
HAL Id: tel-04055973
https://hal.science/tel-04055973v1

Submitted on 3 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Exploration and conception of computing architectures
of type computing in-memory based on emerging non

volatile memories
Valentin Egloff

To cite this version:
Valentin Egloff. Exploration and conception of computing architectures of type computing in-
memory based on emerging non volatile memories. Micro and nanotechnologies/Microelectronics.
Aix-Marseille Université, 2022. English. �NNT : 2022AIXM0446�. �tel-04055973�

https://hal.science/tel-04055973v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

NNT/NL : 2022AIXM0446/038ED353

THÈSE DE DOCTORAT
Soutenue à Grenoble Minatec
le 08 décembre 2022 par

Valentin EGLOFF
Exploration and conception of computing architectures of type

computing in-memory based on emerging non volatile memories

Discipline
Sciences pour l’Ingénieur

Spécialité
Micro et Nanoélectronique

École doctorale
ED 353 SCIENCES POUR L’INGENIEUR :
MECANIQUE, PHYSIQUE, MICRO ET
NANOELECTRONIQUE

Laboratoire/Partenaires de recherche
Commissariat à l’Énergie Atomique et aux
Énergies Alternatives

Composition du jury

Gilles SASSATELLI Rapporteur
DR - LIRMM, Université Montpellier

Lorena ANGHEL Rapporteure
PR - Spintec, Grenoble

Mathieu MOREAU Examinateur
MCF - IM2NP, Aix-Marseille Université

Alberto BOSIO Président du jury
PR - INL, Université Lyon I

Jean-Michel PORTAL Directeur de thèse
PR - IM2NP, Aix-Marseille Université

Jean-Philippe NOEL Encadrant CEA
PhD - CEA, Grenoble

Affidavit

I, undersigned, Valentin Egloff, hereby declare that the work presented in this manu-
script is my own work, carried out under the scientific direction of Jean-Michel Portal,
in accordance with the principles of honesty, integrity and responsibility inherent to
the research mission. The research work and the writing of this manuscript have been
carried out in compliance with both the french national charter for Research Integrity
and the Aix-Marseille University charter on the fight against plagiarism.

This work has not been submitted previously either in this country or in another
country in the same or in a similar version to any other examination body.

Grenoble, the 08th september 2022,

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons
Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0 International.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

List of publications and conference
participations

Publications made during thesis

Publications
• Poster : “Shuffle operator for matrix multiplication in in-memory computing

architecture”, V. Egloff, Poster in COMPAS, 2019-06, and also in ACACES HiPEAC,
2019-07

• 2nd author : J.-P. Noel et al. “Computational SRAM Design Automation using
Pushed-Rule Bitcells for Energy-Efficient Vector Processing”. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). ISSN: 1558-1101.
Grenoble, France, 2020-03, pp. 1187–1192. DOI: 10.23919/DATE48585.2020
.9116506

• 2nd author : R. Gauchi et al. “Reconfigurable tiles of computing-in-memory
SRAM architecture for scalable vectorization”. In: Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. ISLPED ’20.
New York, NY, USA: Association for Computing Machinery, 2020-08, pp. 121–126.
ISBN: 978-1-4503-7053-0. DOI: 10.1145/3370748.3406550

• 1st author : Valentin Egloff et al. “Storage Class Memory with Computing Row
Buffer: A Design Space Exploration”. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2021-02, pp. 1–6. DOI: 10.23919
/DATE51398.2021.9473992

• Maha Kooli et al. “Towards a Truly Integrated Vector Processing Unit for Memory-
bound Applications Based on a Cost-competitive Computational SRAM Design
Solution”. In: ACM Journal on Emerging Technologies in Computing Systems 18.2
(2022-04), 40:1–40:26. ISSN: 1550-4832. DOI: 10.1145/3485823. (Visited on
2022-10-04)

Patents
• Co-inventeur : Jean-Philippe Noel et al. “Method and device for designing a

computational memory circuit”. 2021156420A1. 2021-08

• Inventeur : Valentin EGLOFF, Jean-Philippe Noel, and Jean-Michel PORTAL.
“Device comprising a non-volatile memory circuit”. 4036916A1. 2022-08

iii

https://doi.org/10.23919/DATE48585.2020.9116506
https://doi.org/10.23919/DATE48585.2020.9116506
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.23919/DATE51398.2021.9473992
https://doi.org/10.23919/DATE51398.2021.9473992
https://doi.org/10.1145/3485823
https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2021156420A1&KC=A1&FT=D
https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=4036916A1&KC=A1&FT=D

Conference participations
• COMPAS, June 2019 in Biarritz, France

• ACACES HiPEAC summer school, July 2019 in Fiuggi, Italy

• Fête de la science, September 2019 in Grenoble, France

• DATE20, March 2020 in Grenoble, France, physical participation cancelled due
to COVID

• DATE21, February 2021 in Grenoble, France [online]

iv

Résumé

Les architectures d’aujourd’hui sont basées sur le modèle de von Neumann qui
place au centre l’exécution des instructions. Ces architectures font face à de fortes li-
mitations dans le contexte du big data. En effet, le mur mémoire est un phénomène lié
à l’écart grandissant de performances entre les processeurs et les mémoires depuis les
années 80. Pour atténuer cet écart, une hiérarchie de caches a été mise en place mais
elle a en contrepartie largement augmentée la consommation énergétique sans être
adaptée pour les grands jeux de données modernes. Non seulement ces architectures
ont du mal avec une masse de données toujours croissantes à cause de leur haute
consommation énergétique et leur faible débit, elles ne peuvent plus uniquement se
baser sur les avancées technologiques pour s’améliorer. Ceci appelle à un changement
de paradigme vers des architectures data centrées où le traitement de quantités de
données massives en parallèle est le principe de base.

De nouvelles mémoires non volatiles promettent du stockage haute densité et
peuvent intégrer du calcul en mémoire. L’intérêt de calculer en mémoire est d’opérer
là où se trouve la donnée, ou tout du moins le plus proche possible, pour supprimer
les allées et venues permanentes entre la mémoire et les cœurs de calcul. Les solutions
existantes utilisent du calcul analogique très efficace mais prompt au bruit et avec une
flexibilité limitée. Quand les données doivent être réécrites en mémoire, l’endurance
de ces mémoires non volatiles n’est pas discutée. Nous concevons un emballage numé-
rique qui étend les fonctionnalités mémoire avec du calcul vectoriel et développons
une plateforme de simulation pour faire de l’exploration architecturale. Notre circuit,
bien nommé C-SRAM, peut être intégré avec la plupart des technologies mémoire et
est équipé de sa propre mémoire SRAM. Nous démontrons qu’effectuer le calcul au
sommet de la hiérarchie mémoire, c’est à dire proche du stockage permanent, permet
une réduction de la consommation énergétique d’un facteur 17.4 et une accélération
du traitement en moyenne d’un facteur 12.9 comparé à un traitement avec un cœur
SIMD. Grâce à la mémoire tampon intégrée, l’endurance de la mémoire non volatile
n’est pas impactée et de fait, l’espérance de vie du système s’en trouve augmentée par
rapport à d’autres solutions de calcul en mémoire.

Mots clés : calcul en mémoire, mémoire non volatile, architecture des systèmes, mé-
moire de classe de stockage, mur mémoire, mur énergétique, goulot d’étranglement
de von Neumann

v

Abstract

Today computing centric von Neumann architectures face strong limitations in the
data-intensive context of numerous applications. The key limitation is the memory
wall due to increased performance gap between processors and memories. To mitigate
this gap, cache hierarchy was introduced but it largely increased energy consumption
while not being adapted for modern big datasets. Not only those architectures struggle
with big datasets due to their high energy consumption and slow bandwidth, they can
no longer be improved through technological advances such as node scaling. This
calls for a paradigm shift to data centric architecture where treating massive amounts
of data in a parallel fashion is the core principle.

New emerging Non-Volatile Memories (NVM) promise high density data storage
and can easily integrate In-Memory Computing (IMC). IMC purposes is to compute
where the data is or the closest to, to suppress back and forth data movements from
the memory to the cores. Existing solutions use analog computing that has high effi-
ciency but limited flexibility. When data needs to be written back after computation,
endurance of NVM is often not discussed. We design a digital wrapper that extends
memory functionality with vector computing capabilities and develop a simulation
platform for architecture exploration. Our digital wrapper, aka C-SRAM, can be inte-
grated with most memory technologies and comes with its own small SRAM buffer.
We demonstrate that computing at the top of the memory hierarchy, i.e. close to the
permanent storage, grants in average 17.4× energy reduction and 12.9× speed-up
versus SIMD baseline. Thanks to SRAM buffer, NVM’s endurance is not impaired and
thereby extends system lifetime compared to other IMC solutions.

Keywords: memory wall, energy wall, von Neumann bottleneck, in-memory comput-
ing, non volatile memories, system architecture, storage class memory

vi

Tout vient à point à qui sait attendre

Remerciements
Remarquez, y’a les voisins de mes vieux,
ils ont quatre fils, y’en a un il est un peu
attardé, et ben c’est leur préféré. Not all who wander are lost.

— Perceval IN Kaamelott BOOK II, EPI-
SODE 97, « Le tourment II »

— J. R. R. Tolkien

Although this thesis is written in english, all my work was done in a french environ-
ment, so I will thank people in my native language.

Et voilà, 12 ans après avoir passé mon bac, je finis enfin mes longues études. Études
qui ont été un peu erratiques au début avec un passage raté par l’EPFL et une inscrip-
tion en IUT sous l’impulsion de ma mère. Tout ça pour finir par ne pas si mal rebondir
et intégrer l’ENS par la petite porte mais aussi parce que la lumière était allumée. Il en
a coulé de l’eau sous les ponts entre mes projets de lycéen de devenir astrophysicien
et maintenant en étant bientôt, si Dieu le jury le veut bien ou plutôt m’estime digne
de l’être, docteur et rentrer dans la grande famille de la recherche publique française.
Cette thèse aura été bien compliquée entre mes quelques problèmes de santé mentale
mais aussi parfois physique, et le COVID (viva el COVID) et les confinements associés.
J’ai appris à beaucoup relativiser (peut-être même trop) et à ne plus stresser sur des
détails dans la vie de tous les jours qui n’ont finalement aucune importance. Avec
cette thèse, j’ai beaucoup appris aussi bien humainement que techniquement.

Tout d’abord, je tiens à remercier mes encadrants : Jean-Michel et Jean-Philippe
pour leur très grande patience et leurs conseils avisés. Bien évidemment, sans eux, je
ne serais pas là pour écrire ces remerciements. Non pas parce que la thèse ne serait pas
tout court, mais parce que j’aurais très certainement abandonné pendant le premier
confinement (viva el COVID, bis repetita). Mais d’une certaine manière, je pense qu’il
m’a aussi permis de finir ma thèse, mais je ne m’explique pas pourquoi j’ai cette
impression. Pour Jean-Michel, merci pour les conseils scientifiques au sens large :
qu’est-ce qui est important, qu’est-ce qui ne l’est pas. Pour Jeanφ, merci pour ces
échanges sur la culture française, et pas n’importe laquelle, la culture du général de
Gaulle. Ensuite, je souhaite remercier les membres du jury pour avoir accepter d’être
rapporteur pour ma thèse : Alberto Bosio, Lorena Anghel et Gilles Sassateli et à qui
je souhaite évidemment une bonne lecture. Enfin, je remercie également Mathieu
Moreau pour ses dernières corrections. J’ai l’impression que tu as essayé tous les liens
dans ma thèse :).

Je ne peux pas oublier l’équipe avec qui j’ai travaillé pendant ces trois longues
années, à moitié enfermé chez nous (viva el COVID, jamais 2 sans 3) : Bastien, Maha
et Henri-Pierre. Bienvenue aux petits nouveaux dans l’équipe : ValentinG, Maria et
Hichem, j’espère que vous vous y plaisez. Un grand merci spécial pour Lorenzo qui m’a
beaucoup aidé personnellement et à qui j’ai pu aussi me confier (et réciproquement ;))
dans les durs derniers moments de ma thèse.

viii

Merci à tous les gens du labo avec qui j’ai échangé, que ce soit techniquement
ou juste pour la discussion autour de la machine à café : Florent, Jean-Fred, Yves,
Guillaume, Ivan. Merci à Mariam pour son aide sur le chapitre 3 et le placement
routage. Merci à César et Éric pour leur aide sur l’architecture et les caches pour les
chapitres 4 et 5. Merci à Manuel qui m’a beaucoup appris sur quasiment tous les outils,
pour son super niveau technique et ses discussions toujours intéressantes ;). Enfin, un
merci spécial aux responsables scientifiques, Yvain (j’attends toujours le gateau au
chocolat de ta fille) et Pascal qui malgré leurs agendas de ministre technique avaient
toujours du temps à accorder à nous autres, pauvres thésards. Merci à Simone pour
son sourire radieux qui illuminait le labo tout entier quand elle passait nous voir,
bonne chance dans ta nouvelle carrière. Merci à Marjorie qui m’a accordé un peu de
son temps pour être son cobaye quand j’avais besoin d’aide.

Une petite pensée pour tous les jeunes du labo, anciens thésards ou stagiaires
que j’ai cotoyé : Andrea (merci pour le café), Thomas expert vétérinaire en Python,
François pour les conversations un peu déjantées du midi (et désolé pour les autres
autour de la table), Nicolas j’espère que ton dos, tes poumons et ta santé vont mieux,
Sota qui nous a quitté pour la Suisse, Kevin et Mona avec qui j’ai partagé l’espace
ouvert, Antoine P. qui vient de débuter sa thèse au CEA, courage tu vas en avoir besoin,
Antoine H. qui a malheureusement quitté l’aventure doctorale un peu précipitamment
(en plus, elle était glaciale) et les autres thésards : Miguel, Manon, Paola, Housseim
du LGECA et tous ceux que j’ai oubliés (lisez quand même le paragrahe suivant :)).

Un grand merci aux potos avec qui j’ai passé tant de soirées chez eux ou au bar,
ma vie à Grenoble ne serait pas grand chose sans vous : Adrien, psychologue à ses
heures perdues et analyseur de spectre personnalité en ayant un côté suisse (neutre
et externe) ; Maxence, marketeux qui a embrassé sa carrière scientifique plutôt que
commercial mais qui pourrait vendre du sable à un bédouin; Stéphane expert es
barbecue et es bricolage; Roman qui a essayé tous les bars de Grenoble et toutes les
bières dans chaque bar, merci pour tous ces échanges techniques et humains et bon
retour parmi nous.

Une dernière chose à remercier et sans quoi aucune recherche dans le monde ne
serait possible dans ma conception toute personnelle : la machine à café qui nous a
(presque) toujours bien servi.

One last thought for the online people who helped me relax after a hard day of
work. Special thanks to deen who maintained DDNet tirelessly for almost 10 years
now. Thanks to the old guys team for the games on fridays or saturdays evening:
|R, aþt̄urę| (you will survive), Sir Skeleton (where are you?), Sir Kruksic (who are you?),
Kasia (Weedo is alive), MyStery.Fox. Hello to the dev team: Learath2, heinrich5991,
Jupstar J, Ryozuki, Robyt3 and the newcomer Voxel.

Coucou à toute l’équipe française de TeeWorlds : Pipou qui fait survivre la commu-
nauté française, Cireme, iParano, snailx3, cris aussi membre de l’équipe des vieux, la
deuxième génération avec Fluday seul survivant, et la troisième génération avec Véna,
Neben, PlantKnight.

Thanks to all people who contribute to the UNIX systems, Linux and the plethora of
(sometimes useless) tools that makes life easier.

ix

https://ddnet.org

Table of Contents

Affidavit ii

List of publications and conference participations iii

Résumé v

Abstract vi

Remerciements viii

Table of Contents x

List of Figures xiii

List of Tables xvi

List of Listings xvi

List of Algorithms xvi

List of Acronyms xvii

Glossary xxi

Preamble 1

1. On the semiconductor industry 2
1.1 The end of technology advancement 3

1.1.1 Physical limits . 3
1.1.2 Architecture improvements . 5
1.1.3 Socioeconomic impacts . 8

1.2 Memory technologies . 10
1.2.1 Main memory technologies . 10
1.2.2 Emerging non volatile memories 15

1.3 A new computing paradigm . 22
1.3.1 Big Data . 23
1.3.2 Proposed solution: memory computing 24

1.4 Conclusion . 27

2. State of the Art 28
2.1 Taxonomy . 29
2.2 Memory computing . 30

2.2.1 SRAM . 30
2.2.2 DRAM . 33

x

2.2.3 NVM and SCM . 35
2.2.4 Other works . 40

2.3 Conclusion . 41

3. CSRAM Design 45
3.1 Motivations for a digital wrapper . 46
3.2 General design . 49

3.2.1 Specification . 49
3.2.2 ALU design . 53
3.2.3 Pipeline design . 53

3.3 Experimental results . 56
3.3.1 Workflow . 56
3.3.2 Simulation results . 57

4. Simulation platform & Tools 63
4.1 Used benchmarks . 64

4.1.1 Linear benchmarks . 65
4.1.2 Quadratic benchmarks . 65
4.1.3 Cubic benchmarks and real application 66

4.2 Existing platforms . 67
4.2.1 Analytic model . 68
4.2.2 Hardware counters . 68
4.2.3 Simulation platforms . 70

4.3 Hardware model tools . 73
4.3.1 NVSim . 73
4.3.2 DRAM . 76
4.3.3 C-SRAM . 77

4.4 Platform . 79
4.4.1 Software interface for benchmarks 79
4.4.2 First version with hard coherency 82
4.4.3 Improved version with soft coherency and real disk accesses . 83
4.4.4 Caches and DRAM validation . 85

5. IMC/NMC Computing Architectures 91
5.1 Reference SIMD 512-bit architecture 93
5.2 Computing at the top . 93

5.2.1 Scenario NVM 1: Independent C-SRAM 94
5.2.2 Scenario NVM 2: Computing Row Buffer 103
5.2.3 Scenario NVM 1 with page transfer 104
5.2.4 Impact of the reduction loop . 105

5.3 Computing near DRAM . 107
5.3.1 Scenario DRAM 1: Independent C-SRAM 107
5.3.2 Scenario DRAM 2: DRAM row buffer 111

5.4 Conclusion . 112

xi

Conclusion 115
Perspectives and future works . 121

Bibliography 122

Appendices 143

xii

List of Figures

1.1 ITRS roadmap as of 2020 and transistor count per chip 3
1.2 Transistor leakage and gate length evolution 4
1.3 Predicted scaling cost in 2010 for 2018 4
1.4 CPU evolution over years . 5
1.5 CPU and memory performance trends 7
1.6 Instruction energy breakdown . 8
1.7 Cost of chips and investment needed 9
1.8 SRAM bitcell circuit diagram . 11
1.9 DRAM bitcell circuit diagram . 12
1.10 Example of a DRAM addressing scheme 12
1.11 Memory hierarchy . 14
1.12 Die photographs . 16
1.13 Different RRAM resistance probability distribution 17
1.14 Circuit diagrams of 3 different bitcell types 18
1.15 Different types of RRAM bitcell . 19
1.16 Different types of PCM bitcell . 20
1.17 Different types of MRAM bitcell . 21
1.18 Quantity of data created per year . 24
1.19 Internal versus external memory bandwidth 25
1.20 Memory computing research interest in Google Scholar 26

2.1 Taxonomy . 29
2.2 Non standard SRAM bitcells used to implement IMC 31
2.3 DRAM charge sharing using triple row activation 34
2.4 Coprocessor integrated within NAND Flash SSD 36
2.5 RRAM boolean gates . 37
2.6 NVM lifetime for different endurances 43

3.1 Proposed design methodology . 47
3.2 Different ways of laying out the memories in the C-SRAM 48
3.3 Potential of the double-pump technique combined with our digital

wrapper for better pipeline efficiency 50
3.4 Scalar, vector and scalar/vector computing architectures 51
3.5 Defined ISA for 32-bit system . 52
3.6 Base implementation of our digital wrapper 54
3.7 Design workflow used for C-SRAM digital wrapper 56
3.8 Area and power overhead for different kind of SRAMs 57
3.9 Energy versus delay for MAC instruction 58
3.10 Throughput comparison of different SRAM types with and without

double pump technique . 58

xiii

3.11 Throughput and memory size versus efficiency of our solution and
state of the art works on MAC operation 60

3.12 Different place and routed floorplans 62

4.1 Neural network core functions time distribution 64
4.2 Darknet callgraph for image classification 66
4.3 Simplified view of an Intel Skylake core memory system 69
4.4 Cache access types . 74
4.5 C-SRAM tiling energy vs timing access costs 79
4.6 Extended ISA for 64-bit system . 81
4.7 Our platform normalized against hardware counters for cache events 87
4.8 DRAM tools timing and energy estimation 88
4.9 Computed power reported by different tools using our benchmark

suite . 89
4.10 Workflow used in this thesis . 90

5.1 Different integration possibility of the C-SRAM within the memory
hierarchy . 92

5.2 Reference architecture and memories parameters 93
5.3 Scenario NVM 1: Energy reduction and speedup for linear bench-

marks normalized against SIMD 512-bit reference 94
5.4 Scenario NVM 1: Energy reduction and speedup for linear bench-

marks with high SCM access rate normalized against SIMD 512-bit
reference . 95

5.5 Scenario NVM 1: Energy reduction and speedup for quadratic bench-
marks normalized against SIMD 512-bit reference 96

5.6 Relative atax (to SIMD Reference) Energy and Timing distribution for
different sizes and a vector width of 128 bytes 97

5.7 Scenario NVM 1: Energy reduction and speedup for cubic bench-
marks normalized against SIMD 512-bit reference 98

5.8 Relative gemm (to SIMD Reference) Energy and Timing distribution
for different total C-SRAM sizes and a vector width of 4 kB 99

5.9 Scenario NVM 1: Energy and timing distribution for a C-SRAM of
512 kB and vector size of 512 B normalized to SIMD 512-bit reference
architecture . 100

5.10 Scenario NVM 1: Caches energy and timing distribution for a C-
SRAM of 512 kB and vector size of 512 B normalized to SIMD 512-bit
reference architecture . 101

5.11 SCM memory accesses for a C-SRAM of 512 kB and vector size of
512 B normalized to SIMD 512-bit reference architecture 102

5.12 Scenario NVM 1: Best, worst and average of all cases for both energy
reduction and speedup normalized against SIMD reference 102

5.13 Detailed memory hierarchy for NVM row buffer 103

xiv

5.14 Energy reduction and speedup of NVM row buffer scenario 2 nor-
malized against SIMD reference and independent C-SRAM 104

5.15 Energy reduction and speedup of page transfer NVM scenario 1 nor-
malized against SIMD reference and independent C-SRAM 105

5.16 Energy reduction and speedup when performing reduction loop and
memory broadcast inside C-SRAM compared against the SIMD ref-
erence and independent C-SRAM scenario 106

5.17 Scenario DRAM 1: Energy reduction and speedup for linear bench-
marks normalized against SIMD 512-bit reference 108

5.18 Energy reduction and speedup for quadratic benchmarks normalized
against SIMD 512-bit reference . 108

5.19 Energy reduction and speedup for cubic benchmarks normalized
against SIMD 512-bit reference . 108

5.20 Scenario DRAM 1: Energy and timing distribution for a C-SRAM of
512 kB and vector size of 512 B normalized to SIMD 512-bit reference
architecture . 110

5.21 Energy reduction and speedup when performing reduction loop and
memory broadcast inside C-SRAM normalized against independent
C-SRAM at DRAM level (scenario DRAM 1) 110

5.22 Scenario DRAM 1: Best, worst and average of all cases for both energy
reduction and speedup normalized against SIMD reference 111

5.23 Minimum, maximum and average for each benchmark and tested
scenario . 113

xv

List of Tables

1.1 Frequency scaling of Intel Xeon core . 6
1.2 Main memories key parameters . 15
1.3 Non volatile memories parameters . 22

3.1 Versions used for design workflow . 56

4.1 Benchmarks parameters . 67
4.2 Simulation vs Instrumentation . 71
4.3 Platforms overview . 73
4.4 NVSim’s parameters used to design caches 75
4.5 Energy and latency of the selected PCRAM 76
4.6 Comparison of different DRAM simulation tools 77
4.7 Tiling timing and energy factor overhead 78

5.1 Reference architecture memories parameters 93
5.2 Best total and vector sizes for energy reduction, speedup and energy-

delay product . 114

List of Listings

4.1 Instrumentation code in Pin . 80
4.2 C vector types . 81
4.3 C macro example: 8-bit vector addition 81
4.4 Emulation of received instructions . 81
4.5 Square matrix multiplication using ikj loop order 86

List of Algorithms

4.1 Cache access pseudocode . 82
4.2 Simplified CSRAM instruction . 83

xvi

List of Acronyms

ADC Analog Digital Converter. 31, 35, 39, 42, 44, 46

AI Artificial Intelligence. 7, 23, 27, 32–34, 49, 64, 116, 118

ALU Arithmetic & Logical Unit. 26, 47, 51, 53–55, 62, 118

BLAS Basic Linear Algebra Subprograms. 65, 66, 98, 118

BRAM Block Random Access Memory. 7

CAM Content Addressable Memory. 10, 32

CBRAM Conductive Bridge Random Access Memory. 18

CF Conductive Filament. 18, 19

CIM Computing In-Memory. 29, 33, 38

CNN Convolutional Neural Network. 61, 64–67

CPI Cycles Per Instruction. 49, 50

CPU Central Processing Unit. xxi, 3, 5–7, 10–12, 14, 17, 22, 25, 27,
30–34, 38, 40–42, 52, 53, 65, 69–72, 76, 80, 82, 85, 87, 91, 93,
96, 97, 99–101, 105, 106, 109, 111, 115–121

C-RB Computing Row Buffer. 92, 103

C-SRAM Computational SRAM. 92

DBT Dynamic Binary Translation. 71, 72

DLP Data Level Parallelism. 5, 6

DNN Deep Neural Network. 39, 61

DRAM Dynamic Random Access Memory (see Section 1.2.1.2 for
more details). xxi, 6, 7, 10–17, 19, 21, 22, 24, 26–28, 32–35,
38, 40, 41, 53, 67, 69, 70, 73, 74, 76–78, 82–85, 87–90, 92–99,
101, 103, 104, 107, 109–113, 115, 116, 119–121

xvii

DSP Digital Signal Processor. 7

DVFS Dynamic Voltage and Frequency Scaling. 5

EDA Electronic Design Automation. 46, 48

FPGA Field Programmable Gate Array. 7, 25, 27, 40, 41

FS Full System. 71, 72

FSM Finite State Machine. 47, 54, 55

GPU Graphic Processing Unit. 6, 7, 25, 27, 33, 34, 41, 70, 83

HBM High Bandwidth Memory. 6, 12, 27, 33, 116

HDD Hard Disk Drive (see Section 1.2.1.3 for more details). 6,
11–15, 17, 22, 116

HMC Hybrid Memory Cube. 33, 116

HPC High Performance Computing. 8, 11, 42, 43, 89, 93, 120

HRS High Resistive State. 16, 19–21

IMC In-Memory Computing. 1, 17, 23, 25, 26, 28–30, 32–36, 39,
41–46, 48, 49, 59–61, 64, 65, 72, 73, 85, 90, 91, 116–118, 121

IoT Internet of Things. 2, 23, 38, 43, 49

IP Intellectual Property. 48

IPC Instructions Per Cycle. 8

IR Intermediate Representation. 72

ISA Instruction Set Architecture. xiii, 26, 30, 39, 41, 42, 52–55, 80,
90, 117–119, 121

LFB Line Fill Buffer. 69

LIM Logic In Memory. 29, 37

xviii

LLC Last Level Cache. 69

LOP Low Operating Power. 74

LRS Low Resistive State. 16, 19–21

LSQ Load Store Queue. 69

MLC Multi Level Cell. 76

MMU Memory Management Unit. 80

MRAM Magnetic Random Access Memory (see Section 1.2.2.3 for
more details). xx, 18, 21, 22, 39, 74, 117

MTJ Magnetic Tunnel Junction. 21

MVM Matrix Vector Multiplication. 42, 64, 65, 116–118

NMC Near-Memory Computing. 26, 29, 30, 32, 35, 40, 41, 48, 72,
73, 116

NMP Near-Memory Processing. 29, 39, 40

NVM Non Volatile Memory (see Section 1.2.2 for more details). 1,
15, 20, 22, 27, 35, 40, 41, 43, 44, 48, 49, 62, 72–74, 76, 78, 85,
91–95, 102–105, 107, 109, 111–113, 116, 117, 119, 120

OoO Out of Order. xxi, 5, 72

OS Operating System. 17, 70, 72, 80

OxRAM Oxide Random Access Memory. 18

PCM Phase Change Memory (see Section 1.2.2.2 for more details).
10, 18, 20–22, 39, 40, 48, 73–75, 90, 117, 119, 120

PCRAM Phase Change Random Access Memory (see Section 1.2.2.2
for more details). 75

PIM Processing In Memory. 29, 33, 34, 37, 40, 41, 116

PMU Performance Monitoring Unit. 68, 69

xix

RAPL Running Average Power Limit. 70

RAW Read After Write. xxi, 55, 118, Glossary: pipeline hazards

RRAM Resistive Random Access Memory (see Section 1.2.2.1 for
more details). 10, 18–22, 36–40, 45, 48, 74, 117

RTL Register Transfer Level. 48

SA Sense Amplifier. 10, 11, 16, 25, 31, 35, 38, 42, 116

SCM Storage Class Memory. 1, 15, 21, 22, 28, 35, 40, 48, 65, 67,
82–85, 92–96, 99–104, 112, 119–121

SE System Emulation. 71, 72

SIMD Single Instruction Multiple Data. 3, 5, 6, 27, 30, 31, 34, 41,
72, 80, 92, 95, 96, 107, 111, 115, 120

SIMT Single Instruction Multiple Threads. 6

SLC Single Level Cell. 35, 36

SRAM Static Random Access Memory (see Section 1.2.1.1 for more
details). 1, 10–16, 18, 19, 21, 22, 25, 26, 28, 30, 32, 33, 35,
38–49, 54, 55, 58, 59, 61, 62, 74, 75, 116–118

SSD Solid State Drive (see Section 1.2.1.4 for more details). 13–15,
17, 20, 35, 40

STT-MRAM Spin Transfer Torque MRAM. 21, 39, 40

TCAM Ternary Content Addressable Memory. 31, 39

TTM Time To Market. 46, 48

WAR Write After Read. xxi, Glossary: pipeline hazards

WAW Write After Write. xxi, 55, 118, Glossary: pipeline hazards

xx

Glossary

API An Application Programming Interface is a particular set
of rules and specifications that a software program has to
follow to access and make use of the services and resources
provided by another particular software program that im-
plements that API. 26, 98

LRU Least Recently Used is a cache replacement policy that re-
places the oldest used block in the cache. It is simple yet
quite effective. 82, 84

Pipeline Hazards Occurs when a data is read or written simultaneously at
different stages of the pipeline. This is prominent in OoO
CPU due to instruction reordering but can also happen in
normal pipelines. It includes Read After Write (RAW), Write
After Read (WAR) and Write After Write (WAW). 50, 118

Swapping Swapping is saving a dirty page from DRAM to disk when the
former is full. When the page is needed again, it is loaded
back from disk and if the DRAM is still full, another page is
saved to disk (i.e. pages are swapped). 83–85, 87, 101, 103,
119, see also thrashing

Thrashing Thrashing is a phenomenon where pages are constantly
swapped from DRAM to disk such that the operating system
becomes unresponsive. In this thesis, thrashing can also
denote the same effect but between DRAM and C-SRAM. 98,
109, see also swapping

xxi

Preamble
Tiens, je ferais bien une partie de
quelque chose. Un truc qui se joue vite.
On pourrait faire un Sloubi. Je vous ex-
plique, y’en a pour 2 secondes.

To err is human, but to really foul
things up you need a computer.

— Perceval IN Kaamelott BOOK III, EPI-
SODE 50, « Perceval chante Sloubi »

— Paul R. Ehrlich

This thesis is divided in five chapters that will introduce you to the why am I do-
ing this thesis: the global context raises issues about computing performances and
efficiency that requires an innovating solution (Chapter 1). In-Memory Computing
(IMC) is a promising solution compatible with new emerging Non Volatile Memories
(NVMs) that also brings new technological improvements in the computer world.
We study state of the art in Chapter 2 and show how it misses two key points about
NVMs endurance and where to compute in the memory hierarchy. We propose our
solution, a digital wrapper around a Static Random Access Memory (SRAM) that we
call C-SRAM (Chapter 3). Our C-SRAM can then be tightly coupled to others NVMs or
Storage Class Memories (SCMs). To perform an architectural evaluation, we develop a
simulation platform fed with technological parameters from state of the art and our
own works (Chapter 4). Putting it all together, we show that computing at the top of
the memory hierarchy, i.e. close to mass and permanent storage, yields the most gains
for both execution time and energy reduction (Chapter 5).

In this thesis, each chapter starts with a funny quote from KAAMELOTT, especially
from Perceval who will teach you games from Wales country. A more serious quote
is also present to give the reader a slight taste of the chapter. Each chapter begins
with a small summary of the topics discussed within. You will find some outlines in
light blue box (see below) to recapitulate the main points developed in sections and
subsections.

I hope you will enjoy reading this thesis as much as I enjoyed writing this final
sentence.

1

1. On the semiconductor industry

Normalement, ça se joue avec des bouts
de bois. Il faut 50 bouts de bois de 2
pouces, 50 de 3 pouces, 50 de 4 pouces
et ainsi de suite. Et à la fin, il faut 50
poutres de la longueur de la pièce. Vous
avez ça ou pas?

Everything has its limit – iron ore can-
not be educated into gold.

— Perceval IN Kaamelott BOOK III, EPI-
SODE 50 « Perceval chante Sloubi »

— Mark Twain

Hardware design comes to the end of its golden era where a simple wait of a few
months could yield huge improvements for both performance and energy consump-
tion. This was mainly driven by technology scaling and moving to smaller and more
advanced nodes. However, as industry reaches the smallest possible node (3 nm),
progress can no longer come from technology itself but must come from finer ar-
chitecture and software designs to better utilize hardware. Famous von Neumann
architecture where memories and computing are physically separate and logically
distinct units must evolve to face new computing requirements posed by recent rise
of big data applications and artificial intelligence. Internet of Things (IoT) devices are
also presenting a challenge for energy efficient designs in the wake of societal changes
in regard to global warming and energy sobriety.

Contents
1.1 The end of technology advancement 3

1.1.1 Physical limits . 3
1.1.2 Architecture improvements . 5
1.1.3 Socioeconomic impacts . 8

1.2 Memory technologies . 10
1.2.1 Main memory technologies . 10

1.2.1.1 SRAM . 10
1.2.1.2 DRAM . 11
1.2.1.3 Hard disk and tapes . 12
1.2.1.4 NAND Flash . 13
1.2.1.5 Current memory hierarchy 14

1.2.2 Emerging non volatile memories 15
1.2.2.1 RRAM . 18
1.2.2.2 PCM . 20
1.2.2.3 MRAM . 21

1.3 A new computing paradigm . 22
1.3.1 Big Data . 23
1.3.2 Proposed solution: memory computing 24

1.4 Conclusion . 27

2

1. On the semiconductor industry – 1.1. The end of technology advancement

This first chapter will give the reader a very wide introduction and contextualisation
on semiconductor technology facing the end of a cycle with a halt to miniaturisation
and other well-known obstacles to densification. The key to improve performance is to
add more transistors into circuits. However this is defined by physical limits that have
been or are being reached nowadays, including energy and memory wall problems
(section 1.1). New technologies that may resolve partially these problems are being
introduced, especially for emerging memories (section 1.2). These new memories en-
able a new computing paradigm to solve the admitted von Neumann bottleneck that is
exacerbated by big data applications and the rise of artificial intelligence (section 1.3).

1.1. The end of technology advancement

1.1.1. Physical limits
For years, what has driven the semiconductor industry progress is the technology
scaling, i.e. the miniaturisation of the transistor. Reducing the transistor, base unit
of all the digital world, by a factor of

p
2 leads to a doubling in the total number of

transistors in the same area. Gordon Moore predicted that this doubling would occur
every 24 months, later revised down to 18 months. This is known as the Moore’s
law [1] which held true for almost 50 years (Figure 1.1). More transistors equals more
functionalities or more complex ones; as such, we have seen parallel computing
emerged during the 2000s with Single Instruction Multiple Data (SIMD) and multicore
Central Processing Units (CPUs). However, miniaturisation has limits that cannot be
exceeded. It is physically impossible to make a transistor that is smaller than a few
atoms and we are already hitting this limit with 3 nm. This means that to answer the
growing need for more computing power, semiconductor industry will have to rely on
better architectural designs and smarter software models.

1970 1985 2000 2015 2030
1 nm

10 nm

100 nm

1 µm

10 µm

Year

Fe
at

ur
e

si
ze

103

105

107

109

1011

Transistorcount

Figure 1.1.: ITRS roadmap as of 2020 (, left axis) and transistor count per chip (,
right axis)

3

1. On the semiconductor industry – 1.1. The end of technology advancement

100

1

0.0001

0.01

0.0000001
1990 2000 2015 2020

300

250

200

150

100

50

0
1995 2005 2010

No
rm

ali
ze

d
to

ta
l c

hi
p

po
we

r d
iss

ip
at

io
n

Ph
ys

ica
l g

at
e

len
gt

h
(n

m
)

Gate-oxide
leakage

Sub-
threshold
leakage

Gate length

Dynamic
power

Possible trajectory
if high-kdielectrics
reach mainstream
production

Figure 1.2.: Transistor leakage evolution. From [3]

Table 1. Technology and circuit projections for processor chip components.

2010 2017

Process technology 40 nm

10 nm, high

frequency

10 nm,

low voltage

VDD (nominal) 0.9 V 0.75 V 0.65 V

Frequency target 1.6 GHz 2.5 GHz 2 GHz

Double-precision fused-multiply

add (DFMA) energy

50 picojoules (pJ) 8.7 pJ 6.5 pJ

64-bit read froman 8-Kbyte

static RAM (SRAM)

14 pJ 2.4 pJ 1.8 pJ

Wire energy (per transition) 240 femtojoules (fJ)

per bit per mm

150 fJ /bit/mm 115 fJ /bit/mm

Wire energy (256 bits, 10 mm) 310 pJ 200 pJ 150 pJ

Figure 1.3.: Predicted scaling cost in 2010 (45 nm)
for 2018 (10 nm). From [4]

Moving forward to more advanced nodes has also some technical limits that can
be seen as side effects for laypeople readers. Smaller transistors are more leaky as
the space between different voltage domains is also reduced. On the other hand, it
allows to reduce voltage because the threshold voltage is lowered as well. All in one,
this leads static power to be dominant in nodes smaller than 90 nm [2] and to increase
for each smaller node (Figure 1.2). Moreover, although reducing transistor leads to
gain in dynamic power, wire cost is not scaling down with the same tendency. Copper
resistivity remains constant and data transit over long wires still stands as the main
power sink in every design, especially when memory is on a chip of its own. This is
shown in Figure 1.3 dating from 2011 that forecast this difference in power reduction
from computing complex operations compared to transmission that will expand four
times between 2010 and 2017.

Another problem linked to miniaturisation is Dennard’s scaling [5]. It states that as
transistors shrink, their power density remains constant. This was true from 1974 to
approximately 1995. At that point, power density started to increase (Figure 1.4b) and
it ultimately limited frequency increase. Indeed dynamic power is determined by two
main factors which are the voltage and the frequency:

Pdyn =CV 2 f

Voltage is fixed by the technology and cannot go below the threshold voltage plus the
line loss. C is the parasitic wire capacity swung at every clock cycle and is also a fixed
parameter of the technology. So we can only play on the frequency but as we want the
most performance, we tend to push it to the maximum acceptable limits by the design,
i.e. the maximum power we can either deliver or dissipate. As power density increased,
it soon started to be impossible to rise frequency without damaging the circuit hence
a frequency saturation from 2005 as shown in Figure 1.4a. These technology problems
are physical limits that cannot be broken without a new disrupting technology such as

4

1. On the semiconductor industry – 1.1. The end of technology advancement

1970 1985 2000 2015
1 MHz

10 MHz

100 MHz

1 GHz

5 GHz

Year

Fr
eq

ue
nc

y

1970 1985 2000 2015
1

10

100

Year

Po
w

er
de

ns
ity

(W
/c

m
2
)

(a) Evolution of CPU frequency (b) Chip power density evolution

Intel AMD DEC IBM MIPS Sun HP Others

Figure 1.4.: CPUs evolution over years. 2005 Dennard’s scaling break is visible in
both graph. From [7]

optronic or spintronic that could leverage them. It also led to the famous expression
by Herb Sutter: “The free lunch is over” [6].

1.1.2. Architecture improvements
Industry now faces a double challenge, the impossibility to increase working fre-
quency and the increase in leakage current when moving on to more advanced nodes.
To keep performance development in their chips, industries introduced multiple
workarounds: Single Instruction Multiple Data (SIMD), multicore and Out of Order
(OoO). First, SIMD CPUs were developed to treat multiple data in a single instruction
using vector larger (128 bits or more) than the base register (32 or 64 bits at that time).
SIMD exploits intrinsic Data Level Parallelism (DLP) in applications. The widest SIMD
processor supports up to 512 bits vectors. Secondly, multicore designs permit two
independent instruction flows to execute concurrently although they share some
hardware, especially memories above L2 or L3 and buses. In some recent commer-
cial chips, up to 64 cores can be used in parallel [8]. Third, OoO CPUs introduction
improved compute unit use and reordering of instructions allowed CPUs to mitigate
memory timings on independent data paths. With multiple compute units available,
processors are said to be superscalar, i.e. capable of executing multiple instructions
simultaneously. These three improvements however reached the limit to their com-
puting performances due to power constraint, and insidiously led to the apparition
of dark silicon [9]. This happens when complex circuits cannot be fully powered
permanently or simply overheat and need to dynamically choose which part to power
or to adjust either voltage or frequency using Dynamic Voltage and Frequency Scaling
(DVFS). The latter was adopted by the industry because it allowed more flexibility and
less stuttering in data streams. An example is given for Intel multicore chips and the
use of SIMD extensions in Table 1.1. Dark silicon reveals the low energy efficiency of
these designs.

5

1. On the semiconductor industry – 1.1. The end of technology advancement

Table 1.1.: Frequency scaling of an Intel Xeon Silver 4116, a 12 cores chip, function
of active cores and active SIMD extension. From [10]

Mode Base
Turbo Frequency/Active Cores

1 2 3 4 5 6 7 8 9 10 11 12
Normal 2.1 GHz 3.0 GHz 3.0 GHz 2.8 GHz 2.8 GHz 2.7 GHz 2.7 GHz 2.7 GHz 2.7 GHz 2.4 GHz 2.4 GHz 2.4 GHz 2.4 GHz
AVX2 1.7 GHz 2.9 GHz 2.9 GHz 2.7 GHz 2.7 GHz 2.4 GHz 2.4 GHz 2.4 GHz 2.4 GHz 2.1 GHz 2.1 GHz 2.1 GHz 2.1 GHz

AVX512 1.1 GHz 1.8 GHz 1.8 GHz 1.6 GHz 1.6 GHz 1.5 GHz 1.5 GHz 1.5 GHz 1.5 GHz 1.4 GHz 1.4 GHz 1.4 GHz 1.4 GHz

Not only those improvements are not sustainable in the long term, they also put
pressure on other system components, typically on the memory system (Figure 1.11).
For SIMD, memory now has to serve request up to 512 bits instead of scalar data
of 32 or 64 bits. Caches are designed to respond swiftly to these requests but when
they would have to serve only a single data, they now have to load large batch of
data which increases their power consumption. As vector CPUs treat batch of data,
which is now the size of a cache line, caches experience a high miss rate putting more
pressure on the slower Dynamic Random Access Memory (DRAM) which becomes
the von Neumann bottleneck. This is worsened by multicores because each core
will request data to DRAM that the L3 cache cannot store due to its limited capacity.
So now, DRAM has to deliver data to several cores simultaneously instead of just
one. Each core having its own data set, data locality is reduced which also impacts
caches and DRAM performance. This is illustrated in Figure 1.5 where performance of
CPUs increase faster than which of memories leading to a performance gap between
the computing and the memory systems. This is what is called the memory wall,
because the memory cannot deliver data fast enough and the CPU just waits doing
nothing. Note that above DRAM, Hard Disk Drive (HDD) and Flash disks have long
been surpassed and cannot compete in terms of bandwidth with the need of modern
CPUs nor of DRAMs.

To keep increasing throughput and energy efficiency, Graphic Processing Units
(GPUs) were pushed in. They use Single Instruction Multiple Threads (SIMT) ap-
proach, i.e. different threads all executing same instruction on different data with
predicates to allow branches and conditional execution to occur. It heavily simplifies
the internal design of the processing elements making them more compact so that
thousands can be put on a single chip. This benefits to application with heavy DLP
such as filtering an image where the same operation is carried on all pixels with condi-
tional code to handle edge cases. GPUs come with their own main memory, nowadays
of type High Bandwidth Memory (HBM) with 256 bits IO and high bandwidth. They
also have their own internal caches with 2 levels of cache. Nonetheless, initial data
transfer from system main DRAM memory to GPU’s memory must still take place
before the algorithm runs and data must be sent back once it is done. This back and
forth can end up representing more than 90 % of the total execution time depending
mainly on the algorithm complexness and the data set size [11]. Overall, GPUs work
pretty well on the same regular access patterns as CPUs. They also provide similar
program flow with a wide range of complex instructions. Their massive parallelism is
used to build some of the Top500 supercomputers [12, 13].

6

1. On the semiconductor industry – 1.1. The end of technology advancement

1

100

10

1000

Pe
rfo

rm
an

ce

10,000

100,000

201020051980 20001995
Year

Processor

Memory

19901985 2015

Figure 1.5.: CPU and memory performance trends. From [14]

However, both CPUs and GPUs are very generic and can be considered as swiss
knives of computing. They do the job but not in a very efficient way except for regular
linear access patterns. To improve energy efficiency and throughput, co-processors
dedicated to specific tasks were designed, most common one being the Digital Signal
Processor (DSP) for embedded systems with real time constraints. Unfortunately,
the need for more, better and greener computing requires flexibility that these extra
co-processors do not offer. Field Programmable Gate Arrays (FPGAs) are yet another
possible mean to gain extra performance by allowing CPU to turn part of itself into a
highly energy efficient application specific accelerator and bridge the gap between
flexibility of use and efficient designs. Their programmability combined with their
natural energy efficiency makes them suitable candidates for use as co-processors.
They come with their own memory in the form of Block Random Access Memory
(BRAM) with wide IO to feed their natural data level parallelism. Unfortunately, these
BRAMs still need to be filled from another external memory which is often DRAM,
but FPGAs do improve energy efficiency. So the main problem of memory wall is still
there for initial and final data transfer, just like for GPUs. Another step further is using
Application Specific Integrated Circuits (ASICs), which are fixed designs but with even
better energy efficiency and throughput than FPGAs, but once again, the memory wall
remains.

All these hardware solutions are to boost classic algorithms performance but there
was also the breakthrough of new algorithms in the last decade, mainly Artificial
Intelligence (AI) with neural networks. AI is a solution to treat massive amount of data
and extract meaningful tendencies but it comes with its own data that are the neurons
parameters which can also be counted in billions for some networks. Aforementioned
hardware solutions can all improve neural networks performances but all end up
hitting the memory wall.

The race for best performances, although a great source of hardware improvements
such as branch predictors, prefetchers and so on, induced a rising complexity of CPUs
that led to some security flaws [15]. But it also drives for more power and ironically
reduces energy efficiency [16]. The industry focused on instruction centric paradigm

7

1. On the semiconductor industry – 1.1. The end of technology advancement

Integer Floating Point Memory
Addition Cache 64 bit access

8 bit 0.03pJ 16 bit 0.4pJ 8kB 10pJ
32 bit 0.1pJ 32 bit 0.9pJ 32kB 20pJ

Multiplication 1MB 100pJ
8 bit 0.2pJ 16 bit 1.1pJ DRAM 1.3-2.6nJ

32 bit 3.1pJ 32 bit 3.7pJ
25pJ 6pJ 39pJ

I-Cache
access

Register File
access

Control logic Add
70pJ

Figure 1.6.: Instruction energy breakdown along with some energy consumption of
common instructions and memory accesses. From [17]

where everything was done to increase throughput of instructions, measured in In-
structions Per Cycle (IPC). But when looking at the energy bill of simple instructions
(Figure 1.6), we see that this is not very efficient as most of the energy comes from
moving the data around. With the introduction of big data and artificial intelligence
applications that uses huge batches of data, this calls for a shift to data centric ar-
chitectures to solve all the two major challenges: the von Neumann bottleneck aka
memory wall and the energy wall or dark silicon.

1.1.3. Socioeconomic impacts
This changing paradigm is in accordance with the evergrowing need for greener
computing and better energy efficiency in data centres. High Performance Computing
(HPC) centres are reaching tens of megawatt of power consumption which is the
equivalent of a 20000 inhabitants city [12]. Another important point is the economic
cost of moving to more advanced nodes which grants no more benefits due to the
rising cost of state of the art technologies presented in Figure 1.7. One more part is
on water consumption of the semiconductor industry that requires large quantity of
extremely pure water which is already a problem due to water shortage in Taiwan.
Environmental rejects of different pollutants also need to be accounted for [18].

Up to this point, we have presented the global context and the challenges facing the
semiconductor industry for the following years: no more possible scaling, no more
power and a growing need for more energy efficient computing. These challenges
call for either a shift to different technology or to rethink the architecture of systems
to better use them. The best way to reduce energy consumption is to minimize data
movement. In the following section, we present the standard memory technologies
and the emerging memories that appeared in the last decade.

8

1. On the semiconductor industry – 1.1. The end of technology advancement

90 65 45/40 28 20 16/14 10 7
0

1

2

3

4

5

4

2.8

1.9

1.3 1.4 1.45 1.48 1.52

Technology node (nm)

C
os

tp
er

m
ill

io
n

ga
te

s
(×

0.
01

$)

(a) Chip cost per million gates (in $). Cost stopped decreasing after 28 nm in 2012 and slightly increased
for following nodes.

AMD
IBM
ST-M
UMC

Panasonic
Fujitsu

Renesas
SMIC

Freescale
Toshiba

TI
Infineon

Sony
Cypress
Sharp
ADI

Atmel
Hitachi

ON
Rohm
Sanyo

Mitsubishi
25

TSMC

AMD
IBM
ST-M
UMC

Panasonic
Fujitsu

Renesas
SMIC

Freescale
Toshiba

TI
Infineon

Sony
Cypress
Sharp

18

TSMC
Intel

IBM
ST-M
UMC

Panasonic
Fujitsu

Renesas
SMIC

Toshiba
TI
13

TSMC
Intel

Samsung
GF

UMC
Panasonic

Fujitsu
Renesas

SMIC
Toshiba

TI
13

TSMC
Intel

Samsung
GF
IBM

Panasonic
8

TSMC
Intel

Samsung
GF
IBM
5

TSMC
Intel

Samsung
GF
4

TSMC
Samsung

Intel?
2-3

TSMC
1

TSMC?
1?

’02-’03
130 nm

’04-’06
90 nm

’06-’08
65 nm

’08-’12
45/40 nm

’10-’12
32/28 nm

’12-’14
22/20 nm

’14-’15
16/14 nm

’17-’19
10 nm

’18-’20
7 nm

’20-’23
5 nm

year
node

$1.45B $1.8B
$2.5B

$4.0B
$4.9B

$6.7B

$9.2B

$10.5B

$12B

$17B

(b) Founders per node and the associated investment cost (). High investment cost causes the number
of founders to drastically decrease leading to potential monopoly and strategic dependency

Figure 1.7.: Cost of chips and investment needed for the founder. The decrease in
cost per million gate could finance the investment for the next node
before 2012 and the 28 nm node. From [19]

9

1. On the semiconductor industry – 1.2. Memory technologies

1.2. Memory technologies
Previous section dealt mainly with CPUs which is the core of computing systems. We
have shown that instruction centric architectures faced a soon to come dead end due
to energy and memory walls. This section introduces main memory technologies
such as Static Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM) but also persistent storage to give the reader a broad range of possibilities and
perspectives with their associated limitations which represent a major challenge in
the data movement cost. Emerging memory technologies including Resistive Random
Access Memory (RRAM) or Phase Change Memory (PCM) are presented along with
their remaining challenges to make them viable economically and offer substantial
benefits for system architects over conventional memories.

1.2.1. Main memory technologies
The main memory technologies are the most common ones that can be found in
any consumer device. They are the most mature ones and present in the market for
decades. However they have some intrinsic design flaws such as high leakage (whether
dynamic or static power) or very high latency for non volatiles ones.

1.2.1.1. SRAM

Static Random Access Memory (SRAM) is a fast memory used in almost all existing
CPUs dating back to 1964. It provides an extremely fast memory whose working clock
frequency is above 1 GHz with virtually infinite endurance. The circuit diagram of a
six transistors SRAM bitcell is shown in Figure 1.8. It is made up of two head to toe
inverters and two access transistors. Read operation is performed by first precharging
the bitlines to Vdd

2 , then by activating the two access transistors and using a Sense
Amplifier (SA) at the bottom of the bitlines to minimize the error margin. Write
operation is done similarly by forcing the data on both bitlines which will switch the
state of both inverters. However, the inverters are not perfect and leak, so the SRAM
bitcell presents a high static power consumption. It is often arranged in large array, up
to 8192 wordlines or bitlines which increases the dynamic consumption due to the
large capacitance of the lines. To reduce dynamic switching power, bitlines are often
split in local groups with access transistors to commute global bitlines.

Per se, the 6T bitcell is a 1 read-write (1RW) bitcell, which means that it can either
be read or written once per cycle. SRAM bitcell have a large diversity as it also exists
in 8T up to 16T. These extra transistors allow to add isolation between the bitcell
and the bitlines so that read or write to several bitcells on the same bitline can occur
concurrently. This is used to add more access port to the memory to make 1R1W,
1R1RW and even 2RW bitcells. Literature also shows that 6R6W bitcell is possible [20].
SRAM bitcell can also be used as Content Addressable Memory (CAM) memory that is
commonly used in routers. Finally, as it is made up of six transistors, it has a very low
density that does not allow to have large SRAM memory bigger than a few megabytes.

10

1. On the semiconductor industry – 1.2. Memory technologies

WL WL

BL BL

Figure 1.8.: SRAM bitcell circuit diagram

What makes SRAM so interesting is that it is a CMOS circuit that can be incorporated
directly in chips design and scales down along with the technology. It is used as cache
or scratchpad memory and is often tightly coupled to CPUs as it is the only memory
to keep up the pace with high frequency. Other uses include small buffer memory
in devices like HDD, Flash drives or anything that needs few amount of memory
before transmitting over serial bus or medium that requires serialisation, e.g. radio
transmission. Its flexibility allow designers to easily use custom SRAMs with wide IO
or even asymmetrical IO (for serialisation for instance) as well as odd row number.

1.2.1.2. DRAM

Dynamic Random Access Memory (DRAM) is the main volatile memory in non em-
bedded systems such as desktops, servers, HPC and even in some embedded systems
like autonomous cars. It features an infinite endurance with medium speed (relative
to SRAM) while having a very high density. Figure 1.9 shows the circuit diagram of a
DRAM bitcell. It is composed of an access transistor and a capacitor to store the data.
This capacitor is leaking so it needs to be refreshed periodically, hence the dynamic in
the name. This leaking along with the refresh operation cause this memory to have a
high dynamic power consumption even when the memory is idle. Read is performed
by precharging the bitline to Vdd

2 and then by activating the access transistor. The
capacitor then discharges or charges the bitline and a SA catches the difference. Read
is thus destructive as the capacitor shares its charge with the bitline and the original
data needs to be restored. Write is simply done by activating the access transistor and
pulling the capacitor to the desired voltage (high for 1, low for 0).

To prevent the whole memory from being inaccessible during a refresh, DRAM is
organized in ranks subdivided in chips and in banks. Banks are split across several
chips for parallelism reason. Each bank is itself partitioned in subarrays which contain
the wordlines and bitlines. Wordlines are referred to as logical rows that spans several
chips while bitlines are logical columns. Columns are muxed in a similar fashion to
SRAM. To read or write, a DRAM row must first be activated, i.e. selected, it is then
loaded in the row buffer where read and write take place for faster operation. In

11

1. On the semiconductor industry – 1.2. Memory technologies

BL

WL

Bit 31 30 29 27 26 13 12 10 9 0

Channel Rank Row Bank Column

Figure 1.9.: DRAM bitcell cir-
cuit diagram

Figure 1.10.: Example of a DRAM addressing
scheme

particular, burst mode allows several operations to contiguous addresses to happen
with a single command and fully benefit from the row buffer. When all operations
on the current row are done, either a different row within the same bank can be
activated or a row in a different bank is selected. The former bank must first receive
a precharge command to reset bitlines to Vdd

2 to minimize leakage before activating
a row in another bank. When a row is closed, the row buffer is written back in place
to restore data. Refresh affects a whole bank at a time and makes it unavailable until
it is finished. The addressing scheme vary from chip to chip but it is mainly column
first then bank then row as shown in Figure 1.10. Above ranks are channels which are
physical buses and may be shared by several DRAM devices. Addressing schemes can
also be interleaved or with some XOR between some bits to increase row-hit rate.

Banks are the physical output and have 8 bits IO. To have a 64 bits IO, 8 banks are
disposed in parallel. The complicated rules and state machine to handle DRAM com-
mands and its dynamic nature requires complex designs to ensure correctness. That is
why CPUs have a portion of their area reserved for DRAM scheduling (see Figure 1.12b).
However, DRAM’s high density with its intermediate speed and high bandwidth makes
it a suitable choice to fit between long term but slow storage and SRAM’s high speed
but low capacity. To answer the growing need for bandwidth, manufacturers have
developed HBM that uses 3D stacking and have very wide IO (256 bits) compared
to DRAM standards. Both are standardised by the JEDEC committee which makes
DRAM a somewhat rigid memory format. Due to the complex state machine needed
to respect timings and transitions, DRAM has a latency that can greatly vary between
20 ns to more than 400 ns. Finally, DRAM suffer from write disturb. Continuous write
to the same row and bitcells by alternating activation, write and precharge leads neigh-
bouring cells to be affected and even flipped due to parasitic capacitance between
lines. The row hammer attack exploits this vulnerability [21]. Smaller nodes have
more parasitic capacitance which augments this risks but also increases the leakage
and reduces the stored charge which induces more refresh and more unavailability.
As such, DRAM is limited in scaling and faces its own technological challenges.

1.2.1.3. Hard disk and tapes

HDDs and tapes are the most ancient forms of digital storages that are still in use today.
They are also the only form of modern storage to use mechanical parts, i.e. an engine,
incorporated for HDDs and external for tapes, to spin the disks or roll up and unroll

12

1. On the semiconductor industry – 1.2. Memory technologies

the tape. As such, they require a vibration free environment to be used safely. Shocks
may damage data permanently, especially for HDDs and make the device completely
unusable. Both HDD and tape have a high data density, not necessarily in surface
but more in volume as disks can be easily stacked and tape film is really thin, around
10µm. Largest commercial HDD is around 15 TB while tape goes up to almost 500 TB.
The main cons of these technologies is obviously their very high latency around 10 ms
for HDD while tape can go anywhere between one second to more than a minute
depending on how far on the tape the data is. Main use of tape includes long term
storage such as archiving or data backups for companies. One of unthought advantage
of tape is being offline storage which protects data from online attacks. Endurance of
both storages is not really a concern as mechanical parts wear out before it is reached.

1.2.1.4. NAND Flash

NAND Flash memory is the most common type of non volatile memory. It is more
recent than SRAM and DRAM but the absence of mechanical parts allowed it to be
used in numerous devices thanks to its non volatility. It is used in SD memory cards,
USB sticks, smartphones and Solid State Drives (SSDs) for the most common devices.
NAND Flash is made up of a single transistor with a floating gate which stores the
information by retaining the charge after power down. Read is simply done by sensing
the current flowing in the channel whereas write is more complex and requires several
steps. First, due to how NAND Flash is built to maximize density, it is organised in
blocks that cannot be written word per word but only as a whole. This means that
even for changing a single bit, a full block must be written. Moreover, write operation
requires the block to be erased before so data must first be read to keep non modified
data intact. A block is typically around 512 B–4 kB.

The advantages of NAND Flash are its non volatility with high shock resistance
thanks to no mechanical parts compared to HDDs or tapes. Besides, it has a very
high density in comparison to SRAM and DRAM. NAND Flash indeed supports 3D
stacking and most recent chips have up to 176 bitcells stacked [22]. This allows to
have a virtual footprint of less than the theoretical minimum of 4 F2. Moreover, each
die is also vertically stacked with up to 16 other dies in a standard commercial SSD.
This sums up to density superior to 100 Gbit/cm2. On the other hand, NAND Flash
is quite slow in regard to previous volatile memories. Its read speed is around 1 GB/s
but its write speed is 5 times slower around 200 MB/s due to the erase operation. The
main disadvantage of NAND Flash is its latency around 10µs for reading which makes
it around 100 times slower than DRAM. For writing, latency around 100µs can be
expected. These high latencies are due to the high voltage required to operate on the
memory array, up to 15 V which takes some time to reach.

When people talk about memory, they often mention capacity, density and band-
width but they rarely talk about endurance and persistence. Writing in NAND Flash
requires high voltage which ends up damaging the cell after many programming cycles.
This means that a NAND Flash has its lifetime determined by the write bandwidth and
the capacity. To circumvent this problem, industrials added more memory to devices

13

1. On the semiconductor industry – 1.2. Memory technologies

CPUCPU

CachesCaches

System DRAMSystem DRAM

Mass StorageMass Storage

Latency & Size
Increase

Bandwidth
Increases

Figure 1.11.: Memory hierarchy in a conventional system. In server or cluster, DRAM
and mass storage may be distributed or remote.

to be used when a block is failing. Commercial devices may have up to 20 % of extra
memory. Another technique used is wear leveling. This allows to dynamically remap
some blocks onto others to even the number of writes across the device. It also pro-
tects against write attacks aiming to destroy data by wearing out SSD prematurely. To
manage wear leveling, NAND Flash devices embed a controller with their own SRAM
memory that also allows to perform some operations on data. Finally, to speedup
writes, SSDs may embed some DRAM to act as a write buffer but this is only effective if
the amount of data is lower than the buffer size. Scalability is also a concern for NAND
Flash as the high voltage needed to write the cell constrains the transistor size and
limits the downscaling.

1.2.1.5. Current memory hierarchy

On one hand, CPUs need a working memory to store their temporary data. This mem-
ory can be a SRAM for small microcontrollers or DRAM for larger processors. On the
other hand, a permanent storage is required to store programs and associated data. It
is often made with NAND Flash or HDD. As explained in Section 1.1.2, processors have
seen numerous architectural improvements to boost their performances. However,
memories did not keep up the pace and, as a result, intermediate memories known as
caches were introduced to mitigate timings. If we take a desktop or server CPU, its
working frequency is around 3 GHz so it needs a memory to be the fastest possible
to not waste clock cycles waiting for data. This is the goal of the L1 cache made in
SRAM which is around 16–128 kB and usually have a latency of around 1–3 ns. To
be able to serve an instruction and a data at once, there are often two L1 cache, one
for instructions and one for data. To bridge the latency and capacity gap with the
main DRAM memory, a L2 and a L3 caches were introduced. L2 has a capacity of
128–1024 kB and a latency between 5–10 ns while L3 can be up to more than 50 MB but
with a higher latency around 20–50 ns. In rare cases, a L4 made from embedded DRAM
can be present. We now have the complete modern memory hierarchy as shown in
Figure 1.11. Three caches, one or more external DRAM chips and a, possibly remote,
permanent mass storage. All these memories end up eating most of the available area.
Figure 1.12a shows a 130 nm Intel Pentium M from 2005 where memory represents
more than 60 % of the chip area, so this tendency is already decades old. A more recent
processor (Figure 1.12b), a 2015 22 nm Intel Haswell shows a similar area distribution

14

1. On the semiconductor industry – 1.2. Memory technologies

Table 1.2.: Main memories key parameters. Data is from [23, 24].

Price ($/GiB) Density Latency Bandwidth Persistence Largest size

SRAM 5000 120 F2 or 2 Gbit/cm2 1–50 ns 1 TiB/s 10µs (Power off) 10–100 MiB

DRAM 20 8 F2 or 25 Gbit/cm2 20–400 ns 10–100 GiB/s 64 ms 100–1000 GiB

Flash 4 <1 F2 or >100 Gbit/cm2 1–10µs 1 GiB/s 10–20 yr 10–100 TiB

HDD 0.1 100 Gbit/cm2 5–20 ms 100 MiB/s 10–100 yr 10–100 TiB

Tape 0.01 49 Gbit/cm2 1–100 s 300 MiB/s 100+ yr 100–1000 TiB

including complex DRAM controller taking the same surface as 2 or 3 cores. That is
why new emerging non volatile memories with much better integration and higher
density can be of great help. A summary of main memories parameters is presented
in Table 1.2.

1.2.2. Emerging non volatile memories
Emerging Non Volatile Memories (NVMs) are a group of recent (namely 2010 and
later) memory technologies that offer promising performances, density and scalability.
From an electrical point of view, they all share the same characteristics. In previous
memories such as SRAM, DRAM or NAND Flash, the physical property used to store
data is the charge of the bitcell. These charges are maintained through power supply
and are gone when the power is shut down (except for NAND Flash). In the case of
resistive memories, the physical property used to retain data is the resistive state of
the bitcell. This resistance changes depending on the current that flows through the
bitcell, but the underlying phenomenon depends on the technology. These emerging
NVMs provide a huge benefit compared to SRAM and DRAM especially, because it
eliminates the need to have several of current levels of memory in the hierarchy. As
such, it would make a big leap forward if it would allow to suppress the L3 cache, the
DRAM and also the main storage (either spinning HDD or SSD). The introduction of
NVMs would thus potentially replace 3 levels of the memory hierarchy into only one,
leveraging huge gains in power consumption, timing (latency and bandwidth), density
and silicon area. Another possible use is as Storage Class Memory (SCM), which is a
class of intermediate memory between DRAM and NAND Flash, in terms of latency,
bandwidth and energy.

The gains in power consumption must however be tempered. As of today, reading
these NVMs may be cheaper than reading DRAM, but the write operation can be
extremely costly depending on the considered technology. There is no static power
compared to SRAM nor dynamic idle power compared to DRAM which make these
memories more energy efficient. But if they are to replace SRAM, as of today, it would
increase power consumption for this specific use with high bandwidth requirement.
The gains in latency are also to be nuanced due to the write asymmetry where the write
operation can take up to 10 times longer than the read operation which is problematic

15

1. On the semiconductor industry – 1.2. Memory technologies

2MB L2
Cache

32kB
L1I

32kB
L1D

(a) A 130 nm Intel Pentium M die

Queue, Uncore, IO

Shared
L3 Cache

20 MB

Core Core

Core

Core

Core

Core

Core

Core

Memory controller
DDR4

(b) A 22 nm Intel Haswell die. Each core has a 256 kB L2 cache
and 2×32 kB L1 caches

Figure 1.12.: Die photographs

in a system point of view. To ensure system responsiveness and guarantee perfor-
mances in all use cases, write asymmetry still needs to find workarounds. However, as
these are non volatiles, it suppresses the refresh operation that can hinder the access
timing on DRAM. Another issue is that timing operations are usually better than at
least DRAM, but not of SRAM.

As said earlier, the resistance is the physical property used to store data. We call Low
Resistive State (LRS) the logical 0 and High Resistive State (HRS) the logical 1. The ratio
between HRS and LRS is called the On/Off ratio and determines the precision of the
SA, the working frequency and if multilevel cells can be used. Unfortunately, contrary
to electrical charge, resistance cannot be controlled accurately and follows a normal
or log-normal distribution as shown in Figure 1.13. A narrow distribution with a high
On/Off ratio is the best case as both state can clearly and easily be distinguished and
may even allow multilevel cell (Figure 1.13d). The worst case is a low ratio with a wide
distribution where some LRS cells might have a higher resistance than some HRS cells
(Figure 1.13c). In this case, either error correcting code can be used but this requires
more space and may fail if the distributions are really bad, or write verify loop to make
sure the cells end up in a distinguishable state but this is non deterministic and write
may take a long time. Low ratio with narrow distribution (Figure 1.13a) and high ratio

16

1. On the semiconductor industry – 1.2. Memory technologies

LRS HRS

(a) Low On/Off ratio, narrow
distribution

LRS HRS

(b) High On/Off ratio, wide distribution

LRS HRS

(c) Low On/Off ratio, wide dis-
tribution

00 01 10 11

(d) High On/Off ratio, narrow distribution and multilevel cell

Figure 1.13.: Different RRAM resistance probability distribution. Orange hatched
() denotes state intersection and should be avoided at all cost.

with wide distribution (Figure 1.13b) are acceptable cases if the distributions do not
overlap.

In terms of density, these can reach the theoretical maximum of 4 F2, but it depends
on the array structure and the access device to the bitcell: none (crossbar structure),
transistor (1T1R bitcell) or back-end of line selector (1S1R) as shown in Figure 1.14. 3D
technologies can enable even higher density like Flash already offers. As technology
will mature, denser designs will ensue. For silicon area, as we can theoretically remove
the DRAM and the mass storage (whether HDD or SSD), this removes 2 external chips
from the system allowing more compact and efficient systems to be produced. With
the advance of In-Memory Computing (IMC) and 3D stacking, we can even dream of
a all in one chip where memory and CPU are tightly coupled [25].

There are still some work to be carried at hardware level including technology and
architecture, but on software side as well. New data structures can benefit from the
non volatility and Operating System (OS) needs to take it into account. Indeed, non
volatility ensures that data remains even after power off, nonetheless this also cause
some security threats as data will remain permanently which can include sensitive
data such as passwords. OS must take care of erasing data after deallocation which
was easier with DRAM. On the technology side, endurance for all these emerging
memory technologies remains a serious concern that prevent any to be used for their
purposed introduction. On the other hand, their integration and compatibility with
the fabrication process, depending on the material used for some memories, greatly

17

1. On the semiconductor industry – 1.2. Memory technologies

WL

WL

BL
(a) Standalone bitcell in a crossbar

structure

SL

WL

BL

(b) 1T1R

BL

WL

(c) 1S1R

Figure 1.14.: Circuit diagrams of 3 different bitcell types

ease their adoption by industry and reduce the need for investment in new fabrication
lines.

1.2.2.1. RRAM

Resistive Random Access Memory (RRAM)1 is the first discovered and manufactured
type of emerging non volatile memory dating back to the 1960s but it only attracted
attention in the 2000s when it was made with back-end of line compatible materials.
Although in its general form RRAM embraces all resistive memories including PCM
and MRAM, we discuss in this section only about Oxide Random Access Memory
(OxRAM) and Conductive Bridge Random Access Memory (CBRAM). In the literature,
RRAM are sometimes referred as filamentous RRAM. Indeed, these technologies rely
on a Conductive Filament (CF) inside an insulating material. OxRAM depends on
oxygen vacancies as filament while CBRAM uses metal ions (Figure 1.15). Set operation
is performed by applying a positive voltage between the top and bottom electrodes,
whereas reset requires a negative voltage. This means that the selector cannot be a one
way device such as a diode and also slightly complicates write drivers to be reversible.
Access device can thus be a single transistor, an Ovonic Threshold Switch (OTS) or
none at all in a crossbar array structure (Figure 1.14a).

It is often made from HfO2 which is a high-k dielectric (highly insulating) used
in transistor to make smaller grids and thus RRAM is easily integrated in current
fabrication lines. With a crossbar array structure, it should be the most dense on-
chip memory available, excluding 3D stacking technologies. It is aimed to replace
potentially SRAM in higher level cache, typically L3 [27] while L2 and L1 are expected
to remain with fast SRAM memory. Nonetheless, there are still challenges to reach
these goals with serious reserves on endurance and variability within an array.

1 ↑RRAM® is a registered trademark in Japan and EU until 20/02/2023 [26]. ReRAM is also encoun-
tered in the literature.

18

1. On the semiconductor industry – 1.2. Memory technologies

Bottom Electrode

Top Electrode

Metal
Oxide

Oxygen
Vacancy

Oxygen
Ion

OxRAM

Filament

(a) OxRAM

Bottom Electrode

Active Top Electrode

Solid
Electrolyte

Metal
Atoms

CBRAM

Filament

(b) CBRAM

Figure 1.15.: Different types of RRAM bitcell. From [30]

First of all, RRAM requires higher voltage and current than conventional SRAM to
form and reset the CF. It requires bigger transistor to drive enough current (up to
100µA). Higher current also means it is harder to shrink the pitch of the metal between
lines due to IR-drop effect. Cycling between forming and resetting the CF ends up
damaging the cell with micro cracks or migrating material (oxygen or metal) cemented
up to the point where the cell is stuck in either LRS or HRS. Current technologies
have an estimated endurance between 10 million to a billion cycles [28, 29] which
is way too low for caches memory or even DRAM where the write bandwidth can be
over a billion writes per second. Wear leveling techniques must be used to mitigate
these bandwidth and equalize the wearing out on all the bitcells which slows down
the working frequency of RRAM.

RRAM has a medium On/Off ratio often combined with wide distribution (interme-
diate between Figure 1.13b and Figure 1.13c) which makes reading slower to ensure
the state of the bitcell. Another problem is the drift associated with the repeated
read/write cycle. Both LRS and HRS distributions will shift independently for each cell
meaning that some cells will have a worsened ratio while others will see it improves
across the lifetime of the cell. Worsened ratio may overlap distribution rendering the
cell useless which can be alleviated with wear leveling to move data to extra bitcells.
Some array structure such as 2T2R [31] can be used to lessen low uniformity issues.

Overall, RRAM still has a promising future with write currents going down around
1µA, reading and programming times lower than 10 ns and a retention time of at least
10 years. Endurance above 1012 cycles have been reported [32] although it is still a little
too low for integrated cache memories. Power density due to higher write currents
may also be problematic for some power constrained applications. Highest On/Off
ratios are between 100 and 1000 which permits 4 level bitcells (2 bits) [33].

19

1. On the semiconductor industry – 1.2. Memory technologies

Top Electrode

Bottom Electrode

Phase-Change Material

Amorphous
Region

Insulator

PCRAM (Mushroom Structure)

(a) Mushroom PCM bitcell

PCRAM (Pillar Structure)

Top Electrode

Bottom Electrode

Amorphous
RegionInsulator

(b) Pillar PCM bitcell

Figure 1.16.: Different types of PCM bitcell. From [30]

1.2.2.2. PCM

Phase Change Memory (PCM) is another type of resistive memory relying on the tran-
sition between amorphous and crystalline phase of a material, usually a chalcogenide.
These two phases have greatly different electrical resistance which is used to store
data. HRS corresponds to the amorphous phase, whereas crystalline is LRS. The reset
operation consists of sending a burst current to melt the material and let it cool down
to reach the amorphous phase. Set is done by sending a smaller current than reset
and let the material slowly crystallize. Set operation is thus seemingly slower than
reset. Contrary to RRAM, current is one way only as it is only used to heat the material
so the selector can now be a diode which is slightly more compact than a transistor.
Unfortunately, the high temperature needed to melt the material requires high current
for a short amount of time which makes writing a high power operation. Current used
to be over 1 mA and has now decreased to 250µA with voltage around 3 V [34] similar
to RRAM. Moreover, high temperature limits the density to prevent a write to disturb
neighbouring cells. Multiple designs coexist such as mushroom or pillar type as shown
in Figure 1.16, depending on the materials used.

Similarly to RRAM, PCM is subject to endurance issues that are even worse due to
thermal expansion. It either creates voids in the cell until it gets stuck open or, due
to melting repeatedly, have material migrating and forming a permanent conductive
wire. Current technology has endurance between 1 million and a billion cycles [34–36],
which is better than most recent SLC NAND Flash. This is enough to replace the
former in fast permanent storage as SSD. Although heating and cooling down the
material takes time, it is still faster than Flash with write timings of 100 ns and even
less reported [34]. Given its better performance compared to Flash, PCM was the first
NVM sold in consumer electronics by Micron and Intel under the Optane brand name
with their 3D XPoint technology. Its On/Off ratio is also way better than RRAM up to
104 allowing multilevel cells to be used with 3 and even 4 bits [37]. Indeed, precise
control of current and timing during pulse gives highly repetitive resistance output in

20

1. On the semiconductor industry – 1.2. Memory technologies

Free Layer

Oxide Tunnel Barrier

Pinned Layer

In-Plane MTJ

(a) Plane MRAM bitcell

Perpendicular MTJ

Free Layer

Oxide Tunnel Barrier

Pinned Layer

(b) Perpendicular MRAM bitcell

Figure 1.17.: Different types of MRAM bitcell. From [30]

contrast to RRAM which has very wide resistance distribution.
In perspective, PCM is planned to replace DRAM [35, 36, 38–40] in computing sys-

tems if its endurance is high enough. Otherwise, its use as SCM has already began
with Intel and Micron 3D XPoint technology. Read timings are in the tens of nanosec-
ond and write in the hundreds of nanoseconds. Write power is of concern due to
high drive current which makes it the most energy consuming memory to write a bit
with 10 pJ/bit whereas RRAM is around 100 fJ/bit and SRAM is even lower. Density is
limited due to thermal constraint but this is partially circumvented with 3D stacking.
Retention time is above 10 years thanks to the material stability in both phases. How-
ever, resistance drift due to thermal dilatation and cycling can be a problem in the
long term for multilevel cells.

1.2.2.3. MRAM

Magnetic Random Access Memory (MRAM), and more specifically Spin Transfer
Torque MRAM (STT-MRAM) is yet another kind of resistive memory using the mag-
netic orientation of a Magnetic Tunnel Junction (MTJ) to store data. A free layer that
can take two different orientations and a fixed reference layer separated by an oxide
barrier make up the bitcell (Figure 1.17). If the layers have the same direction, the cell
is in a LRS and if they have opposite direction, then it is a HRS. Set is performed by
sending a current pulse in the wanted orientation and reset is done by reverting this
current pulse. Just like RRAM, write drivers must thus be reversible and this constrains
the device selector as well. Contrary to PCM, it does not require a lot of power to
switch state with current in the range of 100µA and write timing inferior to 10 ns [41,
42]. Endurance is the best advantage of MRAMs as it does not suffer from any ther-
mal dilatation or high current going through the cell. Estimated cell endurance are
over 1012 cycles [30]. Voltage to operate the cell is also lower compared to previous
memories and within 1.5 V, there also reducing constraints on transistor size.

Unfortunately, magnetic materials required for the fabrication process are not

21

1. On the semiconductor industry – 1.3. A new computing paradigm

Table 1.3.: NVMs parameters. Data collected from [28, 30, 34, 44–46]

Cell Size Multibit Read Time Write Time Write Energy (/bit) Endurance

RRAM 4–12 F2 2 ∼10 ns 10–50 ns 0.1–10 pJ 106–1012

PCM 4–30 F2 4 10–60 ns 20–150 ns 10–500 pJ 107–1010

MRAM 6–50 F2 2 2–35 ns 3–50 ns 0.01–1 pJ 1012–1015

compatible with conventional CMOS technology which is still a problem to be solved.
Magnetic nature of the bitcell requires the storage to not be in a magnetic environment
that may disturb cells’ data which can limit the use for some applications. Heat is
also a limitation to the use of this memory in non controlled environment as it largely
reduces the data retention time. Finally, MRAM yields a low On/Off ratio with a narrow
distribution which makes multilevel cell harder to achieve, but not impossible [43].
3D stacking is still a work in progress [41] and should help improve the relatively
low density compared to RRAM or PCM [44]. Small nodes may also be problematic
due to magnetic field interference between cells. As such, MRAM is planned to be a
medium density memory compared to RRAM but its high speed and low power makes
it a suitable candidate to fully replace SRAM in cache memories thanks to its high
endurance [42, 44].

Emerging memory technologies have intermediate energy and timing between
either SRAM or DRAM and Flash. Non volatility removes static and dynamic power
consumption in the bitcell array which greatly improves energy efficiency. They
can replace several memories in the system, mainly DRAM as it is the most power
consuming one as well as the higher level cache. Non volatility also allow Flash
replacement and better system integration. Another possibility is their integration
as SCM in between DRAM and NAND Flash. However, they have limited endurance
that is too low to consider a full replacement as of today. Having a permanent storage
tightly coupled to CPU will cut down power loss over transmission line instead of
having multiple chip connected on a system bus. A summary of their characteristic
is given in Table 1.3.

1.3. A new computing paradigm
Now that we have introduced old and emerging memory technologies, we need to
explain why we need to revisit the standard architecture model to fit the new needs of
the industry. As we have seen, current memory technology are not really scalable with
permanent storage being done with spinning HDDs and tapes which both have very
high latency, low bandwidth and use mechanical parts that are more prone to failure.
Although both have seen tremendous improvement for data density, their high latency
and low throughput make them unsuitable for future high demanding uses. We first

22

1. On the semiconductor industry – 1.3. A new computing paradigm

introduce the rising demand for high throughput data treatment (big data) with the
use of AI, then we discuss the challenges this trend faces and raises and finally, we
introduce a proposed solution that is IMC.

1.3.1. Big Data
Since 1980, data storage has substantially increased and doubles every 40 months [47]
which is an exponential growth as shown in Figure 1.18. This trend is still valid as of
today but what changed is how this information is treated. What started with high
density information, mostly sensor data, is now a sea of low density information which
we need to extract the valuable droplets from:

• In finance, data now comes from stock variations but also analysis of political
discourses, behavioral analysis, press text analysis to predict the most accurately
how the stock will evolve;

• In social networks, text analysis, photo recognition, graph analysis and behav-
ioral analysis all require huge amount of data (and tracking);

• In informatics, database search, insertion and deletion are recurring operation
that are lengthy on terabytes dataset;

• In science, it includes: meteorology with the multiplication of sensor data and
higher precision with models containing billions of nodes; biology with DNA
analysis and pattern matching for protein modifications research; astrophysics
where telescopes’ data are harvested faster than they are treated leaving huge
untreated databases even after telescopes retirement; subatomic physics such
as particle accelerator that can generate terabytes of data in a second; medicine
that has very wide input dataset to look for correlation between lifestyles and
diseases; etc.

All of these are the consequences of the shift from industrial society to information
society where data is the new colorless gold. With the IoT, it will be further exacerbated,
but thankfully only 2 % of data is stored [48]. These new data as listed previously are
of great volume, vary largely in quality and type, are generated quite rapidly and thus
demand a fast treatment.

Not only data quantity increases as well as its diversity, algorithms also evolved
with more complex access patterns. Graph processing with bunny hopping from
node to node are not predictable in their patterns and prevent any form of caching
relying on spatial locality. These irregular access patterns increase stress on memory
systems. Improvements in image processing led to stride access patterns where only
part of data is used in a regular way. But memory must still serve the full data to
accommodate caches leading to underutilisation of the ideal bandwidth. Combining
this with stencils application such as convolution used in filtering where data is
accessed in subpart of the total also decreases temporal locality with nowadays high
resolution pictures. All in all, we face an absurd amount of data whose algorithms

23

1. On the semiconductor industry – 1.3. A new computing paradigm

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
0

25

50

75

100

125

150

175

200

2 5 6.5 9 12.515.5 18
26

33
41

64.2
79

97

120

147

181

D
at

a
vo

lu
m

e
(Z

B
=

10
21

B
)

Figure 1.18.: Quantity of data created per year. Only 2 % is stored, rest is treated then
thrown away. From [48]

needed to manage them have complex access patterns reducing the effectiveness of
cache techniques. This forces data to be read and evicted from caches multiple times
increasing the energy and timing cost.

1.3.2. Proposed solution: memory computing
In this data intensive world, we have to treat data in an energy efficient way and with
high throughput. Standard computer architecture is compute centric rather than
data centric; it is built in order to execute the maximum number of operations in
the shortest amount of time but that does not equate to faster data treatment due
to memory hierarchy and its intrinsic latencies and limited bandwidth. Data centric
architecture is all about treating a massive amount of data in a parallel fashion while
compute centric is about controlling the program path and needs the data to be
brought through a complex memory hierarchy designed to hinder the slow memory
timings.

The only foreseeable solution is to work at the bottleneck, i.e. the memory. As it is
the bottleneck, we cannot treat data faster than its external bandwidth and thus this
renders all cache levels and lower memories in the hierarchy obsolete. The data should
be handled where it resides, at the topmost level of hierarchy that is the permanent
storage or eventually the DRAM. A possible parallel is remote working rather than
office work where humans are data to be managed. By doing so, we remove the
morning and evening commute representing data transfer with its bottlenecks (roads,
railways, etc.), its latencies and its energy cost (electrical, gas, etc.). Another solution
is also to compute data where it is produced (local consumption) rather than to send
it to an external compute unit, whether it is local to the system or a remote server. But

24

1. On the semiconductor industry – 1.3. A new computing paradigm

100 GB/s 1 TB/s 10 TB/s 100 TB/s 1 PB/s

Bandwidth at SRAM bitlines of 20 MB Cache 328 TB/s

Bandwidth at Cache IO 1 TB/s

System Bus 167 GB/s

Maximum computing bandwidth of a systolic array 92 TB/s

Figure 1.19.: Internal versus external memory bandwidth. From [49]

this is not always applicable.
Why is memory computing a viable and promising solution? First, it removes most

of data transfers between the memory and the CPU or GPU. This yields timing and
power improvements by removing costly intermediate memories such as cache and
also slacken power constraint on the CPU (see dark silicon and heating problems in
section 1.1). Second, it takes advantage of the much higher internal bandwidth of the
memory, sometimes 100× faster than the external one (Figure 1.19). Not only this
can incidentally increase throughput but also reduce the average time of algorithms
execution. Third, it uses the full internal width of memory lines which is ranging from
100 up to 1000 larger data width, depending on the considered memory technology,
allowing vector computing to occur. Fourth, it can alleviate the energy wall problem
by reducing the performance and energy constraints put on the CPU.

How does memory computing work? Multiples classes of solutions have been
proposed in the state of the art and we can split them in roughly two groups: analog
computing in the bitcell array or digital computing after the SAs. The first group makes
extended use of basic electrical rules to compute logical operation such as NAND, OR or
XOR. It rely on the array interconnection between bitlines but is also heavily technology
dependent. More complex operations are performed through multiple successive
logical operations or with some additions to the periphery circuits. Second group adds
digital computing units in the periphery but may also use some analog pre-computing
performed in the array. Digital additions allow more complex operations such as
arithmetic ones (ADD, MUL, etc.) to be computed in place in single cycle. For a more
complete view on IMC techniques, refer to Chapter 2.

Note that memory computing is almost as old as digital computing itself. The
very first paper that can be connected to IMC dates back to 1969 and proposes to
interleave memory with logic units to compute basic logic functions [50]. It can be
considered as a common ancestor to both IMC and FPGAs. A similar proposition is
found in [51] from 1970 that introduces compute caches with search, add and scale
operations. However, the first chip implementation leaps 20 years forward with an 8 kB
SRAM prototype reaching 1.7 GOPS on a discrete cosine transform application used
in video compression [52]. Those previous papers were not introducing solution to
the memory wall as they do not mention it, nonetheless the memory wall problem has
been known for more than 25 years [53]. Already in 1994, the memory was the limiting

25

1. On the semiconductor industry – 1.3. A new computing paradigm

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0
100
200
300
400
500
600
700
800
900

1000
1100

Source: Google Scholar with key words:
"computing in memory"
"in memory processing"
"processing in memory"

Year

P
ap

er
P

ub
lis

he
d

pe
rY

ea
r

Figure 1.20.: Memory computing research interest in Google Scholar. Search term
are not precise enough as they include some result from neurology
(background noise). From [56]

factor, the von Neumann bottleneck, and the authors only state that scientists and
engineers should think outside the box without providing any hint or direction. A first
attempt was designed with the Terasys array [54] with 1-bit Arithmetic & Logical Unit
(ALU) incorporated into SRAM memory chip for each column. It supports basic logic
operations with distributed computing approach and their own high level language.
It reached speedup between 5× to 50× versus single CRAY core. Another nail in the
coffin is a paper by D. Patterson et al. in 1997 that reports many programs spend most
of their time waiting for the memory [55]. It proposes an intelligent RAM that is vector
computing tightly coupled to DRAM and foresees up to 4.5× better energy efficiency
compared to conventional architecture.

Since 2010, there has been a new surge of papers on IMC or Near-Memory Comput-
ing (NMC) indicating a real interest in this solution in both academics and industry
(Figure 1.20). Some questions are still open in the community, concerning mainly
more software points than hardware. The programming of these new IMC devices
and their associated Instruction Set Architecture (ISA) is for now not debated with
everyone using homemade ISAs. RISC-V may be a starting point but it is a scalar
ISA rather than a vector one (see Chapter 3 for our own). How the instructions are
sent to the device or how it is synchronized with the rest of the system is also an
unanswered question (see Chapter 4 for our approach). Coherency issues are al-
most nonexistent in the literature although they do exist as in every unified memory
system. Overall it is how it should be integrated in a real system with a software
Application Programming Interface (API) that also has hardware implications.

26

1. On the semiconductor industry – 1.4. Conclusion

1.4. Conclusion
We have shown that the global context in the semiconductor industry is close to
reach a dead end. Moore’s law is coming to an end in the next few years after more
than 50 years of continuous growth (Figure 1.1). Dennard’s law has been broken
since 2005 which led to dark silicon, i.e. part of circuit that cannot be powered due to
power constraints and heat dissipation issues. Frequency scaling has also reached a
plateau around 2005, there also putting a cap on performance for single cores (Fig-
ure 1.4a). Architectural improvements were the key to performance increase from
2005 to nowadays with the introduction of multicores CPU. Wider SIMD extension
also provided some boosts to treat vectors of data which is particularly useful for
the more demanding applications of today such as neural networks. To speed these
applications even more and to improve their energy efficiency, general purpose GPUs
were introduced with thousands of processing elements executing the same instruc-
tions simultaneously. FPGAs are now common in commercial datacenter but it is
more a marketing strategy than a definitive solution. Application specific accelerators
were also designed such as Google’s Tensor Processing Unit (TPU). Finally, the rising
costs of more advanced nodes make new chips more expensive per million gates. The
technological investments required to fabricate the sub 10 nm nodes are astronomical
and leave very few foundries choice (Figure 1.7) which also increases prices. All in all,
semiconductor industry is at the end of an era after pushing everything it could to the
extreme, both technologically (smaller nodes, better materials) and architecturally
(SIMD, multicores, etc.).

All of the previous points were only tackling the problem at the compute or logic
level but never at the memory level while the memory is the limiting factor (Figure 1.5)
either in bandwidth (memory wall or von Neumann bottleneck) and in efficiency as
data transfer is costly. Recent new memory technologies such as HBM and HBM2
partly reduced the gap between GPU and memory performance, but this gap still
remains. In summary, we do not need to change how we treat the data but where
we treat it. Thus, we need a shift from compute centric to data centric architectures
where data is the focus point rather than the processing element, especially in the era
of big data and AI. This shift should improve energy efficiency in the context of better
energy efficient systems to meet the requirements of the Paris Agreements, while still
increasing performance with a limited energy budget.

Memory computing is a promising solution to these problems. It satisfies the energy
efficiency part by removing useless caches and memories in the system. It offers better
performance in vector computing by profiting from the internal memory bandwidth.
Emerging NVM technologies offer promising performances such as better read/write
energies and faster timings. Their compatibility with CMOS process grants better
integration and higher density than DRAM. Non volatility paves the way to a unified
circuit containing memory for permanent storage and computing, all in a single chip
using 3D integration technologies. This is already envisioned in the literature as the
next leap forward [25].

27

2. State of the Art
Comme vous êtes second, vous avez
plus que dix-neuf solutions possibles :
soit vous passez, soit vous sciez les pou-
trelles en deux. Sinon, c’est les relances :
doublette, jeu carré, jeu de piste, jeu ga-
gnat, jeu boulin, jeu-jeu, joue-jeu, joue-
jié, joue-ganou, gana, catakt, tacat, ca-
catac, cagat-cata et ratacac-mic.

Claims that cannot be tested, asser-
tions immune to disproof are veridi-
cally worthless, whatever value they
may have in inspiring us or exciting our
sense of wonder.

— Perceval IN Kaamelott BOOK III, EPI-
SODE 50, « Perceval chante Sloubi »

— Carl Sagan

Now that we have presented the global context in Chapter 1 along with the In-
Memory Computing (IMC) concept, we focus here on the state of the art of various
IMC solutions. IMC concept has been widely studied in the last years, since it is a
promising solution to overcome the von Neumann bottleneck. Indeed, this concept
is highly efficient for vectorizable kernels with a massive amount of data. It is also
compliant with many memory technologies at every levels of the hierarchy (SRAM,
DRAM, SCM, etc.). We present numerous implementations of IMC with varying
approaches and technologies.

Contents
2.1 Taxonomy . 29
2.2 Memory computing . 30

2.2.1 SRAM . 30
2.2.1.1 Modified bitcell . 30
2.2.1.2 Foundry pushed-rule bitcell 32

2.2.2 DRAM . 33
2.2.3 NVM and SCM . 35

2.2.3.1 Flash . 35
2.2.3.2 RRAM . 36
2.2.3.3 PCM & MRAM . 39

2.2.4 Other works . 40
2.3 Conclusion . 41

28

2. State of the Art – 2.1. Taxonomy

We first make a brief introduction on the multiple terms met in the state of the
art and explain their differences in terms of hardware implementation (section 2.1).
Then, we present the state of the art starting from the bottom of memory hierarchy
(closest to the processing units) and going up to slower but higher capacity memories
(section 2.2).

2.1. Taxonomy
State of the art is filled with different names regrouping several categories or class
of what can be called In-Memory Computing (IMC). We can find the terms of IMC
and Computing In-Memory (CIM) that were the first to appear and followed by other
terms such as Near-Memory Computing (NMC), Near-Memory Processing (NMP)
or Processing In Memory (PIM) which can sometimes denote the same or different
technics. Other terms such as Logic In Memory (LIM) can also be encountered. The
definition depends on the field of work of the authors that can be categorized in two
groups: hardware point of view and system point of view. The hardware point of view
focus more on the technological side and on how memory computing is performed at
the circuit level. The latter system point of view is centered on the data movement at
the global system level, i.e. does the data leave the memory chip or not. An excerpt
of what is found in the literature is shown in Figure 2.1. It shows different level of
hardware implementation for IMC and some limitations to operator choice due to
complexity for some operators.

IMC relies on analog computing and multiple wordlines activation. It is limited in
bitwise logic operations and analog multiplication using current summation. This
requires some periphery modification to allow multiple activations in the row decoder.
NMC is done by computing once the data is directly out of the bitcell array and
is, contrary to IMC, completely done in the digital domain. Digital allows more
complex operators and removes any disturbance from noise in the computation.
The more complex operators include basic arithmetic operators such as addition
or multiplication which requires passing information from different bit positions to
compute the result. One step further is PIM. It gets data further from its original place
and out of the memory chip or subcircuits but stays on the same chip or device. It

word-line IOs
(digital wrapper)

logic tight integration
(RISC CPU)

system integration

closer to Memory

SA
SA
SA SA SA
SA SA

bit-cells array
(custom bitcell)

Interface levels

@ Data

System Bus

Computation complexity

FPU, cos, sin, …

div, MAC, …

add, sub,
mult, …

nor,
nand

Memory Bandwidth & Size

IMC

NMC

PIM

CPU
closer to Processor

Figure 2.1.: Taxonomy. From [57]

29

2. State of the Art – 2.2. Memory computing

can be viewed as an accelerator tightly coupled to memory or with its own memory
depending on the implementation and the system conception. Note the contrast
between computing and processing where the former is just performing operation
while the latter may also control and advance the program path. The main metrics
encountered in the state of the art include:

• speedup, i.e. how much faster is the execution of a program or application using
the proposed IMC family based solution versus a baseline that is often a scalar
or Single Instruction Multiple Data (SIMD) Central Processing Unit (CPU);

• energy reduction or how much energy was saved using the same comparison as
for speedup;

• energy efficiency, that is how many operations can be executed or computed
with a given amount of energy or power. It is expressed in operation per second
per watt (OPS/W) or in joule per operation (J/operation).

Area can also be used as a metric for the circuit modifications or custom bitcells.

2.2. Memory computing

2.2.1. SRAM
Static Random Access Memories (SRAMs) are suitable for both IMC and NMC thanks to
their versatility. They can be modified in multiple ways to extend memory functionality
with computing. Nonetheless, bitcell modification can be costly in development and
validation time as well as on silicon area.

2.2.1.1. Modified bitcell

To compute directly in place in SRAM, it is required to modify the standard 6T bitcell.
Indeed, multiple row activations will have cells disturb each other as there is no
isolation between them. Multiple designs were proposed in the literature as shown
in Figure 2.2. Modified or non standard bitcells are all the cells that are not the
conventional 6T bitcell represented in Figure 1.8. Modified bitcells provide more
flexibility and prevent read disturb when accessing multiple rows. However, this
comes at the cost of higher area footprint as well as design validation cost. We also
make distinction between simulation based papers and silicon proven circuits.

Simulation Using 9T bitcell to solve read-write-disturb problem, [60] implements
basic logic operators, AND, OR and their complements in the bitcell array. With the
addition of multiplexers, they also implement addition and subtraction in respec-
tively 1 and 2 cycles. Moreover, they develop their own Instruction Set Architecture
(ISA) to execute instructions. They reach an energy improvement up to 3.0× versus
a RISC core baseline with a single SRAM on general purpose applications which is

30

2. State of the Art – 2.2. Memory computing

R
B

LF

R
B

LT

BLFIBLTI
W

B
LT

W
B

LF

WWL
RWLT
RWLF

RPF
RPTWP

(6T SRAM)

PGT PGF

RPF_PD
RPF_PG RPT_PG

RPT_PD

(a) 10T bitcell from [58] (b) 8T bitcell from [59]

Figure 2.2.: Non standard SRAM bitcells used to implement IMC

the main strength of their approach as it is not limited to basic logic operators, but
still lack multiplication. Moving on to more complex operators such as multiplier,
[61] performs matrix vector multiplication with 8T bitcell. The accumulation is done
analogically and reading the result requires multibit Analog Digital Converter (ADC).
They achieve a performance of 2.43 TOPS and an efficiency of 16.94 TOPS/W with
6-bit signed multiplication. Other works with 8T bitcells combine Ternary Content
Addressable Memory (TCAM) and some shift operations within the array [62]. Some
works add up to 3 read ports to perform more efficient search operation and boolean
operations with an efficiency of 13.2 fJ/bit [63]. Finally, [64] proposes two different
8T bitcells so that even the use of Sense Amplifiers (SAs) can be removed when com-
puting boolean operations. They achieve an energy efficiency of 11.2 fJ/bit with a 1 ns
latency. Specialization for neural network applications using bit-serial computing
is implemented in [65]. Although bit-serial is inherently slower, they apply it in a
massively parallel fashion allowing timing improvement of up to 18.3× with a 2×
energy reduction versus a multicore CPU.

Experimental In [66], a 10T bitcell is used to compute various cryptographic al-
gorithms which all make an extensive use of the XOR operation. The remaining
computations are performed by additional circuitry beyond the SAs. The chip fabri-
cated in 40 nm CMOS Bulk with an ARM Cortex M0 CPU delivers a 6.8× speedup and
12.8× energy improvement against scalar baseline. However, their baseline should
have been with a SIMD CPU as their current comparison does not account for the
kernel vectorization itself. [67] proposes a 12T bitcell to compute analog XNOR and ac-
cumulate for binary and ternary neural network applications. The 65 nm chip reaches
a 2.48 fJ per ternary operation with 98.3 % accuracy on MNIST. The main issue resides
in the area taken by the 12T bitcell that is almost 40 times bigger than off-the-shelf
6T and the use of Flash ADCs also introduces area overhead. With some architectural
concerns, [49, 68] uses bit-serial computation where all the elements of a vector are
computed bit per bit. It is one of the few (if not the only one) that uses floating point
operations which are more hardware expensive but offer way more algorithmic possi-

31

2. State of the Art – 2.2. Memory computing

bilities. With a 8T transposable bitcell (Figure 2.2b) in 28 nm, they achieve 1.4 GFLOPS
although some cycles numbers to compute floating point operations seem sketchy.
Modified bitcell chips represents a good portion of the state of the art with often
targeted applications. Neural network applications are the major part of it with face
recognition with 5T bitcell [69], inference accelerator [70] even with 3D bitcells [71] or
convolutional neural network accelerator [72]. Clustering algorithms that are part of
Artificial Intelligence (AI) applications also have their own work [73].

2.2.1.2. Foundry pushed-rule bitcell

However, non standard bitcells have lower density versus conventional 6T SRAM
bitcell. 8T or 10T bitcells are designed using logic rules which lower furthermore
the density as these designs were not validated through fabrications and cannot be
pushed too far without risking malfunctioning circuits. Standard 6T bitcell offers
better integration and density. It is also present in founders design kit with pushed
rule, i.e. maximum density and validated designs.

Simulation In [74], although they use 6T bitcells, they also bundle them in local
groups with local bitlines connected to global bitlines through a transistor. This
is made in order to remove disturbance when performing operation that includes
boolean, copy, addition and shift operations. Addition and shift are performed outside
the bitcell array as they require inter bitline data exchange. They achieve a 1.2 GHz on
64 bits operand with an energy efficiency of 2.61 fJ/bit which is better than previous
state of the art. 3D technologies are studied in [75] with a standard 6T but with added
connections to better benefit from the 3D monolithic integration. On boolean opera-
tions, they claim a 6.5× energy reduction. Finally, with architectural considerations,
[59] proposes to incorporate IMC, in the form of bitline computing, within the caches
of a multicore CPU. Multiple problems raised by this design are addressed including
coherency, consistency, alignment issues and data placement. They adopt NMC for
when data is misaligned or not in the same cache level which duplicates computing
units. But by computing only in the caches, they obtain small benefits from it with
only 1.9× better performance and 2.4× reduced energy as over half of the energy
consumption is located in the Dynamic Random Access Memory (DRAM) system [76].

Experimental The use of Content Addressable Memories (CAMs) often requires
complex 10T or 12T bitcells but [77] manages to realize it with 6T bitcells that enables
logic in memory with AND or NOR operations. This approach yields a 50 % to 80 % area
gain with a low energy search energy at 0.6 fJ/bit in 28 nm, 40 % lower than best state of
the art solution. Almost standard 6T is used in [78] where a second word line is added
to multiplex access mode between different neural layers in the same SRAM macro.
They apply binary product-sum for fully connected layers and reach 55.8 TOPS/W in
65 nm chip. However, the chip is very limited in its capacity as it is heavily algorithm
dependent. The same split wordline bitcell is used by [79] for XNOR operation in
BNN but they focus more on batch normalization with process variations in mind.

32

2. State of the Art – 2.2. Memory computing

They obtain a 3.33 fJ per operation but the same limitation as before applies. More
specialized design is proposed in [80] for classifier applications. These applications
usually require lot of computing to make a decision for each point but the proposed
design attains a 113× energy reduction versus CPU approach with only 630 pJ per
decision in 130 nm. Other specialized designs include a reconfigurable in-memory
neural network implemented in 65 nm with 2.3 TOPS/W efficiency [81]. Another
classifier with a different algorithm lower EDP by 6.8× for traffic sign recognition [82]
while a CIM macro for AI edge chips with analog MAC achieves 9.45× better efficiency
in 28 nm [83].

Despite showing impressive results at cache or accelerator level, these papers do
not address the data movements through the memory hierarchy. The considered
architectures are often a reduced memory hierarchy close to embedded systems or
stand-alone accelerators. The only paper with architectural consideration is [59] and
as expected by computing in the caches, their gains are quite low.

2.2.2. DRAM
Moving computing into the cache hierarchy or SRAM memories is the first in-memory
computing step. The second step is to compute inside the DRAM main memory
which is often called PIM for this technology. For DRAM, read being destructive, IMC
requires row cloning [84] for more efficient computing.

Simulation A Graphic Processing Unit (GPU) comparison in [85] leverages the ben-
efit from 3D die stacking in DRAM technologies. Based on the Hybrid Memory Cube
(HMC) technology, they perform vector computation in DRAM intended for GPUs.
At 22 nm node, they expect a 27 % performance loss but a 76 % EDP improvement,
while granting a 7 % performance boost at 16 nm and 85 % EDP reduction. This is one
of the early work in PIM with the advance of 3D memory technologies such as HMC
and High Bandwidth Memory (HBM). A system study has been performed in [86] for
bitwise operations in DRAM memory. Using triple row activation and a dual-contact
cell (Figure 2.3), AND, OR & NOT operations are computed inside DRAM. By doing so
directly in the bitcell array, they benefit from the full internal bandwidth. The reported
performances reach 32× speedup and 35× energy savings on database applications
but considering that data are already inside the DRAM and not coming from another
external memory. Another extensive system wide study shows that data movement
can represent up to 80 % of the overall system energy [87] on everyday tasks such
as web browsing and video rendering. Their key observation is that moving data
costs significantly more than computing but instead of tackling data movement at the
source, they slightly reduce it by using PIM cores inside 3D stacked DRAMs, which
remains the second biggest energy consumer in the system after the CPU [88]. For
some very specialized tasks such as video encoding and decoding, they also introduce
PIM accelerators. Nonetheless, they achieve a 55.4 % system energy reduction and
54.2 % speedup averaged on their consumer benchmarks. This study proves that

33

2. State of the Art – 2.2. Memory computing

VDD VDD + δ VDD

VDDVDD

after sense amplificationafter charge sharinginitial state

C

B

A

C

B

A

C

B

A

0

0

0

0

1
2

1
2

1

1

1

1

0

1
2

1
2

1

1

2

1

1

0 3

Figure 2.3.: DRAM charge sharing using triple row activation. From [86]

even for consumer devices such as laptops and mobile phones, PIM enhances their
performances and battery lifetime. Other works include algorithm for this new kind
of architecture [89, 90], AI accelerator using only MAC units enabling 54× speedup
versus a GPU architecture [91], graph processing accelerator with dual row activa-
tion granting 83× speedup and 59× energy efficiency improvement over GPU [92].
Stochastic computing, a stream based numeric representation, is developed in [93]
with 3.8× performance improvement over GPU baseline with binary arithmetic on
neural network applications.

Experimental There are much less literature on DRAM PIM chips due to the com-
plexity of a real DRAM system and a fabrication process that is different from CMOS
chips. We have found only 3 papers with chip implementation of DRAM IMC or PIM.
Commercial solutions combining DRAM with a scalar RISC CPU are already available
such as [94, 95]. Available performance reports in [90] show a speedup of 25× com-
pared to a 40 cores CPU with 64 GB of DRAM. Compared to GPU acceleration, this
still yields a 5× speed up on DNA pattern matching application [90]. Note that this
does not make use of any form of memory computing as the data is moved outside the
memory array and circuitry to a small CPU with its own work and instruction memory.
To circumvent technological issues with charge sharing that makes DRAM industrial
reluctant to IMC, [96] employs a scheme of timing violations to activate simultane-
ously multiple rows on off-the-shelf DRAM modules. As such, it is the first work to
demonstrate IMC with unmodified modules. However, they require the duplication of
data as they cannot compute the NOT operation. Each operation also requires a full
DRAM command which takes at least 18 cycles. Using bit-serial over 64K bits, they
achieve 182 GOPS for COPY but only 19 GOPS for AND/OR and 2.46 GOPS for 8-bit
addition as addition takes up more than 10000 cycles. Nonetheless, they still reach
a 9.3× better energy efficiency versus a SIMD CPU. Another point is that their first
assumption about reluctant industrials is still there at the end because violating tim-
ings is also a constraint that may prevent devices from functioning normally. Finally,
[97] uses analog IMC in embedded DRAM. They repurpose part of the DRAM into a
compute memory while the rest of it is used to store data needed for computation.
They apply it to neural network application with dot-product, averaging, pooling, and

34

2. State of the Art – 2.2. Memory computing

rectified linear unit operation. Some bits are used to control multiplexers when a bit
overflows into the next one and they add extra bitcells for averaging. A 16 kB chip
in 65 nm is demonstrated and attains 4.71 GOPS and 4.76 TOPS/W which is on par
with digital SRAM IMC implementation. Commercial solution has been announced
by Samsung in 2021 but has not been released yet with claims of doubling system
performance while reducing its energy consumption by 60 % to 70 % [98, 99].

Yet, DRAM is one of the biggest energy consumer in data centers and consumer
devices, being around 20 % [88] of total energy consumption. When accounting for
all data transfers between nodes, it can represent up to 80 % of the global system
energy [87]. Computing inside this technology, although showing great performances
which are in average from 10× to 50× speedup or energy efficiency improvement,
only solve partially the von Neumann bottleneck as the data is often not originating
from this memory.

2.2.3. NVM and SCM
Next and last step is to go on top of the memory hierarchy by computing directly in
the Non Volatile Memories (NVMs), especially those that can be classified as Storage
Class Memory (SCM), where massive data storage and large vectors are available.

2.2.3.1. Flash

3D NAND Flash is a particular memory as the voltage is higher than usual and bitcells
are stacked on more than 100 planes [22]. As such, it is not convenient to use it for
memory computing, but its large capacity prevents off chip data movement when
considering large neural networks from hundreds of millions of weights to billions of
them.

Simulation One of the first idea to perform NMC within Flash memories is to use
the Solid State Drive (SSD) controller to execute part of the program remotely [100].
Indeed the controller is always present to handle wear leveling, garbage collection,
eventually ECC and manage bus protocols. Each Flash package is extended with a
processor or a coprocessor that improves system energy efficiency by at least 100× on
facial recognition, as shown in Figure 2.4. Their evaluation process is however not well
described. Using the classic current summation apparatus, [101] implements vector
matrix multiplication within 3D NAND Flash and demonstrates that Flash variability
is not a concern for IMC implementation. Unfortunately, no performance evaluation
is presented. With the same approach of current summation in 3D NAND Flash at
massive scale (more than 10000 bitcells), [102] gets rid of any variability thanks to
noise being cancelled at this scale. However, the precision of SAs is not discussed
but they apply their work on 64 GB Single Level Cell (SLC) 3D NAND and estimate
a performance efficiency of around 40 TOPS/W for 4-bit inputs. [103] develops a
similar method with 4-bit ADCs and an efficiency between 2 TOPS/W and 20 TOPS/W

35

2. State of the Art – 2.2. Memory computing

……

……

SSD Controller

Block Management

Wear Leveling

Garbage Collection

Host Communication

Data Buffer

NAND Flash Package
NAND

Flash Die
NAND

Flash Die……
NAND Flash Package

NAND
Flash Die

NAND
Flash Die……

……

NAND Flash Package
NAND

Flash Die
NAND

Flash Die……
NAND Flash Package

NAND
Flash Die

NAND
Flash Die……

CoprocessorProcessor
ECC

CoprocessorProcessor
ECC

CoprocessorProcessor
ECC

CoprocessorProcessor
ECC

Pad-limited die

Host
Interface

(PCIe)

Figure 2.4.: Coprocessor integrated within NAND Flash SSD proposed in [100]

comparable to other works. Using SLC NAND that store complemented data, [104]
accelerates vector matrix multiplication for BNN up to 2.56 TOPS/W. They also handle
8-bit input with a performance efficiency of 292 GOPS/W. Finally, [105] implements
temporal correlation detection for event based system.

Experimental A prototype of IMC with NAND Flash memory is realized in 65 nm
node in [106]. It uses bit serial computation and handles 8-bit weights and inputs. This
paper is a prime example of the difficulty of memory computing within NAND Flash as
most of it is about technology problems and their resolution. Nonetheless, it achieves
an estimated but impressive 129 TOPS/W for a 5×5 convolution on 8-bit data using
current summation method, despite a very low density of barely 16 kbit2/mm. Com-
mercial application have again been announced by Samsung in 2020 as SmartSSDs
but as of today, no consumer devices have been made public [107].

Most proposed designs are dedicated to solely vector matrix multiplication and
only uses current summation as analog mean of compute. Not only this greatly
reduces the use for other algorithms, it is also less stable over a long period of time
due to Flash variability and wear leveling. Nonetheless, NAND Flash IMC can be
interesting for edge devices with pruned weights neural networks.

2.2.3.2. RRAM

Resistive Random Access Memory (RRAM) is probably the best suited memory for
IMC. Indeed, it offers memory elements that are disposed in an appropriate manner
to create logic functions directly in the bitcell array. For resistive memories, there is
no need for non standard bitcell (if "standard" is meaningful for research prototypes)
as resistance cannot disturb each other, although repeated read operation may end
up disturbing neighbouring cells.

Simulation Demonstration of logic functions with RRAM based bitcells have been
made with IMPLY [108] and NOR [109]. NOR logic being functionally complete, it

36

2. State of the Art – 2.2. Memory computing

in1 in2 inn out

V0

. . .

(a) N inputs NAND gate

in1

in2

inn

out

V0
...

(b) N inputs NOR gate

Vcond Vset

p q

RG

(c) IMPLY gate

Figure 2.5.: RRAM boolean gates. (a)&(b) When V0 is applied, out stores the result.
(c) When Vcond and Vset are applied, result of p → q is stored in q.
Adapted from [108, 109]

is possible to realize all others logic functions just from this basic operation. It uses
parallel RRAM to perform it on N operands which makes it interesting and easy to
implement. Both papers from the same authors develop the method to perform these
computations and more advanced operations such as 8-bit addition. Unfortunately,
those are proof of concept with no benchmarking. Moreover, the computation taking
place only in the bitcell array, the result is written in place and wears memory at
each operation, reducing the memory lifetime by as much (Figure 2.5). A memory
processing unit is presented in [110] where the memory organization is kept standard
with arrays inside banks and a chip containing multiple banks. This organization
however generates data movements to perform computation between different data
not in the same matrix and workarounds are discussed. Yet these data movements
are expensive and the overall execution time on vector benchmarks is 1.5× slower
than the ideal case. The same memory processing unit is used in [111] and compared
against another PIM workflow and show speedup of 35× on image convolution with
an energy efficiency improved by 3.4×. The worst case endurance using wear leveling
is measured at 288 days, less than a year, which is not acceptable. [112] improves fixed
point multiplication within RRAM to reduce area footprint and increase throughput.
Logic synthesis to map logic functions within memory is explored in [113].

A programmable logic in memory (PLiM) is realized in [114] based on 3 operands
majority function where one of the operand is set to either 0 for AND or 1 for OR.
It intends to ease the transition from end-user application to LIM algorithm and
demonstrates on PRESENT, a cryptographic application. Using a very optimistic
RRAM technology, with 1 ns read/write latency and a write energy of 0.1 fJ, they achieve
5.88 pJ per encryption block (64 bits) and a throughput of 120 kbps. Endurance is not
discussed. Implementation of XNOR and XOR functions is done in [115] but reduces
the number of memristors and computing steps compared to previous IMPLY and
MAGIC works, which in turn reduces the required energy by 56 %. Memory wearing
out is not covered. Neural network applications are studied in [116] using XNOR

37

2. State of the Art – 2.2. Memory computing

operation for BNN. They integrate it as accelerator within an ARM CPU and as such
gain very little, about 11 % better performances and 7 % better energy efficiency. It is
not clear why they choose to integrate their solution within a CPU rather than tackle
memory transfers at a higher level. Fitting a whole neural network on a single RRAM
array is not always possible and methods to minimize data movements are discussed
in [117].

Complex accelerator based on RRAM, such as a Boltzmann machine, is designed
in [118]. The accelerator sits aside the DRAM and can solve complex combinatorial
optimizations and neural computations. Behind lies a classic matrix vector product en-
gine with 1T1R bitcell and a current summation scheme to perform the computation.
It provides fast state update for simulated annealing and neural training by mixing
SRAM and RRAM in bitcell array. Simulation on a full scale system with multicore CPU,
cache hierarchy and DRAM memory versus single threaded baseline demonstrate
high performances gains up to 69× for deep neural training while energy is reduced by
63×. Circuit endurance is estimated to be at least 18 months for neural tasks with low
(106) RRAM endurance. Overall, this accelerator presents highly interesting features
but cannot perform exact (i.e. scientific) computations.

Experimental Brain inspired neuromorphic computing is realized using 64 con-
ductance levels RRAM [119]. This allow to store multibit data in single cell to increase
density but also eases neuromorphic computation between neural layers. The pro-
gramming phase uses hybrid voltage and current pulse to increase network accuracy
by 10 %. A non volatile processor targeting Internet of Things (IoT) edge devices
is demonstrated in 150 nm CMOS technology [120], featuring non volatile flip flop
backed up by 2 memristors, a fully connected neural network with embedded RRAM
and non volatile SRAM for shared data between CPU and the neural network. 97 % of
the overall latency comes from weights transfer between non volatile SRAM and the
neural network while it stands for 62 % of the energy. Adaptive 3 bits SAs are used and
null inputs are not computed to save 64 % of energy compared to the state of the art.
It yields a 13× more energy efficient design running at 462 GOPS/J. Large scale RRAM
CIM prototype with 16 Mbit 1T1R is prototyped in 150 nm node [121]. AND, OR and
XOR operations are performed by setting a reference current value at adequate value
to mitigate distribution effects in bitcells. Authors achieve a working frequency up
to 70 MHz with 512 bits parallel computing. The same authors implement multiply
and accumulate operation for BNN in 65 nm technology [122]. High performance
neural accelerator is presented in [123]. It uses 2T2R bitcells to reduce IR drop over
long bitlines and supports 8-bit inputs. It reaches 78 TOPS/W with 77µs per inference
on hand written digit recognition.

Presented state of the art shows that most works focus on performing only matrix
vector multiplication in the RRAM array with analog computing. This prevents the
chip from being used in other purposes and is more prone to noise. Basic logic
functions are also demonstrated but require lengthy operation combinations for
more complex operations such as addition. Moreover, most designs are very limited

38

2. State of the Art – 2.2. Memory computing

in their precision with often single bit precision and never over 8-bit [124].

2.2.3.3. PCM & MRAM

Phase Change Memory (PCM) and Magnetic Random Access Memory (MRAM) have
shown less interest for IMC as their foundry processes are not always compatible with
conventional CMOS. However, they should have the same proprieties as RRAM to
allow IMC implementation with roughly the same methods.

PCM Deep Neural Network (DNN) inference with 2 PCMs working in differential
mode is proven in [125]. With taking resistance drift into account, authors maintain a
90 % accuracy. They also develop a method to train a DNN with PCM particularities
which allows to keep the training accuracy steady and grants 10 % better accuracy.
Finally, they raise several issues that are yet to be solved including thermal variation,
noise, low precision and limited endurance that is enough for inference but not for
training. Using 2T2R bitcell, high density 1 Mbit TCAM is achieved in 90 nm [126].
This new bitcell is 10 times smaller than usual 8T or more equivalent SRAM bitcell and
allows high performance search and matching, up to 500 Msearch/s. [127] improves
parallel programming of PCM bitcells using voltage to duration to finely tune conduc-
tances. This also allows different activation functions such as ReLU, sigmoid or tanh
to be used for inference, reaching more than 97 % accuracy. 8T4R bitcell is used in
[128] for matrix vector multiplication. Time-based current ADCs are used to fasten
conversion and local digital function unit equalizes the different ADCs output after
calibration process. Matrix vector multiplication is performed with 8-bit integers and
PWM to take advantage of time based ADCs. The 14 nm chip achieves 10.5 TOPS/W
at 1 GHz.

MRAM Basic logic functions using 1T1MTJ bitcell (Spin Transfer Torque MRAM
(STT-MRAM)) is achieved by activating 2 wordlines simultaneously in [129]. No perfor-
mance evaluation is proposed though. Using the same principle, [130] extends it with
addition operation by concurrently computing AND and XOR operations in the array.
Concerning process variations inherent to resistive memories, they propose to add
ECC to mitigate those. A small architectural evaluation with flat memory model (em-
bedded device like) including a developed ISA is proposed. They achieve in average
3.93× faster execution while reducing system energy by 3.83×. Computational RAM
is introduced in [131] on the basis that data communication uses 5× more energy
than actual computation. Similar to already presented [59], they introduce NMP
and true IMC with multiple wordline activation. They extend periphery circuitry for
more complex operations such as addition. They forecast miraculous 1500× faster
execution time and 750× more energy efficient for 10 nm node. Transforming the
multibit input layer of BNN into stochastic computing is performed in [132]. It uses
XNOR operation in memory, but the popcount is performed with CMOS adder tree. A
2.1× energy reduction is achieved at the cost of an acceptable 1.4 % accuracy loss.

39

2. State of the Art – 2.2. Memory computing

Chips design are quite recent. [133] presents a 22 nm 1 Mbit STT-MRAM circuit that
also implements NMC for security applications which is limited to shift and rotate
operations but up to 256 bits. They reach 342 MOPS with a very high bandwidth over
40 GB/s. A 128 kbit chip in the same node using 2T2R to store complemented data is
reported in [134]. It handles 4 bits data and performs vector inner (scalar) products
using current summation. It achieves 5.1 TOPS/W with 90 % accuracy on MNIST.

2.2.4. Other works
Some works are technology agnostics. This permits to take advantage of the similari-
ties between RRAM, PCM and STT-MRAM. The proposed solution [135] only focus
on bitwise operations thanks to large alteration of the internal memory organization
and varying reference voltage to decide which operation to execute. Reported gains
are up to 1.12× and 1.11× for speedup and energy saving respectively, but there again,
endurance aspect is not discussed. Similarly, a generalized approach to select which
part of an application should run on PIM rather than core is proposed [136]. Authors
base their work on the non generic approach of PIM design, i.e. that PIM cannot run all
operations of an application and it may not always be faster than conventional CMOS.
This can accelerate transition from compute centric to data centric architecture while
not having to modify the applications. Claimed gains are 10.9× better energy efficiency
and 6.4× speedup compared to multicore CPU. This work is completely technology
agnostic and as such, endurance is not discussed. However, the developed procedure
seems to be easily extendable to support it for NVMs.

Combination of multiple memories is one way to get the best of both worlds, i.e.
to merge advantages of both technologies and reduce some undesirable traits. To
reduce data movements throughout the system, [137] adds SCM memories to NAND
Flash SSD. Although they do not perform any kind of memory computing, it is also a
part of the global solution for the memory wall as wear leveling and Flash memory
functioning induces extra reads and writes to memory. With 10 % of Flash capacity,
this solution yields a 10× speedup compared to Flash alone. The same idea was also
pursued with NAND Flash only in [138] by targeting the best performing blocks rather
than using extra memory. Similar idea is developed in [139] to extend NVM cache
lifetime by using a small SRAM cache to merge writes. This prolongs NVM lifetime by
a factor 100. A completely novel bitcell is presented in [140] which mixes DRAM and
SRAM resulting in a 9T1C bitcell. The computing part is based on charge diffusion
which is adequate for denoising and filtering images. It achieves 233 TOPS/W at
200 MHz. Another association between SRAM and RRAM allows to perform AND
and NOR operations [141]. Additional circuitry is needed for arithmetic operations
leading to 93 % improvement in energy efficiency and 6× speedup. NMP with NAND
Flash and Field Programmable Gate Array (FPGA) embedding DRAM is performed in
[142]. Special attention is paid to how the applications are parallelized as it can differ
execution time by a factor 20. Weirdly enough, they do not provide evaluation against
CPU baseline.

For architectural studies, several works focus on computing cache, such as [143],

40

2. State of the Art – 2.3. Conclusion

where energy gain is up to 6× and raises up to 7.9× when cache is based on FeFET-
RAM. However, when replacing SRAM with FeFET-RAM, the endurance aspect is
not discussed. Similarly, [59] transforms the caches into compute units and show
performance improvement of 1.9× while observing a 2.4× energy consumption re-
duction in average. Reconfigurable architecture using SRAM is considered in [144] to
meet various requirements either from the application or from the data pattern used
during different application phases. The programming model of this reconfigurable
architecture is compatible with SIMD programming and shows a 60× EDP reduction
compared to a SIMD 512 bits architecture. Nevertheless, the considered architecture
is a reduced memory hierarchy close to embedded systems.

Adapting conventional programming models to PIM is one of the obstacles, along
with cache coherence protocols and virtual memory. Overcoming those with PIM
enabled instructions, a simple ISA extension, [145] tracks data locality to decide
whether an operation should be performed in memory. The operation is carried near
the DRAM rather than into it directly. Authors achieve 25 % reduced energy and 60 %
speedup in the best case. Algorithm specific ISA for graph mining is proposed in [146].
This work intends to greatly enhance memory-bound graph algorithm by working
on multiple vertices at once, which grants over 10× speedup versus manycore CPU.
An access processor inserted in between main memory and cores serves as a bridge
interface for near memory accelerators [147]. Doing so avoid modifying the memory
circuits and is thus NMC. No evaluation is performed as it is a work in progress but the
processor being in the middle with two buses interfaces, I do not see how this could
help with memory wall problem. Streaming architecture is proposed in [148] where
an application data path is split into several memory processors designed with NVM
technology. Data go from one processor to the next as each processor computes a
part of the application. Using convolutional neural network, they achieve up to 235
image/s/W and a speedup of 48× compared to a mobile GPU. However, this solution
is close to a FPGA architecture and could face challenges to be introduced in a generic
hierarchy.

2.3. Conclusion
All these papers show that IMC can be introduced at every level of the memory hierar-
chy and in a wide range of memory technology, including emerging NVMs. Moreover,
all the proposed solutions exhibit gains in terms of performances and energy reduc-
tion compared to standard von Neumann architectures. Yet, IMC still has a long way
to go through and face limitations and constraints.

First of all, it often relies on analog computing which has its pros and cons. Analog
computing can better use the full available bandwidth which is often the full row width
modulo muxes and sometime even the whole array. When the complete bitcell array is
used, IMC can be viewed as a kind of systolic array [149]. Bandwidth is not reduced by
buses interfaces but might be by analog to digital conversion. Maximizing bandwidth
is likely to prevent non logic operations to be implemented. Latency is also minimal

41

2. State of the Art – 2.3. Conclusion

as data stay within the array or may eventually need an analog to digital to analog
conversion to be written back. It is only limited by the IR drop along bitlines and the
required computing precision. Energy is greatly reduced as data are accessed only once
and not serialized over buses. On the other hand, instant power is an issue as activating
multiple wordlines and all bitlines significantly increases power consumption which
is a concern for edge devices. Increased power requires increased power-grid density,
leaving less space for other functions. In High Performance Computing (HPC) node,
heat dissipation may be an issue in the long term. Analog computing is further
limited in the signal to noise ratio as SAs need to differentiate small voltage margins
(readout precision) [149, 150]. Moreover, when multiple wordlines are activated, SAs
sense the current sum of all bitcells along the bitlines which requires high precision.
High precision ADC needs more time to perform the conversion and uses more area
and power. These problems are exacerbated when using multilevel bitcells. When
considering devices non linearities, circuits non idealities, process variations and
noise depending on technology used, it also reduces SNR. Yet, it can likely be a benefit
for deep learning applications. In addition to SNR, bitcell stability must be accounted
for. When computing takes place, non complementary data may be present on BL/BLb
ending up corrupting bitcell data which is called read disturb. Transistor isolation is
often used in SRAM with 8T bitcell, but this drastically reduces density and requires
the use of non standard bitcell.

Secondly, eligible applications for raw IMC are limited. Indeed, bitwise logic op-
erations are easily implemented, and matrix-vector multiplication is as well using
analog computing. But this is not enough to satisfy either all applications or simply
an application, i.e. its data intensive part, in its entirety. Sebastian et al. [151] gives a
list of potential applications:

• Scientific computing especially linear algebra computational kernels, typically
Matrix Vector Multiplication (MVM). However, IMC is often low precision which
limits its use.

• Signal processing, optimization and machine learning where approximate so-
lutions may be acceptable. Combinatorial optimization problems with IMC
attracted some attention [118].

• Stochastic computing and security. As data stays within memory, IMC reduces
risk of bus snooping or side channel attack within CPU. Side channel attacks
within memory are possible but are of higher complexity due to bulk data treat-
ment [66, 152]. Stochastic computing uses random numbers that can be gener-
ated by the stochasticity of switching behaviors in memristive devices.

In the previous applications, not all parts of said applications may use IMC. Complex
operations such as division or square root which are exceptional in relation to other
common operations do happen. Security applications needs special operators hence
the use of specialized accelerator nowadays.

Thirdly, system integration with programmability, ISA and proper interface defi-
nition is still lacking. DIMM interfaces appear to be the most adapted. Coherence

42

2. State of the Art – 2.3. Conclusion

1e3 1e6 1e9
1s

1m

1h

1d

1M

1y
10y

Write throughput (B/s)

C
irc

ui
tl

ife
tim

e
1e12 (High RRAM,

Low MRAM)
1e10 (High PCM)
1e9
1e8 (PCM)
1e7
1e6 (Low RRAM)
1e5 (NAND SLC)
1e4 (NAND TLC)
1e3 (NAND MLC)

Endurance

Figure 2.6.: NVM lifetime as a circuit for different endurances of elementary bitcell
with a 1 MB technology agnostic NVM function of write throughput

and consistency problems arise from computing in different places. Operand locality
and alignment issues are a limiting factor to IMC. In order to perform an operation,
data should share the same bitlines and bits should be aligned (i.e. bit 0 of left hand
operand should share the same bitline as bit 0 of right hand operand). That means that
it is almost impossible to perform an operation on two consecutive words which will
likely share the same row with different bitlines. As a consequence, data movement
eliminated by the introduction of IMC is just hidden within the same memory chip
now. Data should share the same array with the same bitlines and different wordlines,
but it may be present in different arrays or banks. Furthermore, output address might
be distant from input addresses [110].

Finally, another important point when performing IMC is the endurance of the NVM.
Indeed, doing all operations directly in the memory array with the result written back
there will considerably reduce the NVM lifetime. As shown in Figure 2.6, considering a
1 MB technology agnostic NVM, the lifetime is really limited. We considered a uniform
wearing of all the bitcells through wear leveling technique and that the circuit is down
when 20 % of the bitcells are dead. Computing directly in the NVM would thus wear it
down in less than a year. Moreover, the slow speed and high write energy of different
NVMs might be acceptable for IoT but not for HPC within data centers. Thus the
throughput, energy efficiency and durability of this solution remain, to the best of
our knowledge, an unsolved problem. Our main idea is to combine a SRAM enclosed
in a digital wrapper with a NVM to get the best of both worlds. As such, we would
benefit from the high speed of SRAM and its infinite endurance in addition to the non
volatility and very high density from the NVM.

43

2. State of the Art – 2.3. Conclusion

In conclusion, IMC solutions can yield promising improvements in terms of
speedup and energy efficiency but at the cost of complex hardware implemen-
tation, non standard bitcells, non standard layout or high precision ADCs. Operator
precision is at most limited to 8 bits in reported literature [124, 153], which is not
enough for most applications. For emerging NVMs, endurance is rarely discussed or
application targeted has limited write intensity (e.g. inference). Most works focus
on application specific accelerator, mainly neural networks with few cryptographic
applications. Nonetheless, there are some general purpose implementations [59, 60].
Few works have performed architectural evaluation [59, 143] and none consider the
complete data movement from a permanent storage into the working memory.

That is why we believe a digital wrapper around any NVM will achieve the best
performances and save endurance by using SRAM buffer to perform computation
and serve as a write buffer. Digital wrapper grants more flexibility and uses conven-
tional CMOS operators which are less restricted in terms of precision. It also offers
the genericity required for computing systems and is not subject to analog noise.

44

3. CSRAM Design

Ou, chante Sloubi. Nous, on va faire
que chante Sloubi.

No man ever wetted clay and then left
it, as if there would be bricks by chance
and fortune.

— Perceval IN Kaamelott BOOK III, EPI-
SODE 50, « Perceval chante Sloubi »

— Plutarch

As shown in the state of the art, a good part of In-Memory Computing (IMC) designs
rely on custom made bitcells for Static Random Access Memory (SRAM), or analog
computing irrelevant of the considered technology (RRAM, SRAM, Flash, etc.). In
this chapter, we explain the motivations to design a digital wrapper compatible with
different types of memory technologies. We specify the constraints and capabilities of
the said wrapper that we call C-SRAM. Finally we show that our design methodology
provides fast, automated and cheap conception allowing efficient design space explo-
ration. Our workflow provides swiftly testable designs reaching 2.05 TOPS/W on MAC
operation or 425 GOPS/mm2 while limiting area and power overhead to respectively
5 % and 20 % of the standalone SRAM. The obtained results are then used in the follow-
ing parts of my work to compare IMC architectures against the usual von Neumann
architecture.

Contents
3.1 Motivations for a digital wrapper . 46
3.2 General design . 49

3.2.1 Specification . 49
3.2.2 ALU design . 53
3.2.3 Pipeline design . 53

3.3 Experimental results . 56
3.3.1 Workflow . 56
3.3.2 Simulation results . 57

3.3.2.1 Physical design extraction 57
3.3.2.2 Performances versus state of the art 59

45

3. CSRAM Design – 3.1. Motivations for a digital wrapper

Chapter 1 introduced the global context and the need for a new computing paradigm
that is data centric rather than compute centric: In-Memory Computing (IMC). In
Chapter 2, we have presented different IMC implementations and determined that
most of them rely on custom designs which breaks the conventional digital conception
flow. We explain with more details in section 3.1 the motivations for a digital wrapper
rather than an ad hoc solution. Section 3.2 defines the specifications and describes
our C-SRAM implementation. Finally, section 3.3 compares our design against state
of the art SRAM IMC implementations.

3.1. Motivations for a digital wrapper using
standard design flow

Custom memory designs using non standard SRAM bitcell, such as 10T, must be
qualified with a high-yield production: specific test circuits (e.g. BIST) need to be
developed resulting in major changes to the well-established validation flow. Then, to
expand the operating range, several memory sizes need to be qualified, which also
requires a major development effort. Finally, to meet Electronic Design Automation
(EDA) tool compatibility requirements in a time-limited design phase, automated
generation of memory views (HDL, physics, timings and powers, etc.) need also
to be developed. Subsequently, it is necessary to easily manage a large number of
configurations (capacity, form factor, operations, etc.), while guaranteeing a high-
yield production. This technology adjustment can take up to 2 years in advanced
nodes such as 5 nm. A workaround is to design a glue logic, also known as a digital
wrapper, connected to a memory. This drastically reduces the development time,
down to a few weeks, hence reduce the Time To Market (TTM) that is of the utmost
importance for industrial companies. Moreover, this digital wrapper can be more
easily parameterized, allowing on/off features at design time rather than designing
a monolithic circuit not adapted for all targets. This makes the digital wrapper a
more modular approach. Some drawbacks of a digital wrapper are that it offers less
performance than full-custom solutions in terms of TOPS/W, and uses slightly more
area to achieve the same functionalities.

If we wanted to use true analog IMC, i.e. using analog electrical rules to make
operations directly inside the bitcell array, we would have been very limited in terms
of available operations. Indeed, only NAND and OR (or AND and NOR) are feasible
with SRAMs for logic operations; MAC can be done using Kirchoff’s law and an Analog
Digital Converter (ADC) but the precision is limited to a few bits although the area
overhead of the ADC is limited to less than 10 % [67, 72]. Modifying both the array and
the periphery to activate multiple wordlines at once would not only have a significant
design cost, but would also not be cost-effective in terms of both area and energy. With
only two logic operations available, only few transistors are spared for ADD operations,
but it is useless for SUB or even MUL operations. So the gains obtained would be
annihilated by the periphery overhead, and by the use of several boolean instructions
to compute more complex operations, unless the design is constrained for bitwise

46

3. CSRAM Design – 3.1. Motivations for a digital wrapper

SRAM
Array

Write
Drivers

SAs

DFFs

M
u

lti
-R

o
w

Se

le
ct

o
r

CTRL

Digital Computing (M-bit)

Full Custom

MUX N-to-M

Instruction Decoder (N-bit)

System Bus
N-bit

C-SRAM Design Methodology

Optional DFFs (M-bit)

DFFs

Digital Computing (M-bit)

MUX N-to-M

Instruction Decoder (N-bit)

SRAM
Array

Write
Drivers

SAs

Column Decoder

Optional DFFs (M-bit)

R
o

w
 D

e
co

d
e

r
C

o
n

tr
o

lle
r

System Bus
N-bit

*including BIST

Full Custom++

SRAM
Array

Write
Drivers

SAs

Column Decoder

DFFs (M-bit)

R
o

w
 D

e
co

d
e

r
C

o
n

tr
o

lle
r

Automated

Digital Computing (M-bit)

MUX N-to-M

Instruction Decoder (N-bit)

System Bus
N-bit

Local Bus
M-bit

DFFs

SR
A

M
 C

U
T

ge
n

er
at

ed
 f

ro
m

SR

A
M

 c
o

m
p

ile
r

SR
A

M
 C

U
T

ge
n

er
at

ed
 f

ro
m

SR

A
M

 c
o

m
p

ile
r

D
IG

IT
A

L
W

R
A

P
P

ER
im

p
le

m
en

te
d

 f
ro

m

co
n

fi
gu

ra
b

le
 R

TL
 IP

D
IG

IT
A

L
W

R
A

P
P

ER
im

p
le

m
en

te
d

 f
ro

m

co
n

fi
gu

ra
b

le
 R

TL
 IP

COMPUTING PART

MEMORY PART

Legend: Design Methodology Automated Full Custom Full Custom ++

Computing classification NMC NMC NMC/IMC

Computing area overhead Medium Low Low

Form factor flexibility High High Low

Development effort* Low High Very high

Silicon qualification effort Low High Very high

Figure 3.1.: Proposed design methodology to automate the C-SRAM macro genera-
tion with relation to full custom design solutions. Automation simplifies
the design phase but makes it more difficult to implement analog or
precomputing functions. Full Custom++ refers to non standard bitcell
array such as 10T with multirow selection, Full Custom refers to stan-
dard bitcell arrays with digital parts (Arithmetic & Logical Unit (ALU),
Finite State Machine (FSM), decoding, etc.) directly integrated in the
memory cut. Automated is the case we are aiming for where SRAM
memory and digital wrapper are two completely distinct units.

47

3. CSRAM Design – 3.1. Motivations for a digital wrapper

only operations. Furthermore, inter bitline communication for arithmetic operations
is not feasible with this solution.

A digital wrapper has thus way more appeal from a system point of view as it can be
easily customized, designed rapidly for quick system evaluation (reduced TTM), offers
more operators and simply more design freedom. Besides, it is technology agnostic,
i.e. it should be compatible with different Non Volatile Memory (NVM) technologies
regardless of their underlying physics. In order to save the currently limited endurance
of these emerging NVMs, a digital wrapper should provide its own small SRAM buffer
as working memory. By tightly coupling a NVM with our digital wrapper and its SRAM,
we achieve Near-Memory Computing (NMC) from a hardware point of view and IMC
from a system architect point of view. We call the digital wrapper tightly coupled to
SRAM a C-SRAM. As C-SRAM uses standard 6T SRAM bitcell, it is compiler compatible
with main foundries, and the rest of the glue logic is based on Register Transfer Level
(RTL) Intellectual Properties (IPs). When coupling our C-SRAM with a high capacity
Storage Class Memory (SCM), both SRAM and digital wrapper can be implemented in
the unused top metal layers of the NVM limiting the area overhead1.

The main differences between Full Custom and Full Custom++ designs and our
Automated approach are presented in Figure 3.1. The Automated approach is the
only one compatible with standard digital design flow that requires little development
effort and relies on proven EDA tools. For an easier integration with industrial needs,
the Automated approach tends more to the plug’n play philosophy which prevents
redesigning a full memory array from scratch. We can even incorporate custom made
SRAMs implementing IMC to further extend their computing capabilities with digital
operators. Our solution also provides a more flexible approach as we can split the
SRAM in several cut, either along the vector width or along the height (number of
addresses) as shown in Figure 3.2. We believe that this flexible layout combined with
the ease of plug’n play of the C-SRAM will offer the best trade-offs versus custom
approaches presented in Chapter 2.

SRAM
128-bit interface

SRAM
128-bit interface

Digital Wrapper
128-bit interface

Digital Wrapper
128-bit interface

System Bus
32-bit

Local Bus 128-bit

Digital Wrapper
128-bit interface

Digital Wrapper
128-bit interface

System Bus
32-bit

SRAM
128-bit

interface

SRAM
128-bit

interface

SRAM
128-bit

interface

SRAM
128-bit

interface
Local Bus

d)

c) BIT # > physical limits d) WORD & BIT # > physical limitsb) WORD # > physical limits

128-bit

al
l @

2
n

d
 h

al
f

@

LSBs MSBs

Digital Wrapper
128-bit interface

Digital Wrapper
128-bit interface

System Bus
32-bit

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface

Local Bus 64-bit

Digital Wrapper
128-bit interface

Digital Wrapper
128-bit interface

System Bus
32-bit

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface
Local Bus

64-bit

2
n

d
 h

al
f

@

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface

SRAM
64-bit

interface
Local Bus

64-bit

1
st
 h

al
f

@

2
n

d
 h

al
f

@

a) WORD & BIT # < physical limits

1
st
 h

al
f

@

128-bit word

128-bit
word

al
l @

128-bit word

LSBs LSBs

128-bit word

MSBs MSBs

1
st
 h

al
f

@

C-SRAM Macro = Memory Cut Partitioning w/ Digital Wrapper

Figure 3.2.: Different ways of laying out the memories in the C-SRAM

1 ↑This depends on the considered NVM but should work for Phase Change Memory (PCM) and
Resistive Random Access Memory (RRAM)

48

3. CSRAM Design – 3.2. General design

Still on flexibility about wrapping different kinds of memories, computing requires
reading from memory to the processing unit, in general, two operands and writing
back a single result to the memory. However, most SRAMs do not offer three ports
but only one or two which may be dedicated to either read only or write only. Hence,
our digital wrapper would spend a third of his time, in case of a one port memory, to
reading and writing data instead of computing, greatly reducing the overall throughput
of our solution. The double-pump technique can be used to virtually double the
number of ports of a memory. A single port memory can then achieve two reads or
writes in a single clock cycle by being active on both rising and falling edge (Figure 3.3a).
Most manufacturers provide 2RW memories that are actually single port memories
with double-pump technique. It is even possible to reach 6R6W memory using this
technique [20]. By having more available ports, it is possible to fill a pipeline like
architecture as shown in Figure 3.3b for the MAC operation which incurs three memory
loads and a memory write. This permits us to lower the average Cycles Per Instruction
(CPI) and thus increase throughput.

We have explained the rationales behind the choice of a digital wrapper around
SRAM (C-SRAM) which can then be tightly coupled to a NVM. The main reasonings
being design workflow, validation cost, development time as well as modularity and
operators choices. SRAM purpose is to act as a working memory to save NVM’s
endurance. We can now proceed to the specifications of our C-SRAM which will act
as a vector computing unit tightly coupled to NVM. Figure 3.4 presents what we want
to achieve without the NVM.

3.2. General design

3.2.1. Specification
The motivations behind the C-SRAM design has already been explained in previous
section. However, we did not specify yet our target applications as well as some
requirements such as vector size, which operators to implement, etc. We want to
perform cryptographic applications as the use of IMC is believed to be a potential
solution to avoid sensitive data transfer over buses. This can reduce side channels at-
tacks vectors and opportunities. Moreover, treating big chunk of data at once may also
further reduce correlation power analysis efficiency. Specific operators are required
for this target but it only uses integer arithmetic. Another target is one of today’s
most prominent application which is neural networks and Artificial Intelligence (AI)
applications. They both heavily performs matrix multiplication requiring only the
multiplication and the addition operators. In order to save on silicon area and power
consumption, we decide to use only integer operators as we believe that quantized
neural networks will soon become the norm, at least in the inference phase. As such,
we target generic computing and focus mainly on integer instructions as most appli-
cations, whether at the Internet of Things (IoT) node or the data center scale, exploit

49

3. CSRAM Design – 3.2. General design

Port-A Port-A

Port-B

Single-Port Dual-Port Two-Port

1RW

2RW

1R1W

4RW

1R1RW

Port-B

Port-A

2R2W

2R2RW

1-Port

2-Port

4-Port

Register File

FOUNDRY
BITCELL

FOUNDRY
BITCELL

COMPILER
TYPE

COMPILER
TYPE

w/o Double Pumping w/ Double Pumping

Port-A

Port-B

WR RD WR RD WR RD WR

RD RD
WR

RD

(a) Obtaining more than 2-ports memories using double-pump technique. Double pumped memories
are active on both clock edges granting two accesses per cycle and per port.

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

D
ECD
EC

INST_8

R
D

R
D

W
R

W
R

R
D

R
D

W
R

W
R

W
R

W
R

4RW/2R2RW

R
D

R
D

R
D

R
D

R
D

R
D

W
R

W
R

W
R

W
R

R
D

R
D

W
R

W
R

R
D

R
D

W
R

W
R

R
D

R
D

R
D

R
D

W
R

W
R

W
R

W
R

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

W
R

W
R

R
D

R
Dport-B

port-C

port-D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

W
R

W
R

R
D

R
D

W
R

W
R

1R1RW/
2RW/2R2W

m
e

m
o

ry
 a

cc
e

ss

A
D
D

A
D
D

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

D
ECD
EC

1-way

2-way

3-way

4-way

in
st

ru
cti

o
n

 d
e

co
d

in
g

&
 c

o
m

p
u

ti
n

g

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

R
D

m
e

m
o

ry
ty

p
e

port-A

1R1W

D
ECD
EC

R
D

R
D

R
D

R
D

R
D

R
D

W
R

W
R

M
U
L

M
U
L

A
D
D

A
D
D

R
D

R
D

R
D

R
D

R
D

R
D

D
ECD
EC

M
U
L

M
U
L

A
D
D

A
D
D

W
R

W
R

D
ECD
EC

R
D

R
D

R
D

R
D

R
D

R
D

W
R

W
R

M
U
L

M
U
L

A
D
D

A
D
D

INST_1
INST_2

INST_5
INST_6

INST_3 INST_7

INST_1

INST_3
INST_2

INST_4
INST_1

INST_2
INST_3

INST_4

(b) Pipeline filling on the MAC operator for different memories considering no pipeline hazards. 1R1W
memories are one-third filled (3 CPI), 2RW memories are half filled (2 CPI) and 4RW memories
allow to completely fill the pipeline (1 CPI).

Figure 3.3.: Potential of the double-pump technique combined with our digital
wrapper for better pipeline efficiency

50

3. CSRAM Design – 3.2. General design

SRAM DATA

SRAM DATASRAM DATASRAM DATASRAM DATASRAM DATASRAM DATA

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+ + + +

= = = =

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+

=

Scalar
PE

Scalar
PE

ALU

32-bit

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

+

=

Vector
PE

Vector
PE

ALU

128-bit

SRAM INSTR.SRAM INSTR.

4 x ADD

ST Ci

LD Ai

1 x VADD

LD B

ST C

LD A

4 x LD instr.
SRAM INSTR.SRAM INSTR.

LD instr.

Scalar
PE

Scalar
PE

ALU

32-bit
LD Bi

High Energy Cost
(data transfer on system bus)

Medium Energy Cost
(data transfer on system bus)

Scalar Computing
Architecture

Vector Computing
Architecture (e.g. SIMD proc.)

ALU

128-bit

SRAM INSTR.SRAM INSTR.
LD instr.

Low Energy Cost
(near-memory computing)

Scalar / Vector Computing
Architecture

1 x VADD

ST instr.

C-SRAM

Vector PE

Figure 3.4.: Illustration of scalar (left), vector (middle) and scalar/vector (right) com-
puting architectures. C-SRAM (right case) enables to drastically reduce
data transfer on the system bus leading to significant energy savings
based on near-memory computing.

them. Image processing, neural networks (inference only), cryptography, database, all
make a heavy use of integer arithmetic. The limited area of integer operators is also a
reason we headed in this direction. Although we do not want to implement control
flow instructions, we still need to be able to merge 2 different computing branches into
one result vector such as conditional assignment where it is applied to each element
of the vector.

Now, we must also ask ourselves about the size of these hardware operators, i.e. the
size of the operands and of the result. As mentioned before, we target quantized neural
network applications mainly, but not only, which require relatively low precision
such as 8 bits [154]. For cryptography applications, wider width is required, up to
128 bits or even 256 bits. We decide to first stick to 128 bits for some very specialized
operators such as hswap needed for AES. For other common operators including
the arithmetic ones, we choose to only implement the 8, 16 and 32 bits versions
of them as these are the primitives for a lot of applications. From there, the list of
required instructions is pretty straightforward with usual Arithmetic & Logical Unit
(ALU) operations implemented such as:

• Boolean operators: AND, OR, XOR, NOT and their negated part (negated NOT is
COPY or MOV) → 8 instructions;

• Advanced logical operators: SLL (Shift Left Logical), SRL (Shift Right Logical)
and Broadcast→ 3 sizes×3 operations = 9 instructions;

• Arithmetic operators: ADDition, SUBtraction, COMParison and SRA (Shift Right
Arithmetic) → 3 sizes× (3 operations+6 comparisons) = 27 instructions;

51

3. CSRAM Design – 3.2. General design

63 58 57 50 49 34 33 32 31 16 15 0

NE opcode @dest Mis. @src2 @src1 R-type
6 8 16 2 16 16

100000 xxxxxxxx xxxxxxxxxxxxxxxx 00 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

NE opcode @dest Mis. imm[15:0] @src1 I-type
100000 xxxxxxxx xxxxxxxxxxxxxxxx 00 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

NE opcode @dest Mis. imm[31:0] U-type
100000 xxxxxxxx xxxxxxxxxxxxxxxx 00 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 3.5.: Defined ISA for 32-bit system

• Advanced arithmetic operators: MULtiplication and MAC (Multiply And Accumu-
late) → 3 multiplications for different signedness+1 MAC = 4 instructions;

• Other operators: HSWAP (Horizontal swap) used for reduction operation and in
some cryptographic applications which swaps vector elements → 2 instructions.

Finally, before starting to design our C-SRAM, we must as well completely define the
Instruction Set Architecture (ISA), i.e. how we command the C-SRAM. We start from a
previous work internal to the team [155] which uses both address and data buses to
control the C-SRAM. It requires no hardware modification on the Central Processing
Unit (CPU) side. For a 32-bit system, we have a total of 64 bits usable for our ISA as
shown in Figure 3.5. The 32 most significant bits corresponds to the address bus bits
while the following 32 are the data bus bits. The first 6 bits are equal to 0b100000,
with the first one indicating its a C-SRAM operation that is memory mapped. The
other 5 bits are reserved for future use and may denote advanced use of the C-SRAM
such as internal registers [57]. Then we have the opcode part and as we previously
made the list of needed operations with the required width of the operands, it sums
up to a total of 50 operations. 8 bits is thus enough to contain all the opcodes while
maintaining some optimisations: we can use 3 bits in the opcode field to only denote
the size of the operands (8, 16, 32, N/A). 8 bits opcode also leaves enough space to add
more instructions if necessary. Then we got 16 bits of destination address and 2 bits
set to 0 as we reach the end of the address bus bits, so we force the lower 2 bits to 0 to
prevent the CPU from splitting our 4-byte access into 2 accesses if it was misaligned
(i.e. if those 2 bits were not 0). After that we got a varying part depending on the type
of the instruction. The type is encoded in the opcode and is used to distinguishes
different instruction behaviors such as:

• R-type where both operands are data stored in memory so we need to send 2
addresses;

• I-type where the left hand side is stored in memory and the right hand side is a
constant immediate;

• U-type where there is only one operand that is a constant immediate.

The size of the addresses fields is chosen so that we can address at least 1 MB with
a vector size of 16 bytes. Hence, we need at least 16 bits that are then left shifted

52

3. CSRAM Design – 3.2. General design

by 4 positions within the C-SRAM to obtain the real physical address. Note that
this ISA is only for research purpose as a real world system would have control pins
similar to what is used for Dynamic Random Access Memory (DRAM) and other
storage peripheries such as hard disks or smarts SSDs. We designed it to be easy
to use with no hardware modification on the CPU side nor access to special system
resources. Memory mapped periphery thus appeared as the best design choice in
terms of complexity and ease of implementation on both side: hardware for C-SRAM
and software for writing benchmarks and for our simulation platform (see Chapter 4).

3.2.2. ALU design
Even before starting implementation, it is good to know that ADD, SUB and COMP
operators do not need to be designed independently but can all use a single global
adder of the maximum size [156]. Indeed, using a unique adder of 128 bits, we can
implement almost all the other arithmetic operators, except SRA. Doing a subtraction
can be done by complementing the right hand side operand and using an input carry
of 1. The comparison operator is done by using the subtraction and testing some bits
to detect overflow (b is superior to a), underflow (a is superior to b) and equality (all
bits of the result are 0). We actually need to implement only 3 full operators that are
the adder, the multiplier and the shifter. All others are derived from these 3 and can
be done in a single clock cycle with almost no penalty.

We first design the ALU with the chosen opcodes and instructions from previous
section. Using [156], we implement only a full 64-bit adders (instantiated twice to
reach 128 bits) in SystemVerilog and derive all other additions, subtractions and
comparisons from it. Comparison is performed by using the result of the subtraction,
with 2 more cases needed for different signedness of the operands which totals to
18 different opcodes for all possible comparisons and signedness. Finally for the
multiplier, we must take care of the sign extension depending on the signedness of the
operands as well as storing the result in a correctly sized vector. Indeed multiplying 2
8-bit data will yield a 16-bit result and different multiplier width are often present in
ISAs. For addition, this is not the case as only 1 bit may overflow (or underflow), but it
can easily be tested while multiply will most often yield overflowing result [157]. For
the MAC operation which uses 3 input operands, we add an input to control whether
multiplication and addition should be done in parallel for 4RW memories (Figure 3.3b).
At the end, we just have a wide multiplexer tree to select the corresponding result. In
order to reduce power consumption due to net switching, unused operator entries are
zeroed when decoding the opcode.

3.2.3. Pipeline design
The general design is inspired by RISC CPU. As we do not want to redo a CPU in
the memory, we do not implement any forwarding logic and hand it over to the
programmer or the compiler. Moreover, we have to take into account the limited
silicon area that is available in a memory chip. For the design to be easily adapted

53

3. CSRAM Design – 3.2. General design

SRAM (1RW)

128

D

128

Q BW

32

Q

32

D

32 32

@

12
8

→
 3

2

A
C

C

S

32 → 128

OPC

LH
S

OPCODE

READ EXECUTE

R
H

S

ALU

WRITE BACK

@

FSM
(DEC)

128

Figure 3.6.: Base implementation of our digital wrapper

to off-the-shelf memory compilers, we need to take into account the different types
of memory which offer different number of ports. As such, the decode part must
split the incoming instruction into different loads and writes accesses. The main
job of the pipeline is to schedule all the loads and stores to the memory in order to
get the maximum performance for incoming instructions. The implementation is
based on the classic 4 stages pipeline scheme that is the base of most processors:
Decode-Read-Execute-Writeback. Figure 3.6 represents the interconnection between
a 1RW SRAM and the digital wrapper with some of its internal parts.

The purpose of the FSM is to manage the global pipeline, especially the Read and
Writeback stages, as there are only limited number of ports to read and write data
from and to the SRAM. As we decided to not implement forwarding from Writeback
stage to Read stage, all data must go through the SRAM. To preserve consistency,
the FSM will prioritize writes over reads so that previous operation results may be
loaded with the correct value. Note that some advanced design also includes registers
to store temporary data. These registers are addressable and the ISA is modified
accordingly using the reserved bits [57]. We implement 4 versions of the FSM for
different number of ports: 1RW, 1R1W/1R1RW, 2RW and 4RW. Each implementation is
based on the hypothesis of a full pipeline, which is the worst case due to congestion at
the SRAM. For the 4RW case, we also modify the ALU as it is possible to read 3 operands

54

3. CSRAM Design – 3.2. General design

simultaneously, allowing MAC instruction to be performed directly by the ALU instead
of being split in one multiplication and one addition by the FSM. The FSM also serves
to distinguishes between normal memory accesses and C-SRAM’s instruction based on
the previously defined ISA in Section 3.2.1. Again, to preserve consistency, all previous
operations in the pipeline must be terminated before performing the memory access.
If it is a read access, it might load a stale value when an ongoing instruction in the
pipeline writes to that specific address (Read After Write (RAW)). If it is a write access,
it might store a data that will get overwritten by an ongoing instruction (Write After
Write (WAW)).

Read stage is composed of 2 flip-flops feeding the Execute stage. Below is also some
circuitry to handle normal read accesses. First there is a selection of the 32 correct bits
out of 128 based on the lower 2 address bits. This data word is then fed directly to the
output port as well as an internal flip-flop to maintain the data for the following cycles,
accordingly to the SRAM specification. Note that this is a special case corresponding
to the SRAM we use, other SRAMs may maintain the data valid for only one cycle,
thus this part could be removed. Execute stage has already been discussed in the
ALU section. It feeds one flip-flop used to store temporary result from multiplication
before accumulating for the MAC instruction. Then, we have the Writeback directly
fed from the ALU and going right to the SRAM. Again, there is some circuitry below
to manage normal write accesses with a demultiplexer to put the write data in the
valid position based on lower address bits. Some parts are hence present twice: once
in the SRAM and once in our digital wrapper; for instance, the read/write circuitry
to manage normal accesses. Thus we have a small area overhead compared to the
full custom case presented in Figure 3.1. Note also that the presented case with 128
bits memory here is just an example used in our measurement but our workflow and
design IP can accommodate any memory width.

The implementation of the digital wrapper is done in SystemVerilog. In addition
to the modules presented in Figure 3.6, we have a reset synchronizer and a memory
controller interspersed between the SRAM and the wrapper. The design global inputs
are clock, reset signal, chip enable, write enable, address and data bus. Global outputs
are a busy signal to indicate if the C-SRAM pipeline is full and the data bus. Reset
synchronizer is used to make sure that asynchronous reset rise with in sync with the
clock signal. Memory controller is a wrapper module of all the available memories
that select the correct one and connects the ports.

We defined the ISA specifications which include basic arithmetic operators (ADD,
SUB, etc.) as well as 8-bit multiplication and support for MAC operation. Thanks to
small tricks in designing the ALU, we need to instantiate only one full width adder, or
split it in smaller adders if need be, rather than have multiple hardware operators for
addition, subtraction and comparison. Pipeline design is rather conventional based
on the decode, read, execute and writeback stages. Its only specificity is to manage
memory accesses with C-SRAM instructions and normal accesses in an interleaved
manner.

55

3. CSRAM Design – 3.3. Experimental results

Design parameters
• Memory type, size, form

factor, data bus width
• Operators

Hardware
Specifications +
SystemVerilog

Description

Hardware
Specifications +
SystemVerilog

Description

Inputs

Functional
Verification
Functional
Verification

Tools

Logic
Synthesis

Logic
Synthesis

Place &
Route

Place &
Route

Power
Extraction

Power
Extraction

GF22 & Invecas
Libraries

GF22 & Invecas
Libraries

Outputs

2

1

3

4
Power from real
case scenario

Power from real
case scenario

EXE

Libraries parameters:
• PVT corner

Back annotation

Tool Vendor Version

1 ModelSim MentorGraphics 10.5c

2 DesignCompiler Synopsys n-2017.09-sp5

3 Innovus Cadence 19.13

4
Star-RC Synopsys o-2018.06-sp2

PrimeTime Power Synopsys o-2018.06-sp5

Figure 3.7 & Table 3.1: Design workflow used for C-SRAM digital wrapper

3.3. Experimental results
For the exploration of different memories, we used the 22 nm FDSOI design platform
technology from GlobalFoundries for both standard bitcells and the memories. The
memory models are provided by Invecas.

3.3.1. Workflow
The general workflow is given in Figure 3.7. For the functional verification, we use 1
ModelSim and test all opcodes independently. For the sake of safety, the testbenches
are written in tcl language so that a mistake in SystemVerilog may not be copy-pasted
directly. Synthesis is done by 2 DesignCompiler using GF22 libraries with the target
frequency set to 500 MHz for all designs with no particular constraint. For the place
and route, we use 3 Innovus and we lay out the I/O pins along the largest dimension
as most memories have a rectangular shape. The design is constrained to have a
density around 50 %. Once the place and route is finished, we extract a SDF file using
4 StarRC. Then both the place and routed Verilog and the extracted SDF files are

used for back annotated post place and route simulation using 1 ModelSim to create

a VCD file. The VCD file is then processed by 4 Primetime Power to extract power
value from our testbenches. A complete run takes about 5 hours.

56

3. CSRAM Design – 3.3. Experimental results

2 4 8 16 32 64 12
8

25
6

0 %

20 %

40 %

60 %

Memory size (kB)
2 4 8 16 32 64 12
8

25
6

Memory size (kB)

R2PH (1R1W) RPDH (1R1W) S1D (1RW) S1PV (1RW) SDPV (2RW)

(a) Area ratio (DW/total) (b) Power ratio (DW/total)

Figure 3.8.: Area and power overhead for different kind of SRAMs (lower is better)

3.3.2. Simulation results
We perform full digital workflow for 5 different types of memories totaling 24 cuts. The
used memory types are:

• R2PH which is a 1R1W Two-Port (noted TP), optimized for performance (blue
cross);

• RPDH which is a Single-Port (SP) double pumped into a 1R1W pseudo TP, also
optimized for performance (orange triangle);

• S1D and S1PV that are 1RW single-port optimized respectively for density and
for performance (respectively green square and red cross);

• SDPV which is a 2RW Dual-Port (DP) optimized for performance (purple dia-
mond).

3.3.2.1. Physical design extraction

First, we note that the area overhead is limited, especially for big memories, as shown
in Figure 3.8a, but can be up to 50 % for small ones (<8 kB) and only 5 % for the biggest
ones (>128 kB). This is to be expected as our digital wrapper takes around 5000µm2

while the smallest memories are around 4000µm2. As our design is not fully optimized
for density, we can expect to lower this ratio by pushing the place and route constraint
further. For the power part presented in Figure 3.8b, the digital wrapper can represent
up to 50 % for small memories and decrease down to 20 % for the biggest memories.

57

3. CSRAM Design – 3.3. Experimental results

0 1 2 3 4 5
0

100

200

300

Delay (ns)

E
ne

rg
y

(p
J)

1RW
S1D & S1PV

1R1W
R2PH

2RW
SDPV

0

5

10

15

20

+87%

+12%

+50%

Throughput(G
O

P
S

)

No DP With DP

Figure 3.9.: Energy versus delay for
MAC instruction for all C-
SRAMs (marker size is pro-
portional to memory size,
lower left is better)

Figure 3.10.: Throughput comparison
of different SRAM types
with and without double
pump technique (higher
is better)

R2PH (1R1W) RPDH (1R1W) S1D (1RW) S1PV (1RW) SDPV (2RW)

The memories are quite optimized in terms of power consumption, especially for the
static power inherent to SRAM bitcells, and we guess that is the reason why our digital
wrapper can represent such a big part of the global power consumption. For both area
and power, the overhead decreases exponentially with the memory size.

Figure 3.9 plots the energy and delay required to perform a multiplication and
accumulation considering the maximum frequency reachable on the given memory.
As such, we observe a Pareto front where an optimum in either energy or delay can be
chosen. We remark that the most energy efficient memories are the smallest memories
while capacity has less impact on delay. The 1RW type memories have the worst delay
and energy as they are the biggest memories with sizes up to 256 kB for instance.
The bigger the memory, the slower it is and the more energy hungry it is to power
correctly all the bitcells. Unsurprisingly, the 2RW memory is the fastest as it can read
2 operands per cycle, but on the other hand, it is also the biggest energy consumer.
From this Pareto front, we conclude that the optimal designs are the C-SRAMs with
1R1W memories with the lowest energy to compute a MAC instruction at around
100 pJ and an average delay of 2 ns. However these memories are very limited in size
with the maximum capacity at just 8 kB. If we take into account the double-pump
technique, we could suffer a 25 % frequency reduction yet still increase the throughput
(Figure 3.10), from 12 % for 1R1W to 87 % for 1RW memories. Indeed, what limits the
throughput is the number of memory accesses in a single clock cycle, as shown in

58

3. CSRAM Design – 3.3. Experimental results

Figure 3.3b. Doubling this number can yield very interesting gains at low cost. An
important point to note is that our designs are only limited by the maximum reachable
memory frequency to respect timing constraints. Our digital wrapper has no effect on
this maximum frequency.

3.3.2.2. Performances versus state of the art

We plot the area normalized throughput versus the energy efficiency in Figure 3.11a,
still for the 8-bit MAC operation. The lowest normalized throughput is around
10 GOPS/mm2 for the largest 256 kB 1RW SRAM as 95 % of the area is taken solely
by the memory (Figure 3.12). This memory also has the lowest energy efficiency at
0.3 TOPS/W as most power is driven by the SRAM array. We reach a maximum of
425 GOPS/mm2 and 2.05 TOPS/W with a 2 kB (128×128 bits) 1R1W TP SRAM (R2PH).
This memory has an area of 6928µm2 while the smallest one has an area of 4333µm2

(RPDH of 2 kB (128×128 bits)), therefore the smallest memory not necessarily has the
best normalized throughput. Indeed, RPDH is a single port memory double-pumped
into a pseudo two port, thus it is much smaller but suffer from a lower frequency
(−20 %) but also draws less power (−24 %). All in one, the smallest RPDH memory
is slightly less efficient than the R2PH one. The bottom left corner in Figure 3.11a is
filled with all the 1RW single port memories (green square and red cross) which
achieve low throughput and efficiency due to their greater memory size (up to 256 kB).
We also spot the 2RW dual port (purple diamond) in the same corner although we
would expect them to have better throughput and efficiency. These memories have
way more physical footprint (up to 2.5× as they use 8T bitcells) and also consume
much more power compared to the single port memories (up to 3×). So the expected
gains from doing 2 accesses per cycle are crushed by the huge area and power flaws
compared to other memories. This is coherent with our analysis in Chapter 2 and
section 3.1 on the use of non standard bitcell. Similarly, we present the memory size
versus the energy efficiency in Figure 3.11b. We observe that the memory size has a
huge influence on the efficiency for the 1R1W memories whereas it is less important
for 1RW and 2RW memories. The duplication of some memories is due to different
form factors that yield same memory size. We notice that this form factor can vary the
efficiency with a high impact (±50 %) for small (≤64 kB) 1RW memories while it has
little impact (<10 %) on 2RW memories. From these two figures, we deduce that the
most important design choice is the memory type, followed by the memory size and
finally the form factor.

To compare ourselves with the state of the art, we reproduce the figure from [149]
in Figure 3.11c and Figure 3.11d. From a quick look, it appears that we perform
worse than most non IMC and IMC implementations. Indeed, we span roughly
one order of magnitude for both normalized throughput and energy efficiency, re-
spectively between 10–400 GOPS/mm2 and 0.3–2 TOPS/W, whereas non IMC en-
ergy efficiency is often around 10 TOPS/W with a similar normalized throughput
as C-SRAM. IMC implementations outperform non IMC ones as they are supposed to,
with most of them over 10 TOPS/W and 100 GOPS/mm2 and achieving 658 TOPS/W

59

0

100

200

300

400

500
N

or
m

al
iz

ed
Th

ro
ug

hp
ut

(G
O

P
S

/m
m

2)

1

10

102

103

104

105

10−2

10−1

1

10

102

103

0 0.5 1 1.5 2 2.5
1

10

102

103

Energy Efficiency (TOPS/W)

O
n-

C
hi

p
M

em
or

y
S

iz
e

(k
B

)

10−3 10−2 10−1 1 10 102 103

Energy Efficiency (TOPS/W)
10−3 10−2 10−1 1 10 102 103

Energy Efficiency (TOPS/W)

1R1W 1R1W 1RW 1RW 2RW
This work (1×8bit MAC = 1 OP)

Not IMC IMC This work (NMC)
Raw numbers (1×1-16bit MAC = 1 or 2 OPs)

Not IMC IMC This work (NMC)
Scaled to 8-bit MAC (1 MAC = 1 OP)

16b [158]

8b [159]

8b [160]

4b [161]

1b [81]

3b [162]

4b [163]

1b [164]1b [72]

1b [67]

1b [165]

1b [80]
1b [78]

[158]

[159]
[160]

[161]

[81]

[162]

[163]

[164]
[72]

[67]

[165]

[80]
[78]

[158]
[159]

[160] [161]

[81]

[162]
[163]

[164]

[72] [67]

[165]

[80]

[78]

[158] [159]
[160]

[161]

[81]
[162]

[163]

[164]

[72] [67]

[165]

[80][78]

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.11.: Throughput (upper row) and size (lower row) versus efficiency of our solution and state of the art works on MAC
operation. (a) and (b) show detailed plots of C-SRAMs performances. (c) and (d) are comparison with state of the
art accelerators and IMC implementations from [149]. (e) and (f) are scaled version of (c) and (d) to 8-bit MAC such
that all papers use the same definition for an operation that is a complete 8-bit MAC.

3. CSRAM Design – 3.3. Experimental results

and 9438 GOPS/mm2 for the best one [165]. However, the definition of an operation
changes from a paper to another as well as the operator size. Some are binary or
ternary while some are using 8 bits or even 16 bits; moreover, sometimes a MAC is
counted as two operations (multiplication and addition) or as a single one. The origi-
nal figure from [149] seems to consider only reported numbers by authors without
delving into the details. To deal with this definition change, we scale all results to 8 bits
MAC and consider that a MAC is only one operation. To convert to an equivalent of
8-bit operations, we consider the number of logical operations needed to perform an
8-bit MAC, which is roughly equal to 400 for 1-bit operations. However, some of these
1-bit papers can only achieve a subset of all logical operations, meaning they need
several operations to perform a single bitwise AND for instance. A more conservative
factor is around 700 as in [165] although they do not explain how they got this ratio nor
if it applies to 8-bit operations. I have considered to scale our work by the following
factors which would place our work in the top right corner of both figures. But 8-bit
MAC is not equivalent to 700 1-bit operations, it is not reciprocal and thus would not
be honest.

Hence, we scale accordingly the non IMC works. [158] is a 16-bit reconfigurable
Convolutional Neural Network (CNN) and although it is not equivalent to two 8-bit
MAC operations, we multiply it by 2 for simplicity. [159] and [160] are 8-bit neural
network accelerators and thus are not scaled. [161] is a reconfigurable 4 to 16-bit CNN
but the reported numbers are for 4-bit data, so we divide them by 2, although once
again it is not equivalent to half a 8-bit operation. [81] is a binary/ternary DNN that
we scale down by 400. [162] and [163] are 1-16b CNN accelerators but the reported
numbers are for 3 or 4-bit data, however the authors also provide the data for 8-bit
operations. [164] is a binary CNN scaled down by 700. For the IMC implementations,
[72] is a CNN accelerator using 7-bit inputs and outputs but filters are 1-bit and
use analog computing, we therefore scale it down by 400. [67] and [78] are binary
CNNs scaled down by 400. [165] is also a binary CNN that is scaled down by 700
according to their own numbers. [80] is a classifier using 1-bit data internally scaled
down by 700. First, we look at the normalized throughput versus energy efficiency in
Figure 3.11e and see that our solution is actually on par with state of the art. Some
non IMC accelerators do have a better energy efficiency, but our approach offers
more normalized throughput. Indeed, we are using very compact memories and our
digital wrapper area is limited while not limiting memory frequency. Only a single
work outperforms our C-SRAM in both metrics [163]. As such, we can conclude
that application specific accelerators have a better efficiency but are limited in their
normalized throughput due to the high area needed for specific operators. For the
IMC works, as they all uses binary implementation, their 8-bit performances are quite
low, one to two orders of magnitude below our works. Figure 3.11f shows the memory
capacity versus the energy efficiency. We observe that state of the art IMC has very
low (2 kB) on chip memory which greatly limits its use while our approach proposes
numerous memory sizes. However, non IMC accelerators have more memory as they
use unmodified SRAMs. Our maximum sized memory has 10× lower energy efficiency
than best non IMC papers.

61

3. CSRAM Design – 3.3. Experimental results

We implemented a digital wrapper around SRAM memories that can be used in
coordination with NVM memories to benefit from both memory type advantage.
This digital wrapper performs generic computation and is suitable for neural network
applications using MAC instruction, cryptography, image processing, etc. Our design
is rather compact thanks to smart ALU implementation. We compared ourselves
against the state of the art and showed that our solution has similar performance
using a fast and automated design approach. This design method and its automation
has been patented [166]. Future works include multi-clock design to give the memory
and the wrapper each their own clock. An extension of our current design with fixed
point, then with floating point operator and even variable precision based on the
application targeted or the system constraint can be envisaged. Some place and
routed floorplans presented in Figure 3.12 illustrate some flexibility with different
memory types and number of memories. The work carried in this chapter was
published in DATE 2020 [167].

SRAM

Digital Wrappers

SRAM
Digital Wrapper

SRAM

Digital Wrapper

SRAM

SRAM

Digital Wrapper

🅐

🅑

🅒

🅓

Figure 3.12.: Different place and routed floorplans obtained with our workflow: A

is a 2 kB (128× 128) 1RW memory, B is 2×1 kB (2× 128× 64) 2RW

memories, C is a 2 kB routed on only 2 metal layers, D is a 256 kB
1RW memory.

62

4. Simulation platform & Tools

Donc, on est d’accord : artichette, ti-
chette de 2, tichette de 3, tichette de 21,
michette, chiédèque, mique, sganada-
barlane, résiné et raitournelle.

The good thing about computers is that
they do what you tell them to do. The
bad news is that they do what you tell
them to do.

— Arthur IN Kaamelott BOOK IV, EPI-
SODE 71, « Perceval fait raitournelle »

— Ted Nelson

Different platforms and tools are discussed in this chapter to better reflect the wide
span of existing solutions to model memory systems. We explain the differences
between in situ measurement, exploration, simulation and instrumentation that are
all distinct possibilities to study the impact of our proposed solution on the memory
system. We also introduce the benchmarks that are used in our experiments, in
relation to the context given in Chapter 1. Finally, we develop our own evaluation tool,
extending work carried in Chapter 3, whose results are examined in Chapter 5.

Contents
4.1 Used benchmarks . 64

4.1.1 Linear benchmarks . 65
4.1.2 Quadratic benchmarks . 65
4.1.3 Cubic benchmarks and real application 66

4.2 Existing platforms . 67
4.2.1 Analytic model . 68
4.2.2 Hardware counters . 68
4.2.3 Simulation platforms . 70

4.2.3.1 General definitions . 70
4.2.3.2 Considered platforms 71

4.3 Hardware model tools . 73
4.3.1 NVSim . 73
4.3.2 DRAM . 76
4.3.3 C-SRAM . 77

4.4 Platform . 79
4.4.1 Software interface for benchmarks 79
4.4.2 First version with hard coherency 82

4.4.2.1 Reference implementation 82
4.4.2.2 C-SRAM . 82

4.4.3 Improved version with soft coherency and real disk accesses . 83
4.4.3.1 Modifications to reference 83
4.4.3.2 Software based coherency 84

4.4.4 Caches and DRAM validation . 85
4.4.4.1 Caches validation . 85
4.4.4.2 DRAM tools comparison 87

63

4. Simulation platform & Tools – 4.1. Used benchmarks

The C-SRAM we developed in Chapter 3 is a hardware component, but we must first
test it through architectural simulation to acknowledge its advantages or deficiencies
in a real system. We introduce the benchmark suite that is used in Chapter 5 for all
our experiments in section 4.1. It includes different pattern accesses benchmarks and
a real case application. Then we also present the existing simulation platforms and
detail how they do not suite our needs in regard to the memory system (section 4.2).
We also talk about real measurements using hardware counters or more theoretical
aspect with analytical models. In section 4.3, tools required to model all levels of
the memory hierarchy are introduced along with an extension of the work on the
C-SRAM. Finally, we develop our own simulation platform in section 4.4 and perform
a validation stage against other known tools.

4.1. Used benchmarks
As presented in Chapter 1, what pushes for In-Memory Computing (IMC) is the emer-
gence of big data applications such as neural networks. To simplify, we can take a look
at the kernel functions used in typical neural networks applications given in Figure 4.1.
We observe that more than 80 % of the algorithm time is spent performing matrix
multiplications. This is coherent with the state of the art in Chapter 2 where most
works focused on Matrix Vector Multiplication (MVM). Note that even Convolutional
Neural Networks (CNNs) uses matrix multiplications instead of convolutions and the
presence of a matrix assign operation. This operation is also named image to column
and its purpose is to lay out data correctly so that convolution is transformed into
a simple matrix multiplication. Other data intensive targeted applications include
classic (i.e. not Artificial Intelligence (AI)) image processing such as filtering, database
searches, problem optimizations, etc. Some classic computer algorithm like sort are
also excluded as they manipulate individual elements which our vectorized approach
developed in Chapter 3 cannot handle efficiently. Comparison can be done in an
efficient vectorized way, but for sorting, scalar data still has to be moved one by one.

We considered seven benchmarks with different access patterns and computing
complexity: three benchmarks of linear complexity (streaming like) Hamming Weight,
shift-or and axpy as custom kernels, three kernels from Polybench [169] including two

0 10 20 30 40 50 60 70 80 90 100
(%)

BN50
Char

LSTM
Nat Lang

VGG
AlexNet

Speech
(RNN)

Language
(DNN)
Vision
(CNN)

gemm lowering
softmax rnorm1
rnorm2 calcError
tanh tanhGrad
sigmoid sigmoidGrad
axpy saturate
relu reluGrad
matrix assign

Figure 4.1.: Neural network core functions time distribution. From [168]

64

4. Simulation platform & Tools – 4.1. Used benchmarks

quadratic ones, atax and gesummv, and one cubic kernels, gemm. Finally, we also
use a real application case, darknet [170], which is an open-source implementation of
different CNNs. Some of them are compute bound, i.e. they are limited by the speed of
the Central Processing Unit (CPU) performing operations while others are memory
bound, limited by the speed at which data is delivered by memory. We expect memory
bound kernels to benefit more from IMC as data is served at a way higher throughput
and these benchmarks apply simple operations.

4.1.1. Linear benchmarks
Linear benchmarks have a streaming access pattern where the input data is read only
once and mostly involve data reduction, i.e. taking an input vector of data and apply
an operation to all members to get only a few final results.

Hamming Weight is an algorithm used in information theory to compute the num-
ber of symbols that differs in two vectors of same length, with bitwise XOR operation.
It is also used in Binary Neural Network as the popcnt operation where the second
vector is replaced by a null vector. The output result is a scalar integer yielding the
number of differing bits in both vector. It is a compute bound benchmark due to a
lot of bit twiddling operations with the scalar version having only 3.7 % of memory
accesses relative to the number of instructions.

Shift-or is an implementation of the bitap algorithm [171] used to match patterns
in DNA sequences. It takes two inputs, a sequence to search for and a file containing
the sequence to be searched for. It uses an efficient compression of DNA sequences
with 2 bits encoding. It is also a compute bound kernel totaling a little less than 17 %
of memory accesses.

AXPY is a vector-scalar product kernel computing y ←αx+y with x and y vectors
and α a scalar. It is part of the Basic Linear Algebra Subprograms (BLAS) library [172].
The difference with Hamming Weight, in terms of access pattern, is that the result
is of the same size as the input, thus it is a write intensive kernel. This benchmark
is memory bound with 43 % of memory accesses but it is mainly limited in terms of
throughput by the intensive and slow writes to the Storage Class Memory (SCM).

4.1.2. Quadratic benchmarks
Quadratic benchmarks are mostly MVM kernels used in combinatorial optimization
or image processing applications. The output result is in general a single vector out of
an input matrix and vector.

ATAX is a Polybench kernel computing a y ← AT (Ax) with A a matrix and x,y vectors.
It is used in linear solvers and also in some transformations for image processing.

65

4. Simulation platform & Tools – 4.1. Used benchmarks

activate
0.93% (0.93%)

53660160×

activate_array
1.36% (0.43%)

171×

0.93%
53660160×

add_bias
0.11% (0.11%)

171×

copy_cpu
0.42% (0.42%)

162×

fill_cpu
0.66% (0.66%)

405×

forward_maxpool_layer
1.35% (1.35%)

45×

forward_batchnorm_layer
0.87% (0.00%)

162×

0.11%
162×

0.42%
162×

normalize_cpu
0.23% (0.23%)

162×

0.23%
162×

scale_bias
0.11% (0.11%)

162×

0.11%
162×

forward_convolutional_layer
90.56% (0.00%)

171×

1.36%
171×

0.31%
171×

0.87%
162×

gemm
82.52% (0.00%)

171×

82.52%
171×

im2col_cpu
5.50% (2.72%)

108×

5.50%
108×

gemm_nn
82.52% (82.52%)

171×

82.52%
171×

im2col_get_pixel
2.78% (2.78%)
145981440×

2.78%
145981440×

forward_network
92.27% (0.00%)

9×

0.36%
234×

1.35%
45×

90.56%
171×

forward_avgpool_layer
0.00% (0.00%)

9×

0.00%
9×

forward_softmax_layer
0.00% (0.00%)

9×

0.00%
9×

resize_image
0.21% (0.21%)

9×

load_image_color
0.27% (0.27%)

9×

darknet
predict_classifier
100.00% (0.00%)

1×

92.27%
9×

0.21%
9×

0.27%
9×

Figure 4.2.: Darknet callgraph for image classification. It does not add up to 100 % as
initialisation and small functions have been removed for simplification.
First number is time spent in the function including sub function call,
parenthesis number is time spent in the function itself excluding sub
function call, last number is the number of calls to the function.

With 38 % of memory accesses, it is a memory bound kernel where the multiple uses
of the input matrix is the bottleneck.

gesummv(GEneral SUMmed Matrix-Vector) is a Polybench kernel computing a sum
of matrix-vector multiplications as y ← αAx +βBx with A,B square matrices, x,y
vectors and α,β scalars. Memory accesses represents 36 % of the instructions which
makes this benchmark memory bound. The accesses to multiple matrices and vector
at each iteration are the bottleneck.

4.1.3. Cubic benchmarks and real application
Cubic benchmarks are matrix multiplications kernels widely used in image processing,
neural networks and scientific simulation. It is the base operation of numerous
algorithms and is often heavily optimized in BLAS libraries. For CNNs, it represents
80 % of the total time with the rest being laying out the input matrices to transform
the convolution into a matrix product.

gemm(General Matrix Multiplication) is a Polybench kernel computing a matrix
multiplication as C ←αAB+βC with A,B,C three matrices and α,β scalars. It is also a

66

4. Simulation platform & Tools – 4.2. Existing platforms

Table 4.1.: Benchmarks parameters

Benchmark Parameters Input size Output size Loop iterations Bound

hd n = 230 x : n
y : n 1 n Compute

so n = 231 n 1 n Compute

axpy n = 230 x : n
y : n n n Memory

atax m = 3 ·214

n = 3 ·214
A :m×n
x : n n 2mn Memory

gesummv n = 215 A,B : 2n2

x : n n n2 Memory

gemm
m = 3 ·214

n = 215

p = 215

A :m×p
B : p ×n
C :m×n

mn m(n(p+1)) Memory

memory bound benchmark with 50 % of memory accesses and is only limited by the
memory bandwidth.

Finally, we also use a real case application called darknet [170] which is an im-
plementation of several neural networks although we only use CNN with Image-Net
database [173]. As said for gemm, we can transform convolution into matrix products
with a function named image to column (im2col) which takes around 5 % of the exe-
cution time, as shown in the darknet callgraph (Figure 4.2). This function lays out the
input matrix as well as the filter in the memory so that the matrix multiplication can
take place with the right parameters. The rest (80 %) is mostly matrix multiplications
and other operations required for the network to operate. Loading files from disk is
negligible with less than 0.5 % including resizing the input layer. The network contains
25 layers of which 19 convolution layers interlaced with 5 maxpool layers and a final
average layer followed by a softmax layer. As it is mainly matrix multiplication, it is a
memory bound application with 42 % of memory accesses.

For all the benchmarks, we used a dataset between 1 GB and 2 GB thus with an
amount of data superior to the Dynamic Random Access Memory (DRAM) capacity
to enforces transfers between DRAM and SCM. It is also representative of today’s
applications dataset size and behaviors. A small recap is available in Table 4.1.

4.2. Existing platforms
In this section, we present the different system evaluation platforms and provide a
short focus for each one regarding advantages and drawbacks. To understand what
makes a platform a good or a bad choice, it is necessary to know the difference between

67

4. Simulation platform & Tools – 4.2. Existing platforms

instrumentation, simulation and performances measurement. In situ measurement
is done at the hardware level and is presented in Section 4.2.2 but is limited to ex-
isting events. Exploration platforms are what we call hardware model tools that are
described in section 4.3; they are designed to explore different designs, devices and
technology parameters effects on the overall circuit. On the other hand, simulation
and instrumentation tools are designed to run a program, commonly referred as a
benchmark, and to extract metrics of interest such as energy, timing, disk accesses,
etc. Several platform are considered in Section 4.2.3.

4.2.1. Analytic model
It is in theory possible to get an approximation of the numbers of accesses in a given
memory using an analytic model. Yet, it is only applicable for some simple applications
like the one we use and described in section 4.1, and not for real world applications
where access patterns are unpredictable and depend on user inputs. If we only take
into account the major part of our applications, i.e. the part that takes the most time
and thus the most energy consuming, which is often matrix multiplication as shown
in Figure 4.1, we can deduce some analytic models. The regularity of the algorithm
makes it possible to know which data will be used and when, although the hard part
lies in the cache management policy and the dependence for each cache. Analytical
models exist [174–176] but are not used because they cannot perceive the randomness
of a real system such as address alignment changes and erratic program behaviors. In
our case, they would not be able to grasp the data exchange between the C-SRAM and
the caches that entirely depends on the program analyzed, i.e. it is not predictable.
Hazards such as system interactions and other programs interactions make this an
inconvenient and inaccurate solution.

4.2.2. Hardware counters
As our objectives are to measure timings and energy spent for a given benchmark, the
hardware counters available in the reference architecture, namely an x86-64 machine,
can be used to extract these measurements. The UNIX utility perf [178] can be used
to this end. Other solutions include the PAPI [179] instrumentation library as well as
Intel’s VTune profiler.
perf is a tool that manages hardware counters on Linux systems. It can easily extract

given events such as L1D hits and misses. A list of predefined events can be obtained
with the command perf list . In addition, perf can be given an hexadecimal register

number to monitor all kind of events using the command perf stat -e rXXX ./exe .
The list of all the available counters is accessible in the Intel documentation [180].
However, there are limitations in the number of available counters as well as inter-
actions with other processes on the same machine. For instance, on a typical x86
desktop machine, there are only 4 hardware counters available, named Performance
Monitoring Unit (PMU). Measuring more events either means that perf will inter-
leave the events measurement (i.e. counter 1 will measure event A for 15 ms then will

68

4. Simulation platform & Tools – 4.2. Existing platforms

Instruction
Cache Tag
µOP Cache

Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

L2 C
ache

256KiB 4-W
ay

U
nified STLB

L1 Data Cache
32KiB 8-Way

Data TLB

16B/cycle

64B/cycle

64B
/cycle

Line Fill Buffers (LFB)
(10 entries)

Load Buffer
(72 entries)
Store Buffer
(56 entries)

To L3

32B/cycle

Core

Figure 4.3.: Simplified view of an Intel Skylake core memory system. From [177]

measure event B), or the benchmark must be run several times depending on how
many events are measured. As such, it is a first hindrance that can be circumvented,
but not in a practical manner given next problem. For single core events like L1 and L2
caches hits and misses, perf is an accurate solution. However if we want to measure
L3 or even DRAM events, then the counters are shared by all CPUs and processes.
This means that we won’t be only measuring our benchmark application, but also the
entire system, i.e. all other processes as well as the operating system. This sharing
process of PMUs limits precise counting of events for L3 and DRAM loads and stores
but also prevents parallel execution of different benchmarks on the same machine.

Moreover, if we take into account the prefetchers in the architecture, then the
counters are biased based on the access pattern of the application. Indeed, the
prefetched data will not be counted as a miss when the CPU requests it as it has
been prefetched. But some prefetchers may also alter directly the counters and this
is unfortunately insufficiently documented. According to [181], the L1 ICache can
miss several times because of prefetchers and thus make L2 accesses smaller than L1
ICache misses which sounds illogical. Other architectural improvement units such
as the L1 Line Fill Buffer (LFB) (Figure 4.3) may as well cover up some part of the
real L1 misses and L2 accesses. The L1 LFB purposes is to track misses in L1 and
prevents multiple misses to the same line to be serviced multiple times from the L2.
Similarly, the Load Store Queue (LSQ) of the CPU can hide some accesses that are
still visible from the CPU point of view. Last but not least, the documentation is quite
often obscure and incomplete, both software and hardware ones. The list of events
given by the command perf list does not even specify L2 cache events, but only L1
and Last Level Cache (LLC) which is in fact the L2 cache. The Intel’s manual [180] list
over 188 different event types for Skylake architecture but testing all the 216 possible
events yields 20712 events returning non zero which implies that around 20000 of

69

4. Simulation platform & Tools – 4.2. Existing platforms

them are either undocumented or hidden. Thus, we do not know what those counters
count and figuring it out would be time consuming.

For power measurement, some CPUs provide Running Average Power Limit (RAPL)
interface to measure real time power consumption of a complete CPU, which for
multicore includes all cores. Power measurement is divided in power planes that
furnishes in-situ measures for different parts such as the whole core, DRAM or Graphic
Processing Unit (GPU). First of all, just like performance counter, RAPL interface is not
standardized. It heavily depends on the CPU model but also on the Operating System
(OS) kernel version. Moreover, as it can only measure power for a really coarse part of
the system, it is complicated to determine which portion comes from the process we
want to benchmark. A work around could be something similar to correlation power
analysis used in cryptography to extract meaningful data from multiple (e.g. 1000)
runs. The same apply for DRAM power plane that is also shared by the system.

In conclusion, performance hardware monitoring counters are great tools that
are hindered by many obstacles. These include a limited number of counters that
requires running the same benchmark multiple times, a system-wide interaction
when monitoring event that can be triggered by any process preventing parallel work
and an abstruse documentation. From our own testing, only core level counters are
reliable, i.e. L1 and L2 event counters from the Intel’s documentation.

4.2.3. Simulation platforms
4.2.3.1. General definitions

We define the precision level of simulation platforms as either cycle accurate or in-
struction accurate. Cycle accuracy is the most detailed high level simulation where
each simulation step is exactly one clock cycle. This allows very fine grain analysis
of systems but at the cost of a very time consuming simulation. Instruction accurate
tools where each instruction is a simulation step are less detailed but way faster than
cycle accurate tools. However, it cannot be used, for instance, to model precisely a
CPU internal pipeline. Everything that is shorter than an instruction, or that results
from an instruction is often seen as instantaneous or to take exactly one cycle. It is still
possible to model these events, but they cannot be modelled exactly in relation to the
CPU, i.e. detailed model for those cannot be kept in synchronisation with the CPU.

On one hand, simulation will emulate a, possibly detailed, CPU model and any
other relevant subsystems. This can include, in addition to a base CPU model that is
mandatory, buses, caches, memories, IO, etc. In return, we have in depth insights of
what is going on in the system at the price of a very slow simulation and a high memory
usage which includes the benchmark, its data and all simulated parts of the system.
Simulation allows really fine grain study with cycle accuracy or coarse grain analysis
with instruction accuracy. The slowdown compared to a real hardware execution
ranges from a few thousands to millions times slower. Nonetheless, it offers flexibility
of use allowing to simulate any system and hardware on any other system, i.e. it is not
restricted to the hardware and operating system it is being run on. For instance, it is

70

4. Simulation platform & Tools – 4.2. Existing platforms

Table 4.2.: Simulation vs Instrumentation

Simulation Instrumentation

Cross-Platform Yes No

Accuracy Cycle or Instruction Instruction

Include OS Yes Yes*

Slowdown 1000× to 106× 1× to 1000×
* With root privileges

possible to simulate a benchmark intended to run on system A with hardware X on
system B with hardware Y even though it would not be possible in reality. Simulators
often propose two execution modes: a System Emulation (SE) mode where all system
calls are translated to the host system and only the benchmark is simulated; a Full
System (FS) mode where a full operating system is simulated alongside the benchmark.
In our case, full system is of little interest as we do not change any operating system
part and are only interested in the user level memory accesses.

On the other hand, instrumentation is different from simulation as it is tightly
coupled to the underlying system and hardware it is running on. It inserts instru-
mentation code within the benchmark to call some routines at regions of interest.
For instance, it is possible to insert a call before or after every branch to study the
impact of branch predictors in a CPU. In our situation, we can insert code for every
memory access and also for each instruction as they all access at least themselves,
i.e. each instruction is loaded from memory. The instrumentation code models an
architecture, similar to simulation, including the subsystems of interest. Contrary
to simulations, only instruction accuracy is reached as it does not offer any insight
to what is happening during the execution of an instruction. The benchmark thus
runs natively on the hardware with less slowdown compared to simulation, mostly
depending on the instrumentation routine code, up to a thousand times slower than a
real execution. Instrumentation can attach to an existing process to trace interesting
part of an application that cannot be done with simulations, but they can also save a
state and restore it to skip initialisation phase for instance. A summary of differences
between simulation and instrumentation is presented in Table 4.2.

4.2.3.2. Considered platforms

We now list all the platforms that we have considered for our system study. The
selected platforms must be extendable to support our proposed C-SRAM solution and
be able to accurately depict memory systems.

QEMU [182] is an emulator using Dynamic Binary Translation (DBT) to translate a
binary for processor A to run it on processor B. It supports user mode emulation (that
we denote as SE) and FS mode for emulation. Supported targets include x86, ARM,

71

4. Simulation platform & Tools – 4.2. Existing platforms

RISC-V which are the main existing core architectures and it also supports different
OSes like Linux, Windows and MacOS. It provides a device emulation supports for
Non Volatile Memory (NVM) Express, an interface for permanent storage through
PCI buses, and NVM subsystems which can be of interest for us. To translate original
binary to host code, it uses pre-compiled micro operations to move data and perform
basic operations to make up for the original instructions. However, QEMU is a huge
machinery that has a steep learning curve and requires a lot of development effort.
Using DBT, QEMU achieves quite high-speed simulation.

gem5 [183] is a cycle accurate simulator supporting SE and FS mode. Contrary to
QEMU, it does not rely on binary translation but is a modular event driven simulator.
It supports many targets including x86, ARM and RISC-V, although RISC-V support
seems incomplete. gem5 is a famous simulator in the system architecture research
field but its memory system is flawed, which is a red flag for my experiments. For
instance, memory accesses are not reliable as they are not constant for the same
benchmark when ran multiple times and have a huge error rate [184]. In my experi-
ments, caches accesses were varying without any reason and when using invalidated
lines first, it still showed an increase in miss rate which is illogical. On the develop-
ment effort, I estimate it to be medium to hard. For the simulation speed, as it is a full
system simulator and has to manage a lot of subsystems, it is thus very slow.

ArchSim [57, chapter 7] is a team made simulator for RISC-V architecture using
SystemC-TLM. It is mostly focused on low level hardware modelisation with trans-
action accuracy, somewhat intermediate to cycle and instruction accuracy. It was
developed for evaluation of IMC-Near-Memory Computing (NMC) architecture so
would fit our purpose quite well. However, as it aims for high accuracy, it is seem-
ingly slow for our target case with big data usage. As it is team made, I estimated the
development effort to be low to moderate.

Other considered simulators are ZSim [185] that is based on Pin [186]. It focuses on
fast manycore simulation with detailed Out of Order core model and sacrifices some
accuracy using memory accesses reordering. Sniper [187] is also a multicore simulator
centered on detailed core model. Finally, LLVM [188] is a high level (for hardware
people, low level for software people) compiler framework that generates Intermediate
Representation independent of the target CPU. It can be used as a 0-order evaluation
method [189] but its high level nature makes it a bad choice for our study.

Pin [186, 190] is an instrumentation tool using DBT, akin to QEMU. It only supports
x86 CPU but works on all three major OSes: Linux, Windows and MacOS. It uses a
modular approach by separating the instrumentation engine, which is closed source,
from the instrumentation routine that we write. The translation engine provides a
lot of instrumentation functions to test various kind of instruction, from branches to
memory accesses and including Single Instruction Multiple Data (SIMD) instructions
and more. It receives a list of assembly instructions to instrument along with the code
to insert (instrumentation routine). Pin also enables us to modify the instrumented
benchmark data on the fly to simulate our C-SRAM instructions. From the examples
available, it is quite trivial to use and to adapt to our needs, hence, I estimate the
development effort to be low to moderate. As it uses instrumentation, it is a high

72

4. Simulation platform & Tools – 4.3. Hardware model tools

Table 4.3.: Platforms overview

Platform Memory interfaces Accuracy Speed Development effort

QEMU [182] Callback functions Instruction High High

gem5 [183] Ruby Cycle Slow High

ArchSim [57] TLM sockets Transaction Medium Moderate

ZSim [185] None Instruction Very high Moderate

Sniper [187] N/A Cycle Slow Moderate

LLVM [188] None Instruction Medium Low

Pin [186] Callback functions Instruction High Low

speed simulation tool. Pin thus suits our needs quite well, and we choose this platform
for our experiments.

We provide an overview of the different existing platforms in Table 4.3. Note that
as IMC-NMC is an emerging field of research, programming models and interfaces
to compute in memory are not standardized yet. This requires more work to adapt
the platforms to incorporate memory computing. Moreover, most platforms are
dedicated to compute centric architectures which can be problematic to switch to
data centric architecture. It can also be a bad surprise to realize that the chosen
platform is actually not suited for our needs and that is why we picked Pin as it fits
most of our requirements. We are also not going to develop a model as detailed as
what can be provided by years long existing platforms such as gem5 or QEMU.

4.3. Hardware model tools
To describe accurately the different memories in a real system, we base our work on
hardware model tools that are each specialized in a different circuit so that we only
have to connect them together. For the caches and NVM, we use NVSim [191] which
is based on Cacti [192]; for the DRAM, we perform a comparison between different
existing tools to figure out which one suits our needs the best and is also reliable. In
the final part, we discuss how we extend our work presented in Chapter 3 to handle
wide IO or larger memory sizes for our C-SRAM.

4.3.1. NVSim
NVSim [191] is a “circuit-level model for NVM performance, energy, and area estima-
tion” supporting new emerging NVM technologies, including Phase Change Memory

73

4. Simulation platform & Tools – 4.3. Hardware model tools

DataTags

IOControl

1

2

4

3

(a) Sequential access

DataTags

IOControl

1

2

3

1

2

(b) Parallel access

Figure 4.4.: Cache access types

(PCM), Magnetic Random Access Memory (MRAM) and Resistive Random Access
Memory (RRAM). It provides a very detailed interface with plethora of parameters
allowing fine control over bitcell, transistor, form factor with array dimensions and
routing type. Design optimisation goals gives an easy way to explore different layouts
depending on the chosen importance of some metrics (latency, energy, area, etc.).
Details can be found in the referenced paper [191, 192]. As it is based on Cacti [192]
from HP Labs, which was primarily designed for cache parameters estimation, we
can also use it to extract the cache parameters we use in our experiments. For all the
extracted data, we use a 22 nm node so that energy and timing parameters match
those of our C-SRAM. We report the caches design parameters in Table 4.4. L1 caches
are designed for optimized latency, i.e. both data and tag banks are accessed simulta-
neously (Figure 4.4b), as they must serves data quickly and are expected to have a high
hit ratio. Difference in L1 and L2 access reside in the routing and the place where data
selection occurs, IO for L1, matrices for L2. L3 cache is optimized for area as it has the
greatest capacity and will still perform better than the DRAM. It also uses low standby
power transistors instead of high performance ones as the leakage power is dominant
given the memory capacity. L3 access is sequential (Figure 4.4a) as it may have a high
miss ratio so it makes less sense to perform data bank access in the same time as tag
bank. For the Static Random Access Memory (SRAM) cell, we use the default value
provided by the tool which itself relies on the ITRS Mastar model values [193].

For the NVM as long term storage, we choose to use Phase Change Memory (PCM) as
it is already being used in commercial solution and is the most appropriate technology
for this usage. We select a 20 nm PCM [194] that has all the necessary data to be fed
into NVSim. It features a 1.8 V 1D1R (see Figure 1.14c) PCM with a reset current of
100µA during 100 ns pulse and a set pulse of 150 ns using same current. The Ron and
Roff of the cell are set to respectively 10 kΩ and 1 MΩ although they are not stated in
the original paper. Similarly, we set the voltage drop through the access diode to 0.3 V.
Device type is set to Low Operating Power (LOP) as in the reference. To avoid some

74

4. Simulation platform & Tools – 4.3. Hardware model tools

Table 4.4.: NVSim’s parameters used to design caches

(a) Design targets

L1 L2 L3

Capacity 32 kB 256 kB 8 MB

Associativity 8-way 4-way 16-way

Access mode Fast Normal Sequential

Optimisation target Latency Latency Area

Device HP HP LSTP

(b) Extracted parameters

L1 L2 L3

Area 0.0252 mm2 0.162 mm2 5.06 mm2

Hit
T 3.43 ns 24.3 ns 48.2 ns

E 20.4 pJ 52.0 pJ 1.48 nJ

Miss
T 0.880 ns 0.783 ns 5.11 ns

E 24.1 pJ 56.5 pJ 1.62 nJ

Leakage 37.0 mW 262 mW 816 mW

extravagant results, we reduce the memory size down from 1 GB to 128 MB. Internal
structure is forced to have subarrays of 2048 rows per 4096 columns. Other options
are not set and the mode is set to explore all the possibility. We prune the results to
eliminate those with ridiculously small or big energies and latencies, flat shape or all
matrices active together. This results in hundreds of possible solutions and we take
the closest one to the median of energies and latencies shown in Table 4.5a.

To make a 4 GB PCM, we use 32 cuts of the original 128 MB PCM. To this effect,
we use a prior work based on SRAM tiling [195] to account for the delay and energy
incurred by the tiling and the wiring. Coincidentally, 32 is the optimal number of cuts
when using big memory size by tiling smaller memories. From this previous work, we
see that we need to apply an energy overhead of 37 % and a timing penalty of 85 %
to the 128 MB PCM to get the numbers of our final 4 GB. This corresponds to the
512 B IO in Table 4.5b. All inferior IO size use the same amount of timing and energy
which is actually wrong as the energy would be smaller when shrinking IO. Latency
on the other hand should remain constant. However, for the IO of our simulation
going up to 4 kB, we need to widen the original 128 bits IO. To do this, we apply a 2×
widening factor for energy as we read or write twice the original amount of data, and
a pessimistic 70 % for timing each time we need to double the IO. The final metrics
obtained are given in Table 4.5b with the corresponding widen factor applied.

We model a 3 levels cache hierarchy and a 4 GB Phase Change Random Access
Memory (PCRAM) with wide IO. The technological parameters for the PCM are
extracted from [194] and fed into NVSim [191] to make a 128 MB PCM. To extend
it to a 4 GB PCRAM, we use tiling method and apply appropriate malus to account
for it [195]. The final energies and timings used in our experiments are laid out in
Table 4.5b for the PCM and in Table 4.4b for the caches.

75

4. Simulation platform & Tools – 4.3. Hardware model tools

Table 4.5.: Energy and latency of the selected PCRAM

Energy Latency

Read 0.875 nJ 142 ns

Write 4.88 nJ 512 ns

IO Width
Read Write

Widen Factor
Energy Latency Energy Latency

512 B 38.5 nJ 263 ns 215 nJ 949 ns 0

1 kB 77.0 nJ 447 ns 429 nJ 1.61µs 1

2 kB 154 nJ 759 ns 858 nJ 2.74µs 2

4 kB 308 nJ 1.29µs 1.72µJ 4.66µs 3

(a) Original 128 bits IO 128 MB PCRAM (b) Scaled 4 GB PCRAM

4.3.2. DRAM
DRAM is a complex part in a computer system as it is the core memory but does
not uniquely receive read or write command. It is based on a convoluted state ma-
chine [196, Figure 2] where each transition must respect timing in regard to previous
and next transitions, hence the reason why there is a memory controller that takes
up a large part of a CPU (see Figure 1.12b). To model the DRAM, multiple tools exist
similar to simulation platforms. We present them succinctly here.

Ramulator [197] is a DRAM simulator whose source code is publicly available on
Github [198]. It can handle many different DRAM standards from the old DDR2 up to
recent GDDR5 as well as some academic work such as RowClone [84]. It simulates high
speed states machines with transition timing and rules specified in lookup tables. One
of its most useful features is that it can transform access traces into DRAM command
traces which can be fed to other simulator that only accepts those (DRAMPower and
VAMPIRE for instance). VAMPIRE [199, 200] is a trace based “DRAM power model
based on the power consumption of real DRAM modules”. It is probably the most
accurate DRAM simulator of all as it is backed by real measurements of commercial
devices. The experimental setup presented in the paper also shows that there is a
great variability between different vendors but also among the same model. This is
due to the fabrication process. DRAMPower [201, 202] is a model also backed by real
measurements and circuit level simulations. Contrary to VAMPIRE, it provides its own
scheduler allowing users to feed it with access traces rather than DRAM commands. It
also accounts for intrinsic variations of power estimation using Monte-Carlo analysis.
NVMain [203, 204] is more focused on NVM memory and their NVM Express interface
that is similar to DRAM’s one. It extends DRAM simulation for NVM with endurance,
hard faults simulation and Multi Level Cell (MLC) for Flash devices but can still be
used for normal DRAM operation. DRAMSim2 [205, 206] is a cycle accurate model that
comprises of its own DRAM controller and scheduler, the data storage part and takes
into account the bus as well. It is validated against manufacturer’s Verilog models.
DRAMSys [207, 208] is a model based on SystemC/TLM that computes timing, power

76

https://github.com/CMU-SAFARI/ramulator

4. Simulation platform & Tools – 4.3. Hardware model tools

Table 4.6.: Comparison of different DRAM simulation tools

Tools
Access or

DRAM
trace

Power output Timing output Others

Ramulator [197, 198] Both No Yesa Can transform an ac-
cess trace into a DRAM
command trace

VAMPIRE [199, 200] DRAM Yes Yesa Uses measurements
from commercial de-
vices. Miss refresh
command...

DRAMPower [201, 202] DRAM Yes Yesa

DRAMSim2 [205, 206] Access Yesb Yes

DRAMSys [207–210] Access Yes Yes Windowing mode avail-
able

NVMain [203, 211] Access Yesc Yesa Very slow for huge
traces

a. Reported in cycles only b. Reported per window only c. Reported unit is “mA*t”

and also temperature profiles of DRAM modules.
The considered tools are listed in Table 4.6 with their accepted input and outputs.

Tools that only take a DRAM command trace as input must be preceded by a call to
Ramulator to transform a normal access trace. We perform a comparison study in
Section 4.4.4.2 that also includes our own work. This study is to assess the accuracy
levels of these tools for both timing and energy estimation.

4.3.3. C-SRAM
As presented in Chapter 3, our developed C-SRAM has a fixed width of 128 bits. To
enable wider IO, we can of course just put multiple ones asides using the same control
and address buses to make up a wide data bus. But this does not hold as there is
also a constraint on the C-SRAM total size. If for instance we want to make a 4 kB
wide IO C-SRAM but with a total size of only 16 kB, we cannot just put 128 cuts as
each one has a minimum size of 2 kB with an IO of 128 bits; that would yield a 256 kB
C-SRAM. Similarly for the biggest size we target of 8 MB and the widest IO of 4 kB, we
would need 256 cuts of 32 kB with a width of 16 bytes. However, this solution is not
the optimal one as demonstrated in a team’s previous work [195, Figure 7.b]. In order
to optimize both the timing and energy access costs, we need to tile them in a mesh
grid. Using this previous tiling work, we extract how we should tile our C-SRAMs and
how to scale up the energy and timing costs for an access (Table 4.7). We also take into

77

4. Simulation platform & Tools – 4.3. Hardware model tools

Table 4.7.: Tiling timing (Ttf) and energy (Etf) factor overhead

Size 16 kB 32 kB 64 kB 128 kB 256 kB 512 kB 1–8 MB

Ncuts 8 16 16 32 32 32 64

Etf 10 % 10 % 19 % 19 % 37 % 37 % 37 %

Ttf 30 % 30 % 56 % 56 % 85 % 85 % 85 %

account the widening effect by dividing the wanted IO width with the number of cuts
and by the base IO width of 16 B:

Widenfactor =W f =
Width

Ncuts ×Widthbase

If W f is superior to 1, then we cannot reach the desired width using only our cuts
so we must widen them by W f . From our exploration in Chapter 3, we also extract
meaningful widening penalty to apply to each widened cut. For cuts with a width
ranging from 8 B to 32 B, we observe a 30 % energy penalty (EW f) and a 10 % to 20 %
timing penalty (TW f) when doubling the IO width. We thus choose to apply a 30 %
energy penalty and a 15 % timing penalty each time we double the IO width while
keeping the same total size. Putting it all together, we obtain the final formula:

E = (Ebase ×E
W f

W f)×Et f ×Ncuts

T = (Tbase ×T
W f

W f)×Tt f

The timing is not multiplied by the number of cuts because they are all accessed at
once, so only the energy depends on the number of cuts. The energy being multiplied
by the number of cuts is actually an error as only Ncuts×Wbase

W are accessed simulta-
neously, which can be all the cuts if we had to widen them. So we are actually over
estimating C-SRAM’s energy. Figure 4.5 shows the energy and timing for all the width
and total memory size we used. The lines are the results of the widening while the
concentrated points at the start of the line would stack vertically if we did not activate
them all at once.

We have presented multiple tools to accurately model the different parts of a real
system with all its memory components. We use NVSim [191] for the caches and the
NVM. We perform a tool comparison for DRAM in Section 4.4.4.2 after introducing
our platform. We finally presented an extension of our work on C-SRAM to model
wider and larger memories using tiling method.

78

4. Simulation platform & Tools – 4.4. Platform

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

En
er

gy
(n

J)

Timing (ns)

64 cuts

32 cuts

16 cuts

8 cuts

Inc
rea

sin
g I

O w
idt

h

16kB
32kB
64kB
128kB
256kB
512kB
1MB
2MB
4MB
8MB

Total Size

Figure 4.5.: C-SRAM tiling energy vs timing access costs

4.4. Platform
Our platform is based on an instrumentation tool (see Section 4.2.3): Intel Pin [186,
190]. We develop several instrumentation routines and we connect everything from
C-SRAM development in Chapter 3 to hardware model tools in section 4.3. This is the
keystone to this manuscript.

As previously described in Section 4.2.3, Pin is an instrumentation tool that allows
to instrument each type of instruction. It inserts callbacks to user specified functions
before running the program. We are only interested for our main study in memory
accesses which include loads and stores instructions but also all instructions as each
one is loaded from memory. With Pin, this is simply done as shown in Listing 4.1.
We retrieve effective addresses and sizes of memory accesses for all predicated on
instructions. Predicated on prevents false access for instructions such as conditional
move that depends on a predicate unknown at the time of instrumentation. In order
to track accurately where data comes from, we also need to know the addresses which
comes from the program itself. Pin once again gives us a way to do so and we can
retrieve addresses boundary for every loaded library and for the main program itself.
This will be used in the second version of our platform in Section 4.4.3.

4.4.1. Software interface for benchmarks
First, we introduce the software interface that is needed to communicate with the
proposed platform. This was already partly presented in previous publications [57,
144, 155] as well as in Chapter 3, but we extend it to 64-bit architecture and add some
more instructions.

In a real system, there are only two ways to communicate to a device, whatever type
it is (keyboard, memory, etc.): either through a memory mapped interface or through

79

4. Simulation platform & Tools – 4.4. Platform

Listing 4.1 Instrumentation code in Pin

// Callback functions
void MemAccess(uint64_t addr, uint32_t size, bool accessType);
void InsRead(uint64_t addr, uint32_t size);
// all instruction fetches access I-cache
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)InsRead,

IARG_INST_PTR, // instruction address
IARG_UINT32, (UINT32)INS_Size(ins), // instruction size
IARG_END);

if(INS_IsMemoryRead(ins) && INS_IsStandardMemop(ins)) {
// only predicated-on memory instructions access D-cache
INS_InsertPredicatedCall(ins, IPOINT_BEFORE, AFUNPTR(MemAccess),

IARG_MEMORYREAD_EA, // read effective address
IARG_MEMORYREAD_SIZE, // read size
IARG_UINT32, CACHE_BASE::ACCESS_TYPE_LOAD, // indicate this is a read
IARG_END);

}

additional wires (I2C, USB, PCI, etc.) that are controllable by the CPU with special
instructions. In the first case, it is the responsibility of the Memory Management Unit
(MMU) to send the messages to the corresponding devices through either the system
bus or through additional wires without needing CPU special instructions. For our
simulation purposes, it is way easier to go through a memory mapped interface that
would work on almost all platforms thanks to its independence from the target CPU.

To extend the Instruction Set Architecture (ISA) previously defined in Figure 3.5
to 64 bits, we widen all the addresses fields from 16 to 28 bits. With a linesize of
16 B, this allows to address a total of 4 GB of data. The opcode remains on 8 bits and
the 3 low order bits of the address field are zeroed to prevent misalignment issue as
we now store a 8 B word. The remaining upper bits are not used to limit the size of
the memory space to use (Figure 4.6). Indeed, memory mapped interface needs to
reserve said memory and the OS might refuse to give it to a process if this space is too
large. To prevent this problem, we use anonymous mapping which directs OS that
the mapping should only be allocated virtually, i.e. memory is only page allocated
when we read or write to a page. This mapping is performed on the benchmark
side and the platform will only catch the writes, address and data, to this mapping
and interpret them according to the ISA. To ease the benchmarks development, we
define vector types that are exchangeable so that a single code can be recompiled for
different vector sizes (Listing 4.2). We employ C macros to encapsulate all defined
functions and each macro or function takes the destination address and the operands
addresses if applicable (Listing 4.3). We also provide equivalent SIMD instructions
encapsulated within these macros that allows easy switching between reference SIMD
and our C-SRAM version. However with Pin, the benchmark and the platform each
have their own memory space, i.e. address a does not have the same data for both the
benchmark and the platform. Thankfully, Pin provides adequate functions to access
benchmark’s data and to modify it as well which allows us to emulate the received
instruction and to modify the benchmark’s memory consequently (Listing 4.4).

80

4. Simulation platform & Tools – 4.4. Platform

127 99 98 95 94 67 66 64 63 56 55 28 27 0

NE @dest Mis. opcode @src2 @src1 R-type
29 4 28 3 8 28 28

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1000 xxxxxxxxxxxxxxxxxxxxxxxxxxxx 000 xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxx

NE @dest Mis. opcode imm[23:0] @src1 I-type
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1000 xxxxxxxxxxxxxxxxxxxxxxxxxxxx 000 xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxx

NE @dest Mis. opcode imm[31:0] U-type
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1000 xxxxxxxxxxxxxxxxxxxxxxxxxxxx 000 xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 4.6.: Extended ISA for 64-bit system. Upper 64 bits are address bits and lower
64 are data bits.

Listing 4.2 C vector types

// defined when using SIMD AVX-512
#define VECTOR_SIZE 64
#define VECTOR_TYPE __m512i
// defined when using CSRAM
#define VECTOR_SIZE 1024
#define VECTOR_TYPE __CSRAM_Line
typedef int8_t __CSRAM_Line __attribute__((vector_size(VECTOR_SIZE)));
typedef union {

VECTOR_TYPE v; // provided for SIMD compatibility
int8_t i8 [VECTOR_SIZE/sizeof(int8_t)]; // easy access to 8-bit elements
int16_t i16 [VECTOR_SIZE/sizeof(int16_t)];
int32_t i32 [VECTOR_SIZE/sizeof(int32_t)];
int64_t i64 [VECTOR_SIZE/sizeof(int64_t)];

} CSRAM_Line_t __attribute__((aligned(VECTOR_SIZE))); // force alignment of vector

Listing 4.3 C macro example: 8-bit vector addition

#define vadd8(_dest, _src1, _src2) _dest = _mm512_add_epi8(_src1, _src2) // SIMD AVX-512 macro
#define vadd8(_dest, _src1, _src2) do { /* CSRAM varying vector length macro */ \

/* create 128 bits word through macro */ \
unsigned __int128 _storeword = _MAKE_CSRAM_ISA_RTYPE(CSRAM_OPC_ADD8, _dest, _src1, _src2); \
/* get 64 address bits */ \
volatile uint64_t*_storeaddress = (uint64_t*)((uint64_t)(_storeword >> 64)); \
/* get 64 data bits */ \
uint64_t _storedata = (uint64_t)(_storeword); \

_storeaddress = _storedata; / store instruction, i.e. send it to C-SRAM */ \
asm("" ::: "memory"); /* memory fence, tell compiler that memory values changed */ \

} while(0) /* syntax quirks */

Listing 4.4 Emulation of received instructions

uint8_t csram_row[3][VECTOR_SIZE]; // local buffer
// retrieve ISA fields through some macros
uint64_t dest = _get_csram_address(RTYPE_DEST, writtenAddr, writtenData, 0, 1);
uint64_t src1 = _get_csram_address(RTYPE_SRC1, writtenAddr, writtenData, 0, 1);
uint64_t src2 = _get_csram_address(RTYPE_SRC2, writtenAddr, writtenData, 0, 1);
uint32_t opcode = _get_csram_opcode(writtenAddr, writtenData);
PIN_SafeCopy(csram_row[0], src1, VECTOR_SIZE); // copy src1 into local buffer
PIN_SafeCopy(csram_row[1], src2, VECTOR_SIZE); // copy src2 into local buffer
pin_compute_switch(opcode, csram_row[0], csram_row[1], csram_row[2]); // compute instruction
PIN_SafeCopy(dest, csram_row[2], VECTOR_SIZE); // copy local buffer to dest

81

4. Simulation platform & Tools – 4.4. Platform

4.4.2. First version with hard coherency
4.4.2.1. Reference implementation

First, we describe the reference implementation that we benchmark against and that
also serves as a codebase for the C-SRAM version. We start by defining a base class
to represent caches with a Least Recently Used (LRU) replacement policy which is a
simple array of sets which themselves are array of tags. Tags contain an address, a
valid and a dirty bit to track modification. Our implementation of caches is write-back
with store allocate policy. L2 and L3 are neither inclusive nor exclusive. Each access to
memory goes through L1 cache which first look for valid data. When data is missing,
a cache line is allocated according to LRU policy and previous data, if existent and
dirty, is written back to the upper level, as shown in Algorithm 4.1. This operation is
repeated until a cache, DRAM or ultimately SCM gets a hit. Only dirty data is written
back as non dirty data always has an up to date copy in either DRAM or SCM. We do
not model hit/miss buffers and write buffers.

Algorithm 4.1 Cache access pseudocode

1: Returns tuple of boolean to indicate hit/miss and replaced tag if miss
2: function CACHEACCESS(addr, accessType)
3: if ¬FIND(addr) then
4: oldtag ← REPLACE(addr,accessType) . Insert addr in cache and retrieve

replaced tag
5: if oldtag.dirty then
6: return false,oldtag . If oldtag is dirty, it needs to be written-back
7: else
8: return false,0 . null address is equivalent to no address
9: end if

10: end if
11: return true,0
12: end function

4.4.2.2. C-SRAM

To handle C-SRAM in our platform, we ensure global coherency between caches,
DRAM and C-SRAM, i.e. we make sure that data that can be modified in caches by
the CPU and in C-SRAM are always up to date. To enforce this, any data written by
the CPU is invalidated in the C-SRAM and reciprocally. We use DRAM as the merging
point for data. When a C-SRAM instruction is met, we first check if C-SRAM already
has the data. If so, then it has not been modified by the CPU as it would have been
invalidated and the data is thus up to date. Otherwise, the source operands are flushed
back from the caches to DRAM first. To flush them, only dirty data is written back to
minimize data movement, but data goes through each cache level from L1 to L3. Then,
we check for DRAM and in final resort, the data comes from the SCM as described in

82

4. Simulation platform & Tools – 4.4. Platform

Algorithm 4.2. For the destination address, it is simply invalidated from all caches as it
is now stale. Finally, Pin allows us to access benchmark memory and to modify it to
simulate the received instruction as shown in Listing 4.4.

Algorithm 4.2 Simplified CSRAM instruction

Ensure: data coherency when executing C-SRAM instruction
1: function LOADSRCTOCSRAM(addr)
2: if ¬csram.HAS(addr) then
3: caches.FLUSHDIRTY(addr) . Flush back to DRAM
4: if dram.HAS(addr) then .DRAM has uptodate data
5: csram ← dram[addr] . Transfer from DRAM to C-SRAM
6: else
7: csram ← scm[addr] . Transfer from SCM to C-SRAM
8: end if
9: end if

10: end function

4.4.3. Improved version with soft coherency and real disk
accesses

The first version of the platform suffers from a few problems:

• It does not track real disk accesses performed by system calls;

• Not all data is coming from the SCM, it can be created ex nihilo in DRAM with
memory allocation;

• Swapping data from DRAM when it is full to SCM is counted incorrectly;

• Hard coherency makes it somewhat slow.

To remedy those, we develop a second version of our platform to allow more accurate
SCM tracking. To improve simulation speed, we also decide to hand the coherency to
the programmer using software based coherency, similar to what is done with GPU.

4.4.3.1. Modifications to reference

First, we need to handle system calls as they give information on which addresses
come from real files and which are just anonymous mappings not backed by any
file. The executed instructions all come from either the binary itself or from dynamic
libraries that are loaded at program start. Pin provides function to get executed
files (main program and shared libraries) addresses. We note that in our quite old
Linux distribution, executables addresses are always at the same offset (0x40000) but
dynamic library have variable addresses. Those are loaded through the mmap system

83

4. Simulation platform & Tools – 4.4. Platform

call which returns the address to which it mapped the file. To track all of these, we
use a repertory which contains all segments (i.e. start and length) of address that are
known and mapped and their origin (file or heap/stack). If a requested address is not
in this repertory, it is either in the heap or in the stack both of which are allocated
directly in DRAM without loading from SCM. In this case, the requested address is
most likely written as read data is uninitialized. mmap does not require any coherency
handling as no data is used before the system call, i.e. it comes from the SCM if it is a
file backed memory map or is created ex nihilo in DRAM otherwise.

The other two main system calls that we handle and which access SCM are read
and write. In case of a read, we invalidate all corresponding addresses in both
caches and C-SRAM as correct data now lays in DRAM. For a write, we write back
corresponding addresses from caches and C-SRAM into DRAM without invalidating
them as they are still valid there. We also mark them non dirty in caches and C-SRAM
but mark DRAM as dirty for our third problem which is swapping. Swapping occurs
when DRAM is full and we need to evict some data back to SCM. Not all data need to
be written back. For instance, if data originates from disk and has not been modified,
then it does not need to be written back as the disk still have the original data, so
we can safely evict those. Using the repertory, we can find which data can be safely
replaced. We extend the repertory with a timestamp entry to also account for oldest
data first with a minimum threshold randomly set to 109 instructions (LRU like policy).
Before swapping, we must bring back any data left in the caches or in the C-SRAM
back into DRAM. If no data can be evicted, i.e. all are either dirty or not file backed,
then we pick the oldest one and write it to SCM. When the data is needed again, it
is brought back into DRAM and associated entry in repertory is updated. Now, we
also need to handle system calls referencing data that is currently swapped. When
reading into data that is swapped, we can just invalidate corresponding entry in the
repertory, i.e. mark them as non swapped. Write swapped data needs to first bring it
into DRAM before writing it back into SCM as they do not share the same addresses.

4.4.3.2. Software based coherency

Software based coherency is realized using similar method with C macros to allow the
benchmark to communicate with the platform. We define eight coherency primitives,
four for caches and four for C-SRAM, which takes an origin address and a length to
apply to:

• Invalidate which deletes all data in the specified range;

• Writeback which writes all dirty back into DRAM;

• Flush that does both writeback and invalidation, provided for convenience;

• MovDRAM to move data from C-SRAM to DRAM and its counterpart MovC-
SRAM.

84

4. Simulation platform & Tools – 4.4. Platform

When using data in the C-SRAM that was previously modified by the CPU, the pro-
grammer must first writeback data from caches to DRAM before issuing a MovCSRAM.
In the current setup, C-SRAM writeback actually performs the same operation as Mov-
DRAM. For all these additions to our platform, we take care at the fact that each one
can now trigger another one. For instance, any coherency instruction might trigger
swapping data in or out of DRAM. System calls also require special attention and we
decided that they should perform their own coherency. Read first invalidates data in
caches and in C-SRAM in addition to the repertory entry if part of the specified range
is swapped. Write writebacks all data back to DRAM before issuing data to SCM. The
resulting platform collects all memory events, namely loads, stores, writebacks and
coherency checks.

I have developed a simulation platform based on Intel Pin [186] instrumentation
tool. This platform models a 3 levels cache hierarchy, a DRAM main memory and
a top level NVM for the reference implementation and with our C-SRAM inserted
at different places for our future experiments in Chapter 5. This platform supports
our own IMC implementation with memory mapped devices. It also features system
call handling, disk accesses and swapping to accurately account all memory and
SCM accesses. The first version of the platform led to results published in DATE
2021 [212].

4.4.4. Caches and DRAM validation
We have presented all the tools we use, we now perform a light validation of our
developed platform against other references. Section 4.4.4.1 is about cache hierarchy
while Section 4.4.4.2 deals about DRAM simulators and their accuracy against either
ground truth or what can be realistic, notably power.

4.4.4.1. Caches validation

To validate the caches behavior, we compare ourselves against the ground truth
provided by the hardware counters (Section 4.2.2). We also add an estimation using a
basic analytic model to show how it poorly performs (Section 4.2.1). We use a classic
square matrix multiplication using ikj loop order given in Listing 4.5. We make the
hypothesis that matrices size are infinite which means that there is no reuse from the
second innermost loop iteration (k) to the following. Matrix C is accessed N 3 times
for both reading and storing (+= operator), the first access is a compulsory miss while
the following ones are hit until we reach a cache line boundary, so we have a total of
N 3×(B−1)

B hits and N 3

B misses where B is the block size in matrix elements. For storing,
as we have already loaded the current element, we have 100 % hit which equals to N 3

store hits. Matrix B is also accessed N 3 and the same logic applies which yields the
same number of hits and misses. Finally, matrix A is accessed N 2 and has a 100 % miss
rate as we supposed no reuse from outer loops iterations. Using this hypothesis, we
can deduce that this model predicts a 100 % miss rate for L2 and L3 caches.

85

4. Simulation platform & Tools – 4.4. Platform

To extract hardware counters as our ground truth, we use those provided by the
Linux kernel and some others extracted from the Intel reference manual [180]. For the
L1 cache, we only use counters provided for convenience by the Linux kernel and that
we can use after having compiled the previous code without optimisation. We use the
following counters for each cache level:

L1 L1-dcache-loads, L1-dcache-load-misses, L1-dcache-stores and
L1-dcache-store-misses all provided by the perf tool utility;

L2 r0124 which measures load hits, r0224 for load misses, raa24 for store and load
misses, rff24 for all L2 accesses. We then subtract r0224 from raa24 to get the
number of store misses and we subtract both r0124 and raa24 from rff24 to
obtain the number of store hits;

L3 LLC-loads and LLC-stores for L3 as I could not find any corresponding counter
for load/store hits/misses in the documentation or they were not available on
my machine.

To mitigate the natural variations, we average each counter on 10 runs on an other-
wise idle machine. The results are presented in Figure 4.7. Looking at our model for the
L1 cache in Figure 4.7a, we see that our platforms shows very accurate results except
for store misses. We largely underestimate them for big matrices which is actually a
weird behavior. Indeed, a study of the generated assembly code shows no store that
can miss. This once again demonstrates that hardware counters are not reliable. One
possibility is that a context switch from our process to another one provoked those
misses but it would also offset other events which is not observed. Analytical model
(Figure 4.7b) slightly underestimates load hits which comes from our matrices actually
fitting in the L1 cache for a loop iteration which allows more hits in following iteration.

For L2 cache (Figure 4.7c), we largely overestimate load misses and underestimate
load hits. Another strange result given by hardware counters is that the sum of L2
accesses is twice the number of misses in L1 which is counterintuitive. The Intel
documentation states that L2 accesses include L1 prefetchers which could explain
our results with our platform that do not model those. Finally for the L3 cache (Fig-
ure 4.7d), we got pretty accurate numbers for loads although it seems the accuracy
decrease with bigger dataset. Stores are overestimated but actually, our platform yields

Listing 4.5 Square matrix multiplication using ikj loop order

for(i = 0; i < N; ++i)
for(k = 0; k < N; ++k) {

tmp = A[i][k];
for(j = 0; j < N; ++j)

C[i][j] += tmp * B[k][j];
}

86

4. Simulation platform & Tools – 4.4. Platform

64 128 256 1024 4096
0

0.5

1

1.5

2

64 128 256 1024 4096
0

0.5

1

1.5

2

64 128 256 1024 4096
0

5

10

15

64 128 256 1024 4096
0

5

10

15

20

25

2.16

Load Hits Load Misses Store Hits Store Misses

(a) L1 Pin normalized against hard-
ware counters

(b) L1 analytical model normalized
against hardware counters

(c) L2 Pin normalized against hard-
ware counters

(d) L3 Pin normalized against hard-
ware counters

Figure 4.7.: Our platform normalized against hardware counters for cache events. X-
axis is matrix size and y-axis is ratio between our own work and hardware
counters.

a thousand while perf returns only a few tens which explains this gap. This is not
really a problem as those few stores are overwhelmingly below the number of loads
accurately represented which is around several billions. Timing and energy are thus
not impacted by this slight error.

We compared our model with the ground truth provided by hardware counters. We
showed that we accurately model cache behavior, especially in regard to the quantity
of event. We also saw that hardware counters can have unpredictable behavior that
is unsuitable for our research purpose.

4.4.4.2. DRAM tools comparison

We perform a comparison study of the different tools in this part. . We extract two
types of traces from our benchmarks, the first one containing all the data accesses
performed by the CPU, the second one containing only the accesses going to DRAM
including page swapping from disk. Each access is reported in the traces using the
current timestamp, the accessed address, the access type (read or write) and the access
size in byte (for page miss, this is 4 kB). We then feed these traces to the different tools.

87

4. Simulation platform & Tools – 4.4. Platform

VAMPIRE DRAMPower DRAMSim2 DRAMSys NVMain Ramulator This work GMean
0

1

2

3

4

0.1

1

10

100

1000

Figure 4.8.: DRAM tools timing (left y-axis) and energy (right y-axis) es-
timation (geometric mean of all benchmarks). Timing is normalized
against benchmark execution time and energy is normalized against
VAMPIRE.

For all the tools, we model a 512 MB single channel single rank DDR3 module
divided in 8 banks. Each bank is itself subdivided in subarrays of 8192×1024 (row-
column) with an output width of 8 bits per array. Burst length is set to 8 so that a full
burst is equal to 64 bytes, i.e. a full cache line. We use a closed row policy and the
frequency is set to 1066 MHz. Most parameters are taken from existing Micron module
configuration files provided by the aforementioned simulators. For some simulators,
we had to tweak these parameters to allow the simulation to run. Each simulators has
its own conception of how subarrays and IO width are linked, so for some we had to
multiply the width by 8 to match subarray’s width.

All the previous DRAM tools (Section 4.3.2) are fed with traces of the benchmark
suite we use and we exploit the timing and energy or power figures these tools output
to perform the comparison. To better estimate the differences between these tools,
we also measure the real execution time using a similar DDR3 memory but with
different frequency that we can then scale accordingly to the frequencies ratio (real and
experimental). The real execution time however includes all parts of the benchmarks,
including caches and disk accesses, so it is overrated. Nonetheless, it is still a good
comparison as this enables us to rule out completely off the mark tools; some of them
over evaluate timings by an order of magnitude. The results are averaged and plotted
in Figure 4.8. From this, we can see that we are the most accurate, but as the real
timings are over rated, we can deduce that DRAMPower, VAMPIRE and Ramulator
are more accurate. DRAMSim2, DRAMSys and NVMain are the least accurate of all
the tools. Both DRAMPower and VAMPIRE use the same backend to compute timing
hence their equal timings.

If we consider that VAMPIRE and DRAMPower are the most accurate in terms of
timing, we can make the assumption that they are also the most accurate in terms of
energy or power. As VAMPIRE is the most recent and is based on real measurements
from off-the-shelf commercial DRAM components, we consider them as our baseline
for power comparison. As shown in Figure 4.8, some tools over evaluate (compared to
VAMPIRE) by more than 1000× but what is more surprising is the wide distribution
spanning 4 orders of magnitude. One criteria of discrimination is to compute the

88

4. Simulation platform & Tools – 4.4. Platform

hamming so axpy atax gesummv gemm multi_gemm darknet
0.1

1

10

100

1000

Po
w

er
(W

)

VAMPIRE DRAMPower DRAMSim2 DRAMSys NVMain Pin

Figure 4.9.: Computed power reported by different tools using our benchmark suite

actual power, i.e. to divide the energy by the timing using both figures reported by
the tools; this is exposed in Figure 4.9. This clearly demonstrates that some tools
are completely off the grid by reporting power that is over tens of watts for a single
DRAM memory stick. Obviously, this is not realistic. Several tools report an almost
constant power regardless of the memory activity of the benchmark such as VAMPIRE,
DRAMPower and NVMain. Note that none of the tools account for the IO current
drawn when serving data. One possible explanation for DRAMSim2 outstanding
reported power might be the input trace fed to it. Indeed, when a page miss occurs,
a 4 kB page is fetched from the disk to the DRAM but this is reported as multiple
64 B accesses all happening simultaneously. So it is possible that this specific tool
tries to satisfy all the incoming requests at once leading to these huge power outputs.
Note that this is clearly not the correct behavior as other tools seem to schedule
correctly the DRAM commands from the input trace. Ramulator for instance is used
to create the DRAM commands trace from our input access traces for the VAMPIRE
and DRAMPower tools. On the other hand, Ramulator does not compute power or
energy per se, so it cannot be used for our platform.

From this study of different DRAM simulation tools, we observe a lot of variations
between tools themselves in both energy and timing which corroborates the fact that
DRAM is a complex part to model and accurately represent. The almost constant
power output from several tools leads us to use a fixed energy and timing cost per
access for simplification.

Conclusion
In this chapter, we presented the motivations behind the design of our platform to
simulate our selection of benchmarks at system level. We compared several existing
simulation platforms which either lack precision in the memory subsystem or are too
slow for our purposes. We decide to design our own simulation platform based on
Pin [186], an instrumentation tool. Our platform is able to accurately represent the
data exchange in the memory hierarchy and can be used to compare existing High
Performance Computing (HPC) architecture. It supports system call that meddles

89

4. Simulation platform & Tools – 4.4. Platform

with memory or transfer data to or from disk. To accurately gather energies and
timings consumed by each level of the memory hierarchy, we model the latter in
specialized hardware tools such as NVSim [191] or VAMPIRE [200]. We also extend
our work presented in Chapter 3 on the C-SRAM to allow wider IO and larger memory
sizes. A software interface is designed to communicate between benchmarks at the
application level and our C-SRAM. Our final workflow is summarised in Figure 4.10.

Architecture
configuration

Kernels &
Architecture

Model (C/C++)
Pin [20]

Technology
parameters

Circuit Models:
NVSim [18]

Vampire [19]
CSRAM [11]

Profiling
results

EXE

[186]

[191]
[200]
[Chapter 3, 167]

[Chapter 5]
[Chapter 4]

Figure 4.10.: Workflow used in this thesis. We describe an architectural represen-
tation in C++ within Pin [186] to model a reference architecture and
an IMC one with our C-SRAM. Benchmarks are coded in C with macro
based ISA to communicate with the Pin platform. On the hardware
side, we retrieve technology parameters for the caches, the PCM and
our C-SRAM and simulate the memory hierarchy with appropriate
tools: NVSim [191] for the caches and the PCM, VAMPIRE [200] for the
DRAM and extend our own work [Chapter 3, 167] for C-SRAM. When
combining both, we obtain profiling results (energy and timing) ana-
lyzed in Chapter 5.

90

5. IMC/NMC Computing
Architectures

Et toc ! Remonte ton slibard, Lothar !

A designer knows he has achieved per-
fection not when there is nothing left to
add, but when there is nothing left to
take away.

— Perceval IN Kaamelott BOOK II, EPI-
SODE 53 « L’Absent »

— Antoine de Saint-Exupéry

Using the previously defined methodology and the platform we developed in Chap-
ter 4, we study the impact of introducing In-Memory Computing (IMC) with our
proposed C-SRAM solution in the memory hierarchy. We consider different place-
ment propositions and different data management policies. We show that our solution
greatly reduces energy consumption and outperforms a reference vector Central Pro-
cessing Unit (CPU) architecture up to 400× energy reduction and 272× speedup for
cubic kernels. For linear kernels, we reach a best case of 50× and 38× while quadratic
kernels achieve a best case of 25× and 15× respectively. Globally, we also demonstrate
that our proposed solution does not increase Non Volatile Memory (NVM) accesses,
and especially write accesses.

Contents
5.1 Reference SIMD 512-bit architecture 93
5.2 Computing at the top . 93

5.2.1 Scenario NVM 1: Independent C-SRAM 94
5.2.1.1 Linear kernels: hamming weight, shift-or & AXPY . . 94
5.2.1.2 Quadratic kernels: atax & gesummv 96
5.2.1.3 Cubic benchmarks: gemm & darknet 97
5.2.1.4 Energy & timing distribution 99
5.2.1.5 SCM accesses . 101

5.2.2 Scenario NVM 2: Computing Row Buffer 103
5.2.3 Scenario NVM 1 with page transfer 104
5.2.4 Impact of the reduction loop . 105

5.3 Computing near DRAM . 107
5.3.1 Scenario DRAM 1: Independent C-SRAM 107

5.3.1.1 Linear benchmarks: hamming weight, shift-or & AXPY 107
5.3.1.2 Quadratic kernels: atax & gesummv 107
5.3.1.3 Cubic benchmarks: gemm & darknet 109
5.3.1.4 Energy & timing distribution 109
5.3.1.5 Impact of the reduction loop 109

5.3.2 Scenario DRAM 2: DRAM row buffer 111
5.4 Conclusion . 112

91

5. IMC/NMC Computing Architectures –

Using the platform developed in Chapter 4, we compare the integration of our
Computational SRAM (C-SRAM) solution presented in Chapter 3 against a vector
architecture using 512-bit Single Instruction Multiple Data (SIMD) instructions. As
shown in Chapter 2, state of the art performs memory computing at cache or Dynamic
Random Access Memory (DRAM) level but did not study it at the Storage Class Mem-
ory (SCM) level where most data lives. Some solutions do exist [103, 108, 125, 130]
but are not taking into account memory weariness that is intrinsic to all long term
storage memories. Moreover, global data movement through the complete memory
hierarchy is also often discarded. The purpose of this chapter is to study the different
improvements we can get by computing at different places in the memory hierarchy
as shown in Figure 5.1 following different scenarios:

• Scenario NVM 1 : An independent C-SRAM is placed between the SCM and
the DRAM. Data may come from both memories but rewrites all go through
DRAM to prevent wearing out the SCM early. This scenario can have multiple
data management policies such as fine grain transfer or page mode transfer that
are both analyzed in this work.

• Scenario NVM 2 : The C-SRAM is used as a Computing Row Buffer (C-RB)
solution in NVM, as already presented in [212] and detailed more precisely in
Figure 5.13.

• Scenario DRAM 1 : The C-SRAM is now placed between the caches and the
DRAM. Once again, data may come from both memories but writes are also
bidirectional in this case (i.e. from C-SRAM to both caches and DRAM).

• Scenario DRAM 2 : The C-SRAM is used as a C-RB solution in place of the
DRAM row-buffer.

Both scenario NVM 2 and DRAM 2 aim for a simpler hardware integration in a real
system as it is easier to modify an already existing chip than to introduce a completely
new one. We remind the benchmarks are introduced in section 4.1.

1 Independent C-SRAM

Off chip CPU

On chip CPU

DRAM
Main Memory

Storage Class Memory

C-SRAM

Caches
& CPU

2 C-SRAM as C-RB

DRAM
Main Memory

Storage Class Memory

C-RB

Caches
& CPU

DRAM
Main Memory

Storage Class Memory

Caches
& CPU

C-SRAM

DRAM
Main Memory

Storage Class Memory

C-RB

Caches
& CPU

1 Independent C-SRAM 2 C-SRAM as C-RB

NVM scenarios︷ ︸︸ ︷ DRAM scenarios︷ ︸︸ ︷

Figure 5.1.: Different integration possibility of the C-SRAM within the memory hier-
archy

92

5. IMC/NMC Computing Architectures – 5.1. Reference SIMD 512-bit architecture

DRAM
Main Memory

Storage Class Memory

L3

L2

L1D

SIMD
Core

L1I

512 bits bus
64 bits bus

Off chip CPU

On chip CPU

Memory Total size & width

SCM (PCM) 4 GB, 4 kB RB

DRAM 512 MB, 64-way 4 kB page

L3 Unified Cache 8 MB, 16-way 64 B block

L2 Unified Cache 256 kB, 4-way 64 B block

L1 I/D Caches 32 kB, 8-way 64 B block

Figure 5.2 & Table 5.1: Reference architecture and memories parameters

5.1. Reference SIMD 512-bit architecture
We present in Figure 5.2 the reference architecture along with the memories parame-
ters. The reference architecture is based on a standard High Performance Computing
(HPC) architecture composed of a SCM that serves as a hard disk, a DRAM main mem-
ory of 512 MB as well as a 3 levels cache hierarchy. The global memory configuration
is given in Table 5.1. Note that memory transfer between different memory levels
can either be 64 bits when the transfer occurs off chip or 512 bits between the caches.
This is a conventional architecture met in HPC, although there may be a L4 cache in
some CPUs. The cache hierarchy is based on the Intel(R) Xeon(R) CPU E3-12401 and
is composed of two L1 caches, one for instructions (L1I) and one for data (L1D), a L2
unified cache and a L3.

5.2. Computing at the top level in the memory
hierarchy

The basic idea of computing close to the SCM is that this is where data is whether
the closest and/or originates from. If we take for instance neural networks, all the
weights are stored in the SCM, brought into DRAM and then used sparsely by the
CPU which moves part of it to caches, back and forth depending on the layer being
computed. Images are also stored permanently on non volatile storage but may be
brought up through internet connection and thus stored in DRAM as well. By bringing
computation directly aside of the data, we minimize its movement and thus the time
lost just for the displacement and the energy required to move it. We compare several
placement for the C-SRAM close to NVM in scenario NVM 1 (independent C-SRAM)

in Section 5.2.1 and then NVM 2 (C-SRAM used as C-RB in the NVM) in Section 5.2.2.

1 ↑This is the CPU of my workstation. I used it to validate the platform with perf stat measure-
ments for the caches only. See Section 4.4.4 for more details.

93

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0

20

40

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

10

20

30

C-SRAM Total size (Bytes)

S
pe

ed
up

×
hamming weight (n)

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

C-SRAM Total size (Bytes)

shift-or (n)

16B
32B
64B
128B
256B
512B
1kB
2kB
4kB

C-SRAM Width

Figure 5.3.: Scenario NVM 1 : Energy reduction and speedup for linear benchmarks
normalized against SIMD 512-bit reference (higher is better)

5.2.1. Scenario NVM 1 : Independent C-SRAM between DRAM
and NVM

In this scenario, we consider the C-SRAM being somewhere between DRAM and SCM
but with no particular coupling and that it has access to the bus linking them. Data
transfer can occur between the C-SRAM and both the DRAM and the SCM. DRAM
is used as a write buffer from C-SRAM to SCM, i.e. all dirty data from C-SRAM will
go through DRAM before being written back to the NVM. We break our analysis on
different accesses patterns and benchmarks complexity in terms of computing (see
section 4.1). We first analyze the result on a per benchmark basis, then we study the
energy and timing distribution to better understand these results. Finally, we show
the impact of our solution on the SCM accesses.

5.2.1.1. Linear kernels: hamming weight, shift-or & AXPY

Hamming Weight & Shift-or As shown in Figure 5.3, computing high in the
memory hierarchy allows energy reduction up to 50× and speedup up to 38×. We
observe that increasing the vector width also increases both the energy reduction
and the speedup with a slight saturation starting to appear for hamming weight. If
we look at the left part of the graphs, especially for the energy reduction, we see
steps depending on both vector width and total memory size. This indicates that
these benchmarks require a minimal memory size to hold all their frequently accessed
variables (constants, array, temporaries, etc.). For instance, if we look at shift-or energy

94

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

1

2

C-SRAM Total size (Bytes)

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

1

2

C-SRAM Total size (Bytes)

S
pe

ed
up

×

axpy (n)

16B
32B
64B
128B
256B
512B
1kB
2kB
4kB

C-SRAM Width

Figure 5.4.: Scenario NVM 1 : Energy reduction and speedup for linear benchmarks
with high SCM access rate normalized against SIMD 512-bit reference
(higher is better)

reduction, we see that with a 32 kB C-SRAM and a 1 kB vector-width, we get a 23×
improvement over SIMD reference. Doubling both these parameters allows a gain up
to 37× showing that this benchmark requires between 16 and 32 (32kB total size

1kB vector-width) lines
to hold its working dataset. The same phenomenon is observed for hamming weight
with larger steps meaning that this kernel uses some variables only once every n-th
iteration. These steps are the reduction operations occurring every 32 iterations for
the 8 to 16 bits reduction and every 4096 iterations for the 16 to 32 bits reduction. We
also note a slight decrease for both hamming weight and shift-or in energy reduction
after it reached a maximum. Increasing the memory size for both benchmarks is
useless and what we observe is just the increased access cost (read/write) along with
the increased leak power. For timing, access cost is slightly increased but the larger
memory size also permits less writebacks to DRAM and thus a small gain. Both events
counteract each other leading to the stagnation observed in both speedup plots. For
both benchmarks, increasing the vector width leads to an improvement in both energy
reduction and speedup. As these kernels are linear with no data dependency, they can
make the best use of a bigger vector. However, for a given vector width, increasing the
memory size does not lead to better gains unless there was not enough memory lines
available for the variables. For hamming weight, the best case is obtained for a 512 kB
4 kB with 50× energy reduction and 17× speedup where as for shift-or, the best case is
reported at 128 kB 4 kB with also 50× energy reduction and 38× speedup.

AXPY AXPY is a linear benchmarks that mainly differs from the previous two in its
write intensity. Both hamming weight and shift-or kernels are completely reducing
their input datasets to a scalar or a few numbers of scalar, while AXPY writes half of
his input dataset back. This is why it has a high part of its energy and timing spent in
the NVM hence it can only have a maximum energy reduction and speedup limited to
a few units. As it only reads two inputs, multiply one with a scalar and adds them back,
it requires only three memory lines, thus the reason there is no stair in this benchmark

95

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0

10

20

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

5

10

15

C-SRAM Total size (Bytes)

S
pe

ed
up

×
atax (n2)

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

C-SRAM Total size (Bytes)

gesummv (n2)

16B
32B
64B
128B
256B
512B
1kB
2kB
4kB

C-SRAM Width

Figure 5.5.: Scenario NVM 1 : Energy reduction and speedup for quadratic bench-
marks normalized against SIMD 512-bit reference (higher is better)

compared to other linear benchmarks (Figure 5.3). Although the total memory size
has no importance in this case, the vector width allow to lift up a little bit the energy
and timing gains until the limit is reached, i.e. when almost all energy and time is
spent in the SCM and the C-SRAM. The best energy reduction and speedup of 2.7× is
obtained for a 16 kB C-SRAM with a 4 kB vector width.

5.2.1.2. Quadratic kernels: atax & gesummv

Considering now the quadratic computing complexity benchmarks which involves
matrix vector products, we observe quite different tendencies (Figure 5.5). atax shows
that without a big enough memory size, it even worsens compared to the SIMD 512-bit
reference. This benchmark behavior is quite complex as it must stores a temporary
vector, performs a reduction loop CPU side and also runs through the same matrix
twice. To explain this jump from negative gains to 10× better ratio, we must look at
what happens in each memory level. We deduce from Figure 5.6 that this kernels
spend most of its time and energy in the DRAM level indicating a back and forth
movement of data to and from C-SRAM. This movement then disappear when the
C-SRAM memory size is enough to store the working dataset. Also taking into account
the access pattern behavior, we note a very poor data reuse in the innermost loop as
all accessed variables are used once (temporary vector) before being reused in the
second loop. The maximum energy reduction of 16× and speedup of 15× are reached
for a 512 kB 1 kB and 2 kB C-SRAM respectively.

If we now consider gesummv, we note a different shape where small memories can

96

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

E T E T E T E T
0%

50%

100%

179%

93%

33% 29% 26% 25%

SCM
C-SRAM
DRAM
Caches

Ref. 128K 256K 512K

Figure 5.6.: Relative atax (to SIMD Reference) Energy and Timing distribution for
different sizes and a vector width of 128 bytes (lower is better)

have important gains, but increasing the vector width over a 1 kB leads to a diminution
to those gains. Once again, we can use the implementation detail to inspect the access
behavior. First, we examine the innermost loop and count only three variables being
actively reused while the two input matrices and the input vector are read only once
(streaming access pattern). Thus small memories can be enough for this kernel, but
increasing the vector width will lead to more conflict for the available space in the
C-SRAM. Maximum energy reduction and speedup are respectively 25× for a 64 kB
512 B C-SRAM and 12× for a 256 kB 1 kB C-SRAM.

For both kernels, we now examine the right part of the plots (Figure 5.5) where the
memory size is superior to 512 kB. We observe that even if memory size is sufficient,
increasing the vector width can reduces both energy and timing improvement. The
reduction loop performed along the full vector width by the CPU requires flushing the
data back to DRAM then down to the CPU to get the final result. As the vector width
increases, this data movement scales up and reduces the performance obtained with
smaller vector width. Similarly for linear kernel, we observe a slight decrease in energy
reduction when increasing memory size due to more expensive access costs.

5.2.1.3. Cubic benchmarks: gemm & darknet

We analyze the cubic benchmarks in Figure 5.7 which are mainly matrix-matrix prod-
ucts kernels. To better understands the sudden jump in the gemm kernel at 128 kB, we
plot, in a similar way to atax, the relative energy and timing distribution in Figure 5.8.
More than 90 % of the gemm kernel reference implementation energy is spent in the
DRAM with half of the time spent there as well. As a cubic kernel, some of the input
data is read several times, but it is mostly the size of the input matrices that is a prob-
lem here. First, the result matrix, which is also an input, is scaled by the β factor in a

97

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0

200

400
E

ne
rg

y
re

du
ct

io
n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

100

200

300

C-SRAM Total size (Bytes)

S
pe

ed
up

×
gemm (n3)

0

2

4

6

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

2

4

6

C-SRAM Total size (Bytes)

darknet (n3)

16B
32B
64B
128B
256B
512B
1kB
2kB
4kB

C-SRAM Width

Figure 5.7.: Scenario NVM 1 : Energy reduction and speedup for cubic benchmarks
normalized against SIMD 512-bit reference (higher is better)

row major order. Then, the input matrix B is also ran through. Both matrices’ rows are
32 kB plus the other variables. Thus this kernel requires at least 64 kB of memory size
otherwise one of the input matrix will be constantly sent back to DRAM and reloaded
at the following iteration. In the C-SRAM architecture, DRAM overwhelms all other
costs when memory size is limited, in both energy and timing. For the 32 kB case,
DRAM access occurs once every 20 instructions which indicates massive thrashing.
After this threshold memory size of 128 kB, we do not observe any more improvement
and still detect the slight decrease in energy reduction due to increased access cost
and a stagnation for speedup. Increasing the vector width leads to increased energy
reduction and speedup with no apparent saturation. There is no reduction loop in the
way we wrote this kernel, so it is mainly bound in terms of maximum improvements
by the top level memory. We reach the best energy reduction of 403× for a 128 kB
C-SRAM with a 4 kB vector width and the fastest speedup of 272× for a 2 MB C-SRAM
with also a 4 kB vector width.

Considering that darknet is a real case application, we only vectorized functions
that are part of its Basic Linear Algebra Subprograms (BLAS) Application Programming
Interface (API) (see section 4.1 for details). First of all, we notice that although 80 % of
the application is spent doing matrix multiplications (Figure 4.2) similar to all neural
networks (Figure 4.1), we are quite far from the gains obtained for gemm. Indeed, any
computer science student must recall the Amdahl’s law which states that, any program
or algorithm cannot go faster than its sequential part. As such, we are close to the best
speedup we can get by parallelizing the compute intensive part of this application.

98

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

E T E T E T E T
0%

50%

100% 92%

58%
41%

26%

0.2% 0.4%

0.1%

0.2%

0.3%

0.4%

0.25%

0.38%

Ref. 32K 64K 128K

SCM C-SRAM DRAM Caches

Figure 5.8.: Relative gemm (to SIMD Reference) Energy and Timing distribution for
different total C-SRAM size and a vector width of 4 kB (lower is better)

We observe that there is no sudden jump and that improvement is more progressive
compared to gemm with a maximum of 5.2× energy reduction for a C-SRAM of 512 kB
2 kB while speedup is best at 5.9× for a C-SRAM of 8 MB 4 kB.

Overall, the tendencies previously extracted from other kernels still stands in our
real case application. As such, we do see a saturation when increasing vector size due
to the constant exchanges between C-SRAM and CPU. Indeed, only the main kernels
function were vectorized, leaving the rest of the application to the CPU including some
matrices operations that are branch heavy (forward_maxpool_layer), indirect ref-
erencing (softmax) or includes reduction operations (forward_avgpool_layer).
Other key functions such as activation are also performed by the CPU. Hence, this
saturation is the maximum improvement that we can get by still performing a lot of
operations in the CPU. We still note that a 32 B vector size achieve almost as good as
the 64 B SIMD reference thanks to reduced data movement.

5.2.1.4. Energy & timing distribution

In the same way as Figure 5.6 and Figure 5.8, we study the relative distribution of both
energy and timing for all benchmarks for the best average case which is a C-SRAM
of 512 kB with a vector size of 512 B in Figure 5.9. Looking specifically at the energy,
we note that DRAM takes a huge part of it in the reference architecture, representing
in average 84 %. As we perform computing above DRAM, the read only data are only
brought into C-SRAM without going down to the DRAM allowing our solution to tackle
most of this energy granting huge improvements in energy reduction, up to 8× in
average. The rest of the energy is split between the SCM and the caches. The former
being only 2 % of the total while the latter represents around 14 % of the total energy
of the reference. The caches energy is also lowered by a factor 5 compared to the
reference for the same reason as DRAM. For the timing, the distribution is more even
between the DRAM and the caches with the latter representing in average 56 % while
the former is up to 39 % leaving 5 % of the total timing in the SCM. The average caches
timing is reduced by a factor 10 which is better than caches energy reduction. For

99

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR.
0%

50%

100%

4% 8%

37%

8% 3% 2%

23%
12%

SCM C-SRAM DRAM Caches

hw so axpy atax gesummv gemm darknet avg

(a) Energy distribution

Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR.
0%

50%

100%

9% 9%

37%

9% 8% 2%

23%
14%

hw so axpy atax gesummv gemm darknet avg

(b) Timing distribution

Figure 5.9.: Scenario NVM 1 : Energy and timing distribution for a C-SRAM of
512 kB and vector size of 512 B normalized to SIMD 512-bit reference
architecture (lower is better)

both energy and timing distribution, we note that for every benchmark, the SCM part
stays constant in our solution. Indeed, as all data originates from this memory, it must
still be read at least the same number of times to load the input datasets. It must also
be written at least once for the final result.

We give a more detailed insight for the different caches level in Figure 5.10. First we
note that L3 makes up the majority of the energy in both the reference and our solution.
In the reference case, all the caches are intensively used as all the computation is
done by the CPU. But in our solution, only the L1 caches are used as most of the
computation is done in the C-SRAM. It is mainly due to the instruction cache and
a tiny portion is from the stack variables that reside in the data cache. The energy
of both L3 and L2 caches in our solution is largely due to their leakage although
they are still a little bit used for kernels with a reduction loop (atax, gesummv) or
complex computing (darknet). If we look at the timing distribution (Figure 5.10b), in
the reference case, 37 % is due to the instruction cache while it represents 83 % in our
solution. As previously said, our solution makes little use of the cache hierarchy, but it
still uses the instruction caches as the CPU drives the C-SRAM. We also see a small
part of L1 data cache being used in our solution. C-SRAM instructions are computed

100

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB
0%

50%

100%

14% 8% 14%
26%

12% 16%
31%

17%

L3 L2 L1D L1I

hw so axpy atax gesummv gemm darknet avg

(a) Energy distribution

Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB Ref. C-RB
0%

50%

100%

7% 7% 4% 8% 4% 4%
21%

8%

hw so axpy atax gesummv gemm darknet avg

(b) Timing distribution

Figure 5.10.: Scenario NVM 1 : Caches energy and timing distribution for a
C-SRAM of 512 kB and vector size of 512 B normalized to SIMD 512-bit
reference architecture (lower is better)

on the fly by the CPU and the compiler often optimizes it to store precomputed part
of those in the stack, hence the use of the L1 data cache.

5.2.1.5. SCM accesses

Finally, we need to look at the SCM accesses in Figure 5.11, and especially the write
accesses as they determine the lifetime of the system. For the reads accesses, there is
almost no change as only the input datasets are read. Only for gemm we can observe a
slight increase of +2 % due to the reuse of the input matrix that does not fit neither in
DRAM nor C-SRAM. On the other hands, writes accesses seems to be clearly reduced,
but a closer analysis shows that those are not “real” writes. The reference case use
the DRAM as its main live storage leading to a lot of stale data to stay there unused,
including the input datasets. When memory space starts missing, dirty data must be
kept and are thus written back to the permanent storage (swapping). These data are
often some initialisation data that are used only in the start phase of the benchmark
but, as they are the oldest, they got evinced first. In our solution, these dirty stale
data compete way less against the input datasets as the read only data stay in the

101

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

hw so axpy atax gesummv gemm avg
0%

50%

100%

N
or

m
al

iz
ed

S
C

M
A

cc
es

se
s

Reads Writes

Figure 5.11.: SCM memory accesses for a C-SRAM of 512 kB and vector size of 512 B
normalized to SIMD 512-bit reference architecture (lower is better)

C-SRAM and are not written back to the SCM because they are not dirty. To put some
actual number on this, considering hamming weight, then we only write the final
result but 13 pages are written back to SCM. If we take into account only the write that
are wanted by the programmer, i.e. actual write to files, then we consider only AXPY
and gemm which are the only write intensive benchmarks. For these two benchmarks,
the results are over 100′s MB and are thus more precise for variation in both cases. For
both benchmarks, there are almost no variation (<5 ·10−4) so we can conclude that
our solution does not affect in neither positive nor negative way the endurance and
thus the lifetime of the system.

With the current approach, we show that computing close to the NVM offers
great improvements in terms of energy reduction and speedup, up to 50× for linear
kernels, 25× for quadratic kernels and up to 403× for cubic kernels. On a real
case application, although limited by the Amdahl’s law, we still reach gains up to
5.2×. For all benchmarks, we demonstrate that our solution does not incur more
write accesses to the NVM which is one of the limiting factor in a system lifetime.
Figure 5.12 shows the range (minimum and maximum) of achieved values and the
average of all cases, including the “bad” ones. Averaging all benchmarks, we reach a
17.4× energy reduction and a 12.9× speedup compared to SIMD reference.

0.01

0.1

1

10

100

hw so axpy atax gesummv gemm darknet average

Figure 5.12.: Scenario NVM 1 : Best, worst and average () of all cases for both
energy reduction () and speedup () normalized against SIMD
reference (higher is better)

102

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

DRAM
Main Memory

Storage Class Memory

L3

L2

L1D

Core

L1I

512 bits bus
64 bits bus

Off chip CPU
On chip CPU

A Reference
Architecture

B C-RB
Architecture

Row Buffer

4 kB

64 bits

C-RB width

64 bits

1-row buffer

IO

N-row buffer

Computing

IO

Figure 5.13.: Detailed memory hierarchy. A is the reference architecture where the

row buffer acts as a temporary storage for read data. B is the C-RB
architecture where the row buffer is turned into a computing element.

5.2.2. Scenario NVM 2 : C-SRAM as Computing row buffer
In this scenario, the C-SRAM is tightly coupled to the SCM where it replaces the row-
buffer and acts as a multi-line row-buffer (Figure 5.13). Hence, in this scenario, the
C-SRAM is labelled Computing Row Buffer (C-RB). The difference in data movement is
that all data must go through the row-buffer, even if it is not used by the C-RB. Another
key difference is that the NVM width is scaled to the C-RB one, i.e. both have the same
width. This means that to load 4 kB to DRAM using a 1 kB C-RB, SCM will perform 4
loads. Energy cost and timing for these cases are discussed in Section 4.3.3.

The results are really close to the previous scenario with the same graph shape when
normalized against SIMD 512-bit reference. However, when we plot the normalisation
of this scenario versus the former one, we observe that this normalisation is constant
for a given vector size so we only plot the average for every vector sizes. The results
are shown in Figure 5.14. All benchmarks except the cubic ones present an increase in
energy consumption and timing for small vector sizes showing that small vector sizes
are slower and require more energy in this scenario. This effect is due to the position
of the C-RB as all data must go through it. Moreover, the scaled and matched width
between C-RB and NVM creates more accesses to load or write the same amount of
data. This effect is clearly visible (bottom row) for the NVM access intensive AXPY
benchmark (), where vector width smaller than 512 B are up to 10× less efficient. For
the cubic benchmarks, we see no change at all (16 B and 32 B gemm case are missing)
as given the kernel behavior, it generates a lot of swapping between C-SRAM, DRAM
and NVM independent of vector size. Hence the global cost in both energy and timing
in this case remains constant. The log plot (top row) clearly shows a saturation in
gain for linear and quadratic kernels as described earlier. Only gemm does not exhibit
this saturation which means that it could have better improvements using wider

103

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0.1

1

10

100
E

ne
rg

y
re

du
ct

io
n

vs
R

ef
.

0.1

1

10

100

Ti
m

in
g

sp
ee

du
p

vs
R

ef
.

16 32 64 12
8

25
6

51
2

1K 2K 4K
0

0.5

1

C-RB vector size (Bytes)

E
ne

rg
y

re
du

ct
io

n
vs

N
V

M
1

16 32 64 12
8

25
6

51
2

1K 2K 4K

0

0.5

1

C-RB vector size (Bytes)

Ti
m

in
g

sp
ee

du
p

vs
N

V
M

1

hw so AXPY atax gesummv gemm darknet

Figure 5.14.: Energy reduction and speedup of NVM row buffer scenario 2 normal-
ized against SIMD reference (top row), against independent C-SRAM
(bottom row) and averaged for one vector size through all total sizes
(higher is better)

vector. Nonetheless, our kernel must be representative and wider vector means larger
matrix size which are more rare. For all benchmarks, energy and timing distribution is
sensibly the same with an increase in the NVM energy and timing due to its smaller
width in the general case. Similarly, the NVM accesses are constants compared to the
first scenario.

Although there are some losses compared to the previous scenario, this one pro-
vides easier integration in a real system as it repurposes an already existing part,
the row-buffer, into a computing row-buffer. In the best cases, there is no loss in
energy and timing, and for a 256 B vector width, speedup can be reduced by half
compared to an independent C-SRAM, but still improved by 5× compared to the
SIMD reference. This scenario was published in DATE 2021 [212] and patented [213].

5.2.3. Scenario NVM 1 with page transfer
In this scenario, the C-SRAM is independent from the DRAM and the SCM but all data
transfer from NVM to the C-SRAM are of system page size, i.e. 4 kB, to ease coherency
management. Once again, the results are very similar to the first scenario, so we
normalize them against the latter. Second normalisation is through all vector sizes
because vector width does not matter in the transfer type and only the total memory
size has an influence. The results are shown in Figure 5.15.

As expected, page transfer only impacts small C-SRAMs size as big enough C-SRAMs

104

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0.1

1

10

100
E

ne
rg

y
vs

R
ef

.

0.1

1

10

100

Ti
m

in
g

vs
R

ef
.

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0.5

1

C-SRAM Total size (Bytes)

E
ne

rg
y

vs
N

V
M

1

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0.5

1

C-SRAM Total size (Bytes)
Ti

m
in

g
vs

N
V

M
1

hw so AXPY atax gesummv gemm darknet

Figure 5.15.: Energy reduction and speedup of page transfer NVM scenario 1
normalized against SIMD reference (top row), against independent
C-SRAM (bottom row) and averaged for one total size through all vector
sizes (higher is better)

have sufficient available memory space to manage those extra data. Moreover, most
benchmarks have a good data locality which means that loading more data is equiva-
lent to prefetching data that will be used in a few iterations without using any storage
that is required by the C-SRAM for previous iterations. On the worst case for a 16 kB
C-SRAM, we have a 27 % reduction compared to what we got from the scenario NVM
1 , in both timing and energy. For all total sizes above 512 kB, there is no impact on

the improvements. For AXPY, there is no change observed as it always has sufficient
space due to using only 3 C-SRAM lines.

5.2.4. Impact of the reduction loop
Several benchmarks (atax, gesummv and gemm) include a reduction loop or a memory
broadcast that is performed by the CPU. The reduction loop transforms a vector into
a scalar by the addition (add-reduction) and the memory broadcast simply set all
elements of a vector to a given value from the memory. To analyze the impact of these
two operations that force data to be sent back to the CPU, we add a couple of opcodes
to our C-SRAM:

• mbcast for memory broadcast which allows a scalar data to be broadcast over
an entire C-SRAM line using only its address;

• scopy for scalar copy which copies a scalar data into another scalar data without
moving any of the two to the CPU.

We do not add a special add-reduction operator because this would severely impact
silicon area, although not evaluated. Multiple add operators would need to be instan-

105

5. IMC/NMC Computing Architectures – 5.2. Computing at the top

0.1

1

10

100
E

ne
rg

y
vs

R
ef

.

0.1

1

10

100

Ti
m

in
g

vs
R

ef
.

16 32 64 12
8

25
6

51
2

1K 2K 4K

0.5

1

C-SRAM vector size (Bytes)

E
ne

rg
y

vs
N

V
M

1

16 32 64 12
8

25
6

51
2

1K 2K 4K

0.5

1

C-SRAM vector size (Bytes)

Ti
m

in
g

vs
N

V
M

1

atax gesummv gemm

Figure 5.16.: Energy reduction and speedup when performing reduction loop and
memory broadcast inside C-SRAM compared against SIMD reference
(top row), against independent C-SRAM scenario NVM 1 (bottom
row) and averaged for one vector size through all total sizes (higher is
better)

tiated instead of only a single already existing one. Moreover, it would need to be
specifically designed for a given vector size instead of being generic.

First, we start by reducing all the vectors using hswap operators which allows us to
go from 128 bits of data down to 8 bits. Then, we iterate over the reduced data using
scopy, move them to a vector aligned address and add the results. This is used in
atax and gesummv. gemm is written without a reduce loop, but can use mbcast to
initialize a line to the scalar value of the matrix A. atax also uses mbcast right after
the reduction. The results are normalized against the independent C-SRAM scenario
NVM 1 and presented in Figure 5.16. As one could expect, the bigger the vector size,
the lesser the improvements as the reduction loop is longer and the C-SRAM is not
very effective for this kind of operation. gesummv shows negative improvements for
all the vector sizes whereas atax presents small gains, +5.4 % for energy and +3.6 %
for speedup, for small vector sizes. After 256 B, atax also has negative improvements.
Only gemm shows improvements for all the vector sizes, except 4 kB in timing, but the
bigger vector size the better for this benchmark (Figure 5.7).

The introduction of new operators to perform the reduction loop with scalar op-
erations demonstrates that it is of small interest because the C-SRAM still needs to
activate full memory lines. It can however help for matrix kernels to further reduce
data movement to the CPU.

106

5. IMC/NMC Computing Architectures – 5.3. Computing near DRAM

5.3. Computing near DRAM

5.3.1. Scenario DRAM 1 : Independent C-SRAM between
DRAM and L3 cache

We perform the same experiments by moving the C-SRAM between the DRAM and
the caches. We expect to get way less improvements compared to previous solutions
because the DRAM will be widely used. One main difference with the reference SIMD
scenario is that data transfer from DRAM to C-SRAM is of vector size bytes while
transfer from DRAM to L3 is always 64 B. As we use a closed row policy, this means
that we do not need to open and close DRAM’s rows as often, and thus can spare some
time and energy. We perform the same analysis as in Section 5.2.1.

5.3.1.1. Linear benchmarks: hamming weight, shift-or & AXPY

For the linear benchmarks, we tend to the same observations as in scenario NVM 1
but with way smaller improvements for both energy and timing. We reach 1.3× energy
reduction and 1.8× speedup for hamming weight for the best case with a 512 kB 4 kB
C-SRAM. For shift-or, we achieve a 2.8× energy reduction and up to 6.1× speedup for
a 128 kB 4 kB C-SRAM. We can also observe the same line that defines the optimum
ratio of memory lines versus memory size, especially for shift-or. Likewise, we observe
a clear increase in energy reduction and speedup with a broader vector size, although
a saturation is clearly visible for all 3 benchmarks and both metrics. Besides, we also
note the same slight decrease of improvements when using greater memory sizes. A
key difference is that the 64 B vector roughly corresponds to a unitary ratio with the
SIMD 512-bits reference for both benchmarks. This is in line with the major part of the
energy and timing spent in the DRAM that was short-circuited in previous scenarios.
Hence, using the same vector width as the reference, we got equivalent performances
results.

5.3.1.2. Quadratic kernels: atax & gesummv

Correspondingly for quadratic kernels, the same observations as before are still valid
(Figure 5.18). We note for atax that a minimum working memory size is required to
jump from negative improvements to small positive ones due to the complex behavior
of this kernel. For gesummv, there is also a jump from 64 kB to 128 kB C-SRAM but
otherwise, improvements are independent of the C-SRAM size. Increasing the vector
width still has a negative impact on the improvements for both benchmarks. The
best cases are a 1.3× better energy reduction and 2.6× speedup for atax with a 512 kB
1 kB C-SRAM while its capped at 1.2× better energy reduction and 1.6× speedup for
gesummv using a 128 kB 1 kB C-SRAM.

107

5. IMC/NMC Computing Architectures – 5.3. Computing near DRAM

0

0.5

1

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

0.5

1

1.5

C-SRAM Total size (Bytes)

S
pe

ed
up

×

hamming weight (n)

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

C-SRAM Total size (Bytes)

axpy (n)

0

1

2

3

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

2

4

6

C-SRAM Total size (Bytes)

shift-or (n)

16B
32B
64B
128B
256B
512B
1kB
2kB
4kB

C-SRAM Width

Figure 5.17.: Scenario DRAM 1 : Energy reduction and speedup for linear bench-
marks normalized against SIMD 512-bit reference (higher is better)

16B 32B 64B 128B 256B 512B 1kB 2kB 4kB
C-SRAM Width

0

0.5

1

1.5

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

1

2

3

C-SRAM Total size (Bytes)

S
pe

ed
up

×

atax (n2)

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

C-SRAM Total size (Bytes)

gesummv (n2)

Figure 5.18.: Scenario DRAM 1 : Energy re-
duction and speedup for qua-
dratic benchmarks normalized
against SIMD 512-bit reference
(higher is better)

0

0.5

1

1.5

2

E
ne

rg
y

re
du

ct
io

n
×

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

0

1

2

3

C-SRAM Total size (Bytes)

S
pe

ed
up

×

gemm (n3)

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

C-SRAM Total size (Bytes)

darknet (n3)

Figure 5.19.: Scenario DRAM 1 : Energy re-
duction and speedup for cubic
benchmarks normalized against
SIMD 512-bit reference (higher
is better)

108

5. IMC/NMC Computing Architectures – 5.3. Computing near DRAM

5.3.1.3. Cubic benchmarks: gemm & darknet

Moving on to the cubic kernels in Figure 5.19, the previous observations in Sec-
tion 5.2.1 stand. There is still a thrashing behavior using small C-SRAMs with gemm as
this does not depend on the C-SRAM location but only on memory size. Once again,
we observe that the 64 B vector width shows no energy reduction compared to the
reference, which is in line with the distribution shown in Figure 5.9a while timing is
slightly reduced as DRAM’s timing is about 50 % (Figure 5.9b). We achieve only a 1.3×
energy reduction and a 1.9× speedup for a 128 kB 4 kB C-SRAM.

Looking at darknet benchmarks, which is our real case application, computing
below DRAM memory level worsens both energy consumption and timing spent for
most cases. We get positive improvements only with 4 MB C-SRAM and with vector
width wider than 128 B for energy while timing gets faster from 128 kB C-SRAM and
256 B vector width. But at the best case using a 8 MB 4 kB C-SRAM, we still reach a
1.9× energy reduction and a 3.1× speedup compared to the SIMD reference.

5.3.1.4. Energy & timing distribution

When looking at the energy distribution in Figure 5.20a, we see that C-SRAM com-
puting at the DRAM level does reduce the energy consumption but by less than 10 %
in average, while we had a 88 % reduction in our first proposed solution. As already
showed in Figure 5.19, energy consumption is almost doubled for darknet due to
thrashing. In all cases, caches energy is reduced and NVM energy remains constant
similar to previous scenarios. For the timing distribution in Figure 5.20b, we have
similar observations. Caches timings are drastically reduced by 92 % in average while
DRAM usage remains constant, except for darknet where it is more than tripled. As
stated in the start of this section, the main difference in this scenario versus the refer-
ence is that data transfer from DRAM to C-SRAM are based on C-SRAM vector width.
To transfer n bytes from DRAM to L3, we would need to activate DRAM n

64B times
where 64 B is the L3’s block size. Each DRAM activation has a fixed cost (activation and
precharge) before transfer of data can occur. With a larger data transfer, naturally less
activation occurs hence the actual tiny improvement (<0.1 %) in timing. The caches
energy and timing distribution are identical to those of Figure 5.10. NVM accesses are
also unchanged compared to Figure 5.11.

5.3.1.5. Impact of the reduction loop

Contrary to the previous scenarios where the reduction loop and memory broadcast
had more impact on both energy reduction and speedup, we see in Figure 5.21 that
the results are more mitigated in this case. Indeed in the former scenarios, we had to
move data through DRAM down to the CPU while now data just has to go through
caches. Thus the deltas in both energy and timing we can spare is smaller, hence
minor improvements when performing the reduction loop and memory broadcast in
the C-SRAM. Similarly, as this delta is smaller, the losses that we observed for gesummv
are also reduced in this case with the plots showing the same shapes. As we have

109

5. IMC/NMC Computing Architectures – 5.3. Computing near DRAM

SCM C-SRAM DRAM Caches

Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR.
0%

50%

100%
81%

41%

91%
79% 84% 83%

182%

92%

hw so axpy atax gesummv gemm darknet avg

(a) Energy distribution

Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR. Ref. C-SR.
0%

50%

100%

58%

23%

70%

40%

61%
53%

91%

57%

hw so axpy atax gesummv gemm darknet avg

(b) Timing distribution

Figure 5.20.: Scenario DRAM 1 : Energy and timing distribution for a C-SRAM of
512 kB and vector size of 512 B normalized to SIMD 512-bit reference
architecture (lower is better)

16 32 64 12
8

25
6

51
2

1K 2K 4K

0

0.5

1

C-SRAM vector size (Bytes)

E
ne

rg
y

re
du

ct
io

n
vs

D
R

A
M

1

16 32 64 12
8

25
6

51
2

1K 2K 4K

0

0.5

1

C-SRAM vector size (Bytes)

Ti
m

in
g

sp
ee

du
p

vs
D

R
A

M
1

atax gesummv gemm

Figure 5.21.: Energy reduction and speedup when performing reduction loop and
memory broadcast inside C-SRAM normalized against independent
C-SRAM at DRAM level (scenario DRAM 1) and averaged for one total
size through all vector sizes (higher is better)

110

5. IMC/NMC Computing Architectures – 5.3. Computing near DRAM

positive improvements only for small vector sizes that are worse than the reference in
this scenario, this solution is not to be used. Only gemm has a better outcome and only
for the last case using a 4 kB wide vector getting a +2.4 % in both energy reduction and
speedup while atax and gesummv have a −7 % worse energy reduction and are 11 %
slower.

5.3.2. Scenario DRAM 2 : C-SRAM as Computing DRAM row
buffer

The results of this scenario are really close to those of scenario DRAM 1 (Sec-
tion 5.3.1). The differences are inferior to 0.1 % for both timing and energy. Thus
we do not plot the results as the figures are identical to Figure 5.17 for linear kernels,
Figure 5.18 for quadratic kernels and Figure 5.19 for cubic benchmarks. The same
analysis stands also for the energy and timing distribution plotted in Figure 5.20. The
small differences come from the DRAM being activated less thanks to C-RB and al-
lowing larger block of data to be transferred in a single row activation. However, this
was also the case in the previous scenario as most of the data was transferred from
DRAM to the C-SRAM. Now, only the data used by the CPU benefits from this small
improvement.

Compared to the NVM scenarios, computing close to DRAM offers greatly reduced,
but still positive, improvements for both energy reduction and speedup, up to 6.1×
for linear kernels, 2.6× for quadratic kernels and 3.3× for darknet. Averaging all
benchmarks, we get a −2 % in energy reduction but a +51 % speedup compared to
SIMD reference (Figure 5.22). This considerable difference in energy reduction and
speedup improvements is due to greatly reducing the caches usage which grants
some speedup but very few energy reduction (Figure 5.10). Overall, this is mainly a
result of having a shorter program execution time from the greater vectorisation.

0.01

0.1

1

10

hw so axpy atax gesummv gemm darknet average

Figure 5.22.: Scenario DRAM 1 : Best, worst and average () of all cases for both
energy reduction () and speedup () normalized against SIMD
reference (higher is better)

111

5. IMC/NMC Computing Architectures – 5.4. Conclusion

5.4. Conclusion
We have studied in the previous sections different plausible scenarios where the
integration and data management of our proposed solution vary. Using several bench-
marks representative of usual accesses patterns in data intensive applications, we
show that computing close to the SCM is the most interesting solution concerning
energy reduction and speedup, and that computing near the DRAM offers little to
no improvements for these two metrics. The former yields an energy reduction and
a speedup, in average, of 17.4××× and 12.9××× respectively while the latter concedes
a 2 % increase in energy consumption but grants a 50 % speedup in average. Small
adaptations such as using a page transfer mode instead of a fine grain transfer mode
do not change the results when using a large enough C-SRAM. This demonstrates that
data management policy is not significant and that only the computing location in
the memory hierarchy is relevant. Performing the reduction loop inside the C-SRAM
leads to lesser improvements as our solution was not designed for this kind of opera-
tion. Our solution also allows to save the NVM’s endurance by not writing to it after
each operation. We provide a full comparison of all the scenarios in Figure 5.23 as well
as a best case selection in Table 5.2.

112

5. IMC/NMC Computing Architectures – 5.4. Conclusion

0.01

0.1

1

10

100

0.1

1

10

0.01

0.1

1

10

100

a b c d a b c d a b c d
hw so axpy

a b c d e a b c d e

atax gesummv

a b c d e a b c d
gemm darknet

Figure 5.23.: Minimum, maximum and average () for each benchmark and tested
scenario. Left (plain color) is energy and right (lighter color
and dots) is timing. a corresponds to the NVM’s independent

C-SRAM (NVM 1); b is NVM C-RB (NVM 2); c is NVM’s indepen-

dent C-SRAM with page transfer (NVM 1); d is DRAM’s independent

C-SRAM (DRAM 1); e is NVM’s independent C-SRAM with reduc-

tion loop performed in the C-SRAM (NVM 1). All graph higher is
better

113

5. IMC/NMC Computing Architectures – 5.4. Conclusion

Table 5.2.: Best total and vector sizes for energy reduction (top), speedup (middle)
and energy-delay product (bottom)

Benchmark Max Gain Size Vector Size Scenario

Hamming Weight

48.80 512.0K 4.0K Independent C-SRAM (NVM 1)

17.07 1.0M 4.0K Page Transfer (NVM 1)

830.23 512.0K 4.0K Independent C-SRAM (NVM 1)

shift-or

49.99 128.0K 4.0K Page Transfer (NVM 1)

37.84 2.0M 4.0K Row buffer (NVM 2)

1815.41 128.0K 4.0K Page Transfer (NVM 1)

AXPY

2.73 16.0K 4.0K Page Transfer (NVM 1)

2.73 32.0K 4.0K Row buffer (NVM 2)

7.48 16.0K 4.0K Page Transfer (NVM 1)

atax

15.74 512.0K 1.0K Row buffer (NVM 1)

14.94 1.0M 2.0K Independent C-SRAM (NVM 1)

226.77 512.0K 2.0K Independent C-SRAM (NVM 1)

gesummv

25.53 64.0K 512B Row buffer (NVM 2)

12.37 1.0M 1.0K Independent C-SRAM (NVM 1)

303.53 64.0K 512B Independent C-SRAM (NVM 1)

gemm

408.79 128.0K 4.0K reduce Independent C-SRAM (NVM 1)

273.00 8.0M 4.0K reduce Row buffer (NVM 2)

109457.78 128.0K 4.0K reduce Independent C-SRAM (NVM 1)

darknet

5.21 512.0K 2.0K Row buffer (NVM 2)

5.92 8.0M 4.0K Page Transfer (NVM 1)

29.75 512.0K 2.0K Independent C-SRAM (NVM 1)

114

Conclusion
Ah ça y est. Je viens de comprendre à
quoi ça sert la canne. En fait ça sert
à rien [...] Du coup, ça nous renvoie à
notre propre utilité : l’Homme, face à
l’absurde.

We are all apprentices in a craft where
no one ever becomes a master.

— Perceval IN Kaamelott BOOK IV, EPI-
SODE 95, « L’Inspiration »

— Ernest Hemingway

We have shown that current technology trends are facing a soon to come dead end
with the end of technology scaling for conventional CMOS. Several other problems
arise. First, power density keeps increasing since the end of Dennard’s law which cause
issues with heat dissipation. It also gave birth to dark silicon phenomenon where a
circuit cannot be fully powered permanently. One of the most visible consequence
is the halt of clock increase in 2005 as circuits could not be cooled down enough.
Secondly, the increasing demand for more computing power has led to several hard-
ware innovations. When clock could not be further accelerated, multicore Central
Processing Unit (CPU) architecture were introduced and today’s chip can reach tens
of cores in a single CPU. Single Instruction Multiple Data (SIMD) have followed to
answer the rising need for processing performance with up to 512 bits architecture
for faster vector processing. Branch predictors, memory prefetching and speculative
execution are all hardware improvements to fasten processing speed. However, this
perpetual race for performances lead to a diminution of hardware security with several
hardware vulnerability such as Spectre and Meltdown. Finally, memory performances,
mainly Dynamic Random Access Memory (DRAM), disks and Flash, did not scale
proportionately. While CPU performances were multiplied by 1000, DRAM speed
was only increased by a factor 10. This stretch of performance is called the memory
wall as it is a performance wall that no CPU can go beyond, regardless of the number
of cores, prefetchers or other methods to speed up processing. A linked issue is the
von Neumann bottleneck as all the data needs to go from a wide row in memory
into scalar registers in CPU. To reduce the performance gap between memory and
processors, caches were extended and deepened, going from a single cache to 3 levels
of cache memory in modern CPUs. They are based on spatial and temporal locality to
cache neighbouring data that is likely to be used or reused soon. But the downside is
that data now needs to traverse several cache levels before arriving to the processing
unit and likewise for being written back into memory. This is worsened by coarse
data transfer in caches, typically 64 bytes are transferred, even if only a single byte
is used. As a consequence, data access is the leading cost in CPUs, being hundreds
times more expensive than computation itself. Similarly, time needed for these data
movement are rising up. It should be noted that, on average, memory represents
between 50 % and 80 % of a system’s overall energy budget. Although memory wall has

115

Conclusion

existed since 40 years, new memory technologies have been forecast to reduce this gap.
Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) are recent DRAM
technologies that manifolded bandwidth by using larger bus width and exploiting
3D stacking. Despite largely improving bandwidth, von Neumann bottleneck still re-
mains as the architecture stayed identical and being compute centric rather than data
centric. Furthermore, the dynamic nature of DRAM is not eliminated and is one of
the major energy consumer. New emerging Non Volatile Memory (NVM) technologies
can partially solve this problem but a global solution demands a paradigm shift to
data centric architecture. To this end, In-Memory Computing (IMC) is a promising
solution as it can, if not completely, greatly reduce data movement in the architecture,
and if used with NVMs, it will also cut down energy consumption. Moreover, NVMs
have promising performances in both energy and timing access costs, intermediate to
Static Random Access Memory (SRAM) and DRAM which may enable us to remove
some memories from the memory hierarchy, including DRAM and perhaps level 3
cache at least.

State of the art study reveal plethora of methods and technics to implement IMC
based solution in all memory technologies and at every level of the memory hierarchy.
We can classify them in different categories depending on where the computing takes
place, whether inside the bitcell array at the analog level, or after the Sense Amplifiers
(SAs) in the digital domain or a mix of both. SRAM based solutions rely on both
type of memory computing: IMC and Near-Memory Computing (NMC). We make
the distinction between standard 6T bitcell that is widely used in the industry and
modified bitcells (8T, 9T, 10T, etc.) that are specifically designed for IMC. Proposed
solutions are mostly targeted at specific applications, especially Artificial Intelligence
(AI) based applications (deep learning), with only one general purpose solution. Yet by
using SRAM memories, these solutions places themselves at the bottom of the memory
hierarchy, i.e. close to the CPU, or target edge devices with flat memory hierarchy. As
such, they do not address the data movements through the memory hierarchy and
also expose low improvements against their baseline. Moving on to DRAM memory,
we present multiple solutions ranging from true IMC to Processing In Memory (PIM)
where computing is completely outside the memory circuit. Nonetheless, most papers
are simulation only and as far as I know, there are only 3 demonstrated solutions
including an already commercialized one. As DRAM uses a different foundry process
than conventional CMOS, it is harder to integrate potential solutions. Moreover, DRAM
read is destructive which incurs additional data copy before performing operation. Yet,
DRAM is one of the biggest energy consumer in data centers and consumer devices.
Computing inside this technology only solve partially the von Neumann bottleneck,
as the data is often not originating from this memory.

Getting to NAND Flash which is the most common purely electrical NVM, i.e. with
no moving part contrary to Hard Disk Drives (HDDs) and tapes. Most designs focus
on Matrix Vector Multiplication (MVM) using current summation as analog mean of
computing which is too restrictive. Moreover, the limited NAND Flash endurance is
not regarded as a problem. However, its high density can make NAND Flash memory

116

Conclusion

computing an interesting solution for edge devices using large neural networks. Resis-
tive Random Access Memory (RRAM) offers the most promising integration along with
IMC as bitcells are disposed appropriately to create logic functions. Crossbar array
structure also is the most dense memory implementation (excluding 3D technologies).
As all resistive memory technology, numerous solutions use MVM current summation
implementation. Despite having some of the most impressive metrics such as energy
efficiency up to 700 TOPS/W, it is limited to low precision, typically binary and up to 8
bits, and suffers from analog computing with intrinsic device variability. The same
observation applies for Phase Change Memory (PCM) and Magnetic Random Access
Memory (MRAM) except that IMC integration is complicated by incompatible foundry
process to make these memories. PCM has the highest on-off ratio of NVMs and
easily supports multilevel bitcells while MRAM, due to its binary orientation nature, is
limited to single level cell.

Finally, we studied some generic works that apply to all kinds of memory using
only a common property, namely resistive memories. Other works tried to combine
multiple memories to get the best of both worlds. We also made a small overview of
programming models, Instruction Set Architecture (ISA) and listed the limitations and
constraints still faced by IMC: complex hardware implementation, analog computing
with low precision, limited endurance of emerging NVMs, application specific (mostly
deep learning) solution lacking generality and few architectural studies. That is why
we believe a digital wrapper around any NVM will achieve the best performances and
save endurance by using small SRAM buffers to perform computation and serve as
a write buffer. Digital wrapper grants more flexibility and uses conventional CMOS
operators which are less limited in terms of precision. It also offers the generality
required for computing systems and is not subject to analog noise.

As presented in Chapter 2, analog computing is not general purpose and is subject
to noise from device variations and thermal effects. The use of modified bitcell in
SRAM to provide isolation between bitlines and bitcells when computing is counter-
productive. First, the precomputed operations can easily be done with a couple of
transistors in the digital domain, and the cost of multiple wordlines activation requires
row decoder modification whose area cost exceeds the few spared gates. Second, non
standard bitcells are designed with logic rules, i.e. with less strict design rules leading
to less dense memory. Design validation costs must also be taken into account to
make sure the designed bitcell works properly in a wide range of situation (low/high
temperature, low/high voltage, etc.). Computing in the NVM would wear it down in a
few days due to its limited endurance. Moreover, it may have fast memory access, but
its energy access cost still surpasses SRAM’s one. Thus, we decide to design a SRAM
based digital wrapper to be placed around NVM to kill two birds with one stone. On
one hand, we get the benefits of high density NVM and non volatility. On the other
hand, we have unlimited SRAM endurance and fast memory access for enhanced
computing performances.

Our wrapper is designed as a vector computation unit with its own pipeline and
decode unit. It receives instruction from the CPU and executes them on the fly. To

117

Conclusion

reduce hardware complexity, we do not handle pipeline hazards such as Read After
Write (RAW) or Write After Write (WAW) and leave it to the compiler or the developer.
The Arithmetic & Logical Unit (ALU) supports bitwise logic operations, shifts and
arithmetic operations: addition, subtraction, multiplication and comparison. The
shifts, addition and subtraction can be of any 8, 16 or 32 bits while the multiplication
is only 8 bits in our proof of concept. Only integer arithmetic is supported, but fixed
point is easily implemented using shift operations. In order to minimize silicon area,
operators are muxed so that only a 64-bit adder is instantiated and bit tricks are used
to mimic narrower width. An ISA is designed inspired by RISC-V and bit placements
are chosen to minimize muxes in decode stage. The wrapper receives instruction on
both address and data buses and the address MSB determines if it is a normal memory
operation or an IMC operation (memory mapped peripheral).

I carry an exploration work using standard design and simulation tools on multiple
SRAM types with different number of ports: 1RW, 1R1W, 1R1RW and 2RW. We use a
22 nm node from GlobalFoundries. I show that the area overhead of our solution is
limited to 5 % for 256 kB memory which is acceptable while the power overhead is
about 20 % for the same memory; it is more expensive but adding functionality, in this
case computing, always comes at a cost. I demonstrate that 1R1W memory types have
the best EDP, being at least twice better than 2RW and 4× better than 1RW memories.
In terms of energy efficiency, our design achieves 2 TOPS/W with a 2 kB 1R1W memory
which is lower than state of the art solutions. However, this result must be tempered
as state of the art is often measured on MAC operation, where the multiplication is
single bit while ours is 8-bit. Using logic decomposition of 8-bit multiplication into
1-bit operation, we obtain a factor of 400 which puts us at the top. Operation density is
around 100 GOPS/mm2 which is the average in the state of the art, and once again set
our design above most state of the art solutions with the correction factor. This proves
that our proposed solution offers diversity in terms of memory types and sizes, while
providing efficient and general purpose designs. Our digital wrapper, that we name
C-SRAM, can be furthermore customized by easily removing or adding operators as
our RTL workflow provides fast prototyping.

In Chapter 4, I present the benchmarks we use and the platform I develop to explore
various architectures with our digital wrapper. We target big data applications as those
are the one pressurising the memory systems and demanding the most performances
out of computers. We consider several linear benchmarks, namely hamming weight
used in information theory, shift-or used in bioengineering for protein pattern match-
ing and AXPY, a classic Basic Linear Algebra Subprograms (BLAS) kernel. The first
two are compute bound, i.e. they are limited by the computing speed of the CPU
while the last one is memory bound, i.e. limited by the memory bandwidth. Next, we
have two quadratic benchmarks which are, atax used in linear solvers and gesummv
a general case of MVM used in image processing and deep learning. Finally, we pick
a cubic benchmark, gemm, a matrix multiplication kernel that is widely spread in
numerous applications: AI with deep learning and neural networks, image processing,
scientific simulation, etc. We also select a real case application, darknet a neural

118

Conclusion

network implementation using 3 of the previous kernels: gemm, gesummv and AXPY.
Before exploring the integration of our digital wrapper in a complete architecture,

I develop a simulation platform suited to our needs. First, I explain why I do not
use state of the art proposed simulators such as gem5. Indeed, it is one of the most
used system simulator in system architecture research yet suffers from numerous
flaws. We are especially interested in the memory subsystem but it is known to be
inaccurate. As we are prototyping new architectures, we cannot use performance
counters available in most CPUs as they cannot count not yet existing events and are
inaccurate for memory events beyond L2. Then, I present hardware model tools that
I use to simulate the different stages of the memory hierarchy and retrieve accurate
energy and timing measurements. I choose to use NVSim to model the NVM but also
the cache hierarchy as it is based on Cacti which is the reference on that matter. It also
gives less absurd results than the latter. We decide to use PCM as our Storage Class
Memory (SCM) since it is the most mature technology in that matter with already
existing commercial devices. Technology parameters for the PCM are extracted from
state of the art papers to be as realistic as possible. The DRAM is modelled using
VAMPIRE, a tool that is calibrated on real measurements of commercial devices. I
also considered other tools but picked up this one as it is the most recent of all and its
methodology seemed the most robust. Finally, C-SRAM parameters are taken from my
previous study in Chapter 3 and are extended for bigger and wider memories using
tiling pattern calibrated from a team previous work.

To develop our exploration platform, I use Pin, a tool that allows to instrument any
CPU instruction and in our case, every memory access. This includes all instructions
as each instruction is loaded from memory. As an instrumentation tool, it has a
low overhead penalty, i.e. around 100× compared to full simulators or emulators
which can be a million times slower than real time execution. Since we target big
data applications with huge datasets, simulation speed is an important metric in our
choice. A software interface is designed to be compatible with our presented ISA in
Chapter 3. This ISA is however extended to support 64 bits address mode instead
of 32 bits. Then, I model a 3 levels cache hierarchy, a DRAM, our C-SRAM behavior
and a top level SCM. The first version of the platform models an enforced coherency,
where computing in the C-SRAM updates the value in the caches and reciprocally, but
that cost is not accounted for in the memory statistics. Moreover, all SCM accesses
are not counted as swapping is not tracked. Memory initialization is always coming
from the SCM which is not the case with growing stack or heap. This first version
led to a publication in DATE21 [212]. A second version refines these aspects to be
more accurate. It handles system call that accesses file system to monitor those and
count them in the global energy and timing bill. Memory allocation is correctly traced
so that useless data copy from SCM to DRAM is removed. Pages are now tracked to
account for swapping when DRAM is full, saved into the SCM and loaded back when
data is needed. Finally, I switch from an hardware enforced coherency to a software
coherency approach and adds adequate memory management functions to our ISA.

I then perform a validation step to ensure that our model accurately represents the
reality. I compare the number of cache accesses of our platforms with performance

119

Conclusion

counter for caches hierarchy on a real architecture with the same parameters. Our
modelling is accurate and the bigger the dataset, the more accurate we are. Some
events seem as incorrectly modelled but it is because of their scarcity so that a small
variation leads to huge ratio. Nonetheless, these rare events are hidden by the billions
of other correctly counted events. I confront different DRAM simulators’ results and
show that the power and timings each span over 5 orders of magnitude. This proves
how hard it is to accurately model DRAM. Using a fixed access cost, we got the most
accurate timing compared to other simulators using real time execution as reference.
Nevertheless, energy estimation shows more variations and is not referenced with a
real measurement as it requires complex set up. To better assess, I plot DRAM power
computed as energy divided by time and show that some simulators give a power
superior to 1 kW which is ridiculous. Our platform yields power in the range 1–10 W
but do have some outliers with an estimated power of 50 W.

Now that we have designed our digital wrapper and developed a simulation platform,
we can put them both together to start exploring new computing architectures. As we
have shown in the state of the art, computing close to the CPU yields low ameliorations
while computing higher in the memory hierarchy, like DRAM or NVM has much more
room for improvements. Using the listed benchmarks in Chapter 4 and the defined
methodology, we explore four different architectures where computing takes place
either in the repurposed row-buffer of the memory or our C-SRAM is placed in between
the lower rank memory (DRAM or L3 cache) and the targeted memory (respectively
SCM or DRAM) as an independent circuit. The reference baseline is a 512-bit SIMD
CPU with a 3 levels cache hierarchy which is the de facto standard in High Performance
Computing (HPC) nowadays. Follow a small DRAM that is voluntarily of reduced size
so that datasets do not hold all together in it, similar to modern big data applications.
At the top is a SCM of type PCM that contains all the data required for the application
to run correctly. The basic idea of computing close to the SCM is that this is where
data is, whether the closest or originates from or both. Indeed, massive datasets such
as neural networks weights and images databases are saved on permanent storage, so
the cost of loading these data from SCM must be taken into account.

In the first two architectures where the C-SRAM is either a C-RB in the SCM or
between the DRAM and the SCM, we severely reduce both energy consumption and
execution time, up to in average 17.4× and 12.9× respectively. First, we note that
all benchmarks have a significant energy reduction and speedup in our exploration
space, and that a C-SRAM between 128 kB and 512 kB is the optimal size. Secondly,
we distinguish different improvement patterns based on the benchmarks behaviors.
We make the following observations:

• Linear benchmarks benefits from wider computing vectors as there are no de-
pendencies between loop iterations. We achieve a 50× energy reduction and
speedup up to 38× for shift-or and 17× for hamming weight. For AXPY, we re-
mark that the improvements are much lower, between 2× and 3× for both energy
reduction and speedup. This is due to write intensive SCM accesses which limit
the maximum improvements.

120

Conclusion

• Quadratic benchmarks show less impressive improvements but still interest-
ing with energy reduction and speedup around 15× for atax, and 25× and 12×
respectively for gesummv. More complex access behaviors and data reuse ex-
plain the differences with linear benchmarks. Moreover, bigger vector does not
enhance improvements due to data reduction operations that cannot be per-
formed by the C-SRAM. A variation where this reduction is done in place shows
no significant improvements (<1 %).

• Cubic benchmarks such as gemm have the best improvements of all, with energy
reduction toping up at 403× and speedup reaching 272×. However, this is just a
kernel and a real life application such as darknet shows way less enhancement,
around 5× energy reduction and 6× speedup due to Amdahl’s law.

Finally, we show that SCM accesses remains constants for both reads and writes,
compared to the reference so that our solution does not reduce SCM lifetime.

In the second cases where computing takes place near DRAM, the gains are much
more limited or even negative as DRAM accesses are not reduced at all and still
represents up to 80 % of overall energy consumption, yielding in consequence very
little energy reduction and speedup.

Perspectives and future works
I have shown that computing at the top of the memory hierarchy is the best place to
integrate memory computing, whatever memory technology is used for SCM. IMC so-
lutions family can yield large improvements in a wide range of applications including
linear algebra, deep learning, databases, etc. Nonetheless, some works still need to be
carried on. First of all, a real life demonstration would confirm our results but that
would require huge work in both hardware and software level. Our designed ISA would
need hardware implementation in a RISC-V CPU, but the toughest part is probably
the bus integration above DRAM to communicate with the C-SRAM. Although I have
demonstrated reduced energy consumption, I have not considered instant power
which is probably spiking when performing operation on large vectors. This in turns
may pose problems for the underlying memory if our C-SRAM heats too much. At
the software level, programming model still needs to change paradigm from compute
centric to data centric. Special instructions for finer data movement in a distributed
computing architecture can also be explored. Enhanced security claims are still to be
verified as well.

On a final note, I would like to warn about the undesired effects of our proposed
C-SRAM solution. Reducing energy consumption is of course a noble cause. But it
will probably not reduce the energy consumption of data centers or devices as long
as the energy budget remains stable. As such, all the saved energy will be spent in
hundreds or thousands of more computing devices to keep the growth of computing
performances. This is the rebound effect.

121

Bibliography
[1] Gordon E Moore. “Cramming more components onto integrated circuits”. In:

Electronics 38.8 (1965), p. 4 (cit. on p. 3).

[2] Jan Rabaey. Low Power Design Essentials. Integrated Circuits and Systems.
Boston, MA: Springer US, 2009. ISBN: 978-0-387-71712-8. DOI: 10.1007/978-
0-387-71713-5 (cit. on p. 4).

[3] Nam Sung Kim et al. “Leakage current: Moore’s law meets static power”. In:
Computer 36.12 (2003-12), pp. 68–75. ISSN: 0018-9162. DOI: 10.1109/MC.200
3.1250885 (cit. on p. 4).

[4] Stephen W. Keckler et al. “GPUs and the Future of Parallel Computing”. In: IEEE
Micro 31.5 (2011-09), pp. 7–17. ISSN: 0272-1732. DOI: 10.1109/MM.2011.89
(cit. on p. 4).

[5] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physi-
cal dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974-10), pp. 256–
268. ISSN: 1558-173X. DOI: 10.1109/JSSC.1974.1050511 (cit. on p. 4).

[6] Anja Bog. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software”. en. In: Dr. Dobb’s Journal (2005-03), p. 8 (cit. on p. 5).

[7] Andrew Danowitz et al. “CPU DB: recording microprocessor history”. In: Com-
munications of the ACM 55.4 (2012-04-01), pp. 55–63. ISSN: 0001-0782. DOI:
10.1145/2133806.2133822. URL: http://cpudb.stanford.edu (cit. on
p. 5).

[8] AMD Ryzen™ Threadripper™ 3990X Processor. URL: https://www.amd.c
om/en/products/cpu/amd-ryzen-threadripper-3990x (visited on
2022-07-13) (cit. on p. 5).

[9] H. Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In:
2011 38th Annual International Symposium on Computer Architecture (ISCA).
2011-06, pp. 365–376 (cit. on p. 5).

[10] Xeon Silver 4116 - Intel - WikiChip. URL: https://en.wikichip.org/wiki
/intel/xeon_silver/4116 (visited on 2022-07-05) (cit. on p. 6).

[11] Chris Gregg and Kim Hazelwood. “Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer”. In: (IEEE ISPASS) IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software. 2011-04,
pp. 134–144. DOI: 10.1109/ISPASS.2011.5762730 (cit. on p. 6).

[12] June 2022 | TOP500. URL: https://www.top500.org/lists/top500/202
2/06/ (visited on 2022-07-13) (cit. on pp. 6, 8).

[13] Bill Dally. “To exascale and Beyond”. In: Supercomputing. 2010. URL: https:
//www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pd
f (visited on 2021-11-11) (cit. on p. 6).

122

https://doi.org/10.1007/978-0-387-71713-5
https://doi.org/10.1007/978-0-387-71713-5
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/2133806.2133822
http://cpudb.stanford.edu
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://en.wikichip.org/wiki/intel/xeon_silver/4116
https://en.wikichip.org/wiki/intel/xeon_silver/4116
https://doi.org/10.1109/ISPASS.2011.5762730
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf

Bibliography

[14] John L Hennessy. Computer Architecture: A Quantitative Approach (cit. on p. 7).

[15] Paul Kocher et al. “Spectre attacks: exploiting speculative execution”. In: Com-
munications of the ACM 63.7 (2020-06), pp. 93–101. ISSN: 0001-0782. DOI: 10
.1145/3399742 (cit. on p. 7).

[16] Hadi Esmaeilzadeh et al. “Looking back on the language and hardware rev-
olutions: measured power, performance, and scaling”. In: Proceedings of the
sixteenth international conference on Architectural support for programming
languages and operating systems. ASPLOS XVI. New York, NY, USA: Association
for Computing Machinery, 2011-03-05, pp. 319–332. ISBN: 978-1-4503-0266-1.
DOI: 10.1145/1950365.1950402 (cit. on p. 7).

[17] M. Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”.
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 2014-02, pp. 10–14. DOI: 10.1109/ISSCC.2014.6757323
(cit. on p. 8).

[18] Aurélie Villard, Alan Lelah, and Daniel Brissaud. “Drawing a chip environmen-
tal profile: environmental indicators for the semiconductor industry”. en. In:
Journal of Cleaner Production 86 (2015-01), pp. 98–109. ISSN: 0959-6526. DOI:
10.1016/j.jclepro.2014.08.061. (Visited on 2022-10-07) (cit. on p. 8).

[19] Valeria Bertacco. “Re-Imagining Scalable System Design”. In: 2018 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC). 2018
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC). 2018-10, pp. ix–xiii. DOI: 10.1109/VLSI-SoC.2018.8644750 (cit. on
p. 9).

[20] Hoan Nguyen et al. “A 7NM Double-Pumped 6R6W Register File for Machine
Learning Memory”. In: 2018 IEEE Symposium on VLSI Circuits. 2018 IEEE
Symposium on VLSI Circuits. 2018-06, pp. 1–2. DOI: 10.1109/VLSIC.2018.8
502393 (cit. on pp. 10, 49).

[21] Yoongu Kim et al. “Flipping bits in memory without accessing them: An experi-
mental study of DRAM disturbance errors”. In: 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). ISSN: 1063-6897. 2014-06,
pp. 361–372. DOI: 10.1109/ISCA.2014.6853210 (cit. on p. 12).

[22] Micron. 176-Layer NAND. en. 2022. URL: https://www.micron.com/produ
cts/nand-flash/176-layer-nand (visited on 2022-07-13) (cit. on pp. 13,
35).

[23] Lecture 21: Storage. URL: https://www.cs.utexas.edu/users/mckinley
/352/lectures/21.pdf (visited on 2022-07-13) (cit. on p. 15).

[24] IBM Makes Tape Storage Better Than Ever. IEEE Spectrum. 2020-12-17 (cit. on
p. 15).

[25] M. M. Sabry Aly et al. “Energy-Efficient Abundant-Data Computing: The N3XT
1,000x”. In: Computer 48.12 (2015-12), pp. 24–33. ISSN: 0018-9162. DOI: 10.11
09/MC.2015.376 (cit. on pp. 17, 27).

123

https://doi.org/10.1145/3399742
https://doi.org/10.1145/3399742
https://doi.org/10.1145/1950365.1950402
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1016/j.jclepro.2014.08.061
https://doi.org/10.1109/VLSI-SoC.2018.8644750
https://doi.org/10.1109/VLSIC.2018.8502393
https://doi.org/10.1109/VLSIC.2018.8502393
https://doi.org/10.1109/ISCA.2014.6853210
https://www.micron.com/products/nand-flash/176-layer-nand
https://www.micron.com/products/nand-flash/176-layer-nand
https://www.cs.utexas.edu/users/mckinley/352/lectures/21.pdf
https://www.cs.utexas.edu/users/mckinley/352/lectures/21.pdf
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1109/MC.2015.376

Bibliography

[26] SHARP KABUSHIKI KAISHA. EUIPO - eSearch. 2003. URL: https://euipo
.europa.eu/eSearch/#details/trademarks/003062791 (visited on
2022-09-06) (cit. on p. 18).

[27] Alexander Hankin et al. “Evaluation of Non-Volatile Memory Based Last Level
Cache Given Modern Use Case Behavior”. In: 2019 IEEE International Sym-
posium on Workload Characterization (IISWC). 2019-11, pp. 143–154. DOI:
10.1109/IISWC47752.2019.9042051 (cit. on p. 18).

[28] H.-S. Philip Wong et al. “Metal–Oxide RRAM”. In: Proceedings of the IEEE 100.6
(2012-06), pp. 1951–1970. ISSN: 1558-2256. DOI: 10.1109/JPROC.2012.2190
369 (cit. on pp. 19, 22).

[29] Yangyin Chen. “ReRAM: History, Status, and Future”. In: IEEE Transactions
on Electron Devices 67.4 (2020-04), pp. 1420–1433. ISSN: 0018-9383, 1557-9646.
DOI: 10.1109/TED.2019.2961505 (cit. on p. 19).

[30] Shimeng Yu and Pai-Yu Chen. “Emerging Memory Technologies: Recent Trends
and Prospects”. In: IEEE Solid-State Circuits Magazine 8.2 (2016), pp. 43–56.
ISSN: 1943-0590. DOI: 10.1109/MSSC.2016.2546199 (cit. on pp. 19–22).

[31] M. Ezzadeen et al. “Low-Overhead Implementation of Binarized Neural Net-
works Employing Robust 2T2R Resistive RAM Bridges”. In: ESSCIRC 2021 - IEEE
47th European Solid State Circuits Conference (ESSCIRC). 2021-09, pp. 83–86.
DOI: 10.1109/ESSCIRC53450.2021.9567742 (cit. on p. 19).

[32] Young-Bae Kim et al. “Bi-layered RRAM with unlimited endurance and ex-
tremely uniform switching”. In: 2011 Symposium on VLSI Technology - Digest
of Technical Papers. 2011-06, pp. 52–53 (cit. on p. 19).

[33] Y. S. Chen et al. “Highly scalable hafnium oxide memory with improvements of
resistive distribution and read disturb immunity”. In: 2009 IEEE International
Electron Devices Meeting (IEDM). 2009-12, pp. 1–4. DOI: 10.1109/IEDM.2009
.5424411 (cit. on p. 19).

[34] H.-S. Philip Wong et al. “Phase Change Memory”. In: Proceedings of the IEEE
98.12 (2010-12), pp. 2201–2227. ISSN: 1558-2256. DOI: 10.1109/JPROC.2010
.2070050 (cit. on pp. 20, 22).

[35] Moinuddin K. Qureshi et al. “Enhancing lifetime and security of PCM-based
Main Memory with Start-Gap Wear Leveling”. In: 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2009-12, pp. 14–23.
DOI: 10.1145/1669112.1669117 (cit. on pp. 20, 21).

[36] Andre Seznec. “A Phase Change Memory as a Secure Main Memory”. In: IEEE
Computer Architecture Letters 9.1 (2010-01), pp. 5–8. ISSN: 2473-2575. DOI:
10.1109/L-CA.2010.2 (cit. on pp. 20, 21).

[37] T. Nirschl et al. “Write Strategies for 2 and 4-bit Multi-Level Phase-Change Mem-
ory”. In: 2007 IEEE International Electron Devices Meeting. 2007-12, pp. 461–
464. DOI: 10.1109/IEDM.2007.4418973 (cit. on p. 20).

124

https://euipo.europa.eu/eSearch/#details/trademarks/003062791
https://euipo.europa.eu/eSearch/#details/trademarks/003062791
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/TED.2019.2961505
https://doi.org/10.1109/MSSC.2016.2546199
https://doi.org/10.1109/ESSCIRC53450.2021.9567742
https://doi.org/10.1109/IEDM.2009.5424411
https://doi.org/10.1109/IEDM.2009.5424411
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.1109/L-CA.2010.2
https://doi.org/10.1109/IEDM.2007.4418973

Bibliography

[38] Benjamin C. Lee et al. “Phase-Change Technology and the Future of Main
Memory”. In: IEEE Micro 30.1 (2010-01), pp. 143–143. ISSN: 1937-4143. DOI:
10.1109/MM.2010.24 (cit. on p. 21).

[39] Jaehyun Park, Donghwa Shin, and Hyung Gyu Lee. “Design space exploration
of row buffer architecture for phase change memory with LPDDR2-NVM inter-
face”. In: 2015 IFIP/IEEE International Conference on Very Large Scale Integra-
tion (VLSI-SoC). 2015-10, pp. 104–109. DOI: 10.1109/VLSI-SoC.2015.7314
400 (cit. on p. 21).

[40] Benjamin C. Lee et al. “Architecting phase change memory as a scalable dram
alternative”. In: Proceedings of the 36th annual international symposium on
Computer architecture. ISCA ’09. New York, NY, USA: Association for Comput-
ing Machinery, 2009-06, pp. 2–13. ISBN: 978-1-60558-526-0. DOI: 10.1145/15
55754.1555758 (cit. on p. 21).

[41] Yiming Huai et al. “High Density 3D Cross-Point STT-MRAM”. In: 2018 IEEE
International Memory Workshop (IMW). 2018-05, pp. 1–4. DOI: 10.1109/IMW.
2018.8388833 (cit. on pp. 21, 22).

[42] An Chen. “A review of emerging non-volatile memory (NVM) technologies and
applications”. en. In: Solid-State Electronics. Extended papers selected from
ESSDERC 2015 125 (2016-11), pp. 25–38. ISSN: 0038-1101. DOI: 10.1016/j.ss
e.2016.07.006 (cit. on pp. 21, 22).

[43] Sanjay Prajapati and Brajesh Kumar Kaushik. “Area and Energy Efficient Series
Multilevel Cell STT-MRAMs for Optimized Read–Write Operations”. In: IEEE
Transactions on Magnetics 55.1 (2019-01). Conference Name: IEEE Transactions
on Magnetics, pp. 1–10. ISSN: 1941-0069. DOI: 10.1109/TMAG.2018.2875885
(cit. on p. 22).

[44] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. “A Survey Of Architectural Ap-
proaches for Managing Embedded DRAM and Non-Volatile On-Chip Caches”.
In: IEEE Transactions on Parallel and Distributed Systems 26.6 (2015-06). ISSN:
2161-9883. DOI: 10.1109/TPDS.2014.2324563 (cit. on p. 22).

[45] Jalil Boukhobza et al. “Emerging NVM: A Survey on Architectural Integration
and Research Challenges”. In: ACM Transactions on Design Automation of
Electronic Systems 23 (2018-01). DOI: 10.1145/3131848 (cit. on p. 22).

[46] Gianlucca O. Puglia et al. “Non-Volatile Memory File Systems: A Survey”. In:
IEEE Access 7 (2019), pp. 25836–25871. ISSN: 2169-3536. DOI: 10.1109/ACCES
S.2019.2899463 (cit. on p. 22).

[47] Martin Hilbert and Priscila López. “The World’s Technological Capacity to Store,
Communicate, and Compute Information”. en. In: Science 332.6025 (2011-04),
pp. 60–65. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1200970
(cit. on p. 23).

125

https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1109/VLSI-SoC.2015.7314400
https://doi.org/10.1109/VLSI-SoC.2015.7314400
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1109/IMW.2018.8388833
https://doi.org/10.1109/IMW.2018.8388833
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1109/TMAG.2018.2875885
https://doi.org/10.1109/TPDS.2014.2324563
https://doi.org/10.1145/3131848
https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1126/science.1200970

Bibliography

[48] Data Durability, and Back-up at scale: A tale of "the Tape". en. URL: https://c
ommunity.ibm.com/community/user/storage/blogs/shawn-brume1
/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of
-the (visited on 2022-07-13) (cit. on pp. 23, 24).

[49] Jingcheng Wang et al. “A 28-nm Compute SRAM With Bit-Serial Logic/Arith-
metic Operations for Programmable In-Memory Vector Computing”. In: IEEE
Journal of Solid-State Circuits (2019-11), pp. 1–11. ISSN: 1558-173X. DOI: 10.11
09/JSSC.2019.2939682 (cit. on pp. 25, 31).

[50] W. H. Kautz. “Cellular Logic-in-Memory Arrays”. In: IEEE Transactions on
Computers C-18.8 (1969-08), pp. 719–727. ISSN: 0018-9340. DOI: 10.1109/T-
C.1969.222754 (cit. on p. 25).

[51] H. S. Stone. “A Logic-in-Memory Computer”. In: IEEE Transactions on Com-
puters C-19.1 (1970-01), pp. 73–78. ISSN: 0018-9340. DOI: 10.1109/TC.1970
.5008902 (cit. on p. 25).

[52] D. G. Elliott, W. M. Snelgrove, and M. Stumm. “Computational Ram: A Memory-
simd Hybrid And Its Application To Dsp”. In: 1992 Proceedings of the IEEE
Custom Integrated Circuits Conference. 1992 Proceedings of the IEEE Custom
Integrated Circuits Conference. 1992-05, pp. 30.6.1–30.6.4. DOI: 10.1109/CIC
C.1992.591879 (cit. on p. 25).

[53] Wm. A. Wulf and Sally A. McKee. “Hitting the memory wall: implications of
the obvious”. In: ACM SIGARCH Computer Architecture News 23.1 (1995-03),
pp. 20–24 (cit. on p. 25).

[54] M. Gokhale, B. Holmes, and K. Iobst. “Processing in memory: the Terasys
massively parallel PIM array”. In: Computer 28.4 (1995-04), pp. 23–31. ISSN:
0018-9162. DOI: 10.1109/2.375174 (cit. on p. 26).

[55] D. Patterson et al. “A case for intelligent RAM”. In: IEEE Micro 17.2 (1997-03),
pp. 34–44. ISSN: 0272-1732. DOI: 10.1109/40.592312 (cit. on p. 26).

[56] Yiran Chen. “Reshaping Future Computing Systems With Emerging Nonvolatile
Memory Technologies”. In: IEEE Micro 39.1 (2019-01), pp. 54–57. ISSN: 1937-
4143. DOI: 10.1109/MM.2018.2885588 (cit. on p. 26).

[57] Roman Gauchi. “Exploration of Reconfigurable Tiles of Computing-in-Memory
Architecture for Data-intensive Applications”. en. PhD thesis. Université Greno-
ble Alpes: Université Grenoble Alpes, 2021-03. URL: https://tel.archives
-ouvertes.fr/tel-03281795 (cit. on pp. 29, 52, 54, 72, 73, 79).

[58] K. C. Akyel et al. “DRC2: Dynamically Reconfigurable Computing Circuit based
on memory architecture”. In: 2016 IEEE International Conference on Rebooting
Computing (ICRC). 2016-10, pp. 1–8. DOI: 10.1109/ICRC.2016.7738698
(cit. on p. 31).

[59] S. Aga et al. “Compute Caches”. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 2017-02, pp. 481–492. DOI:
10.1109/HPCA.2017.21 (cit. on pp. 31–33, 39, 41, 44).

126

https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/T-C.1969.222754
https://doi.org/10.1109/T-C.1969.222754
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1109/CICC.1992.591879
https://doi.org/10.1109/CICC.1992.591879
https://doi.org/10.1109/2.375174
https://doi.org/10.1109/40.592312
https://doi.org/10.1109/MM.2018.2885588
https://tel.archives-ouvertes.fr/tel-03281795
https://tel.archives-ouvertes.fr/tel-03281795
https://doi.org/10.1109/ICRC.2016.7738698
https://doi.org/10.1109/HPCA.2017.21

Bibliography

[60] Jianmin Zeng et al. “DM-IMCA: A dual-mode in-memory computing architec-
ture for general purpose processing”. In: IEICE Electronics Express 17.4 (2020),
pp. 20200005–20200005. DOI: 10.1587/elex.17.20200005 (cit. on pp. 30,
44).

[61] R. Khaddam-Aljameh et al. “An SRAM-Based Multibit In-Memory Matrix-
Vector Multiplier With a Precision That Scales Linearly in Area, Time, and
Power”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
(2020), pp. 1–14. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2020.3037871 (cit.
on p. 31).

[62] H. Chen et al. “Configurable 8T SRAM for Enbling in-Memory Computing”.
In: 2019 2nd International Conference on Communication Engineering and
Technology (ICCET). 2019-04, pp. 139–142. DOI: 10.1109/ICCET.2019.8726
871 (cit. on p. 31).

[63] Zhiting Lin et al. “In-Memory Computing With Double Word Lines and Three
Read Ports for Four Operands”. In: IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 28.5 (2020-05), pp. 1316–1320. ISSN: 1557-9999. DOI:
10.1109/TVLSI.2020.2976099 (cit. on p. 31).

[64] A. Agrawal et al. “X-SRAM: Enabling In-Memory Boolean Computations in
CMOS Static Random Access Memories”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 65.12 (2018-12), pp. 4219–4232. ISSN: 1549-8328. DOI:
10.1109/TCSI.2018.2848999 (cit. on p. 31).

[65] C. Eckert et al. “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural
Networks”. In: 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). 2018-06, pp. 383–396. DOI: 10.1109/ISCA.2018.0
0040 (cit. on p. 31).

[66] Y. Zhang et al. “Recryptor: A reconfigurable in-memory cryptographic Cortex-
M0 processor for IoT”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C264–
C265. DOI: 10.23919/VLSIC.2017.8008501 (cit. on pp. 31, 42).

[67] Z. Jiang et al. “XNOR-SRAM: In-Memory Computing SRAM Macro for Bi-
nary/Ternary Deep Neural Networks”. In: 2018 IEEE Symposium on VLSI Tech-
nology. 2018-06, pp. 173–174. DOI: 10.1109/VLSIT.2018.8510687 (cit. on
pp. 31, 46, 60, 61).

[68] J. Wang et al. “A Compute SRAM with Bit-Serial Integer/Floating-Point Op-
erations for Programmable In-Memory Vector Acceleration”. In: 2019 IEEE
International Solid- State Circuits Conference - (ISSCC). San Francisco, USA,
2019-02, pp. 224–226. DOI: 10.1109/ISSCC.2019.8662419 (cit. on p. 31).

[69] D. Jeon et al. “A 23-mW Face Recognition Processor with Mostly-Read 5T
Memory in 40-nm CMOS”. In: IEEE Journal of Solid-State Circuits 52.6 (2017-
06), pp. 1628–1642. ISSN: 0018-9200. DOI: 10.1109/JSSC.2017.2661838
(cit. on p. 32).

127

https://doi.org/10.1587/elex.17.20200005
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.1109/ICCET.2019.8726871
https://doi.org/10.1109/ICCET.2019.8726871
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.23919/VLSIC.2017.8008501
https://doi.org/10.1109/VLSIT.2018.8510687
https://doi.org/10.1109/ISSCC.2019.8662419
https://doi.org/10.1109/JSSC.2017.2661838

Bibliography

[70] L. Fick et al. “Analog in-memory subthreshold deep neural network acceler-
ator”. In: 2017 IEEE Custom Integrated Circuits Conference (CICC). 2017-04,
pp. 1–4. DOI: 10.1109/CICC.2017.7993629 (cit. on p. 32).

[71] H. E. Sumbul et al. “A 2.9–33.0 TOPS/W Reconfigurable 1-D/2-D Compute-
Near-Memory Inference Accelerator in 10-nm FinFET CMOS”. In: IEEE Solid-
State Circuits Letters 3 (2020), pp. 118–121. ISSN: 2573-9603. DOI: 10.1109
/LSSC.2020.3007185 (cit. on p. 32).

[72] A. Biswas and A. P. Chandrakasan. “Conv-RAM: An energy-efficient SRAM
with embedded convolution computation for low-power CNN-based machine
learning applications”. In: 2018 IEEE International Solid - State Circuits Confer-
ence - (ISSCC). 2018-02, pp. 488–490. DOI: 10.1109/ISSCC.2018.8310397
(cit. on pp. 32, 46, 60, 61).

[73] J. Saikia et al. “K-Nearest Neighbor Hardware Accelerator Using In-Memory
Computing SRAM”. In: 2019 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). 2019-07, pp. 1–6. DOI: 10.1109/ISLPED.20
19.8824822 (cit. on p. 32).

[74] William Simon et al. “A Fast, Reliable and Wide-Voltage-Range In-Memory
Computing Architecture”. In: ACM, 2019-02, p. 83. ISBN: 978-1-4503-6725-7.
DOI: 10.1145/3316781.3317741 (cit. on p. 32).

[75] S. Srinivasa et al. “ROBIN: Monolithic-3D SRAM for Enhanced Robustness
with In-Memory Computation Support”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 66.7 (2019-07), pp. 2533–2545. ISSN: 1549-8328. DOI:
10.1109/TCSI.2019.2897497 (cit. on p. 32).

[76] Onur Mutlu et al. “Processing data where it makes sense: Enabling in-memory
computation”. In: Microprocessors and Microsystems 67 (2019-06), pp. 28–41.
ISSN: 0141-9331. DOI: 10.1016/j.micpro.2019.01.009 (cit. on p. 32).

[77] S. Jeloka et al. “A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using
Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. In: IEEE Journal of Solid-
State Circuits 51.4 (2016-04), pp. 1009–1021. ISSN: 0018-9200. DOI: 10.1109
/JSSC.2016.2515510 (cit. on p. 32).

[78] W. Khwa et al. “A 65nm 4Kb algorithm-dependent computing-in-memory
SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum
operation for binary DNN edge processors”. In: 2018 IEEE International Solid
- State Circuits Conference - (ISSCC). 2018-02, pp. 496–498. DOI: 10.1109
/ISSCC.2018.8310401 (cit. on pp. 32, 60, 61).

[79] Jinseok Kim et al. “Area-Efficient and Variation-Tolerant In-Memory BNN
Computing using 6T SRAM Array”. In: 2019 Symposium on VLSI Circuits. ISSN:
2158-5636. 2019-06, pp. C118–C119. DOI: 10.23919/VLSIC.2019.8778160
(cit. on p. 32).

128

https://doi.org/10.1109/CICC.2017.7993629
https://doi.org/10.1109/LSSC.2020.3007185
https://doi.org/10.1109/LSSC.2020.3007185
https://doi.org/10.1109/ISSCC.2018.8310397
https://doi.org/10.1109/ISLPED.2019.8824822
https://doi.org/10.1109/ISLPED.2019.8824822
https://doi.org/10.1145/3316781.3317741
https://doi.org/10.1109/TCSI.2019.2897497
https://doi.org/10.1016/j.micpro.2019.01.009
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.23919/VLSIC.2019.8778160

Bibliography

[80] J. Zhang, Z. Wang, and N. Verma. “In-Memory Computation of a Machine-
Learning Classifier in a Standard 6T SRAM Array”. In: IEEE Journal of Solid-State
Circuits 52.4 (2017-04), pp. 915–924. ISSN: 0018-9200. DOI: 10.1109/JSSC.20
16.2642198 (cit. on pp. 33, 60, 61).

[81] K. Ando et al. “BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse bi-
nary/ternary reconfigurable in-memory deep neural network accelerator in 65
nm CMOS”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C24–C25. DOI:
10.23919/VLSIC.2017.8008533 (cit. on pp. 33, 60, 61).

[82] M. Kang, S. K. Gonugondla, and N. R. Shanbhag. “A 19.4 nJ/decision 364K
decisions/s in-memory random forest classifier in 6T SRAM array”. In: ESSCIRC
2017 - 43rd IEEE European Solid State Circuits Conference. 2017-09, pp. 263–266.
DOI: 10.1109/ESSCIRC.2017.8094576 (cit. on p. 33).

[83] Jian-Wei Su et al. “15.2 A 28nm 64Kb Inference-Training Two-Way Transpose
Multibit 6T SRAM Compute-in-Memory Macro for AI Edge Chips”. In: 2020
IEEE International Solid- State Circuits Conference - (ISSCC). 2020-02, pp. 240–
242. DOI: 10.1109/ISSCC19947.2020.9062949 (cit. on p. 33).

[84] Vivek Seshadri et al. “RowClone: fast and energy-efficient in-DRAM bulk data
copy and initialization”. In: Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO-46. New York, NY, USA:
Association for Computing Machinery, 2013-12, pp. 185–197. ISBN: 978-1-4503-
2638-4. DOI: 10.1145/2540708.2540725 (cit. on pp. 33, 76).

[85] Dongping Zhang et al. “TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory”. In: Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing. HPDC ’14. New York,
NY, USA: ACM, 2014, pp. 85–98. ISBN: 978-1-4503-2749-7. DOI: 10.1145/2600
212.2600213 (cit. on p. 33).

[86] Vivek Seshadri et al. “Ambit: In-memory Accelerator for Bulk Bitwise Opera-
tions Using Commodity DRAM Technology”. In: Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO-50 ’17. New
York, NY, USA: ACM, 2017, pp. 273–287. ISBN: 978-1-4503-4952-9. DOI: 10.114
5/3123939.3124544 (cit. on pp. 33, 34).

[87] Amirali Boroumand et al. “Google Workloads for Consumer Devices: Miti-
gating Data Movement Bottlenecks”. en. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems - ASPLOS ’18. Williamsburg, VA, USA: ACM Press, 2018,
pp. 316–331. ISBN: 978-1-4503-4911-6. DOI: 10.1145/3173162.3173177
(cit. on pp. 33, 35).

[88] Thomas Vogelsang. “Understanding the Energy Consumption of Dynamic
Random Access Memories”. In: 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. 2010-12, pp. 363–374. DOI: 10.1109/MICRO.
2010.42 (cit. on pp. 33, 35).

129

https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.23919/VLSIC.2017.8008533
https://doi.org/10.1109/ESSCIRC.2017.8094576
https://doi.org/10.1109/ISSCC19947.2020.9062949
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1109/MICRO.2010.42
https://doi.org/10.1109/MICRO.2010.42

Bibliography

[89] Vasileios Zois et al. “Massively Parallel Skyline Computation for Processing-in-
memory Architectures”. In: Proceedings of the 27th International Conference
on Parallel Architectures and Compilation Techniques. PACT ’18. New York, NY,
USA: ACM, 2018, 1:1–1:12. ISBN: 978-1-4503-5986-3. DOI: 10.1145/3243176
.3243187 (cit. on p. 34).

[90] Dominique Lavenier et al. BLAST on UPMEM. Research Report RR-8878. INRIA
Rennes - Bretagne Atlantique, 2016-03, p. 20. URL: https://hal.archives-
ouvertes.fr/hal-01294345 (visited on 2019-02-08) (cit. on p. 34).

[91] Mingxuan He et al. “Newton: A DRAM-maker’s Accelerator-in-Memory (AiM)
Architecture for Machine Learning”. In: 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2020-10, pp. 372–385. DOI:
10.1109/MICRO50266.2020.00040 (cit. on p. 34).

[92] Shaahin Angizi and Deliang Fan. “GraphiDe: A Graph Processing Accelerator
leveraging In-DRAM-Computing”. In: Proceedings of the 2019 on Great Lakes
Symposium on VLSI. GLSVLSI ’19. New York, NY, USA: Association for Comput-
ing Machinery, 2019-05, pp. 45–50. ISBN: 978-1-4503-6252-8. DOI: 10.1145/3
299874.3317984 (cit. on p. 34).

[93] Shuangchen Li et al. “SCOPE: A Stochastic Computing Engine for DRAM-Based
In-Situ Accelerator”. In: 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 2018-10, pp. 696–709. DOI: 10.1109/MICRO.2
018.00062 (cit. on p. 34).

[94] UPMEM. 2017. URL: http://www.upmem.com/ (visited on 2017-10-23) (cit.
on p. 34).

[95] Fabrice Devaux and Jean-François Roy. “Memory circuit with integrated pro-
cessor”. en. US10324870B2. 2019-06 (cit. on p. 34).

[96] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMs”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019-10, pp. 100–
113. ISBN: 978-1-4503-6938-1. DOI: 10.1145/3352460.3358260 (cit. on
p. 34).

[97] Shanshan Xie et al. “16.2 eDRAM-CIM: Compute-In-Memory Design with
Reconfigurable Embedded-Dynamic-Memory Array Realizing Adaptive Data
Converters and Charge-Domain Computing”. In: 2021 IEEE International Solid-
State Circuits Conference (ISSCC). Vol. 64. 2021-02, pp. 248–250. DOI: 10.1109
/ISSCC42613.2021.9365932 (cit. on p. 34).

[98] Samsung. PIM | Technology. en. 2021. URL: https://semiconductor.sams
ung.com/content/semiconductor/global/insights/technology/p
im.html (visited on 2022-08-06) (cit. on p. 35).

130

https://doi.org/10.1145/3243176.3243187
https://doi.org/10.1145/3243176.3243187
https://hal.archives-ouvertes.fr/hal-01294345
https://hal.archives-ouvertes.fr/hal-01294345
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1145/3299874.3317984
https://doi.org/10.1145/3299874.3317984
https://doi.org/10.1109/MICRO.2018.00062
https://doi.org/10.1109/MICRO.2018.00062
http://www.upmem.com/
https://patents.google.com/patent/US10324870B2/en
https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1109/ISSCC42613.2021.9365932
https://doi.org/10.1109/ISSCC42613.2021.9365932
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html

Bibliography

[99] Samsung. Samsung Brings In-Memory Processing Power to Wider Range of
Applications. en. 2021. URL: https://news.samsung.com/global/samsu
ng-brings-in-memory-processing-power-to-wider-range-of-app
lications (visited on 2022-08-06) (cit. on p. 35).

[100] Peng Li, Kevin Gomez, and David J. Lilja. “Exploiting free silicon for energy-
efficient computing directly in NAND flash-based solid-state storage systems”.
In: 2013 IEEE High Performance Extreme Computing Conference (HPEC). 2013-
09, pp. 1–6. DOI: 10.1109/HPEC.2013.6670317 (cit. on pp. 35, 36).

[101] Panni Wang et al. “Three-Dimensional nand Flash for Vector–Matrix Multipli-
cation”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27.4 (2019-04), pp. 988–991. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2018.28
82194 (cit. on p. 35).

[102] Hang-Ting Lue et al. “Optimal Design Methods to Transform 3D NAND Flash
into a High-Density, High-Bandwidth and Low-Power Nonvolatile Computing
in Memory (nvCIM) Accelerator for Deep-Learning Neural Networks (DNN)”.
In: 2019 IEEE International Electron Devices Meeting (IEDM). 2019-12. DOI:
10.1109/IEDM19573.2019.8993652 (cit. on p. 35).

[103] Wonbo Shim and Shimeng Yu. “Technological Design of 3D NAND-Based
Compute-in-Memory Architecture for GB-Scale Deep Neural Network”. In:
IEEE Electron Device Letters 42.2 (2021-02), pp. 160–163. ISSN: 1558-0563. DOI:
10.1109/LED.2020.3048101 (cit. on pp. 35, 92).

[104] Won Ho Choi et al. “An In-Flash Binary Neural Network Accelerator with SLC
NAND Flash Array”. In: 2020 IEEE International Symposium on Circuits and
Systems (ISCAS). 2020-10, pp. 1–5. DOI: 10.1109/ISCAS45731.2020.91809
20 (cit. on p. 36).

[105] Wen Zhou et al. “Temporal Correlation Detection Based on 3D NAND Flash In-
Memory Computing”. In: IEEE Electron Device Letters 43.6 (2022-06), pp. 874–
877. ISSN: 1558-0563. DOI: 10.1109/LED.2022.3170593 (cit. on p. 36).

[106] Minsu Kim et al. “An Embedded nand Flash-Based Compute-In-Memory Array
Demonstrated in a Standard Logic Process”. In: IEEE Journal of Solid-State
Circuits 57.2 (2022-02), pp. 625–638. ISSN: 1558-173X. DOI: 10.1109/JSSC.20
21.3098671 (cit. on p. 36).

[107] Samsung. Smart SSD | SSD Card. en. 2020. URL: https://semiconductor.s
amsung.com/content/semiconductor/global/ssd/smart-ssd.html
(visited on 2022-08-09) (cit. on p. 36).

[108] S. Kvatinsky et al. “Memristor-Based Material Implication (IMPLY) Logic: De-
sign Principles and Methodologies”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22.10 (2014-10), pp. 2054–2066. ISSN: 1063-8210.
DOI: 10.1109/TVLSI.2013.2282132 (cit. on pp. 36, 37, 92).

131

https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://doi.org/10.1109/HPEC.2013.6670317
https://doi.org/10.1109/TVLSI.2018.2882194
https://doi.org/10.1109/TVLSI.2018.2882194
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/LED.2020.3048101
https://doi.org/10.1109/ISCAS45731.2020.9180920
https://doi.org/10.1109/ISCAS45731.2020.9180920
https://doi.org/10.1109/LED.2022.3170593
https://doi.org/10.1109/JSSC.2021.3098671
https://doi.org/10.1109/JSSC.2021.3098671
https://semiconductor.samsung.com/content/semiconductor/global/ssd/smart-ssd.html
https://semiconductor.samsung.com/content/semiconductor/global/ssd/smart-ssd.html
https://doi.org/10.1109/TVLSI.2013.2282132

Bibliography

[109] S. Kvatinsky et al. “MAGIC—Memristor-Aided Logic”. In: IEEE Transactions
on Circuits and Systems II: Express Briefs 61.11 (2014-11), pp. 895–899. ISSN:
1549-7747. DOI: 10.1109/TCSII.2014.2357292 (cit. on pp. 36, 37).

[110] N. Talati et al. “Practical challenges in delivering the promises of real process-
ing-in-memory machines”. In: 2018 Design, Automation Test in Europe Confer-
ence Exhibition (DATE). 2018-03, pp. 1628–1633. DOI: 10.23919/DATE.2018
.8342275 (cit. on pp. 37, 43).

[111] A. Haj-Ali et al. “Not in Name Alone: A Memristive Memory Processing Unit
for Real In-Memory Processing”. In: IEEE Micro 38.5 (2018-09), pp. 13–21. ISSN:
0272-1732. DOI: 10.1109/MM.2018.053631137 (cit. on p. 37).

[112] A. Haj-Ali et al. “Efficient Algorithms for In-Memory Fixed Point Multiplication
Using MAGIC”. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). 2018-05, pp. 1–5. DOI: 10.1109/ISCAS.2018.8351561 (cit. on
p. 37).

[113] R. Ben Hur et al. “Simple magic: Synthesis and in-memory Mapping of logic
execution for memristor-aided logic”. In: 2017 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD). 2017-11, pp. 225–232. DOI: 10.1109
/ICCAD.2017.8203782 (cit. on p. 37).

[114] P. Gaillardon et al. “The Programmable Logic-in-Memory (PLiM) computer”. In:
2016 Design, Automation Test in Europe Conference Exhibition (DATE). 2016-03,
pp. 427–432. ISBN: 978-3-9815-3707-9 (cit. on p. 37).

[115] M. Abu Lebdeh et al. “An Efficient Heterogeneous Memristive xnor for In-
Memory Computing”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 64.9 (2017-09), pp. 2427–2437. ISSN: 1549-8328. DOI: 10.1109/TCSI.2
017.2706299 (cit. on p. 37).

[116] João Vieira et al. “A Product Engine for Energy-Efficient Execution of Binary
Neural Networks Using Resistive Memories”. In: 2019 IFIP/IEEE 27th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC). 2019-10, pp. 160–
165. DOI: 10.1109/VLSI-SoC.2019.8920343 (cit. on p. 37).

[117] Tianqi Tang et al. “Binary convolutional neural network on RRAM”. In: 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC). 2017-
01, pp. 782–787. DOI: 10.1109/ASPDAC.2017.7858419 (cit. on p. 38).

[118] Mahdi Nazm Bojnordi and Engin Ipek. “Memristive Boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning”. In:
2016 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). 2016-03, pp. 1–13. DOI: 10.1109/HPCA.2016.7446049 (cit. on
pp. 38, 42).

132

https://doi.org/10.1109/TCSII.2014.2357292
https://doi.org/10.23919/DATE.2018.8342275
https://doi.org/10.23919/DATE.2018.8342275
https://doi.org/10.1109/MM.2018.053631137
https://doi.org/10.1109/ISCAS.2018.8351561
https://doi.org/10.1109/ICCAD.2017.8203782
https://doi.org/10.1109/ICCAD.2017.8203782
https://doi.org/10.1109/TCSI.2017.2706299
https://doi.org/10.1109/TCSI.2017.2706299
https://doi.org/10.1109/VLSI-SoC.2019.8920343
https://doi.org/10.1109/ASPDAC.2017.7858419
https://doi.org/10.1109/HPCA.2016.7446049

Bibliography

[119] Jaesung Park et al. “TiOx-Based RRAM Synapse With 64-Levels of Conductance
and Symmetric Conductance Change by Adopting a Hybrid Pulse Scheme for
Neuromorphic Computing”. In: IEEE Electron Device Letters 37.12 (2016-12),
pp. 1559–1562. ISSN: 1558-0563. DOI: 10.1109/LED.2016.2622716 (cit. on
p. 38).

[120] F. Su et al. “A 462GOPs/J RRAM-based nonvolatile intelligent processor for
energy harvesting IoE system featuring nonvolatile logics and processing-in-
memory”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C260–C261. DOI:
10.23919/VLSIC.2017.8008585 (cit. on p. 38).

[121] W. Chen et al. “A 16Mb dual-mode ReRAM macro with sub-14ns computing-
in-memory and memory functions enabled by self-write termination scheme”.
In: 2017 IEEE International Electron Devices Meeting (IEDM). 2017-12. DOI:
10.1109/IEDM.2017.8268468 (cit. on p. 38).

[122] W. Chen et al. “A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro
with sub-16ns multiply-and-accumulate for binary DNN AI edge processors”.
In: 2018 IEEE International Solid - State Circuits Conference - (ISSCC). 2018-02,
pp. 494–496. DOI: 10.1109/ISSCC.2018.8310400 (cit. on p. 38).

[123] Qi Liu et al. “33.2 A Fully Integrated Analog ReRAM Based 78.4TOPS/W Com-
pute-In-Memory Chip with Fully Parallel MAC Computing”. In: 2020 IEEE
International Solid- State Circuits Conference - (ISSCC). 2020-02, pp. 500–502.
DOI: 10.1109/ISSCC19947.2020.9062953 (cit. on p. 38).

[124] Zhuo-Rui Wang et al. “Efficient Implementation of Boolean and Full-Adder
Functions With 1T1R RRAMs for Beyond Von Neumann In-Memory Comput-
ing”. In: IEEE Transactions on Electron Devices 65.10 (2018-10), pp. 4659–4666.
ISSN: 1557-9646. DOI: 10.1109/TED.2018.2866048 (cit. on pp. 39, 44).

[125] A. Sebastian et al. “Computational memory-based inference and training of
deep neural networks”. In: 2019 Symposium on VLSI Technology. ISSN: 2158-
9682. 2019-06, T168–T169. DOI: 10.23919/VLSIT.2019.8776518 (cit. on
pp. 39, 92).

[126] Jing Li et al. “1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With Two-Bit Encod-
ing and Clocked Self-Referenced Sensing”. en. In: IEEE Journal of Solid-State
Circuits 49.4 (2014-04), pp. 896–907. ISSN: 0018-9200, 1558-173X. DOI: 10.110
9/JSSC.2013.2292055 (cit. on p. 39).

[127] P. Narayanan et al. “Fully On-Chip MAC at 14 nm Enabled by Accurate Row-
Wise Programming of PCM-Based Weights and Parallel Vector-Transport in
Duration-Format”. In: IEEE Transactions on Electron Devices 68.12 (2021-12),
pp. 6629–6636. ISSN: 1557-9646. DOI: 10.1109/TED.2021.3115993 (cit. on
p. 39).

133

https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.23919/VLSIC.2017.8008585
https://doi.org/10.1109/IEDM.2017.8268468
https://doi.org/10.1109/ISSCC.2018.8310400
https://doi.org/10.1109/ISSCC19947.2020.9062953
https://doi.org/10.1109/TED.2018.2866048
https://doi.org/10.23919/VLSIT.2019.8776518
https://doi.org/10.1109/JSSC.2013.2292055
https://doi.org/10.1109/JSSC.2013.2292055
https://doi.org/10.1109/TED.2021.3115993

Bibliography

[128] Riduan Khaddam-Aljameh et al. “HERMES-Core—A 1.59-TOPS/mm2 PCM on
14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-
Based ADCs”. In: IEEE Journal of Solid-State Circuits 57.4 (2022-04), pp. 1027–
1038. ISSN: 1558-173X. DOI: 10.1109/JSSC.2022.3140414 (cit. on p. 39).

[129] Wang Kang et al. “In-Memory Processing Paradigm for Bitwise Logic Oper-
ations in STT–MRAM”. In: IEEE Transactions on Magnetics 53.11 (2017-11),
pp. 1–4. ISSN: 1941-0069. DOI: 10.1109/TMAG.2017.2703863 (cit. on p. 39).

[130] Shubham Jain et al. “Computing in Memory With Spin-Transfer Torque Mag-
netic RAM”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
26.3 (2018-03), pp. 470–483. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2017.27
76954 (cit. on pp. 39, 92).

[131] Masoud Zabihi et al. “In-Memory Processing on the Spintronic CRAM: From
Hardware Design to Application Mapping”. In: IEEE Transactions on Computers
68.8 (2019-08), pp. 1159–1173. ISSN: 1557-9956. DOI: 10.1109/TC.2018.285
8251 (cit. on p. 39).

[132] Tifenn Hirtzlin et al. “Stochastic Computing for Hardware Implementation of
Binarized Neural Networks”. In: IEEE Access 7 (2019), pp. 76394–76403. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2019.2921104 (cit. on p. 39).

[133] Tung-Cheng Chang et al. “13.4 A 22nm 1Mb 1024b-Read and Near-Memory-
Computing Dual-Mode STT-MRAM Macro with 42.6GB/s Read Bandwidth
for Security-Aware Mobile Devices”. In: 2020 IEEE International Solid- State
Circuits Conference - (ISSCC). 2020-02, pp. 224–226. DOI: 10.1109/ISSCC199
47.2020.9063072 (cit. on p. 40).

[134] Peter Deaville et al. “A Maximally Row-Parallel MRAM In-Memory-Computing
Macro Addressing Readout Circuit Sensitivity and Area”. In: ESSCIRC 2021 -
IEEE 47th European Solid State Circuits Conference (ESSCIRC). 2021-09, pp. 75–
78. DOI: 10.1109/ESSCIRC53450.2021.9567807 (cit. on p. 40).

[135] Shuangchen Li et al. “Pinatubo: A Processing-in-memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories”. In: Proceedings of
the 53rd Annual Design Automation Conference. DAC ’16. New York, NY, USA:
ACM, 2016, 173:1–173:6. ISBN: 978-1-4503-4236-0. DOI: 10.1145/2897937.2
898064 (cit. on p. 40).

[136] M. Imani, S. Gupta, and T. Rosing. “GenPIM: Generalized processing in-memo-
ry to accelerate data intensive applications”. In: 2018 Design, Automation Test
in Europe Conference Exhibition (DATE). 2018-03, pp. 1155–1158. DOI: 10.239
19/DATE.2018.8342186 (cit. on p. 40).

[137] Shun Okamoto et al. “Application Driven SCM and NAND Flash Hybrid SSD
Design for Data-Centric Computing System”. In: 2015 IEEE International Mem-
ory Workshop (IMW). 2015-05, pp. 1–4. DOI: 10.1109/IMW.2015.7150277
(cit. on p. 40).

134

https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/TMAG.2017.2703863
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TC.2018.2858251
https://doi.org/10.1109/TC.2018.2858251
https://doi.org/10.1109/ACCESS.2019.2921104
https://doi.org/10.1109/ISSCC19947.2020.9063072
https://doi.org/10.1109/ISSCC19947.2020.9063072
https://doi.org/10.1109/ESSCIRC53450.2021.9567807
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.23919/DATE.2018.8342186
https://doi.org/10.23919/DATE.2018.8342186
https://doi.org/10.1109/IMW.2015.7150277

Bibliography

[138] Ken Takeuchi. “Data-aware NAND flash memory for intelligent computing with
deep neural network”. In: 2017 IEEE International Electron Devices Meeting
(IEDM). 2017-12, pp. 28.4.1–28.4.4. DOI: 10.1109/IEDM.2017.8268470 (cit.
on p. 40).

[139] Linbin Chen et al. “CCE: A Combined SRAM and Non Volatile Cache for En-
durance of Next Generation Multilevel Non Volatile Memories in Embedded
Systems”. In: Proceedings of the 14th IEEE/ACM International Symposium on
Nanoscale Architectures. NANOARCH ’18. New York, NY, USA: ACM, 2018,
pp. 58–64. ISBN: 978-1-4503-5815-6. DOI: 10.1145/3232195.3232196 (cit.
on p. 40).

[140] Xueyong Zhang, Vivek Mohan, and Arindam Basu. “CRAM: Collocated SRAM
and DRAM With In-Memory Computing-Based Denoising and Filling for Neu-
romorphic Vision Sensors in 65 nm CMOS”. In: IEEE Transactions on Circuits
and Systems II: Express Briefs 67.5 (2020-05), pp. 816–820. ISSN: 1558-3791. DOI:
10.1109/TCSII.2020.2980125 (cit. on p. 40).

[141] Marco Rios et al. “Running Efficiently CNNs on the Edge Thanks to Hybrid
SRAM-RRAM In-Memory Computing”. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2021-02, pp. 1881–1886. DOI: 10.239
19/DATE51398.2021.9474233 (cit. on p. 40).

[142] Hwajung Kim, Heon Y. Yeom, and Hanul Sung. “Understanding the Perfor-
mance Characteristics of Computational Storage Drives: A Case Study with
SmartSSD”. en. In: Electronics 10.21 (2021-10), p. 2617. ISSN: 2079-9292. DOI:
10.3390/electronics10212617 (cit. on p. 40).

[143] Di Gao et al. “Eva-CiM: A System-Level Performance and Energy Evaluation
Framework for Computing-in-Memory Architectures”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2020), pp. 1–1.
ISSN: 1937-4151. DOI: 10.1109/TCAD.2020.2966484 (cit. on pp. 40, 44).

[144] R. Gauchi et al. “Reconfigurable tiles of computing-in-memory SRAM architec-
ture for scalable vectorization”. In: Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design. ISLPED ’20. New York, NY,
USA: Association for Computing Machinery, 2020-08, pp. 121–126. ISBN: 978-1-
4503-7053-0. DOI: 10.1145/3370748.3406550 (cit. on pp. 41, 79).

[145] Junwhan Ahn et al. “PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture”. In: 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA). 2015-06, pp. 336–348. DOI:
10.1145/2749469.2750385 (cit. on p. 41).

[146] Maciej Besta et al. “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems”. In: arXiv:2104.07582 [cs] (2021-04).
URL: http://arxiv.org/abs/2104.07582 (visited on 2021-04-26) (cit. on
p. 41).

135

https://doi.org/10.1109/IEDM.2017.8268470
https://doi.org/10.1145/3232195.3232196
https://doi.org/10.1109/TCSII.2020.2980125
https://doi.org/10.23919/DATE51398.2021.9474233
https://doi.org/10.23919/DATE51398.2021.9474233
https://doi.org/10.3390/electronics10212617
https://doi.org/10.1109/TCAD.2020.2966484
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/2749469.2750385
http://arxiv.org/abs/2104.07582

Bibliography

[147] J. v Lunteren et al. “Coherently Attached Programmable Near-Memory Accel-
eration Platform and its application to Stencil Processing”. In: 2019 Design,
Automation Test in Europe Conference Exhibition (DATE). 2019-03, pp. 668–673.
DOI: 10.23919/DATE.2019.8715088 (cit. on p. 41).

[148] Liang Chang et al. “DASM: Data-Streaming-Based Computing in Nonvolatile
Memory Architecture for Embedded System”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 27.9 (2019-09), pp. 2046–2059. ISSN:
1557-9999. DOI: 10.1109/TVLSI.2019.2912941 (cit. on p. 41).

[149] N. Verma et al. “In-Memory Computing: Advances and Prospects”. In: IEEE
Solid-State Circuits Magazine 11.3 (2019), pp. 43–55. ISSN: 1943-0590. DOI:
10.1109/MSSC.2019.2922889 (cit. on pp. 41, 42, 59–61).

[150] Chuan-Jia Jhang et al. “Challenges and Trends of SRAM-Based Computing-In-
Memory for AI Edge Devices”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 68.5 (2021-05), pp. 1773–1786. ISSN: 1558-0806. DOI: 10.1109
/TCSI.2021.3064189 (cit. on p. 42).

[151] Abu Sebastian et al. “Memory devices and applications for in-memory com-
puting”. en. In: Nature Nanotechnology 15.7 (2020-07), pp. 529–544. ISSN: 1748-
3395. DOI: 10.1038/s41565-020-0655-z (cit. on p. 42).

[152] M. Aamir, Somya Sharma, and Anuj Grover. “ChaCha20-in-Memory for Side-
Channel Resistance in IoT Edge-Node Devices”. In: IEEE Open Journal of
Circuits and Systems 2 (2021), pp. 833–842. ISSN: 2644-1225. DOI: 10.1109
/OJCAS.2021.3127273 (cit. on p. 42).

[153] I. Giannopoulos et al. “8-bit Precision In-Memory Multiplication with Projected
Phase-Change Memory”. In: 2018 IEEE International Electron Devices Meeting
(IEDM). 2018-12, pp. 27.7.1–27.7.4. DOI: 10.1109/IEDM.2018.8614558 (cit.
on p. 44).

[154] T. B. Preußer et al. “Inference of quantized neural networks on heterogeneous
all-programmable devices”. In: 2018 Design, Automation Test in Europe Confer-
ence Exhibition (DATE). 2018-03, pp. 833–838. DOI: 10.23919/DATE.2018.8
342121 (cit. on p. 51).

[155] M. Kooli et al. “Smart instruction codes for in-memory computing architec-
tures compatible with standard SRAM interfaces”. In: 2018 Design, Automation
Test in Europe Conference Exhibition (DATE). 2018-03, pp. 1634–1639. DOI:
10.23919/DATE.2018.8342276 (cit. on pp. 52, 79).

[156] Henry S. Warren. Hacker’s delight. en. 2nd ed. Upper Saddle River, NJ: Addison-
Wesley, 2013. ISBN: 978-0-321-84268-8 (cit. on p. 53).

[157] Andrew Waterman and Krste Asanovic. RISC-V Unprivileged ISA specification.
en. Tech. rep. 1. RISC-V Organisation, 2019, p. 238. URL: https://riscv.org
/technical/specifications/ (visited on 2022-09-26) (cit. on p. 53).

136

https://doi.org/10.23919/DATE.2019.8715088
https://doi.org/10.1109/TVLSI.2019.2912941
https://doi.org/10.1109/MSSC.2019.2922889
https://doi.org/10.1109/TCSI.2021.3064189
https://doi.org/10.1109/TCSI.2021.3064189
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/OJCAS.2021.3127273
https://doi.org/10.1109/OJCAS.2021.3127273
https://doi.org/10.1109/IEDM.2018.8614558
https://doi.org/10.23919/DATE.2018.8342121
https://doi.org/10.23919/DATE.2018.8342121
https://doi.org/10.23919/DATE.2018.8342276
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/

Bibliography

[158] Yu-Hsin Chen et al. “14.5 Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks”. In: 2016 IEEE International Solid-
State Circuits Conference (ISSCC). ISSN: 2376-8606. 2016-01, pp. 262–263. DOI:
10.1109/ISSCC.2016.7418007 (cit. on pp. 60, 61).

[159] Zhe Yuan et al. “Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor
with Multi-Sparsity Compatible Convolution Arrays and Online Tuning Accel-
eration for Fully Connected Layers”. In: 2018 IEEE Symposium on VLSI Circuits.
ISSN: 2158-5601. 2018-06, pp. 33–34. DOI: 10.1109/VLSIC.2018.8502404
(cit. on pp. 60, 61).

[160] Shouyi Yin et al. “A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-network
processor for deep learning applications”. In: 2017 Symposium on VLSI Circuits.
2017-06, pp. C26–C27. DOI: 10.23919/VLSIC.2017.8008534 (cit. on pp. 60,
61).

[161] Dongjoo Shin et al. “14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-RNN pro-
cessor for general-purpose deep neural networks”. In: 2017 IEEE International
Solid-State Circuits Conference (ISSCC). ISSN: 2376-8606. 2017-02, pp. 240–241.
DOI: 10.1109/ISSCC.2017.7870350 (cit. on pp. 60, 61).

[162] B. Moons et al. “14.5 Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-
voltage-accuracy-frequency-scalable Convolutional Neural Network processor
in 28nm FDSOI”. In: 2017 IEEE International Solid-State Circuits Conference
(ISSCC). 2017-02, pp. 246–247. DOI: 10.1109/ISSCC.2017.7870353 (cit. on
pp. 60, 61).

[163] Jinmook Lee et al. “UNPU: A 50.6TOPS/W unified deep neural network ac-
celerator with 1b-to-16b fully-variable weight bit-precision”. In: 2018 IEEE
International Solid - State Circuits Conference - (ISSCC). ISSN: 2376-8606. 2018-
02, pp. 218–220. DOI: 10.1109/ISSCC.2018.8310262 (cit. on pp. 60, 61).

[164] Daniel Bankman et al. “An always-on 3.8µJ/86% CIFAR-10 mixed-signal binary
CNN processor with all memory on chip in 28nm CMOS”. In: 2018 IEEE Inter-
national Solid - State Circuits Conference - (ISSCC). ISSN: 2376-8606. 2018-02,
pp. 222–224. DOI: 10.1109/ISSCC.2018.8310264 (cit. on pp. 60, 61).

[165] Hossein Valavi et al. “A Mixed-Signal Binarized Convolutional-Neural-Network
Accelerator Integrating Dense Weight Storage and Multiplication for Reduced
Data Movement”. In: 2018 IEEE Symposium on VLSI Circuits. 2018 IEEE Sym-
posium on VLSI Circuits. 2018-06, pp. 141–142. DOI: 10.1109/VLSIC.2018
.8502421 (cit. on pp. 60, 61).

[166] Jean-Philippe Noel et al. “Method and device for designing a computational
memory circuit”. 2021156420A1. 2021-08 (cit. on p. 62).

137

https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/VLSIC.2018.8502404
https://doi.org/10.23919/VLSIC.2017.8008534
https://doi.org/10.1109/ISSCC.2017.7870350
https://doi.org/10.1109/ISSCC.2017.7870353
https://doi.org/10.1109/ISSCC.2018.8310262
https://doi.org/10.1109/ISSCC.2018.8310264
https://doi.org/10.1109/VLSIC.2018.8502421
https://doi.org/10.1109/VLSIC.2018.8502421
https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2021156420A1&KC=A1&FT=D

Bibliography

[167] J.-P. Noel et al. “Computational SRAM Design Automation using Pushed-Rule
Bitcells for Energy-Efficient Vector Processing”. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). ISSN: 1558-1101. Grenoble,
France, 2020-03, pp. 1187–1192. DOI: 10.23919/DATE48585.2020.9116506
(cit. on pp. 62, 90).

[168] Bruce Fleischer and Sunil Shukla. Approximate Computing for On-Chip AI
Acceleration: IBM Research at VLSI. en-US. 2018-06. URL: https://www.ibm
.com/blogs/research/2018/06/approximate-computing-ai-accel
eration/ (visited on 2022-08-31) (cit. on p. 64).

[169] Louis-Noel Pouchet and Tomofumi Yuki. PolyBench/C – The polyhedral bench-
mark suite. 2015. URL: https://web.cse.ohio-state.edu/~pouchet.2
/software/polybench/ (visited on 2022-08-23) (cit. on p. 64).

[170] Joseph Redmon. Darknet: Open Source Neural Networks in C. 2013. URL: http
s://pjreddie.com/darknet/ (visited on 2022-08-23) (cit. on pp. 65, 67).

[171] Wikipedia. Bitap algorithm. en. Page Version ID: 1063296095. 2022-01. URL:
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm
&oldid=1063296095 (visited on 2022-08-31) (cit. on p. 65).

[172] BLAS (Basic Linear Algebra Subprograms). 2021. URL: https://netlib.org
/blas/ (visited on 2022-08-23) (cit. on p. 65).

[173] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009-06, pp. 248–
255. DOI: 10.1109/CVPR.2009.5206848 (cit. on p. 67).

[174] Anant Agarwal, John Hennessy, and Mark Horowitz. “Analytical cache model”.
In: ACM Transactions on Computer Systems (TOCS) 7 (1989-05), pp. 184–215.
DOI: 10.1145/63404.63407 (cit. on p. 68).

[175] Fei Guo and Yan Solihin. “An analytical model for cache replacement policy
performance”. In: vol. 34. 2006-06, pp. 228–239. DOI: 10.1145/1140103.114
0304 (cit. on p. 68).

[176] B.L. Jacob et al. “An analytical model for designing memory hierarchies”.
In: IEEE Transactions on Computers 45.10 (1996-10), pp. 1180–1194. ISSN:
00189340. DOI: 10.1109/12.543711 (cit. on p. 68).

[177] Wikichip. Skylake (client) - Microarchitectures - Intel - WikiChip. en. 2015. URL:
https://en.wikichip.org/wiki/intel/microarchitectures/skyl
ake_(client) (visited on 2022-09-01) (cit. on p. 69).

[178] Linux Kernel Developers. Perf Wiki. 2022. URL: https://perf.wiki.kerne
l.org/index.php/Main_Page (visited on 2022-08-24) (cit. on p. 68).

[179] Performance Application Programming Interface. 2022. URL: https://icl.u
tk.edu/papi/software/ (visited on 2022-08-24) (cit. on p. 68).

138

https://doi.org/10.23919/DATE48585.2020.9116506
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm&oldid=1063296095
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm&oldid=1063296095
https://netlib.org/blas/
https://netlib.org/blas/
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/63404.63407
https://doi.org/10.1145/1140103.1140304
https://doi.org/10.1145/1140103.1140304
https://doi.org/10.1109/12.543711
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://icl.utk.edu/papi/software/
https://icl.utk.edu/papi/software/

Bibliography

[180] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2. Developer’s manual Volume 3B, Part 2.
2021, p. 582 (cit. on pp. 68, 69, 86).

[181] John McCalpin. John McCalpin’s blog “ Blog Archive ” Notes on the mystery of
hardware cache performance counters. URL: https://sites.utexas.edu/j
dm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-p
erformance-counters/ (visited on 2021-07-05) (cit. on p. 69).

[182] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. en. In:
USENIX Annual Technical Conference (2005), p. 6 (cit. on pp. 71, 73).

[183] Nathan Binkert et al. “The gem5 simulator”. en. In: ACM SIGARCH Computer
Architecture News 39.2 (2011-05), pp. 1–7. ISSN: 0163-5964. DOI: 10.1145/202
4716.2024718 (cit. on pp. 72, 73).

[184] Anastasiia Butko et al. “Accuracy evaluation of GEM5 simulator system”. In:
7th International Workshop on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC). 7th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC). 2012-07, pp. 1–7.
DOI: 10.1109/ReCoSoC.2012.6322869 (cit. on p. 72).

[185] Daniel Sanchez and Christos Kozyrakis. “ZSim: fast and accurate microarchi-
tectural simulation of thousand-core systems”. en. In: Proceedings of the 40th
Annual International Symposium on Computer Architecture. Tel-Aviv Israel:
ACM, 2013-06, pp. 475–486. ISBN: 978-1-4503-2079-5. DOI: 10.1145/2485922
.2485963 (cit. on pp. 72, 73).

[186] Chi-Keung Luk et al. “Pin: building customized program analysis tools with
dynamic instrumentation”. In: ACM SIGPLAN Notices 40.6 (2005-06), pp. 190–
200. ISSN: 0362-1340. DOI: 10.1145/1064978.1065034 (cit. on pp. 72, 73, 79,
85, 89, 90).

[187] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simulation”.
en. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’11. Seattle, Washington:
ACM Press, 2011, p. 1. ISBN: 978-1-4503-0771-0. DOI: 10.1145/2063384.206
3454 (cit. on pp. 72, 73).

[188] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. en. In: International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004. San Jose, CA, USA: IEEE, 2004, pp. 75–
86. ISBN: 978-0-7695-2102-2. DOI: 10.1109/CGO.2004.1281665 (cit. on
pp. 72, 73).

[189] M. Kooli et al. “Software Platform Dedicated for In-Memory Computing Circuit
Evaluation”. In: 2017 International Symposium on Rapid System Prototyping
(RSP). 2017-10, pp. 43–49. ISBN: 978-1-4503-5418-9 (cit. on p. 72).

139

https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/CGO.2004.1281665

Bibliography

[190] Intel. Pin – A Dynamic Binary Instrumentation Tool. URL: https://www.i
ntel.com/content/www/us/en/developer/articles/tool/pin-a-
dynamic-binary-instrumentation-tool.html (visited on 2022-04-25)
(cit. on pp. 72, 79).

[191] Xiangyu Dong et al. “NVSim: A Circuit-Level Performance, Energy, and Area
Model for Emerging Nonvolatile Memory”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31.7 (2012-07), pp. 994–1007.
ISSN: 1937-4151. DOI: 10.1109/TCAD.2012.2185930 (cit. on pp. 73–75, 78,
90).

[192] S.J.E. Wilton and N.P. Jouppi. “CACTI: an enhanced cache access and cycle
time model”. In: IEEE Journal of Solid-State Circuits 31.5 (1996-05), pp. 677–688.
ISSN: 1558-173X. DOI: 10.1109/4.509850 (cit. on pp. 73, 74).

[193] ITRS. ITRS Models and Papers. 2015. URL: http://www.itrs2.net/itrs-m
odels-and-papers.html (visited on 2022-09-03) (cit. on p. 74).

[194] Youngdon Choi et al. “A 20nm 1.8V 8Gb PRAM with 40MB/s program band-
width”. In: 2012 IEEE International Solid-State Circuits Conference. 2012-02,
pp. 46–48. DOI: 10.1109/ISSCC.2012.6176872 (cit. on pp. 74, 75).

[195] R. Gauchi et al. “Memory Sizing of a Scalable SRAM In-Memory Computing
Tile Based Architecture”. In: 2019 IFIP/IEEE 27th International Conference on
Very Large Scale Integration (VLSI-SoC). 2019-10, pp. 166–171. DOI: 10.1109
/VLSI-SoC.2019.8920373 (cit. on pp. 75, 77).

[196] Jinsong Ji, Chao Wang, and Xuehai Zhou. “System-Level Early Power Estimation
for Memory Subsystem in Embedded Systems”. In: 2008-11-08, pp. 370–375.
DOI: 10.1109/SEC.2008.48 (cit. on p. 76).

[197] Yoongu Kim, Weikun Yang, and Onur Mutlu. “Ramulator: A Fast and Extensi-
ble DRAM Simulator”. In: IEEE Computer Architecture Letters 15.1 (2016-01),
pp. 45–49. ISSN: 1556-6064. DOI: 10.1109/LCA.2015.2414456 (cit. on pp. 76,
77).

[198] Ramulator: A DRAM Simulator. 2022-03-01. URL: https://github.com
/CMU-SAFARI/ramulator (visited on 2022-03-04) (cit. on pp. 76, 77).

[199] VAMPIRE. 2022-02-11. URL: https://github.com/CMU-SAFARI/VAMPIRE
(visited on 2022-03-04) (cit. on pp. 76, 77).

[200] Saugata Ghose et al. “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study”. en. In: Proceedings of the ACM
on Measurement and Analysis of Computing Systems 2.3 (2018-12), pp. 1–41.
ISSN: 2476-1249, 2476-1249. DOI: 10.1145/3224419 (cit. on pp. 76, 77, 90).

[201] Karthik Chandrasekar et al. DRAMPower. URL: http://www.drampower.inf
o (visited on 2022-03-04) (cit. on pp. 76, 77).

[202] DRAM Power Model (DRAMPower). 2022-02-11. URL: https://github.com
/tukl-msd/DRAMPower (visited on 2022-03-04) (cit. on pp. 76, 77).

140

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/4.509850
http://www.itrs2.net/itrs-models-and-papers.html
http://www.itrs2.net/itrs-models-and-papers.html
https://doi.org/10.1109/ISSCC.2012.6176872
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/SEC.2008.48
https://doi.org/10.1109/LCA.2015.2414456
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/VAMPIRE
https://doi.org/10.1145/3224419
http://www.drampower.info
http://www.drampower.info
https://github.com/tukl-msd/DRAMPower
https://github.com/tukl-msd/DRAMPower

Bibliography

[203] Matt Poremba and Yuan Xie. “NVMain: An Architectural-Level Main Mem-
ory Simulator for Emerging Non-volatile Memories”. In: 2012 IEEE Computer
Society Annual Symposium on VLSI. 2012 IEEE Computer Society Annual Sym-
posium on VLSI. 2012-08, pp. 392–397. DOI: 10.1109/ISVLSI.2012.82
(cit. on pp. 76, 77).

[204] Matthew Poremba, Tao Zhang, and Yuan Xie. “NVMain 2.0: A User-Friendly
Memory Simulator to Model (Non-)Volatile Memory Systems”. In: IEEE Com-
puter Architecture Letters 14.2 (2015-07), pp. 140–143. ISSN: 1556-6064. DOI:
10.1109/LCA.2015.2402435 (cit. on p. 76).

[205] P Rosenfeld, E Cooper-Balis, and B Jacob. “DRAMSim2: A Cycle Accurate Mem-
ory System Simulator”. In: IEEE Computer Architecture Letters 10.1 (2011-01),
pp. 16–19. ISSN: 1556-6056. DOI: 10.1109/L-CA.2011.4 (cit. on pp. 76, 77).

[206] umd-memsys/DRAMSim2. 2022-03-04. URL: https://github.com/umd-me
msys/DRAMSim2 (visited on 2022-03-04) (cit. on pp. 76, 77).

[207] Matthias Jung, Christian Weis, and Norbert Wehn. “DRAMSys: A Flexible DRAM
Subsystem Design Space Exploration Framework”. In: IPSJ Transactions on
System LSI Design Methodology 8 (2015), pp. 63–74. DOI: 10.2197/ipsjtsld
m.8.63 (cit. on pp. 76, 77).

[208] DRAMSys - Fraunhofer IESE. Fraunhofer Institute for Experimental Software
Engineering IESE. URL: https://www.iese.fraunhofer.de/en/innovat
ion_trends/autonomous-systems/memtonomy/DRAMSys.html (visited
on 2022-03-12) (cit. on pp. 76, 77).

[209] Lukas Steiner et al. “DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-
Based DRAM Simulator”. In: Embedded Computer Systems: Architectures, Mod-
eling, and Simulation. Ed. by Alex Orailoglu, Matthias Jung, and Marc Re-
ichenbach. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 110–126. ISBN: 978-3-030-60939-9. DOI: 10.1007/978-3
-030-60939-9_8 (cit. on p. 77).

[210] tukl-msd/DRAMSys. 2022-03-08. URL: https://github.com/tukl-msd
/DRAMSys (visited on 2022-03-12) (cit. on p. 77).

[211] SEAL-UCSB/NVmain. 2022-01-31. URL: https://github.com/SEAL-UCSB/
NVmain (visited on 2022-03-04) (cit. on p. 77).

[212] Valentin Egloff et al. “Storage Class Memory with Computing Row Buffer: A
Design Space Exploration”. In: 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). 2021-02, pp. 1–6. DOI: 10.23919/DATE51398.2
021.9473992 (cit. on pp. 85, 92, 104, 119).

[213] Valentin EGLOFF, Jean-Philippe Noel, and Jean-Michel PORTAL. “Device com-
prising a non-volatile memory circuit”. 4036916A1. 2022-08 (cit. on p. 104).

141

https://doi.org/10.1109/ISVLSI.2012.82
https://doi.org/10.1109/LCA.2015.2402435
https://doi.org/10.1109/L-CA.2011.4
https://github.com/umd-memsys/DRAMSim2
https://github.com/umd-memsys/DRAMSim2
https://doi.org/10.2197/ipsjtsldm.8.63
https://doi.org/10.2197/ipsjtsldm.8.63
https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://doi.org/10.1007/978-3-030-60939-9_8
https://doi.org/10.1007/978-3-030-60939-9_8
https://github.com/tukl-msd/DRAMSys
https://github.com/tukl-msd/DRAMSys
https://github.com/SEAL-UCSB/NVmain
https://github.com/SEAL-UCSB/NVmain
https://doi.org/10.23919/DATE51398.2021.9473992
https://doi.org/10.23919/DATE51398.2021.9473992
https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=4036916A1&KC=A1&FT=D

Bibliography

[214] Maha Kooli et al. “Towards a Truly Integrated Vector Processing Unit for Mem-
ory-bound Applications Based on a Cost-competitive Computational SRAM
Design Solution”. In: ACM Journal on Emerging Technologies in Computing
Systems 18.2 (2022-04), 40:1–40:26. ISSN: 1550-4832. DOI: 10.1145/3485823.
(Visited on 2022-10-04).

142

https://doi.org/10.1145/3485823

Appendices

Contents

Appendix A. Résumé long 144

143

Appendix A.

Résumé long

Cette thèse est divisée en cinq chapitres qui vous présenteront pourquoi je fais cette
thèse : le contexte global de l’industrie semiconducteur soulève des questions sur la
durabilité du modèle actuel ainsi que sur les performances et l’efficacité énergétique
du calcul en général (chapitre 1). Ceci appelle une solution innovante et prometteuse
telle que peut l’être le calcul en mémoire. Le calcul en mémoire est une solution,
qui plus est, compatible avec les mémoires non volatiles émergentes qui apportent
des améliorations technologiques dans le monde de l’informatique. Nous étudions
l’état de l’art dans le chapitre 2 et montrons comment la plupart des papiers passent
à côté de deux points clés sur l’endurance des mémoires non volatiles et sur où se
trouve physiquement la donnée dans le système. Nous proposons notre solution, une
enveloppe numérique autour d’une mémoire statique à accès aléatoire (SRAM) que
nous appellons C-SRAM (chapitre 3). Notre C-SRAM peut ensuite être étroitement
couplée à une mémoire non volatile ou une mémoire de stockage de masse. Pour
réaliser une évaluation architecturale, nous développons une plateforme de simu-
lation nourrie avec des paramètres technoloqiques tirés de l’état de l’art et de nos
propres travaux (chapitre 4). En combinant nos différents travaux de design et de
simulation numériques, nous démontrons que calculer au sommet de la hiérarchie
mémoire, c’est à dire proche du stockage de masse permanent, donne les meilleurs
gains concernant le temps d’exécution et l’énergie consommée (chapitre 5).

Chapitre 1 : Sur l’industrie des semiconducteurs
Nous montrons à partir d’une analyse de l’état de l’art que la tendance de la technolo-
gie CMOS actuelle arrive à un cul de sac dû à la fin de la réduction possible de la taille
du nœud. Plusieurs problèmes en découlent. Premièrement, la densité de puissance
continue d’augmenter depuis la fin de la loi de Dennard ce qui pose des problèmes
de dissipation de chaleur. Pour éviter la surchauffe, certaines parties d’un circuit ne
peuvent fonctionner ensemble, ce que l’on appelle le silicium noir. L’un des effets les
plus visibles est la fin de l’augmentation de la fréquence des processeurs en 2005 car
les circuits ne pouvaient plus être refroidis suffisamment. Deuxièmement, l’accéléra-
tion de la demande pour plus de puissance de calcul a mené à de nombreuses percées
architecturales. Lorsque les fréquences n’ont pu être augmentées, les processeurs mul-
ticœurs furent introduits et les puces modernes peuvent atteindre plusieurs dizaines
de cœurs. Les jeux d’instructions Une Instruction Plusieurs Données (SIMD) ont suivis
pour répondre à une demande toujours plus pressante de calcul avec des largeures de
vecteur atteignant aujourd’hui 512 bits. Les prédicteurs de branchement, l’accès à la

144

Appendix A. Résumé long

mémoire par anticipation et l’exécution spéculative sont toutes des améliorations ma-
térielles pour augmenter la vitesse de traitement. Cependant, cette course perpétuelle
mena à une diminution de la sécurité matérielle avec plusieurs vulnérabilités telles
que Spectre et Meltdown. Finalement, les performances mémoires, principalement
celles de la mémoire dynamique (DRAM), disques durs et Flash, n’ont pas évoluées
parallèlement. Alors que les performances des processeurs ont été multipliées par
1000 depuis 1980, celles de la DRAM ne l’ont été que d’un facteur 10. Cet écart de
performance est appelé le mur mémoire car il s’agit d’un mur de performance non
dépassable par aucun processeur, indépendemment du nombre de cœurs et de toute
autre amélioration matérielle. Un problème parallèle est le goulot d’étranglement
de von Neumann car toutes les données doivent traverser la hierarchie mémoire en
partant de larges lignes mémoire vers des registres processeur scalaires. Pour réduire
l’écart de performances entre la mémoire et le processeur, les caches ont été étendus
en taille mémoire et en profondeur, allant aujourd’hui jusqu’à 4 niveaux de cache. Ils
sont basés sur les principes de localité spatiale et temporelle pour cacher les données
voisines qui sont plus susceptibles d’être utilisées ou les mêmes données qui peuvent
être réutilisées juste après. La contrepartie étant que, désormais, les données doivent
traverser tous les caches avant de pouvoir être utilisées par le processeur et réciproque-
ment pour la réécriture en mémoire du résultat. Cet effet est empiré par les transferts
gros grains, typiquement 64 octets sont transferrés au niveau des caches, même si
seulement un seul octet est utilisé. En conséquence, les accès aux données sont, en
terme de coûts énergétiques et de temps d’exécution, les principaux coupables, étant
des centaines de fois plus coûteux que le calcul en lui-même. Il est à noter que l’état de
l’art mentionne que ces accès mémoire représentent en moyenne entre 50 % et 80 %
du budget énergétique total du système. Bien que le mur mémoire existe depuis plus
de 40 ans, les nouvelles technologies mémoire sont prévues pour réduire cet écart. Le
cube mémoire hybride (HMC) et la mémoire haute bande passante (HBM) sont de
récentes évolutions des mémoires dynamiques qui démultiplient la bande passante
en utilisant des bus plus larges et exploitant l’empilement 3D. Malgré une bande
passante largement augmentée, le goulot d’étranglement de von Neumann demeure
car l’architecture reste identique et est centrée sur le calcul plutôt que sur la donnée.
De plus, la nature dynamique de la DRAM n’est pas éliminée et est toujours l’un des
gouffres énergétiques. Les mémoires non volatiles (NVM) émergentes peuvent partiel-
lement résoudre ces problèmes, mais une solution globale requiert un changement
de paradigme vers des architectures centrées sur les données. À cette fin, le calcul en
mémoire est une solution prometteuse car il peut, si non complètement, au moins
largement réduire les mouvements de données dans l’architecture. Si utilisé avec
des NVMs, il peut également diminuer drastiquement la consommation globale des
mémoires. De plus, les mémoires non volatiles ont des performances prometteuses,
tant en énergie qu’en temps d’accès, intermédiaires entre la SRAM et la DRAM ce
qui pourra permettre de supprimer certaines mémoires de la hiérarchie, incluant la
DRAM et éventuellement le cache de niveau 3.

145

Appendix A. Résumé long

Chapitre 2 : État de l’art
L’état de l’art révèle pléthore de techniques et méthodes pour implémenter le calcul
en mémoire (IMC) dans toutes les technologies mémoires et à tous les niveaux de la
hiérarchie. On peut les classifier dans différentes catégories selon où le calcul prend
place, que cela soit dans le tableau mémoire au niveau analogique, ou après les
amplificateurs de lecture dans le domaine numérique ou bien un mélange des deux.
Les solutions à base de SRAM reposent sur les deux formes de calcul en mémoire : IMC
et calcul proche mémoire. Nous faisons la distinction entre la cellule 6 transistors (6T)
standard largement utilisée dans l’industrie et les cellules modifiées (8T, 9T, 10T, etc.)
qui sont spécifiquement designées pour l’IMC. La cible des solutions proposées est
principalement sur des applications spécifiques, notamment l’intelligence artificielle
(IA) dont l’apprentissage profond est une seule solution générique. Cependant, en
utilisant uniquement de la SRAM, ces solutions se placent d’elles-même tout en bas
de la hiérarchie mémoire, c’est à dire proche du processeur, ou ne ciblent que des
dispositifs périphériques avec une hiérarchie mémoire plate. En tant que telles, elles
n’addressent pas les mouvements de données à travers la hiérarchie mémoire et ne
font preuves que de faibles améliorations par rapport à leurs références.

Nous passons maintenant à la mémoire dynamique (DRAM) et présentons de mul-
tiples solutions allant du vrai IMC au traitement en mémoire (PIM) où le calcul est
complètement en dehors du circuit mémoire. Néanmoins, la majorité des articles sont
purement simulations et, pour autant que je sache, il n’y a que 3 solutions démontrées
incluant une solution déjà commercialisée. Comme la DRAM utilise un procédé de
fabrication différent des CMOS conventionnels, il est plus compliqué d’y intégrer les
solutions éventuelles. De plus, en DRAM la lecture est destructive ce qui entraîne des
accès supplémentaires pour copier les données avant d’y appliquer des traitements.
Enfin, la DRAM est l’une des plus grosses consommations d’énergie dans les centres
de données ou les appareils grand public. Exécuter le calcul dans cette technologie
mémoire ne résoud que partiellement le goulot d’étranglement de von Neumann car
les données ne sont pas originaires de cette mémoire.

Concernant la NAND Flash, qui est une mémoire purement électronique (sans par-
tie mécanique) contrairement aux disques durs, la plupart des designs se concentrent
sur l’opération de multiplication matrice-vecteur (MVM). Ils utilisent pour cela la
sommation des courants comme moyen de calcul analogique ce qui est trop restrictif.
De plus, l’endurance limitée de la Flash n’est pas considérée comme un problème.
Cependant, sa haute densité permet à l’IMC en mémoire Flash d’être une solution
pertinente pour les dispositifs périphériques utilisant de grands réseaux de neurones.
Les mémoires résistives (RRAM) offrent les meilleurs promesses d’intégration vis-à-vis
de l’IMC car les cellules mémoires sont disposées de manière appropriée pour créer
des fonctions logiques. Les tableaux mémoires en grille connectée (crossbar) sont
l’implémentation mémoire la plus dense, en excluant les technologies 3D. Comme
toutes les technologies de mémoire résistive, de nombreuses solutions utilisent la
sommation des courants pour implémenter les produits matrice-vecteur. Malgré des
résultats impressionnants avec une efficacité énergétique allant jusqu’à 700 TOPS/W,

146

Appendix A. Résumé long

cette solution est limitée en précision, usuellement binaire mais parfois jusqu’à 8 bits.
Elle souffre également du calcul analogique sensible au bruit et à la variabilité intrin-
sèque des cellules mémoires. La même observation s’applique pour les mémoires
à changement de phase (PCM) et les mémoires magnétiques (MRAM), excepté que
l’intégration de l’IMC est compliqué par l’incompatibilité des processus de fabrication.
La PCM a le meilleur ratio de valeurs de résistances état 1/état 0 des NVMs et supporte
facilement plusieurs niveaux par cellule. D’un autre côté, la MRAM, à cause de son
orientation naturelle binaire, est limitée à une cellule à un seul niveau.

Enfin, nous étudions quelques travaux génériques qui s’appliquent à toutes sortes
de mémoire utilisant uniquement une propriété commune, en l’occurrence la résisti-
vité des mémoires. D’autres travaux ont essayé de combiner plusieurs mémoires pour
obtenir le meilleur des deux mondes. Nous effectuons également un rapide survol
des modèles de programmation, des jeux d’instructions et listons les limitations et
contraintes auxquelles fait toujours face l’IMC : implémentation matérielle complexe,
calcul analogique à faible précision, endurance limitée des NVMs émergentes, applica-
tions spécifiques (principalement apprentissage profond) qui manquent de généralité
et peu d’études architecturales. C’est pourquoi nous pensons qu’une enveloppe nu-
mérique autour de n’importe quelle NVM atteindra les meilleures performances et
économisera l’endurance en utilisant un tampon SRAM pour effectuer les opérations
de calcul et servir de tampon d’écriture. Cette enveloppe numérique fournit plus de
flexibilité et utilise les opérateurs CMOS conventionnels qui sont moins limités en
terme de précision numérique. Elle offre également la généralité requise pour les
systèmes de calcul et n’est pas sujet au bruit analogique.

Chapitre 3 : Design numérique de la C-SRAM
Comme présenté au chapitre précédent, le calcul analogique n’est pas un outil ré-
pandu et générique et est sujet au bruit dû aux variations internes des cellules mé-
moires et au bruit thermique. L’utilisation de cellules SRAM modifiées pour apporter
une isolation entre les lignes de bit et les cellules lorsqu’un calcul active deux lignes
simultanément est contre productive. Premièrement, l’opération précalculée peut
facilement être réalisée avec quelques transistors dans le domaine numérique. L’acti-
vation de plusieurs lignes de mot requiert la modification du décodeur de ligne dont
l’augmentation de la surface dépasse les peu de portes logiques épargnées. Deuxième-
ment, les cellules non standard sont dessinées avec les règles logiques, c’est à dire avec
des règles moins strictes amenant à une mémoire moins dense. Les coûts de validation
du design doivent être pris en compte pour vérifier que la cellule dessinée fonctionne
correctement dans un large panel de situation : haute et basse températures, haute et
basse tensions, etc. Le calcul dans des NVMs les useraient en quelques jours à cause
de leur endurance limitée. De plus, l’accès à la mémoire est peut-être rapide (par
rapport à la DRAM ou à un disque dur), mais le coût énergétique surpasse encore
celui de la SRAM. Ainsi, nous décidons de designer une enveloppe numérique à base
de SRAM pour être intégrée autour d’une NVM pour faire d’une pierre, deux coups.

147

Appendix A. Résumé long

D’un côté, nous bénéficions de la haute densité de la NVM et de sa non volatilité. De
l’autre, nous avons l’endurance virtuellement illimitée de la SRAM et sa grande vitesse
d’accès pour de meilleures performances de calcul.

Notre enveloppe est dessinée comme une unité de calcul vectorielle avec son propre
pipeline1 et son unité de décodage. Elle reçoit les instructions calculées à la volée par
le processeur et les exécute. Pour limiter la complexité matérielle, nous ne gérons
pas les aléas de pipeline tels que lecture après écriture (RAW) ou écriture après écri-
ture (WAW), et les laissons au développeur ou au compilateur. L’unité arithmétique
et logique supporte les opérations logiques bit à bit, les décalages et les opérations
arithmétiques : addition, soustraction, multiplication et comparaison. Les décalages,
addition et soustraction peuvent être de n’importe quelle taille parmi 8, 16 ou 32
bits tandis que la multiplication est uniquement sur 8 bits dans notre étude. Seule
l’arithmétique entière est implémentée, mais les calculs en virgule fixe sont facilement
réalisables en utilisant les opérations de décalage. Pour minimiser la surface silicium,
les opérateurs sont multiplexés de sorte qu’un seul et unique additionneur 64 bits soit
instancié et des opérations logiques matérielles sont utilisées pour mimer le compor-
tement des opérateurs plus petits. Un jeu d’instructions est concu en s’inspirant de
RISC-V et le placement des bits est choisi pour réduire le nombre de multiplexeurs
dans l’étage de décodage. L’enveloppe numérique reçoit les instructions sur les bus
d’addresse et de données et le bit d’addresse le plus significatif indique s’il s’agit d’un
accès mémoire classique ou d’une opération IMC (périphérique à correspondance
mémoire).

Je réalise un travail d’exploration de notre design en utilisant le flot de simulation
et conception standard sur de multiples types de SRAM avec différents nombres de
port : 1LE (Lecture/Écriture), 1L1E, 1L1LE, 2LE. Nous utilisons le nœud 22 nm de
GlobalFoundries avec des mémoires Invecas. Je montre que le surcoût surfacique de
notre solution est limité à 5 % pour une mémoire de 256 ko ce qui est acceptable alors
que l’augmentation de la puissance est aux alentours de 20 % pour la même mémoire ;
cela est plus coûteux mais l’ajout de fonctionnalités, dans ce cas du calcul, a toujours
un prix. Je démontre que les mémoires 1L1E ont le meilleur produit énergie-temps,
celui-ci étant au moins 2× supérieur par rapport aux mémoires 2LE et 4× meilleur que
les mémoires 1LE. En terme d’efficacité énergétique, notre design attteint 2 TOPS/W
avec une mémoire 1L1E de 2 ko ce qui est inférieur aux solutions de l’état de l’art.
Cependant, ce résultat doit être nuancé car l’état de l’art est souvent mesuré sur une
operation MAC où la multiplication est binaire alors que la nôtre est sur 8 bits. En
utilisant la décompositions en fonctions logiques binaires de la multiplication 8 bits,
nous obtenons un facteur de réduction de l’état de l’art de 400, ce qui nous place
au dessus. La densité d’opération est d’environ 100 GOPS/mm2 ce qui est dans la
moyenne de l’état de l’art et, une fois de plus, nous place au dessus en considérant
le facteur de correction. Ceci prouve que notre solution offre une diversité en terme
de types de mémoires et de tailles, tout en fournissant un design énergétiquement
efficient et générique. Notre enveloppe numérique, que nous appelons C-SRAM, peut

1 ↑Bitoduc ou infoduc en français

148

https://bitoduc.fr/

Appendix A. Résumé long

de plus être personnalisée en retirant ou ajoutant facilement des opérateurs car notre
flot de travail RTL permet un prototypage rapide.

Chapitre 4 : Outils et plateforme de simulation
Dans ce chapitre, je présente les applications au banc d’essai que nous utilisons ainsi
que la plateforme que je développe pour explorer diverses architectures utilisant
notre enveloppe numérique. Nous visons les applications à gros jeux de données (big
data) car ce sont ces applications qui sont les plus limitées par le mur mémoire et
demandent également le plus de performances. Nous considérons plusieurs bancs
d’essai linéaires, nommément poids de hamming utilisé en théorie de l’information,
shift-or utilisé en bioingénierie pour comparaison de motifs de protéines et AXPY,
un noyau classique de la bibliothèque algèbre linéaire basique (BLAS). Les deux
premiers sont limités par la vitesse de calcul tandis que le dernier est limité par
la bande passante de la mémoire ou des interfaces processeur/mémoire. Ensuite,
nous avons deux bancs d’essai quadratiques qui sont atax, utilisé dans les solveurs
linéaires et gesummv, un cas général du produit matrice-vecteur, que l’on retrouve en
traitement d’image et apprentissage profond. Enfin, nous choisissons un banc d’essai
cubique, gemm, un noyau de multiplication de matrices largement répandu dans
de nombreuses applications : AI avec apprentissage profond et réseaux de neurones
y compris convolutionnels, traitement d’image, simulation scientifique, etc. Nous
sélectionnons aussi une application cas réel, darknet, une implémentation de réseaux
de neurones utilisant trois des précédents bancs d’essai : gemm, gesummv et AXPY.

Avant d’explorer l’intégration de notre enveloppe numérique dans une architecture
complète, je développe une plateforme de simulation adaptée à nos besoins. Premiè-
rement, j’explique pourquoi je n’utilise pas les solutions proposées par l’état de l’art
telles que gem5. En effet, gem5 est l’un des simulateurs système les plus utilisé dans le
monde de la recherche en architecture des systèmes. Pourtant, il souffre de nombreux
défauts. Nous sommes particulièrement intéressés par le sous système mémoire mais
il est reconnu comme étant peu précis. Comme nous prototypons de nouvelles ar-
chitectures, nous ne pouvons pas utiliser les compteurs de performances matériels
disponibles dans la plupart des processeurs, puisqu’ils ne peuvent pas compter des
évènements encore inexistants et sont imprécis pour les évènements mémoires au
delà du cache de niveau 2. Ensuite, je présente les outils de modélisation matérielle
que j’utilise pour simuler les différents étages de la hiérarchie mémoire et récupérer
des estimations précises des coûts d’accès en temps et en énergie. Je choisi d’utiliser
NVSim pour modéliser la NVM mais également la hiérarchie de cache car ce dernier
est basé sur Cacti qui est la référence en la matière. Il donne également des résultats
moins absurdes que ce dernier. Nous décidons d’utiliser une mémoire à changement
de phase pour notre stockage de masse puisque c’est la technologie mémoire émer-
gente la plus mature à ce jour, avec des produits commerciaux déjà disponibles (Intel
Optane). Les paramètres technologiques de la PCM sont extraits de l’état de l’art
pour être le plus réaliste possible. La DRAM est modélisée en utilisant VAMPIRE, un

149

Appendix A. Résumé long

outil étalonné à partir de mesures sur des barettes mémoires commerciales. J’ai aussi
considéré d’autres outils mais ai choisi celui-ci car c’est le plus récent de tous et sa
méthodologie me paraît la plus robuste. Finalement, les paramètres de notre C-SRAM,
tirés du chapitre 3, sont étendus pour des mémoires plus grandes et plus larges en
utilisant un motif de tuilage calibré à partir d’un travail précédent interne à l’équipe.

Pour développer notre plateforme d’exploration, j’utilise Pin, un outil qui permet
d’instrumenter n’importe quelle instruction et en l’occurrence, tous les accès mé-
moires. Cela inclue toutes les instructions car chaque instruction est chargée depuis la
mémoire. En tant qu’outil d’instrumentation, il bénéficie d’une faible pénalité de sur-
charge, aux alentours de 100× à comparer aux émulateurs et simulateurs complets qui
peuvent être un million de fois plus lent que le temps réel d’exécution. Comme nous
visons les applications à gros jeux de données, la vitesse de simulation est primordiale
dans notre choix. Une interface logicielle est conçue tout en étant compatible avec
notre jeu d’instruction présenté dans le chapitre 3. Ce jeu d’instructions est cepen-
dant étendu pour supporter un mode d’addressage 64 bits au lieu de 32 bits. Ensuite,
je modélise une hiérarchie de cache à 3 niveaux, une DRAM, notre C-SRAM et son
comportement associé et au sommet, une mémoire de masse. La première version de
notre plateforme modélise une hiérarchie avec une cohérence forcée, où calculer en
C-SRAM met à jour la valeur dans les caches et vice-versa. Cependant ce coût de cohé-
rence n’est pas compté dans les statistiques mémoires. De plus, les accès à la mémoire
de masse sont comptés incorrectement car le phénomène d’échange (swapping) n’est
pas monitoré. L’initialisation de la mémoire vient toujours de la SCM ce qui n’est pas
réellement le cas avec la pile et le tas. Une seconde version raffine ces aspects pour
être plus fidèle à la réalité. Elle gère les appels systèmes qui accèdent au système de
fichiers pour les compter dans la facture énergétique et temporelle globale. L’alloca-
tion mémoire est correctement suivie de sorte que les copies de données inutiles de la
SCM vers la DRAM soient supprimées. Les pages sont désormais suivies pour prendre
en compte le phénomène d’échange lorsque la DRAM est pleine, sauvegardée dans
la SCM et rechargée quand les données sont demandées à nouveau. Finalement, je
passe d’une version à cohérence forcée à une version à cohérence logicielle et ajoute
les fonctions adéquates de gestion de la mémoire à notre jeu d’instructions.

Enfin, je réalise une étape de validation pour s’assurer que notre modèle représente
fidèlement la réalité. Je compare les nombres d’accès aux caches de notre plateforme
avec les compteurs matériels sur une véritable architecture avec les mêmes para-
mètres. Notre modèle est correct et plus le jeu de données est gros, plus notre modèle
est précis (relativement parlant). Quelques évènements apparaissent comme modéli-
sés incorrectement, mais ce sont des évènements rare et la moindre variation amène à
de grosses différences de ratios. Néanmoins, ces rares évènements sont cachés par les
milliards d’autres correctement modélisés. Je confronte différents simulateurs DRAM
et montre que la puissance et les temps d’exécution reportés s’étalent sur 5 ordres de
grandeur. Cela prouve à quel point il est difficile de modéliser précisément la DRAM.
En utilisant un coût d’accès fixe, nous obtenons les temps les plus précis par rapport
aux autres simulateurs en se basant sur le temps d’exécution réel pour référence.
Cependant, les estimations d’énergie montrent plus de variations et ne bénéficient

150

Appendix A. Résumé long

pas d’une véritable référence indiscutable car cela nécessiterait une mise en place
lourde. Pour mieux s’assurer des résultats, je trace la puissance DRAM calculée comme
l’énergie divisée par le temps et montre que certains simulateurs donnent une puis-
sance supérieure à 1 kW, ce qui est ridicule. Notre plateforme donne principalement
des puissances entre 1–10 W et quelques valeurs aberrantes autour de 50 W.

Chapitre 5 : Architectures de calcul en mémoire
Maintenant que nous avons décrit notre enveloppe numérique et une plateforme de
simulation, nous pouvons les combiner pour explorer de nouvelles architectures de
calcul en mémoire. Comme nous l’avons montré dans l’état de l’art, calculer proche
du processeur n’apporte que peu d’améliorations, alors que calculer plus haut dans la
hiérarchie mémoire, vers la DRAM ou la NVM, a beaucoup plus de potentiel de gains.
En utilisant les bancs d’essai introduits précédemment et la méthodologie définie dans
le chapitre 4, nous explorons quatre architectures différentes où le calcul prend place
soit dans le tampon de ligne réadapté, soit dans la C-SRAM placée entre la mémoire
de rang inférieure (DRAM ou cache de niveau 3) et la mémoire visée (respectivement
SCM ou DRAM) en tant que circuit indépendant. L’architecture de référence est basée
sur un processeur SIMD 512 bits avec une hiérarchie de cache à 3 niveaux, qui est
le standard dans le monde du calcul haute performance. Suit une petite DRAM qui
est volontairement sous dimensionnée de sorte que les jeux de données ne puissent
tenir dedans, similairement aux applications modernes à gros jeux de données. Au
sommet se trouve une SCM de type PCM qui contient toutes les données nécessaires à
l’exécution de l’application. L’idée de base du calcul proche de la SCM est de calculer
là où se trouve la donnée. En effet, les jeux de données massifs tels que les poids des
réseaux de neurones ou les bases de données d’images sont sauvegardés dans cette
mémoire de masse. Ainsi, le coût de chargement de ces données depuis la SCM doit
être pris en compte et est réduit d’autant qu’on rapproche le calcul de celle-ci.

Dans les deux premières architectures où la C-SRAM est soit un C-RB (Computing
Row Buffer) dans la SCM ou entre la DRAM et la SCM, nous réduisons drastiquement
la consommation énergétique et le temps d’exécution, en moyenne de 17.4× et 12.9×
respectivement. Premièrement, nous notons que tous les bancs d’essai présentent
une réduction de la consommation et une accélération significative dans notre espace
d’exploration. Une C-SRAM dont la taille est comprise entre 128 ko et 512 ko est la
taille offrant les meilleurs gains pour tous les bancs d’essai. Deuxièmement, nous
distinguons différents types d’améliorations dépendant du comportement d’accès
des bancs d’essai. Nous faisons les observations suivantes :

• Les bancs d’essai linéaires bénéficient de vecteurs plus larges car il n’y a pas de
dépendance entre les itérations de boucle. Nous atteignons une réduction éner-
gétique d’un facteur 50 et une accélération du temps d’exécution d’un facteur
38 pour shift-or et 17 pour hamming weight. Pour AXPY, nous remarquons que
les gains sont bien plus faibles, entre 2× et 3× pour la réduction énergétique et

151

Appendix A. Résumé long

l’accélération du temps d’exécution. Ceci est dû aux nombreuses écritures dans
la SCM ce qui limite les gains maximaux.

• Les bancs d’essai quadratiques montrent des gains moins impressionnants
mais toujours intéressants avec une réduction de la consommation de 15× et
une accélération autour de 15× pour atax, et 25× et 12× respectivement pour
gesummv. Les accès plus complexes et une réutilisation des données expliquent
ces différences avec les bancs d’essai linéaires. De plus, des vecteurs plus grands
n’augmentent pas plus les gains au delà d’une certaine taille (1 ko). Cela est
dû aux opérations de réduction qui ne peuvent être faites par la C-SRAM. Une
variation de l’architecture où cette réduction est réalisée dans la C-SRAM ne
montre pas d’amélioration significative (<1 %).

• Les bancs d’essai cubiques comme gemm ont les meilleures améliorations, avec
une réduction énergétique de 403× et une accélération du temps d’exécution
de 272×. Cependant, ces gains ne concernent que le noyau en lui-même et une
application réelle telle que darknet montre des gains bien moindres, autour
de 5× pour la réduction énergétique et 6× pour l’accélération à cause de la loi
d’Amdahl.

Enfin, nous montrons que les accès à la SCM, qui déterminent la durée de vie du sys-
tème, restent constants aussi bien en lecture qu’en écriture par rapport à la référence.
Nous concluons donc que notre système n’améliore ni ne dégrade cette durée de vie
tout en augmentant sensiblement les performances.

Dans un second cas où le calcul prend place proche de la DRAM, les gains sont bien
plus limités, voire même négatifs car les accès DRAM ne sont pas du tout réduits et
représentent toujours 80 % de la consommation d’énergie globale. Ainsi, cette solution
n’apporte que peu de gain et ne doit pas être considérée pour une application réelle.

Perspectives et travaux futurs
Dans cette thèse, j’ai démontré que calculer au sommet de la hiérarchie mémoire
est le meilleur emplacement pour y intégrer du calcul en mémoire, quelle que soit
la technologie mémoire considérée pour la SCM. La famille des solutions IMC peut
grandement améliorer les rendements énergétiques et temporels pour un large panel
d’applications allant de l’algèbre linéaire au traitement des bases de données en
passant par l’intelligence artificielle avec les réseaux de neurones et l’apprentissage
profond. Néanmoins, plusieurs travaux peuvent encore être menés ou approfondis.
Tout d’abord, une démonstration avec un véritable circuit doit confirmer nos résultats,
mais cela nécessite un travail énorme aussi bien côté matériel que côté logiciel. Notre
jeu d’instructions devra être matériellement implémenté dans un processeur RISC-V,
mais la partie la plus compliquée est probablement l’intégration du bus par delà
la DRAM pour communiquer avec la C-SRAM. Bien que j’ai démontré des gains
énergétiques, je n’ai pas considéré la consommation de puissance instantanée qui est

152

Appendix A. Résumé long

probablement augmentée à cause des larges vecteurs utilisés. Ainsi, on peut s’attendre
à une consommation de puissance avec de larges pics liés aux calculs faits dans la
C-SRAM. Cela pourrait poser des problèmes à la mémoire sous-jacente, c’est à dire
à la NVM couplée, si notre C-SRAM chauffe trop. Au niveau logiciel, le modèle de
programmation doit toujours changer de paradigme vers un modèle centré sur les
données. Des instructions spécifiques pour un contrôle plus fin des mouvements de
données dans une architecture distribuée peuvent également être considérées. Enfin,
les revendications d’augmentation de la sécurité doivent également être vérifiées
expérimentalement.

Sur une note final, j’aimerais prévenir des effets indésirables de notre solution. Ré-
duire la consommation d’énergie, au vu du contexte actuel, est bien évidemment une
noble cause. Mais elle n’aura probablement pas beaucoup d’effet sur la consommation
des centres de données et les appareils en général tant que les budgets énergétiques
resteront stables. En effet, toute l’énergie non dépensée sera réinvestie dans d’autres
unités de calcul pour toujours augmenter les performances des systèmes. C’est ce
qu’on appelle l’effet rebond.

153

	Title page
	Affidavit
	List of publications and conference participations
	Résumé
	Abstract
	Epigraph
	Remerciements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	List of Acronyms
	Glossary
	Preamble
	1 On the semiconductor industry
	1.1 The end of technology advancement
	1.1.1 Physical limits
	1.1.2 Architecture improvements
	1.1.3 Socioeconomic impacts

	1.2 Memory technologies
	1.2.1 Main memory technologies
	1.2.1.1 SRAM
	1.2.1.2 DRAM
	1.2.1.3 Hard disk and tapes
	1.2.1.4 NAND Flash
	1.2.1.5 Current memory hierarchy

	1.2.2 Emerging non volatile memories
	1.2.2.1 RRAM
	1.2.2.2 PCM
	1.2.2.3 MRAM

	1.3 A new computing paradigm
	1.3.1 Big Data
	1.3.2 Proposed solution: memory computing

	1.4 Conclusion

	2 State of the Art
	2.1 Taxonomy
	2.2 Memory computing
	2.2.1 SRAM
	2.2.1.1 Modified bitcell
	2.2.1.2 Foundry pushed-rule bitcell

	2.2.2 DRAM
	2.2.3 NVM and SCM
	2.2.3.1 Flash
	2.2.3.2 RRAM
	2.2.3.3 PCM & MRAM

	2.2.4 Other works

	2.3 Conclusion

	3 CSRAM Design
	3.1 Motivations for a digital wrapper
	3.2 General design
	3.2.1 Specification
	3.2.2 ALU design
	3.2.3 Pipeline design

	3.3 Experimental results
	3.3.1 Workflow
	3.3.2 Simulation results
	3.3.2.1 Physical design extraction
	3.3.2.2 Performances versus state of the art

	4 Simulation platform & Tools
	4.1 Used benchmarks
	4.1.1 Linear benchmarks
	4.1.2 Quadratic benchmarks
	4.1.3 Cubic benchmarks and real application

	4.2 Existing platforms
	4.2.1 Analytic model
	4.2.2 Hardware counters
	4.2.3 Simulation platforms
	4.2.3.1 General definitions
	4.2.3.2 Considered platforms

	4.3 Hardware model tools
	4.3.1 NVSim
	4.3.2 DRAM
	4.3.3 C-SRAM

	4.4 Platform
	4.4.1 Software interface for benchmarks
	4.4.2 First version with hard coherency
	4.4.2.1 Reference implementation
	4.4.2.2 C-SRAM

	4.4.3 Improved version with soft coherency and real disk accesses
	4.4.3.1 Modifications to reference
	4.4.3.2 Software based coherency

	4.4.4 Caches and DRAM validation
	4.4.4.1 Caches validation
	4.4.4.2 DRAM tools comparison

	5 IMC/NMC Computing Architectures
	5.1 Reference SIMD 512-bit architecture
	5.2 Computing at the top
	5.2.1 Scenario NVM 1: Independent C-SRAM
	5.2.1.1 Linear kernels: hamming weight, shift-or & AXPY
	5.2.1.2 Quadratic kernels: atax & gesummv
	5.2.1.3 Cubic benchmarks: gemm & darknet
	5.2.1.4 Energy & timing distribution
	5.2.1.5 SCM accesses

	5.2.2 Scenario NVM 2: Computing Row Buffer
	5.2.3 Scenario NVM 1 with page transfer
	5.2.4 Impact of the reduction loop

	5.3 Computing near DRAM
	5.3.1 Scenario DRAM 1: Independent C-SRAM
	5.3.1.1 Linear benchmarks: hamming weight, shift-or & AXPY
	5.3.1.2 Quadratic kernels: atax & gesummv
	5.3.1.3 Cubic benchmarks: gemm & darknet
	5.3.1.4 Energy & timing distribution
	5.3.1.5 Impact of the reduction loop

	5.3.2 Scenario DRAM 2: DRAM row buffer

	5.4 Conclusion

	Conclusion
	Perspectives and future works

	Bibliography
	Appendices
	Appendix A Résumé long

