIRST
ORDER QCD PHASE TRANSITION

Very violent processes in the early universe can lead to
the generation of GWs. One example of such violent
processes are first order phase transitions [17,21–24],
which can lead to GW production via the collision
of bubbles of the true vacuum [25–33] and via the turbu-
lence and magnetic fields they can induce in the cosmic
plasma [34–41].
The GWs generated by a source are determined by the

linearized Einstein equation for tensor perturbations in a
Friedmann background [42],
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€h� þ 2
_a

a
_h� þ k2h� ¼ 8�Ga2���: (1)

Here � is the background cosmological energy density, a is
the scale factor, �� are the two tensor helicity modes of
the (dimensionless) anisotropic stress which is the source
of GWs, and h� are the helicity modes of the GW. If an
anisotropic stress is generated at some time t� in the
radiation dominated era, from a source with relative energy
density �S� ¼ �S�=��, we expect � to be at best of the
order of �S�. The GW energy density (from two polar-
izations � which contribute equally) is given by

�GWðtÞ ¼ h _hþðx; tÞ _hþðx; tÞi
8�Ga2ðtÞ : (2)

Because of statistical homogeneity, �GW is independent of
the position. The GWenergy spectrum per logarithmic unit

of frequency d�GWðk;tÞ
d logðkÞ is defined by

�GW ¼
Z dk

k

d�GWðk; tÞ
d logðkÞ :

Detailed semianalytical and numerical calculations have
been performed in the past in order to calculate the GW
energy spectrum from first order phase transitions [25–41].
In this paper we simply use analytic fits to the most recent
results, as presented in the following.

Concerning the GW signal from bubble collisions, we
use the shape of the spectrum proposed in Ref. [33], but
rescale the amplitude to agree with the numerical result of
Ref. [31]. As a result, the GW energy density emitted by
this source is well approximated by

bubble collisions:

d�ðBÞ
GWh

2

d logk
’ 2

3�2
h2�r0

�
H �
�

�
2
�2

S�v3 ðk=�Þ3
1þ ðk=�Þ4 : (3)

Here �r0 denotes the radiation energy density today,
h ¼ H0=ð100 km=s=MpcÞ is the present Hubble parameter
in units of 100 km=s=Mpc,��1 is the duration of the phase
transition, v is the expansion velocity of the bubbles, and k
is the comoving wave number or frequency of the GW. The
GW spectrum is proportional to the relative energy density
in the source �2

S�, to the ratio between the duration of the

phase transition and the Hubble time ðH �=�Þ2, and to the
bubble velocity v3 [31].

The QCD phase transition is expected to happen at the
temperature T� ’ 100 MeV, when the kinetic and mag-
netic Reynolds numbers of the cosmic fluid are very large
[41]. The bubbles which rapidly expand and collide are
therefore expected to generate magnetohydrodynamical
(MHD) turbulence in the cosmic fluid. The kinetic energy
of the turbulent motions and the magnetic fields sustained
by the MHD turbulence also induce GWs: Ref. [41]
presents the latest semianalytical calculation of the GW
spectrum from MHD turbulence. There are two important
differences with respect to the GW signal from bubbles.

First, turbulence lasts beyond the duration of the phase
transition: this leads to an enhancement of the signal on
large (superhorizon) scales [41]. Second, the time correla-
tion properties of the anisotropic stress source are different.
For bubble collisions, the source is totally coherent
(see [33,41]), while for MHD turbulence the source is
coherent only over about one characteristic wavelength
[41]. This leads to a difference in the peak position of
the GWs from the two sources: while the signal from
bubble collisions peaks at kp � �, the inverse duration of

the phase transition, the peak of the MHD signal is related
to the bubble size: the peak wavelength becomes therefore
�p � R� ’ v=�. The analysis of Ref. [41] finds a peak at

about kp � �2�=v. We can fit the GW spectrum obtained

in [41] by the following formula:
MHD turbulence:

d�ðMHDÞ
GW h2

d logk
’ 8

�6
h2�r0

H �
�

�3=2
S� v

4

� ðk=�Þ3
ð1þ 4k=H �Þ½1þðv=�2Þðk=�Þ�11=3 : (4)

For large scales, k � kp, both spectra in Eqs. (3) and (4)

increase as k3: this behavior is simply due to causality
[37,43]. Since the anisotropic stresses are generated by a
causal process, their spectrum is white noise at scales
larger than the typical correlation scale of the source,
which corresponds to the bubble size. The white noise

spectrum is inherited by the GWs: hj _hj2i / const, so that
the GW energy density scales simply with the phase space
volume k3. The behavior on small scales, k � kp, depends

on the source power spectrum and on the unequal time
correlation properties of the source; see Ref. [44]. In
particular, the result of Eq. (3) resides on the assumption
that the bubbles are infinitely thin: this assumption holds if
the bubbles propagate as detonations and causes the k�1

slope at high wave numbers [31,33]. On the other hand,

the k�5=3 decay of Eq. (4) is a consequence of the
Kolmogorov-type spectrum assumed for the MHD turbu-
lent motions at high wave numbers. In addition, the
slope of the MHD signal changes at subhorizon scales,
H � < k< kp, from k3 to k2 due to the long duration of the

source (cf. [41]).
From the above formulas for the GW spectra we see that

the basic ingredients which determine the peak position
and amplitude are simply the fractional energy density of
the source �S�, the duration of the phase transition ��1,
and the bubble velocity v (besides obviously the tempera-
ture at which the phase transition occurs T�, which is
parametrized by the Hubble scale H �). �S� and v are
related, in a way which depends on the characteristics of
the phase transition: for example, its strength, the proper-
ties of the bubble expansion, the interactions of the fluid
particles with the field which is undergoing the transition,
and so on. In early works on GWs from bubble collisions, it
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has been assumed that the bubbles expand as a Jouguet
detonation, because in this case the above parameters can
be calculated quite straightforwardly [27]. However, the
recent analysis of [45] demonstrates that there is no par-
ticularly justified reason for this assumption, and other
kinds of solutions for the bubble expansion are possible,
such as deflagrations, runway solutions, and hybrids.
Reference [45] presents a model-independent description
of the different regimes characterizing the bubble expan-
sion, including the effect of friction due to the interaction
of the bubble wall with the fluid particles. From a given
particle physics model, one can in principle evaluate the
friction parameter � and the strength of the phase transi-
tion � ¼ �vac=�rad. Once these two quantities are known,
Ref. [45] provides a way to determine the bubble
wall velocity v and the fraction of vacuum energy density
which goes into kinetic energy of the bubble walls, � ¼
�kin=�vac. In terms of the parameter �, the fractional
source energy density for bubbles becomes

�ðBÞ
S� ¼ �

�

�þ 1
:

In the case of MHD turbulence, one further has to convert a
part of the bubble wall kinetic energy to turbulence and
magnetic fields. The efficiency of this conversion is not
straightforward to estimate. Reference [45] provides a
relation between the bubble wall velocity and the fluid
velocity at the bubble wall position vf: in the most opti-

mistic case, one can argue that the overall kinetic energy in
turbulence is simply determined by this fluid velocity. In

this case one would have �ðMHDÞ
S� � v2

f=2.

In the absence of a way to determine � and � from a
given particle physics model, in the present analysis we
have decided to keep the parameters completely model
independent. We make the simple assumption of equipar-
tition, namely, we assume the same energy density in

colliding bubble walls and in MHD turbulence, �ðBÞ
S� ¼

�ðMHDÞ
S� . This is more a reflection of our ignorance of how

this energy density will be distributed than a well-justified
assumption; nevertheless, it seems to be a reasonable
expectation and in the absence of a model for the phase
transition it is the most straightforward assumption.
We also assume a strongly first order phase transition,
which induces supersonic bubble velocities, v > cs. We
set the temperature of the QCD phase transition at
T� ¼ 100 MeV. The other parameter relevant for the GW
spectra is the duration of the phase transition, parametrized
by �. In the electroweak case, this is usually taken to be
1%–10% of a Hubble time: � ¼ ð10–100ÞH �. This value
is based on the estimate given in Ref. [21], which shows
that � is related to the temperature of the phase transition
through �=H � � 4 lnðmPl=T�Þ, for a phase transition
nucleated via thermal fluctuations. In the absence of a
precise model for the QCD phase transition, in this section
we have decided to take � ¼ 10H �, which is more favor-

able for observations with pulsar timing experiments. The
analysis of [21] demonstrates that models of phase tran-
sitions with small values of �=H � may be rather excep-
tional, but cannot be ruled out by general arguments. The
important point is that �=H � must be larger than unity,
otherwise the phase transition is not fast with respect to the
Universe expansion and our assumptions no longer hold.
In Fig. 1 we show the GW spectrum for both, bubbles

and MHD turbulence for two different choices of the
parameters �S� and v. The MHD turbulence signal domi-
nates almost in the entire frequency range. At large scales,
it is slightly higher due to the long duration of the turbulent
source with respect to bubble collisions [41]. As already
mentioned, the long duration of the source also causes the
slope of the MHD signal to change at subhorizon scales
from k3 to k2: consequently, for �> k >H �, i.e. 0:1<
k=�< 1, the bubble collision signal prevails. This is valid
up to the peak of the bubble collision signal, which arises
before the turbulent one: at k=� ’ 1, corresponding to the
inverse characteristic time of the source, while the turbu-
lent spectrum peaks at k=� ’ �2=v, corresponding to the
inverse characteristic scale of the source. This causes the
turbulent signal to dominate at interesting frequencies,
since the total spectrum continues to rise after k=� ’ 1
(only if the energy in turbulence is about 1 order of
magnitude smaller than the one in bubble collisions, the
collision signal will dominate: however, this seems some-
what unnatural given the extremely high Reynolds number
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FIG. 1 (color online). The GW spectra from bubble collisions
(black, solid lines) and from MHD turbulence (red, dashed lines)
are shown for different values of �S� ¼ 0:1 and v ¼ 0:7 (top
panel) and �S� ¼ 0:03 and v ¼ 0:57 ’ cs (bottom panel). We
set � ¼ 10H � and T� ¼ 100 MeV throughout.
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of the primordial fluid, and we discard this possibility in
this work).1

In Fig. 2 we show the total signal for the more optimistic
case, �S� ¼ 0:1 and v ¼ 0:7. The peak frequency of the
total GW spectrum corresponds to the MHD turbulence
peak: k=� ’ �2=v, and depends on the choice � ¼
10H �. From f ¼ k=ð2�Þ one obtains [42,44]

fp ’ 1:7� 10�9 �
2

v

�

H �

�
g�
10

�
1=6 T�

100 MeV
Hz; (5)

where g� is the number of effective relativistic degrees of
freedom at the temperature T�. With v ¼ 0:7, � ¼ 10H �,
g� ¼ 10, and T� ¼ 100 MeV the peak frequency becomes
fp ’ 2:5� 10�7 Hz.

III. THE PULSAR TIMING ARRAY

Neutron stars can emit powerful beams of electromag-
netic waves from their magnetic poles. As the stars rotate
the beams sweep through space like the beacon of a light-
house. If the Earth lies within the sweep of a neutron star’s
beams, the star is observed as a point source in space
emitting short, rapid pulses of electromagnetic waves,
and is referred to as a pulsar.

The electromagnetic pulses we observe arrive at a very
steady rate due to the enormous moment of inertia of
neutron stars. The idea to use these stable clocks to detect
GWs was first put forward in the late 1970s [47–49].
Fluctuations in the time of arrival of pulses, after all known
effects are subtracted, could be due to the presence of

GWs. Recently pulsar timing precision has improved dra-
matically. Jenet and collaborators [50] have shown that the
presence of nano-Hertz GWs could be detected using a
pulsar timing array (PTA) consisting of 20 pulsars with
timing precisions of 100 ns over a period of 5 to 10 yr (see
also [4,5] for more recent PTA sensitivity estimates).
Pulsar timing arrays are most sensitive in the band
10�9 Hz< f < 10�7 Hz. The lower limit in frequency is
given by the duration of the experiment (� 10 yr) and the
upper limit by the sampling theorem, i.e. the time between
observations (� 1 month). The spike in the sensitivity at
f ¼ 0:3� 10�7 Hz seen in Fig. 3 is the frequency of the
Earth’s rotation around the Sun which cannot be disen-
tangled from a GW with the same frequency.
The North American Nanohertz Observatory for

Gravitational Waves (NANOGrav) [51], a collaboration
of astronomers, has created a pulsar timing array—a ga-
lactic scale GW observatory using about 20 pulsars. It is a
section of the IPTA, an international collaboration involv-
ing similar organizations of European and Australian as-
tronomers. The current NANOGrav pulsar timing array
sensitivity is shown in Fig. 3, together with the GW spectra
we expect from the QCD phase transition as a function of
frequency
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FIG. 2. The GW signal from bubble collisions and MHD
turbulence for �S� ¼ 0:1 and v ¼ 0:7. We choose � ¼
10H �. The signal is dominated by the contribution from
MHD turbulence. The bubble collision peak causes the hump
on the left of the true peak of the spectrum.
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FIG. 3. Comparison of the GW spectrum h2�ðfÞ with current
NANOGrav pulsar timing array sensitivity and expected sensi-
tivity of pulsar timing experiments in 2020 [5]. We have used
h ¼ 0:73, �r0 ¼ 8:5� 10�5, �S� ¼ 0:1, and v ¼ 0:7. We plot
the GW spectra for the values H �=� ¼ 1, 0.5, 0.2, and 0.1
(dashed lines from top to bottom). For H �=�� 1, the back-
ground of GWs can just be detected in present pulsar timing
experiments, while for 0:1 & H �=� it can be detected by the
planned array IPTA2020 (very high values of H �=�� 1 are
difficult to accommodate in the case of a thermally nucleated
phase transition, cf. discussion in the text). We also show the
LISA sensitivity [52,53]. Unfortunately, LISAwill not be able to
detect a signal from a first order QCD phase transition (the
electroweak phase transition is more promising in this respect
[25–41,44,46]).

1Contrary to Ref. [46], we find that the expected peak fre-
quency of the GW spectrum from bubble collisions is always
smaller than the one from MHD turbulence, the former being
related to the duration of the phase transition while the latter to
the size of the bubbles. This discrepancy arises because Ref. [46]
assumed that the peak frequency for the GW spectrum from
MHD turbulence is related to the turbulent eddy turnover time,
while in our case it is determined by the time correlation
properties of the GW source, as explained in detail in Ref. [41].
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h2�GWðfÞ ¼ h2
d�GW

d logk
; (6)

for H �=� ¼ 1 (top dashed line), H �=� ¼ 0:5 (upper-
middle dashed line), H �=� ¼ 0:2 (lower-middle dashed
line), and H �=� ¼ 0:1 (bottom dashed line). We have
used h ¼ 0:73, �r0 ¼ 8:5� 10�5 (which includes pho-
tons and neutrinos), �S� ¼ 0:1 and v ¼ 0:7. We have
taken the frequency to be [cf. Eq. (5)]

f ¼ 1:7� 10�9

�
�

H �

��
k

�

�
Hz

i.e. chosen T� ¼ 100 MeV, g� ¼ 10, and k=� varying
between 10�4 and 104 (as in Figs. 1 and 2). The signal is
compared with the current sensitivity of the NANOGrav
pulsar timing array, and the expected sensitivity of the
IPTA pulsar timing array in 2020 [5]. For values of 0:1 &
H �=� & 1, the background of GWs would be detected
with future pulsar timing array sensitivities. The value of
H �=� must certainly be smaller than unity for the phase
transition to be fast with respect to the Hubble time and for
our approximations to apply. In most cases, if the phase
transition happens at a temperature much smaller than the
Planck temperature, H �=� is of the order of 0.01; how-
ever, higher values of this parameter cannot be excluded,
and we adopt them here since they are more promising for
detection [21].

Figure 3 also shows the sensitivity of the planned Laser
Interferometer Space Antenna (LISA) [52] assuming that
some of the confusion noise from white dwarf binaries can
be subtracted out [53]. LISA will not be able to detect the
GW signature of a first order QCD phase transition: in
order to be detectable by LISA, the GW spectrum must
peak at higher frequency and consequently the phase tran-
sition must occur at higher temperature. LISA can in

principle detect GWs from a strongly first order EW phase
transition at T� ’ 100 GeV [25–41,44,46,54].
A related quantity often used in the pulsar timing com-

munity is the (dimensionless) characteristic strain, defined
by [55]

h2cðfÞ ¼ 3H2
0

2�2
f�2�GWðfÞ: (7)

In Fig. 4 we show the same data as in Fig. 3 but in terms of
the characteristic strain hc.

IV. CONCLUSION AND OUTLOOK

A stochastic background of GWs from the QCD phase
transition could be detected by pulsar timing experiments
if the transition is strongly first order and lasts sufficiently
long with respect to the Hubble time. In standard cosmol-
ogy the QCD phase transition is not even second order, but
simply a crossover and in this case we do not expect it to
generate GWs. However, if the neutrino chemical potential
is sufficiently large [18], the QCD phase transition does
become first order. The required chemical potential does
not violate nucleosynthesis constraints, and if a sterile
neutrino is the dark matter, we do actually expect a large
neutrino chemical potential [19].
Pulsar timing experiments will reach unprecedented

sensitivities in the next few years, and may open a new
window on cosmology. The detection of a stochastic back-
ground with pulsar timing experiments could help to study
the nature of the QCD phase transition, its duration, its
strength and so on; by comparison with lattice calculations,
this would allow us to determine the neutrino chemical
potential and other properties of the so elusive cosmologi-
cal neutrino sector. Furthermore, the amplitude and peak
frequency of the spectrum are sensitive to the expansion
rate of the Universe at this temperature [20], which remains
unconstrained to date.
A first order QCD phase transition generating a GW

background would also induce a stochastic background of
magnetic fields, as studied in the past [56]. Furthermore,
the GW background might have nonvanishing helicity,
which would be an interesting phenomenon to investigate
by itself [57].
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6.5 Article: Gravitational wave signal from first order phase

transitions at CE

Cosmic Explorer (CE) is a proposed third generation terrestrial interferometer, with 40 km

arm length [273]. It is an American proposal, comparable to the European ET (see section

4.4), but with only two arms oriented at 90 degrees. Its sensitivity extends down to frequencies

of about 10 Hz, with an improvement of almost two orders of magnitude with respect to

currently operating interferometers. CE is expected to reach the same sensitivity to SGWBs

of LISA, namely Ωgw ∼ 10−12, but around 50 Hz. In the article presented in this section, we

have studied its ability to probe first order PTs in the early universe.

Being sensitive to a higher frequency range than both LISA and PTA, CE opens up

the detection possibility to very high energy scales: as shown below, it provides access to

hypothetical PTs occurring at, e.g. T∗ = 105 GeV, for which LISA could only detect very low

values of β/H∗, i.e. PTs lasting exceptionally long. However speculative this may be, if a

PT with these characteristics would have occurred in the early universe, it would provide a

coincident signal in both detectors. This is the most important result of the following article:

a joint detection of the same signal by both interferometers would be a major discovery

(and would allow for much better parameter estimation). Even a detection by only one

interferometer, either LISA or CE, combined with a null detection in the companion, could

bring relevant information on the frequency shape of the signal, which is tightly connected to

the SGWB nature (for example, whether it is primordial or astrophysical, from a short source

or one that extends over several Hubble times, and so on). Having a network of detectors

operating simultaneously at different frequency ranges would be a very valuable asset in the

future for what concerns SGWBs from the early universe, that are often characterised by

wide frequency spans.

In autumn 2017, the Gravitational-Wave International Committee (GWIC, gwic.ligo.org)

has established a special subcommittee with the purpose of producing a community-driven

plan defining a feasible path towards a future network of third-generation GW observatories.

The article presented below was completed in this context.



Multi-wavelength observations of cosmological phase transitions using LISA and
Cosmic Explorer

Margot Fitz Axena, Sharan Banagiria, Andrew Matasa, Chiara Caprinib, Vuk Mandica1

1aSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
bLaboratoire Astroparticule et Cosmologie, CNRS UMR 7164, Université Paris-Diderot, 75013 Paris, France

We reanalyze the detection possibilities for gravitational waves arising from cosmological first
order phase transitions. We discuss the stochastic gravitational wave background corresponding to
the three expected scenarios of phase transition dynamics. We then perform an analysis on the
detection possibilities for each case using sensitivities for the next generation ground-based detector
Cosmic Explorer and the current LISA proposal, using two analysis methods. We find that having
both detectors allows wide detection possibilities over much of the parameter space, including those
corresponding to several early Universe models.

I. INTRODUCTION

First order cosmological phase transitions (PT) are
predicted in scenarios beyond the standard model of par-
ticle physics, including in the context of the electroweak
symmetry breaking (see e.g. [1–4] and citations therein).
Unlike second-order phase transitions in which the tran-
sition proceeds smoothly, first order phase transitions oc-
cur by the nucleation of bubbles of the new phase, which
expand and collide. Energy released in the collisions
along with bulk motion of any fluid present can give rise
to a significant stochastic gravitational wave background
[3, 5–14]. For a review of cosmological sources of the
stochastic gravitational-wave background, including PT
models, see [15].

The background from the electroweak PT is a tar-
get for the Laser Interferometer Space Antenna (LISA)
[2, 16]. The most sensitive frequency band for LISA is
1 − 10 mHz, and probes the Universe when it was at
temperatures of O(1 TeV), the expected scale of the elec-
troweak PT [2, 16]. A previous study in [3] has developed
a phenomenological parameterization for the PT back-
ground, and estimated the range of models that can be
detected by LISA, assuming four different LISA design
proposals available at the time.

Unfortunately the electroweak PT background is not
likely to be detectable by currently operating ground-
based gravitational-wave detectors such as the Ad-
vanced Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) and Advanced Virgo [17–19], which op-
erate at roughly 10-5000 Hz and probe higher tempera-
tures than LISA [20]. However, next generation ground-
based detectors such as Cosmic Explorer (CE)[21] and
the Einstein Telescope [22] are expected to be roughly a
factor of 103− 104 times more sensitive to the stochastic
background, and will extend the observing band to lower
frequencies ∼5 Hz [21, 23]. Consequently, as we show be-
low, CE may be able to measure the tail of the EW PT,
or the signal from higher temperature PTs which could
have spectra peaking near the CE band, if they exist.

In this study, we quantitatively assess what can be
learned about the electroweak and other kinds of PTs by
analyzing data from both LISA and CE simultaneously.

A detection of the PT background by both LISA and CE
would be a discovery of enormous significance, by pro-
viding a measurement of the energy density spectrum in
two widely separated frequency bands. Even a null re-
sult in one detector could provide additional information
about the PT background that the other detector could
not achieve alone.

We adopt the parameterization of PTs developed in [3],
using the CE sensitivity from [21] and LISA sensitivity
from the most recent 2017 LISA proposal [16]. The LISA
noise estimates we use differ from those considered in [3]
in characteristics such as the arm length and mission du-
ration.

This study is organized as follows. In section 2, we dis-
cuss the projected sensitivities of Cosmic Explorer and
LISA. In section 3 we provide a summary of the gravita-
tional wave background produced by PTs. In section 4
we describe analysis methods used to determine the de-
tectability of a gravitational wave (GW) signal. Finally,
in section 5 we present the results of our analysis and
discuss their implications.

II. PROJECTED SENSITIVITY OF LISA AND
COSMIC EXPLORER

The 2017 LISA proposal [16] calls for a space-borne
gravitational wave detector in a heliocentric orbit, lag-
ging behind the Earth by 50-65 million km. The three
LISA space-crafts will be in a triangular formation, with
a separation of 2.5 million km between them. From the
six interferometer links along LISA arms, three time de-
lay interferometry (TDI) data channels (A, E, and T)
will be constructed in order to perform cancellation of
laser phase noise. To estimate the sensitivity of these
channels, we use the acceleration and displacement noise
specifications from the LISA proposal [16] and follow [24]
to compute the minimum sky-averaged strain amplitude
needed for a narrow-band signal at a frequency f to stand



2

above the noise. For a channel I 1 we equate the noise
power spectral density SnI (f) with the power induced by
the gravitational wave,

H(f)RI(f) = SnI (f). (1)

Here H(f) is the power spectrum of the gravitational
wave and RI(f) is the sky-averaged detector response to
the gravitational wave for channel I, which is related to
the antenna function FAI (Ω̂, f) for the channel as,

RI(f) =
∑

A=+,×

∫
dΩ̂

4π
|FAI (Ω̂, f)|2. (2)

Here Ω̂ depicts the solid angle. We note that the detector
response captures effects due to the geometry of the de-
tector, as well as the frequency dependence arising from
the relative size of the detector in comparison with the
wavelength of the gravitational wave. The strain sensi-
tivity hI(f) is then just the square root of H(f),

h(f) =

√
SnI (f)

RI(f)
. (3)

We show the sky-averaged sensitivity curve for A and E
channels (we assume RA = RE) given by Equation 3 for
LISA in Figure 1. For more details about constructing
LISA sensitivity curves, we refer the reader to [25].

Cosmic Explorer [21] is a proposed 40 km long detec-
tor with a similar design to that of LIGO. It will extend
the frequency band of Advanced LIGO and Advanced
Virgo down to around 5 Hz, with sensitivity improve-
ments of order 10× relative to that of Advanced LIGO.
Sensitivity curves for CE are computed from analytical
models of noise sources including quantum noise, local
gravitational disturbances, and thermal noise in suspen-
sions and mirror coatings [21]. Unlike for LISA, the CE
detector response can be assumed to be independent of
frequency because the wavelengths of the gravitational
waves targeted by these detectors are much larger than
the arm-length of the detector. Figure 1 shows the CE
target sensitivity.

III. PHASE TRANSITION STOCHASTIC
GRAVITATIONAL WAVE BACKGROUND

The stochastic background is characterized by its spec-
tral energy density

h2ΩGW(f) = h2
f

ρc

dρGW

df
, (4)

1 In this paper we do not consider cross power spectra, since
their sensitivities are generally much smaller than the auto-power
spectra.

FIG. 1: This plot shows the sky averaged sensitivity
curves for LISA and CE, given by Equation 1.

where ρGW is the energy density in gravitational waves,
ρc = 3H2

0/(8πG) is the critical energy density to have
a flat Universe, and the Hubble constant is H0 =
100h km/s/Mpc (we adopt the speed of light c = 1).
The source of gravitational wave energy arising from
first-order cosmological PTs is due to bubble collisions
and fluid motion. In Ref. [3], three different processes
are considered, whose different contributions to the total
background must be calculated separately and summed.
However, depending on the dynamics of the phase tran-
sition, some of these processes may provide a negligible
contribution to the entire background and so can be dis-
regarded.

The first contribution is that from the scalar field, φ,
itself, due to the bubble wall collisions. The second con-
tribution is from sound waves in the plasma, as the bub-
ble wall sweeps through the surrounding fluid. The fi-
nal contribution is from magneto-hydrodynamic (MHD)
turbulence in the plasma. We denote these three contri-
butions Ωφ,ΩSW, and Ωturb, respectively. In general, the
total background is [3]

h2ΩGW(f) = h2Ωφ(f) + h2ΩSW(f) + h2Ωturb(f). (5)

The relative importance of these three terms depends on
the dynamics of the PT.

Following [3], in this study we consider three different
scenarios for the dynamics of the bubble expansion. The
first scenario assumes non-runaway bubbles whose speed
reaches a relativistic terminal velocity. The second sce-
nario assumes runaway bubbles which, though expanding
in the plasma, rapidly approach the speed of light. The
third scenario assumes that the phase transition occurs
in vacuum, consequently plasma effects are negligible and
the bubbles expand at the speed of light. Note that the
second scenario is excluded in the context of the elec-
troweak symmetry breaking [26]: we therefore apply it
here only for the case of speculative PTs occurring at
very high temperatures, relevant for observations with
the CE.
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A. Main parameters describing the phase
transition

We first briefly review the parameterization used
throughout the rest of the study, following [3], and the
relevant quantities for computing the gravitational wave
background. As usual we define β as the inverse of the
time duration of the phase transition. This quantity de-
termines the size of the bubbles at the time of collision
and therefore the characteristic frequency at which the
GW signal peaks [2]. For a phase transition taking place
at temperature Tn and ending at time tn [2], β is given
by [3]

β =
Γ′

Γ
= − dS

dt

∣∣∣∣
t=tn

= TnH(Tn)
dS

dT

∣∣∣∣
T=Tn

(6)

where Γ(t) denotes the nucleation rate and S is the Eu-
clidean action of a bubble [2]. The last expression is given
by the fact that dT/dt = −TH, where H is the Hubble
parameter [2].

We define T? as the temperature of the thermal bath at
the time t? when gravitational waves are produced. A key
parameter controlling the gravitational wave spectrum is
β/H?, where H? is the Hubble parameter at T?.

Another key parameter is α, the ratio of the latent
heat released during the phase transition to that of the
radiation bath. It is given by [2]

α =
ρvac

ρrad(Tn)
, (7)

where ρrad(Tn) = gnπ
2T 4
n/30 and gn is the number of rel-

ativistic degrees of freedom in the plasma at temperature
Tn [3].

B. Case 1: Non Runaway Bubbles

The first phase transition scenario considers non-
runaway bubbles, which expand in the plasma and reach
a terminal velocity vw that is less than the speed of light.
In this case, there are no large reheating effects and so
Tn ≈ T? [3]. There are two contributions to the grav-
itational wave spectrum that should be considered, due
to sound waves and magnetohydrodynamic turbulence in
the plasma after the bubbles have collided [3]

h2ΩGW(f) ≈ h2ΩSW(f) + h2Ωturb(f). (8)

Gravitational waves from the scalar field play a negligible
contribution in this case [9, 27, 28].

Sound waves are generated by the bubble growth, and
propagate through the plasma after the transition has
completed [9, 27, 28]. A model covering all relevant val-
ues of vw and α is unavailable; however, simulations in
[27, 28] give insights into the possible frequency depen-
dence of the sound wave GW spectrum. We follow [3]

which adopts the spectral shape

SSW(f) =

(
f

fSW

)3(
7

4 + 3(f/fSW)2

)7/2

, (9)

where the observed frequency f is related to the source
frequency fs by f = fs/(1 + z). The overall scale of the
sound wave peak frequency fSW is fSW,s = 1.15β/vw, a
conservative estimate that agrees with the above spec-
tral shape [3]. The peak frequency fSW of the observed
gravitational wave spectrum is given by

fSW =
fSW,s

1 + z
= h?

(
fSW,s

β

)(
β

H?

)
, (10)

where h? is the value of the inverse Hubble time at GW
production redshifted to today

h? =
H?

1 + z
= 16.5× 10−3mHz

(
T?

100 GeV

)( g?
100

) 1
6

.

(11)
Finally, results from [27] are fitted reasonably by the fol-
lowing gravitational wave spectrum

h2ΩSW(f) = 2.65× 10−6
(
H?

β

)(
κνα

1 + α

)2

×
(

100

g?

) 1
3

vwSSW(f), (12)

where κν = ρν/ρvac is the fraction of vacuum energy that
gets converted into bulk motion of the fluid. In the limits
of large vw, κν is approximately given by [29]

κν ≈ α(0.73 + 0.083
√
α+ α)−1 (13)

In addition to sound waves, bubble percolation can
also cause turbulence in the plasma, and in particular
MHD turbulence since the plasma is ionized. For the
GW signal from MHD turbulence, we adopt the spectral
shape found analytically in [30] given by [3]

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]11/3(1 + 8πf/h?)
(14)

Like the sound wave case, the peak frequency for the
gravitational wave spectrum depends on the bubble size
at the end of the transition and is given by fturb,s =
1.75β/vw [3, 30]. Finally, the total contribution to the
gravitational wave spectrum can be modelled as [30]

h2Ωturb(f) = 3.35× 10−4
(
H?

β

)(
κturbα

1 + α

) 3
2

×
(

100

g?

) 1
3

vwSturb(f), (15)

where the factor κturb = εκν represents the fraction of
the bulk motion that is turbulent.
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C. Case 2: Runaway Bubbles in Plasma

The second case we consider is runaway bubbles in
plasma, for which the bubble wall velocity vw approaches
the speed of light. This scenario for the bubble expan-
sion is not realised in the context of the electroweak PT
[26], but it is in principle allowed in potential phase tran-
sitions occurring at higher temperature, which must be
considered in the present analysis since they are relevant
for the CE, as we will see. In this case, the contribution
to the spectrum from the scalar field must be added to
that from sound waves and turbulence [3].

h2ΩGW(f) ≈ h2Ωφ(f) + h2ΩSW + h2Ωturb. (16)

Numerical simulations have been done to determine the
contribution to the gravitational wave signal from the
scalar field in [31], and the spectral shape of the gravita-
tional wave spectrum is given by

Sφ(f) =
3.8(f/fφ)2.8

1 + 2.8(f/fφ)3.8
. (17)

The peak frequency from the scalar field is fφ,s =
0.62β/(1.8− 0.1vw + v2w) [3, 31]. Fits to simulation data
give the total contribution to the gravitational wave spec-
trum as [3, 31]

h2Ωφ(f) = 1.67× 10−5
(
H?

β

)2(
κφα

1 + α

)2(
100

g?

) 1
3

×
(

0.11v3w
0.42 + v2w

)
Sφ(f), (18)

where the parameter κφ = ρφ/ρvac is the fraction of vac-
uum energy that gets converted into energy of the scalar
field. For this case, it is necessary to define a new pa-
rameter α∞ as the minimum value of α such that bub-
bles run away [29]. For α > α∞, the contribution of
the scalar field to the gravitational wave background is
parametrized by [29]

κφ = 1− α∞
α
≥ 0 (19)

In this expression, α∞/α is the fraction of the total en-
ergy that goes into bulk motion (κν) and thermal energy
(κtherm); the amount of this energy that goes into bulk
motion is given by [29]

κν =
α∞
α
κ∞ (20)

where κ∞ is computed similarly to Equation 13 as [29]

κ∞ ≈ α∞(0.73 + 0.083
√
α∞ + α∞)−1 (21)

D. Case 3: Runaway Bubbles in Vacuum

The final case we consider is runaway bubbles in a
vacuum dominated epoch, for which one only needs to

consider the contribution to the spectrum from the scalar
field and not from sound waves or turbulence, as those
contributions are only applicable in plasma [3]

h2ΩGW(f) ≈ h2Ωφ(f). (22)

The spectral shape of the gravitational wave spectrum is
given by Eq. 17. Furthermore, since Tn goes to 0, the
parameter α approaches infinity and therefore drops out
of the expression for ΩGW(f). In this limit, the total con-
tribution to the gravitational wave spectrum is therefore
[3, 31]

h2Ωφ(f) = 1.67× 10−5
(
H?

β

)2(
100

g?

) 1
3

×
(

0.11v3w
0.42 + v2w

)
Sφ(f). (23)

The computed gravitational-wave backgrounds for cer-
tain points in the parameter space of each phase transi-
tion case are shown in Figure 2, along with the sensitivity
curves for LISA and Cosmic Explorer, assuming 1 year
of exposure. For Cosmic Explorer, we assume two de-
tectors are built at locations yielding the same overlap
reduction function as for the two LIGO detectors. These
figures provide an estimate of whether the selected mod-
els produce a spectrum that is large enough for detection
in the frequency bands of LISA or Cosmic Explorer or
both. In general, one expects that a spectrum rising well
above a sensitivity curve should be detectable by the cor-
responding detector. Similarly, a spectrum well below a
sensitivity curve is likely undetectable by that detector.

IV. ANALYSIS METHODS

In this section, we consider how to assess our ability
to detect the gravitational wave background from first
order PTs. We desire the analysis to be independent of
any specific phase transition model, so relevant parame-
ter values vary freely.

The three phase transition scenarios must be consid-
ered independently, as they have different gravitational
wave spectra. For the case of runaway bubbles in vacuum
(Case 3), there are only two parameters to be considered-
β/H? and T?. All other parameters are irrelevant at max-
imal bubble wall velocity and without plasma effects.

For non-runaway bubbles in plasma (Case 1), however,
there are five parameters that may be varied: β/H?, T?,
α, vw, and ε. The bubble wall velocity vw is model de-
pendent but, as done in [3], we chose to fix this parameter
to be vw = 0.95c since lower wall velocities produce less
observable gravitational radiation. The fraction of bulk
motion that is turbulent, represented by the parameter ε,
is also model dependent (and not yet fully understood).
We set ε = 1, corresponding to equal amount of kinetic
energy in the sound waves and turbulent fluid motions:
a plausible value for the case of strong enough PTs. The
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FIG. 2: These plots show the total gravitational wave spectrum for specific points in the parameter space along with
time integrated sensitivity curves for LISA and Cosmic Explorer (assuming 1 year of integration time). For the first
and third plots, the point in the parameter space (respectively (α, β/H?) and β/H? alone) corresponding to the
parameter values indicated in the title of each plot, is computed for three different temperatures (corresponding to
the yellow, purple, and green curves). The middle plot shows indicated points of interest in the parameter space of
Cases 1 and 2 at T? = 100000 GeV. These points are shown by the blue diamonds in Figures 3 and 4.

three remaining parameters, α, β/H?, and T? are related
but again cannot be specified without choosing a phase
transition model. As done in previous analyses these are
the parameters we chose to vary: specifically, we analyze
the α-β/H? space for several values of T? [2, 3, 32].

For runaway bubbles in plasma (Case 2), the situation
is similar. In this case, the five parameters to be consid-
ered are β/H?, T?, α, α∞, and ε. The value of α∞ is
again model dependent. We choose to fix it to α∞ = 0.1,
a value considered also in [3]. In addition, in the con-
text of case 2 we fix the temperature to T? = 105 GeV,
corresponding to an unknown PT at high temperature
for which the presence of runaway bubbles in the plasma
cannot be excluded. We then analyze the α-β/H? space
for these parameter values just as for Case 1.

We scan the two-dimensional parameter space and
compute the total SGWB at 2500 points. Then at each
point we use the projected sensitivities for LISA and Cos-
mic Explorer to evaluate whether the parameter values at
the point describe a gravitational wave background that
should be detectable by LISA or CE. We also determine
the possibility of detection with the sensitivity of both
detectors operating simultaneously.

A. Likelihood Analysis

To analyze whether a point in the parameter space
was in a detectable region, we considered two analysis
methods. The first is a Bayesian likelihood analysis. We
first define a projected sensitivity ΩSens, which is related
to the sky averaged sensitivity seen in Equation 3 by [24]

ΩSens =
4π2f3

3H2
0

h2I(f). (24)

Inspired by similar analyses performed by LIGO [33],
we then define the following likelihood function for each

point in the parameter space

log(L(α, β/H?, T?)) = −τ
fmax∑

f=fmin

[
h2ΩGW(α, β/H?, T?, f)2

2h2ΩSens(f)2

]

(25)
where h2ΩGW is the calculated GW signal and τ is the
duration of the mission, assumed to be one year for this
study. The summation over frequency runs over either
the LISA frequency band, CE frequency band, or fre-
quency band of both for evaluation of the combined sen-
sitivity of both detectors operating simultaneously.

We assume uniform priors in input parameters
α, β/H?, T?, implying that the Bayesian posterior dis-
tribution in these parameters is equal to the likelihood
function defined above. We define a set of contours la-
beled by Z, for which the posterior is equal to Z. We
then define the fraction of the total posterior probability
contained within each contour,

P (Z) =

∫
L(α,β/H?,T?)>Z

L(α, β/H?, T?) dα d(β/H?) dT?

∫
L(α, β/H?, T?) dα d(β/H?) dT?

(26)
and identify the 95% confidence contour as the one for
which P (Z) = 0.95.

B. SNR Analysis

In addition to the Bayesian likelihood analysis, we also
considered a second method of analysis involving com-
puting an SNR. Using the projected sensitivities of LISA
and Cosmic Explorer, we consider the signal-to-noise ra-
tio at each point of the parameter space [3]

SNR(α, β/H?, T?) =

√
τ

∫ fmax

fmin

df

[
h2ΩGW(α, β/H?, T?, f)2

h2ΩSens(f)2

]

(27)
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If the SNR value is greater than a threshold value
SNRthr, then the signal at that point is detectable. Con-
tours are made outlining all points in this detectable re-
gion.

Equations 25 and 27 are in appearance very similar.
In fact, the likelihood computation is analogous to do-
ing the SNR calculation using a value of SNRthr = 2.
However, due to the differences in the way contours
are computed, and in particular the fact that the like-
lihood is defined over a uniform prior on the parameters
{α, β/H?, T?} which are non-linearly related to ΩGW(f),
they will produce slightly different results. In choosing a
value of SNRthr, we first follow [3] and consider a value of
SNRthr = 10, and then compute contours for SNRthr = 2
for appropriate comparison to the likelihood analysis.
Discrepancies between our calculations and those done in
[3] for LISA are due to using a different value of ε along
with using the most recent LISA sensitivity curves.

V. RESULTS AND DISCUSSION

Results of our analysis can be seen in Figures 3 and 4.
Figure 3 shows the analysis of five temperature values for
Case 1, while Figure 4 shows the analysis done for cases
2 and 3. The shaded regions correspond to the SNR
analysis done for SNRthr = 10. The light gray shaded
regions are regions accessible to LISA, the black shaded
regions are accessible to Cosmic Explorer, and the dark
gray shaded regions are accessible to both operating sep-
arately. The gray dotted line shows the accessible re-
gion for both detectors operating simultaneously. The
red dotted line shows the joint accessibility computed for
SNRthr = 2, and the solid red line denotes the joint ac-
cessibility likelihood curve.

Having both detectors operating allows wide access to
many different regions of the parameter space that would
be out of range of just one. For Cases 1 and 2, LISA
is more sensitive to lower values of the parameter β/H?

while Cosmic Explorer is sensitive to higher values, allow-
ing much of the chosen range of β/H? to be accessible at
higher values in the chosen range of α. Additionally, the
contours for Cases 1 and 3 show that while LISA is more
sensitive to the background at lower temperatures, Cos-
mic Explorer allows better sensitivity at higher temper-
atures. These results can be understood by the fact that
in general, higher temperature and β/H? values shift the
gravitational wave spectrum to higher frequencies, be-
ing stronger in the regions accessible to next-generation
terrestrial detectors rather than LISA.

Having regions of the parameter space accessible to
both CE and LISA provides additional advantages in re-
gards to constraining the spectrum. A joint detection in
multiple frequency bands would be a major discovery, al-
lowing better estimates of model parameters than would
be possible with each detector separately. Similarly, a
discovery by only one of the detectors would rule out
corresponding areas of the parameter space.

It is evident that the method used for analysis has an
impact on the computed detectable region, and therefore
it is relevant to consider both. The likelihood analysis
computes the greatest accessible region, while the SNR
curves compute a smaller accessible region of the param-
eter space. However, the value of SNRthr chosen also
has an impact; for SNRthr = 2 the curve is closer to the
likelihood curve then for SNRthr = 10.

The 95% confidence likelihood curves should corre-
spond to the analysis done for SNRthr = 2, because both
are calculating 2σ confidence regions. However, it is ev-
ident from the plots that the curves are not the same.
For the likelihood analysis, probabilities are calculated
on levels of a normalized likelihood curve and contours
are made at the level Z for which 95% of the summed
likelihood is above Z. These levels do not necessarily cor-
respond to a constant SNR along the contours because
the prior on these values is flat in the parameters α, β/H?

and T? rather than in ΩGW. For the SNR calculation,
each individual point in the parameter space is consid-
ered for whether it exceeds the threshold SNR value, so it
is ultimately a different calculation that yields a slightly
different result. The shaded regions, corresponding to
SNR = 10, identify parts of the parameter space where a
detection with strong significance could be made based
on the criteria outlined in this paper. The 95% contours
based on the likelihood model show where we would ex-
pect to be able to place 95% upper limits in the absence
of a detection. Backgrounds in between the 95% upper
limit and a strong detection would lead to a marginally
detected signal; by integrating for a longer period of time,
the confidence in signals would increase.

Finally, it is worth considering what these plots can
tell us about detection possibilities for the gravitational
wave signal from specific phase transition models. Exten-
sions of the standard model that predict first order phase
transitions at the electroweak scale are widely studied
in the literature, some examples are supersymmetry (see
e.g. [34]), Higgs doublet models (see e.g. [35]), and higher
dimensional operators (see e.g. [31]). Other scenarios be-
yond the electroweak scale that predict phase transitions
include an additional boson field [36, 37] or a Dark Mat-
ter scenario [38].

The work done in [3] analyzed the detectability of spe-
cific benchmark points in the parameter space illustrating
models considered in other studies. We include some of
these points in Figures 3 and 4 as well, shown by the
colored circles in the contour plots. For Case 1, the tem-
perature of the points is approximated to place it in a
specific contour plot. As found in [3], we confirm here
that many of these points are in the accessible region of
LISA, which may then provide valuable insight into new
physics.

In summary, we have seen how having both LISA and
Cosmic Explorer together allows for wide detection pos-
sibilities for the gravitational wave background arising
from phase transitions, as these detectors can probe com-
plementary regions of the parameter space. We have used
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FIG. 3: Shown here are five contour plots denoting different temperatures for Case 1. Shaded regions correspond to
the total parameter space accessible to LISA, CE, or both, for the SNR analysis done with SNRthr = 10. The gray
dotted line is the joint accessibility SNR curve for SNRthr = 10. The red dotted line is the joint SNR curve for
SNRthr = 2. Finally, the joint likelihood analysis curve is also shown for comparison to SNRthr = 2. Blue diamonds
denote model choices whose spectra are shown in Figure 2. The circles show benchmark points from various PT
scenarios, taken from [3].

two different analysis methods to assess the detectabil-
ity and stress that neither one necessarily provides the
”correct answer” but that both should be considered and
compared. The regions of the parameter space accessible
to LISA and Cosmic Explorer include many predicted

early universe models, opening up unique possibilities to
study the early universe with gravitational wave obser-
vations.
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Chapter 7

Conclusion

The universe is expected to be permeated by several GW backgrounds of both astrophysical

and cosmological origin. In particular, cosmological SGWBs could have been generated by

a plethora of high energy phenomena possibly occurring in the primordial epochs of the

universe’s evolution. GWs are a very promising cosmic relic, to probe directly the currently

unknown physics of the early universe, complementary to other observables such as the CMB

and BBN.

In this dissertation, I concentrate mainly on one of the possible GW signals from the

early universe, namely the SGWB from a first order phase transition. This has been one of

the topics of my research since almost a decade, and I have tackled it both from the point of

view of predicting the signal characteristics, and from the one of assessing its detectability

by GW detectors. The core of the manuscript, chapter 6, starts with a section summarising

the main features of the SGWB from first order PTs: sources, parameters, frequency shape.

I then include four publications.

The first one, in section 6.2, has been chosen because it represents to date the most refined

analytical evaluation of the SGWB from MHD turbulence in the aftermath of a first order

PT. The result is still used in many articles today, but it relies on several assumptions that

necessitate to be verified via numerical simulations. These are however difficult to perform.

Consequently, it is only recently that we have started a project tackling numerical simulations,

in collaboration with David Weir and Mark Hindmarsh.

The other three publications have been chosen because they represent neat examples of

how signals from first order PTs occurring at different energy scales in the early universe, can

222
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be probed by different GW detectors. Namely, LISA can probe energy scales around the EW

symmetry breaking, PTA can probe energy scales around the QCDPT, and CE can probe

much higher energy scales, around 106 GeV. Of these analyses, the most significant is the one

presented in section 6.3. This work has been performed in the context of the LISA Cosmology

Working Group, and has been relevant for the community working both on primordial GWs,

and on particle physics beyond the Standard Model. In particular, model builders have used

it to predict the amplitude and frequency shape of SGWBs arising in different PT models,

and to assess their detectability at LISA.

The first part of the dissertation, instead, is taken from a review that I have written in

collaboration with Daniel Figueroa, under invitation by the journal Classical and Quantum

Gravity. This review describes the large majority of proposals, which have been put forward

in the literature, of mechanisms, all based on theories beyond the Standard Model of particle

physics, which produce GWs signals in the very early universe. These mechanisms can operate

basically at any energy scale from inflation downwards, T . 1016 GeV, until the QCD scale

T ' 100 MeV. I have included in this manuscript four sections of the review. Chapters 2

to 4 present generalities on the definition of GWs, on SGWBs from the early universe, on

the current SGWB observational bounds and detectors. Chapter 5 deals with the SGWB

generated during slow roll inflation. Here we work out the transfer function representing

the evolution of the tensor spectrum from the end of inflation until today, both numerically

and via an analytical calculation. The relation between the two approaches and the regime

of validity of the analytical approximation have been studied in collaboration with Pierre

Auclair, the Ph.D. student I am co-supervising together with Danièle Steer.

The research I have been performing in the past years, leads me to believe that there

is a real chance for a cosmological GW background to be detected in the near future. The

benefits of a positive detection would be great, opening up a new observational window on

the universe, but also on fundamental high-energy physics, that in all probability will never

be probed at particle physics accelerators.
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• Testing cosmology with gravitational waves at LISA
- CERN TH-Institute “Probing the dark sector and general relativity at all
scales”, 2017

• LISA Science Performance
- CEA Saclay, France 2017

• Probing the expansion of the universe using GW standard sirens at LISA
- Colloque national “Dark Energy”, LAL Orsay 2017
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• Cosmology with gravitational wave detection
- SAP (CEA Saclay), France 2017
- University of Geneva, Switzerland 2017
- LTP Orsay, France 2017
- University of Amsterdam, Netherlands 2017
- Max Planck Institute for Gravitational Physics, Potsdam, Germany 2015
- CERN, Switzerland 2015
- University of Portsmouth, UK 2015
- OCA Nice, France 2015
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- University of Cardiff, UK 2015
- University of Helsinki, Finland 2015
- University of Oslo, Norway 2015
- University of Bielefeld, Germany 2014
- St Cugat Forum on Astrophysics, Barcelona 2014
- X LISA Symposium, University of Florida Gainesville 2014
- Cajagwr seminars, Caltech, Pasadena 2014

• The effect of matter perturbations on the chirp signal
- Gravitational-wave astronomy meeting in Paris, IAP 2016

• Smoking guns of phase transitions and primordial magnetic fields
- Les Houches school “Cosmology after Planck: what is next?”, France 2016

• Gravitational waves: discovery and future
- GGI workshop “Theoretical Cosmology in the Era of Large Surveys”, Flo-
rence 2016
- IPhT Séminaire Général, CEA-Saclay 2016

• Cosmology with gravitational waves
- University of Heidelberg, Germany 2016
- CTP Université Aix-Marseille, France 2016
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- YITP Kyoto, Japan 2016
- APC Journal Club, Paris 2016

• Gamma-ray observations of blazars and the intergalactic magnetic field spec-
trum
- Workshop “Origin, evolution and signatures of cosmological magnetic fields”,
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• Theoretical aspects of GW stochastic backgrounds
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• Gravitational waves from the early universe
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- Frontiers of Fundamental Physics, Marseille 2014
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- University of California Santa Cruz 2010
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- Department of Astrophysics, University of Oxford, 2012
- SISSA particle physics seminar, Trieste 2012
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• Primordial magnetic fields and gravitational waves
- Institut d’Astrophysique Spatiale, Paris France 2006

• Primordial magnetic fields
- ‘Cosmo Coffee’ meeting, CERN, 2005

• Magnetic field perturbations
- Conference ‘Cosmology: Facts and Fictions’, Sils Maria, 2005

• Constraints on the electrical charge asymmetry of the universe
- Institute of Cosmology and Gravitation, University of Portsmouth, UK 2004
- Conference ‘Cosmology: Facts and Fictions’, Sils Maria, 2004

• Magnetic fields in the early universe
- Department of Astrophysics, University of Oxford, UK 2004

• Primordial magnetic fields and charge asymmetry in the universe
- Department of Astronomy, University of Sussex, UK 2003
- Department of Theoretical Physics, Imperial College London, UK 2003
- Department of Astronomy, Università di Padova, Italy 2003



• The cosmic microwave background and helical magnetic fields: the tensor
mode
- Conference ‘Cosmology: Facts and Fictions’, Sils Maria, 2003
- Oxford-Princeton meeting, University of Oxford, 2004
- Conference ‘Nonlinear Cosmology’, ICTP Trieste, 2005

• Observational constraint on the fourth derivative of the inflaton potential
- Department of Theoretical Physics, University of Geneva, Switzerland 2002

• Consequences of causality on the spectrum of a primordial magnetic field
- Conference ‘5eme Journée des Lacs Alpins de Cosmologie’, Laboratoire d’Annecy-
Le-Vieux de Physique Théorique, 2002

• Gravitational wave production: a strong constraint on primordial magnetic
fields
- U.K. Cosmology Meeting, University of Sussex, 2001
- Institute of Cosmology and Gravitation, University of Portsmouth, 2002

Selection of conferences:

• XII LISA Symposium, Chicago 2018 [SOC]

• DESY Theory meeting, DESY Hamburg, Germany 2017 [invited talk]

• COSMO17, Paris, France 2017 [invited talk]

• PONT, Progress on Old and New Themes in cosmology, Avignon, France
2011, 2014, 2017 [organisation]

• XI LISA Symposium, Zurich 2016 [session convener]

• TeVPA, CERN 2016 [talk and session convener]

• Gravitational-wave astronomy meeting in Paris, IAP Paris 2016 [talk]

• Hot topics in Modern Cosmology, SW10, Cargèse, France 2016 [invited talk]

• Cosmology after Planck: what is next?, Les Houches school, France 2016 [in-
vited lecture]

• Theoretical Cosmology in the Era of Large Surveys, GGI Florence, 2016 [in-
vited talk]

• eLISA Cosmology Working Group Workshop, CERN 2015, University of Sta-
vanger 2015, DESY Hamburg 2016 [organisation]

• Origin, evolution and signatures of cosmological magnetic fields, NORDITA
Stockholm, 2015 [talk]

• 28th Texas Symposium on relativistic astrophysics, Geneva, 2015 [session con-
vener]

• Frontiers of Fundamental Physics, Marseille, 2014 [talk]

• Workshop “Particlegenesis”, KITP Santa Barbara, 2014 [invited talk]

• X LISA Symposium, University of Florida Gainesville, 2014 [invited talk]

• St Cugat Forum on Astrophysics, St Cugat (Barcelona), 2014 [invited talk]

• European Physical Society meeting, Stockholm, 2013 [invited talk]

• Stochastic backgrounds of gravitational waves, Workshop in Nice, France, 2013
[invited talk]

• 17th Itzykson Meeting, IPhT CEA Saclay, 2012-2014 [organisation]

• Rencontres de Moriond - Cosmology Session, La Thuile, Italy 2012 [talk]



• Electroweak baryogenesis in the era of the LHC, workshop at the Weizmann
Institute, Israel 2011 [invited talk]

• Theory and observations of extragalactic magnetic fields, workshop, APC
Paris 2010 [invited talk]

• Texas Symposium 2010 Heidelberg (Germany) 2010 [invited talk]

• Gravitational Waves 2010, workshop at the University of Minnesota 2010
[invited talk]

• Rencontres de Moriond - Cosmology Session, La Thuile, Italy 2010 [talk]

• COSMO09, CERN 2009 [talk]

• The electroweak phase transition, workshop at Nordita, Stockholm 2009 [in-
vited talk]

• Cosmological Magnetic Fields, Ascona Switzerland 2009 [invited talk]

• Gravitational Wave Astronomy, Aspen, USA 2008 [talk]

• PONT, Progress on Old and New Themes in cosmology, Avignon, France 2008
[invited talk]

• Cosmology: Facts and Fictions, Sils Maria, Switzerland, yearly since 2003 to
2007 [invited talk]

• Astroparticle and Cosmology, Galileo Galilei Institute, Florence, 2006 [talk]

• Nonlinear cosmology: turbulence and fields, ICTP Trieste, 2005 [invited talk]
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