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Abstract

Virtual reality has been recognized as a potent tool for creating more
natural and intuitive human-computer interfaces and has been found
to be beneficial in so many applications. However, the inability to
interact in a virtual environment through touch compromises its re-
alism and usefulness. Haptic interfaces with intermittent contacts
allow users to reach out and touch the virtual objects physically to
simulate contact between the user and the environment with use of
tactile sensation to increase the realism of interaction. They allow a
wide range of physical interactions throughout the user’s workspace,
with a physical input that resembles reality. These devices are faced
with challenges such as cost, a small workspace, limited speed and
user safety. In this thesis, we developed a haptic interface using a
cooperative robot to address these challenges. Several motion strate-
gies, a trajectory generation scheme and user interaction techniques to
ensure safety were developed and evaluated. Two case studies were
used as application areas. The first is an industrial application for
analysis of the interior material of the car during the early stages
of development while the second one is a haptic interface for upper
limb rehabilitation training. User studies conducted to evaluate the
efficacy of the motion strategies showed significant improvement in
device speed, response, and user safety.
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Chapter 1

Introduction

1.1 Virtual reality

For decades, scientific research has been ongoing in the field of Virtual Real-
ity (VR), recognizing it as a potent tool for creating more natural and intuitive
human-computer interfaces (HCI). The phrase ”Virtual Reality” was invented by
Jaron Larnier in 1994 Ken, Pimentel and Kevin (1994) to describe a real-time,
computer-based, interactive, multi-sensory simulation environment that enables
users to engage in activities inside environments that resemble real-world artifacts
and events to varying degrees Saposnik et al. (2016). Other closely related terms
include ”Artificial Reality,” and, more recently, ”Virtual World” have been used
to describe a Virtual environment (VE) Krueger et al. (1985). Users in a typical
VR environment have several feedback senses such as visual, auditory, and tac-
tile rather than the only vision information available in most computer graphics
applications and can interact with virtual objects naturally and intuitively.

1.1.1 Fundamentals of virtual reality

An essential concept in a VR system is immersion, which refers to the user’s per-
ception of being fully immersed in an artificial, 3D world entirely generated by a
computer. Immersion is a significant advancement over traditional 3D computer
graphics animation and CAD modeling packages, mainly natural and intuitive
user interaction. Because the line between immersion and non-immersion is be-
coming increasingly blurred, the term ”Virtual Reality” is now also applied to
applications that are not fully immersive. Due to the existence of the various
terms used in different applications, VR systems currently take many forms, in-
cluding cyberspace, synthetic environment, artificial reality, virtual world, and
virtual environment. The standard features of all such VR-related systems in-
clude a natural or intuitive interface for user interaction, real-time 3D graphics
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1.1 Virtual reality

for synthetic presentation, and a sense of immersion. Based on the interactive
means used and the number of sensory channels engaged in simulation, VR-
based systems are divided into two major types. The first type is immersive
VR(IVR) which completely replaces the user’s real-world environment with a
simulated one Kim et al. (2017). Thus users get the sense of being transported
into three-dimensional, interactive worlds from where they can participate in
various activities in imaginary environments through 360o immersion in an alter-
nate reality. IVR is based on immersive display technologies like head-mounted
displays (HMDs) or stereo projections and video captures systems such as the
Immersive Rehabilitation Exercise (IREX) system and the Cave Automatic Vir-
tual Environment (CAVE) Chen et al. (2019). However, HMDs and head position
trackers are challenging to use for extended periods of time in an IVR system,
while the CAVE and IREX are quite expensive. The other type of VR system
is non-immersive (NIVR) which has emerged from 3D CAD animation technolo-
gies. NIVR systems are typically less expensive than IVR systems, users view
and interact with virtual objects in a 3D environment displayed on a desktop
or workstation using technologies such as stereoscopic displays. The individual
can see their avatars reflected on the screen Mirelman et al. (2016); Ögün et al.
(2019). However, NIVR systems lack the experience of immersive features such
as scene changes with head movements, which could play a role in the experience
of presence. People can use devices such as 3D trackers, electrical hand gloves,
and haptic force feedback devices to interact with the 3D world. Additional fea-
tures such as voice input recognition and sound feedback output can be used to
improve the usability of a VR system without the need for expensive additional
hardware.

1.1.2 VR applications

Recent advances in VR have led to a proliferation of low-cost consumer VR devices
available on the market affordable for everyone, and its applications have become
practically limitless. Today, VR technologies are widely used in healthcare Laver
et al. (2017); Mugisha et al. (2022b), product and process design Banerjee & Zetu
(2001), in flight simulators and human factors Oberhauser & Dreyer (2017) among
others. It is expected that VR will reshape the interaction interfaces between
the user and computer technology by providing new approaches for information
communication, process visualization, and creative expression of ideas. However,
I shall limit the scope of this thesis to only industrial and healthcare applications.
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1.1 Virtual reality

1.1.2.1 Virtual reality in industrial applications

As advanced input and output hardware devices are used in VR, it is often re-
garded as a natural extension of 3D computer graphics. This technology has
recently matured to the point where people can use it in industrial applications.
Integrating this new technology with software systems for industry, engineer-
ing, design, and manufacturing will boost computer-aided engineering (CAE).
At the moment, there is evidence of increasing global market competition. As
a result, the industry is under increased pressure to reduce product life cycle
costs, maintain product quality, improve product performance, and reduce prod-
uct design cost and fabrication time Banerjee & Zetu (2001). By speeding up the
product development process, improving product quality, and reducing product
design errors, virtual product design and development can be considered one of
the enabling technologies for the rapid development of information technology
infrastructure in this area.

1.1.2.2 Virtual reality in healthcare applications

Virtual reality technologies provide numerous benefits to the medical community.
These include more realistic certification procedures (for example, objective mea-
sures of surgical skill) and more exciting treatments such as the case of virtual
rehabilitation of patients with neurological disorders such as stroke. Stroke rep-
resents a severe problem for public health with a significant prevalence Feigin
(2017). Recovery is always incomplete, and most survivors are left with motor,
sensory and cognitive impairments with a consequent increase in the burden of
health care expenses during adulthood Levine et al. (2013). The economic cost of
related neurological disorders is increasing (Olesen et al., 2012) and this burden
has raised the need to pursue new cost-effective rehabilitation strategies both
independent of and complementary to traditional methods such as physiother-
apy, occupational therapy, and speech therapy (Sihvonen et al., 2017). Owing to
the rising number of neurologically impaired survivors, patients with neurologi-
cal conditions often require rehabilitation in the early stages, and some require
rehabilitation regularly throughout their lives. Virtual reality is a promising tool
for rehabilitation to help patients regain their ability to live independently. VR
therapies aim to create more fun, practical and task-specific rehabilitation pro-
grams while giving patients feedback on their performance, meaningful goals, and
a personalized experience to support motor learning Perrochon et al. (2019). In
addition, by gamifying the training through VR applications, the rehabilitation
process is made fun and enjoyable. The experience of immersive features (e.g
scene changes with head movements, sensations) plays a significant role in the
experience of presence and, therefore, in the therapeutic benefits of that experi-
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1.2 Haptic systems

ence (Colloca et al., 2020). However, IVR has not been used extensively as NIVR
in the rehabilitation of neurological disorders so there are a few studies have been
conducted to show the benefits of immersive VR. This thesis seeks to build the
knowledge gap by evaluating the efficacy of IVR compared to NIVR and CT
in the rehabilitation of stroke Laver et al. (2017) using a systematic review and
meta-analysis of randomized controlled trials Mugisha et al. (2022b).

1.2 Haptic systems

A milestone in VR history was the head-mounted display (HMD) by Ivan Suther-
land in 1968 Sutherland (1965). His stereoscopic display system made it possible
to perceive three-dimensional environments visually. Until recently, VR was de-
fined as ”technology that allows the user to perceive and experience sensory con-
tact with a non-physical world” Easton et al. (1997). The user interacts with the
contents of a VE but cannot touch any element of the environment itself. Consid-
ering how much of life revolves around physical interaction with the environment,
which is only possible through touch, the significance of touch becomes clear. It
is frequently used to supplement what we see and hear and it provides informa-
tion about object properties that the other senses do not have access to (e.g.,
temperature). As a result, it is fair to say that the inability to interact with a VE
through touch compromises its realism and usefulness Durlach & Mavor (1995).
Biggs et al. point out that incorporating the sense of touch into VR is critical for
simulating tasks where touch is essential, such as medical applications Biggs &
Srinivasan (2002). There is evidence to suggest that VR with touch is perceived
as more realistic than VR without touch Hodges et al. (2001). Therefore, incor-
porating touch into VR translates to more natural and realistic interactions with
VEs, improves the accuracy and time required to perform simple manual tasks,
such as manipulating virtual objects Biggs & Srinivasan (2002); Durlach & Mavor
(1995). For example, consider the task of reaching, picking up, and placing an
object such as a ball from one location to another in the absence of information
from the sense of touch. For a user to complete the task with only visual and
auditory information, he would be unable to feel the contact between their hand
and the object, the weight of the object, or any contact the object makes with the
surface to which it is placed. The lack of this information would have a negative
impact on how easily the individual could complete the task. To enable task
completion in the thesis, I added the sensation of touch in VEs by designing an
exergame to enable users to reach and touch balls in a Virtual environment for
rehabilitation training. The term haptics is derived from the Greek word hap-
testhai, which means ”to touch,” linked to the science of applying touch (tactile)
sensation and control to computer application interaction. Photorealistic 3D en-
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vironments can be modeled and rendered almost in real-time through a process
called haptic rendering to reproduce virtual, dynamic interactions mechanically,
thus reducing the gap between the virtual world and the real world. Haptic ren-
dering is done by computing and generating forces in response to user interactions
with virtual objects so that an individual using VR cannot just see objects but
also touch and feel them Salisbury et al. (1995). Thus, haptic rendering can be
considered a gateway between the virtual and physical worlds. However, realistic
haptic rendering is still an open issue in the domain of gaming, robot control LIU
et al. (2019), training/rehabilitation Bortone et al. (2018), and human-machine
interaction Sanfilippo & Pacchierotti (2020); Sanfilippo et al. (2015). Since the
potential of the sense of touch and the convincing aspects of haptic sensation
through haptic feedback can improve interaction in a VE, researching novel in-
terfaces is paramount to increase presence. By combining a 3-dimensional visual
representation of the task and a hopefully realistic physical interpretation of the
virtual world via a haptic force feedback device, haptic devices can allow a user
to be immersed in a virtual scene Hannaford et al. (1991).

Haptic systems should allow for a wide range of physical interactions and ma-
nipulations throughout the user’s workspace, with a physical input that resembles
reality. One promising approach to achieve this is the paradigm of encountered-
type haptics (Yokokohji et al., 1996) with intermittent contacts. Encountered
type haptic devices (EHDs) are devices that autonomously position physical props
for virtual objects in the real world at a target appropriately, thus allowing users
to reach out to and touch the virtual objects physically, just like in the real world.
They use a mobile physical prop, usually actuated by a fixed or mobile robot,
that follows the user’s hand and only comes into contact with it when necessary
to simulate contact between the user and the virtual environment.

1.2.1 Applications of haptic devices

Haptic devices have been widely used in many sectors such as education and
training, entertainment, and product design. Since the application areas are
broad, the scope of this thesis will be restricted to applications in healthcare and
product design.

1.2.1.1 Haptics in Health care

With the latest technological improvements in virtual reality and robotics, a
growing body of research is investigating robotics to support rehabilitation and
functional assessment following neurological conditions such as stroke and motor-
cognitive impairments. Studies highlighting the efficacy of haptic-robotic ap-
proaches to upper-limb rehabilitation after Stroke and other neurological disor-
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1.2 Haptic systems

ders have shown that Robot-assisted therapy is as effective as conventional ther-
apy Kwakkel et al. (2008); Laver et al. (2017); Norouzi-Gheidari et al. (2012);
Sivan et al. (2011). Many new, relatively low-cost haptic technologies, such as
SensAble’s PHANTOM OmniR and the Novint Falcon, are now being produced
with a small form factor that allows these devices to be used in subjects’ homes.

Robotic devices can provide high-intensity, task-specific, and repetitive ther-
apy comparable to CT. These technologies aim to replace conventional, labour-
intensive therapy techniques and typically require one-on-one sessions with ther-
apists. In addition to the potential for long-term cost savings from a therapist’s
relaxed involvement, patients can perform robotic exercises under the supervi-
sion of a non-specialist clinician or in a patient’s own home. Haptic rendering
has shown indications of enhancing learning progression and user experience in
people with reduced motor skills due to stroke (Bortone et al., 2018).

The physiotherapeutic benefits of immersing a person in a virtual world with
the aid of haptic rendering include: physical engagement of patients, keeping the
training on a stationary rig for optimal monitoring and assessment, the possi-
bility to create controlled, user-specific exercises and difficulties, and to include
objectives and rewards in the training routines (Mirelman et al., 2016).

However, including haptic rendering in physiotherapy also poses challenges.
Firstly, the small workspace of the devices and limited speed. Secondly, there
is always a safety concern in situations where a machine directly collaborates
with a human. Therefore, many considerations must be made when designing
and developing a haptic render-based rehabilitation system for physiotherapists
and home use. These considerations, along with ethical problems and cost-over-
function, all contribute to limiting its current use as tools used by health experts.
This usage limitation affects research on the topic and impairs the advancement
within the field.

1.2.1.2 Haptic interfaces for product design in the automotive indus-
try

In the automotive industry, research professionals in perceived quality and sensory
perception are responsible for discovering and selecting relevant materials and
shape associations to ensure perceptual coherence and homogeneity of an entire
project. The evaluation of their choices is based primarily on the modalities of
vision and touch Crochemore et al. (2004); Posselt et al. (2017). Haptic interfaces
have also been beneficial in product design by engineers to evaluate the textures
and appreciate the quality of the materials of the interior of a vehicle in the early
stages manufacturing process.

Digital mock-up modifications are much easier and faster to perform, allowing
for exploring many more hypotheses than traditional physical mock-ups.
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1.3 Motivation

While current immersive visualization systems can provide an acceptable level
of realism, touch simulation remains a significant challenge. ETH devices with in-
termittent contacts combine the flexibility of programmable active haptic devices
with the inherent ability of passive mechanical devices to provide high-fidelity
tactile and kinaesthetic feedback.

VR allows the rendering of interior car components, and the interaction be-
tween a user and a robot is made possible by the analysis of data from different
integrated sensors. These interactions allow for creating a touch-sensitive inter-
face or ICI Araujo et al. (2016); Kim & Kim (2016). The scenario allows the user
inside a virtual car to interact with its environment by getting sensory feedback
from different surfaces, thanks to a six-face prop providing the different textures.
This use case aims to use an EHD to provide high-fidelity tactile and kinaes-
thetic feedback in an IVR system that is safe for the user while providing a level
of interaction between VR environments and the real world.

1.3 Motivation

Among the main shortcomings of haptic interfaces are a limited workspace, low
stiffness, speed, high cost, and user safety.

While current immersive visualization systems can provide an acceptable level
of realism, touch simulation remains a significant challenge. Furthermore, despite
recent technological and scientific advances in touch simulation, achieving high
fidelity tactile simulation remains difficult. This thesis seeks to address the above
challenges.

For the applications envisaged in this thesis, a Cobot carries several texture
specimens on its end-effector and a ball to allow contact between a user’s finger
or hand and the robot CLARTE et al. (2020); Posselt et al. (2017).

Due to the user’s immersion via a VR headset, the system must ensure the
user’s safety, as he cannot see the robot’s location. Therefore, it is necessary
to implement trajectory planning techniques to avoid unwanted interactions be-
tween the robot and the user. The system must consider the obstacles present
(environment or user). A virtual sphere is modeled to estimate the user’s position
and give the system a model to plan the movements. The most important thing
to consider in a human-robot interaction system is the user’s safety. Safety is
guaranteed through the generation of a motion planning scheme that takes into
consideration the obstacles present in a VR environment and human intention
detection.
Due to workspace and speed limitations, it is challenging for real-time interac-
tion to organize physical props that accurately replicate the virtual world due
to practical constraints, (Gonzalez et al., 2020). Speed limitations delay the de-
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1.4 Research objectives

vice’s arrival at some targets, creating discrepancies between what the user can
see and feel. The resulting position and orientation mismatch between the vir-
tual object and haptic proxy and latency negatively impacts the user experience
(Di Luca et al., 2011; Lee et al., 2016). In addition, virtual environments are
always much more extensive and richer in variety than tracked physical space.
Workspace limits mean that the device can recreate only a limited part of the Vir-
tual environment. So finding a suitable place for the robot to reach the areas of
interest in VR is another challenge. The limited workspace of haptic devices used
in rehabilitation, such as the Novint Falcon limits the range of possible motions
that can be perfomed by a user in a VE. Therefore, cannot support many upper
limb rehabilitation exercises involving arm and shoulder movement D’Auria et al.
(2016).

1.4 Research objectives

The main objective of this thesis is to address the challenges currently prohibiting
the implementation of an ICI in two contexts: industrial and health care. I
developed an ICI prototype based on a cobot to meet security requirements in
the event of involuntary contact with the user through the generation of a motion
planning scheme that takes into consideration the obstacles present in a VR
environment, then human intention detection and motion prediction. Specifically,
this thesis has the following objectives.

1. To evaluate the efficacy of different forms of VR treatments in improving
the physical and psychological status of stroke patients.

2. Develop a haptic Interface with props for renderable virtual shapes and
materials user interaction.

3. Develop safe motion planning schemes taking into account the cobot’s low
velocity and collision between every robot segment and the user.

4. Develop human intention detection and prediction models to both specify a
target location for the prop and a user-safe trajectory to reach that location.

5. Conduct user studies to evaluate the interaction techniques and prediction
models.

1.5 Research Contributions

1. Evaluated the efficacy of VR treatments as either IVR or NIVR compared to
CT in improving physical and psychological status in patients with stroke.
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2. Developed specific path planning techniques for collision and obstacle avoid-
ance.

3. Presented velocity modulation schemes to ensure user safety and improve
the performance of encountered haptic devices.

4. Introduced human intention detection and target prediction strategies by
taking into account hand motion and eye gaze.

5. Contributed towards user motion prediction in VR by learning from the
hand trajectory data.

1.6 List of publications
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1.7 The structure of the thesis

1.7 The structure of the thesis

The remaining part of the thesis is structured as follows:
Chapter 2 describes the role of VR in stroke rehabilitation. I evaluate the efficacy
of different forms of VR treatments as either IVR or NIVR in comparison to CT in
improving the physical and psychological status among stroke patients Mugisha
et al. (2022b).

Chapter 3 details the implementation of the motion planning scheme to ensure
the user’s safety and implement a reliable system. This section describes the
motion planning scheme that considers the obstacles in a VR environment. This
one has to be guaranteed in order to be able to implement a reliable system.
This study is a continuation of the work presented by CLARTE et al. (2020);
Guda et al. (2020) where the main objective is to generate a safe motion scheme
that takes into consideration the obstacles present in a VR environment with
the application for analysis of the material of an interior of the car Gutierrez
et al. (2022). The work has been developed using MoveIt software in ROS to
control a UR5 industrial robot. With this, I will be able to set up the planning
group, which is confirmed by the UR5 robot along with a 6-faced prop and the
base of the manipulator to plan feasible trajectories for it to execute within the
environment.

Chapter 4 describes movement strategies for the robot to be as fast as possible
in the contact zone while guaranteeing safety. This work uses the concept of
predicting the user’s position through his gaze direction and the position of his
dominant hand (the one touching the object). The case study presented here
analyses the material of the interior of the car for the automotive industry Guda
et al. (2022); Mugisha et al. (2021).

Chapter 5 details the development of a VR exergame for reach and grab tasks
designed for upper limb rehabilitation training. I further present more prediction
strategies based on eye gaze and conduct a user study to evaluate the efficacy of
each strategy’s effect of eye gaze window and hand threshold on the speed and
response of a haptic device Mugisha et al. (2022a).

Discussions and future work are presented in chapter 6.
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Chapter 2

Systematic literature review of
VR use in rehabilitation

Summary

This Chapter is intended to evaluate the efficacy of different forms of virtual re-
ality (VR) treatments as either immersive virtual reality (IVR) or non-immersive
virtual reality (NIVR) in comparison to conventional therapy (CT) in improving
the physical and psychological status among stroke patients.
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Computer-Mediated Therapies for Stroke Rehabilitation: A
Systematic Review andMeta-Analysis

Stanley Mugisha, PhD,
a Mirko Job, PhD,

b Matteo Zoppi, PhD,
a

Marco Testa, PhD,
b and Rezia Molfino, PhDa

Objective: To evaluate the efficacy of different forms of virtual reality (VR) treat-
ments as either immersive virtual reality (IVR) or non-immersive virtual reality
(NIVR) in comparison to conventional therapy (CT) in improving physical and psy-
chological status among stroke patients. Methods: The literature search was con-
ducted on seven databases: ACM Digital Library, Medline (via PubMed),
Cochrane, IEEE Xplore, Web of Science, Scopus, and science direct. The effect sizes
of the main outcomes were calculated using Cohen’s d. Pooled results were used to
present an overall estimate of the treatment effect using a random-effects model.
Results: A total of 22 randomized controlled trials were evaluated. 3 trials demon-
strated that immersive virtual reality improved upper limb activity, function and
activity of daily life in a way comparable to CT. 18 trials showed that NIVR had
similar benefits to CT for upper limb activity and function, balance and mobility,
activities of daily living and participation. A comparison between the different
forms of VR showed that IVR may be more beneficial than NIVR for upper limb
training and activities of daily life. Conclusions: This study found out that IVR thera-
pies may be more effective than NIVR but not CT to improve upper limb activity,
function, and daily life activities. However, there is no evidence of the durability of
IVR treatment. More research involving studies with larger samples is needed to
assess the long-term effects and promising benefits of immersive virtual reality
technology.
Key Words: Stroke—Rehabilitation—Virtual Reality—Immersive Virtual
Reality—Computer Mediated Therapy
© 2022 Elsevier Inc. All rights reserved.

Introduction

Stroke has been described as one of the significant
causes of death and disability globally, representing a
severe problem for public health with a significant preva-
lence in men and women of all ages.1,2 Recovery is always
incomplete, and most survivors are left with motor, sen-
sory and cognitive impairments with a consequent

increase in the burden of health care expenses during
adulthood.3

Owing to the rising number of neurologically impaired
survivors, several computer-mediated programs for
stroke rehabilitation have recently been developed to help
patients regain their ability to live independently. In par-
ticular, the advancement of digital technology has favored
the assertation of virtual reality (VR) as an accessible solu-
tion to give patients feedback on their performance, mean-
ingful goals, and a personalized experience to support
motor learning.4,5 Training can be gamified through vari-
ous applications, making the rehabilitation process fun
and enjoyable. VR is a real-time, computer-based, interac-
tive, multisensory simulation environment that enables
users to engage in activities inside environments that
resemble real-world artifacts and events to varying
degrees.6�8

Depending on the quantity of visual sensory channels
engaged in simulation, VR can be categorized as either
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immersive or non-immersive. Immersive VR (IVR) repla-
ces the user's real-world environment with a
simulated.9,10 Users get the sense of being transported
into three-dimensional interactive worlds through 360°
immersion in an alternate reality such as a head-mounted
display (HMD) or video capture systems such as IREX,
which enables them to participate in various activities in
imaginary environments.11�13

In non-immersive VR (NIVR), the user mainly interacts
with virtual objects displayed either in a 2D or 3D envi-
ronment that can be directly manipulated on a conven-
tional graphics workstation using a keyboard and a
mouse. As in IVR, animation and simulation are interac-
tively controlled to the user’s direct manipulation with
some NIVR systems and allow individuals to see their
avatars reflected on the screen.14�17

Non-immersive systems are characterized by a lower
level of immersive features (e.g., scene changes with head
movements), which could play a role in supporting the
feeling of presence and its therapeutic benefits.13 For
instance, it has already been pointed out how immersion
in the virtual simulation plays a pivotal role in pain man-
agement by inducing relaxation.
Previous reviews have studied the use of VR in the

rehabilitation of stroke.18�21 However, none of these
works differentiated their results according to the VR
modalities. Since the type of VR seems to influence the
rehabilitation outcomes differently depending on the level
of immersion,18,19 it is vital to unravel which form yields
the best treatment effects for motor rehabilitation and
other outcomes important to people with stroke such as
quality of life and participation.
Hence, by differentiating between IVR and NIVR sys-

tems, this systematic review and meta-analysis of ran-
domized control trials aimed to evaluate the efficacy of
VR treatments in improving physical and psychological
status in patients with stroke compared to conventional
therapy (CT).

Methods

Registration number

The review protocol and inclusion criteria were pre-
specified and registered on the National Health Service
Prospero Database under the registration number:
CRD42019134806. This systematic review followed the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines.

Electronic searches

The literature search was conducted on the following
databases: MEDLINE (via PubMed), Scopus, Web of Sci-
ence, ACM Digital Library, and IEEE Xplore. Additional
articles were retrieved by scanning the reference lists of
those studies that passed the "full-text" screening stage.

The search strategy was organized by extracting a set of
keywords from three primary groups representing:(i)
technology, (ii) rehabilitation, and (iii) pathology-related
semantic fields. Terms were connected using the OR bool-
ean operator for within-group connections and the AND
boolean operator between-group relations. Both free and
MeSH terms were used to build the final search string,
reported in detail in Appendix I. Results obtained from
the database research were filtered to include only those
published after 2015, chosen as the lower temporal limit
because Immersive Virtual reality is relatively a new tech-
nology, and its use in neurological rehabilitation is still in
the early stages. Other works were retrieved by scanning
the reference lists of all included studies.

Eligibility Criteria

To be included, articles had to meet the following eligi-
bility criteria. (i) a randomized controlled trial that (ii)
considered subjects more than 18 years old, (ii) affected
by neurological disorders, (iii) and compared computer-
mediated treatments against conventional therapy (iv) for
the upper limbs or lower limb motor functions (v) or pos-
tural control. Moreover, only full-text articles written in
English were included in the screening process. We
excluded those articles that: (i).compared one or more dif-
ferent types of computer-mediated reality-based treat-
ments without an alternative control group; (ii) involved
high-cost devices such as treadmills, CAVE, and any form
of a robotic manipulator. (iv) Other neurological condi-
tions apart from a stroke.

Study selection

In May 2020, we started a comprehensive systematic
search. Duplicates across databases were removed, and
the remaining studies were screened for titles, abstracts,
and descriptors by the two reviewers independently (MS,
MJ) to assess whether they met the predefined inclusion
criteria. Controversies between the reviewers concerning
the eligibility were resolved in a consensus meeting. After
reaching an agreement, full texts of potentially eligible
studies were retrieved and further assessed against the
inclusion criteria, and reasons for excluding the studies
were documented.

Risk of Bias

We used the Critical Appraisal Skills Programme for
randomized controlled trials22 to assess the risk of bias in
the included trials. It is 11 questions checklist with three
sections that assess the following items: validity of study
results, what the results are, and how they are helpful
locally. Each question in each subsection required a posi-
tive('yes'), neutral (Can't tell), or negative answer('No').
The articles were classified as low risk, moderate risk,

or high risk of bias according to the number of items that
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received a negative appraisal. Those articles in which all
checklist items were appraised positively were considered
low risk of bias works. Articles in which one or two of the
checklist items were appraised negatively were consid-
ered a moderate risk of bias. Articles in which three or
more items were appraised negatively were considered
high risk of bias works.
The two authors independently assessed the quality of

the work, and any disagreements that arose during the
process were resolved through discussion.

Data extraction

Two review authors (MS and MJ) independently
extracted data into a
a custom data table and the following data were chosen

to be extracted from each study:
(i) citation details, (i) Population characteristics; (ii)

inclusion and exclusion criteria (ii) Type of intervention
(iii) Technology Used (iv) outcome measures; (v) main
results. One author (M. S) extracted data, and another (M.
J)checked for accuracy. For studies where values were
provided in an unconventional format (i.e., medians
[interquartile range], or means [minimum-maximum
range]23�25) the sample mean and standard deviation
were estimated as described in Wan et al. 2014.26 From
this, the effect sizes of the main outcomes were calculated.

Data synthesis

Two review authors (MS and MJ) independently classi-
fied outcome measures in terms of the domain assessed
((i)Upper limb activity and function (ii) lower limb activ-
ity and function, (iii) balance, (iv) activity of daily life, and
(v) adverse events). When more than one outcome mea-
sure for the same domain was presented in a study, the
most frequently used across studies was considered in the
analysis. The standardized mean differences (SMD) were
calculated for continuous outcomes and Cochrane's
Review Manager 5 (Review Manager 2014) software was
used for all analyses. The effect of the intervention was
measured using cohen's d on the primary outcome of
each study. In trials with three-armed interventions,27 the
VR therapy was compared to conventional interventions.

Meta-analysis

Pooled results were used to present an overall estimate
of the treatment effect using a random-effects model in
the analysis across studies. Heterogeneity was assessed
through the I2 statistic.28 The level of heterogeneity was
considered substantial if the I2 statistic was greater than
50%. A meta-analysis was considered not appropriate
where the level of heterogeneity was substantial or when
only one study was identified for the desired outcome. In
this case, a narrative summary of the results was given.
Where data pooling was decided, forest plots were

provided along with a description of the results. When
applicable, a sensitivity analysis was performed, includ-
ing only studies at low risk of bias, and the results were
compared to the primary analysis, including all the trials.

Results

Search results

The study inclusion workflow is displayed in detail in
Fig. 1. We identified a total of 1573 possible record from
the database research (ACM: n=18,Pubmed: n=1382,
Cochrane: n=17, IEEE: n=29, Science direct: n=60, Scopus:
n=38, Web of Science: n=29). Additional 151 Records
were identified through secondary sources. After remov-
ing records duplicates, 1680 studies were evaluated for
title and abstract, resulting in 95 full-text articles assessed
against the previously defined eligibility criteria. At the
end of this process, 22 full�text articles were included in
the present review (Adie et al. 2017; Allen et al. 2017;
Aşkın et al. 2018; Choi, Shin, and Bang 2019; Henrique
et al. 2019; Huang and Chen 2020; Ikbali Afsar et al. 2018;
In, Lee, and Song 2016; Kiper et al. 2018; K. H. Kong et al.
2016; Llorens et al. 2015; McNulty et al. 2015; Mekbib
et al. 2021; €Og€un et al. 2019; Pedreira da Fonseca et al.
2017; Saposnik et al. 2016; Schuster-Amft et al. 2018; Shin
et al. 2016; Shin, Bog Park, and Ho Jang 2015; Da Silva
Ribeiro et al. 2015; Bin Song et al. 2015; Zondervan et al.
2016. And these 2 studies29,30 were excluded from the
meta-analysis.
40 studies did not meet the inclusion criteria because

they were published before 2015. 8 studies were excluded
from this review because the VR intervention methods
used expensive devices such as treadmills and robotic
manipulators or actuated devices31�36,37 3 studies were
excluded because they compared virtual reality with no
intervention.38�40

Risk of bias

The critical quality appraisal of the 22 included trials is
presented in Table 1. Relying on the CASP guidelines22

for a randomized trial, we identified 2 of the included
studies to be at high risk of bias,42,47 3 at low risk of
bias17,46,54 and 17 at moderate risk of
bias.8,23,25,27,29,30,41,43�45,48�53,55 In 2 trials,42,47 the authors
did not report the information about the randomization
method of patients. In.48, the treatment between groups
was not the same. The experimental group received 30
extra minutes of VR training for 20 sessions making up
10 hours. 7 studies reported a large treatment effect of the
Intervention measured using Cohen’s d,17,42,45,47�49,52,54

while the rest had a medium to small effect size. It is also
important to consider that small sample sizes character-
ized most studies. A total of 13 studies Aşkın et al., 2018;
Bin Song et al., 2015; Choi et al., 2019; Da Silva Ribeiro
et al., 2015; Huang & Chen, 2020; In et al., 2016; H.-C. Lee
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et al., 2017; Llorens et al., 2015; McNulty et al., 2015; Mek-
bib et al., 2021; Pedreira da Fonseca et al., 2017; Saposnik
et al., 2016; Zondervan et al., 2016) had a small sample
population of about 10 to 16 participants in the experi-
mental group, resulting in broader confidence intervals
and therefore were regarded to be of high risk of bias.
Due to the nature of the study, blinding of the patients,
physiotherapists, and assessors who supervised the treat-
ments was not possible. Therefore it was not considered
as a possible risk of bias.

Population characteristics

Of all 22 trials, 7 trials had a sample size of more than 50
participants.8,17,27,41,45,50,53 And 6 trials had less than 25
participants.47,49,51,52,55,56. A detailed overview of the pop-
ulation characteristics is provided in Tables 2 and 3 for
IVR and NIVR interventions respectively.

Inclusion and exclusion criteria

Most studies specified the inclusion and exclusion crite-
ria apart from two where the exclusion criteria were not

given.42,49 Most Participants in the included studies
appeared to be relatively young, with mean ages ranging
from 29 to 75 years in all studies. Studies omitted medi-
cally ill participants, such as specified by the presence of a
disease in which exercise was contraindicated. Partici-
pants were included if they were cognitively intact, as
defined by cut-off scores on the MMSE. Medically unsta-
ble participants were excluded, as defined by having a
disease in which exercise was contraindicated, severe
visual disorders46,51,55 and neurodegenerative disorders.23

Interventions

In all retrieved trials, the active control group per-
formed similar exercises as those proposed in the VR
intervention. For IVR, 3 studies implemented an equally
matched dose of CT,17,53,55 while 1 trial consisted of a
combination of VR with CT.54

For NIVR interventions, 7 trials had the intervention
group that performed only VR exercises,8,27,29,41,42,44,46 7
studies had a VR intervention group performing a combi-
nation of VR exercises augmenting CT.23,25,30,45,48�51

Fig. 1. Preferred reporting items for systematic reviews and meta-analyses flowchart of study retrieval, screening, and eligibility.
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One trial consisted of three-armed interventions includ-
ing a VR group, an active control group performing simi-
lar exercises within a conventional physiotherapy setting,
and a passive control group.43

In all trials, therapy sessions lasted between 45 minutes
and 2 hours per day, with a minimum duration of therapy
lasting for 16 hours and a maximum of 40 hours.

Technology

Participants in the IVR group received training using
immersive devices such as head-mounted displays,17,47,52 a
leap motion controller,17,52 and Htc Vive controllers in.47

While For NIVR interventions, participants mainly used the
Microsoft Xbox Kinect connected to a display
monitor,23,42,46,48 Nintendo Wii gaming system,8,27,29,30,41,44,45

motion tracking sensors,25,50,51 and data gloves.53�55

A detailed overview of the IVR and NIVR interventions
is provided in Table 4 and Table 5, respectively.

Outcomes

Due to various intervention approaches, a wide range
of outcome measures was retrieved. The outcome meas-
ures were collected at the baseline and soon after the inter-
vention. In all the trials, a post-intervention follow-up
assessment was done in only 7. Of these, 5 had a post-
intervention follow-up of less than 3 months,8,27,45,54,55

and 2 had more than 6 months.30,41 An overview of all
outcome measures for each predefined outcome category
and results for the primary outcome in the included stud-
ies can be found in Tables 6 and 7 for IVR and NIVR
respectively.

Immersive virtual reality vs CT (Short term Effects)

Upper limb activity and function

Upper limb function was accessed using FM as the out-
come measure. In 3 trials with 106 participants,17,47,52

Table 1. Critical appraisal table. Indicates positive, negative responses from both authors, respectively shown in green, and red.
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improvements were reported in both training groups
post-intervention. A meta-analysis revealed significant
inter group differences with greater improvements in the
IVR group compared to CT (smd:1.37, 95% CI [0.80, 1.93],
I2=35%, P<0.00001). A forest plot is shown in Fig. 2.
A sensitivity analysis of results without47 considered to

be a high risk of bias revealed similar results(smd:1.57,
95% CI [1.03, 2.11], I2=15%, P=0.2).
Upper limb activity was assessed by BBT as the out-

come measure. Results from one study47 with 18 partici-
pants reported improvements in both groups. IVR
registered a higher improvement than CT. However, the
difference between the groups was not significant IVR:
(0.08§0.14), CT(0.04§0.06), (smd= 0.35, 95% CI [-0.58,
1.29], p>0.05). This was a low-quality study with large
confidence intervals.

Activities of daily life (ADL)

Three trials17,47,52 investigated the effects of IVR on
ADL. A meta-analysis indicated greater improvement in
the IVR group with a moderate effect size
(smd = 0.54,95% [CI 0.15 to 0.93], I2 = 0%, p=0.007). A for-
est plot is shown in Fig. 3.
A sensitivity analysis without47 considered high risk of

bias revealed similar results (smd = 0.61,95% [CI 0.18 to
1.04], I2 = 0%, p=0.005).

Adverse events

In all studies, the occurrence of adverse events was not
reported.

Non-Immersive VR Vs CT (Short Term Effects)

Upper limb activity and function

Nine trials reported results on upper limb function
using FM as the outcome measure.23,25,44,46,48,50,54,57 Sig-
nificant improvements were reported in both groups
post-intervention. A meta-analysis was not performed

because of high heterogeneity (I2 = 82%) in the data.
According to results from individual studies, NIVR
reported greater improvements than CT.
Four trials with a total population of 172 participants

reported greater improvement in NIVR compared to CT
with a large effect size, Aşkın et al. 2018,23 (NIVR:41.25§9.0,
CT:35.00§10.0, smd=0.64), Ikbali Afsar et al. 2018
48(NIVR:18.74§7.67, CT:13.94§6.58, smd=0.65), Shin et al.
2016.54 [NIVR:4.9§1.0, CT:1.4§ 0.8, smd=3.71] and Henrique
et al. 2019.46 [NIVR: 14.69§0.67, CT:9.07§1.34, smd = 5.22],
Four studies with a total of 265 participants reported no

significant differences between the groups. Kong et al.
2016.27 (NIVR:32.8§18.2, CT:29.2§17.25, smd=0.2), Kiper
et al. 2018.50 (NIVR:47.1§15.74, CT:46.29§17.25,
smd=0.09) Shin, Bog Park, and Ho Jang 201525,
(NIVR:38.5§11.7, CT:33.87§17.64, SMD=0.3] and Da
Silva Ribeiro et al. 201544 (NIVR: 38.7§19.6 CT: 44.7§14.2,
smd=-0.34).
In one study.30, with 41 participants, we could not get

data in a suitable format for analysis. However, they
reported no significant difference between groups.
Three trials with 109 participants measured upper limb

activity using BBT as the outcome measure.23,53,55 A meta-
analysis revealed no significant difference between the
groups. The overall effect size was small (smd = 0.19, 95%
CI [-0.19, 0.57], I2 = 0%, P=0.33) as shown by a forest plot
in Fig. 4.

Lower limb activity and function

Three trials with a total of 92 participants used TUG to
assess mobility,42,45,49 Improvements were reported in
both groups post-intervention. A meta-analysis done
revealed no significant difference between the groups
(smd = 0.33, 95% CI [-0.08, 0.75], I2 = 0%, P=0.11) as
shown by a forest plot in Fig. 5. A sensitivity analysis that
excluded results from one study42 deemed to be a high
risk of bias revealed similar results (smd = 0.34, 95% CI
[-0.12, 0.81], I2 = 0%, P=0.15).
In 3 trials with 65 participants, the 10mw Test was used

as the outcome measure,42,45,51 A meta-analysis revealed

Table 2. IVR vs CT Participant Information.

Study Study

Type

Participants

population pathology duration

(mean § SD),

age (years) (Mean § SD) Sex

1. Huang and

Chen 202047
SC n=17,VR(9),CT(9) CT(7.87§7.07),IVR:

(9.69§3.5)

IVR(59.48§15.02),CT

(55.36§10.48)

CT(F:2,M:7),IVR

(F:1,M:8)

2. Mekbib et al.

202152
SC n=23,VR(12),CT(11) IVR(1.23§0.73),CT

(39.36§18.08)

IVR(52.17§13.26),CT

(61.00 § 7.69)

IVR:(M:9,F:3),

CT(M:8,F:3)

3. €Og€un et al.
201917

SC n=84,VR(42),CT(42) IVR:(1.32§0.25),CT:

(0.51§0.32)

IVR:(61.5§10.9) CT:

(59.8 § 8.1)

IVR:(M:28,F:5)

CT:(M:23,F:9)

Abbreviations: IVR: Immersive Virtual Reality; C: control, CT: Conventional Therapy, mo: months
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Table 3. NIVR vs C Participant Information.

Study Study

type

Participants

Population pathology duration. (mo)

(mean § SD)

age (yrs) (mean § SD) Sex

1. Adie et al. 201741 SC n=235,VR(117),CT(118) VR(1.91§1.61),CT(1.88§1.67) VR(66.8§14.6),CT

(68.0§11.9)

VR(F:51,M:66),CT (F:53,

M:65)

2. Aşkın et al. 2018 23 SC n=40,VR(20),CT(20) VR(20.27§5.47),CT(19.40§4.48) VR(53.3§11.2), CT(56.6

§ 9.9)

VR(F:5,M:13),CT(F:6,

M:14)

3. Bin Song et al. 201542 SC n=40,VR(20),CT(20). VR(14.8§6.1), CT(14.3§3.4) VR(51.37§40.6),CT

(50.10§7.83)

VR(M:10,F:10),CT(M:12,

F:8)

4. Choi, Shin, and Bang 201943 SC n=36,VR(12),CT(12),C(12) CT(28.91§15.80), VR(26.33§15.51),C

(29.00§19.21)

CT(58.00§5.15),VR

(59.58§11.87), (59.33§
13.63)

CT:(M:7,F:5),VR(M:7,

F:5),C(M:9, F:3)

5. Da Silva Ribeiro et al. 201544 SC n=30,VR(15), CT(15) VR(42.1§26.9),CT(60.4§44.1), VR(53.7§6.1), CT(52.8§
8.6)

VR(M:06,F:09),CT(M:05,

F:10)

6. H.-C. Lee et al. 201745 SC N=50,VR(26), CT(24) VR(28.00§23.97), CT(21.77 § 19.66) VR(59.4§8.95), CT(55.8

§ 9.6)

VR(M:16,F:10), CT

(M:18, F:3)

7. Henrique et al. 201946 SC n=31,VR(16) CT(15) CT(17.07 § 10.00),VR (15.63 § 6.60) CT(76.20§10.41),VR

(76.19§10.09)

CT(M:7,F:8),VR (M:7,

F:9)

8. Ikbali Afsar et al. 201848 SC n = 35,VR(19), CT(16) VR(2.94§1.88),CT(2.29§1.31) VR(69.4§8.6),CT (63.4

§ 15.7)

VR(F:7,M:12,CT(F:8,

M:8)

9. In, Lee, and Song 201649 SC n=25,VR(13), CT (12) VR(12.5§4.1), CT(13.6§5.3) VR(57.3§10.5),CT

(54.4§11.4)

VR(M:8,F:5),CT (M:7,

F:5)

10. Kiper et al. 201850 SC (N=136),VR(68), CT(68) VR(52.8.4§33.6),CT(49.2§38.4) VR(62.5§15.2), CT

(66.0§12.9)

VR(M:37,F:31), CT

(M:43, F:25)

11. Kong et al. 201627 SC N=105,VR(35), CT (35),

C: (35)

VR(0.47§0.30),CT(0.47 § 0.31), C

(0.44 § 0.29)

VR(58.1§9.1),CT(59.0§
13.6),C(55.8 § 11.5)

VR(M:27,F:9), CT(M:25,

F:10) C(M:25 F:10)

12. Llorens et al. 201551 SC n=20,CT(10), VR (10) CT(19.59§7.4),VR (13.58 §7.75) CT(55.0§11.6),VR (58.3

§11.6)

CT(M:5,F:5), VR(M:4,

F:6)

13 McNulty et al. 201530 SC n=41,VR(21) CT (20) VR(11¢0§3¢1),CT(6¢5§1) VR(59¢9§13¢8) CT(56¢1
§ 17¢0)

VR(F:8,M:13), CT(F:2,

M:18)

14. Pedreira da Fonseca

et al.

201729

SC n=27,VR(14), CT(13) VR(44.1§25.0),CT(64.5§41.9) VR(53.8§6.3), CT(50.9§
10.9)

VR(F:10,M:4),CT(F:9,

M:4)

15. Saposnik et al.20168 MC n=141,VR(71),CT(70) VR(102§16¢8)CT(102 §19¢2) VR(62§13)CT(62 §12) VR(M:46,F:25), CT

(M:48, F:31)

16. Schuster-Amft et al. 201424 MC n=42,VR(22),CT(32) VR(28.8§28.8),CT(43.2§44.4) VR(61.3§13.4), (CT

61.2§11.2)

VR(F:6,M:16),CT (F:9,

M: 23)

(Continued)
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Table 3 (Continued)

Study Study

type

Participants

Population pathology duration. (mo)

(mean § SD)

age (yrs) (mean § SD) Sex

17. Shin et al. 201654 SC n=46,VR(24), CT(22) VR(13.6§13.4),CT(15.0 §14.6) VR(57.2§10.3), CT(59.8

§ 13.0)

VR(M:19,F:5),CT (M:17,

F:5)

18. Shin, et al. 201525 SC n=32,VR(16),CT(16) VR(6.73§2.96), CT(5.5§2.91) VR(53.37§11.8), CT

(54.67§ 13.4)

VR(M:11,F:5), CT(M:13,

F: 3)

19. Zondervan et al. 201655 SC n=17,VR(9), CT(8) VR(63.96 § 49.68),

CT(38.04§19.92)

VR(59.78§9.71)

CT(59.95 §13.60)

VR(F:4,M:5),

CT(F:3,M:5)

Abbreviations: VR-Virtual Reality; C-control, CT-Conventional Therapy, SC-Single Center, MC-Multi Center, yrs-years, mo -months

Table 4. IVR Interventions, Comparator, and Technology

Study Intervention Comparator VR Technology

1. Huang and Chen 2020 47 30 mins IVR games + 60 mins CT including a

Climbing bar, Ball bearing, and Pulley for

20 sessions. Tot. 30 hrs

90 mins CT of Upper limb training using a

Climbing bar, Ball bearing, and Pulley for

20 sessions. Tot. 30 hrs.

HTC VIVE HMD, Controllers

2. Mekbib et al. 202152 60min IVR activities like reaching, grasping,

and releasing tasks + 60min CT for 8 ses-

sions. Tot 16 hrs.

120 min CT of daily living activities, balance

control, gait training, weight shift, and distal

and proximal UE

functional movements for 8 sessions, Tot 16

hrs.

HTC VIVE HMD + Leap Motion

3. €Og€un et al. 201917 60 min IVR activities to facilitate hand

motions, stimulating forearm supination and

pronation, flexion, and abduction 18 ses-

sions. Tot: 18 hrs.

60 min CT of upper extremity exercises com-

prising the same tasks as used in the IVR

group.+ 15min Sham IVR for 18 sessions.

Tot:18 hrs.

Leap Motion, HMD

Abbreviations: IVR-Immersive Virtual Reality, CT-Conventional Therapy, HMD-Head Mounted display
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Table 5. NIVR Interventions, Comparator, Technology.

Study Intervention Comparator VR Technology

1. Adie et al. 201741 15 min warm-up + 45 min Wii

VR per day; Tot: 17hrs

15 min warm-up + 45 min CT

per day. Tot: 17 hrs

Nintendo Wii

2. Aşkın et al. 201823 20 sessions of CT + VR games

that required the upper extrem-

ity use, Tot 20 hrs.

20 sessions of CT activities to

improve the active range of

motion, strength, flexibility,

transfers, posture, balance,

coordination, and activities of

daily living. Tot 20 hrs.

Xbox Kinect, TV screen,

laptop

3. Bin Song et al. 201542 VR 30 min/session, Tot 20 hrs

(Kinect games for body bal-

ance and limb motion)

Ergometer bicycle training

30 min/session, Tot 20 hrs

Xbox Kinect

4. Choi, Shin, and Bang

201943
30 min CT + VR mirror therapy

30 min of lifting the arms,

moving the arms to the left and

right, bending

and stretching the elbows, rais-

ing and lowering the hands,

lifting the wrists, lowering the

wrists, flexing the wrists

inward,

flexing the wrist, and finger

gripping,15 sessions. Tot 15

hrs.

30 min CT + 30min Conven-

tional Mirror Therapy: 15 ses-

sions. Tot 15 hrs.

Leap motion, a monitor, a

mirror

5. Da Silva Ribeiro et al.

201544
10 min stretching of UL, LL, and

trunk muscles. + 50-min of VR

games. 8 sessions Tot 16 hrs.

10-min stretching + 50min CT of

trunk activities, active or

active-assisted diagonal move-

ment of the Lower Limbs, bal-

ance training, stationary and

side gait, anteroposterior and

laterolateral movements, gait

training. 8 sessions. Tot 16 hrs.

Nintendo Wii, projector

6. H.-C. Lee et al. 201745 45 min CT + 45 min VR balance

games based on common bal-

ance problems experienced

after stroke. for 12 sessions Tot

18 hrs

CT for 90 min focusing on

strengthening, endurance

training, ambulation, and ADL

training. for 12 sessions. Tot 18

hrs.

television, Microsoft

Kinect + commercial

game

7. Henrique et al. 201946 VR exergame 30 mins for 24

sessions weeks, Tot 12 hrs.

exergame for upper limb motor

function and balance rehabili-

tation of stroke survivors,

including flexion exercises,

shoulder abduction and

adduction, horizontal shoulder

abduction and adduction,

elbow extension, wrist exten-

sion, knee flexion, hip flexion,

and abduction

CT 30 mins exercise similar to

VR group, for 24 sessions, Tot

12 hrs.

Motion Rehab 3D, projec-

tor, Kinect, PC

8. Ikbali Afsar et al.

201848
CT 60 min + VR 30 min pro-

grams for active movements of

the upper extremity, bilateral

shoulder abduction, and adduc-

tion, and active elbow flexion

and extension movements, per-

formed flexion and extension

CT 60 min consisting of static

and dynamic control of posi-

tion, balance skills, weight

shift, and activities of daily liv-

ing for 20 sessions. Tot 20 hrs.

Microsoft Xbox Kinect

system, TV screen

(Continued)
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Table 5 (Continued)

Study Intervention Comparator VR Technology

movements in both the shoul-

der and elbow joints. For 20

sessions. Tot 30 hrs.

9. In, Lee, and Song

201649
CT 30 min + VR 30 min, for 20

sessions. Tot 20 hrs. Partici-

pants placed their affected

lower limb into the VRRT box

to observe the projected move-

ment of the unaffected lower

limb without visual asymmetry

causing tilting of the head and

trunk.

CT 30 min of neurodevelopmen-

tal treatment, physical therapy,

occupational therapy,

and speech therapy. + placebo

VR 30 min, for 20 sessions.

Tot 20 hrs, consists

camcorder, LCD monitor

10. Kiper et al. 201850 VR 1hr tasks which consisted of

both simple movements and

complex movements that

involved multiple muscle

synergies + CR 1hr for 20 ses-

sions: Tot 40 hrs. Virtual

CT 2 hrs of upper limb exercises

such as shoulder flexion and

extension, shoulder abduction

and adduction, shoulder inter-

nal and external rotation,

elbow flexion and extension,

forearm

pronation and supination and

hand grasping-release tasks for

20 sessions: Tot 40 hrs.

3-D motion tracking sys-

tem, projector

11. Kong et al. 201627 1hr VR games for executing

movements and acceleration of

the upper limbs 4 times/ wk.

over 3 wks, plus + 1 hour of PT

from Mon to Friday. Tot 27

hrs.

1 hr CT of stretching, strengthen-

ing, and upper limb range of

motion exercises.4 times/wk.

for 3 wks + 1 hr of PT from

Mon to Fri.

Tot 27 hrs.

Nintendo Wii

12. Llorens et al. 201551 30min VR games for a stepping

task, + 30min CT. 20 sessions.

Tot 20 hrs. Games

1 hr CT of static standing exer-

cises, task-specific reaching

exercises involving ankle and

hip, stepping tasks, static and

dynamic balance exercises,

walking exercises for 20 ses-

sions. Tot 20 hrs.

PC, Screen, and an optical

tracking system

13. McNulty et al. 201530 VR, 60-min of Wii Sports games

for the more affected

hand + home practice. Tot 10

hrs.

mCIMT 60-min of Training

tasks including everyday activ-

ities using only the more

affected hand and arm + home

practice. Tot 10 hrs.

Nintendo Wii

14. Pedreira da Fonseca

et al. 201729
15min stretch +45 min VR

games which stimulated the

lateralization of movements of

the trunk; weight shift between

the heel and forefoot, working

rotational movements of the

trunk, weight transfer between

the heel and forefoot, rotational

movements of the hip, and bal-

ance reaction time. for 20 ses-

sions Tot 20 hrs.

10min stretch for arm and

leg muscles + 50 min CT trunk

mobilization activities in the

lateral, anterior, and posterior

directions(10min), leg move-

ment;(15min)

balance training in a standing

position (10 min); and free gait

training for 10 mins. for 20 ses-

sions Tot 20 hrs.

Nintendo Wii, projector
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no significant difference between the groups (smd = -0.06,
95% CI [-0.60, 0.48],I2 = 0% P=0.82). A forest plot is shown
in Fig. 6. A sensitivity analysis which excluded results
from.42 (smd = -0.22, 95% CI [-1.00, 0.56],I2 = 42% P=0.58)
revealed similar results.

Balance

Four trials with 123 participants used BBS as the out-
come measure for balance.45,46,49,51 The VR group had
greater improvements with a moderate overall effect size.
(smd:0.46, 95% CI [-0.01, 0.93], I2=37%, P=0.06). However,

Table 5 (Continued)

Study Intervention Comparator VR Technology

15. Saposnik et al. 20168 VR 60 min with the goals of

enhancing flexibility, range of

motion, strength, and

coordination of the affected

arm 10 sessions, Tot 10 hrs.

recreational therapy, 10 sessions,

60 min Tot 10 hrs.

Nintendo Wii

16. Schuster-Amft et al.

201424
VR 45-min for use of the arm

and/or hand movements, mir-

roring of the real movements of

one

arm and/or hand and following

the movements of one arm

and/or hand.,for 16 sessions

Tot: 12hrs.

45-min CT which included neu-

romuscular interventions, body

structural interventions

perceptual and sensory inter-

ventions, 16 sessions.

Tot:12hrs.

PC, gloves.

17. Shin et al. 201654 VR 30min + 30min OT for

movements of the distal upper

extremity such as the forearm

pronation/supination, wrist

flexion/extension, wrist radial/

ulnar deviation, finger flexion/

extension, and complex move-

ments .20 sessions tot: 20hrs.

60 min OT (20 sessions) Tot:

20hrs.

Same categories of movements

of the distal upper extremity as

those in the VR group

smart glove

18. Shin, Bog Park, and

Ho Jang 201525
30 min CT + 30 min VR games

for active arm and trunk move-

ments and

promote successful rehabilita-

tion. 20 sessions. Tot 20 hrs.

1 hr of CT which

includes a range of motion and

strengthening exercises for the

affected limb, table-top activi-

ties, and training for activities

of daily living for 20 sessions.

Tot 20 hrs.

Depth sensor, 3D aware-

ness sensors, infrared

projectors, and image

sensors.

19. Zondervan et al.

201655
1hr VR games of self-guided

therapy for hand and finger

exercises for 9 sessions, Tot:

9hrs

1hr CT of self-guided therapy of

tabletop hand and finger exer-

cises 1hr for 9 sessions, Tot:

9hrs

Music Glove, laptop

Abbreviations: VR Virtual Reality; C control, CT Conventional Therapy, hr hour

Table 6. Study Outcomes of IVR Vs. CT

Study Upper limb function Activity limitation/ ADL Results

1. Huang and Chen 202047 Pri:FM(IVR:0.13§0.12,

CT:0.05§0.05,

ES:,0.83), BBT

FIM Greater improvement in

VR in FM and FIM

2. Mekbib et al. 202152 Pri:FM(IVR:12.25§4.58,

CT:7.7§2.54, ES:,1.17),

BI Greater improvement in

VR on FM

3. €Og€un et al. 201917 Pri:FM(IVR:46.54§7.91,

CT:40.06§8.33,

ES:0.79,) ARAT

PASS-BADL, PASS-

IADL, FIM

Greater improvement in

VR on FM, ARAT, FIM

and PASS

COMPUTER-MEDIATED THERAPIES FOR STROKE REHABILITATION 11



Table 7. Study Outcomes for NIVR Vs CT

Study Outcomes Results

Upper limb function Lower limb function Balance and postural

control

QOL Activity

limitation

(ADL)

Adverse events

1. Adie et al. 201741 Pri: ARAT (NIVR: 47.6§
14.2, CT:49§13.6,

ES:0.1),

SIS,

COPMS,

COPMP

MAL-QOM,

MAL -AOU

no significant difference

between groups in all

outcomes.

2 Aşkın et al. 201823 Pri: FM(NIVR: 4.33§
7.24, CT:0.67§1.61,

ES:0.64),BBT, AROM,

BRS, MAS Hand

Number Greater improvements in

FM in VR.

3. Bin Song et al. 201542 TUG(NIVR:21.9§7.9,

CT:19.5§7.5,

ES:0.31),10mWT

(NIVR:21.4.2§8.9,

CT:19.1§8.8.ES:0.26)

balance ability,

(NIVR:24.7§19.01,

CT:20.37§21.34,

ES:0.61)forward LOS,

(NIVR:3311.7§19.01,

CT:4322.6§ 565.5

ES:0.28)Backward LOS

(NIVR:1895.9§2097.5,

CT:2889.7§2769.7,

ES:0.4)

Greater improvements in

VR in weight distribu-

tion ratio, anterior LOS,

posterior LOS, TUG,

10-mWT, and BDI

4. Choi, Shin, and Bang

201943
Pri:MFT(NIVR:13.42§
2.5,CT:12.33§2.02,

ES:0.46),

SF- 8 Greater improvement in

FM in VR.

5. Da Silva Ribeiro et al.

201544
Pri: FM(NIVR: 46.54§
7.91,CT:40.06§ 8.33,

ES:0.34),

SF-36 No inter-group difference

in FM, greater improve-

ment in VR on SF-36

6. H.-C. Lee et al. 201745 TUGcog Pri:BBS(NIVR:46.19§
5.57, CT:45.7§6.64,

ES:0.08), FRT

SIS MBI, ABC

scale, M-

PAES

Number No significant intergroup

difference

7. Henrique et al. 201946 Pri:FM(NIVR: 14.69§
0.67, CT:9.07§1.34,

ES:5.22),

Pri:BBS(NIVR:7.87§8.6,

CT:5.6§0.69: ES:0.25),

Greater improvement in

VR on FM.

8. Ikbali Afsar et al. 201848 Pri:FM(NIVR:18.74§
7.67,CT:13.94§ 6.58,

ES:0.65), BBT,BRS-

arm,BRS-Hand,

FIM Greater improvement in

VR for BRS and BBT.
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Table 7 (Continued)

Study Outcomes Results

Upper limb function Lower limb function Balance and postural

control

QOL Activity

limitation

(ADL)

Adverse events

9. In, Lee, and Song 201649 TUG, 10-mwv Pri:BBS(NIVR:3.62§
1.85,CT:1.33§1.72.

ES:1.24),FRT, postural

sway,

Greater improvement in

VR for FRT, TUG, and

10 mWV.

10.Kiper et al. 201850 Pri:FM(NIVR:47.1§15.7,

CT:46.29§17.25,

ES:0.09),

NIHSS,

ESAS

FIM, Greater improvements in

VR for FM, FIM,

NIHSS

11.Kong et al. 201627 Pri:FM,(NIVR:32.8§
18.2,CT:29.2§17.25,

ES:0.2), ARAT

SIS FIM Number no significant difference

in all outcome measures

between groups.

12.Llorens et al. 201551 10-mWTest. TP-OMA Pri:BBS(NIVR:3.8§2.6,

CT:1.8§5.7,ES:,0.43),

BBA

greater improvement VR

for BBS and 10mWT.

13.McNulty et al. 201530 WMFT, FMA Pri:MALQoM

(NIVR:102.§
38.4,CT:93.§
35.3,ES:0.25)

Number No differences between

groups for WMFT and

MALQoM

14.Pedreira da Fonseca et al.

201729
Pri:DGI,(NIVR:-.71§
3.14,CT:-2.84§4.63,

ES:0.27),

No of falls no significant difference

in DGI and number of

falls.

15.Saposnik et al. 20168 Pri:WMFT, (NIVR:-

64.1§104, CT:-39.8§
35.5, ES:0.31),BBT,

Grip Strength

SIS BI, FIM, Number no significant difference

between groups in

WMFT.

16.Schuster-Amft

et al.201424
Pri:BBT(NIVR:24.7§
19.01,CT:20.37§21.34,

ES:,0.21)

CAHAI Number no between-group differ-

ences for all outcomes.

17.Shin et al. 201654 Pri:FM(NIVR:4.0§1.0,

CT:1.4§0.8,ES:3.71),

JTT, PGT

SIS Number Significant improvements

in the FM and SIS in VR

group during the inter-

vention and at follow-

up;

(Continued)
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Table 7 (Continued)

Study Outcomes Results

Upper limb function Lower limb function Balance and postural

control

QOL Activity

limitation

(ADL)

Adverse events

18.Shin, et al. 201525 Pri:FM(NIVR:38.5§11.7,

CT:33.87§17.64,

ES:0.3),

SF-36 No inter-group differences

in FM. Greater improve-

ment in VR for role lim-

itation due to physical

problems.

19.Zondervan et al. 201655 Pri:BBT(NIVR:2.3§6.2,

CT:4.3§5,ES:0.33)

NHPT,ARAT

MALQOM,

MAL (AOU)

Number, pain no significant difference

between groups for

BBT. VR had signifi-

cantly greater improve-

ments in MALQoM and

AoU 1 mo posttherapy

10mWT-10m Walking Test; ADL-Activities of Daily Life; ABC-Activities-specific Balance Confidence; AOU-Amount of use; ARAT-Action Research Arm test; AROM-active range of

motion; BBA-Brunel Balance Assessment; BBS-Berg Balance Scale; BBT-Box and Blocks Test; BDI-Beck Depression Inventory; BI- Barthel Index; BRS-Brunnstrom Recovery Stages; C-Con-

trol; CT-Conventional Therapy; CAHAI -Chedoke-McMaster Arm and Hand Activity Inventory; COPMP-Canadian Occupational Performance Measure Performance; COPMS-Canadian Occupa-

tional Performance Measure Satisfaction; DGI-Dynamic Gait Index; ES-Effect Size: ESAS -Edmonton Symptom Assessment Scale; FM-Fugl-Meyer; FIM-Functional Independence Measure;

FRT-Functional Reach Test; IVR-Immersive Virtual Reality; JTT -Jebsen�Taylor hand function test; LOS-Limits of stability; MAL-Motor Activity Log; MAS-Modified Ashworth Scale; MBI-

Modified Barthel Index; MFT-Manual Function test; M-PAES-Modified Physical Activity Enjoyment Scale; NHPT-Nine Hole Peg Test; NIHSS-National Institutes of Health Stroke Scale; NIVR-

Non- Immersive Virtual reality; PASS-BADL-Performance Assessment of Self-Care Skills � basic activities of daily living; PASS-IADL-Performance Assessment of Self Care Skills � instrumen-

tal activities of daily living; PGT-Purdue pegboard test; QoM-Quality of Movement; SF-Short Form Health Survey; WMFT-Wolf Motor Function Test
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the results were not statistically significant. A forest plot is
shown in Fig. 7.

Quality of life and participation

Eight trials with 686 participants measured Quality Of
Life using various outcome measures.8,25,27,41,43�45,50 A
meta-analysis showed no significant difference between
groups with (smd = 0.04 95%, CI[-0.11, 0.19], I2= 0%,
P=0.79) . A forest plot is shown in Fig. 8.

Activities of daily life

In nine trials8,27,30,45,48,50,53�55 with 550 participants and
several outcome measures. A meta-analysis revealed a
significant difference between the groups but the overall

effect size was low. However, the statistical heterogeneity
was moderate. (smd = 0.25, 95% CI, [0.02 to 0.49],
I2=43.0%, p=0.04). A forest plot is shown in Fig. 9.

Non-immersive virtual reality Vs CT(Long term Effects)

Upper limb function and activity

Two trials, studied the long-term effects of VR on upper
limb function using FM as the outcome measure. A meta-
analysis was not done due to high statistical heterogeneity
in the data. However, in27 with a population of 64 partici-
pants, after 15 weeks follow up, greater improvements
were reported in the VR group but there was no signifi-
cant difference between the treatment groups. The overall
effect size was small. (VR:40.4 § 20.7, CT:34.5§ 19.5,
smd=0.29, 95% CI[-0.20,0.78]). While in,54 with a popula-
tion of 23 participants, after 1-month follow-up, VR

Fig. 3. Forest plot of comparison: IVR Versus CT (Short term Effects), outcome: Activities of Daily Life.

Fig. 4. Forest plot of comparison: NIVR Vs CT (Short term Effects), outcome: 3.3 BBT.

Fig. 5. Forest plot of comparison: Non-Immersive VR Vs CT (Short term Effects), outcome: TUG.

Fig. 2. Forest plot of comparison: 1 IVR Versus CT (Short term Effects), outcome: FM

COMPUTER-MEDIATED THERAPIES FOR STROKE REHABILITATION 15



significantly improved with a large effect size (VR:5.3§
1.1, CT=1.3§0.8, smd=3.87, 95% CI[2.38,5.36]).
In two studies53,8 with 153 participants, upper limb activ-

ity was measured by BBT. After 2 months53 and 4 weeks8

follow up assessment, there were no significant differences
between the groups. (smd = -0.06 95% CI [-0.38, 0.26], I2=
0% P = 0.78).A forest plot is shown in Fig. 10.

Lower limb activity

Only one trial45 with a total of 47 participants reported
long-term effects on lower limb activity. Three months

after intervention using TUG, greater improvements were
reported in the VR group. However, there was no signifi-
cant inter-group difference (NIVR: -23.52§10.96, CT:-
28.67§18.73, smd = 0.34, 95% CI [-0.24, 0.92]).

Balance

In One trial45 which used BBS as the outcome measure,
a follow-up assessment conducted 3 months post-inter-
vention with 137 participants reported no significant dif-
ference between the two intervention groups. (VR: 46.31§
5.8, CT 45§5.06 smd= 0.23, 95% CI [-0.34 to 0.81]).

Fig. 6. Forest plot of comparison: NIVR Vs CT(Short term Effects), outcome: 10mW.

Fig. 7. Forest plot of comparison: NIVR Vs CT(Short term Effects), outcome: BBS.

Fig. 8. Forest plot of comparison: NIVR Vs CT(Short term Effects), outcome: QOL.

Fig. 9. Forest plot of comparison: NIVR Vs CT(Short term Effects), outcome: ADL.
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Quality of life and participation

Four trials8,27,41,45 with 406 participants, conducted a
post intervention follow-up on the quality of life.
Improvements were noted in both groups without sig-
nificant intergroup difference (smd=0.04, 95% CI[-0.15
to 0.24], I2=0.0%, p= 0.67). A forest plot is shown in
Fig. 11.

Activities of daily living

6 trials8,27,30,41,45,53 with a total of 493 participants,
reported a follow-up post-intervention. A meta-analysis
of results revealed no significant difference between the
groups. (smd, = 0.00 95% CI [-0.22, 0.23],I2=28.0%, p=
0.97). A forest plot is shown in Fig. 12.

Adverse events

Eight trials monitored adverse events.8,23,27,29,30,45,58,59

However, no serious adverse event related to the treat-
ments was reported.

Discussion

This work investigated the effectiveness of IVR and
NIVR compared to conventional therapy for stroke reha-
bilitation based on 22 included trials.
In general, the statistical analysis revealed that both VR

interventions positively affected patients' functionality in
a comparable way to CT.
As a comparison of NIVR to CT, this meta-analysis

discovered positive improvement in treatments in favor
of VR with small to medium effect sizes but with no sig-
nificant difference between the different techniques.
Higher values of effect sizes in favor of the NIVR indi-
cated that patients had improvements in upper limb
function and activity, mobility, balance, and ADL. How-
ever, their level of independence, which is the aim of
rehabilitation strategies did not improve as their counter-
parts who received CT. The magnitude of this effect was
comparable to that observed in previous systematic
reviews. They concluded that using VR-based therapy
systems enhanced upper limb function, quality of
life,18,20 mobility, and balance21 in people with stroke
but not significantly greater than CT. There is an indica-
tion that VR may alleviate upper limb motor

Fig. 11. Forest plot of comparison: NIVR Vs CT (Long Term Effects), outcome: Quality Of Life.

Fig. 10. Forest plot of comparison: NIVR Vs CT (Long Term Effects), outcome: Upper Limb Activity. BBT.

Fig. 12. Forest plot of comparison: NIVR Vs CT (Long Term Effects), outcome: ADL.
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impairments and encourage motor activities and societal
participation among stroke survivors.
More improvements in VR could be due to several cru-

cial factors. The first may be the ability to provide thera-
pists with various training programs. The therapist may
select different treatment modes and construct an individ-
ualized training program that adapts the intensity and
difficulty level of the training to the patient's current
motor status.60 The potential of VR to scale difficulty lev-
els and give adequate rewards to users in the context of
gaming and level progression is vital to the implementa-
tion of effective VR training systems. Secondly, VR sys-
tems incorporate task-specific workouts in addition to an
appropriate level of exercise intensity and repetition, from
which patients can benefit. The majority of the included
trials in our review comprised graded training regimens
to induce optimal neural plasticity and continuous active
engagement, both of which are essential for successful
motor recovery after a stroke.61 A recent review found
that custom-built VR systems had a more significant effect
on the recovery of upper limb extremity function and
activity than using CT.62 Customized VR systems are usu-
ally constructed based on a valid hypothesis to provide
an effective rehabilitation regimen beneficial to
patients.19,61,63 Therefore, the ability to configure a VR
therapy system with multiple training alternatives may
be critical for upper-limb rehabilitation of motor deficits
following stroke. Another reason could be the numerous
types of sensory feedback like visual and aural present in
VR therapeutic systems, which make the training more
enjoyable. The use of virtual reality (VR) can assist in the
creation of environments in which more repeated actions
are done in a playful context, hence enhancing motivation
and adherence to therapy. The majority of the selected
studies have taken into account this essential factor, either
through participation scales or questionnaires assessing
the level of motivation.
By differentiating the effects obtained by immersive

and non-immersive solutions, our evidence suggests that
IVR may be more beneficial than NIVR for upper limb
function and daily life activities. However, it is important
to note that the results of IVR intervention are based on
short-term effects and few studies with a limited number
of participants. We observed that the effect size values of
the results from studies that used IVR were higher than
NIVR.
A possible reason behind this phenomenon may be the

missing depth cues in the 2D environments that character-
ize NIVR applications.64

Piggott et al. (2016) observed in their study that subjects
using 2D VR systems such as cyber gloves tend to
decrease their wrist extension.65 This could be resolved by
using a head-mounted display (HMD). On the contrary,
IVR systems take into account depth cues,17 which are
responsible for accelerated cortical reorganization,66 thus
allowing the central nervous system to control the

position and orientation of body segments and adapt to
the simulated environment.
The effect of different neurological characteristics on VR

rehabilitation outcomes also needs examination. Some
studies suggest that hemorrhagic stroke may result in
more severe cognitive, motor, and functional impairment
than ischemic stroke.68,69 Future investigations would
benefit from a comparison of these stroke types to test the
impact of both forms of VR.
The absence of adverse events related to the treatment

suggests that NIVR can be considered a safe treatment.
This data is consistent with results from a review by Laver
et al.,18 who found little or no adverse events from VR
treatment after stroke. This was because most studies
took place in settings that applied extra safety measures
such as supervision or walking harnesses in a laboratory
or rehabilitation setting. It would also be important to
note that IVR studies did not monitor occurrence of
adverse events among participants, therefore it would
important to examine the safety and psychological out-
comes associated with the use of head mounted displays.

Limitations

The presented results should be interpreted considering
some limitations. High heterogeneity in the data made it
difficult to perform a meta-analysis of results for some of
the outcomes of interest. For example, a meta-analysis on
the beneficial effects of NIVR on upper limb function
using FM was not feasible.
There was a high diversity between the VR training sce-

narios, which made comparing the results across the studies
difficult. Therefore, we could not make a firm conclusion on
the benefits of this technology compared to CT, though all
studies reported post-intervention improvements.
The IVR studies were single-center designs character-

ized by high dropout rates mainly due to medical reasons
and compliance issues17 reported a high dropout rate in
the CT group (22.5%) and (23%) in the IVR group. Our
results should be validated on additional works based on
larger populations.
Another limitation was the wide variety of outcome

measures used in the included articles, which precluded
the possibility to compare different evidence across stud-
ies, as trials used different versions of the same scale or
different measuring units.
NIVR is already established and has many studies. On

the contrary, the utilization of IVR systems for motor
rehabilitation programs is still in the early stages. IVR is a
relatively new technology and remains partially known,
with a lot of the work limited to pain and phobias
treatment.13,67 There are few RCTs on the effectiveness of
immersive virtual reality systems in stroke rehabilitation.
Furthermore, we did not find studies that examine the
long-term benefits of IVR, and therefore more trials are
needed to validate the intensity of efficacy.
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Additionally, most of the included trials had small sam-
ple sizes, which resulted in low certainty in the effect
measures and low statistical power. We recommend
larger studies in the future, with power calculations point-
ing to more than 25 participants per group.

Conclusion

This study on the efficacy of virtual reality therapies
applied to the rehabilitation of patients with stroke high-
lights the benefits of VR. However, evidence of the clinical
effectiveness of the different forms of virtual reality (as
either immersive or non-immersive) is scarce. Results
from this review suggest that IVR therapies may be more
effective than NIVR but not CT to improve upper limb
activity, function, and daily life activities. The results of
IVR intervention are based on short-term effects with
small effect sizes. Therefore, there is no evidence that IVR
treatment is long-lasting. NIVR provides the same bene-
fits as CT for mobility, balance, quality of life, and daily
life activities among patients with stroke. While the cur-
rent literature evaluates VR as a viable alternative to con-
ventional therapy in stroke rehabilitation, much attention
is accorded to non-immersive solutions due to their wide
use in clinical and research fields. By exploiting the
increasing use and availability of IVR systems, additional
controlled trials with larger sample sizes should be carried
out in the future to reliably assess the long-term effects
and promising benefits of this technology.
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Chapter 3

Motion Planning

Summary

This chapter describes the generation of a safe motion scheme that considers the
obstacles present in a Virtual Reality (VR) environment. It explains the stages of
development of the work using MoveIt software in ROS to control a UR5 industrial
robot. This was done by setting up the planning group, which is conformed by
the UR5 robot and a 6-faced prop and the base of the manipulator to plan feasible
trajectories for it to execute within the environment. The study was based on
the analysis of the material in the vehicle’s interior. A person inside the cockpit
is to be taken into account as an obstacle. Different software capabilities and
options for path planning, along with the different ways of executing motions,
were studied, and different path planning algorithms were compared to find the
software that best suits the task. Furthermore, I proposed different mobility
schemes for the robot to execute depending on the situation faced.
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Abstract. In a human-robot interaction system, the most important
thing to consider is the safety of the user. This must be guaranteed in
order to implement a reliable system. The main objective of this paper
is to generate a safe motion scheme that takes into account the obstacles
present in a virtual reality (VR) environment. The work is developed
using the MoveIt software in ROS to control an industrial robot UR5.
Thanks to this, we will be able to set up the planning group, which is
realised by the UR5 robot with a 6-sided prop and the base of the ma-
nipulator, in order to plan feasible trajectories that it will be able to
execute in the environment. The latter is based on the interior of a vehi-
cle, containing a user (which would be the user in this case) for which the
configuration will also be made to be taken into account in the system.
To do this, we first investigated the software’s capabilities and options
for path planning, as well as the different ways to execute the move-
ments. We also compared the different trajectory planning algorithms
that the software is capable of using in order to determine which one is
best suited for the task. Finally, we proposed different mobility schemes
to be executed by the robot depending on the situation it is facing. The
first one is used when the robot has to plan trajectories in a safe space,
where the only obstacle to avoid is the user’s workspace. The second one
is used when the robot has to interact with the user, where a mannequin
model represents the user’s position as a function of time, which is the
one to be avoided.

Keywords: Trajectory planning, Human safety, Haptic interface, Intermittent
contact interface

1 Introduction

In human-robot interaction systems, knowing how to compute a path for the
robot to follow, while taking into account the human position, is a crucial task
to ensure the safety of the individuals around the robot. This is where path and
trajectory planning plays its role in the field of robotics, where achieving real-
time behaviour is one of the most challenging problems to solve. The result is
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a constant demand for research into more complex and efficient algorithms that
allow robots to perform tasks at higher speeds, reducing the time they need to
complete them, resulting in increased efficiency. But this also comes at a cost: to
achieve higher speeds and shorter times, robot actuators must work under more
demanding conditions that can shorten their overall life or even damage their
structure. High operating speeds can also affect the accuracy and repeatability
of manipulators. Therefore, it is important to generate well-defined trajectories
that can be executed at high speeds without generating high accelerations (to
avoid robot wear or end effector vibrations during stopping). Path planning is
the generation of a geometrical path from an initial point to an end point and
the calculation of the crossing points between them. Each point of the generated
trajectory is supposed to be reached by the robot end effector through a specific
movement. When the robot is supposed to interact with a human, its velocity and
acceleration must be zero at the end of the trajectory. Another important element
to take into account is the environment in which the task or the movement is
going to be performed. This is what allows the system to identify the robot’s
environment and the colliding objects that might be present, thus determining
the areas in which the robot must be constrained or limited to ensure the safety
of the user.

The Lobbybot project is a project that allows interaction between a user and
a cobot. These interactions allow for the creation of a touch-sensitive interface
or intermitant contact interface (ICI). The scenario used allows the user to be
inside a car with the possibility to interact with its environment by getting a
sensory feedback of the different surfaces thanks to a 6 faces prop providing the
different textures. Due to the immersion of the user via a VR headset, the system
must ensure the safety of the user, as he cannot see the location of the robot.
Therefore, it is necessary to implement trajectory planning techniques to be able
to avoid unwanted interactions between the robot and the user. To do this, the
system must take into account the obstacles present (environment or user). A
virtual mannequin is modelled using data from the HTC Vive trackers which
provide an estimate of the user’s position, and will give the system a model to
plan the movements. Thus, the goal of the LobbyBot project is to provide an
immersive VR system that is safe for the user and gives them the ability to
interact with the environment at different locations, providing a new level of
interaction between VR environments and the real world.

2 State of the art

2.1 Intermittent contact interface

In the area of human-robot interaction and haptic perception, the ability to
reproduce the sense of touch to appreciate different textures and motion sen-
sations through the use of cobots has been addressed in [1], where a rotatable
metaphorical accessory approach (ENTROPiA) has been proposed to provide an
infinite surface haptic display, capable of providing different textures to render
multiple infinite surfaces in VR (virtual reality). Studies in [2] [3] have focused
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on the perception of stiffness, friction, and shape of tangible objects in VR using
a wearable 2-DoF (degrees of freedom) tactical device on a finger to alter the
user’s sense of touch. In [4,5], a 6-DoF cobot is used in a VR environment to
simulate the interior of a car, where interaction between the robot and the user
is expected just at specific, instantaneous points. This proposal is to use ICIs
(Intermittent Contact Interfaces) [6] to minimise the amount of human-robot
interactions to increase safety. In order to use the proposed implementations in
this study in a real-time environment that involves human movement, it is im-
portant to ensure the safety of both the user and the robot to avoid potential
collisions or accidents. This is where it is necessary to implement proper path
and trajectory planning, in order to determine a feasible path to the desired goal,
while avoiding interaction with the human until said goal is reached, generating
a human-robot interaction just at the desired time.

2.2 Path Planning

Path planning refers to the calculation or generation of a geometric path, which
connects an initial point to an end point, passing through intermediate via-
points. These trajectories are intended to be followed by the end effector of a
robot in order to execute a desired task or motion. This geometric calculation
is based on the kinematic properties of the robot as well as its geometry (in-
cluded in its workspace). In the simplest case, path planning is performed within
static and known environments. However, this problem can also be generated for
robotic systems subjected to kinematic constraints in a dynamic and unknown
environment.

Path planning can be done using a previously known map. This is called
global planning. This method is commonly used to determine the possible paths
to follow to reach the final position. It is used in the case of a known and static
environment, where the position of the obstacles does not change. This operation
can be performed offline, as it is based on previously known information. In the
case of dynamic environments, it is necessary to perform local path planning,
which relies on sensors or any other type of interface providing data to obtain
updated information about the robot’s environment. This planning can only be
done in real time, as it depends on the dynamic evolution of the environment.
Figure 1 presents the main differences between local and global path planning
[7,8].

There have been multiple proposals on path planning algorithms over the
years. In [9], one can find a review of the basics and workings of the most
common algorithms most commonly found in the robotics literature. The main
methods are the following:

– The Artificial Potential Fields (APF) approach [8] introduced by O. Khatib
in 1985 and further developed by [10] [11].

– The Probabilistic Road-maps approach [7] consists in generating random
nodes in the configuration space (Cspace) in order to generate a grid (so
called, the road-map).
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Fig. 1. Global [7] and local [8] path planning.

– The Cell Decomposition algorithms [12].
– The Rapidly Exploring Random Trees (RRTs) [13], introduced by S. LaValle

in 2001 as an optimisation from the classical Random Trees algorithm.

2.3 Algorithm Comparison

In robotics, path planning is one of the most difficult tasks in real-time dynamic
environments. Among the presented algorithms, APF and its variations offer a
good adaptation to path planning in dynamically changing environments, where
any obstacle entering the Cspace generates a new repulsive field that can be taken
into account to generate a new path. But the local minima problem requires the
use of alternative algorithms to overcome it.

The case of PRM, it is well known for its ability to find a path without
needing to explore the whole Cspace, but it is also a graph based algorithm,
which requires the use of shortest path method like A∗. It works well in static
environments and can handle initial and final configuration changes, but if the
objects in Cspace change position, the connections between the nodes must be
redone. Some alternatives propose to keep the previously generated nodes and
recheck whether they belong to Cfree or Cobs, then rebuild the graph based on
this information and find a new path. This is also the case for cell decomposition
methods, where the graph search has to be reconstructed again. Nevertheless,
these methods have proven to be viable options in real time, capable of adapting
to a dynamic environment.

Finally, regarding the RRT and RRT* methods and their alternatives, they
are known to be good path planning methods, with the limitations that the gen-
erated trees are related to the initial configuration and have high computational
demands. The proposal of the different alternatives allows to obtain very optimal
real-time path planners. The limitations of this type of algorithms are that they
require a large memory capacity, as the entire tree must be stored at all times,
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and that they only work in bounded environments, with unbounded and long
distance environments remaining a challenge.

2.4 Setup of the experimentation

In this section, we will present the tools used in the development of the project,
such as the laboratory system, the software used, a description of the system
environment as well as the laboratory setup.

System Architecture The architecture of MoveIt is based on two main nodes,
the node move group and the node planning scene, which is part of the first one.
The move group node is responsible for obtaining the parameters, configuration
and individual components of the robot model being used, in order to provide
the user with services and actions to use on the robot.

Within the planners available in the OMPL library there are:

– PRM methods (PRM [7], PRM* [14], LazyPRM [15], LazyPRM* [15] [14]),

– RRT methods (RRT [13], RRT* [16], TRRT [17]), BiTRRT [18], LBTRRT
[19], RRTConnect [20],

– Expansive Spacial Trees (EST) methods (EST [21], BiEST [21]).

Collision detection Collision checking in MoveIt is configured within a plan-
ning scene using the CollisionWorld object. Collision checking in MoveIt is per-
formed using the Flexible Collision Library (FCL) package - MoveIt’s main col-
lision checking library.

Kinematics MoveIt uses a plugin infrastructure, specifically designed to al-
low users to write their own inverse kinematics algorithms. Direct kinematics
and Jacobian search are built into the RobotState class itself. The default in-
verse kinematics plugin for MoveIt is configured using the KDL numerical solver
[22] based on Jacobians. This plugin is automatically configured by the MoveIt
configuration wizard.

ROS-Industrial ROS-Industrial is an open-source project that extends the
advanced capabilities of ROS software to industrial hardware and applications.
For this project, we used the ROS-Industrial-Universal-Robots metapackage [23],
which provides and facilitates the main configuration files for the use of Universal
Robots cobots in the ROS environment, providing the different descriptions of
the robot, configuration files such as joint boundaries, UR kinematics, etc.. This
package also facilitates the use of the robot in MoveIt, providing the setup for
its use in simulation or in real implementations.
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HTC Vive The HTC Vive is a motion tracking system that allows users to
be immersed in a VR system [24]. It consists of trackers, which can attach to
any rigid object, and work with the VR headset. The tracker creates a wireless
connection between the object and the headset and then allows the user to
represent the objects movements in a virtual world.

Laboratory Setup The laboratory setup consists of a UR5 robotic system and
a car chair in a face-to-face configuration (Figure 2). The location and height of
the robot was determined by [4] to be 75 cm above the floor. This position is
optimal enough for the robot to reach all the interaction points that the system
is interested in reaching. For the user, the VR headset and trackers are attached
to the body (the humerus and palms), in order to obtain data and locate the
user’s location in the VR environment (Figure 3).

Fig. 2. Laboratory Setup

Fig. 3. Conceptual scheme of the exper-
imental platform

3 Selection of the optimal trajectory planning and its
application

We present the setup associated with the choice of the optimal trajectory gener-
ator available within the MoveIt software and its application for the LobbyBot
project.

3.1 MoveIt Setup

The installation of MoveIt consisted of configuring and defining the planning
group, as well as making it compatible to work in Gazebo. The start-up phase was
very important to analyse the behaviour of the different movement alternatives
found in the MoveIt API. For this, it was important to configure the simulation
environment in Gazebo so that we could test without compromising the real
robot.
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3.2 Planning group

The planning group is defined as the group of elements that make up the entire
robotic system. These are the UR5 robot, the 6-faced prop and the robot support.
These three elements are the ones that the trajectory planning algorithms must
consider in order for them to avoid any collision state existing with one of these
elements. The robot support was modelled to match the size of the real system
that was optimally defined [4]. For the configuration of the plannig group, MoveIt
has an integrated graphical interface to create all the configuration files related
to the kinematics, controllers, Semantic Robot Description Format (SRDF) and
other files for the usage of the robot in ROS. This interface is called MoveIt Setup
Assistant. The MoveIt Setup Assistant creates all the mentioned files based on
the robot description given to it, in this case the UR5 robot description files
provided by [23] where taken and modified to include the robot support (included
in the URDF definition of the robot) and also the mesh file for the prop.

3.3 User’s Model

To model the user, a mannequin was defined in a URDF robot model. The main
torso of the model is fixed, while the arms are structured as a serial robot with
seven revolute joints, where the first three constitute the shoulder, the fourth
joint represents the elbow, and the last three revolute joints represent the wrist of
the arm. In the model, two small dots have been created in the humerus and palm
links, which represent the location of the sensors in the user, as shown in Figure
4. Regarding the movement of the mannequin model, a kinematic model has
been developed in parallel to this project in [25], where the connection between
the sensor data and the model is defined. This will allow the system to recognise
the user’s movements and represent it in the simulation 4.

Fig. 4. Planning group and mannequin model of the user
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3.4 Motions

To generate collision-free trajectories, the different algorithms implemented in
the MoveIt API have been analysed. All the tasks related to planning group
movement are handled by the move group class. By specifying the planning
group we want to consider, we are able to use all the different functions that
the class offers for it, such as getting information about the current values of
the joints, the target, configuring the planning algorithm we intend to use, and
performing the planning and execution of the movements in the environment.

Types of movement The move group class has the ability to perform path
planning through different types of movements. These options can be chosen
according to the nature of the task. For example, we can define a given pose in
workspace or a desired joint value as the goal. Given the nature of the system,
we will work with joint value goals, as we hope to achieve the different points in
a specific configuration that provides a higher level of safety to the user (elbow
up configuration for the UR5).

Another important feature is the ability to specify whether one wants to
achieve each of the requested objectives or not. As the implementation will
receive constantly changing goals, the best implementation is to plan and move
towards said goal by allowing the system to replan if the goal changes, meaning
that we do not need to reach the initial goal. To do this, the move group class
relies on the move group.execute(my plan) function to strictly reach the goal
and on the move group.asyncExecute(my plan) function to execute the planned
path with the possibility of re-planning during this execution.

In Figure 5, two trajectories are calculated from an initial configuration, to
an intermediate goal, and then to a final goal. In this case, by using the function
move group.execute(my plan), we ensure that the robot will completely execute
each of the trajectories and achieve both goals. This is illustrated in Figure 5,
where the speeds drop to zero as the robot comes to a stop.

Fig. 5. Planned paths using move group.execute(my plan): Back-to-back plans (left)
and Velocities for both plans (right).

In the case of figure 6, we have calculated the same two trajectories as be-
fore, but using the function move group.asyncExecute(my plane), which allows
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replanning during the execution of the first plane. In this case, in figure 6(a), we
can see the two plans one after the other, while in figure 6(b), we show the rep-
resentation of the segment that was not executed from the first plan, because a
replanning scenario was set up. In this case, the current positions of the first plan
were taken as the initial positions for the second plan, resulting in Figure 6(c),
showing the two plans that were executed.

(a) (b)

(c)

Fig. 6. Re-planned paths using move group.asyncExecute(my plan)
(a) Back-to-back plans. (b) Segment not executed due to re-planning. (c) Final

executed plan.

Algorithm Selection Another parameter to select was the planning algorithm
that best suited the task. As mentioned earlier, MoveIt has several built-in path
planning algorithms that can be used. In order to determine the best option,
we went through all the available options and performed a planning task to
a desired target configuration, measuring the time required for each algorithm
and recording the data. We ran each of the 12 available planning algorithms five
times through nine different paths. We then took the average time it took them
to find a solution, to simplify the trajectory (only for the algorithms that had
this feature) and calculated the total average time. Using this data, we were able
to select the algorithms that performed best with the shortest planning times
(Figure 7).

After performing these calculations, given the large difference in planning
times for some of the algorithms, we select the six best algorithms to compare
them on 12 trajectories (Figure 8).
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Fig. 7. Comparison of all planning algorithm’s times for nine trajectories

Fig. 8. Comparison of best planning algorithm’s times for 12 trajectories

Another analysis that allowed us to select the algorithm which behaved the
best for the implementation, was to perform an analysis on the generated tra-
jectories with each one of the algorithms for a fixed task. Based on the six best
algorithms from the previous analysis as a starting constraint, we computed
the average execution time and via-points number for a set of trajectories. The
BiTRRT algorithm wins for both comparisons.

Fig. 9. Comparison of average execu-
tion times of the algorithms.

Fig. 10. Comparison of average amount
of generated via-points.

This analysis was performed for the same trajectories as in the previous
graphs for a total of ten iterations for each algorithm, but instead of considering
only the computation time (Figure 9), we also took into account the amount of
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via-points generated (Figure 10). Between each via-point, a linear interpolation is
performed in the joint space. For theses trajectories, the mannequin was placed in
its seat so that it was avoided in the calculation, in order to test each algorithm’s
ability to plan around it. This also allowed us to see how consistent the behaviour
of each algorithm was.

Unity’s Virtual Environment In parallel to the development of the project,
and to better explain the developed implementation, it is important to specify
how it will fit into the project. The system will receive a desired goal configu-
ration which will be the qgoal for the planning algorithm, from the current qinit
configuration. This goal selection is done in Unity by a Point selection algorithm
which determines the interaction point the user intends to reach [26] (Figure 11).

3.5 Planning Scene

For the definition of the planning environment and scene, MoveIt has instances
that allow the manipulation and monitoring of the scene to keep it up to date.
These instances are :

– PlanningSceneInterface: Is responsible for adding and removing objects in
the scene.

– PlanningSceneMonitor: Takes care of keeping track of the planning scene in
order to keep it updated.

The last of these instances is absolutely necessary to perform the collision check,
as we need to ensure that the scene being processed is the last one available.

3.6 Mobility Schemes

Based on the Unity information, two different motion or mobility schemes and
scenarios has been proposed depending on the nature of the task we want to
achieve at the moment. One for which no interaction with the user is required,
and another one for when it is. These two scenarios have their own environment
to consider, presenting in general two different behaviours.

Movement outside user’s workspace The first scenario is based on [26]
where a distinction for velocity zones is made and where a plane divides the
environment (space with the user and space where the user cannot go).Based on
the same idea, we represented the effective working space of the mannequin as
a sphere surrounding the model (Figure 12).

The mobility scheme consists of alternating between different “Safe posi-
tions”. These positions are so called because they are points out of reach of the
user, which means that there is no need to constrain the robot’s speeds. There-
fore, the movement from one point to another just has to take into account the
defined sphere, as we do not want to “collide” with it. Following this idea, we
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Fig. 11. Unity VR system and represen-
tation of interaction points

Fig. 12. Representation of the user’s ef-
fective workspace as a sphere

have performed a calculation of all existing trajectories between the different
“Safe positions” and stored them in a data file. This allows us to perform of-
fline path planning, and then at runtime, depending on the initial and desired
goal, we can access the pre-calculated paths to execute them directly, eliminating
the computational time that would otherwise be required by performing online
planning. The algorithm 1 allows the storage of the trajectory.

Then, the second part of the device consists of loading the pre-registered data
and being able to use them on demand (Algorithm 2). We wait until we know
the position we want to reach. Unlike [26], we have used a spherical surface
here to divide the two areas of the space instead of a plane, as this allows
greater flexibility for the planning group to consider more configurations when
calculating the path between points. It also allows for more feasible trajectories
for the robot.

Fig. 13. Moving obstacles

Movement inside user’s workspace The second mobility scheme has been
proposed for the scenario where the robot end effector has to go inside the user’s
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Algorithm 1 Trajectory computation and storage

Require: Number of points nop. A counter for start point i. A counter for final point
j

1: start name[nop] ← {Store id of the points}
2: final name[nop] ← init names[nop] {Same id’s as we are iterating through all

points}
3: for i < 0 ; i < nop ; i + + do
4: for j < 0 ; j < nop ; j + + do
5: if i 6= j then
6: Ø ← Plan and Exec to(points[i]) {Move to initial point of the plan}
7: plan array[i][j]← Plan and Exec to(points[j]) {Move to desired point and

keep the planned trajectory}
8: end if
9: end for

10: end for
11: {Store all as a structured message}
12: for i < 0 ; i < nop ; i + + do
13: for j < 0 ; j < nop ; j + + do
14: if i 6= j then
15: init pos id ← start name[i]
16: goal pos id ← final name[j]
17: plan ← plan array[i][j]
18: end if
19: end for
20: end for

workspace, which means that the movements have to take into account the user’s
model in order to avoid any collision with him. We also have to take into account
that the speed of these movements must be limited, in order to ensure safety.

Unlike the first scheme, in this case the environment consists of moving ob-
stacles, which requires constant updating of the scene and constant tracking of
the objects in it (Figure 13). For this reason, we used the images of the man-
nequin model to obtain its current positions and orientations in order to track
their movement and link it to the objects created in the scene.

We also need to be able to determine whether a computed plan will collide
or not, which requires taking several aspects into account. First, based on the
calculated path to the desired goal, we check whether the path remains valid
during the execution of the plan. To do so, we check for all calculated via-points
of the path, whether the respective configurations are currently colliding with
any other object present in the scene. If there are no collisions, we continue the
execution. In the case of a collision present in any of the remaining states of
the path, we instruct the robot to stop the execution of the computed path and
replan it based on the updated scene information.

To test our framework, we performed an initial trajectory planning. Then,
during the execution, we created an obstacle. Then, by checking the validity
of the trajectory, we are able to detect that an object is in collision with the
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Algorithm 2 Trajectory upload and execution

Require: A desired frame to go to des frame. A home pose home. Number of ele-
ments noe. Initial positions init pos id. Goal positions goal pos id. Planned tra-
jectories plan. A counter i.

1: for i < 0 ; i < noe ; i + + do
2: {Extract the data from the file}
3: start name[i] ← init pos id[i]
4: final name[i]← init names[i] {Same id’s as we are iterating through all points}

5: plan array[i] ← plan[i]
6: end for
7: Ø ← Plan and Exec to(home) {Move to home pose}
8: {Reference to home position as current}
9: init frame ← “home′′

10: aux des frame ← “home′′

11: while running do
12: if des frame == init frame then
13: {The robot is in position.}
14: else
15: aux des frame = des frame {Update the desired position}
16: for i < 0 ; i < noe ; i + + do
17: {Search in the list of plans the one that matches the init and final frames}
18: if (start name[i] == init frame) and (final name[i] ==

aux des frame) then
19: execute(plan array[i])
20: init frame ← aux des frame
21: end if
22: end for
23: end if
24: end while

planned trajectory. We then instruct the robot to stop the current execution and
replan towards the same goal, taking into account the updated planning scene.
This work is intended to be extrapolated to work according to the size of the
mannequin. Thus, we can take into account the user moving in the environment
as an obstacle to be avoided (Figure 14).

4 Conclusions

In this paper, we have presented motion generation algorithms that can be used
by a cobot to create an intermittent contacts interface. A framework was pre-
sented including a UR5 cobot, ROS nodes, HTC Vive sensors and a car chair.
Taking into account the objects present in the environment, a comparison of
trajectory planning algorithms is presented. The selected algorithm is then used
in two examples. An experimental validation is in progress and will be presented
in the final version of the paper.
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Fig. 14. Original planned path (left) and Re-planned path from detected collision
(middle and right)
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Chapter 4

Motion strategies for a haptic
interface for industrial
application

Summary

This chapter describes movement strategies for the robot to be as fast as possible
in the contact zone while guaranteeing safety. This work uses the concept of
predicting the user’s intention through his gaze direction and the position of his
dominant hand (the one touching the object). A motion generation algorithm is
proposed and then applied to a UR5 robot with an HTC vive tracker system for
an industrial application involving the analysis of materials in the interior of a
car.
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du Numeŕique de Nantes,

UMR CNRS 6004,
1 rue de la Noë,

44321 Nantes, France
e-mail: Vamsikrishna.Guda@ls2n.fr

Stanley Mugisha
PMAR Robotics Group, DIMEC,

University of Genoa,
Via Opera pia 15/A,
16145 Genova, Italy

e-mail: Stanley.Mugisha@edu.unige.it

Christine Chevallereau
Laboratoire des Sciences
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Motion Strategies for a Cobot
in a Context of Intermittent
Haptic Interface
From the list of interfaces used in virtual reality systems, haptic interfaces allow users to
touch a virtual world with their hands. Traditionally, the user’s hand moves the end-effector
of a robotic arm. When there is no contact in the virtual world, the robotic arm is passive;
when there is contact, the arm suppresses mobility to the user’s hand in certain directions.
Unfortunately, the passive mode is never completely seamless to the user. Haptic interfaces
with intermittent contacts are interfaces using industrial robots that move towards the user
when contact needs to be made. As the user is immersed in the virtual world via a virtual
reality head mounted display (HMD), he cannot perceive the danger of a collision when
he changes his area of interest in the virtual environment. The objective of this article is
to describe four movement strategies for the robot to be as fast as possible on the
contact zone while guaranteeing safety. This work uses the concept of predicting
the user’s intention through his gaze direction and the position of his dominant hand (the
one touching the object) and safe-points outside the human workspace. Experiments are
done and analyzed with a Pareto front with a UR5 robot, an HTC vive tracker system
for an industrial application involving the analysis of materials in the interior of a car.
[DOI: 10.1115/1.4054509]

Keywords: cobot, human motion prediction, human safety

1 Introduction
The aim of virtual reality is to immerse a human being in a virtual

environment using all his senses. In most collaborative systems, the
main senses are sight, then hearing, and finally, touch [1]. The sense
of vision can be rendered using large screens that occupy the user’s
entire field of vision or using a head mounted display (HMD). In the
latter case, the user’s vision becomes completely disconnected from
the real world and all his movements can become dangerous. In
some cases, user may lose his spatial landmarks and have the
feeling of falling on the ground. Sound immersion further increases
this immersion and separation from the real world. By using immer-
sion HMD and headphone, the user can free himself from his
environment.
Haptic interfaces, such as Virtuose 6DOF [2], are used in product

design by engineers [3]. In Refs. [4,5], a five-fingered haptic

interface robot with a 6 degree of freedom (DOF) arm and a 15
DOF hand was used to provide multipoint contact between the
user and a virtual environment through force and tactile feeling to
the fingertips of the human hand. These interfaces are safe and
well mastered, but if the user can apply force/torque, he cannot
really feel the textures and appreciate the quality of the materials.
Among the main shortcomings of these interfaces are limited work-
space, low stiffness, and high cost.
New haptic interfaces using an industrial robot or a cobot (robots

specially designed to work in human–robot environments) can be
used as haptic interfaces with intermittent contacts [6]. For the
application envisaged in this document, the cobot carries several
texture specimens on its end-effector to allow contact between a
user’s finger and the robot. They are called intermittent contact
interfaces (ICIs) [7].
When the user uses HMD vision interfaces and has to perform

haptic evaluations, he no longer sees the real scene, but only a
virtual world. His physical reference points quickly disappear
except for objects he touches such as his seat and the floor.
When users reach to grasp objects, they look at the target first,

then bring the hand to the center of gaze to grasp the object.
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Eye-hand coordination is a fundamental behavior that humans use
to interact with the world [8–10]. The head movement facilitates
subsequent gaze shifts toward the future position of the hand to
guide object manipulations, thus leading to a strong correlation
between head and hand movement parameters [11–13].
Through the user’s gaze and hand movements, as well as the

position of areas to be studied, it is possible to predict the tasks
that the user will perform. The purpose of this study is to ensure
that the robot end-effector will be available for intermittent
contact in complete safety when the human hand is close to the
surface to touch.
The outline of this article is as follows. First, we present the

context of the study and the material used. Then, a human–robot
interaction framework is introduced with its hardware, the virtual
environment, and its data flow. Next, we present two velocity pro-
files to ensure user safety and improve the performance of our
system by introducing safe-points. Four strategies are then intro-
duced to predict the intention of the user by taking into account
the movement of his hand and his gaze, and five criteria are intro-
duced to characterize the performance of these strategies. This
work concludes with an experiment and analysis based on seven tra-
jectories recorded from three users. From this analysis, several
Pareto fronts are calculated.

2 Description of the Context
The context of the study is the evaluation of the perceived quality

of a virtual car interior during the first design phases. In a given sce-
nario, the user sits in the real world for a visual virtual reality expe-
rience inside the car. The userwears aHMDand cannot see the robot,
which explains the safety problem (Fig. 1).While the user is trying to
interact with the virtual object of the environment, the robot must
come and position a sample of the material associated with the
local surface to provide a tactical sense of touching the object
[14,15]. A motion capture system based on HTC vive trackers is
used to know the position of the body and especially the hand
used for interaction as well as the position of the chair and the
robot [16] (Fig. 2). Currently, the prop can carry six different mate-
rials. The robot is fixed on a 0.8 m high table and the user sits on a
seat 0.6 m above the floor. The placement of the robot in the scene
has been chosen to be able to reach all the places where the user’s
hand will want to have haptic interaction with the robot’s probe [17].
A virtual model under the UNITY® software represents the fixed

objects in the environment, as well as the moving objects, which
are the robot thanks to the encoders of the motors and the user
thanks to HTC trackers located on the hands and on its seat. The
industry partner provided the virtual model of the car design (Fig. 3).

An industrial robot can perform powerful and fast movements
that can be dangerous for the humans around it. Involuntary
contact between the robot and humans is a threat. This is particu-
larly important in a virtual reality context where humans equipped
with an HMD will not be able to anticipate the robot’s movements.
Today, more than ever, humans work closely with robots. In the
case of ICI, contact is inevitable between humans and robots.
Cobots are best suited to such a scenario, but in terms of human
safety, accident prevention can always be improved [18]. These
robots are designed to work at limited speeds during potential con-
tacts. Moreover, it must be ensured that the desired contact with the
robot during interaction will not result in a necessary restart of the
robot after a safety stop [19].

Fig. 1 Conceptual scheme of the experimental platform with a user touching a prop carried
by a cobot and wearing a HMD [17]

Fig. 2 The complete system setup for human–robot interaction

Fig. 3 The unity environment
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Modulation of the robot’s speed according to the robot’s location
in relation to human is one of our objective.

3 Human Intention Prediction in Virtual Reality
Environment
3.1 Detection of the Target of Human Motion. Robots need

to anticipate human’s future actions and act accordingly while per-
forming collaborative tasks. In most human–robot collaboration
systems, the motion of robots is based on some predefined pro-
grams, which are task-based. However, most tasks are highly
complex and it is difficult to redefine a complete set of instructions
for such situations. In such tasks, the roles of the robot should be
changed from purely automated machines to autonomous compan-
ions. Previous works relied on supervised learning methods to build
models of human motion, which relied on understanding the envi-
ronment, offline training, or manual labeling, adaptation to new
people, and motion styles.
An expectation–maximization (E–M) algorithm and a neural

network to infer human intentions in a three-dimensional (3D)
spacewere used inRef. [20]. Theymodeled a functionwith intentions
as parameters and developed a neural network to learn human arm
dynamics. In Ref. [21], time series analysis for the motion of the
human arm based on demonstrations of human arm reaching
motion, which synthesized anticipatory knowledge of human
motions and subsequent action steps to predict,was used.Acombina-
tion of a two-layer framework of Gaussianmixturemodels and unsu-
pervised learning to predict a remainder of the trajectory from a prior
observed human armmotion in reaching tasks was used in Ref. [22].
In Ref. [23], a Markov decision process to anticipate a belief

about possible future human actions was used by modeling the
human’s and robot’s behavior and then constructed a graph to rep-
resent the human motion and interaction with objects.
Human intention is mainly expressed through the behavior of

humans and the objects they interact with. Most of the current
research on human intention prediction just focuses on action classi-
fication, in which the human action is classified into several catego-
ries, such as running, walking, jumping [24] which is inadequate for
accurate inference of human intention in human–robot collaboration.
We propose an human–robot interaction framework that com-

bines hand motion with gaze direction to build models on the fly
which predict human intention in virtual reality and move the
robot to the required position in a virtual space without offline
training.

3.2 Proposed Model. The aim of the work is for the human to
make contact with different parts of the car, in a design phase where
only a virtual model exists, to be able to assess the quality of the
materials. The areas to be explored are limited, driver’s door, pas-
senger seat, dashboard, and touch pad. Depending on where the
human wants to touch, the robot must position itself so that the
human can touch the appropriate material placed on the probe.
The probe has a certain surface area, so a limited number of
regions of interest (ROI) in the car have been defined that the
robot will have to reach to allow contact with the human. The set
of 18 ROI considered is described in Sec. 3.3. The objective is
therefore to determine as soon as possible the ROI that the user
wants to reach and even more so that the robot’s probe is positioned
as soon as possible on this ROI. If the probe arrives before the
human, the human will be able to make contact without being
aware that he is in a virtual world, otherwise the waiting time
before making contact should be as short as possible.
The major elements involved in our approach are summarized in

Fig. 4. Measurements of the pose of the hand and the gaze direction
via the orientation of the HMD are used to select ROI where the
human hand will touch the prop of the robot.
It should be noted that as the objective is that the robot arrives at

the target as soon as possible, several strategies are possible and can
be combined:

• Detect the target at the earliest.
• Move the robot as soon as possible in the right direction even if

the final target is not yet known.
• Move the robot as quickly as possible.

As we are in a cobotic context with a human locked in a virtual
world that does not see the robot (the robot can also be visualized
in the virtual mode but the immersion will be less), safety is a pri-
ority. A description of the methods implemented to have a fast
speed of movement of the robot and ensure safety will be discussed
in Sec. 4.2.

3.3 Scene Information. From the model of the car in UNITY

virtual reality software, we defined the ROI the user is to interact
with. Each ROI is represented as a capsule placed at the center of
the surface. For each surface, the desired orientation of the probe
is defined. We have defined 18 ROI to be studied inside the car
(Fig. 5). They are located as follows:

• Four capsules on the door.
• Four capsules on the chair.
• Four capsules on the dash board.
• One capsule on steering wheel.
• One capsule on touch pad.
• Three capsules on glove compartment.
• One capsule on speedometer.

Fig. 4 Diagram of the inputs used to choose a robot movement
strategy

Fig. 5 Location of the ROI 1–18 inside the car and safe-points
20–24
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3.4 Architecture of Data Flow. The proposed architecture for
the project describes the different interactions of each element of the
system and provides an overview of how the instances share infor-
mation and communicate with each other, as shown in Fig. 6. The
architecture is a description of how the system works and what tasks
are supported by the different instances.
ROS [25] is the middle ware that communicates with the robot

and UNITY. Based on this information, pre-computed trajectories
are selected so that the robot reaches the desired positions while
knowing the current states of all objects in the scene. Once the
trajectory is selected, we communicate with the UR5 robot using
the ur modern driver. Thus, we can move the UR5 robot with
the robot operating system (ROS) control, and send as output the
current states of the robot’s joints for visualization in UNITY.

4 Safe and Fast Motion of the Robot
4.1 Cobot Motion and User Avoidance. The robot will nav-

igate between a finite number of points which are our ROI.
However, the movements must ensure that collisions with the
human are avoided. To do this, we will generate offline robot move-
ments that ensure that no part of the robot enters an area encompass-
ing the human at rest in the driver’s seat. The area to be avoided is
composed of a sphere and is illustrated in Fig. 7. The dimension of
the sphere covers the human head and torso and part of the arm but
the hands can be outside since they must be able to reach the ROI.
For this, we need to construct 18 × 17 offline trajectories that we
will assemble in line according to the ROI detected to accomplish
the task. These trajectories being close to the human, they are real-
ized with a maximum speed of 0.25m/s to ensure the use of the
UR5 cobot according to the ISO standard for human–robot collab-
oration [26]. This condition guarantees that a possible collision with
the human will not hurt him.

4.2 Definition of Velocity Zones. The robot must be moved
closer to the target point to prepare for the interaction. The move-
ment must be fast so that the robot has arrived before the human

and thus avoid unpleasant waiting but the maximum speed of the
robot must be limited for safety reasons. Figure 8 shows the
scene of the virtual reality (VR) environment, and it consists of
car interior and user model.
Based on this, we distinguish three velocity zones:

• The human workspace (HW), defined as two spheres whose
radius is the size of the arm centered on the shoulders of the
mannequin. This workspace will evolve according to the
movements of the human. We could also consider a constant

Fig. 6 Flow of data between the systems

Fig. 7 In the definition of the robot motion to joint the ROI, the
sphere that represents the user occupancy zone is avoided
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space if we limit the realistic movements of the torso. This
space is represented by blue circles in Fig. 9.

• The inside of the car (IC): this space delimits the area where we
know the human must move. Even if the Unity model is
complex, this zone can be approximated by a larger simple
region that includes the real interior of the car. The gray rect-
angle, in general, represents the entire Unity model and we
define a plane, depicted by the dark line in Fig. 9, that separates
the region that can be reached by the user.

• The free space (FS) cannot contain points that are in the HW.
We can have a certain safety margin to define this zone. In our
example, this zone is simply limited by a plane represented by
a dark line in Fig. 9.

The limit on the robot velocity is chosen according to the space:

• When the robot moves in FS, it can do so at maximum speed
Vm (all parts of the robot are in FS).

• When the robot moves outside of FS, it must move at reduced
speed Vr.

The speeds are chosen such as Vm≥Vr≥ 0. The different spaces
are shown in Fig. 9. The blue hollow circle is the robot workspace,
and two blue-filled circles are the workspace of the user’s hands.
The gray rectangle is the complete interior model of the car and
the dark line is the plane that we use to differentiate the reachable
and unreachable parts of the car by the user.

4.3 Velocity Profiles Based on Zones. To ensure safety and
also have better response time, we defined two velocity profiles
of Vr= 0.25 m/s and Vm= 4 m/s based on the zones defined
above. This idea imposed that we move the robot in the FS. To illus-
trate the idea, we devise the scene as shown in Fig. 10. We define
four points:

• Two points A′ and B′ are on the plane boundary, these are in
the FS, and fast motion between these points can be produced.
For the application studied in the paper, the capsule denoted
that 20–25 are in the FS.

• Two points B and A are inside the plane boundary, one point
on the dashboard and another on the passenger’s seat. These
points play the same role as the ROI 1–18.

We analyze two different scenarios based on different velocity
combinations.

• The shortest way: Knowing the target point, the robot moves
towards it and adapts its speed according to the spaces it
crosses. In the studied example, it goes directly from A to B
with a velocity of less than 0.25 m/s.

• Safe-points: We use safe-points to keep the robot’s speed high.
In the studied example, the points A′ and B′ belongs on the
plane that limits FS. The robot goes from A to A′ with a
maximal velocity less than 0.25 m/s, then from A′ to B′ with
a maximal velocity less than 4 m/s, B′ to B with a maximal
velocity less than 0.25 m/s.

The movement of the robot inside the car should be performed
with reduced speeds for safety reasons. In some cases, when the
desired point is far away from the user space, it takes longer to
reach it due to the low speed. For such situation, we use the via.
points on plane boundary in FS, called safe-points, between
which the robot can move at high speed. The path is longer but
its execution can be faster.
New trajectories are calculated offline to connect the ROIs and

the safe-points with the two motion speeds.

Fig. 9 The two spheres described the human workspace when
seated. The square part shows the car model. The transparent
sphere is the robot’s working area. The dark line delimits an
area where the speed of the robot can be higher because there
is no risk of collision with the human.

Fig. 10 Illustration for the comparison of motion using
safe-points

Fig. 8 Car interior and user workspace
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4.4 Safe-Points. As we have shown in the previous section,
the interest is to move the robot in FS to speed up the robot move-
ments. Five points in the FS have been defined SP20, SP21, SP22,
SP23, and SP24 to be used for this purpose.
The interest of moving the robot in the FS is also to increase the

safety of the operator by moving the robot away from the human.
To quantify this notion of safety, we will define an average distance
between the robot’s end-effector and the sphere encompassing the
human’s torso shown in Fig. 7. The higher this distance, the safer
the human/robot interaction will be. This distance is calculated in
an approximate way from the points of passage of the robot
(PP1, …, PP18 and SP20, …, SP24) by making the hypothesis of a
straight line displacement at constant speed between the points
(defined as the distance between the points divided by the duration
of the displacement).

ds =
∑N

i=1 (‖pi − C‖ − R)
N

(1)

where the robot motion is sampled in N instant, pi is the coordinate
vector of the end-effector of the robot for sample i, C is the coordi-
nate vector of the center of the sphere shown in Fig. 7, and R is its
radius.
Considering the user safety and robot velocity it is of interest to

pass through points on the plane boundary in FS, when we have
long robot trajectories to make. In the next part of the study, we
will show that this can also be useful when a movement is initiated
by the human by hand and gaze but without knowing yet where the
human will stop. Placing the robot on one of the safe-points, SP20,
SP21, SP22, SP23, and SP24, will allow the robot to get closer to the
goal more quickly.

4.5 Comparison of Motion With or Without Safe-Points.
An example is illustrated in Fig. 11 where A=P17, B=P5, A′ =
SP24, and B′ = SP21. The points A′ and B′ are positioned on the
plane that divides the two different velocity zones.

We compared the time taken by the robot to move between two
points, taking into account the presence of safe-points and without
them.
The results in Fig. 11 show the position of points in X-coordinate

with respect to time. The Fig. 11 is a simple representation to show
the point and at what time the robot reaches that point. From the
recorded trajectories of the robot to reach the points, the X-coordi-
nates of the robot are plotted at the beginning and end of the trajec-
tory (and connected by a straight line) against time in Fig. 11. It
proves that by passing through safe-points A′ and B′, the robot
takes less time than going directly.
By traveling through safe-points, the robot starts from point A

and moves through A′, B′ at a higher velocity and then to the
final point B. The total time taken to reach the final point was
0.41 s. For the motion inside the car, the robot arrives at the final
point after 0.45 s.

5 Proposed Strategies to Predict Human Intention
We will study and compare four strategies that integrate the posi-

tion of the hand, the direction of the gaze, and the use of safe-point
to efficiently move the robot to one of the ROI that the human wants
to reach.

5.1 Strategy A. As the user’s objective is to touch with his
hand the ROI, the first and simplest strategy proposed is to consider
that the point to be reached is the closest to the hand position. The
strategy is presented in Fig. 12, in the example the selected point is
P2. The main advantage is the simplicity in the approach. For the
search of the nearest point, a nearest neighbor search algorithm is
used to find the nearest point to the hand. An implementation of
this algorithm for VR environment is done in Ref. [27]. The strategy
is summarized in Algorithm 1.

Algorithm 1 Strategy A: Predictions with hand

Input: Hand position Ph ∈ R3.
Output: Nearest point P in the set of Pi, i = 1 · · · 18.
1: Build a k-d tree for all points Pi in the scene.

2: function STA (Ph)
3: Using hand pose as a query point q, return nearest point from the

k-d tree.
4: return P
5: end function

Fig. 11 Comparison of motion through safe-points and without safe-points

Fig. 12 Pictorial representation of strategy A
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The main characteristics of the approach are

(1) The point is detected only when the human has almost
reached the points.

(2) If two points are equidistant, a prediction fluctuation can
occur with small changes in hand motion.

(3) During the movement of the hand, intermediate points can be
detected, which will allow the robot to start its movement
before the desired end point is detected.

5.2 Strategy B. Head gaze direction is introduced to limit the
detection of points to only what the user can see. The detection of
the interest point is only possible if the point is in the field of
view. The strategy is presented in Fig. 13. The pose of the hand
is used to select two points, the closest to the hand, in the
example, P1 and P2. From these two points, the closest to the
gaze direction is selected, by comparison of the angle between
the line connecting the point and the line of view. In the example,
the closest point is P2. The strategy is summarized in Algorithm 2.

Algorithm 2 Strategy B: Predictions with head gaze

Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, head orientation
Os ∈ R4.

Output: Nearest point P.
1: Build a k-d tree for all points in the scene.

2: function STB (Ph,Ps,Os)
3: Using hand pose as a query point q, return nearest two points from

the k-d tree.
4: Find the gaze direction as a unit vector from the central point of

the eyes and draw a ray in the gaze direction.
5: Calculate the distance l1 of each point in np from the ray.
6: Find the angle λi for each point such that λi = li/Li, where Li is the

distance from the HMD to the projection of the point on the line
(shown in Fig. 13).

7: The point with min(λi) is the closest point P.
8: return P
9: end function

The aim of this approach is to try to find the point of interest with
a little anticipation compared to the previous method, by being able
to choose a point that may be a little further from the hand but
directed according to the direction of the gaze.

5.3 Strategy C. If the hand is far from the point of interest, it is
probably on the way but still far from the goal, so it may be appro-
priate to move the robot to a safe-point to prepare for a higher speed
movement. This strategy is an extension to strategy B, but with
added extra safe-points. This strategy is designed such that the
robot will always go to the safe-point if the distance between the
hand and closest point is above a threshold, here 0.2 m. The strategy
is presented in Fig. 14. In the example, the point P2, the closest to
the view line among the two closest to the hand, is at more than
0.3 m from the hand, thus the robot will go to the safe-point
which is the closest to P2 among SP20, SP21, SP22, SP23, and
SP24. The strategy is summarized in Algorithm 3.

Algorithm 3 Strategy C: Addition of safe-point

Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, head orientation
Os ∈ R4, hand threshold Th (shown in Fig. 14).

Output: Nearest point P.
1: Build a k-d tree for all points in the scene.

2: function STC (Ph,Ps,Os, Th)
3: function STB (Ph,Ps,Os)
4: return P
5: end function
6: if distance (P,Ph) < Th then
7: return P
8: else
9: for all SPi ∈ SP do,
10: di = distance(P, SPi).
11: min(di);
12: end for
13: Return SPi

14: end if
15: end function

The main characteristics of this strategy are as follows:

• The difference between this approach and strategy B can only
be seen for long displacements (of more than 0.6 m between
the points) for which the hand displacement can be quite far
from the points Pi, i= 1, …,18.

• There is a risk that the robot will move to a safe-point in an
inefficient way with a longer path that will not allow the
robot to arrive faster

Fig. 14 Pictorial representation of strategy C

Fig. 13 Pictorial representation of strategy B

Fig. 15 Pictorial representation of strategy D
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• The results obtained can vary with the choice of the threshold
Th.

5.4 Strategy D. All the strategies presented so far are based on
a selection or pre-selection of the point of interest based on the hand
position. Here the approach is different and the selection is based on
the direction of the gaze which can greatly anticipate the movement
of the hand. As in strategy C, safe-points will be used if the point of
interest is more than Th= 0.3 m away from the hand. The strategy is
presented in Fig. 15. In the example, the point P2, the closest to the
view line among the points in the frustum of the HMD. As the point
P2 is at more than 0.3 m from the hand, the robot will go to the safe-
point which is the closest to P2 among SP20, SP21, SP22, SP23, and
SP24. The strategy is summarized in Algorithm 4.

Algorithm 4 Strategy D: Predictions with head gaze and
safe-points

Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, head orientation
Os ∈ R4, hand threshold Th.

Output: Nearest point P.

1: function STD (Ph,Ps,Os, Th)
2: ni = points in the view frustum of HMD.
3: Find the gaze direction as a unit vector from the central point of

the eyes and draw a ray in the gaze direction.
4: Calculate the distance of each point in ni from the ray.
5: Find the angle λi for each point such that λi = li/Li where li rep-

resents the distance between a point and its projection on the line
as calculated in previous step and Li the distance from the HMD
to the projection of the point on the line (shown in Fig. 15).

6: The point with min(λi) is the closest point P.
7: if distance(P,Ph) < Th then
8: return P
9: else

10: for all SPi ∈ SP do,
11: di = distance(P, SPi).
12: min(di);
13: end for
14: return SPi

15: end if
16: end function

This strategy is based on the assumption that the task will be
carried out with coordination of gaze and movement. In general,
it is reasonable to think that the gaze anticipates the movement.
In the context of the study, where the human is enclosed in a
virtual world, it is likely that he will not be disturbed by external
elements and that he will remain focused with his gaze directed
towards the point of interest. The context should therefore be favor-
able to this approach.

5.5 Strategy to Move the Robot. When the target is defined,
the robot must be moved. For this, a series of trajectories that avoid
obstacles have been defined (see Sec. 4.1) between point of interest
and/or safe-point. While the robot is moving, a new point of interest
can be defined. One could stop the robot’s movement and recalcu-
late an obstacle-free trajectory online. However, in order to avoid
wasting time in this calculation, while predefined trajectories have
generally short execution times, so the robot is let to perform its
movement. And it will take into account the new target at the end
of its movement.

5.6 Definition of the Criterion to Compare the Strategies.
The main research question was to find a selection strategy which
maximizes user safety while minimizing robot response time.
Four strategies explained in the previous section were tested

against each criterion. The strategy selected needs to minimize
robot time to reach a desired target pose while ensuring
maximum user safety.
To evaluate the strategies, the following criteria were considered

for strategy.

(1) Efficacy:
• Q1: If the strategy detects the final point or not. A value of

1 or 0 was assigned if final end point was detected or not.
(2) Time for detection:

• Q2: Time taken by the strategy to detect the desired/final
point the user want to reach.

• Q2norm : In order to be able to compare the results for several
strategies, we defined a normalized criterion. It a ratio of
each value of Q2 for a trajectory divide by the minimum
value of Q2 for this trajectory and the four strategies ana-
lyzed. [Q2/min (Q2)]. For the best strategy with respect to
this criterion, Q2norm = 1.

(3) Time for robot:
• Q3: Time taken by the robot to reach the final point (to

move from start to desired point including all via
points). It is the sum of the duration of all the pre-
computed trajectories according to the strategy of
motion of the robot according to Sec. 5.5 and the time
that the robot waited to have new point where to go.

• Q3norm : As for the criterionQ2, we defined a normalized cri-
terion to be able to compare the strategy for several trajec-
tories. It is a ratio of each value of Q3 for a trajectory
divide by the minimum value of Q3 for this trajectory
and the four strategies analyzed. [Q3/min (Q3)]. For the
best strategy with respect to this criterion, Q3norm = 1.

(4) Robot distance:
• Q4: The distance traveled by the robot from start to end

point for all via points the robot travels through.
• Q4norm : The ratio of distance traveled by the robot (from

start to end point for all via points the robot travels
through) with distance between start and end point.

(5) User distance:
• Q5: The mean distance between the sphere centered on the

driver’s seat with a radius of 0.5m and all points on the tra-
jectory. This distance is evaluated via Eq. (1) and charac-
terizes the safety of the user. The further the robot is from
this sphere, the safer it is.

6 Experiments and Analysis of the Results
6.1 Experimental Setup. We used the hand motion sensor as

a proximity sensor. The objective is to find the closest ROI with
respect to the hand. This is an optimization problem of finding a
point in a closed set that is closest to a given point. Using the
head mounted display, we find the points in the user view and if
the gaze is directed towards a point Pi. We classify the distance
of the points to the direction of the gaze as a function of l1/L1.
The user will direct his hand towards a capsule (discrete set of N
points). The goal is to detect as soon as possible which point to
be reached by the human and to move the robot to that point:

(1) If the direction is known, the robot can be moved to interme-
diate points to facilitate the task.

(2) Safe-points SPi (i= 20 : 24) are defined on the boundary
plane, which is located outside the car’s interior space.
Between these points therobot can move quickly.

(3) At each moment, from the sensor data, we define the target
point among the set of N points Pi (i= 1 : 18).

Seven trajectories were considered in the experimental design:
two consisted of long distance trajectories (from points 2 to 11
and 5 to 18), three medium distances (from points 5 to 11, 5 to
15, and 12 to 15), and two short distances (from points 3 to 4 and
17 to 16). The seven trajectories have been done by three different
participants.

041012-8 / Vol. 14, AUGUST 2022 Transactions of the ASME



The participant was seated in the car seat 0.6 m above the ground
and at a position of 0.9 m in y and −0.1 m in x from the robot base
frame. The sphere used for the obstacle avoidance of the user is cen-
tered at this reference point. An HTC vive HMD was worn by the
user and vive sensors were attached to the user’s dominant hand
as shown in Fig. 2. Then for each trajectory, the user was instructed
to move his hand from a start point to a defined end point.
For each trajectory performed by the user, data were recorded. It

is composed of position of the hand tracker, the head position, and
orientation. The user can do the task at the speed he wants. During
this experiment, the robot was not moved to ensure the security of
the user. As the objective is to compare the strategy with exactly the
same data as input, thus there is no reason to move the robot with
one chosen strategy. The data recorded were used to perform the
analysis in parallel with the four strategies in order to compare
them on the same data set.

6.2 Analysis of One Experiment. The four strategies are
described and illustrated on one example, a trajectory done by

one subject for moving his hand from P2 to P11 was recorded. A
visual trail of the user hand is shown in Fig. 16. This recorded
motion was used to analyze the four proposed strategies.

6.2.1 Detection of Points of Interest. Figure 17 shows the
sequence of points that are detected for the four studied strategies.
It can be visualized that different strategies have different interme-
diate points selected except for strategies A and B that produced the
same sequence of points detected.
Based on the results from the different strategies, it can be

observed that strategies A and B select intermediate points which
are inside the car while strategies C and D select the safe-points
as some of the intermediate points. For this example, all the strate-
gies allow to find the desired final point P11. However, strategy D
succeeds to detect this point earlier than strategies A, B, C that
detect the final desired point at the same time (as it can be seen in
Table 1).
The obtained sequence of points of interest is now detailed:

• Strategy A: P2, P12, P6, P8, P9, P10, P11.
The points are selected based on the least distance to the

hand, and the points selected can be easily explained by the
hand trail described in Fig. 16.

• Strategy B: P2, P12, P6, P8, P9, P10, P11.
The selection of this strategy is similar to strategy A for this

example because all points were all the time the point closest to
the hand is also closest to the direction of gaze. The set of
points detected is the same as for the strategy A. The robot
motion will be similar and analyzed simultaneously.

• Strategy C: P2, SP20, SP21, SP23, P9, P10, P11.
For strategy C, a threshold is introduced around the detected

points to choose whether the robot should go to the point or to
a safe-point. It is observed in Fig. 16 that the hand passes at a
distance > 0.3 m from the points P12, P6, P8. Consequently,
the selected points will be the associated safe-points SP20,
SP21, and SP23. Then points P9, P10, P11 were detected and
found to be within the required threshold of the distance
from the hand.

• Strategy D: P2, P3, SP20, SP21, SP22, SP23, SP24, P10, SP24,
P11.

Strategy D uses the direction of gaze as the primary criterion
and it is therefore more difficult to predict the sequence of
points detected based on Fig. 16. In this strategy, P3 is
selected, it is done based on the user gaze and since the
hand moved not far from this point P3 is selected. For the fol-
lowing points selected by the gaze, the hand is farther from the
points so the associated safe-points were selected. Then, the
gaze is directed toward the point P10; since the distance
from the hand was below a threshold Th, the point P10 was
selected. Then the gaze is probably oriented to point P11;
since its distance from the hand is above the threshold, the
robot has to return to the safe-point P24 and finally when the
hand is close to the final point P11, the point is detected.
This happens at a moment when the point P11 is not yet the
closest point to the hand and is therefore not yet detected by
strategy A. The points detected in this example show that

Fig. 16 User hand trail for motion from points 2 to 11

Fig. 17 Points of interest detected for different strategies for a
hand motion from 2 to 11

Table 1 Strategy analysis for the trajectories 2–11

Trajectories 2–11

Efficacy
Time for detection Time for robot Robot dist.

User dist.
Strategy Q1 Q2 Q2norm Q3 Q3norm Q4 Q4norm Q5

St. A 1 2.0868 1.0600 2.1818 1.0181 1.4648 1.1959 0.4370
St. B 1 2.0867 1.0600 2.1818 1.0181 1.4648 1.1959 0.4370
St. C 1 2.0867 1.0600 2.1818 1.0181 1.5690 1.2809 0.4803
St. D 1 1.9686 1 2.1430 1 2.1930 1.7903 0.4427

Note: Optimal values are given in bold.

Journal of Mechanisms and Robotics AUGUST 2022, Vol. 14 / 041012-9



the gaze does not go directly to the goal but sweeps along the
path accompanying the hand. The results also show a certain
sensitivity of the point sequence to the value chosen for the
threshold.

6.2.2 The Robot Motion for the Four Strategies. For the three
different selections of points (strategies A, B, strategy C,
strategy D), the robot motion and the safe distance are now com-
mented. Figures 18–20 illustrate, starting from the sequence of
points detected represented as function of time, the corresponding
robot motion which is represented as function of time. On the
same figure, the distance between the end-effector of the robot
and the sphere encompassing the human is shown as function of
time and expressed in meter. This representation shows only the
instants corresponding to the start and end points. Between these
points straight dotted lines are drawn. This curve is directly calcu-
lated based on the robot motion and will be used for the evaluation
criterion in Table 1. As for the robot motion, the exact value are

calculated only at initial and final points and interpolated by straight
line.
The sequence of progression of robot motion with time from start

to end point is described below:

6.2.3 Strategies A and B:. The progression of the robot motion
is indicated by the dark line as shown in Fig. 18. Starting from point
P2, the robot waits for a new point. When P12 is detected, the robot
starts moving and before it arrives, P6 is detected. However, the
robot has to continue and complete the motion so then arriving at
P12 the robot now detects P11 as new desired point, so the robot
moves directly to P11. The robot avoids all the points that are
detected during the motion towards P12. This pattern continues
until the robot reaches the last point detected.

6.2.4 Strategy C. A graph of robot motion is indicated by the
dark line as shown in Fig. 19. The robot starts at P2 and waits for
a new point. When point SP20 is detected, it starts moving but
along the way, a new point SP21 is detected, so it has to complete
the motion to SP20 first. By the time it has reached the point
SP20, points SP21, SP23, and SP24 have been detected and passed
by the prediction algorithm. All the points that were detected and
passed during the motion of the robot have been ignored by the
robot. Once a new point has been detected, the goal state of the
robots updates and neglects the previous points that have not
been reached. After reaching SP20, the prediction now shows
point P11 as the desired destination. So the robot moves to P11.

6.2.5 Strategy D. The motion of the robot is indicated by a
dark line as shown in Fig. 20. The robot starts from P2 and when
P3 is detected, it moves to point P3. When P20 is detected, the
robot is still in motion to P3, so it ignores the point. Furthermore,
SP21, SP22, SP23, and SP24 are detected, but when the robot
reaches P3, the prediction system still predicts SP24 as it moves to
SP24 without waiting. Again during the motion, P10 and SP24 are
detected, but before arriving, P11 is detected, so on arrival at
SP24, it does not wait but continues to P11, where it finally stops.

6.2.6 Criterion Analysis for Single Trajectory. Table 1 shows
the complete data for all criteria proposed, for the single trajectories
2–11. Q1 is the success of the strategy detecting the final goal state.
It can been seen that all strategies are able to detect the goal point.
From the table it can be seen thatQ2norm andQ3norm have its best value
for strategy D. These strategies have a very fast detection and robot
travel time. However, the distance traveled is not the best as this
strategy allows the selection of safe-points which increase the
robot travel distance. When considering safety, strategy D is
second best. The best safety Q5 is provided by strategy C.
After this detailed analysis for one trajectory, a discussion of the

criterion evaluation for seven trajectories recorded is presented in
the following sections.

6.3 Analysis of All Recorded Experiments. The results
obtained are summarized in Table 2. For all the tests, the final
desired position is detected, thus criterion efficacy Q1 is one and
the criterion is not summarized in Table 2. The analysis of the
results will be separated into two parts. First, an observation of
the results obtained for the different trials will enable us to arrive
at certain conclusions about less variations of the results as function
of the trajectories. Then, in a second part, we will use the average
values of the different criteria, taking into account the seven trajec-
tories, to highlight the particularities of each strategy by comparing
the criteria two by two.

6.3.1 Variations of the Results for the Different Trajectories.
For almost all trajectories, strategies B and A produce the same
result, but for one test, the direction of the gaze is not well directed
at the end of motion and a delay is observed with strategy B, con-
trary to what is expected. This delay affects the time of detection
and also the time for the motion of the robot (trajectories 12–15).

Fig. 18 Robot motion, user distance, and time for detection for
strategies A and B for trajectories 2–11

Fig. 19 Robot motion, user distance, and time for detection for
strategy C using trajectories 2–11

Fig. 20 Robot motion, user distance, and time for detection for
strategy D using trajectories 2–11
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From the point of view of the efficiency of detection of the
contact point, strategies A and D were the most efficient: two
times for strategy A and five times for strategy D. There is no
clear correlation between the efficiency of the strategy and the
length of the trajectory. However, for short trajectories, strategy
D is the most efficient.

6.3.2 User Distance Versus Time for Detection. For the
purpose of analyzing, −Q5 has been used so as the goal would be
to minimize all the selected criteria. A comparison of –Q5 and
Q2norm shows that strategies C and D belong to the Pareto front for
these two criteria. Strategy D takes the least time to detect a
desired point the user would like to reach and a slightly higher
mean distance from the sphere as shown in Fig. 21. Strategy C has
the largest user distance. However, it takes the longest time to
detect a point than all the strategies.

6.3.3 User Distance Versus Robot Distance. A comparison of
−Q5 and Q4norm as presented in Fig. 22 shows that strategies A–B
and C belong to the Pareto front for these two criteria. Since

strategies A and B don’t use any safe points they have smallest
user distance (max –Q5) and always take the minimal robot distance
to arrive to a desired point (min Q4norm). Strategies C and D use safe
points so, have higher user distance (min –Q5) and robot distance
Q4norm. While strategy D uses head gaze as primary selection, it
gives a value of Q5 better than A and B but the worst robot distance.
Strategies A–B and C belong to the Pareto front for these two
criteria.

6.3.4 User Distance Versus Time for Robot. A comparison of
−Q5 and Q3norm as presented in Fig. 23 shows that strategies C
and D belong to the Pareto front for these two criteria. As known
Strategy C gives a higher value for safety (min –Q5) followed by
strategy D. However strategy D far outperforms strategy C in
terms of time for the robot.

6.3.5 Time for Robot Versus Time for Detection. Visualization
ofQ3norm versusQ2norm is shown in Fig. 24. It shows that the faster the
strategy detects the point, faster the robot reaches the point. The best
being strategy D. It uses the head gaze and an added use of safe-

Table 2 Complete analysis for seven trajectories

Long trajectory Medium trajectory Short trajectory Analysis

Criteria Strategy 2–11 5–18 5–11 5–15 12–15 3–4 17–16 Mean St. dev.

Time for detection Q2 A 2.0868 2.3029 2.5878 2.1767 1.9842 0.6418 1.0381 1.8312 0.6597
B 2.0868 2.3029 2.5878 2.1767 2.3366 0.6418 1.0381 1.8815 0.6825
C 2.0868 2.5370 2.5878 2.1767 2.3366 0.6418 1.0381 1.9150 0.7076
D 1.9687 2.5370 2.2383 2.0428 2.3366 0.3258 0.8709 1.7600 0.7687

Q2norm A 1.0600 1 1.1561 1.0655 1 1.9701 1.1919 1.2062 0.3190
B 1.0600 1 1.1561 1.0655 1.1776 1.9701 1.1919 1.2316 0.3085
C 1.0600 1.1016 1.1561 1.0655 1.1776 1.9701 1.1919 1.2461 0.2995
D 1 1.1016 1 1 1.1776 1 1 1.0399 0.0663

Time for robot Q3 A 2.1818 2.4212 2.6828 2.2642 2.0717 0.7506 1.1440 1.9309 0.6560
B 2.1818 2.4212 2.6828 2.2642 2.4241 0.7506 1.1440 1.9812 0.6780
C 2.1818 2.6846 2.6828 2.2642 2.4241 0.7506 1.1440 2.0189 0.7080
D 2.1431 2.6846 2.3434 2.1303 2.4241 0.4345 0.9777 1.8768 0.7740

Q3norm A 1.0181 1 1.1448 1.0629 1 1.7273 1.1701 1.1605 0.2399
B 1.0181 1 1.1448 1.0629 1.1701 1.7273 1.1701 1.1848 0.2309
C 1.0181 1.1088 1.1448 1.0629 1.1701 1.7273 1.1701 1.2003 0.2214
D 1 1.1088 1 1 1.1701 1 1 1.0398 0.0651

Robot dist. Q4norm A 1.1959 1.4943 1.0948 1.1582 1.0225 1.0000 1.3042 1.1814 0.1601
B 1.1959 1.4943 1.0948 1.1582 1.0225 1.0000 1.3042 1.1814 0.1601
C 1.2810 1.6766 3.9707 1.5271 3.0161 1.0000 2.9585 2.2043 1.0273
D 1.7904 3.9039 7.4400 2.8315 4.2133 1.0000 2.6207 3.4000 1.9464

User dist. Q5 A 0.4370 0.3301 0.4846 0.4143 0.3285 0.3535 0.4429 0.3987 0.0570
B 0.4370 0.3301 0.4846 0.4143 0.3285 0.3535 0.4429 0.3987 0.0570
C 0.4804 0.4134 0.4932 0.4149 0.3165 0.3535 0.4684 0.4200 0.0616
D 0.4428 0.3836 0.4199 0.4327 0.3510 0.3535 0.5044 0.4126 0.0506

Note: Optimal values are given in bold.

Fig. 21 Comparison of time for detection (Q2norm ) versus user
distance (−Q5) for the four strategies, all trajectories.

Fig. 22 Comparison of robot distance (Q4norm ) versus user dis-
tance (−Q5) for the four strategies, all trajectories
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points helps it in reaching the desired point faster, as the robot
travels at higher velocity than in strategies A and B. Strategy A
has lots of intermediate point, but as the hand moves closer to the
desired point, the robot gradually moves closer. This is one of the
reason why this strategy is the second best. Even though strategies
B and C have a head gaze, the primary selection is still based on the
hand. Unless the hand is closer to the point, the robot does not move
to the desired point. For strategy D, it is the user gaze that helps in
primary selection of points.

6.3.6 Robot Distance Versus Time for Robot. Visualization of
Q4norm vs Q3norm is shown in Fig. 25 strategies A and D belong to the
Pareto front for these two criteria. In contrary to the assumption that
longer robot distance implies longer time for robot, the results show
that strategy D has minimum time for robot but has longer robot dis-
tance. This result achieved is due to combination of fast time for
detection and use of safe-point as intermediate points. Strategy C
uses also safe-points, but it alone does not guarantee a fast response
time.

6.3.7 Time for Detection Versus Robot Distance. Visualization
of Q2norm versus Q4norm shown in Fig. 26 strategies A and D belong to
the Pareto front for these two criteria. From Fig. 26, it can be seen
that Strategy A and B have least robot distance, but it detects the
goal later than Strategy D. Strategy C is not ideal in both criteria.

6.4 Discussion. A comparative analysis of data from all the
trajectories shows that if the objective is to maximize safety, strate-
gies C and D would be better. Both strategies C and D ensure safety
by selecting safe-points when the hand is far away from the desired
point. The safe-points are located outside the user reach, such that
the robot can travel fast and does not collide with the user. The
selection of the safe-points mean that the robot will have to travel
a longer distance to reach the desired point. While for strategies A
and B, they select intermediate points which are inside the car and
no safe-points. So the points are all inside the car, and the robot
does not travel longer distance but has reduced velocity.
Strategy D gives second best safety and at the same time mini-

mize the time to detect/reach a desired point. Therefore, it can be
seen as the best strategy. The detection time for strategy D is the
smallest because we used the gaze of the user to pre-select the
points. This plays a big role in giving priority to vision information
over information from the hand position. Fastest detection time
allows the robot to start moving to the desired point at the earliest
time and reach the desired point the fastest.

7 Conclusions
In this article, a collaborative robot is used as a haptic interface

with intermittent contact. Four motion prediction strategies are
used to select the areas with which the user intends to interact
and to move the robot as fast as possible while ensuring user safety.
We introduce two speed profiles for the user’s safety. The robot

moves at a higher speed when it is outside the user’s workspace. In
situations where there is a large distance between two points within
the workspace, we introduce via points to reduce travel time. The
time needed to go through via points can be less than the time
needed to go directly inside the car while being much safer.
Seven trajectories done by three users were analyzed, thanks to

five criterion. A compromise must be made between user safety
and speed for the robot to reach its target.
A simple realtime demonstration of the above system can be

found.1

In future works, we will perform other experiments with different
users to test the robustness of our analysis and to know the influence
of the threshold value. We will also realize the robot movements at
the same time as the user’s movements to validate his feeling when
he/she hears the robot moving. Additional work is also in progress

Fig. 23 Comparison of time for robot (Q3norm ) versus user dis-
tance (−Q5) for the four strategies, all trajectories

Fig. 24 Comparison of time for robot (Q3norm ) versus time for
detection (Q2norm ) for the four strategies, all trajectories

Fig. 25 Comparison of robot distance (Q4norm ) versus time for
robot (Q3norm ) for the four strategies, all trajectories

Fig. 26 Comparison of time for detection (Q2norm ) versus robot
distance (Q4norm ) for the four strategies, all trajectories

1https://youtu.be/wz0dJjk4-qk
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to reassure the user by showing for example the position of the robot
during its movement.
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“Human to Humanoid Motion Conversion for Dual-Arm Manipulation Tasks,”
Robotica, 36(8), pp. 1167–1187.

[17] Guda, V. K., Chablat, D., and Chevallereau, C., 2020, “Safety in a Human Robot
Interactive: Application to Haptic Perception,” International Conference on
Human–Computer Interaction HCII 2000, Copenhagen, Denmark, July, pp.
562–574.

[18] Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., and Fraisse, P., 2016,
“Collaborative Manufacturing With Physical Human–Robot Interaction,”
Robot. Comput. Integr. Manuf., 40, pp. 1–13.

[19] Long, P., Chevallereau, C., Chablat, D., and Girin, A., 2018, “An Industrial
Security System for Human–Robot Coexistence,” Ind. Robot. Int. J., 45(2),
pp. 220–226.

[20] Ravichandar, H. C., and Dani, A., 2015, “Human Intention Inference and Motion
Modeling Using Approximate E–M With Online Learning,” 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, Sept. 28-Oct. 3, pp. 1819–1824.

[21] Pérez-D’Arpino, C., and Shah, J. A., 2015, “Fast Target Prediction of
Human Reaching Motion for Cooperative Human–Robot Manipula-
tion Tasks Using Time Series Classification,” 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), Seattle, WA, May 26–30,
pp. 6175–6182.

[22] Luo, R., Hayne, R., and Berenson, D., 2018, “Unsupervised Early Prediction of
Human Reaching for Human–Robot Collaboration in Shared Workspaces,”
Auton. Robots, 42(3), pp. 631–648.

[23] Koppula, H. S., Jain, A., and Saxena, A., 2016, “Anticipatory Planning for
Human–Robot Teams,” Springer Tracts in Advanced Robotics, M. Ani Hsieh,
O. Khatib, and Vijay Kumar, eds., Vol. 109, Springer Verlag, Cham, pp. 453–
470.

[24] Feichtenhofer, C., Pinz, A., and Zisserman, A., 2016, “Convolutional
Two-Stream Network Fusion for Video Action Recognition,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, UT, June, pp. 1933–1941.

[25] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
and Ng, A. Y., 2009 “ROS: An Open-Source Robot Operating
System,” Proceedings. of the IEEE International Conference on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
May 12–17, Vol. 3, No. 3.2, pp. 1–5.

[26] ISO Central Secretary, 2021, “Robots and Robotic Devices—Safety
Requirements for Industrial Robots—Part I: Robots,” din en iso 10218-1.

[27] Mugisha, S., Zoppi, M., Molfino, R., Guda, V., Chevallereau, C., and Chablat, D.,
2021, “Safe Collaboration Between Human and Robot in a Context of
Intermittent Haptique Interface,” ASME International Design Engineering
Technical Conferences & Computers and Information in Engineering
Conference, Virtual, Online, Aug. 17–19.

[28] Lobbybot Project, https://www.lobbybot.fr/, Accessed October 15, 2021.

Journal of Mechanisms and Robotics AUGUST 2022, Vol. 14 / 041012-13



Chapter 5

Motion strategies for a haptic
interface for rehabilitation
training

Summary

This chapter describes the development of motion strategies for a haptic device
for upper limb rehabilitation training. First, I describe the set-up and then the
development of in VR exergame for reach and grab tasks designed for arm and
shoulder rehabilitation. I further present more prediction strategies based on eye
gaze and conduct a user study to evaluate the efficacy of each strategy, the effect
of eye gaze window and hand threshold on the speed and response of a haptic
device using the method of analysis of variance (ANOVA).
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Abstract: For haptic interaction, a user in a virtual environment needs to interact with proxies
attached to a robot. The device must be at the exact location defined in the virtual environment in
time. However, due to device limitations, delays are always unavoidable. One of the solutions to
improve the device response is to infer human intended motion and move the robot at the earliest
time possible to the desired goal. This paper presents an experimental study to improve the prediction
time and reduce the robot time taken to reach the desired position. We developed motion strategies
based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual
environment. To assess the performance of the strategies, we conducted a subject-based experiment
using an exergame for reach and grab tasks designed for upper limb rehabilitation training. The
experimental results in this study revealed that eye-gaze-based prediction significantly improved the
detection time by 37% and the robot time taken to reach the target by 27%. Further analysis provided
more insight on the effect of the eye-gaze window and the hand threshold on the device response for
the experimental task.

Keywords: haptic devices; response time; human–robot interaction; virtual reality; eye–gaze tracking

1. Introduction

Haptic systems enable user interaction in virtual reality by automatically recreating
virtual scenes for dynamic interactions through haptic rendering, thus creating a link
between a virtual world and the real world. Haptic systems should allow for a wide
range of physical interactions and manipulations throughout the user’s workspace, with
a physical input that resembles reality. One promising approach to achieve this is the
paradigm of encountered-type haptics (EHDs) [1]. EHDs are devices that autonomously
position physical props for virtual objects in the real world at a target appropriately,
thus allowing users to reach out to the virtual objects physically, just like in the real
world. However, it is challenging for real-time interaction to organize physical props
that accurately replicate the virtual world due to practical constraints, such as speed and
workspace limits. In addition, the virtual environments are always much more extensive
and richer in variety than the tracked physical space [2]. Speed limitations delay the
device’s arrival to some targets, creating discrepancies between what the user can see
and what they feel. The resulting position and orientation mismatch between the virtual
object and haptic proxy and latency negatively impacts the user experience [3,4]. While
these issues may be partly solved by improving device hardware, factors such as cost,
safety, and complexity often lead to design decisions that make device workspace and
speed constraints unavoidable. Control approaches from the state-of-the-art, such as haptic-
retargeting [2] and user motion prediction, have been employed to address speed and
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latency issues [5]. Our study addresses this problem through motion prediction using
the human eye-gaze tracking and hand motion. Previous studies have shown that the
head movement facilitates subsequent gaze shifts toward the future position of the hand
to guide object manipulations [6,7]. Thus, tracking eye movements is a natural way to
learn about an intended reach target [8]. With eye-gaze information, hand movements,
and the information in virtual environment, we can predict the tasks that the user will
perform. Eye-tracking systems have been found to play an increasingly important role in
assistive robotics as hand-free interaction interfaces for motor-impaired people [9], social
gaze control for humanoids [10], robotic guidance [11], creating artistic drawings [12],
and safe robot interactions in patients with speech and motor impairments [13]. Eye-
tracking combined with action observation tasks in a virtual reality display has been used
to monitor motor deficits derived from stroke and, consequently, for the rehabilitation of
stroke patients [9,14].

This study aims to develop and evaluate motion prediction strategies by analyzing
the hand motion and eye gaze of adults when selecting targets. The strategies are used
for upper limb training exercises to simulate activities of daily living tasks for people with
motor impairments.

The main contributions of this work are:

1. We introduce and compare three strategies to detect human intention using the eye
gaze and the hand motion to improve the human immersion.We use the eye-gaze
detection rather than the eye-gaze attention used in [2,15,16];

2. We introduce a framework to implement the strategies;
3. We implement a proof of concept that illustrates our proposed approach;
4. We study the effect of the eye-gaze field of view and the threshold by comparing our

approach to state-of-the-art eye-gaze-based robot control.

The remaining part of the paper is structured as follows. Section 2 discusses work
related to haptic displays and prediction strategies. Section 3 describes the context of the
study, the intention prediction strategies, the design and setup of the human–robot interac-
tion model to contextualize the contribution of this research, the evaluation criteria, and
the experimental design. Section 4 presents the results of the analysis of the performance of
the strategies, and Section 5 discusses the results.

2. Related Works

This section focuses on haptic display devices, and the options researchers seek to
improve surface rendering. Then, the state-of-the-art on human intention detection through
motion predicting algorithms is presented.

2.1. Haptic Displays

There is a significant amount of studies on haptic devices in the literature. Our review
will focus on encounter-type haptics, which employ a prop attached to a robot. The earliest
work, Mcneely [17], presented the concept of encountered-type haptic device. The system
places a haptic device at the desired location in time and waits for the user’s encounter. It
has the extra benefit of allowing the user’s hand to move freely in open space and the use
of physical props attached to a robot to represent virtual objects with varying sizes and
shapes [18,19]. Other devices followed, such as the shape approximation device [20], haptic
simulation of the refrigerator door [21], and a robotic turret with switches [22]. Surface
rendering with texture and temperature characteristics [23] and new forms of EHDs,
including shape-changing displays [24], surrounding platforms [25], mobile robots [26,27],
and drones [28,29] also followed. To enable smooth interactions, EHDs need to achieve a
high level of spatial–temporal consistency between the visual and haptic sensory inputs [1].
However, EHDs have limitations that lead to discrepancies between what the user can see
and what can be felt, including limited workspace volumes, positional inaccuracy, and low
speeds that may not support real-time interactions.
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2.2. User Motion Prediction

Motion prediction strategies to determine the next target the human would like to
reach and action to take can overcome timing constraints that affect most EHDs. This
section explores the prediction and intention detection in the literature. Mostly, machine
learning techniques, such as neural networks [30–32], Bayesian methods [32,33], principal
component analysis [34], dynamic movement primitive [35], and hidden Markov mod-
els [36], have been used. A probabilistic principal component analysis was used for the
recognition and prediction of human motion through motion onset detection by relying on
a motion detection database of various motion models and an estimation of the execution
speed of a motion [34]. Li et al. used a Bayesian predictor for the motion trajectory of
the human arm in a reaching task by combining early partial trajectory classification and
human motion regression in addition to neural networks used to model the non-linearity
and uncertainty of human hand motion [32]. A combination of hidden Markov models
and probability density functions was used in [36] to model the human arm motion and
predict regions of the workspace occupied by the human using a 3D camera. In a related
work, a Bayesian inference model [33] was used to infer the hand target and to promptly
allow for the robot to reach a position within the scene. Based on observations from a 3D
camera sensor, Ravichandar et al. [30] trained a neural network using a data set containing
demonstrations of a human reaching for predefined target locations in a given workspace
to infer a goal location for the human hand reach. However, all of the above models require
vast amounts of training data. Furthermore, the performance of the models is dependent
on the data acquired. Therefore the performance is affected when new measurements
are received due to arm motion dynamics or different conditions of the human subjects.
Other techniques that do not use training data are based on a distance metric [37]. This
method selects an object closest to the user’s hand by calculating the distance of all objects
of interest in the scene from the hand and selecting the best. However, this method only
detects the next desired object only when the hand has crossed the midpoint or has gone
beyond the current minimum distance; therefore, if two objects are far apart, detecting the
next one will take a longer time.

Since the hand position is one of the most informative features in human manipulation
movement, the above works on intention inference based on hand motion. However,
based on assumptions from studies on human behaviour, for most tasks involving object
manipulation, humans reach to grasp an object and look at the target first. The gaze
direction is always in the direction of the hands and the object manipulated [6,7], and
therefore can be used to determine targets for interaction.

The eyes are considered as a window into the human mind because they can reveal
information about human thoughts and intentions, as well as our emotional and mental
states and where we are paying attention to [38]. Thus, the eye gaze can be used as a direct
input to control robots and predict users’ targets. Gonzalez et al. [2] used gaze fixation to
predict an element of a virtual scene the user wants to reach. If the robot could not arrive at
that target in time, they remapped the virtual element to a physical point within the EHD’s
reachable space. Stolzenwald et al. [15] introduced a model that predicts users’ interaction
location targets based on their eye gaze and task states using a hand-held robot. This model
derives intention from the combined information about the user’s gaze pattern and task
knowledge. Castellanos et al. used eye-gaze information to predict the user target and
provided haptic assistance for people with physical disabilities [16]. These works use gaze
fixation to select the desired target. To classify an object as the target, they wait for a time
ranging from 200 ms to 4 s when the eyes are fixated on an object. However, this approach
results in unnecessary delays and may not be practical for smaller objects.

Using additional data from the head-mounted display, we use the gaze direction and
only consider the points in the user-facing direction. The desired point is selected from a
few candidate points within a defined threshold distance from the hand and a user view
cone. In this approach, points that were not in the gaze direction or above the threshold
were not considered, even if they were close to the user’s hand. Our approach aims to pre-
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select all objects the user views and then select the desired object in the eye-gaze direction.
Our method is designed to work with hand motions during real-world interaction and to
give participants the freedom to make their own decisions along the way.

3. Methods
3.1. Context of Study

We based this study on an exergame designed for upper limb rehabilitation training
for both the right and the left hand. The task aims to simulate reaching and grabbing balls
in a virtual space. The study is inspired by the work presented in [39] for upper-limb and
postural rehabilitation. Different balls are displayed to the player at different locations
at a given time instance. He/she has to reach and grasp a ball of choice and release it
above the virtual basket on the fl oor to gain points. The exergame is designed to record
the active range of the motion of the user’s hand using HTC Vive trackers. Then, the data
are used by a control algorithm to generate virtual objects within the patient’s comfort
zone initially, and then to gradually push them further out of the comfort zone. The virtual
world application allows the user to perform daily life activities while providing abundant
repetitive movements and giving the patient visual feedback. The game was developed
in collaboration with researchers and physiotherapists at the University of Genoa and
LS2N. In this scenario, the user sits in the real world on a chair for a visual virtual reality
experience and must reach out to pick balls with one of his or her hands. While the user is
attempting to interact with a virtual object in the environment, the robot must position a
ball to provide a tactical sense of touching the object [18,19]. A motion capture system based
on HTC Vive trackers is used to determine the position of the hand used for interaction
and the position of the chair and the robot. A tennis ball was attached to the robot’s fl ange,
as shown in Figure 1. The robot was mounted on a 0.8 m high table. The user was seated
on a seat, positioned 0.6 m above the fl oor and 0.7 m from the robot. The robot’s placement
in the scene was chosen in order to allow it to reach all of the locations where the user’s
hand will want to have a haptic interaction with the robot’s prop, as shown in Figure 2a,b.
The arrangement of the balls fixed in the environment is represented by a virtual model
created by the Unity© software.

Figure 1. The designed prop, a physical representation of the virtual objects presented to the user
during interaction.
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(a) (b)

Figure 2. Experimental setup with the robot, the balls, and the user. (a) The side view. (b) The front view.

The main components for this study were:

1. An encountered-type haptic device comprising a grounded Universal Robots UR5
robotic arm. A spherical prop was attached to give the sensation of touching a ball
using a dominant hand;

2. A motion capture system. The HTC Vive pro eye VR headset/head-mounted display
for eye-tracking, a Vive tracker and base stations for tracking users’ hand position,
and another Vive tracker at the robot’s base for robot positioning;

3. Virtual Environment: Virtual objects were rendered using the Unity software along
with the intention detection strategies. The Tobii XR SDK (Tobii Technology Inc.,
Stockholm, Sweden) captured and processed gaze data;

4. Motion planning and obstacle avoidance. The algorithms for collision-free path and
execution of the desired trajectories were implemented in ROS by using MoveIt
function [40]. In the implementation, we ensured that the new objective is defined
only when the robot has stopped. To avoid the computation of collision-free path, all
trajectories used were pre-computed, and no new trajectory was generated during the
experiments. The details of the implementation of the trajectory planning, collision,
and obstacle avoidance algorithms are explained in [41].

3.2. Detection Strategies

Since the user has many balls presented in a virtual 3D environment at a given time
instance, they have to choose one at a time. The robot’s task is to arrive at the desired
position in time. Different strategies were proposed to read the intention of the human in
order to predict which ball he/she may want to reach.

3.2.1. Strategy 1: The Nearest Neighbour Approach

The most commonly used approach depends on finding the object closest to the hand.
Implementation was carried out by computing the distances from the hand to all points of
interest in search space, as used in [37], or, alternatively, by searching through a k-d tree,
as used in [5]. In this study, we used a k-d tree to store the positions of all objects in the
scene. Using hand location based on data from the tracker, we searched for the nearest to
the hand from the k-d tree using Algorithm 1, as shown in Figure 3. The desired point is
the closest to the hand, corresponding to min(di, dN): in this case, P2.

However, the main drawback is that the target is detected only when the human hand
has almost reached the point. Moreover, if two points are close, switching between two
points can occur.
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Figure 3. Pictorial representation of strategy 1.

Algorithm 1 Strategy 1: Predictions with hand.

Input: Hand position Ph ∈ R3.
Output: Best point P∗ in the set of Pi, i = 1 . . . 16.

1: Build a k-d tree for all points Pi in the scene.
2: function ST1(Ph)
3: Using hand pose as a query point q, return nearest point from the k-d tree.
4: return P∗
5: end function

3.2.2. Strategy 2: Hand Position with Threshold

To detect the next desired point, a threshold distance between the hand and the current
point of interaction was used to detect if the user intends to move their hand or if their
hand is close to a point. Once the distance between the hand and the current point is above
the threshold, we maintained the previous, and if the next point the hand approaches is
within the threshold, it was taken as the indented target. The threshold ensures that only
points in close contact are selected as explained in Algorithm 2. In this way, we aimed to
reduce the detection of intermediate points and, hence, reduce the number of erroneous
points detected. In Figure 4, the best point would be P1.

Figure 4. Pictorial representation of strategy 2.

Algorithm 2 Strategy 2: Hand position with threshold.

Input: Hand position Ph ∈ R3, threshold distance λd.
Output: Best point P∗ in the set of Pi, i = 1 . . . 16.

1: Build a k-d tree for all points Pi in the scene.
2: function ST2(Ph, Pprev)
3: Pnext ← best from k-d tree.
4: if ||(Pnext, Ph)|| < λd then
5: P∗ ← Pnext
6: else
7: P∗ ← Pprev
8: end if
9: Pprev ← P∗

10: return P
11: end function
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3.2.3. Strategy 3: Using Eye Gaze, Prediction with Eye Gaze

In addition to the hand position, strategy 3 uses eye-gaze direction to determine the
next point. The next target is the point closest to the ray from the midpoint of the eyes
in the gaze direction. As in previous works, the difference with this approach is that we
do not wait for the gaze fixation on a specific object. In this approach, the detection is
guaranteed to be fast. A threshold distance λd was added onto the hand to detect when the
user intends to move. If the hand to the point distance is within a threshold, we assumed
that the user is still interacting with the current point. The value of λd was chosen so that
only one point Pi can be inside. However, if the distance is above the threshold, the human
wants to move to the next point; therefore, a new target was selected based on the eye-gaze
direction. In this case, the threshold serves two roles. The first is to detect the intention of
the user to move and then to cut off the selection of the next point by the head gaze. The
threshold stops the robot from moving when the hand is near a point.

The search by gaze direction starts with only the points in the view frustum of the
HMD. We carried this out to limit the search space and improve the detection speed.

In addition, we added a limit α on the angle from the gaze line to restrict the points
selected by the eye gaze. The angle can be varied from 1%, as was used in [2] for a
visual attention task. Another study [42] on visual attention perspective for social robotics
modeled the threshold as a cone model of 30◦, whereas [43] used a slightly wider aperture
of 40◦.

If there is no point within the limit α, the previous point was maintained. The ray in
the gaze direction was then used to determine the next target. If the point-to-hand distance
is above the threshold λd, the point selected by the head gaze was taken as the desired
target. Otherwise, it was ignored, and robot motion was restricted to the point near the
hand. As shown in Figure 5a, the best point selected is P1.

We started by building a list of all points in the user view and then calculated the angle
αi using Equation (1) for each point Pi ∈ P. The next target is the point with a minimal
αi < α value.

αi = tan−1
(

li
Li

)
(1)

li is the projection of a point Pi on the ray in the gaze direction and Li is the distance of the
projection point to the center of the eyes. Algorithm 3 describes the procedure in two steps:

1. Case 1: The hand is very close to a point as in Figure 5a. Search for the best Pi using
the strategy 1
If ||(Pi, Ph)|| < λd, then P∗ ← Pi;

2. Case 2: All points are very far as in Figure 5b. Next point is determined by eye gaze.
P∗ ← Pnext from Equation (1).

(a) (b)

Figure 5. Strategy 3 prediction with eye gaze tracking. (a) Case 1: Point within λd, (b) Case 2: All
points outside λd.
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Algorithm 3 Strategy 3: Predictions with head gaze and threshold on eye-gaze angle.

Input: Hand position Ph ∈ R3, Gaze direction vector Gd ∈ R3, hand threshold λd, head
gaze threshold α.

Output: Best point P∗ in the set of Pi, i = 1 . . . 16.
function ST3(Ph, Gd, Pprev)

pbh ← best point position from the KD tree.
3: if (||((Pbh, Ph)|| < λd) then

P∗ ← Pbh
else

6: build a list of points P in the view frustum of HMD with αi < α.
if P = ∅ then

P∗ ← Pprev
9: else

pnext ← point with min(αi) from the list P.
P∗ ← Pnext

12: end if
end if
Pprev ← P∗

15: end function

3.3. Data Flow and System Integration

The data exchange for the above system components is shown in Figure 6. The
proposed architecture describes the different interactions each system element has and
provides an insight into how the instances share the information and communicate to
each other.

The ROS component receives just the desired goal as an input. Later, based on this
information, the move_group can generate a plan for the robot to reach the desired positions
using pre-computed trajectories. Once the plan is generated, we communicated to the UR5
robot by using the “ ur_modern_driver” [44]. With it, we can move the UR5 robot with ROS
control and send, as an output, the current joint states of the robot for the Unity system to
work with.

Figure 6. Flowchart of software and hardware used.

3.4. Experimental Setup

The UR5 Universal Robot was used to implement the system. This robot was pro-
grammed to receive a desired position and orientation from Unity software and move
the prop. Participants used their right hand to touch the prop. For the training, the HTC
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Vive tracking system was set up in a room without external disturbance, and the user was
positioned at a distance of 0.7 m from the robot. A tracker was attached to the user’s hand
for motion capture in 3D space for interaction within game activities. The user held no
other devices.

To ensure safety of the user, the workspace was divided by a safety plane into the
human workspace and the robot workspace. The safety plane was used to restrict the
motion of the robot to the robot workspace by using a motion planning algorithm described
in [41]. In this study, the plane was considered as a static obstacle to be avoided. In addition,
there was an emergency switch making it possible to cut off power to the whole system by
fl icking a switch.

3.5. Experimental Task

The task comprised 16 tennis balls displayed in a virtual environment, located at points
P1 to P16, and spawned within the robot workspace, as shown in Figure 7. Three volunteers
participated in this experiment. They included 1 female and 2 male participants with a
mean age of 32 years. None of them had experience with eye-tracking displays; however, 1
of them had used a VR display. All participants were right-handed and provided written
informed consent prior to the start of the experiment. Each participant was told to move
the dominant hand from a ball specified by a number to a target ball also specified by
a number.

The participants performed the task of reaching toward and grasping a ball with a
radius of 7 cm and matching 3D virtual renderings as shown in Figure 8. The physical
object was 3D-printed thermoplastic. Participants wore a head-mounted display to provide
a 90 Hz virtual picture update frequency and scene sound effects while a tracker was
attached to the hand. They viewed green-colored virtual renderings of these objects and
a virtual rendering of the hand in a custom 3D immersive virtual environment designed
in UNITY (ver. 19.4.1f1, Unity Technologies, San Francisco, CA, USA). The objects in the
virtual environment were placed at different locations corresponding to the length of the
arm 1/3 length of the arm at 25 cm from the centre (near), 2/3 arm length (middle) at 50 cm
from the centre, and full arm length at 75 cm from the centre (far), each corresponding to
a level of difficulty. A computer with an Intel Core i7-7700 processor and an NVIDIA gtx
2070 graphics processor was used to create the virtual environment.

Figure 7. Virtual environment rendering of the scene.
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Figure 8. The user performing the experimental task in unity without motion of the robot.

3.6. Design of the Experiment

The main objective was to study the effect of the eye gaze on the detection time of the
desired point, intermediate points, the time taken by the robot to reach the desired point,
and intermediate stops of the robot. For this, three strategies were compared. The nearest-
neighbour method [5,37] (strategy 1) was used as the baseline. The null hypothesis was that
eye-gaze-based prediction had similar results as the selection with the hand-alone strategies
for the detection time, intermediate points detected, robot time, and intermediate points
for the robot. For the research objective, the following evaluation criteria were defined:

• Q1: The time taken by the strategy to detect the desired point;
• Q2: The number of intermediate points detected by the strategy before the desired

point was detected;
• Q3: The time taken by the robot to reach the final point. This was the sum of the

duration of all of the pre-computed trajectories plus the waiting time of the robot;
• Q4: The total number of intermediate stopping points of the robot.

3.7. Data Collection

We recorded the participant’s hand position, head position, and eye-gaze direction for
each point-to-point trajectory. Data for the following trajectories were recorded:

• Long trajectories: P1 − P6, P1 − P16, P7 − P16, P1 − P7 and P4 − P16;
• Medium trajectories: P1 − P13, P7 − P15, P12 − P13 and P8 − P12 ;
• Short trajectories: P6 − P14, P6 − P9, P3 − P11, P13 − P16 and P14 − P16.

4. Results

Out of the 39 recorded trajectories, one was discarded due to recording errors, and the
remaining 38 were used for analysis. We first present a detailed analysis of an individual
trajectory, then a summary of the results from 38 trajectories on Q1, Q2, Q3, and Q4, then an
analysis on the effect of the hand threshold, and finally the effect of the eye-gaze window.
It is important to note that, for the analysis of the results, the values of λd = 0.15 m and the
value on the eye-gaze threshold in strategy 3 was 60◦.

4.1. Analysis of the Trajectory from P1 to P16

We took, as an example, one of the user’s motion trajectory from point P1 to P16 to
analyze the results of the three strategies proposed based on the four criteria Q1, Q2, Q3,
and Q4 (as shown in Table 1). A user view is shown in Figure 9 using strategy 3. The robot
motion corresponding to each strategy is shown in Figures 10 and 11. In Figure 10, we
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represent the hand trajectory and the resultant robot motion for the different strategies. For
P1, we only show when the motion started. For the rest of the points, we indicate the time
at which the hand was closest to each point, and the time the robot stopped at any point.
A video of a user performing a motion from point P1 to P10 and P1 to P16 using strategy 3
along with the robot is provided in the Supplementary Materials.

Table 1. Strategy results for the user’s hand trajectory from P1 to P16.

Strategy Q1 Q2 Q3 Q4

1 4.86 2.0 6.08 2.0

2 5.34 0.0 7.87 0.0

3 4.12 1.0 5.35 1.0

Figure 9. User’s hand trail and selection by eye gaze for motion from P1 to P16. The hand trail is
shown as a pink line. The ball selected by the eye-gaze direction is P13, indicated by a slim red line
from the camera, represented as an icon.

Figure 10. A representation of the actual hand motion and the resultant robot motion projected on
the y-z plane. The time the robot stops at a point is indicated for each strategy, as well as the time the
hand is closest to each point. For p1, the time at which the motion starts is indicated. For p8, p13, and
p16, the time the robot stops is indicated. For p16, the time the hand stops is indicated. For p8 and p13,
the hand that is the closest is indicated.
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Figure 11. Comparison of the strategies for the trajectory from P1 to P16. The dotted line indicates the
time the hand is at the start and the target point.

4.1.1. Strategy 1

With strategy 1 as illustrated in Figure 12a, the points detected were P1, P8, P13, and P16.
The desired point was detected at t = 4.86 s. Two intermediate points were detected: P8
and P13. Points 8 and 13 are along the path of the straight line. Therefore, each of them was
detected as the hand moved. The robot stopped at all the points detected, as indicated by
the green line. The hand left from P1 at t = 0.6 s. P8 was the first point to be detected by the
strategy and the robot received the point and moved towards it. However, before reaching
P8, the strategy detected P13. Since the trajectory from P1 to P8 was not yet completed, the
robot reached P8, stopped, and then started a new trajectory from P8 to P13. It then waited
for new information to go to P16.

4.1.2. Strategy 2

The motion of the hand, the robot, and the selection by strategy 2 is shown in
Figure 12b. From P1, the strategy selected P16 at t = 5.34 s. There were no intermedi-
ate points detected. This was possible because the hand threshold limits the selection of a
point until the condition is met. This can be an advantage if the objective is to minimize the
detection of unwanted points. However, it comes with a cost of late detection of the desired
point when compared to other strategies, as shown in Figure 11. The robot moves directly
to the desired point. However, it arrives after the hand has already reached the point.

4.1.3. Strategy 3

Figure 12c illustrates the progression of strategy 3. The strategy started with point P1,
then selected P13, the best point in the user eye-gaze direction shown in Figure 9 by the
red line on the camera icon, and, then, finally, P16. The robot started from point P1, then
to the intermediate point P13, where it waited for a new point, and then to P16. As can be
observed in the graph, the robot arrived at the final point earlier than the hand and the
other strategies.
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(a) (b)

(c)

Figure 12. Results of individual strategies selection with the hand and robot motion for the trajectory
from P1 to P16 showing the points selected by the strategies, the robot, and the hand stops. The dotted
lines represent the motion of the hand and the robot. The graphs only show the points and the time
the hand and robot stop. (a) Selected points using strategy 1 along with the robot and hand stops.
(b) Strategy 2 points selection along with the robot and hand stops. (c) Strategy 3 selection along with
the robot and hand stops.

4.2. Analysis for All Trajectories

For all of the objectives Q1, Q2, Q3, and Q4, the data distribution was checked for
normality using the Shapiro–Wilk test [45]. We used the strategies as a three-level factor
and strategy 1 as the baseline for comparison. A one-way analysis of variance (ANOVA)
model was used to fit the data. Results showed that there were significant differences
among the strategies (p < 0.05) for all the objectives, with Q1 (F(2, 111) = 10.66 and
p = 0.000), Q2 (F(2, 111) = 19.21 and p = 0.000), Q3 (F(2, 111) = 10.77 and p = 0.0), and
Q4 (F(2, 111) = 30.62 and p = 0.000). Therefore, we reject the null hypothesis and conclude
that the mean detection time, the number of intermediate points detected, robot arrival
time, and the intermediate points detected by the robot are different for all the strategies.
The results indicated that the effect of the eye-gaze tracking was significant for all of the
objectives. A post hoc analysis was performed to find out the strategy-wise differences
using the Bonferroni [46] and the Tukey test [47].

The Tukey test showed that the time for detection in strategy 3 was significantly lower
than strategy 1 (p = 0.004) and strategy 2 (p = 0.000). Overall, strategy 3 was the best with
the lowest time, as shown in Table 2 and Figure 13a. Compared to the baseline, the time
difference was 0.92 s, representing a 37% reduction. However, there were no significant
differences between the other strategies. These results indicate that the participants always
looked in the direction of the desired point before moving their hand. Mutasim et al. [48]
discovered similar results in a study of gaze movements in a VR hand-eye coordination
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training system. They found that the target was detected, on average, 250 ms before touch
with eye gaze. Therefore, the use of eye-gaze direction tracking significantly reduced the
detection time.

Table 2. Mean and standard deviation of Q1, Q2, Q3, and Q4 for different strategies.

Q1 Q2 Q3 Q4

Strategy Mean SD Mean SD Mean SD Mean SD

1 2.47 1.34 2.63 1.62 4.18 1.36 1.84 1.13

2 2.82 1.36 0.50 0.86 4.89 2.06 0.42 0.68

3 1.54 0.99 2.32 2.12 3.23 1.14 0.58 0.72

(a) (b)

Figure 13. Results for each strategy. (a) Q1: Time taken for each strategy to detect the desired point.
Q3: Time taken by the robot to reach the desired point. (b) Q2: The number of intermediate points
detected by each strategy. Q4: The number of intermediate stopping points of the robot.

A post hoc analysis using the Tukey test showed that strategy 2 had a significantly
reduced number of intermediate points detected compared to strategy 1 (p = 0.000). The
results can be seen in Table 2 and Figure 13b. The difference between strategy 3 and strategy
1 was insignificant, although strategy 3 had a lower number of intermediate points by 20%.
Due to the rapid eye movements (the saccades), eye-gaze direction tracking can result in the
detection of intermediate points. However, the hand threshold prevented the selection of a
new target when the hand was close to a point, hence reducing the number of intermediate
points in strategy 3.

Concerning the robot time, a post hoc analysis showed that the overall time taken
for strategy 3 was significantly lower than strategy 1 (p = 0.025) by 23% and strategy 2
(p = 0.000), as shown in Table 2 and Figure 13a. The result indicates that eye-gaze tracking
greatly improved the robot time. Even though the number of intermediate points detected
by strategy 1 and 3 was similar, the motion planning algorithm ignored many points due
to saccades, so they did not affect the results. In addition, strategy 3 improved the arrival
time for the robot because of a lower detection time.

The number of robot stops was significantly higher in strategy 1 than strategy 3
(p = 0.000) by 69% and strategy 2 (p = 0.05) by 77% , as shown in Table 2 and Figure 13b.
Although the difference in the number of intermediate points detected was insignificant
between strategy 1 and strategy 3, the robot did not stop for all intermediate points.
This implies that selections by strategy 3 due to saccades did not significantly affect the
robot motion, thanks to the motion planning algorithm, which discarded new information
received before a trajectory finished its execution.

4.3. Analysis of the Effect of Parameters on the Performance of the Strategies

The performance of strategy 3 depends on the values of the hand threshold param-
eter λd and the eye-gaze window parameter α. Therefore, we conducted experiments to
determine the effect of λd and α on Q1, Q2, Q3, and Q4.
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4.4. The Effect of the Hand Threshold

We experimented with different values of λd, with λd = 5 cm as the baseline, compared
to λd = 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm. The results based on a data set with
34 different trajectories are presented below.

A one-way ANOVA model revealed a significant effect of the λd on Q1 F(5, 198) = 8.099,
p = 0.000. Post hoc comparisons using the Tukey HSD test [49] indicated that the mean
time for λd = 5 cm was statistically lower than that for λd = 25 cm (p = 0.000) by 1.11
s and λd = 30 cm (p = 0.000) by 1.19 s. Specifically, our results suggest that increasing
the value of the threshold generally increased the time to detect the final point. A small
threshold allows for the detection of the hand’s intention to move away from the current
point. This leads to an early detection of the desired point by the eye gaze. However, λd
had to be greater than 20 cm to notice a significant effect. Details are shown in Table 3 and
in Figure 14a.

Table 3. Analysis of Q1, Q2, Q3, and Q4 for different threshold values.

λd Q1 Q2 Q3 Q4

M SD M SD M SD M SD

5 cm 1.12 0.88 2.47 2.69 2.74 1.04 0.53 0.71

10 cm 1.22 0.79 2.06 2.33 2.98 1.06 0.53 0.66

15 cm 1.48 0.77 2.38 2.09 3.09 0.96 0.53 0.61

20 cm 1.86 1.00 2.65 2.17 3.58 0.92 1.24 0.78

25 cm 2.23 1.36 2.59 2.11 3.85 1.20 1.38 0.85

30 cm 2.31 1.32 2.47 1.93 3.97 1.21 1.59 0.99

(a) (b)

Figure 14. Results for each value of the hand threshold. (a) Q1: The time taken by the strategy
to detect the desired point. Q3: The time taken by the robot to reach the desired point. (b) Q2:
The number of intermediate points detected by the strategy. Q4: The total number of intermediate
stopping points of the robot.

A one-way ANOVA revealed no significant effect of λd on Q2, with (F(5, 198) = 0.294,
p = 0.916). The results are shown in Table 3 and in Figure 14b. The difference was not
significant because of the following reasons. First, a lower value of λd triggered selection by
the eye gaze, which is affected by saccades, as observed in [16], resulting in a high number
of intermediate points. Increasing the threshold would reduce the saccades because the
target selection is by hand. However, this would mean that the strategy would tend to
behave like strategy 1, increasing the number of intermediate points. Thus, selecting the
correct value for this criteria is a trade-off between selection by eye gaze and selection by
user’s hand. The best balance was λd = 10 cm or 15 cm.

A one-way ANOVA model revealed a significant effect of λd on Q3 F(5, 198) = 7.486,
p = 0.000). Post hoc comparisons showed significant differences between λd = 5 cm, 10 cm,
15 cm, and λd = 25 cm and 30 cm. Overall, λd = 5 cm took the least time, as shown in
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Figure 14a and Table 3. The results show that the robot took a shorter time to reach the
desired point for a small threshold.

A one-way ANOVA test showed that the hand threshold had a significant effect on
Q4: F(5, 198 = 7.486), p = 0.0. The results are shown in Table 3 and in Figure 14b. Post
hoc comparisons revealed that λd = 5 cm was significantly different from λd = 25 cm and
30 cm; however, it was not significantly different from λd = 10 cm and 15 cm. The results
show that a larger threshold increased the number of intermediate points detected by the
robot. The mean values were similar for the lower values of λd = 5 cm, 10 cm, and 15 cm.
Then, the slope of the graph changed with increasing values of λd. This pattern is different
from the results obtained from the number of intermediate points selected by the algorithm.
The algorithm selected a significant number of intermediate points for lower thresholds
due to the saccades in the eye-gaze tracking. Therefore, the robot discards most of them
thanks to a robust motion planning algorithm. On the contrary, as the threshold increases,
the selection of points is mainly by hand. In this way, the algorithm behaves like strategy 1,
which accounts for the increased number of intermediate points detected.

Overall, there was no significant difference between λd = 5 cm, 10 cm, and 15 cm
for all of the objectives Q1, Q2, Q3, and Q4. For this study, the best value selected was
λd = 15 cm, in accordance with the dimension of the environment. People hold a ball
with a diameter of 7.5 cm. The tracker is placed on the top of the hand at a distance of
approximately 5 cm from the palm. Therefore, the total distance from the center of the ball
to the tracker was approximately 8 cm.

4.5. Eye-Gaze Window

Previous studies [2,10,42,43] have used different values of α, ranging from 1◦, 30◦,
and 40◦, which have been used for selecting objects in the gaze window. However,
there was no standard value for the appropriate gaze window size. Based on a data
set with 37 different trajectories, we present results of the effect of α by comparing
α = 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, and 60◦ to the baseline α = 1◦. Normality checks were
carried out and the assumptions were met.

A one-way ANOVA test showed that α had a significant change on Q1, with
F(7, 288) = 2.230 and p = 0.032, as shown in Table 4 and Figure 15a. The results from a
post hoc analysis showed that α = 1◦ has a significantly longer detection time (p = 0.054)
than α = 20◦, α = 25◦, α = 30◦, and α = 60◦, with a difference of 0.68 s. These results show
that decreasing α delayed the detection of a point because of the smaller selection. A point
cannot be selected until it is within the gaze window. A threshold greater than 10◦ would
give a view cone greater than 20◦, which would be large enough to accommodate several
points in the user’s gaze direction.

A one-way ANOVA test showed that Q2 was significantly affected by α, with
F(7, 288) = 4.237 p = 0.000. More specifically, a post hoc analysis showed that α = 1◦

had the lowest number of intermediate points, with a value significantly lower than
α = 10◦(p = 0.003), α = 15◦, α = 20◦, α = 25◦, α = 30◦, and α = 60◦(p = 0.000). The
results are shown in Table 4 and Figure 15b. This suggests that, when α was set to a value
less than 10◦, the detection of intermediate points decreased significantly. A small selection
window will block out many points, whereas a large window gives room for saccades. This
relationship is depicted in Figure 15b.

There were significant differences in the time taken by the robot to reach the desired
point: F(7, 288) = 5.451, p = 0.001. The time taken using α = 1◦ was significantly
greater than the rest (p = 0.000). These results showed that reducing α to a value < 10◦

significantly delayed the robot. However, the difference was not noticeable between large
values, as can be observed in Figure 15a.
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Table 4. Mean and standard deviation of Q1, Q2, Q3, and Q4 for different α.

α Q1 Q2 Q3 Q4

M SD M SD M SD M SD

1◦ 2.19 1.07 0.65 1.01 4.23 1.69 0.41 0.69

5◦ 1.55 0.76 1.14 1.29 3.55 1.26 0.54 0.69

10◦ 1.53 1.01 1.92 1.67 3.25 1.09 0.54 0.65

15◦ 1.51 0.98 2.22 1.96 3.19 1.06 0.57 0.69

20◦ 1.51 0.98 2.22 2.06 3.18 1.10 0.54 0.69

25◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69

30◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69

60◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69

(a) (b)

Figure 15. Investigating the effect of the eye-gaze threshold using different values of α. (a) Q1: The
time taken by the strategy to detect the desired point. Q3: The time taken by the robot to reach the
desired point. (b) Q2: The number of intermediate points detected by the strategy. Q4: The total
number of intermediate stopping points of the robot.

There was no significant effect of α on Q4. Adjusting the threshold had no effect on the
intermediate stops of the robot, as observed in Figure 15b. These results follow a similar
pattern to the results from Q2. However, in this case, the number was lower thanks to the
robust motion planning algorithm.

5. Discussion

This study on the development and evaluation of strategies for user motion prediction
was motivated by the need to improve detection speeds and increase the response time
in EHDs.

Most importantly, our solution relied on the eye-gaze direction and hand position
to determine human motion intention and desired targets. We analyzed data from three
participants to determine the time taken by each strategy to detect the desired point, the
number of intermediate points detected, the time taken by the robot to reach the final
point, and the total number of intermediate stopping points of the robot. Strategy 3 gave
the best detection time, robot time, and fewer robot stops. These results showed that the
eye gaze significantly improved the response time while minimizing the number of robot
stops. Our results were coherent with the literature on hand-eye coordination and target
selection, which has identified that humans typically fix their gaze in the direction of the
target, slightly before or after the hand begins to move, as shown in Figure 9.

The results suggest that visual behaviour for target selection with a haptic system is
similar to behaviour when carrying out the task with hands in everyday life. Thus, the
proposed system should work for people with motor impairments.

The prediction strategy based on the eye-gaze direction demonstrated a pattern to
detect more intermediate points because of the saccadic movements. To minimize this
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behaviour, recent studies [15] in which the gaze direction is used to predict human intention
utilized gaze attention models. In such models, they wait for a window period ranging
from 200 ms to 4 s when the gaze is fixated on an object to validate it as a target. Such
models affect robot arrival times and are applicable for large objects. In our case, the balls
are not big. Thus, we used a threshold on the hand to limit the selection of the next point.
The detection by the eye gaze was cut off when the point-to-hand distance was less than a
threshold. In addition, the path-planning algorithm of the robot was designed to complete
a trajectory before starting a new one. Thus, rapid trajectory changes due to saccades were
always discarded. This implies that our model can be used for both small and large objects,
as long as a suitable threshold on the hand is selected.

In this study, the hand threshold plays a vital role in detecting human motion intention.
In studies where the nearest point to the hand method is used [2,18], the target was detected
whenever the hand had crossed half the distance between any two points. However, when
coupled with the eye gaze, a hand threshold was used to detect the user’s intention to move
to another point. In this way, the hand-to-point was below the threshold, and the user
intention was interpreted as a desire to remain at a point. Therefore, the robot remained
stationed at the point. The threshold also served to restrict the detection of a new point.
Thus a threshold plays a significant role in determining the detection time of the target
and the intermediate points. Thus, it affects the robot arrival time and the intermediate
points detected along the robot trajectory. We experimented with different threshold values
on the hand to determine a suitable threshold value. The analysis revealed that a lower
threshold was associated with a faster detection time. We attribute this to the fact that a
lower threshold value indicated an earlier detection of the intention by the user to move to
another point.

Due to the lack of clear agreement on the standard size of the gaze view window in
studies investigating eye gaze and hand coordination patterns [2,10,42,43], we examined
the effect of the threshold on the eye gaze. Our results showed that a view angle greater
than 20◦, as used in strategy 3, had similar results for all of the research questions Q1,
Q2, Q3, and Q4. However, a reduced threshold ≤ 10◦ was associated with a significantly
increased time for detection, but reduced the number of intermediate points. A small
threshold implied that a few points would be selected at a time. Thus, it would take longer
to have a valid selection, which greatly increased the time to detect the desired point and
consequently delayed the robot. From the analysis, we discovered that the gaze fixation
model, as used in [2], increased the detection time, hence delaying the robot.

Previous studies [16,50] pointed out that the visual gaze is full of rapid eye movements
between fixed points (saccades), and it was the primary reason why gaze fixation was the
widely used approach. However, we do not use gaze fixation because it takes longer to
detect a point. In addition, it is unsuitable for smaller objects. Instead, we used a threshold
on the hand to restrict robot motion when a point lies within the stated threshold. We
select the best point depending on the angle α and not the visual ray directly. By combining
the hand threshold and a good motion-planning algorithm, saccadic movements do not
significantly affect the robot motion when a large threshold on the eye gaze is used. Thus,
our approach is robust to saccades and highly responsive.

Our findings show that prediction based on the eye gaze improved the response time for
the robot. However, optimizing the detection time from human predictions comes at the cost
of increasing the intermediate points detected. We observed this through an analysis of the
threshold values on the hand. A lower value resulted in a good detection time and a higher
value of intermediate points detected. Thus, a compromise has to be made to improve the
detection time and reduce the detection of the intermediate points. Therefore, we recommend
finding a suitable threshold on the hand and the eye-gaze window to suit the task.

In addition, our system only uses positions in a 3D space; it would be good to extend
the interaction to 6-DOF to study the implications of prediction and robot time in haptic ren-
dering systems where positions and orientations of virtual objects are essential. Although
VR hand-eye coordination significantly improved the detection time, we observed that



Sensors 2022, 22, 2040 19 of 22

participants spent some time searching for a target. Therefore, further research is needed to
minimize the time spent searching for the next target to increase the user’s performance
and the eye-hand coordination training system. Our work was preliminary on the proof of
concept with a few healthy participants. It would be essential to evaluate the haptic system
with many people with motor disabilities.

Eye-gaze detection to predict targets for haptic devices is a promising solution to
improve intention detection and robot response. However, due to saccades during decision
making and target search, additional studies are needed on methods to process gaze data.

6. Conclusions

Haptic systems enable physical user interaction with a virtual world by automatically
recreating virtual scenes for dynamic interactions through haptic rendering. However,
speed constraints present a challenge for the real-time interaction of such systems. We
have addressed this problem through motion prediction using eye-gaze direction and the
user’s hand. This study developed motion prediction strategies in a virtual environment
for reaching tasks. Based on data from three participants, our study confirms the principle
that the eye gaze precedes hand movement for reaching tasks. Furthermore, our results
confirm that the strategy using eye-gaze-based prediction significantly reduced the detec-
tion of the desired point and reduced intermediate points. This significantly improved
the robot response, with fewer intermediate robot stops. More specifically, our approach
showed better results than the state-of-the-art, which relies on gaze fixation. Therefore,
this approach may be helpful to communities using haptic systems for upper extremity
rehabilitation training and tasks for rapid prototyping in industrial design [51] to improve
the response time and device speed.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Chapter 6

General Discussion

Summary

This chapter discusses the results obtained in the thesis. It also addresses the
challenges and limitations and future proposals to advance the research project.

6.1 Summary of the thesis

This thesis focused on the development of motion strategies for a haptic interface
with intermittent contacts to ensure safe human-robot interaction. In the studies
conducted, two applications were considered. The first context was the industrial
context for the analysis of the texture of the material of a car in the early stages
of development and the second was a medical application for upper limb rehabil-
itation training. We proposed solutions to the most common problems of haptic
devices which include cost, safety, and speed constraints. The software architec-
ture used within the development of this thesis includes extensive use of Unity
for the virtual environment with the prediction strategies implemented in C#.
The Robot operating system was used as the middleware for motion planning to
generate collision-free trajectories with nodes to perform tasks written in C++.
Matlab software was for simulations and R software was for statistical analysis
of results. Additionally, CATIA was used to design CAD models and create 3D
parts for the props.

We first investigated the efficacy of VR in comparison to CT in improving
physical and psychological status among stroke patients since the evidence of
the clinical effectiveness of the different forms of VR (either immersive or non-
immersive) is scarce. A literature search was conducted on seven databases:
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ACM Digital Library, Medline (via PubMed), Cochrane, IEEE Xplore, Web of
Science, Scopus, and science direct. The effect sizes of the primary outcomes
were calculated using Cohen’s d. Pooled results were used to present an overall
estimate of the treatment effect using a random-effects model. The evaluated
trials suggest that IVR therapies may be more effective than NIVR but not CT
in improving upper limb activity, function, and daily life activities. However, the
evidence showed promising benefits of immersive virtual reality technology.

The next aspect was implementing a motion generation scheme for the haptic
interface envisaged, which considers the obstacles present in a Virtual Reality
(VR) environment. The most essential thing to ensure was the user’s safety for
the proposed human-robot interaction system. This one has to be guaranteed in
order to be able to implement a reliable system. This study was a continuation
of the work presented by Guda et al. (2020); Posselt et al. (2017) where the main
objective is to generate a safe motion scheme that takes into consideration the
obstacles present in a Virtual Reality (VR) environment. The work was developed
using MoveIt software in ROS to control a UR5 industrial robot. With this, we
were able to set up the planning group, which is confirmed by the UR5 robot
along with a 6-faced prop and a ball attached to the robot flange to plan feasible
trajectories for the robot to execute within the environment.

We first studied the software capabilities and options for path planning, along
with the different ways of executing motions. We then compared the different
path-planning algorithms to determine which one best suits the task. Finally, we
proposed different mobility schemes for the robot to execute depending on the
situation faced. The first one is when the robot needs to plan trajectories in a
safe space, where the only obstacle to avoid will be the user’s workspace. We
ran two different experiments to choose a planning algorithm using MoveIt. The
first one was intended to determine which one of the 12 available planning algo-
rithms was better suited for path planning within the system. The second set of
experiments considered the execution times of the trajectories generated by the
algorithms. For each path-planning algorithm, both RRT and RRTConnect, the
solutions found were less optimal, sometimes generating longer trajectories with
high deviations from the optimal path. However, even if both algorithms take
more or less the same time to find a solution, BiTRRT was found to have faster
execution times. This is reflected in the fact that for the BiTRRT algorithm,
the trajectories computed were more ”consistent”, obtaining similar trajectories
every time. Thus we decided to pick the BiTRRT algorithm as our path-planning
algorithm for the implementation of this project. One of the advantages of this
implementation is that by directly identifying which trajectory we want to exe-
cute, we can access the pre-computed plan and execute said trajectory directly.
The motion generation scheme was then used to execute point-to-point trajecto-
ries of the robot based on data received from the virtual environment in the Unity
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software. Two different virtual environments based on different applications were
used as case studies to develop further user interaction techniques and motion
prediction algorithms based on sensor data from the HTC Vive tracking System.

The first case study was based on the interior of a vehicle containing a person
(which would be the user in this case) for which the set-up was made in order to
be taken into account within the system. The user interacts with a 6-faced prop
which rotates to present different textured material for user haptic perception.
We developed intermittent contacts using an industrial robot for human-robot in-
teraction, such that the robot moves to the user when contact needs to be made.
Since the user is immersed in the virtual world via a VR HMD, he cannot perceive
the danger of a collision when he changes his area of interest in the virtual envi-
ronment. The objective of this study was to describe four movement strategies for
the robot to be as fast as possible in the contact zone while guaranteeing safety.
This work uses the concept of predicting the user’s intention through his gaze
direction and the position of his dominant hand (the one touching the object),
and safe points outside the human workspace. We introduce two-speed profiles
for the user’s safety. The robot moves at a higher speed when it is outside the
user’s workspace. In situations where there is a large distance between two points
within the workspace, we introduce via points to reduce travel time. The time
needed to go through via points can be less than the time needed to go directly
inside the car while being much safer. Seven trajectories done by three users were
analyzed thanks to five criteria. A compromise must be made between user safety
and speed for the robot to reach its target. Experiments are done and analyzed
with a Pareto front with a UR5 robot and an HTC Vive tracker system for an
industrial application involving the analysis of materials in the interior of a car.
The study showed that to maximize user safety, there has to be a compromise
on speed. So by dividing the workspace into different zones, velocity modulation
techniques were able to improve device speed.

The second case study presents an experimental study on an exergame for
upper limb rehabilitation training. A person sits on a chair and has to reach out
balls in a virtual scene. He interacts with a ball attached to the robot and must
be at the exact location of the virtual ball the user intends to touch. An interac-
tive VE developed in unity3D software was used for total user immersion, and a
sensor is attached to his dominant hand. The objective was to improve the pre-
diction time and reduce the robot’s time to reach the desired position. This study
presented several motion prediction strategies to infer user intention and predict
intended targets in a VE for reaching tasks based on hand motion and eye gaze
tracking. Point-to-point trajectories were executed using the motion planning
scheme for user safety. To assess the performance of the strategies, we conducted
three subject-based experiments using 39 trajectories. The experimental results
in this study revealed that eye-gaze-based prediction significantly improved the

89



6.2 Limitations and future perspectives

detection time by 37% and the robot time taken to reach the target by 27%.
Further analysis was done to provide more insight into the effect of the eye-gaze
window and the hand threshold on the device response for the experimental task.
This study confirmed that using eye-gaze-based tracking significantly reduced the
detection of the desired point and greatly improved device speed and response,
with fewer intermediate robot delays. Our approach showed better results than
the state-of-the-art, which relies on gaze fixation. Therefore, this approach may
be helpful to communities using haptic systems for upper extremity rehabilitation
training and tasks for rapid prototyping in industrial design (Posselt et al., 2017).

6.2 Limitations and future perspectives

The utilization of IVR systems for motor rehabilitation programs is still in the
early stages of adoption. IVR is a relatively new technology and remains partially
known, with a lot of the work limited to pain and phobias treatment. There
were few studies on the effectiveness of IVR systems in stroke rehabilitation that
examine its long-term benefits. Therefore more trials are needed to evaluate
the benefits of IVR technologies in improving physical and psychological status
among people with neurological conditions.

We developed a motion generation scheme. However, one of the limitations is
that, given the nature of performing pre-recorded trajectories, the system needs
to fully execute each of the trajectories that a user performs once the robot has
received a target. Therefore, the path planning algorithm needs to accommodate
re-planning when a new target is detected.

Although VR hand-eye coordination significantly improved the detection and
response time of the robot, we observed that participants spent some time search-
ing for a target. Therefore, further research is needed to minimize the time spent
searching for the next target to increase the user’s performance for the eye-hand
coordination training system.

Our work was preliminary on the proof of concept. The motion strategies
were evaluated based on a few participants. Future work should conduct more
studies based on a large number of users, including people with motor disabilities,
and more trajectories to test the robustness of our analysis.

Using Eye-gaze tracking to predict targets for haptic devices is a promising
solution to human-robot interaction and robot response. However, due to sac-
cades during decision-making and target search, additional studies are needed on
methods to process gaze data.

Further work is also envisioned to evaluate the system by realizing the robot’s
movements simultaneously with the user’s movements to validate his feeling when
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he/she hears the robot moving.

6.3 Conclusion

VR presents immense benefits for industrial and medical care applications, in-
cluding so many benefits such as reduced costs, among others. This thesis studies
the development of a novel haptic interface and motion planning strategies for
safe human-robot interaction. We developed motion strategies and user interac-
tion techniques to overcome inherent challenges such as speed, workspace, and
safety associated with using industrial robots as encountered type haptic devices
with intermittent contacts. Two case studies are presented for the analysis of the
developed haptic interface and the motion planning strategies. The first is an
industrial application for analysis of the material of the interior of the car during
the early stages of development, while the second is the application of the hap-
tic interface to upper limb rehabilitation training. We developed an immersive
virtual environment for user interaction using Unity software, human motion in-
tention detection, and motion prediction algorithms based on gaze direction and
hand motion to predict the points of interest for the user. A motion planning
algorithm based on velocity modulation was developed to move the robot as fast
as possible in areas outside the user’s workspace and slowly in areas close to the
human. Different path-planning libraries to execute safe point-to-point trajec-
tories were evaluated, and the best one suitable for the task was selected. An
obstacle avoidance algorithm was proposed to limit collision between the user and
the robot and prevent the robot from colliding with itself. For both applications
considered in this thesis, an evaluation of the motion strategies was conducted
based on user studies. Results were analyzed to choose the best motion strategy
to adopt for each application to overcome the inherent problems of haptic devices.
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Titre :  Stratégies de mouvement pour une interface haptique avec des contacts intermittents pour 
assurer une interaction homme-robot sûre. 

Mots clés :  Interface contacts intermittents, Interface haptique, Interaction homme-robot, Réalité virtuelle, 
Sécurité humaine 

Résumé :   La réalité virtuelle a été reconnue 
comme un outil puissant pour créer des 
interfaces homme-machine plus naturelles et 
intuitives et s'est avérée bénéfique dans de 
nombreuses applications. Cependant, 
l'incapacité d'interagir dans un environnement 
virtuel par le toucher compromet son réalisme et 
son utilité. Les interfaces haptiques avec des 
contacts intermittents permettent aux utilisateurs 
d'atteindre et de toucher physiquement les objets 
virtuels pour simuler le contact entre l'utilisateur 
et l'environnement en utilisant la sensation tactile 
pour augmenter le réalisme de l'interaction. Ils 
permettent un large éventail d'interactions 
physiques dans l'espace de travail de l'utilisateur, 
avec une entrée physique qui ressemble à la 
réalité.  Ces appareils sont confrontés à des défis 
tels que le coût, un petit espace de travail, une 
vitesse limitée et la sécurité des utilisateurs. 

Dans cette thèse, nous avons développé une 
interface haptique utilisant un robot coopératif 
pour relever ces défis. Plusieurs stratégies de 
mouvement, un schéma de génération de 
trajectoire et des techniques d'interaction avec 
l'utilisateur pour assurer la sécurité ont été 
développés et évalués. Deux études de cas ont 
été utilisées comme domaines d'application. Le 
premier est une application industrielle pour 
l'analyse du matériau intérieur de la voiture 
pendant les premières phases de 
développement tandis que le second est une 
interface haptique pour l'entraînement en 
rééducation des membres supérieurs. Des 
études d'utilisateurs ont été menées pour 
évaluer l'efficacité des stratégies de mouvement 
dans l'amélioration de la vitesse, de la réponse 
et de la sécurité de l'utilisateur. 

 

Title: Motion strategies for a haptic interface with intermittent contacts to ensure safe 
human-robot interaction. 
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Abstract:  Virtual reality has been recognized 
as a potent tool for creating more natural and 
intuitive human-computer interfaces and has 
been found to be beneficial in so many 
applications. However, the inability to interact in 
a virtual environment through touch 
compromises its realism and usefulness. Haptic 
interfaces with intermittent contacts allow users 
to reach out and touch the virtual objects 
physically to simulate contact between the user 
and the environment with use of tactile sensation 
to increase the realism of interaction. They allow 
a wide range of physical interactions throughout 
the user's workspace, with a physical input that 
resembles reality. 

These devices are faced with challenges such 
as cost, a small workspace, limited speed and 
user safety. In this thesis, we developed a haptic 
interface using a cooperative robot to address 
these challenges.  Several motion strategies, a 
trajectory generation scheme and user 
interaction techniques to ensure safety were 
developed and evaluated. Two case studies 
were used as application areas. The first is an 
industrial application for analysis of the interior 
material of the car during the early stages of 
development while the second one is a haptic 
interface for upper limb rehabilitation training. 
User studies were conducted to evaluate the 
efficacy of the motion strategies in improving 
device speed, response, and user safety.  
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