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In this multi-disciplinary work, the goal is to solve a computation intensive 
multiphysics problem using High Performance Computing (HPC) 
technologies while understanding the physics behind the Stereolithography 
(SLA) process simultaneously. A state-of-the-art 3D computational 
model based on a continuum approach is developed to investigate the 
SLA process in a multiphysics framework using Optimal Transportation 
Meshfree (OTM) method. This work studies the thermo-chemo-mechanical 
coupled evolution of the properties in the 3D printed product. This complex 
simulation model is developed in a HPC framework to utilize the potential 
of higher computing power. Parallel algorithms are implemented using 
Message Passing Interface (MPI). This work involves three new concepts to 
reduce the computational efforts: Efficient parallel implementation strategy 
of OTM with localized updates, use of flexible data structures for halo regions 
to handle variable workloads and reduced communication cost by use of 
neighbor collectives.
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Zusammenfassung
In dieser Dissertation wurde ein hochmodernes 3D-Rechenmodell für den Stere-
olithografieprozess entwickelt, um die Entwicklung der Eigenschaften in einem Multiphysik-
Rahmen mit der Stabilized Optimal Transportation Meshfree (OTM)-Methode auf der
Grundlage eines Kontinuumsansatzes zu untersuchen. Um die Berechnungsleistung zu
beschleunigen, wurde ein HPC-Rahmen für die OTM-Methode entwickelt. Der Stere-
olithographieprozess ist ein komplexer Prozess, da mehrere physikalische Prozesse daran
beteiligt sind. In dieser Arbeit sind einige der Schlüsselphänomene, die in den Model-
lierungsrahmen einbezogen werden, die stark gekoppelte thermo-chemo-mechanische En-
twicklung der Harzeigenschaften und die Ausbreitung des UV-Lasers durch das Harz. Die
Photopolymerisation wird durch die Wechselwirkung des flüssigen Harzes mit dem UV-
Licht angetrieben und erzeugt aufgrund ihrer exothermen Natur Wärme, die zum Aufbau
mechanischer Spannungen führt. Die numerische und geometrische Komplexität, die sich
aus diesen Phänomenen ergibt, stellt die gitterbasierten Techniken wie die Finite-Elemente-
Methode (FE) vor große Herausforderungen und Komplikationen. Im Allgemeinen wer-
den solche Probleme als Netzverzerrung bezeichnet. OTM-basierte Berechnungsmodelle
sind die Lösung für diese Probleme. Die Methode ist recht neu auf dem Gebiet der
Stereolithographie-Simulation und sie ist effizient bei der Erfassung der während des Druck-
vorgangs entstehenden Verformungen. Darüber hinaus reduziert die Parallelisierung mittels
MPI mit dem Ziel der Skalierbarkeit auf großen CPU-Clustern den Berechnungsaufwand.
Und die erzielten Ergebnisse führen zu hoch skalierbaren Ergebnissen. Das entwickelte
Werkzeug kann zur Optimierung der Material- und Prozessparameter während des Druck-
prozesses eingesetzt werden, um eine verbesserte Genauigkeit der gedruckten Teile zu erre-
ichen.

Schlagworte: High Performance Computing, Stereolithographie, Multiphysikalische Kop-
plung, Meshfree Methode
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Abstract
In this dissertation, a state-of-the-art 3D computational model has been developed for Stere-
olithography process to investigate the evolution of properties in a multi-physics framework
using Stabilized Optimal Transportation Meshfree (OTM) method based on a continuum ap-
proach. In order to accelerate the computational performance, HPC framework of the OTM
method has been developed. Stereolithography process is a complex process in the sense
that several physical processes are involved therein. In this work, some of the key phenom-
ena incorporated in the modeling framework are highly coupled thermo-chemo-mechanical
evolution of resin properties and propagation of the UV laser through the resin. The pho-
topolymerization is driven by the interaction of fluid resin with the UV light and conse-
quently generates heat due to its exothermic nature and resulting in building up of mechan-
ical stresses. The numerical and geometrical complexities arising from these phenomena
pose serious challenges and complications in grid-based techniques such as Finite element
(FE). Generally, such issues are referred to as mesh distortion. OTM based computational
modeling is one solution to these issues. The method is quite new in the field of Stereolithog-
raphy simulation and it is efficient in capturing the deformations generated during printing
process. Moreover, parallelization using MPI with an objective for scalability on large scale
CPU clusters reduces the computational efforts. And, the obtained results leads to highly
scalable results. The developed tool can be employed to optimize the material and process
parameters during the printing process to achieve improved accuracy in the printed parts.

Keywords: High Performance Computing, Stereolithography, Multiphysical coupling,
Meshfree Method
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Chapter 1

Introduction

1.1 Motivation

In recent years, Additive Manufacturing (AM) technology has paved the way for digital
manufacturing and since then, it has been the fastest-growing advanced manufacturing tech-
nologies in the world, (GIBSON ET AL., 2015). With the introduction of this technology,
rapid manufacturing of complex and lightweight structures has become a reality. Compared
to the traditional cutting and casting processes, this technology has significantly reduced the
manufacturing costs, leading its way for applications in aerospace and other industries. AM
technology make use of additive processes and combining materials layer-by-layer. This
technology has revolutionized the product development by allowing to include intricate de-
sign features in the product. There are several AM technologies available, such as, Selective
Laser Sintering (SLS), Electron Beam Melting (EBM) and Stereolithography (SLA). Among
various AM processes, SLA is one of the most popular technologies nowadays, in which
selective curing of the polymer resin using UV laser fabricates a 3D product. Two main ad-
vantages of SLA are its part accuracy and high surface finish. One can achieve higher control
over the thickness of each layer. Broadly, there are two categories of studies conducted on
SLA printed materials. In the first category, the study of process parameters and its influ-
ence on the mechanical properties of the printed part is carried out. Second study involves
determination of mechanical properties of the printed part through development of empirical
models.

The research on SLA has been motivated by predicting their development in order to achieve
control over the mechanical properties of the product. Some of the challenges in the pro-
duced part include residual stresses, defect formation etc, which originate from several un-
certainties, such as, UV intensity, resin composition etc, see (HUANG ET AL., 2015) for
more details. However, there are limited simulation models to study the evolution of me-
chanical and chemical properties and to predict the accuracy of the cured part. A proper
simulation model to study the thermo-chemo-mechanical coupled evolution of the proper-
ties of the cured product during photopolymerization has been proposed in this work. This
work discusses the first ever developed 3D simulation model using meshfree tool to study
the evolution of curing and mechanical properties through a viscoelastic material model and
the key characteristics of the SLA process have been captured.

1



2 CHAPTER 1. INTRODUCTION

For execution of computational intensive numerical simulations, parallel architectures are
important tools. In this work, this complex simulation model has been developed in a HPC
Framework to utilize the potential of higher computing power. Also, the developed code al-
lows to deal with larger model, thanks to the distributed memory usage. In order to reduce the
computational time and to make full utilization of the available computing resources, HPC
architecture has been adopted. Within HPC framework, parallel computing is performed
by simultaneously executing computational tasks on multi-processor systems, (BOSSHARD

ET AL., 2011). In this multi-disciplinary research, the goal is to solve this computation-
intensive multiphysics problem using high performance computing technologies, while un-
derstanding the physics behind the SLA process simultaneously.

1.2 Additive Manufacturing
The term additive manufacturing, or AM, describes the use of additive processes, combining
the material layer-by-layer. Also known as Rapid Prototyping which is due to the fact that
whole product development process speeds up and not just in terms of time taken to build
parts. The speeding up is also due to the fact that computers are being used throughout the
development process. A 3D CAD modeling software is used as a starting point that describes
the complete geometry of the part to be built. Also, reverse engineering techniques through
laser or optical scanning can also be used for modeling. Usually, the CAD model is stored
in surface tessellation language (stl) format, which describes the external closed surfaces of
the model and forms the basis for calculation of the slices, see (GIBSON ET AL., 2015) for
more details.

Various AM technologies have been developed over the time considering the type of the
build material, such as, powder, solid sheet, molten metal, vat of liquid photopolymer, or
inkjet deposited photopolymer. The use of vat photopolymerization is being widely used
in several areas since its development in late 1960s. Photopolymer-based systems are quite
easy to setup since it uses support made of the same photopolymer material that is used for
the printed part. An advantage of these systems is that accuracy control of layer thickness
is very good and very thin layers can be printed compared to other AM technologies. This,
in turn, leads to high surface finish and fine precision. For the curing of commercial pho-
topolymers, various types of radiations may be used, such as, gamma rays, X-rays, electron
beams, UV and in some cases visible light. Most photopolymers react to UV range of wave-
lengths upon irradiation, thereby undergoing chemical reaction to become solid, known as
photopolymerization. A detailed description follows in Chapter 2.

1.3 Meshfree Methods

1.3.1 Eulerian and Lagrangian Perspective
Mathematical models of a physical problem can be described in Eulerian and Lagrangian
forms. In the Eulerian approach, the mesh or grid is fixed in space but in the Lagrangian
approach, the mesh or grid is attached to the material which moves along with it. Handling
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of moving or geometrically complex boundaries are treated easily using the Lagrangian ap-
proach, while it s a big challenge in the Eulerian approach. But, when it comes to physical
problem of large deformations, Eulerian approach does not suffer from mesh distortions. On
other hand, within Lagrangian approach, very large deformations lead to mesh distortions.
In Lagrangian approach, material points carry themselves the field variables, hence, the time
history of a variable associated to a material point can be tracked in a straight forward man-
ner. Whereas, in the Eulerian approach, the variables are attached to a point in a spatial
domain and not to a material point, for more details, see (LIU & LIU, 2003). Considering
the characteristics of these two approaches, Lagrangian methods are preferred in modeling
of solids and Eulerian methods are favored for computational fluid dynamics (CFD). Also,
through another method known as arbitrary Lagrangian Eulerian (ALE) method (HUGHES

ET AL., 1981), the advantages of both approaches are exploited in a combined way for prob-
lems involving fluid-structure interactions (FSI).

1.3.2 Meshless and mesh-based methods

In order to minimize the distortions in mesh-based methods resulting from large deforma-
tions, efforts were made to develop a new family of numerical methods with an aim to remove
the mesh dependency entirely. These are known as meshless methods. In meshfree methods,
a set of arbitrarily distributed points which are often called particles, is used to represent the
body. The extensive quantities like stress, density etc. are not related to a mesh but stored at
these discrete points (particles). More information about different meshless methods can be
found in (WEISSENFELS, 2021).

1.4 High Performance Computing (HPC)
Realistic simulations of many engineering applications require large-scale computations.
Computation on HPC clusters needs efficient and scalable codes. In order to utilize the
full potential of the computing power of multi-core architectures, it is necessary to exploit
both the intra and inter-node parallelism. Different parallel programming models were de-
veloped over the years. An overview can be found in (PRIMS ET AL., 2019). Currently,
existing parallel programming models are based on distributed memory and shared mem-
ory platforms. Message Passing Interface (MPI) is most widely used standard paradigm on
distributed memory platforms but it can also be applied to shared memory nodes. Other par-
allelization approaches exists, such as, OpenMP (for shared memory platforms), CUDA and
OpenCL (for graphics processing units (GPUs)). Coupling our approach with OpenMP is
possible and this will be the subject of future work.

1.5 Background and State of the Art
The description of the solidifying polymer has been captured by an advanced polymeriza-
tion model by incorporating the viscoelastic behavior. The complexity of the SLA process
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originates from its multiphysical nature, (WESTBEEK ET AL., 2018, 2020). The photopoly-
merization process starts with the exposure of UV light onto the liquid resin and the ab-
sorption of light limits its penetration depth into the resin. The liquid monomer polymerizes
at those locations where enough photons are available to be absorbed by the photoinitiator.
This process is accompanied by an exothermic reaction leading to temperature increase and
chemical shrinkage, see (NARAHARA ET AL., 1999). Hence, capturing the combination of
these complex multiphysical processes with simulation tools helps to predict the quality of
the printed part. Several authors have worked on the modeling of the printed part for SLA
process. The starting works include the development of cure depth model by Jacob ((JACOBS

& REID, 1992)). In subsequent works, layered effects of the SLA process have been studied,
see (CHAMBERS ET AL., 1995; HUANG ET AL., 2004; JIANG ET AL., 2006). Some works
have incorporated the physics to predict the polymerization profile as a function of the UV
laser source, see (JARIWALA ET AL., 2011; KANG ET AL., 2012, 2004).

Most of studies for the SLA process is focused on experimental investigations of the effects
of material and process parameters. Also, the applications of numerical modeling approaches
to understand the SLA process is not new. Several authors have worked on broad range of
techniques, both empirical and numerical, starting from Jacobs’ cure depth model (JACOBS

& REID, 1992). They use a simplified model where it is assumed that the extent of cure
is a function of the amount of exposure to UV radiation and the coupled transient, thermal
and chemical effects are neglected. Existing research can be distinguished by two different
approaches: First, attempts were made to capture the layering effect of the SLA process (us-
ing Finite Element Method) while considering all the layers to be homogeneous, for more
details, see the works by (TARABEUX ET AL., 2018; YEBI & AYALEW, 2015). In the sec-
ond approach, attempts were made to incorporate more detailed physics to study the spatial
evolution of the degree of cure as a function of the UV laser source, see (JARIWALA ET AL.,
2011) for more details. The general approaches for the cure models only contribute towards
the evolution of thermal properties and are not coupled to the evolution of the mechanical
properties of the printed part. Additionally, these simulations are performed on a finite ele-
ment mesh, whose geometry is known in advance. Hence, the predicted printed geometry is
only a deformed version of the initial geometry, where the processes, such as, illumination
profile and light absorption can induce significant effects on the mesh geometry.

Due to the complexity and large scale of SLA simulations, large scale parallel computing
using a message passing programming model has to be employed. Existing work on par-
allel architecture has been performed for fluid flow and heat transfer problems. Several
parallelization strategies exist for CFD codes based on MPI and studies on their parallel
performance have been done. In the work by (WANG ET AL., 2008), development of sub-
domain boundary mapping procedure and data communication procedures for multi-block
structured grids have been discussed. Another work for flood flow simulations with hy-
brid MPI/OpenMP framework in Finite Element has been developed, for more details, see
(SHANG, 2011). These hybrid models of MPI/OpenMP is aimed for coarse and fine-grained
parallelism. The simulation of the granular media, made of discrete particles, was stud-
ied by (MAKNICKAS ET AL., 2006). Here, spatial domain decomposition strategy and data
communication for particles in Discrete Element Method (DEM) have been implemented
and the parallel performance has been discussed in detail. Another such parallel software
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DEMFLOW has been developed for Discrete Element Method which studies the parallel
performance considering the aspects of its load-balancing and particle-data reorganization
strategies, see (WRIGGERS & AVCI, 2020) for further details. MPI libraries have large set of
runtime parameters which need to be optimized for better performance. A parameter which
has a large impact on the parallel performance is the amount of internal buffer space allo-
cated for communication, see (JIN ET AL., 2011) for more details. The data size per process
decreases with the increase of MPI processes resulting in reduced memory usage but this
trend is observed only upto a certain point. With further increase of MPI processes, MPI
buffers for data communication increases, leading to increased memory usage. A recent de-
velopment of hybrid MPI/OpenMP framework for Optimal Transportation Mehsfree (OTM)
method has been done by (LI ET AL., 2014).

The aim of this work is to develop and present a unified computational approach for the SLA
process modeling based on the Optimal Transportation Meshfree (OTM) method. The dis-
tinctive characteristic of this research work is that it predicts the printed geometry on a full
scale along with the generated deformations. This is achieved through multi-physical mod-
eling of UV irradiation, curing and shrinkage. Apart from development of a computational
model for the SLA process, parallel algorithms are implemented using Message Passing In-
terface (MPI). The Recursive Coordinate Bisection (RCB) algorithm is utilized for domain
decomposition and for implementing dynamic load-balancing strategy. This work involves
three new concepts to reduce the computational efforts: Dynamic halo regions, Efficient
data management strategies for ease of addition and deletion of nodes and material points
using advanced STL container, and nearest neighborhood communication for detection of
neighbors and communication. Also, Linked Cell approach has been implemented to further
reduce the computational efforts. Parallel performance analysis is investigated for challeng-
ing multiphysics applications like Taylor rod impact, serrated chip formation process and
Stereolithography process. For all these applications, parallel implementation leads to high
scalable results.

1.6 Structure of this work

This work contains five main more chapters as follows: In the second chapter, a detailed de-
scription of the physical phenomena behind the SLA process are explained. Subsequently, in
the third chapter, considering the complexity of the multi-physical process, the included and
excluded modeling objectives are mentioned. Also, the classical continuum framework for
the material modeling is introduced, which includes the related kinematics and the conserva-
tion principles. Here, the modeling of the resin behavior including the classical models for
the large strain viscoelasticity has been introduced. This includes chemical consideration,
which is the basis for the photopolymerization modeling and defining a thermo-chemical
free energy function for the thermo-chemical consideration. The fourth chapter starts with
a brief introduction to the OTM method. In the remainder of this chapter, the formulation
of the stabilized optimal transportation meshfree method has been discussed. In the fifth
chapter, the development of parallel framework for the OTM method with MPI has been
discussed in detail. This includes the process of domain decomposition and communication,
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object-oriented framework and special architecture considerations for the OTM method. In
the later part of this chapter, the scalability performance of the parallel framework have been
studied on two test examples. At the end, we conclude the dissertation in the sixth chapter
with the simulation of the stereolithography process and the outcomes of this work. Besides,
suggestions have been made for possible extensions for the future research.



Chapter 2

Stereolithography

Stereolithography (SLA) is one of the Rapid Prototyping (RP) technologies which are widely
used in industry now. SLA uses a setup where a computer assisted UV laser source is used to
induce curing of liquid photopolymer resin layer by layer (WANG ET AL., 2017; MELCHELS

ET AL., 2010). The platform then moves downward alongwith the first cured layer. Subse-
quently, fresh liquid resin flows over the cured part and the process is repeated again to form
a new cured layer over the previous layer. The factors affecting the quality and resolution of
the printed part are intensity of laser power, duration of UV exposure and scan speed.

2.1 Laser Configurations
The stereolithography process employ two distinct methods of irradiation: vector by vec-
tor based scanning and mask projection based scanning approach, see (FOUASSIER, 1995;
BHATTACHARYA, 2000; DA SILVA BARTOLO, 2001; BARTOLO & MITCHELL, 2003) for
more details. The vector scanning approach illuminates a small portion of the resin with
the help of a moving actuator. This approach has relatively high precision because the layer
is built in a point-by-point style with a very fine laser beam spot. However, this scanning
approach slows down the process. In mask projection based approach, the whole layer is
formed in one exposure, ZHOU ET AL. (2015), through projection of two-dimensional array
of beams. Figure 2.1 illustrates both types of approach. In current work, vector scanning
approach has been used.

2.2 Laser-Resin Interaction
The UV curing process depends on laser intensity and exposure time. Distribution of UV
laser exposure (laser intensity) is an essential condition to determine the cured areas and
thereby the printed part dimensions. A working curve based on two parameters that govern
the photopolymerization reaction has been laid out by Jacobs (JACOBS & REID, 1992): pen-
etration depth of the curing light and the laser intensity required for photopolymerization. In
this work, UV laser beam is considered as a Gaussian laser beam. According to the Gaussian
law, its intensity decreases from the center of the beam. Figure 2.2 shows the Gaussian en-

7
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Laser

Scanning 

Galvanometers

Platform

Vat

Laser or

Lamp

Optics

DMD

Platform

Vat

(a)

(b)

Figure 2.1. Two types of illumination approaches for stereolithography process: (a)
Vector based scanning process and (b) mask projection based scanning
process

ergy distribution E, which is equivalent to the intensity over time. Due to the radiation effects
of UV laser exposure, the cured part can be described as a parabolic cylinder, see Figure 2.2,
where Cd is the cure depth and Cw is the cure width, see (PHAM & GAULT, 1998; JACOBS

& REID, 1992).

The UV laser energy follows a Gaussian distribution on the material’s surface and is defined
as the radiant laser energy per unit surface area (mJ/cm2). The decrease in UV laser intensity
with depth (resin thickness) due to photo-absorption is assumed to obey Beer-Lambert law
as shown in the following equation, see (PERRY & YOUNG, 2005):

ELaser =
2PT
πW 2

0

e

(
− 2y2

W2
0
− z

Dp

)
(2.1)

where ELaser is the UV laser energy at any point (y, z) on the material’s surface, P is the
UV laser power, T is the exposure time, W0 is the radius of Gaussian laser beam and Dp

represents the penetration depth coefficient which corresponds to the UV penetration depth
into the material until the intensity of Gaussian laser beam is reduced by 1

e
, relative to the

laser intensity on the material’s surface, see (TARABEUX ET AL., 2018). The penetration
depth depends on the absorbance characteristics of the resin and is related to the resin’s
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composition, see (BENNETT, 2017) for further details.

At the surface, y = 0 and z = 0, the UV energy is maximum

Emax = E(0, 0) =
2PT
πW 2

0

(2.2)

where, the peak light intensity is defined as I0 = 2P
πW 2

0
. The maximum cure depth, also

known as ”working curve”, can be derived at y = 0, (LEE ET AL., 2001)

Cd = Dp ln

(
Emax

Ec

)
(2.3)

where, Ec is the critical UV energy required to initiate the photopolymerization and Cd is the
depth of the cured resin. It is seen from Equation (2.3) that cure depth depends on Ec, Dp and
Emax. Ec and Dp are material specific properties and Emax is related to the input UV energy.

Cured

Resin

Emax

Ec

Cw

E

Cd

2W0

UV laser beam

z

y

Figure 2.2. Illustration of Gaussian energy distribution

2.3 Photopolymerization Materials
Photocuring or photopolymerization is defined as a process of rapid synthesis of polymers by
chain reactions upon the absorption of light by a polymerizable system, (SCHNABEL, 2007).
Photopolymerization processes of thermosetting resins creates an insoluble, infusible, and
highly crosslinked 3D network, (SELLI & BELLOBONO, 1993). Photocrosslinkable mate-
rials usually consists of muntlifunctional monomers or oligomers, with small amounts of
UV sensitive photoinitiator in order to generate free radicals or ions upon UV exposure,
(DECKER, 2001). Photoinitiators play the role of converting the physical energy of the inci-
dent UV light into chemical energy by forming reactive intermediates, see (GIBSON ET AL.,
2015). These materials are divided into two groups based on their polymerization mecha-
nism: (1) materials which cure by free-radical mechanism and (2) materials which cure by
ionic mechanism. In free-radical mechanism (Figure 2.3), photoinitiated radical polymer-
ization of monomers (such as, acrylates and unsaturated polyesters ) takes place. Acrylate
based UV-curable resins are most widely used, which is due to their high reactivity, resulting
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in short reaction times in order of fractions of a second, (MENDES-FELIPE ET AL., 2019).
In ionic curing mechanism, photoinitiated cationic polymerization of vinyl ethers and multi-
functional polymers takes place.

Laser

Photoinitiator

Free radicals

Multifunctional

monomer

Polymer

network

Figure 2.3. Basic principle of laser-induced free-radical mechanism

There are several methods to activate a free-radical photopolymerization process, such as,
by light, chemical redox triggers, voltage and mechanical force. Among these methods,
light is used as an illumination source to trigger the free radical polymerization in several
engineering applications, such as 3D printing (CHEN ET AL., 2016).

2.4 High-speed UV Curing Process
In polymerization processes, ultraviolet light proves to be a powerful tool to initiate chemical
reactions. Laser-induced polymerization allows fast transformation of a liquid resin contain-
ing UV sensitive photoinitiators and monomers into a cross-linked solid (DECKER, 2001).
Photopolymerization by UV radiation is advantageous due to its accelerated processing time
(rapid solidification), higher-energy efficiency and overall ”environmental friendliness”, and
better controllability (YEBI & AYALEW, 2015; MENDES-FELIPE ET AL., 2019). Some of
the other key features of laser-induced polymerization are its spatial and temporal control
of the reaction. Due to the spatial coherence of the laser emission, the beam can have great
directivity, which can be focused even to a tiny spot of micronic dimensions. Also, since
the light-intensity does not change with distance, non-planar objects can be uniformly illu-
minated irrespective of the distance from the laser. Due to temporal coherence of the laser
beam occurring at a precise wavelength, an accurate control of penetration depth can be
achieved by unwanted side reactions, (DECKER, 1999).

During radical photopolymerization, polymerization process ceases immediately following
the discontinuation of irradiation (KIM ET AL., 2020), which means very limited dark cure
potential. This process of immediate termination gives rise to spatial and temporal control
that is highly desirable in Stereolithography. The free radical process produces short prop-
agating radical lifetimes due to termination reaction, see (KIM & STANSBURY, 2008). The
rapid cessation of the movement of free radicals occurs immediately after the formation of
polymeric chains. These are known as trapped radicals. Due to this phenomena, the polymer-
ization reaction stops since the free radicals cannot interact further with monomers. Hence,
the regions of the monomer which are exposed to UV light polymerize and solidify, while
the rest remains in fluid state. As photopolymerization proceeds, the viscosity of the mixture
in the direct vicinity of the UV light increases untill the point of vitrification and the material
becomes solid (FLACH & CHARTOFF, 1995).
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2.5 Kinetic Interpretation of UV Curing Reactions

Analytical models of the UV curing process are used to describe the coupled cure kinetics
and heat transfer of thermosetting resins. When the resin formulation containing the UV
sensitive photoinitiators and monomers are irradiated with UV, photopolymerization reac-
tion occur. Excited radicals are formed due to the absorption of photons by photoinitiator
molecules. The exothermic cure reaction is characterized by two main transitions, (SELLI &
BELLOBONO, 1993):

• Gelation (liquid-to-rubber transition)

• Vitrification (liquid- or rubber-to-glass transition)

Gelation is a non-reversible process leading to the formation of an infinite molecular net-
work and dramatic increase in viscosity. This result in existence of two phases: a sol phase
and a gel phase. During the vitrification process, a glassy solid material is formed resulting
from increase in cross-linking density and the molecular weight of the polymer being cured
(DA SILVA BARTOLO, 2007). Subsequently, the rate of reaction is diffusion controlled and
therefore, curing in the glassy state drastically slows down, see (LAPIQUE & REDFORD,
2002). Due to vitrification, the reaction shifts from kinetically controlled to diffusion con-
trolled (PRIME, 1997).

In order to measure the curing reaction in radical polymerization, the degree of cure (α) is
introduced.

α(t) =
H(t)

H(∞)
ϵ [0, 1] (2.4)

where, H(t) is the accumulated released heat at time t and H(∞) is the total accumulated
released heat of the cured material. The degree of cure also represents the mass fraction of
the already cured material.

Usually, the cure kinetics can be modeled through three different approaches:

• Energetic models,

• Mechanistic and semimechanistic models, and

• Phenomological models.

Energetic models The energetic models are based on the fact that the initiation of the
curing process occurs only when a critical value of energy is achieved. The factors consid-
ered in these models are based on relation between radiation profile, radiation intensity, and
energy, that could simulate both mask irradiation and direct irradiation processes, for more
details, see (MATIAS ET AL., 2009).



12 CHAPTER 2. STEREOLITHOGRAPHY

Mechanistic and semimechanistic models Mechanistic or semimechanistic models are
based on both the concept of free radical polymerization and mechanism of reactions with
diffusion (MATIAS ET AL., 2009). The complexity of the curing reaction is simplified
through several assumptions and approximations. Incorporating the effect of diffusion, free
volume molecular parameters and the glass transition temperature are introduced, which are
used to modify the rate constants of the free radical polymerization reactions, see (ZETTER-
LUND & JOHNSON, 2002; DA SILVA BARTOLO, 2007). After each change of resin formu-
lation, the kinetic parameters need to be recomputed since these models do not include the
effects of initiator concentrations on the degree of cure.

Phenomological models Phenomological models were developed to simulate the physical
and chemical changes occurring in the material and its surroundings when exposed to UV
radiation. In this model, law of conservation of energy has been described by coupling the
heat transfer phenomena with kinetic models for the degree of cure. Several possibilities
exist to formulate the kinetic models for degree of cure, see (KIASAT, 2000). A theoretical
kinetic model of the cure reaction rate of epoxy acrylates can be interpreted as given by the
dual Arrhenius approach, see (KAMAL & SOUROUR, 1973; SOUROUR & KAMAL, 1976).
This model represents the autocatalytic cure kinetics

α̇(Θ) = [A1(Θ) + A2(Θ)αm] (1− α)n (2.5)

The autocatalytic cure kinetics model in Equation (2.5) represents the maximum value of the
cure reaction rate at an intermediate conversion (α > 0), see (ZHAO & HU, 2010).

A1(Θ) = Ac1e
−B1

Θ and A2(Θ) = Ac2e
−B2

Θ (2.6)

Rate constantsA1 andA2, can be related to Arrhenius temperature dependency, see Equation
(2.6), where Θ is the reaction temperature and Ac1, B1, Ac2 and B2 are material parameters
influencing the cure reaction rate. The specific temperatures are defined asBi = ∆Ei

R
, where

∆Ei are the activation energies and R = 8.314459 J
mol·K is the universal gas constant.

During the development of the numerical simulation model for UV-curing, the spatial atten-
uation of UV intensity with resin depth due to photo-absorption has been neglected. Hence,
there is no scattering phenomenon and the UV intensity is considered to be uniform across
the resin depth, see Figure 6.1. Another consideration for the heat transfer model is that
heat generation due to the direct absorption of UV radiation is introduced, in addition to
exothermic cure reactions.



Chapter 3

Mathematical Framework and
Governing Equations

3.1 Multi-physical coupling

In order to establish an appropriate model for the Stereolithography, we need to understand
the physics of the process and the associated assumptions. There are several works dis-
cussing the mathematical/ physical modeling of UV curing process for Stereolithography,
see (MATIAS ET AL., 2009; TANG, 2005). The physics involved in the Stereolithography
process has been discussed in detail focusing on the illumination source and its effect on the
polymerized profile, for more details, see (JARIWALA ET AL., 2011; KANG ET AL., 2012,
2004). Most of the formulations used for the material modeling of Stereolithography in this
chapter is referred from the work by (HARTMANN, 2019). Starting from the gel point, the
evolution of viscous, elastic and plastic properties can be described as a function of the de-
gree of cure. Mechanical properties start to build up during the solidification of the resin.
Combined influences of thermal expansion due to exothermic photopolymerization process
and chemical shrinkage due to solidification results in stress build up.

The process of free-radical photopolymerization is a complex physical and chemical process,
in which a liquid monomer solution is converted to a solid polymer rapidly. The mechanism
starts with UV exposure of the photoinitator in the solution and its decomposition into active
(free) radicals, which in turn attach to the monomers to initiate the polymerization reaction.
The chemical reaction is quite fast with a high degree of cure since the crosslinked network
is reached within 20ms of UV exposure, (FLACH & CHARTOFF, 1995), which restricts the
further movement of free radicals into the monomer solution, thereby limiting the curing
process. Due to the growth of polymer chains, they start to connect and form a network
structure which inturn results in a dense solid. During this transformation of the material, its
properties changes dramatically.

So, we face a coupled multi-physics problem. However, when we take a closer look, this
multi-physical process can be divided into four submodels by taking a modular approach:

• Irradiation model

13
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• Photopolymerization model

• Temperature model

• Material model

Laser

Vat

Laser

Vat

Figure 3.1. Schematic representation of photopolymerization model, consisting of
four submodels with their respective input and outputs.

Irradiation model: In the irradiation model, the light intensity varies with changes in the
spatial position in the solution and it can be described by Beer-Lambert Law, see Section
2.2 for more details. The UV irradiation is a surface phenomena and the light penetrating
into the solution is absorbed by the photoinitiators, photoabsorbers and other light reactive
species in the solution. During this process, light intensity is attenuated.

Photopolymerization model: In the photopolymerization model, the main principle is the
light initiated polymerization of a liquid monomer into solid polymer (CLASSENS ET AL.,
2021). Within fractions of a second, the liquid-to-solid phase transition of the liquid
monomer solution takes place. In order to link the photopolymerization process with the
evolution of material properties, suitable characterization parameters needs to be defined for
the evolution of the polymerization system. Using the degree of cure of the monomers or
the functional groups, several material properties can be linked as a function of the degree of
cure. The degree of cure is used as an internal variable to quantify the amount of conversion
of monomer into polymer and it is easier to measure than the polymer chain distribution. It
is a good indication of the average composition of the system. For more details, see Section
2.5. The photopolymerization process is also controlled by the diffusion of the curing solu-
tion’s species. As the viscosity of the system increases due to growth of polymer chains, the
diffusion ability of free radicals into the monomers is restricted, which causes decrease in
propagation rate of photopolymerization process.

Temperature model: Photopolymerization is an exothermic process. Factors which affect
the rate of cure reaction are the local intensity of UV radiation and the duration of exposure
over the target resin material. In addition, heat transfer phenomena is also involved, which
includes heat conduction in the resin, heat generation by the exothermic cure reaction and
convection heat transfer between the resin and the surroundings. Material specific thermal
effects are also observed due to this exothermic process of the curing reaction. Generally
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photopolymerization processes are insensitive to thermal changes and thermal decomposi-
tion of most photoinitiators does not produce enough free radicals to initiate polymerization
process, see (PERRY & YOUNG, 2005). But, some photoinitiators are sensitive to high
temperatures and in this case photoinitiator decomposition could occur thermally at high
temperatures. In the temperature model, the temperature gradients due to exothermic cure
reaction and resulting diffusion in the body are considered. The heat convection is a surface
phenomena taking place when the surface temperature differs from that of the surroundings.

Material model: During the liquid-to-solid phase transition process, material properties
such as, polymer chain length, molecular weight and crosslinking density, evolve with the
degree of cure. These changes affect the macroscopic material properties such as relaxation
time, Young’s Modulus and volume shrinkage. In the material model, the photopolymer-
ization process is linked with the material property evolution. During the polymerization
process, new crosslinks are formed in addition to old crosslinked polymer network. Hence,
this is a continuous microstructure evolution process coupled with mechanical deformation,
such as curing shrinkage deformation. To describe the evolution of material properties, de-
gree of cure of the functional groups or monomers is used as an internal variable. This is
a good indication of the average composition of the system and it is easier to measure as
compared to the distribution of polymer chains.

A thermo-chemo-mechanical model is proposed to describe the physical and chemical phe-
nomena involved in the photopolymerization process. The key assumptions in the modeling
of the Stereolithography process are as follows:

• In the cure kinetics model for UV-curing, the spatial attenuation of UV intensity with
resin depth due to photo-absorption has been neglected. The UV intensity is con-
sidered to be uniform across the resin depth. The UV intensity is considered to be
maximum along the entire resin depth, see Figure 6.1. The maximum UV intensity
on the resin surface has been taken into account by Beer-Lambert law.

• There is no optical scattering phenomenon and the material flow due to convection and
diffusion has also been neglected.

• Direct absorption of UV radiation is introduced, as defined by the Beer-Lambert law.

• Contributions to internal heat generation is from both direct absorption of UV radiation
and heat of polymerization (due to exothermic cure reactions).

• Prior to the UV radiation exposure, the temperature levels of the SLA machine are
considered to be at room temperature.

• No residual (dark) polymerization occurs, which mean polymerization process termi-
nates immediately when the irradiation source is extinguished (KIM & STANSBURY,
2008; FLACH & CHARTOFF, 1995).

• In our work, we are considering photopolymerization reactions are insensitive to the
temperature and the reaction is solely dependent on photochemical decomposition.
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• The curing process is independent of the depletion of photoinitiator concentration.
Also, the presence of oxygen is inhibited which can ensure a good quality product
during the simulation when compared to the ideal samples or actual printed samples.

3.2 Continuum Mechanics
Continuum mechanics is concerned with description of the behavior of solid body during
deformation process under the influence of the environment (or surroundings). Continuum
mechanics can be divided into three sub-domains. Pure geometric description of movement
of the bodies can be described through kinematics. Second, the material body is treated as
a continuous medium, where the interaction between the body and its environment is intro-
duced through equilibrium equations (balance of linear and angular and linear momentum).
Finally, a functional relationship between the kinematic quantities (such as strain) and the
kinetic quantities (for instance, stress) is established through constitutive equations (material
properties).

3.2.1 Kinematics
Kinematics describes the deformations (and motions) of the body over time in stress-free
initial and current configurations through one-to-one mapping as shown in Figure 3.2. The
initial configuration refers to the undeformed initial body B at time t = t0 and it is de-
fined as a set of material points P which occupies a connected region in a three-dimensional
Euclidean space R3. Due to a process of deformation, each material point P is assigned
to a position vector uniquely identified at each time t. For the current configuration of the
body at time t > t0, the material point P can be described by the current position vector x.
The deformation mapping between the initial and the current configuration is represented by
bijective unique mapping φ

x = φ (X , t) (3.1)
X = φ−1 (x , t) (3.2)

where X represents the position of each material point P in the initial configuration. And,
the vector field φ is defined as the motion of the body, see (HOLZAPFEL, 2002), which can
be seen as one-to-one mapping of the position vector between the initial and the current
configurations of the body.
The displacement vector u of each material point P is determined by the difference of posi-
tion vectors in the current and the initial configuration.

u = x (X , t) − X. (3.3)

The velocity field and the acceleration field can be computed from the time derivatives of the
displacement vector

v =
du

dt
=
dx (X , t)

dt
, a =

dv

dt
=

d2x (X , t)

dt2
. (3.4)
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Figure 3.2. Schematic representation of deformation mapping φ defined w.r.t an
initial configuration Ω0.

In continuum mechanics, to describe the deformation process locally, the deformation gradi-
ent F is introduced, which maps infinitesimal vector element dX in the initial configuration
to the corresponding vector element dx in the current configuration

F =
dx (X , t)

dX
. (3.5)

where F is a two-point tensor since points in two configurations are involved. In order to
ensure the non-singularity of F , the above expression has to be one-to-one mapping. This
condition can also be defined through the mapping of an infinitesimal volume element

J = det(F ) ≥ 0, dv = J dV (3.6)

where J is the Jacobian determinant, dv and dV are the infinitesimal volume elements in
the current and initial configurations respectively. Apart from the mapping of infinitesimal
volume and line elements, the mapping of infinitesimal surface area elements between two
configurations is given by

nda = JF−T ·NdA, (3.7)

in which N is the outward unit normal vector of the surface element dA in the initial config-
uration and n is the outward unit normal vector of the surface area element da in the current
configuration.

The deformation gradient F describes total deformations, including changes in the shape of
body and rigid body rotations. No strains are expected to occur for body with pure rigid body
motions. Since deformation gradient never equals zero, it cannot be used as a strain mea-
surement. This limitation can be overcome through polar decomposition of the deformation
gradient into pure rotation R and a stretch tensor

F = RU = V R (3.8)
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where U and V are the right and left stretch tensor respectively. Now, we define the Cauchy-
Green tensor in the initial configuration

C = F TF = UTRTR︸ ︷︷ ︸
1

U = U 2 (3.9)

Subsequently, an alternative approach to describe the deformation of a body is made through
Green-Lagrange strain tensor which is defined in the initial configuration in terms of Cauchy-
Green tensor C

E =
1

2
(C − 1) (3.10)

Accordingly, in the current configuration, the Euler-Almansi strain tensor is defined as

e =
1

2
(1 − b−1) (3.11)

where b = FF T = V 2 is the left Cauchy-Green tensor defined in the current configura-
tion.
Now, the material and spatial velocity gradients are defined to study the deformation rate of
the continuum body. The time derivative of the material deformation gradient is defined as
the partial derivative of the velocity with respect to the initial configuration

Ḟ =
∂v (X , t)

∂X
(3.12)

The time derivative of the spatial deformation gradient is defined as the partial derivative of
the velocity with respect to the current configuration

l =
∂v (X , t)

∂x
(3.13)

Hence, the relation between the spatial and material deformation gradient

l = Ḟ F−1 (3.14)

Also, the spatial velocity gradient l can be decomposed into a symmetric d and skew-
symmetric part w

l = d + w (3.15)

d =
1

2
(l + lT ) (3.16)

w =
1

2
(l − lT ) (3.17)

Using Equations (3.14) and (3.16), the time derivative of the Green-Lagrange strain tensor
also results from a pull-back of the stretching tensor to the initial configuration.

Ė =
d

dt

[
1

2
(F TF − 1)

]
=

1

2
(Ḟ

T
F + F T Ḟ ) = F TdF (3.18)
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Hence, it shows that time derivative is frame indifferent and it results out from the fact that
both the deformation gradient and the stretching tensor are objective.
The time derivative of the Euler-Almansi strain tensor is given as

ė =
d

dt

[
1

2
(1 − F−TF−1)

]
=

1

2
(−Ḟ

−T
F−1 + F−T Ḟ

−1
) = d − lTe − el (3.19)

It does not result from the push-forward of the Green-Lagrange strain tensor and the deriva-
tive is not objective. Hence, Lie derivative L is introduced to cope with this problem. This
derivative consists of three steps, which start with the pull-back to the reference configura-
tion, followed by a material time derivative and then push-forward back to the current con-
figuration. The derivation of the framework is inhibited through this approach and it leads to
an objective time derivative. The lie derivative of Euler-Almansi strain tensor is given as

L (e) = F−T d

dt

(
F TeF

)
F−1 = F−T ĖF−1 = d (3.20)

3.2.2 Stresses
Stress is defined as a physical quantity expressing the force per unit area exerted by a con-
tinuum particle on its neighboring particle across an imaginary surface separating them.
Different stress tensors are applied in different configurations withing continuum mechan-
ics framework. In current configuration, an important stress definition, known as Cauchy
stresses, is given by the Cauchy-theorem (or Cauchy Tetrahedron Theorem) as

t (X , t) = σT (x , t)n (3.21)

where t is the surface traction vector defined by the forces measured per unit surface area in
the current configuration, n is the outward unit normal vectors to the surface. This equation
links the force with the Cauchy stress stensor σ and its associated outward normal. Nominal
or 1st Piola-Kirchhoff stress tensor which relate both the configurations is defined as

T (X , t) = PT (X , t)N . (3.22)

where the traction T denotes the force measured per unit surface area in the reference con-
figuration. Nominal stress or 1st Piola-Kirchhoff stress tensor P is a two-point unsymmetric
tensor and can be related to the Cauchy stress (σ) through the deformation gradient (F ) and
Jacobian (J) as

σ = J−1PF T (3.23)

The Kirchhoff stress tensor (τ ), which is often used in plasticity, is defined in the current
configuration and it is related to the Cauchy stress (σ) through Jacobian (J) as

τ = Jσ. (3.24)

Another measure of stress more widely used is the 2nd Piola-Kirchhoff stress (S) where both
the force and the area are in the reference configuration. This is related to the Cauchy stress
(σ) as

S = F−1P = JF−1σF−T (3.25)

Both Cauchy and 2nd Piola-Kirchhoff stresses are both symmetric tensors.
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3.2.3 Balance Equations
Balance laws define the material independant conservation quantities, which are essential to
define the phenomological character of the problem. Balance laws establish the equalities/
inequalities which balance the essential physical quantities (like sources and fluxes) in both
solids and fluids. This section discusses the conservation laws pertaining to mass, linear and
angular momentum, energy and entropy. Each of these conservation laws can be defined in
both Lagrangian and Eulerian frameworks.

Balance of Mass

Consider the body Ω0 in initial configuration undergoing deformation in a closed system
during which the mass has to remain constant. This means that masss is not subjected to any
change over time and it is a conserved quantity. Hence, the time derivative of the total mass
of a body is zero

ṁ =
d

dt

∫
Ω0

ρ0dV =
d

dt

∫
Ω

ρdv = 0, (3.26)

where ρ0 and ρ represent the mass density of the body in the initial and final configurations
respectively. Modifying Equation (3.6) and applying to the last term of Equation (3.26),

d (ρJ)

dt
= J (ρ̇ + ρ div ẋ) = 0, (3.27)

and this leads to the continuity mass equation in its local rate form

ρ̇ + ρ div ẋ = 0. (3.28)

Balance of linear and angulular Momentum

The balance principle of linear momentum states that the time derivative of the linear mo-
mentum is equal to the sum of the external forces acting on the body Ω

d

dt

∫
Ω

ρ ẋdv =

∫
Ω

ρ bdv +

∫
∂Ω

t da (3.29)

where t is the surface traction acting on the boundary ∂Ω and b is the body force density act-
ing on the volume of the body. Using Equation (3.21) and applying the divergence theorem
to the above equation leads to ∫

Ω

(divσ + f − ρẍ) dv = 0 (3.30)

where ẍ is the acceleration field and f is the body force vector per unit volume defined as
f = ρb. In local form, the above equation can be written as

divσ + f = ρẍ (3.31)

To fulfill the conservation of linear momentum, Equation (3.31) has to be fulfilled at each
point of the continuum.
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The angular momentum of a body can be written in the current configuration as

L =

∫
Ω

r × ρẍ dv, (3.32)

where r = (x− x0) gives the distance from a reference fixed vector x0 to any given point x.
The balance of angular momentum, similar to linear momentum balance, states the change
in time of angular momentum which is equal to the sum of the external moments acting on
the body Ω

L̇ =
d

dt

∫
Ω

r × ρ ẋdv =

∫
Ω

r × ρ bdv +

∫
∂Ω

r × t da (3.33)

The angular momentum is conserved automatically as a result of the symmetry property of
the Cauchy stress tensor

σ = σT (3.34)

Balance of Energy

The First law of thermodynamics or more commonly known as balance of energy states that
the change in time of the total amount of energy Etot is equal to the work performed per unit
time PE and the heat supply Q̇

Ėtot =

∫
Ω

f · ẋdv +

∫
∂Ω

t · ẋda +

∫
Ω

ρ rdv −
∫
∂Ω

q · nda, (3.35)

where q is the heat flux vector and r is the specific heat supply. The above expression can be
written in terms of internal energy U and kinetic energy K as

Etot =

∫
Ω

1

2
ρẋ · ẋdv +

∫
Ω

ρ ũ dv, (3.36)

where ũ is the specific internal energy. Substituting the above equation in Equation (3.35)
leads to

Ėtot =
d

dt

∫
Ω

ρ

(
1

2
ẋ · ẋ + ũ

)
dv =

∫
Ω

(f · ẋ + ρ r) dv +

∫
∂Ω

(t · ẋ − q · n) da,

(3.37)
Using the local form of linear momentum balance (3.31), Cauchy theorem (3.21), symmetry
of Cauchy stress tensor σ = σT and applying divergence theorem to Equation (3.37), the
local form of first law of thermodynamics can be obtained as

ρ ˙̃u = σ : d + ρr − divq (3.38)

Entropy inequality

The balance of entropy or Second law of Thermodynamics or Clausius-Duhem Inequality
provides information about the direction of energy transfer. According to this law, for any
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isolated system, the total internal entropy always tends to increase or remains constant (for
completely reversible process). The entropy production per unit time can be described by
the rate of change of entropy and the heat flux divided by the temperature

d

dt

∫
Ω

ηdv +

∫
∂Ω

q

Θ
· nda −

∫
Ω

r

Θ
dv ≥ 0, (3.39)

where η is the specific entropy per unit volume in the current configuration and Θ is the
temperature.

3.3 Constitutive Model for the coupled problem
Apart from the equations resulting from the balance laws and kinematics, additional relations
are needed to describe the behavior of the materials. These relations are known as consti-
tutive equations which provide a functional relationship between kinematic quantities (for
instance, strain) and the kinetic quantities such as stress.

3.3.1 Intermediate Configurations
The concept of multiplicative deformation gradient has been introduced for the material mod-
eling at large strains, where the intermediate configurations play an important role. At large
strains, the associated strain tensors are not additive anymore, which is in contrast to the
small strain regime. The main advantage of this concept is that phenomological observations
can be modelled separately considering successive partial deformations. The multiplicative
decomposition of deformation gradient into partial deformations B and A, as discussed in
the comprehensive review by (LUBARDA, 2004), is given as

F = FBF A (3.40)

Consider a body initially in the reference configuration is subjected to the partial deforma-
tion A and the associated deformation gradient F A and consecutively, it undergoes partial
deformation with associated deformation gradient FB. Here, the body, after being subjected
to partial deformation A is in intermediate configuration. It is assumed that these partial
deformations are taking place separately and not simultaneously. Multiplicative decomposi-
tion is not commutative since the order of successive partial deformation matters. But, the
Jacobian is commutatively split since it is a scalar quantity.

FBF A ̸= F AFB (3.41)

J = JBJA = JAJB (3.42)

The deformation gradient explains the underlying kinematics for finite strains. Using the
concept of multiplicative decomposition of the deformation gradient, the deformation is split
into an elastic and an inelastic part,

F = F elF in (3.43)
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Within a generalised Maxwell model, which will be discussed in Section 3.3.3, the above
multiplicative decomposition is performed for each Maxwell branch.

3.3.2 Split of the free energy

The stored elastic energy can be represented by the Helmholtz free energy, which is addi-
tively decomposable. The multi-physical decomposition of the free energy, which is to be
discussed in detail in later sections, is shown here

ψ = ψM + ψθ C (3.44)

where, ψM is the mechanical part and ψθ C is the thermo-chemical part.
The free energy can also be decomposed into isochoric and volumetric part

ψ = ψiso
(
C̄
)
+ ψvol (J) (3.45)

where the isochoric part of the free energy represents the isochoric deformation and it is
defined w.r.t the right isochoric Cauchy-Green tensor. This tensor can be obtained by multi-
plicative split of the deformation gradient into volumetric and isochoric part

F = F volF̄ (3.46)

Here, the Jacobian of the isochoric part is equal to one. Hence, the volumetric part can
be written as F vol = J

1
31 and the isochoric part of the right Cauchy-Green tensor can be

defined as

C̄ = J− 2
3C (3.47)

Considering the generalised Maxwell model (Figure 3.3), the free energy can be formulated
in terms of the right Cauchy-Green tensor C as

ψ = ψ∞ (C) +
n∑

i=1

Ψiso
i (Celi) (3.48)

The elastic part of the free energy function contributes to the total free energy. The right
Cauchy-Green tensor C has to be decomposed into elastic Cel and inelastic part Cin. For
both the equilibrium and n non-equilibrium parts of the free energy for the generalised
Maxwell model, a hyperelastic material has to be applied, for example, Neo-Hookean, Og-
den or Mooney-Rivlin model. From Equation (3.9) and Equation (3.43), the elastic right
Cauchy-Green tensor can be defined as

Cel = F T
elF el = F−T

in F TF︸ ︷︷ ︸
C

F−1
in = F−T

in CF−1
in (3.49)

Applying Clausius-Duhem inequality for the generalized Maxwell model (HARTMANN,
2019) leads to
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(
S − 2ρ0

∂Ψ∞

∂C
−

n∑
i=1

2ρ0F
−1
ini

∂Ψiso
i

∂Celi

F−T
ini

)
:
1

2
Ċ −

n∑
i=1

2ρ0
∂Ψiso

i

∂Celi

: CeliLini
≥ 0

(3.50)
Using the standard Coleman-Noll argument (COLEMAN & NOLL, 1963), the second Piola-
Kirchhoff stress can be defined as

S = 2ρ0
∂Ψ∞

∂C
−

n∑
i=1

2ρ0F
−1
ini

∂Ψiso
i

∂Celi

F−T
ini

(3.51)

The volumetric part of the free energy can be described by the product of the compression
modulus K and an associated compressible extension term w(J), resulting in

ψvol = Kw(J) (3.52)

where w(J) can be described according to the approach by Ciarlet (HOLZAPFEL, 2000) as

w(J) =
1

4

(
J2 − 1

)
− 1

2
ln J (3.53)

The rate of free energy is required to satisfy the second law of thermodynamics as in Section
3.2.3, the rate of free energy is defined w.r.t the right Cauchy-Green tensor as

Ψ̇ =
∂Ψiso

∂C̄
:
∂C̄

∂C
: Ċ +

∂Ψvol

∂J

∂J

∂C
: Ċ (3.54)

With

∂C̄

∂C
= J− 2

3

(
I − 1

3
C ⊗C−1

)
= PT

∂J

∂C
=

J

2
C−1 (3.55)

where P is the Projection tensor. Considering the formulation for the rate of free energy in
terms of the rate of right Cauchy-Green tensor as shown by (IHLEMANN, 2003), the rate of
free energy can be reformulated as

Ψ̇ =


∂Ψiso

∂C̄︸ ︷︷ ︸
S̄

C̄

 C−1 +
∂Ψvol

∂J

J

2
C−1

 : Ċ (3.56)

Further detailed formulation can be found in (HARTMANN, 2019). In order to incorporate
the curing phenomena and the related thermo-chemical process dependencies, an experi-
mentally based thermo-chemical free energy function has been introduced. As discussed
in (KOLMEDER ET AL., 2011), the enthalpy is taken as a thermodynamic potential. The
enthalpy rate was calculated through DSC experiements. This technique consists of two
measurement methods where the absorbed heat powers of the sample and the reference ma-
terial are measured. And, under nearly stress-free conditions during DSC experiments, the
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dependence of enthalpy on stress will be neglected and therefore, only the thermo-chemical
part will be considered. From these considerations, the rate of enthalpy is given as

ḣ =
∂h

∂Θ
Θ̇ +

∂h

∂α
α̇ (3.57)

From experiments by (KOLMEDER ET AL., 2011), model of enthalpy linearly dependent on
the degree of cure and quadratically dependent on the temperature has been given as

hΘC (Θ, α) = hF (Θ) (1 − α) + hS (Θ)α (3.58)

hF (Θ) = hF0 + aF (Θ − Θ0) +
1

2
bF (Θ − Θ0)

2 (3.59)

hS (Θ) = hS0 + aS (Θ − Θ0) +
1

2
bS (Θ − Θ0)

2 (3.60)

where hF is the enthalpy of the uncured material and hS is the enthalpy of the completely
cured material. The parameters aF , aS , bF and bS are determined from DSC experiments.
These two temperature dependent enthalpies are defined with respect to the reference tem-
perature. An alternative function proposed by (LANDGRAF, 2015) does not refer to the
reference temperature which is defined as

hF (Θ) = hF0 +
1

2
aFΘ

2 +
1

3
bFΘ

3

hS (Θ) = hS0 +
1

2
aSΘ

2 +
1

3
bSΘ

3 (3.61)

From the definition ∆hFS = hS0 − hF0 and using Equation (3.61), the enthalpy ( 3.58) can
be approximated as

hΘC (Θ, α) = hF0 + ∆hFSα +

(
1

2
aFΘ

2 +
1

3
bFΘ

3

)
(1 − α)

+

(
1

2
aSΘ

2 +
1

3
bSΘ

3

)
α

(3.62)

where all the parameters are determined from DSC experiments.
Also, the thermo-chemical specific heat capacity is obtained from Equation (3.61) as

cΘC =
∂hΘC

∂Θ
=
(
aFΘ + bFΘ

2
)
(1 − α) +

(
aSΘ + bSΘ

2
)
α (3.63)

Since no measurements for the material parameters were available, the parameters for the
arcylic bone cement by (LANDGRAF, 2015) are used. They are depicted in the Table 3.1.

3.3.3 Constitutive modeling
Photopolymerization process couples the material property evolution and the mechanical
deformation. In the beginning, the material is modeled as a viscous melt with the introduc-
tion of crosslinks. This liquid state exists before the gel point where the material can carry
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Parameter ∆hFS aF bF aS bS
Value -80.95 4.5729× 10−3 −1.9600× 10−6 4.1210× 10−3 −1.6785× 10−6

Unit [J/g] [J/g.K2] [J/g.K3] [J/g.K2] [J/g.K3]

Table 3.1. Fitted material parameters for the thermo-chemical quantities based on
DSC experiment for arcylic bone cement,cf. (LANDGRAF, 2015)

short-term load only due to its viscosity. During polymerization process, the polymer chains
grow up and crosslink. At this stage, the material passes the gel point and the material is
able to carry the long-term load. Due to the progress in the reaction and increase in the
cross-linking process, there is increase in crosslink density, thereby resulting in continuous
increase in stiffness. These newly formed chains are not affected by the previous deforma-
tion and do not contribute to the stress until further deformation (GILLEN, 1988; HOSSAIN

ET AL., 2009; WU ET AL., 2018) and hence, these new crosslinks are in a stress-free state.
The viscous effects (non-equilibrium behaviors) can be modeled by the multibranch model
consisting of series of Maxwell elements in parallel.

The rheological model (see Figure 3.3) consists of a process-dependent Maxwell model
with two parts: the equilibrium branches and non-equilibrium branches. The equilibrium
branches contribute to the phase evolution and the branches increases with the increase in
number of crosslinks (LONG ET AL., 2010). The non-equilibrium branches represent the
stress-relaxation model of the polymer. The newly formed crosslinks will be in a stress free
state untill the deformation is changed. But, these new crosslinks will hinder the relaxation
rate of the old crosslinks and hence, the existing relaxation time will be shifted to a new
relaxation time.
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Figure 3.3. Rheological model for viscoelastic mechanical properties modeling

In order to model the large strain curing process, multiplicative decomposition of defor-
mation gradient into mechanical, thermal and chemical part is used, see (LION & HÖFER,
2007)

F = FMF CFΘ (3.64)
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The mechanical deformation is considered to be completely viscoelastic, FM = Fve
M . The

deformation within the equilibrium spring can be further split into volumetric and isochoric
parts Fve

M = Fve,vol
M F̄ve

M . Both these parts share the elastic stored energy. For each Maxwell
branch, the viscoelastic deformation is split into elastic (Fve

Meli
) and inelastic (Fve

Mini
) parts.

The inelastic part is the dissipative viscous deformation in the dashpot.

Isotropic volumetric approaches for thermal expansion and chemical shrinkage are used

F C = g (α)1/3 1, FΘ = ϕ (α, Θ)1/3 1 (3.65)

where g (α) and ϕ (α, Θ) are the scalar functions which represent thermal expansion and
chemical shrinkage in principal directions. These volumetric changes are determined as

g (α) = 1 + βcαwith βc ≤ 0

ϕ (α, Θ) = 1 +
[
(1 − α) βΘf

+ αβΘs

]
(Θ − Θ0) with βΘf

, βΘs ≥ 0 (3.66)

Here, we assume that chemical shrinkage and thermal expansion are not directly coupled.
Hence, thermal expansion depends on temperature difference with respect to reference tem-
perature and the degree of cure α. It can be linked to the Temperature model through the
temperature difference and Photopolymerization model through degree of cure as shown in
Figure 3.1. And, the chemical shrinkage solely depends on the degree of cure α and the
chemical shrinkage parameter, βc. The values of chemical shrinkage and thermal expansion
parameters are depicted in Table 6.1.

The material generally shrinks upon solidification. Solidification is the build-up of mechan-
ical properties in the material, which represents the evolution of cross-linking of polymer
chains and introducing solid-like behavior during photopolymerization process. However,
transient phenomena involving transformation from a liquid into a solid will be ignored here.
In order to model the solidification and the temperature-dependent stiffness of the material,
the shear modulus of the equilibrium spring is dependent on both degree of cure and temper-
ature. For the purpose of simplification in our model, in order the exhibit the linear growth,
the shear modulus is dependent on the degree of cure only, cf. (HOSSAIN ET AL., 2009),

µα(α) = pµα1
(1 − α) + pµα2

α (3.67)

where the parameters pµα1
and pµα2

are the temperature independent shear moduli for the
uncured and fully cured material respectively.To model the fluid-like behavior during the
beginning of photopolymerization process, the cure-dependent yield stress, σy is defined.

Within each Maxwell element, the viscoelastic split of deformation gradient can be related
as

Ċ
ve

Mini
=

1

τ(α,Θ)

(
Cve

M − Cve
Mini

)
(3.68)

where τ is the relaxation time, which is cure dependent.
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Split of stress
From the definition of the Second Piola Kirchhoff stress tensor (3.25) and using the multi-
plicative split of the deformation gradient (3.64) leads to the representation

S = JMJCJΘF
−1
Θ F−1

C F−1
M σF−T

M F−T
C F−T

Θ (3.69)

where the mechanical second Piola-Kirchhoff stress tensor is defined as SM =
JMF−1

M σF−T
M , which is the pull back of the mechanical second Piola-Kirchhoff stress tensor

defined in the intermediate thermo-chemical configuration and Equation (3.69) is represented
as

S = JCJΘF
−1
Θ F−1

C SMF−T
C F−T

Θ (3.70)

Now, the Green-Lagrange strain tensor (3.10) can be represented as

E =
1

2

(
F T

ΘF
T
CF

T
MFMF CFΘ − 1

)
(3.71)

and the corresponding mechanical right Cauchy-Green tensor and Green-Lagrange strain
tensor is given as

CM = F T
MFM (3.72)

EM =
1

2
(CM − 1) (3.73)

We can define the rate of Green-Lagrange strain tensor as

Ė =
1

2

(
Ḟ

T

ΘF
T
CCMF CFΘ + F T

ΘḞ
T

CCMF CFΘ + F T
ΘF

T
CĊMF CFΘ

+F T
ΘF

T
CCM Ḟ CFΘ + F T

ΘF
T
CCMF CḞΘ

) (3.74)

Further, considering the implementation of (HARTMANN, 2019), thermal and chemical ve-
locity gradients are represented as

LΘ = ḞΘF
−1
Θ =

(
∂φ

∂Θ
Θ̇ +

∂φ

∂α
α̇

)
1

1

3φ
1 =

1

3φ

∂φ

∂Θ
Θ̇1

LC = Ḟ CF
−1
C =

(
∂g

∂Θ
Θ̇ +

∂g

∂α
α̇

)
1

1

3g
1 =

1

3g

∂g

∂α
α̇1 (3.75)

Now, the stress power P int = S : Ė can be split additively into mechanical, thermal and
chemical parts as

S : Ė = gφ

SM : ĖM︸ ︷︷ ︸
mechanical

+ CMSM :
(
F CLΘF

−1
C

)︸ ︷︷ ︸
thermal

+ CMSM : LC︸ ︷︷ ︸
chemical

 (3.76)
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From Equation (3.76) and inserting LΘ from Equation (3.75) , the thermal stress power can
be represented as

CMSM :
(
F CLΘF

−1
C

)
= tr

((
F T

MFM

) (
JMF−1

M σF−T
M

)
F C

(
1

3φ

∂φ

∂Θ
Θ̇1
)
F−1

C

)
=

JM tr(σ)

3φ

∂φ

∂Θ
Θ̇

(3.77)

and the chemical stress power as

CMSM : LC = tr

((
F T

MFM

) (
JMF−1

M σF−T
M

) 1

3g

∂g

∂α
α̇

)
=

JM tr(σ)

3g

∂g

∂α
α̇ (3.78)

The Causius Duhem Inequality as given by (HARTMANN, 2019) can be rewritten as

−ρ0Ψ̇ + gφ

(
1

2
SM : ĊM +

JM tr(σ)

3φ

∂g

∂α
α̇ +

JM tr(σ)

3φ

∂φ

∂Θ
Θ̇

)
− ρ0sΘ̇ − 1

Θ
·GradΘ ≥ 0

(3.79)

Free Energy
To incorporate the curing phenomena and the associated thermo-chemical process depen-
dencies, the Helmholtz free energy function is decomposed additively into mechanical and
thermo-chemical part

Ψ = ΨM + ΨΘC (3.80)

The free energy for the mechanical part can be decomposed for one equilibrium and n non-
equilibrium parts of the Maxwell model as

Ψ = ΨM∞ +
n∑

i=1

ΨMi
(3.81)

The equilibrium part of the mechanical free energy function can be further divided into
process-dependent isochoric part and process independent volumetric part

ρ0ΨM∞ = ρ0Ψ
iso
M∞

(
C̄M ,Θ

)
+ ρ0Ψ

vol
M∞ (JM)

=

[
−fΘ

∫ t

−∞
µα(s)

(
d

ds
C̄

−1
M (s)

)
ds

]
: C̄M + Kω(JM)

(3.82)

where fΘ is the temperature dependent part of the shear modulus.

The formulation of first term, ρ0Ψiso
M∞

(
C̄M ,Θ

)
in Equation (3.82) has been discussed in

detail in (LANDGRAF ET AL., 2014).

The free energy of the individual Maxwell element can be represented by a Neo-Hookean
model
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ρ0ΨMi
(CMeli

) =
µi

2

(
ICMeli

− 3
)

(3.83)

Similarly, the experimentally determined thermo-chemical free energy function, as discussed
in Section 3.3.2, is given as

ΨΘC (α,Θ) = hF0 + ∆hFSα −
(
1

2
aFΘ

2 +
1

6
bFΘ

3

)
(1 − α)

−
(
1

2
aSΘ

2 +
1

6
bSΘ

3

)
α

(3.84)

where the thermo-chemical quantities based on DSC experiments for the arcylic bone cement
have been used , which were obtained from (HARTMANN, 2019). They are depicted in Table
3.1. Hence, the total free energy is given by

ρ0Ψ = ρ0Ψ
iso
M∞

(
C̄M ,Θ

)
+ ρ0Ψ

vol
M∞ (JM) +

n∑
i=1

ρ0ΨMi
(CMeli

) + ρ0ΨΘC (α,Θ) (3.85)

By fulfilling the condition of Clausius-Duhem inequality from Equation (3.79) and consid-
ering the dependencies Equation (3.56) and Equation (3.50), the mechanical second Piola-
Kirchhoff stress tensor is given by

SM =
2

gφ

[(
∂ρ0Ψ

iso
M∞

∂C̄M

C̄M

)
dev

C−1
M +

∂ρ0Ψ
vol
M∞

∂JM

JM
2

C−1
M

+
n∑

i=1

F−1
Mini

∂ρ0ΨMi

∂CMeli

: PTF−T
Mini

] (3.86)

and the entropy is obtained as

s =
gJM tr(σ)

3ρ0

∂φ

∂Θ
−
∂Ψiso

M∞

∂Θ
− ∂ΨΘC

∂Θ
(3.87)

Here, SM in Equation (3.86) can be represented as Svol
∞ + Siso

∞ + Sve, where Svol
∞ and Siso

∞ are
the isochoric and viscous components of the equilibrium part and Sve represent the viscous
part.
The isochoric and volumetric part of the mechanical second Piola-Kirchhoff stress tensor can
be defined from Equation (3.82), where ω(J) can be defined as given by (CIARLET, 1988)

ω(J) =
1

4

(
J2 − 1

)
− 1

2
ln J (3.88)

The associated derivatives of the individual parts of the Equation (3.86) can be defined as
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(
∂2ρ0Ψ

iso
M∞

∂C̄M

C̄M

)
dev

C−1
M = J

− 2
3

M µ∞

(
I − 1

3
C−1

M tr(CM)

)
∂2ρ0Ψ

vol
M∞

∂JM

JM
2

C−1
M =

K

2

(
J2
M − 1

)
C−1

M

n∑
i=1

F−1
Mini

∂ρ0ΨMi

∂CMeli

: PTF−T
Mini

= J
− 2

3
M µi

(
C−1

Mini
− 1

3
C−1

M tr(CMC−1
Mini

)

)
(3.89)

Energy Equation
Using the split of the stress power as in Equation (3.76) and considering the first law of
thermodynamics, the energy equation can be derived as

ρ0Θ̇s + ρ0Θṡ + ρ0Ψ̇ = gφ

(
1

2
SM : ĊM +

JM tr(σ)

3φ

∂g

∂α
α̇ +

JM tr(σ)

3φ

∂φ

∂Θ
Θ̇

)
− DivQ + ELaser

(3.90)

From the Fourier’s law of heat conduction, the divergence of the heat flow vector is repre-
sented as

DivQ = Div (−κGradΘ) = −κDiv (GradΘ) = −κ∆Θ (3.91)

where κ is the thermal conductivity coefficient.
The specific heat capacity is defined as

cp (α,Θ) = −Θ
∂2ΨΘC

∂Θ2︸ ︷︷ ︸
cΘC

−
∂2Ψiso

M∞

∂Θ2︸ ︷︷ ︸
cM

≈ cΘC (3.92)

which is approximated by its thermo-chemical part and a detailed formulation can be found
in (HARTMANN, 2019).
Using the energy equation (3.90), entropy rate from the entropy definition (3.87) and the
definition for specific heat capacity (3.92), the energy equation can be defined as

cΘCΘ̇ =

(
φJM tr(σ)

3ρ0

∂g

∂α
− ∂ΨΘC

∂Θ
− Θ

JM tr(σ)

3ρ0

∂φ

∂Θ

∂g

∂α
+
∂2ΨΘC

∂Θ2

)
α̇

−Θ

(
gJM tr(σ̇)

3ρ0

∂φ

∂Θ

)
+

1

ρ0
κ∆Θ + ELaser

(3.93)

where cΘC is defined in Equation (3.63) and rate of the trace of Cauchy stress tensor tr(σ̇)
is obtained from the entropy rate of the entropy equation (3.87). The stress rates are not
directly computed within each time step since small stress rates are expected during the
printing process. The rate of the trace of Cauchy stress tensor is computed through the
explicit computation as
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tr(σ̇n+1) =
tr(σn+1) − tr(σn)

∆t
(3.94)

Here is a summary of the equations we obtained for the simulation of Stereolithography
process

Cure reaction rate using Arrhenius approach
α̇(Θ) = [A1(Θ) + A2(Θ)αm] (1− α)n

A1(Θ) = Ac1e
−B1

Θ and A2(Θ) = Ac2e
−B2

Θ

Material parameters for cure reaction rate are given in Table 6.2.

Functions for thermal expansion and chemical shrinkage
g (α) = 1 + βcαwith βc ≤ 0

ϕ (α, Θ) = 1 +
[
(1 − α) βΘf

+ αβΘs

]
(Θ − Θ0) with βΘf

, βΘs ≥ 0

The material parameters are given in Table 6.1.

Total deformation gradient
F = FMF CFΘ

F C = g (α)1/3 1, FΘ = ϕ (α, Θ)1/3 1

Mechanical right Cauchy-Green tensor
FM = FF−1

Θ F−1
C

CM = F T
MFM

Shear modulus of the equilibrium spring
µα(α) = pµα1

(1 − α) + pµα2
α

Evolution equation for elastic-inelastic split of viscoelastic deformation gradient within
the Maxwell branch

Ċ
ve

Mini
=

1

τ(α)

(
Cve

M − Cve
Mini

)
Mechanical second Piola-Kirchoff stress tensor

SM =
2

gφ

[(
∂ρ0Ψ

iso
M∞

∂C̄M

C̄M

)
dev

C−1
M +

∂ρ0Ψ
vol
M∞

∂JM

JM
2

C−1
M

+
n∑

i=1

F−1
Mini

∂ρ0ΨMi

∂CMeli

: PTF−T
Mini

]
,(

∂2ρ0Ψ
iso
M∞

∂C̄M

C̄M

)
dev

C−1
M = J

− 2
3

M µ∞

(
I − 1

3
C−1

M tr(CM)

)
∂2ρ0Ψ

vol
M∞

∂JM

JM
2

C−1
M =

K

2

(
J2
M − 1

)
C−1

M
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n∑
i=1

F−1
Mini

∂ρ0ΨMi

∂CMeli

: PTF−T
Mini

= J
− 2

3
M µi

(
C−1

Mini
− 1

3
C−1

M tr(CMC−1
Mini

)

)
Thermo-chemical free energy function

ΨΘC (α,Θ) = hF0 + ∆hFSα −
(
1

2
aFΘ

2 +
1

6
bFΘ

3

)
(1 − α)

−
(
1

2
aSΘ

2 +
1

6
bSΘ

3

)
α

Thermo-chemical specific heat capacity
cΘC =

(
aFΘ + bFΘ

2
)
(1 − α) +

(
aSΘ + bSΘ

2
)
α

Energy Equation

cΘCΘ̇ =

(
φJM tr(σ)

3ρ0

∂g

∂α
− ∂ΨΘC

∂Θ
− Θ

JM tr(σ)

3ρ0

∂φ

∂Θ

∂g

∂α
+
∂2ΨΘC

∂Θ2

)
α̇

−Θ

(
gJM tr(σ̇)

3ρ0

∂φ

∂Θ

)
+

1

ρ0
κ∆Θ + ELaser

This chapter proposes a coupled solution framework which captures the distinct physical
phenomena during the photopolymerization process. The proposed framework integrates
the coupled effect of four physical mechanisms: 1. light propagation through the resin; 2.
conversion (degree of cure evolution) of the resin; 3. evolution of mechanical properties dur-
ing solidification and 4. thermal effects. The developed numerical framework provides novel
insights through a direct coupling between the polymerization kinetics and the temperature
evolution, to the build-up residual stresses and mechanical properties.





Chapter 4

Optimal Transportation Meshfree
Algorithm

Processes involving large deformations, such as Additive Manufacturing or cutting, present a
challenge while modeling with standard approximation tools like the Finite Element Method.
If the Lagrangian description is used, these large deformations can result in severe mesh dis-
tortions. In this case adaptive remeshing procedures and mapping of state variables from one
configuration to another are required. Inefficient computations and accumulated numerical
errors can result. Alternatively, meshfree methods seem quite adapted to such simulations.
For instance, the Smoothed Particle Hydrodynamics (SPH) has shown big potential. A more
recent solution scheme is the Optimal Transportation Meshfree (OTM) method. This method
is integrated with local maximum entropy (LME) meshfree interpolation (ARROYO & OR-
TIZ, 2006) and material point sampling method (SULSKY ET AL., 1994; WESSELS ET AL.,
2019, 2018). The advantage of the OTM method is the similar transition of the FEM to a
meshfree method.

The Optimal Transportation Meshfree (OTM) method is a discretization scheme in the
framework of an Updated Lagrangian formulation which can be used for both solid and
fluid flow simulations based on (LI ET AL., 2010). The OTM method can be viewed as
an evolution of the finite element method because the spatial domain under investigation
is discretized by two types of points. The material points are used as integration points,
where quantities like stress, strain, density, etc., are determined. At the nodal points, the pri-
mary variables are computed by solving discretized equations of motion. The connectivity
between nodes and material points during the computation is established by a search algo-
rithm: the nodes associated with a material point form its support domain, whose shape is in
general arbitrary. The material point values are determined with the help of basis functions.
In general, maximum entropy shape functions (ARROYO & ORTIZ, 2006) are used.

The OTM method is motivated by the Optimal Transportation Theory. The kinetic energy
term is treated by the Optimal Transportation Theory within the formulation of Hamilton’s
principle. For each nodal point, the Euler-Lagrangian equations are derived after time and
spatial discretizations. Since OTM method have some shortcomings, the stabilized formu-
lation due to (WEISSENFELS & WRIGGERS, 2018) is used. Within an Updated Lagrangian
framework, the stabilized formulation is derived from the weak form. The whole algorithm

35
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is sketched in Algorithm 1.

4.1 The Weak Form
First of all, initial boundary value problem (IBVP) is specified to solve the Partial Differential
Equations (PDEs). Using the balance law of linear momentum formulated with respect to
the current configuration, the deformation of the body is

ρü − ρb̂− divσ = 0, (4.1)

where the displacements u are the primary variables. The Cauchy stress tensor, specific
body force and density correspond to σ, b̂ and ρ respectively. The Dirichlet and Neumann
boundary conditions and the initial conditions for the body are given respectively by

u − û = 0 on ∂uΩ, (4.2)
t − t̂ = 0 on ∂tΩ, (4.3)

u(t = 0) = u0 in Ω, (4.4)
v(t = 0) = v0 in Ω. (4.5)

As shown in (WEISSENFELS & WRIGGERS, 2018), the OTM method can also be derived
from the weak form. In case the formulation is made with respect to the current configura-
tion, the virtual work at the boundary balances with virtual work inside of the body and the
inertia term.∫

Ω

δu · ρüdv +

∫
Ω

grad δu : σdv =

∫
Ω

δuρ · b̂dv +

∫
∂tΩ

δu · t̂da, (4.6)

4.2 Spatial discretization
The spatial domain under investigation (as shown in Figure 4.1) is discretized by two sets
of points, with different functions: Nodes and material points. The support domain is de-
fined as the domain around each material point, containing nearest nodes in its neighborhood
(Figure 4.1). This domain is updated at every computation step by applying a suitable search
algorithm and hence, the shape functions NI (xp n) are also continuously updated. At each
material point, the test function and the displacements are approximated through shape func-
tions NI (xp n) and nodal values within its support domain

up(xp n) =

nnp∑
I =1

NI(xp n)uI , δup =

nnp∑
I =1

NI(xp n)δuI , grad(δup) =

nnp∑
I =1

BI(xp n)δuI ,

(4.7)
where nnp specifies the number of nodes in the support domain of each material point at
current computation step. The matrix BI(xp n) contains the derivatives of shape functions at
node I . In contrast to the FEM, overlapping of support domains is allowed in OTM method.
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In problems of large deformations, non-admissible nodal distributions can be eliminated by
the update of support domains at every time or load step.

Using (4.7), the approximation of (4.6) can be transformed into an algebraic equation using
an assembly procedure symbolized by operator Anmp

p=1[
A

nmp

p=1

nnp∑
I

nnp∑
J

NI(xp)1NJ(xp)mp

]
ü = A

nmp

p=1

nnp∑
I

[
NI(xp)b̂pmp − BI(xp)σpvp

]
.

(4.8)
where ü is the global nodal acceleration vector, nmp is the total number of material points
in the body, mp is the mass at the material point p and vp is its volume in the current config-
uration. In order to guarantee that the conservation of the mass during the computation, the
mass of a material point is assumed to be constant. Equation (4.8) can be abbreviated as

Mü = f − P (u) (4.9)

where M denotes the consistent mass matrix, f contains the applied body forces and P
stands for the internal force vector. The solution of this discretized dynamic equation makes
use of the updated nodal point data and the material point data.

The coupled solution framework (as described in Chapter 3) to capture the physical phenom-
ena during photopolymerization process have been incorporated within the OTM framework.
Starting with the cure reaction rate as in Equation (2.5), its meshfree discretization involves
evaluation of degree of cure at the material point

α̇p n =
[
A1,p n + A2,p nα

m
pn−1

]
(1− αp n−1)

n (4.10)

where αp n−1 is the degree of cure at previous time step. The temperature which is defined at
a node can be written in the discretized form at a material point as

Θp n =

nnp∑
I

NI(xp n)ΘI n (4.11)

which is utilised to compute the temperature dependent rate constants A1,p n and A2,p n of the
cure reaction rate in Equation (4.10). These two parameters are evaluated at current time step
n using the updated temperatures at the nodes. Furthermore, the degree of cure dependent
chemical shrinkage and thermal expansion (with its additional dependence on temperature ),
see Equation (3.66), can be expressed in the discretized form as

g (αp n) = 1 + βcαp n

ϕ (αp n, Θp n) = 1 +
[
(1 − αp n) βΘf

+ αp nβΘs

]
(Θp n − Θ0) (4.12)

The thermal effects in the SLA simulation are also modeled with respect to the OTM frame-
work and its meshfree discretization. Considering the heat conduction equation (3.91), its
discretized form can be written as

DivQ = −
∫
Ω

κ grad δΘ gradΘ dv = −
nI
mp∑
p

nI
mp∑
p

BI(xp n)BI(xp n)κp nΘI nvp n (4.13)
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The absorbed laser power which is defined at a material point can be written in the discretized
form at a node as

ELaser,I n =

nI
mp∑
p

NI(xp n)ELaser,p n (4.14)

where ELaser,p n can be computed according to Equation (2.2). The thermo-chemical specific
heat capacity in Equation (3.63) can be represented as

cΘC =

nI
mp∑
p

[(
aFΘI n + bFΘ

2
I n

)
(1 − α) +

(
aSΘI n + bSΘ

2
I n

)
α
]
NI n(xp n)mp n

(4.15)
Besides the equation of motion, the final derived energy equation (3.93) is obtained in the
discretized form within the OTM framework as

cΘCΘ̇I n =

(
φJM tr(σ)

3ρ0

∂g

∂α
− ∂ΨΘC

∂Θ
− ΘI n

JM tr(σ)

3ρ0

∂φ

∂Θ

∂g

∂α
+
∂2ΨΘC

∂Θ2

)
α̇

−ΘI n

(
gJM tr(σ̇)

3ρ0

∂φ

∂Θ

)
−

nI
mp∑
p

nI
mp∑
p

BI(xp n)BI(xp n)κp nΘI nvp n

+

nI
mp∑
p

NI(xp n)ELaser,p n

(4.16)

4.3 Time Integration

Suitable time integration scheme is used to solve (4.9). In this work, the central difference
time integration scheme have been used. This time integration scheme can be derived from
the explicit Newmark scheme, see (HUANG ET AL., 2019) for more details.

Explicit Newmark scheme

Within the Newmark scheme, the variables at tn+1 can be described interms of variables at
time tn as

un+1 = un + ∆tvn +

(
1

2
− β

)
∆t2an + β∆t2an+1 (4.17)

vn+1 = vn + (1 − γ)∆tan + γ∆tan+1 (4.18)

where β and γ are the Newmark scheme parameters and the explicit Newmark scheme is
obtained when β is set to 0.



4.3. TIME INTEGRATION 39

Central Difference Scheme
The central difference scheme can be derived from the Newmark scheme by further setting
the parameter γ = 0.5. Displacements at time step tn can be written as

un = un−1 + ∆tvn−1 +
1

2
∆t2an−1 (4.19)

and the velocity at time step tn can be expressed as

vn = vn−1 +
(an + an−1)∆t

2
. (4.20)

(4.19) can be rewritten as

vn−1 +
∆t

2
an−1 =

1

∆t
(un − un−1) . (4.21)

(4.20) can be written in terms of (4.21) as

∆tvn = un − un−1 +
∆t2

2
an (4.22)

The velocity at time tn can be represented in terms (4.22) and (4.19) as

vn =
un+1 − un−1

2∆t
(4.23)

Here, the velocity vn has been expressed in terms of displacements at time steps tn+1 and
tn−1. Subsequently, the acceleration at time tn can be obtained as

an =
(un+1 − un) − (un − un−1)

∆t2
. (4.24)

Time Integration within OTM Method
By applying the central difference scheme, the displacements at time tn+1 can be obtained
by inserting the acceleration an in (4.24) to Equation (4.8) at time tn. Subsequently, using
the obtained acceleration an, the displacements at time tn+1 can be defined by using the
acceleration an. The Equation (4.24) can be rewritten to obtain the displacement at time
tn+1

un+1 = 2un − un−1 + ∆t2an (4.25)

Special initialization is required for n = 0 in (4.25) and using second order accurate Taylor
series expansion, the displacement at u−1 can be defined as

u−1 = u0 − ∆tv0 +
∆t2

2
a0 (4.26)

Current velocity at time tn+1 has been defined to efficiently implement the central difference
time integration scheme in (4.25)
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v̂n+1 = vn +
∆t

2
an, n = 0 (4.27)

v̂n+1 = v̂n + ∆tan, n ≥ 1 (4.28)

Accordingly, displacement at time tn+1 is updated as

un+1 = un + ∆tv̂n+1 (4.29)

A time discretisation is required for the energy equation (4.16). Applying Euler forward
scheme for this first order differential equation, the temperature at the node I is updated as

ΘI n+1 = ΘI n + ∆tΘ̇I n+1 (4.30)

Similarly, the degree of cure at the material point is updated as

αp n+1 = αp n + ∆tα̇p n+1 (4.31)

where α̇p n+1 is obtained from the cure reaction rate (2.5).

4.4 Update of Primary Variables
Now, the approximation equation (4.8) can be transformed into an algebraic equation by
decomposing into a set of independent nodal equilibrium equations. Using the acceleration
at time tn in Equation (4.24) and the concept of lumped mass matrix, the equilibrium of
the body is transformed into a set of independent nodal equilibrium equations. This step is
equivalent to the Finite Element Method framework given in (BATHE, 2006), for instance

mI n
(un+1 − un) − (un − un−1)

∆t2
= pI n + rI n. (4.32)

Within the Galerkin meshfree framework, the boundary forces, pI n, are prescribed only
at the nodes of the Neumann boundary. In order to compute the acceleration efficiently,
lumped mass matrix was applied to the equilibrium equation (4.32). The full mass matrix
becomes the diagonal matrix by the application of row-sum technique and leading to the
direct computation of the nodal mass, which can be represented as

mI n =

nI
mp∑
p

NI n(xp n)mp (4.33)

where mI n is the mass at node I . The nodal residual vector (or internal forces) rI n in
Equation (4.32) can be formulated as

rI n =

nI
mp∑
p

[
NI n(xp n)b̂p nmp − BI(xp n)σp nvp

]
(4.34)
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Algorithm 1 Algorithmic implementation of a time step in OTM
Require: Initial nodal set and material point set

1. Compute local mass matrix and local nodal force vector
2. Update primary variables and nodal coordinates
3. Update material point coordinates
4. Constitutive updates at material point
5. Search Algorithm to update support domains
6. Recompute shape functions

Y
z

x

Material Point

Nodal Point

In uence Domain

Support Domain

Figure 4.1. Influence Domain of a node and Support Domain of a material point

where nI
mp is the number of material points in the influence domain of Node I . The corre-

sponding material points within each influence domain can be determined from the support
domain directly, without any need of additional search algorithm, see Figure 4.1.
In most of the cases, due to presence of more than 4 nodes within each support domain,
there is nonlinear distribution of displacements leading to distortion, see FLANAGAN &
BELYTSCHKO (1981). A stabilization term is added to the nodal residual vector to penalize
the inaccurate behavior due to underintegration within every support domain, see (WEISSEN-
FELS & WRIGGERS, 2018):

rI n−stab = rI n − ε

nI
mp∑
p

NI n(xp n)eI,p n (4.35)

where ε is the penalty parameter and eI,p n is the error due to underintegration. The second
term on the right side of Equation (4.35) enforces error to be zero by penalty regularization.
Within the OTM method, the error due to underintegration, eI,p n, is due to the nonlinear dis-
tribution of displacements and calculated based on the position of nodal point I and material
point p and the error is determined by

eI,p n =
xI n − xp n − (x̃I n − x̃p n)

∥xI n−1 − xp n−1∥
, (4.36)

where, xI n − xp n is the distance vector between material point p and nodal point I , x̃I n −
x̃p n is the distance vector updated from the constant increment of deformation gradient

x̃I n − x̃p n = ∆F p n [xI n−1 − xp n−1] , (4.37)
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where ∆F p n is the increment of the deformation gradient, as computed in (4.40). The error
due to underintegration in Equation (4.36) is characterzed by the difference of the distance
vectors between two formulations. If the distribution of displacements in the support do-
main is linear, the difference vectors in Equation (4.36) is same as computed from the OTM
method. By solving (4.32), the nodal position vector can be updated from the displacement
increments of the next computation step

xI n+1 = xI n + ∆uI n+1 (4.38)

where xI n is the initial nodal coordinates.

4.5 Update of Kinematic Quantities
The position of a material point at the next time step is updated by multiplying the shape
functions at current time step with the nodal coordinates of the next time step

xp n+1 =

nn
np∑
I

NI n(xp n)xI n+1 (4.39)

where nn
np is the number of support nodes of material point p. During large deformations,

the support nodes of a material point are changing at every time step. Within the nonlinear
regime, strong movement of the particles can lead to large deformations of the body, making
the deformation gradient an important kinematic quantity. Using the updated Lagrangian
formulation within the OTM framework, the deformation gradient at the next time step,
n+ 1,

F p n+1 = ∆F p n+1F p n (4.40)

is updated in terms of the current value of the deformation gradient,Fp n, and the increment
of the deformation gradient is

∆F p n+1 = 1 +

nn
np∑
I

∂NI n(xp n)

∂x
∆uI n+1 , (4.41)

Accordingly, the volume and mass at each material point can be updated based on ∆F p n+1

vp n+1 = det(∆F p n+1)vp n (4.42)

ρn+1 =
mp

vp n+1

(4.43)

For the SLA simulation, the thermo-chemo-mechanical split of the deformation gradient
(3.64) can be updated as

F p n = FM,pnF C,p nFΘ,p n (4.44)
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where F C,p n and FΘ,p n are dependent on scalar functions of chemical shrinkage and thermal
expansion respectively, see Equations (3.65) and (4.12). Accordingly, the mechanical part of
the deformation gradient can be expressed as

FM,pn = F p nF
−1
Θ,p nF

−1
C,p n (4.45)

and it can be used to compute the mechanical right Cauchy-Green tensor (3.72) at the mate-
rial point as

CM,pn = F T
M,pnFM,pn (4.46)

Similarly, the degree of cure dependent shear modulus of the equilibrium spring (3.67) can
be written as

µα(αp n) = pµα1
(1 − αp n) + pµα2

αp n (4.47)

which is used to compute the cure dependent relaxation time τ(αp n). Now, using the evo-
lution equation (3.68), the elastic-inelastic split of viscoelastic deformation gradient within
the Maxwell branch is updated as

CMini,p n
= CMini,p n−1

+
∆t

τ(αp n)

(
CM,pn − CMini,p n−1

)
(4.48)

Finally, the discretized mechanical second Piola-Kirchoff stress tensor (3.86) is defined as

SM,pn =
2

g (αp n)φ (αp n, Θp n)

[
J
− 2

3
M µ∞,p n

(
I − 1

3
C−1

M,pn tr(CM,pn)

)
+

K

2

(
J2
M − 1

)
C−1

M,pn + J
− 2

3
M µi,p n

(
C−1

Mini
,p n − 1

3
C−1

M,pn tr(CM,pnC
−1
Mini

,p n)

)] (4.49)

A summary of the evaluated quantities in this chapter have been presented at the end of
Chapter 3.

4.6 Local Max- Ent shape functions

In meshfree methods, the polynomial basis functions, which are normally used within the
finite element framework, are not appropriate. In OTM method, local maximum entropy
(LME) (ARROYO & ORTIZ, 2006) approximation function is used which has to be deter-
mined for an arbitrary number of nodes within the support domain. The LME shape func-
tions possess weak Kronecker-δ property at the boundary and it is fulfilled only on convex
boundaries, see (LI ET AL., 2010). Also, the LME shape functions does not fulfill either the
first order completeness or the partition of unity condition. In order to achieve convergence
to the correct solution of the equation of motion, computational algorithms should fulfill
these basic conditions, see (HUGHES, 1987; BELYTSCHKO ET AL., 1998).

For a given material point, the LME shape function can be derived by solving a constrained
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optimization problem

Minimum : fβ [NI(xp)] = βU [NI(xp)] − H [NI(xp)] (4.50)
Subject to : NI(xp) ≥ 0, (4.51)

nnp∑
I

NI(xp) = 1, (4.52)

nnp∑
I

NI(xp)x1 = xp (4.53)

where β parameter controls the degree of locality. The function U [NI(xp)] describes the
locality as

U [NI(xp)] =

nnp∑
I

NI(xp) |xp − xI |2 , (4.54)

and the function H [NI(xp)] describes the entropy as

H [NI(xp)] = −
nnp∑
I

NI(xp) logNI(xp). (4.55)

The LME shape functions has an exponential ansatz and belongs to the class of radial basis
functions. By enforcing first order completeness condition (4.53) using the Lagrangian mul-
tiplier method and the partition of unity condition (4.52) through normalization, the unique
solution of NI(xp) for this optimization problem can be obtained as, see (ARROYO & OR-
TIZ, 2006),

NI(xp) =
ZI(xp)

Z
, ZI = exp−β|xp −xI |2 +λ(xp −xI), Z =

nnp∑
I

ZI(xp) (4.56)

where λ is a Lagrangian multiplier, which is determined by solving
∑
NI(xp)(xp − xI) = 0

using Newton- Raphson algorithm. The parameter β is calculated as β = γ
h2 , where γ

controls the degree of locality of LME shape functions and it should be in the range of 0.8 to
4, and h is the characteristic nodal spacing.

The main goal of the OTM method in this work is development of a parallel framework for its
solution and its applications to large deformation problems and Stereolithography process.
In the next Chapter, a detailed discussion is presented regarding the development of parallel
framework for the OTM method and the scalability performance of this multiprocessing
approach for the numerical solutions of two large deformation problems is investigated.



Chapter 5

Parallel Architecture with MPI

Development of MPI framework requires carefully thought strategies for data-partitioning
and data communication. The parallel framework utilizes the MPI for communication and
synchronization between processes. MPI is a standard paradigm for implementing parallel
framework in distributed memory platforms, (BALAJI ET AL., 2010; PLIMPTON & DEVINE,
2011). In order to exchange message and manage processes, MPI provides a collective set of
library routines. It is generally used in high end computing applications involving intensive
calculations (NOTAY & NAPOV, 2015). Data-partitioning refers to the process of dividing
the problem domain into smaller subdomains. Subdomain geometry affects the scalability
since it is associated with equivalent work load through load-balancing. In order to achieve
high scalability, subdomains are expected to contain same amount of work (load balancing)
while minimizing the need for communications. Several approaches exist in field of non-
overlapping domain decomposition methods to solve the challenging mechanical heteroge-
neous problems on massively parallel architectures. A new parallel mesh generation method
has been developed by (GHARBI ET AL., 2021) which leads to subdomains with shape well-
suited for Schur based domain decomposition methods, such as FETI (FARHAT & ROUX,
1991) and BDD (MANDEL, 1993) solvers. Another domain decomposition method, Orthog-
onal Recursive Bisection (ORB) algorithm has been implemented by (OGER ET AL., 2016;
YANG ET AL., 2020) which has been shown to lead to scalable results at large processor
numbers. Also, due to the distributed nature of the framework, duplication of the data is
required for communication, resulting in the increased overall memory requirement.

Generally when a parallel program is run on several processes simultaneously, there are
data dependencies between the tasks. A process might need intermediate results in order to
carry out its computations and this intermediate result could be located on adifferent pro-
cess. Hence, bottlenecks occur which slow down the computation. The MPI library provides
different communication primitives: point-to-point and collective communication. One way
to maximize the performance of parallelization is to reduce the overheads due to commu-
nication operations. Overhead is defined as the length of time that a processor is engaged

Reproduced from: S. Kumar, P. Gosselet, D. Huang, C. Weißenfels, P. Wriggers. Parallel multiphysics
simulation for the stabilized Optimal Transportation Meshfree (OTM) method. Journal of Computational Sci-
ence (2022)
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in the transmission or reception of each message; during this time, the processor cannot
perform other operations (CULLER ET AL., 1993). Collective communication operations,
introduced in the latter versions of MPI, have been a key concept used in large scale paral-
lel applications to minimize the communication overheads (BARIGOU & GABRIEL, 2017;
BARIGOU ET AL., 2015). Although they are widely used due to their increased productivity
and performance, there are some limitations. Due to the dependencies on all the processes
of a communicator, there exist scalability issues and conventional collectives support limited
communication patterns, such as, broadcast and all-to-all, see (GHAZIMIRSAEED ET AL.,
2020). In order to address these issues, Neighborhood Collectives, introduced by the MPI
3.0, provide an alternative to the users to define arbitrary communication patterns. This can
be used to implement nearest neighbor collective operations where each process interacts
with only a small neighborhood of processes. Neighborhoods can be described either by
Cartesian neighborhoods or by general communication graphs, for more details see (HOE-
FLER ET AL., 2011; MPI FORUM, 2015).

When performing computations within each subdomain, all the necessary information should
be available in the same process. But, for the subdomain’s boundary, some of the required
information will be located on other processes. Hence, a communication pattern is required,
the most commonly used is halo regions. At every computation step, the halo regions are
exchanged with the neighboring processes so that every process can access to the necessary
information. The goal of the halo regions is to locally replicate the domain residing in other
processes. At every computation step, when processes communicate with their neighbors,
performance of any process depends strongly on the performance of its neighbors. This can
result in delays (LAOIDE-KEMP, 2015). Additionally, the probability for delays can increase
with the number of processes.

Large scale computations requires an adaptive code to run efficiently on distributed memory
systems. Good data management and domain decomposition are critical parameters. Some
of the cumbersome tasks during simulation using the OTM method in a parallel environment
involves modifying, deleting and adding particles in a subdomain, adjusting the subdomain
partitioning dynamically and performing migration of particles to maintain load balance dur-
ing the simulations. These tasks require flexible and efficient data management scheme. In
mesh-based methods, flexible and efficient data management schemes for parallel systems
have been implemented for adaptive hp finite element method (LASZLOFFY ET AL., 2000),
and for simulation tool for geophysical mass flows (PATRA ET AL., 2005). In meshfree
methods, (CAO ET AL., 2017) developed data management strategies for a MPI parallel im-
plementation of the SPH method to simulate volcano plumes. (FERRARI ET AL., 2009) used
a flexible way in linked lists using pointers so that particles can be deleted or added during
the simulation. Similar approach for modifying pointer-based information has been adopted
in the current work.

The following three reasons motivate the work presented in this chapter. First, while paral-
lelization approach to OTM method has been implemented by (LI ET AL., 2014), efficient
implementation strategies have been presented by introducing communication for both nodal
and material point halo regions for localized updates within every subdomain. Second, with
the use of improved data structures for halo regions, flexibility have been introduced to han-
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dle variable workloads (dynamic halo regions). This is helpful when new nodal or material
point quantities are added into the communication. Finally, with the use of nearest neighbor-
hood communication for neighbor detection and communication, the communication costs
are reduced even though total halo particles increases with increase in number of subdo-
mains.

In this work, computational strategies are proposed for parallel processing of OTM Method
using MPI for scalability on large-scale computer clusters. Mechanisms are presented for
efficient addition or removal of nodes and material points from their corresponding influ-
ence and support domains respectively, thereby reducing computational overheads. Hence,
storage issues related to the fixed-size arrays are eliminated. Dynamic halo region is im-
plemented that can handle variable workloads. Both nodes and material points within every
subdomain and their corresponding influence and support domains are managed by STL map
which can ensure quick and flexible access and modifications. In order to ensure good static
and dynamic load balance, Recursive Coordinate Bisection (RCB) algorithm, a Cartesian
based decomposition method is used for both static and dynamic decomposition (dynamic
load balancing). The RCB decomposition method facilitates good scalability by ensuring
minimum interfacial surface area between the sub-domains. Parallel decomposition of spa-
tial domain is carried out in such a way that each subdomain is physically compact and
the computations can be performed locally at each process. The flexibility of our data ac-
cess methodology, data structures, dynamic halo regions enables efficient implementation of
OTM method within parallel framework. To reduce global communications, nearest neigh-
bor communication operations are implemented using MPI collectives.

5.1 Software Design
The parallel framework is written for use on multi-CPU architectures. The parallel codes
are written in C++ and make use of its object-oriented features. The approach to parallelize
the OTM method with MPI is to separate the spatial domain into distinct subdomains and
allocate nodes and material points to each MPI process, such that each process treats its own
subdomain independently. One advantage of this approach is the minimum impact on the
contents and structure of a serial code. Halo regions of nodes and material points are then
distributed between the subdomains at every computation step such that the primary nodal
variables and constitutive updates at the material points can be computed in parallel.

5.1.1 Domain Decomposition
To decompose the domain, the Recursive Coordinate Bisection (RCB) algorithm is used.
The objective of the partitioning library is to provide a initial computational workload which
is uniformly distributed. This is accomplished by a distribution of almost equal number of
particles (nodes and material points) in each process. Domain decomposition is conducted
by cutting along the partition planes in the spatial domain recursively (Figure 5.1). Each
sub-domain is assigned to one process. Hence, the decomposition depends on the number
of processes and the domain size (SELVAM & HOFFMANN, 2015). The goal of using this
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domain decomposition algorithm is to ensures geometrical locality of the particles and to
simplify the creation of halo regions. Both nodes and material points carry their influence
and support domain information respectively during the distribution process.

Y
z

x

Partition along 

xz-plane

Partition along 

yz-plane

Figure 5.1. Domain decomposition into four processes using RCB.

Movement of particles and subsequent adjustments in the subdomain will cause load-
imbalance among the processes. The computational load at a given time interval is monitored
to re-assign the workload evenly among the processes and to minimize the communication.
For the purpose of dynamic load balancing, the Recursive Coordinate Bisection algorithm is
called at optimized time intervals, within the mid-increment of the time step, to update the
subdomain boundaries if required.

5.1.2 Dynamic Halo Regions
The nodal and material point updates are performed in each subdomain in parallel. For a
node and material point, its influence and support domain could be spread across multiple
processes (Figure 5.2). Nodes and material points, which are close to the division boundaries
of subdomains need to share information. For this, the halo regions are necessary. These halo
regions are copies of nodal and material point data that are sent to neighbor processes via
two communication steps.

Process I Process II 

Process Boundary

Figure 5.2. Influence Domain of a node spread across multiple processes
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Figure 5.3. Nodal halo region and support domain with support nodes from halo
region.

After nodal and material point updates, the halo regions are constructed dynamically dur-
ing the computation, depending on the amount of communication. The first round involves
nodal halo communication for the material point updates, where position, velocity, influence
domain and other nodal data are communicated. Afterward, all data at material points can
be computed within each subdomain. For material points whose support nodes are located
in neighboring subdomains, its support domain is reconstructed through halo nodes (Figure
5.3). Hence, support domains are formed using nodes in its own subdomain and nodal halo
region. After the update of material point information, the second round of communica-
tion involves material point halo communication for the nodal updates. Similarly, influence
domain of nodes at the boundary of subdomains are reconstructed through material point
halo regions (Figure 5.4). Nodal updates take place locally at each subdomain using the
information from its own subdomain and from material point halo region.

Figure 5.4. Material point halo region and influence domain using material points
from halo region.

At the beginning of the halo communication process, the neighbors of each subdomain need
to be detected. This will enable every subdomain to initiate communication locally only
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with its neighbors and to implement the nearest neighbor communication patterns (sparse
collective operations). In general, for large scale applications, efficient implementation of
sparse collective communication operations is most important (HOEFLER & TRÄFF, 2009).
At every time step, identification of nearest neighbors of a subdomain is facilitated through
the process of bounding box intersection with its neighbor subdomains. A set of local neigh-
borhoods (process neighborhood) is defined for every subdomain (Figure 5.5). Each process
neighborhood consists a list of k target processes and a list of k source processes. For each
subdomain, halo regions will be sent to target processes and simultaneously, it will receive
halo regions from the same target processes. So, the source and target processes are same
for each process but the amount of information to be received and sent may differ. Bound-
ing box consists of coordinate information of both nodes and material points located at the
lower and upper bounds of each subdomain and it is recomputed at every computation step.
In Figure 5.6, (BII

max, B
II
min) represents the bounding box of Process II and (BI

max, B
I
min)

represents the bounding box of Process I . Before performing intersection, bounding boxes
from neighboring processes are extended by a width equivalent to maximum support radius
of the sub-domain. This is performed at every time step to determine the extent of overlap of
bounding boxes, i.e. halo regions. The maximum support radius at each sub-domain is used
to extend the bounding boxes gathered from neighboring processes. Width of halo region
for each sub-domain is identified as the overlap region between the bounding boxes of each
sub-domain.

Figure 5.5. Schematic Representation of Nearest Neighborhood Communication
for a typical halo region update operation, showing the halo exchanges
for the faces and corners of sub-domains: Grey regions represent the
halo communication among the faces of the sub-domains (each with
one neighbor) and red regions represent the halo exchange among the
corner parts of the sub-domains (each with three neighbors).

Nodes within every intersecting bounding boxes are identified as halo nodes, see Figure
5.6. Halo nodes which are to be sent, are serialized, i.e., the nodal data is represented as a
large array of chars and stored in a buffer. Halo nodes sharing boundary with each neighbor
is sent to the specific neighboring sub-domain (Figure 5.7). Here, MPI virtual topology
functionality is used for sparse collective operations, it uses the set of local neighborhoods,
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Process I 
Bounding Box from 

Process II

BmaxII

BminII
BminI

Figure 5.6. Bounding Box intersection between Process I and Process II and Identi-
fication of halo nodes in Process I in the intersection region is depicted
in the Figure. Nodes in the intersection region will be sent as halo nodes
to Process II.

i.e., source and target lists. Graph topology interface is used as it provides full flexibility
in describing neighborhoods and the communication graphs are not limited to symmetric
exchange patterns, which is in contrast to the Cartesian topology mechanism (FORUM, 2012).
Before sending the halo nodes, the processes, at first, communicate how many nodes are to
be exchanged along with total size of nodal data. After determining the total size of each
buffer, memory allocation is made in the target process where the halo region is to be received
(receive buffer) from its neighbor (Figure 5.7). The overall nodal halo communication step
is sketched in Algorithm 2.

Algorithm 2 Nodal Halo Communication Step
Require: Bounding box computation at every process
Require: Detection of neighbor processes

1. Exchange bounding box with all processes using MPI Allgather
2. Identify intersecting bounding boxes
3. Identify nodes at the intersection (or Halo nodes) to be sent

Require: Create local process neighborhood using MPI Dist graph create adjacent
1. Determine the nodal size for halo.
2. Exchange the nodal sizes with nearest neighbors using MPI Neighbor alltoallv
3. After receiving the nodal sizes at destination process, allocate memory for receive
buffer
4. Pack the halo nodes to be sent in a send buffer.
5. Exchange the halo node information using MPI Neighbor alltoallv.

After the nodal halo communication, material points perform the search process using nodal
information from its own subdomain and from nodal halo region. In order to improve the
computational efficiency of search algorithms, the linked cell method (GRIEBEL ET AL.,
2007) has been implemented. Linked cell method within OTM method is a new feature in
this work. In solids undergoing large deformations or in fluid simulations, both the nodes and
material points may change its position with time. An efficient search algorithm is needed
to dynamically update the support domain while solving the equations without incurring
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Process I Process II 

Process Boundary 

Send Buffer (as Serial Array) Receive Buffer

Extraction of 

Boundary Data

Insertion of 

Boundary Data
Nodal Halo Region

from Process I 

MPI_Neighbor_AlltoAllv

Figure 5.7. MPI Communication from Process I to Process II

Figure 5.8. Linked Cell Method

excessive computational costs. Linked cell method significantly reduces the computational
efforts, when the number of particles is large. The main idea of the linked list is to map the
nodal positions on a grid. All the nodes have a unique particle ID and a data structure stores
all the information of each grid. For each cell, a list of nodal IDs and pointer to those nodes
are stored. After the nodal updates and subsequent formation of nodal halo regions, both
the subdomain and nodal halo region is subdivided into static cells (Figure 5.8). Only nodes
in the vicinity of a material point are checked during the search process. This is done by
identifying the cells which intersect with the search radius and nodes in those intersecting
cells are considered within the search process. A brief sketch of the steps involved is shown
in Algorithm 3.

After material point updates, communication of material point halo region follow in the same
line as of nodal halo communication, starting with the bounding box intersection, communi-
cating total number of material points to be exchanged, and communication of material point
information.
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Algorithm 3 Algorithmic scheme for Linked Cell Method
Require: Nodal Halo Region
Require: New support radius

1. Divide the subdomain and nodal halo region into cells, see Figure 5.8
2. Identify intersection of cells with the support domain
3. Find the nodes which belong to the material point

5.1.3 Data Management Strategies
The core of parallel OTM method is formed by data structures and algorithms implemented
as C++ templates. To store all the data of the nodes and material points, C++ classes have
been defined. For the management of nodal and material point data (removal or addition),
STL maps to store pointers to objects of nodal and material point data are preferred. This
gives us flexibility for quicker removal and addition of nodal and material point data during
load-balancing and for the formation of support and influence domains.

Information that is contained in a particle (node or material point) are its identifier (Global
particle ID), coordinates, flags (indicators, such as, the particle is a node or material point and
if the node is on the physical boundary of the problem domain) and its affiliate (rank of the
process that the node or material point belongs to). Additional information that is contained
in a node and material point is its pointer-based influence and support domain information
respectively. With the help of this data structure, every subdomain handles pointers to objects
of nodes and material points, bounding box information (maximum and minimum coordi-
nates), and neighbor information (halo regions for nodes and material points). Choosing a
proper way to handle this STL container depends on the problem itself. For instance, there
is continuous update of support and influence domain in the OTM method, whose sizes can
vary dynamically at every time step. After optimized intervals of dynamic load-balancing,
the pointers to new particles (nodes and material points) are handled effectively by this con-
tainer.

For nodal and material point halo communication, the data is packed into a serial array,
whose size is varying. So, flexible data structures have been designed to pack all the in-
formation in the buffer. The message size for each node or material point is maintained
as number of nodal or material point variables multiplied with the (size of double precision
floating number), in order to prevent any kind of memory misalignment issues while packing
information of mixed data types in a serial array.

The size of each nodal information is of arbitrary number of bytes due to the varying size of
its influence domain. In (LI ET AL., 2014), MPI data structure was used to pack the nodal
information. This restricts the information to be packed since only fixed-size information
could be used to communicate. Here, the influence domain information of a node is packed
more efficiently using a flexible size for every node. Similarly, for every halo material point,
its support domain information is also included in the halo region. Packing support and influ-
ence information in halo region assists in localised updates within a subdomain. For instance,
whenever the support domains of boundary material points are updated (Step 8 of Algorithm
4) and those material points are exchanged through halo communication, the updated sup-
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Algorithm 4 Parallel OTM Time Step
For Process PI , I = 1, ...., P :

Require: Reading of Input information and Process PI storing its own set of nodes and
material points.

• Initial nodal set and material point set

• Initial support domain of material points

Require: Domain Decomposition by Zoltan, see Figure 5.1.
Require: Initial material point halo regions(steps are similar to Algorithm 2)

For computation step tk → tk+1

1. Complete the influence domain with halo material points.
2. Compute the local mass matrix and local nodal force vector.
3. Update primary variables and nodal coordinates

Require: Nodal halo regions (for details, see Algorithm 2)
Require: Load balancing at optimized intervals, let’s say at every time increments of tk+500

• Clear both nodal and material point halo regions

• Call zoltan functions for load balancing (steps are similar to domain decomposition
as in Section 5.1.1)

4. Complete the support domain with halo nodes, see Figure 5.3.
5. Update material point coordinates.
6. Constitutive updates at material point.
7. Division of subdomain and nodal halo region into cells (Linked Cell Method, see Figure
5.8 )
8. Search algorithm to update the support domains
9. Recompute shape functions

Require: Material Point halo regions (steps are similar to Algorithm 2)

port domain information of halo material points will assist in updating the influence domain
of the nodes locally at each sub-domain. This flexibility feature for packing any amount of
information for halo communication is necessary for localized updates of nodes and material
points.

Another advantage of using STL map for support and influence domain is that pointers to
the support nodes or influence material points can be released while preserving their IDs.
This proved to be helpful in situations where the support domains need to be constructed
again using halo nodes after nodal updates. For instance, at time step tk, support domains
are updated (Step 8 of Algorithm 4). Subsequently, for the material point updates (Steps 4-7
of Algorithm 4) at time step tk+1, the support domain computed at previous time step tk will
be used.

Object-oriented implementation, robustness and flexibility of the parallel framework to in-
clude additional physical phenomena are taken into consideration. With the use of Eigen
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templated library, all the vector and matrix information are stored in contiguous memory
locations and matrix operations are optimized.

5.2 Parallel Performance
The objective of parallelism is to perform simulation of larger and complex problems. To
evaluate the ability of the parallel framework, strong scaling tests are conducted which mea-
sure the performance with increasing number of processes, keeping the problem size con-
stant.

Every simulation is run for 2000 time steps. Variation of the computational efforts could oc-
cur between simulations due to fluctuations in cluster load and differences in configurations
of the cluster nodes. Hence, each simulation is run for 3 times and the average CPU time is
used in the studies. Output files are written in binary format of vtk for every process. Time
taken to write the data files is also taken into consideration. The computational time is the
maximum wallclock time for a single time step in Algorithm 4. The computational time on
10 processes is used as a baseline calculation. Speedup is measured as

Speedup =
tn
tp

(5.1)

For the baseline calculation, n = 10 is used and tp is the maximum wallclock time for a
single time step with p ≥ n.Efficiency is measured as

Efficiency =
n × tn
p × tp

(5.2)

In this section, we will assess the strong scalability characteristics of our parallel approach.
The studies are performed on the LUIS Cluster of Leibniz Universität Hannover using only
Haswell-based nodes. Each Haswell-based node consists of two 8-core Intel Xeon E5-2630
processors. All nodes are interconnected with the Infiniband technology. Each sub-domain
is assigned to one process (core).

5.2.1 Application to Taylor rod impact
The Taylor rod impact test is a widely accepted benchmark where a copper rod hits a rigid
frictionless wall. The three-dimensional bar has a length of L = 32.4 mm and a circular
cross-section with radius R0 = 3.2 mm. The initial velocity is 227 m/s.

Material Model

In this benchmark problem, a finite plasticity material model with linear isotropic hard-
ening is used to model the behavior of the rod. A detailed explanation can be found in
(DE SOUZA NETO ET AL., 2008). The discretization through OTM framework in this sec-
tion is similar to the discretization of equation of motion and the energy equation in Chapter
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Figure 5.9. Geometrical setup of the Taylor rod test.

4. The formulation is based on the multiplicative split of the deformation gradient into an
elastic and plastic part

F p n = F e
p nF

p
p n (5.3)

Assuming the strain behavior as Hencky strain measure, it can be expressed in terms of the
left elastic Cauchy-Green strain tensor bepn as

εep n = lnVe
p n = ln

(√
be
p n

)
(5.4)

where Ve
p n is the elastic left stretch tensor.

For a given incremental deformation gradient ∆F p n+1, the elastic trial left Cauchy Green
tensor is computed as

be tr
p n+1 = ∆F p n+1be

p n+1∆F T
pn+1 (5.5)

Using the exponential map integrator, the Equation (5.4) can be expressed as

εep n+1 = ln

(√
b̄e tr
p n+1

)
− γp n+1 − γp n

∆t

∂fp n+1

∂τ p n+1

, b̄e tr
p n+1 = Qp n+1be tr

p n+1QT
pn+1 (5.6)

The elastic trial left Cauchy Green tensor, be tr
p n+1, is transformed in the principal stress space

using the rotation tensor Qpn+1.

The onset of plastic yielding is defined by the yield function f . The yield surface divides the
elastic domain from the plastic domain and the Kirchhoff stresses τ pn must lie within the
elastic domain or on the yield surface. von Mises plasticity model is used and its deviatoric
part leads to plastic deformations

τ p n+1 = pI + sp n+1 = K tr(εep n+1)1 + 2µ

(
εep n+1 − 1

3
εep n+1 · 1⊗ 1

)
(5.7)

where, the constants K and µ are the compression modulus and the second Lamé constant.
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To model large plastic deformations, the von -Mises yield criteria is applied alongwith linear
isotropic hardening behavior (hardening modulus H)

f tr
p n+1 =

∥∥2µεe trp n+1

∥∥ − 2µ∆γp n+1 −
√

2

3

[
σY0 + H

(
ε̄p n +

√
2

3
∆γp n+1

)]
≤ 0 (5.8)

where σY0 corresponds to yield stress.
The evolution equation for the plastic strain in case of isotropic associated plasticity can be
expressed in terms of Lie derivative of the elastic left Cauchy Green tensor

Lvb
e
p n = −2dp

p nb
e
p n = −2γ̇p n

∂fp n
∂τ p n

bep n (5.9)

where dp
p n is the rate of plastic deformation, γ̇p n is the rate of the plastic variable and fp n

is the yield function which is expressed in terms of norm of the deviatoric stress ∥sp n∥ as

fp n = ∥sp n∥ −
√

2
3
σY . The plastic isotropy is modeled as W p = 0 with W p as the skew

symmetric part of the plastic velocity gradient.

For f < 0, the Kirchhoff stresses lie in the elastic domain. But, when f > 0 for ∆γp n = 0,
the yield criteria is violated and when needed, the plastic increment is adapted in order to
fulfill the constraint f = 0 for Kirchhoff stresses to lie on the yield surface. This can be
corrected using Equation (5.8) and the plastic increment can be computed as

∆γp n+1 =
f tr

2µ+ 2
3
H

(5.10)

Subsequently, the Cauchy stress tensor can be updated as

σ̄p n+1 = J−1
p n+1

[
K tr(εe trp n+1)1 + 2µ

(
εe trp n+1 − 1

3
εe trp n+1 · 1⊗ 1

)
−2µ∆γp n+1

str

∥str∥

] (5.11)

where str = 2µ
(
εe trp n+1 − 1

3
εe trp n+1 · 1⊗ 1

)
and through back transformation using the ro-

tational tensors as in Equation (5.6), the Cauchy stress tensor can be written as

σp n+1 = Qp n+1σ̄p n+1Q
T
pn+1 (5.12)

The actual value of the Hencky strain can be obtained by correcting the trial values by using
the plastic increment ∆γp n+1 as

εep n+1 = εe trp n+1 − ∆γp n+1
str

∥str∥
(5.13)

Now, the actual elastic left Cauchy Green tensor can be computed in the principal strain
space as

b̄e
p n+1 = exp

(
2εep n+1

)
(5.14)

and it is transformed back into the deformed configuration as

be
p n+1 = Qp n+1b̄e

p n+1Q
T
pn+1 (5.15)



58 CHAPTER 5. PARALLEL ARCHITECTURE WITH MPI

Contact Formulation

Additionally, a contact algorithm is needed to model the copper rod striking a rigid wall. A
simple contact algorithm is used assuming that the wall is rigid and the tangential movement
is frictionless. The normal gap gIn+1 of each node at the next time step can be computed as

gI n+1 = (xI n+1 − x̄) · n (5.16)

where x̄ is the coordinate of the rigid plane and n is the normal vector on that rigid plane.
To enforce the non-penetration condition, a Dirichlet boundary condition is applied on the
corresponding node with prescribed displacements at the next time step

uI n+1 = xI n − gI n+1n (5.17)

The above condition is only applied when the non-penetration condition is violated gI n+1 <
0. More details about formulations on two contacting deformable bodies can be found in
(WRIGGERS, 2006).

Numerical Evaluation

The material parameters are chosen as ν = 0.35 for the Poisson ratio, E = 117.109N/m2

for the Young’s modulus, ρ0 = 8.93 . 103kg/m3 for the density, H = 100.106N/m2 for the
hardening modulus and Y0 = 400.106N/m2 for the initial yield stress. For a stable explicit
time integration scheme, a computation step size of ∆t = 4.10−9 s is selected.
The initial domain is set up by triangulation with the material points located at the barycen-
ters of the tetrahedral elements. Subsequently, the initial mesh is jettisoned and the compu-
tations proceed in a meshfree manner. The model contains 5,966 nodes and 28,423 material
points. The domain decomposition is performed by distributing nodes and material points
across all processes with the help of Zoltan library, see Section 5.1.1. Figure 5.10 shows a
sequence of snapshots of the taylor rod impacting axially against a rigid boundary. Here,
MPI Process Rank refers to the rank in order to identify a process, which is an integer in the
range [0, N − 1] where N is total number of MPI processes.

Number of MPI processes Number of nodes Number of material points
50 120 569
100 60 285
150 40 190
199 30 143
239 25 119

Table 5.1. Taylor rod impact: Number of MPI processes and subdomain sizes for
each process

The strong scaling studies are performed for upto 239 processes. It is evident from the
Parallel Performance Analysis (Figure 5.11) that the speedup is almost super-linear till 150
processes and shows good strong-scalability for increasing number of processes. Since the
geometry of the sub-domains are determined through RCB algorithm, the communication
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Figure 5.10. Snapshots of Taylor Rod deformation alongwith nodal distribution in
different sub-domains

between the processes is minimized, leading to a high scalability. Also, with the use of suit-
able data management strategies as discussed in Section 5.1.3, overheads related to editing,
insertion and deletion operations to the data structure has been minimized. With the use of
nearest neighborhood communication patterns, it has been ensured that every sub-domain
could have fixed maximum number of communications among its neighbors irrespective of
the number of sub-domains.
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Figure 5.11. Parallel performance analysis: Strong scaling for Taylor rod impact.

Figure 5.12 shows a decrease in overhead communication and computation time for large
process counts and smaller problems (sub-domains). With the increase in number of pro-
cesses, the sub-domain size reduces (see Table 5.1). Thereby, the computation time for
nodal and material point updates also decreases. Overall, it can be seen that high scalability
has been obtained and the computational efforts of each subdomain and the communication
costs decrease with an increase of number of processes. As the number of processes increase
from 150 to 239, the communication time seems to stabilize, even though more data inter-
faces are present with the growth of subdomains (see Table 5.2). Once a sufficient number
of subdomains are present (as seen for 100 to 239 processes), the communication costs of
the exchanges between the neighbors are almost constant.
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Figure 5.12. Taylor rod impact: Comparisons of growth in computational and com-
munication overhead time in strong scaling tests.

Number of MPI processes Total halo material points Total halo nodes
50 54,980 10,459
100 77,221 14,499
150 93,126 17,392
199 108,400 20,015
239 118,684 22,039

Table 5.2. Taylor rod impact: Number of MPI processes and total halo nodes and
material points at initial time step.

As shown in Table 5.3, the efficiencies are high and greater than 100% for some MPI pro-
cesses, which are similar to those as shown in the work by (LI ET AL., 2014). Also, super-
linear speedup has been achieved through our algorithm. This shows that with the better
implementation of the data structure, operations such as, editing, insertion and localised
search with linked cell method (Figure 5.8) has been handled effectively and the MPI over-
heads have been reduced leading to higher efficiencies. As shown in Figure 5.12, significant
amount of time is spent on neighbor detection and identifying halo nodes and material points,
which is a bottleneck in our implementation. Hence, a better implementation could be made
for the prediction of halo particles which are to be sent to the neighbors.

In order to compare the accuracy of the results obtained through the developed parallel OTM

Number of MPI processes Wallclock time (s) Speedup Efficiency (%)
10 517.82 1 100
50 86.19 6.007 120.14
100 46.69 11.088 110.88
150 32.88 15.747 104.98
199 26.23 19.74 99.197
239 23.78 21.76 91.08

Table 5.3. Performance of the parallel implementation of the OTM framework for
the simulation of Taylor rod impact test.
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Final length (mm) Final mushroom radius (mm)
(KAMOULAKOS, 1990) 21.47-21.66 7.02-7.12
(CAMACHO & ORTIZ, 1997) 21.42-21.44 7.21-7.24
(ERHART ET AL., 2006) 21.40-21.45 7.03-7.20
(LI ET AL., 2010) 21.43 6.8

Table 5.4. Taylor rod impact test: Comparison of results

framework with the ones available in the literature, the tailor rod impact test with the geo-
metrical and material parameters as given in (WEISSENFELS & WRIGGERS, 2018) has been
chosen as a benchmark. The mushroom of the rod at contact and the final length has been
measured. The final mushroom radius to which the rod spreads at the impact surface is found
to be 6.026 mm and the final length is 21.31 mm. The obtained final measurements are closer
to the results which can be found in the literature (see Table 5.4).

5.2.2 Application to Serrated Chip Formation Process

In the second test case, numerical modeling of serrated chip formation is discussed. In this
process, the material undergoes large plastic deformations. Beside physical mechanisms
such as plastic deformations additionally adiabatic shear band formation and ductile fracture
are involved. The separation of the chip from the workpiece is led by the ductile fracture in
the cutting zone. Proper constitutive model and fracture model have to be applied to capture
the physical phenomena involved in the chip formation process. Only basic equations are
introduced and a more detailed explanation can be found in (HUANG ET AL., 2019).

Material Model

The formulation of the finite hyperelasto-plastic framework is based on local multiplicative
decomposition of the deformation gradient into elastic and plastic part as shown in Equation
(5.3). The plastic deformation is described by the Johnson-Cook flow stress model and the
ductile fracture of the workpiece is described by the Johnson-Cook fracture model.
Assuming the dissipation potential f = f (τ , R), the evolution equations have the follow-
ing forms similar to Equation (5.9)

−1

2
Lvb

e = γ̇
∂f

∂τ
be, ξ̇ = γ̇

∂f

∂R
(5.18)

where R is the thermodynamic force conjugate to the isotropic hardening variable ξ. The
plastic multiplier γ has to fulfill the standard complementarity relation of Kuhn-Tucker con-
ditions

γ̇ ≥ 0, f (τ , R) ≤ 0, γ̇f (τ , R) = 0 (5.19)

Using logarithmic strain measure (5.6) in the principal stress space, the linear stress strain
relation can be applied to the elastic part of deformation
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τ =
∂ψ

∂εe
= λ tr (εe) · 1 + 2µεe, (5.20)

where λ and µ are Lame constants and ψ (be, ε, Θ) is the free energy. The evolution law
(5.18) can be transformed into the evolution of logarithmic strain with the assumption of
associated plastic law and by applying an exponential integrator,

ε̇p = γ̇
∂f

∂τ
. (5.21)

Using von Mises plasticity, the yield function is expressed in terms of Kirchhoff stress as

fp, flow (τ ) =

√
3

2
∥dev(τ )∥ − σY

(
εpeq, ε̇

p
eq, Θ

)
(5.22)

where, τ is the Kirchhoff stress, σY the flow stress which is assumed to be a function of
equivalent plastic strain rate ε̇peq, equivalent plastic strain εpeq and the temperature Θ.
The equivalent plastic strain is defined as

εpeq =

√
2

3
∥εp∥ . (5.23)

Subsequently, the equivalent plastic strain rate can be obtained as

ε̇peq = γ̇. (5.24)

The Cauchy stress σ can be obtained through back transformation as in Equation (5.12).
Temperature increase occurs due to adiabatic heating from plastic deformation and the tem-
perature evolution can be formulated as

Θ̇ = β
σvγ̇

ρ Cp

, σv =

√
3

2
∥dev(σ)∥ (5.25)

where, σv is von Mises equivalent stress, Cp is the heat capacity and β is the Taylor-Quinney
coefficient.
Multiplicative decomposed power form of the flow stress has been applied to consider the
effects of strain hardening, strain rate hardening and thermal softening. The Johnson-Cook
hardening law (JOHNSON & COOK, 1983) is used to capture these effects

σY =
[
A + B

(
εpeq
)n] [

1 + Cln

(
ε̇peq
ε̇pe0

)][
1 −

(
Θ − Θr

Θm − Θr

)m]
(5.26)

where A defines the initial yield stress, ε̇pe0 is the reference plain strain rate, Θm is the melt-
ing temperature, Θr is the room temperature and, B, C, m and n are additional material
parameters. Euler backward time integration scheme is used to solve the evolution equa-
tions based on the elastic predictor corrector return mapping algorithm, for more details, see
(DE SOUZA NETO ET AL., 2008).

Separation of the chip from the workpiece and the serrated morphology on the chip upper
surface can be described by the Johnson-Cook fracture model. At the vicinity of the tool
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tip, high compression in the material and high concentration of strain occurs. Ductile frac-
ture leads to separation of the material from the workpiece at the vicinity of the tooltip.
Also, ductile fracture at the chip upper surface can lead to the formation of serrated chips.
Johnson-Cook fracture model is used to model the ductile fracture and to predicts the fracture
locations. When the accumulated equivalent plastic strain, εp neq reaches the critical value,εp neq f ,
ductile fracture occurs

εpeq ≥ εpeq f = [d1 + d2 exp (d3η)]

[
1 + d4ln

(
ε̇peq
ε̇pe0

)][
1 + d5

Θ − Θr

Θm − Θr

]
(5.27)

where d1, d2, d3, d4 and d5 are the material parameters, η is the stress triaxiality which is
defined as

η =
p

σv
, p = λ tr (εe) (5.28)

where p is the hydrostatic pressure and σv is the von Mises stress.

The deformations in the chip and the workpiece during metal cutting are driven by the cutting
tool directly which moves in horizontal direction with a specific cutting depth and cutting
speed. The non-penetration condition is defined by a projection of the slave node positions
from the workpiece onto the cutting tool surface

gN = (xs − xm) · nm ≥ 0 (5.29)

The abbreviations gN the normal gap, xs the slave node from the workpiece xm and nm are
the orthogonal projection of xs on the tool surface and nm is the normal vector associated to
the tool body.

The normal contact force and the stick tangential contact force can be determined by using
the penalty method as

tN = cNgN , tT = cTgT (5.30)

where cN and cT are the penalty parameters.

The tangential contact force in the slip state is determined from the Coulomb friction law as

tT = −µ ∥tN∥
ġT

∥ġT∥
(5.31)

where µ is the frictional coefficient. Further details can be found in (HUANG ET AL., 2019).

Numerical Evaluation

Ti6Al4V alloy is used as the workpiece material. The material parameters of the constitutive
equations (5.26) and (5.27) can be found in (HUANG ET AL., 2019). The workpiece has a
length and height of 300 µm and 120 µm respectively, see Figure 5.13. The cutting depth
is 100 µm. The cutting tool is treated as rigid body with tool radius of 2 µm and rake
angle of 0◦. For the tool-chip contact modeling, the friction coefficient is set as 0.8. For
the workpiece, the melting temperature Θm and the initial temperature Θr is set as 1630◦C
and 25◦C respectively. For a stable explicit time integration scheme, a time step size of
∆t = 10−10 s is selected.
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Figure 5.13. Geometrical model for metal cutting.

Figure 5.14. Snapshots of serrated chip formation process alongwith nodal distribu-
tion in different sub-domains.

The model consists of 27,417 nodes and 107,975 material points. In this example, the scala-
bility performance of the multiprocessing approach in the numerical solutions of large defor-
mation problem is investigated. In Figure 5.14, the sequence of the serrated chip formation
process is shown together with the corresponding nodal distribution across the sub-domains.
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Figure 5.15. Parallel performance analysis: Strong scaling for serrated chip forma-
tion process.

Similar to the previous example, strong scaling studies are conducted for upto 549 processes.
A substantial improvement in the speedup (Figure 5.15) can be observed leading to similar
scalability as for the Taylor rod impact (Figure 5.11).

The communication overheads decrease with increase of processes, similar to that observed
in Taylor rod impact example (Figure 5.16). In smaller problems, the ratio of particles (nodes
and material points) in a sub-domain to halo particles is lower, which leads to an increase in
halo communication overhead time compared to meaningful computation time. Due to the
efficient implementation of nearest neighborhood communication and data structures, both
the communication and computation costs decreases when additional computing resources
are introduced. Similar to the Taylor rod impact example, with the reduction in sub-domain
size (Table 5.5), reduction in computation cost is observed in this example (Figure 5.16). Ad-
ditionally, the communication costs remain constant with increasing processes, even though
the data interfaces along with halo particles increases (Table 5.6). This shows that our ap-
proach behaves in a optimized way and high efficiency has been achieved. These results
make our approach a good competitor to (LI ET AL., 2014).
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Figure 5.16. Serrated chip formation process: Comparisons of growth in computa-
tional and communication overhead time in strong scaling tests.
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Number of MPI processes Number of nodes Number of material points
50 549 2160
100 275 1080
150 183 720
199 138 543
239 115 452
299 92 362
348 79 311
450 61 240
549 50 197

Table 5.5. Serrated chip formation process : Number of MPI processes and sub-
domain sizes for each process.

Number of MPI processes Total halo material points Total halo nodes
50 20,855 4,903
100 29,304 7,628
150 37,450 9,403
199 44,680 11,275
239 48,743 12,134
299 55,204 14,217
348 59,121 15,083
450 67,821 17,400
549 75,151 19,667

Table 5.6. Serrated chip formation process: Number of MPI processes, total halo
nodes, and material points at initial time step.

Number of MPI processes Wallclock time (s) Speedup Efficiency (%)
10 1432.27 1 100
50 258.27 5.545 110.91
100 139.88 10.24 102.4
150 91.66 15.623 104.16
199 52.017 27.534 138.36
239 50.877 28.1518 117.79
299 42.063 34.0506 113.88
348 36.780 38.9414 111.90
450 37.520 38.1731 84.829
549 33.589 42.6405 77.669

Table 5.7. Performance of the parallel implementation of the OTM framework for
the simulation of the serrated chip formation process.



Chapter 6

Parallel Multiphysics Simulation of
Stereolithography Process

Stereolithography (SLA) is an additive manufacturing technique capable of producing highly
accurate polymer components with high speed. This process is based on selective irradiation
of photo-sensitive polymer resin by UV light in a layer-by-layer pattern. Capturing the rel-
evant physics starts with a suitable UV irradiation model as discussed in Section 2.2. The
evolution of the physics has been described schematically in four modular sub-models as
shown in Figure 3.1. The input energy of UV irradiation induces a chemical photopoly-
merization reaction, leading to solidification of the fluid resin. The resin usually consists of
one or more monomer(s)/oligomer(s) and photoinitiator, which controls the polymerization
reaction.

The UV irradiation is a surface effect and only the nodes on upper layer of the resin are
irradiated. The interaction of the UV light with the resin leads to the scattering phenomenon
within the resin leading to inaccuracies in the polymerization process. However, due to con-
stant UV intensity within the penetration depth, the scattering phenomenon is ignored (see
modeling assumption in Section 3.1). In addition to assumptions mentioned in Section 3.1,
for the purpose of simplicity, we consider only one Maxwell element for the simulation of
the SLA process, although multiple Maxwell branches (see Figure 3.3) are required to accu-
rately simulate the evolution of polymer network and resin properties. The elastic behavior is
expressed in terms of the cure-dependent shear modulus as in Equation (3.67), which in turn
makes the relaxation time cure-dependent. A summary of the implementation of equations
for the SLA simulation can be found at the end of Chapter 3.

6.1 Implementation of the process simulation framework
In this work, the photopolymerization process for a single resin layer has been performed
on a macro-scale length and the geometry domain being modeled has 5 mm thickness. The
length and the width of the considered fluid resin is 20 mm and 20 mm respectively. The
fluid resin is considered to be a limited section of the whole fluid resin whose vertical sides
are allowed to deform freely. The displacements of the nodes are fully constrained (Dirichlet
constraint, ∆ = 0) at the bottom of the resin at z = 5 mm to account for a proper bonding

67
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Cured

Resin

2W0

UV laser beam

Irradiated surface

 nodes

Figure 6.1. Schematic Representation of constant UV intensity along the resin
depth, the surface nodes irradiated with UV laser and detection of the
material points within the resin depth.

with the printing platform. Since the simulation is performed only on a limited section of
the whole fluid resin, the lateral boundaries of the resin domain are allowed to deform freely.
Also, the top and bottom surface of the domain will account for the convection boundary
conditions. The initial resin temperature and the surrounding temperature is set at 300 K.
The region of temperature variation is fairly small compared with the rest of the fluid resin.
As heat conduction and/or molecular diffusion continues, this region will increase in size
with time. The modeling has been performed within the OTM framework and the meshfree
discretization of the equation of motion and the energy equation can be found in Chapter 4.

Material properties of DER 331 epoxy resin (by Dow Chemical Company) was used for the
simulation. Some of the material parameters have been chosen from different sources due
to the non-availability of these material parameters for DER 331 needed for our simulation.
The fitting parameters are listed in Table 6.1. The curing related parameters for the cure
reaction rate in Equation (2.5) are shown in Table 6.2. Although (KIM ET AL., 2015) has ex-
perimentally determined the curing related parameters for similar resins based on DER 331
epoxy resin, it would require approximately 1011 computation steps to cure at a particular
laser position. Considering the constraints of limited computational resources, the parame-
ters in Table 6.2 have been chosen such that the physical phenomena of high-speed curing
can be captured within the simulation environment.

The laser follows a continuous circular path and during the process, the material points are
exposed to laser multiple times (see Figure 6.2) which results in over-curing phenomenon.
The total laser energy in Equation (2.2) at material points is the summation of the laser en-
ergies at every computation step due to continuous laser movement, see Figure 6.2. The
driving force for the evolution of physics in the resin is the light intensity as shown in Figure
3.1. The detection of those material points which are affected due to laser irradiation within
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Parameter Value Unit Description Source
ρ 1158.5 [kg/m3] Density DER 331
η 12 [Pa.s] Viscosity DER 331
κ 0.17 [W/m.K] Thermal Conductivity Coefficient (DA SILVA BARTOLO, 2007)
h 0.002 [W/m2.K] Thermal Convection Coefficient (DA SILVA BARTOLO, 2007)
pµα1

5.0 [Pa] Shear modulus of uncured resin (HARTMANN, 2019)
pµα2

613.7425 [Pa] Shear modulus of cured resin (HARTMANN, 2019)
ν 0.49 [−] Poisson’s Ratio (HARTMANN, 2019)
βc -0.1 [−] Chemical shrinkage parameter (HARTMANN, 2019)
βΘf

10−5 [1/K] Thermal expansion parameter (HARTMANN, 2019)
βΘs 10−5 [1/K] Thermal expansion parameter (HARTMANN, 2019)

Table 6.1. Material properties used for simulations.

Parameter Ac1 Ac2 B1 B2 m n
Value 60000.0 18000.0 25.0 30.5 2.7 1.6
Unit [−] [−] [K] [K] [−] [−]

Table 6.2. Material parameters for the evolution equation of the degree of cure, cf.
(HARTMANN, 2019)

the bulk of the resin is required, see Figure 6.1. In this work, due to laser movement, the
spatial evolution of the curing process is represented while accounting for the photopoly-
merization kinetics. During photopolymerization, the variation of light intensity within the
resin depth is provided as a modeling input, which means material points need to be de-
tected according to varying light intensity within the resin. For the purpose of simplification,
during the laser movement, the constant light intensity penetrates into the resin and forms a
cylindrical region. Subsequently, a search process is used to detect the material points within
this cylindrical region. These material points take part in the photopolymerization process.
Simulation was performed with a laser power of 2W. Remaining parameters for laser mod-
eling are shown in Table 6.3. For laser modeling, parameters such as Dp and Ec in Equation
(2.3) are material specific properties. For the purpose of simulations, these experimentally-
determined parameters were used for Gelatin methacrylate (GelMA) material from the work
by (WADNAP ET AL., 2019).

The curing is restricted to laser exposed regions due to limited chemical diffusion/limited

Parameter Value Unit Description Source
P 2 [W ] UV Laser Power -
RLaser 0.005 [m] Laser radius -
W0 0.002 [m] Beam waist radius -
Dp 0.7 [−] Penetration depth coefficient (WADNAP ET AL., 2019)
Ec 64,000 [J/m2] Critical energy needed for curing (WADNAP ET AL., 2019)
T 0.00002 [s] Laser Exposure Time -

Table 6.3. Process parameters for UV laser used for simulations.
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Figure 6.2. Laser path

dark cure potential as explained in Section 2.4. Hence, all particles exposed to UV laser
have significantly higher degree of cure compared to the remaining particles in the fluid
resin. The curing process provides a final conversion between 0 and the peak conversion.

Figure 6.3. Geometry of the fluid resin

Due to high-speed curing process, as discussed in Section 2.4, the curing process starts im-
mediately as soon as the fluid resin is exposed to the UV light. The degree of cure evolves
rapidly within fractions of a second of the UV laser exposure, which is a desirable phe-
nomenon in the SLA process and the model captures this effect as shown in Figure 6.7(a). It
can be seen the polymerization rate decreases rapidly at high conversion, which is at around
0.0001 s. As seen in Figure 6.1, since the UV intensity of the laser is uniform along the depth
of the resin, curing is uniform along the entire depth of the resin. The evolution of monomer
conversion is determined through the Arrhenius approach as in Equation (2.6). Unlike ther-
mal curing, in UV curing process, the evolution of the degree of cure in the fluid resin is
heavily dependent on the variation of laser intensity within the bulk of the fluid resin and the
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evolution remains independent of the temperature increase (thermal diffusion) in the fluid
resin. As a result, particles which are being irradiated by the laser have significantly higher
degree of cure while rest of the resin remains in fluid state. A cross-sectional view of degree
of cure evolution can be seen in Figure 6.5. The stages of evolution of the degree of cure
(or photopolymerization process) during circular movement of laser is shown in Figure 6.4.
To summarize, the UV laser-induced high-speed curing during SLA process is successfully
simulated through the modeled moving UV laser.

(a) (b)

(c)

Figure 6.4. Evolution of Degree of Cure during laser movement on the top surface
of the resin: (a) Curing process at the position of laser initiation. (b)
Curing process when laser is mid-way. (c) Curing process when laser
completes its circular movement and the final cylindrical cured part.

Evolution of the degree of cure is accompanied with an increase in temperature. Simulation
was performed using a computation step of ∆t = 1.0 · 10−7 and a final time of t = 0.03s.
Based on the parameter ranges used in these simulations (see Table 6.1), the concentration of
free radicals are significantly exhausted during curing and the temperature of the irradiated
particles increases drastically within fraction of a second. A non-linear temperature increase
is observed from 300K to 330K approximately. The rapid temperature rise is in line with
the fact that the temperature rise is a result of the photopolymerization accompanied with an
increase of degree of cure. The maximum temperature rise is observed when the resin is fully
cured, see Figure 6.7(b). The computed temperature increase takes into account the process-
dependant values of specific heat capacity and the thermo-chemical free energy function as
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Figure 6.5. Cross-sectional view of the Degree of Cure evolution during the laser
movement

discussed in Section 3.3.1. Subsequently, after a particular location has been exposed to the
laser, the temperature starts to decrease slowly because the reaction slows down and the heat
conduction and convection starts to play an important role in dissipating the temperature
rise. A convective heat transfer boundary condition at top and bottom surface of the resin is
applied. Heat is leaving the cured region through heat conduction to the surrounding fluid
region and through convection at the top and bottom surfaces of the resin. However, it takes
some time for the heat to diffuse into rest of the fluid resin. Figure 6.6 shows the temperature
variations at the location of laser initiation and it shows how the dissipation in temperature
rise is progressing with time at that initial cured location during the complete laser move-
ment. As a result, from Figure 6.6, larger dissipation can be observed in the top and bottom
surface of the resin due to the role of convection. As the laser moves, temperatures at the ini-
tial point of laser irradiation starts to decrease and when the laser reaches back to the initial
position, a small temperature rise is observed. After the laser movement ends and the laser
is turned off, steady-state condition is reached and the temperatures at top, mid and bottom
surfaces continue to decrease further, see Figure 6.6.

Figure 6.7(b) shows the exothermic nature of the photopolymerization process and a rapid
temperature rise is accompanied with the evolution of degree of cure. By the time resin
gets fully cured, maximum temperature is reached within the cured polymer. To illustrate
the temperature evolution, the resulting temperature distribution considering the combined
effects of laser irradiation, thermal diffusion and convection is depicted at different time in-
stances in Figure 6.8. The temperature evolution is computed through the energy equation,
whose discretized form has been presented in Equation (4.16). And, the temperatures at the
nodes are updated accourding to Equation (4.30). During laser initiation, as in Figure 6.8(a),
photopolymerization starts and temperature jump is observed due to exothermic process of
heat release. As the UV laser progresses in its circular path, a similar circular like temper-
ature profile is observed, see Figure 6.8(c). After completion of circular movement, laser
is turned off and a steady state condition is observed, as seen in Figure 6.8(d) with further
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Figure 6.6. Temperature variation with time at the location of laser initiation on top,
mid and bottom surface of the resin

(a) (b)

Figure 6.7. High Speed Curing: (a) Evolution of degree of cure within fractions of
a second. (b) Temperature rise during photopolymerization process

temperature decrease on the already irradiated particles due to the role of combined effects
of heat diffusion and convection, see Figure 6.6. Consequently, selected portions of the fluid
resin has been subjected to UV laser irradiation at the considered time.

Volume shrinkage is a critical property in a polymerization process. Large volume shrink-
ages can cause distortion of the printed parts which in turn can affect the accuracy of the
printed shape. The overall volumetric changes are a combined result of chemical shrinkage
and thermal expansion. Chemical shrinkage is dependant on degree of cure and the thermal
expansion has a coupled dependance on temperature and degree of cure. These volumet-
ric changes are determined through functions as in Equation (3.66). Figure 6.11(a) shows
the shrinkages occurring until the point where resin gets fully cured. The differences in
shrinkages can be seen for top, mid and bottom surfaces of the printed part. Least shrinkage
is observed for the bottom surface as a result of bonding between the printed part and the
printing platform. In Figure 6.9(c), the shrinkages for the cured part during laser movement
can be seen. These shrinkages depict the occurance of increase in density of the solidify-



74 CHAPTER 6. PARALLEL MULTIPHYSICS SIMULATION OF STEREOLITHOGRAPHY PROCESS

(a) (b)

(c) (d)

Figure 6.8. Temperature profile on the top surface of the resin at different time in-
stances of photopolymerization: (a) Temperature distribution at laser
initiation. (b) Temperature distribution when laser is mid-way. (c) Tem-
perature distribution when laser completes its circular movement. (d)
Temperature distribution when laser is turned off (steady-state condi-
tion)

ing resin due to increase in crosslinks of polymeric chains. A cross-sectional view if the
shrinkages occuring during the printing process can be seen in Figure 6.10. Altogether, the
effects of shrinkage and the subsequent temperature rise during photopolymerization pro-
cess have been captured in the implemented framework replicating the physical processes
involved. Also, it is quite interesting to see that the shrinkages and temperature changes are
quite localized around the vicinity of the UV laser path.

Finally, in addition to volumetric changes, we also show the evolution of internal stress dur-
ing the photopolymerization process. Usually, high internal stresses due to shrinkages in the
printed part could be harmful for manufacturing of photo curing based applications, such as
coatings. The evolution of internal stresses can be quantified into a single value through von
Mises stress. The internal stress evolution for the top surface during the photopolymerization
process is depicted in Figure 6.11(b). During photopolymerization, laser parameters, resin
properties and curing kinetic parameters are responsible for the temperature increase. And
this temperature increase influences the internal stress development associated with shrink-
ages in the cured part. These dependencies can be related by linking the Temperature model
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(a) (b)

(c)

Figure 6.9. Volume shrinkage on the top surface of the resin during laser movement:
(a) at the position of laser initiation. (b) when laser is mid-way. (c) when
laser completes its circular movement.

and Material model in Figure 3.1. Maximum internal stresses are generated during the evo-
lution of degree of cure and these stresses reach its peak when the material is fully cured.
Then, slowly these internal stresses start to reduce. For instance, at a point on the resin
surface which is initially exposed to UV Laser at the start of the printing process, the peak
stress is 95.50Pa and by the time when the laser is turned off after completion of its circu-
lar movement, it reduces to 69.93Pa. Along the resin depth, the variations in final internal
stresses for the top, mid and bottom surface is 69.93Pa, 38.38Pa and 33.64Pa respectively.
Maximum internal stresses are generated at the top surface of the cured part and least stresses
at the bottom of the cured part. In the work by (WU ET AL., 2018), the simulations were
conducted to study the evolution of mechanical properties in the photopolymer during pho-
tocuring process and similar trends of decreasing internal stress evolution along the resin
depth have been observed. Variation of internal stresses during different time steps of laser
movement and during the steady state can be seen from Figure 6.12. In Figure 6.12(a), high
internal stresses can be seen at the point of laser initiation. Subsequently, as the laser moves
to different position, as seen in Figure 6.12(b), the stresses at the point of laser initiation
decreases with time. Finally, the end of the printing process, see Figure 6.12(d), stresses on
the top surface can be seen to be almost uniformly distributed along the laser path.

The printed layer, ideally, should be a cylindrical region. But due to chemical shrinkage,
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Figure 6.10. Cross-sectional view of the shrinkages within the printed part

thermal expansion and constraint on motion for the resin at the bottom of the plate, defor-
mations occur. The fully cured layer after the circular movement of laser has been shown in
Figure 6.13.

Finally, it is quite interesting to see how the mechanical, thermal and chemical properties
evolve during the SLA process. During this process, a number of interesting effects accu-
mulate. First, the degree of cure evolution induces chemical shrinkage in the resin following
Equation (3.66). Additionally, the induced heat due to photopolymerization reaction results
in thermal expansion according to Equation (3.66). The effect of conversion of degree of
cure is the build-up of the stiffness, which is assumed to be linear as according to Equation
(3.67). The phenomenon of high-speed UV curing process is captured within the performed
simulation. The parameter characterization in this work is realized by identifying the model
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Figure 6.11. High Speed Curing: (a) Volume shrinkage with the evolution of degree
of cure. (b) internal stress evolution at the top surface caused by volume
shrinkage during photopolymerization.

(a) (b)

(c) (d)

Figure 6.12. Internal stresses on the top surface of the resin at different time instances
of photopolymerization: (a) Internal stress at the point of laser initia-
tion. (b) Internal stress distribution when laser is mid-way. (c) Internal
stress distribution when laser completes its circular movement. (d) Re-
duction in internal stresses when laser is turned off (steady-state condi-
tion)

parameters through numerical simulations. It means that the modeling parameters may not
be equal to the physical parameters and hence, validation of the model is qualitative in nature.
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Hence, the aim is to identify whether the correct trends have been captured or not through
the multi-physical approach. Consequently, the simulation model developed with the OTM
framework is well-suited for the simulation of the SLA process and with the availability of
sophisticated experimental data, it is worth to properly fit the developed material model. This
will help to virtually optimize the SLA process within the developed model.

(a) First Angle (b) Second Angle

(c) Third Angle (d) Fourth Angle

Figure 6.13. Final shape of the printed layer

6.2 Parallel Performance
Parallel Performance of the SLA simulation process have been evaluated within the parallel
framework and strong scalability characteristics have been studied. Same simulation con-
ditions have been utilized to study the performance characteristics as mentioned in Section
5.2. The model of resin domain consists of 5,931 nodes and 26,574 material points. Strong
scaling studies are performed on 49, 99 and 149 processes. As it can be seen in Figure 6.14,
for large number of processes (149 processes), super-linear speedup has been achieved. For
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the purpose of dynamic load-balancing, the Recursive Coordinate Bisection algorithm is
called at optimized time intervals. Redistribution of nodes for the purpose of dynamic-load
balancing along with the progress of photopolymerization can be seen in Figures 6.15 - 6.17.
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Figure 6.14. Parallel Performance Analysis: Strong Scaling for SLA Simulation Pro-
cess

(a) (b)

Figure 6.15. (a) Photopolymerization at the position of laser initiation. (b) Initial
distribution of nodes among different MPI processes.

Figure 6.18 shows that the communication overheads decrease with increase of processes,
similar to that observed in Taylor rod impact example (Figure 5.12) and in Serrated chip
formation process example (Figure 5.16). Similarly, the effect of efficient implementation of
nearest neighborhood communication and data structures can also be seen for SLA process.
The communication cost seem to stabilize and remain constant when the number of process
increase, see Figure 6.18, even though the data interfaces along with halo particles increases,
see Table 6.5. Overall reduction in computational costs is observed with the reduction in
sub-domain size (Table 6.4).

As it can be seen in Table 6.6, the efficiency of SLA simulations within the parallel frame-
work is quite less compared to Taylor Rod (see Table 5.3) impact and Serrated chip formation
process (see Table 5.7). This performance decrease could be due to the following reasons.
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(a) (b)

Figure 6.16. (a) Photopolymerization when laser is mid-way. (b) Redistribution of
nodes among different MPI processes.

(a) (b)

Figure 6.17. (a) Photopolymerization when laser completes its circular movement.
(b) Redistribution of nodes among different MPI processes.

Number of MPI processes Number of nodes Number of material points
49 122 543
99 60 269
149 40 179

Table 6.4. SLA Simulationn Process : Number of MPI processes and Sub-domain
sizes for each process

Most of the evolution takes place within the vicinity of the laser movement while rest of the
fluid resin is barely evolving. Also, a search process is needed for material points influenced
by laser irradiation and participating is the curing process. This search process takes place
for all the material points in all the sub-domains instead of performing this search process
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Figure 6.18. SLA Simulation Process: Comparisons of growth in computational and
communication overhead time in strong scaling tests

Number of MPI processes Total halo material points Total halo nodes
49 43,023 8,741
99 62,879 12,701
149 78,002 15,463

Table 6.5. SLA Simulation Process: Number of MPI processes and total halo
nodes and material points at initial computation step.

only in the vicinity of the laser beam. Hence, domain decomposition into higher number of
sub-domains has almost no effect in reducing the computational load further. This shows
that apart from reducing the sub-domain sizes, different computational processes which are
being carried out have an effect on the parallel performance.

Number of MPI processes Wallclock time (s) Speedup Efficiency (%)
10 283.356 1 100
49 91.20 3.1069 63.407
99 45.906 6.1725 62.348
149 40.1658 15.7475 47.346

Table 6.6. Performance of the parallel implementation of the OTM framework for
the simulation of SLA Simulation Process





Chapter 7

Conclusions

A scalable OTM algorithm for large deformations, parallelized using MPI with an objective
for scalability on large scale CPU clusters has been presented in this work. The consistency
and robustness of this algorithm is demonstrated by two examples showing large deforma-
tion. Strong scaling studies were conducted. Implementation of dynamic halo regions have
shown to improve the scalability by its ability to handle variable workloads and eliminating
the storage issues related to fixed-size arrays. With the increase in number of processes, high
scalability is observed. The communication costs decreases significantly and asymptotically
even though more subdomain interfaces are present leading to increase in number of halo
particles. The second advantage is the efficient data management strategy using advanced
STL container adapted to fulfill various functionalities of data structure modifications. Flex-
ible handling of data structures for two types of particles (nodes and material points) resulted
in reduction of computational costs. Together with localized computation within each sub-
domain by using nearest neighborhood collectives for both nodes and material points this
approach leads to high scalable results.

Stereolithography process is a complex process in the sense that several physical processes
are involved therein. In this work, some of the key phenomena incorporated in the modeling
framework are highly coupled thermo-chemo-mechanical evolution of resin properties and
propagation of the UV laser through the resin. A classical continuum framework for the
material modeling is introduced, which includes the related kinematics and the conservation
principles. For the first time, to the best of author’s knowledge, the modeling of the resin be-
havior including the classical models for the large strain viscoelasticity has been introduced.
The light intensity initiates the photopolymerization and consequently generates heat due to
its exothermic nature and also results in building up of mechanical stresses. In this work, a
fully continuum based numerical scheme for the Stereolithography simulation was presented
in the parallelized OTM framework. The method was motivated by the goal to exploit the
meshfree features of the OTM method in order to handle several complex problems due to its
multi-physical coupling during the photopolymerization process. The SLA process and the
evolution of material properties has been modeled in a small time scale, which represents the
actual physical phenomena of high-speed curing. In such a small time scale, the resin expe-
riences changes in its thermal, chemical and mechanical properties, which has been captured
in this model. Furthermore, the accuracy of the final printed part is determined through the
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shrinkages and internal stresses generated during the printing process. The trends in variation
of internal stresses was verified by the available data in the literature. The author believes
that the developed simulation tool is novel and robust. To the best of author’s knowledge,
the novelity is due to the fact that the developed 3D simulation model gives the user full con-
trol to modify the material properties, shrinkages and stresses by providing full flexibility to
tune up the modeling parameters. Also, the utilization of the OTM meshfree method is quite
new in the field of Sterolithography simulation. Besides, its robustness originates from the
fact the simulation tool is based on a parallellized meshfree framework, making it capable of
handling highly complex multiphysical features of the printed part at a macro scale length.
This can help in visualizing the actual printed parts. Nevertheless, the simulation tool enjoys
the updated Lagrangian and meshless features of the OTM method.

In summary, this work presents a unified computational approach for the SLA process mod-
eling based fully on the Optimal Transportation Meshfree (OTM) method. The distinctive
characteristic of this research work is that it predicts the printed geometry on a macro scale
length alongwith the inclusion of the deformations generated within it, achieved through
multi-physical coupling. The field of Stereolithography simulation is still at the novice stage
and the research in this area has lot of possibilities to further incorporate other aspects. Here
are some directions for further researches as suggested by the author:

• To incorporate the experimental data into the developed simulation model

• To incorporate the Gaussian distribution of the laser energy within the fluid resin to
capture the decrease in UV laser intensity with depth due to photo-absorption. Also,
develop the related algorithm to identify particles exposed to this laser energy within
the Gaussian distribution.

• To incorporate the multiple Maxwell branches in the rheological model in order to
simulate the evolution of new crosslinks in addition to old crosslinked polymer net-
work.

• To develop hybrid MPI-OpenMP parallel framework.

• To incorporate fault tolerance mechanisms in the parallel framework to help in over-
coming instabilities while running large MPI jobs in clusters, which could be an asset
in terms of savings in computational efforts.



Appendix A

Remarks on Parallel Framework

In the following chapter, additional parallel framework related implementations are intro-
duced. To be more precise, communication buffers required for static and dynamic load-
balancing and halo communication have been discussed. Also, the advantages of using spe-
cific container (STL map, see Section 5.7) in our data structure can be seen in the following
chapter.

Static and dynamic load-balancing (Section 5.1.1) within the distributed memory framework
is performed with the help of Zoltan library from Sandia Laboratories (BOMAN ET AL.,
2007). This library, based on the geometrical locality of the particles (nodes and material
points), provides a list of particles which needs to be migrated. Apart from this, zoltan library
also performs the task of migrating the particles into their destination processes. This entire
process of particle migration in the physical memory space ensures geometrical locality of
the particles,i.e., particles which are physically close to each other in the spatial domain
must be in the same process. But, in order to perform all these operations, the user must
prepare the information needed for the migration: First of all, the particle information need
to be removed from the sub-domain and put into the send buffer, which is then passed to
the zoltan as input. Then, after zoltan performs the migration of particles, these particle
information need to be merged (integrated) into the data structures of the sub-domain at the
destination process.

The library takes the coordinate information of particles (nodes and material points) as
input. The library is executed across all processes. Since particle information is read by
all processes from input, each process stores its own set of particle information, see Figure
A.1(a). Through internal communication of the library, particles are then assigned their
corresponding destination processes, see Figure A.1(b). Particles are, then, moved to their
destination processes by packing their information in a send buffer via user-defined data
structures through Zoltan, see Figure A.2(a) and Figure A.2(b). At first, size of each particle
(node or material point) are determined as shown in Listing A.1. Then, particle information
is placed in the send buffer as shown in Listing A.2. After communication by Zoltan, the
information is stored at receive buffer. Then, particle information from receive buffer is
integrated into the data structure of the sub-domain at the destination process, see Figure
A.2(b) and Listing A.3. All the above mentioned processes, such as, removing particle infor-
mation from existing data structures at origin process, determining particle information size,
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packing the information in send buffer and integrating the particle information into the data
structures of destination process has to be performed by the user. Zoltan only assists in send-
ing the information to the destination process. This entire process of particle migration in
the physical memory space ensures geometrical locality of the particles, i.e., particles which
are physically close to each other in the spatial domain must be in the same process, see
Figure 5.1. It will also ensure the static and dynamic load-balancing among the sub-domains.
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Figure A.1. Domain Decomposition by Zoltan [Steps: 1-2]
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Figure A.2. Domain Decomposition by Zoltan [Steps: 3-4]

� �
unsigned i n t Mpoint::give_buffer_size() const {

re turn ((33 + 5 * support_and_shape.size()) * sizeof(double) +
Particle::give_buffer_size());

}� �
Listing A.1. Code segment to identify buffer size of a material point.
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� �
unsigned i n t Mpoint::to_buffer(char *out) const {

i n t pos = 0;
pos += Particle::to_buffer(out);

5 std::memcpy(out + pos, &volume, sizeof(double));
pos += sizeof(double); %Data is placed in buffer by increment of

’double’ to prevent any misalignment

std::memcpy(out + pos, &rho, sizeof(double));
pos += sizeof(double);� �

Listing A.2. Packing material point information in send buffer.

� �
unsigned i n t Mpoint::from_buffer(char *in) {

unsigned i n t pos = 0;

pos += Particle::from_buffer(in);
5

unsigned i n t tmp1, tmp2;

std::memcpy(&volume, in + pos, sizeof(double));
pos += sizeof(double);

10

std::memcpy(&rho, in + pos, sizeof(double));
pos += sizeof(double);� �
Listing A.3. Unpacking material point information from receive buffer.

� �
PARTICLE_TYPE *point_type = reinterpret_cast<PARTICLE_TYPE *>(&(

recv_buffer_mp[done])); //Identify the particle type: Node or
material point

i f (*point_type == NEOHOOK) {
unsigned i n t *gid = reinterpret_cast<unsigned i n t *>(&(

recv_buffer_mp[done]) + sizeof(double)); // Extract the
particle ID

5 thelast.my_Mpoints[*gid] = std::make_shared<NeohookeanMpoint
>(); //create a Particle object of NEOHOOK type

thelast.my_Mpoints[*gid]->from_buffer(&recv_buffer_mp[done])
; //copy the particle information in the subdomain from
the ’from_buffer’

...
10 ...� �

Listing A.4. Integrating migrated particle information with the subdomain.

The nodes and material points are treated as particles, in general, by Zoltan with no distinc-
tion between them. While integrating the particle information into the data structures of the
destination process from receive buffer, see Figure A.2(b), it is required to identify if the
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Particle
Type: Npoint, Mpoint
Particle ID
Coordinates:
Eigen::Vector3d

Npoint
Displacement: Eigen :: V ector3d
Temperature: double
Influence Domain: std :: map <
unsigned int, influence data >

Compute displacements()

Mpoint
Support Domain:std :: map <
unsigned int, support data >
support and shape
Density

Compute Stress()

Figure A.3. Implementation of abstract classes

particle is a node or a material point with the help of Particle Type, see Listing A.4. Based
on the Particle Type, which acts as a key, desired shared object (construction of an object
owned by a shared pointer) for a node or material point (Figure A.3) is constructed at the
destination process.
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Education

08.2013 - 06.2015 Indian Institute of Technology (IIT) Guwahati, India
Degree: Master of Technology (Mechanical Engineering)

Focus: Computational Mechanics

07.2009 - 06.2013 Kalinga Institute of Industrial Technology (KIIT), India
Degree: Bachelor of Technology (Mechanical Engineering)

Scholarships

2021 Promotionsabschlussstipendium from Graduiertenakademie,
Leibniz Universität Hannover

2019 Scholarship from French-German Doctoral College
Sophisticated Numerical and Testing Approaches (SNTA)

08.2013 - 06.2015 Scholarship for Master’s program,
Indian Institute of Technology (IIT) Guwahati, India








