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Résumé L’imagerie par résonance magnétique (IRM) est couramment utilisée
pour le diagnostic et le pronostic de la sclérose en plaques (SEP). L’analyse
et l’extraction des informations de l’IRM pourraient être effectuées manuelle-
ment par des radiologues ou des experts, néanmoins, ces tâches sont fastidieuses,
chronophages, nécessitent une expertise du domaine et sont sujettes à la variabil-
ité inter-évaluateurs. Ainsi, l’automatisation des tâches d’analyse des IRM a été
envisagée pour faire face à ces limitations et traiter la grande quantité de don-
nées que nous rencontrons à l’ère des données massives. Dans cette thèse, nous
proposons des chaînes de traitement utilisant l’apprentissage profond pour anal-
yser les IRM afin d’en extraire des informations pertinentes pour la SEP. La suite
d’outils comprend la segmentation des lésions de SEP, la segmentation/détection
de nouvelles lésions et l’estimation du statut d’invalidité à partir de données IRM
et clinico-démographiques. Lors de la conception de chaque chaîne de traitement,
nous avons proposé des contributions méthodologiques qui ont résolu différents
défis, tels que le biais de domaine, la rareté des données et le déséquilibre des don-
nées. Nos chaînes de traitement sont hébergées sur la plate-forme volBrain pour les
rendre librement et facilement utilisables par la communauté sans avoir besoin de
logiciels ou de matériels. Ce faisant, nos utilisateurs bénéficient de performances
de pointe en quelques clics sur leur navigateur Web et obtiennent ainsi un rapport
compact et facile à lire résumant les résultats.

Mots-clés Apprentissage Profond, Sclérose en Plaques, Données Massives
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Abstract Magnetic Resonance Imaging (MRI) is routinely used for the diagnosis
and prognosis of Multiple Sclerosis (MS). Analyzing and extracting information
from MRI could be performed manually by radiologists or experts in the field,
nonetheless, these tasks are tedious, time-consuming, require domain expertise,
and are prone to inter-rater variability. Thus, automatizing MRI analysis tasks
would enable to overcome these limitations and process a large amount of data
available in our BigData era. In this thesis, we proposed end-to-end pipelines
using deep learning to analyze MRI and extract MS-relevant information. The
proposed suite of tools includes MS lesion segmentation, new lesion detection, and
the estimation of disability status from MRI and clinico-demographic data. During
the design of each pipeline, we proposed methodological contributions that solved
the different challenges, such as domain bias, data rarity, and data imbalance.
Our pipelines are hosted on volBrain online platform, to make them freely and
easily available to the MS community without the need of software or hardware
requirements. Doing so, our users benefit from state-of-the-art performance in a
few clicks on their web browser and obtain compact easy-to-read reports.
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Résumé étendu en français

La Sclérose En Plaques (SEP) est une maladie neurologique inflammatoire qui
affecte le système nerveux central. Cette pathologie auto-immune engendre une
altération de la gaine de myéline qui recouvre les axones, elle induit donc des per-
turbations dans le flux du signal neuronal. Cette maladie provoque des troubles
moteurs, sensoriels et cognitifs. Elle débute par des déficits épisodiques réversibles
pouvant évoluer vers une détérioration progressive. L’imagerie par résonance mag-
nétique (IRM) est couramment utilisée pour le diagnostic et le pronostic de la
SEP. L’analyse et l’extraction des informations de l’IRM pourraient être effectuées
manuellement par des radiologues ou des experts, néanmoins, ces tâches sont fas-
tidieuses, chronophages, nécessitent une expertise du domaine et sont sujettes à
la variabilité inter-évaluateurs. Ainsi, l’automatisation des tâches d’analyse IRM
a été envisagée pour faire face à ces limitations et traiter la grande quantité de
données que nous rencontrons à l’ère des données massives. Dans cette thèse, nous
proposons une suite d’outils pour l’automatisation des tâches de neuroimagerie
appliquées à la SEP.

Dans le Chapitre 1, nous apportons le contexte nécessaire lié à cette thèse.
Tout d’abord, nous présentons le contexte neuroanatomique de la SEP qui est
le Système Nerveux Central (SNC). Ce dernier est composé du cerveau et de la
moelle épinière. Le cerveau contrôle la plupart des fonctions corporelles, y compris
la pensée, la perception, la parole, le mouvement, la mémoire, et les sentiments.
La moelle épinière transporte des signaux nerveux, permettant la communication
entre le cerveau et le système nerveux périphérique innvervant l’ensemble du corps.
Deuxièmement, nous présentons le contexte radiologique de la SEP à travers l’IRM
et sa capacité à visualiser les tissus et les anomalies du SNC. En effet, l’IRM est
la technique d’imagerie la plus efficace pour diagnostiquer, évaluer et suivre la
progression de la SEP. L’IRM permet d’observer la neuroinflammation (lésions)
et la neurodégénérescence (atrophie) provoquées par la SEP. Troisièmement, nous
abordons l’aspect clinique de la SEP représenté par ses différents types d’évolution
et les poussés (épisode clinique de la SEP). Ces dernières ainsi que la dissémination
spatiale et temporelle des lésions font de la SEP une maladie complexe. De plus,
le lien entre les manifestations radiologiques et cliniques de la SEP n’est toujours
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pas clair. De ce fait, son diagnostic, son suivi ou sa prédiction d’évolution né-
cessitent le développement de méthodes spécifiques pour aider les cliniciens dans
leurs tâches. Enfin, nous expliquons les différentes approches automatiques perme-
ttant de résoudre les difficultés liées à l’analyse manuelle des IRM. De nombreuses
méthodes entièrement automatiques ont été proposées et peuvent être regroupées
en méthodes non supervisées et supervisées.

Dans le Chapitre 2, nous présentons DeepLesionBrain, une nouvelle méthode de
segmentation pour les lésions de la SEP qui est robuste au changement de domaine
et performante sur des ensembles de données non utilisés lors de l’entraînement.
Cette propriété de généralisation résulte de trois apports principaux. Tout d’abord,
la méthode utilise un grand nombre de réseaux convolutionnels 3D compacts répar-
tis sur l’ensemble du cerveau avec des sous-volumes d’analyse qui se chevauchent.
En associant un réseau distinct à chaque région du cerveau, la stratégie des réseaux
spatialement distribués simplifie la segmentation des lésions de la SEP, d’une seule
tâche complexe sur l’ensemble du cerveau à plusieurs sous-tâches plus simples sur
chaque région. De plus, les régions qui se chevauchent garantissent un consen-
sus cohérent et stable. Deuxièmement, pour extraire des caractéristiques plus
pertinentes qui peuvent conduire à une meilleure généralisation, la méthode est
entraînée avec un apprentissage hiérarchique. La stratégie d’entraînement en deux
étapes consiste à pré-entraîner un seul réseau sur toutes les régions du cerveau, et
ensuite de l’utiliser dans l’étape suivante pour initialiser les poids de chaque réseau
spatialement distribué. Troisièmement, DeepLesionBrain est entraîné avec une
nouvelle méthode d’augmentation des données, qui imite la diversité des données
du monde réel en ajoutant des modifications réalistes aux images d’entraînement.
Ces augmentations spécifiques contraignent l’apprentissage à être indépendant de
la résolution d’acquisition, du contraste ou de la qualité des données. Par con-
séquent, la stratégie d’augmentation proposée permet une meilleure robustesse au
changement de domaine. La généralisation de la méthode a été validée dans des
expériences de jeux de données croisés. Au cours de ces expériences, DeepLesion-
Brain a montré une plus grande précision et une meilleure cohérence de segmenta-
tion et de meilleures performances de généralisation par rapport aux méthodes de
l’état de l’art. Ce chapitre a fait l’objet d’une publication dans le journal Medical
Image Analysis [2].

Dans le Chapitre 3, nous décrivons une chaîne de traitement basée sur l’apprent-
issage profond abordant la tâche difficile de détecter et de segmenter les nouvelles
lésions de SEP apparaissant entre deux examens. En effet, le manque de données
longitudinales (images de suivi du patient au cours du temps) annotées pour cette
tâche et la rareté des cas d’apparition de nouvelles lésions sont des facteurs lim-
itants pour l’apprentissage de modèles robustes et généralisables. Ces problèmes
de rareté de données et de déséquilibre des classes sont abordés à travers trois
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contributions principales. Tout d’abord, l’apprentissage par transfert est proposé
pour exploiter des jeux de données plus vastes et plus diversifiés disponibles pour la
tâche de segmentation des lésions de SEP. En effet, les jeux de données utilisés pour
entraîner la segmentation des lésions de la SEP sont plus facilement disponibles et
la classe positive est plus fréquente (moins impactée par le déséquilibre des classes)
par rapport à la tâche de détection de nouvelles lésions de la SEP. Par conséquent,
l’exploitation des connaissances d’une tâche plus facile et similaire avec un jeu
d’entraînement plus riche a considérablement amélioré la détection de nouvelles
lésions. Deuxièmement, la chaîne de traitement comprend une nouvelle stratégie
de synthèse de données pour générer des données longitudinales réalistes avec de
nouvelles lésions à l’aide de données transversales (un seul examen sans suivi du
patient). La stratégie combine l’utilisation d’un générateur de lésions et d’un ef-
faceur de lésions (tous deux entraînés séparément et avant la chaîne de traitement
décrite) pour générer "à la volée" des IRM synthétiques du même patient avec
une évolution des lésions. De cette manière, le modèle est entraîné sur de grands
jeux de données annotées synthétiques. Troisièmement, une version améliorée de
la méthode d’augmentation de données présentée au Chapitre 2 est proposée pour
simuler une plus grande diversité de données en IRM. La version améliorée intro-
duit plus de modifications à la fois dans l’espace spatial et fréquentiel. Ainsi, la
méthode d’augmentation de données permet de mieux suréchantillonner les échan-
tillons rares avec de nouvelles lésions et rend le modèle entraîné plus robuste à la
diversité des images. Notre validation a montré que chaque contribution conduit
à une amélioration de la précision de la segmentation. En utilisant la chaîne de
traitement proposée, nous avons obtenu le meilleur score pour la segmentation et
la détection de nouvelles lésions de SEP lors du challenge international MICCAI
MSSEG2. Ce chapitre a fait l’objet d’une publication dans le journal Frontiers in
Neuroscience [1].

Au Chapitre 4, nous proposons une nouvelle méthode pour l’estimation de
l’Échelle de Statut d’Invalidité Étendue (EDSS en anglais) à partir d’informations
IRM et clinico-démographiques à l’aide d’apprentissage profond. Pour y par-
venir, nous proposons dans un premier temps d’extraire des biomarqueurs neu-
rodégénératifs et neuroinflammatoires pertinents. Ensuite, nous proposons une ar-
chitecture de réseaux convolutionnels qui combine efficacement des données images
et des tableaux. De plus, notre modèle est entraîné avec un nouvel apprentissage
multiphase et une augmentation des données pour atténuer l’effet de déséquilibre
des données. Lors de la validation, notre méthode par apprentissage profond a
surpassé les méthodes conventionnelles. Pour mieux comprendre quelles régions
du cerveau contribuent le plus à la prédiction de notre modèle d’estimation EDSS,
nous avons proposé d’utiliser des méthodes d’interprétabilité de modèle utilisant
l’apprentissage profond. Les visualisations obtenues ont montré une cohérence avec
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les travaux associant les troubles fonctionnels de la SEP durant différents stades
de la maladie, aux structures cérébrales responsables de ces fonctions. Ce chapitre
a fait l’objet d’un article soumis au journal Artificial Intelligence in Medicine [4].

Dans le Chapitre 5, nous proposons des chaînes de traitements complètes pour
le traitement des données de neuroimagerie multimodale et l’extraction des in-
formations pertinentes pour la SEP sur la base des travaux proposés dans les
chapitres 2 à 4. Tout d’abord, nous proposons d’utiliser la conteneurisation et
d’héberger nos chaînes de traitements sur une plate-forme en ligne pour permettre
à la communauté travaillant sur la SEP de les utiliser facilement sans avoir à gérer
l’installation et les exigences matérielles. Ensuite, nous proposons des chaînes de
traitements faciles à utiliser qui ne nécessitent pas d’expertise technique pour exé-
cuter et récupérer leurs résultats. Enfin, nous proposons de générer des rapports
offrant des informations compactes, organisées et faciles à lire. Le développement
logiciel décrit dans ce chapitre a fait l’objet d’un dépôt à l’agence pour la protection
des programmes [7].

Enfin, nous finissons ce manuscrit par une conclusion générale et nos perspec-
tives futures.
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Chapter 1

Introduction

1.1 Multiple Sclerosis

Multiple Sclerosis (MS) is an inflammatory and neurodegenerative disease that
affects Central Nervous System (CNS). It is one of the most common neurological
disorders among young adults, with a risk of developing the disease 2.3 times higher
for women compared to men. MS affects more than 2.8 million people worldwide
1. Although the cause of MS is unknown to this day, a combination of genetics
and environmental factors appears to be responsible.

MS is an autoimmune condition in which the myelin sheath, an insulating
layer that covers the axons and helps the propagation of action potentials, is
damaged in the brain and spinal cord (see Figure 1.1). Thus, the loss of myelin
(demyelination) causes a disruption in the ability of the nerves to conduct electrical
impulses to and from the CNS and can evolve into permanent axonal damage,
causing handicaps in the later stages of the disease. The attacks cause the myelin
layer to become inflamed in small accumulations, commonly called MS lesions.
Using in vivo Magnetic Resonance Imaging (MRI), MS lesions can be visualized
as high-intensity spot areas (see Figure 1.2).

This disease impacts the CNS leading to motor, sensorial, and cognitive im-
pairments. Depending on the severity and the form of MS, patients experience
symptoms ranging from small discomfort (such as numbness and tingling), minimal
motor disability (difficulty walking), severe disability (need to use a wheelchair)
and, in the most extreme cases, the requirement of permanent medical assistance
and MS-related death.

In the following, we will detail the neuroanatomical, radiological, and clinical
contexts of MS.

1www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms#about
2www.alamyimages.fr
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1.1. Multiple Sclerosis

Normal Signal Attenuated Signal

Normal MS

Myelin Sheath Damaged Myelin  
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Dendrites

Axon  
terminals

Figure 1.1: The demyelination caused by Multiple Sclerosis causing signal atten-
uation. Modified from: 2.

Figure 1.2: MR images of MS lesions with the T2 sequence. A, B: Axial views and
C: Sagittal view. Source: [Al-Midfai et al., 2022].
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1. Introduction

Figure 1.3: On the left, (a) the CNS is composed of the brain and spinal cord. On
the right, (b) the CNS and the Peripheral Nervous System (PNS).
Modified from: 3.

1.1.1 The Neuroanatomical Context of MS

The CNS includes the brain and the spinal cord (see Figure 1.3 (a) ). The brain
controls most bodily functions, including perception, movement, feeling, thought,
speech, and memory. The spinal cord attaches to the brain by the brainstem and is
protected by the vertebrae, which form the vertebral column. Nerves emerge from
the spinal cord to innervate both sides of the body. The spinal cord carries nerve
signals, allowing communication between the brain and the peripherical nervous
system, composed of the nerves throughout the rest of the body (see Figure 1.3
(b) ).

In the following of this section, we will focus on the brain since it is the most
complex part of the CNS and extensively studied in MS.

Brain tissues can be categorized into Gray Matter (GM) and White Matter
(WM), as shown in Figure 1.4. The GM of the brain contains the cell bodies of
nerve cells (neurons) while the WM contains the nerve fibers (axons of nerve cells)
surrounded by a protective myelin sheath. Myelin, which gives the color white,
acts as an insulator that facilitates the transmission of signals transmitted by nerve
fibers. This is the neuron part that is attacked and damaged by MS disease (see
Figure 1.1).

3www.wikipedia.org/wiki/Syst%C3%A8me_nerveux_central
4www.operativeneurosurgery.com/doku.php?id=white_matter
5www.wikipedia.org/wiki/Basal_ganglia
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1.1. Multiple Sclerosis

Figure 1.4: Gray Matter and White Matter. Source: 4.

Figure 1.5: On the left, (a) the cortex lobes of the cerebrum. On the right, (b)
the inner brain. Source: 5.
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1.1.1.1 The Cerebrum

The cerebrum is the largest structure of the brain. It is part of the forebrain
(additionally to the inner brain 1.1.1.2). Its prominent outer part, the cerebral
cortex, not only processes sensory and motor information, but is also the origin
of consciousness. Cortical tissue is composed primarily of neuronal cell bodies
(GM), and its folds and fissures (known as gyri and sulci) give the forebrain its
characteristic “crumpled” surface. The cerebral cortex has a right and left hemi-
spheres. Each hemisphere can be divided into four lobes: the frontal lobe, the
temporal lobe, the parietal lobe, and the occipital lobe, as shown in Figure 1.5 (a).
These lobes correspond to functional segments specializing in various areas such
as thinking, memory, planning, decision-making, speech, and sensory perception.

1.1.1.2 The Inner Brain

The inner brain is a set of structures buried deep under the cortex composed of the
thalamus, the hypothalamus, the hippocampus, and the basal ganglia (see Figure
1.5 (b)). The thalamus determines which signals require conscious awareness, and
which need to be available for learning or memory. The hypothalamus helps to
take over the sensory impulses of smell, taste, and sight. The hypothalamus is also
the center of visceral control which regulates the endocrine system and internal
functions. The hippocampus is a memory indexer used for long-term storage and
retrieval of memories. The basal ganglia are clusters of nerve cells surrounding the
thalamus composed of the caudate nucleus, putamen, nucleus accumbens, globus
pallidus, ventral pallidum, substantia nigra, and subthalamic nucleus. They are
responsible for initiating and integrating movements.

1.1.1.3 The Cerebellum

The cerebellum is the second largest part of the brain (see Figure 1.6). It lies below
the posterior (occipital) lobes of the cerebrum. Like the forebrain, the cerebellum
has a right hemisphere and a left hemisphere. An intermediate region, the vermis,
connects them. The primary function of the cerebellum is to maintain posture and
balance, but it also participates in cognition.

1.1.1.4 The Brainstem

The brainstem connects the spinal cord to the higher centers of thought, located
in the brain, as shown in Figure 1.6. It is made up of three structures: the
medulla oblongata (rachidian bulb), the pons, and the midbrain. In addition to

6www.acikders.ankara.edu.tr/pluginfile.php/104007/mod_resource/content/1/
week%203.pdf
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1.1. Multiple Sclerosis

Figure 1.6: The cerebellum and the brainstem. Source: 6.

relaying motor and sensory signals, brainstem structures also direct involuntary
functions. The medulla oblongata is in charge of breathing, digestion, circulation,
and reflexes. The pons helps to control the breathing rhythm. The midbrain
contributes to motor control, vision, and hearing, as well as reflexes related to
sight and hearing.

Figure 1.7: The brain ventricles. Source: [Medical, 2014]

1.1.1.5 The Brain Ventricles

The ventricles of the brain are cavities that produce and store cerebrospinal fluid
(CSF) (see Figure 1.7). This fluid surrounds the brain and spinal cord, cushioning
them and protecting them from trauma. It is also responsible for removing waste
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and delivering nutrients to the brain. Of the four cavities comprising the ventric-
ular system, the first and second are lateral ventricles. These C-shaped cavities
are arranged symmetrically in each hemisphere. The third ventricle is a narrow
funnel-shaped structure located between the right and left thalamus and above the
brainstem. The fourth ventricle is a diamond-shaped structure that runs along the
brainstem.

1.1.2 The Radiological Context of MS

Figure 1.8: The coronal, sagittal, and axial planes of the MRI image of the brain.
Source: 7

T1 T1-Gd T2 PD FLAIR

Figure 1.9: MS lesion appearance on different MRI modalities. Arrows highlight
the advantages and disadvantages of each MRI modality in showing MS lesions.
Modified from: [Gedamu, 2011].

7www.chegg.com/flashcards/biole201-3-53cd3f69-6300-4a12-9f88-acacc00e7a90/
deck
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1.1. Multiple Sclerosis

Magnetic Resonance (MR) Imaging (MRI) is a non-invasive medical imaging
technique that creates three-dimensional in-vivo images. The resulting image can
be visualized alongside three planes: the coronal, sagittal, and axial (see Figure
1.8). MRI is based on applying a strong and stable magnetic field (B0) to align
protons’ spin moment. Then, by applying weaker oscillating magnetic fields, the
protons alignments are slightly modified and stabilized again which produces a
measurable electromagnetic signal. Since the molecules composing different or-
ganic matters (e.g., water, bone, muscle, fat, etc.) have a different response to
the magnetic fields, MRI provides images with a high contrast of soft tissues and
structure fidelity.

MRI sequences (modalities) provide different image contrast, optimized by tun-
ing MRI parameters (echo time and repetition time), to better visualize specific
tissues or abnormalities (e.g, MS lesions).

MRI of the CNS is the most effective imaging technique to diagnose, assess,
and follow up the progression of MS. It allows us to observe the neuroinflammation
(i.e., lesions) and neurodegeneration (i.e., atrophy) caused by MS. As shown in
Figure 1.9, several modalities can be used: T1-weighted (T1), T2-weighted (T2),
Proton Density-weighted (PD), Fluid-Attenuated Inversion Recovery (FLAIR),
and Gadolinium-enhanced T1 (T1-Gd). Other advanced modalities can also be
helpful in MS monitoring such as Double Inversion Recovery (DIR), Diffusion
Tensor Imaging (DTI), or Magnetization Transfer Ratio (MTR).

1.1.2.1 MS Lesions

MS lesions are one of the most important pathological hallmarks of MS. An MS
lesion is defined on MRI as an area of focal hyperintensity (high-intensity spot) on
the T2 and its variants (FLAIR or similar), or PD-weighted sequence. MS lesions
have ovoid shapes and their size ranges from a few millimeters to more than 2
centimeters in diameter. To fulfill the diagnostic criteria and exclude artifacts, a
lesion should be at least 3 millimeters in its long axis, and it should be visible on
at least two consecutive slices [Filippi et al., 2019b].

1.1.2.2 Lesion Types by MRI Sequence

MS lesions can be divided into several categories depending on their appearance in
different MRI modalities, associated with their inflammatory activity [Kaur et al.,
2020]. Using different MRI sequences helps to better estimate the time when a
lesion appears. The age of lesions and their state of inflammation are helpful for
MS diagnosis and prognostic.

First, T2 lesions appear as hyperintense compared to WM in T2, PD, and
FLAIR. This type of lesions is also known as White Matter Hyperintensities
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FLAIR T2 T1 T1-Gd

Figure 1.10: black holes, T2 lesions, T1-Gd lesions are surrounded by red, blue,
and green circles respectively. Modified from: [García-Lorenzo, 2010].

(WMH). WMH can indicate other pathologies than MS such as vascular dementia,
ischemia, and micro-hemorrhages, and they can also appear with aging (i.e., fre-
quent in the elderly population). Second, Gadolinium-enhanced lesions manifest
with an increase in the intensity of T1-Gd after gadolinium injection compared
with T1 pre-injection, they are also associated with hyperintense T2, PD, and
FLAIR. Gadolinium-enhanced lesions indicate active inflammations or the age of
MS lesions. If a lesion lights up, it means that active inflammation has occurred
usually within the last two to three months. Third, black holes are long-time
presence lesions associated with hypointensities in T1 that do not enhance with
contrast product. These lesions represent more severe tissue damage and axonal
loss. Figure 1.10 shows black hole, T2, and T1-Gd enhanced lesions.

The work of [Narayana et al., 2020] suggests that the most important modality
for MS lesion (i.e., neuroinflammation activity) visualization and delineation is
FLAIR. As for contrast agents, the best practice is to limit their usage to necessary
cases, as recommended by the French Observatory of MS [Brisset et al., 2020].
Indeed, excessive usage of gadolinium (Gd) can lead to renal failure and Gd deposit
accumulation in the brain. For other cases and follow-ups, it is recommended to
use 3D FLAIR, considering it to be the most relevant sequence. Additionally, T1
is important for MS since it is helpful to visualize black hole lesions but also to
monitor the neurodegeneration activity caused by MS (see 1.1.2.4).

1.1.2.3 Classification of Lesion by Localization

The location of MS lesions is also an important aspect of both the diagnosis and
the follow-up of the disease. Several MRI lesions are defined according to their
location in the CNS anatomy.

Juxtacortical lesions are T2-hyperintense cerebral WM lesions juxtaposed (ad-
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jacent) to the cortex, and not separated from it by WM. Infratentorial lesions are
T2-hyperintense lesions in the brainstem or cerebellum. Periventricular lesions are
WM hyperintense cerebral lesions located in the surrounding region of the lateral
ventricles without WM in between, including lesions in the corpus callosum (bun-
dle of axons interconnecting the two cerebral hemispheres) but excluding lesions
in deep GM structures. Cortical MRI lesions are within the cerebral cortex. Typ-
ically, special MRI techniques such DIR, or high-resolution MRI (7T MRI) are
required to visualize these lesions. Care is needed to distinguish potential cortical
lesions from neuroimaging artifacts. Deep GM lesions are located in the inner
brain (deep GM nuclei), but they are most common in the thalamus, where lesions
can be located along the surface of the ventricle or around blood vessels. These
lesions tend to have less of an inflammatory pattern than WM lesions but more so
than cortical lesions. Spinal cord MRI lesion are located in the cervical, thoracic,
or lumbar spinal cord, usually visible on PD sequence.

Figure 1.11: The histogram of brain lesions for 98 patients based on a rigid regis-
tration of the images to a template brain indicating the number of patients out of
98 having lesions at each voxel. Source: [Eloyan et al., 2014].

While lesions may occur in any CNS region, they tend to affect specific WM re-
gions, periventricular and juxtacortical WM, corpus callosum, infratentorial areas,
and the spinal cord. Figure 1.11 shows the statistical distribution of MS lesions in
a cohort of 98 patients [Eloyan et al., 2014].
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Control/healthy  Early MS  Intermediary MS Long-term MS  

Figure 1.12: Brain atrophy in different stages of MS. Atrophy can be seen by the
enlargement of lateral ventricles (the inner side of the brain) and by the reduction
of the cortical thickness (the outer side of the brain). Modified from: [Bermel and
Bakshi, 2006]

1.1.2.4 Brain Atrophy

Brain atrophy is the gradual loss of brain volume and a clinically relevant compo-
nent of disease progression in MS. The brain volume of patients suffering from MS
decreases far off the limits of normal aging, with approximately 0.5–1.35% per year
[Andravizou et al., 2019]. The atrophy of brain tissue is widespread, affecting the
entire brain and all its parts, including the lobes, WM, brainstem, and cerebellum
[Bakshi et al., 2001] (see Figure 1.12).

Brain atrophy begins early in the disease course and can accelerate with disease
progression [Andravizou et al., 2019]. Although severe atrophy is the long-term
effect of inflammation, many studies showed that GM atrophy is observable from
the earliest stages of MS, and is only moderately related to lesion accumulation
[Dalton et al., 2004]. Early atrophy can be located in specific cortical regions but
also in the inner brain, affecting structures such as the thalamus or the caudate
[Zivadinov et al., 2008].

The increasing amount of data linking brain atrophy to clinical impairments
suggests that irreversible tissue destruction is an important determinant of disease
progression to a greater extent than can be explained by conventional lesion as-
sessments [Bermel and Bakshi, 2006]. Besides, some studies suggested that GM
atrophy is more sensitive for identifying progressive neurodegeneration compared
to WM or whole-brain atrophy [Zivadinov et al., 2008].

1.1.3 The Clinical Context of MS

As a consequence of MS inflammation activity (lesions), relapse is a period during
which people with MS experience new symptoms. Relapse is defined by one or
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Table 1.1: Symptoms and Disabilities associated with MS based on lesion location
8. These associations are far from absolute, and it is possible for an individual to
have MS lesions without any obvious accompanying symptoms, or to have symp-
toms even though a lesion cannot be clearly visualized on MRI scans.

Lesion location Possible associated symptoms

Outermost section of the brain
(cortical or juxtacortical regions,
including the cortex and cerebrum)

Cognitive and memory impairment
Depression
Fatigue
Weakness or numbness

Central section of the brain
(periventricular region)

Impaired cognition and executive function
Numbness or other abnormal sensations
Problems related to movement
Fatigue

Lower back of the brain
(infratentorial region, including
the cerebellum and brainstem)

Double vision
Swallowing difficulty
Weakness or unusual sensations in the face
Impaired balance and coordination

Spinal cord

Muscle weakness or stiffness
Trouble with coordination and balance
Pain, tingling
Sexual dysfunction
Bladder and bowel problems

Optic nerves Vision problems (i.e., blurry vision)
Painful eye movements

more neurological signs occurring for more than 24 hours, in the absence of fever
or infection. These signs can be ocular, sensory, motor, and other disorders. The
first experienced relapse by a patient is called Clinically Isolated Syndrome (CIS).
With no further evidence, CIS is not yet considered (diagnosed) as MS.

Depending on their localization, lesions can have different effects on patients.
Table 1.1 summarizes some of the most important associations between lesion
locations and possible symptoms.

1.1.3.1 MS Disease Course

MS patients may be grouped into three categories, also called MS phenotypes, de-
pending on the course and progression of the disability with time [Kaur et al., 2020,
Goldenberg, 2012]. MS disease courses are Relapsing-Remitting MS (RRMS), Sec-
ondary Progressive MS (SPMS), and Primary Progressive MS (PPMS) (see Figure

8www.multiplesclerosisnewstoday.com/ms-lesions/
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1.13)
RRMS is the most common form of MS and affects around 85% of patients, it

is characterized by relapses of the symptoms followed by an improvement or cease.
SPMS is the evolution of RRMS. This type is characterized by the development of
the disease with or without periods of remission and with or without inflammatory
activity. PPMS manifests as a slow progression of the symptoms without picks
nor remission periods and resists treatment.

Figure 1.13: Disability progression for MS subtypes [Lublin et al., 2014]

1.1.3.2 The Diagnosis of Multiple Sclerosis

The diagnosis of MS is made when the patient fulfills specific and precise criteria.
The latest iteration and refinement is the 2017 McDonald criteria for MS (refer
to [Thompson et al., 2018] for further details). After the first clinically isolated
symptoms are observed/detected, the clinician needs radiologic evidence to estab-
lish the diagnosis. This radiologic inspection is based on two major characteristics
of MS – Dissemination In Space (DIS) and Dissemination In Time (DIT). DIS is
the development of lesions in distinct anatomical locations within the CNS whereas
DIT is the development or appearance of new lesions over time.

1.2 Image Processing Tasks for MS
The diagnosis and the follow-up of MS are heavily dependent on extracting infor-
mation from MRI. First, MS clinicians need to closely analyze the multi-sequence
MRI to spot WMH, delineate the lesions based on their expert knowledge, and
discard any false positive (i.e., image artifact such as noise). As mentioned in
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section 1.1, MRI lesions are an essential biomarker for MS. Second, the detection
of new-appearing lesions in longitudinal MRI is required for neurologists to un-
derstand the evolution of the disease and to assess and adapt treatment. Third,
the recognition of brain structures and measurement of their volumes is essential
to understand how MS patients are impacted by their disease. As highlighted
in sections 1.1.2.3 and 1.1.2.4, both the location of lesions with regard to brain
structures and the brain atrophy are linked to MS symptoms and disabilities. Fi-
nally, all the previously mentioned information extracted from multi-modal MRI
needs to be jointly analyzed in addition to demographic data, clinical tests, and
comorbidities (i.e., other conditions that may interact with MS). This overall as-
sessment is needed for a personalized efficient treatment and a better prediction
of the disease progression.

The extraction of information from MRI could be performed manually by ra-
diologists or experts in the field using visualization and annotation software (such
as ITKsnap [Yushkevich et al., 2016]). Although manual extraction can be accu-
rate when performed carefully, it suffers from multiple limitations. These tasks
are tedious, time-consuming, expensive, require domain expertise, prone to inter-
rater and intra-rater variability. Thus, automatizing these tasks was eventually
considered.

1.2.1 Preprocessing

MRI task automation can be very complex due to the diversity and inhomogeneity
of the obtained images. To reduce automatic task complexity and make MRI
analysis easier in general, image preprocessing steps are applied to improve the
image quality and normalize the overall representation. Indeed, MR images are
usually affected by different types of artifacts that degrade image quality during
the acquisition process due to hardware, calibration, subject motion, and other
magnetic characteristics.

The most important preprocessing steps in neuroimaging are denoising, inho-
mogeneity correction, registration, and intensity standardization (see Figure 1.14).
In the following, these preprocessing steps will be briefly addressed. For further
details, refer to [Manjón, 2017].

1.2.1.1 Denoising

MR images are inherently corrupted by random noise from the image acquisi-
tion process which introduces uncertainties in the measurement of quantitative
biomarkers. Although denoising could be achieved with a classic high-frequency
filter, the critical aspect of medical imaging makes it risky to remove at the same
time high-frequency components necessary for the analysis. Current stable state-
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Intensity
Standardization

Denoising Inhomogeneity
Correction

Registration

Figure 1.14: Most important preprocessing steps in neuroimaging

of-the-art denoising methods are based on patch-wise image processing approaches
exploiting sparseness and self-similarity properties of the medical images such as
[Manjón et al., 2010, Coupé et al., 2008] or based on deep learning [Manjón and
Coupé, 2018, Ran et al., 2019].

1.2.1.2 Inhomogeneity Correction

MR images signal intensity inhomogeneity is mainly produced by imperfections
in the radio-frequency coils and object-dependent interactions. Such an artifact
is perceived as a low-frequency variation of the signal intensity across the image.
Indeed, a given tissue should be represented by similar voxel intensities throughout
the data but intensity inhomogeneity, as the name suggests, makes similar tissues
have different intensities. The most used methods are N3 [Sled et al., 1998], N4
[Tustison et al., 2010], and SPM8/SPM12 [Ashburner, 2002] (SPM is limited to
brain imaging).

1.2.1.3 Registration

Image registration is the process of finding the optimal geometric transformation
to spatially align two different images and represent them in a similar space. Regis-
tration is necessary to compare different subjects having similar proprieties (same
anatomical region) or analyze different images of the same subject (multimodal or
longitudinal images). Registration is also used to represent images in a common
and standard space, such as the Montreal Neurological Institute (MNI) space. The
registration process first estimates the transformation parameters needed to map
the different images, then, applies them to the moving image/s. Depending on the
complexity of the transformation, we can have linear or nonlinear registrations.
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There are several available registration methods such as SyN [Avants et al., 2008],
ITK [Avants et al., 2014], and SPM’s DARTEL Toolbox.

1.2.1.4 Intensity Standardization

Due to scanner configuration, MR images acquired with a similar protocol (for
instance T1 or FLAIR) are not always encoded with the same intensity levels.
Moreover, even within the same scanner and setting, there could be variability in
the intensity patterns of the acquired images when comparing different sessions.
Several methods deal with intensity standardization such as Kernel Density Esti-
mation (KDE), Z-score using the brain mask, or histogram matching [Nyúl et al.,
2000].

1.2.2 Automated Tasks

To address the difficulties that come with the manual processing and analysis of
MRI related to MS, many fully automatic methods have been proposed. These
methods tackled the automation of MS-related tasks such as the detection and
segmentation of MS lesions [Danelakis et al., 2018, García-Lorenzo et al., 2013],
structure and tissue segmentation [González-Villà et al., 2016, Akkus et al., 2017],
and MS course classification [Ion-Mărgineanu et al., 2017a, Kocevar et al., 2016].
Since we cover several tasks related to MS analysis automation in this section,
we will focus on the common underlying mechanisms shared by these methods.
In chapters 2, 3, and 4 we will detail the specificities of works related to our
methods. The algorithms used for MS task automation can be grouped into the
broad categories of supervised and unsupervised methods.

1.2.2.1 Supervised Methods

Supervised models search for a function that maps an input to an output based on
a labeled dataset containing input-output pairs. The inferred function obtained
by analyzing the training data can be used for mapping new input samples to
their respective output. Due to the exponential increase in computational power
and the explosion of BigData, most supervised methods are based on Machine
Learning (ML). The principle of ML is to give computers the ability to "learn"
from data by improving their performance to solve tasks without being explicitly
programmed.

Classical Machine Learning

ML-based methods generally consist of a feature extraction step, followed by a
step to correlate the extracted feature to the objective output (e.g., classification

24 R.A. KAMRAOUI



1. Introduction

or regression). In the first step, the aim is to simplify the learning by using input
features that are more relevant to the task, instead of raw MRI voxel intensities.
These set of features (a.k.a hand-crafted features) are manually chosen by experts
in the domain.

In the case of features derived from MRI or medical imaging that capture
tissue, lesion characteristics, and other complex patterns, they are referred to
as radiomics. Radiomics include several categories of features such as first-order
features (i.e., gray-level intensity mean, maximum, minimum, standard deviation,
percentiles, and skewness), texture features (i.e., same statistical descriptors but
for the absolute gradient [Benoit-Cattin, 2006]. Other features derived from spatial
relation and spatial distribution about pairs, groups, or neighboring pixels/voxels
such as GLRLM [Galloway, 1975], GLCM [Haralick et al., 1973], GLSZM/GLDZM
[Thibault et al., 2013], and NGTDM [Amadasun and King, 1989]), shape-based
feature (i.e., geometric descriptor [Zhang et al., 2019a, Al-Zubi et al., 2002] includ-
ing diameters, surface, compactness, sphericity), and transform-based features
(i.e., Fourier [Yonar et al., 2018], Gabor [Bodis-Wollner and Brannan, 1997], and
Haar wavelet transforms [Laine and Fan, 1993]).
Besides radiomics which do not contain apriori nor expert-infused knowledge, sev-
eral high-level features can be extracted from the different imaging modalities.
High-level features are task-specific and can be extracted either manually or using
other automatic methods and tools such as FreeSurfer [Fischl, 2012]. High-level
features related to MS may include MS lesion features (e.g., lesion load [Zijden-
bos et al., 2002], lesion count, and location), brain structure and tissues statistics
(i.e., volume and asymmetry), brain curvature, cortical thickness, and fractional
anisotropy [Pfefferbaum et al., 2003, Ciccarelli et al., 2001].
Both radiomics and high-level features can be used alone or combined with com-
plementary information such as clinical (e.g., treatment, comorbidities, disease
duration, and other disease-related statistics) and demographic (e.g., age, sex,
and ethnicity) information, for tasks automation and analysis [Mayerhoefer et al.,
2020, Yip and Aerts, 2016, Ion-Mărgineanu et al., 2017b].

In the second step, ML models are trained to learn a correlation between the
aforementioned features and the output objective. Many ML algorithms have been
used for MS automatizing tasks, such as the bayesian approach [Johnston et al.,
1996], logistic regression [Barkhof et al., 1997], artificial neural networks [Zijdenbos
et al., 1994], K-NN [Vinitski et al., 1999], and Random forests [Boucekine et al.,
2013].
These algorithms are either used for segmentation (i.e., MS lesion segmentation
methods such as BIANCA [Griffanti et al., 2016], OASIS [Sweeney et al., 2013],
MIMoSA [Valcarcel et al., 2018] and LST toolbox for SPM [Schmidt and Wink,
2017]), classification (i.e., MS disease course classification [Zhao et al., 2017,
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Pinto et al., 2020]), or regression (i.e., the estimation and prediction of MS
disability score [Roca et al., 2020, Pontillo et al., 2021]).

Deep Learning

Deep Learning (DL) is a specific type of ML based on artificial neural networks
(a.k.a deep neural networks) in which multiple layers of processing are used to
extract progressively higher-level features from input data. Contrarily to classical
ML, DL requires reduced to no feature engineering, since both feature extraction
and correlation are learned simultaneously during training. DL methods have
gradually overwhelmed classical ML approaches during the last years due to the
advancement of graphical computing (i.e., Graphical Processor Unit (GPU)) and
the increasing amount of available training data. Deep neural networks feedforward
(the transformation of the input to the output) is guided by networks weights or
parameters. These parameters are learned by backpropagation which computes
the gradient of the loss function (e.g., mean squared error, binary cross entropy)
with respect to the network weights based on a labeled dataset. This efficiency
makes it feasible to use gradient methods for training multilayer networks such as
gradient descent and its variants (e.g., stochastic gradient descent [Bottou, 2010],
ADAM [Kingma and Ba, 2014]).

Convolution kernel
(Learnable weights in CNN) 

The result matrix new pixel value    

Source pixel 0 × 4 + 0 × 0 + 0 × 0  
+ 0 × 0 + 1 × 0 + 1 × 0

 + 0 × 0 + 1 × 0 + 2 × -4   

= -8

Figure 1.15: The 2D convolution operation used in CNN learns to extract priorities
of the pixel neighborhood. Modified from: 9

DL methods have gained popularity for MS-related tasks, especially with the
Convolutional Neural Network (CNN). CNN takes its name from convolution, a

9www.medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411
10www.stanford.edu/~shervine/l/fr/teaching/cs-230/
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Figure 1.16: The fully connected layers learn the mapping of every element in a
layer to each element of the next layer. Modified from: 10

mathematical linear operation between matrices that is able to represent pixel/voxel
neighborhood proprieties (see Figure 1.15). CNNs have multiple layers including
convolutional layers, activation layers (i.e., mathematical operations that intro-
duce non-linearity such as rectified linear units, hyperbolic tangent, sigmoid, soft-
max), pooling layers (i.e., to reduce the complexity and aggregate features), and
fully-connected layers. While both the convolutional and fully-connected layers
have learnable parameters, the strength of CNN is in exploiting the spatial aspect
of 2D or 3D images by learning the kernel mask coefficients of the convolution
operation, as opposed to fully-connected layers which learn the linear coefficients
for every element of a layer to output a single element of the subsequent layer (see
Figure 1.16). The kernel size defines the limited range of convolution which also
represents the limitation of CNN since they capture local features. Recent works
propose solutions to learn global features such as non-local neural networks [Wang
et al., 2018], and visual transformers [Dosovitskiy et al., 2020].

For MS lesion segmentation several patch-wise CNN have been proposed such as
nicMSlesions [Valverde et al., 2017], DeepMedic [Kamnitsas et al., 2015, Kamnitsas
et al., 2016], FLEXCONN [Roy et al., 2018], and MSWS [Ghafoorian et al., 2017].

Fully Convolutional Networks (FCN) are a special case of CNNs that do not
contain fully-connected layers. These networks take a 2D/3D input and produce
correspondingly-sized output with very efficient inference and learning [Long et al.,
2015]. Indeed, FCN permits the design of pixel/voxel-based models able to produce
the segmentation in a single pass which makes them significantly faster compared
to their patch-wise counterparts. FCN gave rise to several pixel/voxel-based mod-
els for MS-related segmentation tasks such as 2D and 3D Unet [Ronneberger et al.,
2015, Çiçek et al., 2016], nnUnet [Isensee et al., 2019], [Brosch et al., 2016], and
2.D Tiramisu [Zhang et al., 2019b].
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1.2.2.2 Unsupervised Methods

Unsupervised Learning methods analyze and find distinctive patterns in data with-
out the need for human-labeled output. In this section, we will briefly discuss how
unsupervised algorithms can be used in MS analysis and task automation.

First, early segmentation methods were implemented with explicitly programmed
algorithms such as thresholding, intensity analysis, and morphology/topology anal-
ysis [Iheme and Unay, 2005, Boesen et al., 2004, Goldberg-Zimring et al., 1998].
Contrary to learning-based techniques, these algorithms specifically defined the
task of segmentation based on image priorities (e.g., intensity and object shape).
Although these simple methods have limited performance, especially for complex
tasks, they can be very helpful as a baseline or when building a labeled dataset.
Indeed, on one hand, the use of complex learning-based methods is often motivated
by a significant increase in performance compared to simpler baseline methods. On
the other hand, when labeling data for a new task with no available learning-based
automatic method, these simple algorithms can make labeling easier by providing
the first prediction that a human rater can correct and refine manually.

Second, atlas-based methods are data-centric techniques that use healthy brain
anatomy represented by the atlas to discriminate deviant tissues and anomalies
such as MS lesions. The atlas of the brain is a map representing either statistical or
topological information. The statistical atlas provides the prior probability of each
voxel belonging to a particular tissue class whereas the topological ones encode a
specific topology for each structure and group of structures. Both can be used for
MS-related tasks since MS lesions have a statistical probability of distribution and
are considered topological outliers, such as in TOpology-preserving Anatomical
Segmentation (TOADS) for MS lesions [Shiee et al., 2010]. Atlas-based methods
require a non-linear registration to fit the input data to the atlas which makes their
processing time longer compared to their learning-based counterparts. However,
their simple mechanism can make them more efficient for the detection of very
rare anomalies.

Third, unsupervised methods can also be used to cluster and separate data.
This can be advantageous when performing an automatic task (i.e., the discrim-
ination of MS lesions from healthy tissues [Pham and Prince, 1999, Desolneux
et al., 2003]). Besides that, recent works [Eshaghi et al., 2021] used unsupervised
clustering methods, to uncover data-driven MS disease subtypes with distinct tem-
poral progression patterns and different trajectories of abnormalities stages (e.g.,
atrophy, tissue damage, lesions). This suggests that the analysis of MRI-based in-
formation is able to better predict worsening and response to treatment compared
to clinical phenotypes (i.e., RRMS, SPMS, PPMS).
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1.3 Thesis overview

In this thesis, we aim to propose a suite of tools for the automation of MS neu-
roimaging tasks. As shown previously in this chapter, MS is a complex disease
having disseminations in space and time. Moreover, the link between the radio-
logical and clinical manifestations of MS is still unclear. Therefore, its diagnosis,
monitoring, or progression prediction requires development of specific methods to
help clinicians in their tasks. In the following chapters, we will present the meth-
ods developed during this Ph.D. to address i) lesion segmentation (Chapiter 2),
ii) detection of new lesions (Chapter 3) and iii) disability estimation (Chapter
4). All these chapters correspond to published or submitted articles during the
preparation of the thesis.

In Chapter 2, we present DeepLesionBrain, a novel MS lesion segmentation
method that is robust to domain shift and well-performing on unseen datasets.
This generalization property results from three main contributions. First, the
method uses a large group of compact 3D CNNs spatially distributed over the
brain with overlapping receptive fields between regions. By associating a dis-
tinct network with each region of the brain, the spatially distributed networks
strategy simplifies the MS lesion segmentation from a single complex task on the
whole brain to multiple simpler sub-tasks on each region. Moreover, the over-
lapping regions ensure consistent and stable consensus. Second, to extract more
relevant features for MS segmentation that may lead to better generalization, the
method is trained with the proposed Hierarchical Specialization Learning. The
two-step training strategy consists of a single network pre-trained on all brain
regions that are used in the subsequent step to initialize the weights of each spa-
tially distributed network. Third, DeepLesionBrain is trained with a novel image
quality data augmentation method, which mimics real-world data diversity by
adding realistic alterations to the training images. These specific augmentations
constrain task learning to be independent of source data acquisition resolution,
data contrast, or data quality. Consequently, the proposed augmentation strat-
egy enables domain shift robustness. The method generalization was validated
in cross-dataset experiments on a couple of reference datasets, and our in-house
datasets. During experiments, DeepLesionBrain showed higher segmentation ac-
curacy, better segmentation consistency, and greater generalization performance
compared to state-of-the-art methods.

In Chapter 3, we describe a DL-based pipeline addressing the challenging task
of detecting and segmenting new MS lesions. Indeed, the lack of annotated longi-
tudinal data for this task and the rarity of cases with new-appearing lesions are
limiting factors for the training of robust and generalizing models. These data
scarcity and class imbalance problems are tackled in three main contributions.
First, transfer learning is proposed to exploit the larger and more diverse datasets

Deep Learning in Neuroimaging for Multiple Sclerosis 29



1.3. Thesis overview

available for the task of single-point MS lesion segmentation. The datasets used
to train MS lesion segmentation are more easily available and the positive class is
more frequent (less impacted by class imbalance) compared to the task of new MS
lesion segmentation. Therefore, exploiting knowledge from an easier and similar
task with a richer training set improved considerably the task of new MS lesion
segmentation. Second, the pipeline includes a novel data synthesis strategy to
generate realistic longitudinal time-points with new lesions using single time-point
scans. The strategy combine the use of a lesion generator and lesion eraser models
(both trained separately and before the described pipeline) to generate “on the
fly” synthetic 3D patches that represent longitudinal scans of the same patient
with evolution in their lesion mask. In this way, the model is trained on large
synthetic annotated datasets. Third, an improved version of the Image Quality
Data Augmentation (presented in Chapter 2) is proposed to simulate data diver-
sity in MRI. The improved version introduces more alterations both in the spatial
and frequency space (k-space). Thus, the augmentation method helps to better
oversample the scarce samples with new lesions and makes the trained model more
robust to image diversity. The ablation study showed that each contribution lead
to an enhancement of the segmentation accuracy. Using the proposed pipeline, we
obtained the best score for the segmentation and the detection of new MS lesions
in the MSSEG2 MICCAI challenge.

In Chapter 4, we propose a novel method for the estimation of EDSS from
MRI-based and clinicodemographic information with DL. To achieve this, we first
propose to extract relevant neurodegenerative and neuroinflammatory biomark-
ers. Next, we propose CNN architecture that effectively combines image-based
and tabular information. Moreover, our model is trained with novel multi-phase
learning and data augmentation to mitigate the data imbalance effect. During
validation, our DL method surpassed conventional state-of-the-art methods. To
better understand which brain regions contribute the most to the prediction of our
EDSS estimation model, we propose to use model interpretability visualizations
adapted for our task. The obtained visualizations show consistency with works as-
sociating MS functional impairments at different stages of the disease with brain
structures responsible for these functions.

In Chapter 5, we propose complete pipelines for the processing of multimodal
neuroimaging data and the extraction of MS-relevant information based on the
works proposed in chapters 2 to 4. First, we propose to use containerization and
host our pipelines on a web-based platform to allow the MS community to use them
easily without the need of dealing with installation and hardware requirements.
Second, we propose easy-to-use pipelines that do not require technical expertise to
execute and retrieve their results. Finally, we propose to generate reports offering
compact, organized, and easy-to-read information.
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Chapter 2

MS Lesions Segmentation

This chapter corresponds to the following publication:
Reda Abdellah KAMRAOUI, Vinh-Thong TA, Thomas TOURDIAS, Boris

Mansencal, José V. Manjon, and Pierrick Coupé. DeepLesionBrain: Towards
a broader deep-learning generalization for multiple sclerosis lesion segmentation.
Medical Image Analysis, 2022, vol. 76, p. 102312 [2].

Recently, segmentation methods based on Convolutional Neural Networks (CNN)
showed promising performance in automatic Multiple Sclerosis (MS) lesions seg-
mentation. These techniques have even outperformed human experts in con-
trolled evaluation conditions such as Longitudinal MS Lesion Segmentation Chal-
lenge (ISBI Challenge). However, state-of-the-art approaches trained to perform
well on highly-controlled datasets fail to generalize on clinical data from unseen
datasets. Instead of proposing another improvement of the segmentation accuracy,
we propose a novel method robust to domain shift and performing well on unseen
datasets, called DeepLesionBrain (DLB). This generalization property results from
three main contributions. First, DLB is based on a large group of compact 3D
CNNs. This spatially distributed strategy aims to produce a robust prediction
despite the risk of generalization failure of some individual networks. Second,
we propose a hierarchical specialization learning (HSL) by pre-training a generic
network over the whole brain, before using its weights as initialization to locally
specialized networks. By this end, DLB learns both generic features extracted at
global image level and specific features extracted at local image level. Finally,
DLB includes a new image quality data augmentation to reduce dependency to
training data specificity (e.g., acquisition protocol). DLB generalization was val-
idated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house
datasets. During experiments, DLB showed higher segmentation accuracy, bet-
ter segmentation consistency and greater generalization performance compared to
state-of-the-art methods. Therefore, DLB offers a robust framework well-suited
for clinical practice.
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2.1 Introduction

2.1.1 Problem Description

In recent years, the medical imaging community has witnessed a rapid increase
in image processing methods based on DL. These novel techniques came with re-
markable performance in many tasks including MS lesion segmentation. Some
automated algorithms have even reached human-level performance in controlled
evaluation conditions (see [Carass et al., 2017]). Unlike over-controlled conditions
where most DL approaches have been validated, real-world data exhibit high di-
versity. Consequently, clinical use of MS lesion segmentation based on DL is still
limited mainly because of their poor generalization on new data coming from med-
ical sites that have not been covered during training (unseen domains). This lack
of generalization of DL methods can result from several factors such as the selected
solution during optimization, the diversity of the training dataset or the genericity
of the extracted features.

DL is based on the assumption that training and test data are independent
but come from the same distribution. This assumption is usually not respected in
medical imaging data especially for MRI where acquisition protocols, MRI scanner,
patient populations, and software processing may vary depending on the clinical
center or the cohort. As a result of these differences of data distribution (covariate
shift), a decrease in performance is observed between the training data (source
domain) and the test data derived from different distributions (target domain).
This is known as the domain shift.

An intuitive method to reduce this problem is to train on a wider and more
heterogeneous dataset (as shown by [Mårtensson et al., 2020]). However, this re-
quires a large dataset annotated by experts which are rarely available and tedious
to produce. Some deal with this phenomenon by applying extensive data aug-
mentation (such as [Zhang et al., 2020b]). Others use few available labeled images
from the target domain to reduce the covariate shift, such as few-shot and one-shot
learning strategies (see [Snell et al., 2017, Valverde et al., 2019]).

Besides, DL requires the tuning of a large number of parameters relative to the
number of training data samples. Thus, it usually ends up converging to one of the
many possible local minima as opposed to the theoretical best parameter configu-
ration which leads to the global minimum. Consequently, the generalization ability
of the model depends on the selected solution. The selection of the best gener-
alizing local minimum is still an open question. On one hand, some works have
proposed to select it using the local characteristics (e.g., flatness) of the loss func-
tion (see [Keskar et al., 2016, Wu et al., 2017] ). On the other hand, an alternative
strategy consists in combining several local minima to improve the generalization
capability of the method. This can be done by averaging several local minima of
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one model (e.g., snapshot ensemble [Huang et al., 2017]) or by combining outputs
of different models trained independently (e.g., classical ensemble [Zhang et al.,
2019b] and spatially distributed networks [Coupé et al., 2020, Huo et al., 2019]).

Unlike classical methods that use hand-crafted features, Convolutional Neural
Networks (CNNs) automatically extract the most suitable set of features for a
particular task. Although this strategy is very efficient to extract relevant features
for a particular source domain, this set of features may not generalize well for the
target domain. Some works proposed to learn invariant features that coexist across
different source domains [Motiian et al., 2017, Muandet et al., 2013, Yang and Gao,
2013]. They tried to apply a regularization to learn an abstract representation of
the specific computer vision task (i.e., just like humans understand high-level
concepts). Indeed, the extraction of generalizing features lies between the freedom
of the optimization process to find the optimal combination from data and the
constraints used for minimizing domain bias.

The successful deployment of DL based methods for MS lesion segmentation
requires generalization capabilities that can guarantee high performance for unseen
domains. First, such methods should ensure the convergence of the DL model to
generalizing minima. Second, the training process should anticipate the reduction
of the covariate shift. Moreover, the method should be enforced to learn MS
lesion generalizing features from the source domain, to effectively delineate lesions
despite the target domain distribution. Finally, this solution should not require
additional annotation in case of processing unseen domains.

2.1.2 Related Works

Recently, many works have been proposed for MS lesion segmentation using CNNs.
First, [Brosch et al., 2016] proposed a deep 3D encoder-decoder network, with joint
training of the encoder and the decoder. The authors used shortcut connections
between the two interconnected pathways for integrating high and low-level fea-
tures. This pioneering work demonstrated the high potential of deep learning for
MS lesion segmentation.
[Valverde et al., 2017] proposed a cascade of two patch-wise 3D CNNs, composed
of a first sensitive network to reveal possible lesion candidates followed by a second
network to reduce misclassified voxels. This cascade allows refined segmentation
but it uses a small receptive field that prevents capturing the global context. Later,
the authors [Valverde et al., 2019] improved their method by proposing a one-shot
domain adaptation model which uses transfer learning and partial fine-tuning.
However, this domain adaptation needs a labeled example from the new domain.
Moreover, such strategies lead to different versions of the method after each adap-
tation, this results in discrepancies in the segmentation.
[Hashemi et al., 2018] considered the problem of data imbalance (i.e., the under-
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sampling of the lesion class) by using an asymmetric similarity loss function based
on Tversky index to train a 3D CNN that performed better than Dice or cross-
entropy measures. This result suggests that further work should be done on choos-
ing an adequate loss function. Although the proposed loss can be tuned for the
optimal trade-off between precision and recall in a particular domain, the gener-
alization to unseen domains has to be proven.
[Zhang et al., 2019b] used a fully convolutional densely connected network for MS
lesion segmentation. They stacked adjacent 2D slices of different modalities with a
channel-wise concatenation, before forwarding this stack through a 2D CNN. The
final segmentation is based on a majority vote along different orientations. While
this method showed competitive performance on a well-controlled challenge, the
stacking using only the two directly adjacent slices gives a weak insight into the 3D
nature of the data. Moreover, 2D features may not be considered as generalizing
features when processing 3D volumes and can result in the limited generalization
of the method.
[Aslani et al., 2019] proposed an end-to-end encoder-decoder 2D network with
multiple downsampling branches, one for each input modality, and a decoder part
where features from the different modalities are put together at multiple scales.
This separation in encoder branches enables the model to encode information ef-
ficiently from each modality, before combining them in a later stage. However,
this 2D approach does not combine features based on axial, coronal, and sagittal
orientations that may greatly reduce its generalization on 3D images.
[Feng et al., 2019] considered MRI modality unavailability during segmentation by
introducing sequence dropout. This is an important point since the availability of
all the modalities is not always ensured between datasets that can greatly reduce
the generalization capacity of a method. This framework randomly drops specific
MRI sequences during training, with the intent to learn the intrinsic information
of each sequence. This technique showed it can produce acceptable segmentation
even in the absence of one or two modalities. Nonetheless, it is less efficient than
other state-of-the-art methods when all modalities are available (will be detailed
in section 2.3.3).
[Aslani et al., 2020] tackled the problem of generalization to new domains by inte-
grating a regularization network to the traditional encoder-decoder network. The
regularizer penalizes the network when the latter learns features that allow the
prediction of MRI scanning sites. However, [Li et al., 2018] have argued that such
strategies suffer from overfitting, the obtained representation could well generalize
for all the source domains but poorly for the unknown target domains.

All the cited MS methods [Brosch et al., 2016, Valverde et al., 2017, Feng
et al., 2019, Hashemi et al., 2018, Zhang et al., 2019b, Aslani et al., 2019, Feng
et al., 2019] focused on obtaining accurate segmentation within a same domain
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evaluation. However, the use of out-of-domain datasets is essential to ensure a
good evaluation of the generalization capabilities of a method. This question is
right now a hot topic (see [Mårtensson et al., 2020], and [Bron et al., 2021]) and
an important recommendation from the clinical world (see [Omoumi et al., 2021]).
Experiments using training and testing images derived from the same domain are
known to be biased [Omoumi et al., 2021] and do not ensure generalization. There-
fore, a model used in clinical conditions should produce accurate segmentation for
new domain images without the need of retraining with expert segmentation on
the new domain.

2.1.3 Proposals

In this chapter, we propose DeepLesionBrain (DLB), a novel method for MS lesion
segmentation robust to domain shift, validated on out-of-domain testing (cross-
dataset testing).

First, we use a large group of compact 3D CNNs spatially distributed over the
brain with overlapping receptive fields between regions.

By associating a distinct network with each region of the brain, the spatially
distributed networks (see [Coupé et al., 2020, Huo et al., 2019]) strategy simplifies
the MS lesion segmentation from a single complex task on the whole brain to mul-
tiple simpler sub-tasks on each region. Moreover, the overlapping regions ensure
consistent and stable consensus.

Applied to brain segmentation, this strategy demonstrated good generalization
on unseen domains (e.g., child’s brain or patients with Alzheimer’s disease) when
trained on healthy adult brains [Coupé et al., 2020].

Second, to extract more relevant features for MS that may lead to better gen-
eralization, we focus on feature learning strategy. We consider that a generalizing
model should learn two types of features: first global and generic features, and
second local and specific features. Therefore, we propose Hierarchical Specializa-
tion Learning (HSL) to efficiently extract those features in two-steps. In the first
step, a single network (the generic network) is trained on all brain regions. In the
second step, each network of the spatially distributed networks is initialized with
the generic network weights and specialized for a specific region of the brain.

Third, DLB is trained with a novel Image Quality Data Augmentation (IQDA)
method, which mimics real-world data diversity by adding realistic alterations to
the training images. As shown in the works of [Zhang et al., 2020a], such a type
of regularization technique aims to reduce covariate shift. IQDA proposes specific
augmentations that constrain task learning to be independent from source data
acquisition resolution, data contrast, or data quality. Consequently, the proposed
augmentation strategy enables domain shift robustness.
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Finally, we propose a method using only two modalities (T1 and FLAIR) to
ensure its compatibility with a large number of datasets. Most of the methods
[Feng et al., 2019, Brosch et al., 2016, Valverde et al., 2017, Zhang et al., 2019b]
optimize their segmentation using T1, FLAIR, PD, and T2 modalities. However,
in clinical conditions, not all these sequences are always available. Therefore we
focused our work on developing a robust approach using only two modalities.

2.2 Method and Material

Network	3

Network	N

Network	2

Network	1

Weight	
initialization

Generic	Network

Step1:	Generic	Global	Pretraining Step2:	Specialized	local	training

Ensemble	of	specialized	networks

Figure 2.1: The two-steps training process of DeepLesionBrain (see Sect. 2.2.1.1
for more details).

2.2.1 Method Overview

2.2.1.1 Spatially Distributed Networks with Hierarchical Specializa-
tion

Spatially Distributed Networks Strategy
DLB is based on a spatially distributed networks strategy, proposed by [Coupé

et al., 2020] and [Huo et al., 2019]. Such a strategy uses a group of compact net-
works, where each network is specialized in a particular region of the brain, and
processes a sub-volume of the global volume. The receptive fields of the neighbor-
ing networks overlap with one another, and the final segmentation of the whole
volume is obtained with a majority vote of the local predictions. Employing our
spatially distributed compact networks is equivalent to a big network with more
filters and a higher receptive field (see Fig. 2.1). This particular configuration with
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overlapping receptive fields aims to produce a more robust segmentation compared
to an individual network. As shown in the work of [Huo et al., 2019] that com-
pared between 8 networks configuration with no-overlapping and 27 networks with
overlapping, having an average prediction over overlapping regions led to signifi-
cantly better performance on the evaluation data-sets including out-of-domain (on
infants) data (i.e., better generalization). Similarly, [Coupé et al., 2020] confirmed
that larger overlapping led to better performance until the limit of 125 networks
where performance peaked and stayed stable for 125, 216, and 343 networks. Ad-
ditionally, we assume that averaging the prediction of a group of networks that
have been trained separately on different sub-volumes is less likely to collapse than
having a single network trained on the same set of data.

Hierarchical Specialization Learning (HSL)
To improve generalization for the task of MS lesion segmentation, we take

inspiration from MS lesion features and propose a better learning strategy. MS
lesions features can be grouped into two categories:
First, some lesion characteristics are considered generic and shared among lesion
types. Such features are independent of lesion localization. They have a common
and inherent significance at the global scale of the brain volume, we will refer to
them in this chapter as “generic global features”.
Second, other relevant features for MS lesions depend on brain structure and some
distinct regions (see [Filippi et al., 2019a]). In this work, we refer to these features
as “specialized local features”.

On the one hand, training each specialized network on a specific sub-region
of the brain (see Fig. 2.1 right) would prevent the efficient learning of “generic
global features”, since each specialized member of our group would be trained on
a particular region of the whole brain. On the other hand, using a single 3D CNN
to learn "specialized local features" over the whole brain volume would require a
large model which may not fit into memory and a large dataset to train it.

To overcome this limitation, we propose a novel Hierarchical Specialization
Learning (HSL). Fig. 2.1 shows our two-step learning process. First, the “generic
network” is trained with data samples from all over brain regions to learn general
knowledge about lesions by extracting “generic global features”. Second, each
network in the spatially distributed strategy is specialized over a specific sub-
volume of the brain.

The generic network is used as an initialization for each network of our spa-
tially distributed networks, by transferring the generic network weights to each
individual specialized network. The knowledge gained from this transfer learn-
ing transmits the ability to extract “generic global features”, while the specialized
network training will specialize them in extracting local “specialized local features”.
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In our ablation study, we will show that this hierarchical specialization learning
of the specialized networks performs better than training a single network over the
whole brain, or training the specialized networks without HSL.

2.2.1.2 Image Quality Data Augmentation (IQDA)

The quality of the MRI greatly varies between datasets. In fact, the quality of
the images depends on several factors such as signal-to-noise ratio, contrast-to-
noise ratio, resolution, or slice thickness. To address this issue, we propose a data
augmentation strategy that considers image quality disparity. During training,
we simulate “on the fly” altered versions of 3D patches. We randomly introduce
at each iteration either blur, edge enhancement, or axial subsampling distortion
(2D FLAIR are usually acquired along the axial direction). For the blur, a gaus-
sian kernel is used with a randomly selected standard deviation ranging between
[0.5, 1.75]. For edge enhancement, we use unsharp masking with the inverse of the
blur filter. For axial subsampling distortion, we simulate acquisition artifacts that
can result from the varying slice thickness. We use a uniform filter (a.k.a mean
filter) on the axial direction with a size of [1× 1× sz] where sz ∈ 2, 3, 4. Ground
truth is kept the same as the original version. This process reduces the domain
bias when learning to extract relevant features caused by data variability.

2.2.1.3 Selection of the Required Modalities

To use a trained model for MS lesion segmentation with optimal performance, it
usually requires the use of the same set of modalities that have been chosen during
training. DLB proposes a method that needs only T1 and FLAIR sequences to
be compatible with all benchmark MS datasets and most already available MS
patients data.

Our method is built with the purpose to generalize on unseen datasets, thus
it uses the minimum necessary modalities. Indeed, increasing the number of se-
quences requires a longer scan acquisition time. Besides, it needs more complex
processing which may be prone to error, such as multimodal image registration.
Furthermore, the use of more sequences during the training on a dataset may
reduce the generalization to other image domains.

In addition to the wide use of T1 and FLAIR for MS diagnosis, the choice of
these modalities has also been motivated by the fact that FLAIR is the most rele-
vant sequence for revealing most MS lesions (see [Narayana et al., 2020]), while T1
can provide complementary structural information needed for accurate segmenta-
tion.
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Figure 2.2: Illustration of the considered U-Net architecture. The number of
input channels (NC) depends on the modality number (i.e., NC= 2, for using T1
and FLAIR ). Each block is composed of group normalization (GN), Convolution
(Conv) and Rectified Linear Unit (ReLU) activation.

2.2.2 Implementation Details

The network architecture used in our spatially distributed strategy is based on 3D
U-Net composed of a downsampling part and an upsampling one, linked with one
another by skip connections at the multiple scales. This 3D CNN architecture,
shown in Figure 2.2, has been used for all the networks in our approach. Dropout
with 0.5 rate is used after max-pooling layers to prevent the overfitting of our
model to the training data. Due to GPU memory constraints, we trained with a
batch size of 1, and so we used Group Normalization (GN) [Wu and He, 2018] with
8 groups before each convolution. We have chosen Rectified Linear Units (ReLu)
to introduce non-linearity after convolution layers. DLB is optimized with Adam
[Kingma and Ba, 2014] using a learning rate of 0.0001 and a momentum of 0.9.
The experiments have been performed with Keras 2.2.4 [Chollet et al., 2015] and
Tensorflow 1.12.0 [Abadi et al., 2016] on NVIDIA Titan Xp 12 GB GPU.

2.2.3 Method Description

To obtain sub-volumes for each image, we first divide our whole MRI registered
into the Montreal Neurological Institute template space (MNI space) into multiple
overlapping 3D patches. We perform a cropping operation over the whole image
using a sliding window of the size (Px, Py, Pz), and a stride of (Sx, Sy, Sz). We
take Sx < Px, Sy < Py, Sz < Pz to ensure the overlapping.

Sub-volumes from different images, that represent the same receptive field into
the MNI space (the same sub-volume region of the whole volume), are grouped
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together. They are used for training a network specialized for that particular
region.

In this work, we explored many combinations of sub-volume sizes and numbers.
We chose a configuration with 125 sub-volumes by taking experimentally Px =
Py = Pz = 96, Sx = Sy = 76, and Sz = 67 as a good trade-off between the
overall performance and computation resources.

2.2.3.1 Symmetrical Training

To limit redundant training and to use the most possible data for a particular
brain region, we choose to train specialized networks only on one hemisphere.
By flipping (mirroring) the sub-volumes of the second hemisphere, it is possible
to train a single specialized network for both sides. Thus, we can use twice the
amount of data for each region while reducing the number of networks to train to
nearly a half (due to sub-volume overlapping, the plane of symmetry cuts through
the median networks which cover equivalent symmetrical regions from both hemi-
spheres). Consequently, unlike previous works with spatially distributed networks
(i.e., [Coupé et al., 2020]), instead of using 125 networks we use only 75 specialized
networks. We experimentally verified that using 125 networks or only 75 trained
with twice the number of patches, produced similar segmentation accuracy.

2.2.3.2 Loss Function

MS lesion segmentation task suffers from class imbalance since lesion volume is
considerably low compared to healthy volume. Thus, we use a smooth version
of the Generalized Jaccard Loss (GJL), which considers this issue [Manjón et al.,
2022].

GJL = 1− σ +
∑Nc

c=1 wc

∑N
i=1 pcitci

σ +
∑Nc

c=1 wc

(∑N
i=1(pci + tci)−

∑N
i=1 pcitci

) (2.1)

Where wc = 1/(1 +
∑N

i=1 tci), σ is the smoothness factor, N is the number
of voxels, Nc is the number of classes, pci and tci are respectively the predicted
probability and the ground truth probability of the voxel i for the class c.

During inference, we combine the overlapping predictions in a straightforward
majority vote technique. The class of each voxel (either lesion or healthy tissue)
is chosen based on the most predicted class among the networks which cover that
voxel.
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2.2.4 Datasets

To assess the robustness of a model, it is crucial to test its ability to generalize on
unseen domains. Therefore, DLB has been trained and validated using different
datasets to assess its domain generalization ability (see 2.3.2 ). These datasets
exhibit high heterogeneity in terms of resolution, data processing, acquisition sites,
delineation protocols, and they also cover a large variety of clinical scenarios.

2.2.4.1 ISBI Longitudinal Multiple Sclerosis Lesion

The ISBI dataset [Carass et al., 2017] consists of five subjects for training, fourteen
subjects for testing, with a mean of 4.4 time-points per subject (21 images for
training and 61 images for testing). Two human expert raters delineated MS
lesions, from the four available modalities acquired on 3.0 Tesla MRI scanner: 3D
MPRAGE T1−weighted (T1) of 0.82×0.82×1.17 mm3 voxel size, 2D T2−weighted
(T2), 2D T2−weighted fluid attenuated inversion recovery (FLAIR), and 2D Proton
Density weighted (PD), of 0.82× 0.82× 2.2 mm3 voxel size each.

For the training, we used the ISBI training dataset with available annotations
from the two experts. For test and evaluation, we segmented the test data with
no available expert annotation, and submitted our results to the ISBI challenge
website1. The ISBI pipeline already included preprocessing. Each first time-point
T1 was inhomogeneity-corrected using N4 [Tustison et al., 2010], skull-stripped
[Carass et al., 2007], dura stripped [Shiee et al., 2014], followed by a second N4
inhomogeneity correction, and rigid registration to a 1 mm3 isotropic MNI tem-
plate. Then, this image was used as a target for the remaining T1 time-points
and all modalities for the same subject. These images were N4 corrected and then
rigidly registered to the T1 in the MNI space. The skull and dura-stripped mask
from the target T1 was applied, which were then N4 corrected again. We added
an intensity normalization step using kernel density estimation for all images.

2.2.4.2 MICCAI2016 MS Challenge Dataset

The MSSEG’16 training dataset [Commowick et al., 2016] contains 15 patients
from 3 different clinical sites. Five modalities are available for each patient: 3D
FLAIR, 3D T1, 3D T1-Gd, 2D PD, and 2D T2. The images were acquired on 1.5T
and 3T MRI scanners with multiple resolutions: 3D FLAIR modalities ranging
from 1 × 0.5 × 0.5 to 1.25 × 1.04 × 1.04 mm3, and 3D T1 sequences between
0.85× 0.74× 0.74 and 1.08× 1.08× 0.9 mm3.

Seven human experts have manually segmented the multiple sclerosis lesions.
Each patient modalities have been preprocessed with the same pipeline. First, each

1https://smart-stats-tools.org/lesion-challenge-upload-results
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sequence was denoised using the non local means algorithm [Coupé et al., 2008].
Second, a rigid registration of each modality on the FLAIR was performed [Com-
mowick et al., 2012]. Then, skull stripping of T1 was performed using the volBrain
platform [Manjón and Coupé, 2016], the same mask is applied to other modalities.
Finally, bias field correction was applied using the N4 algorithm [Tustison et al.,
2010]. In addition to these steps that have been performed on the available images,
each modality was registered to the MNI space for our experiments. Similarly, to
the ISBI images, we used kernel density estimation for the normalization step.

2.2.4.3 In-house Dataset

For further evaluation of our approach, we used an In-house 3D MRI dataset, with
3D T1 and 3D FLAIR modalities [Coupé et al., 2018]. This dataset contains 43
subjects diagnosed with MS. The images were acquired with different scanners and
multiple resolutions (0.6 × 0.6 × 0.65 mm3, 0.5 × 0.5 × 0.9 mm3, and 1 × 1 × 1
mm3).

The dataset lesion masks have been obtained by human experts manual de-
lineation. The images were pre-processed using the lesionBrain pipeline from the
volBrain platform [Manjón and Coupé, 2016]. First, it included denoising of each
modality [Coupé et al., 2008]. Second, an affine registration to MNI space was per-
formed on the T1 , then the FLAIR was registered to the transformed T1. Skull
stripping and bias correction have been performed on the modalities, followed by
a second denoising. Finally, the intensities have been normalized.

Table 2.1: Description of datasets used in this work.

2D/3D Site # Subjects # Raters Modalities

ISBI train-set 2D Mono 5 2 T1, FLAIR,
PD, T2

MSSEG’16 3D Multi 15 7 T1, T1-Gd,
FLAIR, PD, T2

In-house 3D Multi 43 1 T1, FLAIR

2.2.4.4 Datasets Summary

Table 2.1 summarizes the main differences between the 3 datasets. We focused
specifically on the resolution of FLAIR due to its known relevance in MS le-
sion segmentation. To summarize, ISBI train-set contains multiple time points
of only five subjects, acquired in a single clinical site with two human expert seg-
mentations. Except for 3D MPRAGE T1, the other three modalities are in 2D.
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Figure 2.3: FLAIR examples from the considered three datasets in the MNI space
and after intensity normalization. From left to right, the two images are from
ISBI, MSSEG’16, our in-house data, respectively.

MSSEG’16 dataset is a multi-site database comprising 15 patients, with seven hu-
man segmentations. This dataset contains 5 available modalities with 3D FLAIR.
Finally, the In-house dataset is the largest dataset with 43 patients, and multi-site
3D modalities, segmented by a single human rater and validated by a second one.

Figure 2.3 shows examples from the three presented datasets, each image rep-
resents a sagittal section of the FLAIR modality in the MNI space after intensity
normalization. The two images on the left are examples from the ISBI dataset.
We notice blurring effects which makes it hard to distinguish precisely brain struc-
tures. This blur comes from 2D low-resolution acquisitions. In the middle, the
two examples come from the MSSEG’16 dataset. These 3D FLAIR are noticeably
of higher resolution than the other images. Therefore, lesion boundaries are more
easily delineated and main structures are apparent. The final two images on the
right are from our In-house 3D dataset. The 3D resolution enables the differen-
tiation of white matter, gray matter, and shows the lesions clearly. In terms of
FLAIR images, we notice that both MSSEG’16 and In-house dataset (3D FLAIR)
propose better visual quality than ISBI dataset (2D FLAIR).
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2.2.5 Validation Framework

2.2.5.1 Evaluation Metrics

The assessment of a segmentation method is usually measured by a similarity
metric between the predicted segmentation and the human expert ground truth.

First, we use several complementary metrics to assess segmentation perfor-
mance. Namely, we use the Dice similarity coefficient, the Positive Predictive Value
(PPV), True Positive Rate (TPR), and Pearson’s correlation coefficien (CORR).

PPV =
TP

TP + FP
, TPR =

TP

TP + FN
, (2.2)

Dice =
2× TP

(TP + FN) + (TP + FP )
, (2.3)

where TP, FN, FP represent respectively true positives, false negatives, and
false positives.

Second, recent works (i.e., [Commowick et al., 2018]) question the relevance
of classic metrics (Dice) compared to detection metrics, which are used for MS
diagnostic and clinical evaluation of the patient evolution. Thus, in addition to
the voxel-wise metrics, we also use lesion-wise metrics that focus on the lesion
count. Such as Lesion False Positive Rate (LFPR) and Lesion True Positive Rate
(LTPR).

LTPR =
LTP

LTP + LFN
, LFPR =

LFP

LTP + LTN
, (2.4)

where LTP, LFN, LFP represent respectively lesion true positives, lesion false
negatives, and lesion false positives.

Moreover, [García-Lorenzo et al., 2013] pointed out that even though Dice is
commonly used and simplifies method comparison, multiple complementary met-
rics are needed to provide a better understanding of the performance. Recently,
international challenges took into consideration several metrics ([Carass et al.,
2017] and [Commowick et al., 2018]). Consequently, we decided to evaluate our
methods using Hybrid score proposed by [Carass et al., 2017]. This metric com-
bines voxel-wise segmentation, lesion-wise detection, and volumetric metrics. It is
defined as:

Hybrid =
Dice

8
+

PPV

8
+

(1− LFPR)

4
+

LTPR

4
+

CORR

4
(2.5)

Finally, we also use the ISBI Submission Score (Sub. Score) for the evaluation
of ISBI test-set segmentations. [Carass et al., 2017] defined it as the average of the

44 R.A. KAMRAOUI



2. MS Lesions Segmentation

hybrid scores of all image examples with the different human raters and with inter-
rater variability taken into consideration. This score is computed after submitting
the segmentation to ISBI’s challenge website 2. Obtaining an ISBI score of 90 or
higher with a segmentation technique indicates that this method is similar to the
human raters.

2.2.5.2 Reference Methods

During experiments, our method was compared to three publicly available state-of-
the-art approaches. We performed training and validation for all three compared
methods, in the same conditions regarding datasets and preprocessing. The refer-
ence methods are nicMSlesion by [Valverde et al., 2019], DeepMedic by [Kamnitsas
et al., 2017], and 2.5D Tiramisu by [Zhang et al., 2019b]. These methods have
been selected for the availability of the authors source code and the relevance of
their contributions in the MS segmentation community.

nicMSlesion: This method is based on a cascade of two 3D patch-wise CNNs.
The first one is trained to be sensitive to reveal lesion candidates. The second
one is trained to reduce the misclassified voxels from the first network. Training is
performed on 11×11×11 patches randomly augmented with flipping and rotations.
Therefore, nicMSlesion involves classical data augmentation. In the first network,
the negative class is under-sampled to the same number of existing lesion voxels.
It is composed of patches extracted from all of the available lesion voxels and a
random selection of normal-appearing tissue voxels. Afterwards, an evaluation
of the first CNN model is computed by performing inferences on the same train-
set and identifying negative voxels that have been misclassified as lesions (False
Positives). Finally, the second model is trained using a balanced set composed of
all the lesion voxels and a random selection from the identified False Positives in
the previous step.

DeepMedic: This method is based on an 11-layers deep dual pathway 3D
CNN designed for brain lesion segmentation. to incorporate both local and larger
contextual information, the dual pathway architecture processes the input images
at multiple scales simultaneously. To overcome the computational burden, the
authors use a hybrid dense training scheme processing adjacent image patches into
one pass through the network. To refine the network segmentation and remove
false positives, a 3D fully connected conditional random field is used. The training
includes data augmentation with sagittal reflections.

2.5D Tiramisu: This method is based on a fully convolutional densely con-
nected network. The model uses stacked slices from all three anatomical planes to
achieve a 2.5D based method. Individual slices from a given orientation provide

2https://smart-stats-tools.org/lesion-challenge
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global context along the plane and the stack of adjacent slices adds local context.
The training also includes flipping and rotations of the 2D patches for data aug-
mentation. Therefore, 2.5D Tiramisu involves classical data augmentation. For
each stack of 2D 128 × 128 slices composed of a center slice and its 2 adjacent
slices, the model produces the segmentation of the center slice. Then, the infer-
ence results along the different orientations are combined via a majority vote to
output the final segmentation.
For both these methods, we use the implementations provided publicly by the
authors (see 3 and 4 ).

2.2.5.3 Statistical Test

To assert the advantage of a technique obtaining the highest average score, we
conducted a two-sided Wilcoxon test (i.e., paired statistical test) over the lists of
hybrid scores measured at image level (for the consistency of the segmentation
section we took the lists of dice indices between the two segmentations). The
significance of the test is established for a p-value below 0.05. In the following
tables, * indicates a significantly better average score when compared with the
rest of the other approaches.

2.3 Results

2.3.1 Ablation Study

To demonstrate the impact of each proposed contribution on domain generaliza-
tion, we measured separately their effects on different metrics. To show both the
effect on accuracy improvement and the domain shift robustness, we propose an
out-of-domain and in-domain ablation study. First, we trained each method con-
figuration on ISBI challenge train-set, then we validated on both ISBI test-set
(see Table 2.2) and MSSEG’16 (see Table 2.3). To ensure a fair comparison, each
configuration is trained until convergence. Specifically, we used an early stopping
criterion of 50 epochs (i.e., the training stops if the loss function does not improve
on the validation set during 50 epochs) with a maximum number of 500 epochs.
We verified that none of the configurations reached this maximum number.

Table 2.2 shows the effect of each contribution to segmentation accuracy, when
trained on ISBI challenge train-set and tested on ISBI test-set. First, the best
performing combination is DLB with HSL and IQDA, it obtained an ISBI Score of
92.849. Second, both the versions of DLB without IQDA and DLB without HSL

3https://github.com/sergivalverde/nicMSlesions
4https://github.com/MedICL-VU/LesionSeg
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Table 2.2: Ablation study results with different variants of our approach trained on
ISBI challenge train-set and tested on ISBI test-set. DeepLesionBrain (DLB) refers
to using our spatially distributed specialized networks, each network in charge of
segmenting a sub-volume. The generic network represents the variant of DLB
with a single network (without the spatially distributed strategy). Hierarchical
Specialized Learning (HSL) indicates that we initialized the “specialized networks”
with the “generic Network”. To evaluate the performance of the proposed Data
Augmentation, we compared variants with IQDA (previously defined in 2.2.1.2)
and without IQDA. For each metric, the bold values indicate the best result. In
the hybrid score column, * indicates a significantly better score than the other
approaches using the two-sided Wilcoxon test.

Method Hybrid Dice PPV TPR LFPR LTPR Sub. Score
DLB with HSL and IQDA 0.747* 0.646 0.888 0.545 0.131 0.486 92.849

DLB with HSL and without IQDA 0.732 0.677 0.849 0.603 0.192 0.489 92.383
DLB without HSL and with IQDA 0.710 0.576 0.892 0.453 0.121 0.360 91.713

DLB with models genesis init. and IQDA 0.718 0.621 0.867 0.513 0.187 0.438 91.885
DLB with AssemblyNet init. and IQDA 0.723 0.628 0.885 0.515 0.140 0.406 92.109

The generic network with IQDA 0.736 0.668 0.859 0.585 0.178 0.489 92.491
The generic network without IQDA 0.688 0.654 0.502 0.869 0.162 0.468 92.425

are less accurate. They obtained respectively ISBI scores of 92.383 and 91.713.
The later comparison shows the impact of HSL on the accuracy of segmentations.
Moreover, the generic network is less accurate than our spatially distributed ap-
proach used in DLB. The variant of generic Network with IQDA obtained a score
of 92.491, whereas the variant without IQDA obtained a hybrid score of 92.425.
Finally, we compare HSL with other weight initialization strategies. Specifically,
HSL is compared with the neighbor transfer learning from AssemblyNet proposed
by [Coupé et al., 2020] and models genesis proposed by [Zhou et al., 2021]. Al-
though both variants obtained a better score compared to DLB without HSL, both
initialization strategies gave a lower score than DLB with HSL and IQDA

Table 2.3: Ablation study results with different variants of our approach trained
on ISBI challenge train-set and tested on MSSEG’16 (see caption of Table 2.2 for
details).

Method Hybrid Dice PPV TPR LFPR LTPR
DLB with HSL and IQDA 0.684* 0.639 0.768 0.608 0.319 0.700

DLB with HSL and without IQDA 0.673 0.669 0.728 0.671 0.416 0.725
DLB without HSL and with IQDA 0.648 0.562 0.806 0.489 0.320 0.629

DLB with models genesis init. and IQDA 0.623 0.593 0.737 0.576 0.436 0.665
DLB with AssemblyNet init. and IQDA 0.610 0.541 0.708 0.537 0.466 0.705

The generic Network with IQDA 0.672 0.665 0.721 0.673 0.413 0.727
The generic network without IQDA 0.626 0.625 0.763 0.588 0.449 0.611

Deep Learning in Neuroimaging for Multiple Sclerosis 47



2.3. Results

Table 2.3 shows the effect of each contribution to domain shift robustness,
when trained on ISBI challenge train-set and tested on MSSEG’16. First, the
most robust combination is DLB with HSL and IQDA, it obtained a hybrid score
of 0.684. Second, both the variants of DLB without IQDA and DLB without HSL
are less accurate. They obtained hybrid scores of 0.673 and 0.648 respectively.
Moreover, the generic network is less robust than our spatially distributed approach
with DLB. The variant of the generic network with IQDA obtained a score of 0.672,
whereas the variant without IQDA obtained a hybrid score of only 0.626. The later
comparison shows the impact of IQDA on robustness even without the spatially
distributed networks. Finally, HSL is compared with Assembynet [Coupé et al.,
2020] and model genesis [Zhou et al., 2021] initialization strategies. The variants
with model genesis and AssemblyNet initialization methods obtained respectively
hybrid scores of 0.623 and 0.6103.

2.3.2 Cross-dataset Testing

In this section, we assess the cross-dataset robustness and generalization ability of
our proposed approach. We chose to compare our method with three state-of-the-
art approaches: nicMSlesion [Valverde et al., 2019], DeepMedic [Kamnitsas et al.,
2017], and 2.5D Tiramisu [Zhang et al., 2019b].
During the proposed validation, all the methods have been trained on exactly the
same dataset (i.e., same preprocessing, same number of modalities, etc.) to ensure
a fair comparison of method performance. Although reference methods have been
originally proposed with a specific number of modalities (i.e., Tiramisu 2.5D and
nicMSlesion were tested with 4 and 3 modalities respectively), their implemen-
tation is independent of the number of modalities since all modalities are con-
catenated and fed to the CNN. Besides, their official open-source implementations
support the usage of only T1 and FLAIR sequences. Thus, in this evaluation, all
methods are trained using only these two modalities. The following cross-dataset
testing (cross-domain testing) consists in training each technique on one dataset
at each time. Afterward, the obtained models are evaluated on the other datasets
which contain unseen domains. We verified the average inference time per image
for each method on the same machine and the same preprocessed images: 57.353s
for nicMSlesion, 17.547s for DeepMedic, 47.471s for 2.5D Tiramisu, and 38.014s
for DLB (this time does not include image preprocessing). Unlike using a single
network to segment patches coming from the entire image, DLB uses multiple net-
works, one network for each sub-volume. These networks are loaded one by one to
enable the use of a common GPU hardware solution (e.g., NVIDIA Titan Xp with
12 GB in our setup). Even though DLB requires sequential loading of multiple
networks on GPU, the inference time over the whole image is similar to using a
single network since network weights loading time is negligible compared to patch
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segmentation time. The ISBI score is returned by the challenge website only for
ISBI test-set evaluation, and thus this metric is not available (NA) for testing on
other datasets.

2.3.2.1 Trained on ISBI

Table 2.4: Results of the different approaches trained on the ISBI training dataset,
with T1 and FLAIR modalities. For each metric, the bold values indicate the best
result. In the hybrid score column, * indicates a significantly better score than
the three other approaches using the two-sided Wilcoxon test. Red values indicate
hybrid scores lower than 0.5 or Dice index below 0.25.

Tested on Approach Hybrid Dice PPV TPR LFPR LTPR CORR Sub. Score

MSSEG’16

nicMSlesion 0.537 0.442 0.614 0.423 0.504 0.629 0.495 NA
DeepMedic 0.510 0.476 0.542 0.560 0.829 0.850 0.509 NA

2.5D Tiramisu 0.711 0.664 0.741 0.658 0.284 0.695 0.730 NA
DLB 0.684 0.639 0.768 0.608 0.319 0.700 0.650 NA

In-house dataset

nicMSlesion 0.419 0.204 0.727 0.129 0.309 0.361 0.158 NA
DeepMedic 0.523 0.536 0.633 0.499 0.805 0.765 0.549 NA

2.5D Tiramisu 0.654 0.545 0.871 0.410 0.204 0.476 0.635 NA
DLB 0.696* 0.675 0.850 0.564 0.342 0.644 0.718 NA

Table 2.4 shows the results of segmentation when training the different ap-
proaches using T1 and FLAIR modalities, on the ISBI training dataset (2D reso-
lution FLAIR).

When validating the methods on MSSEG’16, we report that 2.5D Tiramisu
obtained slightly better results (not significantly) than DLB, in terms of hybrid
score whereas nicMSlesion and DeepMedic performed relatively worse with 0.537
and 0.51 respectively.
On our in-house dataset, DLB performed significantly better with a hybrid score
of 0.696 while 2.5D Tiramisu, DeepMedic, and nicMSlesion obtained respectively
0.654, 0.523, and 0.419. We can notice that nicMSlesion offers poor cross-domain
performance on 3D FLAIR when trained with a 2D FLAIR dataset.

2.3.2.2 Trained on MSSEG’16

Table 2.5 shows the results of segmentation when training the different approaches
on the MSSEG’16 dataset comprising 3D T1 and 3D FLAIR modalities. First, we
notice that our approach obtained significantly better hybrid scores for both the
ISBI test and the In-house datasets. Second, when validating on ISBI, the obtained
submission score is 89.043 for DLB (the closest to human performance), 87.344 for
DeepMedic, 87.173 for nicMSlesion, and 86.686 for 2.5D Tiramisu (the farthest
from human performance). In the same conditions, 2.5D Tiramisu obtained the
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Table 2.5: Results of the different approaches trained on the MSSEG’16 dataset,
with T1 and FLAIR modalities. For each metric, the bold values indicate the best
result. In hybrid score column, * indicates a significantly better score than the
three other approaches using the two-sided Wilcoxon test. Red values indicate
hybrid scores lower than 0.5 or Dice index below 0.25.

Tested on Approach Hybrid Dice PPV TPR LFPR LTPR CORR Sub. Score

ISBI test-set

nicMSlesion 0.555 0.398 0.717 0.292 0.368 0.206 0.822 87,173
DeepMedic 0.547 0.378 0.801 0.265 0.416 0.298 0.717 87.344

2.5D Tiramisu 0.462 0.165 0.937 0.096 0.075 0.160 0.212 86,686
DLB 0.618* 0.535 0.697 0.471 0.353 0.373 0.835 89.043

In-house dataset

nicMSlesion 0.669 0.686 0.689 0.705 0.467 0.717 0.737 NA
DeepMedic 0.597 0.645 0.647 0.670 0.721 0.811 0.650 NA

2.5D Tiramisu 0.664 0.706 0.766 0.694 0.432 0.801 0.552 NA
DLB 0.697* 0.746 0.681 0.847 0.478 0.754 0.799 NA

average Dice of 0.165 which indicates a failure of the method and thus a lack
of generalization in this scenario (when trained on high-quality 3D FLAIR and
tested on low-quality 2D FLAIR). Finally, for the In-house dataset, DLB produced
significantly better segmentation than other methods. DLB obtained a hybrid
score of 0.697 while nicMSlesion obtained 0.669, 2.5D Tiramisu obtained 0.664,
and DeepMedic obtained the lowest score of 0.597.

2.3.2.3 Trained on In-house

Table 2.6: Results of the different approaches trained on In-house dataset, with T1
and FLAIR modalities. For each metric, the bold values indicate the best result.
In the hybrid score column, * indicates a significantly better score than the three
other approaches, using the two-sided Wilcoxon test. Red values indicate hybrid
scores lower than 0.5 or Dice index below 0.25.

Tested on Approach Hybrid Dice PPV TPR LFPR LTPR CORR Sub. Score

MSSEG’16

nicMSlesion 0.700 0.650 0.822 0.586 0.150 0.607 0.607 NA
DeepMedic 0.717 0.694 0.750 0.701 0.345 0.782 0.709 NA

2.5D Tiramisu 0.745 0.665 0.741 0.687 0.164 0.720 0.722 NA
DLB 0.741 0.719 0.735 0.744 0.209 0.671 0.776 NA

ISBI test-set

nicMSlesion 0.453 0.131 0.644 0.075 0.338 0.050 0.712 84,512
DeepMedic 0.523 0.385 0.807 0.273 0.388 0.215 0.670 86.810

2.5D Tiramisu 0.608 0.355 0.938 0.231 0.065 0.160 0.689 89.289
DLB 0.638* 0.476 0.877 0.348 0.104 0.193 0.787 89.843

Table 2.6 shows the results of segmentation when training on our In-house
dataset with 3D FLAIR. First, the obtained results when testing on MSSEG’16
indicates a close segmentation accuracy for DLB and 2.5D Tiramisu in terms of
hybrid score (0.745 and 0.741) and slightly lower performance from nicMSlesion
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and DeepMedic (0.7 and 0.717). Second, we notice that our approach obtained a
significantly higher hybrid score when validating on the ISBI testing dataset, with a
submission score of 89.843 compared to 2.5 Tiramisu, DeepMedic, and nicMSlesion
with 89.289, 86.810, and 84.512 respectively. In this scenario, nicMSlesion obtained
the worst score with a Dice of 0.131 indicating a failure of the method.

2.3.2.4 Cross-dataset Testing Summary

First, it is noteworthy that when our approach obtained a better score, the su-
periority was statistically significant. On the contrary, when one of the other
approaches obtained a higher score, the advantage was not significant using the
Wilcoxon test.

Second, it should be pointed out that in all the considered cross-domain cases,
DLB did not degenerate not even once while maintaining high scores. We reported
for nicMSlesion trained on ISBI and validated on the In-house dataset a hybrid
score of 0.419. We also recall the low performance of 2.5D Tiramisu trained on
MSSEG’16 and tested on ISBI (0.462 hybrid score). This shows the cross-domain
robustness of the proposed strategy.

Table 2.7 sums up cross-dataset experiments results. This table presents the
average score estimated over all the images obtained during the three experiments
presented in Table 2.4, Table 2.5, and Table 2.6 (61 images for ISBI test-set, 43
images for In-house, 15 images for MSSEG’16). We notice that DLB obtains the
highest hybrid score and Dice index by a large margin compared to 2.5D tiramisu,
DeepMedic, and nicMSlesion.

Table 2.7: Summary of the cross-dataset experiment. The table represent the
average of cross-dataset experiment results (see Table 2.4, Table 2.5, and Table 2.6)
based on the number of images for each dataset. For each metric, the bold values
indicate the best result. In the hybrid score column, * indicates a significantly
better score than the three other approaches using the Wilcoxon test.

Strategy Hybrid Score Dice PPV TPR LFPR LTPR CORR
nicMSlesion 0.526 0.365 0.695 0.308 0.362 0.338 0.595
DeepMedic 0.554 0.483 0.725 0.429 0.556 0.520 0.649

2.5 D Tiramisu 0.608 0.443 0.870 0.368 0.179 0.402 0.537
DLB 0.663* 0.601 0.775 0.550 0.299 0.484 0.780

2.3.3 Same Domain Validation

Despite the previously mentioned limitations of in-domain validation, we also pro-
vide experiments using the same domain as complementary results. First, Table
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2.8 shows the results of DLB, nicMSlesion, DeepMedic, and 2.5D Tiramisu on ISBI
test-set after being trained on ISBI train-set (same domain), with T1 and FLAIR
modalities. The three approaches give close results with submission scores of 92.923
for 2.5D Tiramisu, 92.849 for DLB, and 92.161 for nicMSlesion. DeepMedic comes
last with a submission score of 90.866.

Second, Table 2.9 shows the current top-performing methods on the ISBI chal-
lenge website. 2.5D Tiramisu [Zhang et al., 2019b] is the best-ranked method with
the current highest ISBI Score of 93.21, followed in second place by nnUnet [Isensee
et al., 2019] with 93.09. Both approaches rely on 4 modalities (T1, FLAIR, T2,
PD). Our approach comes in third place using only 2 modalities, and obtained the
ISBI submission score of 92.85. Although DLB uses a lower number of modalities,
it obtained better results than IMAGINE [Hashemi et al., 2018], Self-adaptive
network [Feng et al., 2019], and Multi-branch [Aslani et al., 2019] that obtained
respectively the scores of 92.49, 92.41, and 92.12.

Table 2.8: Results of the different approaches trained on the ISBI training dataset
and tested on ISBI test-set, with T1 and FLAIR modalities. For each metric,
the bold values indicate the best result. two-stepin the hybrid score column, *
indicates a significantly better score than the three other approaches using the
two-sided Wilcoxon test.

Approach Hybrid Dice PPV TPR LFPR LTPR CORR Sub. Score
nicMSlesion 0.724 0.639 0.853 0.541 0.144 0.432 0.863 92.161
DeepMedic 0.649 0.643 0.827 0.557 0.408 0.530 0.873 90.866

2.5D Tiramisu 0.750 0.672 0.865 0.592 0.150 0.513 0.868 92.923
DLB 0.748 0.646 0.888 0.545 0.131 0.486 0.868 92.849

Table 2.9: State-of-the-art published results for the ISBI challenge

Approach Modalities CNN type Sub. Score
2.5D Tiramisu [Zhang et al., 2019b] T1, FLAIR, T2, PD 2D 93.21

nnUnet [Isensee et al., 2019] T1, FLAIR, T2, PD 2D and 3D 93.09
DLB [ours] T1, FLAIR 3D 92.85

IMAGINE [Hashemi et al., 2018] T1, FLAIR, T2, PD 3D 92.49
Self-adaptive network [Feng et al., 2019] T1, FLAIR, T2, PD 3D 92.41

Multi-branch [Aslani et al., 2019] T1, FLAIR, T2 2D 92.12

The high accuracy of the results was expected as both the training and testing
sets share the same domain (same acquisition conditions, and same scanner...). By
tuning and adapting a method to this specific domain conditions, we can obtain
artificially higher performance (e.g., DLB with 4 modalities obtained a score of
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92.92, and a 2D version of DLB obtained 93.14 5). However, in our opinion, re-
sults reported in the same domain experiment do not truly reflect methods perfor-
mances. For instance, the best performing method of this section (2.5D Tiramisu)
failed when trained on different datasets (obtained submission scores of 89.043 and
89.289 in Table 2.5 and Table 2.6). The limitation of such a validation strategy
is one of the main messages of our work. Hence, we consider that cross-dataset
evaluation with diverse images from different domains is a better alternative for
method assessment.

2.3.4 Cross-dataset Segmentation Consistency

Finally, a usually under-investigated method property is its cross-dataset segmen-
tation consistency. To assess the consistency of our model segmentation, we de-
cided to compare the segmentation produced by each approach on the same data
when the model is trained on different datasets. We compute the Dice between the
different segmentations of a method as a similarity index to quantify the prediction
consistency. Table 2.10 shows the segmentation consistency for each approach in
our cross-dataset setting.

First, we analyzed the segmentations on In-house when the models are trained
respectively on ISBI train-set and MSSEG’16. In this case, DLB obtained the best
score of 0.647, followed by 2.5D Tiramisu and DeepMedic with 0.6261 and 0.602
respectively. Lastly, nicMSlesion obtained a score of 0.217. Second, we analyzed
the segmentations on MSSEG’16 when the models are trained respectively on ISBI
train-set and In-house. In this case, we obtained close consistency scores for 2.5D
Tiramisu and DLB with Dice scores around 0.72 while DeepMedic and nicMSlesion
are less consistent with 0.537 and 0.514 respectively. Finally, we analyzed the
segmentations on ISBI test-set when comparing the models trained on ISBI train-
set, the models trained on In-house, and the models trained on MSSEG’16. For
all settings, DLB was significantly more consistent than both other methods with
a Dice ranging from 0.63 to 0.649. 2.5D Tiramisu segmentation consistency index
varies from 0.217 to 0.485. DeepMedic consistency index fluctuates from 0.49 to
0.602. nicMSlesion is the least consistent with scores ranging from 0.177 to 0.512.

During our cross-dataset consistency experiment, DLB was the only method
capable of ensuring segmentation consistency independent of the training dataset.
Both other methods failed several times as indicated with red color in Table 2.10.

Figure 2.4 represents an image from the In-house dataset and the segmenta-
tion of the different methods when trained on the ISBI challenge and MSSEG’16
datasets. First, both nicMSlesion and 2.5D Tiramisu fail to segment the majority
of lesions when trained on ISBI challenge dataset. This exhibits the limitation

5https://smart-stats-tools.org/lesion-challenge
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Table 2.10: The consistency of the segmentations for each approach in the cross-
dataset setting. The consistency index represents the test-set average of Dice
values, each Dice is computed between two segmentations produced by the same
method when trained on two different train-sets. Higher values indicate better
consistency in the segmentations. The bold values indicate the best result and
red values indicate consistency lower than 0.5. * indicates a significantly better
segmentation consistency score than the three other approaches, using the two-
sided Wilcoxon test.

Test-set In-house MSSEG’16 ISBI Test-set
ISBI Train-set ISBI Train-set ISBI Train-set In-house ISBI Train-setTrain-sets Dataset 1

vs. Dataset 2 MSSEG’16 In-house MSSEG’16 MSSEG’16 In-house
nicMSlesion 0.217 0.514 0.512 0.250 0.177
DeepMedic 0.602 0.537 0.490 0.602 0.496

2.5D Tiramisu 0.615 0.726 0.217 0.485 0.460

The consistency of
the model predictions

when trained on
Dataset1 vs. Dataset2 DLB 0.647 0.719 0.630* 0.637* 0.649*

of the robustness of these methods to domain shift, especially for 2.5D Tiramisu
currently considered as the state-of-the-art approach on the ISBI challenge. Sec-
ond, DLB detects almost all the lesions in the same conditions. Third, although
DeepMedic also detects most of the lesions, it is more prone to false positives
compared to the other methods. Finally, when choosing MSSEG’16 as a training
dataset, DLB produces the most similar segmentation to expert annotation.

Figure 2.5 represents an image from MSSEG’16 dataset and the segmentation of
the different methods when trained on ISBI challenge and In-house datasets. First,
when trained on ISBI dataset, the segmentations of 2.5D Tiramisu, DeepMedic,
and DLB are more accurate than nicMSlesion segmentation, although all tech-
niques missed a large portion of the central lesion (False Negative) located around
the midsagittal plane. These common voxels misclassification can result from the
subjectivity of raters between training and testing datasets. Second, when trained
on In-house, DLB delineates successfully most of the lesions. Especially in the
case of small lesions, DLB missed only one lesion, whereas both nicMSlesion and
2.5 D Tiramissu missed four lesions, and DeepMedic misses two lesions.

Figure 2.6 represents an image from the ISBI challenge and the segmentation
of the different methods when trained on MSSEG’16 and In-house datasets. From
the four methods, DLB had the most consistent segmentation across different con-
ditions of training domains. In this case, nicMSlesion produced a decent segmen-
tation for this example only when trained on MSSEG’16. Likewise, 2.5D Tiramisu
produced better segmentation when trained on In-house than on MSSEG’16. Al-
though DeepMedic is consistent for this case, the produced segmentation was less
precise and prone to false positives compared to the other methods.
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Figure 2.4: Part A (left) axial sections of multi-modal MRI (T1 and FLAIR)
from In-house dataset, and its respective expert consensus segmentations for MS
lesion segmentation. Part B (right) cross dataset segmentation of the image sec-
tion shown in Part A. The first and second rows illustrate the segmentations of
methods when trained respectively on ISBI dataset, and MSSEG’16 datasets. The
first, second, third, and fourth columns represent respectively the segmentations
of nicMSlesion, DeepMedic, 2.5D Tiramisu, and DeepLesionBrain.

2.4 Discussion and Conclusion

2.4.1 Discussion

Deep learning-based segmentation models can be prone to generalization failure
due to domain shift between training and testing data. Such a domain shift may
be caused by hardware and preprocessing diversity, the difference in acquisition
protocol or annotation protocol, that results in a difference between the distri-
butions of training and testing datasets. Besides, we also have to acknowledge
the subjectivity of raters in training datasets. Indeed, the disagreement between
expert segmentations, both in the same dataset and across different datasets, can
make it difficult to train a generalizing model. Our experiments showed the lim-
ited generalization capability of state-of-the-art approaches, whereas DLB was
able to adapt across different domains. Our study emphasizes the importance of
cross-dataset validation, particularly when considering the clinical application of
machine learning.

DLB uses a group of several separately trained networks, each network is spe-
cialized in a particular sub-volume of the brain. In the ablation study (see Tables
2.2 and 2.3), our spatially distributed networks strategy showed better generaliza-
tion and higher accuracy than using a single model.
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Figure 2.5: Part A (left) axial sections of multi-modal MRI (T1 and FLAIR)
from MSSEG’16 dataset, and its respective expert consensus segmentations for
MS lesion segmentation. Part B (right) cross dataset segmentation of the image
section shown in Part A. The first and second rows illustrate the segmentations
of methods when trained respectively on ISBI challenge, and In-house datasets.
First, second, third, and fourth columns represent respectively the segmentations
of nicMSlesion, DeepMedic, 2.5D Tiramisu, and DeepLesionBrain.

In our work, we considered both specialized local features, and generic global
features of MS lesions. The hierarchical specialization learning proposes an alter-
native to network cascades (i.e., [Valverde et al., 2017]). Instead of using cascades
that are prone to error propagation, we suggested a logical hierarchy during learn-
ing based on data selection and transfer learning. The ablation study (see Tables
2.2 and 2.3) exhibits the contribution of HSL to accuracy and domain generaliza-
tion compared to DLB without HSL.

In this chapter, the proposed method was validated using an out-of-domain
cross-dataset evaluation. This strategy ensures that the performance obtained is
not biased by the training dataset domain information. Indeed, the use of testing
and training images from the same domain is questionable and does not reflect the
generalization ability. The community should start considering this issue for both
the validation and the comparison of proposed methods.

Automated MS lesion segmentation should be able to render the most accurate
segmentation with the minimum number of modalities, to be efficiently adopted
in clinical conditions and to limit inter-modality dependence. Many experts agree
that FLAIR is the most important modality for MS lesion delineation. More-
over, T1 modality can provide complementary information for better white-matter,
gray-matter, and cerebrospinal-fluid distinction. FLAIR and T1 are the most avail-
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Figure 2.6: Part A (left) axial sections of multi-modal MRI (T1 and FLAIR)
from ISBI challenge dataset, and its respective raters segmentations for MS lesion
segmentation. Part B (right) cross dataset segmentation of the image section
shown in Part A. The first and second rows illustrate the segmentations of methods
when trained respectively on MSSEG’16, and In-house datasets. First, second,
third, and fourth columns represent respectively the segmentations of nicMSlesion,
DeepMedic, 2.5D Tiramisu, and DeepLesionBrain.

able modalities for MS patients and in all MS benchmark datasets. Our method
achieved a competitive performance using these two modalities even on unseen
domains.

In this chapter, we proposed a novel data augmentation technique to reduce
domain shift introduced by the variability of image resolution and quality. IQDA
simulates different acquisition conditions to reduce covariate shift. Our ablation
study (see Tables 2.2 and 2.3) showed IQDA as a solid contribution to segmen-
tation accuracy and cross-domain generalization. Indeed, while other methods
(nicMSlesion, DeepMedic, and 2.5D Tiramisu) involve usual data augmentation
(rotation and flipping), such simple strategies failed to ensure good generalization
on unseen datasets.

Both domain generalization and adaptation are concerned with reducing dataset
bias. The difference between these strategies is that for domain adaptation, some
unlabeled data or even a few labeled data from the target domain are exploited to
capture properties of the target domain for model adaptation. However, in domain
generalization, no samples of any kind are used from the target domain. Domain
generalization has been proposed to address the problem of unavailability of target
domain samples by leveraging the labeled data to learn a universal representation
to generalize for any target domain and without any prior insight from that domain.
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In this work, we emphasize on testing the domain generalization of our approach
with cross-dataset evaluation. Unlike domain adaptation such as one-shot domain
adaptation (i.e., [Valverde et al., 2019]), DLB does not need expert segmentation
from the target domain. Our testing conditions draw a clear distinction between
training data containing source domains and testing data containing unseen target
domains.

In section 2.3.2, we reported that the best performances of DLB have been ob-
tained when using high-resolution 3D FLAIR datasets and multi-rater consensus
ground truth for training. The resulting model can render more accurate segmen-
tations for both 2D and 3D image resolution data, even across unseen domains.
This observation led us to believe that to efficiently train 3D CNN-based mod-
els for domain generalization, it may be desirable to optimize the model using
high-resolution training data.

With current available hardware, it is unfeasible to exploit 3D CNNs with
equivalent depth and kernel size as state-of-the-art 2D CNNs. Consequently, many
neuroimaging automated pipelines are still using 2D CNNs despite processing 3D
data. Our results suggest that using multiple compact networks can approximate
a larger and more stable model since the sum of features extracted by the group
of specialized networks and the features of a hypothetical big network may be
equivalent in terms of relevant information for MS lesion segmentation. In our
work, we have chosen to break down the complexity of the task spatially, based
on the sub-volume division of the whole brain volume. One other advantage of
this distribution is the ability to train networks in parallel since network weights
and images of each region are independent. It is possible to use several GPUs for
parallel training.

Our full pipeline including the preprocessing, MS lesion segmentation with
DLB, and an easy-to-read report is available on our repository 6.

2.4.2 Conclusion

DeepLesionBrain is a deep learning framework for MS lesion segmentation de-
signed for domain generalization. First, we use a spatially distributed strategy
of multiple compact 3D CNNs with large overlapping receptive fields, to produce
consensus-based segmentation robust to domain shift. Our method is trained us-
ing hierarchical specialization learning to efficiently incorporate both generic and
specialized features. Second, we propose a novel image quality data augmentation
to increase training data variability in a realistic way. Finally, we use only T1
and FLAIR modalities to propose a method compatible with a large number of
datasets.

6https://github.com/volBrain/DeeplesionBrain
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The ablation study showed the impact of each contribution on segmentation
accuracy and domain generalization. The out-of-domain cross-dataset testing is
suggested as an alternative for method evaluation in areas that are sensitive to do-
main bias (i.e., medical imaging). Our validation showed the generalization ability
of our method and its robustness to domain shift. We also proved experimentally
that DLB produces consistent segmentations compared to other state-of-the-art
approaches regardless of the training data domain.

On the same topic, we proposed an extension of this work using semi-supervised
learning (see Appendix A). The method uses unlabeled data to compensate for
the scarcity of annotated images and the lack of method generalization to unseen
domains. The method combines consistency regularization and pseudo-labeling
in a complementary fashion and uses a proximity graph to select data from the
easiest to the more difficult ones, therefore limiting confirmation bias.
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Chapter 3

New MS Lesions Segmentation and
Detection

This chapter corresponds to the following publication:

Reda Abdellah Kamraoui, Boris Mansencal, José V Manjon, and Pierrick Coupé.
Longitudinal detection of new MS lesions using deep learning. Frontiers in Neuro-
science [2].

The detection of new multiple sclerosis (MS) lesions is an important marker of
the evolution of the disease. The applicability of learning-based methods could
automate this task efficiently. However, the lack of annotated longitudinal data
with new-appearing lesions is a limiting factor for the training of robust and gener-
alizing models. In this work, we describe a deep-learning-based pipeline addressing
the challenging task of detecting and segmenting new MS lesions. First, we pro-
pose to use transfer-learning from a model trained on a segmentation task using
single time-points. Therefore, we exploit knowledge from an easier task and for
which more annotated datasets are available. Second, we propose a data synthesis
strategy to generate realistic longitudinal time-points with new lesions using single
time-point scans. In this way, we pretrain our detection model on large synthetic
annotated datasets. Finally, we use a data-augmentation technique designed to
simulate data diversity in MRI. By doing that, we increase the size of the avail-
able small annotated longitudinal datasets. Our ablation study showed that each
contribution lead to an enhancement of the segmentation accuracy. Using the pro-
posed pipeline, we obtained the best score for the segmentation and the detection
of new MS lesions in the MSSEG2 MICCAI challenge.
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3.1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous
system. The pathology is characterized by inflammatory demyelination and axonal
injury, which can lead to irreversible neurodegeneration. The disease activity,
such as MS lesions, can be observed using magnetic resonance imaging (MRI).
The detection of new MS lesions is one of the important biomarkers that allow
clinicians to adapt the patient’s treatment and assess the evolution of this disease.

Recently, the automation of single time-point MS lesion segmentation has shown
encouraging results. Many techniques showed performance comparable to clini-
cians in controlled evaluation conditions (see [Carass et al., 2017], and [Commowick
et al., 2016]). These methods use a single time-point scan to segment all appearing
lesions at the time of the image acquisition. However, these cross-sectional tech-
niques are not adapted to the longitudinal detection of new lesions. Indeed, using
these methods requires repeatedly running the segmentation process for each time-
point independently to segment MS lesions before detecting new ones. Unlike the
human reader, these methods are not designed to jointly exploit the information
contained at each time point. Consequently, single-time MS lesion segmentation
methods performance is not optimal for the detection of new lesions between two
time-points. Moreover, inconsistencies may appear between segmentations of both
time-points since they are processed independently.

To specifically address this detection task using both time-points at the same
time, some detection methods have been proposed. In one of the earliest works,
[Bosc et al., 2003] used a nonlinear intensity normalization method and statis-
tical hypothesis test methods for change detection. [Elliott et al., 2013] used a
bayesian tissue classifier on the time-points to estimate lesion candidates followed
by a random-forest-based classification to refine the identification of new lesions.
[Ganiler et al., 2014] used image subtraction and automated thresholding. [Cheng
et al., 2018] integrated neighborhood texture in a machine learning framework.
[Salem et al., 2018] trained a logistic regression model with features from the im-
age intensities, the image subtraction values, and the deformation field operators.
[Schmidt et al., 2019] used lesion maps of different time-points and FLAIR intensi-
ties distribution within normal-appearing white matter to estimate lesion changes.
[Krüger et al., 2020] used a 3D convolutional neural network (CNN) where each
time-point is passed through the same encoder. Then, the produced feature maps
are concatenated and fed into the decoder.

Training learning-based methods for the task of new lesions detection require a
dataset specifically designed for the task. The most obvious form of the training
data would be a longitudinal dataset of MS patients (with two or more succes-
sive time-points) with new appearing lesions carefully delineated by experts in the
field. However, the construction of such a dataset is very difficult. To begin, new
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lesions may take several months or even years to appear and be visible in a pa-
tient’s MR image. Moreover, a time-consuming and costly process is necessary for
several experts to annotate new lesions from the two time-points and to obtain an
accurate consensus segmentation. Although the organizers of the MICCAI Lon-
gitudinal Multiple Sclerosis Lesion Segmentation Challenge (MSSEG2-challenge
[MICCAI, 2021]) provided such a dataset, the training set is severely impacted
by class imbalance (see Section 3.2.5.3 for more details) due to the difficulty of
finding new lesions in the follow-up scan. This under-representation of new lesions
in longitudinal datasets is limiting the training of state-of-the-art deep learning
algorithms from scratch on this complex task. Besides, achieving generalizing re-
sults on unseen domains (see [Mårtensson et al., 2020, Bron et al., 2021, Omoumi
et al., 2021]) may requires more data diversity.

Several studies tackled the problem of training data scarcity. First, transfer
learning is a strategy used to create high-performance learners trained with more
widely available data from different domains when the target domain/task data
are expensive or difficult to collect (see [Torrey and Shavlik, 2010, Weiss et al.,
2016]). Second, synthetic data generation is performed by using a model able to
simulate realistic artificial data that can be used during training (see [Tremblay
et al., 2018, Tripathi et al., 2019, Khan et al., 2021]). Third, data-augmentation is
a set of techniques used to handle the variability in real-world data by enhancing
the size and quality of the training dataset (see [Shorten and Khoshgoftaar, 2019]).
Recently, [Zhang et al., 2020b] showed that applying extensive data augmentation
during training also enhances the generalization capability of the methods.

In this chapter, we propose an innovative strategy integrating these three strate-
gies into a single pipeline for new MS lesion segmentation to tackle data rarity for
our task. First, we use transfer-learning to exploit the larger and more diverse
datasets available for the task of single-point MS lesion segmentation which does
not require longitudinal data. Second, we propose a novel data synthesis tech-
nique able to generate two realistic time-points with new MS lesions from a single
FLAIR scan. Third, we use a data-augmentation technique to simulate a large
variety of artifacts that may occur during the MRI acquisitions. This technique
aims to enhance both the variability and size of the training data and to improve
the generalization of our model.

3.2 Method and Material

3.2.1 Method Overview

To deal with data rarity for new MS lesion segmentation, we proposed a three
stage pipeline as shown in Fig. 3.1. In Stage One, an encoder-decoder network
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Figure 3.1: The pipeline of our new MS lesion segmentation method. The three
stages include: First, the pre-training on the task of single-time-poing MS lesion
segmentation (Task 1). Second, pre-training on the task of new MS lesions seg-
mentation (Task 2) with synthetic data. Third, fine-tuning the model with real
data. The encoder weights are trained (T) in Stage One and freezed (F) in Stage
Two and Stage Three.

is trained on the task of single time-point MS lesions segmentation. This step aims
to train the encoder part of the network to extract relevant features related to MS
lesions that can be used in the next steps. Stage One enables to indirectly use
large datasets dedicated to single time-point MS lesion segmentation for the task
of new lesions segmentation. This stage is detailed in Section 3.2.2. In Stage
Two, the new lesions segmentation model composed of the previous task encoder
is pretrained with synthetic data. To this end, we trained external models able
to generate two realistic time-points from a single image also taken from single
time-point MS datasets. It combines the effects of lesion inpainting and lesion
generating models to simulate the appearance of new lesions. This strategy is
detailed in Section 3.2.3. In Stage Three, the decoder is fine-tuned with real
longitudinal data from the new MS lesion training-set of the MSSEG2 MICCAI
challenge.
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Figure 3.2: The diagram represents our training method. Input images are aug-
mented with the proposed method (DA). The encoder trained in Stage One is
used in Stage Two and Stage Three to extract feature maps (FMs) of the two-time
points. The aggregation block (Concat. FMs) is used to combine features

3.2.2 Transfer-learning from single time-point MS lesion seg-
mentation task

The encoder used for new MS lesion segmentation is first trained on single time-
point lesion segmentation (see Fig.3.2, from Stage One to Stage Two). This choice
is motivated by two reasons. First, we consider that datasets for MS lesion seg-
mentation with lesion mask segmentation by experts are more diverse and larger
than available datasets for new lesions segmentation (which requires a longitudinal
study). Second, the task of MS lesion segmentation is tightly close to the one of
new MS lesion segmentation. By learning to segment lesions, the model implicitly
learns the concept of a lesion, either the lesion is considered new or was already
existing in the first time-point. To conclude, since there is a proximity between
the two tasks, there is likely a gain from exploiting the large amount of training
data of the first task to improve the second task’s performance.

3.2.2.1 Model Architecture Design

Our method is based on the transfer learning from the task of “Single time-point
MS lesion segmentation” to the task of “new lesions segmentation from two time-
points”. Thus two different architectures are used but with the same building
blocks for each task. For the first task, a 3D U-Net shape architecture is used, as
shown in Fig. 3.3 Part A. This kind of architecture has been very effective and
robust for MS lesion segmentation [2, Isensee et al., 2021]. It is composed of an
encoder and a decoder linked with one another by skip connections.

For the second task, a siamese-encoder followed by a single decoder is used, as
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shown in Fig.3.3 Part B. The shared-weights encoders are chosen to extract the
same set of features from both time points. Then, these features resulting from the
different levels of both encoder paths are aggregated (see Fig. 3.3 Part B). The
aggregation module is composed of concatenation and a convolution operation.
Feature maps are first concatenated by channels (i.e., result channel size is twice
the original size), then the convolution operation aggregates the information back
to the original channel size. Finally, the aggregated features are passed through
the decoder.

3.2.3 Time-points Synthesis

The data synthesis method is based on the simulation of new MS lesions between
two time-points using single time-point FLAIR images. As shown in Fig. 3.4, our
pipeline generates “on the fly” synthetic 3D patches that represent longitudinal
scans of the same patient with an evolution in their lesion mask. The synthetic
data is generated in three steps. In the first step, a 3D FLAIR patch and its
MS lesion segmentation mask are randomly sampled from different MS lesion seg-
mentation datasets (see Section 3.2.5.1). Then, the patch and lesion mask are
randomly augmented with flipping and rotations. A copy of the FLAIR patch
is performed to represent the two time-points. Then, both identical patches are
altered with the described data augmentation (see Section 3.2.4) to differentiate
the two patches. At this point, the lesion masks of the two synthetic time-points
are still identical. Thus, there are no new lesions. In the second step, a connected
component operation is used to separate each independent lesion from the lesion
mask. Each lesion is either inpainted (i.e., removed) from one of the two time-
points or both of them, or it can be kept in both of the time-points. The lesion
inpainting model is used to inpaint the lesion region with hallucinated healthy
tissue (see Section 3.2.3.1). Next, the new lesion mask is constructed from lesion
regions that have been kept in the second time-point but not the first one. In the
third step, the lesion generator model is used to simulate new synthetic lesions
at realistic locations (using white/gray matter segmentation and a probabilistic
distribution of MS lesions on the brain in the MNI space). Synthetic lesions are
generated for one of the time-points or both of them (see Section 3.2.3.2). Similar
to the previous step, the new lesion mask is updated to include only the generated
lesions on the second time-point.

3.2.3.1 Lesion Inpainting Model

The lesion inpainting model is trained, independently and priorly to our proposed
pipeline, with randomly selected 3D FLAIR patches which do not contain MS
lesions or white matter hyperintensities. Similarly to [Manjón et al., 2020], A 3D

66 R.A. KAMRAOUI



3. New MS Lesions Segmentation and Detection

Conv+Softmax

Concatenation

Maxpool+Dropout

Upsampling

BN+Conv+ReLU

Single  
Time 
-point

 

MS
Lesions  

Mask

1st  
Time- 
point

Concat. 
+Conv. /2 

Freezed
Shared
Weights 

A

B

New 
Lesions  

Mask

2nd  
Time- 
point

Concat. 
+Conv. /2 

Concat. 
+Conv. /2 

Concat. 
+Conv. /2 

Figure 3.3: Part A represents U-Net like architecture composed of an encoder (in
red) and a decoder for the task of MS lesion segmentation (in green). This task
requires a single time-point as input and produce the MS lesion mask. Part B
shows a siamese-encoder (in red) to extract the same sets of features from the two
time-points. Same-level features are aggregated with a combination module and
are forwarded to a decoder for the task of new lesions segmentation (in blue).
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Figure 3.4: Synthetic time points with new MS lesion generation pipeline. Dashed
orange and green rectangles on images represent areas where lesion are inpainted
or generated

U-Net network is optimized to reconstruct altered input images. Specifically, the
input patch is corrupted with Gaussian noise (i.e., with a mean and a standard
deviation of the image intensities) in lesion-like areas at random locations. When
the model is trained, it can be used to synthesize healthy regions in lesion locations
that are replaced with random gaussian (see [Manjón et al., 2020] for details).

3.2.3.2 Lesion Generator Model

The lesion generator is trained before our proposed pipeline to simulate realistic
lesions. The generator is a 3D U-Net network with two input channels and one
output channel. The first input channel receives an augmented version of 3D
FLAIR patches containing MS lesions where lesions are replaced with random
noise. The second input channel receives the MS lesion mask of the original 3D
FLAIR patch. The output channels predict the original 3D FLAIR patch with
lesions. Thus, the trained model can simulate synthetic MS lesions from a 3D
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Figure 3.5: Examples of data augmentation applied on FLAIR images

patch of FLAIR and its corresponding lesion mask.

3.2.4 Data Augmentation

The quality of the MRI greatly varies between datasets. The quality of the images
depends on several factors such as signal-to-noise ratio, contrast-to-noise ratio,
resolution, or slice thickness. Since our training set is limited, it does not reflect
the diversity of real-world images. To make our training stages robust to the large
variety of artifacts that may occur during the MRI acquisitions, an extensive Data
Augmentation (DA) is used (see "DA" in Fig. 3.2 and "Data Augmentation" in
Fig. 3.4). Such DA technique also helps to better oversample the scarce samples
with new lesions (see 3.2.5.3).

We use an improved version of the data augmentation strategy proposed in
[2], which simulates MRI quality disparity. During training, we simulate “on the
fly” altered versions of 3D patches. We randomly introduce a set of alterations
in the spatial and frequency space (k-space): Blur, edge enhancement, axial sub-
sampling distortion, anisotropic downsampling, noise, bias-field variation, motion
effect, MRI spike artifacts, and ghosting effect. Figure 3.5 shows augmentation
samples.

For the blur, a gaussian kernel is used with a randomly selected Standard
Deviation (SD) ranging between [0.5, 1.75]. For edge enhancement, we use unsharp
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Table 3.1: Summary of the used datasets. For each dataset, the object count
(Obj. Count) and the total volume (Tot. Vol. cm3) represent respectively the
total number and the total volume in cm3 of lesions or new lesions (depending on
the task).

Task Dataset # Patients # Time-
point # Raters Obj.

Count
Tot.

Vol. (cm3)
Clinical Site /

Scanners

MS Lesion
Segmentation

ISBI 5 4-5 2 514 243 Single-site
MSSEG’ 16 15 1 7 512 367 Multi-site: 3 sites

In-house 43 1 2 2391 1313 Multi-site

New MS Lesion
Segmentation

MSSEG2
Training-set 40 2 4 123 23 Multi-site:

15 MRI scanners
( GE scanners only in Test-set)MSSEG2

Test-set 60 2 4 174 60

masking with the inverse of the blur filter. For axial subsampling distortion, we
simulate acquisition artifacts that can result from the varying slice thickness. We
use a uniform filter (a.k.a mean filter) along the axial direction with a size of [1×1×
sz] where sz ∈ 2, 3, 4. For anisotropic downsampling, the image is downsampled
through an axis with a random factor ranging between [1.5, 4] and upsampled
back again with a B-spline interpolation. For noise, we add to the image patch
a Gaussian noise with 0 mean and an SD ranging between [0.02, 0.1]. Bias-field
variation is generated using the work of [Sudre et al., 2017] that considers the bias
field as a linear combination of polynomial basis functions. Motion effect has been
generated based on the work of [Shaw et al., 2018]. The movements are simulated
by combining in the k-space a sequence of affine transforms with random rotation
and translation in the ranges [−5, 5] degrees and [−4, 4]mm respectively. Both MRI
spike artifacts and ghosting effect have been generated with the implementation
of [Pérez-García et al., 2021].

3.2.5 Data

Different datasets are used for the training and validation of the two tasks (see
Table 3.1).

3.2.5.1 Single Time-point Datasets

For time-points synthesis (see 3.2.3) and encoder pretraining (see 3.2.2), we jointly
used three datasets containing cross-sectional FLAIR and lesion masks, corre-
sponding to a single point in time for each subject. First, the ISBI [Carass et al.,
2017] training-set contains 21 FLAIR images with expert annotation done by two
raters. Although the dataset is composed of longitudinal time-points from 5 pa-
tients, the provided expert annotations focus on the lesion mask of each time-point
independently from the others and do not provide new lesion masks. Thus, we use

70 R.A. KAMRAOUI



3. New MS Lesions Segmentation and Detection

the 21 images independently. Second, the MSSEG’16 training-set [Commowick
et al., 2016] contains 15 patients from 3 different clinical sites. Each FLAIR image
is along with a consensus segmentation for MS lesions from seven human experts.
Third, our in-house [Coupé et al., 2018] dataset is composed of 43 subjects diag-
nosed with MS. The images were acquired with different scanners and multiple
resolutions and their lesion masks have been obtained by two human experts.

All images were pre-processed using the lesionBrain pipeline from the volBrain
platform [Manjón and Coupé, 2016]. First, it includes image denoising [Manjón
et al., 2010]. Second, an affine registration to MNI space is performed using
the T1w modality, then the FLAIR is registered to the transformed T1w. Skull
stripping and bias correction have been performed on the modalities, followed by
the second denoising. Finally, the intensities have been normalized with kernel
density estimation.

3.2.5.2 Two Time-points Datasets

The dataset provided by the MSSEG2-challenge [MICCAI, 2021] is used to train
our method. The challenge dataset features a total of 100 MS patients. For each
patient, two 3D FLAIR sequence time-points have been acquired spaced apart by
a 1 to 3 years period. The dataset has been split into 40 patients for training
and 60 patients for testing. A total of 15 different MRI scanners were used for
the acquisition of the entire dataset. However, all images from GE scanners have
been reserved only for the testing set to see the generalization capability of the
algorithms. Reference segmentation on these data was defined by a consensus of
4 expert neuroradiologists.

For preprocessing, the challenge organizers proposed a docker 1 built with the
Anima scripts. It includes bias correction, denoising, and skull stripping. In addi-
tion, we added a registration step to the MNI space using a FLAIR template (i.e.,
the training and inference are performed in the MNI space, then the segmentation
masks are transformed-back to the native space for evaluation).

Before challenge day, the testing set (the 60 patients) was not publicly available.
Thus to test our methods (see Section 3.3.1.1), we defined an internal validation
subset from the 40 challenge training data. From the 40 patients, 6 cases contain-
ing confirmed new lesions were kept out from the training-set and were used as an
internal test-set. For the challenge evaluation (see Section 3.3.2), the model sub-
mitted to the challenge organizers was trained on the entire MSSEG2 training-set.

1https://github.com/Inria-Empenn/lesion-segmentation-challenge-miccai21/
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3.2.5.3 Dataset Class Imbalance

Anomaly detection/segmentation tasks, such as MS lesion segmentation, suffer
from class imbalance where the positive class is scarce (see [Johnson and Khoshgof-
taar, 2019]). Herein, the MSSEG2-challenge [MICCAI, 2021] dataset is composed
of 100 patients (40 for training and 60 for test) and all the MS Lesions Segmentation
datasets combined account for 64 patients and 79 images. Therefore, the number of
image is similar. However, the class imbalance is highly different when evaluating
the class imbalance using the number of objects to detect/segment (which repre-
sent MS lesions for the first task and new lesions for the second one) and their total
volume for each dataset (see Table 3.1). Indeed, we see that the MSSEG2-challenge
datasets (especially training-set) suffer from more severe under-representation of
the positive class. Consequently, it will be more difficult to train a model for
New MS lesion segmentation than for the task of single time-point MS lesion seg-
mentation. Furthermore, it shows that MS lesion segmentation datasets could
significantly enrich the training of New MS lesion segmentation models.

3.2.6 Implementation Details

First, all models are trained on 3D image patches of size [64 × 64 × 64]. For
the two time-points new lesion model, an ensemble of 5 networks (different train-
ing/validation data-split) is used. During inference, the consensus (prediction
average) of the ensemble segmentation is taken. For each voxel, the two classes
output probabilities of the 5 networks are averaged, and the class with the highest
probability is picked (new lesion voxel or not).

Second, the Dice-loss (soft DICE with probabilities as continuous values) is used
as a loss function for the training of the single time-point MS lesion segmentation
and the two time-points new lesion models. The mean-squared error is used as a
loss function to train time-point synthesis models (inpainting and lesion generator
models).

Finally, the experiments have been performed using PyTorch framework version
1.10.0 on Python version 3.7 of Linux environment with NVIDIA Titan Xp GPU
12 GB RAM. All models were optimized with Adam [Kingma and Ba, 2014] using
a learning rate of 0.0001 and a momentum of 0.9.

3.2.7 Validation Framework

3.2.7.1 Evaluation Metrics

The assessment of a segmentation method is usually measured by a similarity
metric between the predicted segmentation and the human expert ground truth.
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First, we use several complementary metrics to assess segmentation perfor-
mance. Namely, we use the Dice similarity coefficient, the Positive Predictive
Value (PPV or the precision), true positive rate (TPR, known as recall or Sensi-
tivity).

Second, recent works (i.e., [Commowick et al., 2018]) question the relevance
of classic metrics (Dice) compared to detection metrics, which are used for MS
diagnostic and clinical evaluation of the patient evolution. Thus, in addition to
the voxel-wise metrics, we also use lesion-wise metrics that focus on the lesion
count. We use the Lesion Detection F1 (LesF1) score defined as

LesF1 =
2× SL × PL

(SL + PL)
, (3.1)

where SL is lesion sensitivity, i.e., the proportion of detected lesions and PL

is lesion positive predictive value, i.e., the proportion of true positive lesions.
For result harmonization with challenge organizers and participants, the same
evaluation tool is used, i.e., animaSegPerfAnalyzer [Commowick et al., 2018]. All
lesions that are smaller in size than 3mm3 are removed. For SL, only ground-truth
lesions that overlap at least 10% with segmented volume are considered positive.
For a predicted lesion to be considered positive for PL it has to be overlapped by
at least 65% and do not go outside by more than 70% of the volume.

Finally, to jointly consider the different metrics (i.e., segmentation and detec-
tion performance), it would be convenient to aggregate them into a single score.
Thus, we propose the average of DICE and LesF1 (Avg. Score) as an aggregation
score for comparing different methods.

3.2.7.2 Statistical Test

To assert the advantage of a technique obtaining the highest average score, we
conducted a Wilcoxon test (i.e., paired statistical test) over the lists of metric
scores. The significance of the test is established for a p-value below 0.05. In the
following tables, * indicates a significantly better average score when compared
with the rest of the other approaches.

3.3 Results

Several experiments were conducted on the model trained with the proposed train-
ing method, which we will be referring to as Longitudinal DLB, including an abla-
tion study and the comparison with state-of-the-art methods in competition during
the challenge evaluation.
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Table 3.2: The internal validation results for the ablation study. ✓and ✗ symbolize
using or not each contribution. Bold values indicate the best result for a metric
and * indicates that the advantage is statistically significant (Wilcoxon test).

Transfer
Learning

Time-point
Synthesis

Data
augm.

Avg.
Score DICE LesF1 TPR PPV

✓ ✓ ✓ 0.543* 0.514* 0.573* 0.500* 0.546
✓ ✗ ✗ 0.483 0.480 0.486 0.461 0.532
✗ ✓ ✗ 0.501 0.461 0.541 0.384 0.602*
✗ ✗ ✓ 0.477 0.464 0.488 0.406 0.565
✗ ✗ ✗ 0.469 0.449 0.489 0.413 0.534

3.3.1 Internal Validation

3.3.1.1 Ablation Study

To evaluate each contribution of our training pipeline, Table 3.2 compares our
full method with a baseline and other variations of our method on the internal
validation dataset. The baseline in this experiment was trained with real time-
points only and by using a classic data augmentation composed of orthogonal
rotations and mirroring.

First, when using only transfer learning on the top of the baseline, we measured
an increase in DICE and TPR compared to the baseline but approximately the
same LesF1 and PPV. Second, when using only time-point synthesis pretraining
on the top of the baseline, we obtained a significantly higher LesF1 compared to
the baseline and an increase in DICE. This variation also obtained the highest PPV
at the expense of the lowest TPR. Third, when comparing the use of the proposed
data augmentation, we see an increase in DICE and PPV but approximately the
same LesF1. Finally, when combining the transfer learning, time-point synthesis
pre-training, and the proposed data-augmentation, we obtained the highest Avg.
Score, DICE, LesF1, and TPR.

3.3.1.2 The Impact of Longitudinal Dataset Size

Figure 3.6 shows the performance of our method when trained with different lon-
gitudinal dataset sizes. From the 34 patients available for the training with two
time-points in Internal Validation settings (refer to 3.2.5.2), we tested the perfor-
mance of our model when training on 34, 36, 17, 8, and 0 patients. In the case
of 0 patients, our method performance was obtained using synthetic data only
(i.e., Stage Two where only cross-sectional MS segmentation databases were used
as described in Table 3.1). For the rest of the experiments, the reported number
of patients with two time-points were used for the fine-tuning step (i.e., Stage
Three).

74 R.A. KAMRAOUI



3. New MS Lesions Segmentation and Detection

Number of patients with two time-points used for training
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Figure 3.6: The performance in the internal validation of our method and the base-
line based on the number of patients used for training (from MSSEG2 Training-set)

First, for the baseline version (i.e., with neither pre-training nor data aug-
mentation), the graph can be separated into two phases. From 0 to 17 patients,
the graph shows an increase in both metrics. From 17 to 34 patients, metrics of
baseline versions reach a plateau. Since the baseline is trained from scratch, its
performance improves with the increase in dataset size. However, the performance
increase is less significant for the second phase since it is more difficult to improve
metrics when approaching their optimal value.

Second, for our method, the graph shows two phases. From 0 to 8 patients,
the performance decreases slightly. From 8 to 34 patients, the graph shows a slow
increase in metrics until plateauing. Since we use transfer learning and pretraining
on synthetic data for our method, its performance does not depend only on the
number of patients from MSSEG2 Training-set. The drop in performance in the
first phase can be explained by the fact that using 8 patients for fine-tuning is less
effective than using the model trained on synthetic data only.

3.3.2 Challenge Evaluation

To evaluate our method on the challenge dataset, Table 3.3 compares it to the
leader-board state-of-the-art methods. Results of the top performing methods
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were reported from challenge-day results.
Besides the top-performing methods, Table 3.3 also includes the expert raters

performance to give an insight into the human performance. Their performance
is measured compared to each other, contrary to the top methods that are eval-
uated using consensus segmentation. Raters x Vs. y means that we evaluate the
performance of rater x when considering rater y segmentations as ground truth.
Indeed, we consider that such a strategy can be more meaningful than the consen-
sus segmentation in our case since the expert consensus already encodes the raters
segmentation and thus is unfair when comparing to other strategies that did not
participate in the consensus.

First, from the Top 5 best-performing methods, LaBRI-IQDA [9] (our team’s
submission during the challenge-day) obtained the best score during the challenge.
This method was similar to the proposed baseline with data augmentation. Sec-
ond, Longitudinal DLB (results obtained after challenge-day) obtained the highest
LesF1 and Average score. Moreover, these both scores are significantly better than
all the listed state-of-the-art methods. The DICE score obtained by MedICL was
not significantly better than the one obtained by our method. Third, all but one
(Empenn) leader-board automatic method obtained better DICE than raters seg-
mentation. Our proposed method, LaBRI-IQDA, and MedICL even surpassed all
raters in Average Scores.

Figure 3.7 shows the segmentation of new lesions of our proposed method.
As a ground-truth reference, we compare the segmentation with the consensus
segmentation of raters. We also compare each rater segmentation against their
consensus. From the five segmentation, we see that our segmentation is the most
accurate with the consensus. Each of the human experts Rater 2, Rater 3, and
Rater 4 missed one or multiple lesions when segmenting this sample. While Rater
1 did not miss any lesions, we see that our segmentation is the closest to the
consensus compared to his/her.

Overall, our method obtained the best result in the MSSEG2 challenge eval-
uation (during the challenge and after). Moreover, the result of the experiments
showed that our segmentation is objective and can produce more accurate segmen-
tations than human raters.

3.4 Discussion

The transfer-learning from single time-point MS lesion segmentation task is an
effective method to train the model for the task of two time-points new MS lesion
segmentation even with a small dataset. Indeed, it enables to exploit the large
available MS cross-sectional datasets compared to longitudinal datasets. In our
case, the encoder for the first task was compatible with the siamese-encoder of
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Table 3.3: Results of MSSEG2-challenge [MICCAI, 2021] evaluation. From top
to bottom, the table shows the challenge raters agreement on the segmentation
compared to each other, the leader-board results of the challenge-day top methods,
and the result of the method described in this chapter (obtained after challenge-
day). For automatic methods, bold values indicate the best result for a metric and
* indicates that the advantage is statistically significant (Wilcoxon test).

Experiment Avg. Score DICE LesF1

Raters 1 Vs. 2 0.466 0.426 0.507
Raters 1 Vs. 3 0.499 0.434 0.564
Raters 1 Vs. 4 0.434 0.382 0.486

C
ha

lle
ng

e-
da

y LaBRI-IQDA [9] 0.507 0.498 0.515
MedICL [Zhang et al., 2021b] 0.503 0.506 0.5
SNAC [Cabezas et al., 2021] 0.496 0.484 0.513

Mediaire-B [Dalbis et al., 2021] 0.489 0.436 0.541
Empenn [Masson et al., 2021] 0.478 0.423 0.532

Longitudinal DLB 0.523* 0.495 0.550*

the second task and thus was used to extract MS-relevant features from the two
time-points. Additionally, we used a learnable aggregation module for time-points
feature combination. Besides, by freezing the encoder weights after the transfer-
learning from the first to the second task, we ensure that the extracted features
in the second task are dataset-independent from the second task dataset (smaller
dataset). This independence ensures that the high performance of the proposed
method is stable and generalizing.

Longitudinal time-points synthesis is an original approach on how to augment
data diversity. It can be extended to other change detection tasks where longitu-
dinal data are hard to acquire. According to the results of our experiments, this
strategy turns out to be very effective when used as pretraining. Indeed, when the
model is first pretrained with time-point synthesis, it is subject to a wider range of
diversity, which aims to constrain the model to extract more generalizing features.

The proposed data augmentation method is an effective technique to make
our learning process less dependent on MRI quality and acquisition artifacts. It
simulates different acquisition conditions to enhance generalization and helps to
better over-sample the available new lesions examples. Our data-augmentation
comparison (see Table 3.2) showed the proposed augmentation method contributes
to segmentation accuracy in both internal validation and challenge evaluation (i.e.,
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Figure 3.7: The segmentation of the proposed method and the expert rater on a
sample image from MICCAI 2021 - Longitudinal Multiple Sclerosis Lesion Segmen-
tation Testing Dataset. The segmentations are compared against the consensus of
the 4 raters using the colors: green, red, and blue to symbolize TP, FN, and FP
regions of new lesions.

MRI from scanners not seen during training).
The ablation study performed using the internal validation process showed that

each contribution, taken separately, enhanced the segmentation accuracy. It also
showed that when combining all contributions, we achieved the best results. Sim-
ilarly, the challenge evaluation showed that the proposed method achieved better
results than the best-performing methods of the challenge.

Our experiment in section 3.3.1.2 has shown interesting behavior of our method
when trained on only 8 patients (minor performance decrease compared to us-
ing synthetic data only). The fine-tuning and optimization by selecting the best
weights combination based on a very limited validation set has foreseeably led to
overfitting. Thus, it is advised that the number of samples and their quality (con-
taining enough new MS lesions) are sufficient so the fine-tuning step could enhance
the performance. If the labeled dataset is not sufficient, combining both synthetic
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and real data could also be explored.
Our work explored the possibility of using a similar task such as MS lesion seg-

mentation to better train new MS lesion segmentation models. Transfer learning
has led to satisfactory results. However, other methods for instance multi-task
learning and consistency regularization should be explored likewise. Other of our
experiments (that have not been covered in our study) investigated such strategies
on both single time-point MS and new MS lesion segmentation. Unfortunately, it
is difficult to deal with the different class imbalances and complexities of both tasks
which makes optimizing jointly over single time-point MS and new MS lesion seg-
mentation harder. We believe that a training-set containing both the segmentation
of new lesions and the segmentation of other lesions contained in both time-points
could lead the community to propose better segmentation/detection models.

Although it is sometimes difficult for experts to agree upon whether a lesion
is new or not, their consistency in the segmentation of new lesions is even more
difficult. This inconsistency, despite being mitigated by the consensus of several
experts, will have repercussions on the quality of the segmentation accuracy. Thus
we believe that if there is interest in the quantification of new lesions volume, the
output of models trained only on one modality (FLAIR) and for the task of new
lesion segmentation should be taken with precaution. Combining the outputs of
this model with another one trained on a single time-point with several modalities
(T1w and FLAIR) could lead to better and more accurate segmentation.

Besides the detection of new lesions, another interesting biomarker for MS clin-
icians is the measurement of disappearing lesions. Our proposed method could
potentially be used for this task by inverting the time-point order. However, it has
not been validated in our work and requires the appropriate expert annotations.

3.5 Conclusion
In this chapter, we propose a training pipeline to deal with the lack of data for new
MS lesion segmentation from two time-points. The pipeline encompasses transfer
learning from single time-point MS lesion segmentation, pretraining with time-
point synthesis, and data-augmentation adapted for MR images. Our ablation
study showed that each of our contributions enhances the accuracy of the segmen-
tation. Overall, our pipeline was very effective for new MS lesions segmentation
(Best score in MSSEG2-challenge [MICCAI, 2021]) and can be extended to other
tasks that suffer from longitudinal data scarcity.
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Chapter 4

Automatic EDSS Estimation based
on MRI and Clinico-demographic
Data using Deep Learning

This chapter corresponds to a journal paper submitted to Artificial Intelligence in
Medicine by the following authors:

Reda Abdellah Kamraoui, Boris Mansencal, Ismail Koubiyr, Bruno Brochet,
Aurélie Ruet, Thomas Tourdias, Pierrick Coupé, and on behalf of OFSEP inves-
tigators [4].

MS is an inflammatory and degenerative disorder of the central nervous system
that causes functional impairments and disabilities. Measurement of dysfunctional
severity helps to monitor and choose therapeutic interventions and to measure the
progression of disability of MS patients. The Expanded Disability Status Scale
(EDSS) is a widely used clinician-administered assessment scale evaluating the
patient’s disability state. However, EDSS suffers from inter-rater and intra-rater
variability, the processing of large cohorts is time-consuming, and EDSS requires
the presence of the patient and thus can not be performed retrospectively to as-
sess previous states of the subject. We propose a novel method for the automatic
estimation of the EDSS based on MRI and clinico-demographic information using
Deep Learning. To achieve this, we first extract relevant neurodegenerative and
neuroinflammatory biomarkers. Second, we propose a CNN architecture that effec-
tively combines image-based and tabular information. Moreover, we present novel
multi-phase learning and data augmentation to mitigate the data imbalance effect
that makes learning from real-world distributions difficult. Overall, the results
of the experiments suggest that our Deep Learning method obtains competitive
performance compared to state-of-the-art methods. Finally, model interpretability
shows consistency with works associating MS functional impairments with eloquent
brain structures.
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4.1 Introduction

MS is an autoimmune condition in which the myelin sheath, an insulating layer that
covers axons and helps the propagation of action potentials, is damaged in the brain
and spinal cord. Demyelination causes a disruption in the ability of the nerves to
conduct electrical impulses to and from the brain thus leading to motor, sensorial,
and cognitive impairments depending on the location of the inflammatory attacks.
These inflammatory attacks, forming focal lesions, can impact focally the brain
but can also disconnect distant areas of the brain through the interruption of
long-range WM tracts.

MS is an inflammatory-demyelinating disorder of the Central Nervous System
(CNS) that also has a strong neurodegenerative component. For instance, [Bermel
and Bakshi, 2006] showed that brain atrophy is a clinically relevant component of
disease progression in MS. Indeed, studies investigating the association of brain
atrophy with clinical deficits suggested that permanent tissue damage is a more
significant hallmark of disease progression than what can be explained by standard
assessments of inflammatory lesions. Furthermore, the work of [Jacobsen et al.,
2014] showed that patients with disability progression (over 5 years) exhibited a
significant loss of the whole brain, cortical, and putamen volumes compared to
patients without disability progression.

It has been heavily disputed, but it is still unclear whether neurodegeneration
in MS is independent or related to neuroinflammation [Louapre and Lubetzki,
2015], [Hutchinson, 2015], [Koudriavtseva and Mainero, 2016]. Most clinical find-
ings support the existence of a strong relationship between inflammation and neu-
rodegeneration in MS [Fisniku et al., 2008], [Confavreux et al., 2003], [Leray et al.,
2010], [Scalfari et al., 2010]. On the other hand, the presence of early cortical dam-
age independent of inflammatory WM lesions has been observed using advanced
neuroimaging techniques [Louapre and Lubetzki, 2015]. Moreover, neurodegener-
ation is not only associated with late-stage MS but also early stages when affecting
all gray matter compartments including the cortex and the thalamus [Lucchinetti
et al., 2011, Wylezinska et al., 2003]. Inflammatory and neurodegenerative com-
ponents might therefore both contribute more or less independently to the disease
severity.

Several measurements have been proposed to scale MS impairment, evaluate
the effectiveness of therapeutic interventions, and measure the progression of dis-
ability in MS patients. The Expanded Disability Status Scale (EDSS) is arguably
the most popular and used in MS. EDSS was developed by [Kurtzke, 1983] as
an improvement of the Disability Status Scale. EDSS is a clinician-administered
assessment scale evaluating the functional systems of the CNS. EDSS is an ordi-
nal rating system ranging from 0 (normal neurological status) to 10 (death due to
MS) in 0.5 increments interval (when reaching EDSS 1). The EDSS score measures
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several functions: visual, brainstem, pyramidal, cerebellar, sensory, bowel/bladder,
cerebral and ambulation (i.e., walking).

Although EDSS is widely used, multiple studies raised concerns about its use
and clinical relevance. First, the EDSS score is prone to inter-rater variability
[Noseworthy et al., 1990]. Second, the same interval difference in EDSS from one
value to another has different meanings depending on the initial value [Barker-
Collo, 2006]. An EDSS change from 0 to 1 is not equivalent in terms of severity
compared to a change from 5 to 6. Third, the EDSS has different rates of change
according to the stage of the pathology [Ravnborg et al., 2005]. The worsening
occurs at higher rates for patients with low EDSS baseline.

Similarly to other automatic tasks related to MS, such as MS lesion segmen-
tation [Zeng et al., 2020, Shoeibi et al., 2021, 2], detection of new lesions [Com-
mowick et al., 2021, 1], or segmentation of brain structures [González-Villà et al.,
2016, Coupé et al., 2020], the use of Machine Learning (ML) and Deep Learning
(DL) can be explored for the estimation/prediction of EDSS. Indeed, the auto-
mated estimation of EDSS offers several advantages including getting rid of inter-
rater variability, processing large cohorts, obtaining an estimation for the previous
states of the patient, or obtaining an estimation when the patient is not available.
Moreover, achieving EDSS estimation with an automatic method opens door to
anticipating (predicting) EDSS at later time points. This can be even more rele-
vant for identifying patients at risk and choosing the best medication in terms of
the balance of benefits/side-effects.

The EDSS could be estimated from different types of data that are correlated
with the patient’s impairment level. For instance, some works have investigated
the use of medical reports in a textual form to infer the EDSS score. [Alves et al.,
2022] validated a machine learning model to estimate EDSS scores at specific
time points for MS patients using available text-based clinical notes from a real-
world data source. The EDSS estimation model uses XGBoost gradient-boosting
regression models to perform this task. The authors have shown the capacity of a
learning-based model to fit a clinical score such as the EDSS with high accuracy.
Moreover, the paper showcases the need for an automatic and objective solution
when processing a large cohort of data. However, this method requires clinical
notes that already contain keywords such as "wheelchair", "pain", "spasm", and
other textual indications of the patient’s state thus limiting the method use cases.

Other works have explored the use MRI based information to estimate the
EDSS. As highlighted earlier, functional impairments and disabilities related to
MS are linked to neurodegeneration (neuronal damage, brain atrophy) and neu-
roinflammation (focal MS demyelinating lesions). For instance, [Pontillo et al.,
2021] proposed an ML method using clinico-demographic and MR imaging–derived
variables to estimate EDSS score. MRI-based information is composed of a set of
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features derived from volumetric, connectivity, and texture analyses. A subset
of features was first selected using LASSO, then a regression model was trained
with these features. According to their study, the most informative variables were:
age, secondary-progressive course, a subset of texture features extracted from the
prefrontal cortex, subcortical GM, and cerebellum. In their experiment, the au-
thors have shown the feasibility of using regression models to estimate EDSS from
MRI-derived information. However, although the EDSS values of the studied
population were not evenly distributed, the authors did not analyze their results
based on different EDSS ranges nor proposed measures to deal with this phe-
nomenon well known as data imbalance. Besides, the texture-based features rep-
resent generic hand-crafted features that may not be suited to EDSS estimation,
unlike DL method which guides the extraction of features based on the target task.
Moreover, the volumetric-based features were not normalized using the normative
lifespan trajectory to model the deviation of volumes and measure the atrophy.

In another attempt to model EDSS from MRI-based information, [Roca et al.,
2020] proposed an algorithm that combines multiple ML techniques, including DL,
to predict the EDSS score of MS patients at two years using age, sex, and FLAIR
MRI data. The authors reported an important characteristic of the used dataset
[Vukusic et al., 2020] which is the high imbalance of EDSS scores at two years
(lower than high EDSS scores) and addressed it by using a metric that averages
the score over each EDSS group for the analysis of the results. Although this study
is one of the first trying to predict future EDSS scores from baseline information, it
suffers from limitations which for the most are related to the limited access to data
on the study population. The major drawback is that most of the MS patients in
this study did not have any evolution between the baseline and 2 years follow-up
since a large part of them were having a Disease Modifying Treatment (DMT) and
the period was relatively short to observe a significant dynamic in EDSS. Thus,
it is difficult to conclude if [Roca et al., 2020] results indicate that their strategy
was able to predict future EDSS or if it was predicting EDSS at a baseline that
was close or even identical to the follow-up one. Moreover, the authors did not
use T1 sequences that better highlight the atrophied brain structures and the
neurodegenerative impact of MS.

In this chapter, we address the limitations of the previous automatic meth-
ods by proposing a novel Deep Learning model for EDSS estimation using MRI
and clinico-demographic data. First, we used T1 and FLAIR to extract both
neuroinflammation-based and neurodegeneration-based features preserving spatial
information. Specifically, the extracted features include the brain segmentation of
133 GM structures and WM regions, spatial representations for volumetric devi-
ations of the brain structures, MS lesion map, and the disconnectome of 64 WM
tracts. Moreover, the proposed DL method integrates clinico-demographic in-

84 R.A. KAMRAOUI



4. Automatic EDSS Estimation based on MRI and Clinico-demographic Data
using Deep Learning

formation (tabular data) to image-based information using a modulation strategy
that enables to combine efficiently both information types and better guide feature
extraction. Finally, we proposed a methodological solution to deal with data im-
balance during model training using targeted data augmentation and multi-phase
learning.

4.2 Method and Material

4.2.1 Dataset

4.2.1.1 Study Population

The dataset used in this study includes 2225 subjects provided by the "Obser-
vatoire français de la sclérose en Plaques" (OFSEP), a nation-wise prospective
cohort, coming from 66 different sites. Each subject has between 1 and 11 (with
an average of 1.93 and a median of 1) visits recorded in this dataset. This provides
a total of 3951 medical records (which will be used independently in this study)
composed of T1 and FLAIR sequences, age, sex, the type of DMT if any, and the
EDSS score. The dataset was divided into training and test sets with a ratio of
80% and 20% respectively. The split is performed in a stratified way to keep both
demographic/clinical data (see Table 4.1) and EDSS distribution (see Figure 4.2),
as close as possible to the distribution of the complete dataset. During the split,
we ensured that all records of the same patient are only in one set to avoid data
leakage.

4.2.1.2 Preprocessing

T1 and FLAIR sequences are preprocessed with [2] pipeline. First, denoising is
applied to both sequences [Manjón et al., 2010]. Second, an affine registration
to the MNI space is performed on the T1, then the FLAIR is registered on the
transformed T1 [Avants et al., 2011]. Brain localization is performed on the T1
then the mask is applied to both modalities (skull-stripping) [Manjón et al., 2014].
Then, bias correction [Tustison et al., 2010] is applied on the T1 and FLAIR.
Finally, the intensities are normalized with the kernel density estimation.

4.2.1.3 Biomarker Extraction

As mentioned above, both neurodegenerative and neuroinflammation components
can contribute to clinical performance, and cause functional impairments and dis-
abilities. The impact of these components can be observed and quantified using
MRI modalities such as T1 and FLAIR. From both sequences, several Biomarker
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Figure 4.1: The image-based features used for the estimation of EDSS. Biomarker-
level features are extracted from the MRI sequences. For the deviations of volume,
higher color intensity indicates a higher deviation from the normal volume based on
age and sex. For the disconnectome of WM tracts, higher color intensity indicates
a higher probability that a WM tract is impacted by MS lesions.

Level Features (BLF) relevant to MS are extracted (see Figure 4.1): whole brain
segmentation, deviation of brain structures volumes from normative lifespan tra-
jectory, MS lesion segmentation, and the disconnectome of WM tracts. The first
two BLF are associated with neurodegeneration while the latter two BLF are linked
to neuroinflammation. These biomarkers quantify and localize brain abnormali-
ties caused by MS that can be correlated with disease impairments. Thus, the
proposed model is trained to estimate EDSS from these biomarkers and comple-
mentary clinico-demographic information.

Whole Brain Segmentation

In order to estimate structure volume, the whole brain segmentation is performed
with Assemblynet [Coupé et al., 2020] pipeline. Assemblynet is an ensemble
method based on a large number of CNNs processing different overlapping brain
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areas. The framework is made of two assemblies of U-Nets where the second assem-
bly, at a higher resolution, refines the decision taken by the first one. Assemblynet
includes a sharing of knowledge among neighboring U-Nets and a final decision
obtained by majority voting. The framework reliability was demonstrated using a
comparison with state-of-the-art methods, a scan-rescan consistency analysis, and
an analysis of robustness against disease presence. To ensure the accurate segmen-
tation of structures, a lesion inpainting [Manjón et al., 2020] step was performed
on T1 using lesion masks (see section 4.2.1.3) before Assemblynet segmentation.

Deviation of Volume

In order to quantify volume anomalies, the deviation from normative value is
performed with lifespan modeling as proposed by [Coupé et al., 2017]. Here, a
3D map is computed to indicate the deviation of the volume of brain structures
from normal development and aging of a typical healthy brain. The deviation
from this normal distribution may be caused by neurodegeneration. As discussed
earlier, neurodegeneration is a strong component of MS. The atrophy of several
brain regions, such as the cortex, putamen, and thalamus, is associated with MS.

To compute the deviation of the volume map, we use Assemblynet whole
brain segmentation and lifespan models of each structure (see [Coupé et al., 2017,
Planche et al., 2022]). These normality bounds were automatically estimated from
the dataset presented by [Coupé et al., 2017] composed of 2944 healthy subjects.
First, the volume of each brain structure is extracted from Assemblynet segmen-
tation and normalized compared to the total Intra-Cranial Volume (ICV).

Second, depending on the age and sex of the patient, we compute the deviation
of each structure from the normative lifespan model using the following formula:

Abnormality(vol) = Sigmoid(α ∗Deviation(vol)− β)), (4.1)

Deviation(vol) =
(vol −mean_dist)2

std_dist2
, (4.2)

Sigmoid(x) =
1

1 + exp (−x)
, (4.3)

where vol is the relative volume of the structure, mean_dist and std_dist
correspond to the mean and standard deviation of the normal volume distribution.
α and β are coefficients to calibrate the impact of the deviation. In this work, we
used α = 2 and β = 5.

Third, the volume abnormality value of each structure is assigned to its corre-
sponding anatomical region using the Assemblynet segmentation to construct a 3D
map that shows brain structures that deviate from normal volumes. Using such a
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Table 4.1: Dataset metadata (statistics) for the entire dataset, training and testing
dataset

Data Patients Samples Male (%) On DMTs (%) Age mean (std) EDSS mean (std)
All Data 2225 3951 1109 (28.1%) 2829 (71.6%) 41.55 (11.6) 2.37 (2.1)

Training Set 1780 3163 884 (27.9%) 2282 (72.1%) 41.35 (11.4) 2.37 (2.0)
Testing Set 445 788 225 (28.5%) 547 (69.4%) 42.37 (12.1) 2.35 (2.1)

strategy also allows us to combine age and sex information spatially image-based
information.

MS Lesion Segmentation

The MS lesion mask is computed with DeepLesionBrain [2] pipeline. This pipeline
is specifically trained for generalization and to perform well on unseen datasets.
The MS lesion segmentation is based on the consensus of a large group of compact
3D CNNs predictions to produce a robust prediction. Moreover, the training of
this model included a strong data augmentation that simulated real-world diversity
and MRI artifacts to reduce dependency on training data. DeepLesionBrain gener-
alization was validated in multiple cross-dataset experiments with state-of-the-art
protocols.

Disconnectome of the WM tracts

Recent studies indicate that WM disconnection might be a better predictor of
brain dysfunction and recovery compared to lesion location [Thiebaut de Schotten
et al., 2014, Herbet et al., 2016]. Inspired by the work of [Thiebaut de Schotten
et al., 2020], the disconnectome of WM tracts is used to indicate the potential
disconnections of the WM tracts resulting from MS lesions. The disconnectome is
computed using DeepLesionBrain MS lesion mask and the HCP1065 Population-
Averaged Tractography Atlas [Yeh, 2022]. First, T1 is used for the non-linear
registration of the MS lesion mask in the WM tract atlas space. Then, by over-
laying the registered MS lesion mask on the WM tract probabilistic atlas, it is
possible to compute a 3D map indicating the probability of disconnection for each
WM tract. Finally, the probability map of WM tract disconnections is put back
on the original space with the inverse transform.

4.2.2 Multi-phase Training and targeted augmentations

Data imbalance occurs in a dataset when the target value has an uneven distri-
bution of observations. Depending if the target is categorical or continuous, the
target value refers either to classes or values ranges. As shown in Figure 4.2a,
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(a) All Data (b) Training Set

(c) Test Set

Figure 4.2: Histograms by EDSS ranges of the entire dataset, the training set, and
the testing set.

the distribution of EDSS is unbalanced between the different EDSS ranges. For
example, the number of samples having an EDSS in the ranges [0, 1[ or [1, 2[ is
significantly higher than samples in the ranges [5, 6[ or [7, 10[. Although this EDSS
distribution may accurately reflect the MS population statistics, it is difficult to
train ML and DL models with unbalanced datasets. To mitigate this problem,
several strategies have been studied (see [Johnson and Khoshgoftaar, 2019] for
details).

First, weighting-based techniques aim to balance the impact of overrepresented
and underrepresented data on the optimization process. This is usually performed
by using a weighting function that gives more importance to the minority values
and gives less importance to the majority values. The intuitive approach would
be to define the weighting function based on the histogram of observations. How-
ever, weighting-based techniques were initially proposed for ML and may not be
beneficial to DL depending on an optimization algorithm, network architecture,
and loss function [Byrd and Lipton, 2019].

Second, data-centric techniques change the distribution of the training data set
to decrease the problem of imbalance. Random under-sampling and random over-
sampling are well-known methods to deal with data imbalance. Under-sampling
discards data from the majority target values, reducing the total amount of in-
formation for training the model. Over-sampling will cause an increased training
time due to the duplication of the minority values and can cause over-fitting [John-
son and Khoshgoftaar, 2019]. For classification, [Chawla et al., 2002] introduced
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the Synthetic Minority Oversampling TEechnique (SMOTE), a method that uses
interpolation between existing minority samples and their same-class neighbors
to produce artificial minority samples. SMOTER is an extension of SMOTE for
regression proposed by [Torgo et al., 2013] where the new target is a weighted
average of the target values used during interpolation. Similarly, SMOGN [Branco
et al., 2017] combines SMOTER with the introduction of gaussian noise.

Third, Multi-phase learning methods limit data-imbalance problems by train-
ing successively the model using different data distributions. Indeed, ML/DL are
based on the assumption that test distribution comes from the same distribution
as the training dataset. Thus, if the model is trained on a balanced distribution
that does not reflect the real-world target distribution, this assumption will not
be respected. Both [Lee et al., 2016] and [Havaei et al., 2017] proposed a similar
two-phase learning procedure. The DL model is first pretrained with a balanced
subset using random under-sampling and then fine-tuned using a more represen-
tative distribution of the data. [Pouyanfar et al., 2018] used a dynamic sam-
pling technique that over-samples the low-performing classes and under-samples
the high-performing classes.

In this chapter, we propose to combine both data-centric and multi-phase learn-
ing to deal with data imbalance for the training of our EDSS estimation DL
model. Inspired by SMOTE and SMOTER, we propose to use MixUp augmenta-
tion [Zhang et al., 2020a] to combine image-based biomarkers samples and clinico-
demographic vectors of candidates that have similar EDSS. This strategy allows
us to target underrepresented EDSS ranges and augment them significantly. Addi-
tionally, our DL model was trained with the dynamic sampling strategy adapted to
our task. Training batches are composed of observations sampled from the training
set using a sampling function. The sampling function defines the probability of
sampling from each EDSS range and is initialized first with uniform probability.
Then after each epoch, the sampling function is adapted to have a higher sam-
pling probability for the ranges that perform worse on the validation set. Finally,
once the model learned to extract relevant features for each EDSS range, we freeze
the encoder convolution layers and fine-tune the rest of the model on the original
training set distribution.

4.2.3 Dual path DL model

To estimate the EDSS from image-based and clinico-demographic data we use the
following architecture (See Figure 4.3). The choice of the dual-branch encoder was
motivated by two reasons. First, several studies in MS showed that neurodegener-
ation is often related to neuroinflammation, but in some cases the two phenomena
are independent [Hutchinson, 2015, Louapre and Lubetzki, 2015, Koudriavtseva
and Mainero, 2016]. Thus, the dual-branch encoder enables learning separately
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Figure 4.3: DL Architecture used for EDSS estimation

from each type of feature, and later, the combination module allows learning by
exploiting the dependencies. Second, the concatenation of all input maps may not
be the best strategy as pointed out in [Aslani et al., 2019]. Alternatively, the dual
downsampling branches enable the model to encode information efficiently from
each branch input.

Therefore, in this study, we propose a dual-branch encoder to separate fea-
ture extraction from neurodegeneration-based and neuroinflammation-based input
maps. Then, an aggregation module is used to combine the dual-branch outputs
(image-based information) and clinico-demographic data (tabular data). This will
be discussed in-depth in Section 4.2.3.1. Afterward, the resulting feature maps are
flattened and passed through fully connected layers, which in the end estimate the
EDSS score.

4.2.3.1 Combining image and tabular data for DL

In addition to the image-based features, other information related to the patient
and relevant to MS, such as demographic data or treatment, can be used to better
estimate EDSS. These pieces of information are usually represented in tabular form
(vector), and thus raise the question of how they can be combined with image data
and jointly used in CNN. Most commonly, DL approaches integrate tabular data
with images by fusing latent image representation with tabular information before
the last fully connected layer (see [Hao et al., 2019], or [Roca et al., 2020]). How-
ever, this combination strategy limits the interaction of image spatial information
with tabular data.

[Wolf et al., 2022] proposed the Dynamic Affine Feature Map Transform (DAFT)
module that can be incorporated into any type of CNN to combine feature maps
with tabular information. DAFT module learns scaling factors and offsets to dy-
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namically apply an affine transformation to the feature maps. The scaling and
offset parameters result from applying a "Squeeze-and-Excitation" operation (see
[Hu et al., 2018]) on the concatenation of global-averaged-pooled feature maps and
tabular data.

The DAFT module is used in our architecture to learn the best way to combine
image-based features and clinico-demographic data while taking into account the
spatial nature of image-based features.

4.2.4 Implementation Details

The model estimating EDSS is an ensemble of 5 networks trained separately with
different training/validation data-split. During the test, the model estimation is
the average of all networks predictions.

Next, each network is trained on 3D image-based inputs of size [88× 104× 88]
and tabular-based inputs of 3 elements. Adam [Kingma and Ba, 2014] was used
for optimization with a learning rate of 0.0001 and a momentum of 0.9. Mean
Squared Error (MSE) is used as a loss function for the training.

Moreover, each phase of the proposed multi-phase learning, including a sam-
pling distribution based on training performance on each EDSS range followed by
training on the real data distribution, is trained until convergence. Specifically,
we used an early stopping criterion of 50 epochs (i.e., the training stops if the loss
function does not improve on the validation set during 50 epochs) with a maximum
number of 500 epochs.

Furthermore, the experiments have been performed using PyTorch framework
version 1.10.0 on Python version 3.7 of Linux environment with NVIDIA Titan
Xp GPU 12 GB RAM.

4.2.5 Evaluation Metrics

Due to the data imbalance aspect of our dataset, we use different metrics to assess
the EDSS estimation models. First, Mean Squared Error (MSE) is used to measure
the model performance for the overall distribution. Second, we define Average
Range-based Error (ARE) as the average of mean squared errors by EDSS-range:

ARE =
1

R

∑
r∈Ranges

MSE(y_truer, y_predr), (4.4)

where Ranges are the following EDSS ranges: {[0, 1[; [1, 2[; [2, 3[; [3, 4[; [4, 5[;
[5, 6[; [6, 7[; [7, 10[}, y_truer are the ground truth EDSS observations that belong
to the EDSS range r, and y_predr are the model predictions respective to y_truer.
This metric ensures that equivalent importance is given to all EDSS ranges when
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estimating the error. Third, to measure the correlation between the true EDSS val-
ues and the estimated EDSS, we use Pearson and Spearman correlations. Finally,
to consider all the metrics mentioned above, we define MixError as follows:

MixError =
ARE +MSE

|Pearson|+ |Spearman|
, (4.5)

where a lower MixError represents a higher similarity between the estimated
and ground-truth EDSS scores. In the following experiments, MixError will be
primarily used to evaluate the performance since it better estimates the prediction
error compared to each metric taken individually.

4.2.6 Reference Methods

In section 4.3.2, the proposed EDSS estimation model is compared against refer-
ence methods.

First, the proposed method is compared to the state-of-the-art ML method
Random Forest Regressor (RFR) trained BLF. To address the data imbalance, we
also combine SMOTER [Torgo et al., 2013] with RFR+BLF.

Second, similarly to the work of [Pontillo et al., 2021], our method is compared
to ridge regressor on features selected using LASSO regression (Ridge+Feat-selec.).
The selected features were composed of the normalized volumes of CSF, Inf. lateral
ventricle, the lesion burden, the volume of juxtacortical lesions, and the number of
cerebral lesions. Besides, the volume anomalies of several structures were selected
such as the 3rd ventricle, the parietal operculum, the anterior insula, the medial
orbital, and the postcentral gyrus. Additionally, multiple features representing
WM tracts disconnections were selected such as the corticopontine, optic radiation,
reticulospinal, uncinate, occipital, and medial longitudinal fasciculus.

Finally, to better analyze the results of the proposed method and the other
state-of-the-art methods, we propose two baselines: RFR using age as the only
feature and RFR on random values.

4.3 Results

4.3.1 Ablation Study

The proposed EDSS estimation method combines several image-based informa-
tion extracted from MRI modalities and tabular data containing demographic and
treatment information. To evaluate the importance of feature components and
their relevancy for the EDSS estimation task, Table 4.2 shows the results of an
ablation study. The possible input maps of our CNN model are organized into
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Table 4.2: Results of our experiment on different combinations of features as in-
put for the estimation model. Each experiment is performed using Multi-Phase
learning and uses tabular data (clinico-demographic information) except for the
last row. For input composed of only neurodegenerative features, only neuroin-
flammatory features, or one of the two modalities single branch encoder is used.

Features/ Input Maps MSE ARE Pearson Spearman MixError
All features 3.17 4.52 0.55 0.53 7.18
Modality level features 3.15 4.59 0.55 0.54 7.15

T1 3.08 4.51 0.56 0.54 6.92
FLAIR 3.21 4.87 0.54 0.53 7.61

Biomarker level features (BLF) 2.91 3.84 0.58 0.56 5.95
Neurodegeneration 3.10 3.95 0.57 0.56 6.35

Structure Volumes 3.32 3.94 0.57 0.55 6.55
Normative Modeling 3.17 4.67 0.54 0.52 7.47

Neuroinflammation 3.45 4.77 0.52 0.51 7.93
MS lesions 3.35 4.53 0.51 0.50 7.78
Disconnectome 3.68 4.61 0.51 0.50 8.17

BLF without tabular data 3.16 4.34 0.54 0.53 7.01

modality level features which regroup T1 and FLAIR sequences and BLF which
are extracted using these MRI sequences. BLF are also categorized into neurode-
generative (i.e, whole brain segmentation and volume deviation) and neuroinflam-
matory (i.e, MS lesions and WM tracts disconnectome) features.

First, the method that uses all possible input maps obtained worse perfor-
mance than that that uses only BLF. The use of MRI modalities as input for our
model obtained a decent performance when considering that no additional expert
knowledge or external tools have been utilized. However, BLF showed the best
performance compared to all the other combinations.

Second, using neurodegeneration-based maps obtained better performance than
using neuroinflammation maps as input for our model. Our experiment suggests
that neurodegeneration-based maps are more important for EDSS estimation.
The inflammation-based maps showed their relevancy only when combined with
neurodegeneration-based maps (MS lesion and disconnectome obtained the worst
performance).

Finally, when comparing BLF without tabular data and BLF, using tabular data
(composed of age, sex, and the use or not of DMT) had a substantial improvement
on model estimation.
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Table 4.3: Results of our comparative study of the proposed EDSS estimation
model with state-of-the-art methods. Results are organized, from top to bottom,
to include the proposed method and its variation without multi-phase learning,
state-of-the-art methods, and the performance of baseline

Method MSE ARE Pearson Spearman MixError
The Proposed Method 2.91 3.84 0.58 0.56 5.95
The Proposed Method without Multi-phase Training 3.14 4.60 0.55 0.54 7.10
RFR+BLF 3.22 4.85 0.53 0.52 7.69
RFR+BLF+SMOTER [Torgo et al., 2013] 3.39 4.39 0.52 0.51 7.55
Ridge+Feat-selec. [Pontillo et al., 2021] 3.31 4.85 0.51 0.50 8.08
RFR+Age Only 3.73 5.61 0.05 0.04 103.78
RFR+Random Only 5.94 9.03 0.01 0.01 748.50

BLF= Biomarker Level Features, RFR= Random Forest Regressor, Feat-selec= feature selection

4.3.2 Method Comparison

To evaluate the performance of our EDSS estimation model, we compare its perfor-
mance with reference methods. Table 4.3 shows the results of a comparison study
that includes the proposed method and variations of our method, state-of-the-art
strategies, and two baselines using age only or random values only.

First, the use of multi-phase learning, the strategy we proposed to deal with data
imbalance, resulted in a better overall performance (MixError). In addition to the
predictable reduction of ARE when using multi-phase learning, the results showed
an improvement in MSE, Pearson, and Spearman correlations. This suggests that
training our model with multi-phase learning improved even the performance over
the real dataset distribution (population statistics).

Second, when comparing our method with RFR+BLF(+SMOTER), the CNN
obtained a substantially better performance for all metrics. The use of SMOTER
[Torgo et al., 2013] to mitigate the data imbalance effect improved ARE but not
MSE compared to the one without SMOTER, unlike the results of using multi-
phase learning for CNN which improved all metrics.

Third, similarly to the work of [Pontillo et al., 2021], we compared our method
to ridge regressor on features selected using LASSO regression. Ridge+Feature-
selection performed worse than RFR+BLF.

Finally, when comparing all automatic methods with the baselines RFR+Age
Only and RFR+Random Only, all metrics, and particularly MixError that ag-
gregates them, show that the automatic methods perform better than a model
relying only on age or trained to fit random values.
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Figure 4.4: The performance of the EDSS estimation model on each EDSS
range when using BLF channels (the proposed method), neuroinflammation, and
neurodegeneration-based channels. The performance is measured with MSE on
the left vertical axis, and Root Mean Squared Error (RMSE) on the right vertical
axis

4.3.3 Model Performance based on EDSS ranges

Figure 4.4 shows the performance of the EDSS estimation model on each EDSS
range, measured with MSE on the left vertical axis, and with the Root Mean
Squared Error (RMSE) on the right vertical axis.

First, the figure shows a low EDSS error for the EDSS values ranging from 0 to
6 (0=<EDSS<6). However, the estimation model seemed more prone to error for
the rest of the EDSS values (6=<EDSS<10). Indeed, although the use of multi-
phase learning to mitigate data imbalance, the results suggest that more training
samples are necessary, at the higher end of the EDSS spectrum, to better estimate
high EDSS values.

Second, when comparing the models trained with inflammation-specific and
neurodegenerative-specific channels, the results showed inflammation-specific chan-
nels to be more efficient for low EDSS ranges while neurodegenerative-specific
showed better results for high EDSS ranges. This pattern is interesting since early
forms of MS are characterized by an inflammatory response (lesions) and long-term
MS frequently results in neurodegeneration (atrophy of brain structures).

Third, the model trained with BLF did not always obtain the best results, but it
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obtained the best average performance over all EDSS ranges. This result suggests
that using BLF is a trade-off between using only neurodegenerative-specific chan-
nels that perform well for high EDSS ranges and using only inflammation-specific
channels which work better for low EDSS ranges.

4.3.4 Model interpretability by EDSS range

Due to their increasing complexity, DL models are often regarded as black-box
tools since it is difficult to understand how the network layers operate consecutively
and how the different parts of an input are relevant to the final decision. In this
section, we try to better understand which brain regions contribute the most to the
prediction of our EDSS estimation model using Gradient-weighted Class Activation
Mapping (GradCAM) [Selvaraju et al., 2017].

For the GradCAM target layer, we have chosen the concatenation of the last
convolution layers of the dual-path encoder. As discussed in section 4.2.4, the
EDSS estimation model prediction is the average of 5 networks trained on different
splits of the training set. Figure 4.5 represents the resulting visualization in the
3 MRI views (i.e., axial, coronal, and sagittal) for each EDSS range. Each range
visualization represents the average of GradCAM for all testing set patients within
this specific range, averaged across the 5 networks.

We first notice the progressive shift of the importance from the forebrain-
subcortical region for low EDSS values, to the parietal-occipital region for high
EDSS values.

Moreover, we distinguish three phases where the importance is focused differ-
ently: 0=<EDSS<3, 3=<EDSS<5, 5=<EDSS<10. Brain structures with high
intensity for each phase are summarized in Table 4.4. For 0=<EDSS<3 patients,
the estimation model focused on accumbens area, basal forebrain, subcallosal
area, caudate, amygdala, thalamus, hippocampus, entorhinal area, anterior in-
sula, frontal operculum, superior parietal lobule. For 3=<EDSS<5, we see that
the importance is not particularly focused on a specific region. For 5=<EDSS<10,
the most significant structures are the cuneus region, supplementary motor cor-
tex, post/pre/pre-medial central gyri, and superior occipital gyrus. the calcarine
cortex, inferior and fusiform occipital gyri.

As we can see in the higher scale visualization of Fig 4.5, the most highlighted
regions are the motor function, sensory, somatosensory, and visual areas. On the
other hand, in lower scales, the most highlighted regions are subcortical struc-
tures which have a strong association with cognitive dysfunction [Chiaravalloti
and DeLuca, 2008, Small, 2014]. As discussed in [Minagar et al., 2013, Houtchens
et al., 2007], the atrophy of deep gray nuclei, such as the thalamus, can be de-
tected in the earliest phases of MS. The involvement of these regions in MS is
associated with clinical manifestations including cognitive decline, fatigue, painful
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Table 4.4: Brain structures with high GradCAM density by EDSS ranges (refer to
Figure 4.5).

0=<EDSS<3 3=<EDSS<5 5=<EDSS<10
Accumbens Area, SCA, Basal Forebrain,

Putamen, Thalamus, Hippocampus, Caudate,
Amygdala, Ventral DC, AIns, Pallidum,

Ent, SPL, POrG, MOrG, FO

No regions with high values.
The importance is distributed.

SPL, OCP, Cun, PCu, Calc,
MPoG, MPrG, SOG, AnG,
PoG, MOG, IOG, OFuG.

SCA= subcallosal area, FO= frontal operculum, SPL= superior parietal lobule, Ent= entorhinal area, AIns= anterior insula, Cun= cuneus,
PCu= precuneus, SMC= supplementary motor cortex, Calc= calcarine cortex.
Gyrus: MPoG= medial postcentral, MPrG= medial precentral, SOG= superior occipital, AnG= angular, PoG= postcentral, MOG= middle occipital,
PrG= precentral, IOG= inferior occipital, OFuG= occipital fusiform, POrG= posterior orbital, MOrG= medial orbital

syndromes, and ocular motility disturbances.

4.4 Discussion

In this work, we showed that it is possible to estimate EDSS from MRI-based and
clinico-demographic information.

In our experiments, the obtained results suggested that, overall, neurodegener-
ative features such as whole brain segmentation map and the deviation from the
normal volume better contribute to EDSS estimation compared to neuroinflam-
mation features that include MS lesion mask and disconnectome of WM tracts.
In more details, the inflammatory features impact more the low values of EDSS
while the neurodegenertive featurs become progressively more and more impor-
tant with higher EDSS values. This result fits well with the history of the disease
that is known to be more inflammatory at the early stage (with good response to
immunomodulatory medications) while neurodegenration (possibly driven by the
initial phase of inflammation) will become more and more prominent. Further-
more, the brain region affected by atrophy and the intensity of neurodegeneration
could explain or predict functional impairments.

In this chapter, we raised the problem of dataset imbalance and the need for
multiple metrics to assess the performance of our EDSS estimation model. The
proposed MixError which aggregates several metrics allows us to track a single
value. However, the selection of metrics should be well-considered since some
metrics are mathematically related to each other. This and other difficulties related
to metric aggregation have been pointed out in the work of [Reinke et al., 2021].

Our results showed that the proposed multi-phase learning, including a sam-
pling distribution based on training performance on each EDSS range followed by
training on the real data distribution, enhanced all metrics. This result suggests
that training the model directly on an unbalanced dataset leads to a sub-optimal
solution. Thus, we consider that the proposed multi-phase learning is a way of
finding a trade-off between efficient learning on the balanced dataset and learning
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from the distribution that better describes real-world data.
DL interpretability results need to be taken with care since Explainable/Interpr-

etable AI has some known limitations [Rudin, 2019]. Contrarily to other works
that use an interpretability strategy on a single image and a single network to
understand its prediction, each visualization presented in section 4.3.4 was con-
structed using 5 different models that have been initialized differently and trained
on different data. Besides, each visualization results from the average prediction of
several dozen to a few hundred images. Thus, the visualizations are stable and our
interpretation is more confident. Overall, our interpretation is consistent with the
characteristics of the EDSS score and the state-of-the-art studies that associate
functional impairments of MS with brain structures.

Future work should explore the possibility of predicting patient future EDSS
based on MRI, clinico-demographic data, and the baseline EDSS score. Indeed,
studies showed the correlation of some brain structure volume with disease pro-
gression [Jacobsen et al., 2014]. This leads us to hypothesize that EDSS prediction
could be achieved similarly to our strategy. However, this is challenging since it
would require a wide longitudinal dataset with patients having multi-point homo-
geneous data, spaced over a long period of time.

4.5 Conclusion
In this chapter, we proposed a novel method for the estimation of EDSS from
MRI-based and clinico-demographic information with a Deep Learning model.
We first propose to extract neurodegenerative and neuroinflammatory biomarker
maps from T1 and FLAIR modalities that will serve as input to our estimation
model. These Biomarker Level Features (BLF) are composed of the whole brain
segmentation, the deviation from the normal volume of structures, MS lesion seg-
mentation, and the disconnectome of WM tracts. Next, we propose a novel dual
path encoder to efficiently extract neurodegenerative and neuroinflammatory based
features from two separate pathways before aggregating them alongside tabular
information. The latter aggregation uses a module suited for learning how to
combine spatial features and tabular information. To mitigate the data imbal-
ance effect that makes learning from real-world distributions difficult, we propose
a novel multi-phase learning that balances training sampling based on the model
performance and a novel data-augmentation technique that combines SMOTE and
MixUP principles. During validation, our Deep Learning method surpassed con-
ventional state-of-the-art methods. Moreover, the interpretability of our model
showed consistency with works associating MS functional impairments to brain
structures.
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Figure 4.5: Visualizations of brain regions that contribute the most to the esti-
mation of EDSS with the proposed model. For each EDSS range, the heat-map
highlights high importance with warm colors (i.e., dark-red is the maximum), and
low values with cold colors (i.e., dark-blue is the minimum).
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Chapter 5

MRI Analysis Pipelines for MS

5.1 Introduction

The majority of MR image analysis pipelines are available as packages that must
be downloaded, installed, and configured. Installation steps might be challenging,
necessitating the experimented people who are not always available in research
laboratories or clinical settings. Additionally, computing resources must be allo-
cated to run the program and users must be educated to use it. The usage of
these packages may be complicated by these needs, particularly the most modern
and sophisticated ones as they frequently have demanding hardware requirements.
Furthermore, the user community must be provided with multi-platform versions
and support.

In this section, we describe how the pipelines proposed in this thesis have been
made easily available and can be freely used by the MS community.

5.2 Pipeline Accessibility

Each pipeline proposed during this thesis is containerized and is either available
on the volBrain platform, at the time of redaction, or will be added shortly.

5.2.1 Containerization

To deal with environment and software heterogeneity, it is possible to distribute a
containerized version of the pipeline. Containers are standard software unit that
packages code and all of its dependencies to speed up and reliably run applications
from one computing environment to another. Containers ensure the application
works uniformly despite differences between development and production environ-
ments. Although containerization solves the problem of environment compatibility
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and installation, it does not solve the hardware resource problem and the problem
of inexperienced users.

5.2.2 Hosting Platform: volBrain

To solve the remaining problems including the infrastructure and the expertise to
install and run the pipeline, our pipelines are hosted by volBrain. volBrain is a
web interface, proposed by [Manjón and Coupé, 2016], for hosting and running
MR image analysis pipelines 1. volBrain does not require any installation, config-
uration, training, or hardware resources. Instead, the users interact through a web
interface using a SaaS (Software as a Service) model to select a pipeline, upload
MRI and provide demographic information, and then start execution. Once a job
is submitted, the platform starts an instance (container) of the pipeline from the
image (Docker) of the selected pipeline, on the combined resources of the Poly-
technic University of Valencia and the University of Bordeaux. The container will
receive user input, execute MR image analysis, and provide for the submitted case
easy-to-read reports (i.e., PDF) and additional complementary outputs (i.e., zip
archive). Since 2015, this platform has processed more than 400.000 MRIs for
more than 7000 users around the world.

5.3 Pipeline Description
During this thesis, we developed containerized versions of our pipelines compatible
with the volBrain interface. First, when the user chooses a task using the web-
based interface, he/she is asked to upload the required anonymized MRI modal-
ity/modalities in compressed NifTi format and provide subject information. For
instance, Figure 5.1 shows that the user has chosen DeepLesionBrain which re-
quires the uploading of T1 and FLAIR modalities and optionally providing sex
and age for further analysis. Afterward, a job is launched, and the container
is running. The job takes a few minutes depending on the task (9 minutes for
DeepLesionBrain) and several jobs can be processed in parallel. Finally, when the
pipeline is complete, the user can easily retrieve the results. For instance, Figure
5.2 shows that the user can download an easy-to-read report in PDF format, visu-
alize the provided segmentation using the web interface, or download an archive
containing all the results.

In the following, we will detail the reports of DeepLesionBrain and Longitudinal
DLB, two pipelines described in Chapter 2 and Chapter 3 of this thesis. Then,
we will detail the update of DeepLesionBrain with EDSS estimation described
in Chapter 4. It should be mentioned that the following reports also include a

1https://volbrain.net/
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Figure 5.1: volBrain pipeline selection. The user has chosen DeepLesionBrain
which requires uploading T1 and FLAIR modalities and optionally providing sex
and age for further analysis
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Figure 5.2: volBrain web interface to visualize results. When the task is complete,
actions buttons from left to right allow the user to download the PDF report,
download a CSV version of the report, download an archive (.zip) with all the
results, and visualize the segmentation with the web interface
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volumetric analysis of whole brain structures obtained with AssmeblyNet [Coupé
et al., 2020].

5.4 Pipeline Report

In this section, we describe the report automatically generated by DeepLesionBrain
and Longitudinal DLB pipelines for MS analysis. The design of the report focuses
on readability and compactness, providing information and analysis relevant to
MS and organizing them by priority. Since the report can be used for multiple
purposes (i.e., the diagnosis and the monitoring of MS patients’ states, or specific
clinical research related to MS), the report starts with a summary of the analysis
and then details each section.

5.4.1 DeepLesionBrain for MS lesion Segmentation

A

B

C

D

Figure 5.3: MS lesions analysis of DeepLesionBrain report. A: Patient and MRI
information. B: MS lesion segmentation. C: Summary of MS lesions. D: Details
about each lesion.

DeepLesionBrain report is a single PDF document aggregating several MR im-
age biomarkers relevant to MS showing neuroinflammation and neurodegeneration
activities. The information is organized in an easy-to-read and efficient format.

First, the report includes a section on the analysis of lesions (see Figure 5.3).
This is helpful for dissemination in space (see Section 1.1.3.2) analysis and shows
the inflammatory activity. i) An analysis that includes patient information such
as sex and age, and MRI information such as the scale factor, image orientation,
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A

B

C

D

Figure 5.4: Tissues and Macro-structures of DeepLesionBrain report. A: Tissue
segmentation. B: Volumetric details of tissue segmentation. C: Macro-structures
segmentation. D: Volumetric details of Macro-structures segmentation.

E

A

B

C

D

Figure 5.5: Whole brain segmentation of DeepLesionBrain report. A: Whole brain
segmentation. B, C, D, and E represent respectively volumetric details of subcor-
tical, CSF, cerebellar vermis, and cortical structures.
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and automatic modality quality control is first presented (see Figure 5.3 A). ii)
Visual representation of MS lesion segmentation is available, where different lesions
according to their location are represented in different colors (see Figure 5.3 B).
iii) A summary of MS lesions showing the lesion and the volume of each lesion
type is also provided (see Figure 5.3 C). iv) An in-depth analysis of each lesion
that encompasses absolute and normalized volumes, and the position of the lesion
in the MNI space (see Figure 5.3 D).

Second, the report contains tissue and macrostructures analysis (see Figure
5.4). It helps monitor neurodegeneration and quantify WM, GM, and main brain
components atrophy using lifespan model of normative volumes. i) The analy-
sis includes a visual representation of tissue segmentation showing WM, GM (for
cortical, subcortical, and cerebellar), and CSF (see Figure 5.4 A). ii) Shows volu-
metric details of tissue segmentation indicating absolute and normalized volumes,
and normal volumes for each tissue type if age and sex are provided (red values
highlight abnormal tissue volumes) -see Figure 5.4 B. iii) Macro-structure visu-
alization provide the brain segmentation into the cerebrum, cerebellum, vermis,
and brainstem (see Figure 5.4 C). iv) This part of the analysis offers volumetric
details including absolute and normalized volumes of the total macro-structure,
the left or right part, and the asymmetry (see Figure 5.4 D). Normal values of
each macrostructure are displayed on the report if age and sex are provided (red
values highlight the abnormal macrostructure volumes).

Third, the report contains the whole brain segmentation in 133 structures and
regions (see Figure 5.5). This helps to get a detailed analysis highlighting the
atrophy level for each brain structure. i) a whole brain segmentation visualization
(see Figure 5.5 A). ii) B, C, D, and E represent respectively volumetric details
of subcortical, CSF, cerebellar vermis, and cortical structures. The volumetric
analysis includes absolute and normalized volumes of the total structure. If the
structure is present in both hemispheres, the analysis also contains left and right
part volumes, and the asymmetry. Normal values of each structure are displayed on
the report if age and sex are provided (red values highlight the abnormal volumes).

5.4.2 Longitudinal DLB for the Detection of New MS le-
sions

Longitudinal DLB pipeline is an extension of DeepLesionBrain that highlights
changes between two time-points such as new MS lesions, MS lesions that disap-
peared at follow-up, and longitudinal changes in tissues and structures.

Longitudinal DLB report is structured similarly to the DeepLesionBrain one
and should be reviewed jointly with the DeepLesionBrain reports of both time-
points for in-depth analysis. Thus, Longitudinal DLB pipeline generates auto-
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A
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D

Figure 5.6: MS lesional changes analysis of Longitudinal DLB report. A: Patient
and MRI time-points information. B: MS lesion segmentation, showing new, old,
and persistent lesions in different colors. C: Summary of MS lesions of the two
time-points and the changes. D: Details about each new lesion and old lesion.

A

B

C

D

Figure 5.7: Tissues and structures changes of Longitudinal DLB report. A: Two
time-points tissue segmentation. B: Volumetric details of the longitudinal changes
in tissue segmentation. C: Two time-points whole brain segmentation. D: Volu-
metric details of the longitudinal changes in structures.
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matically reports for both time-points in addition to the longitudinal reports that
shows the main changes.

First, the report includes lesional changes (see Figure 5.6). This helps to moni-
tor the inflammation activity by showing the evolution of the lesions and highlight-
ing the dissemination in time (see Section 1.1.3.2). i) Patient and MRI information
including scale and automatic quality control for each modality of both time-points
is presented (see 5.6 A). ii) MS lesion segmentation, showing new, old, and per-
sistent lesions in different colors (see 5.6 B). iii) Shows a summary of MS lesions
detected in each time-point and the changes indicating new and disappearing le-
sions for each lesion type (see 5.6 C). iv) The report lists each new lesion and old
one (the lesions that disappeared during the follow-up) and indicates their abso-
lute and normalized volumes and their spatial position in the MNI space (see 5.6
D).

Second, the report highlights longitudinal changes in tissue (WM, GM, and
CSF) and whole brain segmentation (see Figure 5.7). This is helpful in measuring
subtle intra-subject volume changes that may be caused by neurodegeneration.
i) The report shows the two time-points tissue segmentation and whole brain
segmentation (see 5.7 A and C). ii) The report shows volumetric details of the
longitudinal changes in tissues and whole brain segmentation. Absolute and nor-
malized volumes of each time-point are mentioned besides the time-point difference
to measure atrophy (see 5.7 B and D).

5.4.3 DeepLesionBrain update for EDSS estimation

A

B

C

Figure 5.8: Enrichment of DeepLesionBrain by including estimated EDSS in A,
disconnectome of WM tracts in B, and structure volume deviation from normal
distribution in C.

Our DeepLesionBrain report will be enriched in its future releases with addi-
tional information related to the estimated EDSS from MR images (See Figure
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5.8). It will also include the disconnectome of WM tracts and structure volume
deviation from normal distribution both described in Section 4.

5.5 Conclusion
In the final chapter of this thesis, we focused on how each contribution detailed
in the previous chapters will serve the MS imaging community by offering MRI
biomarker extraction and MS analysis pipelines. First, we motivated our choice
to use containerization to keep our pipelines self-contained and independent of
hardware and operating system constraints. Then, we explained why hosting our
pipeline in web-based platforms such as volBrain would be beneficial for our users.
Moreover, we showcased how our users can easily and freely execute our pipelines
and obtain their results. Finally, we detailed the reports generated by our pipelines
that offer compact, organized, and easy-to-read information.
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Chapter 6

General Conclusion and
Perspectives

6.1 Conclusion

In this thesis, we presented original DL methods to automate neuroimaging tasks
related to MS.

In Chapter 2, we presented DeepLesionBrain, a DL framework for MS lesion
segmentation designed for domain generalization. DeepLesionBrain uses spatially
distributed 3D CNNs with large overlapping receptive fields, to produce consensus-
based segmentation robust to domain shift. Our method is trained using hierar-
chical specialization learning to efficiently incorporate both generic and specialized
features. Moreover, the proposed image quality data augmentation increases train-
ing data variability in a realistic way. Our validation showed the generalizability
of our method, its robustness to domain shift, and the consistency of segmentation
regardless of the training data.

In Chapter 3, we proposed Longitudinal DLB, a deep learning method for new
MS lesion detection and segmentation from two time-points. The pipeline encom-
passes transfer learning from single time-point MS lesion segmentation, pretrain-
ing with time-point synthesis, and data augmentation adapted for MR images.
This pipeline was very effective and obtained the best score in the MICCAI 2021
MSSEG2-challenge for the detection of new lesions.

In Chapter 4, we proposed a novel method for EDSS estimation from MRI data
and clinico-demographic information using DL. The proposed architecture effec-
tively combines neurodegenerative and neuroinflammatory image-based biomark-
ers and tabular information. The estimation model is trained with novel multi-
phase learning and data augmentation to mitigate the data imbalance effect. Dur-
ing validation, our deep-learning method outperformed conventional state-of-the-
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art methods. Furthermore, DL interpretability visualizations showed consistency
with works associating MS functional impairments to brain structures.

In Chapter 5, we focused on how each contribution detailed in the previous
chapters can benefit the MS imaging community by offering MRI biomarker ex-
traction and MS analysis pipelines. We propose containerized pipelines freely
available for execution via volBrain, an open-access and free web-based platform.
Doing so allows our users to run the pipelines without caring about installation
and hardware resources. The intuitive interface of volBrain helps to facilitate ex-
ecution and retrieval of results. At last, the easy-to-read generated report offers a
compact and organized representation of MRI biomarkers and MS analysis.

During my Ph.D. and across these chapters we raised several interesting points
in both methodological computer-vision aspects and clinical neuroimaging stand-
points.

Computer vision. Deep learning is able to automate neuroimaging tasks
with high efficiency. Nevertheless, this tool does have a number of limitations. DL
models are complex and resource intensive, thus they should be used only when
simpler alternatives are significantly less efficient or importantly slower. Deep
Learning methods do not always generalize well and may perform worse on input
data domains that have not been seen during training. For this reason, it is of great
importance to design an adequate validation procedure, preferably, with out-of-
domain cross-dataset testing. Deep Learning methods are associated with the need
for huge amounts of data to be trained, but we found that data quality and data
balance are often more critical than data quantity. Moreover, as we have shown
in [6] (see Appendix A), semi-supervised learning can be used to limit problems
related to data scarcity.

Neuroimaging. Both neurodegeneration and neuroinflammation are strong
components of MS. For this reason, acquiring multimodal MRI is necessary, with
ideally at least T1-w and FLAIR. Unfortunately, for cost and time constraints,
sometimes only FLAIR is acquired although T1 helps to obtain better lesion seg-
mentation and is required to estimate atrophy of brain structures. As shown in
Chapter 4, neurodegeneration is useful to track patient’s disability evolution. Us-
ing modality synthesis [Manjón et al., 2021] could be useful when only FLAIR is
provided. Moreover, inflammation activity leads to systematic inaccuracies in GM
structures segmentation, particularly for the subcortical structures as shown in
[Dadar et al., 2021]. For this reason, we found during our experiments that whole
brain segmentation should always be preceded by inpainting using the MS lesion
mask to avoid segmentation inaccuracies.
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6.2 Perspectives

Future works can be regrouped into two categories. The first represents works that
are directly consistent with this thesis outline. They focus on offering information
automatically extracted from MRI, MS-relevant analysis, and prediction of the
patient’s state. The second category of future works is linked but not exclusive to
MS. It focuses on proposing methodological improvements to enhance the use of
DL in automating neuroimaging tasks.

6.2.1 Extensions related to this Ph.D.

First, we would like to extend our proposed EDSS estimation model to predict
future EDSS scores based on baseline information such as current EDSS, clinico-
demographic data, and multi-modal MRI. Predicting future EDSS will help clin-
icians administer better-suited treatments and allow patients to take appropriate
dispositions.

Second, similarly to the aforementioned point, we want to explore the possi-
bility of estimating and predicting MS-related impairments using MRI data. For
example, we want to separately quantify the disability or dysfunction for each of
the visual, brainstem, pyramidal, cerebellar, sensory, bowel/bladder, cerebral, and
ambulation functions.

Third, we want to investigate strategies to predict patient response to Disease
Modifying Treatment (DMT) based on multimodal MRI. So far, there is still a
high variance in how patients respond to the same DMT. Therefore, predictive
models for the DMT response would allow efficient personalized MS therapy.

Moreover, we want to investigate the use of functional MRI (fMRI) both in the
estimation and prediction of EDSS and MS-related impairments. Although fMRI
lacks spatial resolution, the analysis of fMRI-biomarkers jointly with structural
and clinico-demographic data could lead to better understanding and prognostic
of MS.

Furthermore, we want to investigate the use of Diffusion Tensor Imaging (DTI)
to extract further information related to WM tracts for MS. In fact, DTI is an MRI
modality that allows the observation of water diffusion and extracting directional
information that can be used to follow WM tracts. Thus, DTI could improve our
EDSS estimation model, which currently uses an estimation of the WM tracts
based on an average atlas registered using T1 sequence.

Finally, we want to extend DLB and Longitudinal DLB to the spinal cord
and other pathologies of WMH such as vascular dementia, ischemia, or micro-
hemorrhages.
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6.2.2 General perspectives

In terms of general perspectives, we would like first to work on loss function-
related problems. Indeed, we would like to design a specific loss function that
accounts not only for voxel-wise similarity in terms of volume but also for struc-
tural features that are relevant to the task, such as object count and topology. For
instance, in the case of MS, lesion count is an important feature when assessing
the quality of automatic segmentation. Thus, incorporating these concepts in the
loss function will most likely improve the optimization of a learning-based predic-
tive model. However, designing such a loss function is not straightforward, since
most optimization algorithms require formulating the loss function with differen-
tiable operations. Hence, the challenge is to express structural features with these
operations or find an approximation to do so.

Second, we want to investigate further how to improve the quality of data
and design efficient data-centric guidelines for neuroimaging. Indeed, there is a
growing debate about Model-centric vs. Data-centric Artificial Intelligence (AI).
Model-centric AI focuses on using the right set of learning and optimization al-
gorithms and the design of the neural network architecture. This approach has
resulted in great advancement these recent years with the emergence of Attention
Mechanisms, Transformers, Generative models, and Graph Neural Networks. On
the other hand, data-centric AI focus on providing the right kind of data which
leads to building high-quality, high-performance, and generalizable predictive mod-
els. Current state-of-the-art models such as U-net for segmentation and ResNet
for classification have shown their stability and reproducibility for neuroimaging
task automation. We started investigating this aspect in [6] using semi-supervised
learning, data augmentation [2, 1], and dealing with data imbalance [4]. However,
there is still a lot of work to be done on this topic. We believe that future works
should focus on improving preprocessing and data cleaning, enforcing consistency
on expert annotation, and designing better datasets for accurate data representa-
tion.
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Appendix A

POPCORN: Progressive
Pseudo-labeling with Consistency
Regularization and Neighboring

This appendix corresponds to the following publication [6]:

Kamraoui, Reda Abdellah, et al. "POPCORN: Progressive Pseudo-labeling
with Consistency Regularization and Neighboring." International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer, Cham,
2021.

A.1 Abstract

Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity
of annotated images and the lack of method generalization to unseen domains,
two usual problems in medical segmentation tasks. In this work, we propose
POPCORN, a novel method combining consistency regularization and pseudo-
labeling designed for image segmentation. The proposed framework uses high-level
regularization to constrain our segmentation model to use similar latent features
for images with similar segmentations. POPCORN estimates a proximity graph
to select data from easiest ones to more difficult ones, in order to ensure accurate
pseudo-labeling and to limit confirmation bias. Applied to multiple sclerosis lesion
segmentation, our method demonstrates competitive results compared to other
state-of-the-art SSL strategies.
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A.2 Introduction

Semi-Supervised Learning (SSL) is a promising field which aims to exploit unla-
beled data in order to enhance the performance achieved using only labeled data.
SSL is explored to mitigate both problems of the limited availability of labeled
data and the lack of model generalization to unseen domains. Among SSL works
proposed for medical image segmentation tasks, we can distinguish three main
categories:

Consistency Regularization (CR) constrains the model to give consistent
predictions for the same unlabeled input under different perturbations. [Bortsova
et al., 2019] constrained the model to produce similar segmentation when applying
different elastic transformations to the same unlabeled images. Similarly, [Per-
one and Cohen-Adad, 2018] used a mean teacher strategy where the consistency
loss constrained teacher and student predictions to be consistent. [Orbes-Arteaga
et al., 2019] designed an adversarial loss to minimize the amount of information
for a specific domain and to maximize segmentation consistency. CR offers in-
teresting consistency properties on the learned features but it is usually trained
under unrealistic scenarios (e.g., using the same input data under different per-
turbations). Such oversimplification does not guarantee a good generalization of
the learned features. Besides, some works showed that consistency regularization
using perturbation on input data is not adapted for segmentation [French et al.,
2020, Ouali et al., 2020].

Pseudo-Labeling (PL) strategies automatically assign labels to unlabeled
data in order to use them during training in combination with labeled data.
Pseudo-labels are generally assigned by a model trained on labeled data. Un-
certainty can be used to measure the confidence of the predictions. For example,
[Sedai et al., 2019] employed prediction uncertainty for estimating segmentation
confidence on soft labels. [Cao et al., 2020] considered an uncertainty aware tem-
poral ensembling strategy. [Xia et al., 2020] used uncertainty-weighted mechanism
for the pseudo-label fusion of multiple networks predictions. PL is a simple way
to use unlabeled data. PL is nevertheless prone to confirmation bias (i.e., error
propagation) [Arazo et al., 2020]. So far, this is the main limitation of PL.

Auxiliary Tasks (AT) are secondary objectives combined with the main seg-
mentation task which do not require ground truth annotations. Using unlabeled
data, in such a way, implicitly extracts relevant features for the primary segmen-
tation task. [Li et al., 2020] proposed the prediction of surface distance maps to
capture more effectively shape-aware features. [Kervadec et al., 2019] predicted the
size of the target segmentation as an intermediate task. Alternatively, [Chen et al.,
2019] combined supervised segmentation and unsupervised input reconstruction.
Finally, [Luo et al., 2020] proposed to predict geometry-aware level set repre-
sentation of the transformed ground truth annotations. AT demonstrated good

116 R.A. KAMRAOUI



A. POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring

performance, but the choice of the AT highly depends on the addressed problem
which limits the method generalization for other segmentation tasks.

In this work, our main contribution is threefold:

• We propose a novel framework that combines consistency regularization and
pseudo-labeling for segmentation.

• We propose a consistency regularization strategy that ensures proximity in
latent space of images with similar segmentations. This allows us to produce
meaningful feature representation and accurate predictions.

• We propose a new pseudo-labeling strategy which selects progressively un-
labeled samples according to their similarity with training data, in order to
limit confirmation bias.

A.3 Method

A.3.1 Method overview

The proposed strategy is a PrOgressive Pseudo-labeling with COnsistency Regu-
larization and Neighboring (POPCORN) for semi-supervised learning in segmen-
tation (see Fig.A.1). First, the training is performed with a new CR ensuring
that: i) augmented versions of the same image have identical feature maps, and
ii) images with similar segmentations have similar feature maps. Second, PL of
the unlabeled data is performed gradually. At each selection step, the proximity
graph is used to select new unlabeled samples. The pseudo-labels of the chosen
data-points are estimated with the current segmentation model and incorporated
in the training set.

The main intuition is that our segmentation model is able to produce more
accurate pseudo-labels for images similar to our training set. Since our CR ensures
close features for similar data, features extracted from the model are used to select
new samples.

A.3.2 Bottleneck consistency regularization

In POPCORN, the model architecture is based on 3D U-Net composed of an en-
coder and a decoder, linked by a bottleneck and skip connections at different scales
(see Fig.A.1). For an image X, F (X) represents the prediction of the segmentation
network, and h(X) represents the latent features of X extracted at the bottleneck
level. Our method is based on a dual/hybrid loss ensuring segmentation quality
and consistency relevance.
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Figure A.1: The training process of POPCORN

A.3.2.1 Segmentation loss:

As traditionally done in supervised learning, we use the Dice similarity loss as the
first element of our global loss. This loss ensures the similarity of the produced
output with the expected one.

Lseg(F (X), y) = 1−Dice(F (X), y), (A.1)

where y is either the expert segmentation of X when available, or the pseudo-label
otherwise.

A.3.2.2 Consistency regularization loss:

Alongside Lseg, a regularization loss on the bottleneck is used:

Lreg[ (Xi, yi), (Xj, yj) ] = Distance(h(Xi), h(Xj) )× Similarity(yi, yj), (A.2)

where Xi, Xj are image patches randomly selected as either different augmented
versions of the same patch, or patches from different images extracted from the
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same region and with the same orientation. Moreover, let us define:

Similarity(yi, yj) = e−mse(yi,yj), (A.3)

Distance(hi, hj) =
2 ||hi − hj||2

||hi||2 + ||hj||2
, (A.4)

where mse is the mean squared error, and || . || is the euclidean distance.
The total loss is a combination of (1) and (2) with a weighting coefficient α:

Ltotal[(Xi, yi), (Xj, yj)] = Lseg(F (Xi), yi) + Lseg(F (Xj), yj)

+ α.Lreg[(Xi, yi), (Xj, yj)] .
(A.5)

A.3.3 Pseudo-labeling data selection

Curriculum learning [Bengio et al., 2009] showed that presenting data with an
increasing difficulty can lead to a better learning process. We consider unlabeled
data close to the training data as easy examples to be incorporated first in the
training process, whereas distant samples are considered more challenging. Indeed,
the latent distance between unlabeled and training data can be viewed as a measure
of similarity. Thus, pseudo-labeling using the trained model is more accurate for
unlabeled samples which are similar to training data.

Our data selection is performed in three steps (see Fig.A.1). Step1: the train-
ing set is limited to labeled data. Once the segmentation model is trained until
convergence, it is used to extract latent space representation for each unlabeled
datapoint. Step2: the proximity graph is used to select K unlabeled data that
guarantee a smooth learning (as described in A.3.4). For each selected unlabeled
datapoint, a pseudo-label (segmentation) is assigned by the trained model. Step3:
the model is trained for N epochs with the new training set containing both la-
beled and pseudo-labeled data. Step two and three are repeated every N epochs
by picking each time K new data points, their respective pseudo-labels are being
computed with the newly updated segmentation model. The process is maintained
until all unlabeled data are integrated into the training set.

A.3.4 Proximity graph

The proximity graph represents the euclidean distance between the training and
the unlabeled samples latent representations:

Pi∈U,j∈T = ||h(Xi)− h(Xj)||2 (A.6)

where T and U represent respectively the training set (labeled and pseudo-labeled),
and unlabeled data. For data selection, we propose the following criteria to select
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K elements of U close to T . For each datapoint of U , the proximity with T is
defined by the sum of the p closest elements of T to the datapoint:

[i⋆1, i
⋆
2..., i

⋆
K ] = ArgminK(

∑
j∈Argminp(Pi)

Pi,j), (A.7)

where [i⋆1, i
⋆
2..., i

⋆
K ] represent the K indices of the data selected. Argmink(V ) re-

turns the indices of the k smallest values of the vector V .

A.4 Experiments

A.4.1 Dataset

Labeled Data: For labeled data, the ISBI training dataset [Carass et al.,
2017] is used. It consists of 21 longitudinal multimodal images (including FLAIR
modality) from only five different subjects with Multiple Sclerosis (MS). The im-
ages have been acquired on the same MRI scanner. MS lesions were delineated by
two expert raters. This dataset has limited image quality diversity (all the images
were acquired with the same protocol on a single site) and inter-subject variability
(only 5 subjects).

Unlabeled Data: The unlabeled dataset consists of 2901 FLAIR MRI (large
inter-subject variability) with white matter hyperintensities. It does not only
contain MS, which increases pathology diversity. MRI have been collected across
multiple acquisition sites based on different manufacturers, 1.5T and 3T scanners,
2D and 3D sequences. This dataset covers a large diversity in terms of image
quality, pathology and inter-subject variability.

Testing Data: For assessing our results, the dataset described in [Coupé et al.,
2018] is used. It contains 3D multimodal MRI from 43 subjects diagnosed with
MS. The images have been acquired with three different scanners and different ac-
quisition protocols. Consequently this dataset proposes a larger diversity than the
labeled dataset. Lesion masks have been obtained by expert manual delineation.

All images have been pre-processed using the same pipeline [Coupé et al., 2018].

A.4.2 Reference Methods

POPCORN is compared to state-of-the-art strategies [Chen et al., 2019], [Sedai
et al., 2019] and [Bortsova et al., 2019]. The following strategies have been imple-
mented based on their published works and adapted to MS lesion segmentation.
First, the multi-task attention-based SSL [Chen et al., 2019] is an AT strategy.
It combines supervised segmentation and unsupervised reconstruction objectives.
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The reconstruction task uses an attention mechanism to predict input image re-
gions of different classes. Second, the uncertainty guided pseudo-labeling [Sedai
et al., 2019] is a PL strategy. The teacher model, trained only on labeled data,
generates soft segmentation (pseudo-labels) and uncertainty maps for all the unla-
beled data at once. The uncertainty is used for estimating segmentation confidence
of the generated segmentation when training the student model. Finally, the semi-
supervised transformation consistency [Bortsova et al., 2019] is based on CR. In
addition to the primary loss, a consistency loss ensures that the prediction of the
same images under transformations are consistent.

A.4.3 Implementation details

The method hyperparameters were chosen empirically according to the size of
labeled and unlabeled datasets. First, 200 from the M = 2901 unlabeled images
were chosen after each training cycle that ran for 2 epochs (K = 200, N = 2) to
limit computational burden. Second, the number of neighbors p = 5 was selected
considering the initial training data of 21 labeled images. We suggest that this
value is a good compromise in order to consider relevant near neighbors while
avoiding far neighbors which mislead data selection.

In addition, we used the architecture proposed by [2] with a patch size of [64×
64 × 64] and a threshold of 0.5 to obtain the binary segmentation. Moreover,
image quality data augmentation was used to introduce realistic perturbations,
where blur, edge enhancement, and other augmentations simulated image quality
heterogeneity [2]. Furthermore, the coefficients for the regularization part of the
loss have been set to 0.2 (α = 0.2). Finally, the experiments have been performed
with Keras 2.2.4 [Chollet et al., 2015] and Tensorflow 1.12.0 [Abadi et al., 2016] on
Python 3.6. The model was optimized with Adam [Kingma and Ba, 2014] using a
learning rate of 0.0001 and a momentum of 0.9.

A.4.4 Statistical Analysis

To assert the advantage of a technique obtaining the highest average score, we
conducted a Wilcoxon test over the lists of Dice scores measured at image level.
The significance of the test is established for a p-value below 0.05.

Deep Learning in Neuroimaging for Multiple Sclerosis 121



A.5. Results

Table A.1: The table represents an ablation study of the key components of POP-
CORN. The table details the impact of each contribution: the consistency regular-
ization (CR), the proximity graph, and using labeled/pseudo-labeled (lab/pseudo)
data. "Ours with half the data" indicates the performance of our method when
half of the selection steps are passed (M = 1400). Best result is displayed in bold,
and the second best result is underlined.

Strategy Trained on CR on Dice Precision Sensitivity
Our method Lab + Pseudo Lab + Pseudo 73,09% 73,33% 74,29%

Ours with half the data Lab + Pseudo Lab + Pseudo 70,59% 68,26% 75,91%
Ours without CR Lab + Pseudo None 69,13% 70,49% 70,58%

Ours without proximity graph Lab + Pseudo Lab + Pseudo 68,06% 65,14% 74,40%
Baseline with CR Lab Lab 68,08% 77,77% 61,94%

Baseline Lab None 64,41% 61,80% 69,70%

A.5 Results

A.5.1 Ablation study

To evaluate our contributions, we compare POPCORN with other versions of our
strategy when isolating key elements. As shown in Table A.1, our full method
achieves the highest Dice and the second best result in terms of precision. First,
when comparing POPCORN without consistency regularization (corresponds to
α = 0 in (A.5)) and our full method, we notice a decrease in both precision and
sensitivity. This suggests that without CR, the latent space is less meaningful for
our selection process of unlabeled data. Second, to underline the impact of the
proximity graph, we consider another progressive PL strategy where pseudo labels
are randomly selected. Although the strategy without proximity graph is slightly
more sensitive, we observe an important drop in both Dice and precision compared
to our full method. This demonstrates that the proposed progressive selection
based on image proximity in latent space is more robust to confirmation bias than
random selection. Next, when running only half the selection steps (M = 1400),
our method obtained the second best Dice score. This shows that POPCORN
with nearly half unlabeled data can achieve better performance than the other
variations and methods with full dataset (see also A.5.2). Finally, when combining
the proposed CR (on labeled data only) with the baseline (supervised learning),
the precision is considerably improved. This shows the importance of our CR
on segmentation accuracy, beyond data selection. Overall, the statistical analysis
shows that our full method has a significantly higher Dice than the baseline, the
version without CR, baseline with CR, and Ours without proximity graph.
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A. POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring

A.5.2 Comparison with state-of-the-art approaches

Table A.2 shows the results of POPCORN compared to the reference methods
presented in section A.4.2. First, all the SSL strategies obtain a significantly bet-
ter Dice scores compared to the baseline. Second, POPCORN obtains the highest
Dice followed by Uncertainty guided Pseudo-labeling [Sedai et al., 2019]. Next,
the multi-task attention-based SSL [Chen et al., 2019] and the semi-supervised
transformation consistency [Bortsova et al., 2019] respectively obtain the highest
precision and sensitivity rates. Finally, POPCORN obtains the best balance be-
tween precision and sensitivity, as opposed to the other strategies which are more
prone to FP [Bortsova et al., 2019, Sedai et al., 2019] and FN [Chen et al., 2019].
Overall, POPCORN has a significantly higher Dice compared to the other methods
according to our Wilcoxon test.

Table A.2: The table represents results of POPCORN (our method) compared to
other state-of-the-art strategies on the testing dataset (see A.5.2 for complemen-
tary details).

Strategy Dice Precision Sensitivity
POPCORN 73,09% 73,33% 74,29%

Multi-task Attention-based SSL [Chen et al., 2019] 67,23% 75,72% 61,99%
Uncertainty guided Pseudo-labeling [Sedai et al., 2019] 68,31% 67,93% 71,95%

Semi-supervised transformation consistency [Bortsova et al., 2019] 66,75% 61,52% 78,79%
Baseline (labeled data only) 64,41% 61,80% 69,70%

Fig.A.2 shows image segmentations produced by POPCORN and the compared
strategies. A, B, and C are images from the testing dataset, specifically chosen
to showcase acquisition and lesion diversity. For A, we observe that POPCORN
segmentation is the most accurate. On the contrary, [Chen et al., 2019, Sedai et al.,
2019] are the least sensitive with high volumes of false negative. Similarly, the
segmentations obtained with the baseline and [Bortsova et al., 2019] do not cover all
lesions. On image B, the segmentation provided by [Bortsova et al., 2019] contains
several false positive lesions, compared to the other strategies. Both the baseline
and [Sedai et al., 2019] only include one or two false detections. POPCORN
proposes an accurate segmentation. Last, the method [Chen et al., 2019] misses a
small lesion. For C, we notice that [Bortsova et al., 2019, Sedai et al., 2019] and
the baseline detect many false positive lesions. POPCORN and [Chen et al., 2019]
produce fewer false detection on this challenging sample. To conclude, our strategy
segments accurately most lesions while minimizing false detection. Compared to
the other strategies, POPCORN maintains the best balance between the sensitivity
and the precision of lesion segmentation.
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A.6. Conclusion

T1

FLAIR POPCORN
TP
FP
FN

Baseline [19]  [7][4]

A

B

C

Figure A.2: Comparison of POPCORN, Uncertainty guided Pseudo-labeling [Sedai
et al., 2019], multi-task attention-based SSL [Chen et al., 2019], and the semi-
supervised transformation consistency [Bortsova et al., 2019] lesion segmentations.
Orange arrows indicate key segmentation differences.

A.6 Conclusion
We propose a novel strategy for SSL segmentation. Our method combines consis-
tency regularization and pseudo-labeling. POPCORN progressively selects unla-
beled samples with an increasing difficulty using a proximity graph. Overall, we
have shown the improvement of using POPCORN compared to other state-of-the-
art strategies, as well as the impact of each of our contributions.
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Acronyms

CIS Clinically Isolated Syndrome. 20

CNN Convolutional Neural Networks. 31

CNS Central Nervous System. 9

CORR Pearson’s correlation coefficien. 44

DA Data Augmentation. 69

DIR Double Inversion Recovery. 16

DIS Dissemination In Space. 21

DIT Dissemination In Time. 21

DLB DeepLesionBrain. 35

DMT Disease Modifying Treatment. 84

DTI Diffusion Tensor Imaging. 16

FLAIR Fluid-Attenuated Inversion Recovery. 16

GN Group Normalization. 39

GPU Graphical Processor Unit. 26

HSL Hierarchical Specialization Learning. 35

IQDA Image Quality Data Augmentation. 35

LesF1 Lesion Detection F1. 73

LFPR Lesion False Positive Rate. 44
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Acronyms

LTPR Lesion True Positive Rate. 44

ML Machine Learning. 24

MNI space Montreal Neurological Institute template space. 39

MRI Magnetic Resonance Imaging. 9

MS Multiple Sclerosis. 9

MTR Magnetization Transfer Ratio. 16

OFSEP "Observatoire français de la sclérose en Plaques". 85

PD Proton Density-weighted. 16

PPMS Primary Progressive MS. 20

PPV Positive Predictive Value. 44

ReLu Rectified Linear Units. 39

RRMS Relapsing-Remitting MS. 20

SD Standard Deviation. 69

SPMS Secondary Progressive MS. 20

T1 T1-weighted. 16

T2 T2-weighted. 16

TPR True Positive Rate. 44

WMH White Matter Hyperintensities. 16
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