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Introduction

In this manuscript, I present the research I conducted during the three years of my
PhD at Institut Curie and at Collège de France. During this time, I worked in close
collaboration with two experimentalists, Thibault Aryaksama and Trinish Sarkar, who
were doing their PhD at the same period in the group of Pascal Silberzan at Institut
Curie. At the beginning of my PhD, I started working on new experiments T. Aryaksama
was conducting. T. Aryaksama was plating C2C12 mouse myoblast cells on stripes with
abrasions perpendicular to the stripe direction. Adding abrasions was a continuation of
previous work by Duclos, Blanch-Mercader et al. [1]. Abrasions were modeled by an
external field in chapter 2, and the purpose is to make an analogy, for live cells, with the
Freedericksz transition in liquid crystals.

In between experimental results, I started discussing with Trinish Sarkar about his
project on topological defects and got very excited. T. Sarkar was looking at topologi-
cal defects in monolayers of C2C12 myoblasts and their role in multilayering. Studying
topological defects peaked my interest as a theoretician, notably for their universal prop-
erties and their existence in many areas of physics. Our collaboration focused on the
onset of multilayering, and we looked at the flow created by activity in the vicinity of
positive half-integer topological defects. Surprisingly, we discovered a class of non-
motile positive half-integer defects. To account for this class of non-motile defects, we
computed the stall force necessary to stop the motion of a defect.

This collaboration was a rich experience for me, and I particularly appreciated the
cross talk between theory and experiments. It is a challenging endeavor because nothing
really goes as planned, but it provided theoretical questions that would not necessarily
have been asked otherwise, such as the pinning of defects or the rotation of the external
field in stripes. I like to believe that the theoretical work in this thesis was also beneficial
for the experiments. In stripes, theory provides insight on the contact-guidance mecha-
nism, suggesting that there is an intrinsic length-scale below which contact-guidance has
no effect over confinement. For defects, the theoretical conditions to obtain non-motile
defects lead to the observation of elongated focal adhesions at the core of defects, sug-
gesting a stronger anchoring of the cells on the substrate.

This manuscript is organized as follows. Chapter 1 introduces tissues from a physics
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perspective, and the theory used to describe them. I give a brief description of cell and
tissue mechanics in section 1.1.1. Then, I focus of the continuum description of tissues
as active materials in section 1.1.2, and give a brief overview of the definition and issues
related to the field of active matter in section 1.1.3. In section 1.2, I give a derivation
of the hydrodynamic theory for active nematics, from minimal assumptions based on
symmetries. This construction shows how the activity of elongated cells generates an
active stress in tissues, which is at the basis of the phenomena described in this thesis.

Chapter 2 is about the experiments of T. Aryaksama on active nematic cells that are
confined in stripes of varying widths and quasi-infinite lengths. In section 2.1, I present
the main experimental observations that serve as a basis for the theoretical description.
A comparison is made between stripes with abrasions in the perpendicular direction
and stripes without. The effect of the abrasions is noticeable for stripes wider than
2−300µm. In large stripes, cells align with abrasions perpendicular to the stripe. When
the angle of the abrasions with respect to the direction of the stripes is varied, a com-
petition between the effect of activity and the effect of abrasions is measured. I recall
in section 2.2.1 and 2.2.2 results about the passive Freedericksz transition for passive
nematics and its analog for active nematics. Modifications of this active transition when
taking into account cell division and extrusion, as well as interactions with the substrate
through viscous drag, have been studied in ref. [1] and are reminded in section 2.3.
The effects of perpendicular abrasions are modeled using an external orientation field
in section 2.4. The effect of a change of the direction of the field with respect to the
direction of the stripes is studied in section 2.5, and provides a method to measure the
flow-alignment parameter ν. Finally, I compare quantitatively the experiments with the
theory in section 2.6. The results of this chapter are discussed in section 2.7.

Chapter 3 focuses on topological defects and the experiments of T. Sarkar. A gen-
eral introduction to topological defects and their mathematical description is the object
of section 3.1. The main experimental observations of T. Sarkar are summarized in sec-
tion 3.2, notably the contractile nature of these defects and the existence of non-motile
defects. Later sections are devoted to the flow created by topological defects in differ-
ent approximations. Section 3.3 is devoted to the computation of the flow created by
an isolated positive half-integer defect on a substrate when the orientation dynamics of
the nematic are neglected. The stall force for such a defect is computed in section 3.4.
A coupling between orientation and flow via the torques created by the antisymmetric
stress is considered in perturbation in section 3.5. The effects of cell division and extru-
sion around defects are considered in section 3.6: a pressure-dependent net division rate
contributes to the active motion of positive half-integer defects. Finally, section 3.7 pro-
vides a limit size for an isolated defect, since the orientation of the defect is perturbed
by the active flow it generates. A discussion about the results of chapter 3 in relation
with experimental observation is given in section 3.9.

At the end of this manuscript, the main results are summarized. Perspectives are
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given that bridge the two different studies of active nematics given in chapters 2 and 3.
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Chapter 1

Describing the collective behavior of
cells

1.1 Cellular organization and physics

1.1.1 From cells to tissues
Animals and plants are large pluricellular organisms of various shapes and sizes, and
understanding their development from one or two cells to their fully developed forms
is a long-standing problem in biology, but also in chemistry, mathematics, and physics.
At the heart of developmental biology is the collective organization of cells into larger
cohesive structures called tissues, which in turn can make larger structures of complex
shape such as organs or muscles. Collective cellular organization is key for embryoge-
netic processes [2] like gastrulation [3], tissue renewal [4], and morphogenesis [5]. It
is also key for invasive processes that require the migration of cells, notably for cancer
metastasis [6] or wound healing [7].

Cells are extremely complex biochemical structures, and giving a description of the
collective behavior of cells is a difficult task. In order to deal with this complexity, one
can try to rely as much as possible on logical assertions using mathematics, starting
from as few assumptions as possible using basic physical principles like conservation
laws. This way of approaching biology is not new and D’Arcy Thompson in 1917 wrote
a book called “On Growth and Form” [8] where, in the last chapter The comparison of
related forms, he famously compares the shapes of different animals using mathematical
transformations. Although motivated by a mathematical description of forms rather than
an explanation of them, D’Arcy Thompson suggests that the existence of mathematical
transformations between different species is a motivation to look for physical principles
controlling forms.

In order to apply physical principles to biological problems, one has to look for phys-
ical observables in biology. For the collective behavior of cells, with an emphasis on

1



2 CHAPTER 1. DESCRIBING THE COLLECTIVE BEHAVIOR OF CELLS

Figure 1.1: On the left is a drawing of a porcupine fish. On the right is the same drawing
with a change of coordinates. The horizontal axis is transformed using hyperbolas and
the vertical one using concentric circles. The result on the right is very similar to a sun
fish. Figure taken from [8].

migration and shape that involve displacements of cells, the main physical observables
are mechanical. Growth, motion and shape changes all require the application of forces.
The study of forces in biology is a field called mechanobiology, and a great challenge
of the mechanobiology of tissues is the existence of different mechanisms to generate
forces at different scales [9, 10]. Making a complete introduction to mechanobiology is
outside the scope of this work, and I will present examples relevant to the object of this
thesis. For a deeper introduction on the subject aimed at physicists, see refs. [9–15].

At the level of a single cell, the cytoskeleton inside the cell is the main complex that
exert forces on the plasma membrane and can therefore deform the cell [14]. The forces
to deform the cell are of the order of pN [16, 17]. There are different mechanisms for
the motility of animal cells [15], and I present as an example the mechanism of crawling
[18]. The cell first makes a protrusion by polymerizing filaments of the cytoskeleton. At
the end of the protrusion, the cell adheres to the surface by using proteins. By exerting
contraction forces along the cytoskeleton, the cell body is dragged back and a forward
motion is possible. A schematic representation is given in fig. 1.2.a.

This motion requires mechanical work, which is provided by proteins called molec-
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ular motors. Molecular motors are capable of producing mechanical work through con-
formation changes. These conformational changes are the result of a chemical reaction
that produces energy, the hydrolysis of ATP into ADP. Other chemical reactions can be
transformed into mechanical work, but for the purposes of this work, we only retain that
cells have the capacity to transform chemical energy into mechanical work.

For cells to make up a tissue and not an assembly of individual cells without cohe-
sion, interactions between cells are needed. Cell-cell adhesion is achieved by proteins
called cadherins that make a link between the cytoskeleton filaments of neighboring
cells, as seen on fig. 1.2.b. Cells can therefore transmit forces to neighboring cells, of
the order of one to hundreds of nN [16].

I gave a very simplified picture of different mechanisms to generate forces involved
in collective cell organization and migration, to give context at the scales studied in this
manuscript. It is a difficult task to describe the mechanics of a large number of cells such
as in a tissue by considering forces created by individual cells or inter-cellular forces.
Such models however exist and usually require computer simulations. Individual cells
can be modeled using molecular dynamics’ simulation, with interaction potentials de-
pending on cell-cell adhesion [19]. Tissues have been described using vertex models,
models where tissues are represented by a network of polygon shapes that represent
cells [20–22]. However, if we are interested in the collective behavior of cells and not
in their individual motion, we can apply the principles of non-equilibrium statistical
mechanics. Instead of dealing with the dynamics of a large number of individual par-
ticles, we look at the average behavior of coarse-grained variables. In the limit of a
large number of particles, details of the system vanish and the system is described by
a low number of macroscopic thermodynamic variables such as pressure, temperature
and volume. The same can be applied to tissues: we can build a continuum description
of tissues and treat them as materials such as fluids or solids. We no longer consider
individual cells, their motion and forces, but construct coarse-grained physical variables
such as density, velocity and stress fields. From a theory perspective, a continuum de-
scription of tissues can be made using a hydrodynamic approach [23] that considers
only averaged values of physical quantities, over large length and time scales. This is
the approach used in this manuscript to describe two problems that are both related to
spontaneous motions in tissues. The systematic construction of the relevant hydrody-
namic theory is presented in section 1.2. The advantages of a hydrodynamic theory
of tissues from a modeling perspective is that is does not require a precise description
of cell mechanics, but only a small number of key properties such as symmetries and
the ability to perform mechanical work. This is similar to the fact that in order to de-
scribe the behavior of liquid water, precise value of the interaction potential between
water molecules is irrelevant for any macroscopic properties, in particular all properties
associated to water flow.
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Figure 1.2: Different scales of cellular organization. a Mechanisms of locomotion
at the single-cell level and the different proteins involved. b, Mechanisms for cell-
cell interactions using cadherins. a,b, Adapted from [9]. c, Example of the continuum
description of tissues, here for cell migration in a villus of the gut. Some cells are
marked in green and the tracking of these cells is shown in d. c,d adapted from [4].

1.1.2 Tissues as active materials

From now on, we shall consider tissues as continuum materials, and use hydrodynamic
variables to describe them. From an experimental point of view, fields like density,
velocity, and orientation can be determined by optical measurements (see fig. 1.4 for
example). This provides a natural coarse-graining through the optical resolution. Mea-
surements of stress fields require more elaborate processes, such as the plating of cells
on deformable substrates of known mechanical properties [16, 24].

Tissues can have different mechanical behaviors depending on the time-scales and
external conditions. However, at large length scales compared to the cell size (10 to 50
µm) and at long time scales compared to the typical cell-division time (from an hour
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to several days in cancerous tissues), tissues have a liquid-like behavior [25], meaning
that they flow. Even in tissues were cells are not motile, cells move notably because of
rearrangements after division or extrusion (a process where cells are removed from a
layer of tissue) [25].

The mechanical forces in cells are generated by the cytoskeleton, which has a pref-
erential direction due to the polarity of long filaments [14, 24, 26], giving a preferential
direction for mechanical forces on average. Moreover, cells in tissues are sometimes
elongated, creating a preferential direction. It has been shown that elongated cells align
over long distances compared to the cell size [27, 28]. These features are characteristic
of liquid crystals, materials that do not have positional order (hence the name liquid)
but have long-range orientational order (as in a crystal).

Under confinement, when the density increases because of cell divisions, tissues can
become jammed, a state where cells do not flow, without positional order [27, 29].

As a material, tissues are particularly interesting because they are made of living
cells that consume energy. From the brief description given previously, the relevant
feature is that cells have the ability to perform mechanical work (through the hydrolysis
of ATP for example). This local mechanical work performed in the tissue maintains the
tissue out of equilibrium and can lead to rich physical behaviors [23, 30–32].

From a modeling point of view, due to the liquid-like behavior, the long-range ori-
entational order, and the production of local mechanical work, tissues can be considered
as active liquid crystals. Tissues show another feature of liquid-crystal behavior: the ex-
istence of topological defects, points or lines in space where the orientation is singular.
In layers of cells, topological defects appear at the boundary of patches of aligned cells
of different directions [28,33]. The observation of topological defects is useful to obtain
information on the underlying symmetries of the cells and their interaction [28, 33–35].
There has been observation of half-integer defects in tissues [28,33,36,37], defined pre-
cisely in section 3.1.2. A positive and a negative half-integer defect in a cell monolayer
are shown in fig. 1.3. Half-integer defects only exist if the cells have nematic interac-
tions within the tissue, which means that cells align along a preferred orientation but not
a preferred direction (which would be polar interactions). This fact can seem surprising
since individual cells are polar (although what constitutes the polarity axis is a debated
topic). The nematic symmetry observed in tissue is still an open question and is either
due to rapid switching of polarity compared to the timescale we are interested in (sev-
eral hours) or to a nematic interaction of cells, meaning that the direction of polarity
does not matter in the cell alignment. This rapid switching of polarity could be due to
a process called Contact Inhibition of Locomotion (CIL) [9, 38], where upon contact
two cells repel each other like in an elastic collision. At high densities, CIL could lead
to a sufficiently rapid switching of polarity of the cells and give on average a nematic
symmetry for our observation times of several hours.

Let us now go over some features of active nematics that are observed in tissues. A
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+1/2

−1/2-1/2+1/2

Figure 1.3: Actin fluorescent images of topological defects. Actin is in red and tubulin
in green. On the left a +1/2 cellular topological defect, in the middle a −1/2 defect. On
the right an aligned state. Adapted from [33].

key feature of active systems at the core of this work is the existence of spontaneous
flows due to activity: the fact that there is local consumption of energy can result in
spontaneous collective motions of cells without any external forcing. For an active
nematic, the important feature is that gradients of orientation create active forces that
induce motion. With this in mind, topological defects create gradients of orientation,
which in turn create active forces. These active forces lead to the spontaneous motion
of +1/2 topological defects [39, 40], which has been observed in cellular systems [33,
36, 37].

Perfect nematic order in tissues can be obtained by confining tissues [27]. However,
the theory predicts that a motionless uniform alignment state becomes unstable when
the activity of the system increases [41]. This instability is referred to as the active
Freedericksz transition by analogy with a transition in passive nematics [35, 42]. This
instability has been observed in different types of epithelial and muscle cells [1], where
a gradient of orientation develops in a monolayer of cells and a spontaneous anti-parallel
flow arises without any external drive (see fig. 1.4). There has been in vivo observation
of anti-parallel flows of cancer cells in confining channels moving away from the tumor
from which it originated but also towards it [43].

When the activity of the system becomes large, active nematics can become tur-
bulent [44]. This active turbulence is possible at low Reynolds numbers because the
activity induces the proliferation of defects that in turn create flows. This feature has
been observed in tissues, even though they are at very low Reynolds numbers [45], as
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–250 2500
µm

x
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a b c

Figure 1.4: Epithelial cells in confinement. a Optical image of cells confined to a
500µm wide stripe. b Continuum representation of the orientation field of the cells on
the left panel. There is a gradient of orientation formed by a tilt in the middle of the
stripe. c Velocity field of the cells on the left panel. We can see an anti-parallel shear
flow close to the edges. Adapted from [1].

seen in fig. 1.5.
Another important feature of active systems, outside of the scope of hydrodynam-

ics, is the existence of giant number fluctuations [46]. For a passive system, the local
number of particles fluctuates as the square-root of the number of particles, a general
consequence of the central limit theorem. However, for active systems, the theory pre-
dicts larger fluctuations. For an active nematic in two dimensions, the fluctuation of
the local number of particles ∆N scales linearly with the local number of particles N .
Experimental measurements of cells platted on a substrate show a scaling law ∆N = Nα

with 1/2 < α < 1 [27, 47, 48], showing a non-equilibrium behavior.

1.1.3 Active matter: local driving out of equilibrium
Until now, I focused on the collective behavior of cells in tissues and presented its
description as an active liquid nematic. I defined loosely active matter as local con-
sumption of energy and I want to add precision and dive a bit more into the rich physics
of active systems. The field of active matter is extremely vast and encompasses all
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Figure 1.5: Turbulent regime of human bronchial epithelial cells (HBEC). a Phase
contrast image of cells. b shows the vorticity map, c shows the position of topological
defects responsible for low reynolds turbulence. d is a representation of vortices using
the Okubo-Weiss parameter. Adapted from [45].

branches of non-equilibrium statistical mechanics, from stochastic dynamics of molec-
ular systems to hydrodynamic theories. I will therefore not go into too much details, but
I refer to [23, 30, 32, 49] for a broader description.

A precise thermodynamic definition of an active system is a subtle task. What makes
an active system special compared to a system driven out of equilibrium by maintain-
ing an external gradient such as imposing a shear on a fluid [50]? Local consumption
of energy can be reformulated by saying that active systems break microscopic time-
reversibility by injecting energy into the system. This breaking of detailed balance
can give rise to phenomena that cannot be describe by thermal equilibrium physics.
However, let us take for example Active Brownian Particles (ABP) – particles that are
self-propelled at constant velocity v but have rotational diffusion, or Run-And-Tumble
(RTP) particles – model particles for bacteria motion where particles are self-propelled,
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but instead of rotational diffusion, they have rapid reorientation processes (tumbles) at
a finite rate. These two models are simple toy models to study active matter dynamics.
Their particles are active because they need local energy to maintain a self-propulsion
velocity. However, it is easy to imagine that over large times compared to the rota-
tional diffusion or tumble timescale, the behavior of a single particle is not different
from regular passive brownian dynamics with a higher effective temperature that re-
flects the self-propulsion velocity [51]. In other words, this seemingly active system
does not display active behavior in the sense that it can be described using equilibrium
physics. However, when looking at the dynamics of multiple particles, even simple
systems like ABP show non-equilibrium features such as clustering in the absence of
attractive forces [52]. This was just to give an example of the subtleties that can exist
when talking about active systems. The general rule is that active systems give rise to
non-equilibrium phenomena and a possible thermal-equilibrium description is the ex-
ception. When there are broken symmetries in the system like polar or nematic order,
this leads to specific active behaviors. A striking example is for flocks of polar active
particles, which can develop long-range order in two dimensions, an apparent violation
of the Mermin-Wagner-Berezinskii theorem [53]. Active nematic systems also develop
active stresses which result in spontaneous motion due to gradients of orientation [23],
and can give rise to novel thermodynamic phases associated to active topological de-
fects [54].

There is no uniform class of active systems, what is meant by active must be care-
fully specified when constructing a theory for a system. In this work, when presenting
a hydrodynamic description of active nematics in section 1.2, I define activity as local
work production. By doing so, we see that the orientational order that breaks rota-
tional symmetry is key for an active out-of-equilibrium behavior. Without this symme-
try breaking, in the hydrodynamic limit, activity would just renormalize pressure and
the system would behave as in thermodynamic equilibrium with an effective pressure.

I find that active matter is a beautiful example of the exchange between physics and
biology. Active matter comes from the will to describe living systems, that are precisely
out-of-equilibrium (death being the equilibrium state) because of local energy consump-
tion (nutrients for a self propelled bacterium, ATP for a cell and so on). This way of
going out of equilibrium motivated by living systems is now a standalone sub-field of
non-equilibrium statistical mechanics with fundamental questions to be solved, fueled
by biological questions. Experimentally, active-matter theories are tested on synthetic
systems like vibrated rods [55] or synthetic polar particles [56]. Inversely, the study
of biological system can learn from the study of active matter. Indeed, by developing
a unifying framework using core physical principles, it provides a paradigm to under-
stand multiple biological phenomena. Under this paradigm, we can understand using
the same core principles the collective motion of bacteria, flocks of birds, the motion of
tissues, or the cytoskeleton dynamics inside cells [23], as depicted on fig. 1.6.
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a b c

Figure 1.6: Different systems of active matter. a Collective migration of cells with the
velocity field (green arrows) and local stress tensor indicated by red ellipses. Adapted
from [57]. b Flock of birds, that can be modeled by polar active particles. Adapted
from [58]. c Synthetic active nematic made of microtubules and molecular motors in
a turbulent regime. Adapted from [59]. a,b,c are three very distinct systems from a
biological perspective, but they can all be described using models of active matter.

1.2 Hydrodynamics of active nematics

1.2.1 Introduction: constructing a hydrodynamic theory

In this work, we are interested in a continuum description of tissues as active materials,
introduced in sections 1.1.1 and 1.1.2. We study two dimensional tissues made of elon-
gated active cells that organize in a nematic phase, similar to the experimental studies
of refs. [1, 27, 33]. We are specifically interested in the spontaneous flow that appears
in monolayers of cells in confinement (see chapter 2) and because of topological de-
fects (see chapter 3). From a theoretical perspective, we use a hydrodynamic theory
to study tissues that have two fundamental properties: cells organize into an ordered
nematic phase and can convert chemical energy into work [1, 27, 33, 36, 37]. If we are
only interested in the collective behavior of the cells and seek to describe a tissue over
long distances compared to a cell size and over long times compared to the relaxation
time of the tissue (typically the time for several cell divisions), only few key variables
are relevant. This is possible because over large scales and given sufficient time, if the
system is perturbed most of the variations owing to microscopic details relax to their
steady-state value in finite time. The few key variables relevant in the large-scale and
long-time limit are called the hydrodynamic or slow variables. These are the variables
for which their relaxation time diverges with the system size [60]. Such variables belong
to three potential categories:

• Conserved variables: consider a quantity f that follows a conservation law

∂t f = −∇ · ( j f ) (1.1)
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where j f is the current density for the quantity f . Writing f = f0eωt−iqx, the
conservation law given by eq. (1.1) implies that for a long wave-length perturba-
tion that diverges in 1/|q |, the characteristic relaxation time 1/ω diverges also.
Therefore, in the large-scale long-time the variable f is relevant.

• Variables associated to a continuously broken symmetry that give rise to Gold-
stone modes. Take for example the nematic director in the ordered phase. Since
a uniform rotation of the director does not cost energy, the relaxation time of a
uniform deformation diverges with the size of the deformation. The orientation
of the nematic director is therefore a hydrodynamic variable [61].

• Variables corresponding to an order parameter in a system close to a second order
transition point, for which the relaxation time diverges [62]. We will not deal with
those in this manuscript.

One of the power of hydrodynamic theories is the systematic procedure to derive
them, proposer by Martin, Perodi and Pershan [60]. The identification of the hydro-
dynamic variables is the most critical part in the construction of the theory [42, 60].
Indeed, once the variables are identified one can follow a set of principles based on
entropy production to derive the evolution of the system close to thermal equilibrium.
The signature for a system to be out of equilibrium is the existence of a finite entropy
production. Therefore, close to equilibrium, one can perform a linear expansion of the
entropy production as a function of the previously identified hydrodynamic variables.
Then, the Onsager reciprocal relations [63] provide a systematic coupling between the
different hydrodynamical variables that only depends on symmetries, called constitu-
tive equations. We therefore obtain a linear hydrodynamic theory. Other equivalent
approaches exist to determine the out-of-equilibrium dynamics based on the minimiza-
tion of a dissipation functional called the Rayleighian [64].

Let us now construct this linear hydrodynamic theory for an active nematic fluid. In
what sense the system is active is specified when considering the entropy production. A
simpler case of constructing a hydrodynamic theory for passive isotropic fluids can be
found in [42,65]. For passive liquid crystals,a pedagogical derivation is given in [35,42].

1.2.2 Conservation laws and hydrodynamic variables
Let us now consider a tissue made of a large number of cells that make a two dimen-
sional monolayer, at constant temperature T . We assume that through coarse-graining
we can construct local continuous quantities, such as the mass density ρ(x) defined
as the average mass density of cells in a coarse-graining volume centered at point x.
Similarly, the velocity field v(x) is the average velocity of cells contained in the same
coarse-grained volume. The size of a coarse-grained volume should be large compared
to the cell size, but in practice it is of the same order of magnitude. A discussion on
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the validity of the hydrodynamic description is given in section 2.7. The slow variables
are determined using core physical principles. The first one is mass conservation which
gives for the mass density ρ:

∂tρ + ∂α(ρvα) = 0 (1.2)

Energy is conserved, and the coarse-grained energy density e satisfies

∂te + ∂αJe
α = 0, (1.3)

where Je
α is a density flux of energy, i.e a local conserved exchange of energy.

The equation of motion is a conservation equation for the momentum density ρv:

∂t(ρvα) − ∂β(σ
t
βα − ρvαvβ) = 0 (1.4)

Cases where the momentum is not conserved due to interactions with the substrate will
be discussed throughout chapters 2 and 3. In the context of active matter, systems
where momentum is conserved are referred to as wet active matter, while systems where
momentum is not conserved are referred to as dry active matter. Wet active matter is
more suited to tissues where cell-cell adhesion induces flow of momentum through shear
forces while dry active matter is used typically to describe fluids made of bacteria where
friction with the substrate dominates [23]. In the context of cells that are at very low
Reynolds number, the so-called Reynolds stress ρvαvβ is ignored in the following with
respect to other contributions to the stress.

The tissues that we consider are deep in an ordered nematic phase [27]. Let us call
p the polarization vector and in the nematic phase only the orientation of p matters. The
orientation is given via the principal directions of the two dimensional nematic tensor
Qαβ = pαpβ − δαβ/2. We construct the theory with the polarization vector p instead of
a nematic tensor because the theory for wet active polar fluids is similar (except in the
nematic phase we impose the p → −p symmetry). In the nematic phase, the rotational
symmetry is continuously broken by the orientation of p. However, only the orientation
of p is a slow mode in two dimensions, the modulus of p relaxes rapidly to the steady-
state value p2 = 1 in the ordered phase.

1.2.3 Entropy production rate
As it is common practice for non-equilibrium thermodynamics [65], in the coarse-
graining we assume local equilibrium, meaning that for the coarse-grained volume one
is capable of writing densities of state functions such as energy and entropy. The evolu-
tion of the entropy density s is given by the second law of thermodynamics:

∂t s + ∂αJs
α = θs, (1.5)

with Js
α = vαs + j s

α the current of entropy. The current j s
α is an “exchange” of entropy,

i.e a local heat flux.
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The entropy production rate θs > 0 needs to be given as a function of the hydro-
dynamic variables, which is achieved by relating θs to the free energy production rate.
The evolution of the free energy density f = e − Ts is:

∂t f + ∂αJ f
α = θ f , (1.6)

with J f
α = vα f + j f

α the free energy current and θ f the free energy production rate. In
what follows, we consider that the temperature is constant in the tissue and we drop
any temperature derivatives. Let us now relate the free energy production to the entropy
production. From the definition of the free energy,

∂t f = ∂te − T∂t s (1.7)

Using the evolution of the energy (1.3) and of the entropy (1.5),

∂t f = −∂α(Je
α − T Js

α) − Tθs (1.8)

The form of (1.8) defines the free energy flux J f
α and the free energy production rate θ f

as

J f
α = Je

α − T Js
α (1.9)

θ f = −Tθs (1.10)

We are now left with the task of computing the free energy production θ f . For the
hydrodynamic theory, only the evolution of the free energy density with respect to the
hydrodynamic variables matter, and we consider f (pα, ρ, ρvα). Formally, the evolution
of the free energy density in terms of the hydrodynamic variables is:

∂t f =
∂pα
∂t

δ f
δpα
+
∂ρ

∂t
δ f
δρ
+
∂(ρvα)

∂t
δ f

δ(ρvα)
(1.11)

We introduce the following physical quantities:

• The molecular field hα = −
δ f
δpα

. hα gives the direction to minimize the free energy.
Indeed, if pα ∼ hα, then δ f = −hαδpα = 0.

• The chemical potential µc =
δ f
δρ

We make the assumption that the free energy depends on momentum only through the
kinetic energy, therefore δ f /δ(ρvα) = vα. Using the conservation laws (1.2) and (1.4),

∂t f = −hα∂t pα − µc∂α(ρvα) + vα∂βσ
t
βα (1.12)

which can be rewritten

∂t f + ∂α
(
(µcρ − σ

t
αβ)vβ

)
= −hα∂t pα + ρvα∂αµc − σ

t
βα∂βvα (1.13)
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The expression (1.13) allows us to identify a free energy current J f
α = (µcρ−σ

t
αβ)vβ and

a density of free energy production rate θ f = −hα∂t pα+ ρvα∂αµc−σ
t
βα∂βvα. Therefore,

the density of entropy production rate is:

Tθs = hα∂t pα − ρvα∂αµc + σ
t
βα∂βvα (1.14)

Until this point we have been constructing a hydrodynamic theory for a passive ne-
matic [35,42,65]. We are however interested in an active nematic tissue. The activity of
the tissue comes from the ability of the cells to convert chemical energy into mechanical
work, which contributes to the free energy density production. As presented in section
1.1.1, we take ATP hydrolysis to be the model chemical reaction providing mechanical
work. ATP hydrolysis into ADP releases an energy ∆µ, and if there is a rate r of hy-
drolysis, there is an added mechanical power term in the entropy production rate r∆µ.
From a hydrodynamic perspective, the exact source of mechanical work is not impor-
tant, what makes the system active and changes the hydrodynamic behavior compared
to a passive system is the existence of local mechanical work. This active power source
modifies the density of entropy production rate:

Tθs = hα∂t pα − ρvα∂αµc + σ
t
αβ∂αvβ + r∆µ (1.15)

Remarks

1. It is clear from the derivation that this procedure can be generalized to a broader
context to include chemical reactions, multiple components or different thermo-
dynamic conditions, but the steps of writing the production of the thermodynamic
potential using the hydrodynamic variables to get the entropy production remains
the same [66].

2. The entropy production given in (1.15) is not unique and depends on what is
considered as a current or a production rate of free energy. However the rest of
the derivation shows that the expression of the entropy production is set by the
symmetries of the system.

3. The definition of active matter as local source of work can seem restrictive but
considering also local sources of heat creates terms in Js

α∂αT and does not lead to
a new class of behavior with respect to more classical out-of-equilibrium thermo-
dynamics

A system is out of equilibrium when it develops local finite fluxes (microscopically
when detailed balance breaks down) that must vanish when equilibrium is recovered.
Therefore, close to equilibrium, each term on the right-hand side (RHS) of the entropy
production (1.15) can be interpreted as the product between a flux and a conjugate ther-
modynamic force. The hydrodynamic evolution of the system is then given by writing
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phenomenological equations that linearly couple the forces and the fluxes driving the
system out of equilibrium [65]. This ensures that, when equilibrium is recovered, both
fluxes and conjugated forces vanish. These phenomenological equations in the context
of continuum mechanics are referred to as constitutive equations. To give a formal de-
scription of the Onsager procedure [63], let us call the fluxes Xi and the thermodynamic
forces Fi. After explaining the criteria to derive the constitutive equations from a formal
point of view, I will apply the procedure to this specific problem. The entropy pro-
duction rate is of the form Tθs =

∑
i XiFi. The phenomenological equations state that

Xi =
∑

j Li j Fj . The Li j are coupling coefficients that must satisfy certain properties to
conserve the symmetries of the problem:

1. Time-reversal symmetry: Onsager proves in refs. [63, 67] that the hypothesis of
microscopic reversibility on the underlying processes contributing to the entropy
production imposes specific symmetries for the coefficients Li j . The different
thermodynamic forces Fi can have different signatures upon time-reversal. Fi can
be odd with respect to time-reversal (Fi → −Fi when reversing time) or even
(Fi → Fi when reversing time). Microscopic reversibility imposes that the cou-
pling coefficients associated to two forces of the same signature with respect to
time-reversal are symmetric: Li j = L ji if Fi and Fj have the same signature.
For forces of different time-signature, the coefficients must be anti-symmetric:
Li j = −L ji if Fi and Fj have different signatures. The fluxes with symmetric cou-
pling coefficients are called dissipative fluxes, because they contribute to entropy
production. The fluxes with antisymmetric coupling coefficients are called reac-
tive fluxes, because they do not contribute to entropy production. Positivity of the
entropy production imposes that the symmetric matrix of dissipative coefficient is
positive, which imposes that all eigenvalues of the matrix are positive. One of the
conditions for positivity is that diagonal coefficient must be positive Lii > 0 (for
example a negative viscosity is inadmissible).

2. “Space” symmetries: following the Curie principle, the forces and fluxes driving
the system out of equilibrium must have the same underlying space symmetries
of the system. In our case of nematic tissue, there is translational invariance
but rotational invariance is broken because there is a particular orientation in the
ordered phase given by the director p. If we rotate the frame of a certain amount,
the director p must be rotated by the same amount if we want the rotation to be
invariant. Forces and fluxes can have different tensorial nature (for example a
rank-two tensor flux coupled to a scalar force), therefore coupling coefficients are
tensorial but must be constructed using tensors that respect the symmetries.

Let us now derive the phenomenological constitutive equations from the entropy
production rate (1.15). In order to satisfy the symmetry requirements, it is convenient to
re-write the RHS of eq. (1.15) with quantities that satisfy the translational and rotational
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symmetries. To this extent, we split the velocity gradient into a symmetric part uαβ
and an anti-symmetric part ωαβ related to rotation: ∂αvβ = uαβ + ωαβ with uαβ =(
∂αvβ + ∂βvα

)
/2 and ωαβ =

(
∂αvβ − ∂βvα

)
/2. Similarly, we split the total stress σt

αβ

into a symmetric part σS
αβ = (σ

t
αβ + σ

t
βα)/2 and an anti-symmetric one σA

αβ = (σ
t
αβ −

σt
βα)/2. The existence of an antisymmetric stress tensor is due to torques created by the

free energy. If the system is not chiral, the antisymmetric stress is given by [35]:

σA
αβ =

1
2
(h × p) =

1
2

(
hαpβ − hβpα

)
(1.16)

For the non-equilibrium dynamics, one needs to differentiate, in the remaining symmet-
ric part of the total stress tensor, the “hydrostatic” stress from the “out-of-equilibrium”
stress. For isotropic system a change of volume changes the free energy and give rise
to a hydrostatic pressure. For a system with nematic symmetry, a change of volume
changes the free energy in an anisotropic manner and there is stress tensor associated to
this free energy change (see appendix A) instead of a scalar. This stress tensor is called
the Ericksen stress tensor and it satisfies a Gibbs-Duhem relation:

∂βσ
E
βα = −ρ∂αµc − hγ∂αpγ (1.17)

The symmetric stress σS
αβ is now decomposed into an out-of-equilibrium stress σαβ and

the Ericksen stress σS
αβ = σαβ + σ

E
βα. In summary, the velocity gradient tensor and the

stress tensor have the following decomposition:

∂αvβ = uαβ + ωαβ (1.18)

σt
αβ = σαβ + σ

E
αβ + σ

A
αβ (1.19)

This gives for the term σt
αβ∂αvβ in (1.15):

σt
αβ∂αvβ = σαβuαβ + σA

αβωαβ + σ
E
αβ∂αvβ (1.20)

From eq. (1.16) σA
αβωαβ = ωαβpβhα. In the entropy production rate, one can perform a

sort of “integration by part” because if there is a term of the form u dv, it can be written
u dv = d(uv) − v du and the total derivative changes the entropy current, not the entropy
production. From eq. (1.17), −∂βσE

βαvα = ρvα∂αµc+hβvα∂αpβ. The entropy production
rate (1.15) now reads:

Tθs = σαβuαβ + hαPα + r∆µ (1.21)

With Pα =
Dpα
Dt = ∂t pα + vβ∂βpα + ωαβpβ the covariant co-rotational time derivative of

the director p.
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1.2.4 Constitutive equations
Now that the entropy production is given by eq. (1.21), we can write the phenomeno-
logical constitutive equations. There is no a priori rule to determine from the entropy
production, for a term such as Pαhα, which is considered a flux and which a force be-
tween Pα and hα. There is a choice to make that do not impact the physics, only the
physical meaning of the coupling coefficients. Once the choice of forces is made, we
identify their signature under time-reversal: +1 if the force is even under time rever-
sal symmetry, and −1 if is odd. The choice of fluxes and forces along with the time
signature of the force is given in Table 1.1.

Flux Force signature of the force
σαβ uαβ −1
Pα hα +1
r ∆µ +1

Table 1.1: Choice of fluxes and forces, and time signatures of the forces that define the
symmetry of the Onsager coefficients

We split the stress into a traceless part indicated by a upper tilde and an isotropic
diagonal part that represents pressure. The fluxes are separated into a dissipative part
(superscript d) and a reactive part (superscript r):

σαβ = σ̃
d
αβ + σ̃

r
αβ − (P

d + Pr)δαβ (1.22)

Pα = P
d
α + P

r
α (1.23)

r = rd + rr (1.24)

Furthermore, we consider an incompressible fluid such that the divergence of the ve-
locity vanishes, ∂γvγ = 0. Therefore, the symmetric velocity gradient tensor uαβ is
traceless.

We now write the coupling between the fluxes and the forces respecting the sym-
metries. The only vector that respects the breaking of rotational invariance due to the
ordered nematic phase is pα, and the only traceless tensor is qαβ = pαpβ −

δαβ
2 . The

dissipative fluxes are given by

σ̃d
αβ = 2ηuαβ (1.25)

Pd = η̄∂γvγ = 0 (1.26)

Pd
α =

1
γ

hα + λ∆µpα (1.27)

rd = λpαhα + Λ∆µ (1.28)
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whereas the reactive fluxes are

σ̃r
αβ = −ζ∆µqαβ +

ν

2
(pαhβ + pβhα −

2
3

pγhγδαβ) (1.29)

Pr = −ζ̄∆µ + ν̄pγhγ (1.30)
Pr
α = −νuαβpβ (1.31)

rr = ζqαβuαβ (1.32)

Physical meaning of coupling coefficients

Let us now comment on the coupling coefficients introduced in eqs. (1.25) to (1.32).
The coefficient coupling the stress to the velocity gradient is the usual viscosity η. In
this work we choose to keep a scalar viscosity instead of taking a different viscosity
coefficient for the nematic direction and the perpendicular direction.

The coefficients γ and ν are standard liquid-crystal hydrodynamic coefficients. γ is
a rotational viscosity and ν is the so-called flow-alignment parameter. In a nematic fluid,
the orientation and the velocity field are coupled by ν. A perturbation of the director
can create a velocity gradient and vice-versa.

There are two “active” coefficients, ζ and λ. In the ordered phase p2 = 1 the coeffi-
cient λ is not important since it acts on the modulus of p which is not a hydrodynamic
variable. At the cost of redefining ζ by ζ + λγν, there is no loss of generality in taking
λ = 0 [41]. The important active coefficient is ζ , which determines the active stress
σact
αβ = −ζ∆µqαβ. This active stress is at the origin of the non-equilibrium behavior of

active nematic fluids. Because of this active stress, a gradient of orientation creates an
active force that can generate a spontaneous flow. We distinguish two types of activity
depending on the sign of ζ . If ζ < 0, the active stress is contractile along p. Coming
back to cells in a tissue, a contractile tissue means that the internal forces of a cell are
contracting. Inversely, the active stress is extensile along p if ζ > 0. A representation
of the internal forces is given on fig. 1.7. Although cells are contractile at the individual
level, there is no clear and obvious reason for a tissue to be either contractile and ex-
tensile, it is determined experimentally. This is not so surprising since the active stress
is a global hydrodynamic effect that encompasses a multitude of microscopic effects
such as active cell contractility, active cell-cell adhesions and active interactions with
the substrate [68]. For example, looking at the motion of topological defects, mono-
layers of MDCK (Madin Darby canine kidney) cells and neural progenitor cells were
reported having an extensile behavior [36, 37]. NIH 3T3 mouse embryo fibroblasts and
C2C12 mouse myoblasts were reported having a contractile behavior [33, 36]. The ex-
periments that this manuscript is referring to were made with C2C12 myoblasts. When
confined in a stripe, C2C12 cells display an extensile behavior (see [1] and chapter 2)
while the motion of topological defects in a free monolayer is consistent with contrac-
tile active stresses (see chapter 3). This apparent contradiction can be understood by the
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Figure 1.7: On the left is the effect of a contractile stress on a cell in a monolayer, while
on the right is the effect of an extensile stress.

fact that the extensile or contractile nature of the tissue is not an intrinsic property but an
emergent hydrodynamical property. As such, interactions with the substrate could gen-
erate different active contributions depending on the geometry, as suggested by Maitra
et al. [68].

Equations of motion

At the end of this procedure, the goal is to solve the equations of motion for an active
nematic tissue. The total stress is

σt
αβ = 2ηuαβ− ζ∆µqαβ+

ν

2
(pαhβ+ pβhα−

2
3

pγhγδαβ)+
1
2

(
hαpβ − hβpα

)
+ σ̃E

αβ−Pδαβ,
(1.33)

where the pressure P is the diagonal part of the total stress and contains the diagonal
parts of all other contributions. The exact contributions of thermodynamic quantities
in P are irrelevant: P is the mechanical pressure and is a Lagrange multiplier for the
incompressibility condition that must be determined through force balance. We there-
fore introduced in eq. (1.33) the traceless part of the Ericksen stress σ̃E

αβ. We have two
vectorial “equations of motion”: momentum conservation given by eq. (1.4) and the
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evolution of the director obtained by summing eq. (1.27) and eq. (1.31):

∂βσ
t
βα = 0 (1.34)

∂t pα + vβ∂βpα + ωαβpβ =
1
γ

hα − νuαβpβ (1.35)

With σt
βα given by eq. (1.33).

We can verify that this problem is well posed given appropriate boundary conditions,
because in two dimensions we have two scalar equations for the momentum, two scalar
equations for the polarization and one equation for incompressibility, making a total of
five equations. As unknowns, we have two components for the velocity, two components
for the polarization and a component for the pressure, which makes five unknowns.

The main consequence of activity is that orientation gradients create active forces be-
cause of the active stress. Then the state where p is parallel to h and there is no gradient
of velocity can become unstable. Among active hydrodynamic effects, a uniform band
of active nematic at rest is no longer stable above a critical band width [41]. Indeed,
gradients of orientation can arise spontaneously due to the activity and the coupling be-
tween orientation and velocity gradients. This effect is explored in depth in chapter 2.
When a gradient of orientation is imposed such as for a topological defect, active forces
are generated and can create a flow. Flows created by defects are detailed in chapter
2. This behavior is different from a passive nematic liquid, that can deform without
developing velocity gradients, for example due to an external magnetic field [35].



Chapter 2

Spontaneous tilt and flows in stripes

In chapter 1 we introduced the properties of tissues that are studied in this manuscript
and the hydrodynamic theory for active nematic fluids to describe such tissues. In this
chapter we investigate the effect of the active stress for a confluent monolayer of elon-
gated cells (most experiments by T. Aryaksama were done using C2C12 mouse embryo
myoblasts) confined in a infinite stripe of varying widths (see fig. 2.4). This simple
geometry allows us to make analytical treatment of eqs. (1.34) to (1.35) and to perform
experiments. This chapter is organized as follows: a first section introduces the experi-
mental setting and the general qualitative behavior of the studied cells. We then recall a
classical problem of confined passive liquid crystals called the Freedericksz transition,
and present its active analog where the active stress plays the role of an external field
and creates spontaneous shear flows [41]. We then present the hydrodynamic effects of
cell division, as well as the interactions with the substrate presented in [1]. Finally, we
present the results of this PhD work where we have investigated the effect of orienta-
tional cues in the stripes that favor a specific orientation in the stripe (a sort of external
field), and its potential competition with the active stress.

2.1 Experiments

I introduce in this section the experiments performed by Thibault Aryaksama in the
group of Pascal Silberzan at Institut Curie that are at the core of the work in this chapter.
In the experiments, elongated cells are plated on adhesive stripes of varying widths,
from tens of micrometers to a millimeter. The length of the stripes can be considered as
infinite compared to the size of the cells, since it is in centimeters. At initial time, there
are several cells in the stripe that divide over time, until confluency is reached. After
confluency, the monolayer of cells organize into a well ordered nematic phase, as shown
on figure 2.1. For certain type of cells (RPE1 and C2C12 cells in the experiments of T.
Aryaksama as well as in ref. [1]), cells after confluency acquire a gradient of orientation

21
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Figure 2.1: Picture of the different stages when platting NIH-3T3 fibroblast cells on a
stripe of width 500µm. Cells divide until reaching confluency (soon after 30h). Once
confluency is reached, cells align almost perfectly in a nematic phase, as seen on the
60th hour. Adapted from [27].

along the width of the stripe, as shown on figs. 1.4 and 2.4. The cells at the center of the
adhesive stripes are tilted with respect to the cells at the boundary, which align with the
direction of the stripe. As it is expected by the hydrodynamic theory there is a shear flow
associated to this gradient of orientation. The direction of the flow with respect to the
gradient of orientation gives the extensile or contractile nature of the cells, as detailed
in section 2.2.3. On top of the tilt and the shear flow predicted by Voituriez et al. [41],
there are convergent flows in the perpendicular direction of the stripe due to division at
the boundary of the stripe and extrusion at the center. Cells like NIH-3T3 do not show
this active behavior, even for stripes that have a width of the order of a millimeter. This
behavior can be attributed to an interaction with the substrate [1]. Effects of division are
investigated in section 2.3.1 and the influence of the substrate in section 2.3.2.

In this thesis, following the work of Duclos, Blanch-Mercader et al. [1], we are in-
terested in controlling the orientation of cells inside the stripe. This is an attempt at
imposing a cell orientation in competition with the orientation imposed by the geome-
try of the stripe. An external field orienting a nematic between two plates perpendicular
to the field is a classical liquid-crystal problem called the Freedericksz transition [35]
that is detailed in section 2.2.1. Control over the orientation of cells can be achieved
by micro-patterning grooves or by creating abrasions on the substrate, as shown on
fig. 2.2. The fact that orientation of cells can be controlled by micro-patterning of the
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Figure 2.2: Scanning electron microscope image of coronal epithelial cell on a micro-
patterned substrate. A. The cell aligns in the direction made by the grooves. B. Zoom
on filopodia and their interaction with the grooves. C. Transverse view of the cell that
do not go into the grooves. Adapted from [69].

substrate is called “contact guidance” [69–72]. Explaining the mechanisms producing
contact-guidance is outside the scope of this work, and is a debated topic [70]. I simply
specify that contact-guidance is not necessarily an universal feature of all cells. Differ-
ent orientations can be obtained depending on the cell type and on the topography of the
substrate. Varying width and frequencies of the groove pattern can lead to different be-
havior [71]. Cells can for example align perpendicularly to the direction of the grooves.
For the experiments studied in this work, T. Aryaksama performed micro-abrasions by
sliding sandpaper in the perpendicular direction of the stripe. Instead a producing a well
defined pattern as shown in fig. 2.2, this method creates asperities of different depth and
separated by different lengths, all in the same direction. A Fourier transform of the glass
therefore has a broad spectrum. C2C12 cells were observed to align with the direction
of the abrasions over long distances compared to the cell in a free monolayer of abraded
substrate, as shown on fig. 2.3.

In the studied stripes, we see on fig. 2.4 that for width larger then around 400µm,
cells orient perpendicular to the stripe and parallel to the direction of the abrasions. For
smaller width between 30− 200µm, cells show a moderate tilt, similar to the case when
there are no abrasions. On fig. 2.4 is shown the central angle as a function of the width
of the stripe.

From a theoretical perspective, the modeling of the abrasions as an external field
creates a competition between “passive” effects due to the external field and “active”
effects due to the active stress. A goal of the experiments that were performed is the
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Figure 2.3: A. On top a free C2C12 monolayer without abrasions (plain glass) and on
the bottom one with abrasions. The direction of abrasions is indicated by the white
double arrow at time -20h and is perpendicular to the direction of the page. Confluency
is determined by time 0h. We see that after confluency when there are abrasions there
is almost perfect alignment everywhere in the field of view compared to plain glass. B.
Representation of the distribution of angles on the plain glass (in red) and on the abraded
surface (blue). We see that the plain glass has a broad distribution of angles, while with
abrasions there is almost perfect alignment. Courtesy of Thibault Aryaksama.

identification of hydrodynamic parameters that can be extracted from the behavior of
cells when varying the width [1]. The control over orientation by the abrasions is an
added tool to probe hydrodynamic parameters. Experimentally varying the magnitude
of the effect of the micro-patterning is not consistent but T. Aryaksama was able to
change the orientation of the micro-abrasions with respect to the direction of the stripe.
Competition between the active stress and the effect of the micro-abrasion allows for the
measurement of the flow-alignment parameter ν. This result is presented in section 2.5.

2.2 Active Freedericksz transition

2.2.1 Competition between anchoring and energy: the passive Freed-
ericksz Transition

Before going into active effects, let us start be presenting the Freedericksz transition,
a classical problem which served as the basis for the creation of liquid crystal displays
(LCD). Imagine that we confine a monolayer of ordered nematic between two plates and
we make an hypothesis of strong anchoring, which means that the nematic is aligned
with the direction of the plate at the boundary. We impose a uniform magnetic field
H perpendicular to the direction of the stripe, as shown on fig. 2.5. Because of the
breaking of symmetry in the nematic phase, the magnetization can be anisotropic and
have different values in the direction of the polarization vector p and in the orthogonal
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Figure 2.4: A. Picture of C2C12 cells in stripes of different widths, on plain glass
(top) and on glass with abrasions perpendicular to the stripe (bottom). On the left for
small stripes there is no tilt. On the middle there is a comparable tilt between abrasions
and plain glass and on the right for large stripes the cells on the bottom align with the
abrasions while the tilt is moderate for cells on plain glass. B. Angle in the middle of
the stripe as a function of the width of the stripe, for plain glass (left, red) and for stripes
with abrasions (right, blue). We see that when there are abrasions the cells align almost
perfectly with the direction of the abrasions for stripes larger than around 400− 500µm.
On plain glass, the middle angle does not reach a constant value. Preliminary figures,
courtesy of Thibault Aryaksama.

direction p⊥. If m is the density of magnetization, then

m = χ| |(H · p)p + χ⊥(H · p⊥)p⊥ (2.1)
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Figure 2.5: Schematic of the passive Freedericksz transition apparatus: a nematic is
confined between two parallel plates and there is strong anchoring, the nematic at con-
tact with the plates must be parallel to the plate. A magnetic field H perpendicular to
the plates is applied.

where we introduced the parallel and perpendicular susceptibilities, respectively χ| | and
χ⊥. This creates a density of magnetic energy fm given by

fm = −
1
2

m ·H (2.2)

= −
1
2
(χ| | − χ⊥)(p ·H)2 −

1
2
χ⊥H2 (2.3)

= −
χa

2
(p ·H)2 + C (2.4)

with χa = χ| | − χ⊥ the difference between the parallel and orthogonal susceptibilities,
and C = −χ⊥H2/2 is a constant that we can drop from the free energy density. Assum-
ing that χa > 0 (the case of interest for this work), the free energy is minimum when
the polarization p is parallel to the magnetic field H.

Intuitively, there is a competition between the magnetic field that favors orientation
perpendicular to the stripes, and the anchoring that favors an orientation parallel to the
stripe. This competition is due to an distortion free energy that penalizes gradient of
orientations. This distortion free energy is built as a gradient expansion of the director,
that must respect the nematic symmetry p → −p. The free energy is therefore con-
structed with terms of order (∇p)2. Without going into the details of listing all possible
terms (see ref. [35], section 3.2.1), there are two fundamental modes of deformation in
two dimensions: splay corresponding to a pure divergence deformation, and bend cor-
responding to a pure curl deformation. The two types of deformation are represented
on fig. 2.6. The distortion free energy also called the Frank free energy is given in two
dimensions by an expansion in splay and bend:

F =
∫

dx dy
[
K1
2
(∇ · p)2 +

K3
2
(∇ × p)2 −

1
2

h0
‖
p2

]
(2.5)

K1 is the Frank constant associated with splay deformation and K3 is the Frank constant
associated with bend deformation. We are interested in effects deep in the nematic
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Figure 2.6: The two fundamental modes of deformation in two dimensions. On the left
a pure splay deformation, characterized by the Frank constant K1. On the right a pure
bend deformation, characterized by the Frank constant K3. In three dimensions there is
a third deformation out of the plane called twist (with a constant K2).

phase, and to this extent we introduce a Lagrange multiplier h0
‖

to ensure that we are
in an ordered state where p2 = 1. For simplicity, we can consider the one-constant
approximation K = K1 = K3. We do not deal with this case in this work, but the
one-constant approximation can be relaxed depending on experimental observation, for
example for topological defects [73]. In the one-constant approximation, the Frank free
energy (2.5) is:

F =
∫

dx dy
[
K
2
∂αpβ∂αpβ −

1
2

h0
‖
p2

]
(2.6)

In the presence of an external magnetic field H there is an added magnetic contri-
bution to the free energy given by eq. (2.4), and the total free energy reads, up to a
constant:

F =
∫

dx dy
[
K
2
∂αpβ∂αpβ −

χa

2
(p ·H)2 −

1
2

h0
‖
p2

]
(2.7)

Critical field or length

With the free energy given by (2.7), we show that deep in the nematic phase the compe-
tition between the anchoring and the external field leads to a critical field of equivalently
a critical width above which a gradient of orientation appears in the stripe.

Since we are in a well ordered nematic phase and we are not concerned with the
dynamics of the modulus of p, we consider that p2 = 1 and we use the angle θ with the
x−axis such that p = (cos θ, sin θ) in the (ex, ey) basis given on figure 2.5. In terms of
the angle θ, up to a constant the free energy density is:

f =
K
2
(∇θ)2 −

χa

2
H2 cos2 θ (2.8)
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The anchoring condition imposes θ(x = 0) = θ(x = L) = π/2, and in the ordered phase
without external field the free energy is minimum at the only admissible uniform state
θ(x) = π/2. Looking at the free energy given in eq. (2.8), small angles are favored due
to the magnetic field but are penalized by the distortion energy because of the anchoring
condition that creates a gradient. There is a critical value for the magnetic field Hc,
above which a gradient of orientation is favored and below which the uniform field is
favored. Let us now calculate this critical field using free-energy arguments. Because of
translation invariance in the y−direction, we will treat this problem as a one dimensional
problem in the x−direction. We want to know what are the conditions for the uniform
state θ = π/2 to be stable. Let us make a small perturbation δθ to the ordered state:
θ = π/2+ δθ and Fourier expand this perturbation that must vanish in x = 0 and x = L:
δθ(x) =

∑
n δθn sin qnx. Because of the anchoring condition θ(x = 0) = θ(x = L) =

π/2, qn = nπ/L, with n integer. With this Fourier expansion, the free energy density is
given by

f =
∑

n

1
2
δθ2

n

(
Kq2

n − χH2
)

(2.9)

The condition for stability of the uniform state is that the free energy contribution of δθ
is positive, therefore that χH2 < Kq2

n. The smallest qn is given for n = 1 and defines a
critical field Hc given by

Hc =
π

L

√
K
χ

(2.10)

For H > Hc, at least the mode q1 = π/L becomes unstable. Above the critical field Hc,
the uniform state θ(x) = π/2 is no longer stable and a gradient of orientation determined
by non-linear terms (see section 2.2.3) develops between the plates, as shown on fig. 2.7.
Equivalently, we can think of a critical length Lc at fixed field, which is going to be the
way we look at things in the following sections. Lc is given trivially from (2.10):

Lc =
π

H

√
K
χ

(2.11)

Above the critical length, the uniform state aligned with the direction of the stripe is no
longer stable, there is a tilt at the center of the stripe and a gradient of orientation along
the width.

In the following sections of this chapter, we study the active analog to this Freeder-
icksz transition and describe the fields close and far from the transition length.

2.2.2 Critical length in the active Freedericksz transition
Let us now turn to an active system. A consequence of activity is the existence of an
analog to the Freedericksz transition driven by activity instead of an external field [41].
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Figure 2.7: Schematic representation of the configuration for fields smaller (left) and
greater (right) than the critical field. When H < Hc the uniform configuration parallel
to the plates is stable. When H > Hc the uniform configuration is no longer stable and
gradient of orientation (a tilt) develops between the plates.

The consequence is that a band of uniformly aligned nematics becomes unstable above
a critical width Lc that depends on the activity of the system, which is represented
hydrodynamically by the magnitude of the active stress ζ∆µ. A detailed calculation
is given in this section but let me give first a hand-waving argument as to how this
instability can develop: if we take a uniform alignment that is slightly perturbed, there
is a gradient of orientation and therefore an active force. This active force in turn creates
a flow. Because in nematics there is a coupling between flow and orientation through
the flow-alignment parameter ν, this flow can further increase the perturbation. The
existence of this positive feedback loop can give rise to an instability depending on
values of the active stress coefficient ζ and of the flow-alignment parameter ν.

The set up for the active transition is similar to the one presented in the passive case,
and is shown on fig. 2.8. We consider an active nematic liquid in a stripe of width L in

Figure 2.8: Configuration for the active Freedericksz transition: there is strong anchor-
ing, i.e the orientation is parallel at the boundary. The angle θ is defined with respect to
the x−axis.
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the x−direction, and infinite in the y−direction. There is no external force acting on the
system apart from the room pressure and strong anchoring is imposed. The following
boundary conditions are imposed:

1. The cells have to be parallel to the walls at the boundary : θ(−L/2) = θ(L/2) =
π/2

2. There is no transverse force at the walls: σt
xy(−L/2) = σt

xy(L/2) = 0

3. Cells cannot escape the stripe : vx(−L/2) = vx(L/2) = 0

The second boundary condition is a particular case and other boundary conditions lead
to the same type of instability [41]. Given this geometry, there is an invariance in the
y−direction. Therefore, force balance in the y−direction is given by

∂xσ
t
xy = 0 (2.12)

Consequently, the stress is constant along the width of the stripe, and given the free
boundary condition,

σt
xy = 0 in the entire stripe (2.13)

Let us now develop the equation (2.13) with the different contributions to the stress
given in eq. (1.33). It is convenient to consider the molecular field h in the basis of the
director p. We define h = h‖p + h⊥p⊥. In the xy−basis, the molecular field is given
by hx = h‖ cos θ − h⊥ sin θ and hy = h‖ sin θ + h⊥ cos θ. The xy−component of the
deviatoric part of the stress referred to as σxy in section 1.2.3 reads:

σxy = η∂xvy −
ζ∆µ

2
sin 2θ +

ν

2
(h‖ sin 2θ + h⊥ cos 2θ) (2.14)

The xy−component of the anti-symmetric part of the stress given in eq. (1.16) reads:

σA
xy = −

h⊥
2

(2.15)

We are concerned with the stability of the uniformly aligned state, and the Ericksen
stress is of second order in gradients of orientation and is usually neglected when in-
terested in linear or weakly non-linear perturbations. In this specific geometry, it turns
out that the Ericksen stress vanishes exactly. See appendix A for details on the Ericksen
stress. Finally, the total stress reads:

σt
xy = 0 = η∂xvy −

ζ∆µ

2
sin 2θ +

ν

2
(h‖ sin 2θ + h⊥ cos 2θ) −

h⊥
2

(2.16)

We are now left with the incompressibility condition and the two equations for the
evolution of the director. When the cell number is conserved, the incompressibility
condition given the y−invariance is:

∂xvx = 0 (2.17)
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Since cells cannot escape the stripe, vx = 0 and we are only concerned with vy. We
project the equation for the director (1.35) onto p and on the perpendicular vector p⊥.
On p, eq. (1.35) reads:

0 =
h‖
γ
−
ν

2
∂xvy sin 2θ (2.18)

On the perpendicular direction p⊥, eq. (1.35) reads:

∂tθ =
h⊥
γ
−
∂xvy

2
(ν cos 2θ − 1) (2.19)

The three equations of motions (2.16),(2.18) and (2.19) can be recast into a single non-
linear equation for the angle θ by eliminating the parallel component of the molecular
field h‖ and the velocity gradient ∂xvy. The dynamics of the angle θ is given by:

∂tθ =
1

4η + γν2 sin2 2θ

[
h⊥
γ

(
4η + γ(ν2 − 2ν cos 2θ + 1)

)
− ζ∆µ sin 2θ(ν cos 2θ − 1)

]
(2.20)

The perpendicular molecular field h⊥ is given by the distortion free energy. The
distortion free energy of an active nematic is exactly the same as in the passive case and,
keeping the one Frank constant approximation, is given by eq. (2.6). We can rewrite the
distortion energy using the angle θ:

F =
∫

dx dy
K
2
(∇θ)2 (2.21)

Similarly, h⊥ can be written in terms of the angle θ and is given by

h⊥ = −
δF
δθ

(2.22)

= K∇2θ = K∂2
x θ (2.23)

We therefore arrive at the final partial derivative equation (PDE) for the angle in the
stripe:

∂tθ =
1

4η + γν2 sin2 2θ

[
K∂2

x θ

γ

(
4η + γ(ν2 − 2ν cos 2θ + 1)

)
− ζ∆µ sin 2θ(ν cos 2θ − 1)

]
(2.24)

The question being asked is the stability of the uniform state θ = π/2 as a function
of the width of the stripe L. In order to do so, a linear stability analysis is performed.
We perturb the angle near the uniform state θ(x, t) = π/2 + δθ(x, t). We expand the
perturbation in Fourier modes δθ(x, t) = θ0eωt−iqx , and look what are the conditions for
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the perturbation to grow with time. Re-injecting this linear expansion into eq. (2.24)
gives the following mode equation:

ω = −
Kq2

γ

(
1 +

γ(ν + 1)2

4η

)
−
ζ∆µ(ν + 1)

2η
(2.25)

There is an instability if the perturbation grows with time, i.e if ω > 0. From equation
(2.25), this is possible only if ζ(ν + 1) < 0. Assuming it is the case, there is is critical
wavenumber qc below which the uniform state is unstable given by

q2
c =

−2ζ∆µ(ν + 1)
K

(
4η/γ + (ν + 1)2

) (2.26)

The strong anchoring at the edge of the stripe θ(−L/2) = θ(L/2) = π/2 relates the
wavenumber to the width of the stripe L such as qL = π. There is therefore a critical
length above which the uniform state is no longer stable given by

Lc = π

√
K

(
4η/γ + (ν + 1)2

)
−2ζ∆µ(ν + 1)

(2.27)

Or equivalently at fixed length L there is a critical activity ∆µc defined by:

∆µc =
Kπ2 (

4η/γ + (ν + 1)2
)

−2L2ζ(ν + 1)
(2.28)

Physical meaning of ζ(ν + 1) < 0 Both ζ and ν can either be positive or negative and
only the two cases where they are of opposite sign lead to an instability. We consider
the case of |ν | > 1, the so-called flow-aligning regime. The case |ν | < 1 corresponds
to the so-called flow-tumbling regime, where the director continuously rotates under an
imposed shear.

• ζ < 0 and ν > 1 which corresponds to a case of contractile nematic ζ < 0 with
disk-like behavior ν > 1, meaning that the nematic have a tendency to orient
perpendicular to a shear flow

• ζ > 0 and ν < −1 which corresponds to a case of an extensile nematic ζ > 0
with rod-like behavior ν < −1, meanin that the nematic have a tendency to orient
parallel to a shear flow

• The cases of a disk-like extensile nematic ζ > 0, ν > 1 or a rod-like contractile
nematic ζ < 0, ν < −1 do not show any instability.
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If one were to constrain a monolayer of active nematic between two plates separated
by a distance L, either L < Lc and the nematic stays in a uniform state parallel to the
plate, or L > Lc and there is a gradient of orientation between the plates, resulting
in a tilt of the nematic between the plates. The schematic representation is the same
as in the passive Freedericksz transition on fig. 2.7 and can be seen on nematic cells
on adhesive stripe on figs. 1.4 and 2.4. The critical difference with the passive case
presented in section 2.2.1 is that the orientation instability is also a shear flow instability,
as developed in the following section.

2.2.3 Spontaneous tilt angle and shear
In this section, we investigate at steady-state the relation between the shear flow and
the tilt, as well as their respective amplitudes close to the transition length. We also
investigate the value of the tilt angle for very large widths.

Tilt and shear close to the transition length

The shear ∂xvy is given simply by (2.19):

∂xvy =
2h⊥

γ(ν cos 2θ − 1)
(2.29)

The presence of a finite shear flow is something one would not expect for a passive
system. In a passive system, or more generally a system whose dynamics derives from
a free energy, you expect at steady-state that h⊥ = 0 (recalling that the molecular field
h gives the direction to minimize the free energy). However, for an active nematic,
since the system is actively driven in a way that does not derive from a free energy but
from a local active power r∆µ (see section 1.2), the perpendicular component of the
molecular field does not vanish at steady state. From (2.20) we see that, at steady state,
the molecular field (and thus the shear) is proportional to the active stress:

∂xvy =
2ζ∆µ sin 2θ

4η + γ(ν2 − 2ν cos 2θ + 1)
(2.30)

Close to the transition, the amplitude of the tilt angle for a stripe of width L such that
L − Lc � Lc is given by non-linear terms eq. (2.24). We perform a weakly non-linear
perturbation detailed in appendix B and obtain the tilt angle

θ(x, t) =
π

2
+ θ̃0

√
L − Lc

Lc
cos

(πx
L

)
+ O(

L − Lc

Lc
), (2.31)

with

θ̃0 = ±2

√√√√
(ν + 1)

(
4 ηγ + (ν + 1)2

)
4 ηγ (1 + 4ν) + 1 + ν2(3 + 4ν)

(2.32)
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There is a symmetry between positive and negative angles. This symmetry is broken if
we consider a chiral nematic [66,74] that has a preferred direction of rotation. Although
this was investigated in the work by Duclos, Blanch-Mercader et al. [1], because of an
apparent breaking of symmetry between positive and negative angles that can be seen
on fig. 2.4. We do not consider chiral effects in this work, notably because chiral effects
do not seem to matter when there are abrasions (see section 2.4). The tilt angle from
eq. (2.31) determines the y−component of the velocity field:

vy = −
4Lc θ̃0ζ∆µ

π
(
4η + γ(ν + 1)2

)√L − Lc

Lc
sin

(
πx
Lc

)
+ O(

L − Lc

Lc
) (2.33)

=
2θ̃0πK

Lc(ν + 1)γ

√
L − Lc

Lc
sin

(
πx
Lc

)
+ O(

L − Lc

Lc
) (2.34)

From eq. (2.33) we see that the direction of the shear at a given angle depends on the sign
of the active stress coefficient ζ , and the direction is set by the extensile or contractile
nature of the active nematic, as shown on fig. 2.9

Figure 2.9: Direction of the shear flow depending on the sign of the tilt. We represented
a negative tilt in the definition given by eq. (2.31). For extensile nematics on the left
panel, ζ > 0 and the velocity at the right edge induced by the gradient of orientation is
positive. Inversely for contractile nematics on the right panel, ζ < 0 and the velocity at
the right edge is negative.

Tilt far from the transition length

Suppose that in a very large width L � Lc the tilt saturates and there is a homogeneous
uniform tilted state. There would be no flow in the middle of the stripe, but a gradient
of orientation and flow close to the boundaries, on a length of the order of Lc. This
uniform tilt θ∞ is given by the fixed points of (2.24):

θ∞ =
π

2
±

1
2

arccos
(
1
ν

)
(2.35)
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From eq. (2.35) we see that the tilt and shear are set by the flow-alignment parameter
ν. We recover the flow-tumbling instability, for |ν | < 1 the nematic is unstable to a
shear-flow perturbation. The tilt-angle θ∞ is an increasing function of ν: at the smallest
possible value |ν | = 1 there is no tilt and when ν � 1 the nematic orients perpendicular
to the stripe direction.

However, in order to observe that state one would need to have a stabilizing effect
for the first unstable mode. Otherwise one expects higher modes to become unstable as
the width of the stripe is increased. Experimentally [1], for unknown reasons no higher-
modes perturbation are observed, but no saturated tilt either. By using abrasions in the
stripe acting as contact-guidance, the behavior of the cells in large stripes was stabilized
and these results are presented in sections 2.4 and 2.5

2.3 Application to active cell nematics

2.3.1 Cell division and extrusion

One of the most striking feature of fluids made of cells compared to non-living fluids is
the fact that the number of cells is not necessarily conserved because of cell divisions,
apoptosis and extrusion events. This leads to an absence of mass conservation in the
monolayer of cells. Obviously physically the mass is conserved and the existence of
source terms is due to the fact that we consider a fluid made of only one constituent,
cells. This implies that cells can appear ex nihilo and that after extrusion or apoptosis
they completely disappear. To avoid this peculiarity one can consider a two-component
fluid made of cells and interstitial fluid [31, 75]. In this model, cells can grow and
divide, and become interstitial fluid after cell death. Ranft et al. [75] show that, for the
hydrodynamics, permeation effect (the transfer from interstitial fluid to cells and vice-
versa) matter above a certain screening length λ that is of the order of a few millimeters
to centimeters. In the experiments considered, the width of the stripe is of the order of
tens of micrometers to a millimeter, and we consider the one-constituent approximation
to be valid.

In what follows I will consider mathematically extrusion and cell death as equivalent
processes, as both reduce the mass density of cells in the monolayer. If we consider that
cells divide at a rate kd in the monolayer and are extruded at a rate ka, then there is a
net extrusion rate (resp. division) rate k = ka − kd (resp. −k). Mass conservation in the
monolayer is then given by:

∂tρ + ∂α(ρvα) = −kρ (2.36)

If we assume that cells are incompressible, then at confluency in the monolayer the net
rate k has to be zero on average along the width

∫ L/2
−L/2 dx k(x) = 0. If at steady-state the

local net division rate is however non-zero, this creates local non-divergence-free flows.
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Assuming that the density is constant along flow lines ∂tρ + vα∂αρ = 0, the divergence
of the velocity is directly related to the net extrusion rate:

∂αvα = −k (2.37)

In the experiments presented in section 2.1, we do not focus on density changes but
mostly on flows. There do not seem to be particular density effects and using (2.37)
yields good results. Therefore, the simplifying incompressibility hypothesis is justified.
Given the y−invariance in the problem, eq. (2.37) results in a “convergent” flow in the
x−direction, perpendicular to the stripe:

∂xvx = −k(x) (2.38)

Figure 2.10: Experimental observation of convergent flows in the x−direction in the
stripe. In both with and without abrasions, there is a linear behavior in most of the
stripe with a negative slope suggesting mostly extrusion inside the stripe, and division
close to the boundary. Preliminary figure, courtesy of Thibault Aryaksama.

The expression of k(x) is not known a priori but it is the cause of the flow in the
x−direction. The experimental observation of the flow on figure 2.10 indicates that the
net extrusion rate is negative around each boundary of the stripe over a length λd/2 � L,
and it is positive over distances L − λd . As a first approximation, we can assume that
there is cell division outside of the stripe and that inside the stripe there is predominantly
extrusion. This finds some biological basis in the fact that cells have a tendency to
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divide more in low pressure environment and they have a tendency to be extruded in
a high pressure environment [76–79]. Pressure-dependent division rates are discussed
in more details in section 3.6.1. Intuitively, the free boundary has a lower pressure and
cells have a tendency to divide near the boundary and to be extruded inside the stripe.
We first look at what happens if cells are extruded uniformly in the stripe, i.e k constant.
We discuss that a pressure-dependent extrusion rate do not modify the length for the
active instability in appendix C.

Let us first focus on the case where there is uniform extrusion in the layer and assume
that k is constant. This creates a compressional flow

vx(x) = −k x (2.39)

Let us now rewrite the equations of motion eqs. (2.16), (2.18) and (2.19) with the non-
zero convergent flow (2.39):

0 = η∂xvy −
ζ∆µ

2
sin 2θ +

ν

2
(h‖ sin 2θ + h⊥ cos 2θ) −

h⊥
2

(2.40)

0 =
h‖
γ
+ νk cos2 θ −

ν

2
∂xvy sin 2θ, (2.41)

∂tθ − k x∂xθ =
h⊥
γ
−
νk
2

sin 2θ −
∂xvy

2
(ν cos 2θ − 1). (2.42)

As done in section 2.2.2 this can be recast into a single non-linear differential equation
for the angle θ:

(∂tθ − k x∂xθ)(4η + γν2 sin 2θ2) =
h⊥
γ

(
4η + γ(ν2 − 2ν cos 2θ + 1)

)
− ζ∆µ sin 2θ(ν cos 2θ − 1)

−
νk
2

sin 2θ
(
4η + 2γν(ν − 1) cos θ2

)
. (2.43)

If we make linear perturbation around π
2 , θ(x, t) = π/2 + δθ(x, t), at steady state the

perturbation δθ(x) satisfies

A∂2
x δθ + k x∂xδθ + (νk + C)δθ = 0, (2.44)

with

A =
K
γ

[
1 +

γ(ν + 1)2

4η

]
; C = −

ζ∆µ(ν + 1)
2η

(2.45)

From eq. (2.43), we see that the critical length Lc given by eq. (2.27) above which a
steady-state perturbation exists is modified by the existence of a convergent flow. We
define the critical length in the presence of extrusion as Lk

c . There are two length scales
in this system:
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• Ld(k) =
√

A
k =

(
K
γk

[
1 + γ(ν+1)2

4η

] )1/2
, associated to cellular division;

• Lc = π
√

A
C = π

(
K

[
4η
γ +(ν+1)2

]
−2ζ∆µ(ν+1)

)1/2

, the critical length for the active Freedericksz

transition when there are no cell divisions nor deaths, defined by eq. (2.27).

If the division rate is “small”, i.e if

ε =
Lc

Ld(k)
= π

(
−

2ηk
ζ∆µ(ν + 1)

)1/2
� 1, (2.46)

the critical length above which there is a transition Lk
c is given by:

Lk
c = Lc

(
1 −

ε2

2
(ν − 1/2) + O(ε3)

)
(2.47)

Depending on the sign of the flow-alignment parameter ν, the critical length in the
presence of extrusion Lk

c is either larger or smaller then the critical length Lc:

• If ν > 1, compression flows induced by extrusion favor the tilt. In this case, the
effect of the compression flows is additive to the effect of the active stress, and
the transition length Lk

c < Lc. This will be the case for contractile disc-like active
nematics, where ζ < 0, ν > 1. In this case, since the convergent flow created
by extrusion destabilizes the orientation parallel to the stripe, there is even an
instability of the uniform state at zero activity. We show on fig. 2.11 a phase
diagram showing the stability of the uniform state as a function of the two lengths
Lc and Ld(k).

• On the contrary if ν < −1, compression flows stabilize the parallel state. In this
case, the effect of compression flows is in competition with the active stress and
the transition length Lk

c > Lc. This will be the case for extensile rod-like active
nematics, where ζ > 0, ν < −1.

2.3.2 Interaction with the substrate
In ref. [1], Duclos, Blanch-Mercader et al. looked at the effect of friction because of
two observations: firstly the shear velocity was screened over a finite length compared
to gradients of orientation. Then, a type of cells - NIH 3T3 - did not show any ac-
tive instability even for large stripes of width around a millimeter. As introduced in
section 1.1.1, cells have to interact with their substrate to perform motion. From a the-
oretical perspective, this means that the momentum is no longer conserved. Coming
back to the construction of the hydrodynamic theory of section 1.2, this technically
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Figure 2.11: Phase diagram of the nematic in the stripe as a function of the two di-
mensionless lengths L/Ld(k) and L/Lc in the contractile case (ζ < 0, ν > 1). We see
that there is a tilted state that exist even at low activity L � Lc. The phase diagram is
determined by numerical resolution of eq. (2.43).

means that momentum is no longer a hydrodynamic variable and the stress (the flux of
momentum) is no longer relevant. However, one can adopt a more practical approach as
was done in [1] and consider a hydrodynamic theory were momentum is no longer con-
served but is retained as a hydrodynamic variable. This method is non systematic but
depends on the scales of observation. Even though theoretically the momentum is not
conserved at large length, momentum can be relevant at smaller length scales. This is
the case in these experiments, were momentum is screened over lengths of the order of
50−100µm and is still relevant. A hydrodynamic theory with dissipation at an interface
is considered in ref. [80].

Modification of the critical length

In section 2.2.2 we gave a hand-waving argument for the instability of active nematic
stripes. This argument is based on a positive feedback loop between gradients of ori-
entation that create a flow that in turn creates gradients of orientation. However, one
can imagine that if momentum is screened over short lengths compared to the active
length Lc characteristic of the active instability, the feedback loop is destroyed and the
instability no longer exists. Let me now detail the calculations with an interaction with
the substrate. This calculation is adapted ref. [1].

Duclos, Blanch-Mercader et al. model this friction by a viscous drag fα proportional
to the velocity:

fα = −ξvα (2.48)

We consider that there is no cell divisions nor extrusions, to look at the effect of friction
alone. In that case, vx = 0 and force balance in the y−direction is

∂xσ
t
xy = ξvy (2.49)
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The total stress no longer vanishes due to the free surface and must remain a variable
of the problem. Given eq. (2.49), the shear becomes ∂xvy = ∂2

xσ
t
xy/ξ and eqs. (2.16),

(2.18) and (2.19) become:

σt
yx =

η

ξ
∂2

xσ
t
yx −

ζ∆µ

2
sin 2θ +

ν

2
(h‖ sin 2θ + h⊥ cos 2θ) −

h⊥
2

(2.50)

0 =
h‖
γ
−
ν

2ξ
∂2

xσ
t
yx sin 2θ, (2.51)

∂tθ =
h⊥
γ
−

1
2ξ
∂2

xσ
t
yx(ν cos 2θ − 1). (2.52)

By performing a Fourier expansion at linear order (calculation detailed in section 2.4.4
with an external field), θ(x, t) = π/2 + θ0eωt−iqx and σt

xy(x, t) = σt
xy0 eωt−iqx , one can

determine a mode equation:

ω = −q2

(
K
γ
+
(ν + 1)

2ξ(1 + η
ξ q2)

(
ζ∆µ + q2(ν + 1)

K
2

))
(2.53)

We can see from eq. (2.53) that there is another length scale on top of the active length
scale given by (2.27): there is also a length associated to friction that screens hydro-
dynamic interactions on scales of the order of

√
η
ξ . The critical wavevector qξc , above

which there is an instability when there is friction is:

qξc
2
=

−2ζ∆µ(ν + 1)
K

(
4η/γ + (ν + 1)2

) − 4ξ
4η + γ(ν + 1)2

(2.54)

We can introduce the lengthscale L f associated to friction:

L f = π

√
4η + γ(ν + 1)2

4ξ
(2.55)

The critical length Lξc = π/qξc above which a nematic stripe is unstable when there is
friction is given by:

1
(Lξc )2

=
1
L2

c
−

1
L2

f

(2.56)

From eq. (2.56) one sees that if the friction length L f is greater than the active length
Lc, there is no instability and the parallel state is always stable. In other words, if
the hydrodynamic interaction are screened over lengths that are smaller than the active
length, quantitatively L f < Lc, then the active instability cannot develop in the system.
If L f > Lc then an instability will develop for stripes wider than the critical length Lξc
given by (2.56)
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2.4 Effects of a perpendicular external field

2.4.1 A passive and active Freedericksz transition
In section 2.1, we presented the effects of abrasions on a free layer shown on fig. 2.3.
The abrasions are geometrical cues like that orients the cells in their direction. In that
sense, it acts like an external orientation field. Interestingly, the presence of abrasions
stabilizes the orientation of the cells over large distances: the picture on fig. 2.3 is of a
square which sides are about 500µm is length, and there is almost perfect alignment on
the whole field of view. In order to model the abrasions, we take a phenomenological
approach “à la Landau”: in the Frank distortion energy, a term must be added to account
for the preferred alignment direction with the orientation of the abrasions. By analogy
with a magnetic field, the orientation of the abrasions can be modeled by a vector field
H. The orientation of H is determined by the orientation of the abrasions. The magni-
tude however of H is not something that is controlled experimentally. Because of the
nematic symmetry and the fact that the abrasions are not directed, the terms associated
to the field H in the free energy must be even in p and H. There is an added energy
density

fa = −
χ

2
(p ·H)2 (2.57)

The formulation given by eq. (2.57) is a reference to the magnetic free-energy density of
the passive Freedericksz transition eq. (2.4), although the physical interpretation of the
quantities is not the same. We introduced a susceptibility χ by analogy with magnetism
but the only physical quantity is χH2, which is interpreted as an energy density of
orientation induced by the abrasions. The schematic for the theoretical model is shown
on fig. 2.12. Keeping the one-constant approximation for the Frank constants, similarly

Figure 2.12: Schematic representation of the stripe with the abrasions modeled by an
external field H perpendicular to the direction of the stripe. The same boundary condi-
tions as in section 2.2.2 are applied.
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to eq. (2.8) the distortion energy as a function of the polarization angle θ is given by:

F =
∫

dx dy
[
K
2
(∇θ)2 −

χ

2
H2 cos2 θ −

1
2

h0
‖
p2

]
(2.58)

Changing the free energy changes the out-of-equilibrium dynamics given by eqs. (2.16),
(2.18) and (2.19) only by changing the value of the molecular field h. The parallel
component of the molecular field h‖ is not important to the dynamics of the orientation,
but the perpendicular component h⊥ is modified by the external field:

h⊥ = K∂2
x θ −

χ

2
sin (2θ) H2 (2.59)

2.4.2 Changes in the critical length : cooperation of passive and
active effects

Critical Length

Since both the active stress and the external field destabilize the nematic in stripes at
finite length, we expect the critical length above which the uniform state is unstable to
be smaller than in stripes without abrasions.

The non-linear equation accounting for the evolution of the angle θ eq. (2.20) re-
mains the same. However the PDE controlling the evolution of the angle is modified:

∂tθ =
1

4η + γν2 sin2 2θ

[
K∂2

x θ −
χ
2 sin (2θ) H2

γ

(
4η + γ(ν2 − 2ν cos 2θ + 1)

)
−ζ∆µ sin 2θ(ν cos 2θ − 1)]

(2.60)

The stability of the uniform state θ = π/2 is determined by looking at the stability of
the perturbation δθ = θ − π/2, that satisfies at linear order:

∂tθ =
1

4η

[
K∂2

x θ + χH2θ

γ
(4η + γ(ν + 1)2) − 2ζ∆µ(ν + 1)θ

]
(2.61)

Therefore, there is a critical wavenumber qH
c below which the perturbation δθ grows

with time and the uniform state is no longer stable:

(qH
c )

2 =
−2ζ∆µ(ν + 1)

K(4η/γ + (ν + 1)2)
+
χ

K
H2 (2.62)

The anchoring condition θ(−L/2) = θ(L/2) = π/2 gives a critical length LH
c defined by

Lh
c qH

c = π. From eq. (2.62), we see that there are two length scales, the active length
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scale Lc given by eq. (2.27) and a passive “magnetic” length given by LH = π/H
√

K/χ,
as in section 2.2.1. The critical length LH

c is given by

1

LH
c

2 =
1

Lc
2 +

1
LH

2 (2.63)

We see in the value of the critical length LH
c that there is an added effect from the active

stress and from the field. A uniform active nematic under a perpendicular orientation
field is destabilized at shorter lengths compared to both a passive nematic under orien-
tation field and an active nematic without orientation field.

Weakly non-linear perturbation: amplitude of the tilt and of the flow

Let us now look at the effect of the external field H on the shear vy. The external
field H changes the free energy and consequently the molecular field h⊥. However, the
presence of a shear flow is a purely active effect. For a passive system, presented in
section 2.2.1, the field does not induce flow since the tilt created in the stripe minimizes
the free energy. Therefore, the external field H does not “directly” affect the shear.
Indeed, the shear is still given by eq. (2.30), because h⊥ is still given by eq. (2.20), even
in the presence of the external field.

The flow vy is however modified because the value of the tilt angle is modified by
the external field. The tilt angle θ(x) close to the transition length, for a width L such
that L − LH

c � LH
c , is given by non-linear terms in eq. (2.60) (details in appendix B):

θ(x) =
π

2
+ θ̃H

0

√
L − LH

c

LH
c

cos
(πx

L

)
+ O(

L − LH
c

LH
c
) (2.64)

and

θ̃H
0 = 2

√√√√√√√ (
4 ηγ + (ν + 1)2

)2
− 2 ζ∆µ

χH2 (ν + 1)
(
4 ηγ + (ν + 1)2

)
(
4 ηγ + (ν + 1)2

)2
− 2 ζ∆µ

χH2

(
4 ηγ (1 + 4ν) + 1 + ν2(3 + 4ν)

) (2.65)

The y−component of the velocity is therefore given by :

vy =
2LH

c θ̃
H
0 πK

L2
c (ν + 1)γ

√
L − LH

c

LH
c

sin
(
πx
LH

c

)
+ O(

L − LH
c

LH
c
) (2.66)

The amplitudes (2.65) and (2.66) as well as the value of the critical length can help
us to determine hydrodynamic parameters for cells, that are not accessible from cell
properties.
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2.4.3 Tilt angle in large stripes

Let us now turn back to the angle at large widths, where we see experimentally a tilted
homogeneous state far from the boundaries. There is a competition between the abra-
sions represented by the external field and the active stress. The abrasions, which are
perpendicular to the stripe, favor a perpendicular orientation. However, the active stress
favors an orientation dependent on the flow-alignment parameter ν given by eq. (2.35).
What is the result of this competition? We can imagine two scenarios: either the tilt is a
combination of the effect of the field and the active stress, or there is a threshold for the
field where the nematic orients completely parallel to the field. To answer this question,
we come back to the non-linear equation (2.60) verified by the angle θ, which gives at
steady state:

∂2
x θ =

χH2

2K
sin 2θ +

ζ∆µ

K
γ(ν cos 2θ − 1)

4η + γ(ν2 − 2ν cos 2θ + 1)
sin 2θ (2.67)

The RHS of eq. (2.67) can be written as the derivative of an effective potential V[θ(x)],
and eq. (2.67) becomes:

K∂2
x θ(x) = −

δV[θ(x)]
δθ(x)

(2.68)

With the following potential:

V[θ] =
χH2

4

[
cos 2θ

(
1 −

ζ∆µ

χH2

)
−
ζ∆µ

χH2
(4η/γ + ν2 − 1)

2ν
ln (4η/γ + ν2 − 2ν cos 2θ + 1)

]
(2.69)

Given eq. (2.68) we can make a time analogy with a mechanical problem, where θ is the
position of a particle moving in the potential V and the position is the stripe is the time
in this analogy. Since there is a finite width of the stripe L and anchoring conditions
θ(L/2) = θ(−L/2), in this analogy the particle in the potential moves in a finite time
and must start and end at the same position. Therefore, the “equilibrium” positions are
not simply given by the minimum of the potential V .

For small times the particle does not move if it is at a minimum of potential V .
Indeed, if the time is smaller than the characteristic oscillation time of the potential,
the particle does not have time to move and to come back to its original position. This
corresponds to the case where the uniform state θ = π/2 is stable. What I call the
characteristic oscillation time in terms of lengths is exactly the critical length above
which the uniform state is no longer stable.

For times larger than the characteristic oscillation time, the particle has the time to
explore the potential and to come back to its initial position. This corresponds to the case
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where the uniform state θ = π/2 is no longer stable, a tilt develops when “exploring”
the potential.

For much larger times than the characteristic oscillation time, the particle explores
the potential until it reaches the vicinity of a maximum value of the potential, where it is
“slowed” down and spends most of its time before coming back to its original position.
This corresponds to the situation of very large widths considered in section 2.2.3. In
this case, the tilt in the middle of the stripe θ∞ is given by the maximum of the potential
V . The potential V[θ] has a periodicity of π because of the nematic symmetry, and is
represented for two different values of the magnitude of the field H between θ = −π/2
and θ = π/2 on fig. 2.13.

-1.5 -1.0 -0.5 0.5 1.0 1.5

θ
3.9

4.0

4.1

4.2

V (θ )

H² = 0.5 Hc²

H² = 1.5 Hc²

Figure 2.13: Representation of the potential V[θ] in units of χH2 as a function of θ for
a perpendicular field below the critical H2 = H2

c /2 field and a field above the critical
width H2 = 3H2

c /2. For H2 = 3H2
c /2 the maximum is at θ = 0 meaning the nematic

is parallel to the field in the large stripe limit. For H2 = H2
c /2 it is not the case and the

maximum is set by eq. (2.72).

We are looking for the extrema of the potential V[θ], given by the following equa-
tion:

0 =
(
χH2

2γ
(4η + γ(ν2 − 2ν cos 2θ + 1)) − ζ∆µ(ν cos 2θ − 1)

)
sin 2θ (2.70)

For −π/2 ≤ θ ≤ π/2, there are three obvious solutions, θ = 0 and θ = −π/2, π/2 which
correspond respectively to being perpendicular or parallel to the stripe direction. There
is potentially a third solution to eq. (2.70) if there is a solution to

χH2

2
(4η/γ + ν2 − 2ν cos 2θ + 1) − ζ∆µ(ν cos 2θ − 1) = 0 (2.71)
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Working with the dimensionless variables x = χH2

ζ∆µ and a = 1
2 (4η/γ + ν

2 + 1), a solution
of eq. (2.71) is a solution of

cos 2θ = f (x) =
1 − ax
ν(1 − x)

(2.72)

There is a solution to (2.72) when x is such that −1 ≤ f (x) ≤ 1. Knowing that a > |ν |,
−1 ≤ f (x) ≤ 1 when the magnitude of the field H is smaller than a critical value Hc
defined by:

χH2
c = 2ζ∆µ

1 − ν
(4η/γ + (ν − 1)2)

(2.73)

The critical value for the field Hc exists because the RHS of (2.73) is always positive.
Indeed, starting from the assumption that an active instability exists, this means that
either ζ∆µ > 0 and ν < −1 (extensile case), or ζ∆µ < 0 and ν > 1 (contractile case).

The conclusion is that when there is a field H perpendicular to the stripe, there is
a critical value of this field Hc given by (2.73) above which the nematic aligns with
the field in the large width limit. Below this critical field, the nematic orients given a
particular angle θ given by (2.72), that depends on the ratio between the field and the
active stress and on hydrodynamic parameters. This can be seen in fig. 2.13 where the
potential V is plotted for values of H smaller and greater than Hc. A plot of the angle at
the middle of the stripe θ(0) as a function of the normalized width of the stripe L/LH

c ,
for different values of the magnitude of the external field H is given in fig. 2.14.

2.4.4 Interaction with the substrate and external field

We saw in section 2.3.2 that an interaction with the substrate modeled by a viscous drag
can result in the destruction of the spontaneous flow instability because of hydrody-
namic screening. We adapt in this section the calculations of section 2.3.2 to the case
when an external field is present. Compared to the active instability presented in sec-
tion 2.2.2, the passive instability presented in section 2.2.1 do not require a coupling
between flow and orientation to exist. Therefore, the passive instability is unhindered
by a finite hydrodynamic screening length. However, how does viscous drag affect the
critical length LH

c given by eq. (2.63), which is a combination of active and passive
effects?

With the external field, the constitutive equations do not change, there is only a
change in the value of the molecular field h. Therefore, eqs. (2.50) to (2.52) are un-
changed, and the value of h⊥ is given by eq. (2.59). If we perform a linear expansion
around the uniform state θ(x, t) = π/2 + δθ(x, t) and σt

yx(x, t) = δσ
t
yx(x, t), the parallel

molecular field h‖ given by eq. (2.51) is non-linear in the perturbations δθ, δσt
yx . There
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Figure 2.14: Middle angle θ(0) as a function of the normalized width L/LH
c for different

values of H. Angle calculated by solving numerically eq. (2.60) at steady state, using a
relaxation method. The length is normalized by each value of LH

c depending on H, so
the bifurcation is always at L/LH

c = 1. Other parameters are η/γ = 1 and ν = −1.3.

are two remaining equations:

δσt
yx =

η

ξ
∂2

x δσ
t
yx + ζ∆µδθ −

ν + 1
2
(K∂2

x δθ + χH2δθ) (2.74)

0 =
K
γ
(∂2

x δθ + χH2δθ) +
ν + 1

2ξ
∂2

x δσ
t
yx . (2.75)

Performing a Fourier expansion δθ(x, t) = θeωt+iqx and δσt
yx(x, t) = σ

t
yxeωt+iqx , eqs. (2.74)

and (2.75) become

−

(
1 +

η

ξ
q2

)
σt
yx +

(
ζ∆µ +

ν + 1
2
(Kq2 − χH2)

)
θ = 0 (2.76)

σt
yx = −

2ξ
q2(ν + 1)

(
ω +

K
γ

q2 −
χH2

γ

)
(2.77)

This gives for the rate ω

(1+
η

ξ
q2)ω = (1+

η

ξ
q2)

(
χH2

γ
−

K
γ

q2
)
−q2 (ν + 1)

2ξ

(
ζ∆µ +

ν + 1
2
(Kq2 − ξH2)

)
(2.78)
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Therefore there is an instability if the quantity g(q) defined by eq. (2.79) is positive for
finite wavenumbers.

g(q) = −q4
(
η

γ
K +

K
4
(ν + 1)2

)
+ q2

(
χ
η

γ
H2 − ξ

K
γ
+ (

χH2(ν + 1)
2

− ζ∆µ)
ν + 1

2

)
+
ξ

γ
χH2

(2.79)

= aq4 + bq2 + c (2.80)

g is a second order polynomial for the variable q2. Given the fact that a < 0 and
c > 0, the discriminant of g is positive and the roots q2

1 < q2
2 of g are real. Since

q2
1q2

2 = c/a < 0, q2
1 < 0 and q2

2 > 0. Therefore, g is positive for q2 < q2
2 and the critical

wavenumber below which the uniform state is unstable qH,ξ
c is given by qH,ξ

c = q2. The
critical wavenumber qH,ξ

c is given by the positive root of g:

qH,ξ
c

2
=
−b −

√
b2 − 4ac

2a
(2.81)

=
1

2
(
η
γK + K

4 (ν + 1)2
) [

χ
η

γ
H2 − ξ

K
γ
+ (

χH2(ν + 1)
2

− ζ∆µ)
ν + 1

2

+

((
χ
η

γ
H2 − ξ

K
γ
+ (

χH2(ν + 1)
2

− ζ∆µ)
ν + 1

2

)2

+ 4
(
η

γ
K +

K
4
(ν + 1)2

)
ξ

γ
χH2

)1/2
(2.82)

Interestingly, contrary to section 2.3.2, for all finite ξ there is a length LH,ξ
c defined by

LH,ξ
c qH,ξ

c = π, such that for widths larger than LH,ξ
c a uniform state is no longer stable.

We recover from eq. (2.82) the wavenumber qξc given by eq. (2.54) when H = 0. By
taking the limit ξ → +∞, or more physically considering the hydrodynamic screening
length

√
η/ξ much smaller than the active length Lc given by eq. (2.27), we recover the

critical wavenumber of the passive Freedericksz transition presented in section 2.2.1:

lim
ξ→∞

qH,ξ
c = H

√
χ

K
(2.83)

Contrary to the case where there is no external field, for all values of the active stress
ζ∆µ, there is a finite length LH,ξ

c above which a gradient of orientation develops inside
the stripe. Although we are not able to determine a value for the amplitude of the
tilt angle or the shear when there is friction, we expect a finite gradient of velocity to
develop if the activity is finite. This velocity gradient can however be screened by the
friction length. From this consideration, T. Aryaksama observed the behavior of NIH-
3T3 cells that do not exhibit an active transition [1] when there are no abrasions. Duclos,
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Blanch-Mercader et al. attribute this behavior to the friction that inhibits the active
instability. We see on fig. 2.15 that NIH-3T3 cells develop a gradient of orientation
when there is abrasions, as expected by this theory. However, the measured velocity
at the edge is not significant enough to claim there is a spontaneous flow. A possible
explanation is that the activity of NIH-3T3 cells being low, the resulting shear velocity
may be too small compared to the fluctuations in the cell monolayer.

Figure 2.15: Evolution of the orientation (A) and the velocity at the edge (B) of NIH-
3T3 fibroblasts with the width of the stripe, with and without abrasions. Without abra-
sions, as reported Duclos et al. in [1], NIH-3T3 cells do not show any instability. With
abrasions, NIH-3T3 cells develop a gradient of orientation as expected by the calcula-
tions of this section. However, the velocity at the edge is not significant. Courtesy of
Thibault Aryaksama.

2.5 Controlling the orientation of the external field

2.5.1 Experimental set up

Experimentally the abrasions do not allow to control precisely the magnitude of the field
H. Indeed, changes in the mechanical procedure to perform the abrasions did not lead
to significant results in the behavior of the tilt and the flow. In addition, quantitatively
relating changes in abrasions to changes in the magnitude of the field is a complicated
task.

In order to vary the field, one can however change the orientation of the abrasions
and therefore theoretically change the orientation of the field. Changing the angle of the
field provides an added control parameter to probe hydrodynamic parameters of wet ac-
tive nematics. In particular, as explained later on in section 2.5.2, there is a competition
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between the field and the active stress in the large width limit, which provides a way of
measuring the flow-alignment parameter ν.

A schematic representation of the experiment is presented in fig. 2.16. We con-
sider an external field H making an angle α with the x−axis, and anchoring conditions
θ(−L/2) = θ(L/2) = π/2. Considering the angle of the external field, the distortion free

Figure 2.16: Schematic representation of the abrasions modeled by an external field
with an angle α with respect to the x−axis.

energy (2.58) becomes:

F =
∫

dx dy
[
K
2
(∇θ)2 −

χ

2
H2 cos2(θ − α) −

1
2

h0
‖
p2

]
(2.84)

and the perpendicular molecular field (2.59) becomes:

h⊥ = K∂2
x θ +

χH2

2
sin 2(α − θ) (2.85)

2.5.2 Effect of the orientation of the external field on the tilt angle:
measuring the flow-alignment parameter ν

We saw in section 2.4.3 that when the field is perpendicular to the stripe, a competition
between the external field and the active stress arises through the existence of a critical
field Hc given by (2.73). For fields greater than the critical field H > Hc, the nematic
aligns parallel to the field in the large width limit. What happens when the orientation
of the field is changed? To answer this question we can proceed in the same way as in
section 2.4.3, and consider the potential associated to the steady-state equation satisfied
by the angle θ(x):

∂2
x θ =

χH2

2K
sin 2(θ − α) +

ζ∆µ

K
γ(ν cos 2θ − 1)

4η + γ(ν2 − 2ν cos 2θ + 1)
sin 2θ (2.86)
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which can be re-written
K∂2

x θ = −
δVα[θ]
δθ

(2.87)

with the potential Vα[θ] given by:

Vα[θ] =
χH2

4

(
cos 2(α − θ) −

ζ∆µ

χH2

(
(4η/γ + ν2 − 1)

2ν
ln (4η/γ + ν2 − 2ν cos 2θ + 1) + cos 2θ

))
(2.88)

As explained in section 2.4.3, the tilt angle at large widths is given by the maxima of
Vα. The potential Vα is represented on fig. 2.17 for different values of α. The extrema
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Figure 2.17: Potential Vα[θ] in units of χH2 as a function of θ for three values of the
angle, α = (0, π/8, π/4). The field is taken as H2 = 1.5H2

c , even if the value Hc is
defined for α = 0. We can see that when α , 0, θ = 0, π/2 are no longer extrema of Vα.

of Vα follow the equation:

0 =
χH2

2ζ∆µ
sin 2(α − θ) −

ν cos 2θ − 1
4η/γ + ν2 − 2ν cos 2θ + 1

sin 2θ (2.89)

One of the first thing to notice is that, when α is different from 0 or π/2, θ = α is no
longer a general solution to (2.89) because of the active stress. When the field makes
a finite angle α with the stripe there is a competition for the orientation between the
external field χH2 and the active stress ζ∆µ. Even when χH2 � ζ∆µ, the nematic
does not align perfectly with the field. Let us calculate this perturbation in the limit

ζ∆µ � χH2. In this limit, we can search for θ in the form θ = α + δθ + O

((
ζ∆µ

χH2

)2
)
,

and plugging back this development into eq. (2.89) yields

δθ = θ − α = −
ζ∆µ

χH2
sin 2α(ν cos 2α − 1)

4η/γ + ν2 − 2ν cos 2α + 1
+ O

((
ζ∆µ

χH2

)2
)

(2.90)
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A plot of δθ is given in fig. 2.18. From eq. (2.90), we see that there is a value of α for

0.5 1.0 1.5

α

-0.005

0.005

0.010

θ -α

Figure 2.18: θ − α in rad as a function of α as given by (2.90). The parameters are
ζ∆µ

χH2 = 0.07, η/γ = 1, ν = −2

which δθ = 0, given by

cos 2α =
1
ν

(2.91)

Once αc is identified as the value of the external field angle when δθ = 0, the flow-
alignment parameter ν is given by

ν =
1

cos 2αc
(2.92)

There is a competition for the orientation in the stripe between the external field and the
active stress resulting in a finite perturbation δθ at finite ζ∆µ/(χH2). However, there
is no competition when the direction of the external field is aligned with the direction
imposed by the shear flow created by the active force, given by eq. (2.92). This provides
a method to calculate ν independently from the other hydrodynamic parameters.

2.6 Comparaison with experiments: parameter estima-
tion

The experimental results presented in this section are preliminary. We propose a method
in section 2.6.1 but the precise estimation of hydrodynamic parameters from the data is
yet to be done. I present the experimental results in section 2.6.2 and estimate some
parameters. These parameters are however sometimes estimated without information
on their precision. Although this is not rigorous, it it the best we can do at this time. We
proceed with the goal to obtain the order of magnitude of the parameters.
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2.6.1 Constraints imposed by the Buckingham-π theorem
The Buckingham-π theorem [81] deals with dimensional analysis. If a system is de-
scribed by n physical variables that depend on p fundamental physical units, then there
are n− p dimensionless variables (the Π variables) and p dimensioning variables. Every
mathematical function of the n variables can be described by a function of n − p vari-
ables. Let us detail this theorem in practice for an active nematic with an external field.
In a minimal theory for active nematics presented in section 1.2, by adding an external
field there are six physical variables:

1. Activity ζ∆µ

2. Shear viscosity η

3. Rotational viscosity γ

4. Flow alignment parameter ν

5. Frank elastic constant K

6. Field χH2

Those six parameters are expressed by three fundamental physical units:

1. Length, and our choice for a reference lengthscale is given by the critical length
(2.27)

2. Time which, once the length unit is determined, is given by the typical velocity of
the shear flow v0 = 2πK/(Lc(ν + 1)γ)

3. Mass or more physically a force once the length and time units are given.

The experimental setup that was used cannot measure forces, therefore whatever the
number of measured quantities and comparison with the theory, an unknown parameter
remains, either ζ∆µ, χH2, γ, η or K , because all depend on a mass or force scale.

Once a unit of length and a unit of time are given, if we were also able to measure
a force, three dimensionless variables would remain and could be inferred by fitting
experimental results with the theory. We choose the three following dimensionless vari-
ables:

1. ζ∆µ/(χH2) the ratio between the active stress and the field

2. η/γ the ratio between shear and orientational viscosities

3. ν the flow-alignment parameter
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An experimental plot of δθ given by eq. (2.90) and figure 2.18 gives directly ν
through (2.92).

η/γ can then be inferred by fitting the amplitude of the tilt angle close to the transi-
tion when there is no field (2.32).

Finally, we can infer ζ∆µ/(χH2) by fitting the curve θ(0) − α as a function of α for
large widths compared to the width of instability using (2.90) or using a numerical fit if
ζ∆µ � χH2 is not verified.

Now that we have established the ideal procedure to measure as many hydrodynamic
parameters as possible with the theoretical study provided in this chapter, let us try to
apply this procedure on the experiments performed by Thibault Aryaksama in the group
of Pascal Silberzan.

2.6.2 Experimental results
Strong effect of the abrasions

If we look at the angle in the middle of the stripe for C2C12 cells as a function of the
width of the stripe, as shown on fig. 2.4, after ∼ 400µm the angle is fixed at θ = 0,
parallel to the abrasions. Thus, modeling the abrasions with an external field, the mag-
nitude of the field must be greater than the critical field given by eq. (2.73). Therefore,
the effect of the abrasions is strong compared to the effect of the active stress, at least in
large stripes.

Effect of the field on the critical width

If we want to look at the effect of the field on the critical width, we have to look at
what happens for small stripes. Indeed, a previous experiment also done in the group of
P. Silberzan [1] finds a critical width around 30µm for C2C12 cells. The experimental
data for stripes between 20 and 180µm for the central angle θ(0) and the velocity at the
right edge vy(L/2) are represented on fig. 2.19. We can see from figure 2.19 that around
80µm a tilt in the middle of the stripe and a flow at the edges start to appear.

An important feature is that there is no clear indication that the tilt and the flow
appear for different lengths in the case where there are abrasions, compared to when
there are none. However, calculations in presence of an external field (2.62) indicate
that the critical length above which a tilt and a flow appear must be smaller in the
presence of the field. This is especially true since we know from figure 2.4 that the
effect of the field is strong in the sense of H > Hc given by (2.73).

However, looking at the data for widths between 20µm and 300µm on fig. 2.20,
we see that the curve of the central angle, in the case of abrasions, departs from the
behavior of the middle angle without abrasions around 200µm. To explain this change
of behavior, we make the hypothesis that the effect of the abrasions is not felt until the
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Figure 2.19: Stripes with a width between 30 and 180µm. On the top the central angle in
rad and on the bottom the velocity at the right edge in µm.h−1. The angle is greater than
π/2 and the velocity at the right edge negative, consistent with an extensile behavior
(see fig. 2.9). Experiments in a 10µm window are averaged to give a single data point,
with a standard deviation represented by the colored area. We see, contrary to fig. 2.20,
that with and without abrasions the evolution of the middle angle and of the velocity
is the same, suggesting a non-linear effect of the abrasions on the cells. Courtesy of
Thibault Aryaksama for experimental data

stripe has a certain width, here 200µm. This length is to be compared with the cell
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Figure 2.20: Stripes with a width between 30 and 300µm. We can see that the curve for
the central angle has a change of behavior just before 200µm while the velocity is not
significantly changed. An hypothesis for this change of behavior of the angle is that the
cells start to orient with the abrasions after a certain intrinsic length that is of the order
of 200µm. Courtesy of Thibault Aryaksama for experimental data

length, about 30 − 50µm. This means that below a certain width for the stripe, of about
five times the cell size, it is as if the cells did not see the abrasions, in the sense that
cells do not align preferentially in the direction of the abrasions when the confinement
is too strong. The fact that the orientation of cells via contact guidance has an intrinsic
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length scale is something that was previously reported in ref. [72] and so it seems a fair
hypothesis to explain the behavior of the central angle on figure 2.20 with our theoretical
analysis.
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Figure 2.21: Difference between the central angle and the angle made by the abrasions
as a function of the angle made by the abrasions, in radians. The point where the curve
crosses the x−axis gives the flow alignment parameter. With a crossing angle αc such
that −1.35 ≤ αc ≤ −1.15 rad, we deduce from eq. (2.92) that −1.5 ≤ ν ≤ −1.1

The flow alignment parameter can be determined directly from the observation of
the central angle when the angle of the abrasions is varied, as detailed in section 2.5.2.
The deviation of the central angle from the angle made by the abrasions, as a function of
the angle made by the abrasions, is represented in fig. 2.21. Looking at the crossing of
the curve θ(0)−α with the x−axis, we deduce the flow alignment parameter to be −1.5 ≤
ν ≤ −1.1. This value is close to values that can be found in the literature for passive
nematics [82]. This value is similar to a value found in C2C12 cells by measurement on
topological defects [83, 84], and in the range of values found in epithelial monolayers
of drosophilia wings [85]. A fit is made in fig. 2.21 using eq. (2.90) with a value of
ν = −1.3, but there are two free variables, ζ∆µ/(χH2) and η/γ and we were not able
to deduce η/γ from the amplitude of the tilt. Therefore, we cannot deduce a value for
ζ∆µ/(χH2).

Fitting bifurcation curves

We compare the experimental data of the central angle and of the velocity at the edge,
without abrasions, to their theoretical expressions (2.31) and (2.33). We perform a
fit of the data using a square-root function starting at the critical length that is set at
Lc = 81µm, represented in fig. 2.22. The flow-alignment parameter ν is given by
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Figure 2.22: The experimental data are represented by points, while the colored areas
represent the standard deviation. The theoretical fits are in solid line. On the top figure,
the central angle is fitted with a square-root function

√
(L − Lc)/Lc for L > Lc. On the

bottom, the same is done on the velocity at the edges.

ν = −1.3±0.2, and the only remaining variable in eq. (2.32) is η/γ. However, extracting
η/γ from the expression given by eq. (2.32) with the value of θ̃0 found numerically is
not possible. This is possibly due to non-linear terms that are not taken into account in
the theory and modify the expression (2.32). The numerical fit finds a negative value
for η/γ knowing the value of ν, which is a physical non-sense. A possible explanation
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for this anomaly can be in the validity of the weakly non-linear perturbation giving
eq. (2.32). On fig. 2.23 are represented the points from the numerical resolution of
the nonlinear PDE (2.24), and in solid line the square-root function with the amplitude
given by eq. (2.32). It shows that the weakly non-linear perturbation is not valid for
lengths L ' 1.2Lc and could explain the anomaly. Another explanation can come from
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Figure 2.23: The points represent the central angle as a function of the width obtained by
numerical resolution of eq. (2.24) at steady state, using a relaxation method. The solid
line represents a square-root function a

√
(L − Lc)/Lc for L > Lc with the amplitude

a given by eq. (2.32). We see that the weakly-linear approximation deviates from the
simulated values for L/Lc ≥ 1.1.

very different values of the two viscosities η and γ. For a concentrated solution of rigid
rod-like polymers in the nematic phase, η and γ are of the same order of magnitude
deep in the nematic phase [86]. It might however not be the case for cells because of
active processes, and it is possible to be in the case η � γ (the case η � γ would lead
to a large critical length).

By performing the ratio of the amplitudes given by the fits of the velocity and of the
angle, we find a value of

K
γ
= 2 × 102 µm2.h−1 (2.93)

I do not give an error estimation on eq. (2.93) because this value must be taken as
an order of magnitude more than a precise estimation. Moreover, this is preliminary
results and an error of estimation on K/γ relies on an error estimation on the critical
length which has not yet been done.
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2.7 Discussion
Let me start by a word of caution: although the theoretical developments in this chapter
are valid on their own, their comparison to the experimental results is preliminary and
is subject to improvements and changes. Very few simulations have been performed at
this point and this discussion can be enriched in the future.

In this section, we started by developing a theory for an active nematic confined in
a stripe when an external field is imposed. We saw that when the field is perpendicu-
lar to the stripe, a situation identical to the passive Freedericksz transition, there is an
added effect of the field and the active stress and the critical length above which a tilt
and spontaneous flow develop is smaller. We saw that the spontaneous shear flow that
develops above the critical length is not directly affected by the presence of the external
field - although it is affected through changes in the orientation due to the external field.
This confirms that the apparition of a shear flow is a signature of activity in the system.

We also saw that depending on the value of the external field the tilt angle could,
in the large-stripe limit, either align with the field if the field is greater than a critical
value that depends on the active stress, or take a value that depends on the ratio between
the active stress and the field. Experimentally, the presence of the abrasions stabilizes
the tilt angle for large stripes. Indeed, a tilt is observed even for stripes of widths of
the order of a millimeter. This is of the order of ten times the critical length above
which a tilt appears. In simulations, depending on material parameters the first mode
(corresponding to the experimental observation) becomes unstable at a certain point.
An explanation for the stability of the tilt is that, for the comparison with theory, fields
of view with topological defects are removed from the experimental data. Therefore a
selection of the stable first modes is made. This stability is not necessarily a general
feature.

By changing the orientation of the abrasions, we found a way to measure the flow
alignment parameter ν by looking at which angle the cells perfectly align with the abra-
sions. When the abrasions and the cells are aligned, the abrasions are in the same
direction as the tilt imposed by the shear induced by the active stress.

By comparing the experimental results to the theory, we are able to determine two
parameters that are used for adimensioning the equations, the critical length and the
velocity. A unit force is missing which cannot be determined by these experiments.
We are able to determine the flow-alignment parameter ν but cannot determine the two
remaining dimensionless parameters: the ratio between the active stress and the external
field ζ∆µ/(χH2), and the ratio between the two viscosities η/γ.

There are theoretical as well as experimental limitations to the precision of these
results. On the theoretical side, we are able to make the estimation of the parameters
through analytical expressions from an ideal hydrodynamic theory of active nematics.
Indeed, when comparing the theory with experimental data, we did not take into consid-
eration cell divisions and deaths nor interactions with the substrate. This is because
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when taking into account these effects, we no longer have analytical results on the
amplitudes (eqs. (2.32) and (2.33)), nor an effective potential description (eqs. (2.68)
and (2.87)). Therefore the analytical expression for the central angle when the field
is varied eq. (2.90) is lost. Eventually, we could make the parameter estimation using
numerical fits in the non-linear regime and performing a multi-parameter optimization
problem. The other problem is more fundamental in the sense that the theory that we
developed has no strong basis for being valid for the non-linear dynamics. Indeed,
this close-to-equilibrium theory based on linear phenomenological relations through
the Onsager procedure is well suited to describe what happens at small activity, where
we depart from equilibrium, or in the large stripe limit, which is close to a uniform
equilibrium state, but there is no reason to believe it is well suited to infer parameters
when there are large active effects. However, there is a history of strong accuracy of
linear hydrodynamic theories being valid far from equilibrium. One example being the
Navier-Stokes equation that describe accurately liquids even with strong perturbations.
The hydrodynamics of liquid crystals from which the derivation of 1.2 is based on yields
good results even under strong perturbations [35]. Because the accuracy of the active
hydrodynamic theory is not well confirmed for strong perturbations, we prefer neglect-
ing certain effects and no go into an exploration of the parameter space numerically, in
order to retain analyticity.

On the experimental side, the velocity field is very noisy in the sense that the stan-
dard deviation of the velocity is of the order of the average velocity. This makes the
precise identification of the critical length difficult.
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Chapter 3

Active defects on a substrate

3.1 Introduction to topological defects in nematics

3.1.1 Overview
In this chapter, we are going to examine some hydrodynamic consequences of activity
for specific configurations of the director field called topological defects. In the previous
chapter we only considered, experimentally and theoretically, continuous deformation
of the director. However, configurations where the orientation of the director is singu-
lar exist and are called defects. A mathematical definition of defects is given in sec-
tion 3.1.2. The existence of defects in liquid crystals has been long known and defects
were first observed by Otto Lehmann in 1904 [87] and Georges Friedel in 1922 [88].
Theoretical interest in defects came later with Frank and Kleman [34, 89], because of
their mechanical properties. Defects are by nature places of higher stress, and can give
information on the intrinsic symmetries of the basic constituent of the media, because
they are optically identifiable. For example in liquid crystals the nature of defects can
inform on the nature of the phase, for example if the liquid crystal is in a polar or ne-
matic phase. The word nematic actually comes from the greek νη̃µα, which means
“thread”, because of the observation of black lines of defects in nematic phases.

The hydrodynamics of nematics (even though the simplest form of liquid crystals
in terms of symmetries) is very complex notably because of the coupling between the
dynamics of the director and the flow. The dynamics of defects in nematics is still a
relevant topic today [90–93]. Defects have been observed in living systems as early
as 1968 by Elsdale [94] in fibroblast cells that organized into what he called groups -
patches of aligned cells - and frontiers that can be interpreted as topological defects.

Since this precursor observation of islands of ordered nematic phases separated by
defects, there has been a growing interest in topological defects in cellular architectures.
The presence of defects can inform on the material properties of cells [28,83,84] and on
their symmetries, whether polar or nematic [33]. It has been reported that topological
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defects are also preferential sites for extrusion [12, 36, 37], multilayering [95], and play
a role in cellular organization [96–98].

Figure 3.1: Picture of a monolayer of C2C12 cells showing several topological defects.
The orientation of cells is colored for visual cues, and the two white circles show a +1/2
defect on the left and a −1/2 defect on the right. Courtesy of Trinish Sarkar.

Topological defects are particularly interesting in the context of active matter, be-
cause defects create gradients of orientation (see figs. 3.1 and 3.2). As seen in chap-
ter 2, a gradient of orientation create an active force due to the gradient of active stress.
Therefore, topological defects are special locations where active forces are generated.
Because of this, spontaneous motion develops in the vicinity of topological defects.
Different types of defects have different symmetries (see fig. 3.2), and depending on
these symmetries active forces created by the defects can lead to self-advection or rota-
tion [23,26,33,39,40,99–101]. Because of activity, active topological defects can have
a significantly different behaviors compared to their passive counterparts. In passive
systems, the presence of defects can depend on the preparation of the system and on
boundary conditions. As expressed in sections 3.1.2 and 3.1.3, topological defects can
be classified by their topological charge and in passive systems their interactions are
reminiscent of electrostatic interactions: defects of opposite charge attract each other
and defects of the same charge repel each other. This leads in passive systems to annihi-
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lation of defects and relaxation to a state of minimal number of defects. The dynamics
of active defects is more complicated and, in the context of this work, I will focus on ac-
tive nematics. Firstly, defects can appear in the system because of activity. This can be
understood in the context of the active instability studied in chapter 2: activity destabi-
lizes uniform configurations of the director [41, 102]. At high activity, strong gradients
of orientation can appear and transform into topological defects, a process called “wall
unzipping” [35, 39, 91, 99, 103, 104]. Although in the system of contractile C2C12 cells
that is studied in this work there is no clear creation of defects, the density of defects
has been related to activity in extensile MDCK cells [37]. Secondly, existing defects
of opposite charges do not necessarily attract each other due to active self-advection.
This can lead to an effective repulsion between defects [39, 99], and the number of de-
fects does not necessarily decrease. This proliferation of defects and the flows created
by their orientations can lead to chaotic flows, a state called active turbulence possible
even at low Reynolds numbers [44, 45, 59, 103, 105–107].

Active topological defects are interesting from the point of view of phase transi-
tions. Due to the proliferation of defects and the possible separation of defects at high
activity, this leads to a phase transition at constant temperature, similar to a Berezinskii-
Kosterlitz-Thouless transition [108]. With increasing activity, active nematics can go
from an ordered nematic phase to a chaotic phase with topological defects [54, 100].
When activity is increased further, there is even existence of a novel thermodynamic
polar phase due to the polarity of +1/2 defects [54, 109].

In this manuscript, I will focus on the flow created by isolated nematic defects in two
dimensions. One of the main difficulties to calculate the flow created by a topological
defect is the coupling between the flow and the orientation that creates a “backflow”.
Previous analytical results exist for the flow created by half-integer defects when mo-
mentum is conserved and the backflow is neglected [39]. Pismen in ref. [40] takes into
account the backflow in his calculation, for a dry system (without hydrodynamic inter-
actions). In section 3.3, we calculate the flow created by an isolated positive half-integer
topological defect and its self-advection velocity when there is friction, by neglecting
the backflow. Motivated by experimental observations presented in section 3.2, we cal-
culate in section 3.4 the stall force to arrest a positive half-integer active defect. In
section 3.5, we include part of the backflow by taking into account the torques created
by the Frank distortion energy. In particular, we look at the effect of this torque on the
arrest force. In section 3.6 we look at the effect of cell division on the flow created by
a defect. Finally, in section 3.7 we look at the effect of the active flow on the nematic
director.

3.1.2 Topological charge and energy
Defects are classified topologically by defining a strength S also called topological
charge [35, 89]. The topological charge of a singular point is defined from the amount
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of rotation that the director makes when going around a full circle around this point (see
fig. 3.2). If the director makes an angle ϕ with a reference axis, then the variation of
the director ∆ϕ after a rotation of 2π is ∆ϕ = 2πS. Therefore S can only be integer or
half-integer for nematics because p and −p are equivalent. For polar systems, S is an
integer.

Coming back to the Frank free energy of nematics eq. (2.5), one can obtain the
orientation field of a passive topological defect by minimizing the free energy. We
define the orientational field angle ϕ(r, θ) in polar coordinates in a frame that has the
defect’s core as its origin and with respect to a chosen reference axis in accordance with
the symmetries of the particular defect (see figs. 3.7 and 3.9). Taking the one Frank
constant approximation the free energy is

F =
∫

K
2
(∇ϕ)2 rdr dθ (3.1)

Therefore minimizing the free energy (3.1) requires

δF
δϕ
= K∇2ϕ = 0 (3.2)

The solutions to (3.2) that do not depend on the distance to the defect r verify

d2ϕ

dθ2 = 0 (3.3)

Solutions to (3.3) are
ϕ(r, θ) = Aθ + B (3.4)

where A, B are constants. A corresponds to the amount of rotation of the director and
can be expressed by the strength S. With the expression (3.4), a rotation of 2π around
the defect induces a change in the angle of the director of ∆ϕ = 2πA. Therefore, the
strength S is exactly A, and in the one-constant approximation a defect of strength S has
an orientation

ϕ(r, θ) = Sθ + B (3.5)

Except for defects of strength S = 1, B can always be chosen to be zero by rotating the
axis of the frame. For integer defects S = 1, B = 0 corresponds to asters, B = π/2
corresponds to circles and other values to spirals, as shown in fig. 3.2. Relaxing the
one-constant approximation yields more complex expressions for the orientation field
[28, 73].

I made an important simplification to derive eq. (3.5) that must be clarified: I consid-
ered in the free energy (3.1) a perfectly ordered nematic, with a director of modulus one
that can be represented only by its orientation angle ϕ. This ideal situation is valid deep
in the nematic phase, but close to a topological defect it is not. To be rigorous, one must
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Figure 3.2: Different types of defects depending on the strength S and the offset B.

take into account p2 terms in the free energy. In that case, one finds a healing length
ε that depends on parameters of the free energy, for which the modulus of p vanishes
linearly for lengths smaller than ε [40, 110]. In this work, we do not want to describe
precisely what happens close to the core. We either consider a vanishing healing length
and consider a point-like core, or we consider that there is a region ε for which there is
no nematic order, p2 = 0 for r < ε, and a region of perfect nematic order for r > ε,
p2 = 1. In that case, we will say that we consider a finite-sized core.

Taking a circle of size R around the core of a defect, the free energy stored in the
defect configuration of eq. (3.5) is:

F =
∫

K
2

S2 1
r2 rdr dθ = πKS2 ln(

R
ε
) (3.6)

Since the free energy depends on the square of the strength, lowest-strength defect are
expected to be mostly observed, i.e half-integer defects for nematics and ±1 defects for
polar systems.
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3.1.3 Interaction between defects
The topological strength of a defect is called a charge because of the analogy with
electrostatic charges. Like in electrostatics, topological charges of opposite signs attract
each other while charges of the same sign repel each other. If two defects, a +1/2 and a
-1/2, are separated by a distance d, the energy E± of the defect pair is [35, 39]:

E± = 2πKS2 ln
d
ε

(3.7)

The energy E± increases with the distance d. This creates an attractive force between
the two defects of opposite charges. This result is valid only for passive defects, ac-
tive defects can separate if the active force generated by the gradients of orientation
overcomes the attractive force [39, 99].

3.2 Experimental observations
Trinish Sarkar in the group of Pascal Silberzan at Institut Curie performed experiments
in a free monolayer of C2C12 myoblast cells (see fig. 3.1). The presence of half-integer
topological defects confirms the nematic phase of C2C12 cells. Positive half defects
have a motion from their head towards their tail, a motion consistent with a contractile
active stress [33, 39], as seen in fig. 3.3.
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Figure 3.3: Velocity on the x−axis of +1/2 motile defects. The convention for the axis
is the one of fig. 3.7. A positive value of the velocity is the signature of a motion from
the head towards the tail. From data by Trinish Sarkar.
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Results are preliminary and I will only indicate the general trend observed. In mono-
layers, positive half-integer defects have been observed as preferential sites for multi-
layering. Previous observations on MDCK cells [37] and NPC cells [36] report that
topological defects are preferential sites for extrusion. In bacterial colonies, Copen-
hagen et al. [95] also report multilayering at positive half defects, and the bacteria are
extensile.

The number of defects decays in the monolayer over time, but never vanishes, as
seen in fig. 3.4. This is due to the absence of significant defect creation and the annihi-
lation between defects of opposite charges. This suggests that the activity is sufficiently
low to not create topological defects. Preliminary results suggest that there is a class of
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Figure 3.4: Number of defect per mm2 as a function of time. Time zero is set close to
confluency, and at 25h there is multilayering. We see that the number of defects does
not vanish before multilayering. From data by Trinish Sarkar.

non-motile +1/2 defects and that new layers of cells form at these non-motile defects.
The non-motile defects are not associated to jamming that can occur in confined mono-
layer of cells [111], because in this case, there is still a flow of cells around the defect.
Instead, the defect itself is not moving, as seen on fig. 3.5.

The existence of motionless +1/2 defects is something not expected by the theory
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Figure 3.5: Velocity on the x−axis for non-motile defects as a function of the distance
from the core. The velocity profile is no longer symmetric compared to fig. 3.3, and
there is no motion at the tail of the defect. Courtesy of Trinish Sarkar.

and must be accounted for by a stabilizing force acting on the defect. Although the
experimental apparatus used could not measure forces, information can be extracted
by looking at the surface of focal adhesions that are related to force generation [24].
As seen in fig. 3.6, the largest focal adhesions are for cells located at the defect core,
suggesting that the cells that are at the core contribute to the pinning of the defect.

3.3 Spontaneous flow without orientational dynamics

3.3.1 Active force created by defects

One of the main features of the hydrodynamics of active nematics is the presence of
active forces whenever there are orientation gradients. Therefore, for an active nematic,
the geometry of defects generates active forces. The active stress is given by eq. (1.29):

σact
αβ = −ζ∆µ

(
pαpβ −

δαβ

2

)
(3.8)

Let us now compute the active stress and the active force density resulting from the
distortion of the director for +1/2 and −1/2 defects in the one-constant approximation.
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Figure 3.6: a. Zoom in on the core of a +1/2 topological defect. In white are shown the
focal adhesions of the cells. The white frame indicates the cells of the core as opposed
to the cusp. b. Circularity of the focal adhesions. Focal adhesions in the core are
more elongated than the cells of the cusp (the y−axis is inverted and 1, the value of a
perfect circle, is at the bottom). c. Area of focal adhesions. Inside the core, there are
larger focal adhesions than for the cusp. d. Area and circularity of focal adhesions.
Top left represents large elongated focal adhesions while the bottom right represents
small circular focal adhesions. Blue dots are for the core, while red dots are for the
cusp. There are predominantly blue dots in the top left quadrant of the figure, indicated
larger elongated focal adhesions at the core, as seen in the white frame of a. Courtesy
of Trinish Sarkar.

+1/2 defects

Let us consider a point-like +1/2 defect, in a reference frame centered at the core with
the x−axis along the axis of symmetry of the defect, as in figure 3.7. At a point M , let us
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define the polar coordinates r , the distance to the core, and θ the polar angle with respect
to the x−axis. Let us call ϕ the angle that the nematic director makes with respect to
the x−axis. In this cartesian frame, the director is p = cos ϕ ex + sin ϕ ey. Because of

M

O

Figure 3.7: Schematic representation of +1/2 defect and reference axes.

the simple expression of the director angle ϕ in terms of the polar angle θ, ϕ = θ/2
for a +1/2 defect, it is more convenient to work with polar coordinates with the core of
the defect as origin and the x−axis as reference for the polar angle. In this polar frame,
the director is p = cos(ϕ − θ) er + sin(ϕ − θ) eθ = cos(θ/2) er − sin(θ/2) eθ . A matrix
representation of the active stress σact+

αβ in the (er, eθ) basis is therefore

σact+
αβ = −

ζ∆µ

2

(
cos θ − sin θ
− sin θ − cos θ

)
(3.9)

The force density fact
+ due to activity of the +1/2 defect is given by

f+act = ∇ · σact+ = −
ζ∆µ

2r
ex (3.10)

The geometry of +1/2 defects imposes a well-defined polarity. One can distinguish a
tail region, where the cells on the axis θ = 0 are parallel to the axis, and a head region,
where the cells on the axis θ = 0 are perpendicular to the axis. This acquired polarity
is on the axis of symmetry of the defect. Therefore, it is natural to find that the active
force density that depends on the gradient of orientation is oriented along the symmetry
axis of the defect, as shown in fig. 3.7. The 1/r dependence comes from the orientation
gradient and it is interesting to notice that the total active force of a defect diverges
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Figure 3.8: Force for +1/2 defect in the contractile (ζ < 0) and extensile (ζ > 0) cases.

linearly with the size of the system. The force (3.10) creates a spontaneous motion of
an active +1/2 defect parallel to its symmetry axis. The direction of motion depends on
the sign of the activity parameter ζ :

• For extensile cells, ζ > 0 and +1/2 defects move towards their head

• For contractile cells, ζ < 0 and +1/2 defects move towards their tail

The observation of the spontaneous motion of +1/2 defects because of the force density
(3.10) and the direction of this motion (towards the head or the tail) has been used
experimentally to confirm, first the nematic nature of cells, and then whether they are
extensile or contractile [33, 36, 37, 95, 112].

-1/2 defects

If we now turn to −1/2 defects, there are three axes of symmetry with 2π/3 angles
between them. This means that there is no spontaneous polarity, and therefore no fa-
vored direction for the defect to move. Let us confirm this by computing the force as
was done for +1/2 defects. We take a reference frame with one of the symmetry axes
of the defect as the x−axis and work with polar coordinates (r, θ) centered at the core
of the defect, as shown in fig. 3.9. For a −1/2 defect, ϕ = − θ2 and the director p is
p = cos(ϕ − θ) er + sin(ϕ − θ) eθ = cos(3θ/2) er − sin(3θ/2) eθ . A matrix representation
of the active stress σact−

αβ in the (er, eθ) basis is therefore:

σact−
αβ = −

ζ∆µ

2

(
cos(3θ) − sin(3θ)
− sin(3θ) − cos(3θ)

)
(3.11)
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O

M

Figure 3.9: Schematic representation of −1/2 defect and reference axes.

The force density fact
− due to the activity of the −1/2 defect is given by

f−act = ∇ · σact− = −
ζ∆µ

2r
(
− cos(2θ) ex + sin(2θ) ey

)
(3.12)

Contrary to the +1/2 defect, the absence of acquired polarity results in a force density
that depends on the polar angle θ, as shown in fig. 3.10. The 2θ dependence on the polar
angle reflects the three axes of symmetry. The 1/r dependence of the force is recovered,

Figure 3.10: Force for −1/2 defect in the contractile (ζ < 0) and extensile (ζ > 0)
cases.

but in this case because of the θ dependence the total force summed over a disk of size
R vanishes.
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• For extensile cells, ζ > 0, the active force acts as a stretching force along the
axes of the defect. This could explain the observation of cell depletion around
extensile −1/2 defects that has been made in neural progenitor cells [36].

• For contractile cells, ζ < 0, it is the opposite and the body force is contracting
along the main axes of the defect.

3.3.2 Flows for a +1/2 defect on a substrate
After having made a hand-waving argument as to why +1/2 topological defects move
spontaneously along their symmetry axis because of active forces, let me compute the
flow created by an isolated +1/2 topological defect.

Force balance

We consider an isolated active +1/2 topological defect on an infinite surface. We con-
sider this ideal situation because we are interested in the flow created by an individual
defect, not necessarily pairs or assemblies of defects. We also consider that the defect
interacts with the substrate through viscous drag. The friction force is given by −ξv
where ξ is a friction constant per unit area. When experimenting with cells, we work
at low Reynolds number and inertia is negligible compared to viscous forces. At steady
state, the velocity field v(r, θ), pressure field P(r, θ) and orientation field ϕ(r, θ) are
determined by the equations of motion eqs. (1.33) to (1.35) given in section 1.2.

To investigate the effect of the active force on the flow, we first look at the case
where the rotation dynamics of the director is much faster than the dynamics of cell
displacement. In terms of viscosities, this corresponds to the case where η � γ. In this
approximation, on the scales of collective cell displacements, the rotational dynamics of
the director is sufficiently fast as to satisfy h⊥ = 0 at all times. The distortion free energy
is therefore minimized at all times. In this case, we keep the orientation ϕ = θ/2 and the
distortion free energy does not play a role in the dynamics. In this approximation, the
molecular field hα ∼ γ is negligible compared to the viscous stress ηuαβ. In the limit
η � γ, the flow-alignment coupling and the torques created by the antisymmetric stress
are irrelevant, and eqs. (1.33) and (1.35) take a much simpler form:

σt
αβ = 2ηuαβ − ζ∆µ

(
pαpβ −

δαβ

2

)
− Pδαβ (3.13)

hα = 0 (3.14)

By considering the rotations of cells to be fast compared to their translations, the flow
and the rotation of the director decouple. We can therefore consider that the orientation
of the defect is fixed and corresponds to that of a passive defect, ϕ = θ/2. If γ is finite,
the flows created by the active force (3.10) modify the orientation of the defect and there
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is an active component to the orientational field ϕ = θ/2 + ϕact(r, θ) around the defect.
This is situation is studied in section 3.7.

The orientation field ϕ = θ/2 is only valid in the reference frame that has the defect
core for origin. Therefore, force balance (1.34) must be written in the frame of the
defect. The active force (3.10) creates spontaneous motion of the defect, and we define
v0 as the self-advection velocity of the +1/2 defect. In the frame of the defect moving at
constant velocity v0, the viscous drag is given by −ξ(v − v0). Force balance then reads:

η∆v − ∇P − ξ(v + v0) −
ζ∆µ

2r
ex = 0 (3.15)

Force balance (3.15) is completed with the following boundary conditions, in the frame
of the defect:

1. The defect core does not move in the frame centered at the defect core:

v(0, θ) = 0 (3.16)

2. No velocity at infinity in the lab frame:

v(+∞, θ) = −v0 (3.17)

Velocity and pressure field for an isolated defect

From the symmetries of the system, we can gather information on the solutions v(r, θ)
and P(r, θ). The configuration of the defect has the x−axis as a symmetry axis (by
definition). Since the velocity and pressure fields result from the orientation gradients
created by the geometry of the defect, the two fields must also have the x−axis as a
symmetry axis. This means that the velocity of the defect v0 has to be on the x−axis:
v0 = v0ex. For the scalar pressure field, P(r, θ)must be an even function of the polar an-
gle θ. For the velocity vector, this means in cartesian coordinates that its x−component
is even as a function of θ and its y−component is odd as a function of θ. In terms of
polar coordinates, this means that the r−component of the velocity is even as a func-
tion of θ because the ex dependence of er = cos θex + sin θey is even in θ but the ey
dependence is odd. The θ−component of the velocity is odd as a function of θ because
eθ = − sin θex + cos θey has the opposite signature with respect to θ compared to er.
There is obviously 2π periodicity in θ so if we look for solutions by separating the radial
and azimuthal dependences, their Fourier decompositions read, given the symmetries:

P(r, θ) =
∑

n

Pn(r) cos(nθ) (3.18)

vr(r, θ) =
∑

n

vn
r (r) cos(nθ) (3.19)

vθ(r, θ) =
∑

n

vn
θ (r) sin(nθ) (3.20)
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Because we neglected the dynamics of the director field with respect to cell motion,
we obtain for the force balance eq. (3.15) a linear Stokes equation with friction and
an active force, which does not couple the different modes of eqs. (3.18) to (3.20).
Mathematically, this is justified by the fact that (3.15) is a linear PDE with constant
coefficients. Because the active force f+act = −ζ∆µ/(2r) (cos θer − sin θeθ) acts only on
the first mode of the Fourier series, all other modes of the velocity and pressure fields
vanish: vn

r , v
n
θ , Pn = 0 if n > 1. Now that we have used symmetry arguments to simplify

the search for solutions, let us solve equation (3.15). We consider incompressible cells
with no cell division, such that ∇ · v = 0. In two dimensions, due to the divergence-free
velocity field, we can introduce the stream function ψ(r, θ) defined as ∇×(ψez) = v, with
ez = er × eθ . Since v = vr(r) cos θer + vθ(r) sin θeθ , the stream function is of the form
ψ(r, θ) = ψ(r) sin θ. For simplicity of the notation, the superscript regarding the Fourier
modes is dropped since only the first mode matters, and we use the same notation for
the radial dependence of the stream function ψ(r) and the stream function ψ(r, θ). We
do the same for all physical quantities, as the azimuthal dependence is straightforward.
When there is a potential ambiguity, we specify explicitly the arguments of the function.

By taking the curl of the force balance eq. (3.15), we obtain an equation for the
stream function:

∆ [η∆ψ − ξψ] = −ζ∆µ
sin θ
2r2 (3.21)

There is a characteristic length L given by L =
√
η/ξ, beyond which hydrodynamic

interactions are screened. We introduce the dimensionless distance to the core of the
defect r′ = r/L and define ψ̂(r′, θ) = ψ(Lr′, θ). Again, for simplicity of the notation,
in the following we label r = r′ as a dimensionless length and ψ̂ = ψ. Using the
dimensionless distance, we obtain:

∆ [∆ψ − ψ] = −α
sin θ
r2 (3.22)

with α = ζ∆µ/(2ξ). We can solve eq. (3.22) for U = ∆ψ − ψ, which satisfies a Poisson
equation:

∆U = −α
sin θ
r2 (3.23)

The general solution to eq. (3.23) (given the azimuthal dependence) is:

U(r, θ) = ∆ψ(r, θ) − ψ(r, θ) =
[
Ar +

B
r
+ α

]
sin θ, (3.24)

with A, B, integration constants. Since we are looking for ψ(r, θ) = ψ(r) sin θ, we obtain
an equation for the radial dependence of the stream function in reduced coordinates
ψ(r):

d2ψ(r)
dr2 +

1
r

dψ(r)
dr
−

(
1 +

1
r2

)
ψ(r) = Ar +

B
r
+ α (3.25)
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The homogeneous solution ψ0 to eq. (3.25) is given by the modified Bessel functions of
the first kind I1 and K1:

ψ0(r) = A0I1(r) + B0K1(r), (3.26)

where A0 and B0 are integration constants. We look for a particular solution ψp(r) of
eq. (3.25) by using the method of variation of parameters. We look for a solution of the
form

ψp(r) = CI(r)I1(r) + CK(r)K1(r) (3.27)

To find a particular solution using the variation of parameters, one needs to add a con-
dition on CI,CK

dCI

dr
(r)I1(r) +

dCK

dr
(r)K1(r) = 0 (3.28)

Plugging back eq. (3.27) into eq. (3.25), together with eq. (3.28), CK and CI follow a
system of ODE:

dCI

dr
(r)I1(r) +

dCK

dr
(r)K1(r) = 0 (3.29)

dCI

dr
(r)

dI1
dr
(r) +

dCK

dr
(r)

dK1
dr
(r) = Ar +

B
r
+ α (3.30)

Using the Wronskian of modified Bessel functions W(I1,K1) = I′1(r)K1(r)−I1(r)K′1(r) =
−1/r , we get:

dCI

dr
(r) = K1(r)

(
Ar2 + B + αr

)
(3.31)

dCK

dr
(r) = −I1(r)

(
Ar2 + B + αr

)
(3.32)

When integrating eqs. (3.31) and (3.32), we have a choice of integration constants that
eventually redefines the values of the integration constants A0, B0. We choose constants
that become convenient for boundary conditions in r = +∞ and r = 0:

C1(r) = −
∫ +∞

r
K1(u)(Au2 + αu + B) du (3.33)

CK(r) = −
∫ r

0
I1(u)(Au2 + αu + B) du (3.34)

The full solution to eq. (3.25) is

ψ(r) = I1(r)
(
A0 −

∫ +∞

r
K1(u)(Au2 + αu + B) du

)
+ K1(r)

(
B0 −

∫ r

0
I1(u)(Au2 + αu + B) du

) (3.35)
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To determine the integration constants A0, B0, A, B, we need to take into account the
boundary conditions eqs. (3.16) and (3.17) for the velocity. In terms of the dimension-
less distance r ,

vr(r) =

√
ξ

η

ψ(r)
r

(3.36)

vθ(r) = −

√
ξ

η

dψ(r)
dr

(3.37)

which gives:

vr(r) =

√
ξ

η
r−1

[
I1(r)

(
A0 −

∫ +∞

r
K1(u)(Au2 + αu + B) du

)
+ K1(r)

(
B0 −

∫ r

0
I1(u)(Au2 + αu + B) du

)]
(3.38)

vθ(r) = −

√
ξ

η

[(
I0(r) −

I1(r)
r

) (
A0 −

∫ +∞

r
K1(u)(Au2 + αu + B) du

)
−

(
K0(r) +

K1(r)
r

) (
B0 −

∫ r

0
I1(u)(Au2 + αu + B) du

)]
(3.39)

Boundary conditions

We now need to apply the boundary conditions eqs. (3.16) and (3.17) to the velocity field
given by eqs. (3.38) and (3.39). There are possibly terms that give rise to divergences
in r = 0 or for r � 1. Let us recall the asymptotic behavior of the modified Bessel
functions of order one:

I1(x) ∼
x→0

x
2

(3.40)

K1(x) ∼
x→0

2
x

(3.41)

I1(x) ∼
x→+∞

ex
√

2πx
(3.42)

K1(x) ∼
x→+∞

√
π

2x
e−x (3.43)

The exponential growth of I1 at infinity imposes A0 = 0, in order to to have a finite
self-advection velocity v0. The hyperbolic divergence of K1 in zero imposes B0 = 0. A
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finite value for B leads to a logarithmic divergence at the origin, therefore B = 0. We
are left with the following velocity field:

vr(r) = −

√
ξ

η
r−1

[
I1(r)

∫ +∞

r
K1(u)(Au2 + αu) du

+ K1(r)
∫ r

0
I1(u)(Au2 + αu) du

]
(3.44)

vθ(r) =

√
ξ

η

[(
I0(r) −

I1(r)
r

) ∫ +∞

r
K1(u)(Au2 + αu) du

−

(
K0(r) +

K1(r)
r

) ∫ r

0
I1(u)(Au2 + αu) du

]
(3.45)

Given eqs. (3.44) and (3.45) and eqs. (3.42) and (3.43), the velocity in the far field is
given by

lim
r→+∞

vr(r) = −

√
ξ

η
A (3.46)

lim
r→+∞

vθ(r) =

√
ξ

η
A (3.47)

The boundary condition eq. (3.17) of vanishing velocity in the lab frame at infinity
imposes:

A =
√
η

ξ
v0 (3.48)

In the frame of the defect, the velocity needs to be zero at the core of the defect. This
implies vr(0) = vθ(0) = 0. The integrals in eqs. (3.44) and (3.45) are well defined in 0
and ∫ +∞

0
K1(u)u2 du = 2 (3.49)∫ +∞

0
K1(u)u du =

π

2
(3.50)

Since r−1I1(r) −→
r→0

1/2 and I0(r) −→
r→0

1,

lim
r→0

vr(r) = −

√
ξ

η

1
2

(
2A + α

π

2

)
(3.51)

lim
r→0

vθ(r) =

√
ξ

η

1
2

(
2A + α

π

2

)
, (3.52)
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which imposes A = −απ/4. Therefore, we get the velocity of the defect v0 = A
√
ξ/η,

recalling that α = ζ∆µ/(2ξ):

v0 = −
π

8
ζ∆µ
√
ξη

ex (3.53)

As one expects from a linear hydrodynamic theory, the velocity is proportional to the
activity ζ∆µ. For a contractile nematics, ζ < 0, a defect move towards its tail. For
extensile nematics, ζ > 0, a defect move towards its head. The velocity decreases
as the viscosity or the friction coefficients increase. The scaling for the velocity of
the defect can be known only from dimensional analysis: by neglecting the dynamics
of the director, there is only one time scale τ = η/ζ∆µ and one length scale L =√
η/ξ. Therefore, the velocity of the defect has to be proportional to ζ∆µ/

√
ξη. The

velocity field in physical units created by a +1/2 topological defect when neglecting the
dynamics of orientation of the director is:

vr(r) = −
ζ∆µ
√
ξη

L
r

[
I1(

r
L
)

∫ +∞

r
L

K1(u)(−
π

8
u2 +

1
2

u) du

+ K1(
r
L
)

∫ r
L

0
I1(u)(−

π

8
u2 +

1
2

u) du

]
(3.54)

vθ(r) =
ζ∆µ
√
ξη

[(
I0(

r
L
) −

LI1(
L
r )

r

) ∫ +∞

r
L

K1(u)(−
π

8
u2 +

1
2

u) du

−

(
K0(

r
L
) +

LK1(
L
r )

r

) ∫ r
L

0
I1(u)(−

π

8
u2 +

1
2

u) du

]
(3.55)

The velocity field is represented in fig. 3.11.
A feature of the flow of eqs. (3.54) and (3.55) is the existence of two vortices of

opposite signs. The vorticity scalar field ω(r, θ) defined by ωez = ∇ × v is represented
in fig. 3.12. In the far field r � L, we find that the radial velocity in the lab frame
scales as ζ∆µ/(ξr) and the vorticity scales as ζ∆µ/(ξr2), as seen in fig. 3.13. This
relatively “slow” decay of the velocity, even in the presence of friction through viscous
drag, can be attributed to the divergence of the total active force with system size. The
1/r dependence of the velocity in the far field makes the total friction force diverge
with system size, and the total force vanishes. This scenario of an isolated defect with
a macroscopic size does not exist in practice and these divergences with respect to the
system size disappear when considering a dipole flow created by a pair of half integer
defects of opposite strengths [40].

Compared to previous results, Pismen in ref. [40] considers a lubrification approxi-
mation that cancels hydrodynamic interactions and studies the dynamics of the director
in the far field, i.e does not consider γ = 0. Giomi et al in ref. [39] consider a case



82 CHAPTER 3. ACTIVE DEFECTS ON A SUBSTRATE

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15
20

Figure 3.11: Velocity field in the lab frame around a contractile (ζ < 0)+1/2 topological
defect. The distance is in units of the length L =

√
η/ξ and the flow is plotted up to

r/L = 25, where the flow has already decays significantly compared to the core value.
The blue dashed line are the stream line of the flow and the red arrows are the velocity
vectors. The velocity decays with increasing distance to the core. There are vortices of
opposite direction that are characteristic of the active flow around a +1/2 defect. The
extensile flow profile ζ > 0 can be obtained reversing the direction of the velocity vector
field.

without interactions with the substrate (ξ = 0) and without orientation dynamic (γ = 0).
The obtained results depend therefore on the system size, which is typically set by the
distance between defects. In our calculation, by considering an interaction with the sub-
strate that screens hydrodynamic interactions over a typical length scale L =

√
η/ξ, and

by neglecting the dynamics of the director, we obtain an analytical solution that can be
in principle compared to experiments.
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Figure 3.12: Vorticity map in units of ζ∆µ/η around a contractile ζ > 0 +1/2 topo-
logical defect. The dark solid line represent the orientation of the director around the
defect. The distance is in units of the length L =

√
η/ξ and the vorticity is plotted up

to r/L = 2.5 where the vorticity has decayed significantly. The antisymmetry of the
vorticity with respect to the x−axis is signature of this flow. For an extensile defect
ζ > 0, the vorticity map is given by reversing the sign of the vorticity.

Pressure field

Once the velocity field has been determined by eqs. (3.54) and (3.55), the pressure field
P(r, θ) is given by force-balance eq. (3.15):

P(r, θ) = −
ζ∆µ

2
cos θ (3.56)

The pressure given by (3.56) is defined up to a constant determined by some external
pressure. The active stress creates a gradient of pressure between the head and the tail
of a defect. For contractile nematics (ζ < 0), as represented on fig. 3.14, there is a lower
pressure at the head than at the tail of a defect. For extensile nematics (ζ > 0) it is the
opposite.
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Figure 3.13: Radial parts of the velocity (left) in units of ζ∆µ/
√
ξη and of the vorticity

(right) in units of ζ∆µ/η as a function of the dimensionless length. Both functions decay
over distances controlled by the behavior of modified Bessel functions.

3.4 Pinning of active defects
In this section, in the light of the experimental observations of motionless defects pre-
sented in section 3.2, we estimate the magnitude of a local force acting on the core
necessary to stop the motion of a +1/2 defect. In this section, as presented in sec-
tion 3.1.2, we consider the core of the defect to be a disk of finite radius ε. Inside the
core, for r < ε, there is no nematic order (p2 = 0), and there is perfect nematic order for
r > ε (p2 = 1). This simplification approximation is justified because we do not focus
on the dynamics inside the core.

We define f as the total force applied by the substrate on the core of the defect.
Because the aim is not to describe what happens inside the core of the defect, the ex-
pression of the force density inside the core of the defect is of no importance. The only
constraint we impose is that the total force be f. We therefore consider that the substrate
applies a force density f /(2πεr)ex, where f = |f | is the constant total force. The force
is applied only in the direction of the self-advection velocity ex. Force balance becomes:

η∆v − ∇P − ξ(v + v0) −
ζ∆µ

2r
ex = 0, r > ε (3.57)

η∆v − ∇P − ξ(v + v0) −
f

2πεr
ex = 0, r < ε (3.58)

The velocity and pressure fields that satisfy the force balance eqs. (3.57) and (3.58) must
also ensure the continuity of the stress and velocity at the core interface.
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Figure 3.14: Pressure field in units of ζ∆µ around a +1/2 defect in a contractile nematic.

Fields inside the core

The advantage of considering this form for the force density inside the core is that,
formally, it is similar to the active force. Therefore, the results of the previous section
can be used to determine the fields inside the core. Inside the core, all quantities have
the superscript c. There is the same characteristic length L inside and outside of the
core: L =

√
η/ξ. We can introduce the same dimensionless variable r′ = r/L for r < ε

and r > ε. Proceeding exactly as in section 3.3, we keep track of quantities inside the
core with the superscript c. The stream function inside the core satisfies the following
equation:

d2ψc(r)
dr2 +

1
r

dψc(r)
dr

−

(
1 +

1
r2

)
ψc(r) = Acr +

Bc

r
+ β, (3.59)

where β =
f

2πεξ is the analog, for the force imposed at the core of the defect, of
α = ζ∆µ/(2ξ) in eq. (3.25). For simplicity, we took the liberty to keep the same names
for the integration constants throughout this chapter. Following the calculations of sec-
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tion 3.3, the velocity field inside the core is given by:

vc
r (r) =

√
ξ

η
r−1

[
I1(r)

(
Ac

0 −

∫ +∞

r
K1(u)(Acu2 + βu + Bc) du

)
+ K1(r)

(
Bc

0 −

∫ r

0
I1(u)(Acu2 + βu + Bc) du

)]
(3.60)

vc
θ (r) = −

√
ξ

η

[(
I0(r) −

I1(r)
r

) (
Ac

0 −

∫ +∞

r
K1(u)(Acu2 + βu + Bc) du

)
−

(
K0(r) +

K1(r)
r

) (
Bc

0 −

∫ r

0
I1(u)(Acu2 + βu + Bc) du

)]
(3.61)

The boundary conditions are imposed by eqs. (3.16) and (3.17). Therefore vc
r (r = 0) =

vc
θ (r = 0) = 0. This imposes that Bc

0 = Bc = 0. Since this solution is valid for
r < ε/L, we cannot discard Ac

0 because of divergences far from the core, and Ac remains
unknown. Ac

0, Ac are determined by imposing the continuity of the velocity and stress
fields. The velocity field now reads:

vc
r (r) =

√
ξ

η
r−1

[
I1(r)

(
Ac

0 −

∫ +∞

r
K1(u)(Acu2 + βu) du

)
− K1(r)

∫ r

0
I1(u)(Acu2 + βu) du

]
(3.62)

vc
θ (r) = −

√
ξ

η

[(
I0(r) −

I1(r)
r

) (
Ac

0 −

∫ +∞

r ′
K1(u)(Acu2 + βu) du

)
+

(
K0(r) +

K1(r)
r

) ∫ r

0
I1(u)(Acu2 + βu) du

]
(3.63)

To write the continuity of the stress at the interface of the core of the defect, one
needs to compute the pressure field. Since ∇ · v = 0, we get an equation for the pressure
field inside the core Pc by taking the divergence of eq. (3.58):

∆Pc(r, θ) =
f

2πεr2 cos θ (3.64)

Similarly to what has been done outside the core, we perform a mode expansion of the
pressure field inside the core and only the first mode remains. We can give directly the
pressure using the dimensionless variable r to be consistent, even though there is no
intrinsic scale for the pressure field.

Pc(r, θ) =
[
Ac
∗r +

Bc
∗

r
−

f
2πε

]
cos θ (3.65)
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By taking the curl and divergence of eq. (3.58), to determine respectively the velocity
and pressure fields, we have introduced too many integration constants that must be
linked by the force-balance eq. (3.58). After going back into physical units for the
velocity, plugging back the velocity and pressure fields into the force-balance eq. (3.58)
gives:

Bc
∗ = −ξBc (3.66)

Ac
∗ = ξ(A

c −

√
η

ξ
v0) (3.67)

Since Bc = 0 to avoid divergences of velocity at the center of the core this imposes
Bc
∗ = 0. Vanishing velocity in r = 0 imposes Ac

0 = 0

Fields outside the core

Outside the core, we have already calculated the full velocity field given by eqs. (3.38)
and (3.39). The integration constants A0, A, B, B0 of eqs. (3.38) and (3.39) are modified
because of the finite-size core. Vanishing velocity far from the core r � L in the
lab frame still imposes A0 = 0 because of exponential divergences, and A =

√
η/ξv0

because of the finite velocity −v0ex in the far field and eqs. (3.46) and (3.47). However,
since this expression of the velocity is only valid outside the core, one can no longer
take B, B0 = 0.

Similarly to what is done inside the core, the pressure field outside the core P(r, θ)
is given by

P(r, θ) =
[
A∗r +

B∗
r
−
ζ∆µ

2

]
cos θ (3.68)

and the integration constants A∗, B∗ are related to the constants of the velocity A, B by
the force-balance eq. (3.57):

B∗ = −ξB (3.69)

A∗ = ξ(A −
√
η

ξ
v0) (3.70)

Since A =
√
η/ξv0, eq. (3.70) gives A∗ = 0.

Matching of the solutions

We are left with four independent constants B, B0, Ac, v0, which all depend on the hydro-
dynamic parameters and on the force f . There are four relations to be satisfied. There
are two equations for the continuity of the velocity:

vr(ε) = v
c
r (ε) (3.71)

vθ(ε) = v
c
θ (ε) (3.72)
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There is continuity of the normal and tangential force densities at the interface of the
core. The normal force is given by σt

rr = 2η∂rvr − P and the tangential force is given
by the stress σt

rθ = η ((∂θvr − vθ)/r + ∂rvθ). The conditions for stress continuity are:

(2η∂rvr − P)|ε = (2η∂rv
c
r − Pc)|ε (3.73)

η

(
1
r
(∂θvr − vθ) + ∂rvθ

)
|ε

= η

(
1
r
(∂θv

c
r − v

c
θ ) + ∂rv

c
θ

)
|ε

(3.74)

These four conditions form a linear system for the four unknows B, B0, Ac, v0. Solving
this system, we determine the value of the stall force f , such that v0 = 0.

f =
√
η

ξ

π2ζ∆µ

1 − log(ε
√

ξ
η )

(3.75)

On a side note, mathematically we have computed the partial (f is applied only in
the x−direction) two-dimensional Green function (for f = 1) for a Stokes flow with
viscous drag in real space with, in the lab frame, a finite velocity in the x−direction at
the origin and no velocity in the far field.

At short distance r �
√
η/ξ, the viscous drag is negligible w.r.t to the shear forces.

This explains the logarithmic dependence in the core size for the force to pin a de-
fect, which comes from the Stokeslet flow (the flow of localized force represented by a
Dirac function). In two dimensions, the Stokeslet has a logarithmic dependence on the
distance to the origin [113]. Since a point force creates a flow that diverges logarithmi-
cally, we obtain the expression for the stall force given by eq. (3.75). The expression in
eq. (3.75) is to be compared to the stall force needed when taking into account orien-
tation dynamics, given by eq. (3.102) as we shall see later. The velocity field obtained
with the presence of a stall or pinning force f is represented in fig. 3.15. The radial
component of the velocity vr(r) is plotted in fig. 3.16.

3.5 Effect of orientation dynamics

3.5.1 Motivation, changes
In the previous section, we have neglected the orientational dynamics of the director.
However, the displacement of a +1/2 topological defect due to the active force gener-
ates rotations of the director together with the displacement of the defect. When the
core of the defect moves, because the velocity field decreases as the distance to the core
increases, the motion of the defect is not a translation of the defect conformation, it is
accompanied by a rotation of the directors around the defect, to account for the motion.
Taking into account the rotational viscosity γ can affect the velocity of the defect com-
puted in the previous section. Moreover, because the effect of the rotation is strongest
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Figure 3.15: Velocity field around a contractile (ζ < 0) +1/2 topological defect, with
the pinning force f applied. The distance is in units of the length L =

√
η/ξ and the flow

is plotted up to r/L = 25. The blue dashed lines are the stream lines of the flow and the
red arrows are the velocity vectors. The core is of size is set numerically to ε = 10−3L.
The radial velocity decays towards zero very fast in the vicinity of the core as seen in
fig. 3.16 and, at this scale, it may seem that there is flow at the core, but the core does
not move.

at the core, it can influence greatly the scaling of the force needed to pin a defect with
respect to the size of the core given in eq. (3.75). The dynamics of the director acts on
the total stress via three contributions:

1. The coupling between flow and orientation represented by the parameter ν

2. The Ericksen stress that is the equilibrium stress presented in section 1.2 and given
in appendix A in the case of defects.

3. The torque caused by the distortion free energy, given by the antisymmetric part
of the total stress.

To investigate the effect of the orientation dynamics on the velocity of the defect and
on the pinning of the defect, we start by looking at the effect of the torque given by the
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Figure 3.16: Radial velocity vr(r) with the presence of the pinning force f, in units of
ζ∆µ/

√
ξη. There is a sharp decrease of the velocity in the vicinity of the core.

anti-symmetric part of the stress σA
αβ =

(
hαpβ − hβpα

)
/2. In tensorial notations, the

anti-symmetric part of the stress reads:

σA =
1
2

(
0 −h⊥

h⊥ 0

)
(3.76)

This expression is independent of the system of coordinates, although the expression of
h⊥ depends on it. The force density created by the anti-symmetric part of the stress is
given by ∇ · σA = ∇ × (h⊥ez)/2. By definition h⊥ is given by the variation of the free
energy with respect to the angle of the director h⊥ = −δF/δϕ = K∇2ϕ. For passive
systems at equilibrium, the defect configuration verifies by definition h⊥ = 0. However,
in the active case, the steady-state configuration no longer minimizes the free energy
and h⊥ , 0. In the active case, the molecular field is given by solving the dynamical
constitutive equation for the director, coupled to the velocity field:

∂t pα + vβ∂βpα + ωαβpβ =
1
γ

hα − νuαβpβ (3.77)

We are interested in the steady state and put all time derivatives to zero. As a first
approximation, we only consider the effects of the torques and consider that ν = 0.
By projecting eq. (3.77) onto qα, the perpendicular vector to pα, and introducing ω =
(∇ × v) · ez, we obtain h⊥:

h⊥ =
γ

2
[
vθ
r
− ω] (3.78)
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In terms of the stream function ψ = (∇ × v) · ez,

h⊥ =
γ

2
[∆ψ −

∂rψ

r
] (3.79)

3.5.2 Perturbative flow with passive defect orientation
Even when not considering the coupling between the flow and the orientation with ν =
0, the flow induced by the active stress generates torques because of a non-zero h⊥ given
by eq. (3.78). The orientation of the director ϕ must satisfy:

K∇2ϕ =
γ

2
[∆ψ −

∂rψ

r
] (3.80)

For a passive defect, there is no flow in the absence of external forcing, the flow is
the result of the active stress that creates an active force density when there are gradients
of orientation. Therefore, when writing a formal expansion in activity for the velocity,
there is no zeroth order term, v = ζ∆µv1 + . . . . Let us write an expansion in the activity
ζ∆µ for the angle of the director ϕ = ϕ0 + ζ∆µϕ1 + . . . , or in terms of the director
p = p0 + ζ∆µp1 or the active stress σact

αβ = ζ∆µp0
αp0

β + (ζ∆µ)
2p1

αp1
β. Considering this

expansion in activity, to calculate the first-order term in velocity, one can consider that
the orientation is the passive orientation. From the first-order velocity one can then
calculate the first-order perturbation in activity to the orientation ϕ1, which in turn gives
the second-order velocity field v2.

Let us compute the first-order velocity v1 and drop the superscript for simplicity. At
this point, we only consider the effect of the torques and not of the Ericksen stress that
we set to zero. Force balance, when taking into account the torques due to the distortion
free energy, reads:

η∆v +
1
2
∇ × (h⊥ez) − ∇P − ξ(v + v0) −

ζ∆µ

2r
ex = 0 (3.81)

It is convenient to use the stream function to find the velocity field and to take the curl
of eq. (3.81):

∆

[
(η +

γ

4
)∆ψ −

γ

4r
∂rψ − ξψ

]
= −ζ∆µ

sin θ
2r2 (3.82)

There is an effective viscosity η̄ = η + γ/4 that defines a characteristic length L̄ =√
η̄/ξ. There is a numerical coefficient made of the ratio between rotational and effective

viscosities λ = γ/(4η + γ). By considering the dimensionless unit length r′ = r/L̄ and
renaming it r , eq. (3.82) reads:

∆

[
∆ψ −

λ

r
∂rψ − ψ

]
= −α

sin θ
r2 , (3.83)
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where we recall that α = ζ∆µ/(2ξ). Equation (3.83) can be integrated two times and

∆ψ −
λ

r
∂rψ − ψ =

[
A r +

B
r
+ α

]
sin θ (3.84)

We have retained the same notation for the integration constants A, B to emphasize the
similarity with the case where γ = 0 of section 3.3. Similarly to the case where there
is no orientation dynamics γ = 0, by symmetry and due to the expression of the active
force, ψ(r, θ) = ψ(r) sin θ. Expanding eq. (3.84) one gets the evolution of the radial
stream function ψ(r):

∂2
r ψ +

(1 − λ)
r

∂rψ − (1 +
1
r2 )ψ = A r +

B
r
+ α (3.85)

Equation (3.85) is similar to eq. (3.25) at γ = 0, and the difference is in the coefficient
λ. Equation (3.85) is a transformed version of the modified Bessel equation given by
Bowman [114], and the functions solving the homogeneous equation are rλ/2Iν(r) and
rλ/2Kν(r), where ν =

√
1 + λ2/4.

3.5.3 Flows
We proceed exactly as in section 3.3, where orientation dynamics was neglected (γ, λ =
0), and find the general solution for the stream function satisfying eq. (3.85):

ψ(r, θ) = rλ/2
[
Iν(r)

(
A0 −

∫ +∞

r
r′−λ/2Kν(r′)(Ar′2 + αr′ + B) dr′

)
(3.86)

+ Kν(r)
(
B0 −

∫ r

0
r′−λ/2Iν(r′)(Ar′2 + αr′ + B) dr′

)]
sin θ,

where A0, A, B0, B are integration constants. This gives the velocity field v =
√
ξ/η̄∇ ×

(ψez):

vr =

√
ξ

η̄
rλ/2−1

{
Iν(r)

(
A0 −

∫ +∞

r
r′−λ/2Kν(r′)(Ar′2 + αr′ + B) dr′

)
+ Kν(r)

(
B0 −

∫ r

0
r′−λ/2Iν(r′)(Ar′2 + αr′ + B) dr′

)}
cos θ (3.87)

vθ =

√
ξ

η̄
rλ/2

{(
ν − λ

2
r

Iν(r) − Iν−1(r)

) (
A0 −

∫ +∞

r
r′−λ/2Kν(r′)(Ar′2 + αr′ + B) dr′

)
+

(
ν − λ

2
r

Kν(r) + Kν−1(r)

) (
B0 −

∫ r

0
r′−λ/2Iν(r′)(Ar′2 + αr′ + B) dr′

)}
sin θ

(3.88)



3.5. EFFECT OF ORIENTATION DYNAMICS 93

We are interested mostly in the effect of a finite rotational viscosity on the velocity of
the defect. As in the previous section, the velocity of the defect is given by setting the
boundary-condition eqs. (3.16) and (3.17) of finite velocity in the far field and vanishing
velocity at the origin, in the frame of the defect. Far from the core r � 1 (in dimen-
sionless units), the A0 term diverges exponentially and therefore A0 = 0. Because of the
exponential behavior of the modified Bessel functions in the far field, the behavior of the
velocity far from the core is unchanged by the presence of the coefficient λ. Therefore
eqs. (3.46) and (3.47) giving the limit of the velocity field at large distance is still valid
and

A =
√
η̄

ξ
v0 (3.89)

Close to the core r � 1, the velocity is asymptotically given by:

vr(r) ≈
r�1

√
ξ

η̄

(
−

B
λ
+ 2ν−1

Γ(ν)B0rλ/2−(ν+1) −
2−ν

Γ(ν + 1)
(Cλ

1α + Cλ
2 A)rλ/2+ν−1

)
(3.90)

vθ(r) ≈
r�1

√
ξ

η̄

(
B
λ
+ 2ν−1

Γ(ν)(ν −
λ

2
)B0rλ/2−(ν+1) +

2−ν(λ2 + ν)
Γ(ν + 1)

(Cλ
1α + Cλ

2 A)rλ/2+ν−1

)
(3.91)

with

Cλ
1 =

∫ ∞

0
dr r1−λ/2Kν(r) (3.92)

Cλ
2 =

∫ ∞

0
dr r2−λ/2Kν(r) (3.93)

Contrary to the behavior far from the core, the behavior close to the core is changed by
orientation dynamics. In order to satisfy the condition of vanishing velocity at the core
eq. (3.16), one has to take B0 = 0 to avoid divergences. One must also take B = 0 to
avoid a finite velocity at the core. However, now the term α that depends on the active
stress, and the term A that depends on the velocity of the defect both behave as vanishing
power laws close to the core ∼ rλ/2+ν−1. Therefore, the velocity of the defect cannot be
determined by eq. (3.16) alone. On top of ensuring vanishing velocity in r = 0, one has
to verify that the antisymmetric stress does not diverge at the core of the defect. In other
words, we need to ensure that the flow induced by the active stress does not make the
total transverse stress σt

rθ diverge in r = 0. The transverse stress is given by an active
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contribution σact
rθ = ζ∆µ sin θ, a viscous contribution

σv
rθ(r, θ) =

√
ξ

η̄
η

[
∂rvθ +

1
r
(∂θvr − vθ)

]
(3.94)

=
ξ

η̄
η

[
−∂2

r ψ(r) +
1
r
∂rψ(r) −

ψ(r)
r2

]
sin θ (3.95)

=
ξ

η̄
η

[
−(1 +

2
r2 )ψ(r) +

2 − λ
r

∂rψ(r) − (Ar + α)
]

sin θ (3.96)

and an antisymmetric contribution σA
rθ = −h⊥. Using eq. (3.84) verified by ψ and the

expression of h⊥ as a function of the stream function given by eq. (3.79),

σA
rθ = −

ξ

η̄

γ

4

[
λ − 1

r
∂rψ(r) + ψ(r) + A r + α

]
sin θ (3.97)

Expressing the total tangential stress in terms of velocity for which we calculated the
asymptotic expression, one gets

σt
rθ =

√
ξη̄

(
2
λ − 1

r
(vθ(r) + vr(r)) − rvr(r) −

√
ξ

η̄
A r

)
sin θ (3.98)

From eqs. (3.90) and (3.91), since 0 < λ = γ/(γ + 4η) < 1 and 1 < ν =
√

1 + λ2/4 <√
5/2, the exponent λ/2 + ν − 2 < 0. Contrary to the case λ = 0, there is a divergence

of the tangential stress at the core of the defect, except when A = −αCλ
1 /C

λ
2 . This sets

the defect self-advection velocity:

v0 = −
ζ∆µ
√
ξη̄

Cλ
1

2Cλ
2

ex (3.99)

with Cλ
1 ,C

λ
2 given respectively by eqs. (3.92) and (3.93). The expression for the velocity

when there is orientational dynamics is very similar to the case when it is neglected.
The main difference is that there is an effective viscosity η̄ = η + γ/4 and a numerical
coefficient Cλ

1 /C
λ
2 that depends on the ratio of the two viscosities η/γ. The ratio between

the velocity when γ is finite given by eq. (3.99) and the velocity at γ = 0 given by
eq. (3.53), is plotted on fig. 3.17. The way to determine the velocity of the defect in the
case where there is orientational dynamics is different from the case there is none, and
this difference is informative. In the case where there is no orientation dynamics, the
velocity of the defect is such that, in the lab frame, the viscous dissipation balances the
active stress and ensures that there is no flow far from the core. In this case, because of
the added dissipation through γ, the velocity of the defect is set such that the torques
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Figure 3.17: Ratio between the velocity at γ , 0 and the velocity at γ = 0 as a function
of γ/(4η). As γ/(4η) increases the velocity decreases w.r.t to the case γ = 0, consistent
with the added dissipation introduced by the rotational viscosity.

that now exist in the system do not diverge at the defect core. Knowing the effective
viscosity η̄, the scaling of the velocity as ζ∆µ/

√
ξη̄ can be expected from dimensional

arguments as for the case γ = 0 in section 3.3. As plotted on fig. 3.17, taking into
account the rotational viscosity effectively “slows” down the defect compared to the
case γ = 0. To compare the velocity field computed in this section to the one when
γ = 0 in section 3.3, we plot on fig. 3.18 the radial velocity vr(r) in units of ζ∆µ/

√
ξη

for γ = 0 in blue and for an extreme value γ/(4η) = 103 in red.

3.5.4 Reduction of pinning force due to orientational dynamics

The added source of dissipation, from the orientational dynamics with rotational vis-
cosity γ, changes the behavior of the velocity close to the core of the defect, and the
stokeslet associated to the flow with orientational dynamics no longer has a logarithmic
divergence. Let us see how this changes the scaling of the pinning force with respect
to the size of the core. To do so, we proceed exactly as for γ � η in section 3.4, and
consider a defect core of finite size ε and different forces inside and outside of the defect
core:

η∆v +
1
2
∇ × (h⊥ez) − ∇P − ξ(v + v0) −

ζ∆µ

2r
ex = 0, r > ε (3.100)

η∆v − ∇P − ξ(v + v0) −
f

2πεr
ex = 0, r < ε (3.101)
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Figure 3.18: Radial velocity vr(r) in units of ζ∆µ/
√
ξη in the lab frame as a function of

the distance r in units of
√
η/ξ. The blue curve represents the velocity without orien-

tational dynamics at γ = 0 whereas the red curve represents the velocity in an extreme
case where γ/η = 103. When γ � η the value of the defect velocity decreases.

The pressure outside the core is unchanged because the torques due to the antisymmetric
stress do not affect the pressure field. The fields outside the core and inside the core are
therefore already known from the previous sections 3.4 and 3.5.3. Performing the same
asymptotic matching as in section 3.4, we find the force f to apply at the core in order
to pin a defect:

f =
√
η̄

ξ
ζ∆µ

(
ε

√
ξ

η̄

)λ/2+ν−1

g(λ) (3.102)

g(λ) = −3
2νCλ

1 (λ − 2) [48(ν − 1) + 2λ(λ(1 + λ/2 + ν) − 4)]
(48 − 20λ2 + λ4)Γ(ν + 1)

(3.103)

Compared to the case where λ = 0, the force to pin a defect has a different scaling with
respect to the size of the core ε. When taking into account the orientational dynamics,
we find that the force necessary to pin a defect depends on the size of the core as a
power-law with a positive exponent λ/2 + ν − 1 > 0. We recall that λ = γ/(4η + γ)
and ν =

√
1 + λ2/4. Compared to the logarithmic dependence in eq. (3.75), there is a

stronger dependence on the size of the core. The size of the core ε is to be compared
to the characteristic length

√
η̄/ξ. The presence of orientational dynamics lowers the

force required to pin a defect, because there is an added source of dissipation due to the
translation of the defect core, that requires rotations of cells to accommodate the defect
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configuration. At this point in this work, it is too early to evaluate the magnitude of the
force eq. (3.102). However, this informs on the possibility of pinning a defect. This
results shows that, by creating strong gradients of orientations through a small core size
ε, the force necessary to pin a defect decreases as a power-law. Even though no forces
were measured in experiments, the distribution of focal adhesions on fig. 3.6 could be
the signature of the pinning force.

3.6 Effects of cell division and cell death

3.6.1 Pressure-dependent cell-division rate

To describe the onset of multilayering, one has to look at the influence of cell divisions
and extrusions or deaths in the monolayer. In the same fashion as was done in the stripes
of section 2.3.1, we consider that cells appear “ex nihilo” and disappear from the mono-
layer when they are extruded or when they die. One of the motivation behind looking
at the role of cell divisions is that the mechanical environment around the defect is not
homogeneous because of active forces. The pressure given by eq. (3.56) varies between
the head and the tail of the defect. This pressure difference can impact cell division and
extrusion, and therefore inform on the onset of multilayering. If we give a simplistic
picture of cell division and extrusion, compared to a reference pressure, a higher pres-
sure hinders cell growth and therefore division. Inversely, a lower pressure facilitates
cell growth and division. It has been shown that the growth of cell aggregates can be
regulated by applying mechanical stress on spheroids [76–79]. The aforementioned pa-
pers introduce the concept of homeostatic pressure Ph, which is a reference pressure
for the net division rate. When the pressure is above the homeostatic pressure there
is more cell deaths then cell divisions on average and the spheroid shrinks, whereas
when the pressure is below the homeostatic pressure cells divide more than they die on
average, and the spheroid grows. In a monolayer of elongated cells like C2C12, this
concept can become more complicated, and there can be potentially coupling between
the anisotropic stress and the net cell division rate proportional to σαβpαpβ, but as a first
approximation, one can consider a linear relation between the net division rate k and the
mechanical pressure P:

k(P) = −
1
κ
(P − Ph) (3.104)

Taking account net cell divisions, mass conservation, or in this case mass balance, is
given by:

∂tρ + ∇ · (ρv) = k(P)ρ (3.105)
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If we assume constant density ∂tρ + v · ∇ρ = 0, then the incompressibility condition is
given by

∇ · v = k(P) (3.106)

= −
1
κ
(P − Ph) (3.107)

It is one of the particular features of the hydrodynamics of cells to have incompressible
flows that are not divergence-free, because the total number of cells is not conserved
locally. There are sources (divisions) and sinks (death or extrusion) of cells even if the
cells are incompressible. More specifically, by taking a constant density of cells, the
fact that the velocity is not divergence-free implies that the volume (or here surface) is
not conserved. κ has the dimension of a viscosity and is called the bulk viscosity: κ
is associated to the amount of inflow or outflow from a given volume due to pressure
changes. At low κ, a small pressure change induces a large flow and it is the opposite at
large κ.

The pressure field P(r, θ) given by eq. (3.56) is defined up to a constant that depends
on a reference pressure. We consider this reference pressure to be the homeostatic
pressure. Physically, this means that the reference state for which the net division rate
vanishes is the uniform monolayer state, with no gradient of orientations. In that case,
the pressure P(r, θ) of eq. (3.56) is the pressure difference induced by the defect com-
pared to the homeostatic pressure Ph. For contractile cells (ζ < 0), there is an increase
of pressure at the tail of the defect and a decrease of pressure at the head of the defect
with respect to the homeostatic pressure, and vice-versa for extensile cells (ζ > 0). The
low-pressure environment at the head of the defect promotes division while the high-
pressure environment promotes extrusion. Let us look in details at the hydrodynamic
effects of the pressure-dependent cell-division rate.

3.6.2 Changes in the flow due to cell division
To investigate the effect of this pressure-dependent cell-division rate, we consider for
simplicity the simpler case where orientational dynamics are neglected, i.e η � γ.
Force balance is given by eq. (3.15) and has to be supplemented with an equation for
the divergence of the velocity (3.107) since the velocity field is no longer divergence-
free. We write the velocity field as a sum of a curl-free part and a divergence-free part,
also known as the Helmholtz decomposition [115]

v = ∇ × (ψez) + ∇φ (3.108)

and φ is related to pressure via eq. (3.107), which implies

κ∆φ = −(P − Ph) (3.109)
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It must be noted that the decomposition given by eq. (3.108) is not unique, as detailed in
appendix E. Taking the curl and the divergence of the force-balance eq. (3.15) decouples
the two fields ψ and φ, which follow:

η∆(∆ψ) − ξ∆ψ = −
ζ∆µ

2r2 sin θ (3.110)

(η + κ)∆(∆φ) − ξ∆φ = −
ζ∆µ

2r2 cos θ (3.111)

Working with the dimensionless variable r′ = r
√
ξ/η, renamed r for simplicity, eqs. (3.110)

and (3.111) become:

∆(∆ψ) − ∆ψ = −
α

r2 sin θ (3.112)

∆(∆φ) −
1
a2∆φ = −

α

a2r2 cos θ (3.113)

with a =
√
(η + κ)/η the square root of the ratio between the longitudinal and the trans-

verse viscosities and the same active coefficient α = ζ∆µ/(2ξ) as in the rest of the chap-
ter. The function ψ that gives the divergence-free part of the velocity is unchanged and is
given by eq. (3.35). For symmetry reasons exposed in section 3.3, φ(r, θ) = φ(r) cos θ.
The function φ(r) that gives the curl-free part of the velocity is very similar to ψ(r),
except that the effective viscosity is not the same. Therefore, the two functions evolve
on different length scales:

φ(r, θ) =

[
I1(

r
a
)

(
Ã0 −

∫ +∞

r
a

K1(r′)(Ãa3r′2 + αr′ + B̃a) dr′
)

(3.114)

+ K1(
r
a
)

(
B̃0 −

∫ r
a

0
I1(r′)(Ãa3r′2 + αr′ + B̃a) dr′

)]
cos θ

The velocity is then given by

vr(r, θ) =
(
ψ(r)

r
+ drφ(r)

)
cos θ (3.115)

vθ(r, θ) = −
(
φ(r)

r
+ drψ(r)

)
sin θ (3.116)

Injecting the expression of the velocity and of the pressure into the force-balance eq. (3.15)
relates the integration constants of ψ to those of φ with

B = a2B̃ (3.117)

A + a2 Ã =
√
η

ξ
v0 (3.118)
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To determine the integration constants A0, Ã0, A, Ã, B, B̃, B0, B̃0 (the constants without
tilde are the constants as given in eqs. (3.38) and (3.39) for the flow without orientation
dynamics), we need to apply the boundary conditions eqs. (3.16) and (3.17): A0 = Ã0 =
0 to avoid exponential divergences with system size. A supplementary condition must
be added to determine the velocity field, that the division rate k(P) does not diverge
with system size nor in r = 0. With this supplementary condition, we are able to set
B = B0 = B̃0 = B̃ = 0. The remaining integration constants are A, Ã, and the limits of
the velocity are given by:

lim
r→+∞

vr(r) = −

√
ξ

η
(A + a2 Ã) (3.119)

lim
r→+∞

vθ(r) =

√
ξ

η
(A + a2 Ã) (3.120)

lim
r→0

vr(r) = −

√
ξ

η

1
2

(
2(A + a2 Ã) + α

π

2
(1 +

1
a
)

)
(3.121)

lim
r→0

vθ(r) =

√
ξ

η

1
2

(
2(A + a2 Ã) + α

π

2
(1 +

1
a
)

)
(3.122)

The boundary condition far from the core r �
√
η/ξ that v = −v0 is redundant with

eq. (3.118). The boundary condition of vanishing velocity at the core of the defect
eq. (3.16) gives A + a2 Ã = −απ/4(1 + 1/a), which gives for the velocity of the defect

v0 = −
π

8
ζ∆µ
√
ξη

(
1 +

√
η

η + κ

)
ex (3.123)

When κ � η, small deviations from the homeostatic state induce very large flow. In
that case, we see from eq. (3.123) that the velocity of the defect is twice the velocity
obtained when there is no cell division. For contractile cells, the active stress induces
a motion of the defect in the direction of its tail. On top of that, the active stress cre-
ates, for contractile cells, a depression at the head of the defect and an excess pressure
at the tail. This pressure difference promotes division at the head and extrusion at the
tail. Equation (3.123) indicates that the asymmetric net division rate also promotes a
motion of the defect towards its tail. For extensile cells, the role of the head and of the
tail of a defect are reversed. Regarding the motion of the defect, the effects of the active
stress and that of a pressure-dependent net division rate are additive. The flow consid-
ering cell division is shown in fig. 3.19, and the heterogeneous division rate is shown in
fig. 3.20. Note that the divergence field of the flow is the same thing as the division rate
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according to the incompressibility relation (3.106). This asymmetric cell division can
be one of the mechanisms to explain why topological defects are preferential points for
multilayering and extrusion in general. It can be noted that in ref. [36,37], Kawaguchi et
al. and Saw et al. considered cell accumulation around +1/2 topological defects with-
out making a distinction between the head and the tail of the defect. Density changes
between the head and the tail are explored in ref. [95], for extensile bacteria in the con-
text of a dry system without hydrodynamic interactions. Copenhagen et al. measure
the divergence field around a +1/2 defect and find a mainly positive divergence at the
tail and negative divergence at the head. This would be consistent with our predictions
eq. (3.107), with the head and the tail reversed compared to fig. 3.20, since the bacteria
considered in ref. [95] are extensile. In the experiments conducted by T. Sarkar, prelim-
inary observations suggest an accumulation of cells at the head that could be what leads
to multilayering.

3.7 Active corrections to the orientation of topological
defects

3.7.1 Active perturbation to the orientation of the defect
In all the previous sections 3.3 to 3.6, in particular in the perturbation in activity pre-
sented in section 3.5.2, we computed the velocity field created by the active force due to
an equilibrium configuration of a +1/2 topological defect. We computed in section 3.5.3
the velocity field induced by activity, considering orientation dynamics. We can now in
turn calculate the influence of the flow on the director field. The perpendicular compo-
nent of the molecular field h⊥ is h⊥ = K∇2ϕ by definition. To first order in activity, h⊥
is given by eq. (3.79). The angle of the director ϕ therefore satisfies:

K∇2ϕ =
γ

2

[
∆ψ −

∂rψ

r

]
, (3.124)

with ψ the stream function given by eq. (3.86). Given the azimuthal dependence of
the stream function, we look for a solution to the eq. (3.124) of the form ϕ(r, θ) =
θ/2 + ϕ(r) sin θ. Solving the Poisson eq. (3.124), we can get the radial function of the
director angle, as a function of the velocity field induced by the active force given by
eqs. (3.87) and (3.88):

ϕ(r) =
γ

2K

{
C r + rvr(r) +

1
2

(
r
∫ r

0

vθ(r′)
r′

dr′ −
1
r

∫ r

0
r′vθ(r′) dr′

)}
(3.125)

Any divergence at the origin was removed by choosing appropriate integration con-
stants, and C is an integration constant that must be determined given a value of the
perturbation ϕ(r) at a given point.
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The angular field ϕ(r, θ) is computed in the frame of the defect, and the velocities
in eq. (3.125) are the velocities given in the frame of the defect. In this frame, in the
far field r �

√
η/ξ, vr → −v0 and vθ → v0, where v0 is the magnitude of the self-

advection velocity of the defect given by eq. (3.99). Therefore, all the terms on the
RHS of eq. (3.125) diverge at least linearly with the system size. Consequently, this
solution cannot be valid at large lengths. This determines a cutoff length above which
the expansion around the solution for a passive topological defect is no longer valid, and
above which active effects dominate the orientation field.

3.7.2 Domain of validity of the passive orientation
Let us write the orientation angle ϕ(r) given by eq. (3.125) in the far field. Knowing
that vr → −v0 and vθ → v0, the orientation angle in the far field is:

ϕ(r) ≈
r�
√
η/ξ

γ

2K
r
{
C +

v0
2

ln(
r
r0
)

}
(3.126)

with r0 a length that does not impact the behavior of the orientation angle. From
eq. (3.126), the expression for the angle is valid only if the system size R is such
that R � K/(γv0). In terms of hydrodynamic parameters, given the scaling for v0
in eq. (3.99),

R �
η + γ/4

γ

√
ξ

η + γ/4
K
|ζ∆µ|

(3.127)

On the right-hand-side of inequality (3.127), there is the characteristic length associated
to the screening of hydrodynamic interactions by the viscous drag L =

√
(η + γ/4)/ξ,

and an active length La =
√

K/|ζ∆µ|. The active length La, up to dimensionless param-
eters depending on the geometry, is the same length as in chapter 2. In chapter 2, this
length is the typical length above which a band of active nematic spontaneously deforms
and create a gradient of orientation. We also have on the RHS of inequality (3.127) the
ratio between the effective viscosity η + γ/4 and the rotational viscosity γ. In terms of
those lengths, inequality (3.127) can be rewritten

R � Ldefect
c =

η + γ/4
γ

L2
a

L
(3.128)

The inequality (3.128) gives a domain of validity for the passive orientation. For
distances r much smaller than the length Ldefect

c , the approximation ϕ = θ/2 is valid to
compute the flow induced by activity. However, the divergence of ϕ from eq. (3.126)
implies that the flow created by the orientation field of a defect ϕ = θ/2 destroys this
orientation field at distances larger than Ldefect

c . Therefore, the configuration of an active
+1/2 defects should not exist above Lcdefect.
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To ensure the existence of an isolated topological defects and satisfy inequality
(3.128), it is sufficient to have La � L, or to be in the approximation of negligible
orientation dynamics η � γ. When this condition is not satisfied, active topological de-
fects lose orientational order over lengths greater then Ldefect

c . Interestingly, La controls
the low-Reynolds turbulent regime found in active nematics. There is a turbulent regime
for lengths much larger than the active length La [44,105,116,117]. We recover a form
of this result here, but because of the interaction with the substrate via viscous drag,
this active length must be compared to the screening length L and the ratio between the
viscosities (η + γ/4)/γ.

3.8 −1/2 topological defects

Most of the focus of this work is on +1/2 defects. From an experimental point of
view, this is where T. Sarkar observed multilayering and non-motile defects. From a
theoretical viewpoint, +1/2 defects are particularly interesting because of their acquired
polarity that explains the self-advection and the asymmetry in cell division described in
section 3.6. Let me however show without much details how the calculations of this
chapter can be adapted to compute the flow field for a −1/2 topological defects. We
introduce the same physical quantities as in the previous sections, with a superscript
− to differentiate them from the ones computed for a +1/2 defect. For simplicity, I
consider the case where the rotational viscosity vanishes.

A schematic representation of a −1/2 defect with the reference axis is given on
fig. 3.9. The active force density created by the defect configuration ϕ = −θ/2 is given
by eq. (3.12). Since there is no preferred direction of motion for a −1/2 defect, there is
no self-advection velocity. Force balance is given by:

η∆v− − ∇P− − ξv− −
ζ∆µ

2r
(− cos(3θ) er + sin(3θ) eθ) = 0 (3.129)

The only boundary condition is
v−(+∞, θ) = 0 (3.130)

The curl of eq. (3.129) gives:

∆ [η∆ψ− − ξψ−] =
3
2
ζ∆µ

sin 3θ
r2 (3.131)

The characteristic length L =
√
η/ξ is unchanged and in the dimensionless unit r′ =

r/L,

∆ [∆ψ− − ψ−] = −α−
sin 3θ

r2 , (3.132)
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with α− = −3ζ∆µ/(2ξ). ψ− is of the form ψ−(r, θ) = ψ−(r) sin 3θ. Integrating eq. (3.132)
gives for ψ−(r):

d2ψ−(r)
dr2 +

1
r

dψ−(r)
dr

−

(
1 +

3
r2

)
ψ−(r) = A−r +

B−

r
+ α− (3.133)

Homogeneous solution are given by the modified Bessel functions I3(r) and K3(r). The
velocity field for an isolated −1/2, with vanishing velocity in the far field, in dimension-
less units, is given by:

vr =
3ζ∆µ
2
√
ξηr

{
I3(r)

∫ +∞

r
K3(r′)r′ dr′

+ K3(r)
∫ r

0
I3(r′)r′ dr′

}
cos 3θ (3.134)

vθ =
3ζ∆µ
2
√
ξη

{(
3
r

I3(r) − I2(r)
) ∫ +∞

r
K3(r′)r′ dr′

+

(
3
r

K3(r) + K2(r)
) ∫ r

0
I3(r′)r′ dr′

}
sin 3θ (3.135)

I give on fig. 3.21 a representation of the division rate for a −1/2 defect following
the lines of section 3.6

3.9 Discussion
In order to understand the role of topological defects in the multilayering of C2C12
cell monolayers, we looked at the flow created by an isolated active topological defect.
We modeled the interaction between the cells and the substrate through a viscous drag
with a friction coefficient ξ, and found that there is a characteristic length scale L =√
η/ξ, over which hydrodynamic interactions are screened. The passive configuration

of a defect given by eq. (3.5) has a gradient of orientation that creates an active force
density. For −1/2 defects, because of the geometry of the defect, the total force density
around a defect vanishes and a −1/2 defect does not move on average. The geometry
of +1/2 topological defects creates however a force density along its axis of symmetry,
which generates a self-advection of the defect. As a first approximation, the flow can be
computed by neglecting the orientation dynamics with respect to the shear dynamics.
In this approximation, the self-advection velocity of a +1/2 defect is proportional to
−ζ∆µ/

√
ξηex (eq. (3.53)). For contractile cells (ζ < 0) a +1/2 defect moves towards its

tail, and for extensile cells it moves towards its head (ζ > 0). The motion of defects in
C2C12 monolayers is consistent with a contractile behavior.

The total active force on an isolated defect diverges with the system size. As a conse-
quence, despite the screening of hydrodynamic interactions by the characteristic length,



3.9. DISCUSSION 105

the velocity field decays in the far field as the inverse distance to the core. Therefore,
the total friction force diverges with system size and the total force vanishes.

To understand the experimental observation of motionless +1/2 defects, we com-
puted the stall force of a +1/2 defect and found that the force depends on the logarithm
of the size of the defect core (eq. (3.75)). We identified that the orientation dynamics of
the flow can be key for the stall force as the motion of a +1/2 defect requires rotation
of cells to accommodate for the changes in the orientation field. By taking into account
this effect, we found that the self-advection velocity of the defect decreases with the
rotational viscosity γ (eq. (3.99)). Taking into account orientational dynamics, the stall
force depends on the size of the core as a power law (eq. (3.102)). Compared to the log-
arithmic dependence at γ � η, there is a stronger dependence on the size of the core.
If the core of the defect is small with respect to the characteristic length L, this force
can become small compared to the active force. This work is still preliminary, and the
comparison between the theoretical force given by eq. (3.102) and the force generated
by the cells is yet to be done.

To understand the onset of multilayering, we modeled cell division and extrusion
in the monolayer. As a first approximation, we considered the net division rate to be
proportional to pressure: we considered a homeostatic state where the net division rate
vanishes when there is no gradient of orientation. The configuration of a +1/2 defect
creates a pressure difference between the head and the tail of the defect, and the sign
of this difference depends on whether the cells are extensile or contractile. This pres-
sure difference generates an asymmetric net division rate, and the flow is no longer
divergence-free. The flow caused by this asymmetric division rate is favoring the mo-
tion of the defect. In the limit κ � η where minute changes in pressure induce a large
divergence of the flow, the self-advection velocity of a +1/2 defect is doubled.

Although a qualitative argument, the existence of trapped defects together with the
flow induced by division can explain why +1/2 topological defects are preferential sites
for multilayering or for extrusion. For contractile cells, the combination of these effects
leads to an accumulation of cells at the head of the defect, because the net division rate
is predicted to be positive on average at the head. For extensile cells, it should be the
opposite. T. Sarkar tried to measure cell division in the monolayer but there was no
strong evidence of division rate resembling the one predicted by the theory fig. 3.20.
Experimentally, there is preliminary evidence of accumulation of cells at the head of
non-motile +1/2 defects.
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Figure 3.19: Changes in the radial (upper left) and azimuthal (upper right) velocity fields
vr(r) and vθ(r) due to cell division (blue curve, κ = η) compared to when there is no cell
division (red curve), in units of ζ∆µ/

√
ξη. The radial velocity is not very affected by cell

division except that the velocity of the defect is increased by cell division. The azimuthal
velocity is however changed, it decays slower when there is cell division, on the same
length scale as the radial velocity. On the bottom panel is shown the streamlines of the
velocity field in blue and the arrows of the velocity field in red. Because of cell division,
there is a convergent flow towards the core from the head of the defect and a divergent
flow towards the tail.
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Figure 3.20: Division rate, or equivalently divergence of the velocity field, in units of
ζ∆µ/κ, for a contractile system around a +1/2 topological defect. We see that at the
head of the defect there is a positive net division rate, whereas at the tail of the defect
there is a negative net division rate, i.e extrusion or death.
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Figure 3.21: Division rate (or equivalently divergence of the velocity field) in units of
ζ∆µ/κ around a −1/2 topological defect for a contractile system.
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Conclusion

This PhD thesis deals with the theoretical description of the collective motion and spa-
tial organization of cells. In particular, we restricted our attention to elongated cells that
form confluent monolayers. These cells orientationally order into a nematic phase char-
acterized by a director p, and can be described by the hydrodynamic theory of active
nematics presented in section 1.2. This theory is similar to the hydrodynamic theory
of passive nematics, with the addition of new terms due to the activity of the system.
There is an active stress proportional to pαpβ, which can be either contractile or exten-
sile. We presented in this work two manifestations of this active stress in two different
geometries.

Chapter 2 dealt with a monolayer of active nematics confined in a stripe of width L
and of quasi-infinite length, while chapter 3 focused on topological defects in an active
monolayer, in particular positive half-integer defects. Although my work is theoretical,
the questions addressed in this manuscript are all grounded in experiments.

In chapter 2, I presented in section 2.2.1 the active Freedericksz instability of a
band of active nematics [41]: there is a critical width Lc, above which a uniform state
parallel to the stripe is no longer stable. Above Lc, a gradient of orientation develops
in the stripe and there is a shear flow. I presented in section 2.3 the specificities of cell
nematics introduced by Duclos, Blanch-Mercader et al. in ref. [1]. The main differences
with the hydrodynamic theory presented in section 1.2 are cell divisions and deaths that
do not conserve the mass density, and the interactions with the substrate that do not
conserve momentum. Both these effects can influence the stability of a monolayer of
cells in a stripe and influence the value of the critical width Lc.

I then proceeded to describe new experimental work conducted in the group of Pas-
cal Silberzan by Thibault Aryaksama in sections 2.4 and 2.5. By abrading the surface
over which the cells are plated, one is able to favor the orientation of the cells, a pro-
cess called contact-guidance. From a theoretical viewpoint, we modeled this effect by
adding an external field favoring orientation. When this field is applied perpendicularly
to the stripe, we showed that there is an additive effect between the active stress and
the external field to destabilize the uniform state. The resulting critical width must be
smaller than in the absence of external field, as shown in section 2.4.2. In section 2.4.3,
we showed that depending on the magnitude of the external field, there is potentially a
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competition for the tilt angle in large stripes.
Experimentally, cells align parallel to the abrasions in large stripes. According to our
calculations, this means that the effect of the abrasions on the orientation of the cells
is strong with respect to the active stress, in the sense of eq. (2.73). However, when
comparing the critical length for the instability of the uniform state with and without
abrasions, there is no clear difference between the two. We therefore make the hy-
pothesis that there is a non-linear effect of the abrasions on the orientation. Below a
certain width of the stripe, of the order of 200µm, the abrasions have no effect on the
orientation.

In section 2.5, by varying the angle of the abrasions with respect to the direction
of the stripes, we are able to quantify the competition between the orientation imposed
by the active stress and the orientation imposed by the abrasions. Because of the ac-
tive stress, cells do not align exactly with the abrasions when the abrasions are not
perpendicular to the stripe. This competition allows for the direct measurement of the
flow-alignment parameter ν.

These experiments in a relatively simple geometry are well suited to measure the
hydrodynamic parameters of tissues. Section 2.6 deals with the estimation of the hydro-
dynamic parameters by comparing experimental data to analytical results. I present the
theoretical limitations to such an approach in section 2.6.1. Apart from measuring the
flow-alignment parameter ν and the diffusion coefficient K/γ, the estimation was not
successful in giving unknown parameters to ref. [1], which deals with the same geom-
etry. This is due notably to the difficulty in estimating the ratio of viscosities η/γ from
the amplitudes of the tilt, which could be caused by the fact that η � γ.

Chapter 3 deals with topological defects in active cell monolayers. Although this
chapter is more theoretical, it is still grounded in the experimental observations made
by Trinish Sarkar in the group of Pascal Silberzan. I give an overview of passive and
active topological defects and introduce their mathematical description in section 3.1.
Section 3.2 details the physical questions raised by the experiments. The first ques-
tion comes from the multilayering events that occur at positive half-integer topological
defects. Surprisingly, there are motionless +1/2 defect in the monolayer even though
+1/2 defects are supposed to be self-propelled due to an active force. Several hours af-
ter confluency, all non-motile +1/2 defects multilayer. To describe these effects, we first
computed in section 3.3 the velocity and pressure field created by a +1/2 defect inter-
acting with the substrate through viscous drag. To do so, we decoupled the orientation
dynamics and considered only the flow created by a passive defect configuration. The
interaction with the substrate allowed for the calculation of the pinning force necessary
to stall the self-propelled motion of a +1/2 defect, detailed in section 3.4. In section 3.5,
we considered the effect of torques created by the antisymmetric stress on the flow. We
found that the self-propelled velocity decreases with the rotational viscosity γ. The pin-
ning force is also lowered because of the rotational viscosity, as it depends as a power
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law on the size of the core compared to a logarithmic dependence when the rotational
viscosity vanishes. We were able in section 3.7 to estimate a length scale above which
the passive orientation of a +1/2 defect is no longer stable due to the flow created by its
orientation.

In section 3.6, we took into account the effect of cell division and death on the flow
around a +1/2 topological defect. We related linearly the division rate to the pressure
around the defect. The pressure difference between the head and the tail of the defect,
due to the active force, drives an asymmetry in the net division rate. The effect of this
asymmetric division rate is to push the defect in the same direction as the active force
does. There is an additive effect between the flow associated to cell division and the
flow associated to the active force. Together with the potential pinning of defects, this
could explain why multilayering happens preferentially at +1/2 topological defects.

The perspectives of this work are numerous and bridge the two chapters of this
thesis. For the parameter estimation in the stripe experiment, a more rigorous numerical
approach could be used to estimate the parameters. An interesting feature to explore in
the stripes is the presence of topological defect close to the boundary. We only looked in
chapter 2 at continuous deformations of the director, but in general there are topological
defects located close to the boundary of the stripe in the presence of abrasions, which
account for the frustration between the direction of the stripes and the perpendicular
abrasions. There seems to be a typical distance between pairs of defects along the length
of the stripe. This is a phenomenon reminiscent of wall formation and “pincement” in
the passive Freedericksz transition.

There are several possible extensions of the study that we have made on defects.
Firstly, we have neglected two contributions, the flow-alignment parameter ν and the
Ericksen stress. Taking into account the coupling between flow and orientation ν , 0,
all the modes of the angular Fourier expansion become coupled. The Ericksen stress
poses other problems, but there are reasons to believe it does not change qualitatively
the result. We have not computed the case of cell division together with the pinning
force. The case where the rotational viscosity is much larger than the shear viscosity is
a limit to explore, especially since some results of chapter 2 could suggest that this limit
is relevant. In this limit, the flow is treated as a perturbation and the active force acts
on the orientation field. It would also be interesting to calculate the flow and the effects
of cell division for a configuration of two defects of opposite charges, a +1/2 and −1/2
defect.

A question raised by the observations of chapters 2 and 3 is the apparent extensile
and contractile behaviors, for the same line of C2C12 myoblast cells, in the stripe ge-
ometry and for topological defects. The observation of the flow with respect to the tilt
angle in stripes is consistent with an extensile active stress, while the motion of +1/2
defects in the free monolayer is consistent with a contractile active stress. This could
be explained by active interactions with the substrate, as proposed by Maitra et al. in
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ref. [68]. A different interaction with the substrate for a splay and a bend deformation
could explain this apparent contradiction.
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Appendix A

Ericksen stress

We derive the Ericksen stress corresponding to the variation of the free energy with
the volume [35, 66, 74]. The Ericksen stress is a generalization of the thermodynamic
pressure for anisotropic system. Consider a volume V that is translated onto a volume
V ′ = V +δV by an infinitely small and constant displacement uα. Consider a free energy
density f that depends on the polarization pα, on gradients of the polarization ∂αpβ and
on the mass density ρ. The variation of free energy δF due to the displacement uα is:

δF =
∫

V+δV
d3r f (pα + δpα, ∂αpβ + δ∂αpβ, ρ + δρ) −

∫
V

d3r f (pα, ∂αpβ, ρ) (A.1)

=

∫
δV

d3r f (pα, ∂αpβ, ρ) +
∫

V
d3r

{
∂ f
∂ρ

δρ +
∂ f
∂pα

δpα +
∂ f

∂(∂βpα)
δ∂βpα

}
(A.2)

=

∫
δV

d3r f (pα, ∂αpβ, ρ) +
∫

V
d3r {µcδρ − hαδpα} +

∫
S

dSβ
∂ f

∂(∂βpα)
δpα (A.3)

We introduced the chemical potential µc = ∂ f /∂ρ and the molecular field hα = −∂ f /∂pα+
∂β(∂ f /∂(∂αpβ)). Since there is translation invariance, if we call p′α the new orientation
field after application of the small displacement uα, p′α(rα + uα) = pα(rα). Therefore,
the variations δpα = p′α(rα) − pα(rα) and δρ = ρ′(rα) − ρ(α) are given by:

δpα = −uγ∂γpα (A.4)
δρ = −uγ∂γρ (A.5)

Using
∫
δV f =

∫
S dSβ uβ f , eq. (A.3) becomes:

δF =
∫

V
d3r uβ

(
ρ∂βµc + hα∂βpα

)
+

∫
S

dSβ uβ( f − µcρ) −

∫
S

dSβ
∂ f

∂(∂βpα)
uγ∂γpα

(A.6)
We can now identify the Ericksen stress with the surface contribution:

σE
βα = ( f − µcρ)δβα −

∂ f
∂(∂βpγ)

∂αpγ (A.7)
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Translation invariance imposes δF = 0, which gives the Gibbs-Duhem relation eq. (1.17):

− ∂βσ
E
βα = ρ∂αµc + hγ∂αpγ (A.8)

The diagonal part of the Ericksen stress given by eq. (A.7) renormalizes the pressure and
has no particular hydrodynamic consequence. The non-diagonal part of the Ericksen
stress is of second order with respect to derivative of the polarization, and is therefore
negligible in several situations where a uniform state is perturbed.

A.1 Ericksen stress in stripes
In the particular geometry of the stripe, since there is a y−invariance, the xy-component
of the Ericksen stress vanishes and does not play a role in section 2.2.2:

σE
xy = −K∂x pα∂ypα = 0 (A.9)

A.2 Ericksen stress for +1/2 defects
In the case of a topological defect, the Ericksen stress is not negligible because the
gradient of orientation is fixed. In force-balance eq. (3.15), there is an additional term
coming from the Gibbs-Duhem relation (A.8): −hγ∂αpγ = −h⊥/(2r)eθ . When γ � η
this term is negligible but outside of this approximation it is relevant. With the Ericksen
stress, the equation for the stream function eq. (3.83) is:

∆

[
∆ψ −

λ

r
∂rψ − ψ

]
+
λ

r
∂r

[
∆ψ −

∂rψ

r

]
= −α

sin θ
r2 (A.10)

When the Ericksen stress is taken into account, the force-balance equation (A.10) is a
fourth-order differential equation. Because of the λ/r∂r[. . . ] term, we can no longer
integrate a Poisson equation and solve a second-order differential equation.



Appendix B

Amplitude equations

I detail in this appendix the derivation of the amplitudes given in eqs. (2.32) and (2.65)
from the nonlinear equations eqs. (2.24) and (2.60). If we expand eqs. (2.24) and (2.60)
for θ = π/2 + δθ, at steady state we obtain an equation of the form

∂2
x δθ + q2

cδθ − gδθ
3 = 0 (B.1)

To look for solutions of eq. (B.1) for lengths close to the critical length, we can make a
weakly non-linear perturbation in the small parameter ε = (L − Lc)/Lc and look for δθ
of the form

δθ(x) = ε1/2u0(x) + εu1(x) + ε3/2u2(x) + O(ε2), (B.2)

with
u0(x) = A0(ε

1/2x) cos(qx), (B.3)

and u1, u2 are functions to describe the higher order terms of the perturbation angle.

d2
xu0(x) =

(
−q2 A0 − 2qε1/2dx A0(ε

1/2x) + εd2
x A0(ε

1/2x)
)

cos(qx) (B.4)

and
u3

0(x) =
1
4

A3
0(3 cos(qx) + cos(3qx)) (B.5)

At order ε1/2, eq. (B.1) is:
∂2

x u0 + q2
cu0 = 0 (B.6)

and is verified because of eq. (B.3) and q = qc(1 − ε)
At order ε:

∂2
x u1 + q2

cu1 = 2qdx A0(ε
1/2x) cos(qc x) (B.7)

To avoid secular terms, we need dx A0 = 0. Therefore A0 is a constant.
At order ε3/2:

∂2
x u2 + q2

cu2 = (−2q2
c A0 +

3
4
gA3

0) cos(qc x) + . . . (B.8)
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To avoid secular terms, we need

A0 = 2

√
2

3g
qc (B.9)

Equation (B.9) gives eqs. (2.32) and (2.65) after computing the nonlinear coefficient g
from equations eqs. (2.24) and (2.60).



Appendix C

Pressure-dependent division rate in
stripes

We will make in this appendix a short remark that coupling the division rate to the stress
or the pressure should not change the critical length (2.27) in stripes.

Imagine we make a linear coupling between net division rate and pressure:

k = −
1
κ
(P − Ph), (C.1)

The definition of k through (C.1) implies that there is a homeostatic pressure Ph, such
that division and extrusion are balanced at Ph. If P > Ph there is net extrusion and
if P < Ph there is net division. When rewriting the constitutive equations with this
assumption, we obtain the following set of equations:

0 = η∂xvy −
ζ∆µ

2
sin 2θ +

ν

2
(h‖ sin 2θ + h⊥ cos 2θ) −

h⊥
2

(C.2)

0 =
h‖
γ
+ νk cos2 θ −

ν

2
∂xvy sin 2θ, (C.3)

∂tθ − vx∂xθ =
h⊥
γ
−
νk
2

sin 2θ −
∂xvy

2
(ν cos 2θ − 1) (C.4)

k = −
1
κ
(P − Ph) (C.5)

∂xvx = k (C.6)

We see in (C.3) and (C.4) that the terms that involve the net division rate k are
always multiplied by a function of the angle θ. Therefore, to linear order in orientation,
a non-uniform pressure that would depend on the angle θ would have no effect on the
critical length. All the effects due to the pressure-dependent division rate are non-linear.
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Appendix D

Averaging experimental data in stripes

From a theoretical perspective, the hydrodynamic theory introduced in section 1.2 is a
theory valid in the limit of a large number of cells. Take for a example the coarse-grained
velocity field: it is supposed to represent the average value of the velocity of all cells in
a coarse-grained volume. When constructing the hydrodynamic theory, we considered
that the fluctuations of these coarse-grained variables were negligible with respect to
their average value. Although this is true in a large coarse-graining volume containing
a large number of cells, experimentally the coarse-graining volumes made of pixels are
of the order of several cells. Therefore, fluctuations are relevant when looking at one
stripe. To obtain the average value described by the hydrodynamic theory, a multitude
of identical stripes are observed, and then averaged.

In the presence of abrasions, as seen on fig. 2.4, there are two branches that go from
θ(0) = ±π/2 to θ(0) = 0, a positive and a negative one. These two branches seem to be
equivalent, there is no prevalence for positive or negative values. This leads to a certain
problem for averaging: because of the symmetry between the positive and negative
branches, one cannot simply average the values of the angle of different stripes of the
same width, because half the stripes have positive angles and the other half negative
ones. The average is therefore always going to be zero. To have a non-zero average,
one needs a way of distinguishing between the two branches. One can think of taking
the absolute values of the angle to only have positive values. However, by taking the
absolute value fluctuations no longer average out.

We come up with a way, first suggested by Carles Blanch-Mercader, to select the
positive branch based on the knowledge of the hydrodynamic theory. From the observa-
tion of the direction of shear with respect to the tilt angle in large stripes we can deduce
that the cells are extensile, using eq. (2.33). Therefore, we know that on average a neg-
ative tilt −π/2 < θ(0) < 0 is associated to a negative velocity at the right edge of the
stripe vy(L/2) < 0. We can therefore decide to change the sign of the angles associated
to a negative velocity at the right edge. Similarly, we change the sign of the velocity
if it is associated to a negative tilt. Performing this transformations gives the figures
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presented in section 2.6.2, where the comparison between the theory and experiments
in stripes is made.



Appendix E

Helmholtz decomposition

The Helmholtz decomposition in eq. (3.108) is not unique, and as a consequence some
integration constants in section 3.6 are not determined. The integration constants A, Ã
of the divergence-free and curl-free parts of the velocity are only determined by a single
equation (3.118). We can prove that, with the boundary conditions of finite velocity in
the far field in the frame of the defect, there is one degree of freedom when defining
the velocity by the sum of a curl-free and divergence-free field. Indeed, let us take the
decomposition

v = ∇ × (ψez) + ∇φ (E.1)

and ask on what condition this decomposition is unique. Let us write

v = ∇ × (ψez + ψ2ez) + ∇(φ + φ2), (E.2)

For v to be unchanged, we need

∇ × (ψ2ez) = −∇φ2 (E.3)

For ∇ · v to be unchanged, we need:

∆φ2 = 0 (E.4)

Given (E.4), we can always find ψ2 to satisfy (E.3) because ∇φ2 is a divergence-free
field.

The conclusion is that any harmonic function that satisfies the boundary conditions
can be added to the curl-free part of the velocity φ and not change the velocity given
the appropriate modification on ψ. Given our boundary condition at infinity that the
velocity is along ex, this leaves functions of the form φ2 = (C r + D/r) cos θ. To avoid
a divergence of the velocity in 0, D = 0. However, ϕ2 = C r cos θ is a valid solution.
If it were to be added to the solution, it would modify the relation between integration
constants that would become:

A + a2 Ã − C =
√
η

ξ
v0 (E.5)
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Therefore, we see that a degree of freedom in the expressions of φ, ψ remains.
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Sujet : Les tissues en tant que matériaux actifs:
écoulements spontanés et défauts topologiques dans les

nématiques cellulaires actifs

Résumé : Le comportement collectif des cellules dans un tissu est crucial pour des proccessus
fondamentaux en biologie comme le développement ou le cancer. Ces dernières décennies,
le domaine de la matière active a fournit un cadre théorique à la description des phénomènes
collectifs en biologie, à de multiples échelles. Ce travail se porte sur des tissus formés par
un grand nombre de cellules allongées qui s’organisent dans une phase nématique, similaire
à des cristaux liquides. Le mouvement et l’organisation collective des cellules dans un tissu
peuvent être décrits par une théorie hydrodynamique des nématiques actifs. Dans ce cadre, nous
étudions l’écoulement spontané de cellules induit par un confinement dans des bandes, avec une
déformation du substrat qui favorise une certaine orientation des cellules. De plus, nous nous
intéressons aux écoulements cellulaires créés par les défauts topologiques, et leur rôle dans la
formation de multi-couches cellulaires.

Mots clés : Tissus biologiques, matière active, hydrodynamique, nématiques, défauts
topologiques

Subject : Tissues as active materials: spontaneous flows
and topological defects in active cellular nematics

Abstract: The collective behavior of cells in tissues is a key aspect in fundamental biological
processes such as development or cancer. In the last decades, the field of active matter has
provided a robust framework to describe the collective behavior in biological systems at different
scales. This work focuses on tissues made of a large number of elongated cells that organize in a
nematic phase, similar to liquid crystals. The collective motion and organization of cells in such
tissues can be described using a hydrodynamic theory for active nematics. In this framework, we
study the spontaneous motion of cells induced by confinement in stripes, with cues that control
the orientation of the cells. Furthermore, we investigate the cellular flows induced by topological
defects, and their role in multilayering.

Keywords : Biological tissues, active matter, hydrodynamics, nematics, topological defects
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